1 /*
   2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 
  27 #include "gc/shenandoah/shenandoahAgeCensus.hpp"
  28 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  30 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  31 #include "gc/shenandoah/shenandoahGenerationalControlThread.hpp"
  32 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  33 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  36 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  37 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  38 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  39 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  40 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  41 #include "gc/shenandoah/shenandoahRegulatorThread.hpp"
  42 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  43 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  44 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  45 #include "gc/shenandoah/shenandoahUtils.hpp"
  46 #include "logging/log.hpp"
  47 #include "utilities/events.hpp"
  48 
  49 
  50 class ShenandoahGenerationalInitLogger : public ShenandoahInitLogger {
  51 public:
  52   static void print() {
  53     ShenandoahGenerationalInitLogger logger;
  54     logger.print_all();
  55   }
  56 
  57   void print_heap() override {
  58     ShenandoahInitLogger::print_heap();
  59 
  60     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
  61 
  62     ShenandoahYoungGeneration* young = heap->young_generation();
  63     log_info(gc, init)("Young Generation Soft Size: " EXACTFMT, EXACTFMTARGS(young->soft_max_capacity()));
  64     log_info(gc, init)("Young Generation Max: " EXACTFMT, EXACTFMTARGS(young->max_capacity()));
  65 
  66     ShenandoahOldGeneration* old = heap->old_generation();
  67     log_info(gc, init)("Old Generation Soft Size: " EXACTFMT, EXACTFMTARGS(old->soft_max_capacity()));
  68     log_info(gc, init)("Old Generation Max: " EXACTFMT, EXACTFMTARGS(old->max_capacity()));
  69   }
  70 
  71 protected:
  72   void print_gc_specific() override {
  73     ShenandoahInitLogger::print_gc_specific();
  74 
  75     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
  76     log_info(gc, init)("Young Heuristics: %s", heap->young_generation()->heuristics()->name());
  77     log_info(gc, init)("Old Heuristics: %s", heap->old_generation()->heuristics()->name());
  78   }
  79 };
  80 
  81 size_t ShenandoahGenerationalHeap::calculate_min_plab() {
  82   return align_up(PLAB::min_size(), CardTable::card_size_in_words());
  83 }
  84 
  85 size_t ShenandoahGenerationalHeap::calculate_max_plab() {
  86   size_t MaxTLABSizeWords = ShenandoahHeapRegion::max_tlab_size_words();
  87   return align_down(MaxTLABSizeWords, CardTable::card_size_in_words());
  88 }
  89 
  90 // Returns size in bytes
  91 size_t ShenandoahGenerationalHeap::unsafe_max_tlab_alloc(Thread *thread) const {
  92   return MIN2(ShenandoahHeapRegion::max_tlab_size_bytes(), young_generation()->available());
  93 }
  94 
  95 ShenandoahGenerationalHeap::ShenandoahGenerationalHeap(ShenandoahCollectorPolicy* policy) :
  96   ShenandoahHeap(policy),
  97   _age_census(nullptr),
  98   _evac_tracker(new ShenandoahEvacuationTracker()),
  99   _min_plab_size(calculate_min_plab()),
 100   _max_plab_size(calculate_max_plab()),
 101   _regulator_thread(nullptr),
 102   _young_gen_memory_pool(nullptr),
 103   _old_gen_memory_pool(nullptr) {
 104   assert(is_aligned(_min_plab_size, CardTable::card_size_in_words()), "min_plab_size must be aligned");
 105   assert(is_aligned(_max_plab_size, CardTable::card_size_in_words()), "max_plab_size must be aligned");
 106 }
 107 
 108 void ShenandoahGenerationalHeap::post_initialize() {
 109   ShenandoahHeap::post_initialize();
 110   _age_census = new ShenandoahAgeCensus();
 111 }
 112 
 113 void ShenandoahGenerationalHeap::print_init_logger() const {
 114   ShenandoahGenerationalInitLogger logger;
 115   logger.print_all();
 116 }
 117 
 118 void ShenandoahGenerationalHeap::print_tracing_info() const {
 119   ShenandoahHeap::print_tracing_info();
 120 
 121   LogTarget(Info, gc, stats) lt;
 122   if (lt.is_enabled()) {
 123     LogStream ls(lt);
 124     ls.cr();
 125     ls.cr();
 126     evac_tracker()->print_global_on(&ls);
 127   }
 128 }
 129 
 130 void ShenandoahGenerationalHeap::initialize_heuristics() {
 131   // Initialize global generation and heuristics even in generational mode.
 132   ShenandoahHeap::initialize_heuristics();
 133 
 134   // Max capacity is the maximum _allowed_ capacity. That is, the maximum allowed capacity
 135   // for old would be total heap - minimum capacity of young. This means the sum of the maximum
 136   // allowed for old and young could exceed the total heap size. It remains the case that the
 137   // _actual_ capacity of young + old = total.
 138   _generation_sizer.heap_size_changed(max_capacity());
 139   size_t initial_capacity_young = _generation_sizer.max_young_size();
 140   size_t max_capacity_young = _generation_sizer.max_young_size();
 141   size_t initial_capacity_old = max_capacity() - max_capacity_young;
 142   size_t max_capacity_old = max_capacity() - initial_capacity_young;
 143 
 144   _young_generation = new ShenandoahYoungGeneration(max_workers(), max_capacity_young, initial_capacity_young);
 145   _old_generation = new ShenandoahOldGeneration(max_workers(), max_capacity_old, initial_capacity_old);
 146   _young_generation->initialize_heuristics(mode());
 147   _old_generation->initialize_heuristics(mode());
 148 }
 149 
 150 void ShenandoahGenerationalHeap::initialize_serviceability() {
 151   assert(mode()->is_generational(), "Only for the generational mode");
 152   _young_gen_memory_pool = new ShenandoahYoungGenMemoryPool(this);
 153   _old_gen_memory_pool = new ShenandoahOldGenMemoryPool(this);
 154   cycle_memory_manager()->add_pool(_young_gen_memory_pool);
 155   cycle_memory_manager()->add_pool(_old_gen_memory_pool);
 156   stw_memory_manager()->add_pool(_young_gen_memory_pool);
 157   stw_memory_manager()->add_pool(_old_gen_memory_pool);
 158 }
 159 
 160 GrowableArray<MemoryPool*> ShenandoahGenerationalHeap::memory_pools() {
 161   assert(mode()->is_generational(), "Only for the generational mode");
 162   GrowableArray<MemoryPool*> memory_pools(2);
 163   memory_pools.append(_young_gen_memory_pool);
 164   memory_pools.append(_old_gen_memory_pool);
 165   return memory_pools;
 166 }
 167 
 168 void ShenandoahGenerationalHeap::initialize_controller() {
 169   auto control_thread = new ShenandoahGenerationalControlThread();
 170   _control_thread = control_thread;
 171   _regulator_thread = new ShenandoahRegulatorThread(control_thread);
 172 }
 173 
 174 void ShenandoahGenerationalHeap::gc_threads_do(ThreadClosure* tcl) const {
 175   if (!shenandoah_policy()->is_at_shutdown()) {
 176     ShenandoahHeap::gc_threads_do(tcl);
 177     tcl->do_thread(regulator_thread());
 178   }
 179 }
 180 
 181 void ShenandoahGenerationalHeap::stop() {
 182   regulator_thread()->stop();
 183   ShenandoahHeap::stop();
 184 }
 185 
 186 void ShenandoahGenerationalHeap::evacuate_collection_set(bool concurrent) {
 187   ShenandoahRegionIterator regions;
 188   ShenandoahGenerationalEvacuationTask task(this, &regions, concurrent, false /* only promote regions */);
 189   workers()->run_task(&task);
 190 }
 191 
 192 void ShenandoahGenerationalHeap::promote_regions_in_place(bool concurrent) {
 193   ShenandoahRegionIterator regions;
 194   ShenandoahGenerationalEvacuationTask task(this, &regions, concurrent, true /* only promote regions */);
 195   workers()->run_task(&task);
 196 }
 197 
 198 oop ShenandoahGenerationalHeap::evacuate_object(oop p, Thread* thread) {
 199   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
 200   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
 201     // This thread went through the OOM during evac protocol and it is safe to return
 202     // the forward pointer. It must not attempt to evacuate anymore.
 203     return ShenandoahBarrierSet::resolve_forwarded(p);
 204   }
 205 
 206   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
 207 
 208   ShenandoahHeapRegion* r = heap_region_containing(p);
 209   assert(!r->is_humongous(), "never evacuate humongous objects");
 210 
 211   ShenandoahAffiliation target_gen = r->affiliation();
 212   // gc_generation() can change asynchronously and should not be used here.
 213   assert(active_generation() != nullptr, "Error");
 214   if (active_generation()->is_young() && target_gen == YOUNG_GENERATION) {
 215     markWord mark = p->mark();
 216     if (mark.is_marked()) {
 217       // Already forwarded.
 218       return ShenandoahBarrierSet::resolve_forwarded(p);
 219     }
 220 
 221     if (mark.has_displaced_mark_helper()) {
 222       // We don't want to deal with MT here just to ensure we read the right mark word.
 223       // Skip the potential promotion attempt for this one.
 224     } else if (r->age() + mark.age() >= age_census()->tenuring_threshold()) {
 225       oop result = try_evacuate_object(p, thread, r, OLD_GENERATION);
 226       if (result != nullptr) {
 227         return result;
 228       }
 229       // If we failed to promote this aged object, we'll fall through to code below and evacuate to young-gen.
 230     }
 231   }
 232   return try_evacuate_object(p, thread, r, target_gen);
 233 }
 234 
 235 // try_evacuate_object registers the object and dirties the associated remembered set information when evacuating
 236 // to OLD_GENERATION.
 237 oop ShenandoahGenerationalHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
 238                                         ShenandoahAffiliation target_gen) {
 239   bool alloc_from_lab = true;
 240   bool has_plab = false;
 241   HeapWord* copy = nullptr;
 242   size_t size = ShenandoahForwarding::size(p);
 243   bool is_promotion = (target_gen == OLD_GENERATION) && from_region->is_young();
 244 
 245 #ifdef ASSERT
 246   if (ShenandoahOOMDuringEvacALot &&
 247       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
 248     copy = nullptr;
 249   } else {
 250 #endif
 251     if (UseTLAB) {
 252       switch (target_gen) {
 253         case YOUNG_GENERATION: {
 254           copy = allocate_from_gclab(thread, size);
 255           if ((copy == nullptr) && (size < ShenandoahThreadLocalData::gclab_size(thread))) {
 256             // GCLAB allocation failed because we are bumping up against the limit on young evacuation reserve.  Try resetting
 257             // the desired GCLAB size and retry GCLAB allocation to avoid cascading of shared memory allocations.
 258             ShenandoahThreadLocalData::set_gclab_size(thread, PLAB::min_size());
 259             copy = allocate_from_gclab(thread, size);
 260             // If we still get nullptr, we'll try a shared allocation below.
 261           }
 262           break;
 263         }
 264         case OLD_GENERATION: {
 265           PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 266           if (plab != nullptr) {
 267             has_plab = true;
 268             copy = allocate_from_plab(thread, size, is_promotion);
 269             if ((copy == nullptr) && (size < ShenandoahThreadLocalData::plab_size(thread)) &&
 270                 ShenandoahThreadLocalData::plab_retries_enabled(thread)) {
 271               // PLAB allocation failed because we are bumping up against the limit on old evacuation reserve or because
 272               // the requested object does not fit within the current plab but the plab still has an "abundance" of memory,
 273               // where abundance is defined as >= ShenGenHeap::plab_min_size().  In the former case, we try shrinking the
 274               // desired PLAB size to the minimum and retry PLAB allocation to avoid cascading of shared memory allocations.
 275               if (plab->words_remaining() < plab_min_size()) {
 276                 ShenandoahThreadLocalData::set_plab_size(thread, plab_min_size());
 277                 copy = allocate_from_plab(thread, size, is_promotion);
 278                 // If we still get nullptr, we'll try a shared allocation below.
 279                 if (copy == nullptr) {
 280                   // If retry fails, don't continue to retry until we have success (probably in next GC pass)
 281                   ShenandoahThreadLocalData::disable_plab_retries(thread);
 282                 }
 283               }
 284               // else, copy still equals nullptr.  this causes shared allocation below, preserving this plab for future needs.
 285             }
 286           }
 287           break;
 288         }
 289         default: {
 290           ShouldNotReachHere();
 291           break;
 292         }
 293       }
 294     }
 295 
 296     if (copy == nullptr) {
 297       // If we failed to allocate in LAB, we'll try a shared allocation.
 298       if (!is_promotion || !has_plab || (size > PLAB::min_size())) {
 299         ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen, is_promotion);
 300         copy = allocate_memory(req);
 301         alloc_from_lab = false;
 302       }
 303       // else, we leave copy equal to nullptr, signaling a promotion failure below if appropriate.
 304       // We choose not to promote objects smaller than PLAB::min_size() by way of shared allocations, as this is too
 305       // costly.  Instead, we'll simply "evacuate" to young-gen memory (using a GCLAB) and will promote in a future
 306       // evacuation pass.  This condition is denoted by: is_promotion && has_plab && (size <= PLAB::min_size())
 307     }
 308 #ifdef ASSERT
 309   }
 310 #endif
 311 
 312   if (copy == nullptr) {
 313     if (target_gen == OLD_GENERATION) {
 314       if (from_region->is_young()) {
 315         // Signal that promotion failed. Will evacuate this old object somewhere in young gen.
 316         old_generation()->handle_failed_promotion(thread, size);
 317         return nullptr;
 318       } else {
 319         // Remember that evacuation to old gen failed. We'll want to trigger a full gc to recover from this
 320         // after the evacuation threads have finished.
 321         old_generation()->handle_failed_evacuation();
 322       }
 323     }
 324 
 325     control_thread()->handle_alloc_failure_evac(size);
 326 
 327     oom_evac_handler()->handle_out_of_memory_during_evacuation();
 328 
 329     return ShenandoahBarrierSet::resolve_forwarded(p);
 330   }
 331 
 332   // Copy the object:
 333   NOT_PRODUCT(evac_tracker()->begin_evacuation(thread, size * HeapWordSize));
 334   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
 335   oop copy_val = cast_to_oop(copy);
 336 
 337   // Update the age of the evacuated object
 338   if (target_gen == YOUNG_GENERATION && is_aging_cycle()) {
 339     ShenandoahHeap::increase_object_age(copy_val, from_region->age() + 1);
 340   }
 341 
 342   // Try to install the new forwarding pointer.
 343   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
 344   if (result == copy_val) {
 345     // Successfully evacuated. Our copy is now the public one!
 346 
 347     // This is necessary for virtual thread support. This uses the mark word without
 348     // considering that it may now be a forwarding pointer (and could therefore crash).
 349     // Secondarily, we do not want to spend cycles relativizing stack chunks for oops
 350     // that lost the evacuation race (and will therefore not become visible). It is
 351     // safe to do this on the public copy (this is also done during concurrent mark).
 352     ContinuationGCSupport::relativize_stack_chunk(copy_val);
 353 
 354     // Record that the evacuation succeeded
 355     NOT_PRODUCT(evac_tracker()->end_evacuation(thread, size * HeapWordSize));
 356 
 357     if (target_gen == OLD_GENERATION) {
 358       old_generation()->handle_evacuation(copy, size, from_region->is_young());
 359     } else {
 360       // When copying to the old generation above, we don't care
 361       // about recording object age in the census stats.
 362       assert(target_gen == YOUNG_GENERATION, "Error");
 363       // We record this census only when simulating pre-adaptive tenuring behavior, or
 364       // when we have been asked to record the census at evacuation rather than at mark
 365       if (ShenandoahGenerationalCensusAtEvac || !ShenandoahGenerationalAdaptiveTenuring) {
 366         evac_tracker()->record_age(thread, size * HeapWordSize, ShenandoahHeap::get_object_age(copy_val));
 367       }
 368     }
 369     shenandoah_assert_correct(nullptr, copy_val);
 370     return copy_val;
 371   }  else {
 372     // Failed to evacuate. We need to deal with the object that is left behind. Since this
 373     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
 374     // But if it happens to contain references to evacuated regions, those references would
 375     // not get updated for this stale copy during this cycle, and we will crash while scanning
 376     // it the next cycle.
 377     if (alloc_from_lab) {
 378       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
 379       // object will overwrite this stale copy, or the filler object on LAB retirement will
 380       // do this.
 381       switch (target_gen) {
 382         case YOUNG_GENERATION: {
 383           ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
 384           break;
 385         }
 386         case OLD_GENERATION: {
 387           ShenandoahThreadLocalData::plab(thread)->undo_allocation(copy, size);
 388           if (is_promotion) {
 389             ShenandoahThreadLocalData::subtract_from_plab_promoted(thread, size * HeapWordSize);
 390           }
 391           break;
 392         }
 393         default: {
 394           ShouldNotReachHere();
 395           break;
 396         }
 397       }
 398     } else {
 399       // For non-LAB allocations, we have no way to retract the allocation, and
 400       // have to explicitly overwrite the copy with the filler object. With that overwrite,
 401       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
 402       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
 403       fill_with_object(copy, size);
 404       shenandoah_assert_correct(nullptr, copy_val);
 405       // For non-LAB allocations, the object has already been registered
 406     }
 407     shenandoah_assert_correct(nullptr, result);
 408     return result;
 409   }
 410 }
 411 
 412 inline HeapWord* ShenandoahGenerationalHeap::allocate_from_plab(Thread* thread, size_t size, bool is_promotion) {
 413   assert(UseTLAB, "TLABs should be enabled");
 414 
 415   PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 416   HeapWord* obj;
 417 
 418   if (plab == nullptr) {
 419     assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), "Performance: thread should have PLAB: %s", thread->name());
 420     // No PLABs in this thread, fallback to shared allocation
 421     return nullptr;
 422   } else if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) {
 423     return nullptr;
 424   }
 425   // if plab->word_size() <= 0, thread's plab not yet initialized for this pass, so allow_plab_promotions() is not trustworthy
 426   obj = plab->allocate(size);
 427   if ((obj == nullptr) && (plab->words_remaining() < plab_min_size())) {
 428     // allocate_from_plab_slow will establish allow_plab_promotions(thread) for future invocations
 429     obj = allocate_from_plab_slow(thread, size, is_promotion);
 430   }
 431   // if plab->words_remaining() >= ShenGenHeap::heap()->plab_min_size(), just return nullptr so we can use a shared allocation
 432   if (obj == nullptr) {
 433     return nullptr;
 434   }
 435 
 436   if (is_promotion) {
 437     ShenandoahThreadLocalData::add_to_plab_promoted(thread, size * HeapWordSize);
 438   }
 439   return obj;
 440 }
 441 
 442 // Establish a new PLAB and allocate size HeapWords within it.
 443 HeapWord* ShenandoahGenerationalHeap::allocate_from_plab_slow(Thread* thread, size_t size, bool is_promotion) {
 444   // New object should fit the PLAB size
 445 
 446   assert(mode()->is_generational(), "PLABs only relevant to generational GC");
 447   const size_t plab_min_size = this->plab_min_size();
 448   // PLABs are aligned to card boundaries to avoid synchronization with concurrent
 449   // allocations in other PLABs.
 450   const size_t min_size = (size > plab_min_size)? align_up(size, CardTable::card_size_in_words()): plab_min_size;
 451 
 452   // Figure out size of new PLAB, using value determined at last refill.
 453   size_t cur_size = ShenandoahThreadLocalData::plab_size(thread);
 454   if (cur_size == 0) {
 455     cur_size = plab_min_size;
 456   }
 457 
 458   // Expand aggressively, doubling at each refill in this epoch, ceiling at plab_max_size()
 459   size_t future_size = MIN2(cur_size * 2, plab_max_size());
 460   // Doubling, starting at a card-multiple, should give us a card-multiple. (Ceiling and floor
 461   // are card multiples.)
 462   assert(is_aligned(future_size, CardTable::card_size_in_words()), "Card multiple by construction, future_size: " SIZE_FORMAT
 463           ", card_size: " SIZE_FORMAT ", cur_size: " SIZE_FORMAT ", max: " SIZE_FORMAT,
 464          future_size, (size_t) CardTable::card_size_in_words(), cur_size, plab_max_size());
 465 
 466   // Record new heuristic value even if we take any shortcut. This captures
 467   // the case when moderately-sized objects always take a shortcut. At some point,
 468   // heuristics should catch up with them.  Note that the requested cur_size may
 469   // not be honored, but we remember that this is the preferred size.
 470   log_debug(gc, free)("Set new PLAB size: " SIZE_FORMAT, future_size);
 471   ShenandoahThreadLocalData::set_plab_size(thread, future_size);
 472   if (cur_size < size) {
 473     // The PLAB to be allocated is still not large enough to hold the object. Fall back to shared allocation.
 474     // This avoids retiring perfectly good PLABs in order to represent a single large object allocation.
 475     log_debug(gc, free)("Current PLAB size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, cur_size, size);
 476     return nullptr;
 477   }
 478 
 479   // Retire current PLAB, and allocate a new one.
 480   PLAB* plab = ShenandoahThreadLocalData::plab(thread);
 481   if (plab->words_remaining() < plab_min_size) {
 482     // Retire current PLAB. This takes care of any PLAB book-keeping.
 483     // retire_plab() registers the remnant filler object with the remembered set scanner without a lock.
 484     // Since PLABs are card-aligned, concurrent registrations in other PLABs don't interfere.
 485     retire_plab(plab, thread);
 486 
 487     size_t actual_size = 0;
 488     HeapWord* plab_buf = allocate_new_plab(min_size, cur_size, &actual_size);
 489     if (plab_buf == nullptr) {
 490       if (min_size == plab_min_size) {
 491         // Disable PLAB promotions for this thread because we cannot even allocate a minimal PLAB. This allows us
 492         // to fail faster on subsequent promotion attempts.
 493         ShenandoahThreadLocalData::disable_plab_promotions(thread);
 494       }
 495       return nullptr;
 496     } else {
 497       ShenandoahThreadLocalData::enable_plab_retries(thread);
 498     }
 499     // Since the allocated PLAB may have been down-sized for alignment, plab->allocate(size) below may still fail.
 500     if (ZeroTLAB) {
 501       // ... and clear it.
 502       Copy::zero_to_words(plab_buf, actual_size);
 503     } else {
 504       // ...and zap just allocated object.
 505 #ifdef ASSERT
 506       // Skip mangling the space corresponding to the object header to
 507       // ensure that the returned space is not considered parsable by
 508       // any concurrent GC thread.
 509       size_t hdr_size = oopDesc::header_size();
 510       Copy::fill_to_words(plab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 511 #endif // ASSERT
 512     }
 513     assert(is_aligned(actual_size, CardTable::card_size_in_words()), "Align by design");
 514     plab->set_buf(plab_buf, actual_size);
 515     if (is_promotion && !ShenandoahThreadLocalData::allow_plab_promotions(thread)) {
 516       return nullptr;
 517     }
 518     return plab->allocate(size);
 519   } else {
 520     // If there's still at least min_size() words available within the current plab, don't retire it.  Let's nibble
 521     // away on this plab as long as we can.  Meanwhile, return nullptr to force this particular allocation request
 522     // to be satisfied with a shared allocation.  By packing more promotions into the previously allocated PLAB, we
 523     // reduce the likelihood of evacuation failures, and we reduce the need for downsizing our PLABs.
 524     return nullptr;
 525   }
 526 }
 527 
 528 HeapWord* ShenandoahGenerationalHeap::allocate_new_plab(size_t min_size, size_t word_size, size_t* actual_size) {
 529   // Align requested sizes to card-sized multiples.  Align down so that we don't violate max size of TLAB.
 530   assert(is_aligned(min_size, CardTable::card_size_in_words()), "Align by design");
 531   assert(word_size >= min_size, "Requested PLAB is too small");
 532 
 533   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_plab(min_size, word_size);
 534   // Note that allocate_memory() sets a thread-local flag to prohibit further promotions by this thread
 535   // if we are at risk of infringing on the old-gen evacuation budget.
 536   HeapWord* res = allocate_memory(req);
 537   if (res != nullptr) {
 538     *actual_size = req.actual_size();
 539   } else {
 540     *actual_size = 0;
 541   }
 542   assert(is_aligned(res, CardTable::card_size_in_words()), "Align by design");
 543   return res;
 544 }
 545 
 546 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab, Thread* thread) {
 547   // We don't enforce limits on plab evacuations.  We let it consume all available old-gen memory in order to reduce
 548   // probability of an evacuation failure.  We do enforce limits on promotion, to make sure that excessive promotion
 549   // does not result in an old-gen evacuation failure.  Note that a failed promotion is relatively harmless.  Any
 550   // object that fails to promote in the current cycle will be eligible for promotion in a subsequent cycle.
 551 
 552   // When the plab was instantiated, its entirety was treated as if the entire buffer was going to be dedicated to
 553   // promotions.  Now that we are retiring the buffer, we adjust for the reality that the plab is not entirely promotions.
 554   //  1. Some of the plab may have been dedicated to evacuations.
 555   //  2. Some of the plab may have been abandoned due to waste (at the end of the plab).
 556   size_t not_promoted =
 557           ShenandoahThreadLocalData::get_plab_actual_size(thread) - ShenandoahThreadLocalData::get_plab_promoted(thread);
 558   ShenandoahThreadLocalData::reset_plab_promoted(thread);
 559   ShenandoahThreadLocalData::set_plab_actual_size(thread, 0);
 560   if (not_promoted > 0) {
 561     old_generation()->unexpend_promoted(not_promoted);
 562   }
 563   const size_t original_waste = plab->waste();
 564   HeapWord* const top = plab->top();
 565 
 566   // plab->retire() overwrites unused memory between plab->top() and plab->hard_end() with a dummy object to make memory parsable.
 567   // It adds the size of this unused memory, in words, to plab->waste().
 568   plab->retire();
 569   if (top != nullptr && plab->waste() > original_waste && is_in_old(top)) {
 570     // If retiring the plab created a filler object, then we need to register it with our card scanner so it can
 571     // safely walk the region backing the plab.
 572     log_debug(gc)("retire_plab() is registering remnant of size " SIZE_FORMAT " at " PTR_FORMAT,
 573                   plab->waste() - original_waste, p2i(top));
 574     // No lock is necessary because the PLAB memory is aligned on card boundaries.
 575     old_generation()->card_scan()->register_object_without_lock(top);
 576   }
 577 }
 578 
 579 void ShenandoahGenerationalHeap::retire_plab(PLAB* plab) {
 580   Thread* thread = Thread::current();
 581   retire_plab(plab, thread);
 582 }
 583 
 584 ShenandoahGenerationalHeap::TransferResult ShenandoahGenerationalHeap::balance_generations() {
 585   shenandoah_assert_heaplocked_or_safepoint();
 586 
 587   ShenandoahOldGeneration* old_gen = old_generation();
 588   const ssize_t old_region_balance = old_gen->get_region_balance();
 589   old_gen->set_region_balance(0);
 590 
 591   if (old_region_balance > 0) {
 592     const auto old_region_surplus = checked_cast<size_t>(old_region_balance);
 593     const bool success = generation_sizer()->transfer_to_young(old_region_surplus);
 594     return TransferResult {
 595       success, old_region_surplus, "young"
 596     };
 597   }
 598 
 599   if (old_region_balance < 0) {
 600     const auto old_region_deficit = checked_cast<size_t>(-old_region_balance);
 601     const bool success = generation_sizer()->transfer_to_old(old_region_deficit);
 602     if (!success) {
 603       old_gen->handle_failed_transfer();
 604     }
 605     return TransferResult {
 606       success, old_region_deficit, "old"
 607     };
 608   }
 609 
 610   return TransferResult {true, 0, "none"};
 611 }
 612 
 613 // Make sure old-generation is large enough, but no larger than is necessary, to hold mixed evacuations
 614 // and promotions, if we anticipate either. Any deficit is provided by the young generation, subject to
 615 // xfer_limit, and any surplus is transferred to the young generation.
 616 // xfer_limit is the maximum we're able to transfer from young to old.
 617 void ShenandoahGenerationalHeap::compute_old_generation_balance(size_t old_xfer_limit, size_t old_cset_regions) {
 618 
 619   // We can limit the old reserve to the size of anticipated promotions:
 620   // max_old_reserve is an upper bound on memory evacuated from old and promoted to old,
 621   // clamped by the old generation space available.
 622   //
 623   // Here's the algebra.
 624   // Let SOEP = ShenandoahOldEvacRatioPercent,
 625   //     OE = old evac,
 626   //     YE = young evac, and
 627   //     TE = total evac = OE + YE
 628   // By definition:
 629   //            SOEP/100 = OE/TE
 630   //                     = OE/(OE+YE)
 631   //  => SOEP/(100-SOEP) = OE/((OE+YE)-OE)      // componendo-dividendo: If a/b = c/d, then a/(b-a) = c/(d-c)
 632   //                     = OE/YE
 633   //  =>              OE = YE*SOEP/(100-SOEP)
 634 
 635   // We have to be careful in the event that SOEP is set to 100 by the user.
 636   assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
 637   const size_t old_available = old_generation()->available();
 638   // The free set will reserve this amount of memory to hold young evacuations
 639   const size_t young_reserve = (young_generation()->max_capacity() * ShenandoahEvacReserve) / 100;
 640 
 641   // In the case that ShenandoahOldEvacRatioPercent equals 100, max_old_reserve is limited only by xfer_limit.
 642 
 643   const double bound_on_old_reserve = old_available + old_xfer_limit + young_reserve;
 644   const double max_old_reserve = (ShenandoahOldEvacRatioPercent == 100)?
 645                                  bound_on_old_reserve: MIN2(double(young_reserve * ShenandoahOldEvacRatioPercent) / double(100 - ShenandoahOldEvacRatioPercent),
 646                                                             bound_on_old_reserve);
 647 
 648   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 649 
 650   // Decide how much old space we should reserve for a mixed collection
 651   double reserve_for_mixed = 0;
 652   if (old_generation()->has_unprocessed_collection_candidates()) {
 653     // We want this much memory to be unfragmented in order to reliably evacuate old.  This is conservative because we
 654     // may not evacuate the entirety of unprocessed candidates in a single mixed evacuation.
 655     const double max_evac_need = (double(old_generation()->unprocessed_collection_candidates_live_memory()) * ShenandoahOldEvacWaste);
 656     assert(old_available >= old_generation()->free_unaffiliated_regions() * region_size_bytes,
 657            "Unaffiliated available must be less than total available");
 658     const double old_fragmented_available = double(old_available - old_generation()->free_unaffiliated_regions() * region_size_bytes);
 659     reserve_for_mixed = max_evac_need + old_fragmented_available;
 660     if (reserve_for_mixed > max_old_reserve) {
 661       reserve_for_mixed = max_old_reserve;
 662     }
 663   }
 664 
 665   // Decide how much space we should reserve for promotions from young
 666   size_t reserve_for_promo = 0;
 667   const size_t promo_load = old_generation()->get_promotion_potential();
 668   const bool doing_promotions = promo_load > 0;
 669   if (doing_promotions) {
 670     // We're promoting and have a bound on the maximum amount that can be promoted
 671     assert(max_old_reserve >= reserve_for_mixed, "Sanity");
 672     const size_t available_for_promotions = max_old_reserve - reserve_for_mixed;
 673     reserve_for_promo = MIN2((size_t)(promo_load * ShenandoahPromoEvacWaste), available_for_promotions);
 674   }
 675 
 676   // This is the total old we want to ideally reserve
 677   const size_t old_reserve = reserve_for_mixed + reserve_for_promo;
 678   assert(old_reserve <= max_old_reserve, "cannot reserve more than max for old evacuations");
 679 
 680   // We now check if the old generation is running a surplus or a deficit.
 681   const size_t max_old_available = old_generation()->available() + old_cset_regions * region_size_bytes;
 682   if (max_old_available >= old_reserve) {
 683     // We are running a surplus, so the old region surplus can go to young
 684     const size_t old_surplus = (max_old_available - old_reserve) / region_size_bytes;
 685     const size_t unaffiliated_old_regions = old_generation()->free_unaffiliated_regions() + old_cset_regions;
 686     const size_t old_region_surplus = MIN2(old_surplus, unaffiliated_old_regions);
 687     old_generation()->set_region_balance(checked_cast<ssize_t>(old_region_surplus));
 688   } else {
 689     // We are running a deficit which we'd like to fill from young.
 690     // Ignore that this will directly impact young_generation()->max_capacity(),
 691     // indirectly impacting young_reserve and old_reserve.  These computations are conservative.
 692     // Note that deficit is rounded up by one region.
 693     const size_t old_need = (old_reserve - max_old_available + region_size_bytes - 1) / region_size_bytes;
 694     const size_t max_old_region_xfer = old_xfer_limit / region_size_bytes;
 695 
 696     // Round down the regions we can transfer from young to old. If we're running short
 697     // on young-gen memory, we restrict the xfer. Old-gen collection activities will be
 698     // curtailed if the budget is restricted.
 699     const size_t old_region_deficit = MIN2(old_need, max_old_region_xfer);
 700     old_generation()->set_region_balance(0 - checked_cast<ssize_t>(old_region_deficit));
 701   }
 702 }
 703 
 704 void ShenandoahGenerationalHeap::reset_generation_reserves() {
 705   young_generation()->set_evacuation_reserve(0);
 706   old_generation()->set_evacuation_reserve(0);
 707   old_generation()->set_promoted_reserve(0);
 708 }
 709 
 710 void ShenandoahGenerationalHeap::TransferResult::print_on(const char* when, outputStream* ss) const {
 711   auto heap = ShenandoahGenerationalHeap::heap();
 712   ShenandoahYoungGeneration* const young_gen = heap->young_generation();
 713   ShenandoahOldGeneration* const old_gen = heap->old_generation();
 714   const size_t young_available = young_gen->available();
 715   const size_t old_available = old_gen->available();
 716   ss->print_cr("After %s, %s " SIZE_FORMAT " regions to %s to prepare for next gc, old available: "
 717                      PROPERFMT ", young_available: " PROPERFMT,
 718                      when,
 719                      success? "successfully transferred": "failed to transfer", region_count, region_destination,
 720                      PROPERFMTARGS(old_available), PROPERFMTARGS(young_available));
 721 }
 722 
 723 void ShenandoahGenerationalHeap::coalesce_and_fill_old_regions(bool concurrent) {
 724   class ShenandoahGlobalCoalesceAndFill : public WorkerTask {
 725   private:
 726       ShenandoahPhaseTimings::Phase _phase;
 727       ShenandoahRegionIterator _regions;
 728   public:
 729     explicit ShenandoahGlobalCoalesceAndFill(ShenandoahPhaseTimings::Phase phase) :
 730       WorkerTask("Shenandoah Global Coalesce"),
 731       _phase(phase) {}
 732 
 733     void work(uint worker_id) override {
 734       ShenandoahWorkerTimingsTracker timer(_phase,
 735                                            ShenandoahPhaseTimings::ScanClusters,
 736                                            worker_id, true);
 737       ShenandoahHeapRegion* region;
 738       while ((region = _regions.next()) != nullptr) {
 739         // old region is not in the collection set and was not immediately trashed
 740         if (region->is_old() && region->is_active() && !region->is_humongous()) {
 741           // Reset the coalesce and fill boundary because this is a global collect
 742           // and cannot be preempted by young collects. We want to be sure the entire
 743           // region is coalesced here and does not resume from a previously interrupted
 744           // or completed coalescing.
 745           region->begin_preemptible_coalesce_and_fill();
 746           region->oop_coalesce_and_fill(false);
 747         }
 748       }
 749     }
 750   };
 751 
 752   ShenandoahPhaseTimings::Phase phase = concurrent ?
 753           ShenandoahPhaseTimings::conc_coalesce_and_fill :
 754           ShenandoahPhaseTimings::degen_gc_coalesce_and_fill;
 755 
 756   // This is not cancellable
 757   ShenandoahGlobalCoalesceAndFill coalesce(phase);
 758   workers()->run_task(&coalesce);
 759   old_generation()->set_parsable(true);
 760 }
 761 
 762 template<bool CONCURRENT>
 763 class ShenandoahGenerationalUpdateHeapRefsTask : public WorkerTask {
 764 private:
 765   ShenandoahGenerationalHeap* _heap;
 766   ShenandoahRegionIterator* _regions;
 767   ShenandoahRegionChunkIterator* _work_chunks;
 768 
 769 public:
 770   explicit ShenandoahGenerationalUpdateHeapRefsTask(ShenandoahRegionIterator* regions,
 771                                                     ShenandoahRegionChunkIterator* work_chunks) :
 772           WorkerTask("Shenandoah Update References"),
 773           _heap(ShenandoahGenerationalHeap::heap()),
 774           _regions(regions),
 775           _work_chunks(work_chunks)
 776   {
 777     bool old_bitmap_stable = _heap->old_generation()->is_mark_complete();
 778     log_debug(gc, remset)("Update refs, scan remembered set using bitmap: %s", BOOL_TO_STR(old_bitmap_stable));
 779   }
 780 
 781   void work(uint worker_id) {
 782     if (CONCURRENT) {
 783       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 784       ShenandoahSuspendibleThreadSetJoiner stsj;
 785       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
 786     } else {
 787       ShenandoahParallelWorkerSession worker_session(worker_id);
 788       do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id);
 789     }
 790   }
 791 
 792 private:
 793   template<class T>
 794   void do_work(uint worker_id) {
 795     T cl;
 796 
 797     if (CONCURRENT && (worker_id == 0)) {
 798       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
 799       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
 800       size_t cset_regions = _heap->collection_set()->count();
 801 
 802       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
 803       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
 804       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
 805       // next GC cycle.
 806       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
 807     }
 808     // If !CONCURRENT, there's no value in expanding Mutator free set
 809 
 810     ShenandoahHeapRegion* r = _regions->next();
 811     // We update references for global, old, and young collections.
 812     ShenandoahGeneration* const gc_generation = _heap->gc_generation();
 813     shenandoah_assert_generations_reconciled();
 814     assert(gc_generation->is_mark_complete(), "Expected complete marking");
 815     ShenandoahMarkingContext* const ctx = _heap->marking_context();
 816     bool is_mixed = _heap->collection_set()->has_old_regions();
 817     while (r != nullptr) {
 818       HeapWord* update_watermark = r->get_update_watermark();
 819       assert(update_watermark >= r->bottom(), "sanity");
 820 
 821       log_debug(gc)("Update refs worker " UINT32_FORMAT ", looking at region " SIZE_FORMAT, worker_id, r->index());
 822       bool region_progress = false;
 823       if (r->is_active() && !r->is_cset()) {
 824         if (r->is_young()) {
 825           _heap->marked_object_oop_iterate(r, &cl, update_watermark);
 826           region_progress = true;
 827         } else if (r->is_old()) {
 828           if (gc_generation->is_global()) {
 829 
 830             _heap->marked_object_oop_iterate(r, &cl, update_watermark);
 831             region_progress = true;
 832           }
 833           // Otherwise, this is an old region in a young or mixed cycle.  Process it during a second phase, below.
 834           // Don't bother to report pacing progress in this case.
 835         } else {
 836           // Because updating of references runs concurrently, it is possible that a FREE inactive region transitions
 837           // to a non-free active region while this loop is executing.  Whenever this happens, the changing of a region's
 838           // active status may propagate at a different speed than the changing of the region's affiliation.
 839 
 840           // When we reach this control point, it is because a race has allowed a region's is_active() status to be seen
 841           // by this thread before the region's affiliation() is seen by this thread.
 842 
 843           // It's ok for this race to occur because the newly transformed region does not have any references to be
 844           // updated.
 845 
 846           assert(r->get_update_watermark() == r->bottom(),
 847                  "%s Region " SIZE_FORMAT " is_active but not recognized as YOUNG or OLD so must be newly transitioned from FREE",
 848                  r->affiliation_name(), r->index());
 849         }
 850       }
 851 
 852       if (region_progress && ShenandoahPacing) {
 853         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
 854       }
 855 
 856       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
 857         return;
 858       }
 859 
 860       r = _regions->next();
 861     }
 862 
 863     if (!gc_generation->is_global()) {
 864       // Since this is generational and not GLOBAL, we have to process the remembered set.  There's no remembered
 865       // set processing if not in generational mode or if GLOBAL mode.
 866 
 867       // After this thread has exhausted its traditional update-refs work, it continues with updating refs within
 868       // remembered set. The remembered set workload is better balanced between threads, so threads that are "behind"
 869       // can catch up with other threads during this phase, allowing all threads to work more effectively in parallel.
 870       update_references_in_remembered_set(worker_id, cl, ctx, is_mixed);
 871     }
 872   }
 873 
 874   template<class T>
 875   void update_references_in_remembered_set(uint worker_id, T &cl, const ShenandoahMarkingContext* ctx, bool is_mixed) {
 876 
 877     struct ShenandoahRegionChunk assignment;
 878     ShenandoahScanRemembered* scanner = _heap->old_generation()->card_scan();
 879 
 880     while (!_heap->check_cancelled_gc_and_yield(CONCURRENT) && _work_chunks->next(&assignment)) {
 881       // Keep grabbing next work chunk to process until finished, or asked to yield
 882       ShenandoahHeapRegion* r = assignment._r;
 883       if (r->is_active() && !r->is_cset() && r->is_old()) {
 884         HeapWord* start_of_range = r->bottom() + assignment._chunk_offset;
 885         HeapWord* end_of_range = r->get_update_watermark();
 886         if (end_of_range > start_of_range + assignment._chunk_size) {
 887           end_of_range = start_of_range + assignment._chunk_size;
 888         }
 889 
 890         if (start_of_range >= end_of_range) {
 891           continue;
 892         }
 893 
 894         // Old region in a young cycle or mixed cycle.
 895         if (is_mixed) {
 896           if (r->is_humongous()) {
 897             // Need to examine both dirty and clean cards during mixed evac.
 898             r->oop_iterate_humongous_slice_all(&cl,start_of_range, assignment._chunk_size);
 899           } else {
 900             // Since this is mixed evacuation, old regions that are candidates for collection have not been coalesced
 901             // and filled.  This will use mark bits to find objects that need to be updated.
 902             update_references_in_old_region(cl, ctx, scanner, r, start_of_range, end_of_range);
 903           }
 904         } else {
 905           // This is a young evacuation
 906           size_t cluster_size = CardTable::card_size_in_words() * ShenandoahCardCluster::CardsPerCluster;
 907           size_t clusters = assignment._chunk_size / cluster_size;
 908           assert(clusters * cluster_size == assignment._chunk_size, "Chunk assignment must align on cluster boundaries");
 909           scanner->process_region_slice(r, assignment._chunk_offset, clusters, end_of_range, &cl, true, worker_id);
 910         }
 911 
 912         if (ShenandoahPacing) {
 913           _heap->pacer()->report_updaterefs(pointer_delta(end_of_range, start_of_range));
 914         }
 915       }
 916     }
 917   }
 918 
 919   template<class T>
 920   void update_references_in_old_region(T &cl, const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner,
 921                                     const ShenandoahHeapRegion* r, HeapWord* start_of_range,
 922                                     HeapWord* end_of_range) const {
 923     // In case last object in my range spans boundary of my chunk, I may need to scan all the way to top()
 924     ShenandoahObjectToOopBoundedClosure<T> objs(&cl, start_of_range, r->top());
 925 
 926     // Any object that begins in a previous range is part of a different scanning assignment.  Any object that
 927     // starts after end_of_range is also not my responsibility.  (Either allocated during evacuation, so does
 928     // not hold pointers to from-space, or is beyond the range of my assigned work chunk.)
 929 
 930     // Find the first object that begins in my range, if there is one. Note that `p` will be set to `end_of_range`
 931     // when no live object is found in the range.
 932     HeapWord* tams = ctx->top_at_mark_start(r);
 933     HeapWord* p = get_first_object_start_word(ctx, scanner, tams, start_of_range, end_of_range);
 934 
 935     while (p < end_of_range) {
 936       // p is known to point to the beginning of marked object obj
 937       oop obj = cast_to_oop(p);
 938       objs.do_object(obj);
 939       HeapWord* prev_p = p;
 940       p += obj->size();
 941       if (p < tams) {
 942         p = ctx->get_next_marked_addr(p, tams);
 943         // If there are no more marked objects before tams, this returns tams.  Note that tams is
 944         // either >= end_of_range, or tams is the start of an object that is marked.
 945       }
 946       assert(p != prev_p, "Lack of forward progress");
 947     }
 948   }
 949 
 950   HeapWord* get_first_object_start_word(const ShenandoahMarkingContext* ctx, ShenandoahScanRemembered* scanner, HeapWord* tams,
 951                                         HeapWord* start_of_range, HeapWord* end_of_range) const {
 952     HeapWord* p = start_of_range;
 953 
 954     if (p >= tams) {
 955       // We cannot use ctx->is_marked(obj) to test whether an object begins at this address.  Instead,
 956       // we need to use the remembered set crossing map to advance p to the first object that starts
 957       // within the enclosing card.
 958       size_t card_index = scanner->card_index_for_addr(start_of_range);
 959       while (true) {
 960         HeapWord* first_object = scanner->first_object_in_card(card_index);
 961         if (first_object != nullptr) {
 962           p = first_object;
 963           break;
 964         } else if (scanner->addr_for_card_index(card_index + 1) < end_of_range) {
 965           card_index++;
 966         } else {
 967           // Signal that no object was found in range
 968           p = end_of_range;
 969           break;
 970         }
 971       }
 972     } else if (!ctx->is_marked(cast_to_oop(p))) {
 973       p = ctx->get_next_marked_addr(p, tams);
 974       // If there are no more marked objects before tams, this returns tams.
 975       // Note that tams is either >= end_of_range, or tams is the start of an object that is marked.
 976     }
 977     return p;
 978   }
 979 };
 980 
 981 void ShenandoahGenerationalHeap::update_heap_references(bool concurrent) {
 982   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
 983   const uint nworkers = workers()->active_workers();
 984   ShenandoahRegionChunkIterator work_list(nworkers);
 985   if (concurrent) {
 986     ShenandoahGenerationalUpdateHeapRefsTask<true> task(&_update_refs_iterator, &work_list);
 987     workers()->run_task(&task);
 988   } else {
 989     ShenandoahGenerationalUpdateHeapRefsTask<false> task(&_update_refs_iterator, &work_list);
 990     workers()->run_task(&task);
 991   }
 992 
 993   if (ShenandoahEnableCardStats) {
 994     // Only do this if we are collecting card stats
 995     ShenandoahScanRemembered* card_scan = old_generation()->card_scan();
 996     assert(card_scan != nullptr, "Card table must exist when card stats are enabled");
 997     card_scan->log_card_stats(nworkers, CARD_STAT_UPDATE_REFS);
 998   }
 999 }
1000 
1001 struct ShenandoahCompositeRegionClosure {
1002   template<typename C1, typename C2>
1003   class Closure : public ShenandoahHeapRegionClosure {
1004   private:
1005     C1 &_c1;
1006     C2 &_c2;
1007 
1008   public:
1009     Closure(C1 &c1, C2 &c2) : ShenandoahHeapRegionClosure(), _c1(c1), _c2(c2) {}
1010 
1011     void heap_region_do(ShenandoahHeapRegion* r) override {
1012       _c1.heap_region_do(r);
1013       _c2.heap_region_do(r);
1014     }
1015 
1016     bool is_thread_safe() override {
1017       return _c1.is_thread_safe() && _c2.is_thread_safe();
1018     }
1019   };
1020 
1021   template<typename C1, typename C2>
1022   static Closure<C1, C2> of(C1 &c1, C2 &c2) {
1023     return Closure<C1, C2>(c1, c2);
1024   }
1025 };
1026 
1027 class ShenandoahUpdateRegionAges : public ShenandoahHeapRegionClosure {
1028 private:
1029   ShenandoahMarkingContext* _ctx;
1030 
1031 public:
1032   explicit ShenandoahUpdateRegionAges(ShenandoahMarkingContext* ctx) : _ctx(ctx) { }
1033 
1034   void heap_region_do(ShenandoahHeapRegion* r) override {
1035     // Maintenance of region age must follow evacuation in order to account for
1036     // evacuation allocations within survivor regions.  We consult region age during
1037     // the subsequent evacuation to determine whether certain objects need to
1038     // be promoted.
1039     if (r->is_young() && r->is_active()) {
1040       HeapWord *tams = _ctx->top_at_mark_start(r);
1041       HeapWord *top = r->top();
1042 
1043       // Allocations move the watermark when top moves.  However, compacting
1044       // objects will sometimes lower top beneath the watermark, after which,
1045       // attempts to read the watermark will assert out (watermark should not be
1046       // higher than top).
1047       if (top > tams) {
1048         // There have been allocations in this region since the start of the cycle.
1049         // Any objects new to this region must not assimilate elevated age.
1050         r->reset_age();
1051       } else if (ShenandoahGenerationalHeap::heap()->is_aging_cycle()) {
1052         r->increment_age();
1053       }
1054     }
1055   }
1056 
1057   bool is_thread_safe() override {
1058     return true;
1059   }
1060 };
1061 
1062 void ShenandoahGenerationalHeap::final_update_refs_update_region_states() {
1063   ShenandoahSynchronizePinnedRegionStates pins;
1064   ShenandoahUpdateRegionAges ages(active_generation()->complete_marking_context());
1065   auto cl = ShenandoahCompositeRegionClosure::of(pins, ages);
1066   parallel_heap_region_iterate(&cl);
1067 }
1068 
1069 void ShenandoahGenerationalHeap::complete_degenerated_cycle() {
1070   shenandoah_assert_heaplocked_or_safepoint();
1071   if (is_concurrent_old_mark_in_progress()) {
1072     // This is still necessary for degenerated cycles because the degeneration point may occur
1073     // after final mark of the young generation. See ShenandoahConcurrentGC::op_final_updaterefs for
1074     // a more detailed explanation.
1075     old_generation()->transfer_pointers_from_satb();
1076   }
1077 
1078   // We defer generation resizing actions until after cset regions have been recycled.
1079   TransferResult result = balance_generations();
1080   LogTarget(Info, gc, ergo) lt;
1081   if (lt.is_enabled()) {
1082     LogStream ls(lt);
1083     result.print_on("Degenerated GC", &ls);
1084   }
1085 
1086   // In case degeneration interrupted concurrent evacuation or update references, we need to clean up
1087   // transient state. Otherwise, these actions have no effect.
1088   reset_generation_reserves();
1089 
1090   if (!old_generation()->is_parsable()) {
1091     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_coalesce_and_fill);
1092     coalesce_and_fill_old_regions(false);
1093   }
1094 }
1095 
1096 void ShenandoahGenerationalHeap::complete_concurrent_cycle() {
1097   if (!old_generation()->is_parsable()) {
1098     // Class unloading may render the card offsets unusable, so we must rebuild them before
1099     // the next remembered set scan. We _could_ let the control thread do this sometime after
1100     // the global cycle has completed and before the next young collection, but under memory
1101     // pressure the control thread may not have the time (that is, because it's running back
1102     // to back GCs). In that scenario, we would have to make the old regions parsable before
1103     // we could start a young collection. This could delay the start of the young cycle and
1104     // throw off the heuristics.
1105     entry_global_coalesce_and_fill();
1106   }
1107 
1108   TransferResult result;
1109   {
1110     ShenandoahHeapLocker locker(lock());
1111 
1112     result = balance_generations();
1113     reset_generation_reserves();
1114   }
1115 
1116   LogTarget(Info, gc, ergo) lt;
1117   if (lt.is_enabled()) {
1118     LogStream ls(lt);
1119     result.print_on("Concurrent GC", &ls);
1120   }
1121 }
1122 
1123 void ShenandoahGenerationalHeap::entry_global_coalesce_and_fill() {
1124   const char* msg = "Coalescing and filling old regions";
1125   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_coalesce_and_fill);
1126 
1127   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
1128   EventMark em("%s", msg);
1129   ShenandoahWorkerScope scope(workers(),
1130                               ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
1131                               "concurrent coalesce and fill");
1132 
1133   coalesce_and_fill_old_regions(true);
1134 }
1135 
1136 void ShenandoahGenerationalHeap::update_region_ages(ShenandoahMarkingContext* ctx) {
1137   ShenandoahUpdateRegionAges cl(ctx);
1138   parallel_heap_region_iterate(&cl);
1139 }