< prev index next >

src/hotspot/cpu/aarch64/aarch64.ad

Print this page

 1673 
 1674 int MachCallDynamicJavaNode::ret_addr_offset()
 1675 {
 1676   return 16; // movz, movk, movk, bl
 1677 }
 1678 
 1679 int MachCallRuntimeNode::ret_addr_offset() {
 1680   // for generated stubs the call will be
 1681   //   bl(addr)
 1682   // or with far branches
 1683   //   bl(trampoline_stub)
 1684   // for real runtime callouts it will be six instructions
 1685   // see aarch64_enc_java_to_runtime
 1686   //   adr(rscratch2, retaddr)
 1687   //   str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 1688   //   lea(rscratch1, RuntimeAddress(addr)
 1689   //   blr(rscratch1)
 1690   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1691   if (cb) {
 1692     return 1 * NativeInstruction::instruction_size;



 1693   } else {
 1694     return 6 * NativeInstruction::instruction_size;
 1695   }
 1696 }
 1697 
 1698 //=============================================================================
 1699 
 1700 #ifndef PRODUCT
 1701 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1702   st->print("BREAKPOINT");
 1703 }
 1704 #endif
 1705 
 1706 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1707   __ brk(0);
 1708 }
 1709 
 1710 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1711   return MachNode::size(ra_);
 1712 }

 1781   if (C->stub_function() == nullptr) {
 1782     st->print("\n\t");
 1783     st->print("ldr  rscratch1, [guard]\n\t");
 1784     st->print("dmb ishld\n\t");
 1785     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1786     st->print("cmp  rscratch1, rscratch2\n\t");
 1787     st->print("b.eq skip");
 1788     st->print("\n\t");
 1789     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1790     st->print("b skip\n\t");
 1791     st->print("guard: int\n\t");
 1792     st->print("\n\t");
 1793     st->print("skip:\n\t");
 1794   }
 1795 }
 1796 #endif
 1797 
 1798 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1799   Compile* C = ra_->C;
 1800 
 1801   // n.b. frame size includes space for return pc and rfp
 1802   const int framesize = C->output()->frame_size_in_bytes();
 1803 
 1804   if (C->clinit_barrier_on_entry()) {
 1805     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 1806 
 1807     Label L_skip_barrier;
 1808 
 1809     __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
 1810     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 1811     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 1812     __ bind(L_skip_barrier);
 1813   }
 1814 
 1815   if (C->max_vector_size() > 0) {
 1816     __ reinitialize_ptrue();
 1817   }
 1818 
 1819   int bangsize = C->output()->bang_size_in_bytes();
 1820   if (C->output()->need_stack_bang(bangsize))
 1821     __ generate_stack_overflow_check(bangsize);
 1822 
 1823   __ build_frame(framesize);
 1824 
 1825   if (C->stub_function() == nullptr) {
 1826     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 1827     // Dummy labels for just measuring the code size
 1828     Label dummy_slow_path;
 1829     Label dummy_continuation;
 1830     Label dummy_guard;
 1831     Label* slow_path = &dummy_slow_path;
 1832     Label* continuation = &dummy_continuation;
 1833     Label* guard = &dummy_guard;
 1834     if (!Compile::current()->output()->in_scratch_emit_size()) {
 1835       // Use real labels from actual stub when not emitting code for the purpose of measuring its size
 1836       C2EntryBarrierStub* stub = new (Compile::current()->comp_arena()) C2EntryBarrierStub();
 1837       Compile::current()->output()->add_stub(stub);
 1838       slow_path = &stub->entry();
 1839       continuation = &stub->continuation();
 1840       guard = &stub->guard();
 1841     }
 1842     // In the C2 code, we move the non-hot part of nmethod entry barriers out-of-line to a stub.
 1843     bs->nmethod_entry_barrier(masm, slow_path, continuation, guard);
 1844   }
 1845 
 1846   if (VerifyStackAtCalls) {
 1847     Unimplemented();
 1848   }
 1849 
 1850   C->output()->set_frame_complete(__ offset());
 1851 
 1852   if (C->has_mach_constant_base_node()) {
 1853     // NOTE: We set the table base offset here because users might be
 1854     // emitted before MachConstantBaseNode.
 1855     ConstantTable& constant_table = C->output()->constant_table();
 1856     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1857   }
 1858 }
 1859 
 1860 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 1861 {
 1862   return MachNode::size(ra_); // too many variables; just compute it
 1863                               // the hard way
 1864 }
 1865 
 1866 int MachPrologNode::reloc() const
 1867 {
 1868   return 0;
 1869 }
 1870 
 1871 //=============================================================================
 1872 
 1873 #ifndef PRODUCT
 1874 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1875   Compile* C = ra_->C;
 1876   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1877 
 1878   st->print("# pop frame %d\n\t",framesize);
 1879 
 1880   if (framesize == 0) {
 1881     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1882   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1883     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1884     st->print("add  sp, sp, #%d\n\t", framesize);
 1885   } else {

 1888     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1889   }
 1890   if (VM_Version::use_rop_protection()) {
 1891     st->print("autiaz\n\t");
 1892     st->print("ldr  zr, [lr]\n\t");
 1893   }
 1894 
 1895   if (do_polling() && C->is_method_compilation()) {
 1896     st->print("# test polling word\n\t");
 1897     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1898     st->print("cmp  sp, rscratch1\n\t");
 1899     st->print("bhi #slow_path");
 1900   }
 1901 }
 1902 #endif
 1903 
 1904 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1905   Compile* C = ra_->C;
 1906   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1907 
 1908   __ remove_frame(framesize);
 1909 
 1910   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1911     __ reserved_stack_check();
 1912   }
 1913 
 1914   if (do_polling() && C->is_method_compilation()) {
 1915     Label dummy_label;
 1916     Label* code_stub = &dummy_label;
 1917     if (!C->output()->in_scratch_emit_size()) {
 1918       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1919       C->output()->add_stub(stub);
 1920       code_stub = &stub->entry();
 1921     }
 1922     __ relocate(relocInfo::poll_return_type);
 1923     __ safepoint_poll(*code_stub, true /* at_return */, true /* in_nmethod */);
 1924   }
 1925 }
 1926 
 1927 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 1928   // Variable size. Determine dynamically.
 1929   return MachNode::size(ra_);
 1930 }
 1931 
 1932 int MachEpilogNode::reloc() const {
 1933   // Return number of relocatable values contained in this instruction.
 1934   return 1; // 1 for polling page.
 1935 }
 1936 
 1937 const Pipeline * MachEpilogNode::pipeline() const {
 1938   return MachNode::pipeline_class();
 1939 }
 1940 
 1941 //=============================================================================
 1942 
 1943 static enum RC rc_class(OptoReg::Name reg) {
 1944 
 1945   if (reg == OptoReg::Bad) {
 1946     return rc_bad;
 1947   }
 1948 
 1949   // we have 32 int registers * 2 halves
 1950   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1951 

 2210 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2211   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2212   int reg    = ra_->get_encode(this);
 2213 
 2214   // This add will handle any 24-bit signed offset. 24 bits allows an
 2215   // 8 megabyte stack frame.
 2216   __ add(as_Register(reg), sp, offset);
 2217 }
 2218 
 2219 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2220   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2221   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2222 
 2223   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2224     return NativeInstruction::instruction_size;
 2225   } else {
 2226     return 2 * NativeInstruction::instruction_size;
 2227   }
 2228 }
 2229 
 2230 //=============================================================================











 2231 



























 2232 #ifndef PRODUCT
 2233 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2234 {
 2235   st->print_cr("# MachUEPNode");
 2236   if (UseCompressedClassPointers) {
 2237     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2238     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2239     st->print_cr("\tcmpw rscratch1, r10");
 2240   } else {
 2241     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2242     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2243     st->print_cr("\tcmp rscratch1, r10");
 2244   }
 2245   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2246 }
 2247 #endif
 2248 
 2249 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2250 {
 2251   __ ic_check(InteriorEntryAlignment);
 2252 }
 2253 
 2254 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
 2255 {
 2256   return MachNode::size(ra_);
 2257 }
 2258 
 2259 // REQUIRED EMIT CODE
 2260 
 2261 //=============================================================================
 2262 
 2263 // Emit deopt handler code.
 2264 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 2265 {
 2266   // Note that the code buffer's insts_mark is always relative to insts.
 2267   // That's why we must use the macroassembler to generate a handler.
 2268   address base = __ start_a_stub(size_deopt_handler());
 2269   if (base == nullptr) {
 2270     ciEnv::current()->record_failure("CodeCache is full");
 2271     return 0;  // CodeBuffer::expand failed
 2272   }
 2273 
 2274   int offset = __ offset();
 2275   Label start;
 2276   __ bind(start);
 2277   __ far_call(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 2278 

 3664   %}
 3665 
 3666   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3667     int method_index = resolved_method_index(masm);
 3668     address call = __ ic_call((address)$meth$$method, method_index);
 3669     if (call == nullptr) {
 3670       ciEnv::current()->record_failure("CodeCache is full");
 3671       return;
 3672     }
 3673     __ post_call_nop();
 3674     if (Compile::current()->max_vector_size() > 0) {
 3675       __ reinitialize_ptrue();
 3676     }
 3677   %}
 3678 
 3679   enc_class aarch64_enc_call_epilog() %{
 3680     if (VerifyStackAtCalls) {
 3681       // Check that stack depth is unchanged: find majik cookie on stack
 3682       __ call_Unimplemented();
 3683     }































 3684   %}
 3685 
 3686   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3687     // some calls to generated routines (arraycopy code) are scheduled
 3688     // by C2 as runtime calls. if so we can call them using a br (they
 3689     // will be in a reachable segment) otherwise we have to use a blr
 3690     // which loads the absolute address into a register.
 3691     address entry = (address)$meth$$method;
 3692     CodeBlob *cb = CodeCache::find_blob(entry);
 3693     if (cb) {
 3694       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3695       if (call == nullptr) {
 3696         ciEnv::current()->record_failure("CodeCache is full");
 3697         return;
 3698       }
 3699       __ post_call_nop();
 3700     } else {
 3701       Label retaddr;
 3702       // Make the anchor frame walkable
 3703       __ adr(rscratch2, retaddr);

 6845 instruct loadConL(iRegLNoSp dst, immL src)
 6846 %{
 6847   match(Set dst src);
 6848 
 6849   ins_cost(INSN_COST);
 6850   format %{ "mov $dst, $src\t# long" %}
 6851 
 6852   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6853 
 6854   ins_pipe(ialu_imm);
 6855 %}
 6856 
 6857 // Load Pointer Constant
 6858 
 6859 instruct loadConP(iRegPNoSp dst, immP con)
 6860 %{
 6861   match(Set dst con);
 6862 
 6863   ins_cost(INSN_COST * 4);
 6864   format %{
 6865     "mov  $dst, $con\t# ptr\n\t"
 6866   %}
 6867 
 6868   ins_encode(aarch64_enc_mov_p(dst, con));
 6869 
 6870   ins_pipe(ialu_imm);
 6871 %}
 6872 
 6873 // Load Null Pointer Constant
 6874 
 6875 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6876 %{
 6877   match(Set dst con);
 6878 
 6879   ins_cost(INSN_COST);
 6880   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6881 
 6882   ins_encode(aarch64_enc_mov_p0(dst, con));
 6883 
 6884   ins_pipe(ialu_imm);
 6885 %}

 8038 %}
 8039 
 8040 // ============================================================================
 8041 // Cast/Convert Instructions
 8042 
 8043 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8044   match(Set dst (CastX2P src));
 8045 
 8046   ins_cost(INSN_COST);
 8047   format %{ "mov $dst, $src\t# long -> ptr" %}
 8048 
 8049   ins_encode %{
 8050     if ($dst$$reg != $src$$reg) {
 8051       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8052     }
 8053   %}
 8054 
 8055   ins_pipe(ialu_reg);
 8056 %}
 8057 






























 8058 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8059   match(Set dst (CastP2X src));
 8060 
 8061   ins_cost(INSN_COST);
 8062   format %{ "mov $dst, $src\t# ptr -> long" %}
 8063 
 8064   ins_encode %{
 8065     if ($dst$$reg != $src$$reg) {
 8066       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8067     }
 8068   %}
 8069 
 8070   ins_pipe(ialu_reg);
 8071 %}
 8072 
 8073 // Convert oop into int for vectors alignment masking
 8074 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8075   match(Set dst (ConvL2I (CastP2X src)));
 8076 
 8077   ins_cost(INSN_COST);

14026 
14027   match(Set dst (MoveL2D src));
14028 
14029   effect(DEF dst, USE src);
14030 
14031   ins_cost(INSN_COST);
14032 
14033   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
14034 
14035   ins_encode %{
14036     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
14037   %}
14038 
14039   ins_pipe(fp_l2d);
14040 
14041 %}
14042 
14043 // ============================================================================
14044 // clearing of an array
14045 
14046 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr)
14047 %{
14048   match(Set dummy (ClearArray cnt base));
14049   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14050 
14051   ins_cost(4 * INSN_COST);
14052   format %{ "ClearArray $cnt, $base" %}
14053 
14054   ins_encode %{
14055     address tpc = __ zero_words($base$$Register, $cnt$$Register);
14056     if (tpc == nullptr) {
14057       ciEnv::current()->record_failure("CodeCache is full");
14058       return;
14059     }
14060   %}
14061 
14062   ins_pipe(pipe_class_memory);
14063 %}
14064 
















14065 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
14066 %{
14067   predicate((uint64_t)n->in(2)->get_long()
14068             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));

14069   match(Set dummy (ClearArray cnt base));
14070   effect(TEMP temp, USE_KILL base, KILL cr);
14071 
14072   ins_cost(4 * INSN_COST);
14073   format %{ "ClearArray $cnt, $base" %}
14074 
14075   ins_encode %{
14076     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
14077     if (tpc == nullptr) {
14078       ciEnv::current()->record_failure("CodeCache is full");
14079       return;
14080     }
14081   %}
14082 
14083   ins_pipe(pipe_class_memory);
14084 %}
14085 
14086 // ============================================================================
14087 // Overflow Math Instructions
14088 

15365 %}
15366 
15367 // Call Runtime Instruction without safepoint and with vector arguments
15368 instruct CallLeafDirectVector(method meth)
15369 %{
15370   match(CallLeafVector);
15371 
15372   effect(USE meth);
15373 
15374   ins_cost(CALL_COST);
15375 
15376   format %{ "CALL, runtime leaf vector $meth" %}
15377 
15378   ins_encode(aarch64_enc_java_to_runtime(meth));
15379 
15380   ins_pipe(pipe_class_call);
15381 %}
15382 
15383 // Call Runtime Instruction
15384 


















15385 instruct CallLeafNoFPDirect(method meth)
15386 %{


15387   match(CallLeafNoFP);
15388 
15389   effect(USE meth);
15390 
15391   ins_cost(CALL_COST);
15392 
15393   format %{ "CALL, runtime leaf nofp $meth" %}
15394 
15395   ins_encode( aarch64_enc_java_to_runtime(meth) );
15396 
15397   ins_pipe(pipe_class_call);
15398 %}
15399 
15400 // Tail Call; Jump from runtime stub to Java code.
15401 // Also known as an 'interprocedural jump'.
15402 // Target of jump will eventually return to caller.
15403 // TailJump below removes the return address.
15404 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
15405 // emitted just above the TailCall which has reset rfp to the caller state.
15406 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)

 1673 
 1674 int MachCallDynamicJavaNode::ret_addr_offset()
 1675 {
 1676   return 16; // movz, movk, movk, bl
 1677 }
 1678 
 1679 int MachCallRuntimeNode::ret_addr_offset() {
 1680   // for generated stubs the call will be
 1681   //   bl(addr)
 1682   // or with far branches
 1683   //   bl(trampoline_stub)
 1684   // for real runtime callouts it will be six instructions
 1685   // see aarch64_enc_java_to_runtime
 1686   //   adr(rscratch2, retaddr)
 1687   //   str(rscratch2, Address(rthread, JavaThread::last_Java_pc_offset()));
 1688   //   lea(rscratch1, RuntimeAddress(addr)
 1689   //   blr(rscratch1)
 1690   CodeBlob *cb = CodeCache::find_blob(_entry_point);
 1691   if (cb) {
 1692     return 1 * NativeInstruction::instruction_size;
 1693   } else if (_entry_point == nullptr) {
 1694     // See CallLeafNoFPIndirect
 1695     return 1 * NativeInstruction::instruction_size;
 1696   } else {
 1697     return 6 * NativeInstruction::instruction_size;
 1698   }
 1699 }
 1700 
 1701 //=============================================================================
 1702 
 1703 #ifndef PRODUCT
 1704 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1705   st->print("BREAKPOINT");
 1706 }
 1707 #endif
 1708 
 1709 void MachBreakpointNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1710   __ brk(0);
 1711 }
 1712 
 1713 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 1714   return MachNode::size(ra_);
 1715 }

 1784   if (C->stub_function() == nullptr) {
 1785     st->print("\n\t");
 1786     st->print("ldr  rscratch1, [guard]\n\t");
 1787     st->print("dmb ishld\n\t");
 1788     st->print("ldr  rscratch2, [rthread, #thread_disarmed_guard_value_offset]\n\t");
 1789     st->print("cmp  rscratch1, rscratch2\n\t");
 1790     st->print("b.eq skip");
 1791     st->print("\n\t");
 1792     st->print("blr #nmethod_entry_barrier_stub\n\t");
 1793     st->print("b skip\n\t");
 1794     st->print("guard: int\n\t");
 1795     st->print("\n\t");
 1796     st->print("skip:\n\t");
 1797   }
 1798 }
 1799 #endif
 1800 
 1801 void MachPrologNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1802   Compile* C = ra_->C;
 1803 







 1804 
 1805   __ verified_entry(C, 0);




 1806 
 1807   if (C->stub_function() == nullptr) {
 1808     __ entry_barrier();
 1809   }
 1810 
 1811   if (!Compile::current()->output()->in_scratch_emit_size()) {
 1812     __ bind(*_verified_entry);























 1813   }
 1814 
 1815   if (VerifyStackAtCalls) {
 1816     Unimplemented();
 1817   }
 1818 
 1819   C->output()->set_frame_complete(__ offset());
 1820 
 1821   if (C->has_mach_constant_base_node()) {
 1822     // NOTE: We set the table base offset here because users might be
 1823     // emitted before MachConstantBaseNode.
 1824     ConstantTable& constant_table = C->output()->constant_table();
 1825     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 1826   }
 1827 }
 1828 






 1829 int MachPrologNode::reloc() const
 1830 {
 1831   return 0;
 1832 }
 1833 
 1834 //=============================================================================
 1835 
 1836 #ifndef PRODUCT
 1837 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
 1838   Compile* C = ra_->C;
 1839   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1840 
 1841   st->print("# pop frame %d\n\t",framesize);
 1842 
 1843   if (framesize == 0) {
 1844     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1845   } else if (framesize < ((1 << 9) + 2 * wordSize)) {
 1846     st->print("ldp  lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize);
 1847     st->print("add  sp, sp, #%d\n\t", framesize);
 1848   } else {

 1851     st->print("ldp  lr, rfp, [sp],#%d\n\t", (2 * wordSize));
 1852   }
 1853   if (VM_Version::use_rop_protection()) {
 1854     st->print("autiaz\n\t");
 1855     st->print("ldr  zr, [lr]\n\t");
 1856   }
 1857 
 1858   if (do_polling() && C->is_method_compilation()) {
 1859     st->print("# test polling word\n\t");
 1860     st->print("ldr  rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset()));
 1861     st->print("cmp  sp, rscratch1\n\t");
 1862     st->print("bhi #slow_path");
 1863   }
 1864 }
 1865 #endif
 1866 
 1867 void MachEpilogNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 1868   Compile* C = ra_->C;
 1869   int framesize = C->output()->frame_slots() << LogBytesPerInt;
 1870 
 1871   __ remove_frame(framesize, C->needs_stack_repair());
 1872 
 1873   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 1874     __ reserved_stack_check();
 1875   }
 1876 
 1877   if (do_polling() && C->is_method_compilation()) {
 1878     Label dummy_label;
 1879     Label* code_stub = &dummy_label;
 1880     if (!C->output()->in_scratch_emit_size()) {
 1881       C2SafepointPollStub* stub = new (C->comp_arena()) C2SafepointPollStub(__ offset());
 1882       C->output()->add_stub(stub);
 1883       code_stub = &stub->entry();
 1884     }
 1885     __ relocate(relocInfo::poll_return_type);
 1886     __ safepoint_poll(*code_stub, true /* at_return */, true /* in_nmethod */);
 1887   }
 1888 }
 1889 





 1890 int MachEpilogNode::reloc() const {
 1891   // Return number of relocatable values contained in this instruction.
 1892   return 1; // 1 for polling page.
 1893 }
 1894 
 1895 const Pipeline * MachEpilogNode::pipeline() const {
 1896   return MachNode::pipeline_class();
 1897 }
 1898 
 1899 //=============================================================================
 1900 
 1901 static enum RC rc_class(OptoReg::Name reg) {
 1902 
 1903   if (reg == OptoReg::Bad) {
 1904     return rc_bad;
 1905   }
 1906 
 1907   // we have 32 int registers * 2 halves
 1908   int slots_of_int_registers = Register::number_of_registers * Register::max_slots_per_register;
 1909 

 2168 void BoxLockNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {
 2169   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2170   int reg    = ra_->get_encode(this);
 2171 
 2172   // This add will handle any 24-bit signed offset. 24 bits allows an
 2173   // 8 megabyte stack frame.
 2174   __ add(as_Register(reg), sp, offset);
 2175 }
 2176 
 2177 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
 2178   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
 2179   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
 2180 
 2181   if (Assembler::operand_valid_for_add_sub_immediate(offset)) {
 2182     return NativeInstruction::instruction_size;
 2183   } else {
 2184     return 2 * NativeInstruction::instruction_size;
 2185   }
 2186 }
 2187 
 2188 ///=============================================================================
 2189 #ifndef PRODUCT
 2190 void MachVEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2191 {
 2192   st->print_cr("# MachVEPNode");
 2193   if (!_verified) {
 2194     st->print_cr("\t load_class");
 2195   } else {
 2196     st->print_cr("\t unpack_inline_arg");
 2197   }
 2198 }
 2199 #endif
 2200 
 2201 void MachVEPNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc* ra_) const
 2202 {
 2203   if (!_verified) {
 2204     __ ic_check(1);
 2205   } else {
 2206     // TODO 8284443 Avoid creation of temporary frame
 2207     if (ra_->C->stub_function() == nullptr) {
 2208       __ verified_entry(ra_->C, 0);
 2209       __ entry_barrier();
 2210       int framesize = ra_->C->output()->frame_slots() << LogBytesPerInt;
 2211       __ remove_frame(framesize, false);
 2212     }
 2213     // Unpack inline type args passed as oop and then jump to
 2214     // the verified entry point (skipping the unverified entry).
 2215     int sp_inc = __ unpack_inline_args(ra_->C, _receiver_only);
 2216     // Emit code for verified entry and save increment for stack repair on return
 2217     __ verified_entry(ra_->C, sp_inc);
 2218     if (Compile::current()->output()->in_scratch_emit_size()) {
 2219       Label dummy_verified_entry;
 2220       __ b(dummy_verified_entry);
 2221     } else {
 2222       __ b(*_verified_entry);
 2223     }
 2224   }
 2225 }
 2226 
 2227 //=============================================================================
 2228 #ifndef PRODUCT
 2229 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 2230 {
 2231   st->print_cr("# MachUEPNode");
 2232   if (UseCompressedClassPointers) {
 2233     st->print_cr("\tldrw rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2234     st->print_cr("\tldrw r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2235     st->print_cr("\tcmpw rscratch1, r10");
 2236   } else {
 2237     st->print_cr("\tldr rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
 2238     st->print_cr("\tldr r10, [rscratch2 + CompiledICData::speculated_klass_offset()]\t# compressed klass");
 2239     st->print_cr("\tcmp rscratch1, r10");
 2240   }
 2241   st->print_cr("\tbne, SharedRuntime::_ic_miss_stub");
 2242 }
 2243 #endif
 2244 
 2245 void MachUEPNode::emit(C2_MacroAssembler* masm, PhaseRegAlloc* ra_) const
 2246 {
 2247   __ ic_check(InteriorEntryAlignment);
 2248 }
 2249 





 2250 // REQUIRED EMIT CODE
 2251 
 2252 //=============================================================================
 2253 
 2254 // Emit deopt handler code.
 2255 int HandlerImpl::emit_deopt_handler(C2_MacroAssembler* masm)
 2256 {
 2257   // Note that the code buffer's insts_mark is always relative to insts.
 2258   // That's why we must use the macroassembler to generate a handler.
 2259   address base = __ start_a_stub(size_deopt_handler());
 2260   if (base == nullptr) {
 2261     ciEnv::current()->record_failure("CodeCache is full");
 2262     return 0;  // CodeBuffer::expand failed
 2263   }
 2264 
 2265   int offset = __ offset();
 2266   Label start;
 2267   __ bind(start);
 2268   __ far_call(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 2269 

 3655   %}
 3656 
 3657   enc_class aarch64_enc_java_dynamic_call(method meth) %{
 3658     int method_index = resolved_method_index(masm);
 3659     address call = __ ic_call((address)$meth$$method, method_index);
 3660     if (call == nullptr) {
 3661       ciEnv::current()->record_failure("CodeCache is full");
 3662       return;
 3663     }
 3664     __ post_call_nop();
 3665     if (Compile::current()->max_vector_size() > 0) {
 3666       __ reinitialize_ptrue();
 3667     }
 3668   %}
 3669 
 3670   enc_class aarch64_enc_call_epilog() %{
 3671     if (VerifyStackAtCalls) {
 3672       // Check that stack depth is unchanged: find majik cookie on stack
 3673       __ call_Unimplemented();
 3674     }
 3675     if (tf()->returns_inline_type_as_fields() && !_method->is_method_handle_intrinsic() && _method->return_type()->is_loaded()) {
 3676       // The last return value is not set by the callee but used to pass the null marker to compiled code.
 3677       // Search for the corresponding projection, get the register and emit code that initialized it.
 3678       uint con = (tf()->range_cc()->cnt() - 1);
 3679       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 3680         ProjNode* proj = fast_out(i)->as_Proj();
 3681         if (proj->_con == con) {
 3682           // Set null marker if r0 is non-null (a non-null value is returned buffered or scalarized)
 3683           OptoReg::Name optoReg = ra_->get_reg_first(proj);
 3684           VMReg reg = OptoReg::as_VMReg(optoReg, ra_->_framesize, OptoReg::reg2stack(ra_->_matcher._new_SP));
 3685           Register toReg = reg->is_reg() ? reg->as_Register() : rscratch1;
 3686           __ cmp(r0, zr);
 3687           __ cset(toReg, Assembler::NE);
 3688           if (reg->is_stack()) {
 3689             int st_off = reg->reg2stack() * VMRegImpl::stack_slot_size;
 3690             __ str(toReg, Address(sp, st_off));
 3691           }
 3692           break;
 3693         }
 3694       }
 3695       if (return_value_is_used()) {
 3696         // An inline type is returned as fields in multiple registers.
 3697         // R0 either contains an oop if the inline type is buffered or a pointer
 3698         // to the corresponding InlineKlass with the lowest bit set to 1. Zero r0
 3699         // if the lowest bit is set to allow C2 to use the oop after null checking.
 3700         // r0 &= (r0 & 1) - 1
 3701         __ andr(rscratch1, r0, 0x1);
 3702         __ sub(rscratch1, rscratch1, 0x1);
 3703         __ andr(r0, r0, rscratch1);
 3704       }
 3705     }
 3706   %}
 3707 
 3708   enc_class aarch64_enc_java_to_runtime(method meth) %{
 3709     // some calls to generated routines (arraycopy code) are scheduled
 3710     // by C2 as runtime calls. if so we can call them using a br (they
 3711     // will be in a reachable segment) otherwise we have to use a blr
 3712     // which loads the absolute address into a register.
 3713     address entry = (address)$meth$$method;
 3714     CodeBlob *cb = CodeCache::find_blob(entry);
 3715     if (cb) {
 3716       address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
 3717       if (call == nullptr) {
 3718         ciEnv::current()->record_failure("CodeCache is full");
 3719         return;
 3720       }
 3721       __ post_call_nop();
 3722     } else {
 3723       Label retaddr;
 3724       // Make the anchor frame walkable
 3725       __ adr(rscratch2, retaddr);

 6867 instruct loadConL(iRegLNoSp dst, immL src)
 6868 %{
 6869   match(Set dst src);
 6870 
 6871   ins_cost(INSN_COST);
 6872   format %{ "mov $dst, $src\t# long" %}
 6873 
 6874   ins_encode( aarch64_enc_mov_imm(dst, src) );
 6875 
 6876   ins_pipe(ialu_imm);
 6877 %}
 6878 
 6879 // Load Pointer Constant
 6880 
 6881 instruct loadConP(iRegPNoSp dst, immP con)
 6882 %{
 6883   match(Set dst con);
 6884 
 6885   ins_cost(INSN_COST * 4);
 6886   format %{
 6887     "mov  $dst, $con\t# ptr"
 6888   %}
 6889 
 6890   ins_encode(aarch64_enc_mov_p(dst, con));
 6891 
 6892   ins_pipe(ialu_imm);
 6893 %}
 6894 
 6895 // Load Null Pointer Constant
 6896 
 6897 instruct loadConP0(iRegPNoSp dst, immP0 con)
 6898 %{
 6899   match(Set dst con);
 6900 
 6901   ins_cost(INSN_COST);
 6902   format %{ "mov  $dst, $con\t# nullptr ptr" %}
 6903 
 6904   ins_encode(aarch64_enc_mov_p0(dst, con));
 6905 
 6906   ins_pipe(ialu_imm);
 6907 %}

 8060 %}
 8061 
 8062 // ============================================================================
 8063 // Cast/Convert Instructions
 8064 
 8065 instruct castX2P(iRegPNoSp dst, iRegL src) %{
 8066   match(Set dst (CastX2P src));
 8067 
 8068   ins_cost(INSN_COST);
 8069   format %{ "mov $dst, $src\t# long -> ptr" %}
 8070 
 8071   ins_encode %{
 8072     if ($dst$$reg != $src$$reg) {
 8073       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8074     }
 8075   %}
 8076 
 8077   ins_pipe(ialu_reg);
 8078 %}
 8079 
 8080 instruct castI2N(iRegNNoSp dst, iRegI src) %{
 8081   match(Set dst (CastI2N src));
 8082 
 8083   ins_cost(INSN_COST);
 8084   format %{ "mov $dst, $src\t# int -> narrow ptr" %}
 8085 
 8086   ins_encode %{
 8087     if ($dst$$reg != $src$$reg) {
 8088       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8089     }
 8090   %}
 8091 
 8092   ins_pipe(ialu_reg);
 8093 %}
 8094 
 8095 instruct castN2X(iRegLNoSp dst, iRegN src) %{
 8096   match(Set dst (CastP2X src));
 8097 
 8098   ins_cost(INSN_COST);
 8099   format %{ "mov $dst, $src\t# ptr -> long" %}
 8100 
 8101   ins_encode %{
 8102     if ($dst$$reg != $src$$reg) {
 8103       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8104     }
 8105   %}
 8106 
 8107   ins_pipe(ialu_reg);
 8108 %}
 8109 
 8110 instruct castP2X(iRegLNoSp dst, iRegP src) %{
 8111   match(Set dst (CastP2X src));
 8112 
 8113   ins_cost(INSN_COST);
 8114   format %{ "mov $dst, $src\t# ptr -> long" %}
 8115 
 8116   ins_encode %{
 8117     if ($dst$$reg != $src$$reg) {
 8118       __ mov(as_Register($dst$$reg), as_Register($src$$reg));
 8119     }
 8120   %}
 8121 
 8122   ins_pipe(ialu_reg);
 8123 %}
 8124 
 8125 // Convert oop into int for vectors alignment masking
 8126 instruct convP2I(iRegINoSp dst, iRegP src) %{
 8127   match(Set dst (ConvL2I (CastP2X src)));
 8128 
 8129   ins_cost(INSN_COST);

14078 
14079   match(Set dst (MoveL2D src));
14080 
14081   effect(DEF dst, USE src);
14082 
14083   ins_cost(INSN_COST);
14084 
14085   format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %}
14086 
14087   ins_encode %{
14088     __ fmovd(as_FloatRegister($dst$$reg), $src$$Register);
14089   %}
14090 
14091   ins_pipe(fp_l2d);
14092 
14093 %}
14094 
14095 // ============================================================================
14096 // clearing of an array
14097 
14098 instruct clearArray_reg_reg_immL0(iRegL_R11 cnt, iRegP_R10 base, immL0 zero, Universe dummy, rFlagsReg cr)
14099 %{
14100   match(Set dummy (ClearArray (Binary cnt base) zero));
14101   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14102 
14103   ins_cost(4 * INSN_COST);
14104   format %{ "ClearArray $cnt, $base" %}
14105 
14106   ins_encode %{
14107     address tpc = __ zero_words($base$$Register, $cnt$$Register);
14108     if (tpc == nullptr) {
14109       ciEnv::current()->record_failure("CodeCache is full");
14110       return;
14111     }
14112   %}
14113 
14114   ins_pipe(pipe_class_memory);
14115 %}
14116 
14117 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, iRegL val, Universe dummy, rFlagsReg cr)
14118 %{
14119   predicate(((ClearArrayNode*)n)->word_copy_only());
14120   match(Set dummy (ClearArray (Binary cnt base) val));
14121   effect(USE_KILL cnt, USE_KILL base, KILL cr);
14122 
14123   ins_cost(4 * INSN_COST);
14124   format %{ "ClearArray $cnt, $base, $val" %}
14125 
14126   ins_encode %{
14127     __ fill_words($base$$Register, $cnt$$Register, $val$$Register);
14128   %}
14129 
14130   ins_pipe(pipe_class_memory);
14131 %}
14132 
14133 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr)
14134 %{
14135   predicate((uint64_t)n->in(2)->get_long()
14136             < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)
14137             && !((ClearArrayNode*)n)->word_copy_only());
14138   match(Set dummy (ClearArray cnt base));
14139   effect(TEMP temp, USE_KILL base, KILL cr);
14140 
14141   ins_cost(4 * INSN_COST);
14142   format %{ "ClearArray $cnt, $base" %}
14143 
14144   ins_encode %{
14145     address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
14146     if (tpc == nullptr) {
14147       ciEnv::current()->record_failure("CodeCache is full");
14148       return;
14149     }
14150   %}
14151 
14152   ins_pipe(pipe_class_memory);
14153 %}
14154 
14155 // ============================================================================
14156 // Overflow Math Instructions
14157 

15434 %}
15435 
15436 // Call Runtime Instruction without safepoint and with vector arguments
15437 instruct CallLeafDirectVector(method meth)
15438 %{
15439   match(CallLeafVector);
15440 
15441   effect(USE meth);
15442 
15443   ins_cost(CALL_COST);
15444 
15445   format %{ "CALL, runtime leaf vector $meth" %}
15446 
15447   ins_encode(aarch64_enc_java_to_runtime(meth));
15448 
15449   ins_pipe(pipe_class_call);
15450 %}
15451 
15452 // Call Runtime Instruction
15453 
15454 // entry point is null, target holds the address to call
15455 instruct CallLeafNoFPIndirect(iRegP target)
15456 %{
15457   predicate(n->as_Call()->entry_point() == nullptr);
15458 
15459   match(CallLeafNoFP target);
15460 
15461   ins_cost(CALL_COST);
15462 
15463   format %{ "CALL, runtime leaf nofp indirect $target" %}
15464 
15465   ins_encode %{
15466     __ blr($target$$Register);
15467   %}
15468 
15469   ins_pipe(pipe_class_call);
15470 %}
15471 
15472 instruct CallLeafNoFPDirect(method meth)
15473 %{
15474   predicate(n->as_Call()->entry_point() != nullptr);
15475 
15476   match(CallLeafNoFP);
15477 
15478   effect(USE meth);
15479 
15480   ins_cost(CALL_COST);
15481 
15482   format %{ "CALL, runtime leaf nofp $meth" %}
15483 
15484   ins_encode( aarch64_enc_java_to_runtime(meth) );
15485 
15486   ins_pipe(pipe_class_call);
15487 %}
15488 
15489 // Tail Call; Jump from runtime stub to Java code.
15490 // Also known as an 'interprocedural jump'.
15491 // Target of jump will eventually return to caller.
15492 // TailJump below removes the return address.
15493 // Don't use rfp for 'jump_target' because a MachEpilogNode has already been
15494 // emitted just above the TailCall which has reset rfp to the caller state.
15495 instruct TailCalljmpInd(iRegPNoSpNoRfp jump_target, inline_cache_RegP method_ptr)
< prev index next >