1 /*
  2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP
 26 #define SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP
 27 
 28 #include "memory/iterator.hpp"
 29 #include "oops/oop.hpp"
 30 #include "oops/objArrayOop.hpp"
 31 #include "gc/shared/collectorCounters.hpp"
 32 #include "gc/shenandoah/shenandoahCardStats.hpp"
 33 #include "gc/shenandoah/shenandoahCardTable.hpp"
 34 #include "gc/shenandoah/shenandoahHeap.hpp"
 35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
 36 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
 37 #include "gc/shenandoah/shenandoahScanRemembered.hpp"
 38 #include "gc/shenandoah/mode/shenandoahMode.hpp"
 39 #include "logging/log.hpp"
 40 
 41 // Process all objects starting within count clusters beginning with first_cluster and for which the start address is
 42 // less than end_of_range.  For any non-array object whose header lies on a dirty card, scan the entire object,
 43 // even if its end reaches beyond end_of_range. Object arrays, on the other hand, are precisely dirtied and
 44 // only the portions of the array on dirty cards need to be scanned.
 45 //
 46 // Do not CANCEL within process_clusters.  It is assumed that if a worker thread accepts responsibility for processing
 47 // a chunk of work, it will finish the work it starts.  Otherwise, the chunk of work will be lost in the transition to
 48 // degenerated execution, leading to dangling references.
 49 template <typename ClosureType>
 50 void ShenandoahScanRemembered::process_clusters(size_t first_cluster, size_t count, HeapWord* end_of_range,
 51                                                                ClosureType* cl, bool use_write_table, uint worker_id) {
 52 
 53   assert(ShenandoahHeap::heap()->old_generation()->is_parsable(), "Old generation regions must be parsable for remembered set scan");
 54   // If old-gen evacuation is active, then MarkingContext for old-gen heap regions is valid.  We use the MarkingContext
 55   // bits to determine which objects within a DIRTY card need to be scanned.  This is necessary because old-gen heap
 56   // regions that are in the candidate collection set have not been coalesced and filled.  Thus, these heap regions
 57   // may contain zombie objects.  Zombie objects are known to be dead, but have not yet been "collected".  Scanning
 58   // zombie objects is unsafe because the Klass pointer is not reliable, objects referenced from a zombie may have been
 59   // collected (if dead), or relocated (if live), or if dead but not yet collected, we don't want to "revive" them
 60   // by marking them (when marking) or evacuating them (when updating references).
 61 
 62   // start and end addresses of range of objects to be scanned, clipped to end_of_range
 63   const size_t start_card_index = first_cluster * ShenandoahCardCluster::CardsPerCluster;
 64   const HeapWord* start_addr = _rs->addr_for_card_index(start_card_index);
 65   // clip at end_of_range (exclusive)
 66   HeapWord* end_addr = MIN2(end_of_range, (HeapWord*)start_addr + (count * ShenandoahCardCluster::CardsPerCluster
 67                                                                    * CardTable::card_size_in_words()));
 68   assert(start_addr < end_addr, "Empty region?");
 69 
 70   const size_t whole_cards = (end_addr - start_addr + CardTable::card_size_in_words() - 1)/CardTable::card_size_in_words();
 71   const size_t end_card_index = start_card_index + whole_cards - 1;
 72   log_debug(gc, remset)("Worker %u: cluster = " SIZE_FORMAT " count = " SIZE_FORMAT " eor = " INTPTR_FORMAT
 73                         " start_addr = " INTPTR_FORMAT " end_addr = " INTPTR_FORMAT " cards = " SIZE_FORMAT,
 74                         worker_id, first_cluster, count, p2i(end_of_range), p2i(start_addr), p2i(end_addr), whole_cards);
 75 
 76   // use_write_table states whether we are using the card table that is being
 77   // marked by the mutators. If false, we are using a snapshot of the card table
 78   // that is not subject to modifications. Even when this arg is true, and
 79   // the card table is being actively marked, SATB marking ensures that we need not
 80   // worry about cards marked after the processing here has passed them.
 81   const CardValue* const ctbm = _rs->get_card_table_byte_map(use_write_table);
 82 
 83   // If old gen evacuation is active, ctx will hold the completed marking of
 84   // old generation objects. We'll only scan objects that are marked live by
 85   // the old generation marking. These include objects allocated since the
 86   // start of old generation marking (being those above TAMS).
 87   const ShenandoahHeap* heap = ShenandoahHeap::heap();
 88   const ShenandoahMarkingContext* ctx = heap->old_generation()->is_mark_complete() ?
 89                                         heap->marking_context() : nullptr;
 90 
 91   // The region we will scan is the half-open interval [start_addr, end_addr),
 92   // and lies entirely within a single region.
 93   const ShenandoahHeapRegion* region = ShenandoahHeap::heap()->heap_region_containing(start_addr);
 94   assert(region->contains(end_addr - 1), "Slice shouldn't cross regions");
 95 
 96   // This code may have implicit assumptions of examining only old gen regions.
 97   assert(region->is_old(), "We only expect to be processing old regions");
 98   assert(!region->is_humongous(), "Humongous regions can be processed more efficiently;"
 99                                   "see process_humongous_clusters()");
100   // tams and ctx below are for old generation marking. As such, young gen roots must
101   // consider everything above tams, since it doesn't represent a TAMS for young gen's
102   // SATB marking.
103   const HeapWord* tams = (ctx == nullptr ? region->bottom() : ctx->top_at_mark_start(region));
104 
105   NOT_PRODUCT(ShenandoahCardStats stats(whole_cards, card_stats(worker_id));)
106 
107   // In the case of imprecise marking, we remember the lowest address
108   // scanned in a range of dirty cards, as we work our way left from the
109   // highest end_addr. This serves as another upper bound on the address we will
110   // scan as we move left over each contiguous range of dirty cards.
111   HeapWord* upper_bound = nullptr;
112 
113   // Starting at the right end of the address range, walk backwards accumulating
114   // a maximal dirty range of cards, then process those cards.
115   ssize_t cur_index = (ssize_t) end_card_index;
116   assert(cur_index >= 0, "Overflow");
117   assert(((ssize_t)start_card_index) >= 0, "Overflow");
118   while (cur_index >= (ssize_t)start_card_index) {
119 
120     // We'll continue the search starting with the card for the upper bound
121     // address identified by the last dirty range that we processed, if any,
122     // skipping any cards at higher addresses.
123     if (upper_bound != nullptr) {
124       ssize_t right_index = _rs->card_index_for_addr(upper_bound);
125       assert(right_index >= 0, "Overflow");
126       cur_index = MIN2(cur_index, right_index);
127       assert(upper_bound < end_addr, "Program logic");
128       end_addr  = upper_bound;   // lower end_addr
129       upper_bound = nullptr;     // and clear upper_bound
130       if (end_addr <= start_addr) {
131         assert(right_index <= (ssize_t)start_card_index, "Program logic");
132         // We are done with our cluster
133         return;
134       }
135     }
136 
137     if (ctbm[cur_index] == CardTable::dirty_card_val()) {
138       // ==== BEGIN DIRTY card range processing ====
139 
140       const size_t dirty_r = cur_index;  // record right end of dirty range (inclusive)
141       while (--cur_index >= (ssize_t)start_card_index && ctbm[cur_index] == CardTable::dirty_card_val()) {
142         // walk back over contiguous dirty cards to find left end of dirty range (inclusive)
143       }
144       // [dirty_l, dirty_r] is a "maximal" closed interval range of dirty card indices:
145       // it may not be maximal if we are using the write_table, because of concurrent
146       // mutations dirtying the card-table. It may also not be maximal if an upper bound
147       // was established by the scan of the previous chunk.
148       const size_t dirty_l = cur_index + 1;   // record left end of dirty range (inclusive)
149       // Check that we identified a boundary on our left
150       assert(ctbm[dirty_l] == CardTable::dirty_card_val(), "First card in range should be dirty");
151       assert(dirty_l == start_card_index || use_write_table
152              || ctbm[dirty_l - 1] == CardTable::clean_card_val(),
153              "Interval isn't maximal on the left");
154       assert(dirty_r >= dirty_l, "Error");
155       assert(ctbm[dirty_r] == CardTable::dirty_card_val(), "Last card in range should be dirty");
156       // Record alternations, dirty run length, and dirty card count
157       NOT_PRODUCT(stats.record_dirty_run(dirty_r - dirty_l + 1);)
158 
159       // Find first object that starts this range:
160       // [left, right) is a maximal right-open interval of dirty cards
161       HeapWord* left = _rs->addr_for_card_index(dirty_l);        // inclusive
162       HeapWord* right = _rs->addr_for_card_index(dirty_r + 1);   // exclusive
163       // Clip right to end_addr established above (still exclusive)
164       right = MIN2(right, end_addr);
165       assert(right <= region->top() && end_addr <= region->top(), "Busted bounds");
166       const MemRegion mr(left, right);
167 
168       // NOTE: We'll not call block_start() repeatedly
169       // on a very large object if its head card is dirty. If not,
170       // (i.e. the head card is clean) we'll call it each time we
171       // process a new dirty range on the object. This is always
172       // the case for large object arrays, which are typically more
173       // common.
174       HeapWord* p = _scc->block_start(dirty_l);
175       oop obj = cast_to_oop(p);
176 
177       // PREFIX: The object that straddles into this range of dirty cards
178       // from the left may be subject to special treatment unless
179       // it is an object array.
180       if (p < left && !obj->is_objArray()) {
181         // The mutator (both compiler and interpreter, but not JNI?)
182         // typically dirty imprecisely (i.e. only the head of an object),
183         // but GC closures typically dirty the object precisely. (It would
184         // be nice to have everything be precise for maximum efficiency.)
185         //
186         // To handle this, we check the head card of the object here and,
187         // if dirty, (arrange to) scan the object in its entirety. If we
188         // find the head card clean, we'll scan only the portion of the
189         // object lying in the dirty card range below, assuming this was
190         // the result of precise marking by GC closures.
191 
192         // index of the "head card" for p
193         const size_t hc_index = _rs->card_index_for_addr(p);
194         if (ctbm[hc_index] == CardTable::dirty_card_val()) {
195           // Scan or skip the object, depending on location of its
196           // head card, and remember that we'll have processed all
197           // the objects back up to p, which is thus an upper bound
198           // for the next iteration of a dirty card loop.
199           upper_bound = p;   // remember upper bound for next chunk
200           if (p < start_addr) {
201             // if object starts in a previous slice, it'll be handled
202             // in its entirety by the thread processing that slice; we can
203             // skip over it and avoid an unnecessary extra scan.
204             assert(obj == cast_to_oop(p), "Inconsistency detected");
205             p += obj->size();
206           } else {
207             // the object starts in our slice, we scan it in its entirety
208             assert(obj == cast_to_oop(p), "Inconsistency detected");
209             if (ctx == nullptr || ctx->is_marked(obj)) {
210               // Scan the object in its entirety
211               p += obj->oop_iterate_size(cl);
212             } else {
213               assert(p < tams, "Error 1 in ctx/marking/tams logic");
214               // Skip over any intermediate dead objects
215               p = ctx->get_next_marked_addr(p, tams);
216               assert(p <= tams, "Error 2 in ctx/marking/tams logic");
217             }
218           }
219           assert(p > left, "Should have processed into interior of dirty range");
220         }
221       }
222 
223       size_t i = 0;
224       HeapWord* last_p = nullptr;
225 
226       // BODY: Deal with (other) objects in this dirty card range
227       while (p < right) {
228         obj = cast_to_oop(p);
229         // walk right scanning eligible objects
230         if (ctx == nullptr || ctx->is_marked(obj)) {
231           // we need to remember the last object ptr we scanned, in case we need to
232           // complete a partial suffix scan after mr, see below
233           last_p = p;
234           // apply the closure to the oops in the portion of
235           // the object within mr.
236           p += obj->oop_iterate_size(cl, mr);
237           NOT_PRODUCT(i++);
238         } else {
239           // forget the last object pointer we remembered
240           last_p = nullptr;
241           assert(p < tams, "Tams and above are implicitly marked in ctx");
242           // object under tams isn't marked: skip to next live object
243           p = ctx->get_next_marked_addr(p, tams);
244           assert(p <= tams, "Error 3 in ctx/marking/tams logic");
245         }
246       }
247 
248       // SUFFIX: Fix up a possible incomplete scan at right end of window
249       // by scanning the portion of a non-objArray that wasn't done.
250       if (p > right && last_p != nullptr) {
251         assert(last_p < right, "Error");
252         // check if last_p suffix needs scanning
253         const oop last_obj = cast_to_oop(last_p);
254         if (!last_obj->is_objArray()) {
255           // scan the remaining suffix of the object
256           const MemRegion last_mr(right, p);
257           assert(p == last_p + last_obj->size(), "Would miss portion of last_obj");
258           last_obj->oop_iterate(cl, last_mr);
259           log_develop_debug(gc, remset)("Fixed up non-objArray suffix scan in [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
260                                         p2i(last_mr.start()), p2i(last_mr.end()));
261         } else {
262           log_develop_debug(gc, remset)("Skipped suffix scan of objArray in [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
263                                         p2i(right), p2i(p));
264         }
265       }
266       NOT_PRODUCT(stats.record_scan_obj_cnt(i);)
267 
268       // ==== END   DIRTY card range processing ====
269     } else {
270       // ==== BEGIN CLEAN card range processing ====
271 
272       // If we are using the write table (during update refs, e.g.), a mutator may dirty
273       // a card at any time. This is fine for the algorithm below because it is only
274       // counting contiguous runs of clean cards (and only for non-product builds).
275       assert(use_write_table || ctbm[cur_index] == CardTable::clean_card_val(), "Error");
276 
277       // walk back over contiguous clean cards
278       size_t i = 0;
279       while (--cur_index >= (ssize_t)start_card_index && ctbm[cur_index] == CardTable::clean_card_val()) {
280         NOT_PRODUCT(i++);
281       }
282       // Record alternations, clean run length, and clean card count
283       NOT_PRODUCT(stats.record_clean_run(i);)
284 
285       // ==== END CLEAN card range processing ====
286     }
287   }
288 }
289 
290 // Given that this range of clusters is known to span a humongous object spanned by region r, scan the
291 // portion of the humongous object that corresponds to the specified range.
292 template <typename ClosureType>
293 inline void
294 ShenandoahScanRemembered::process_humongous_clusters(ShenandoahHeapRegion* r, size_t first_cluster, size_t count,
295                                                                     HeapWord *end_of_range, ClosureType *cl, bool use_write_table) {
296   ShenandoahHeapRegion* start_region = r->humongous_start_region();
297   HeapWord* p = start_region->bottom();
298   oop obj = cast_to_oop(p);
299   assert(r->is_humongous(), "Only process humongous regions here");
300   assert(start_region->is_humongous_start(), "Should be start of humongous region");
301   assert(p + obj->size() >= end_of_range, "Humongous object ends before range ends");
302 
303   size_t first_card_index = first_cluster * ShenandoahCardCluster::CardsPerCluster;
304   HeapWord* first_cluster_addr = _rs->addr_for_card_index(first_card_index);
305   size_t spanned_words = count * ShenandoahCardCluster::CardsPerCluster * CardTable::card_size_in_words();
306   start_region->oop_iterate_humongous_slice_dirty(cl, first_cluster_addr, spanned_words, use_write_table);
307 }
308 
309 
310 // This method takes a region & determines the end of the region that the worker can scan.
311 template <typename ClosureType>
312 inline void
313 ShenandoahScanRemembered::process_region_slice(ShenandoahHeapRegion *region, size_t start_offset, size_t clusters,
314                                                               HeapWord *end_of_range, ClosureType *cl, bool use_write_table,
315                                                               uint worker_id) {
316 
317   // This is called only for young gen collection, when we scan old gen regions
318   assert(region->is_old(), "Expecting an old region");
319   HeapWord *start_of_range = region->bottom() + start_offset;
320   size_t start_cluster_no = cluster_for_addr(start_of_range);
321   assert(addr_for_cluster(start_cluster_no) == start_of_range, "process_region_slice range must align on cluster boundary");
322 
323   // region->end() represents the end of memory spanned by this region, but not all of this
324   //   memory is eligible to be scanned because some of this memory has not yet been allocated.
325   //
326   // region->top() represents the end of allocated memory within this region.  Any addresses
327   //   beyond region->top() should not be scanned as that memory does not hold valid objects.
328 
329   if (use_write_table) {
330     // This is update-refs servicing.
331     if (end_of_range > region->get_update_watermark()) {
332       end_of_range = region->get_update_watermark();
333     }
334   } else {
335     // This is concurrent mark servicing.  Note that TAMS for this region is TAMS at start of old-gen
336     // collection.  Here, we need to scan up to TAMS for most recently initiated young-gen collection.
337     // Since all LABs are retired at init mark, and since replacement LABs are allocated lazily, and since no
338     // promotions occur until evacuation phase, TAMS for most recent young-gen is same as top().
339     if (end_of_range > region->top()) {
340       end_of_range = region->top();
341     }
342   }
343 
344   log_debug(gc)("Remembered set scan processing Region " SIZE_FORMAT ", from " PTR_FORMAT " to " PTR_FORMAT ", using %s table",
345                 region->index(), p2i(start_of_range), p2i(end_of_range),
346                 use_write_table? "read/write (updating)": "read (marking)");
347 
348   // Note that end_of_range may point to the middle of a cluster because we limit scanning to
349   // region->top() or region->get_update_watermark(). We avoid processing past end_of_range.
350   // Objects that start between start_of_range and end_of_range, including humongous objects, will
351   // be fully processed by process_clusters. In no case should we need to scan past end_of_range.
352   if (start_of_range < end_of_range) {
353     if (region->is_humongous()) {
354       ShenandoahHeapRegion* start_region = region->humongous_start_region();
355       process_humongous_clusters(start_region, start_cluster_no, clusters, end_of_range, cl, use_write_table);
356     } else {
357       process_clusters(start_cluster_no, clusters, end_of_range, cl, use_write_table, worker_id);
358     }
359   }
360 }
361 
362 inline bool ShenandoahRegionChunkIterator::has_next() const {
363   return _index < _total_chunks;
364 }
365 
366 inline bool ShenandoahRegionChunkIterator::next(struct ShenandoahRegionChunk *assignment) {
367   if (_index >= _total_chunks) {
368     return false;
369   }
370   size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed);
371   if (new_index > _total_chunks) {
372     // First worker that hits new_index == _total_chunks continues, other
373     // contending workers return false.
374     return false;
375   }
376   // convert to zero-based indexing
377   new_index--;
378   assert(new_index < _total_chunks, "Error");
379 
380   // Find the group number for the assigned chunk index
381   size_t group_no;
382   for (group_no = 0; new_index >= _group_entries[group_no]; group_no++)
383     ;
384   assert(group_no < _num_groups, "Cannot have group no greater or equal to _num_groups");
385 
386   // All size computations measured in HeapWord
387   size_t region_size_words = ShenandoahHeapRegion::region_size_words();
388   size_t group_region_index = _region_index[group_no];
389   size_t group_region_offset = _group_offset[group_no];
390 
391   size_t index_within_group = (group_no == 0)? new_index: new_index - _group_entries[group_no - 1];
392   size_t group_chunk_size = _group_chunk_size[group_no];
393   size_t offset_of_this_chunk = group_region_offset + index_within_group * group_chunk_size;
394   size_t regions_spanned_by_chunk_offset = offset_of_this_chunk / region_size_words;
395   size_t offset_within_region = offset_of_this_chunk % region_size_words;
396 
397   size_t region_index = group_region_index + regions_spanned_by_chunk_offset;
398 
399   assignment->_r = _heap->get_region(region_index);
400   assignment->_chunk_offset = offset_within_region;
401   assignment->_chunk_size = group_chunk_size;
402   return true;
403 }
404 
405 #endif   // SHARE_GC_SHENANDOAH_SHENANDOAHSCANREMEMBEREDINLINE_HPP