1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"
  36 #include "ci/ciInstance.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_aarch64.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_aarch64.inline.hpp"
  47 
  48 
  49 #ifndef PRODUCT
  50 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  51 #else
  52 #define COMMENT(x)
  53 #endif
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register SYNC_header = r0;   // synchronization header
  57 const Register SHIFT_count = r0;   // where count for shift operations must be
  58 
  59 #define __ _masm->
  60 
  61 
  62 static void select_different_registers(Register preserve,
  63                                        Register extra,
  64                                        Register &tmp1,
  65                                        Register &tmp2) {
  66   if (tmp1 == preserve) {
  67     assert_different_registers(tmp1, tmp2, extra);
  68     tmp1 = extra;
  69   } else if (tmp2 == preserve) {
  70     assert_different_registers(tmp1, tmp2, extra);
  71     tmp2 = extra;
  72   }
  73   assert_different_registers(preserve, tmp1, tmp2);
  74 }
  75 
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2,
  82                                        Register &tmp3) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, tmp3, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, tmp3, extra);
  88     tmp2 = extra;
  89   } else if (tmp3 == preserve) {
  90     assert_different_registers(tmp1, tmp2, tmp3, extra);
  91     tmp3 = extra;
  92   }
  93   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  94 }
  95 
  96 
  97 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
  98 
  99 
 100 LIR_Opr LIR_Assembler::receiverOpr() {
 101   return FrameMap::receiver_opr;
 102 }
 103 
 104 LIR_Opr LIR_Assembler::osrBufferPointer() {
 105   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 106 }
 107 
 108 //--------------fpu register translations-----------------------
 109 
 110 
 111 address LIR_Assembler::float_constant(float f) {
 112   address const_addr = __ float_constant(f);
 113   if (const_addr == nullptr) {
 114     bailout("const section overflow");
 115     return __ code()->consts()->start();
 116   } else {
 117     return const_addr;
 118   }
 119 }
 120 
 121 
 122 address LIR_Assembler::double_constant(double d) {
 123   address const_addr = __ double_constant(d);
 124   if (const_addr == nullptr) {
 125     bailout("const section overflow");
 126     return __ code()->consts()->start();
 127   } else {
 128     return const_addr;
 129   }
 130 }
 131 
 132 address LIR_Assembler::int_constant(jlong n) {
 133   address const_addr = __ long_constant(n);
 134   if (const_addr == nullptr) {
 135     bailout("const section overflow");
 136     return __ code()->consts()->start();
 137   } else {
 138     return const_addr;
 139   }
 140 }
 141 
 142 void LIR_Assembler::breakpoint() { Unimplemented(); }
 143 
 144 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 145 
 146 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 147 
 148 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 149 //-------------------------------------------
 150 
 151 static Register as_reg(LIR_Opr op) {
 152   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 153 }
 154 
 155 static jlong as_long(LIR_Opr data) {
 156   jlong result;
 157   switch (data->type()) {
 158   case T_INT:
 159     result = (data->as_jint());
 160     break;
 161   case T_LONG:
 162     result = (data->as_jlong());
 163     break;
 164   default:
 165     ShouldNotReachHere();
 166     result = 0;  // unreachable
 167   }
 168   return result;
 169 }
 170 
 171 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 172   Register base = addr->base()->as_pointer_register();
 173   LIR_Opr opr = addr->index();
 174   if (opr->is_cpu_register()) {
 175     Register index;
 176     if (opr->is_single_cpu())
 177       index = opr->as_register();
 178     else
 179       index = opr->as_register_lo();
 180     assert(addr->disp() == 0, "must be");
 181     switch(opr->type()) {
 182       case T_INT:
 183         return Address(base, index, Address::sxtw(addr->scale()));
 184       case T_LONG:
 185         return Address(base, index, Address::lsl(addr->scale()));
 186       default:
 187         ShouldNotReachHere();
 188       }
 189   } else {
 190     assert(addr->scale() == 0,
 191            "expected for immediate operand, was: %d", addr->scale());
 192     ptrdiff_t offset = ptrdiff_t(addr->disp());
 193     // NOTE: Does not handle any 16 byte vector access.
 194     const uint type_size = type2aelembytes(addr->type(), true);
 195     return __ legitimize_address(Address(base, offset), type_size, tmp);
 196   }
 197   return Address();
 198 }
 199 
 200 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 201   ShouldNotReachHere();
 202   return Address();
 203 }
 204 
 205 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 206   return as_Address(addr, rscratch1);
 207 }
 208 
 209 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 210   return as_Address(addr, rscratch1);  // Ouch
 211   // FIXME: This needs to be much more clever.  See x86.
 212 }
 213 
 214 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
 215 // not encodable as a base + (immediate) offset, generate an explicit address
 216 // calculation to hold the address in a temporary register.
 217 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
 218   precond(size == 4 || size == 8);
 219   Address addr = frame_map()->address_for_slot(index, adjust);
 220   precond(addr.getMode() == Address::base_plus_offset);
 221   precond(addr.base() == sp);
 222   precond(addr.offset() > 0);
 223   uint mask = size - 1;
 224   assert((addr.offset() & mask) == 0, "scaled offsets only");
 225   return __ legitimize_address(addr, size, tmp);
 226 }
 227 
 228 void LIR_Assembler::osr_entry() {
 229   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 230   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 231   ValueStack* entry_state = osr_entry->state();
 232   int number_of_locks = entry_state->locks_size();
 233 
 234   // we jump here if osr happens with the interpreter
 235   // state set up to continue at the beginning of the
 236   // loop that triggered osr - in particular, we have
 237   // the following registers setup:
 238   //
 239   // r2: osr buffer
 240   //
 241 
 242   // build frame
 243   ciMethod* m = compilation()->method();
 244   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 245 
 246   // OSR buffer is
 247   //
 248   // locals[nlocals-1..0]
 249   // monitors[0..number_of_locks]
 250   //
 251   // locals is a direct copy of the interpreter frame so in the osr buffer
 252   // so first slot in the local array is the last local from the interpreter
 253   // and last slot is local[0] (receiver) from the interpreter
 254   //
 255   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 256   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 257   // in the interpreter frame (the method lock if a sync method)
 258 
 259   // Initialize monitors in the compiled activation.
 260   //   r2: pointer to osr buffer
 261   //
 262   // All other registers are dead at this point and the locals will be
 263   // copied into place by code emitted in the IR.
 264 
 265   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 266   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 267     int monitor_offset = BytesPerWord * method()->max_locals() +
 268       (2 * BytesPerWord) * (number_of_locks - 1);
 269     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 270     // the OSR buffer using 2 word entries: first the lock and then
 271     // the oop.
 272     for (int i = 0; i < number_of_locks; i++) {
 273       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 274 #ifdef ASSERT
 275       // verify the interpreter's monitor has a non-null object
 276       {
 277         Label L;
 278         __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 279         __ cbnz(rscratch1, L);
 280         __ stop("locked object is null");
 281         __ bind(L);
 282       }
 283 #endif
 284       __ ldr(r19, Address(OSR_buf, slot_offset));
 285       __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord));
 286       __ str(r19, frame_map()->address_for_monitor_lock(i));
 287       __ str(r20, frame_map()->address_for_monitor_object(i));
 288     }
 289   }
 290 }
 291 
 292 
 293 // inline cache check; done before the frame is built.
 294 int LIR_Assembler::check_icache() {
 295   return __ ic_check(CodeEntryAlignment);
 296 }
 297 
 298 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 299   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 300   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 301 
 302   Label L_skip_barrier;
 303 
 304   __ mov_metadata(rscratch2, method->holder()->constant_encoding());
 305   __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
 306   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 307   __ bind(L_skip_barrier);
 308 }
 309 
 310 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 311   if (o == nullptr) {
 312     __ mov(reg, zr);
 313   } else {
 314     __ movoop(reg, o);
 315   }
 316 }
 317 
 318 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 319   address target = nullptr;
 320   relocInfo::relocType reloc_type = relocInfo::none;
 321 
 322   switch (patching_id(info)) {
 323   case PatchingStub::access_field_id:
 324     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 325     reloc_type = relocInfo::section_word_type;
 326     break;
 327   case PatchingStub::load_klass_id:
 328     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 329     reloc_type = relocInfo::metadata_type;
 330     break;
 331   case PatchingStub::load_mirror_id:
 332     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 333     reloc_type = relocInfo::oop_type;
 334     break;
 335   case PatchingStub::load_appendix_id:
 336     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 337     reloc_type = relocInfo::oop_type;
 338     break;
 339   default: ShouldNotReachHere();
 340   }
 341 
 342   __ far_call(RuntimeAddress(target));
 343   add_call_info_here(info);
 344 }
 345 
 346 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 347   deoptimize_trap(info);
 348 }
 349 
 350 
 351 // This specifies the rsp decrement needed to build the frame
 352 int LIR_Assembler::initial_frame_size_in_bytes() const {
 353   // if rounding, must let FrameMap know!
 354 
 355   return in_bytes(frame_map()->framesize_in_bytes());
 356 }
 357 
 358 
 359 int LIR_Assembler::emit_exception_handler() {
 360   // generate code for exception handler
 361   address handler_base = __ start_a_stub(exception_handler_size());
 362   if (handler_base == nullptr) {
 363     // not enough space left for the handler
 364     bailout("exception handler overflow");
 365     return -1;
 366   }
 367 
 368   int offset = code_offset();
 369 
 370   // the exception oop and pc are in r0, and r3
 371   // no other registers need to be preserved, so invalidate them
 372   __ invalidate_registers(false, true, true, false, true, true);
 373 
 374   // check that there is really an exception
 375   __ verify_not_null_oop(r0);
 376 
 377   // search an exception handler (r0: exception oop, r3: throwing pc)
 378   __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 379   __ should_not_reach_here();
 380   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 381   __ end_a_stub();
 382 
 383   return offset;
 384 }
 385 
 386 
 387 // Emit the code to remove the frame from the stack in the exception
 388 // unwind path.
 389 int LIR_Assembler::emit_unwind_handler() {
 390 #ifndef PRODUCT
 391   if (CommentedAssembly) {
 392     _masm->block_comment("Unwind handler");
 393   }
 394 #endif
 395 
 396   int offset = code_offset();
 397 
 398   // Fetch the exception from TLS and clear out exception related thread state
 399   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 400   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 401   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 402 
 403   __ bind(_unwind_handler_entry);
 404   __ verify_not_null_oop(r0);
 405   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 406     __ mov(r19, r0);  // Preserve the exception
 407   }
 408 
 409   // Perform needed unlocking
 410   MonitorExitStub* stub = nullptr;
 411   if (method()->is_synchronized()) {
 412     monitor_address(0, FrameMap::r0_opr);
 413     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 414     if (LockingMode == LM_MONITOR) {
 415       __ b(*stub->entry());
 416     } else {
 417       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 418     }
 419     __ bind(*stub->continuation());
 420   }
 421 
 422   if (compilation()->env()->dtrace_method_probes()) {
 423     __ mov(c_rarg0, rthread);
 424     __ mov_metadata(c_rarg1, method()->constant_encoding());
 425     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 426   }
 427 
 428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 429     __ mov(r0, r19);  // Restore the exception
 430   }
 431 
 432   // remove the activation and dispatch to the unwind handler
 433   __ block_comment("remove_frame and dispatch to the unwind handler");
 434   __ remove_frame(initial_frame_size_in_bytes());
 435   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 436 
 437   // Emit the slow path assembly
 438   if (stub != nullptr) {
 439     stub->emit_code(this);
 440   }
 441 
 442   return offset;
 443 }
 444 
 445 
 446 int LIR_Assembler::emit_deopt_handler() {
 447   // generate code for exception handler
 448   address handler_base = __ start_a_stub(deopt_handler_size());
 449   if (handler_base == nullptr) {
 450     // not enough space left for the handler
 451     bailout("deopt handler overflow");
 452     return -1;
 453   }
 454 
 455   int offset = code_offset();
 456 
 457   __ adr(lr, pc());
 458   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 459   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 460   __ end_a_stub();
 461 
 462   return offset;
 463 }
 464 
 465 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 466   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 467   int pc_offset = code_offset();
 468   flush_debug_info(pc_offset);
 469   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 470   if (info->exception_handlers() != nullptr) {
 471     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 472   }
 473 }
 474 
 475 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 476   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 477 
 478   // Pop the stack before the safepoint code
 479   __ remove_frame(initial_frame_size_in_bytes());
 480 
 481   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 482     __ reserved_stack_check();
 483   }
 484 
 485   code_stub->set_safepoint_offset(__ offset());
 486   __ relocate(relocInfo::poll_return_type);
 487   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 488   __ ret(lr);
 489 }
 490 
 491 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 492   guarantee(info != nullptr, "Shouldn't be null");
 493   __ get_polling_page(rscratch1, relocInfo::poll_type);
 494   add_debug_info_for_branch(info);  // This isn't just debug info:
 495                                     // it's the oop map
 496   __ read_polling_page(rscratch1, relocInfo::poll_type);
 497   return __ offset();
 498 }
 499 
 500 
 501 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 502   if (from_reg == r31_sp)
 503     from_reg = sp;
 504   if (to_reg == r31_sp)
 505     to_reg = sp;
 506   __ mov(to_reg, from_reg);
 507 }
 508 
 509 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 510 
 511 
 512 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 513   assert(src->is_constant(), "should not call otherwise");
 514   assert(dest->is_register(), "should not call otherwise");
 515   LIR_Const* c = src->as_constant_ptr();
 516 
 517   switch (c->type()) {
 518     case T_INT: {
 519       assert(patch_code == lir_patch_none, "no patching handled here");
 520       __ movw(dest->as_register(), c->as_jint());
 521       break;
 522     }
 523 
 524     case T_ADDRESS: {
 525       assert(patch_code == lir_patch_none, "no patching handled here");
 526       __ mov(dest->as_register(), c->as_jint());
 527       break;
 528     }
 529 
 530     case T_LONG: {
 531       assert(patch_code == lir_patch_none, "no patching handled here");
 532       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 533       break;
 534     }
 535 
 536     case T_OBJECT: {
 537         if (patch_code == lir_patch_none) {
 538           jobject2reg(c->as_jobject(), dest->as_register());
 539         } else {
 540           jobject2reg_with_patching(dest->as_register(), info);
 541         }
 542       break;
 543     }
 544 
 545     case T_METADATA: {
 546       if (patch_code != lir_patch_none) {
 547         klass2reg_with_patching(dest->as_register(), info);
 548       } else {
 549         __ mov_metadata(dest->as_register(), c->as_metadata());
 550       }
 551       break;
 552     }
 553 
 554     case T_FLOAT: {
 555       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 556         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 557       } else {
 558         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 559         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 560       }
 561       break;
 562     }
 563 
 564     case T_DOUBLE: {
 565       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 566         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 567       } else {
 568         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 569         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 570       }
 571       break;
 572     }
 573 
 574     default:
 575       ShouldNotReachHere();
 576   }
 577 }
 578 
 579 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 580   LIR_Const* c = src->as_constant_ptr();
 581   switch (c->type()) {
 582   case T_OBJECT:
 583     {
 584       if (! c->as_jobject())
 585         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 586       else {
 587         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 588         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 589       }
 590     }
 591     break;
 592   case T_ADDRESS:
 593     {
 594       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 595       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 596     }
 597   case T_INT:
 598   case T_FLOAT:
 599     {
 600       Register reg = zr;
 601       if (c->as_jint_bits() == 0)
 602         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 603       else {
 604         __ movw(rscratch1, c->as_jint_bits());
 605         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 606       }
 607     }
 608     break;
 609   case T_LONG:
 610   case T_DOUBLE:
 611     {
 612       Register reg = zr;
 613       if (c->as_jlong_bits() == 0)
 614         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 615                                                  lo_word_offset_in_bytes));
 616       else {
 617         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 618         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 619                                                         lo_word_offset_in_bytes));
 620       }
 621     }
 622     break;
 623   default:
 624     ShouldNotReachHere();
 625   }
 626 }
 627 
 628 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 629   assert(src->is_constant(), "should not call otherwise");
 630   LIR_Const* c = src->as_constant_ptr();
 631   LIR_Address* to_addr = dest->as_address_ptr();
 632 
 633   void (Assembler::* insn)(Register Rt, const Address &adr);
 634 
 635   switch (type) {
 636   case T_ADDRESS:
 637     assert(c->as_jint() == 0, "should be");
 638     insn = &Assembler::str;
 639     break;
 640   case T_LONG:
 641     assert(c->as_jlong() == 0, "should be");
 642     insn = &Assembler::str;
 643     break;
 644   case T_INT:
 645     assert(c->as_jint() == 0, "should be");
 646     insn = &Assembler::strw;
 647     break;
 648   case T_OBJECT:
 649   case T_ARRAY:
 650     assert(c->as_jobject() == 0, "should be");
 651     if (UseCompressedOops && !wide) {
 652       insn = &Assembler::strw;
 653     } else {
 654       insn = &Assembler::str;
 655     }
 656     break;
 657   case T_CHAR:
 658   case T_SHORT:
 659     assert(c->as_jint() == 0, "should be");
 660     insn = &Assembler::strh;
 661     break;
 662   case T_BOOLEAN:
 663   case T_BYTE:
 664     assert(c->as_jint() == 0, "should be");
 665     insn = &Assembler::strb;
 666     break;
 667   default:
 668     ShouldNotReachHere();
 669     insn = &Assembler::str;  // unreachable
 670   }
 671 
 672   if (info) add_debug_info_for_null_check_here(info);
 673   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 674 }
 675 
 676 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 677   assert(src->is_register(), "should not call otherwise");
 678   assert(dest->is_register(), "should not call otherwise");
 679 
 680   // move between cpu-registers
 681   if (dest->is_single_cpu()) {
 682     if (src->type() == T_LONG) {
 683       // Can do LONG -> OBJECT
 684       move_regs(src->as_register_lo(), dest->as_register());
 685       return;
 686     }
 687     assert(src->is_single_cpu(), "must match");
 688     if (src->type() == T_OBJECT) {
 689       __ verify_oop(src->as_register());
 690     }
 691     move_regs(src->as_register(), dest->as_register());
 692 
 693   } else if (dest->is_double_cpu()) {
 694     if (is_reference_type(src->type())) {
 695       // Surprising to me but we can see move of a long to t_object
 696       __ verify_oop(src->as_register());
 697       move_regs(src->as_register(), dest->as_register_lo());
 698       return;
 699     }
 700     assert(src->is_double_cpu(), "must match");
 701     Register f_lo = src->as_register_lo();
 702     Register f_hi = src->as_register_hi();
 703     Register t_lo = dest->as_register_lo();
 704     Register t_hi = dest->as_register_hi();
 705     assert(f_hi == f_lo, "must be same");
 706     assert(t_hi == t_lo, "must be same");
 707     move_regs(f_lo, t_lo);
 708 
 709   } else if (dest->is_single_fpu()) {
 710     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 711 
 712   } else if (dest->is_double_fpu()) {
 713     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 714 
 715   } else {
 716     ShouldNotReachHere();
 717   }
 718 }
 719 
 720 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 721   precond(src->is_register() && dest->is_stack());
 722 
 723   uint const c_sz32 = sizeof(uint32_t);
 724   uint const c_sz64 = sizeof(uint64_t);
 725 
 726   if (src->is_single_cpu()) {
 727     int index = dest->single_stack_ix();
 728     if (is_reference_type(type)) {
 729       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 730       __ verify_oop(src->as_register());
 731     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
 732       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 733     } else {
 734       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 735     }
 736 
 737   } else if (src->is_double_cpu()) {
 738     int index = dest->double_stack_ix();
 739     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 740     __ str(src->as_register_lo(), dest_addr_LO);
 741 
 742   } else if (src->is_single_fpu()) {
 743     int index = dest->single_stack_ix();
 744     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 745 
 746   } else if (src->is_double_fpu()) {
 747     int index = dest->double_stack_ix();
 748     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 749 
 750   } else {
 751     ShouldNotReachHere();
 752   }
 753 }
 754 
 755 
 756 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 757   LIR_Address* to_addr = dest->as_address_ptr();
 758   PatchingStub* patch = nullptr;
 759   Register compressed_src = rscratch1;
 760 
 761   if (patch_code != lir_patch_none) {
 762     deoptimize_trap(info);
 763     return;
 764   }
 765 
 766   if (is_reference_type(type)) {
 767     __ verify_oop(src->as_register());
 768 
 769     if (UseCompressedOops && !wide) {
 770       __ encode_heap_oop(compressed_src, src->as_register());
 771     } else {
 772       compressed_src = src->as_register();
 773     }
 774   }
 775 
 776   int null_check_here = code_offset();
 777   switch (type) {
 778     case T_FLOAT: {
 779       __ strs(src->as_float_reg(), as_Address(to_addr));
 780       break;
 781     }
 782 
 783     case T_DOUBLE: {
 784       __ strd(src->as_double_reg(), as_Address(to_addr));
 785       break;
 786     }
 787 
 788     case T_ARRAY:   // fall through
 789     case T_OBJECT:  // fall through
 790       if (UseCompressedOops && !wide) {
 791         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 792       } else {
 793          __ str(compressed_src, as_Address(to_addr));
 794       }
 795       break;
 796     case T_METADATA:
 797       // We get here to store a method pointer to the stack to pass to
 798       // a dtrace runtime call. This can't work on 64 bit with
 799       // compressed klass ptrs: T_METADATA can be a compressed klass
 800       // ptr or a 64 bit method pointer.
 801       ShouldNotReachHere();
 802       __ str(src->as_register(), as_Address(to_addr));
 803       break;
 804     case T_ADDRESS:
 805       __ str(src->as_register(), as_Address(to_addr));
 806       break;
 807     case T_INT:
 808       __ strw(src->as_register(), as_Address(to_addr));
 809       break;
 810 
 811     case T_LONG: {
 812       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 813       break;
 814     }
 815 
 816     case T_BYTE:    // fall through
 817     case T_BOOLEAN: {
 818       __ strb(src->as_register(), as_Address(to_addr));
 819       break;
 820     }
 821 
 822     case T_CHAR:    // fall through
 823     case T_SHORT:
 824       __ strh(src->as_register(), as_Address(to_addr));
 825       break;
 826 
 827     default:
 828       ShouldNotReachHere();
 829   }
 830   if (info != nullptr) {
 831     add_debug_info_for_null_check(null_check_here, info);
 832   }
 833 }
 834 
 835 
 836 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 837   precond(src->is_stack() && dest->is_register());
 838 
 839   uint const c_sz32 = sizeof(uint32_t);
 840   uint const c_sz64 = sizeof(uint64_t);
 841 
 842   if (dest->is_single_cpu()) {
 843     int index = src->single_stack_ix();
 844     if (is_reference_type(type)) {
 845       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 846       __ verify_oop(dest->as_register());
 847     } else if (type == T_METADATA || type == T_ADDRESS) {
 848       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 849     } else {
 850       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 851     }
 852 
 853   } else if (dest->is_double_cpu()) {
 854     int index = src->double_stack_ix();
 855     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 856     __ ldr(dest->as_register_lo(), src_addr_LO);
 857 
 858   } else if (dest->is_single_fpu()) {
 859     int index = src->single_stack_ix();
 860     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 861 
 862   } else if (dest->is_double_fpu()) {
 863     int index = src->double_stack_ix();
 864     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 865 
 866   } else {
 867     ShouldNotReachHere();
 868   }
 869 }
 870 
 871 
 872 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 873   address target = nullptr;
 874   relocInfo::relocType reloc_type = relocInfo::none;
 875 
 876   switch (patching_id(info)) {
 877   case PatchingStub::access_field_id:
 878     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 879     reloc_type = relocInfo::section_word_type;
 880     break;
 881   case PatchingStub::load_klass_id:
 882     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 883     reloc_type = relocInfo::metadata_type;
 884     break;
 885   case PatchingStub::load_mirror_id:
 886     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 887     reloc_type = relocInfo::oop_type;
 888     break;
 889   case PatchingStub::load_appendix_id:
 890     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 891     reloc_type = relocInfo::oop_type;
 892     break;
 893   default: ShouldNotReachHere();
 894   }
 895 
 896   __ far_call(RuntimeAddress(target));
 897   add_call_info_here(info);
 898 }
 899 
 900 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 901 
 902   LIR_Opr temp;
 903   if (type == T_LONG || type == T_DOUBLE)
 904     temp = FrameMap::rscratch1_long_opr;
 905   else
 906     temp = FrameMap::rscratch1_opr;
 907 
 908   stack2reg(src, temp, src->type());
 909   reg2stack(temp, dest, dest->type(), false);
 910 }
 911 
 912 
 913 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
 914   LIR_Address* addr = src->as_address_ptr();
 915   LIR_Address* from_addr = src->as_address_ptr();
 916 
 917   if (addr->base()->type() == T_OBJECT) {
 918     __ verify_oop(addr->base()->as_pointer_register());
 919   }
 920 
 921   if (patch_code != lir_patch_none) {
 922     deoptimize_trap(info);
 923     return;
 924   }
 925 
 926   if (info != nullptr) {
 927     add_debug_info_for_null_check_here(info);
 928   }
 929   int null_check_here = code_offset();
 930   switch (type) {
 931     case T_FLOAT: {
 932       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 933       break;
 934     }
 935 
 936     case T_DOUBLE: {
 937       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 938       break;
 939     }
 940 
 941     case T_ARRAY:   // fall through
 942     case T_OBJECT:  // fall through
 943       if (UseCompressedOops && !wide) {
 944         __ ldrw(dest->as_register(), as_Address(from_addr));
 945       } else {
 946         __ ldr(dest->as_register(), as_Address(from_addr));
 947       }
 948       break;
 949     case T_METADATA:
 950       // We get here to store a method pointer to the stack to pass to
 951       // a dtrace runtime call. This can't work on 64 bit with
 952       // compressed klass ptrs: T_METADATA can be a compressed klass
 953       // ptr or a 64 bit method pointer.
 954       ShouldNotReachHere();
 955       __ ldr(dest->as_register(), as_Address(from_addr));
 956       break;
 957     case T_ADDRESS:
 958       __ ldr(dest->as_register(), as_Address(from_addr));
 959       break;
 960     case T_INT:
 961       __ ldrw(dest->as_register(), as_Address(from_addr));
 962       break;
 963 
 964     case T_LONG: {
 965       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
 966       break;
 967     }
 968 
 969     case T_BYTE:
 970       __ ldrsb(dest->as_register(), as_Address(from_addr));
 971       break;
 972     case T_BOOLEAN: {
 973       __ ldrb(dest->as_register(), as_Address(from_addr));
 974       break;
 975     }
 976 
 977     case T_CHAR:
 978       __ ldrh(dest->as_register(), as_Address(from_addr));
 979       break;
 980     case T_SHORT:
 981       __ ldrsh(dest->as_register(), as_Address(from_addr));
 982       break;
 983 
 984     default:
 985       ShouldNotReachHere();
 986   }
 987 
 988   if (is_reference_type(type)) {
 989     if (UseCompressedOops && !wide) {
 990       __ decode_heap_oop(dest->as_register());
 991     }
 992 
 993     if (!(UseZGC && !ZGenerational)) {
 994       // Load barrier has not yet been applied, so ZGC can't verify the oop here
 995       __ verify_oop(dest->as_register());
 996     }
 997   }
 998 }
 999 
1000 
1001 int LIR_Assembler::array_element_size(BasicType type) const {
1002   int elem_size = type2aelembytes(type);
1003   return exact_log2(elem_size);
1004 }
1005 
1006 
1007 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1008   switch (op->code()) {
1009   case lir_idiv:
1010   case lir_irem:
1011     arithmetic_idiv(op->code(),
1012                     op->in_opr1(),
1013                     op->in_opr2(),
1014                     op->in_opr3(),
1015                     op->result_opr(),
1016                     op->info());
1017     break;
1018   case lir_fmad:
1019     __ fmaddd(op->result_opr()->as_double_reg(),
1020               op->in_opr1()->as_double_reg(),
1021               op->in_opr2()->as_double_reg(),
1022               op->in_opr3()->as_double_reg());
1023     break;
1024   case lir_fmaf:
1025     __ fmadds(op->result_opr()->as_float_reg(),
1026               op->in_opr1()->as_float_reg(),
1027               op->in_opr2()->as_float_reg(),
1028               op->in_opr3()->as_float_reg());
1029     break;
1030   default:      ShouldNotReachHere(); break;
1031   }
1032 }
1033 
1034 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1035 #ifdef ASSERT
1036   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1037   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1038   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1039 #endif
1040 
1041   if (op->cond() == lir_cond_always) {
1042     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1043     __ b(*(op->label()));
1044   } else {
1045     Assembler::Condition acond;
1046     if (op->code() == lir_cond_float_branch) {
1047       bool is_unordered = (op->ublock() == op->block());
1048       // Assembler::EQ does not permit unordered branches, so we add
1049       // another branch here.  Likewise, Assembler::NE does not permit
1050       // ordered branches.
1051       if ((is_unordered && op->cond() == lir_cond_equal)
1052           || (!is_unordered && op->cond() == lir_cond_notEqual))
1053         __ br(Assembler::VS, *(op->ublock()->label()));
1054       switch(op->cond()) {
1055       case lir_cond_equal:        acond = Assembler::EQ; break;
1056       case lir_cond_notEqual:     acond = Assembler::NE; break;
1057       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1058       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1059       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1060       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1061       default:                    ShouldNotReachHere();
1062         acond = Assembler::EQ;  // unreachable
1063       }
1064     } else {
1065       switch (op->cond()) {
1066         case lir_cond_equal:        acond = Assembler::EQ; break;
1067         case lir_cond_notEqual:     acond = Assembler::NE; break;
1068         case lir_cond_less:         acond = Assembler::LT; break;
1069         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1070         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1071         case lir_cond_greater:      acond = Assembler::GT; break;
1072         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1073         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1074         default:                    ShouldNotReachHere();
1075           acond = Assembler::EQ;  // unreachable
1076       }
1077     }
1078     __ br(acond,*(op->label()));
1079   }
1080 }
1081 
1082 
1083 
1084 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1085   LIR_Opr src  = op->in_opr();
1086   LIR_Opr dest = op->result_opr();
1087 
1088   switch (op->bytecode()) {
1089     case Bytecodes::_i2f:
1090       {
1091         __ scvtfws(dest->as_float_reg(), src->as_register());
1092         break;
1093       }
1094     case Bytecodes::_i2d:
1095       {
1096         __ scvtfwd(dest->as_double_reg(), src->as_register());
1097         break;
1098       }
1099     case Bytecodes::_l2d:
1100       {
1101         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1102         break;
1103       }
1104     case Bytecodes::_l2f:
1105       {
1106         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1107         break;
1108       }
1109     case Bytecodes::_f2d:
1110       {
1111         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1112         break;
1113       }
1114     case Bytecodes::_d2f:
1115       {
1116         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1117         break;
1118       }
1119     case Bytecodes::_i2c:
1120       {
1121         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1122         break;
1123       }
1124     case Bytecodes::_i2l:
1125       {
1126         __ sxtw(dest->as_register_lo(), src->as_register());
1127         break;
1128       }
1129     case Bytecodes::_i2s:
1130       {
1131         __ sxth(dest->as_register(), src->as_register());
1132         break;
1133       }
1134     case Bytecodes::_i2b:
1135       {
1136         __ sxtb(dest->as_register(), src->as_register());
1137         break;
1138       }
1139     case Bytecodes::_l2i:
1140       {
1141         _masm->block_comment("FIXME: This could be a no-op");
1142         __ uxtw(dest->as_register(), src->as_register_lo());
1143         break;
1144       }
1145     case Bytecodes::_d2l:
1146       {
1147         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1148         break;
1149       }
1150     case Bytecodes::_f2i:
1151       {
1152         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1153         break;
1154       }
1155     case Bytecodes::_f2l:
1156       {
1157         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1158         break;
1159       }
1160     case Bytecodes::_d2i:
1161       {
1162         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1163         break;
1164       }
1165     default: ShouldNotReachHere();
1166   }
1167 }
1168 
1169 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1170   if (op->init_check()) {
1171     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1172                                InstanceKlass::init_state_offset()));
1173     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1174     add_debug_info_for_null_check_here(op->stub()->info());
1175     __ br(Assembler::NE, *op->stub()->entry());
1176   }
1177   __ allocate_object(op->obj()->as_register(),
1178                      op->tmp1()->as_register(),
1179                      op->tmp2()->as_register(),
1180                      op->header_size(),
1181                      op->object_size(),
1182                      op->klass()->as_register(),
1183                      *op->stub()->entry());
1184   __ bind(*op->stub()->continuation());
1185 }
1186 
1187 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1188   Register len =  op->len()->as_register();
1189   __ uxtw(len, len);
1190 
1191   if (UseSlowPath ||
1192       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1193       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1194     __ b(*op->stub()->entry());
1195   } else {
1196     Register tmp1 = op->tmp1()->as_register();
1197     Register tmp2 = op->tmp2()->as_register();
1198     Register tmp3 = op->tmp3()->as_register();
1199     if (len == tmp1) {
1200       tmp1 = tmp3;
1201     } else if (len == tmp2) {
1202       tmp2 = tmp3;
1203     } else if (len == tmp3) {
1204       // everything is ok
1205     } else {
1206       __ mov(tmp3, len);
1207     }
1208     __ allocate_array(op->obj()->as_register(),
1209                       len,
1210                       tmp1,
1211                       tmp2,
1212                       arrayOopDesc::base_offset_in_bytes(op->type()),
1213                       array_element_size(op->type()),
1214                       op->klass()->as_register(),
1215                       *op->stub()->entry());
1216   }
1217   __ bind(*op->stub()->continuation());
1218 }
1219 
1220 void LIR_Assembler::type_profile_helper(Register mdo,
1221                                         ciMethodData *md, ciProfileData *data,
1222                                         Register recv, Label* update_done) {
1223   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1224     Label next_test;
1225     // See if the receiver is receiver[n].
1226     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1227     __ ldr(rscratch1, Address(rscratch2));
1228     __ cmp(recv, rscratch1);
1229     __ br(Assembler::NE, next_test);
1230     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1231     __ addptr(data_addr, DataLayout::counter_increment);
1232     __ b(*update_done);
1233     __ bind(next_test);
1234   }
1235 
1236   // Didn't find receiver; find next empty slot and fill it in
1237   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1238     Label next_test;
1239     __ lea(rscratch2,
1240            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1241     Address recv_addr(rscratch2);
1242     __ ldr(rscratch1, recv_addr);
1243     __ cbnz(rscratch1, next_test);
1244     __ str(recv, recv_addr);
1245     __ mov(rscratch1, DataLayout::counter_increment);
1246     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1247     __ str(rscratch1, Address(rscratch2));
1248     __ b(*update_done);
1249     __ bind(next_test);
1250   }
1251 }
1252 
1253 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1254   // we always need a stub for the failure case.
1255   CodeStub* stub = op->stub();
1256   Register obj = op->object()->as_register();
1257   Register k_RInfo = op->tmp1()->as_register();
1258   Register klass_RInfo = op->tmp2()->as_register();
1259   Register dst = op->result_opr()->as_register();
1260   ciKlass* k = op->klass();
1261   Register Rtmp1 = noreg;
1262 
1263   // check if it needs to be profiled
1264   ciMethodData* md;
1265   ciProfileData* data;
1266 
1267   const bool should_profile = op->should_profile();
1268 
1269   if (should_profile) {
1270     ciMethod* method = op->profiled_method();
1271     assert(method != nullptr, "Should have method");
1272     int bci = op->profiled_bci();
1273     md = method->method_data_or_null();
1274     assert(md != nullptr, "Sanity");
1275     data = md->bci_to_data(bci);
1276     assert(data != nullptr,                "need data for type check");
1277     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1278   }
1279   Label* success_target = success;
1280   Label* failure_target = failure;
1281 
1282   if (obj == k_RInfo) {
1283     k_RInfo = dst;
1284   } else if (obj == klass_RInfo) {
1285     klass_RInfo = dst;
1286   }
1287   if (k->is_loaded() && !UseCompressedClassPointers) {
1288     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1289   } else {
1290     Rtmp1 = op->tmp3()->as_register();
1291     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1292   }
1293 
1294   assert_different_registers(obj, k_RInfo, klass_RInfo);
1295 
1296   if (should_profile) {
1297     Register mdo  = klass_RInfo;
1298     __ mov_metadata(mdo, md->constant_encoding());
1299     Label not_null;
1300     __ cbnz(obj, not_null);
1301     // Object is null; update MDO and exit
1302     Address data_addr
1303       = __ form_address(rscratch2, mdo,
1304                         md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1305                         0);
1306     __ ldrb(rscratch1, data_addr);
1307     __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1308     __ strb(rscratch1, data_addr);
1309     __ b(*obj_is_null);
1310     __ bind(not_null);
1311 
1312     Label update_done;
1313     Register recv = k_RInfo;
1314     __ load_klass(recv, obj);
1315     type_profile_helper(mdo, md, data, recv, &update_done);
1316     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1317     __ addptr(counter_addr, DataLayout::counter_increment);
1318 
1319     __ bind(update_done);
1320   } else {
1321     __ cbz(obj, *obj_is_null);
1322   }
1323 
1324   if (!k->is_loaded()) {
1325     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1326   } else {
1327     __ mov_metadata(k_RInfo, k->constant_encoding());
1328   }
1329   __ verify_oop(obj);
1330 
1331   if (op->fast_check()) {
1332     // get object class
1333     // not a safepoint as obj null check happens earlier
1334     __ load_klass(rscratch1, obj);
1335     __ cmp( rscratch1, k_RInfo);
1336 
1337     __ br(Assembler::NE, *failure_target);
1338     // successful cast, fall through to profile or jump
1339   } else {
1340     // get object class
1341     // not a safepoint as obj null check happens earlier
1342     __ load_klass(klass_RInfo, obj);
1343     if (k->is_loaded()) {
1344       // See if we get an immediate positive hit
1345       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1346       __ cmp(k_RInfo, rscratch1);
1347       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1348         __ br(Assembler::NE, *failure_target);
1349         // successful cast, fall through to profile or jump
1350       } else {
1351         // See if we get an immediate positive hit
1352         __ br(Assembler::EQ, *success_target);
1353         // check for self
1354         __ cmp(klass_RInfo, k_RInfo);
1355         __ br(Assembler::EQ, *success_target);
1356 
1357         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1358         __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1359         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1360         // result is a boolean
1361         __ cbzw(klass_RInfo, *failure_target);
1362         // successful cast, fall through to profile or jump
1363       }
1364     } else {
1365       // perform the fast part of the checking logic
1366       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1367       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1368       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1369       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1370       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1371       // result is a boolean
1372       __ cbz(k_RInfo, *failure_target);
1373       // successful cast, fall through to profile or jump
1374     }
1375   }
1376   __ b(*success);
1377 }
1378 
1379 
1380 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1381   const bool should_profile = op->should_profile();
1382 
1383   LIR_Code code = op->code();
1384   if (code == lir_store_check) {
1385     Register value = op->object()->as_register();
1386     Register array = op->array()->as_register();
1387     Register k_RInfo = op->tmp1()->as_register();
1388     Register klass_RInfo = op->tmp2()->as_register();
1389     Register Rtmp1 = op->tmp3()->as_register();
1390 
1391     CodeStub* stub = op->stub();
1392 
1393     // check if it needs to be profiled
1394     ciMethodData* md;
1395     ciProfileData* data;
1396 
1397     if (should_profile) {
1398       ciMethod* method = op->profiled_method();
1399       assert(method != nullptr, "Should have method");
1400       int bci = op->profiled_bci();
1401       md = method->method_data_or_null();
1402       assert(md != nullptr, "Sanity");
1403       data = md->bci_to_data(bci);
1404       assert(data != nullptr,                "need data for type check");
1405       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1406     }
1407     Label done;
1408     Label* success_target = &done;
1409     Label* failure_target = stub->entry();
1410 
1411     if (should_profile) {
1412       Label not_null;
1413       Register mdo  = klass_RInfo;
1414       __ mov_metadata(mdo, md->constant_encoding());
1415       __ cbnz(value, not_null);
1416       // Object is null; update MDO and exit
1417       Address data_addr
1418         = __ form_address(rscratch2, mdo,
1419                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1420                           0);
1421       __ ldrb(rscratch1, data_addr);
1422       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1423       __ strb(rscratch1, data_addr);
1424       __ b(done);
1425       __ bind(not_null);
1426 
1427       Label update_done;
1428       Register recv = k_RInfo;
1429       __ load_klass(recv, value);
1430       type_profile_helper(mdo, md, data, recv, &update_done);
1431       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1432       __ addptr(counter_addr, DataLayout::counter_increment);
1433       __ bind(update_done);
1434     } else {
1435       __ cbz(value, done);
1436     }
1437 
1438     add_debug_info_for_null_check_here(op->info_for_exception());
1439     __ load_klass(k_RInfo, array);
1440     __ load_klass(klass_RInfo, value);
1441 
1442     // get instance klass (it's already uncompressed)
1443     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1444     // perform the fast part of the checking logic
1445     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1446     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1447     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1448     __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1449     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1450     // result is a boolean
1451     __ cbzw(k_RInfo, *failure_target);
1452     // fall through to the success case
1453 
1454     __ bind(done);
1455   } else if (code == lir_checkcast) {
1456     Register obj = op->object()->as_register();
1457     Register dst = op->result_opr()->as_register();
1458     Label success;
1459     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1460     __ bind(success);
1461     if (dst != obj) {
1462       __ mov(dst, obj);
1463     }
1464   } else if (code == lir_instanceof) {
1465     Register obj = op->object()->as_register();
1466     Register dst = op->result_opr()->as_register();
1467     Label success, failure, done;
1468     emit_typecheck_helper(op, &success, &failure, &failure);
1469     __ bind(failure);
1470     __ mov(dst, zr);
1471     __ b(done);
1472     __ bind(success);
1473     __ mov(dst, 1);
1474     __ bind(done);
1475   } else {
1476     ShouldNotReachHere();
1477   }
1478 }
1479 
1480 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1481   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1482   __ cset(rscratch1, Assembler::NE);
1483   __ membar(__ AnyAny);
1484 }
1485 
1486 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1487   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1488   __ cset(rscratch1, Assembler::NE);
1489   __ membar(__ AnyAny);
1490 }
1491 
1492 
1493 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1494   Register addr;
1495   if (op->addr()->is_register()) {
1496     addr = as_reg(op->addr());
1497   } else {
1498     assert(op->addr()->is_address(), "what else?");
1499     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1500     assert(addr_ptr->disp() == 0, "need 0 disp");
1501     assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1502     addr = as_reg(addr_ptr->base());
1503   }
1504   Register newval = as_reg(op->new_value());
1505   Register cmpval = as_reg(op->cmp_value());
1506 
1507   if (op->code() == lir_cas_obj) {
1508     if (UseCompressedOops) {
1509       Register t1 = op->tmp1()->as_register();
1510       assert(op->tmp1()->is_valid(), "must be");
1511       __ encode_heap_oop(t1, cmpval);
1512       cmpval = t1;
1513       __ encode_heap_oop(rscratch2, newval);
1514       newval = rscratch2;
1515       casw(addr, newval, cmpval);
1516     } else {
1517       casl(addr, newval, cmpval);
1518     }
1519   } else if (op->code() == lir_cas_int) {
1520     casw(addr, newval, cmpval);
1521   } else {
1522     casl(addr, newval, cmpval);
1523   }
1524 }
1525 
1526 
1527 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1528                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1529   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1530 
1531   Assembler::Condition acond, ncond;
1532   switch (condition) {
1533   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1534   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1535   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1536   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1537   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1538   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1539   case lir_cond_belowEqual:
1540   case lir_cond_aboveEqual:
1541   default:                    ShouldNotReachHere();
1542     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1543   }
1544 
1545   assert(result->is_single_cpu() || result->is_double_cpu(),
1546          "expect single register for result");
1547   if (opr1->is_constant() && opr2->is_constant()
1548       && opr1->type() == T_INT && opr2->type() == T_INT) {
1549     jint val1 = opr1->as_jint();
1550     jint val2 = opr2->as_jint();
1551     if (val1 == 0 && val2 == 1) {
1552       __ cset(result->as_register(), ncond);
1553       return;
1554     } else if (val1 == 1 && val2 == 0) {
1555       __ cset(result->as_register(), acond);
1556       return;
1557     }
1558   }
1559 
1560   if (opr1->is_constant() && opr2->is_constant()
1561       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1562     jlong val1 = opr1->as_jlong();
1563     jlong val2 = opr2->as_jlong();
1564     if (val1 == 0 && val2 == 1) {
1565       __ cset(result->as_register_lo(), ncond);
1566       return;
1567     } else if (val1 == 1 && val2 == 0) {
1568       __ cset(result->as_register_lo(), acond);
1569       return;
1570     }
1571   }
1572 
1573   if (opr1->is_stack()) {
1574     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1575     opr1 = FrameMap::rscratch1_opr;
1576   } else if (opr1->is_constant()) {
1577     LIR_Opr tmp
1578       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1579     const2reg(opr1, tmp, lir_patch_none, nullptr);
1580     opr1 = tmp;
1581   }
1582 
1583   if (opr2->is_stack()) {
1584     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1585     opr2 = FrameMap::rscratch2_opr;
1586   } else if (opr2->is_constant()) {
1587     LIR_Opr tmp
1588       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1589     const2reg(opr2, tmp, lir_patch_none, nullptr);
1590     opr2 = tmp;
1591   }
1592 
1593   if (result->type() == T_LONG)
1594     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1595   else
1596     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1597 }
1598 
1599 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1600   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1601 
1602   if (left->is_single_cpu()) {
1603     Register lreg = left->as_register();
1604     Register dreg = as_reg(dest);
1605 
1606     if (right->is_single_cpu()) {
1607       // cpu register - cpu register
1608 
1609       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1610              "should be");
1611       Register rreg = right->as_register();
1612       switch (code) {
1613       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1614       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1615       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1616       default:      ShouldNotReachHere();
1617       }
1618 
1619     } else if (right->is_double_cpu()) {
1620       Register rreg = right->as_register_lo();
1621       // single_cpu + double_cpu: can happen with obj+long
1622       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1623       switch (code) {
1624       case lir_add: __ add(dreg, lreg, rreg); break;
1625       case lir_sub: __ sub(dreg, lreg, rreg); break;
1626       default: ShouldNotReachHere();
1627       }
1628     } else if (right->is_constant()) {
1629       // cpu register - constant
1630       jlong c;
1631 
1632       // FIXME.  This is fugly: we really need to factor all this logic.
1633       switch(right->type()) {
1634       case T_LONG:
1635         c = right->as_constant_ptr()->as_jlong();
1636         break;
1637       case T_INT:
1638       case T_ADDRESS:
1639         c = right->as_constant_ptr()->as_jint();
1640         break;
1641       default:
1642         ShouldNotReachHere();
1643         c = 0;  // unreachable
1644         break;
1645       }
1646 
1647       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1648       if (c == 0 && dreg == lreg) {
1649         COMMENT("effective nop elided");
1650         return;
1651       }
1652       switch(left->type()) {
1653       case T_INT:
1654         switch (code) {
1655         case lir_add: __ addw(dreg, lreg, c); break;
1656         case lir_sub: __ subw(dreg, lreg, c); break;
1657         default: ShouldNotReachHere();
1658         }
1659         break;
1660       case T_OBJECT:
1661       case T_ADDRESS:
1662         switch (code) {
1663         case lir_add: __ add(dreg, lreg, c); break;
1664         case lir_sub: __ sub(dreg, lreg, c); break;
1665         default: ShouldNotReachHere();
1666         }
1667         break;
1668       default:
1669         ShouldNotReachHere();
1670       }
1671     } else {
1672       ShouldNotReachHere();
1673     }
1674 
1675   } else if (left->is_double_cpu()) {
1676     Register lreg_lo = left->as_register_lo();
1677 
1678     if (right->is_double_cpu()) {
1679       // cpu register - cpu register
1680       Register rreg_lo = right->as_register_lo();
1681       switch (code) {
1682       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1683       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1684       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1685       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1686       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1687       default:
1688         ShouldNotReachHere();
1689       }
1690 
1691     } else if (right->is_constant()) {
1692       jlong c = right->as_constant_ptr()->as_jlong();
1693       Register dreg = as_reg(dest);
1694       switch (code) {
1695         case lir_add:
1696         case lir_sub:
1697           if (c == 0 && dreg == lreg_lo) {
1698             COMMENT("effective nop elided");
1699             return;
1700           }
1701           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1702           break;
1703         case lir_div:
1704           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1705           if (c == 1) {
1706             // move lreg_lo to dreg if divisor is 1
1707             __ mov(dreg, lreg_lo);
1708           } else {
1709             unsigned int shift = log2i_exact(c);
1710             // use rscratch1 as intermediate result register
1711             __ asr(rscratch1, lreg_lo, 63);
1712             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1713             __ asr(dreg, rscratch1, shift);
1714           }
1715           break;
1716         case lir_rem:
1717           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1718           if (c == 1) {
1719             // move 0 to dreg if divisor is 1
1720             __ mov(dreg, zr);
1721           } else {
1722             // use rscratch1 as intermediate result register
1723             __ negs(rscratch1, lreg_lo);
1724             __ andr(dreg, lreg_lo, c - 1);
1725             __ andr(rscratch1, rscratch1, c - 1);
1726             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1727           }
1728           break;
1729         default:
1730           ShouldNotReachHere();
1731       }
1732     } else {
1733       ShouldNotReachHere();
1734     }
1735   } else if (left->is_single_fpu()) {
1736     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1737     switch (code) {
1738     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1739     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1740     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1741     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1742     default:
1743       ShouldNotReachHere();
1744     }
1745   } else if (left->is_double_fpu()) {
1746     if (right->is_double_fpu()) {
1747       // fpu register - fpu register
1748       switch (code) {
1749       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1750       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1751       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1752       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1753       default:
1754         ShouldNotReachHere();
1755       }
1756     } else {
1757       if (right->is_constant()) {
1758         ShouldNotReachHere();
1759       }
1760       ShouldNotReachHere();
1761     }
1762   } else if (left->is_single_stack() || left->is_address()) {
1763     assert(left == dest, "left and dest must be equal");
1764     ShouldNotReachHere();
1765   } else {
1766     ShouldNotReachHere();
1767   }
1768 }
1769 
1770 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1771 
1772 
1773 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1774   switch(code) {
1775   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1776   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1777   case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1778   case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1779   default      : ShouldNotReachHere();
1780   }
1781 }
1782 
1783 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1784 
1785   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1786   Register Rleft = left->is_single_cpu() ? left->as_register() :
1787                                            left->as_register_lo();
1788    if (dst->is_single_cpu()) {
1789      Register Rdst = dst->as_register();
1790      if (right->is_constant()) {
1791        switch (code) {
1792          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1793          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1794          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1795          default: ShouldNotReachHere(); break;
1796        }
1797      } else {
1798        Register Rright = right->is_single_cpu() ? right->as_register() :
1799                                                   right->as_register_lo();
1800        switch (code) {
1801          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1802          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1803          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1804          default: ShouldNotReachHere(); break;
1805        }
1806      }
1807    } else {
1808      Register Rdst = dst->as_register_lo();
1809      if (right->is_constant()) {
1810        switch (code) {
1811          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1812          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1813          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1814          default: ShouldNotReachHere(); break;
1815        }
1816      } else {
1817        Register Rright = right->is_single_cpu() ? right->as_register() :
1818                                                   right->as_register_lo();
1819        switch (code) {
1820          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1821          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1822          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1823          default: ShouldNotReachHere(); break;
1824        }
1825      }
1826    }
1827 }
1828 
1829 
1830 
1831 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1832 
1833   // opcode check
1834   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1835   bool is_irem = (code == lir_irem);
1836 
1837   // operand check
1838   assert(left->is_single_cpu(),   "left must be register");
1839   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1840   assert(result->is_single_cpu(), "result must be register");
1841   Register lreg = left->as_register();
1842   Register dreg = result->as_register();
1843 
1844   // power-of-2 constant check and codegen
1845   if (right->is_constant()) {
1846     int c = right->as_constant_ptr()->as_jint();
1847     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1848     if (is_irem) {
1849       if (c == 1) {
1850         // move 0 to dreg if divisor is 1
1851         __ movw(dreg, zr);
1852       } else {
1853         // use rscratch1 as intermediate result register
1854         __ negsw(rscratch1, lreg);
1855         __ andw(dreg, lreg, c - 1);
1856         __ andw(rscratch1, rscratch1, c - 1);
1857         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1858       }
1859     } else {
1860       if (c == 1) {
1861         // move lreg to dreg if divisor is 1
1862         __ movw(dreg, lreg);
1863       } else {
1864         unsigned int shift = exact_log2(c);
1865         // use rscratch1 as intermediate result register
1866         __ asrw(rscratch1, lreg, 31);
1867         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1868         __ asrw(dreg, rscratch1, shift);
1869       }
1870     }
1871   } else {
1872     Register rreg = right->as_register();
1873     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1874   }
1875 }
1876 
1877 
1878 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1879   if (opr1->is_constant() && opr2->is_single_cpu()) {
1880     // tableswitch
1881     Register reg = as_reg(opr2);
1882     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1883     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1884   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1885     Register reg1 = as_reg(opr1);
1886     if (opr2->is_single_cpu()) {
1887       // cpu register - cpu register
1888       Register reg2 = opr2->as_register();
1889       if (is_reference_type(opr1->type())) {
1890         __ cmpoop(reg1, reg2);
1891       } else {
1892         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1893         __ cmpw(reg1, reg2);
1894       }
1895       return;
1896     }
1897     if (opr2->is_double_cpu()) {
1898       // cpu register - cpu register
1899       Register reg2 = opr2->as_register_lo();
1900       __ cmp(reg1, reg2);
1901       return;
1902     }
1903 
1904     if (opr2->is_constant()) {
1905       bool is_32bit = false; // width of register operand
1906       jlong imm;
1907 
1908       switch(opr2->type()) {
1909       case T_INT:
1910         imm = opr2->as_constant_ptr()->as_jint();
1911         is_32bit = true;
1912         break;
1913       case T_LONG:
1914         imm = opr2->as_constant_ptr()->as_jlong();
1915         break;
1916       case T_ADDRESS:
1917         imm = opr2->as_constant_ptr()->as_jint();
1918         break;
1919       case T_METADATA:
1920         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1921         break;
1922       case T_OBJECT:
1923       case T_ARRAY:
1924         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1925         __ cmpoop(reg1, rscratch1);
1926         return;
1927       default:
1928         ShouldNotReachHere();
1929         imm = 0;  // unreachable
1930         break;
1931       }
1932 
1933       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1934         if (is_32bit)
1935           __ cmpw(reg1, imm);
1936         else
1937           __ subs(zr, reg1, imm);
1938         return;
1939       } else {
1940         __ mov(rscratch1, imm);
1941         if (is_32bit)
1942           __ cmpw(reg1, rscratch1);
1943         else
1944           __ cmp(reg1, rscratch1);
1945         return;
1946       }
1947     } else
1948       ShouldNotReachHere();
1949   } else if (opr1->is_single_fpu()) {
1950     FloatRegister reg1 = opr1->as_float_reg();
1951     assert(opr2->is_single_fpu(), "expect single float register");
1952     FloatRegister reg2 = opr2->as_float_reg();
1953     __ fcmps(reg1, reg2);
1954   } else if (opr1->is_double_fpu()) {
1955     FloatRegister reg1 = opr1->as_double_reg();
1956     assert(opr2->is_double_fpu(), "expect double float register");
1957     FloatRegister reg2 = opr2->as_double_reg();
1958     __ fcmpd(reg1, reg2);
1959   } else {
1960     ShouldNotReachHere();
1961   }
1962 }
1963 
1964 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1965   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1966     bool is_unordered_less = (code == lir_ucmp_fd2i);
1967     if (left->is_single_fpu()) {
1968       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1969     } else if (left->is_double_fpu()) {
1970       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1971     } else {
1972       ShouldNotReachHere();
1973     }
1974   } else if (code == lir_cmp_l2i) {
1975     Label done;
1976     __ cmp(left->as_register_lo(), right->as_register_lo());
1977     __ mov(dst->as_register(), (uint64_t)-1L);
1978     __ br(Assembler::LT, done);
1979     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1980     __ bind(done);
1981   } else {
1982     ShouldNotReachHere();
1983   }
1984 }
1985 
1986 
1987 void LIR_Assembler::align_call(LIR_Code code) {  }
1988 
1989 
1990 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
1991   address call = __ trampoline_call(Address(op->addr(), rtype));
1992   if (call == nullptr) {
1993     bailout("trampoline stub overflow");
1994     return;
1995   }
1996   add_call_info(code_offset(), op->info());
1997   __ post_call_nop();
1998 }
1999 
2000 
2001 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2002   address call = __ ic_call(op->addr());
2003   if (call == nullptr) {
2004     bailout("trampoline stub overflow");
2005     return;
2006   }
2007   add_call_info(code_offset(), op->info());
2008   __ post_call_nop();
2009 }
2010 
2011 void LIR_Assembler::emit_static_call_stub() {
2012   address call_pc = __ pc();
2013   address stub = __ start_a_stub(call_stub_size());
2014   if (stub == nullptr) {
2015     bailout("static call stub overflow");
2016     return;
2017   }
2018 
2019   int start = __ offset();
2020 
2021   __ relocate(static_stub_Relocation::spec(call_pc));
2022   __ emit_static_call_stub();
2023 
2024   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2025         <= call_stub_size(), "stub too big");
2026   __ end_a_stub();
2027 }
2028 
2029 
2030 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2031   assert(exceptionOop->as_register() == r0, "must match");
2032   assert(exceptionPC->as_register() == r3, "must match");
2033 
2034   // exception object is not added to oop map by LinearScan
2035   // (LinearScan assumes that no oops are in fixed registers)
2036   info->add_register_oop(exceptionOop);
2037   Runtime1::StubID unwind_id;
2038 
2039   // get current pc information
2040   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2041   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2042     // As no instructions have been generated yet for this LIR node it's
2043     // possible that an oop map already exists for the current offset.
2044     // In that case insert an dummy NOP here to ensure all oop map PCs
2045     // are unique. See JDK-8237483.
2046     __ nop();
2047   }
2048   int pc_for_athrow_offset = __ offset();
2049   InternalAddress pc_for_athrow(__ pc());
2050   __ adr(exceptionPC->as_register(), pc_for_athrow);
2051   add_call_info(pc_for_athrow_offset, info); // for exception handler
2052 
2053   __ verify_not_null_oop(r0);
2054   // search an exception handler (r0: exception oop, r3: throwing pc)
2055   if (compilation()->has_fpu_code()) {
2056     unwind_id = Runtime1::handle_exception_id;
2057   } else {
2058     unwind_id = Runtime1::handle_exception_nofpu_id;
2059   }
2060   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2061 
2062   // FIXME: enough room for two byte trap   ????
2063   __ nop();
2064 }
2065 
2066 
2067 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2068   assert(exceptionOop->as_register() == r0, "must match");
2069 
2070   __ b(_unwind_handler_entry);
2071 }
2072 
2073 
2074 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2075   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2076   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2077 
2078   switch (left->type()) {
2079     case T_INT: {
2080       switch (code) {
2081       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2082       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2083       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2084       default:
2085         ShouldNotReachHere();
2086         break;
2087       }
2088       break;
2089     case T_LONG:
2090     case T_ADDRESS:
2091     case T_OBJECT:
2092       switch (code) {
2093       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2094       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2095       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2096       default:
2097         ShouldNotReachHere();
2098         break;
2099       }
2100       break;
2101     default:
2102       ShouldNotReachHere();
2103       break;
2104     }
2105   }
2106 }
2107 
2108 
2109 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2110   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2111   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2112 
2113   switch (left->type()) {
2114     case T_INT: {
2115       switch (code) {
2116       case lir_shl:  __ lslw (dreg, lreg, count); break;
2117       case lir_shr:  __ asrw (dreg, lreg, count); break;
2118       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2119       default:
2120         ShouldNotReachHere();
2121         break;
2122       }
2123       break;
2124     case T_LONG:
2125     case T_ADDRESS:
2126     case T_OBJECT:
2127       switch (code) {
2128       case lir_shl:  __ lsl (dreg, lreg, count); break;
2129       case lir_shr:  __ asr (dreg, lreg, count); break;
2130       case lir_ushr: __ lsr (dreg, lreg, count); break;
2131       default:
2132         ShouldNotReachHere();
2133         break;
2134       }
2135       break;
2136     default:
2137       ShouldNotReachHere();
2138       break;
2139     }
2140   }
2141 }
2142 
2143 
2144 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2145   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2146   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2147   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2148   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2149 }
2150 
2151 
2152 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2153   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2154   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2155   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2156   __ mov (rscratch1, c);
2157   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2158 }
2159 
2160 
2161 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2162   ShouldNotReachHere();
2163   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2164   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2165   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2166   __ lea(rscratch1, __ constant_oop_address(o));
2167   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2168 }
2169 
2170 
2171 // This code replaces a call to arraycopy; no exception may
2172 // be thrown in this code, they must be thrown in the System.arraycopy
2173 // activation frame; we could save some checks if this would not be the case
2174 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2175   ciArrayKlass* default_type = op->expected_type();
2176   Register src = op->src()->as_register();
2177   Register dst = op->dst()->as_register();
2178   Register src_pos = op->src_pos()->as_register();
2179   Register dst_pos = op->dst_pos()->as_register();
2180   Register length  = op->length()->as_register();
2181   Register tmp = op->tmp()->as_register();
2182 
2183   CodeStub* stub = op->stub();
2184   int flags = op->flags();
2185   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2186   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2187 
2188   // if we don't know anything, just go through the generic arraycopy
2189   if (default_type == nullptr // || basic_type == T_OBJECT
2190       ) {
2191     Label done;
2192     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2193 
2194     // Save the arguments in case the generic arraycopy fails and we
2195     // have to fall back to the JNI stub
2196     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2197     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2198     __ str(src,              Address(sp, 4*BytesPerWord));
2199 
2200     address copyfunc_addr = StubRoutines::generic_arraycopy();
2201     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2202 
2203     // The arguments are in java calling convention so we shift them
2204     // to C convention
2205     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2206     __ mov(c_rarg0, j_rarg0);
2207     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2208     __ mov(c_rarg1, j_rarg1);
2209     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2210     __ mov(c_rarg2, j_rarg2);
2211     assert_different_registers(c_rarg3, j_rarg4);
2212     __ mov(c_rarg3, j_rarg3);
2213     __ mov(c_rarg4, j_rarg4);
2214 #ifndef PRODUCT
2215     if (PrintC1Statistics) {
2216       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2217     }
2218 #endif
2219     __ far_call(RuntimeAddress(copyfunc_addr));
2220 
2221     __ cbz(r0, *stub->continuation());
2222 
2223     // Reload values from the stack so they are where the stub
2224     // expects them.
2225     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2226     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2227     __ ldr(src,              Address(sp, 4*BytesPerWord));
2228 
2229     // r0 is -1^K where K == partial copied count
2230     __ eonw(rscratch1, r0, zr);
2231     // adjust length down and src/end pos up by partial copied count
2232     __ subw(length, length, rscratch1);
2233     __ addw(src_pos, src_pos, rscratch1);
2234     __ addw(dst_pos, dst_pos, rscratch1);
2235     __ b(*stub->entry());
2236 
2237     __ bind(*stub->continuation());
2238     return;
2239   }
2240 
2241   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2242 
2243   int elem_size = type2aelembytes(basic_type);
2244   int scale = exact_log2(elem_size);
2245 
2246   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2247   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2248   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2249   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2250 
2251   // test for null
2252   if (flags & LIR_OpArrayCopy::src_null_check) {
2253     __ cbz(src, *stub->entry());
2254   }
2255   if (flags & LIR_OpArrayCopy::dst_null_check) {
2256     __ cbz(dst, *stub->entry());
2257   }
2258 
2259   // If the compiler was not able to prove that exact type of the source or the destination
2260   // of the arraycopy is an array type, check at runtime if the source or the destination is
2261   // an instance type.
2262   if (flags & LIR_OpArrayCopy::type_check) {
2263     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2264       __ load_klass(tmp, dst);
2265       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2266       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2267       __ br(Assembler::GE, *stub->entry());
2268     }
2269 
2270     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2271       __ load_klass(tmp, src);
2272       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2273       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2274       __ br(Assembler::GE, *stub->entry());
2275     }
2276   }
2277 
2278   // check if negative
2279   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2280     __ cmpw(src_pos, 0);
2281     __ br(Assembler::LT, *stub->entry());
2282   }
2283   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2284     __ cmpw(dst_pos, 0);
2285     __ br(Assembler::LT, *stub->entry());
2286   }
2287 
2288   if (flags & LIR_OpArrayCopy::length_positive_check) {
2289     __ cmpw(length, 0);
2290     __ br(Assembler::LT, *stub->entry());
2291   }
2292 
2293   if (flags & LIR_OpArrayCopy::src_range_check) {
2294     __ addw(tmp, src_pos, length);
2295     __ ldrw(rscratch1, src_length_addr);
2296     __ cmpw(tmp, rscratch1);
2297     __ br(Assembler::HI, *stub->entry());
2298   }
2299   if (flags & LIR_OpArrayCopy::dst_range_check) {
2300     __ addw(tmp, dst_pos, length);
2301     __ ldrw(rscratch1, dst_length_addr);
2302     __ cmpw(tmp, rscratch1);
2303     __ br(Assembler::HI, *stub->entry());
2304   }
2305 
2306   if (flags & LIR_OpArrayCopy::type_check) {
2307     // We don't know the array types are compatible
2308     if (basic_type != T_OBJECT) {
2309       // Simple test for basic type arrays
2310       if (UseCompressedClassPointers) {
2311         __ ldrw(tmp, src_klass_addr);
2312         __ ldrw(rscratch1, dst_klass_addr);
2313         __ cmpw(tmp, rscratch1);
2314       } else {
2315         __ ldr(tmp, src_klass_addr);
2316         __ ldr(rscratch1, dst_klass_addr);
2317         __ cmp(tmp, rscratch1);
2318       }
2319       __ br(Assembler::NE, *stub->entry());
2320     } else {
2321       // For object arrays, if src is a sub class of dst then we can
2322       // safely do the copy.
2323       Label cont, slow;
2324 
2325 #define PUSH(r1, r2)                                    \
2326       stp(r1, r2, __ pre(sp, -2 * wordSize));
2327 
2328 #define POP(r1, r2)                                     \
2329       ldp(r1, r2, __ post(sp, 2 * wordSize));
2330 
2331       __ PUSH(src, dst);
2332 
2333       __ load_klass(src, src);
2334       __ load_klass(dst, dst);
2335 
2336       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2337 
2338       __ PUSH(src, dst);
2339       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2340       __ POP(src, dst);
2341 
2342       __ cbnz(src, cont);
2343 
2344       __ bind(slow);
2345       __ POP(src, dst);
2346 
2347       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2348       if (copyfunc_addr != nullptr) { // use stub if available
2349         // src is not a sub class of dst so we have to do a
2350         // per-element check.
2351 
2352         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2353         if ((flags & mask) != mask) {
2354           // Check that at least both of them object arrays.
2355           assert(flags & mask, "one of the two should be known to be an object array");
2356 
2357           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2358             __ load_klass(tmp, src);
2359           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2360             __ load_klass(tmp, dst);
2361           }
2362           int lh_offset = in_bytes(Klass::layout_helper_offset());
2363           Address klass_lh_addr(tmp, lh_offset);
2364           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2365           __ ldrw(rscratch1, klass_lh_addr);
2366           __ mov(rscratch2, objArray_lh);
2367           __ eorw(rscratch1, rscratch1, rscratch2);
2368           __ cbnzw(rscratch1, *stub->entry());
2369         }
2370 
2371        // Spill because stubs can use any register they like and it's
2372        // easier to restore just those that we care about.
2373         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2374         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2375         __ str(src,              Address(sp, 4*BytesPerWord));
2376 
2377         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2378         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2379         assert_different_registers(c_rarg0, dst, dst_pos, length);
2380         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2381         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2382         assert_different_registers(c_rarg1, dst, length);
2383         __ uxtw(c_rarg2, length);
2384         assert_different_registers(c_rarg2, dst);
2385 
2386         __ load_klass(c_rarg4, dst);
2387         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2388         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2389         __ far_call(RuntimeAddress(copyfunc_addr));
2390 
2391 #ifndef PRODUCT
2392         if (PrintC1Statistics) {
2393           Label failed;
2394           __ cbnz(r0, failed);
2395           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2396           __ bind(failed);
2397         }
2398 #endif
2399 
2400         __ cbz(r0, *stub->continuation());
2401 
2402 #ifndef PRODUCT
2403         if (PrintC1Statistics) {
2404           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2405         }
2406 #endif
2407         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2408 
2409         // Restore previously spilled arguments
2410         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2411         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2412         __ ldr(src,              Address(sp, 4*BytesPerWord));
2413 
2414         // return value is -1^K where K is partial copied count
2415         __ eonw(rscratch1, r0, zr);
2416         // adjust length down and src/end pos up by partial copied count
2417         __ subw(length, length, rscratch1);
2418         __ addw(src_pos, src_pos, rscratch1);
2419         __ addw(dst_pos, dst_pos, rscratch1);
2420       }
2421 
2422       __ b(*stub->entry());
2423 
2424       __ bind(cont);
2425       __ POP(src, dst);
2426     }
2427   }
2428 
2429 #ifdef ASSERT
2430   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2431     // Sanity check the known type with the incoming class.  For the
2432     // primitive case the types must match exactly with src.klass and
2433     // dst.klass each exactly matching the default type.  For the
2434     // object array case, if no type check is needed then either the
2435     // dst type is exactly the expected type and the src type is a
2436     // subtype which we can't check or src is the same array as dst
2437     // but not necessarily exactly of type default_type.
2438     Label known_ok, halt;
2439     __ mov_metadata(tmp, default_type->constant_encoding());
2440     if (UseCompressedClassPointers) {
2441       __ encode_klass_not_null(tmp);
2442     }
2443 
2444     if (basic_type != T_OBJECT) {
2445 
2446       if (UseCompressedClassPointers) {
2447         __ ldrw(rscratch1, dst_klass_addr);
2448         __ cmpw(tmp, rscratch1);
2449       } else {
2450         __ ldr(rscratch1, dst_klass_addr);
2451         __ cmp(tmp, rscratch1);
2452       }
2453       __ br(Assembler::NE, halt);
2454       if (UseCompressedClassPointers) {
2455         __ ldrw(rscratch1, src_klass_addr);
2456         __ cmpw(tmp, rscratch1);
2457       } else {
2458         __ ldr(rscratch1, src_klass_addr);
2459         __ cmp(tmp, rscratch1);
2460       }
2461       __ br(Assembler::EQ, known_ok);
2462     } else {
2463       if (UseCompressedClassPointers) {
2464         __ ldrw(rscratch1, dst_klass_addr);
2465         __ cmpw(tmp, rscratch1);
2466       } else {
2467         __ ldr(rscratch1, dst_klass_addr);
2468         __ cmp(tmp, rscratch1);
2469       }
2470       __ br(Assembler::EQ, known_ok);
2471       __ cmp(src, dst);
2472       __ br(Assembler::EQ, known_ok);
2473     }
2474     __ bind(halt);
2475     __ stop("incorrect type information in arraycopy");
2476     __ bind(known_ok);
2477   }
2478 #endif
2479 
2480 #ifndef PRODUCT
2481   if (PrintC1Statistics) {
2482     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2483   }
2484 #endif
2485 
2486   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2487   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2488   assert_different_registers(c_rarg0, dst, dst_pos, length);
2489   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2490   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2491   assert_different_registers(c_rarg1, dst, length);
2492   __ uxtw(c_rarg2, length);
2493   assert_different_registers(c_rarg2, dst);
2494 
2495   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2496   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2497   const char *name;
2498   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2499 
2500  CodeBlob *cb = CodeCache::find_blob(entry);
2501  if (cb) {
2502    __ far_call(RuntimeAddress(entry));
2503  } else {
2504    __ call_VM_leaf(entry, 3);
2505  }
2506 
2507   __ bind(*stub->continuation());
2508 }
2509 
2510 
2511 
2512 
2513 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2514   Register obj = op->obj_opr()->as_register();  // may not be an oop
2515   Register hdr = op->hdr_opr()->as_register();
2516   Register lock = op->lock_opr()->as_register();
2517   Register temp = op->scratch_opr()->as_register();
2518   if (LockingMode == LM_MONITOR) {
2519     if (op->info() != nullptr) {
2520       add_debug_info_for_null_check_here(op->info());
2521       __ null_check(obj, -1);
2522     }
2523     __ b(*op->stub()->entry());
2524   } else if (op->code() == lir_lock) {
2525     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2526     // add debug info for NullPointerException only if one is possible
2527     int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2528     if (op->info() != nullptr) {
2529       add_debug_info_for_null_check(null_check_offset, op->info());
2530     }
2531     // done
2532   } else if (op->code() == lir_unlock) {
2533     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2534     __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2535   } else {
2536     Unimplemented();
2537   }
2538   __ bind(*op->stub()->continuation());
2539 }
2540 
2541 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2542   Register obj = op->obj()->as_pointer_register();
2543   Register result = op->result_opr()->as_pointer_register();
2544 
2545   CodeEmitInfo* info = op->info();
2546   if (info != nullptr) {
2547     add_debug_info_for_null_check_here(info);
2548   }
2549 
2550   if (UseCompressedClassPointers) {
2551     __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2552     __ decode_klass_not_null(result);
2553   } else {
2554     __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2555   }
2556 }
2557 
2558 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2559   ciMethod* method = op->profiled_method();
2560   int bci          = op->profiled_bci();
2561   ciMethod* callee = op->profiled_callee();
2562 
2563   // Update counter for all call types
2564   ciMethodData* md = method->method_data_or_null();
2565   assert(md != nullptr, "Sanity");
2566   ciProfileData* data = md->bci_to_data(bci);
2567   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2568   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2569   Register mdo  = op->mdo()->as_register();
2570   __ mov_metadata(mdo, md->constant_encoding());
2571   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2572   // Perform additional virtual call profiling for invokevirtual and
2573   // invokeinterface bytecodes
2574   if (op->should_profile_receiver_type()) {
2575     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2576     Register recv = op->recv()->as_register();
2577     assert_different_registers(mdo, recv);
2578     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2579     ciKlass* known_klass = op->known_holder();
2580     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2581       // We know the type that will be seen at this call site; we can
2582       // statically update the MethodData* rather than needing to do
2583       // dynamic tests on the receiver type
2584 
2585       // NOTE: we should probably put a lock around this search to
2586       // avoid collisions by concurrent compilations
2587       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2588       uint i;
2589       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2590         ciKlass* receiver = vc_data->receiver(i);
2591         if (known_klass->equals(receiver)) {
2592           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2593           __ addptr(data_addr, DataLayout::counter_increment);
2594           return;
2595         }
2596       }
2597 
2598       // Receiver type not found in profile data; select an empty slot
2599 
2600       // Note that this is less efficient than it should be because it
2601       // always does a write to the receiver part of the
2602       // VirtualCallData rather than just the first time
2603       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2604         ciKlass* receiver = vc_data->receiver(i);
2605         if (receiver == nullptr) {
2606           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2607           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2608           __ lea(rscratch2, recv_addr);
2609           __ str(rscratch1, Address(rscratch2));
2610           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2611           __ addptr(data_addr, DataLayout::counter_increment);
2612           return;
2613         }
2614       }
2615     } else {
2616       __ load_klass(recv, recv);
2617       Label update_done;
2618       type_profile_helper(mdo, md, data, recv, &update_done);
2619       // Receiver did not match any saved receiver and there is no empty row for it.
2620       // Increment total counter to indicate polymorphic case.
2621       __ addptr(counter_addr, DataLayout::counter_increment);
2622 
2623       __ bind(update_done);
2624     }
2625   } else {
2626     // Static call
2627     __ addptr(counter_addr, DataLayout::counter_increment);
2628   }
2629 }
2630 
2631 
2632 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2633   Unimplemented();
2634 }
2635 
2636 
2637 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2638   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2639 }
2640 
2641 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2642   assert(op->crc()->is_single_cpu(),  "crc must be register");
2643   assert(op->val()->is_single_cpu(),  "byte value must be register");
2644   assert(op->result_opr()->is_single_cpu(), "result must be register");
2645   Register crc = op->crc()->as_register();
2646   Register val = op->val()->as_register();
2647   Register res = op->result_opr()->as_register();
2648 
2649   assert_different_registers(val, crc, res);
2650   uint64_t offset;
2651   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2652   __ add(res, res, offset);
2653 
2654   __ mvnw(crc, crc); // ~crc
2655   __ update_byte_crc32(crc, val, res);
2656   __ mvnw(res, crc); // ~crc
2657 }
2658 
2659 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2660   COMMENT("emit_profile_type {");
2661   Register obj = op->obj()->as_register();
2662   Register tmp = op->tmp()->as_pointer_register();
2663   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2664   ciKlass* exact_klass = op->exact_klass();
2665   intptr_t current_klass = op->current_klass();
2666   bool not_null = op->not_null();
2667   bool no_conflict = op->no_conflict();
2668 
2669   Label update, next, none;
2670 
2671   bool do_null = !not_null;
2672   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2673   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2674 
2675   assert(do_null || do_update, "why are we here?");
2676   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2677   assert(mdo_addr.base() != rscratch1, "wrong register");
2678 
2679   __ verify_oop(obj);
2680 
2681   if (tmp != obj) {
2682     assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2683     __ mov(tmp, obj);
2684   } else {
2685     assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2686   }
2687   if (do_null) {
2688     __ cbnz(tmp, update);
2689     if (!TypeEntries::was_null_seen(current_klass)) {
2690       __ ldr(rscratch2, mdo_addr);
2691       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2692       __ str(rscratch2, mdo_addr);
2693     }
2694     if (do_update) {
2695 #ifndef ASSERT
2696       __ b(next);
2697     }
2698 #else
2699       __ b(next);
2700     }
2701   } else {
2702     __ cbnz(tmp, update);
2703     __ stop("unexpected null obj");
2704 #endif
2705   }
2706 
2707   __ bind(update);
2708 
2709   if (do_update) {
2710 #ifdef ASSERT
2711     if (exact_klass != nullptr) {
2712       Label ok;
2713       __ load_klass(tmp, tmp);
2714       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2715       __ eor(rscratch1, tmp, rscratch1);
2716       __ cbz(rscratch1, ok);
2717       __ stop("exact klass and actual klass differ");
2718       __ bind(ok);
2719     }
2720 #endif
2721     if (!no_conflict) {
2722       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2723         if (exact_klass != nullptr) {
2724           __ mov_metadata(tmp, exact_klass->constant_encoding());
2725         } else {
2726           __ load_klass(tmp, tmp);
2727         }
2728 
2729         __ ldr(rscratch2, mdo_addr);
2730         __ eor(tmp, tmp, rscratch2);
2731         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2732         // klass seen before, nothing to do. The unknown bit may have been
2733         // set already but no need to check.
2734         __ cbz(rscratch1, next);
2735 
2736         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2737 
2738         if (TypeEntries::is_type_none(current_klass)) {
2739           __ cbz(rscratch2, none);
2740           __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2741           __ br(Assembler::EQ, none);
2742           // There is a chance that the checks above
2743           // fail if another thread has just set the
2744           // profiling to this obj's klass
2745           __ dmb(Assembler::ISHLD);
2746           __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2747           __ ldr(rscratch2, mdo_addr);
2748           __ eor(tmp, tmp, rscratch2);
2749           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2750           __ cbz(rscratch1, next);
2751         }
2752       } else {
2753         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2754                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2755 
2756         __ ldr(tmp, mdo_addr);
2757         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2758       }
2759 
2760       // different than before. Cannot keep accurate profile.
2761       __ ldr(rscratch2, mdo_addr);
2762       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2763       __ str(rscratch2, mdo_addr);
2764 
2765       if (TypeEntries::is_type_none(current_klass)) {
2766         __ b(next);
2767 
2768         __ bind(none);
2769         // first time here. Set profile type.
2770         __ str(tmp, mdo_addr);
2771 #ifdef ASSERT
2772         __ andr(tmp, tmp, TypeEntries::type_mask);
2773         __ verify_klass_ptr(tmp);
2774 #endif
2775       }
2776     } else {
2777       // There's a single possible klass at this profile point
2778       assert(exact_klass != nullptr, "should be");
2779       if (TypeEntries::is_type_none(current_klass)) {
2780         __ mov_metadata(tmp, exact_klass->constant_encoding());
2781         __ ldr(rscratch2, mdo_addr);
2782         __ eor(tmp, tmp, rscratch2);
2783         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2784         __ cbz(rscratch1, next);
2785 #ifdef ASSERT
2786         {
2787           Label ok;
2788           __ ldr(rscratch1, mdo_addr);
2789           __ cbz(rscratch1, ok);
2790           __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2791           __ br(Assembler::EQ, ok);
2792           // may have been set by another thread
2793           __ dmb(Assembler::ISHLD);
2794           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2795           __ ldr(rscratch2, mdo_addr);
2796           __ eor(rscratch2, rscratch1, rscratch2);
2797           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2798           __ cbz(rscratch2, ok);
2799 
2800           __ stop("unexpected profiling mismatch");
2801           __ bind(ok);
2802         }
2803 #endif
2804         // first time here. Set profile type.
2805         __ str(tmp, mdo_addr);
2806 #ifdef ASSERT
2807         __ andr(tmp, tmp, TypeEntries::type_mask);
2808         __ verify_klass_ptr(tmp);
2809 #endif
2810       } else {
2811         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2812                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2813 
2814         __ ldr(tmp, mdo_addr);
2815         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2816 
2817         __ orr(tmp, tmp, TypeEntries::type_unknown);
2818         __ str(tmp, mdo_addr);
2819         // FIXME: Write barrier needed here?
2820       }
2821     }
2822 
2823     __ bind(next);
2824   }
2825   COMMENT("} emit_profile_type");
2826 }
2827 
2828 
2829 void LIR_Assembler::align_backward_branch_target() {
2830 }
2831 
2832 
2833 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2834   // tmp must be unused
2835   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2836 
2837   if (left->is_single_cpu()) {
2838     assert(dest->is_single_cpu(), "expect single result reg");
2839     __ negw(dest->as_register(), left->as_register());
2840   } else if (left->is_double_cpu()) {
2841     assert(dest->is_double_cpu(), "expect double result reg");
2842     __ neg(dest->as_register_lo(), left->as_register_lo());
2843   } else if (left->is_single_fpu()) {
2844     assert(dest->is_single_fpu(), "expect single float result reg");
2845     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2846   } else {
2847     assert(left->is_double_fpu(), "expect double float operand reg");
2848     assert(dest->is_double_fpu(), "expect double float result reg");
2849     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2850   }
2851 }
2852 
2853 
2854 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2855   if (patch_code != lir_patch_none) {
2856     deoptimize_trap(info);
2857     return;
2858   }
2859 
2860   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2861 }
2862 
2863 
2864 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2865   assert(!tmp->is_valid(), "don't need temporary");
2866 
2867   CodeBlob *cb = CodeCache::find_blob(dest);
2868   if (cb) {
2869     __ far_call(RuntimeAddress(dest));
2870   } else {
2871     __ mov(rscratch1, RuntimeAddress(dest));
2872     __ blr(rscratch1);
2873   }
2874 
2875   if (info != nullptr) {
2876     add_call_info_here(info);
2877   }
2878   __ post_call_nop();
2879 }
2880 
2881 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2882   if (dest->is_address() || src->is_address()) {
2883     move_op(src, dest, type, lir_patch_none, info,
2884             /*pop_fpu_stack*/false, /*wide*/false);
2885   } else {
2886     ShouldNotReachHere();
2887   }
2888 }
2889 
2890 #ifdef ASSERT
2891 // emit run-time assertion
2892 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2893   assert(op->code() == lir_assert, "must be");
2894 
2895   if (op->in_opr1()->is_valid()) {
2896     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2897     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2898   } else {
2899     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2900     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2901   }
2902 
2903   Label ok;
2904   if (op->condition() != lir_cond_always) {
2905     Assembler::Condition acond = Assembler::AL;
2906     switch (op->condition()) {
2907       case lir_cond_equal:        acond = Assembler::EQ;  break;
2908       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2909       case lir_cond_less:         acond = Assembler::LT;  break;
2910       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2911       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2912       case lir_cond_greater:      acond = Assembler::GT;  break;
2913       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2914       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2915       default:                    ShouldNotReachHere();
2916     }
2917     __ br(acond, ok);
2918   }
2919   if (op->halt()) {
2920     const char* str = __ code_string(op->msg());
2921     __ stop(str);
2922   } else {
2923     breakpoint();
2924   }
2925   __ bind(ok);
2926 }
2927 #endif
2928 
2929 #ifndef PRODUCT
2930 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2931 #else
2932 #define COMMENT(x)
2933 #endif
2934 
2935 void LIR_Assembler::membar() {
2936   COMMENT("membar");
2937   __ membar(MacroAssembler::AnyAny);
2938 }
2939 
2940 void LIR_Assembler::membar_acquire() {
2941   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2942 }
2943 
2944 void LIR_Assembler::membar_release() {
2945   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2946 }
2947 
2948 void LIR_Assembler::membar_loadload() {
2949   __ membar(Assembler::LoadLoad);
2950 }
2951 
2952 void LIR_Assembler::membar_storestore() {
2953   __ membar(MacroAssembler::StoreStore);
2954 }
2955 
2956 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2957 
2958 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2959 
2960 void LIR_Assembler::on_spin_wait() {
2961   __ spin_wait();
2962 }
2963 
2964 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2965   __ mov(result_reg->as_register(), rthread);
2966 }
2967 
2968 
2969 void LIR_Assembler::peephole(LIR_List *lir) {
2970 #if 0
2971   if (tableswitch_count >= max_tableswitches)
2972     return;
2973 
2974   /*
2975     This finite-state automaton recognizes sequences of compare-and-
2976     branch instructions.  We will turn them into a tableswitch.  You
2977     could argue that C1 really shouldn't be doing this sort of
2978     optimization, but without it the code is really horrible.
2979   */
2980 
2981   enum { start_s, cmp1_s, beq_s, cmp_s } state;
2982   int first_key, last_key = -2147483648;
2983   int next_key = 0;
2984   int start_insn = -1;
2985   int last_insn = -1;
2986   Register reg = noreg;
2987   LIR_Opr reg_opr;
2988   state = start_s;
2989 
2990   LIR_OpList* inst = lir->instructions_list();
2991   for (int i = 0; i < inst->length(); i++) {
2992     LIR_Op* op = inst->at(i);
2993     switch (state) {
2994     case start_s:
2995       first_key = -1;
2996       start_insn = i;
2997       switch (op->code()) {
2998       case lir_cmp:
2999         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3000         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3001         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3002             && opr2->is_constant()
3003             && opr2->type() == T_INT) {
3004           reg_opr = opr1;
3005           reg = opr1->as_register();
3006           first_key = opr2->as_constant_ptr()->as_jint();
3007           next_key = first_key + 1;
3008           state = cmp_s;
3009           goto next_state;
3010         }
3011         break;
3012       }
3013       break;
3014     case cmp_s:
3015       switch (op->code()) {
3016       case lir_branch:
3017         if (op->as_OpBranch()->cond() == lir_cond_equal) {
3018           state = beq_s;
3019           last_insn = i;
3020           goto next_state;
3021         }
3022       }
3023       state = start_s;
3024       break;
3025     case beq_s:
3026       switch (op->code()) {
3027       case lir_cmp: {
3028         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3029         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3030         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3031             && opr1->as_register() == reg
3032             && opr2->is_constant()
3033             && opr2->type() == T_INT
3034             && opr2->as_constant_ptr()->as_jint() == next_key) {
3035           last_key = next_key;
3036           next_key++;
3037           state = cmp_s;
3038           goto next_state;
3039         }
3040       }
3041       }
3042       last_key = next_key;
3043       state = start_s;
3044       break;
3045     default:
3046       assert(false, "impossible state");
3047     }
3048     if (state == start_s) {
3049       if (first_key < last_key - 5L && reg != noreg) {
3050         {
3051           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3052           //        reg->encoding(),
3053           //        start_insn, first_key, last_key);
3054           //   for (int i = 0; i < inst->length(); i++) {
3055           //     inst->at(i)->print();
3056           //     tty->print("\n");
3057           //   }
3058           //   tty->print("\n");
3059         }
3060 
3061         struct tableswitch *sw = &switches[tableswitch_count];
3062         sw->_insn_index = start_insn, sw->_first_key = first_key,
3063           sw->_last_key = last_key, sw->_reg = reg;
3064         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3065         {
3066           // Insert the new table of branches
3067           int offset = last_insn;
3068           for (int n = first_key; n < last_key; n++) {
3069             inst->insert_before
3070               (last_insn + 1,
3071                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3072                                 inst->at(offset)->as_OpBranch()->label()));
3073             offset -= 2, i++;
3074           }
3075         }
3076         // Delete all the old compare-and-branch instructions
3077         for (int n = first_key; n < last_key; n++) {
3078           inst->remove_at(start_insn);
3079           inst->remove_at(start_insn);
3080         }
3081         // Insert the tableswitch instruction
3082         inst->insert_before(start_insn,
3083                             new LIR_Op2(lir_cmp, lir_cond_always,
3084                                         LIR_OprFact::intConst(tableswitch_count),
3085                                         reg_opr));
3086         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3087         tableswitch_count++;
3088       }
3089       reg = noreg;
3090       last_key = -2147483648;
3091     }
3092   next_state:
3093     ;
3094   }
3095 #endif
3096 }
3097 
3098 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3099   Address addr = as_Address(src->as_address_ptr());
3100   BasicType type = src->type();
3101   bool is_oop = is_reference_type(type);
3102 
3103   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3104   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3105 
3106   switch(type) {
3107   case T_INT:
3108     xchg = &MacroAssembler::atomic_xchgalw;
3109     add = &MacroAssembler::atomic_addalw;
3110     break;
3111   case T_LONG:
3112     xchg = &MacroAssembler::atomic_xchgal;
3113     add = &MacroAssembler::atomic_addal;
3114     break;
3115   case T_OBJECT:
3116   case T_ARRAY:
3117     if (UseCompressedOops) {
3118       xchg = &MacroAssembler::atomic_xchgalw;
3119       add = &MacroAssembler::atomic_addalw;
3120     } else {
3121       xchg = &MacroAssembler::atomic_xchgal;
3122       add = &MacroAssembler::atomic_addal;
3123     }
3124     break;
3125   default:
3126     ShouldNotReachHere();
3127     xchg = &MacroAssembler::atomic_xchgal;
3128     add = &MacroAssembler::atomic_addal; // unreachable
3129   }
3130 
3131   switch (code) {
3132   case lir_xadd:
3133     {
3134       RegisterOrConstant inc;
3135       Register tmp = as_reg(tmp_op);
3136       Register dst = as_reg(dest);
3137       if (data->is_constant()) {
3138         inc = RegisterOrConstant(as_long(data));
3139         assert_different_registers(dst, addr.base(), tmp,
3140                                    rscratch1, rscratch2);
3141       } else {
3142         inc = RegisterOrConstant(as_reg(data));
3143         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3144                                    rscratch1, rscratch2);
3145       }
3146       __ lea(tmp, addr);
3147       (_masm->*add)(dst, inc, tmp);
3148       break;
3149     }
3150   case lir_xchg:
3151     {
3152       Register tmp = tmp_op->as_register();
3153       Register obj = as_reg(data);
3154       Register dst = as_reg(dest);
3155       if (is_oop && UseCompressedOops) {
3156         __ encode_heap_oop(rscratch2, obj);
3157         obj = rscratch2;
3158       }
3159       assert_different_registers(obj, addr.base(), tmp, rscratch1);
3160       assert_different_registers(dst, addr.base(), tmp, rscratch1);
3161       __ lea(tmp, addr);
3162       (_masm->*xchg)(dst, obj, tmp);
3163       if (is_oop && UseCompressedOops) {
3164         __ decode_heap_oop(dst);
3165       }
3166     }
3167     break;
3168   default:
3169     ShouldNotReachHere();
3170   }
3171   __ membar(__ AnyAny);
3172 }
3173 
3174 #undef __