1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/gcArguments.hpp" 32 #include "gc/shared/gcTimer.hpp" 33 #include "gc/shared/gcTraceTime.inline.hpp" 34 #include "gc/shared/locationPrinter.inline.hpp" 35 #include "gc/shared/memAllocator.hpp" 36 #include "gc/shared/plab.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 39 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 40 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 41 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 45 #include "gc/shenandoah/shenandoahControlThread.hpp" 46 #include "gc/shenandoah/shenandoahFreeSet.hpp" 47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 48 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 51 #include "gc/shenandoah/shenandoahInitLogger.hpp" 52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 53 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 54 #include "gc/shenandoah/shenandoahMetrics.hpp" 55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 57 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 58 #include "gc/shenandoah/shenandoahPadding.hpp" 59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 62 #include "gc/shenandoah/shenandoahSTWMark.hpp" 63 #include "gc/shenandoah/shenandoahUtils.hpp" 64 #include "gc/shenandoah/shenandoahVerifier.hpp" 65 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 66 #include "gc/shenandoah/shenandoahVMOperations.hpp" 67 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 69 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 71 #if INCLUDE_JFR 72 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 73 #endif 74 75 #include "classfile/systemDictionary.hpp" 76 #include "code/codeCache.hpp" 77 #include "memory/classLoaderMetaspace.hpp" 78 #include "memory/metaspaceUtils.hpp" 79 #include "nmt/mallocTracker.hpp" 80 #include "nmt/memTracker.hpp" 81 #include "oops/compressedOops.inline.hpp" 82 #include "prims/jvmtiTagMap.hpp" 83 #include "runtime/atomic.hpp" 84 #include "runtime/globals.hpp" 85 #include "runtime/interfaceSupport.inline.hpp" 86 #include "runtime/java.hpp" 87 #include "runtime/orderAccess.hpp" 88 #include "runtime/safepointMechanism.hpp" 89 #include "runtime/stackWatermarkSet.hpp" 90 #include "runtime/vmThread.hpp" 91 #include "utilities/events.hpp" 92 #include "utilities/powerOfTwo.hpp" 93 94 class ShenandoahPretouchHeapTask : public WorkerTask { 95 private: 96 ShenandoahRegionIterator _regions; 97 const size_t _page_size; 98 public: 99 ShenandoahPretouchHeapTask(size_t page_size) : 100 WorkerTask("Shenandoah Pretouch Heap"), 101 _page_size(page_size) {} 102 103 virtual void work(uint worker_id) { 104 ShenandoahHeapRegion* r = _regions.next(); 105 while (r != nullptr) { 106 if (r->is_committed()) { 107 os::pretouch_memory(r->bottom(), r->end(), _page_size); 108 } 109 r = _regions.next(); 110 } 111 } 112 }; 113 114 class ShenandoahPretouchBitmapTask : public WorkerTask { 115 private: 116 ShenandoahRegionIterator _regions; 117 char* _bitmap_base; 118 const size_t _bitmap_size; 119 const size_t _page_size; 120 public: 121 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 122 WorkerTask("Shenandoah Pretouch Bitmap"), 123 _bitmap_base(bitmap_base), 124 _bitmap_size(bitmap_size), 125 _page_size(page_size) {} 126 127 virtual void work(uint worker_id) { 128 ShenandoahHeapRegion* r = _regions.next(); 129 while (r != nullptr) { 130 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 131 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 132 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 133 134 if (r->is_committed()) { 135 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 136 } 137 138 r = _regions.next(); 139 } 140 } 141 }; 142 143 jint ShenandoahHeap::initialize() { 144 // 145 // Figure out heap sizing 146 // 147 148 size_t init_byte_size = InitialHeapSize; 149 size_t min_byte_size = MinHeapSize; 150 size_t max_byte_size = MaxHeapSize; 151 size_t heap_alignment = HeapAlignment; 152 153 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 154 155 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 156 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 157 158 _num_regions = ShenandoahHeapRegion::region_count(); 159 assert(_num_regions == (max_byte_size / reg_size_bytes), 160 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 161 _num_regions, max_byte_size, reg_size_bytes); 162 163 // Now we know the number of regions, initialize the heuristics. 164 initialize_heuristics(); 165 166 size_t num_committed_regions = init_byte_size / reg_size_bytes; 167 num_committed_regions = MIN2(num_committed_regions, _num_regions); 168 assert(num_committed_regions <= _num_regions, "sanity"); 169 _initial_size = num_committed_regions * reg_size_bytes; 170 171 size_t num_min_regions = min_byte_size / reg_size_bytes; 172 num_min_regions = MIN2(num_min_regions, _num_regions); 173 assert(num_min_regions <= _num_regions, "sanity"); 174 _minimum_size = num_min_regions * reg_size_bytes; 175 176 // Default to max heap size. 177 _soft_max_size = _num_regions * reg_size_bytes; 178 179 _committed = _initial_size; 180 181 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 182 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 183 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 184 185 // 186 // Reserve and commit memory for heap 187 // 188 189 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 190 initialize_reserved_region(heap_rs); 191 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 192 _heap_region_special = heap_rs.special(); 193 194 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 195 "Misaligned heap: " PTR_FORMAT, p2i(base())); 196 os::trace_page_sizes_for_requested_size("Heap", 197 max_byte_size, heap_alignment, 198 heap_rs.base(), 199 heap_rs.size(), heap_rs.page_size()); 200 201 #if SHENANDOAH_OPTIMIZED_MARKTASK 202 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 203 // Fail if we ever attempt to address more than we can. 204 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 205 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 206 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 207 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 208 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 209 vm_exit_during_initialization("Fatal Error", buf); 210 } 211 #endif 212 213 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 214 if (!_heap_region_special) { 215 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 216 "Cannot commit heap memory"); 217 } 218 219 // 220 // Reserve and commit memory for bitmap(s) 221 // 222 223 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 224 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 225 226 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 227 228 guarantee(bitmap_bytes_per_region != 0, 229 "Bitmap bytes per region should not be zero"); 230 guarantee(is_power_of_2(bitmap_bytes_per_region), 231 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 232 233 if (bitmap_page_size > bitmap_bytes_per_region) { 234 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 235 _bitmap_bytes_per_slice = bitmap_page_size; 236 } else { 237 _bitmap_regions_per_slice = 1; 238 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 239 } 240 241 guarantee(_bitmap_regions_per_slice >= 1, 242 "Should have at least one region per slice: " SIZE_FORMAT, 243 _bitmap_regions_per_slice); 244 245 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 246 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 247 _bitmap_bytes_per_slice, bitmap_page_size); 248 249 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 250 os::trace_page_sizes_for_requested_size("Mark Bitmap", 251 bitmap_size_orig, bitmap_page_size, 252 bitmap.base(), 253 bitmap.size(), bitmap.page_size()); 254 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 255 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 256 _bitmap_region_special = bitmap.special(); 257 258 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 259 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 260 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 261 if (!_bitmap_region_special) { 262 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 263 "Cannot commit bitmap memory"); 264 } 265 266 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 267 268 if (ShenandoahVerify) { 269 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 270 os::trace_page_sizes_for_requested_size("Verify Bitmap", 271 bitmap_size_orig, bitmap_page_size, 272 verify_bitmap.base(), 273 verify_bitmap.size(), verify_bitmap.page_size()); 274 if (!verify_bitmap.special()) { 275 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 276 "Cannot commit verification bitmap memory"); 277 } 278 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 279 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 280 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 281 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 282 } 283 284 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 285 size_t aux_bitmap_page_size = bitmap_page_size; 286 287 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 288 os::trace_page_sizes_for_requested_size("Aux Bitmap", 289 bitmap_size_orig, aux_bitmap_page_size, 290 aux_bitmap.base(), 291 aux_bitmap.size(), aux_bitmap.page_size()); 292 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 293 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 294 _aux_bitmap_region_special = aux_bitmap.special(); 295 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 296 297 // 298 // Create regions and region sets 299 // 300 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 301 size_t region_storage_size_orig = region_align * _num_regions; 302 size_t region_storage_size = align_up(region_storage_size_orig, 303 MAX2(region_page_size, os::vm_allocation_granularity())); 304 305 ReservedSpace region_storage(region_storage_size, region_page_size); 306 os::trace_page_sizes_for_requested_size("Region Storage", 307 region_storage_size_orig, region_page_size, 308 region_storage.base(), 309 region_storage.size(), region_storage.page_size()); 310 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 311 if (!region_storage.special()) { 312 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 313 "Cannot commit region memory"); 314 } 315 316 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 317 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 318 // If not successful, bite a bullet and allocate at whatever address. 319 { 320 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 321 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 322 const size_t cset_page_size = os::vm_page_size(); 323 324 uintptr_t min = round_up_power_of_2(cset_align); 325 uintptr_t max = (1u << 30u); 326 ReservedSpace cset_rs; 327 328 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 329 char* req_addr = (char*)addr; 330 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 331 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 332 if (cset_rs.is_reserved()) { 333 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 334 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 335 break; 336 } 337 } 338 339 if (_collection_set == nullptr) { 340 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 341 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 342 } 343 os::trace_page_sizes_for_requested_size("Collection Set", 344 cset_size, cset_page_size, 345 cset_rs.base(), 346 cset_rs.size(), cset_rs.page_size()); 347 } 348 349 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 350 _free_set = new ShenandoahFreeSet(this, _num_regions); 351 352 { 353 ShenandoahHeapLocker locker(lock()); 354 355 for (size_t i = 0; i < _num_regions; i++) { 356 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 357 bool is_committed = i < num_committed_regions; 358 void* loc = region_storage.base() + i * region_align; 359 360 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 361 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 362 363 _marking_context->initialize_top_at_mark_start(r); 364 _regions[i] = r; 365 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 366 } 367 368 // Initialize to complete 369 _marking_context->mark_complete(); 370 371 _free_set->rebuild(); 372 } 373 374 if (AlwaysPreTouch) { 375 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 376 // before initialize() below zeroes it with initializing thread. For any given region, 377 // we touch the region and the corresponding bitmaps from the same thread. 378 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 379 380 _pretouch_heap_page_size = heap_page_size; 381 _pretouch_bitmap_page_size = bitmap_page_size; 382 383 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 384 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 385 386 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 387 _workers->run_task(&bcl); 388 389 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 390 _workers->run_task(&hcl); 391 } 392 393 // 394 // Initialize the rest of GC subsystems 395 // 396 397 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 398 for (uint worker = 0; worker < _max_workers; worker++) { 399 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 400 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 401 } 402 403 // There should probably be Shenandoah-specific options for these, 404 // just as there are G1-specific options. 405 { 406 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 407 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 408 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 409 } 410 411 _monitoring_support = new ShenandoahMonitoringSupport(this); 412 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 413 ShenandoahCodeRoots::initialize(); 414 415 if (ShenandoahPacing) { 416 _pacer = new ShenandoahPacer(this); 417 _pacer->setup_for_idle(); 418 } 419 420 _control_thread = new ShenandoahControlThread(); 421 422 ShenandoahInitLogger::print(); 423 424 return JNI_OK; 425 } 426 427 void ShenandoahHeap::initialize_mode() { 428 if (ShenandoahGCMode != nullptr) { 429 if (strcmp(ShenandoahGCMode, "satb") == 0) { 430 _gc_mode = new ShenandoahSATBMode(); 431 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 432 _gc_mode = new ShenandoahPassiveMode(); 433 } else { 434 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 435 } 436 } else { 437 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 438 } 439 _gc_mode->initialize_flags(); 440 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 441 vm_exit_during_initialization( 442 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 443 _gc_mode->name())); 444 } 445 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 446 vm_exit_during_initialization( 447 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 448 _gc_mode->name())); 449 } 450 } 451 452 void ShenandoahHeap::initialize_heuristics() { 453 assert(_gc_mode != nullptr, "Must be initialized"); 454 _heuristics = _gc_mode->initialize_heuristics(); 455 456 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 457 vm_exit_during_initialization( 458 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 459 _heuristics->name())); 460 } 461 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 462 vm_exit_during_initialization( 463 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 464 _heuristics->name())); 465 } 466 } 467 468 #ifdef _MSC_VER 469 #pragma warning( push ) 470 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 471 #endif 472 473 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 474 CollectedHeap(), 475 _initial_size(0), 476 _used(0), 477 _committed(0), 478 _bytes_allocated_since_gc_start(0), 479 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 480 _workers(nullptr), 481 _safepoint_workers(nullptr), 482 _heap_region_special(false), 483 _num_regions(0), 484 _regions(nullptr), 485 _update_refs_iterator(this), 486 _gc_state_changed(false), 487 _gc_no_progress_count(0), 488 _control_thread(nullptr), 489 _shenandoah_policy(policy), 490 _gc_mode(nullptr), 491 _heuristics(nullptr), 492 _free_set(nullptr), 493 _pacer(nullptr), 494 _verifier(nullptr), 495 _phase_timings(nullptr), 496 _monitoring_support(nullptr), 497 _memory_pool(nullptr), 498 _stw_memory_manager("Shenandoah Pauses"), 499 _cycle_memory_manager("Shenandoah Cycles"), 500 _gc_timer(new ConcurrentGCTimer()), 501 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 502 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 503 _marking_context(nullptr), 504 _bitmap_size(0), 505 _bitmap_regions_per_slice(0), 506 _bitmap_bytes_per_slice(0), 507 _bitmap_region_special(false), 508 _aux_bitmap_region_special(false), 509 _liveness_cache(nullptr), 510 _collection_set(nullptr) 511 { 512 // Initialize GC mode early, so we can adjust barrier support 513 initialize_mode(); 514 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 515 516 _max_workers = MAX2(_max_workers, 1U); 517 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 518 if (_workers == nullptr) { 519 vm_exit_during_initialization("Failed necessary allocation."); 520 } else { 521 _workers->initialize_workers(); 522 } 523 524 if (ParallelGCThreads > 1) { 525 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 526 ParallelGCThreads); 527 _safepoint_workers->initialize_workers(); 528 } 529 } 530 531 #ifdef _MSC_VER 532 #pragma warning( pop ) 533 #endif 534 535 class ShenandoahResetBitmapTask : public WorkerTask { 536 private: 537 ShenandoahRegionIterator _regions; 538 539 public: 540 ShenandoahResetBitmapTask() : 541 WorkerTask("Shenandoah Reset Bitmap") {} 542 543 void work(uint worker_id) { 544 ShenandoahHeapRegion* region = _regions.next(); 545 ShenandoahHeap* heap = ShenandoahHeap::heap(); 546 ShenandoahMarkingContext* const ctx = heap->marking_context(); 547 while (region != nullptr) { 548 if (heap->is_bitmap_slice_committed(region)) { 549 ctx->clear_bitmap(region); 550 } 551 region = _regions.next(); 552 } 553 } 554 }; 555 556 void ShenandoahHeap::reset_mark_bitmap() { 557 assert_gc_workers(_workers->active_workers()); 558 mark_incomplete_marking_context(); 559 560 ShenandoahResetBitmapTask task; 561 _workers->run_task(&task); 562 } 563 564 void ShenandoahHeap::print_on(outputStream* st) const { 565 st->print_cr("Shenandoah Heap"); 566 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 567 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 568 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 569 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 570 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 571 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 572 num_regions(), 573 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 574 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 575 576 st->print("Status: "); 577 if (has_forwarded_objects()) st->print("has forwarded objects, "); 578 if (is_concurrent_mark_in_progress()) st->print("marking, "); 579 if (is_evacuation_in_progress()) st->print("evacuating, "); 580 if (is_update_refs_in_progress()) st->print("updating refs, "); 581 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 582 if (is_full_gc_in_progress()) st->print("full gc, "); 583 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 584 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 585 if (is_concurrent_strong_root_in_progress() && 586 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 587 588 if (cancelled_gc()) { 589 st->print("cancelled"); 590 } else { 591 st->print("not cancelled"); 592 } 593 st->cr(); 594 595 st->print_cr("Reserved region:"); 596 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 597 p2i(reserved_region().start()), 598 p2i(reserved_region().end())); 599 600 ShenandoahCollectionSet* cset = collection_set(); 601 st->print_cr("Collection set:"); 602 if (cset != nullptr) { 603 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 604 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 605 } else { 606 st->print_cr(" (null)"); 607 } 608 609 st->cr(); 610 MetaspaceUtils::print_on(st); 611 612 if (Verbose) { 613 st->cr(); 614 print_heap_regions_on(st); 615 } 616 } 617 618 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 619 public: 620 void do_thread(Thread* thread) { 621 assert(thread != nullptr, "Sanity"); 622 assert(thread->is_Worker_thread(), "Only worker thread expected"); 623 ShenandoahThreadLocalData::initialize_gclab(thread); 624 } 625 }; 626 627 void ShenandoahHeap::post_initialize() { 628 CollectedHeap::post_initialize(); 629 MutexLocker ml(Threads_lock); 630 631 ShenandoahInitWorkerGCLABClosure init_gclabs; 632 _workers->threads_do(&init_gclabs); 633 634 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 635 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 636 _workers->set_initialize_gclab(); 637 if (_safepoint_workers != nullptr) { 638 _safepoint_workers->threads_do(&init_gclabs); 639 _safepoint_workers->set_initialize_gclab(); 640 } 641 642 _heuristics->initialize(); 643 644 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 645 } 646 647 size_t ShenandoahHeap::used() const { 648 return Atomic::load(&_used); 649 } 650 651 size_t ShenandoahHeap::committed() const { 652 return Atomic::load(&_committed); 653 } 654 655 size_t ShenandoahHeap::available() const { 656 return free_set()->available(); 657 } 658 659 void ShenandoahHeap::increase_committed(size_t bytes) { 660 shenandoah_assert_heaplocked_or_safepoint(); 661 _committed += bytes; 662 } 663 664 void ShenandoahHeap::decrease_committed(size_t bytes) { 665 shenandoah_assert_heaplocked_or_safepoint(); 666 _committed -= bytes; 667 } 668 669 void ShenandoahHeap::increase_used(size_t bytes) { 670 Atomic::add(&_used, bytes, memory_order_relaxed); 671 } 672 673 void ShenandoahHeap::set_used(size_t bytes) { 674 Atomic::store(&_used, bytes); 675 } 676 677 void ShenandoahHeap::decrease_used(size_t bytes) { 678 assert(used() >= bytes, "never decrease heap size by more than we've left"); 679 Atomic::sub(&_used, bytes, memory_order_relaxed); 680 } 681 682 void ShenandoahHeap::increase_allocated(size_t bytes) { 683 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 684 } 685 686 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 687 size_t bytes = words * HeapWordSize; 688 if (!waste) { 689 increase_used(bytes); 690 } 691 increase_allocated(bytes); 692 if (ShenandoahPacing) { 693 control_thread()->pacing_notify_alloc(words); 694 if (waste) { 695 pacer()->claim_for_alloc(words, true); 696 } 697 } 698 } 699 700 size_t ShenandoahHeap::capacity() const { 701 return committed(); 702 } 703 704 size_t ShenandoahHeap::max_capacity() const { 705 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 706 } 707 708 size_t ShenandoahHeap::soft_max_capacity() const { 709 size_t v = Atomic::load(&_soft_max_size); 710 assert(min_capacity() <= v && v <= max_capacity(), 711 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 712 min_capacity(), v, max_capacity()); 713 return v; 714 } 715 716 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 717 assert(min_capacity() <= v && v <= max_capacity(), 718 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 719 min_capacity(), v, max_capacity()); 720 Atomic::store(&_soft_max_size, v); 721 } 722 723 size_t ShenandoahHeap::min_capacity() const { 724 return _minimum_size; 725 } 726 727 size_t ShenandoahHeap::initial_capacity() const { 728 return _initial_size; 729 } 730 731 bool ShenandoahHeap::is_in(const void* p) const { 732 HeapWord* heap_base = (HeapWord*) base(); 733 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 734 return p >= heap_base && p < last_region_end; 735 } 736 737 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) { 738 assert (ShenandoahUncommit, "should be enabled"); 739 740 // Determine if there is work to do. This avoids taking heap lock if there is 741 // no work available, avoids spamming logs with superfluous logging messages, 742 // and minimises the amount of work while locks are taken. 743 744 if (committed() <= shrink_until) return; 745 746 bool has_work = false; 747 for (size_t i = 0; i < num_regions(); i++) { 748 ShenandoahHeapRegion* r = get_region(i); 749 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 750 has_work = true; 751 break; 752 } 753 } 754 755 if (has_work) { 756 static const char* msg = "Concurrent uncommit"; 757 ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 758 EventMark em("%s", msg); 759 760 op_uncommit(shrink_before, shrink_until); 761 } 762 } 763 764 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 765 assert (ShenandoahUncommit, "should be enabled"); 766 767 // Application allocates from the beginning of the heap, and GC allocates at 768 // the end of it. It is more efficient to uncommit from the end, so that applications 769 // could enjoy the near committed regions. GC allocations are much less frequent, 770 // and therefore can accept the committing costs. 771 772 size_t count = 0; 773 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 774 ShenandoahHeapRegion* r = get_region(i - 1); 775 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 776 ShenandoahHeapLocker locker(lock()); 777 if (r->is_empty_committed()) { 778 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 779 break; 780 } 781 782 r->make_uncommitted(); 783 count++; 784 } 785 } 786 SpinPause(); // allow allocators to take the lock 787 } 788 789 if (count > 0) { 790 notify_heap_changed(); 791 } 792 } 793 794 bool ShenandoahHeap::check_soft_max_changed() { 795 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 796 size_t old_soft_max = soft_max_capacity(); 797 if (new_soft_max != old_soft_max) { 798 new_soft_max = MAX2(min_capacity(), new_soft_max); 799 new_soft_max = MIN2(max_capacity(), new_soft_max); 800 if (new_soft_max != old_soft_max) { 801 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 802 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 803 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 804 ); 805 set_soft_max_capacity(new_soft_max); 806 return true; 807 } 808 } 809 return false; 810 } 811 812 void ShenandoahHeap::notify_heap_changed() { 813 // Update monitoring counters when we took a new region. This amortizes the 814 // update costs on slow path. 815 monitoring_support()->notify_heap_changed(); 816 817 // This is called from allocation path, and thus should be fast. 818 _heap_changed.try_set(); 819 } 820 821 void ShenandoahHeap::set_forced_counters_update(bool value) { 822 monitoring_support()->set_forced_counters_update(value); 823 } 824 825 void ShenandoahHeap::handle_force_counters_update() { 826 monitoring_support()->handle_force_counters_update(); 827 } 828 829 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 830 // New object should fit the GCLAB size 831 size_t min_size = MAX2(size, PLAB::min_size()); 832 833 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 834 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 835 new_size = MIN2(new_size, PLAB::max_size()); 836 new_size = MAX2(new_size, PLAB::min_size()); 837 838 // Record new heuristic value even if we take any shortcut. This captures 839 // the case when moderately-sized objects always take a shortcut. At some point, 840 // heuristics should catch up with them. 841 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 842 843 if (new_size < size) { 844 // New size still does not fit the object. Fall back to shared allocation. 845 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 846 return nullptr; 847 } 848 849 // Retire current GCLAB, and allocate a new one. 850 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 851 gclab->retire(); 852 853 size_t actual_size = 0; 854 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 855 if (gclab_buf == nullptr) { 856 return nullptr; 857 } 858 859 assert (size <= actual_size, "allocation should fit"); 860 861 // ...and clear or zap just allocated TLAB, if needed. 862 if (ZeroTLAB) { 863 Copy::zero_to_words(gclab_buf, actual_size); 864 } else if (ZapTLAB) { 865 // Skip mangling the space corresponding to the object header to 866 // ensure that the returned space is not considered parsable by 867 // any concurrent GC thread. 868 size_t hdr_size = oopDesc::header_size(); 869 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 870 } 871 gclab->set_buf(gclab_buf, actual_size); 872 return gclab->allocate(size); 873 } 874 875 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 876 size_t requested_size, 877 size_t* actual_size) { 878 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 879 HeapWord* res = allocate_memory(req); 880 if (res != nullptr) { 881 *actual_size = req.actual_size(); 882 } else { 883 *actual_size = 0; 884 } 885 return res; 886 } 887 888 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 889 size_t word_size, 890 size_t* actual_size) { 891 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 892 HeapWord* res = allocate_memory(req); 893 if (res != nullptr) { 894 *actual_size = req.actual_size(); 895 } else { 896 *actual_size = 0; 897 } 898 return res; 899 } 900 901 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 902 intptr_t pacer_epoch = 0; 903 bool in_new_region = false; 904 HeapWord* result = nullptr; 905 906 if (req.is_mutator_alloc()) { 907 if (ShenandoahPacing) { 908 pacer()->pace_for_alloc(req.size()); 909 pacer_epoch = pacer()->epoch(); 910 } 911 912 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 913 result = allocate_memory_under_lock(req, in_new_region); 914 } 915 916 // Check that gc overhead is not exceeded. 917 // 918 // Shenandoah will grind along for quite a while allocating one 919 // object at a time using shared (non-tlab) allocations. This check 920 // is testing that the GC overhead limit has not been exceeded. 921 // This will notify the collector to start a cycle, but will raise 922 // an OOME to the mutator if the last Full GCs have not made progress. 923 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 924 control_thread()->handle_alloc_failure(req, false); 925 return nullptr; 926 } 927 928 if (result == nullptr) { 929 // Block until control thread reacted, then retry allocation. 930 // 931 // It might happen that one of the threads requesting allocation would unblock 932 // way later after GC happened, only to fail the second allocation, because 933 // other threads have already depleted the free storage. In this case, a better 934 // strategy is to try again, until at least one full GC has completed. 935 // 936 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 937 // a) We experienced a GC that had good progress, or 938 // b) We experienced at least one Full GC (whether or not it had good progress) 939 // 940 // TODO: Consider GLOBAL GC rather than Full GC to remediate OOM condition: https://bugs.openjdk.org/browse/JDK-8335910 941 942 size_t original_count = shenandoah_policy()->full_gc_count(); 943 while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) { 944 control_thread()->handle_alloc_failure(req, true); 945 result = allocate_memory_under_lock(req, in_new_region); 946 } 947 if (result != nullptr) { 948 // If our allocation request has been satisifed after it initially failed, we count this as good gc progress 949 notify_gc_progress(); 950 } 951 if (log_is_enabled(Debug, gc, alloc)) { 952 ResourceMark rm; 953 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT 954 ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 955 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 956 original_count, get_gc_no_progress_count()); 957 } 958 } 959 } else { 960 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 961 result = allocate_memory_under_lock(req, in_new_region); 962 // Do not call handle_alloc_failure() here, because we cannot block. 963 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 964 } 965 966 if (in_new_region) { 967 notify_heap_changed(); 968 } 969 970 if (result != nullptr) { 971 size_t requested = req.size(); 972 size_t actual = req.actual_size(); 973 974 assert (req.is_lab_alloc() || (requested == actual), 975 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 976 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 977 978 if (req.is_mutator_alloc()) { 979 notify_mutator_alloc_words(actual, false); 980 981 // If we requested more than we were granted, give the rest back to pacer. 982 // This only matters if we are in the same pacing epoch: do not try to unpace 983 // over the budget for the other phase. 984 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 985 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 986 } 987 } else { 988 increase_used(actual*HeapWordSize); 989 } 990 } 991 992 return result; 993 } 994 995 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 996 // If we are dealing with mutator allocation, then we may need to block for safepoint. 997 // We cannot block for safepoint for GC allocations, because there is a high chance 998 // we are already running at safepoint or from stack watermark machinery, and we cannot 999 // block again. 1000 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1001 return _free_set->allocate(req, in_new_region); 1002 } 1003 1004 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1005 bool* gc_overhead_limit_was_exceeded) { 1006 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1007 return allocate_memory(req); 1008 } 1009 1010 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1011 size_t size, 1012 Metaspace::MetadataType mdtype) { 1013 MetaWord* result; 1014 1015 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1016 if (heuristics()->can_unload_classes()) { 1017 ShenandoahHeuristics* h = heuristics(); 1018 h->record_metaspace_oom(); 1019 } 1020 1021 // Expand and retry allocation 1022 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1023 if (result != nullptr) { 1024 return result; 1025 } 1026 1027 // Start full GC 1028 collect(GCCause::_metadata_GC_clear_soft_refs); 1029 1030 // Retry allocation 1031 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1032 if (result != nullptr) { 1033 return result; 1034 } 1035 1036 // Expand and retry allocation 1037 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1038 if (result != nullptr) { 1039 return result; 1040 } 1041 1042 // Out of memory 1043 return nullptr; 1044 } 1045 1046 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1047 private: 1048 ShenandoahHeap* const _heap; 1049 Thread* const _thread; 1050 public: 1051 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1052 _heap(heap), _thread(Thread::current()) {} 1053 1054 void do_object(oop p) { 1055 shenandoah_assert_marked(nullptr, p); 1056 if (!p->is_forwarded()) { 1057 _heap->evacuate_object(p, _thread); 1058 } 1059 } 1060 }; 1061 1062 class ShenandoahEvacuationTask : public WorkerTask { 1063 private: 1064 ShenandoahHeap* const _sh; 1065 ShenandoahCollectionSet* const _cs; 1066 bool _concurrent; 1067 public: 1068 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1069 ShenandoahCollectionSet* cs, 1070 bool concurrent) : 1071 WorkerTask("Shenandoah Evacuation"), 1072 _sh(sh), 1073 _cs(cs), 1074 _concurrent(concurrent) 1075 {} 1076 1077 void work(uint worker_id) { 1078 if (_concurrent) { 1079 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1080 ShenandoahSuspendibleThreadSetJoiner stsj; 1081 ShenandoahEvacOOMScope oom_evac_scope; 1082 do_work(); 1083 } else { 1084 ShenandoahParallelWorkerSession worker_session(worker_id); 1085 ShenandoahEvacOOMScope oom_evac_scope; 1086 do_work(); 1087 } 1088 } 1089 1090 private: 1091 void do_work() { 1092 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1093 ShenandoahHeapRegion* r; 1094 while ((r =_cs->claim_next()) != nullptr) { 1095 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1096 _sh->marked_object_iterate(r, &cl); 1097 1098 if (ShenandoahPacing) { 1099 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1100 } 1101 1102 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1103 break; 1104 } 1105 } 1106 } 1107 }; 1108 1109 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1110 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1111 workers()->run_task(&task); 1112 } 1113 1114 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1115 if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { 1116 // This thread went through the OOM during evac protocol and it is safe to return 1117 // the forward pointer. It must not attempt to evacuate any more. 1118 return ShenandoahBarrierSet::resolve_forwarded(p); 1119 } 1120 1121 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1122 1123 size_t size = p->size(); 1124 1125 assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects"); 1126 1127 bool alloc_from_gclab = true; 1128 HeapWord* copy = nullptr; 1129 1130 #ifdef ASSERT 1131 if (ShenandoahOOMDuringEvacALot && 1132 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1133 copy = nullptr; 1134 } else { 1135 #endif 1136 if (UseTLAB) { 1137 copy = allocate_from_gclab(thread, size); 1138 } 1139 if (copy == nullptr) { 1140 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); 1141 copy = allocate_memory(req); 1142 alloc_from_gclab = false; 1143 } 1144 #ifdef ASSERT 1145 } 1146 #endif 1147 1148 if (copy == nullptr) { 1149 control_thread()->handle_alloc_failure_evac(size); 1150 1151 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1152 1153 return ShenandoahBarrierSet::resolve_forwarded(p); 1154 } 1155 1156 // Copy the object: 1157 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1158 1159 // Try to install the new forwarding pointer. 1160 oop copy_val = cast_to_oop(copy); 1161 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1162 if (result == copy_val) { 1163 // Successfully evacuated. Our copy is now the public one! 1164 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1165 shenandoah_assert_correct(nullptr, copy_val); 1166 return copy_val; 1167 } else { 1168 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1169 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1170 // But if it happens to contain references to evacuated regions, those references would 1171 // not get updated for this stale copy during this cycle, and we will crash while scanning 1172 // it the next cycle. 1173 // 1174 // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next 1175 // object will overwrite this stale copy, or the filler object on LAB retirement will 1176 // do this. For non-GCLAB allocations, we have no way to retract the allocation, and 1177 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1178 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1179 if (alloc_from_gclab) { 1180 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1181 } else { 1182 fill_with_object(copy, size); 1183 shenandoah_assert_correct(nullptr, copy_val); 1184 } 1185 shenandoah_assert_correct(nullptr, result); 1186 return result; 1187 } 1188 } 1189 1190 void ShenandoahHeap::trash_cset_regions() { 1191 ShenandoahHeapLocker locker(lock()); 1192 1193 ShenandoahCollectionSet* set = collection_set(); 1194 ShenandoahHeapRegion* r; 1195 set->clear_current_index(); 1196 while ((r = set->next()) != nullptr) { 1197 r->make_trash(); 1198 } 1199 collection_set()->clear(); 1200 } 1201 1202 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1203 st->print_cr("Heap Regions:"); 1204 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1205 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1206 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1207 st->print_cr("UWM=update watermark, U=used"); 1208 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1209 st->print_cr("S=shared allocs, L=live data"); 1210 st->print_cr("CP=critical pins"); 1211 1212 for (size_t i = 0; i < num_regions(); i++) { 1213 get_region(i)->print_on(st); 1214 } 1215 } 1216 1217 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1218 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1219 1220 oop humongous_obj = cast_to_oop(start->bottom()); 1221 size_t size = humongous_obj->size(); 1222 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1223 size_t index = start->index() + required_regions - 1; 1224 1225 assert(!start->has_live(), "liveness must be zero"); 1226 1227 for(size_t i = 0; i < required_regions; i++) { 1228 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1229 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1230 ShenandoahHeapRegion* region = get_region(index --); 1231 1232 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1233 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1234 1235 region->make_trash_immediate(); 1236 } 1237 } 1238 1239 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1240 public: 1241 ShenandoahCheckCleanGCLABClosure() {} 1242 void do_thread(Thread* thread) { 1243 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1244 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1245 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1246 } 1247 }; 1248 1249 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1250 private: 1251 bool const _resize; 1252 public: 1253 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1254 void do_thread(Thread* thread) { 1255 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1256 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1257 gclab->retire(); 1258 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1259 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1260 } 1261 } 1262 }; 1263 1264 void ShenandoahHeap::labs_make_parsable() { 1265 assert(UseTLAB, "Only call with UseTLAB"); 1266 1267 ShenandoahRetireGCLABClosure cl(false); 1268 1269 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1270 ThreadLocalAllocBuffer& tlab = t->tlab(); 1271 tlab.make_parsable(); 1272 cl.do_thread(t); 1273 } 1274 1275 workers()->threads_do(&cl); 1276 } 1277 1278 void ShenandoahHeap::tlabs_retire(bool resize) { 1279 assert(UseTLAB, "Only call with UseTLAB"); 1280 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1281 1282 ThreadLocalAllocStats stats; 1283 1284 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1285 ThreadLocalAllocBuffer& tlab = t->tlab(); 1286 tlab.retire(&stats); 1287 if (resize) { 1288 tlab.resize(); 1289 } 1290 } 1291 1292 stats.publish(); 1293 1294 #ifdef ASSERT 1295 ShenandoahCheckCleanGCLABClosure cl; 1296 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1297 cl.do_thread(t); 1298 } 1299 workers()->threads_do(&cl); 1300 #endif 1301 } 1302 1303 void ShenandoahHeap::gclabs_retire(bool resize) { 1304 assert(UseTLAB, "Only call with UseTLAB"); 1305 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1306 1307 ShenandoahRetireGCLABClosure cl(resize); 1308 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1309 cl.do_thread(t); 1310 } 1311 workers()->threads_do(&cl); 1312 1313 if (safepoint_workers() != nullptr) { 1314 safepoint_workers()->threads_do(&cl); 1315 } 1316 } 1317 1318 // Returns size in bytes 1319 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1320 // Return the max allowed size, and let the allocation path 1321 // figure out the safe size for current allocation. 1322 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1323 } 1324 1325 size_t ShenandoahHeap::max_tlab_size() const { 1326 // Returns size in words 1327 return ShenandoahHeapRegion::max_tlab_size_words(); 1328 } 1329 1330 void ShenandoahHeap::collect(GCCause::Cause cause) { 1331 control_thread()->request_gc(cause); 1332 } 1333 1334 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1335 //assert(false, "Shouldn't need to do full collections"); 1336 } 1337 1338 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1339 ShenandoahHeapRegion* r = heap_region_containing(addr); 1340 if (r != nullptr) { 1341 return r->block_start(addr); 1342 } 1343 return nullptr; 1344 } 1345 1346 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1347 ShenandoahHeapRegion* r = heap_region_containing(addr); 1348 return r->block_is_obj(addr); 1349 } 1350 1351 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1352 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1353 } 1354 1355 void ShenandoahHeap::prepare_for_verify() { 1356 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1357 labs_make_parsable(); 1358 } 1359 } 1360 1361 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1362 if (_shenandoah_policy->is_at_shutdown()) { 1363 return; 1364 } 1365 1366 if (_control_thread != nullptr) { 1367 tcl->do_thread(_control_thread); 1368 } 1369 1370 workers()->threads_do(tcl); 1371 if (_safepoint_workers != nullptr) { 1372 _safepoint_workers->threads_do(tcl); 1373 } 1374 } 1375 1376 void ShenandoahHeap::print_tracing_info() const { 1377 LogTarget(Info, gc, stats) lt; 1378 if (lt.is_enabled()) { 1379 ResourceMark rm; 1380 LogStream ls(lt); 1381 1382 phase_timings()->print_global_on(&ls); 1383 1384 ls.cr(); 1385 ls.cr(); 1386 1387 shenandoah_policy()->print_gc_stats(&ls); 1388 1389 ls.cr(); 1390 ls.cr(); 1391 } 1392 } 1393 1394 void ShenandoahHeap::verify(VerifyOption vo) { 1395 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1396 if (ShenandoahVerify) { 1397 verifier()->verify_generic(vo); 1398 } else { 1399 // TODO: Consider allocating verification bitmaps on demand, 1400 // and turn this on unconditionally. 1401 } 1402 } 1403 } 1404 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1405 return _free_set->capacity(); 1406 } 1407 1408 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1409 private: 1410 MarkBitMap* _bitmap; 1411 ShenandoahScanObjectStack* _oop_stack; 1412 ShenandoahHeap* const _heap; 1413 ShenandoahMarkingContext* const _marking_context; 1414 1415 template <class T> 1416 void do_oop_work(T* p) { 1417 T o = RawAccess<>::oop_load(p); 1418 if (!CompressedOops::is_null(o)) { 1419 oop obj = CompressedOops::decode_not_null(o); 1420 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1421 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1422 return; 1423 } 1424 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1425 1426 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1427 if (!_bitmap->is_marked(obj)) { 1428 _bitmap->mark(obj); 1429 _oop_stack->push(obj); 1430 } 1431 } 1432 } 1433 public: 1434 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1435 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1436 _marking_context(_heap->marking_context()) {} 1437 void do_oop(oop* p) { do_oop_work(p); } 1438 void do_oop(narrowOop* p) { do_oop_work(p); } 1439 }; 1440 1441 /* 1442 * This is public API, used in preparation of object_iterate(). 1443 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1444 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1445 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1446 */ 1447 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1448 // No-op. 1449 } 1450 1451 /* 1452 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1453 * 1454 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1455 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1456 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1457 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1458 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1459 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1460 * wiped the bitmap in preparation for next marking). 1461 * 1462 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1463 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1464 * is allowed to report dead objects, but is not required to do so. 1465 */ 1466 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1467 // Reset bitmap 1468 if (!prepare_aux_bitmap_for_iteration()) 1469 return; 1470 1471 ShenandoahScanObjectStack oop_stack; 1472 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1473 // Seed the stack with root scan 1474 scan_roots_for_iteration(&oop_stack, &oops); 1475 1476 // Work through the oop stack to traverse heap 1477 while (! oop_stack.is_empty()) { 1478 oop obj = oop_stack.pop(); 1479 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1480 cl->do_object(obj); 1481 obj->oop_iterate(&oops); 1482 } 1483 1484 assert(oop_stack.is_empty(), "should be empty"); 1485 // Reclaim bitmap 1486 reclaim_aux_bitmap_for_iteration(); 1487 } 1488 1489 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1490 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1491 1492 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1493 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1494 return false; 1495 } 1496 // Reset bitmap 1497 _aux_bit_map.clear(); 1498 return true; 1499 } 1500 1501 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1502 // Process GC roots according to current GC cycle 1503 // This populates the work stack with initial objects 1504 // It is important to relinquish the associated locks before diving 1505 // into heap dumper 1506 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1507 ShenandoahHeapIterationRootScanner rp(n_workers); 1508 rp.roots_do(oops); 1509 } 1510 1511 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1512 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1513 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1514 } 1515 } 1516 1517 // Closure for parallelly iterate objects 1518 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1519 private: 1520 MarkBitMap* _bitmap; 1521 ShenandoahObjToScanQueue* _queue; 1522 ShenandoahHeap* const _heap; 1523 ShenandoahMarkingContext* const _marking_context; 1524 1525 template <class T> 1526 void do_oop_work(T* p) { 1527 T o = RawAccess<>::oop_load(p); 1528 if (!CompressedOops::is_null(o)) { 1529 oop obj = CompressedOops::decode_not_null(o); 1530 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1531 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1532 return; 1533 } 1534 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1535 1536 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1537 if (_bitmap->par_mark(obj)) { 1538 _queue->push(ShenandoahMarkTask(obj)); 1539 } 1540 } 1541 } 1542 public: 1543 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1544 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1545 _marking_context(_heap->marking_context()) {} 1546 void do_oop(oop* p) { do_oop_work(p); } 1547 void do_oop(narrowOop* p) { do_oop_work(p); } 1548 }; 1549 1550 // Object iterator for parallel heap iteraion. 1551 // The root scanning phase happenes in construction as a preparation of 1552 // parallel marking queues. 1553 // Every worker processes it's own marking queue. work-stealing is used 1554 // to balance workload. 1555 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1556 private: 1557 uint _num_workers; 1558 bool _init_ready; 1559 MarkBitMap* _aux_bit_map; 1560 ShenandoahHeap* _heap; 1561 ShenandoahScanObjectStack _roots_stack; // global roots stack 1562 ShenandoahObjToScanQueueSet* _task_queues; 1563 public: 1564 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1565 _num_workers(num_workers), 1566 _init_ready(false), 1567 _aux_bit_map(bitmap), 1568 _heap(ShenandoahHeap::heap()) { 1569 // Initialize bitmap 1570 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1571 if (!_init_ready) { 1572 return; 1573 } 1574 1575 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1576 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1577 1578 _init_ready = prepare_worker_queues(); 1579 } 1580 1581 ~ShenandoahParallelObjectIterator() { 1582 // Reclaim bitmap 1583 _heap->reclaim_aux_bitmap_for_iteration(); 1584 // Reclaim queue for workers 1585 if (_task_queues!= nullptr) { 1586 for (uint i = 0; i < _num_workers; ++i) { 1587 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1588 if (q != nullptr) { 1589 delete q; 1590 _task_queues->register_queue(i, nullptr); 1591 } 1592 } 1593 delete _task_queues; 1594 _task_queues = nullptr; 1595 } 1596 } 1597 1598 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1599 if (_init_ready) { 1600 object_iterate_parallel(cl, worker_id, _task_queues); 1601 } 1602 } 1603 1604 private: 1605 // Divide global root_stack into worker queues 1606 bool prepare_worker_queues() { 1607 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1608 // Initialize queues for every workers 1609 for (uint i = 0; i < _num_workers; ++i) { 1610 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1611 _task_queues->register_queue(i, task_queue); 1612 } 1613 // Divide roots among the workers. Assume that object referencing distribution 1614 // is related with root kind, use round-robin to make every worker have same chance 1615 // to process every kind of roots 1616 size_t roots_num = _roots_stack.size(); 1617 if (roots_num == 0) { 1618 // No work to do 1619 return false; 1620 } 1621 1622 for (uint j = 0; j < roots_num; j++) { 1623 uint stack_id = j % _num_workers; 1624 oop obj = _roots_stack.pop(); 1625 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1626 } 1627 return true; 1628 } 1629 1630 void object_iterate_parallel(ObjectClosure* cl, 1631 uint worker_id, 1632 ShenandoahObjToScanQueueSet* queue_set) { 1633 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1634 assert(queue_set != nullptr, "task queue must not be null"); 1635 1636 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1637 assert(q != nullptr, "object iterate queue must not be null"); 1638 1639 ShenandoahMarkTask t; 1640 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1641 1642 // Work through the queue to traverse heap. 1643 // Steal when there is no task in queue. 1644 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1645 oop obj = t.obj(); 1646 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1647 cl->do_object(obj); 1648 obj->oop_iterate(&oops); 1649 } 1650 assert(q->is_empty(), "should be empty"); 1651 } 1652 }; 1653 1654 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1655 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1656 } 1657 1658 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1659 void ShenandoahHeap::keep_alive(oop obj) { 1660 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1661 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1662 } 1663 } 1664 1665 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1666 for (size_t i = 0; i < num_regions(); i++) { 1667 ShenandoahHeapRegion* current = get_region(i); 1668 blk->heap_region_do(current); 1669 } 1670 } 1671 1672 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1673 private: 1674 ShenandoahHeap* const _heap; 1675 ShenandoahHeapRegionClosure* const _blk; 1676 size_t const _stride; 1677 1678 shenandoah_padding(0); 1679 volatile size_t _index; 1680 shenandoah_padding(1); 1681 1682 public: 1683 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1684 WorkerTask("Shenandoah Parallel Region Operation"), 1685 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1686 1687 void work(uint worker_id) { 1688 ShenandoahParallelWorkerSession worker_session(worker_id); 1689 size_t stride = _stride; 1690 1691 size_t max = _heap->num_regions(); 1692 while (Atomic::load(&_index) < max) { 1693 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1694 size_t start = cur; 1695 size_t end = MIN2(cur + stride, max); 1696 if (start >= max) break; 1697 1698 for (size_t i = cur; i < end; i++) { 1699 ShenandoahHeapRegion* current = _heap->get_region(i); 1700 _blk->heap_region_do(current); 1701 } 1702 } 1703 } 1704 }; 1705 1706 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1707 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1708 const uint active_workers = workers()->active_workers(); 1709 const size_t n_regions = num_regions(); 1710 size_t stride = ShenandoahParallelRegionStride; 1711 if (stride == 0 && active_workers > 1) { 1712 // Automatically derive the stride to balance the work between threads 1713 // evenly. Do not try to split work if below the reasonable threshold. 1714 constexpr size_t threshold = 4096; 1715 stride = n_regions <= threshold ? 1716 threshold : 1717 (n_regions + active_workers - 1) / active_workers; 1718 } 1719 1720 if (n_regions > stride && active_workers > 1) { 1721 ShenandoahParallelHeapRegionTask task(blk, stride); 1722 workers()->run_task(&task); 1723 } else { 1724 heap_region_iterate(blk); 1725 } 1726 } 1727 1728 class ShenandoahRendezvousClosure : public HandshakeClosure { 1729 public: 1730 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1731 inline void do_thread(Thread* thread) {} 1732 }; 1733 1734 void ShenandoahHeap::rendezvous_threads(const char* name) { 1735 ShenandoahRendezvousClosure cl(name); 1736 Handshake::execute(&cl); 1737 } 1738 1739 void ShenandoahHeap::recycle_trash() { 1740 free_set()->recycle_trash(); 1741 } 1742 1743 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1744 private: 1745 ShenandoahMarkingContext* const _ctx; 1746 public: 1747 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1748 1749 void heap_region_do(ShenandoahHeapRegion* r) { 1750 if (r->is_active()) { 1751 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1752 // anyway to capture any updates that happened since now. 1753 r->clear_live_data(); 1754 _ctx->capture_top_at_mark_start(r); 1755 } 1756 } 1757 1758 bool is_thread_safe() { return true; } 1759 }; 1760 1761 void ShenandoahHeap::prepare_gc() { 1762 reset_mark_bitmap(); 1763 1764 ShenandoahResetUpdateRegionStateClosure cl; 1765 parallel_heap_region_iterate(&cl); 1766 } 1767 1768 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1769 private: 1770 ShenandoahMarkingContext* const _ctx; 1771 ShenandoahHeapLock* const _lock; 1772 1773 public: 1774 ShenandoahFinalMarkUpdateRegionStateClosure() : 1775 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1776 1777 void heap_region_do(ShenandoahHeapRegion* r) { 1778 if (r->is_active()) { 1779 // All allocations past TAMS are implicitly live, adjust the region data. 1780 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1781 HeapWord *tams = _ctx->top_at_mark_start(r); 1782 HeapWord *top = r->top(); 1783 if (top > tams) { 1784 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1785 } 1786 1787 // We are about to select the collection set, make sure it knows about 1788 // current pinning status. Also, this allows trashing more regions that 1789 // now have their pinning status dropped. 1790 if (r->is_pinned()) { 1791 if (r->pin_count() == 0) { 1792 ShenandoahHeapLocker locker(_lock); 1793 r->make_unpinned(); 1794 } 1795 } else { 1796 if (r->pin_count() > 0) { 1797 ShenandoahHeapLocker locker(_lock); 1798 r->make_pinned(); 1799 } 1800 } 1801 1802 // Remember limit for updating refs. It's guaranteed that we get no 1803 // from-space-refs written from here on. 1804 r->set_update_watermark_at_safepoint(r->top()); 1805 } else { 1806 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1807 assert(_ctx->top_at_mark_start(r) == r->top(), 1808 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1809 } 1810 } 1811 1812 bool is_thread_safe() { return true; } 1813 }; 1814 1815 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1816 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1817 { 1818 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1819 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1820 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1821 parallel_heap_region_iterate(&cl); 1822 1823 assert_pinned_region_status(); 1824 } 1825 1826 { 1827 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1828 ShenandoahPhaseTimings::degen_gc_choose_cset); 1829 ShenandoahHeapLocker locker(lock()); 1830 _collection_set->clear(); 1831 heuristics()->choose_collection_set(_collection_set); 1832 } 1833 1834 { 1835 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1836 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1837 ShenandoahHeapLocker locker(lock()); 1838 _free_set->rebuild(); 1839 } 1840 } 1841 1842 void ShenandoahHeap::do_class_unloading() { 1843 _unloader.unload(); 1844 } 1845 1846 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1847 // Weak refs processing 1848 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1849 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1850 ShenandoahTimingsTracker t(phase); 1851 ShenandoahGCWorkerPhase worker_phase(phase); 1852 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1853 } 1854 1855 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1856 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1857 1858 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1859 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1860 // for future GCLABs here. 1861 if (UseTLAB) { 1862 ShenandoahGCPhase phase(concurrent ? 1863 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1864 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1865 gclabs_retire(ResizeTLAB); 1866 } 1867 1868 _update_refs_iterator.reset(); 1869 } 1870 1871 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1872 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1873 if (_gc_state_changed) { 1874 _gc_state_changed = false; 1875 char state = gc_state(); 1876 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1877 ShenandoahThreadLocalData::set_gc_state(t, state); 1878 } 1879 } 1880 } 1881 1882 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1883 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1884 _gc_state.set_cond(mask, value); 1885 _gc_state_changed = true; 1886 } 1887 1888 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1889 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1890 set_gc_state(MARKING, in_progress); 1891 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1892 } 1893 1894 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1895 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1896 set_gc_state(EVACUATION, in_progress); 1897 } 1898 1899 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1900 if (in_progress) { 1901 _concurrent_strong_root_in_progress.set(); 1902 } else { 1903 _concurrent_strong_root_in_progress.unset(); 1904 } 1905 } 1906 1907 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1908 set_gc_state(WEAK_ROOTS, cond); 1909 } 1910 1911 GCTracer* ShenandoahHeap::tracer() { 1912 return shenandoah_policy()->tracer(); 1913 } 1914 1915 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1916 return _free_set->used(); 1917 } 1918 1919 bool ShenandoahHeap::try_cancel_gc() { 1920 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1921 return prev == CANCELLABLE; 1922 } 1923 1924 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1925 if (try_cancel_gc()) { 1926 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1927 log_info(gc)("%s", msg.buffer()); 1928 Events::log(Thread::current(), "%s", msg.buffer()); 1929 } 1930 } 1931 1932 uint ShenandoahHeap::max_workers() { 1933 return _max_workers; 1934 } 1935 1936 void ShenandoahHeap::stop() { 1937 // The shutdown sequence should be able to terminate when GC is running. 1938 1939 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 1940 _shenandoah_policy->record_shutdown(); 1941 1942 // Step 1. Notify control thread that we are in shutdown. 1943 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1944 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1945 control_thread()->prepare_for_graceful_shutdown(); 1946 1947 // Step 2. Notify GC workers that we are cancelling GC. 1948 cancel_gc(GCCause::_shenandoah_stop_vm); 1949 1950 // Step 3. Wait until GC worker exits normally. 1951 control_thread()->stop(); 1952 } 1953 1954 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1955 if (!unload_classes()) return; 1956 ClassUnloadingContext ctx(_workers->active_workers(), 1957 true /* unregister_nmethods_during_purge */, 1958 false /* lock_nmethod_free_separately */); 1959 1960 // Unload classes and purge SystemDictionary. 1961 { 1962 ShenandoahPhaseTimings::Phase phase = full_gc ? 1963 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1964 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1965 ShenandoahIsAliveSelector is_alive; 1966 { 1967 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 1968 ShenandoahGCPhase gc_phase(phase); 1969 ShenandoahGCWorkerPhase worker_phase(phase); 1970 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 1971 1972 uint num_workers = _workers->active_workers(); 1973 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 1974 _workers->run_task(&unlink_task); 1975 } 1976 // Release unloaded nmethods's memory. 1977 ClassUnloadingContext::context()->purge_and_free_nmethods(); 1978 } 1979 1980 { 1981 ShenandoahGCPhase phase(full_gc ? 1982 ShenandoahPhaseTimings::full_gc_purge_cldg : 1983 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1984 ClassLoaderDataGraph::purge(true /* at_safepoint */); 1985 } 1986 // Resize and verify metaspace 1987 MetaspaceGC::compute_new_size(); 1988 DEBUG_ONLY(MetaspaceUtils::verify();) 1989 } 1990 1991 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1992 // so they should not have forwarded oops. 1993 // However, we do need to "null" dead oops in the roots, if can not be done 1994 // in concurrent cycles. 1995 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1996 uint num_workers = _workers->active_workers(); 1997 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1998 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1999 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2000 ShenandoahGCPhase phase(timing_phase); 2001 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2002 // Cleanup weak roots 2003 if (has_forwarded_objects()) { 2004 ShenandoahForwardedIsAliveClosure is_alive; 2005 ShenandoahUpdateRefsClosure keep_alive; 2006 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 2007 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2008 _workers->run_task(&cleaning_task); 2009 } else { 2010 ShenandoahIsAliveClosure is_alive; 2011 #ifdef ASSERT 2012 ShenandoahAssertNotForwardedClosure verify_cl; 2013 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2014 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2015 #else 2016 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2017 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2018 #endif 2019 _workers->run_task(&cleaning_task); 2020 } 2021 } 2022 2023 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2024 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2025 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2026 ShenandoahGCPhase phase(full_gc ? 2027 ShenandoahPhaseTimings::full_gc_purge : 2028 ShenandoahPhaseTimings::degen_gc_purge); 2029 stw_weak_refs(full_gc); 2030 stw_process_weak_roots(full_gc); 2031 stw_unload_classes(full_gc); 2032 } 2033 2034 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2035 set_gc_state(HAS_FORWARDED, cond); 2036 } 2037 2038 void ShenandoahHeap::set_unload_classes(bool uc) { 2039 _unload_classes.set_cond(uc); 2040 } 2041 2042 bool ShenandoahHeap::unload_classes() const { 2043 return _unload_classes.is_set(); 2044 } 2045 2046 address ShenandoahHeap::in_cset_fast_test_addr() { 2047 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2048 assert(heap->collection_set() != nullptr, "Sanity"); 2049 return (address) heap->collection_set()->biased_map_address(); 2050 } 2051 2052 size_t ShenandoahHeap::bytes_allocated_since_gc_start() const { 2053 return Atomic::load(&_bytes_allocated_since_gc_start); 2054 } 2055 2056 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2057 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 2058 } 2059 2060 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2061 _degenerated_gc_in_progress.set_cond(in_progress); 2062 } 2063 2064 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2065 _full_gc_in_progress.set_cond(in_progress); 2066 } 2067 2068 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2069 assert (is_full_gc_in_progress(), "should be"); 2070 _full_gc_move_in_progress.set_cond(in_progress); 2071 } 2072 2073 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2074 set_gc_state(UPDATEREFS, in_progress); 2075 } 2076 2077 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2078 ShenandoahCodeRoots::register_nmethod(nm); 2079 } 2080 2081 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2082 ShenandoahCodeRoots::unregister_nmethod(nm); 2083 } 2084 2085 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2086 heap_region_containing(o)->record_pin(); 2087 } 2088 2089 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2090 ShenandoahHeapRegion* r = heap_region_containing(o); 2091 assert(r != nullptr, "Sanity"); 2092 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2093 r->record_unpin(); 2094 } 2095 2096 void ShenandoahHeap::sync_pinned_region_status() { 2097 ShenandoahHeapLocker locker(lock()); 2098 2099 for (size_t i = 0; i < num_regions(); i++) { 2100 ShenandoahHeapRegion *r = get_region(i); 2101 if (r->is_active()) { 2102 if (r->is_pinned()) { 2103 if (r->pin_count() == 0) { 2104 r->make_unpinned(); 2105 } 2106 } else { 2107 if (r->pin_count() > 0) { 2108 r->make_pinned(); 2109 } 2110 } 2111 } 2112 } 2113 2114 assert_pinned_region_status(); 2115 } 2116 2117 #ifdef ASSERT 2118 void ShenandoahHeap::assert_pinned_region_status() { 2119 for (size_t i = 0; i < num_regions(); i++) { 2120 ShenandoahHeapRegion* r = get_region(i); 2121 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2122 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2123 } 2124 } 2125 #endif 2126 2127 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2128 return _gc_timer; 2129 } 2130 2131 void ShenandoahHeap::prepare_concurrent_roots() { 2132 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2133 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2134 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2135 set_concurrent_weak_root_in_progress(true); 2136 if (unload_classes()) { 2137 _unloader.prepare(); 2138 } 2139 } 2140 2141 void ShenandoahHeap::finish_concurrent_roots() { 2142 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2143 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2144 if (unload_classes()) { 2145 _unloader.finish(); 2146 } 2147 } 2148 2149 #ifdef ASSERT 2150 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2151 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2152 2153 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2154 // Use ParallelGCThreads inside safepoints 2155 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2156 ParallelGCThreads, nworkers); 2157 } else { 2158 // Use ConcGCThreads outside safepoints 2159 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2160 ConcGCThreads, nworkers); 2161 } 2162 } 2163 #endif 2164 2165 ShenandoahVerifier* ShenandoahHeap::verifier() { 2166 guarantee(ShenandoahVerify, "Should be enabled"); 2167 assert (_verifier != nullptr, "sanity"); 2168 return _verifier; 2169 } 2170 2171 template<bool CONCURRENT> 2172 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2173 private: 2174 ShenandoahHeap* _heap; 2175 ShenandoahRegionIterator* _regions; 2176 public: 2177 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2178 WorkerTask("Shenandoah Update References"), 2179 _heap(ShenandoahHeap::heap()), 2180 _regions(regions) { 2181 } 2182 2183 void work(uint worker_id) { 2184 if (CONCURRENT) { 2185 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2186 ShenandoahSuspendibleThreadSetJoiner stsj; 2187 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2188 } else { 2189 ShenandoahParallelWorkerSession worker_session(worker_id); 2190 do_work<ShenandoahSTWUpdateRefsClosure>(worker_id); 2191 } 2192 } 2193 2194 private: 2195 template<class T> 2196 void do_work(uint worker_id) { 2197 T cl; 2198 if (CONCURRENT && (worker_id == 0)) { 2199 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2200 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2201 size_t cset_regions = _heap->collection_set()->count(); 2202 // We cannot transfer any more regions than will be reclaimed when the existing collection set is recycled because 2203 // we need the reclaimed collection set regions to replenish the collector reserves 2204 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2205 } 2206 // If !CONCURRENT, there's no value in expanding Mutator free set 2207 2208 ShenandoahHeapRegion* r = _regions->next(); 2209 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2210 while (r != nullptr) { 2211 HeapWord* update_watermark = r->get_update_watermark(); 2212 assert (update_watermark >= r->bottom(), "sanity"); 2213 if (r->is_active() && !r->is_cset()) { 2214 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2215 } 2216 if (ShenandoahPacing) { 2217 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2218 } 2219 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2220 return; 2221 } 2222 r = _regions->next(); 2223 } 2224 } 2225 }; 2226 2227 void ShenandoahHeap::update_heap_references(bool concurrent) { 2228 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2229 2230 if (concurrent) { 2231 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2232 workers()->run_task(&task); 2233 } else { 2234 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2235 workers()->run_task(&task); 2236 } 2237 } 2238 2239 2240 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2241 private: 2242 ShenandoahHeapLock* const _lock; 2243 2244 public: 2245 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2246 2247 void heap_region_do(ShenandoahHeapRegion* r) { 2248 // Drop unnecessary "pinned" state from regions that does not have CP marks 2249 // anymore, as this would allow trashing them. 2250 2251 if (r->is_active()) { 2252 if (r->is_pinned()) { 2253 if (r->pin_count() == 0) { 2254 ShenandoahHeapLocker locker(_lock); 2255 r->make_unpinned(); 2256 } 2257 } else { 2258 if (r->pin_count() > 0) { 2259 ShenandoahHeapLocker locker(_lock); 2260 r->make_pinned(); 2261 } 2262 } 2263 } 2264 } 2265 2266 bool is_thread_safe() { return true; } 2267 }; 2268 2269 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2270 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2271 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2272 2273 { 2274 ShenandoahGCPhase phase(concurrent ? 2275 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2276 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2277 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2278 parallel_heap_region_iterate(&cl); 2279 2280 assert_pinned_region_status(); 2281 } 2282 2283 { 2284 ShenandoahGCPhase phase(concurrent ? 2285 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2286 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2287 trash_cset_regions(); 2288 } 2289 } 2290 2291 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2292 { 2293 ShenandoahGCPhase phase(concurrent ? 2294 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2295 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2296 ShenandoahHeapLocker locker(lock()); 2297 _free_set->rebuild(); 2298 } 2299 } 2300 2301 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2302 print_on(st); 2303 st->cr(); 2304 print_heap_regions_on(st); 2305 } 2306 2307 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2308 size_t slice = r->index() / _bitmap_regions_per_slice; 2309 2310 size_t regions_from = _bitmap_regions_per_slice * slice; 2311 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2312 for (size_t g = regions_from; g < regions_to; g++) { 2313 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2314 if (skip_self && g == r->index()) continue; 2315 if (get_region(g)->is_committed()) { 2316 return true; 2317 } 2318 } 2319 return false; 2320 } 2321 2322 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2323 shenandoah_assert_heaplocked(); 2324 2325 // Bitmaps in special regions do not need commits 2326 if (_bitmap_region_special) { 2327 return true; 2328 } 2329 2330 if (is_bitmap_slice_committed(r, true)) { 2331 // Some other region from the group is already committed, meaning the bitmap 2332 // slice is already committed, we exit right away. 2333 return true; 2334 } 2335 2336 // Commit the bitmap slice: 2337 size_t slice = r->index() / _bitmap_regions_per_slice; 2338 size_t off = _bitmap_bytes_per_slice * slice; 2339 size_t len = _bitmap_bytes_per_slice; 2340 char* start = (char*) _bitmap_region.start() + off; 2341 2342 if (!os::commit_memory(start, len, false)) { 2343 return false; 2344 } 2345 2346 if (AlwaysPreTouch) { 2347 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2348 } 2349 2350 return true; 2351 } 2352 2353 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2354 shenandoah_assert_heaplocked(); 2355 2356 // Bitmaps in special regions do not need uncommits 2357 if (_bitmap_region_special) { 2358 return true; 2359 } 2360 2361 if (is_bitmap_slice_committed(r, true)) { 2362 // Some other region from the group is still committed, meaning the bitmap 2363 // slice is should stay committed, exit right away. 2364 return true; 2365 } 2366 2367 // Uncommit the bitmap slice: 2368 size_t slice = r->index() / _bitmap_regions_per_slice; 2369 size_t off = _bitmap_bytes_per_slice * slice; 2370 size_t len = _bitmap_bytes_per_slice; 2371 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2372 return false; 2373 } 2374 return true; 2375 } 2376 2377 void ShenandoahHeap::safepoint_synchronize_begin() { 2378 StackWatermarkSet::safepoint_synchronize_begin(); 2379 SuspendibleThreadSet::synchronize(); 2380 } 2381 2382 void ShenandoahHeap::safepoint_synchronize_end() { 2383 SuspendibleThreadSet::desynchronize(); 2384 } 2385 2386 void ShenandoahHeap::try_inject_alloc_failure() { 2387 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2388 _inject_alloc_failure.set(); 2389 os::naked_short_sleep(1); 2390 if (cancelled_gc()) { 2391 log_info(gc)("Allocation failure was successfully injected"); 2392 } 2393 } 2394 } 2395 2396 bool ShenandoahHeap::should_inject_alloc_failure() { 2397 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2398 } 2399 2400 void ShenandoahHeap::initialize_serviceability() { 2401 _memory_pool = new ShenandoahMemoryPool(this); 2402 _cycle_memory_manager.add_pool(_memory_pool); 2403 _stw_memory_manager.add_pool(_memory_pool); 2404 } 2405 2406 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2407 GrowableArray<GCMemoryManager*> memory_managers(2); 2408 memory_managers.append(&_cycle_memory_manager); 2409 memory_managers.append(&_stw_memory_manager); 2410 return memory_managers; 2411 } 2412 2413 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2414 GrowableArray<MemoryPool*> memory_pools(1); 2415 memory_pools.append(_memory_pool); 2416 return memory_pools; 2417 } 2418 2419 MemoryUsage ShenandoahHeap::memory_usage() { 2420 return _memory_pool->get_memory_usage(); 2421 } 2422 2423 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2424 _heap(ShenandoahHeap::heap()), 2425 _index(0) {} 2426 2427 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2428 _heap(heap), 2429 _index(0) {} 2430 2431 void ShenandoahRegionIterator::reset() { 2432 _index = 0; 2433 } 2434 2435 bool ShenandoahRegionIterator::has_next() const { 2436 return _index < _heap->num_regions(); 2437 } 2438 2439 char ShenandoahHeap::gc_state() const { 2440 return _gc_state.raw_value(); 2441 } 2442 2443 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2444 #ifdef ASSERT 2445 assert(_liveness_cache != nullptr, "sanity"); 2446 assert(worker_id < _max_workers, "sanity"); 2447 for (uint i = 0; i < num_regions(); i++) { 2448 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2449 } 2450 #endif 2451 return _liveness_cache[worker_id]; 2452 } 2453 2454 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2455 assert(worker_id < _max_workers, "sanity"); 2456 assert(_liveness_cache != nullptr, "sanity"); 2457 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2458 for (uint i = 0; i < num_regions(); i++) { 2459 ShenandoahLiveData live = ld[i]; 2460 if (live > 0) { 2461 ShenandoahHeapRegion* r = get_region(i); 2462 r->increase_live_data_gc_words(live); 2463 ld[i] = 0; 2464 } 2465 } 2466 } 2467 2468 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2469 if (is_idle()) return false; 2470 2471 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2472 // marking phase. 2473 if (is_concurrent_mark_in_progress() && 2474 !marking_context()->allocated_after_mark_start(obj)) { 2475 return true; 2476 } 2477 2478 // Can not guarantee obj is deeply good. 2479 if (has_forwarded_objects()) { 2480 return true; 2481 } 2482 2483 return false; 2484 }