< prev index next >

src/hotspot/cpu/aarch64/aarch64.ad

Print this page

 1673 
 1674 int MachCallDynamicJavaNode::ret_addr_offset()
 1675 {
 1676   return 16; // movz, movk, movk, bl
 1677 }
 1678 
 1679 int MachCallRuntimeNode::ret_addr_offset() {
 1680   // for generated stubs the call will be
 1681   //   bl(addr)
 1682   // or with far branches
 1683   //   bl(trampoline_stub)
 1684   // for real runtime callouts it will be six instructions
 1685   // see aarch64_enc_java_to_runtime
 1686   //   adr(rscratch2, retaddr)
 1687   //   str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 1688   //   lea(rscratch1, RuntimeAddress(addr)
 1689   //   blr(rscratch1)
 1690   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1691   if (cb) {
 1692     return 1 * NativeInstruction::instruction_size;



 1693   } else {
 1694     return 6 * NativeInstruction::instruction_size;
 1695   }
 1696 }
 1697 
 1698 //=============================================================================
 1699 
 1700 #ifndef PRODUCT
 1701 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1702   st->print("BREAKPOINT");
 1703 }
 1704 #endif
 1705 
 1706 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1707   __ brk(0);
 1708 }
 1709 
 1710 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1711   return MachNode::size(ra_);
 1712 }

 1781   if (C->stub_function() == nullptr) {
 1782     st->print("\n\t");
 1783     st->print("ldr  rscratch1, [guard]\n\t");
 1784     st->print("dmb ishld\n\t");
 1785     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1786     st->print("cmp  rscratch1, rscratch2\n\t");
 1787     st->print("b.eq skip");
 1788     st->print("\n\t");
 1789     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1790     st->print("b skip\n\t");
 1791     st->print("guard: int\n\t");
 1792     st->print("\n\t");
 1793     st->print("skip:\n\t");
 1794   }
 1795 }
 1796 #endif
 1797 
 1798 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1799   Compile* C = ra_->C;
 1800 
 1801   // n.b. frame size includes space for return pc and rfp
 1802   const int framesize = C->output()->frame_size_in_bytes();
 1803 
 1804   if (C->clinit_barrier_on_entry()) {
 1805     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1806 
 1807     Label L_skip_barrier;
 1808 
 1809     __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
 1810     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 1811     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1812     __ bind(L_skip_barrier);
 1813   }
 1814 
 1815   if (C->max_vector_size() > 0) {
 1816     __ reinitialize_ptrue();
 1817   }
 1818 
 1819   int bangsize = C->output()->bang_size_in_bytes();
 1820   if (C->output()->need_stack_bang(bangsize))
 1821     __ generate_stack_overflow_check(bangsize);
 1822 
 1823   __ build_frame(framesize);
 1824 
 1825   if (C->stub_function() == nullptr) {
 1826     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1827     // Dummy labels for just measuring the code size
 1828     Label dummy_slow_path;
 1829     Label dummy_continuation;
 1830     Label dummy_guard;
 1831     Label* slow_path = &dummy_slow_path;
 1832     Label* continuation = &dummy_continuation;
 1833     Label* guard = &dummy_guard;
 1834     if (!Compile::current()->output()->in_scratch_emit_size()) {
 1835       // Use real labels from actual stub when not emitting code for the purpose of measuring its size
 1836       C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1837       Compile::current()->output()->add_stub(stub);
 1838       slow_path = &stub->entry();
 1839       continuation = &stub->continuation();
 1840       guard = &stub->guard();
 1841     }
 1842     // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1843     bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1844   }
 1845 
 1846   if (VerifyStackAtCalls) {
 1847     Unimplemented();
 1848   }
 1849 
 1850   C->output()->set_frame_complete(__ offset());
 1851 
 1852   if (C->has_mach_constant_base_node()) {
 1853     // NOTE: We set the table base offset here because users might be
 1854     // emitted before MachConstantBaseNode.
 1855     ConstantTable& constant_table = C->output()->constant_table();
 1856     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1857   }
 1858 }
 1859 
 1860 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1861 {
 1862   return MachNode::size(ra_); // too many variables; just compute it
 1863                               // the hard way
 1864 }
 1865 
 1866 int MachPrologNode::reloc() const
 1867 {
 1868   return 0;
 1869 }
 1870 
 1871 //=============================================================================
 1872 
 1873 #ifndef PRODUCT
 1874 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1875   Compile* C = ra_->C;
 1876   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1877 
 1878   st->print("# pop frame %d\n\t",framesize);
 1879 
 1880   if (framesize == 0) {
 1881     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1882   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1883     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1884     st->print("add  sp, sp, #%d\n\t", framesize);
 1885   } else {

 1888     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1889   }
 1890   if (VM_Version::use_rop_protection()) {
 1891     st->print("autiaz\n\t");
 1892     st->print("ldr  zr, [lr]\n\t");
 1893   }
 1894 
 1895   if (do_polling() && C->is_method_compilation()) {
 1896     st->print("# test polling word\n\t");
 1897     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1898     st->print("cmp  sp, rscratch1\n\t");
 1899     st->print("bhi #slow_path");
 1900   }
 1901 }
 1902 #endif
 1903 
 1904 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1905   Compile* C = ra_->C;
 1906   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1907 
 1908   __ remove_frame(framesize);
 1909 
 1910   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1911     __ reserved_stack_check();
 1912   }
 1913 
 1914   if (do_polling() && C->is_method_compilation()) {
 1915     Label dummy_label;
 1916     Label* code_stub = &dummy_label;
 1917     if (!C->output()->in_scratch_emit_size()) {
 1918       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1919       C->output()->add_stub(stub);
 1920       code_stub = &stub->entry();
 1921     }
 1922     __ relocate(relocInfo::poll_return_type);
 1923     __ safepoint_poll(*code_stub, true /* at_return */, true /* in_nmethod */);
 1924   }
 1925 }
 1926 
 1927 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1928   // Variable size. Determine dynamically.
 1929   return MachNode::size(ra_);
 1930 }
 1931 
 1932 int MachEpilogNode::reloc() const {
 1933   // Return number of relocatable values contained in this instruction.
 1934   return 1; // 1 for polling page.
 1935 }
 1936 
 1937 const Pipeline * MachEpilogNode::pipeline() const {
 1938   return MachNode::pipeline_class();
 1939 }
 1940 
 1941 //=============================================================================
 1942 
 1943 static enum RC rc_class(OptoReg::Name reg) {
 1944 
 1945   if (reg == OptoReg::Bad) {
 1946     return rc_bad;
 1947   }
 1948 
 1949   // we have 32 int registers * 2 halves
 1950   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1951 

 2207 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2208   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2209   int reg    = ra_->get_encode(this);
 2210 
 2211   // This add will handle any 24-bit signed offset. 24 bits allows an
 2212   // 8 megabyte stack frame.
 2213   __ add(as_Register(reg), sp, offset);
 2214 }
 2215 
 2216 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2217   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2218   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2219 
 2220   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2221     return NativeInstruction::instruction_size;
 2222   } else {
 2223     return 2 * NativeInstruction::instruction_size;
 2224   }
 2225 }
 2226 
 2227 //=============================================================================











 2228 



























 2229 #ifndef PRODUCT
 2230 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2231 {
 2232   st->print_cr("# MachUEPNode");
 2233   if (UseCompressedClassPointers) {
 2234     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2235     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2236     st->print_cr("\tcmpw rscratch1, r10");
 2237   } else {
 2238     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2239     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2240     st->print_cr("\tcmp rscratch1, r10");
 2241   }
 2242   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2243 }
 2244 #endif
 2245 
 2246 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2247 {
 2248   __ ic_check(InteriorEntryAlignment);
 2249 }
 2250 
 2251 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 2252 {
 2253   return MachNode::size(ra_);
 2254 }
 2255 
 2256 // REQUIRED EMIT CODE
 2257 
 2258 //=============================================================================
 2259 
 2260 // Emit deopt handler code.
 2261 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 2262 {
 2263   // Note that the code buffer's insts_mark is always relative to insts.
 2264   // That's why we must use the macroassembler to generate a handler.
 2265   address base = __ start_a_stub(size_deopt_handler());
 2266   if (base == nullptr) {
 2267     ciEnv::current()->record_failure("CodeCache is full");
 2268     return 0;  // CodeBuffer::expand failed
 2269   }
 2270 
 2271   int offset = __ offset();
 2272   Label start;
 2273   __ bind(start);
 2274   __ far_call(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 2275 

 3724   %}
 3725 
 3726   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3727     int method_index = resolved_method_index(masm);
 3728     address call = __ ic_call((address)$meth$$method, method_index);
 3729     if (call == nullptr) {
 3730       ciEnv::current()->record_failure("CodeCache is full");
 3731       return;
 3732     }
 3733     __ post_call_nop();
 3734     if (Compile::current()->max_vector_size() > 0) {
 3735       __ reinitialize_ptrue();
 3736     }
 3737   %}
 3738 
 3739   enc_class aarch64_enc_call_epilog() %{
 3740     if (VerifyStackAtCalls) {
 3741       // Check that stack depth is unchanged: find majik cookie on stack
 3742       __ call_Unimplemented();
 3743     }































 3744   %}
 3745 
 3746   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3747     // some calls to generated routines (arraycopy code) are scheduled
 3748     // by C2 as runtime calls. if so we can call them using a br (they
 3749     // will be in a reachable segment) otherwise we have to use a blr
 3750     // which loads the absolute address into a register.
 3751     address entry = (address)$meth$$method;
 3752     CodeBlob *cb = CodeCache::find_blob(entry);
 3753     if (cb) {
 3754       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3755       if (call == nullptr) {
 3756         ciEnv::current()->record_failure("CodeCache is full");
 3757         return;
 3758       }
 3759       __ post_call_nop();
 3760     } else {
 3761       Label retaddr;
 3762       // Make the anchor frame walkable
 3763       __ adr(rscratch2, retaddr);

 6905 instruct loadConL(iRegLNoSp dst, immL src)
 6906 %{
 6907   match(Set dst src);
 6908 
 6909   ins_cost(INSN_COST);
 6910   format %{ "mov $dst, $src\t# long" %}
 6911 
 6912   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6913 
 6914   ins_pipe(ialu_imm);
 6915 %}
 6916 
 6917 // Load Pointer Constant
 6918 
 6919 instruct loadConP(iRegPNoSp dst, immP con)
 6920 %{
 6921   match(Set dst con);
 6922 
 6923   ins_cost(INSN_COST * 4);
 6924   format %{
 6925     "mov  $dst, $con\t# ptr\n\t"
 6926   %}
 6927 
 6928   ins_encode(aarch64_enc_mov_p(dst, con));
 6929 
 6930   ins_pipe(ialu_imm);
 6931 %}
 6932 
 6933 // Load Null Pointer Constant
 6934 
 6935 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6936 %{
 6937   match(Set dst con);
 6938 
 6939   ins_cost(INSN_COST);
 6940   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6941 
 6942   ins_encode(aarch64_enc_mov_p0(dst, con));
 6943 
 6944   ins_pipe(ialu_imm);
 6945 %}

 8098 %}
 8099 
 8100 // ============================================================================
 8101 // Cast/Convert Instructions
 8102 
 8103 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8104   match(Set dst (CastX2P src));
 8105 
 8106   ins_cost(INSN_COST);
 8107   format %{ "mov $dst, $src\t# long -> ptr" %}
 8108 
 8109   ins_encode %{
 8110     if ($dst$$reg != $src$$reg) {
 8111       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8112     }
 8113   %}
 8114 
 8115   ins_pipe(ialu_reg);
 8116 %}
 8117 






























 8118 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8119   match(Set dst (CastP2X src));
 8120 
 8121   ins_cost(INSN_COST);
 8122   format %{ "mov $dst, $src\t# ptr -> long" %}
 8123 
 8124   ins_encode %{
 8125     if ($dst$$reg != $src$$reg) {
 8126       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8127     }
 8128   %}
 8129 
 8130   ins_pipe(ialu_reg);
 8131 %}
 8132 
 8133 // Convert oop into int for vectors alignment masking
 8134 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8135   match(Set dst (ConvL2I (CastP2X src)));
 8136 
 8137   ins_cost(INSN_COST);

15051 
15052   match(Set dst (MoveL2D src));
15053 
15054   effect(DEF dst, USE src);
15055 
15056   ins_cost(INSN_COST);
15057 
15058   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
15059 
15060   ins_encode %{
15061     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
15062   %}
15063 
15064   ins_pipe(fp_l2d);
15065 
15066 %}
15067 
15068 // ============================================================================
15069 // clearing of an array
15070 
15071 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
15072 %{
15073   match(Set dummy (ClearArray cnt base));
15074   effect(USE_KILL cnt, USE_KILL base, KILL cr);
15075 
15076   ins_cost(4 * INSN_COST);
15077   format %{ "ClearArray $cnt, $base" %}
15078 
15079   ins_encode %{
15080     address tpc = __ zero_words($base$$Register, $cnt$$Register);
15081     if (tpc == nullptr) {
15082       ciEnv::current()->record_failure("CodeCache is full");
15083       return;
15084     }
15085   %}
15086 
15087   ins_pipe(pipe_class_memory);
15088 %}
15089 
















15090 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
15091 %{
15092   predicate((uint64_t)n->in(2)->get_long()
15093             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));

15094   match(Set dummy (ClearArray cnt base));
15095   effect(TEMP temp, USE_KILL base, KILL cr);
15096 
15097   ins_cost(4 * INSN_COST);
15098   format %{ "ClearArray $cnt, $base" %}
15099 
15100   ins_encode %{
15101     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
15102     if (tpc == nullptr) {
15103       ciEnv::current()->record_failure("CodeCache is full");
15104       return;
15105     }
15106   %}
15107 
15108   ins_pipe(pipe_class_memory);
15109 %}
15110 
15111 // ============================================================================
15112 // Overflow Math Instructions
15113 

16390 %}
16391 
16392 // Call Runtime Instruction without safepoint and with vector arguments
16393 instruct CallLeafDirectVector(method meth)
16394 %{
16395   match(CallLeafVector);
16396 
16397   effect(USE meth);
16398 
16399   ins_cost(CALL_COST);
16400 
16401   format %{ "CALL, runtime leaf vector $meth" %}
16402 
16403   ins_encode(aarch64_enc_java_to_runtime(meth));
16404 
16405   ins_pipe(pipe_class_call);
16406 %}
16407 
16408 // Call Runtime Instruction
16409 


















16410 instruct CallLeafNoFPDirect(method meth)
16411 %{


16412   match(CallLeafNoFP);
16413 
16414   effect(USE meth);
16415 
16416   ins_cost(CALL_COST);
16417 
16418   format %{ "CALL, runtime leaf nofp $meth" %}
16419 
16420   ins_encode( aarch64_enc_java_to_runtime(meth) );
16421 
16422   ins_pipe(pipe_class_call);
16423 %}
16424 
16425 // Tail Call; Jump from runtime stub to Java code.
16426 // Also known as an 'interprocedural jump'.
16427 // Target of jump will eventually return to caller.
16428 // TailJump below removes the return address.
16429 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
16430 // emitted just above the TailCall which has reset rfp to the caller state.
16431 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)

 1673 
 1674 int MachCallDynamicJavaNode::ret_addr_offset()
 1675 {
 1676   return 16; // movz, movk, movk, bl
 1677 }
 1678 
 1679 int MachCallRuntimeNode::ret_addr_offset() {
 1680   // for generated stubs the call will be
 1681   //   bl(addr)
 1682   // or with far branches
 1683   //   bl(trampoline_stub)
 1684   // for real runtime callouts it will be six instructions
 1685   // see aarch64_enc_java_to_runtime
 1686   //   adr(rscratch2, retaddr)
 1687   //   str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 1688   //   lea(rscratch1, RuntimeAddress(addr)
 1689   //   blr(rscratch1)
 1690   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1691   if (cb) {
 1692     return 1 * NativeInstruction::instruction_size;
 1693   } else if (_entry_point == nullptr) {
 1694     // See CallLeafNoFPIndirect
 1695     return 1 * NativeInstruction::instruction_size;
 1696   } else {
 1697     return 6 * NativeInstruction::instruction_size;
 1698   }
 1699 }
 1700 
 1701 //=============================================================================
 1702 
 1703 #ifndef PRODUCT
 1704 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1705   st->print("BREAKPOINT");
 1706 }
 1707 #endif
 1708 
 1709 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1710   __ brk(0);
 1711 }
 1712 
 1713 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1714   return MachNode::size(ra_);
 1715 }

 1784   if (C->stub_function() == nullptr) {
 1785     st->print("\n\t");
 1786     st->print("ldr  rscratch1, [guard]\n\t");
 1787     st->print("dmb ishld\n\t");
 1788     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1789     st->print("cmp  rscratch1, rscratch2\n\t");
 1790     st->print("b.eq skip");
 1791     st->print("\n\t");
 1792     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1793     st->print("b skip\n\t");
 1794     st->print("guard: int\n\t");
 1795     st->print("\n\t");
 1796     st->print("skip:\n\t");
 1797   }
 1798 }
 1799 #endif
 1800 
 1801 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1802   Compile* C = ra_->C;
 1803 







 1804 
 1805   __ verified_entry(C, 0);




 1806 
 1807   if (C->stub_function() == nullptr) {
 1808     __ entry_barrier();
 1809   }
 1810 
 1811   if (!Compile::current()->output()->in_scratch_emit_size()) {
 1812     __ bind(*_verified_entry);























 1813   }
 1814 
 1815   if (VerifyStackAtCalls) {
 1816     Unimplemented();
 1817   }
 1818 
 1819   C->output()->set_frame_complete(__ offset());
 1820 
 1821   if (C->has_mach_constant_base_node()) {
 1822     // NOTE: We set the table base offset here because users might be
 1823     // emitted before MachConstantBaseNode.
 1824     ConstantTable& constant_table = C->output()->constant_table();
 1825     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1826   }
 1827 }
 1828 






 1829 int MachPrologNode::reloc() const
 1830 {
 1831   return 0;
 1832 }
 1833 
 1834 //=============================================================================
 1835 
 1836 #ifndef PRODUCT
 1837 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1838   Compile* C = ra_->C;
 1839   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1840 
 1841   st->print("# pop frame %d\n\t",framesize);
 1842 
 1843   if (framesize == 0) {
 1844     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1845   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1846     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1847     st->print("add  sp, sp, #%d\n\t", framesize);
 1848   } else {

 1851     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1852   }
 1853   if (VM_Version::use_rop_protection()) {
 1854     st->print("autiaz\n\t");
 1855     st->print("ldr  zr, [lr]\n\t");
 1856   }
 1857 
 1858   if (do_polling() && C->is_method_compilation()) {
 1859     st->print("# test polling word\n\t");
 1860     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1861     st->print("cmp  sp, rscratch1\n\t");
 1862     st->print("bhi #slow_path");
 1863   }
 1864 }
 1865 #endif
 1866 
 1867 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1868   Compile* C = ra_->C;
 1869   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1870 
 1871   __ remove_frame(framesize, C->needs_stack_repair());
 1872 
 1873   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1874     __ reserved_stack_check();
 1875   }
 1876 
 1877   if (do_polling() && C->is_method_compilation()) {
 1878     Label dummy_label;
 1879     Label* code_stub = &dummy_label;
 1880     if (!C->output()->in_scratch_emit_size()) {
 1881       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1882       C->output()->add_stub(stub);
 1883       code_stub = &stub->entry();
 1884     }
 1885     __ relocate(relocInfo::poll_return_type);
 1886     __ safepoint_poll(*code_stub, true /* at_return */, true /* in_nmethod */);
 1887   }
 1888 }
 1889 





 1890 int MachEpilogNode::reloc() const {
 1891   // Return number of relocatable values contained in this instruction.
 1892   return 1; // 1 for polling page.
 1893 }
 1894 
 1895 const Pipeline * MachEpilogNode::pipeline() const {
 1896   return MachNode::pipeline_class();
 1897 }
 1898 
 1899 //=============================================================================
 1900 
 1901 static enum RC rc_class(OptoReg::Name reg) {
 1902 
 1903   if (reg == OptoReg::Bad) {
 1904     return rc_bad;
 1905   }
 1906 
 1907   // we have 32 int registers * 2 halves
 1908   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1909 

 2165 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2166   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2167   int reg    = ra_->get_encode(this);
 2168 
 2169   // This add will handle any 24-bit signed offset. 24 bits allows an
 2170   // 8 megabyte stack frame.
 2171   __ add(as_Register(reg), sp, offset);
 2172 }
 2173 
 2174 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2175   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2176   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2177 
 2178   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2179     return NativeInstruction::instruction_size;
 2180   } else {
 2181     return 2 * NativeInstruction::instruction_size;
 2182   }
 2183 }
 2184 
 2185 ///=============================================================================
 2186 #ifndef PRODUCT
 2187 void MachVEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2188 {
 2189   st->print_cr("# MachVEPNode");
 2190   if (!_verified) {
 2191     st->print_cr("\t load_class");
 2192   } else {
 2193     st->print_cr("\t unpack_inline_arg");
 2194   }
 2195 }
 2196 #endif
 2197 
 2198 void MachVEPNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc* ra_) const
 2199 {
 2200   if (!_verified) {
 2201     __ ic_check(1);
 2202   } else {
 2203     // TODO 8284443 Avoid creation of temporary frame
 2204     if (ra_->C->stub_function() == nullptr) {
 2205       __ verified_entry(ra_->C, 0);
 2206       __ entry_barrier();
 2207       int framesize = ra_->C->output()->frame_slots() << LogBytesPerInt;
 2208       __ remove_frame(framesize, false);
 2209     }
 2210     // Unpack inline type args passed as oop and then jump to
 2211     // the verified entry point (skipping the unverified entry).
 2212     int sp_inc = __ unpack_inline_args(ra_->C, _receiver_only);
 2213     // Emit code for verified entry and save increment for stack repair on return
 2214     __ verified_entry(ra_->C, sp_inc);
 2215     if (Compile::current()->output()->in_scratch_emit_size()) {
 2216       Label dummy_verified_entry;
 2217       __ b(dummy_verified_entry);
 2218     } else {
 2219       __ b(*_verified_entry);
 2220     }
 2221   }
 2222 }
 2223 
 2224 //=============================================================================
 2225 #ifndef PRODUCT
 2226 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2227 {
 2228   st->print_cr("# MachUEPNode");
 2229   if (UseCompressedClassPointers) {
 2230     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2231     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2232     st->print_cr("\tcmpw rscratch1, r10");
 2233   } else {
 2234     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2235     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2236     st->print_cr("\tcmp rscratch1, r10");
 2237   }
 2238   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2239 }
 2240 #endif
 2241 
 2242 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2243 {
 2244   __ ic_check(InteriorEntryAlignment);
 2245 }
 2246 





 2247 // REQUIRED EMIT CODE
 2248 
 2249 //=============================================================================
 2250 
 2251 // Emit deopt handler code.
 2252 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 2253 {
 2254   // Note that the code buffer's insts_mark is always relative to insts.
 2255   // That's why we must use the macroassembler to generate a handler.
 2256   address base = __ start_a_stub(size_deopt_handler());
 2257   if (base == nullptr) {
 2258     ciEnv::current()->record_failure("CodeCache is full");
 2259     return 0;  // CodeBuffer::expand failed
 2260   }
 2261 
 2262   int offset = __ offset();
 2263   Label start;
 2264   __ bind(start);
 2265   __ far_call(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 2266 

 3715   %}
 3716 
 3717   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3718     int method_index = resolved_method_index(masm);
 3719     address call = __ ic_call((address)$meth$$method, method_index);
 3720     if (call == nullptr) {
 3721       ciEnv::current()->record_failure("CodeCache is full");
 3722       return;
 3723     }
 3724     __ post_call_nop();
 3725     if (Compile::current()->max_vector_size() > 0) {
 3726       __ reinitialize_ptrue();
 3727     }
 3728   %}
 3729 
 3730   enc_class aarch64_enc_call_epilog() %{
 3731     if (VerifyStackAtCalls) {
 3732       // Check that stack depth is unchanged: find majik cookie on stack
 3733       __ call_Unimplemented();
 3734     }
 3735     if (tf()->returns_inline_type_as_fields() && !_method->is_method_handle_intrinsic() && _method->return_type()->is_loaded()) {
 3736       // The last return value is not set by the callee but used to pass the null marker to compiled code.
 3737       // Search for the corresponding projection, get the register and emit code that initialized it.
 3738       uint con = (tf()->range_cc()->cnt() - 1);
 3739       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 3740         ProjNode* proj = fast_out(i)->as_Proj();
 3741         if (proj->_con == con) {
 3742           // Set null marker if r0 is non-null (a non-null value is returned buffered or scalarized)
 3743           OptoReg::Name optoReg = ra_->get_reg_first(proj);
 3744           VMReg reg = OptoReg::as_VMReg(optoReg, ra_->_framesize, OptoReg::reg2stack(ra_->_matcher._new_SP));
 3745           Register toReg = reg->is_reg() ? reg->as_Register() : rscratch1;
 3746           __ cmp(r0, zr);
 3747           __ cset(toReg, Assembler::NE);
 3748           if (reg->is_stack()) {
 3749             int st_off = reg->reg2stack() * VMRegImpl::stack_slot_size;
 3750             __ str(toReg, Address(sp, st_off));
 3751           }
 3752           break;
 3753         }
 3754       }
 3755       if (return_value_is_used()) {
 3756         // An inline type is returned as fields in multiple registers.
 3757         // R0 either contains an oop if the inline type is buffered or a pointer
 3758         // to the corresponding InlineKlass with the lowest bit set to 1. Zero r0
 3759         // if the lowest bit is set to allow C2 to use the oop after null checking.
 3760         // r0 &= (r0 & 1) - 1
 3761         __ andr(rscratch1, r0, 0x1);
 3762         __ sub(rscratch1, rscratch1, 0x1);
 3763         __ andr(r0, r0, rscratch1);
 3764       }
 3765     }
 3766   %}
 3767 
 3768   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3769     // some calls to generated routines (arraycopy code) are scheduled
 3770     // by C2 as runtime calls. if so we can call them using a br (they
 3771     // will be in a reachable segment) otherwise we have to use a blr
 3772     // which loads the absolute address into a register.
 3773     address entry = (address)$meth$$method;
 3774     CodeBlob *cb = CodeCache::find_blob(entry);
 3775     if (cb) {
 3776       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3777       if (call == nullptr) {
 3778         ciEnv::current()->record_failure("CodeCache is full");
 3779         return;
 3780       }
 3781       __ post_call_nop();
 3782     } else {
 3783       Label retaddr;
 3784       // Make the anchor frame walkable
 3785       __ adr(rscratch2, retaddr);

 6927 instruct loadConL(iRegLNoSp dst, immL src)
 6928 %{
 6929   match(Set dst src);
 6930 
 6931   ins_cost(INSN_COST);
 6932   format %{ "mov $dst, $src\t# long" %}
 6933 
 6934   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6935 
 6936   ins_pipe(ialu_imm);
 6937 %}
 6938 
 6939 // Load Pointer Constant
 6940 
 6941 instruct loadConP(iRegPNoSp dst, immP con)
 6942 %{
 6943   match(Set dst con);
 6944 
 6945   ins_cost(INSN_COST * 4);
 6946   format %{
 6947     "mov  $dst, $con\t# ptr"
 6948   %}
 6949 
 6950   ins_encode(aarch64_enc_mov_p(dst, con));
 6951 
 6952   ins_pipe(ialu_imm);
 6953 %}
 6954 
 6955 // Load Null Pointer Constant
 6956 
 6957 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6958 %{
 6959   match(Set dst con);
 6960 
 6961   ins_cost(INSN_COST);
 6962   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6963 
 6964   ins_encode(aarch64_enc_mov_p0(dst, con));
 6965 
 6966   ins_pipe(ialu_imm);
 6967 %}

 8120 %}
 8121 
 8122 // ============================================================================
 8123 // Cast/Convert Instructions
 8124 
 8125 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8126   match(Set dst (CastX2P src));
 8127 
 8128   ins_cost(INSN_COST);
 8129   format %{ "mov $dst, $src\t# long -> ptr" %}
 8130 
 8131   ins_encode %{
 8132     if ($dst$$reg != $src$$reg) {
 8133       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8134     }
 8135   %}
 8136 
 8137   ins_pipe(ialu_reg);
 8138 %}
 8139 
 8140 instruct castI2N(iRegNNoSp dst, iRegI src) %{
 8141   match(Set dst (CastI2N src));
 8142 
 8143   ins_cost(INSN_COST);
 8144   format %{ "mov $dst, $src\t# int -> narrow ptr" %}
 8145 
 8146   ins_encode %{
 8147     if ($dst$$reg != $src$$reg) {
 8148       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8149     }
 8150   %}
 8151 
 8152   ins_pipe(ialu_reg);
 8153 %}
 8154 
 8155 instruct castN2X(iRegLNoSp dst, iRegN src) %{
 8156   match(Set dst (CastP2X src));
 8157 
 8158   ins_cost(INSN_COST);
 8159   format %{ "mov $dst, $src\t# ptr -> long" %}
 8160 
 8161   ins_encode %{
 8162     if ($dst$$reg != $src$$reg) {
 8163       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8164     }
 8165   %}
 8166 
 8167   ins_pipe(ialu_reg);
 8168 %}
 8169 
 8170 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8171   match(Set dst (CastP2X src));
 8172 
 8173   ins_cost(INSN_COST);
 8174   format %{ "mov $dst, $src\t# ptr -> long" %}
 8175 
 8176   ins_encode %{
 8177     if ($dst$$reg != $src$$reg) {
 8178       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8179     }
 8180   %}
 8181 
 8182   ins_pipe(ialu_reg);
 8183 %}
 8184 
 8185 // Convert oop into int for vectors alignment masking
 8186 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8187   match(Set dst (ConvL2I (CastP2X src)));
 8188 
 8189   ins_cost(INSN_COST);

15103 
15104   match(Set dst (MoveL2D src));
15105 
15106   effect(DEF dst, USE src);
15107 
15108   ins_cost(INSN_COST);
15109 
15110   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
15111 
15112   ins_encode %{
15113     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
15114   %}
15115 
15116   ins_pipe(fp_l2d);
15117 
15118 %}
15119 
15120 // ============================================================================
15121 // clearing of an array
15122 
15123 instruct clearArray_reg_reg_immL0(iRegL_R11 cnt, iRegP_R10 base, immL0 zero, Universe dummy, rFlagsReg cr)
15124 %{
15125   match(Set dummy (ClearArray (Binary cnt base) zero));
15126   effect(USE_KILL cnt, USE_KILL base, KILL cr);
15127 
15128   ins_cost(4 * INSN_COST);
15129   format %{ "ClearArray $cnt, $base" %}
15130 
15131   ins_encode %{
15132     address tpc = __ zero_words($base$$Register, $cnt$$Register);
15133     if (tpc == nullptr) {
15134       ciEnv::current()->record_failure("CodeCache is full");
15135       return;
15136     }
15137   %}
15138 
15139   ins_pipe(pipe_class_memory);
15140 %}
15141 
15142 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, iRegL val, Universe dummy, rFlagsReg cr)
15143 %{
15144   predicate(((ClearArrayNode*)n)->word_copy_only());
15145   match(Set dummy (ClearArray (Binary cnt base) val));
15146   effect(USE_KILL cnt, USE_KILL base, KILL cr);
15147 
15148   ins_cost(4 * INSN_COST);
15149   format %{ "ClearArray $cnt, $base, $val" %}
15150 
15151   ins_encode %{
15152     __ fill_words($base$$Register, $cnt$$Register, $val$$Register);
15153   %}
15154 
15155   ins_pipe(pipe_class_memory);
15156 %}
15157 
15158 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
15159 %{
15160   predicate((uint64_t)n->in(2)->get_long()
15161             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)
15162             && !((ClearArrayNode*)n)->word_copy_only());
15163   match(Set dummy (ClearArray cnt base));
15164   effect(TEMP temp, USE_KILL base, KILL cr);
15165 
15166   ins_cost(4 * INSN_COST);
15167   format %{ "ClearArray $cnt, $base" %}
15168 
15169   ins_encode %{
15170     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
15171     if (tpc == nullptr) {
15172       ciEnv::current()->record_failure("CodeCache is full");
15173       return;
15174     }
15175   %}
15176 
15177   ins_pipe(pipe_class_memory);
15178 %}
15179 
15180 // ============================================================================
15181 // Overflow Math Instructions
15182 

16459 %}
16460 
16461 // Call Runtime Instruction without safepoint and with vector arguments
16462 instruct CallLeafDirectVector(method meth)
16463 %{
16464   match(CallLeafVector);
16465 
16466   effect(USE meth);
16467 
16468   ins_cost(CALL_COST);
16469 
16470   format %{ "CALL, runtime leaf vector $meth" %}
16471 
16472   ins_encode(aarch64_enc_java_to_runtime(meth));
16473 
16474   ins_pipe(pipe_class_call);
16475 %}
16476 
16477 // Call Runtime Instruction
16478 
16479 // entry point is null, target holds the address to call
16480 instruct CallLeafNoFPIndirect(iRegP target)
16481 %{
16482   predicate(n->as_Call()->entry_point() == nullptr);
16483 
16484   match(CallLeafNoFP target);
16485 
16486   ins_cost(CALL_COST);
16487 
16488   format %{ "CALL, runtime leaf nofp indirect $target" %}
16489 
16490   ins_encode %{
16491     __ blr($target$$Register);
16492   %}
16493 
16494   ins_pipe(pipe_class_call);
16495 %}
16496 
16497 instruct CallLeafNoFPDirect(method meth)
16498 %{
16499   predicate(n->as_Call()->entry_point() != nullptr);
16500 
16501   match(CallLeafNoFP);
16502 
16503   effect(USE meth);
16504 
16505   ins_cost(CALL_COST);
16506 
16507   format %{ "CALL, runtime leaf nofp $meth" %}
16508 
16509   ins_encode( aarch64_enc_java_to_runtime(meth) );
16510 
16511   ins_pipe(pipe_class_call);
16512 %}
16513 
16514 // Tail Call; Jump from runtime stub to Java code.
16515 // Also known as an 'interprocedural jump'.
16516 // Target of jump will eventually return to caller.
16517 // TailJump below removes the return address.
16518 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
16519 // emitted just above the TailCall which has reset rfp to the caller state.
16520 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)
< prev index next >