1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "memory/allocation.hpp" 29 #include "memory/universe.hpp" 30 31 #include "gc/shared/classUnloadingContext.hpp" 32 #include "gc/shared/fullGCForwarding.hpp" 33 #include "gc/shared/gcArguments.hpp" 34 #include "gc/shared/gcTimer.hpp" 35 #include "gc/shared/gcTraceTime.inline.hpp" 36 #include "gc/shared/locationPrinter.inline.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "gc/shared/plab.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 41 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 42 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 43 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 44 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 45 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 46 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 47 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 48 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 49 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 50 #include "gc/shenandoah/shenandoahControlThread.hpp" 51 #include "gc/shenandoah/shenandoahFreeSet.hpp" 52 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 53 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 54 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 55 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 56 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 59 #include "gc/shenandoah/shenandoahInitLogger.hpp" 60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 61 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 63 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 64 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 65 #include "gc/shenandoah/shenandoahPadding.hpp" 66 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 67 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 68 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 69 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 70 #include "gc/shenandoah/shenandoahSTWMark.hpp" 71 #include "gc/shenandoah/shenandoahUtils.hpp" 72 #include "gc/shenandoah/shenandoahVerifier.hpp" 73 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 74 #include "gc/shenandoah/shenandoahVMOperations.hpp" 75 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 76 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 77 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 78 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 79 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 80 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 81 #include "utilities/globalDefinitions.hpp" 82 83 #if INCLUDE_JFR 84 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 85 #endif 86 87 #include "cds/archiveHeapWriter.hpp" 88 #include "classfile/systemDictionary.hpp" 89 #include "code/codeCache.hpp" 90 #include "memory/classLoaderMetaspace.hpp" 91 #include "memory/metaspaceUtils.hpp" 92 #include "nmt/mallocTracker.hpp" 93 #include "nmt/memTracker.hpp" 94 #include "oops/compressedOops.inline.hpp" 95 #include "prims/jvmtiTagMap.hpp" 96 #include "runtime/atomic.hpp" 97 #include "runtime/globals.hpp" 98 #include "runtime/interfaceSupport.inline.hpp" 99 #include "runtime/java.hpp" 100 #include "runtime/orderAccess.hpp" 101 #include "runtime/safepointMechanism.hpp" 102 #include "runtime/stackWatermarkSet.hpp" 103 #include "runtime/vmThread.hpp" 104 #include "utilities/events.hpp" 105 #include "utilities/powerOfTwo.hpp" 106 107 class ShenandoahPretouchHeapTask : public WorkerTask { 108 private: 109 ShenandoahRegionIterator _regions; 110 const size_t _page_size; 111 public: 112 ShenandoahPretouchHeapTask(size_t page_size) : 113 WorkerTask("Shenandoah Pretouch Heap"), 114 _page_size(page_size) {} 115 116 virtual void work(uint worker_id) { 117 ShenandoahHeapRegion* r = _regions.next(); 118 while (r != nullptr) { 119 if (r->is_committed()) { 120 os::pretouch_memory(r->bottom(), r->end(), _page_size); 121 } 122 r = _regions.next(); 123 } 124 } 125 }; 126 127 class ShenandoahPretouchBitmapTask : public WorkerTask { 128 private: 129 ShenandoahRegionIterator _regions; 130 char* _bitmap_base; 131 const size_t _bitmap_size; 132 const size_t _page_size; 133 public: 134 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 135 WorkerTask("Shenandoah Pretouch Bitmap"), 136 _bitmap_base(bitmap_base), 137 _bitmap_size(bitmap_size), 138 _page_size(page_size) {} 139 140 virtual void work(uint worker_id) { 141 ShenandoahHeapRegion* r = _regions.next(); 142 while (r != nullptr) { 143 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 144 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 145 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 146 147 if (r->is_committed()) { 148 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 149 } 150 151 r = _regions.next(); 152 } 153 } 154 }; 155 156 jint ShenandoahHeap::initialize() { 157 // 158 // Figure out heap sizing 159 // 160 161 size_t init_byte_size = InitialHeapSize; 162 size_t min_byte_size = MinHeapSize; 163 size_t max_byte_size = MaxHeapSize; 164 size_t heap_alignment = HeapAlignment; 165 166 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 167 168 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 169 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 170 171 _num_regions = ShenandoahHeapRegion::region_count(); 172 assert(_num_regions == (max_byte_size / reg_size_bytes), 173 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 174 _num_regions, max_byte_size, reg_size_bytes); 175 176 size_t num_committed_regions = init_byte_size / reg_size_bytes; 177 num_committed_regions = MIN2(num_committed_regions, _num_regions); 178 assert(num_committed_regions <= _num_regions, "sanity"); 179 _initial_size = num_committed_regions * reg_size_bytes; 180 181 size_t num_min_regions = min_byte_size / reg_size_bytes; 182 num_min_regions = MIN2(num_min_regions, _num_regions); 183 assert(num_min_regions <= _num_regions, "sanity"); 184 _minimum_size = num_min_regions * reg_size_bytes; 185 186 // Default to max heap size. 187 _soft_max_size = _num_regions * reg_size_bytes; 188 189 _committed = _initial_size; 190 191 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 192 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 193 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 194 195 // 196 // Reserve and commit memory for heap 197 // 198 199 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 200 initialize_reserved_region(heap_rs); 201 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 202 _heap_region_special = heap_rs.special(); 203 204 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 205 "Misaligned heap: " PTR_FORMAT, p2i(base())); 206 os::trace_page_sizes_for_requested_size("Heap", 207 max_byte_size, heap_alignment, 208 heap_rs.base(), 209 heap_rs.size(), heap_rs.page_size()); 210 211 #if SHENANDOAH_OPTIMIZED_MARKTASK 212 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 213 // Fail if we ever attempt to address more than we can. 214 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 215 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 216 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 217 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 218 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 219 vm_exit_during_initialization("Fatal Error", buf); 220 } 221 #endif 222 223 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 224 if (!_heap_region_special) { 225 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 226 "Cannot commit heap memory"); 227 } 228 229 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 230 231 // Now we know the number of regions and heap sizes, initialize the heuristics. 232 initialize_heuristics(); 233 234 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 235 236 // 237 // Worker threads must be initialized after the barrier is configured 238 // 239 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 240 if (_workers == nullptr) { 241 vm_exit_during_initialization("Failed necessary allocation."); 242 } else { 243 _workers->initialize_workers(); 244 } 245 246 if (ParallelGCThreads > 1) { 247 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 248 _safepoint_workers->initialize_workers(); 249 } 250 251 // 252 // Reserve and commit memory for bitmap(s) 253 // 254 255 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 256 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 257 258 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 259 260 guarantee(bitmap_bytes_per_region != 0, 261 "Bitmap bytes per region should not be zero"); 262 guarantee(is_power_of_2(bitmap_bytes_per_region), 263 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 264 265 if (bitmap_page_size > bitmap_bytes_per_region) { 266 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 267 _bitmap_bytes_per_slice = bitmap_page_size; 268 } else { 269 _bitmap_regions_per_slice = 1; 270 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 271 } 272 273 guarantee(_bitmap_regions_per_slice >= 1, 274 "Should have at least one region per slice: " SIZE_FORMAT, 275 _bitmap_regions_per_slice); 276 277 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 278 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 279 _bitmap_bytes_per_slice, bitmap_page_size); 280 281 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 282 os::trace_page_sizes_for_requested_size("Mark Bitmap", 283 bitmap_size_orig, bitmap_page_size, 284 bitmap.base(), 285 bitmap.size(), bitmap.page_size()); 286 MemTracker::record_virtual_memory_tag(bitmap.base(), mtGC); 287 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 288 _bitmap_region_special = bitmap.special(); 289 290 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 291 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 292 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 293 if (!_bitmap_region_special) { 294 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 295 "Cannot commit bitmap memory"); 296 } 297 298 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 299 300 if (ShenandoahVerify) { 301 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 302 os::trace_page_sizes_for_requested_size("Verify Bitmap", 303 bitmap_size_orig, bitmap_page_size, 304 verify_bitmap.base(), 305 verify_bitmap.size(), verify_bitmap.page_size()); 306 if (!verify_bitmap.special()) { 307 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 308 "Cannot commit verification bitmap memory"); 309 } 310 MemTracker::record_virtual_memory_tag(verify_bitmap.base(), mtGC); 311 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 312 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 313 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 314 } 315 316 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 317 size_t aux_bitmap_page_size = bitmap_page_size; 318 319 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 320 os::trace_page_sizes_for_requested_size("Aux Bitmap", 321 bitmap_size_orig, aux_bitmap_page_size, 322 aux_bitmap.base(), 323 aux_bitmap.size(), aux_bitmap.page_size()); 324 MemTracker::record_virtual_memory_tag(aux_bitmap.base(), mtGC); 325 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 326 _aux_bitmap_region_special = aux_bitmap.special(); 327 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 328 329 // 330 // Create regions and region sets 331 // 332 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 333 size_t region_storage_size_orig = region_align * _num_regions; 334 size_t region_storage_size = align_up(region_storage_size_orig, 335 MAX2(region_page_size, os::vm_allocation_granularity())); 336 337 ReservedSpace region_storage(region_storage_size, region_page_size); 338 os::trace_page_sizes_for_requested_size("Region Storage", 339 region_storage_size_orig, region_page_size, 340 region_storage.base(), 341 region_storage.size(), region_storage.page_size()); 342 MemTracker::record_virtual_memory_tag(region_storage.base(), mtGC); 343 if (!region_storage.special()) { 344 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 345 "Cannot commit region memory"); 346 } 347 348 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 349 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 350 // If not successful, bite a bullet and allocate at whatever address. 351 { 352 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 353 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 354 const size_t cset_page_size = os::vm_page_size(); 355 356 uintptr_t min = round_up_power_of_2(cset_align); 357 uintptr_t max = (1u << 30u); 358 ReservedSpace cset_rs; 359 360 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 361 char* req_addr = (char*)addr; 362 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 363 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 364 if (cset_rs.is_reserved()) { 365 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 366 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 367 break; 368 } 369 } 370 371 if (_collection_set == nullptr) { 372 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 373 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 374 } 375 os::trace_page_sizes_for_requested_size("Collection Set", 376 cset_size, cset_page_size, 377 cset_rs.base(), 378 cset_rs.size(), cset_rs.page_size()); 379 } 380 381 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 382 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 383 _free_set = new ShenandoahFreeSet(this, _num_regions); 384 385 { 386 ShenandoahHeapLocker locker(lock()); 387 388 for (size_t i = 0; i < _num_regions; i++) { 389 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 390 bool is_committed = i < num_committed_regions; 391 void* loc = region_storage.base() + i * region_align; 392 393 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 394 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 395 396 _marking_context->initialize_top_at_mark_start(r); 397 _regions[i] = r; 398 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 399 400 _affiliations[i] = ShenandoahAffiliation::FREE; 401 } 402 403 // Initialize to complete 404 _marking_context->mark_complete(); 405 size_t young_cset_regions, old_cset_regions; 406 407 // We are initializing free set. We ignore cset region tallies. 408 size_t first_old, last_old, num_old; 409 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 410 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 411 } 412 413 if (AlwaysPreTouch) { 414 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 415 // before initialize() below zeroes it with initializing thread. For any given region, 416 // we touch the region and the corresponding bitmaps from the same thread. 417 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 418 419 _pretouch_heap_page_size = heap_page_size; 420 _pretouch_bitmap_page_size = bitmap_page_size; 421 422 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 423 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 424 425 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 426 _workers->run_task(&bcl); 427 428 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 429 _workers->run_task(&hcl); 430 } 431 432 // 433 // Initialize the rest of GC subsystems 434 // 435 436 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 437 for (uint worker = 0; worker < _max_workers; worker++) { 438 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 439 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 440 } 441 442 // There should probably be Shenandoah-specific options for these, 443 // just as there are G1-specific options. 444 { 445 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 446 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 447 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 448 } 449 450 _monitoring_support = new ShenandoahMonitoringSupport(this); 451 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 452 ShenandoahCodeRoots::initialize(); 453 454 if (ShenandoahPacing) { 455 _pacer = new ShenandoahPacer(this); 456 _pacer->setup_for_idle(); 457 } 458 459 initialize_controller(); 460 461 print_init_logger(); 462 463 FullGCForwarding::initialize(_heap_region); 464 465 return JNI_OK; 466 } 467 468 void ShenandoahHeap::initialize_controller() { 469 _control_thread = new ShenandoahControlThread(); 470 } 471 472 void ShenandoahHeap::print_init_logger() const { 473 ShenandoahInitLogger::print(); 474 } 475 476 void ShenandoahHeap::initialize_mode() { 477 if (ShenandoahGCMode != nullptr) { 478 if (strcmp(ShenandoahGCMode, "satb") == 0) { 479 _gc_mode = new ShenandoahSATBMode(); 480 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 481 _gc_mode = new ShenandoahPassiveMode(); 482 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 483 _gc_mode = new ShenandoahGenerationalMode(); 484 } else { 485 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 486 } 487 } else { 488 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 489 } 490 _gc_mode->initialize_flags(); 491 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 492 vm_exit_during_initialization( 493 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 494 _gc_mode->name())); 495 } 496 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 497 vm_exit_during_initialization( 498 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 499 _gc_mode->name())); 500 } 501 } 502 503 void ShenandoahHeap::initialize_heuristics() { 504 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity()); 505 _global_generation->initialize_heuristics(mode()); 506 } 507 508 #ifdef _MSC_VER 509 #pragma warning( push ) 510 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 511 #endif 512 513 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 514 CollectedHeap(), 515 _gc_generation(nullptr), 516 _active_generation(nullptr), 517 _initial_size(0), 518 _committed(0), 519 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 520 _workers(nullptr), 521 _safepoint_workers(nullptr), 522 _heap_region_special(false), 523 _num_regions(0), 524 _regions(nullptr), 525 _affiliations(nullptr), 526 _gc_state_changed(false), 527 _gc_no_progress_count(0), 528 _cancel_requested_time(0), 529 _update_refs_iterator(this), 530 _global_generation(nullptr), 531 _control_thread(nullptr), 532 _young_generation(nullptr), 533 _old_generation(nullptr), 534 _shenandoah_policy(policy), 535 _gc_mode(nullptr), 536 _free_set(nullptr), 537 _pacer(nullptr), 538 _verifier(nullptr), 539 _phase_timings(nullptr), 540 _mmu_tracker(), 541 _monitoring_support(nullptr), 542 _memory_pool(nullptr), 543 _stw_memory_manager("Shenandoah Pauses"), 544 _cycle_memory_manager("Shenandoah Cycles"), 545 _gc_timer(new ConcurrentGCTimer()), 546 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 547 _marking_context(nullptr), 548 _bitmap_size(0), 549 _bitmap_regions_per_slice(0), 550 _bitmap_bytes_per_slice(0), 551 _bitmap_region_special(false), 552 _aux_bitmap_region_special(false), 553 _liveness_cache(nullptr), 554 _collection_set(nullptr) 555 { 556 // Initialize GC mode early, many subsequent initialization procedures depend on it 557 initialize_mode(); 558 } 559 560 #ifdef _MSC_VER 561 #pragma warning( pop ) 562 #endif 563 564 void ShenandoahHeap::print_on(outputStream* st) const { 565 st->print_cr("Shenandoah Heap"); 566 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 567 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 568 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 569 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 570 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 571 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 572 num_regions(), 573 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 574 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 575 576 st->print("Status: "); 577 if (has_forwarded_objects()) st->print("has forwarded objects, "); 578 if (!mode()->is_generational()) { 579 if (is_concurrent_mark_in_progress()) st->print("marking,"); 580 } else { 581 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 582 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 583 } 584 if (is_evacuation_in_progress()) st->print("evacuating, "); 585 if (is_update_refs_in_progress()) st->print("updating refs, "); 586 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 587 if (is_full_gc_in_progress()) st->print("full gc, "); 588 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 589 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 590 if (is_concurrent_strong_root_in_progress() && 591 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 592 593 if (cancelled_gc()) { 594 st->print("cancelled"); 595 } else { 596 st->print("not cancelled"); 597 } 598 st->cr(); 599 600 st->print_cr("Reserved region:"); 601 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 602 p2i(reserved_region().start()), 603 p2i(reserved_region().end())); 604 605 ShenandoahCollectionSet* cset = collection_set(); 606 st->print_cr("Collection set:"); 607 if (cset != nullptr) { 608 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 609 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 610 } else { 611 st->print_cr(" (null)"); 612 } 613 614 st->cr(); 615 MetaspaceUtils::print_on(st); 616 617 if (Verbose) { 618 st->cr(); 619 print_heap_regions_on(st); 620 } 621 } 622 623 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 624 public: 625 void do_thread(Thread* thread) { 626 assert(thread != nullptr, "Sanity"); 627 assert(thread->is_Worker_thread(), "Only worker thread expected"); 628 ShenandoahThreadLocalData::initialize_gclab(thread); 629 } 630 }; 631 632 void ShenandoahHeap::post_initialize() { 633 CollectedHeap::post_initialize(); 634 _mmu_tracker.initialize(); 635 636 MutexLocker ml(Threads_lock); 637 638 ShenandoahInitWorkerGCLABClosure init_gclabs; 639 _workers->threads_do(&init_gclabs); 640 641 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 642 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 643 _workers->set_initialize_gclab(); 644 if (_safepoint_workers != nullptr) { 645 _safepoint_workers->threads_do(&init_gclabs); 646 _safepoint_workers->set_initialize_gclab(); 647 } 648 649 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers();) 650 } 651 652 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 653 return _global_generation->heuristics(); 654 } 655 656 size_t ShenandoahHeap::used() const { 657 return global_generation()->used(); 658 } 659 660 size_t ShenandoahHeap::committed() const { 661 return Atomic::load(&_committed); 662 } 663 664 void ShenandoahHeap::increase_committed(size_t bytes) { 665 shenandoah_assert_heaplocked_or_safepoint(); 666 _committed += bytes; 667 } 668 669 void ShenandoahHeap::decrease_committed(size_t bytes) { 670 shenandoah_assert_heaplocked_or_safepoint(); 671 _committed -= bytes; 672 } 673 674 // For tracking usage based on allocations, it should be the case that: 675 // * The sum of regions::used == heap::used 676 // * The sum of a generation's regions::used == generation::used 677 // * The sum of a generation's humongous regions::free == generation::humongous_waste 678 // These invariants are checked by the verifier on GC safepoints. 679 // 680 // Additional notes: 681 // * When a mutator's allocation request causes a region to be retired, the 682 // free memory left in that region is considered waste. It does not contribute 683 // to the usage, but it _does_ contribute to allocation rate. 684 // * The bottom of a PLAB must be aligned on card size. In some cases this will 685 // require padding in front of the PLAB (a filler object). Because this padding 686 // is included in the region's used memory we include the padding in the usage 687 // accounting as waste. 688 // * Mutator allocations are used to compute an allocation rate. They are also 689 // sent to the Pacer for those purposes. 690 // * There are three sources of waste: 691 // 1. The padding used to align a PLAB on card size 692 // 2. Region's free is less than minimum TLAB size and is retired 693 // 3. The unused portion of memory in the last region of a humongous object 694 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 695 size_t actual_bytes = req.actual_size() * HeapWordSize; 696 size_t wasted_bytes = req.waste() * HeapWordSize; 697 ShenandoahGeneration* generation = generation_for(req.affiliation()); 698 699 if (req.is_gc_alloc()) { 700 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 701 increase_used(generation, actual_bytes + wasted_bytes); 702 } else { 703 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 704 // padding and actual size both count towards allocation counter 705 generation->increase_allocated(actual_bytes + wasted_bytes); 706 707 // only actual size counts toward usage for mutator allocations 708 increase_used(generation, actual_bytes); 709 710 // notify pacer of both actual size and waste 711 notify_mutator_alloc_words(req.actual_size(), req.waste()); 712 713 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 714 increase_humongous_waste(generation,wasted_bytes); 715 } 716 } 717 } 718 719 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 720 generation->increase_humongous_waste(bytes); 721 if (!generation->is_global()) { 722 global_generation()->increase_humongous_waste(bytes); 723 } 724 } 725 726 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 727 generation->decrease_humongous_waste(bytes); 728 if (!generation->is_global()) { 729 global_generation()->decrease_humongous_waste(bytes); 730 } 731 } 732 733 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 734 generation->increase_used(bytes); 735 if (!generation->is_global()) { 736 global_generation()->increase_used(bytes); 737 } 738 } 739 740 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 741 generation->decrease_used(bytes); 742 if (!generation->is_global()) { 743 global_generation()->decrease_used(bytes); 744 } 745 } 746 747 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 748 if (ShenandoahPacing) { 749 control_thread()->pacing_notify_alloc(words); 750 if (waste > 0) { 751 pacer()->claim_for_alloc<true>(waste); 752 } 753 } 754 } 755 756 size_t ShenandoahHeap::capacity() const { 757 return committed(); 758 } 759 760 size_t ShenandoahHeap::max_capacity() const { 761 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 762 } 763 764 size_t ShenandoahHeap::soft_max_capacity() const { 765 size_t v = Atomic::load(&_soft_max_size); 766 assert(min_capacity() <= v && v <= max_capacity(), 767 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 768 min_capacity(), v, max_capacity()); 769 return v; 770 } 771 772 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 773 assert(min_capacity() <= v && v <= max_capacity(), 774 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 775 min_capacity(), v, max_capacity()); 776 Atomic::store(&_soft_max_size, v); 777 } 778 779 size_t ShenandoahHeap::min_capacity() const { 780 return _minimum_size; 781 } 782 783 size_t ShenandoahHeap::initial_capacity() const { 784 return _initial_size; 785 } 786 787 bool ShenandoahHeap::is_in(const void* p) const { 788 if (is_in_reserved(p)) { 789 if (is_full_gc_move_in_progress()) { 790 // Full GC move is running, we do not have a consistent region 791 // information yet. But we know the pointer is in heap. 792 return true; 793 } 794 // Now check if we point to a live section in active region. 795 ShenandoahHeapRegion* r = heap_region_containing(p); 796 return (r->is_active() && p < r->top()); 797 } else { 798 return false; 799 } 800 } 801 802 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) { 803 assert (ShenandoahUncommit, "should be enabled"); 804 805 // Determine if there is work to do. This avoids taking heap lock if there is 806 // no work available, avoids spamming logs with superfluous logging messages, 807 // and minimises the amount of work while locks are taken. 808 809 if (committed() <= shrink_until) return; 810 811 bool has_work = false; 812 for (size_t i = 0; i < num_regions(); i++) { 813 ShenandoahHeapRegion* r = get_region(i); 814 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 815 has_work = true; 816 break; 817 } 818 } 819 820 if (has_work) { 821 static const char* msg = "Concurrent uncommit"; 822 ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 823 EventMark em("%s", msg); 824 825 op_uncommit(shrink_before, shrink_until); 826 } 827 } 828 829 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 830 assert (ShenandoahUncommit, "should be enabled"); 831 832 // Application allocates from the beginning of the heap, and GC allocates at 833 // the end of it. It is more efficient to uncommit from the end, so that applications 834 // could enjoy the near committed regions. GC allocations are much less frequent, 835 // and therefore can accept the committing costs. 836 837 size_t count = 0; 838 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 839 ShenandoahHeapRegion* r = get_region(i - 1); 840 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 841 ShenandoahHeapLocker locker(lock()); 842 if (r->is_empty_committed()) { 843 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 844 break; 845 } 846 847 r->make_uncommitted(); 848 count++; 849 } 850 } 851 SpinPause(); // allow allocators to take the lock 852 } 853 854 if (count > 0) { 855 notify_heap_changed(); 856 } 857 } 858 859 bool ShenandoahHeap::check_soft_max_changed() { 860 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 861 size_t old_soft_max = soft_max_capacity(); 862 if (new_soft_max != old_soft_max) { 863 new_soft_max = MAX2(min_capacity(), new_soft_max); 864 new_soft_max = MIN2(max_capacity(), new_soft_max); 865 if (new_soft_max != old_soft_max) { 866 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 867 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 868 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 869 ); 870 set_soft_max_capacity(new_soft_max); 871 return true; 872 } 873 } 874 return false; 875 } 876 877 void ShenandoahHeap::notify_heap_changed() { 878 // Update monitoring counters when we took a new region. This amortizes the 879 // update costs on slow path. 880 monitoring_support()->notify_heap_changed(); 881 _heap_changed.set(); 882 } 883 884 void ShenandoahHeap::set_forced_counters_update(bool value) { 885 monitoring_support()->set_forced_counters_update(value); 886 } 887 888 void ShenandoahHeap::handle_force_counters_update() { 889 monitoring_support()->handle_force_counters_update(); 890 } 891 892 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 893 // New object should fit the GCLAB size 894 size_t min_size = MAX2(size, PLAB::min_size()); 895 896 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 897 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 898 899 new_size = MIN2(new_size, PLAB::max_size()); 900 new_size = MAX2(new_size, PLAB::min_size()); 901 902 // Record new heuristic value even if we take any shortcut. This captures 903 // the case when moderately-sized objects always take a shortcut. At some point, 904 // heuristics should catch up with them. 905 log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size); 906 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 907 908 if (new_size < size) { 909 // New size still does not fit the object. Fall back to shared allocation. 910 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 911 log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size); 912 return nullptr; 913 } 914 915 // Retire current GCLAB, and allocate a new one. 916 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 917 gclab->retire(); 918 919 size_t actual_size = 0; 920 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 921 if (gclab_buf == nullptr) { 922 return nullptr; 923 } 924 925 assert (size <= actual_size, "allocation should fit"); 926 927 // ...and clear or zap just allocated TLAB, if needed. 928 if (ZeroTLAB) { 929 Copy::zero_to_words(gclab_buf, actual_size); 930 } else if (ZapTLAB) { 931 // Skip mangling the space corresponding to the object header to 932 // ensure that the returned space is not considered parsable by 933 // any concurrent GC thread. 934 size_t hdr_size = oopDesc::header_size(); 935 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 936 } 937 gclab->set_buf(gclab_buf, actual_size); 938 return gclab->allocate(size); 939 } 940 941 // Called from stubs in JIT code or interpreter 942 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 943 size_t requested_size, 944 size_t* actual_size) { 945 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 946 HeapWord* res = allocate_memory(req); 947 if (res != nullptr) { 948 *actual_size = req.actual_size(); 949 } else { 950 *actual_size = 0; 951 } 952 return res; 953 } 954 955 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 956 size_t word_size, 957 size_t* actual_size) { 958 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 959 HeapWord* res = allocate_memory(req); 960 if (res != nullptr) { 961 *actual_size = req.actual_size(); 962 } else { 963 *actual_size = 0; 964 } 965 return res; 966 } 967 968 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 969 intptr_t pacer_epoch = 0; 970 bool in_new_region = false; 971 HeapWord* result = nullptr; 972 973 if (req.is_mutator_alloc()) { 974 if (ShenandoahPacing) { 975 pacer()->pace_for_alloc(req.size()); 976 pacer_epoch = pacer()->epoch(); 977 } 978 979 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 980 result = allocate_memory_under_lock(req, in_new_region); 981 } 982 983 // Check that gc overhead is not exceeded. 984 // 985 // Shenandoah will grind along for quite a while allocating one 986 // object at a time using shared (non-tlab) allocations. This check 987 // is testing that the GC overhead limit has not been exceeded. 988 // This will notify the collector to start a cycle, but will raise 989 // an OOME to the mutator if the last Full GCs have not made progress. 990 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 991 if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) { 992 control_thread()->handle_alloc_failure(req, false); 993 req.set_actual_size(0); 994 return nullptr; 995 } 996 997 if (result == nullptr) { 998 // Block until control thread reacted, then retry allocation. 999 // 1000 // It might happen that one of the threads requesting allocation would unblock 1001 // way later after GC happened, only to fail the second allocation, because 1002 // other threads have already depleted the free storage. In this case, a better 1003 // strategy is to try again, until at least one full GC has completed. 1004 // 1005 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 1006 // a) We experienced a GC that had good progress, or 1007 // b) We experienced at least one Full GC (whether or not it had good progress) 1008 1009 size_t original_count = shenandoah_policy()->full_gc_count(); 1010 while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) { 1011 control_thread()->handle_alloc_failure(req, true); 1012 result = allocate_memory_under_lock(req, in_new_region); 1013 } 1014 if (result != nullptr) { 1015 // If our allocation request has been satisifed after it initially failed, we count this as good gc progress 1016 notify_gc_progress(); 1017 } 1018 if (log_develop_is_enabled(Debug, gc, alloc)) { 1019 ResourceMark rm; 1020 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT 1021 ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 1022 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 1023 original_count, get_gc_no_progress_count()); 1024 } 1025 } 1026 } else { 1027 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1028 result = allocate_memory_under_lock(req, in_new_region); 1029 // Do not call handle_alloc_failure() here, because we cannot block. 1030 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1031 } 1032 1033 if (in_new_region) { 1034 notify_heap_changed(); 1035 } 1036 1037 if (result == nullptr) { 1038 req.set_actual_size(0); 1039 } 1040 1041 // This is called regardless of the outcome of the allocation to account 1042 // for any waste created by retiring regions with this request. 1043 increase_used(req); 1044 1045 if (result != nullptr) { 1046 size_t requested = req.size(); 1047 size_t actual = req.actual_size(); 1048 1049 assert (req.is_lab_alloc() || (requested == actual), 1050 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 1051 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1052 1053 if (req.is_mutator_alloc()) { 1054 // If we requested more than we were granted, give the rest back to pacer. 1055 // This only matters if we are in the same pacing epoch: do not try to unpace 1056 // over the budget for the other phase. 1057 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1058 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1059 } 1060 } 1061 } 1062 1063 return result; 1064 } 1065 1066 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1067 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1068 // We cannot block for safepoint for GC allocations, because there is a high chance 1069 // we are already running at safepoint or from stack watermark machinery, and we cannot 1070 // block again. 1071 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1072 1073 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1074 if (req.is_old() && !old_generation()->can_allocate(req)) { 1075 return nullptr; 1076 } 1077 1078 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1079 // memory. 1080 HeapWord* result = _free_set->allocate(req, in_new_region); 1081 1082 // Record the plab configuration for this result and register the object. 1083 if (result != nullptr && req.is_old()) { 1084 old_generation()->configure_plab_for_current_thread(req); 1085 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1086 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1087 // built in to the implementation of register_object(). There are potential races when multiple independent 1088 // threads are allocating objects, some of which might span the same card region. For example, consider 1089 // a card table's memory region within which three objects are being allocated by three different threads: 1090 // 1091 // objects being "concurrently" allocated: 1092 // [-----a------][-----b-----][--------------c------------------] 1093 // [---- card table memory range --------------] 1094 // 1095 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1096 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1097 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1098 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1099 // card region. 1100 // 1101 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1102 // last-start representing object b while first-start represents object c. This is why we need to require all 1103 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1104 old_generation()->card_scan()->register_object(result); 1105 } 1106 } 1107 1108 return result; 1109 } 1110 1111 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1112 bool* gc_overhead_limit_was_exceeded) { 1113 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1114 return allocate_memory(req); 1115 } 1116 1117 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1118 size_t size, 1119 Metaspace::MetadataType mdtype) { 1120 MetaWord* result; 1121 1122 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1123 ShenandoahHeuristics* h = global_generation()->heuristics(); 1124 if (h->can_unload_classes()) { 1125 h->record_metaspace_oom(); 1126 } 1127 1128 // Expand and retry allocation 1129 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1130 if (result != nullptr) { 1131 return result; 1132 } 1133 1134 // Start full GC 1135 collect(GCCause::_metadata_GC_clear_soft_refs); 1136 1137 // Retry allocation 1138 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1139 if (result != nullptr) { 1140 return result; 1141 } 1142 1143 // Expand and retry allocation 1144 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1145 if (result != nullptr) { 1146 return result; 1147 } 1148 1149 // Out of memory 1150 return nullptr; 1151 } 1152 1153 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1154 private: 1155 ShenandoahHeap* const _heap; 1156 Thread* const _thread; 1157 public: 1158 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1159 _heap(heap), _thread(Thread::current()) {} 1160 1161 void do_object(oop p) { 1162 shenandoah_assert_marked(nullptr, p); 1163 if (!p->is_forwarded()) { 1164 _heap->evacuate_object(p, _thread); 1165 } 1166 } 1167 }; 1168 1169 class ShenandoahEvacuationTask : public WorkerTask { 1170 private: 1171 ShenandoahHeap* const _sh; 1172 ShenandoahCollectionSet* const _cs; 1173 bool _concurrent; 1174 public: 1175 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1176 ShenandoahCollectionSet* cs, 1177 bool concurrent) : 1178 WorkerTask("Shenandoah Evacuation"), 1179 _sh(sh), 1180 _cs(cs), 1181 _concurrent(concurrent) 1182 {} 1183 1184 void work(uint worker_id) { 1185 if (_concurrent) { 1186 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1187 ShenandoahSuspendibleThreadSetJoiner stsj; 1188 ShenandoahEvacOOMScope oom_evac_scope; 1189 do_work(); 1190 } else { 1191 ShenandoahParallelWorkerSession worker_session(worker_id); 1192 ShenandoahEvacOOMScope oom_evac_scope; 1193 do_work(); 1194 } 1195 } 1196 1197 private: 1198 void do_work() { 1199 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1200 ShenandoahHeapRegion* r; 1201 while ((r =_cs->claim_next()) != nullptr) { 1202 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1203 _sh->marked_object_iterate(r, &cl); 1204 1205 if (ShenandoahPacing) { 1206 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1207 } 1208 1209 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1210 break; 1211 } 1212 } 1213 } 1214 }; 1215 1216 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1217 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1218 workers()->run_task(&task); 1219 } 1220 1221 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1222 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1223 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1224 // This thread went through the OOM during evac protocol. It is safe to return 1225 // the forward pointer. It must not attempt to evacuate any other objects. 1226 return ShenandoahBarrierSet::resolve_forwarded(p); 1227 } 1228 1229 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1230 1231 ShenandoahHeapRegion* r = heap_region_containing(p); 1232 assert(!r->is_humongous(), "never evacuate humongous objects"); 1233 1234 ShenandoahAffiliation target_gen = r->affiliation(); 1235 return try_evacuate_object(p, thread, r, target_gen); 1236 } 1237 1238 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1239 ShenandoahAffiliation target_gen) { 1240 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1241 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1242 bool alloc_from_lab = true; 1243 HeapWord* copy = nullptr; 1244 size_t size = ShenandoahForwarding::size(p); 1245 1246 #ifdef ASSERT 1247 if (ShenandoahOOMDuringEvacALot && 1248 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1249 copy = nullptr; 1250 } else { 1251 #endif 1252 if (UseTLAB) { 1253 copy = allocate_from_gclab(thread, size); 1254 } 1255 if (copy == nullptr) { 1256 // If we failed to allocate in LAB, we'll try a shared allocation. 1257 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1258 copy = allocate_memory(req); 1259 alloc_from_lab = false; 1260 } 1261 #ifdef ASSERT 1262 } 1263 #endif 1264 1265 if (copy == nullptr) { 1266 control_thread()->handle_alloc_failure_evac(size); 1267 1268 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1269 1270 return ShenandoahBarrierSet::resolve_forwarded(p); 1271 } 1272 1273 // Copy the object: 1274 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1275 1276 // Try to install the new forwarding pointer. 1277 oop copy_val = cast_to_oop(copy); 1278 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1279 if (result == copy_val) { 1280 // Successfully evacuated. Our copy is now the public one! 1281 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1282 shenandoah_assert_correct(nullptr, copy_val); 1283 return copy_val; 1284 } else { 1285 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1286 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1287 // But if it happens to contain references to evacuated regions, those references would 1288 // not get updated for this stale copy during this cycle, and we will crash while scanning 1289 // it the next cycle. 1290 if (alloc_from_lab) { 1291 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1292 // object will overwrite this stale copy, or the filler object on LAB retirement will 1293 // do this. 1294 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1295 } else { 1296 // For non-LAB allocations, we have no way to retract the allocation, and 1297 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1298 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1299 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1300 fill_with_object(copy, size); 1301 shenandoah_assert_correct(nullptr, copy_val); 1302 // For non-LAB allocations, the object has already been registered 1303 } 1304 shenandoah_assert_correct(nullptr, result); 1305 return result; 1306 } 1307 } 1308 1309 void ShenandoahHeap::trash_cset_regions() { 1310 ShenandoahHeapLocker locker(lock()); 1311 1312 ShenandoahCollectionSet* set = collection_set(); 1313 ShenandoahHeapRegion* r; 1314 set->clear_current_index(); 1315 while ((r = set->next()) != nullptr) { 1316 r->make_trash(); 1317 } 1318 collection_set()->clear(); 1319 } 1320 1321 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1322 st->print_cr("Heap Regions:"); 1323 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1324 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1325 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1326 st->print_cr("UWM=update watermark, U=used"); 1327 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1328 st->print_cr("S=shared allocs, L=live data"); 1329 st->print_cr("CP=critical pins"); 1330 1331 for (size_t i = 0; i < num_regions(); i++) { 1332 get_region(i)->print_on(st); 1333 } 1334 } 1335 1336 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1337 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1338 1339 oop humongous_obj = cast_to_oop(start->bottom()); 1340 size_t size = humongous_obj->size(); 1341 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1342 size_t index = start->index() + required_regions - 1; 1343 1344 assert(!start->has_live(), "liveness must be zero"); 1345 1346 for(size_t i = 0; i < required_regions; i++) { 1347 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1348 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1349 ShenandoahHeapRegion* region = get_region(index --); 1350 1351 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1352 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1353 1354 region->make_trash_immediate(); 1355 } 1356 return required_regions; 1357 } 1358 1359 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1360 public: 1361 ShenandoahCheckCleanGCLABClosure() {} 1362 void do_thread(Thread* thread) { 1363 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1364 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1365 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1366 1367 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1368 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1369 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1370 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1371 } 1372 } 1373 }; 1374 1375 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1376 private: 1377 bool const _resize; 1378 public: 1379 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1380 void do_thread(Thread* thread) { 1381 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1382 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1383 gclab->retire(); 1384 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1385 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1386 } 1387 1388 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1389 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1390 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1391 1392 // There are two reasons to retire all plabs between old-gen evacuation passes. 1393 // 1. We need to make the plab memory parsable by remembered-set scanning. 1394 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1395 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1396 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1397 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1398 } 1399 } 1400 } 1401 }; 1402 1403 void ShenandoahHeap::labs_make_parsable() { 1404 assert(UseTLAB, "Only call with UseTLAB"); 1405 1406 ShenandoahRetireGCLABClosure cl(false); 1407 1408 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1409 ThreadLocalAllocBuffer& tlab = t->tlab(); 1410 tlab.make_parsable(); 1411 cl.do_thread(t); 1412 } 1413 1414 workers()->threads_do(&cl); 1415 } 1416 1417 void ShenandoahHeap::tlabs_retire(bool resize) { 1418 assert(UseTLAB, "Only call with UseTLAB"); 1419 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1420 1421 ThreadLocalAllocStats stats; 1422 1423 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1424 ThreadLocalAllocBuffer& tlab = t->tlab(); 1425 tlab.retire(&stats); 1426 if (resize) { 1427 tlab.resize(); 1428 } 1429 } 1430 1431 stats.publish(); 1432 1433 #ifdef ASSERT 1434 ShenandoahCheckCleanGCLABClosure cl; 1435 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1436 cl.do_thread(t); 1437 } 1438 workers()->threads_do(&cl); 1439 #endif 1440 } 1441 1442 void ShenandoahHeap::gclabs_retire(bool resize) { 1443 assert(UseTLAB, "Only call with UseTLAB"); 1444 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1445 1446 ShenandoahRetireGCLABClosure cl(resize); 1447 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1448 cl.do_thread(t); 1449 } 1450 workers()->threads_do(&cl); 1451 1452 if (safepoint_workers() != nullptr) { 1453 safepoint_workers()->threads_do(&cl); 1454 } 1455 } 1456 1457 // Returns size in bytes 1458 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1459 // Return the max allowed size, and let the allocation path 1460 // figure out the safe size for current allocation. 1461 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1462 } 1463 1464 size_t ShenandoahHeap::max_tlab_size() const { 1465 // Returns size in words 1466 return ShenandoahHeapRegion::max_tlab_size_words(); 1467 } 1468 1469 void ShenandoahHeap::collect(GCCause::Cause cause) { 1470 control_thread()->request_gc(cause); 1471 } 1472 1473 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1474 //assert(false, "Shouldn't need to do full collections"); 1475 } 1476 1477 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1478 ShenandoahHeapRegion* r = heap_region_containing(addr); 1479 if (r != nullptr) { 1480 return r->block_start(addr); 1481 } 1482 return nullptr; 1483 } 1484 1485 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1486 ShenandoahHeapRegion* r = heap_region_containing(addr); 1487 return r->block_is_obj(addr); 1488 } 1489 1490 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1491 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1492 } 1493 1494 void ShenandoahHeap::prepare_for_verify() { 1495 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1496 labs_make_parsable(); 1497 } 1498 } 1499 1500 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1501 if (_shenandoah_policy->is_at_shutdown()) { 1502 return; 1503 } 1504 1505 if (_control_thread != nullptr) { 1506 tcl->do_thread(_control_thread); 1507 } 1508 1509 workers()->threads_do(tcl); 1510 if (_safepoint_workers != nullptr) { 1511 _safepoint_workers->threads_do(tcl); 1512 } 1513 } 1514 1515 void ShenandoahHeap::print_tracing_info() const { 1516 LogTarget(Info, gc, stats) lt; 1517 if (lt.is_enabled()) { 1518 ResourceMark rm; 1519 LogStream ls(lt); 1520 1521 phase_timings()->print_global_on(&ls); 1522 1523 ls.cr(); 1524 ls.cr(); 1525 1526 shenandoah_policy()->print_gc_stats(&ls); 1527 1528 ls.cr(); 1529 ls.cr(); 1530 } 1531 } 1532 1533 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1534 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1535 _gc_generation = generation; 1536 } 1537 1538 // Active generation may only be set by the VM thread at a safepoint. 1539 void ShenandoahHeap::set_active_generation() { 1540 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1541 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1542 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1543 _active_generation = _gc_generation; 1544 } 1545 1546 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1547 shenandoah_policy()->record_collection_cause(cause); 1548 1549 assert(gc_cause() == GCCause::_no_gc, "Over-writing cause"); 1550 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1551 1552 set_gc_cause(cause); 1553 set_gc_generation(generation); 1554 1555 generation->heuristics()->record_cycle_start(); 1556 } 1557 1558 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1559 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1560 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1561 1562 generation->heuristics()->record_cycle_end(); 1563 if (mode()->is_generational() && generation->is_global()) { 1564 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1565 young_generation()->heuristics()->record_cycle_end(); 1566 old_generation()->heuristics()->record_cycle_end(); 1567 } 1568 1569 set_gc_generation(nullptr); 1570 set_gc_cause(GCCause::_no_gc); 1571 } 1572 1573 void ShenandoahHeap::verify(VerifyOption vo) { 1574 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1575 if (ShenandoahVerify) { 1576 verifier()->verify_generic(vo); 1577 } else { 1578 // TODO: Consider allocating verification bitmaps on demand, 1579 // and turn this on unconditionally. 1580 } 1581 } 1582 } 1583 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1584 return _free_set->capacity(); 1585 } 1586 1587 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1588 private: 1589 MarkBitMap* _bitmap; 1590 ShenandoahScanObjectStack* _oop_stack; 1591 ShenandoahHeap* const _heap; 1592 ShenandoahMarkingContext* const _marking_context; 1593 1594 template <class T> 1595 void do_oop_work(T* p) { 1596 T o = RawAccess<>::oop_load(p); 1597 if (!CompressedOops::is_null(o)) { 1598 oop obj = CompressedOops::decode_not_null(o); 1599 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1600 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1601 return; 1602 } 1603 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1604 1605 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1606 if (!_bitmap->is_marked(obj)) { 1607 _bitmap->mark(obj); 1608 _oop_stack->push(obj); 1609 } 1610 } 1611 } 1612 public: 1613 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1614 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1615 _marking_context(_heap->marking_context()) {} 1616 void do_oop(oop* p) { do_oop_work(p); } 1617 void do_oop(narrowOop* p) { do_oop_work(p); } 1618 }; 1619 1620 /* 1621 * This is public API, used in preparation of object_iterate(). 1622 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1623 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1624 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1625 */ 1626 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1627 // No-op. 1628 } 1629 1630 /* 1631 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1632 * 1633 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1634 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1635 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1636 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1637 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1638 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1639 * wiped the bitmap in preparation for next marking). 1640 * 1641 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1642 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1643 * is allowed to report dead objects, but is not required to do so. 1644 */ 1645 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1646 // Reset bitmap 1647 if (!prepare_aux_bitmap_for_iteration()) 1648 return; 1649 1650 ShenandoahScanObjectStack oop_stack; 1651 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1652 // Seed the stack with root scan 1653 scan_roots_for_iteration(&oop_stack, &oops); 1654 1655 // Work through the oop stack to traverse heap 1656 while (! oop_stack.is_empty()) { 1657 oop obj = oop_stack.pop(); 1658 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1659 cl->do_object(obj); 1660 obj->oop_iterate(&oops); 1661 } 1662 1663 assert(oop_stack.is_empty(), "should be empty"); 1664 // Reclaim bitmap 1665 reclaim_aux_bitmap_for_iteration(); 1666 } 1667 1668 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1669 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1670 1671 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1672 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1673 return false; 1674 } 1675 // Reset bitmap 1676 _aux_bit_map.clear(); 1677 return true; 1678 } 1679 1680 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1681 // Process GC roots according to current GC cycle 1682 // This populates the work stack with initial objects 1683 // It is important to relinquish the associated locks before diving 1684 // into heap dumper 1685 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1686 ShenandoahHeapIterationRootScanner rp(n_workers); 1687 rp.roots_do(oops); 1688 } 1689 1690 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1691 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1692 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1693 } 1694 } 1695 1696 // Closure for parallelly iterate objects 1697 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1698 private: 1699 MarkBitMap* _bitmap; 1700 ShenandoahObjToScanQueue* _queue; 1701 ShenandoahHeap* const _heap; 1702 ShenandoahMarkingContext* const _marking_context; 1703 1704 template <class T> 1705 void do_oop_work(T* p) { 1706 T o = RawAccess<>::oop_load(p); 1707 if (!CompressedOops::is_null(o)) { 1708 oop obj = CompressedOops::decode_not_null(o); 1709 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1710 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1711 return; 1712 } 1713 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1714 1715 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1716 if (_bitmap->par_mark(obj)) { 1717 _queue->push(ShenandoahMarkTask(obj)); 1718 } 1719 } 1720 } 1721 public: 1722 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1723 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1724 _marking_context(_heap->marking_context()) {} 1725 void do_oop(oop* p) { do_oop_work(p); } 1726 void do_oop(narrowOop* p) { do_oop_work(p); } 1727 }; 1728 1729 // Object iterator for parallel heap iteraion. 1730 // The root scanning phase happenes in construction as a preparation of 1731 // parallel marking queues. 1732 // Every worker processes it's own marking queue. work-stealing is used 1733 // to balance workload. 1734 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1735 private: 1736 uint _num_workers; 1737 bool _init_ready; 1738 MarkBitMap* _aux_bit_map; 1739 ShenandoahHeap* _heap; 1740 ShenandoahScanObjectStack _roots_stack; // global roots stack 1741 ShenandoahObjToScanQueueSet* _task_queues; 1742 public: 1743 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1744 _num_workers(num_workers), 1745 _init_ready(false), 1746 _aux_bit_map(bitmap), 1747 _heap(ShenandoahHeap::heap()) { 1748 // Initialize bitmap 1749 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1750 if (!_init_ready) { 1751 return; 1752 } 1753 1754 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1755 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1756 1757 _init_ready = prepare_worker_queues(); 1758 } 1759 1760 ~ShenandoahParallelObjectIterator() { 1761 // Reclaim bitmap 1762 _heap->reclaim_aux_bitmap_for_iteration(); 1763 // Reclaim queue for workers 1764 if (_task_queues!= nullptr) { 1765 for (uint i = 0; i < _num_workers; ++i) { 1766 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1767 if (q != nullptr) { 1768 delete q; 1769 _task_queues->register_queue(i, nullptr); 1770 } 1771 } 1772 delete _task_queues; 1773 _task_queues = nullptr; 1774 } 1775 } 1776 1777 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1778 if (_init_ready) { 1779 object_iterate_parallel(cl, worker_id, _task_queues); 1780 } 1781 } 1782 1783 private: 1784 // Divide global root_stack into worker queues 1785 bool prepare_worker_queues() { 1786 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1787 // Initialize queues for every workers 1788 for (uint i = 0; i < _num_workers; ++i) { 1789 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1790 _task_queues->register_queue(i, task_queue); 1791 } 1792 // Divide roots among the workers. Assume that object referencing distribution 1793 // is related with root kind, use round-robin to make every worker have same chance 1794 // to process every kind of roots 1795 size_t roots_num = _roots_stack.size(); 1796 if (roots_num == 0) { 1797 // No work to do 1798 return false; 1799 } 1800 1801 for (uint j = 0; j < roots_num; j++) { 1802 uint stack_id = j % _num_workers; 1803 oop obj = _roots_stack.pop(); 1804 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1805 } 1806 return true; 1807 } 1808 1809 void object_iterate_parallel(ObjectClosure* cl, 1810 uint worker_id, 1811 ShenandoahObjToScanQueueSet* queue_set) { 1812 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1813 assert(queue_set != nullptr, "task queue must not be null"); 1814 1815 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1816 assert(q != nullptr, "object iterate queue must not be null"); 1817 1818 ShenandoahMarkTask t; 1819 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1820 1821 // Work through the queue to traverse heap. 1822 // Steal when there is no task in queue. 1823 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1824 oop obj = t.obj(); 1825 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1826 cl->do_object(obj); 1827 obj->oop_iterate(&oops); 1828 } 1829 assert(q->is_empty(), "should be empty"); 1830 } 1831 }; 1832 1833 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1834 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1835 } 1836 1837 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1838 void ShenandoahHeap::keep_alive(oop obj) { 1839 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1840 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1841 } 1842 } 1843 1844 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1845 for (size_t i = 0; i < num_regions(); i++) { 1846 ShenandoahHeapRegion* current = get_region(i); 1847 blk->heap_region_do(current); 1848 } 1849 } 1850 1851 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1852 private: 1853 ShenandoahHeap* const _heap; 1854 ShenandoahHeapRegionClosure* const _blk; 1855 size_t const _stride; 1856 1857 shenandoah_padding(0); 1858 volatile size_t _index; 1859 shenandoah_padding(1); 1860 1861 public: 1862 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1863 WorkerTask("Shenandoah Parallel Region Operation"), 1864 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1865 1866 void work(uint worker_id) { 1867 ShenandoahParallelWorkerSession worker_session(worker_id); 1868 size_t stride = _stride; 1869 1870 size_t max = _heap->num_regions(); 1871 while (Atomic::load(&_index) < max) { 1872 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1873 size_t start = cur; 1874 size_t end = MIN2(cur + stride, max); 1875 if (start >= max) break; 1876 1877 for (size_t i = cur; i < end; i++) { 1878 ShenandoahHeapRegion* current = _heap->get_region(i); 1879 _blk->heap_region_do(current); 1880 } 1881 } 1882 } 1883 }; 1884 1885 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1886 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1887 const uint active_workers = workers()->active_workers(); 1888 const size_t n_regions = num_regions(); 1889 size_t stride = ShenandoahParallelRegionStride; 1890 if (stride == 0 && active_workers > 1) { 1891 // Automatically derive the stride to balance the work between threads 1892 // evenly. Do not try to split work if below the reasonable threshold. 1893 constexpr size_t threshold = 4096; 1894 stride = n_regions <= threshold ? 1895 threshold : 1896 (n_regions + active_workers - 1) / active_workers; 1897 } 1898 1899 if (n_regions > stride && active_workers > 1) { 1900 ShenandoahParallelHeapRegionTask task(blk, stride); 1901 workers()->run_task(&task); 1902 } else { 1903 heap_region_iterate(blk); 1904 } 1905 } 1906 1907 class ShenandoahRendezvousClosure : public HandshakeClosure { 1908 public: 1909 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1910 inline void do_thread(Thread* thread) {} 1911 }; 1912 1913 void ShenandoahHeap::rendezvous_threads(const char* name) { 1914 ShenandoahRendezvousClosure cl(name); 1915 Handshake::execute(&cl); 1916 } 1917 1918 void ShenandoahHeap::recycle_trash() { 1919 free_set()->recycle_trash(); 1920 } 1921 1922 void ShenandoahHeap::do_class_unloading() { 1923 _unloader.unload(); 1924 if (mode()->is_generational()) { 1925 old_generation()->set_parsable(false); 1926 } 1927 } 1928 1929 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1930 // Weak refs processing 1931 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1932 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1933 ShenandoahTimingsTracker t(phase); 1934 ShenandoahGCWorkerPhase worker_phase(phase); 1935 shenandoah_assert_generations_reconciled(); 1936 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 1937 } 1938 1939 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1940 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1941 1942 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1943 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1944 // for future GCLABs here. 1945 if (UseTLAB) { 1946 ShenandoahGCPhase phase(concurrent ? 1947 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1948 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1949 gclabs_retire(ResizeTLAB); 1950 } 1951 1952 _update_refs_iterator.reset(); 1953 } 1954 1955 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1956 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1957 if (_gc_state_changed) { 1958 _gc_state_changed = false; 1959 char state = gc_state(); 1960 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1961 ShenandoahThreadLocalData::set_gc_state(t, state); 1962 } 1963 } 1964 } 1965 1966 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1967 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1968 _gc_state.set_cond(mask, value); 1969 _gc_state_changed = true; 1970 // Check that if concurrent weak root is set then active_gen isn't null 1971 assert(!is_concurrent_weak_root_in_progress() || active_generation() != nullptr, "Error"); 1972 shenandoah_assert_generations_reconciled(); 1973 } 1974 1975 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 1976 uint mask; 1977 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 1978 if (!in_progress && is_concurrent_old_mark_in_progress()) { 1979 assert(mode()->is_generational(), "Only generational GC has old marking"); 1980 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 1981 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 1982 mask = YOUNG_MARKING; 1983 } else { 1984 mask = MARKING | YOUNG_MARKING; 1985 } 1986 set_gc_state(mask, in_progress); 1987 manage_satb_barrier(in_progress); 1988 } 1989 1990 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 1991 #ifdef ASSERT 1992 // has_forwarded_objects() iff UPDATEREFS or EVACUATION 1993 bool has_forwarded = has_forwarded_objects(); 1994 bool updating_or_evacuating = _gc_state.is_set(UPDATEREFS | EVACUATION); 1995 bool evacuating = _gc_state.is_set(EVACUATION); 1996 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 1997 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 1998 #endif 1999 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2000 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2001 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2002 set_gc_state(OLD_MARKING, in_progress); 2003 } else { 2004 set_gc_state(MARKING | OLD_MARKING, in_progress); 2005 } 2006 manage_satb_barrier(in_progress); 2007 } 2008 2009 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2010 return old_generation()->is_preparing_for_mark(); 2011 } 2012 2013 void ShenandoahHeap::manage_satb_barrier(bool active) { 2014 if (is_concurrent_mark_in_progress()) { 2015 // Ignore request to deactivate barrier while concurrent mark is in progress. 2016 // Do not attempt to re-activate the barrier if it is already active. 2017 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2018 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2019 } 2020 } else { 2021 // No concurrent marking is in progress so honor request to deactivate, 2022 // but only if the barrier is already active. 2023 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2024 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2025 } 2026 } 2027 } 2028 2029 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2030 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2031 set_gc_state(EVACUATION, in_progress); 2032 } 2033 2034 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2035 if (in_progress) { 2036 _concurrent_strong_root_in_progress.set(); 2037 } else { 2038 _concurrent_strong_root_in_progress.unset(); 2039 } 2040 } 2041 2042 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2043 set_gc_state(WEAK_ROOTS, cond); 2044 } 2045 2046 GCTracer* ShenandoahHeap::tracer() { 2047 return shenandoah_policy()->tracer(); 2048 } 2049 2050 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2051 return _free_set->used(); 2052 } 2053 2054 bool ShenandoahHeap::try_cancel_gc() { 2055 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 2056 return prev == CANCELLABLE; 2057 } 2058 2059 void ShenandoahHeap::cancel_concurrent_mark() { 2060 if (mode()->is_generational()) { 2061 young_generation()->cancel_marking(); 2062 old_generation()->cancel_marking(); 2063 } 2064 2065 global_generation()->cancel_marking(); 2066 2067 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2068 } 2069 2070 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2071 if (try_cancel_gc()) { 2072 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2073 log_info(gc)("%s", msg.buffer()); 2074 Events::log(Thread::current(), "%s", msg.buffer()); 2075 _cancel_requested_time = os::elapsedTime(); 2076 } 2077 } 2078 2079 uint ShenandoahHeap::max_workers() { 2080 return _max_workers; 2081 } 2082 2083 void ShenandoahHeap::stop() { 2084 // The shutdown sequence should be able to terminate when GC is running. 2085 2086 // Step 0. Notify policy to disable event recording and prevent visiting gc threads during shutdown 2087 _shenandoah_policy->record_shutdown(); 2088 2089 // Step 1. Notify control thread that we are in shutdown. 2090 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 2091 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 2092 control_thread()->prepare_for_graceful_shutdown(); 2093 2094 // Step 2. Notify GC workers that we are cancelling GC. 2095 cancel_gc(GCCause::_shenandoah_stop_vm); 2096 2097 // Step 3. Wait until GC worker exits normally. 2098 control_thread()->stop(); 2099 } 2100 2101 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2102 if (!unload_classes()) return; 2103 ClassUnloadingContext ctx(_workers->active_workers(), 2104 true /* unregister_nmethods_during_purge */, 2105 false /* lock_nmethod_free_separately */); 2106 2107 // Unload classes and purge SystemDictionary. 2108 { 2109 ShenandoahPhaseTimings::Phase phase = full_gc ? 2110 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2111 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2112 ShenandoahIsAliveSelector is_alive; 2113 { 2114 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2115 ShenandoahGCPhase gc_phase(phase); 2116 ShenandoahGCWorkerPhase worker_phase(phase); 2117 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2118 2119 uint num_workers = _workers->active_workers(); 2120 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2121 _workers->run_task(&unlink_task); 2122 } 2123 // Release unloaded nmethods's memory. 2124 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2125 } 2126 2127 { 2128 ShenandoahGCPhase phase(full_gc ? 2129 ShenandoahPhaseTimings::full_gc_purge_cldg : 2130 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2131 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2132 } 2133 // Resize and verify metaspace 2134 MetaspaceGC::compute_new_size(); 2135 DEBUG_ONLY(MetaspaceUtils::verify();) 2136 } 2137 2138 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 2139 // so they should not have forwarded oops. 2140 // However, we do need to "null" dead oops in the roots, if can not be done 2141 // in concurrent cycles. 2142 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2143 uint num_workers = _workers->active_workers(); 2144 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2145 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2146 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2147 ShenandoahGCPhase phase(timing_phase); 2148 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2149 // Cleanup weak roots 2150 if (has_forwarded_objects()) { 2151 ShenandoahForwardedIsAliveClosure is_alive; 2152 ShenandoahNonConcUpdateRefsClosure keep_alive; 2153 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahNonConcUpdateRefsClosure> 2154 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2155 _workers->run_task(&cleaning_task); 2156 } else { 2157 ShenandoahIsAliveClosure is_alive; 2158 #ifdef ASSERT 2159 ShenandoahAssertNotForwardedClosure verify_cl; 2160 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2161 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2162 #else 2163 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2164 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2165 #endif 2166 _workers->run_task(&cleaning_task); 2167 } 2168 } 2169 2170 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2171 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2172 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2173 ShenandoahGCPhase phase(full_gc ? 2174 ShenandoahPhaseTimings::full_gc_purge : 2175 ShenandoahPhaseTimings::degen_gc_purge); 2176 stw_weak_refs(full_gc); 2177 stw_process_weak_roots(full_gc); 2178 stw_unload_classes(full_gc); 2179 } 2180 2181 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2182 set_gc_state(HAS_FORWARDED, cond); 2183 } 2184 2185 void ShenandoahHeap::set_unload_classes(bool uc) { 2186 _unload_classes.set_cond(uc); 2187 } 2188 2189 bool ShenandoahHeap::unload_classes() const { 2190 return _unload_classes.is_set(); 2191 } 2192 2193 address ShenandoahHeap::in_cset_fast_test_addr() { 2194 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2195 assert(heap->collection_set() != nullptr, "Sanity"); 2196 return (address) heap->collection_set()->biased_map_address(); 2197 } 2198 2199 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2200 if (mode()->is_generational()) { 2201 young_generation()->reset_bytes_allocated_since_gc_start(); 2202 old_generation()->reset_bytes_allocated_since_gc_start(); 2203 } 2204 2205 global_generation()->reset_bytes_allocated_since_gc_start(); 2206 } 2207 2208 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2209 _degenerated_gc_in_progress.set_cond(in_progress); 2210 } 2211 2212 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2213 _full_gc_in_progress.set_cond(in_progress); 2214 } 2215 2216 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2217 assert (is_full_gc_in_progress(), "should be"); 2218 _full_gc_move_in_progress.set_cond(in_progress); 2219 } 2220 2221 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2222 set_gc_state(UPDATEREFS, in_progress); 2223 } 2224 2225 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2226 ShenandoahCodeRoots::register_nmethod(nm); 2227 } 2228 2229 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2230 ShenandoahCodeRoots::unregister_nmethod(nm); 2231 } 2232 2233 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2234 heap_region_containing(o)->record_pin(); 2235 } 2236 2237 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2238 ShenandoahHeapRegion* r = heap_region_containing(o); 2239 assert(r != nullptr, "Sanity"); 2240 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2241 r->record_unpin(); 2242 } 2243 2244 void ShenandoahHeap::sync_pinned_region_status() { 2245 ShenandoahHeapLocker locker(lock()); 2246 2247 for (size_t i = 0; i < num_regions(); i++) { 2248 ShenandoahHeapRegion *r = get_region(i); 2249 if (r->is_active()) { 2250 if (r->is_pinned()) { 2251 if (r->pin_count() == 0) { 2252 r->make_unpinned(); 2253 } 2254 } else { 2255 if (r->pin_count() > 0) { 2256 r->make_pinned(); 2257 } 2258 } 2259 } 2260 } 2261 2262 assert_pinned_region_status(); 2263 } 2264 2265 #ifdef ASSERT 2266 void ShenandoahHeap::assert_pinned_region_status() { 2267 for (size_t i = 0; i < num_regions(); i++) { 2268 ShenandoahHeapRegion* r = get_region(i); 2269 shenandoah_assert_generations_reconciled(); 2270 if (gc_generation()->contains(r)) { 2271 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2272 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2273 } 2274 } 2275 } 2276 #endif 2277 2278 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2279 return _gc_timer; 2280 } 2281 2282 void ShenandoahHeap::prepare_concurrent_roots() { 2283 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2284 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2285 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2286 set_concurrent_weak_root_in_progress(true); 2287 if (unload_classes()) { 2288 _unloader.prepare(); 2289 } 2290 } 2291 2292 void ShenandoahHeap::finish_concurrent_roots() { 2293 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2294 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2295 if (unload_classes()) { 2296 _unloader.finish(); 2297 } 2298 } 2299 2300 #ifdef ASSERT 2301 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2302 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2303 2304 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2305 // Use ParallelGCThreads inside safepoints 2306 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2307 ParallelGCThreads, nworkers); 2308 } else { 2309 // Use ConcGCThreads outside safepoints 2310 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2311 ConcGCThreads, nworkers); 2312 } 2313 } 2314 #endif 2315 2316 ShenandoahVerifier* ShenandoahHeap::verifier() { 2317 guarantee(ShenandoahVerify, "Should be enabled"); 2318 assert (_verifier != nullptr, "sanity"); 2319 return _verifier; 2320 } 2321 2322 template<bool CONCURRENT> 2323 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2324 private: 2325 ShenandoahHeap* _heap; 2326 ShenandoahRegionIterator* _regions; 2327 public: 2328 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2329 WorkerTask("Shenandoah Update References"), 2330 _heap(ShenandoahHeap::heap()), 2331 _regions(regions) { 2332 } 2333 2334 void work(uint worker_id) { 2335 if (CONCURRENT) { 2336 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2337 ShenandoahSuspendibleThreadSetJoiner stsj; 2338 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2339 } else { 2340 ShenandoahParallelWorkerSession worker_session(worker_id); 2341 do_work<ShenandoahNonConcUpdateRefsClosure>(worker_id); 2342 } 2343 } 2344 2345 private: 2346 template<class T> 2347 void do_work(uint worker_id) { 2348 if (CONCURRENT && (worker_id == 0)) { 2349 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2350 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2351 size_t cset_regions = _heap->collection_set()->count(); 2352 2353 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2354 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2355 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2356 // next GC cycle. 2357 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2358 } 2359 // If !CONCURRENT, there's no value in expanding Mutator free set 2360 T cl; 2361 ShenandoahHeapRegion* r = _regions->next(); 2362 while (r != nullptr) { 2363 HeapWord* update_watermark = r->get_update_watermark(); 2364 assert (update_watermark >= r->bottom(), "sanity"); 2365 if (r->is_active() && !r->is_cset()) { 2366 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2367 if (ShenandoahPacing) { 2368 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2369 } 2370 } 2371 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2372 return; 2373 } 2374 r = _regions->next(); 2375 } 2376 } 2377 }; 2378 2379 void ShenandoahHeap::update_heap_references(bool concurrent) { 2380 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2381 2382 if (concurrent) { 2383 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2384 workers()->run_task(&task); 2385 } else { 2386 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2387 workers()->run_task(&task); 2388 } 2389 } 2390 2391 ShenandoahSynchronizePinnedRegionStates::ShenandoahSynchronizePinnedRegionStates() : _lock(ShenandoahHeap::heap()->lock()) { } 2392 2393 void ShenandoahSynchronizePinnedRegionStates::heap_region_do(ShenandoahHeapRegion* r) { 2394 // Drop "pinned" state from regions that no longer have a pinned count. Put 2395 // regions with a pinned count into the "pinned" state. 2396 if (r->is_active()) { 2397 if (r->is_pinned()) { 2398 if (r->pin_count() == 0) { 2399 ShenandoahHeapLocker locker(_lock); 2400 r->make_unpinned(); 2401 } 2402 } else { 2403 if (r->pin_count() > 0) { 2404 ShenandoahHeapLocker locker(_lock); 2405 r->make_pinned(); 2406 } 2407 } 2408 } 2409 } 2410 2411 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2412 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2413 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2414 2415 { 2416 ShenandoahGCPhase phase(concurrent ? 2417 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2418 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2419 2420 final_update_refs_update_region_states(); 2421 2422 assert_pinned_region_status(); 2423 } 2424 2425 { 2426 ShenandoahGCPhase phase(concurrent ? 2427 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2428 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2429 trash_cset_regions(); 2430 } 2431 } 2432 2433 void ShenandoahHeap::final_update_refs_update_region_states() { 2434 ShenandoahSynchronizePinnedRegionStates cl; 2435 parallel_heap_region_iterate(&cl); 2436 } 2437 2438 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2439 ShenandoahGCPhase phase(concurrent ? 2440 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2441 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2442 ShenandoahHeapLocker locker(lock()); 2443 size_t young_cset_regions, old_cset_regions; 2444 size_t first_old_region, last_old_region, old_region_count; 2445 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2446 // If there are no old regions, first_old_region will be greater than last_old_region 2447 assert((first_old_region > last_old_region) || 2448 ((last_old_region + 1 - first_old_region >= old_region_count) && 2449 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2450 "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT, 2451 old_region_count, first_old_region, last_old_region); 2452 2453 if (mode()->is_generational()) { 2454 #ifdef ASSERT 2455 if (ShenandoahVerify) { 2456 verifier()->verify_before_rebuilding_free_set(); 2457 } 2458 #endif 2459 2460 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2461 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2462 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2463 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2464 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2465 2466 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2467 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2468 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2469 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2470 // 2471 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2472 // within partially consumed regions of memory. 2473 } 2474 // Rebuild free set based on adjusted generation sizes. 2475 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2476 2477 if (mode()->is_generational()) { 2478 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2479 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2480 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2481 } 2482 } 2483 2484 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2485 print_on(st); 2486 st->cr(); 2487 print_heap_regions_on(st); 2488 } 2489 2490 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2491 size_t slice = r->index() / _bitmap_regions_per_slice; 2492 2493 size_t regions_from = _bitmap_regions_per_slice * slice; 2494 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2495 for (size_t g = regions_from; g < regions_to; g++) { 2496 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2497 if (skip_self && g == r->index()) continue; 2498 if (get_region(g)->is_committed()) { 2499 return true; 2500 } 2501 } 2502 return false; 2503 } 2504 2505 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2506 shenandoah_assert_heaplocked(); 2507 2508 // Bitmaps in special regions do not need commits 2509 if (_bitmap_region_special) { 2510 return true; 2511 } 2512 2513 if (is_bitmap_slice_committed(r, true)) { 2514 // Some other region from the group is already committed, meaning the bitmap 2515 // slice is already committed, we exit right away. 2516 return true; 2517 } 2518 2519 // Commit the bitmap slice: 2520 size_t slice = r->index() / _bitmap_regions_per_slice; 2521 size_t off = _bitmap_bytes_per_slice * slice; 2522 size_t len = _bitmap_bytes_per_slice; 2523 char* start = (char*) _bitmap_region.start() + off; 2524 2525 if (!os::commit_memory(start, len, false)) { 2526 return false; 2527 } 2528 2529 if (AlwaysPreTouch) { 2530 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2531 } 2532 2533 return true; 2534 } 2535 2536 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2537 shenandoah_assert_heaplocked(); 2538 2539 // Bitmaps in special regions do not need uncommits 2540 if (_bitmap_region_special) { 2541 return true; 2542 } 2543 2544 if (is_bitmap_slice_committed(r, true)) { 2545 // Some other region from the group is still committed, meaning the bitmap 2546 // slice is should stay committed, exit right away. 2547 return true; 2548 } 2549 2550 // Uncommit the bitmap slice: 2551 size_t slice = r->index() / _bitmap_regions_per_slice; 2552 size_t off = _bitmap_bytes_per_slice * slice; 2553 size_t len = _bitmap_bytes_per_slice; 2554 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2555 return false; 2556 } 2557 return true; 2558 } 2559 2560 void ShenandoahHeap::safepoint_synchronize_begin() { 2561 StackWatermarkSet::safepoint_synchronize_begin(); 2562 SuspendibleThreadSet::synchronize(); 2563 } 2564 2565 void ShenandoahHeap::safepoint_synchronize_end() { 2566 SuspendibleThreadSet::desynchronize(); 2567 } 2568 2569 void ShenandoahHeap::try_inject_alloc_failure() { 2570 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2571 _inject_alloc_failure.set(); 2572 os::naked_short_sleep(1); 2573 if (cancelled_gc()) { 2574 log_info(gc)("Allocation failure was successfully injected"); 2575 } 2576 } 2577 } 2578 2579 bool ShenandoahHeap::should_inject_alloc_failure() { 2580 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2581 } 2582 2583 void ShenandoahHeap::initialize_serviceability() { 2584 _memory_pool = new ShenandoahMemoryPool(this); 2585 _cycle_memory_manager.add_pool(_memory_pool); 2586 _stw_memory_manager.add_pool(_memory_pool); 2587 } 2588 2589 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2590 GrowableArray<GCMemoryManager*> memory_managers(2); 2591 memory_managers.append(&_cycle_memory_manager); 2592 memory_managers.append(&_stw_memory_manager); 2593 return memory_managers; 2594 } 2595 2596 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2597 GrowableArray<MemoryPool*> memory_pools(1); 2598 memory_pools.append(_memory_pool); 2599 return memory_pools; 2600 } 2601 2602 MemoryUsage ShenandoahHeap::memory_usage() { 2603 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2604 } 2605 2606 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2607 _heap(ShenandoahHeap::heap()), 2608 _index(0) {} 2609 2610 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2611 _heap(heap), 2612 _index(0) {} 2613 2614 void ShenandoahRegionIterator::reset() { 2615 _index = 0; 2616 } 2617 2618 bool ShenandoahRegionIterator::has_next() const { 2619 return _index < _heap->num_regions(); 2620 } 2621 2622 char ShenandoahHeap::gc_state() const { 2623 return _gc_state.raw_value(); 2624 } 2625 2626 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2627 #ifdef ASSERT 2628 assert(_liveness_cache != nullptr, "sanity"); 2629 assert(worker_id < _max_workers, "sanity"); 2630 for (uint i = 0; i < num_regions(); i++) { 2631 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2632 } 2633 #endif 2634 return _liveness_cache[worker_id]; 2635 } 2636 2637 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2638 assert(worker_id < _max_workers, "sanity"); 2639 assert(_liveness_cache != nullptr, "sanity"); 2640 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2641 for (uint i = 0; i < num_regions(); i++) { 2642 ShenandoahLiveData live = ld[i]; 2643 if (live > 0) { 2644 ShenandoahHeapRegion* r = get_region(i); 2645 r->increase_live_data_gc_words(live); 2646 ld[i] = 0; 2647 } 2648 } 2649 } 2650 2651 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2652 if (is_idle()) return false; 2653 2654 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2655 // marking phase. 2656 if (is_concurrent_mark_in_progress() && 2657 !marking_context()->allocated_after_mark_start(obj)) { 2658 return true; 2659 } 2660 2661 // Can not guarantee obj is deeply good. 2662 if (has_forwarded_objects()) { 2663 return true; 2664 } 2665 2666 return false; 2667 } 2668 2669 HeapWord* ShenandoahHeap::allocate_loaded_archive_space(size_t size) { 2670 #if INCLUDE_CDS_JAVA_HEAP 2671 // CDS wants a continuous memory range to load a bunch of objects. 2672 // This effectively bypasses normal allocation paths, and requires 2673 // a bit of massaging to unbreak GC invariants. 2674 2675 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 2676 2677 // Easy case: a single regular region, no further adjustments needed. 2678 if (!ShenandoahHeapRegion::requires_humongous(size)) { 2679 return allocate_memory(req); 2680 } 2681 2682 // Hard case: the requested size would cause a humongous allocation. 2683 // We need to make sure it looks like regular allocation to the rest of GC. 2684 2685 // CDS code would guarantee no objects straddle multiple regions, as long as 2686 // regions are as large as MIN_GC_REGION_ALIGNMENT. It is impractical at this 2687 // point to deal with case when Shenandoah runs with smaller regions. 2688 // TODO: This check can be dropped once MIN_GC_REGION_ALIGNMENT agrees more with Shenandoah. 2689 if (ShenandoahHeapRegion::region_size_bytes() < ArchiveHeapWriter::MIN_GC_REGION_ALIGNMENT) { 2690 return nullptr; 2691 } 2692 2693 HeapWord* mem = allocate_memory(req); 2694 size_t start_idx = heap_region_index_containing(mem); 2695 size_t num_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 2696 2697 // Flip humongous -> regular. 2698 { 2699 ShenandoahHeapLocker locker(lock(), false); 2700 for (size_t c = start_idx; c < start_idx + num_regions; c++) { 2701 get_region(c)->make_regular_bypass(); 2702 } 2703 } 2704 2705 return mem; 2706 #else 2707 assert(false, "Archive heap loader should not be available, should not be here"); 2708 return nullptr; 2709 #endif // INCLUDE_CDS_JAVA_HEAP 2710 } 2711 2712 void ShenandoahHeap::complete_loaded_archive_space(MemRegion archive_space) { 2713 // Nothing to do here, except checking that heap looks fine. 2714 #ifdef ASSERT 2715 HeapWord* start = archive_space.start(); 2716 HeapWord* end = archive_space.end(); 2717 2718 // No unclaimed space between the objects. 2719 // Objects are properly allocated in correct regions. 2720 HeapWord* cur = start; 2721 while (cur < end) { 2722 oop oop = cast_to_oop(cur); 2723 shenandoah_assert_in_correct_region(nullptr, oop); 2724 cur += oop->size(); 2725 } 2726 2727 // No unclaimed tail at the end of archive space. 2728 assert(cur == end, 2729 "Archive space should be fully used: " PTR_FORMAT " " PTR_FORMAT, 2730 p2i(cur), p2i(end)); 2731 2732 // Region bounds are good. 2733 ShenandoahHeapRegion* begin_reg = heap_region_containing(start); 2734 ShenandoahHeapRegion* end_reg = heap_region_containing(end); 2735 assert(begin_reg->is_regular(), "Must be"); 2736 assert(end_reg->is_regular(), "Must be"); 2737 assert(begin_reg->bottom() == start, 2738 "Must agree: archive-space-start: " PTR_FORMAT ", begin-region-bottom: " PTR_FORMAT, 2739 p2i(start), p2i(begin_reg->bottom())); 2740 assert(end_reg->top() == end, 2741 "Must agree: archive-space-end: " PTR_FORMAT ", end-region-top: " PTR_FORMAT, 2742 p2i(end), p2i(end_reg->top())); 2743 #endif 2744 } 2745 2746 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2747 if (!mode()->is_generational()) { 2748 return global_generation(); 2749 } else if (affiliation == YOUNG_GENERATION) { 2750 return young_generation(); 2751 } else if (affiliation == OLD_GENERATION) { 2752 return old_generation(); 2753 } 2754 2755 ShouldNotReachHere(); 2756 return nullptr; 2757 } 2758 2759 void ShenandoahHeap::log_heap_status(const char* msg) const { 2760 if (mode()->is_generational()) { 2761 young_generation()->log_status(msg); 2762 old_generation()->log_status(msg); 2763 } else { 2764 global_generation()->log_status(msg); 2765 } 2766 } 2767