1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"
  36 #include "ci/ciInlineKlass.hpp"
  37 #include "ci/ciInstance.hpp"
  38 #include "code/compiledIC.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gc_globals.hpp"
  41 #include "nativeInst_aarch64.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_aarch64.inline.hpp"
  49 
  50 
  51 #ifndef PRODUCT
  52 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  53 #else
  54 #define COMMENT(x)
  55 #endif
  56 
  57 NEEDS_CLEANUP // remove this definitions ?
  58 const Register SYNC_header = r0;   // synchronization header
  59 const Register SHIFT_count = r0;   // where count for shift operations must be
  60 
  61 #define __ _masm->
  62 
  63 
  64 static void select_different_registers(Register preserve,
  65                                        Register extra,
  66                                        Register &tmp1,
  67                                        Register &tmp2) {
  68   if (tmp1 == preserve) {
  69     assert_different_registers(tmp1, tmp2, extra);
  70     tmp1 = extra;
  71   } else if (tmp2 == preserve) {
  72     assert_different_registers(tmp1, tmp2, extra);
  73     tmp2 = extra;
  74   }
  75   assert_different_registers(preserve, tmp1, tmp2);
  76 }
  77 
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2,
  84                                        Register &tmp3) {
  85   if (tmp1 == preserve) {
  86     assert_different_registers(tmp1, tmp2, tmp3, extra);
  87     tmp1 = extra;
  88   } else if (tmp2 == preserve) {
  89     assert_different_registers(tmp1, tmp2, tmp3, extra);
  90     tmp2 = extra;
  91   } else if (tmp3 == preserve) {
  92     assert_different_registers(tmp1, tmp2, tmp3, extra);
  93     tmp3 = extra;
  94   }
  95   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  96 }
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
 100 
 101 
 102 LIR_Opr LIR_Assembler::receiverOpr() {
 103   return FrameMap::receiver_opr;
 104 }
 105 
 106 LIR_Opr LIR_Assembler::osrBufferPointer() {
 107   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 108 }
 109 
 110 //--------------fpu register translations-----------------------
 111 
 112 
 113 address LIR_Assembler::float_constant(float f) {
 114   address const_addr = __ float_constant(f);
 115   if (const_addr == nullptr) {
 116     bailout("const section overflow");
 117     return __ code()->consts()->start();
 118   } else {
 119     return const_addr;
 120   }
 121 }
 122 
 123 
 124 address LIR_Assembler::double_constant(double d) {
 125   address const_addr = __ double_constant(d);
 126   if (const_addr == nullptr) {
 127     bailout("const section overflow");
 128     return __ code()->consts()->start();
 129   } else {
 130     return const_addr;
 131   }
 132 }
 133 
 134 address LIR_Assembler::int_constant(jlong n) {
 135   address const_addr = __ long_constant(n);
 136   if (const_addr == nullptr) {
 137     bailout("const section overflow");
 138     return __ code()->consts()->start();
 139   } else {
 140     return const_addr;
 141   }
 142 }
 143 
 144 void LIR_Assembler::breakpoint() { Unimplemented(); }
 145 
 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 147 
 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 149 
 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 151 //-------------------------------------------
 152 
 153 static Register as_reg(LIR_Opr op) {
 154   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 155 }
 156 
 157 static jlong as_long(LIR_Opr data) {
 158   jlong result;
 159   switch (data->type()) {
 160   case T_INT:
 161     result = (data->as_jint());
 162     break;
 163   case T_LONG:
 164     result = (data->as_jlong());
 165     break;
 166   default:
 167     ShouldNotReachHere();
 168     result = 0;  // unreachable
 169   }
 170   return result;
 171 }
 172 
 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 174   Register base = addr->base()->as_pointer_register();
 175   LIR_Opr opr = addr->index();
 176   if (opr->is_cpu_register()) {
 177     Register index;
 178     if (opr->is_single_cpu())
 179       index = opr->as_register();
 180     else
 181       index = opr->as_register_lo();
 182     assert(addr->disp() == 0, "must be");
 183     switch(opr->type()) {
 184       case T_INT:
 185         return Address(base, index, Address::sxtw(addr->scale()));
 186       case T_LONG:
 187         return Address(base, index, Address::lsl(addr->scale()));
 188       default:
 189         ShouldNotReachHere();
 190       }
 191   } else {
 192     assert(addr->scale() == 0,
 193            "expected for immediate operand, was: %d", addr->scale());
 194     ptrdiff_t offset = ptrdiff_t(addr->disp());
 195     // NOTE: Does not handle any 16 byte vector access.
 196     const uint type_size = type2aelembytes(addr->type(), true);
 197     return __ legitimize_address(Address(base, offset), type_size, tmp);
 198   }
 199   return Address();
 200 }
 201 
 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 203   ShouldNotReachHere();
 204   return Address();
 205 }
 206 
 207 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 208   return as_Address(addr, rscratch1);
 209 }
 210 
 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 212   return as_Address(addr, rscratch1);  // Ouch
 213   // FIXME: This needs to be much more clever.  See x86.
 214 }
 215 
 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
 217 // not encodable as a base + (immediate) offset, generate an explicit address
 218 // calculation to hold the address in a temporary register.
 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
 220   precond(size == 4 || size == 8);
 221   Address addr = frame_map()->address_for_slot(index, adjust);
 222   precond(addr.getMode() == Address::base_plus_offset);
 223   precond(addr.base() == sp);
 224   precond(addr.offset() > 0);
 225   uint mask = size - 1;
 226   assert((addr.offset() & mask) == 0, "scaled offsets only");
 227   return __ legitimize_address(addr, size, tmp);
 228 }
 229 
 230 void LIR_Assembler::osr_entry() {
 231   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 232   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 233   ValueStack* entry_state = osr_entry->state();
 234   int number_of_locks = entry_state->locks_size();
 235 
 236   // we jump here if osr happens with the interpreter
 237   // state set up to continue at the beginning of the
 238   // loop that triggered osr - in particular, we have
 239   // the following registers setup:
 240   //
 241   // r2: osr buffer
 242   //
 243 
 244   // build frame
 245   ciMethod* m = compilation()->method();
 246   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 247 
 248   // OSR buffer is
 249   //
 250   // locals[nlocals-1..0]
 251   // monitors[0..number_of_locks]
 252   //
 253   // locals is a direct copy of the interpreter frame so in the osr buffer
 254   // so first slot in the local array is the last local from the interpreter
 255   // and last slot is local[0] (receiver) from the interpreter
 256   //
 257   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 258   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 259   // in the interpreter frame (the method lock if a sync method)
 260 
 261   // Initialize monitors in the compiled activation.
 262   //   r2: pointer to osr buffer
 263   //
 264   // All other registers are dead at this point and the locals will be
 265   // copied into place by code emitted in the IR.
 266 
 267   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 268   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 269     int monitor_offset = BytesPerWord * method()->max_locals() +
 270       (2 * BytesPerWord) * (number_of_locks - 1);
 271     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 272     // the OSR buffer using 2 word entries: first the lock and then
 273     // the oop.
 274     for (int i = 0; i < number_of_locks; i++) {
 275       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 276 #ifdef ASSERT
 277       // verify the interpreter's monitor has a non-null object
 278       {
 279         Label L;
 280         __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 281         __ cbnz(rscratch1, L);
 282         __ stop("locked object is null");
 283         __ bind(L);
 284       }
 285 #endif
 286       __ ldr(r19, Address(OSR_buf, slot_offset));
 287       __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord));
 288       __ str(r19, frame_map()->address_for_monitor_lock(i));
 289       __ str(r20, frame_map()->address_for_monitor_object(i));
 290     }
 291   }
 292 }
 293 
 294 
 295 // inline cache check; done before the frame is built.
 296 int LIR_Assembler::check_icache() {
 297   return __ ic_check(CodeEntryAlignment);
 298 }
 299 
 300 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 301   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 302   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 303 
 304   Label L_skip_barrier;
 305 
 306   __ mov_metadata(rscratch2, method->holder()->constant_encoding());
 307   __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
 308   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 309   __ bind(L_skip_barrier);
 310 }
 311 
 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 313   if (o == nullptr) {
 314     __ mov(reg, zr);
 315   } else {
 316     __ movoop(reg, o);
 317   }
 318 }
 319 
 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 321   address target = nullptr;
 322   relocInfo::relocType reloc_type = relocInfo::none;
 323 
 324   switch (patching_id(info)) {
 325   case PatchingStub::access_field_id:
 326     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 327     reloc_type = relocInfo::section_word_type;
 328     break;
 329   case PatchingStub::load_klass_id:
 330     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 331     reloc_type = relocInfo::metadata_type;
 332     break;
 333   case PatchingStub::load_mirror_id:
 334     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 335     reloc_type = relocInfo::oop_type;
 336     break;
 337   case PatchingStub::load_appendix_id:
 338     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 339     reloc_type = relocInfo::oop_type;
 340     break;
 341   default: ShouldNotReachHere();
 342   }
 343 
 344   __ far_call(RuntimeAddress(target));
 345   add_call_info_here(info);
 346 }
 347 
 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 349   deoptimize_trap(info);
 350 }
 351 
 352 
 353 // This specifies the rsp decrement needed to build the frame
 354 int LIR_Assembler::initial_frame_size_in_bytes() const {
 355   // if rounding, must let FrameMap know!
 356 
 357   return in_bytes(frame_map()->framesize_in_bytes());
 358 }
 359 
 360 
 361 int LIR_Assembler::emit_exception_handler() {
 362   // generate code for exception handler
 363   address handler_base = __ start_a_stub(exception_handler_size());
 364   if (handler_base == nullptr) {
 365     // not enough space left for the handler
 366     bailout("exception handler overflow");
 367     return -1;
 368   }
 369 
 370   int offset = code_offset();
 371 
 372   // the exception oop and pc are in r0, and r3
 373   // no other registers need to be preserved, so invalidate them
 374   __ invalidate_registers(false, true, true, false, true, true);
 375 
 376   // check that there is really an exception
 377   __ verify_not_null_oop(r0);
 378 
 379   // search an exception handler (r0: exception oop, r3: throwing pc)
 380   __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 381   __ should_not_reach_here();
 382   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 383   __ end_a_stub();
 384 
 385   return offset;
 386 }
 387 
 388 
 389 // Emit the code to remove the frame from the stack in the exception
 390 // unwind path.
 391 int LIR_Assembler::emit_unwind_handler() {
 392 #ifndef PRODUCT
 393   if (CommentedAssembly) {
 394     _masm->block_comment("Unwind handler");
 395   }
 396 #endif
 397 
 398   int offset = code_offset();
 399 
 400   // Fetch the exception from TLS and clear out exception related thread state
 401   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 402   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 403   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 404 
 405   __ bind(_unwind_handler_entry);
 406   __ verify_not_null_oop(r0);
 407   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 408     __ mov(r19, r0);  // Preserve the exception
 409   }
 410 
 411   // Perform needed unlocking
 412   MonitorExitStub* stub = nullptr;
 413   if (method()->is_synchronized()) {
 414     monitor_address(0, FrameMap::r0_opr);
 415     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 416     if (LockingMode == LM_MONITOR) {
 417       __ b(*stub->entry());
 418     } else {
 419       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 420     }
 421     __ bind(*stub->continuation());
 422   }
 423 
 424   if (compilation()->env()->dtrace_method_probes()) {
 425     __ mov(c_rarg0, rthread);
 426     __ mov_metadata(c_rarg1, method()->constant_encoding());
 427     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 428   }
 429 
 430   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 431     __ mov(r0, r19);  // Restore the exception
 432   }
 433 
 434   // remove the activation and dispatch to the unwind handler
 435   __ block_comment("remove_frame and dispatch to the unwind handler");
 436   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 437   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 438 
 439   // Emit the slow path assembly
 440   if (stub != nullptr) {
 441     stub->emit_code(this);
 442   }
 443 
 444   return offset;
 445 }
 446 
 447 
 448 int LIR_Assembler::emit_deopt_handler() {
 449   // generate code for exception handler
 450   address handler_base = __ start_a_stub(deopt_handler_size());
 451   if (handler_base == nullptr) {
 452     // not enough space left for the handler
 453     bailout("deopt handler overflow");
 454     return -1;
 455   }
 456 
 457   int offset = code_offset();
 458 
 459   __ adr(lr, pc());
 460   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 461   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 462   __ end_a_stub();
 463 
 464   return offset;
 465 }
 466 
 467 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 468   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 469   int pc_offset = code_offset();
 470   flush_debug_info(pc_offset);
 471   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 472   if (info->exception_handlers() != nullptr) {
 473     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 474   }
 475 }
 476 
 477 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 478   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 479 
 480   if (InlineTypeReturnedAsFields) {
 481     // Check if we are returning an non-null inline type and load its fields into registers
 482     ciType* return_type = compilation()->method()->return_type();
 483     if (return_type->is_inlinetype()) {
 484       ciInlineKlass* vk = return_type->as_inline_klass();
 485       if (vk->can_be_returned_as_fields()) {
 486         address unpack_handler = vk->unpack_handler();
 487         assert(unpack_handler != nullptr, "must be");
 488         __ far_call(RuntimeAddress(unpack_handler));
 489       }
 490     } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) {
 491       Label skip;
 492       __ test_oop_is_not_inline_type(r0, rscratch2, skip);
 493 
 494       // Load fields from a buffered value with an inline class specific handler
 495       __ load_klass(rscratch1 /*dst*/, r0 /*src*/);
 496       __ ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 497       __ ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset()));
 498       // Unpack handler can be null if inline type is not scalarizable in returns
 499       __ cbz(rscratch1, skip);
 500       __ blr(rscratch1);
 501 
 502       __ bind(skip);
 503     }
 504     // At this point, r0 points to the value object (for interpreter or C1 caller).
 505     // The fields of the object are copied into registers (for C2 caller).
 506   }
 507 
 508   // Pop the stack before the safepoint code
 509   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 510 
 511   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 512     __ reserved_stack_check();
 513   }
 514 
 515   code_stub->set_safepoint_offset(__ offset());
 516   __ relocate(relocInfo::poll_return_type);
 517   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 518   __ ret(lr);
 519 }
 520 
 521 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) {
 522   return (__ store_inline_type_fields_to_buf(vk, false));
 523 }
 524 
 525 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 526   guarantee(info != nullptr, "Shouldn't be null");
 527   __ get_polling_page(rscratch1, relocInfo::poll_type);
 528   add_debug_info_for_branch(info);  // This isn't just debug info:
 529                                     // it's the oop map
 530   __ read_polling_page(rscratch1, relocInfo::poll_type);
 531   return __ offset();
 532 }
 533 
 534 
 535 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 536   if (from_reg == r31_sp)
 537     from_reg = sp;
 538   if (to_reg == r31_sp)
 539     to_reg = sp;
 540   __ mov(to_reg, from_reg);
 541 }
 542 
 543 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 544 
 545 
 546 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 547   assert(src->is_constant(), "should not call otherwise");
 548   assert(dest->is_register(), "should not call otherwise");
 549   LIR_Const* c = src->as_constant_ptr();
 550 
 551   switch (c->type()) {
 552     case T_INT: {
 553       assert(patch_code == lir_patch_none, "no patching handled here");
 554       __ movw(dest->as_register(), c->as_jint());
 555       break;
 556     }
 557 
 558     case T_ADDRESS: {
 559       assert(patch_code == lir_patch_none, "no patching handled here");
 560       __ mov(dest->as_register(), c->as_jint());
 561       break;
 562     }
 563 
 564     case T_LONG: {
 565       assert(patch_code == lir_patch_none, "no patching handled here");
 566       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 567       break;
 568     }
 569 
 570     case T_OBJECT: {
 571         if (patch_code != lir_patch_none) {
 572           jobject2reg_with_patching(dest->as_register(), info);
 573         } else {
 574           jobject2reg(c->as_jobject(), dest->as_register());
 575         }
 576       break;
 577     }
 578 
 579     case T_METADATA: {
 580       if (patch_code != lir_patch_none) {
 581         klass2reg_with_patching(dest->as_register(), info);
 582       } else {
 583         __ mov_metadata(dest->as_register(), c->as_metadata());
 584       }
 585       break;
 586     }
 587 
 588     case T_FLOAT: {
 589       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 590         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 591       } else {
 592         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 593         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 594       }
 595       break;
 596     }
 597 
 598     case T_DOUBLE: {
 599       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 600         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 601       } else {
 602         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 603         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 604       }
 605       break;
 606     }
 607 
 608     default:
 609       ShouldNotReachHere();
 610   }
 611 }
 612 
 613 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 614   LIR_Const* c = src->as_constant_ptr();
 615   switch (c->type()) {
 616   case T_OBJECT:
 617     {
 618       if (! c->as_jobject())
 619         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 620       else {
 621         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 622         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 623       }
 624     }
 625     break;
 626   case T_ADDRESS:
 627     {
 628       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
 629       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 630     }
 631   case T_INT:
 632   case T_FLOAT:
 633     {
 634       Register reg = zr;
 635       if (c->as_jint_bits() == 0)
 636         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 637       else {
 638         __ movw(rscratch1, c->as_jint_bits());
 639         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 640       }
 641     }
 642     break;
 643   case T_LONG:
 644   case T_DOUBLE:
 645     {
 646       Register reg = zr;
 647       if (c->as_jlong_bits() == 0)
 648         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 649                                                  lo_word_offset_in_bytes));
 650       else {
 651         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 652         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 653                                                         lo_word_offset_in_bytes));
 654       }
 655     }
 656     break;
 657   default:
 658     ShouldNotReachHere();
 659   }
 660 }
 661 
 662 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 663   assert(src->is_constant(), "should not call otherwise");
 664   LIR_Const* c = src->as_constant_ptr();
 665   LIR_Address* to_addr = dest->as_address_ptr();
 666 
 667   void (Assembler::* insn)(Register Rt, const Address &adr);
 668 
 669   switch (type) {
 670   case T_ADDRESS:
 671     assert(c->as_jint() == 0, "should be");
 672     insn = &Assembler::str;
 673     break;
 674   case T_LONG:
 675     assert(c->as_jlong() == 0, "should be");
 676     insn = &Assembler::str;
 677     break;
 678   case T_INT:
 679     assert(c->as_jint() == 0, "should be");
 680     insn = &Assembler::strw;
 681     break;
 682   case T_OBJECT:
 683   case T_ARRAY:
 684     // Non-null case is not handled on aarch64 but handled on x86
 685     // FIXME: do we need to add it here?
 686     assert(c->as_jobject() == 0, "should be");
 687     if (UseCompressedOops && !wide) {
 688       insn = &Assembler::strw;
 689     } else {
 690       insn = &Assembler::str;
 691     }
 692     break;
 693   case T_CHAR:
 694   case T_SHORT:
 695     assert(c->as_jint() == 0, "should be");
 696     insn = &Assembler::strh;
 697     break;
 698   case T_BOOLEAN:
 699   case T_BYTE:
 700     assert(c->as_jint() == 0, "should be");
 701     insn = &Assembler::strb;
 702     break;
 703   default:
 704     ShouldNotReachHere();
 705     insn = &Assembler::str;  // unreachable
 706   }
 707 
 708   if (info) add_debug_info_for_null_check_here(info);
 709   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 710 }
 711 
 712 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 713   assert(src->is_register(), "should not call otherwise");
 714   assert(dest->is_register(), "should not call otherwise");
 715 
 716   // move between cpu-registers
 717   if (dest->is_single_cpu()) {
 718     if (src->type() == T_LONG) {
 719       // Can do LONG -> OBJECT
 720       move_regs(src->as_register_lo(), dest->as_register());
 721       return;
 722     }
 723     assert(src->is_single_cpu(), "must match");
 724     if (src->type() == T_OBJECT) {
 725       __ verify_oop(src->as_register());
 726     }
 727     move_regs(src->as_register(), dest->as_register());
 728 
 729   } else if (dest->is_double_cpu()) {
 730     if (is_reference_type(src->type())) {
 731       // Surprising to me but we can see move of a long to t_object
 732       __ verify_oop(src->as_register());
 733       move_regs(src->as_register(), dest->as_register_lo());
 734       return;
 735     }
 736     assert(src->is_double_cpu(), "must match");
 737     Register f_lo = src->as_register_lo();
 738     Register f_hi = src->as_register_hi();
 739     Register t_lo = dest->as_register_lo();
 740     Register t_hi = dest->as_register_hi();
 741     assert(f_hi == f_lo, "must be same");
 742     assert(t_hi == t_lo, "must be same");
 743     move_regs(f_lo, t_lo);
 744 
 745   } else if (dest->is_single_fpu()) {
 746     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 747 
 748   } else if (dest->is_double_fpu()) {
 749     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 750 
 751   } else {
 752     ShouldNotReachHere();
 753   }
 754 }
 755 
 756 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 757   precond(src->is_register() && dest->is_stack());
 758 
 759   uint const c_sz32 = sizeof(uint32_t);
 760   uint const c_sz64 = sizeof(uint64_t);
 761 
 762   if (src->is_single_cpu()) {
 763     int index = dest->single_stack_ix();
 764     if (is_reference_type(type)) {
 765       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 766       __ verify_oop(src->as_register());
 767     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
 768       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 769     } else {
 770       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 771     }
 772 
 773   } else if (src->is_double_cpu()) {
 774     int index = dest->double_stack_ix();
 775     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 776     __ str(src->as_register_lo(), dest_addr_LO);
 777 
 778   } else if (src->is_single_fpu()) {
 779     int index = dest->single_stack_ix();
 780     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 781 
 782   } else if (src->is_double_fpu()) {
 783     int index = dest->double_stack_ix();
 784     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 785 
 786   } else {
 787     ShouldNotReachHere();
 788   }
 789 }
 790 
 791 
 792 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 793   LIR_Address* to_addr = dest->as_address_ptr();
 794   PatchingStub* patch = nullptr;
 795   Register compressed_src = rscratch1;
 796 
 797   if (patch_code != lir_patch_none) {
 798     deoptimize_trap(info);
 799     return;
 800   }
 801 
 802   if (is_reference_type(type)) {
 803     __ verify_oop(src->as_register());
 804 
 805     if (UseCompressedOops && !wide) {
 806       __ encode_heap_oop(compressed_src, src->as_register());
 807     } else {
 808       compressed_src = src->as_register();
 809     }
 810   }
 811 
 812   int null_check_here = code_offset();
 813   switch (type) {
 814     case T_FLOAT: {
 815       __ strs(src->as_float_reg(), as_Address(to_addr));
 816       break;
 817     }
 818 
 819     case T_DOUBLE: {
 820       __ strd(src->as_double_reg(), as_Address(to_addr));
 821       break;
 822     }
 823 
 824     case T_ARRAY:   // fall through
 825     case T_OBJECT:  // fall through
 826       if (UseCompressedOops && !wide) {
 827         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 828       } else {
 829          __ str(compressed_src, as_Address(to_addr));
 830       }
 831       break;
 832     case T_METADATA:
 833       // We get here to store a method pointer to the stack to pass to
 834       // a dtrace runtime call. This can't work on 64 bit with
 835       // compressed klass ptrs: T_METADATA can be a compressed klass
 836       // ptr or a 64 bit method pointer.
 837       ShouldNotReachHere();
 838       __ str(src->as_register(), as_Address(to_addr));
 839       break;
 840     case T_ADDRESS:
 841       __ str(src->as_register(), as_Address(to_addr));
 842       break;
 843     case T_INT:
 844       __ strw(src->as_register(), as_Address(to_addr));
 845       break;
 846 
 847     case T_LONG: {
 848       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 849       break;
 850     }
 851 
 852     case T_BYTE:    // fall through
 853     case T_BOOLEAN: {
 854       __ strb(src->as_register(), as_Address(to_addr));
 855       break;
 856     }
 857 
 858     case T_CHAR:    // fall through
 859     case T_SHORT:
 860       __ strh(src->as_register(), as_Address(to_addr));
 861       break;
 862 
 863     default:
 864       ShouldNotReachHere();
 865   }
 866   if (info != nullptr) {
 867     add_debug_info_for_null_check(null_check_here, info);
 868   }
 869 }
 870 
 871 
 872 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 873   precond(src->is_stack() && dest->is_register());
 874 
 875   uint const c_sz32 = sizeof(uint32_t);
 876   uint const c_sz64 = sizeof(uint64_t);
 877 
 878   if (dest->is_single_cpu()) {
 879     int index = src->single_stack_ix();
 880     if (is_reference_type(type)) {
 881       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 882       __ verify_oop(dest->as_register());
 883     } else if (type == T_METADATA || type == T_ADDRESS) {
 884       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
 885     } else {
 886       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
 887     }
 888 
 889   } else if (dest->is_double_cpu()) {
 890     int index = src->double_stack_ix();
 891     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
 892     __ ldr(dest->as_register_lo(), src_addr_LO);
 893 
 894   } else if (dest->is_single_fpu()) {
 895     int index = src->single_stack_ix();
 896     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
 897 
 898   } else if (dest->is_double_fpu()) {
 899     int index = src->double_stack_ix();
 900     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
 901 
 902   } else {
 903     ShouldNotReachHere();
 904   }
 905 }
 906 
 907 
 908 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 909   address target = nullptr;
 910   relocInfo::relocType reloc_type = relocInfo::none;
 911 
 912   switch (patching_id(info)) {
 913   case PatchingStub::access_field_id:
 914     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 915     reloc_type = relocInfo::section_word_type;
 916     break;
 917   case PatchingStub::load_klass_id:
 918     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 919     reloc_type = relocInfo::metadata_type;
 920     break;
 921   case PatchingStub::load_mirror_id:
 922     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 923     reloc_type = relocInfo::oop_type;
 924     break;
 925   case PatchingStub::load_appendix_id:
 926     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 927     reloc_type = relocInfo::oop_type;
 928     break;
 929   default: ShouldNotReachHere();
 930   }
 931 
 932   __ far_call(RuntimeAddress(target));
 933   add_call_info_here(info);
 934 }
 935 
 936 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 937 
 938   LIR_Opr temp;
 939   if (type == T_LONG || type == T_DOUBLE)
 940     temp = FrameMap::rscratch1_long_opr;
 941   else
 942     temp = FrameMap::rscratch1_opr;
 943 
 944   stack2reg(src, temp, src->type());
 945   reg2stack(temp, dest, dest->type(), false);
 946 }
 947 
 948 
 949 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
 950   LIR_Address* addr = src->as_address_ptr();
 951   LIR_Address* from_addr = src->as_address_ptr();
 952 
 953   if (addr->base()->type() == T_OBJECT) {
 954     __ verify_oop(addr->base()->as_pointer_register());
 955   }
 956 
 957   if (patch_code != lir_patch_none) {
 958     deoptimize_trap(info);
 959     return;
 960   }
 961 
 962   if (info != nullptr) {
 963     add_debug_info_for_null_check_here(info);
 964   }
 965   int null_check_here = code_offset();
 966   switch (type) {
 967     case T_FLOAT: {
 968       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 969       break;
 970     }
 971 
 972     case T_DOUBLE: {
 973       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 974       break;
 975     }
 976 
 977     case T_ARRAY:   // fall through
 978     case T_OBJECT:  // fall through
 979       if (UseCompressedOops && !wide) {
 980         __ ldrw(dest->as_register(), as_Address(from_addr));
 981       } else {
 982         __ ldr(dest->as_register(), as_Address(from_addr));
 983       }
 984       break;
 985     case T_METADATA:
 986       // We get here to store a method pointer to the stack to pass to
 987       // a dtrace runtime call. This can't work on 64 bit with
 988       // compressed klass ptrs: T_METADATA can be a compressed klass
 989       // ptr or a 64 bit method pointer.
 990       ShouldNotReachHere();
 991       __ ldr(dest->as_register(), as_Address(from_addr));
 992       break;
 993     case T_ADDRESS:
 994       __ ldr(dest->as_register(), as_Address(from_addr));
 995       break;
 996     case T_INT:
 997       __ ldrw(dest->as_register(), as_Address(from_addr));
 998       break;
 999 
1000     case T_LONG: {
1001       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
1002       break;
1003     }
1004 
1005     case T_BYTE:
1006       __ ldrsb(dest->as_register(), as_Address(from_addr));
1007       break;
1008     case T_BOOLEAN: {
1009       __ ldrb(dest->as_register(), as_Address(from_addr));
1010       break;
1011     }
1012 
1013     case T_CHAR:
1014       __ ldrh(dest->as_register(), as_Address(from_addr));
1015       break;
1016     case T_SHORT:
1017       __ ldrsh(dest->as_register(), as_Address(from_addr));
1018       break;
1019 
1020     default:
1021       ShouldNotReachHere();
1022   }
1023 
1024   if (is_reference_type(type)) {
1025     if (UseCompressedOops && !wide) {
1026       __ decode_heap_oop(dest->as_register());
1027     }
1028 
1029     if (!(UseZGC && !ZGenerational)) {
1030       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1031       __ verify_oop(dest->as_register());
1032     }
1033   }
1034 }
1035 
1036 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) {
1037   assert(dst->is_cpu_register(), "must be");
1038   assert(dst->type() == src->type(), "must be");
1039 
1040   if (src->is_cpu_register()) {
1041     reg2reg(src, dst);
1042   } else if (src->is_stack()) {
1043     stack2reg(src, dst, dst->type());
1044   } else if (src->is_constant()) {
1045     const2reg(src, dst, lir_patch_none, nullptr);
1046   } else {
1047     ShouldNotReachHere();
1048   }
1049 }
1050 
1051 int LIR_Assembler::array_element_size(BasicType type) const {
1052   int elem_size = type2aelembytes(type);
1053   return exact_log2(elem_size);
1054 }
1055 
1056 
1057 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1058   switch (op->code()) {
1059   case lir_idiv:
1060   case lir_irem:
1061     arithmetic_idiv(op->code(),
1062                     op->in_opr1(),
1063                     op->in_opr2(),
1064                     op->in_opr3(),
1065                     op->result_opr(),
1066                     op->info());
1067     break;
1068   case lir_fmad:
1069     __ fmaddd(op->result_opr()->as_double_reg(),
1070               op->in_opr1()->as_double_reg(),
1071               op->in_opr2()->as_double_reg(),
1072               op->in_opr3()->as_double_reg());
1073     break;
1074   case lir_fmaf:
1075     __ fmadds(op->result_opr()->as_float_reg(),
1076               op->in_opr1()->as_float_reg(),
1077               op->in_opr2()->as_float_reg(),
1078               op->in_opr3()->as_float_reg());
1079     break;
1080   default:      ShouldNotReachHere(); break;
1081   }
1082 }
1083 
1084 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1085 #ifdef ASSERT
1086   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1087   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1088   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1089 #endif
1090 
1091   if (op->cond() == lir_cond_always) {
1092     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1093     __ b(*(op->label()));
1094   } else {
1095     Assembler::Condition acond;
1096     if (op->code() == lir_cond_float_branch) {
1097       bool is_unordered = (op->ublock() == op->block());
1098       // Assembler::EQ does not permit unordered branches, so we add
1099       // another branch here.  Likewise, Assembler::NE does not permit
1100       // ordered branches.
1101       if ((is_unordered && op->cond() == lir_cond_equal)
1102           || (!is_unordered && op->cond() == lir_cond_notEqual))
1103         __ br(Assembler::VS, *(op->ublock()->label()));
1104       switch(op->cond()) {
1105       case lir_cond_equal:        acond = Assembler::EQ; break;
1106       case lir_cond_notEqual:     acond = Assembler::NE; break;
1107       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1108       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1109       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1110       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1111       default:                    ShouldNotReachHere();
1112         acond = Assembler::EQ;  // unreachable
1113       }
1114     } else {
1115       switch (op->cond()) {
1116         case lir_cond_equal:        acond = Assembler::EQ; break;
1117         case lir_cond_notEqual:     acond = Assembler::NE; break;
1118         case lir_cond_less:         acond = Assembler::LT; break;
1119         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1120         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1121         case lir_cond_greater:      acond = Assembler::GT; break;
1122         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1123         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1124         default:                    ShouldNotReachHere();
1125           acond = Assembler::EQ;  // unreachable
1126       }
1127     }
1128     __ br(acond,*(op->label()));
1129   }
1130 }
1131 
1132 
1133 
1134 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1135   LIR_Opr src  = op->in_opr();
1136   LIR_Opr dest = op->result_opr();
1137 
1138   switch (op->bytecode()) {
1139     case Bytecodes::_i2f:
1140       {
1141         __ scvtfws(dest->as_float_reg(), src->as_register());
1142         break;
1143       }
1144     case Bytecodes::_i2d:
1145       {
1146         __ scvtfwd(dest->as_double_reg(), src->as_register());
1147         break;
1148       }
1149     case Bytecodes::_l2d:
1150       {
1151         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1152         break;
1153       }
1154     case Bytecodes::_l2f:
1155       {
1156         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1157         break;
1158       }
1159     case Bytecodes::_f2d:
1160       {
1161         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1162         break;
1163       }
1164     case Bytecodes::_d2f:
1165       {
1166         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1167         break;
1168       }
1169     case Bytecodes::_i2c:
1170       {
1171         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1172         break;
1173       }
1174     case Bytecodes::_i2l:
1175       {
1176         __ sxtw(dest->as_register_lo(), src->as_register());
1177         break;
1178       }
1179     case Bytecodes::_i2s:
1180       {
1181         __ sxth(dest->as_register(), src->as_register());
1182         break;
1183       }
1184     case Bytecodes::_i2b:
1185       {
1186         __ sxtb(dest->as_register(), src->as_register());
1187         break;
1188       }
1189     case Bytecodes::_l2i:
1190       {
1191         _masm->block_comment("FIXME: This could be a no-op");
1192         __ uxtw(dest->as_register(), src->as_register_lo());
1193         break;
1194       }
1195     case Bytecodes::_d2l:
1196       {
1197         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1198         break;
1199       }
1200     case Bytecodes::_f2i:
1201       {
1202         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1203         break;
1204       }
1205     case Bytecodes::_f2l:
1206       {
1207         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1208         break;
1209       }
1210     case Bytecodes::_d2i:
1211       {
1212         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1213         break;
1214       }
1215     default: ShouldNotReachHere();
1216   }
1217 }
1218 
1219 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1220   if (op->init_check()) {
1221     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1222                                InstanceKlass::init_state_offset()));
1223     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1224     add_debug_info_for_null_check_here(op->stub()->info());
1225     __ br(Assembler::NE, *op->stub()->entry());
1226   }
1227   __ allocate_object(op->obj()->as_register(),
1228                      op->tmp1()->as_register(),
1229                      op->tmp2()->as_register(),
1230                      op->header_size(),
1231                      op->object_size(),
1232                      op->klass()->as_register(),
1233                      *op->stub()->entry());
1234   __ bind(*op->stub()->continuation());
1235 }
1236 
1237 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1238   Register len =  op->len()->as_register();
1239   __ uxtw(len, len);
1240 
1241   if (UseSlowPath || op->is_null_free() ||
1242       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1243       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1244     __ b(*op->stub()->entry());
1245   } else {
1246     Register tmp1 = op->tmp1()->as_register();
1247     Register tmp2 = op->tmp2()->as_register();
1248     Register tmp3 = op->tmp3()->as_register();
1249     if (len == tmp1) {
1250       tmp1 = tmp3;
1251     } else if (len == tmp2) {
1252       tmp2 = tmp3;
1253     } else if (len == tmp3) {
1254       // everything is ok
1255     } else {
1256       __ mov(tmp3, len);
1257     }
1258     __ allocate_array(op->obj()->as_register(),
1259                       len,
1260                       tmp1,
1261                       tmp2,
1262                       arrayOopDesc::base_offset_in_bytes(op->type()),
1263                       array_element_size(op->type()),
1264                       op->klass()->as_register(),
1265                       *op->stub()->entry());
1266   }
1267   __ bind(*op->stub()->continuation());
1268 }
1269 
1270 void LIR_Assembler::type_profile_helper(Register mdo,
1271                                         ciMethodData *md, ciProfileData *data,
1272                                         Register recv, Label* update_done) {
1273   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1274     Label next_test;
1275     // See if the receiver is receiver[n].
1276     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1277     __ ldr(rscratch1, Address(rscratch2));
1278     __ cmp(recv, rscratch1);
1279     __ br(Assembler::NE, next_test);
1280     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1281     __ addptr(data_addr, DataLayout::counter_increment);
1282     __ b(*update_done);
1283     __ bind(next_test);
1284   }
1285 
1286   // Didn't find receiver; find next empty slot and fill it in
1287   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1288     Label next_test;
1289     __ lea(rscratch2,
1290            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1291     Address recv_addr(rscratch2);
1292     __ ldr(rscratch1, recv_addr);
1293     __ cbnz(rscratch1, next_test);
1294     __ str(recv, recv_addr);
1295     __ mov(rscratch1, DataLayout::counter_increment);
1296     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1297     __ str(rscratch1, Address(rscratch2));
1298     __ b(*update_done);
1299     __ bind(next_test);
1300   }
1301 }
1302 
1303 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1304   // we always need a stub for the failure case.
1305   CodeStub* stub = op->stub();
1306   Register obj = op->object()->as_register();
1307   Register k_RInfo = op->tmp1()->as_register();
1308   Register klass_RInfo = op->tmp2()->as_register();
1309   Register dst = op->result_opr()->as_register();
1310   ciKlass* k = op->klass();
1311   Register Rtmp1 = noreg;
1312 
1313   // check if it needs to be profiled
1314   ciMethodData* md;
1315   ciProfileData* data;
1316 
1317   const bool should_profile = op->should_profile();
1318 
1319   if (should_profile) {
1320     ciMethod* method = op->profiled_method();
1321     assert(method != nullptr, "Should have method");
1322     int bci = op->profiled_bci();
1323     md = method->method_data_or_null();
1324     assert(md != nullptr, "Sanity");
1325     data = md->bci_to_data(bci);
1326     assert(data != nullptr,                "need data for type check");
1327     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1328   }
1329   Label* success_target = success;
1330   Label* failure_target = failure;
1331 
1332   if (obj == k_RInfo) {
1333     k_RInfo = dst;
1334   } else if (obj == klass_RInfo) {
1335     klass_RInfo = dst;
1336   }
1337   if (k->is_loaded() && !UseCompressedClassPointers) {
1338     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1339   } else {
1340     Rtmp1 = op->tmp3()->as_register();
1341     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1342   }
1343 
1344   assert_different_registers(obj, k_RInfo, klass_RInfo);
1345 
1346   if (op->need_null_check()) {
1347     if (should_profile) {
1348       Register mdo  = klass_RInfo;
1349       __ mov_metadata(mdo, md->constant_encoding());
1350       Label not_null;
1351       __ cbnz(obj, not_null);
1352       // Object is null; update MDO and exit
1353       Address data_addr
1354         = __ form_address(rscratch2, mdo,
1355                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1356                           0);
1357       __ ldrb(rscratch1, data_addr);
1358       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1359       __ strb(rscratch1, data_addr);
1360       __ b(*obj_is_null);
1361       __ bind(not_null);
1362 
1363       Label update_done;
1364       Register recv = k_RInfo;
1365       __ load_klass(recv, obj);
1366       type_profile_helper(mdo, md, data, recv, &update_done);
1367       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1368       __ addptr(counter_addr, DataLayout::counter_increment);
1369 
1370       __ bind(update_done);
1371     } else {
1372       __ cbz(obj, *obj_is_null);
1373     }
1374   }
1375 
1376   if (!k->is_loaded()) {
1377     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1378   } else {
1379     __ mov_metadata(k_RInfo, k->constant_encoding());
1380   }
1381   __ verify_oop(obj);
1382 
1383   if (op->fast_check()) {
1384     // get object class
1385     // not a safepoint as obj null check happens earlier
1386     __ load_klass(rscratch1, obj);
1387     __ cmp( rscratch1, k_RInfo);
1388 
1389     __ br(Assembler::NE, *failure_target);
1390     // successful cast, fall through to profile or jump
1391   } else {
1392     // get object class
1393     // not a safepoint as obj null check happens earlier
1394     __ load_klass(klass_RInfo, obj);
1395     if (k->is_loaded()) {
1396       // See if we get an immediate positive hit
1397       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1398       __ cmp(k_RInfo, rscratch1);
1399       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1400         __ br(Assembler::NE, *failure_target);
1401         // successful cast, fall through to profile or jump
1402       } else {
1403         // See if we get an immediate positive hit
1404         __ br(Assembler::EQ, *success_target);
1405         // check for self
1406         __ cmp(klass_RInfo, k_RInfo);
1407         __ br(Assembler::EQ, *success_target);
1408 
1409         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1410         __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1411         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1412         // result is a boolean
1413         __ cbzw(klass_RInfo, *failure_target);
1414         // successful cast, fall through to profile or jump
1415       }
1416     } else {
1417       // perform the fast part of the checking logic
1418       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1419       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1420       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1421       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1422       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1423       // result is a boolean
1424       __ cbz(k_RInfo, *failure_target);
1425       // successful cast, fall through to profile or jump
1426     }
1427   }
1428   __ b(*success);
1429 }
1430 
1431 
1432 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1433   const bool should_profile = op->should_profile();
1434 
1435   LIR_Code code = op->code();
1436   if (code == lir_store_check) {
1437     Register value = op->object()->as_register();
1438     Register array = op->array()->as_register();
1439     Register k_RInfo = op->tmp1()->as_register();
1440     Register klass_RInfo = op->tmp2()->as_register();
1441     Register Rtmp1 = op->tmp3()->as_register();
1442 
1443     CodeStub* stub = op->stub();
1444 
1445     // check if it needs to be profiled
1446     ciMethodData* md;
1447     ciProfileData* data;
1448 
1449     if (should_profile) {
1450       ciMethod* method = op->profiled_method();
1451       assert(method != nullptr, "Should have method");
1452       int bci = op->profiled_bci();
1453       md = method->method_data_or_null();
1454       assert(md != nullptr, "Sanity");
1455       data = md->bci_to_data(bci);
1456       assert(data != nullptr,                "need data for type check");
1457       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1458     }
1459     Label done;
1460     Label* success_target = &done;
1461     Label* failure_target = stub->entry();
1462 
1463     if (should_profile) {
1464       Label not_null;
1465       Register mdo  = klass_RInfo;
1466       __ mov_metadata(mdo, md->constant_encoding());
1467       __ cbnz(value, not_null);
1468       // Object is null; update MDO and exit
1469       Address data_addr
1470         = __ form_address(rscratch2, mdo,
1471                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1472                           0);
1473       __ ldrb(rscratch1, data_addr);
1474       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1475       __ strb(rscratch1, data_addr);
1476       __ b(done);
1477       __ bind(not_null);
1478 
1479       Label update_done;
1480       Register recv = k_RInfo;
1481       __ load_klass(recv, value);
1482       type_profile_helper(mdo, md, data, recv, &update_done);
1483       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1484       __ addptr(counter_addr, DataLayout::counter_increment);
1485       __ bind(update_done);
1486     } else {
1487       __ cbz(value, done);
1488     }
1489 
1490     add_debug_info_for_null_check_here(op->info_for_exception());
1491     __ load_klass(k_RInfo, array);
1492     __ load_klass(klass_RInfo, value);
1493 
1494     // get instance klass (it's already uncompressed)
1495     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1496     // perform the fast part of the checking logic
1497     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1498     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1499     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1500     __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1501     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1502     // result is a boolean
1503     __ cbzw(k_RInfo, *failure_target);
1504     // fall through to the success case
1505 
1506     __ bind(done);
1507   } else if (code == lir_checkcast) {
1508     Register obj = op->object()->as_register();
1509     Register dst = op->result_opr()->as_register();
1510     Label success;
1511     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1512     __ bind(success);
1513     if (dst != obj) {
1514       __ mov(dst, obj);
1515     }
1516   } else if (code == lir_instanceof) {
1517     Register obj = op->object()->as_register();
1518     Register dst = op->result_opr()->as_register();
1519     Label success, failure, done;
1520     emit_typecheck_helper(op, &success, &failure, &failure);
1521     __ bind(failure);
1522     __ mov(dst, zr);
1523     __ b(done);
1524     __ bind(success);
1525     __ mov(dst, 1);
1526     __ bind(done);
1527   } else {
1528     ShouldNotReachHere();
1529   }
1530 }
1531 
1532 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) {
1533   // We are loading/storing from/to an array that *may* be a flat array (the
1534   // declared type is Object[], abstract[], interface[] or VT.ref[]).
1535   // If this array is a flat array, take the slow path.
1536   __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1537   if (!op->value()->is_illegal()) {
1538     // The array is not a flat array, but it might be null-free. If we are storing
1539     // a null into a null-free array, take the slow path (which will throw NPE).
1540     Label skip;
1541     __ cbnz(op->value()->as_register(), skip);
1542     __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1543     __ bind(skip);
1544   }
1545 }
1546 
1547 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) {
1548   // We are storing into an array that *may* be null-free (the declared type is
1549   // Object[], abstract[], interface[] or VT.ref[]).
1550   Label test_mark_word;
1551   Register tmp = op->tmp()->as_register();
1552   __ ldr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes()));
1553   __ tst(tmp, markWord::unlocked_value);
1554   __ br(Assembler::NE, test_mark_word);
1555   __ load_prototype_header(tmp, op->array()->as_register());
1556   __ bind(test_mark_word);
1557   __ tst(tmp, markWord::null_free_array_bit_in_place);
1558 }
1559 
1560 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) {
1561   Label L_oops_equal;
1562   Label L_oops_not_equal;
1563   Label L_end;
1564 
1565   Register left  = op->left()->as_register();
1566   Register right = op->right()->as_register();
1567 
1568   __ cmp(left, right);
1569   __ br(Assembler::EQ, L_oops_equal);
1570 
1571   // (1) Null check -- if one of the operands is null, the other must not be null (because
1572   //     the two references are not equal), so they are not substitutable,
1573   //     FIXME: do null check only if the operand is nullable
1574   {
1575     __ cbz(left, L_oops_not_equal);
1576     __ cbz(right, L_oops_not_equal);
1577   }
1578 
1579   ciKlass* left_klass = op->left_klass();
1580   ciKlass* right_klass = op->right_klass();
1581 
1582   // (2) Inline type check -- if either of the operands is not a inline type,
1583   //     they are not substitutable. We do this only if we are not sure that the
1584   //     operands are inline type
1585   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
1586       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
1587     Register tmp1  = op->tmp1()->as_register();
1588     __ mov(tmp1, markWord::inline_type_pattern);
1589     __ ldr(rscratch1, Address(left, oopDesc::mark_offset_in_bytes()));
1590     __ andr(tmp1, tmp1, rscratch1);
1591     __ ldr(rscratch1, Address(right, oopDesc::mark_offset_in_bytes()));
1592     __ andr(tmp1, tmp1, rscratch1);
1593     __ cmp(tmp1, (u1)markWord::inline_type_pattern);
1594     __ br(Assembler::NE, L_oops_not_equal);
1595   }
1596 
1597   // (3) Same klass check: if the operands are of different klasses, they are not substitutable.
1598   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
1599     // No need to load klass -- the operands are statically known to be the same inline klass.
1600     __ b(*op->stub()->entry());
1601   } else {
1602     Register left_klass_op = op->left_klass_op()->as_register();
1603     Register right_klass_op = op->right_klass_op()->as_register();
1604 
1605     if (UseCompressedClassPointers) {
1606       __ ldrw(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
1607       __ ldrw(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
1608       __ cmpw(left_klass_op, right_klass_op);
1609     } else {
1610       __ ldr(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
1611       __ ldr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
1612       __ cmp(left_klass_op, right_klass_op);
1613     }
1614 
1615     __ br(Assembler::EQ, *op->stub()->entry()); // same klass -> do slow check
1616     // fall through to L_oops_not_equal
1617   }
1618 
1619   __ bind(L_oops_not_equal);
1620   move(op->not_equal_result(), op->result_opr());
1621   __ b(L_end);
1622 
1623   __ bind(L_oops_equal);
1624   move(op->equal_result(), op->result_opr());
1625   __ b(L_end);
1626 
1627   // We've returned from the stub. R0 contains 0x0 IFF the two
1628   // operands are not substitutable. (Don't compare against 0x1 in case the
1629   // C compiler is naughty)
1630   __ bind(*op->stub()->continuation());
1631   __ cbz(r0, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal
1632   move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal
1633   // fall-through
1634   __ bind(L_end);
1635 }
1636 
1637 
1638 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1639   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1640   __ cset(rscratch1, Assembler::NE);
1641   __ membar(__ AnyAny);
1642 }
1643 
1644 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1645   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1646   __ cset(rscratch1, Assembler::NE);
1647   __ membar(__ AnyAny);
1648 }
1649 
1650 
1651 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1652   Register addr;
1653   if (op->addr()->is_register()) {
1654     addr = as_reg(op->addr());
1655   } else {
1656     assert(op->addr()->is_address(), "what else?");
1657     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1658     assert(addr_ptr->disp() == 0, "need 0 disp");
1659     assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1660     addr = as_reg(addr_ptr->base());
1661   }
1662   Register newval = as_reg(op->new_value());
1663   Register cmpval = as_reg(op->cmp_value());
1664 
1665   if (op->code() == lir_cas_obj) {
1666     if (UseCompressedOops) {
1667       Register t1 = op->tmp1()->as_register();
1668       assert(op->tmp1()->is_valid(), "must be");
1669       __ encode_heap_oop(t1, cmpval);
1670       cmpval = t1;
1671       __ encode_heap_oop(rscratch2, newval);
1672       newval = rscratch2;
1673       casw(addr, newval, cmpval);
1674     } else {
1675       casl(addr, newval, cmpval);
1676     }
1677   } else if (op->code() == lir_cas_int) {
1678     casw(addr, newval, cmpval);
1679   } else {
1680     casl(addr, newval, cmpval);
1681   }
1682 }
1683 
1684 
1685 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1686                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1687   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1688 
1689   Assembler::Condition acond, ncond;
1690   switch (condition) {
1691   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1692   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1693   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1694   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1695   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1696   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1697   case lir_cond_belowEqual:
1698   case lir_cond_aboveEqual:
1699   default:                    ShouldNotReachHere();
1700     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1701   }
1702 
1703   assert(result->is_single_cpu() || result->is_double_cpu(),
1704          "expect single register for result");
1705   if (opr1->is_constant() && opr2->is_constant()
1706       && opr1->type() == T_INT && opr2->type() == T_INT) {
1707     jint val1 = opr1->as_jint();
1708     jint val2 = opr2->as_jint();
1709     if (val1 == 0 && val2 == 1) {
1710       __ cset(result->as_register(), ncond);
1711       return;
1712     } else if (val1 == 1 && val2 == 0) {
1713       __ cset(result->as_register(), acond);
1714       return;
1715     }
1716   }
1717 
1718   if (opr1->is_constant() && opr2->is_constant()
1719       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1720     jlong val1 = opr1->as_jlong();
1721     jlong val2 = opr2->as_jlong();
1722     if (val1 == 0 && val2 == 1) {
1723       __ cset(result->as_register_lo(), ncond);
1724       return;
1725     } else if (val1 == 1 && val2 == 0) {
1726       __ cset(result->as_register_lo(), acond);
1727       return;
1728     }
1729   }
1730 
1731   if (opr1->is_stack()) {
1732     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1733     opr1 = FrameMap::rscratch1_opr;
1734   } else if (opr1->is_constant()) {
1735     LIR_Opr tmp
1736       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1737     const2reg(opr1, tmp, lir_patch_none, nullptr);
1738     opr1 = tmp;
1739   }
1740 
1741   if (opr2->is_stack()) {
1742     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1743     opr2 = FrameMap::rscratch2_opr;
1744   } else if (opr2->is_constant()) {
1745     LIR_Opr tmp
1746       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1747     const2reg(opr2, tmp, lir_patch_none, nullptr);
1748     opr2 = tmp;
1749   }
1750 
1751   if (result->type() == T_LONG)
1752     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1753   else
1754     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1755 }
1756 
1757 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1758   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1759 
1760   if (left->is_single_cpu()) {
1761     Register lreg = left->as_register();
1762     Register dreg = as_reg(dest);
1763 
1764     if (right->is_single_cpu()) {
1765       // cpu register - cpu register
1766 
1767       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1768              "should be");
1769       Register rreg = right->as_register();
1770       switch (code) {
1771       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1772       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1773       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1774       default:      ShouldNotReachHere();
1775       }
1776 
1777     } else if (right->is_double_cpu()) {
1778       Register rreg = right->as_register_lo();
1779       // single_cpu + double_cpu: can happen with obj+long
1780       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1781       switch (code) {
1782       case lir_add: __ add(dreg, lreg, rreg); break;
1783       case lir_sub: __ sub(dreg, lreg, rreg); break;
1784       default: ShouldNotReachHere();
1785       }
1786     } else if (right->is_constant()) {
1787       // cpu register - constant
1788       jlong c;
1789 
1790       // FIXME.  This is fugly: we really need to factor all this logic.
1791       switch(right->type()) {
1792       case T_LONG:
1793         c = right->as_constant_ptr()->as_jlong();
1794         break;
1795       case T_INT:
1796       case T_ADDRESS:
1797         c = right->as_constant_ptr()->as_jint();
1798         break;
1799       default:
1800         ShouldNotReachHere();
1801         c = 0;  // unreachable
1802         break;
1803       }
1804 
1805       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1806       if (c == 0 && dreg == lreg) {
1807         COMMENT("effective nop elided");
1808         return;
1809       }
1810       switch(left->type()) {
1811       case T_INT:
1812         switch (code) {
1813         case lir_add: __ addw(dreg, lreg, c); break;
1814         case lir_sub: __ subw(dreg, lreg, c); break;
1815         default: ShouldNotReachHere();
1816         }
1817         break;
1818       case T_OBJECT:
1819       case T_ADDRESS:
1820         switch (code) {
1821         case lir_add: __ add(dreg, lreg, c); break;
1822         case lir_sub: __ sub(dreg, lreg, c); break;
1823         default: ShouldNotReachHere();
1824         }
1825         break;
1826       default:
1827         ShouldNotReachHere();
1828       }
1829     } else {
1830       ShouldNotReachHere();
1831     }
1832 
1833   } else if (left->is_double_cpu()) {
1834     Register lreg_lo = left->as_register_lo();
1835 
1836     if (right->is_double_cpu()) {
1837       // cpu register - cpu register
1838       Register rreg_lo = right->as_register_lo();
1839       switch (code) {
1840       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1841       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1842       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1843       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1844       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1845       default:
1846         ShouldNotReachHere();
1847       }
1848 
1849     } else if (right->is_constant()) {
1850       jlong c = right->as_constant_ptr()->as_jlong();
1851       Register dreg = as_reg(dest);
1852       switch (code) {
1853         case lir_add:
1854         case lir_sub:
1855           if (c == 0 && dreg == lreg_lo) {
1856             COMMENT("effective nop elided");
1857             return;
1858           }
1859           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1860           break;
1861         case lir_div:
1862           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1863           if (c == 1) {
1864             // move lreg_lo to dreg if divisor is 1
1865             __ mov(dreg, lreg_lo);
1866           } else {
1867             unsigned int shift = log2i_exact(c);
1868             // use rscratch1 as intermediate result register
1869             __ asr(rscratch1, lreg_lo, 63);
1870             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1871             __ asr(dreg, rscratch1, shift);
1872           }
1873           break;
1874         case lir_rem:
1875           assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1876           if (c == 1) {
1877             // move 0 to dreg if divisor is 1
1878             __ mov(dreg, zr);
1879           } else {
1880             // use rscratch1 as intermediate result register
1881             __ negs(rscratch1, lreg_lo);
1882             __ andr(dreg, lreg_lo, c - 1);
1883             __ andr(rscratch1, rscratch1, c - 1);
1884             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1885           }
1886           break;
1887         default:
1888           ShouldNotReachHere();
1889       }
1890     } else {
1891       ShouldNotReachHere();
1892     }
1893   } else if (left->is_single_fpu()) {
1894     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1895     switch (code) {
1896     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1897     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1898     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1899     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1900     default:
1901       ShouldNotReachHere();
1902     }
1903   } else if (left->is_double_fpu()) {
1904     if (right->is_double_fpu()) {
1905       // fpu register - fpu register
1906       switch (code) {
1907       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1908       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1909       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1910       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1911       default:
1912         ShouldNotReachHere();
1913       }
1914     } else {
1915       if (right->is_constant()) {
1916         ShouldNotReachHere();
1917       }
1918       ShouldNotReachHere();
1919     }
1920   } else if (left->is_single_stack() || left->is_address()) {
1921     assert(left == dest, "left and dest must be equal");
1922     ShouldNotReachHere();
1923   } else {
1924     ShouldNotReachHere();
1925   }
1926 }
1927 
1928 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1929 
1930 
1931 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1932   switch(code) {
1933   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1934   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1935   case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1936   case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1937   default      : ShouldNotReachHere();
1938   }
1939 }
1940 
1941 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1942 
1943   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1944   Register Rleft = left->is_single_cpu() ? left->as_register() :
1945                                            left->as_register_lo();
1946    if (dst->is_single_cpu()) {
1947      Register Rdst = dst->as_register();
1948      if (right->is_constant()) {
1949        switch (code) {
1950          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1951          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1952          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1953          default: ShouldNotReachHere(); break;
1954        }
1955      } else {
1956        Register Rright = right->is_single_cpu() ? right->as_register() :
1957                                                   right->as_register_lo();
1958        switch (code) {
1959          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1960          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1961          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1962          default: ShouldNotReachHere(); break;
1963        }
1964      }
1965    } else {
1966      Register Rdst = dst->as_register_lo();
1967      if (right->is_constant()) {
1968        switch (code) {
1969          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1970          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1971          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1972          default: ShouldNotReachHere(); break;
1973        }
1974      } else {
1975        Register Rright = right->is_single_cpu() ? right->as_register() :
1976                                                   right->as_register_lo();
1977        switch (code) {
1978          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1979          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1980          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1981          default: ShouldNotReachHere(); break;
1982        }
1983      }
1984    }
1985 }
1986 
1987 
1988 
1989 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1990 
1991   // opcode check
1992   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1993   bool is_irem = (code == lir_irem);
1994 
1995   // operand check
1996   assert(left->is_single_cpu(),   "left must be register");
1997   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1998   assert(result->is_single_cpu(), "result must be register");
1999   Register lreg = left->as_register();
2000   Register dreg = result->as_register();
2001 
2002   // power-of-2 constant check and codegen
2003   if (right->is_constant()) {
2004     int c = right->as_constant_ptr()->as_jint();
2005     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
2006     if (is_irem) {
2007       if (c == 1) {
2008         // move 0 to dreg if divisor is 1
2009         __ movw(dreg, zr);
2010       } else {
2011         // use rscratch1 as intermediate result register
2012         __ negsw(rscratch1, lreg);
2013         __ andw(dreg, lreg, c - 1);
2014         __ andw(rscratch1, rscratch1, c - 1);
2015         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
2016       }
2017     } else {
2018       if (c == 1) {
2019         // move lreg to dreg if divisor is 1
2020         __ movw(dreg, lreg);
2021       } else {
2022         unsigned int shift = exact_log2(c);
2023         // use rscratch1 as intermediate result register
2024         __ asrw(rscratch1, lreg, 31);
2025         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
2026         __ asrw(dreg, rscratch1, shift);
2027       }
2028     }
2029   } else {
2030     Register rreg = right->as_register();
2031     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
2032   }
2033 }
2034 
2035 
2036 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2037   if (opr1->is_constant() && opr2->is_single_cpu()) {
2038     // tableswitch
2039     Register reg = as_reg(opr2);
2040     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
2041     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
2042   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
2043     Register reg1 = as_reg(opr1);
2044     if (opr2->is_single_cpu()) {
2045       // cpu register - cpu register
2046       Register reg2 = opr2->as_register();
2047       if (is_reference_type(opr1->type())) {
2048         __ cmpoop(reg1, reg2);
2049       } else {
2050         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2051         __ cmpw(reg1, reg2);
2052       }
2053       return;
2054     }
2055     if (opr2->is_double_cpu()) {
2056       // cpu register - cpu register
2057       Register reg2 = opr2->as_register_lo();
2058       __ cmp(reg1, reg2);
2059       return;
2060     }
2061 
2062     if (opr2->is_constant()) {
2063       bool is_32bit = false; // width of register operand
2064       jlong imm;
2065 
2066       switch(opr2->type()) {
2067       case T_INT:
2068         imm = opr2->as_constant_ptr()->as_jint();
2069         is_32bit = true;
2070         break;
2071       case T_LONG:
2072         imm = opr2->as_constant_ptr()->as_jlong();
2073         break;
2074       case T_ADDRESS:
2075         imm = opr2->as_constant_ptr()->as_jint();
2076         break;
2077       case T_METADATA:
2078         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
2079         break;
2080       case T_OBJECT:
2081       case T_ARRAY:
2082         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
2083         __ cmpoop(reg1, rscratch1);
2084         return;
2085       default:
2086         ShouldNotReachHere();
2087         imm = 0;  // unreachable
2088         break;
2089       }
2090 
2091       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
2092         if (is_32bit)
2093           __ cmpw(reg1, imm);
2094         else
2095           __ subs(zr, reg1, imm);
2096         return;
2097       } else {
2098         __ mov(rscratch1, imm);
2099         if (is_32bit)
2100           __ cmpw(reg1, rscratch1);
2101         else
2102           __ cmp(reg1, rscratch1);
2103         return;
2104       }
2105     } else
2106       ShouldNotReachHere();
2107   } else if (opr1->is_single_fpu()) {
2108     FloatRegister reg1 = opr1->as_float_reg();
2109     assert(opr2->is_single_fpu(), "expect single float register");
2110     FloatRegister reg2 = opr2->as_float_reg();
2111     __ fcmps(reg1, reg2);
2112   } else if (opr1->is_double_fpu()) {
2113     FloatRegister reg1 = opr1->as_double_reg();
2114     assert(opr2->is_double_fpu(), "expect double float register");
2115     FloatRegister reg2 = opr2->as_double_reg();
2116     __ fcmpd(reg1, reg2);
2117   } else {
2118     ShouldNotReachHere();
2119   }
2120 }
2121 
2122 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
2123   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2124     bool is_unordered_less = (code == lir_ucmp_fd2i);
2125     if (left->is_single_fpu()) {
2126       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
2127     } else if (left->is_double_fpu()) {
2128       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
2129     } else {
2130       ShouldNotReachHere();
2131     }
2132   } else if (code == lir_cmp_l2i) {
2133     Label done;
2134     __ cmp(left->as_register_lo(), right->as_register_lo());
2135     __ mov(dst->as_register(), (uint64_t)-1L);
2136     __ br(Assembler::LT, done);
2137     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
2138     __ bind(done);
2139   } else {
2140     ShouldNotReachHere();
2141   }
2142 }
2143 
2144 
2145 void LIR_Assembler::align_call(LIR_Code code) {  }
2146 
2147 
2148 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2149   address call = __ trampoline_call(Address(op->addr(), rtype));
2150   if (call == nullptr) {
2151     bailout("trampoline stub overflow");
2152     return;
2153   }
2154   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
2155   __ post_call_nop();
2156 }
2157 
2158 
2159 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2160   address call = __ ic_call(op->addr());
2161   if (call == nullptr) {
2162     bailout("trampoline stub overflow");
2163     return;
2164   }
2165   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
2166   __ post_call_nop();
2167 }
2168 
2169 void LIR_Assembler::emit_static_call_stub() {
2170   address call_pc = __ pc();
2171   address stub = __ start_a_stub(call_stub_size());
2172   if (stub == nullptr) {
2173     bailout("static call stub overflow");
2174     return;
2175   }
2176 
2177   int start = __ offset();
2178 
2179   __ relocate(static_stub_Relocation::spec(call_pc));
2180   __ emit_static_call_stub();
2181 
2182   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2183         <= call_stub_size(), "stub too big");
2184   __ end_a_stub();
2185 }
2186 
2187 
2188 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2189   assert(exceptionOop->as_register() == r0, "must match");
2190   assert(exceptionPC->as_register() == r3, "must match");
2191 
2192   // exception object is not added to oop map by LinearScan
2193   // (LinearScan assumes that no oops are in fixed registers)
2194   info->add_register_oop(exceptionOop);
2195   Runtime1::StubID unwind_id;
2196 
2197   // get current pc information
2198   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2199   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2200     // As no instructions have been generated yet for this LIR node it's
2201     // possible that an oop map already exists for the current offset.
2202     // In that case insert an dummy NOP here to ensure all oop map PCs
2203     // are unique. See JDK-8237483.
2204     __ nop();
2205   }
2206   int pc_for_athrow_offset = __ offset();
2207   InternalAddress pc_for_athrow(__ pc());
2208   __ adr(exceptionPC->as_register(), pc_for_athrow);
2209   add_call_info(pc_for_athrow_offset, info); // for exception handler
2210 
2211   __ verify_not_null_oop(r0);
2212   // search an exception handler (r0: exception oop, r3: throwing pc)
2213   if (compilation()->has_fpu_code()) {
2214     unwind_id = Runtime1::handle_exception_id;
2215   } else {
2216     unwind_id = Runtime1::handle_exception_nofpu_id;
2217   }
2218   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2219 
2220   // FIXME: enough room for two byte trap   ????
2221   __ nop();
2222 }
2223 
2224 
2225 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2226   assert(exceptionOop->as_register() == r0, "must match");
2227 
2228   __ b(_unwind_handler_entry);
2229 }
2230 
2231 
2232 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2233   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2234   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2235 
2236   switch (left->type()) {
2237     case T_INT: {
2238       switch (code) {
2239       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2240       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2241       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2242       default:
2243         ShouldNotReachHere();
2244         break;
2245       }
2246       break;
2247     case T_LONG:
2248     case T_ADDRESS:
2249     case T_OBJECT:
2250       switch (code) {
2251       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2252       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2253       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2254       default:
2255         ShouldNotReachHere();
2256         break;
2257       }
2258       break;
2259     default:
2260       ShouldNotReachHere();
2261       break;
2262     }
2263   }
2264 }
2265 
2266 
2267 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2268   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2269   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2270 
2271   switch (left->type()) {
2272     case T_INT: {
2273       switch (code) {
2274       case lir_shl:  __ lslw (dreg, lreg, count); break;
2275       case lir_shr:  __ asrw (dreg, lreg, count); break;
2276       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2277       default:
2278         ShouldNotReachHere();
2279         break;
2280       }
2281       break;
2282     case T_LONG:
2283     case T_ADDRESS:
2284     case T_OBJECT:
2285       switch (code) {
2286       case lir_shl:  __ lsl (dreg, lreg, count); break;
2287       case lir_shr:  __ asr (dreg, lreg, count); break;
2288       case lir_ushr: __ lsr (dreg, lreg, count); break;
2289       default:
2290         ShouldNotReachHere();
2291         break;
2292       }
2293       break;
2294     default:
2295       ShouldNotReachHere();
2296       break;
2297     }
2298   }
2299 }
2300 
2301 
2302 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2303   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2304   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2305   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2306   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2307 }
2308 
2309 
2310 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2311   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2312   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2313   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2314   __ mov (rscratch1, c);
2315   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2316 }
2317 
2318 
2319 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2320   ShouldNotReachHere();
2321   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2322   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2323   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2324   __ lea(rscratch1, __ constant_oop_address(o));
2325   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2326 }
2327 
2328 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) {
2329   if (null_check) {
2330     __ cbz(obj, *slow_path->entry());
2331   }
2332   if (is_dest) {
2333     __ test_null_free_array_oop(obj, tmp, *slow_path->entry());
2334   } else {
2335     __ test_flat_array_oop(obj, tmp, *slow_path->entry());
2336   }
2337 }
2338 
2339 // This code replaces a call to arraycopy; no exception may
2340 // be thrown in this code, they must be thrown in the System.arraycopy
2341 // activation frame; we could save some checks if this would not be the case
2342 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2343   ciArrayKlass* default_type = op->expected_type();
2344   Register src = op->src()->as_register();
2345   Register dst = op->dst()->as_register();
2346   Register src_pos = op->src_pos()->as_register();
2347   Register dst_pos = op->dst_pos()->as_register();
2348   Register length  = op->length()->as_register();
2349   Register tmp = op->tmp()->as_register();
2350 
2351   CodeStub* stub = op->stub();
2352   int flags = op->flags();
2353   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2354   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2355 
2356   if (flags & LIR_OpArrayCopy::always_slow_path) {
2357     __ b(*stub->entry());
2358     __ bind(*stub->continuation());
2359     return;
2360   }
2361 
2362   // if we don't know anything, just go through the generic arraycopy
2363   if (default_type == nullptr // || basic_type == T_OBJECT
2364       ) {
2365     Label done;
2366     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2367 
2368     // Save the arguments in case the generic arraycopy fails and we
2369     // have to fall back to the JNI stub
2370     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2371     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2372     __ str(src,              Address(sp, 4*BytesPerWord));
2373 
2374     address copyfunc_addr = StubRoutines::generic_arraycopy();
2375     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2376 
2377     // The arguments are in java calling convention so we shift them
2378     // to C convention
2379     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2380     __ mov(c_rarg0, j_rarg0);
2381     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2382     __ mov(c_rarg1, j_rarg1);
2383     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2384     __ mov(c_rarg2, j_rarg2);
2385     assert_different_registers(c_rarg3, j_rarg4);
2386     __ mov(c_rarg3, j_rarg3);
2387     __ mov(c_rarg4, j_rarg4);
2388 #ifndef PRODUCT
2389     if (PrintC1Statistics) {
2390       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2391     }
2392 #endif
2393     __ far_call(RuntimeAddress(copyfunc_addr));
2394 
2395     __ cbz(r0, *stub->continuation());
2396 
2397     // Reload values from the stack so they are where the stub
2398     // expects them.
2399     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2400     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2401     __ ldr(src,              Address(sp, 4*BytesPerWord));
2402 
2403     // r0 is -1^K where K == partial copied count
2404     __ eonw(rscratch1, r0, zr);
2405     // adjust length down and src/end pos up by partial copied count
2406     __ subw(length, length, rscratch1);
2407     __ addw(src_pos, src_pos, rscratch1);
2408     __ addw(dst_pos, dst_pos, rscratch1);
2409     __ b(*stub->entry());
2410 
2411     __ bind(*stub->continuation());
2412     return;
2413   }
2414 
2415   // Handle inline type arrays
2416   if (flags & LIR_OpArrayCopy::src_inlinetype_check) {
2417     arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check));
2418   }
2419 
2420   if (flags & LIR_OpArrayCopy::dst_inlinetype_check) {
2421     arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check));
2422   }
2423 
2424   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2425 
2426   int elem_size = type2aelembytes(basic_type);
2427   int scale = exact_log2(elem_size);
2428 
2429   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2430   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2431   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2432   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2433 
2434   // test for null
2435   if (flags & LIR_OpArrayCopy::src_null_check) {
2436     __ cbz(src, *stub->entry());
2437   }
2438   if (flags & LIR_OpArrayCopy::dst_null_check) {
2439     __ cbz(dst, *stub->entry());
2440   }
2441 
2442   // If the compiler was not able to prove that exact type of the source or the destination
2443   // of the arraycopy is an array type, check at runtime if the source or the destination is
2444   // an instance type.
2445   if (flags & LIR_OpArrayCopy::type_check) {
2446     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2447       __ load_klass(tmp, dst);
2448       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2449       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2450       __ br(Assembler::GE, *stub->entry());
2451     }
2452 
2453     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2454       __ load_klass(tmp, src);
2455       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2456       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2457       __ br(Assembler::GE, *stub->entry());
2458     }
2459   }
2460 
2461   // check if negative
2462   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2463     __ cmpw(src_pos, 0);
2464     __ br(Assembler::LT, *stub->entry());
2465   }
2466   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2467     __ cmpw(dst_pos, 0);
2468     __ br(Assembler::LT, *stub->entry());
2469   }
2470 
2471   if (flags & LIR_OpArrayCopy::length_positive_check) {
2472     __ cmpw(length, 0);
2473     __ br(Assembler::LT, *stub->entry());
2474   }
2475 
2476   if (flags & LIR_OpArrayCopy::src_range_check) {
2477     __ addw(tmp, src_pos, length);
2478     __ ldrw(rscratch1, src_length_addr);
2479     __ cmpw(tmp, rscratch1);
2480     __ br(Assembler::HI, *stub->entry());
2481   }
2482   if (flags & LIR_OpArrayCopy::dst_range_check) {
2483     __ addw(tmp, dst_pos, length);
2484     __ ldrw(rscratch1, dst_length_addr);
2485     __ cmpw(tmp, rscratch1);
2486     __ br(Assembler::HI, *stub->entry());
2487   }
2488 
2489   if (flags & LIR_OpArrayCopy::type_check) {
2490     // We don't know the array types are compatible
2491     if (basic_type != T_OBJECT) {
2492       // Simple test for basic type arrays
2493       if (UseCompressedClassPointers) {
2494         __ ldrw(tmp, src_klass_addr);
2495         __ ldrw(rscratch1, dst_klass_addr);
2496         __ cmpw(tmp, rscratch1);
2497       } else {
2498         __ ldr(tmp, src_klass_addr);
2499         __ ldr(rscratch1, dst_klass_addr);
2500         __ cmp(tmp, rscratch1);
2501       }
2502       __ br(Assembler::NE, *stub->entry());
2503     } else {
2504       // For object arrays, if src is a sub class of dst then we can
2505       // safely do the copy.
2506       Label cont, slow;
2507 
2508 #define PUSH(r1, r2)                                    \
2509       stp(r1, r2, __ pre(sp, -2 * wordSize));
2510 
2511 #define POP(r1, r2)                                     \
2512       ldp(r1, r2, __ post(sp, 2 * wordSize));
2513 
2514       __ PUSH(src, dst);
2515 
2516       __ load_klass(src, src);
2517       __ load_klass(dst, dst);
2518 
2519       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2520 
2521       __ PUSH(src, dst);
2522       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2523       __ POP(src, dst);
2524 
2525       __ cbnz(src, cont);
2526 
2527       __ bind(slow);
2528       __ POP(src, dst);
2529 
2530       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2531       if (copyfunc_addr != nullptr) { // use stub if available
2532         // src is not a sub class of dst so we have to do a
2533         // per-element check.
2534 
2535         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2536         if ((flags & mask) != mask) {
2537           // Check that at least both of them object arrays.
2538           assert(flags & mask, "one of the two should be known to be an object array");
2539 
2540           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2541             __ load_klass(tmp, src);
2542           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2543             __ load_klass(tmp, dst);
2544           }
2545           int lh_offset = in_bytes(Klass::layout_helper_offset());
2546           Address klass_lh_addr(tmp, lh_offset);
2547           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2548           __ ldrw(rscratch1, klass_lh_addr);
2549           __ mov(rscratch2, objArray_lh);
2550           __ eorw(rscratch1, rscratch1, rscratch2);
2551           __ cbnzw(rscratch1, *stub->entry());
2552         }
2553 
2554        // Spill because stubs can use any register they like and it's
2555        // easier to restore just those that we care about.
2556         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2557         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2558         __ str(src,              Address(sp, 4*BytesPerWord));
2559 
2560         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2561         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2562         assert_different_registers(c_rarg0, dst, dst_pos, length);
2563         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2564         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2565         assert_different_registers(c_rarg1, dst, length);
2566         __ uxtw(c_rarg2, length);
2567         assert_different_registers(c_rarg2, dst);
2568 
2569         __ load_klass(c_rarg4, dst);
2570         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2571         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2572         __ far_call(RuntimeAddress(copyfunc_addr));
2573 
2574 #ifndef PRODUCT
2575         if (PrintC1Statistics) {
2576           Label failed;
2577           __ cbnz(r0, failed);
2578           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2579           __ bind(failed);
2580         }
2581 #endif
2582 
2583         __ cbz(r0, *stub->continuation());
2584 
2585 #ifndef PRODUCT
2586         if (PrintC1Statistics) {
2587           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2588         }
2589 #endif
2590         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2591 
2592         // Restore previously spilled arguments
2593         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2594         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2595         __ ldr(src,              Address(sp, 4*BytesPerWord));
2596 
2597         // return value is -1^K where K is partial copied count
2598         __ eonw(rscratch1, r0, zr);
2599         // adjust length down and src/end pos up by partial copied count
2600         __ subw(length, length, rscratch1);
2601         __ addw(src_pos, src_pos, rscratch1);
2602         __ addw(dst_pos, dst_pos, rscratch1);
2603       }
2604 
2605       __ b(*stub->entry());
2606 
2607       __ bind(cont);
2608       __ POP(src, dst);
2609     }
2610   }
2611 
2612 #ifdef ASSERT
2613   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2614     // Sanity check the known type with the incoming class.  For the
2615     // primitive case the types must match exactly with src.klass and
2616     // dst.klass each exactly matching the default type.  For the
2617     // object array case, if no type check is needed then either the
2618     // dst type is exactly the expected type and the src type is a
2619     // subtype which we can't check or src is the same array as dst
2620     // but not necessarily exactly of type default_type.
2621     Label known_ok, halt;
2622     __ mov_metadata(tmp, default_type->constant_encoding());
2623     if (UseCompressedClassPointers) {
2624       __ encode_klass_not_null(tmp);
2625     }
2626 
2627     if (basic_type != T_OBJECT) {
2628 
2629       if (UseCompressedClassPointers) {
2630         __ ldrw(rscratch1, dst_klass_addr);
2631         __ cmpw(tmp, rscratch1);
2632       } else {
2633         __ ldr(rscratch1, dst_klass_addr);
2634         __ cmp(tmp, rscratch1);
2635       }
2636       __ br(Assembler::NE, halt);
2637       if (UseCompressedClassPointers) {
2638         __ ldrw(rscratch1, src_klass_addr);
2639         __ cmpw(tmp, rscratch1);
2640       } else {
2641         __ ldr(rscratch1, src_klass_addr);
2642         __ cmp(tmp, rscratch1);
2643       }
2644       __ br(Assembler::EQ, known_ok);
2645     } else {
2646       if (UseCompressedClassPointers) {
2647         __ ldrw(rscratch1, dst_klass_addr);
2648         __ cmpw(tmp, rscratch1);
2649       } else {
2650         __ ldr(rscratch1, dst_klass_addr);
2651         __ cmp(tmp, rscratch1);
2652       }
2653       __ br(Assembler::EQ, known_ok);
2654       __ cmp(src, dst);
2655       __ br(Assembler::EQ, known_ok);
2656     }
2657     __ bind(halt);
2658     __ stop("incorrect type information in arraycopy");
2659     __ bind(known_ok);
2660   }
2661 #endif
2662 
2663 #ifndef PRODUCT
2664   if (PrintC1Statistics) {
2665     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2666   }
2667 #endif
2668 
2669   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2670   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2671   assert_different_registers(c_rarg0, dst, dst_pos, length);
2672   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2673   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2674   assert_different_registers(c_rarg1, dst, length);
2675   __ uxtw(c_rarg2, length);
2676   assert_different_registers(c_rarg2, dst);
2677 
2678   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2679   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2680   const char *name;
2681   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2682 
2683  CodeBlob *cb = CodeCache::find_blob(entry);
2684  if (cb) {
2685    __ far_call(RuntimeAddress(entry));
2686  } else {
2687    __ call_VM_leaf(entry, 3);
2688  }
2689 
2690   __ bind(*stub->continuation());
2691 }
2692 
2693 
2694 
2695 
2696 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2697   Register obj = op->obj_opr()->as_register();  // may not be an oop
2698   Register hdr = op->hdr_opr()->as_register();
2699   Register lock = op->lock_opr()->as_register();
2700   Register temp = op->scratch_opr()->as_register();
2701   if (LockingMode == LM_MONITOR) {
2702     if (op->info() != nullptr) {
2703       add_debug_info_for_null_check_here(op->info());
2704       __ null_check(obj, -1);
2705     }
2706     __ b(*op->stub()->entry());
2707   } else if (op->code() == lir_lock) {
2708     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2709     // add debug info for NullPointerException only if one is possible
2710     int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2711     if (op->info() != nullptr) {
2712       add_debug_info_for_null_check(null_check_offset, op->info());
2713     }
2714     // done
2715   } else if (op->code() == lir_unlock) {
2716     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2717     __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2718   } else {
2719     Unimplemented();
2720   }
2721   __ bind(*op->stub()->continuation());
2722 }
2723 
2724 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2725   Register obj = op->obj()->as_pointer_register();
2726   Register result = op->result_opr()->as_pointer_register();
2727 
2728   CodeEmitInfo* info = op->info();
2729   if (info != nullptr) {
2730     add_debug_info_for_null_check_here(info);
2731   }
2732 
2733   if (UseCompressedClassPointers) {
2734     __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2735     __ decode_klass_not_null(result);
2736   } else {
2737     __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2738   }
2739 }
2740 
2741 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2742   ciMethod* method = op->profiled_method();
2743   int bci          = op->profiled_bci();
2744   ciMethod* callee = op->profiled_callee();
2745 
2746   // Update counter for all call types
2747   ciMethodData* md = method->method_data_or_null();
2748   assert(md != nullptr, "Sanity");
2749   ciProfileData* data = md->bci_to_data(bci);
2750   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2751   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2752   Register mdo  = op->mdo()->as_register();
2753   __ mov_metadata(mdo, md->constant_encoding());
2754   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2755   // Perform additional virtual call profiling for invokevirtual and
2756   // invokeinterface bytecodes
2757   if (op->should_profile_receiver_type()) {
2758     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2759     Register recv = op->recv()->as_register();
2760     assert_different_registers(mdo, recv);
2761     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2762     ciKlass* known_klass = op->known_holder();
2763     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2764       // We know the type that will be seen at this call site; we can
2765       // statically update the MethodData* rather than needing to do
2766       // dynamic tests on the receiver type
2767 
2768       // NOTE: we should probably put a lock around this search to
2769       // avoid collisions by concurrent compilations
2770       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2771       uint i;
2772       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2773         ciKlass* receiver = vc_data->receiver(i);
2774         if (known_klass->equals(receiver)) {
2775           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2776           __ addptr(data_addr, DataLayout::counter_increment);
2777           return;
2778         }
2779       }
2780 
2781       // Receiver type not found in profile data; select an empty slot
2782 
2783       // Note that this is less efficient than it should be because it
2784       // always does a write to the receiver part of the
2785       // VirtualCallData rather than just the first time
2786       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2787         ciKlass* receiver = vc_data->receiver(i);
2788         if (receiver == nullptr) {
2789           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2790           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2791           __ lea(rscratch2, recv_addr);
2792           __ str(rscratch1, Address(rscratch2));
2793           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2794           __ addptr(data_addr, DataLayout::counter_increment);
2795           return;
2796         }
2797       }
2798     } else {
2799       __ load_klass(recv, recv);
2800       Label update_done;
2801       type_profile_helper(mdo, md, data, recv, &update_done);
2802       // Receiver did not match any saved receiver and there is no empty row for it.
2803       // Increment total counter to indicate polymorphic case.
2804       __ addptr(counter_addr, DataLayout::counter_increment);
2805 
2806       __ bind(update_done);
2807     }
2808   } else {
2809     // Static call
2810     __ addptr(counter_addr, DataLayout::counter_increment);
2811   }
2812 }
2813 
2814 
2815 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2816   Unimplemented();
2817 }
2818 
2819 
2820 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2821   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2822 }
2823 
2824 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2825   assert(op->crc()->is_single_cpu(),  "crc must be register");
2826   assert(op->val()->is_single_cpu(),  "byte value must be register");
2827   assert(op->result_opr()->is_single_cpu(), "result must be register");
2828   Register crc = op->crc()->as_register();
2829   Register val = op->val()->as_register();
2830   Register res = op->result_opr()->as_register();
2831 
2832   assert_different_registers(val, crc, res);
2833   uint64_t offset;
2834   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2835   __ add(res, res, offset);
2836 
2837   __ mvnw(crc, crc); // ~crc
2838   __ update_byte_crc32(crc, val, res);
2839   __ mvnw(res, crc); // ~crc
2840 }
2841 
2842 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2843   COMMENT("emit_profile_type {");
2844   Register obj = op->obj()->as_register();
2845   Register tmp = op->tmp()->as_pointer_register();
2846   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2847   ciKlass* exact_klass = op->exact_klass();
2848   intptr_t current_klass = op->current_klass();
2849   bool not_null = op->not_null();
2850   bool no_conflict = op->no_conflict();
2851 
2852   Label update, next, none;
2853 
2854   bool do_null = !not_null;
2855   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2856   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2857 
2858   assert(do_null || do_update, "why are we here?");
2859   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2860   assert(mdo_addr.base() != rscratch1, "wrong register");
2861 
2862   __ verify_oop(obj);
2863 
2864   if (tmp != obj) {
2865     assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2866     __ mov(tmp, obj);
2867   } else {
2868     assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2869   }
2870   if (do_null) {
2871     __ cbnz(tmp, update);
2872     if (!TypeEntries::was_null_seen(current_klass)) {
2873       __ ldr(rscratch2, mdo_addr);
2874       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2875       __ str(rscratch2, mdo_addr);
2876     }
2877     if (do_update) {
2878 #ifndef ASSERT
2879       __ b(next);
2880     }
2881 #else
2882       __ b(next);
2883     }
2884   } else {
2885     __ cbnz(tmp, update);
2886     __ stop("unexpected null obj");
2887 #endif
2888   }
2889 
2890   __ bind(update);
2891 
2892   if (do_update) {
2893 #ifdef ASSERT
2894     if (exact_klass != nullptr) {
2895       Label ok;
2896       __ load_klass(tmp, tmp);
2897       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2898       __ eor(rscratch1, tmp, rscratch1);
2899       __ cbz(rscratch1, ok);
2900       __ stop("exact klass and actual klass differ");
2901       __ bind(ok);
2902     }
2903 #endif
2904     if (!no_conflict) {
2905       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2906         if (exact_klass != nullptr) {
2907           __ mov_metadata(tmp, exact_klass->constant_encoding());
2908         } else {
2909           __ load_klass(tmp, tmp);
2910         }
2911 
2912         __ ldr(rscratch2, mdo_addr);
2913         __ eor(tmp, tmp, rscratch2);
2914         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2915         // klass seen before, nothing to do. The unknown bit may have been
2916         // set already but no need to check.
2917         __ cbz(rscratch1, next);
2918 
2919         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2920 
2921         if (TypeEntries::is_type_none(current_klass)) {
2922           __ cbz(rscratch2, none);
2923           __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2924           __ br(Assembler::EQ, none);
2925           // There is a chance that the checks above
2926           // fail if another thread has just set the
2927           // profiling to this obj's klass
2928           __ dmb(Assembler::ISHLD);
2929           __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2930           __ ldr(rscratch2, mdo_addr);
2931           __ eor(tmp, tmp, rscratch2);
2932           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2933           __ cbz(rscratch1, next);
2934         }
2935       } else {
2936         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2937                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2938 
2939         __ ldr(tmp, mdo_addr);
2940         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2941       }
2942 
2943       // different than before. Cannot keep accurate profile.
2944       __ ldr(rscratch2, mdo_addr);
2945       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2946       __ str(rscratch2, mdo_addr);
2947 
2948       if (TypeEntries::is_type_none(current_klass)) {
2949         __ b(next);
2950 
2951         __ bind(none);
2952         // first time here. Set profile type.
2953         __ str(tmp, mdo_addr);
2954 #ifdef ASSERT
2955         __ andr(tmp, tmp, TypeEntries::type_mask);
2956         __ verify_klass_ptr(tmp);
2957 #endif
2958       }
2959     } else {
2960       // There's a single possible klass at this profile point
2961       assert(exact_klass != nullptr, "should be");
2962       if (TypeEntries::is_type_none(current_klass)) {
2963         __ mov_metadata(tmp, exact_klass->constant_encoding());
2964         __ ldr(rscratch2, mdo_addr);
2965         __ eor(tmp, tmp, rscratch2);
2966         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2967         __ cbz(rscratch1, next);
2968 #ifdef ASSERT
2969         {
2970           Label ok;
2971           __ ldr(rscratch1, mdo_addr);
2972           __ cbz(rscratch1, ok);
2973           __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2974           __ br(Assembler::EQ, ok);
2975           // may have been set by another thread
2976           __ dmb(Assembler::ISHLD);
2977           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2978           __ ldr(rscratch2, mdo_addr);
2979           __ eor(rscratch2, rscratch1, rscratch2);
2980           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2981           __ cbz(rscratch2, ok);
2982 
2983           __ stop("unexpected profiling mismatch");
2984           __ bind(ok);
2985         }
2986 #endif
2987         // first time here. Set profile type.
2988         __ str(tmp, mdo_addr);
2989 #ifdef ASSERT
2990         __ andr(tmp, tmp, TypeEntries::type_mask);
2991         __ verify_klass_ptr(tmp);
2992 #endif
2993       } else {
2994         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2995                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2996 
2997         __ ldr(tmp, mdo_addr);
2998         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2999 
3000         __ orr(tmp, tmp, TypeEntries::type_unknown);
3001         __ str(tmp, mdo_addr);
3002         // FIXME: Write barrier needed here?
3003       }
3004     }
3005 
3006     __ bind(next);
3007   }
3008   COMMENT("} emit_profile_type");
3009 }
3010 
3011 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) {
3012   Register obj = op->obj()->as_register();
3013   Register tmp = op->tmp()->as_pointer_register();
3014   bool not_null = op->not_null();
3015   int flag = op->flag();
3016 
3017   Label not_inline_type;
3018   if (!not_null) {
3019     __ cbz(obj, not_inline_type);
3020   }
3021 
3022   __ test_oop_is_not_inline_type(obj, tmp, not_inline_type);
3023 
3024   Address mdo_addr = as_Address(op->mdp()->as_address_ptr(), rscratch2);
3025   __ ldrb(rscratch1, mdo_addr);
3026   __ orr(rscratch1, rscratch1, flag);
3027   __ strb(rscratch1, mdo_addr);
3028 
3029   __ bind(not_inline_type);
3030 }
3031 
3032 void LIR_Assembler::align_backward_branch_target() {
3033 }
3034 
3035 
3036 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3037   // tmp must be unused
3038   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3039 
3040   if (left->is_single_cpu()) {
3041     assert(dest->is_single_cpu(), "expect single result reg");
3042     __ negw(dest->as_register(), left->as_register());
3043   } else if (left->is_double_cpu()) {
3044     assert(dest->is_double_cpu(), "expect double result reg");
3045     __ neg(dest->as_register_lo(), left->as_register_lo());
3046   } else if (left->is_single_fpu()) {
3047     assert(dest->is_single_fpu(), "expect single float result reg");
3048     __ fnegs(dest->as_float_reg(), left->as_float_reg());
3049   } else {
3050     assert(left->is_double_fpu(), "expect double float operand reg");
3051     assert(dest->is_double_fpu(), "expect double float result reg");
3052     __ fnegd(dest->as_double_reg(), left->as_double_reg());
3053   }
3054 }
3055 
3056 
3057 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3058   if (patch_code != lir_patch_none) {
3059     deoptimize_trap(info);
3060     return;
3061   }
3062 
3063   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
3064 }
3065 
3066 
3067 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3068   assert(!tmp->is_valid(), "don't need temporary");
3069 
3070   CodeBlob *cb = CodeCache::find_blob(dest);
3071   if (cb) {
3072     __ far_call(RuntimeAddress(dest));
3073   } else {
3074     __ mov(rscratch1, RuntimeAddress(dest));
3075     __ blr(rscratch1);
3076   }
3077 
3078   if (info != nullptr) {
3079     add_call_info_here(info);
3080   }
3081   __ post_call_nop();
3082 }
3083 
3084 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3085   if (dest->is_address() || src->is_address()) {
3086     move_op(src, dest, type, lir_patch_none, info,
3087             /*pop_fpu_stack*/false, /*wide*/false);
3088   } else {
3089     ShouldNotReachHere();
3090   }
3091 }
3092 
3093 #ifdef ASSERT
3094 // emit run-time assertion
3095 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3096   assert(op->code() == lir_assert, "must be");
3097 
3098   if (op->in_opr1()->is_valid()) {
3099     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3100     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3101   } else {
3102     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3103     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3104   }
3105 
3106   Label ok;
3107   if (op->condition() != lir_cond_always) {
3108     Assembler::Condition acond = Assembler::AL;
3109     switch (op->condition()) {
3110       case lir_cond_equal:        acond = Assembler::EQ;  break;
3111       case lir_cond_notEqual:     acond = Assembler::NE;  break;
3112       case lir_cond_less:         acond = Assembler::LT;  break;
3113       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
3114       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
3115       case lir_cond_greater:      acond = Assembler::GT;  break;
3116       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
3117       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
3118       default:                    ShouldNotReachHere();
3119     }
3120     __ br(acond, ok);
3121   }
3122   if (op->halt()) {
3123     const char* str = __ code_string(op->msg());
3124     __ stop(str);
3125   } else {
3126     breakpoint();
3127   }
3128   __ bind(ok);
3129 }
3130 #endif
3131 
3132 #ifndef PRODUCT
3133 #define COMMENT(x)   do { __ block_comment(x); } while (0)
3134 #else
3135 #define COMMENT(x)
3136 #endif
3137 
3138 void LIR_Assembler::membar() {
3139   COMMENT("membar");
3140   __ membar(MacroAssembler::AnyAny);
3141 }
3142 
3143 void LIR_Assembler::membar_acquire() {
3144   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
3145 }
3146 
3147 void LIR_Assembler::membar_release() {
3148   __ membar(Assembler::LoadStore|Assembler::StoreStore);
3149 }
3150 
3151 void LIR_Assembler::membar_loadload() {
3152   __ membar(Assembler::LoadLoad);
3153 }
3154 
3155 void LIR_Assembler::membar_storestore() {
3156   __ membar(MacroAssembler::StoreStore);
3157 }
3158 
3159 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
3160 
3161 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
3162 
3163 void LIR_Assembler::on_spin_wait() {
3164   __ spin_wait();
3165 }
3166 
3167 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3168   __ mov(result_reg->as_register(), rthread);
3169 }
3170 
3171 void LIR_Assembler::check_orig_pc() {
3172   __ ldr(rscratch2, frame_map()->address_for_orig_pc_addr());
3173   __ cmp(rscratch2, (u1)NULL_WORD);
3174 }
3175 
3176 void LIR_Assembler::peephole(LIR_List *lir) {
3177 #if 0
3178   if (tableswitch_count >= max_tableswitches)
3179     return;
3180 
3181   /*
3182     This finite-state automaton recognizes sequences of compare-and-
3183     branch instructions.  We will turn them into a tableswitch.  You
3184     could argue that C1 really shouldn't be doing this sort of
3185     optimization, but without it the code is really horrible.
3186   */
3187 
3188   enum { start_s, cmp1_s, beq_s, cmp_s } state;
3189   int first_key, last_key = -2147483648;
3190   int next_key = 0;
3191   int start_insn = -1;
3192   int last_insn = -1;
3193   Register reg = noreg;
3194   LIR_Opr reg_opr;
3195   state = start_s;
3196 
3197   LIR_OpList* inst = lir->instructions_list();
3198   for (int i = 0; i < inst->length(); i++) {
3199     LIR_Op* op = inst->at(i);
3200     switch (state) {
3201     case start_s:
3202       first_key = -1;
3203       start_insn = i;
3204       switch (op->code()) {
3205       case lir_cmp:
3206         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3207         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3208         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3209             && opr2->is_constant()
3210             && opr2->type() == T_INT) {
3211           reg_opr = opr1;
3212           reg = opr1->as_register();
3213           first_key = opr2->as_constant_ptr()->as_jint();
3214           next_key = first_key + 1;
3215           state = cmp_s;
3216           goto next_state;
3217         }
3218         break;
3219       }
3220       break;
3221     case cmp_s:
3222       switch (op->code()) {
3223       case lir_branch:
3224         if (op->as_OpBranch()->cond() == lir_cond_equal) {
3225           state = beq_s;
3226           last_insn = i;
3227           goto next_state;
3228         }
3229       }
3230       state = start_s;
3231       break;
3232     case beq_s:
3233       switch (op->code()) {
3234       case lir_cmp: {
3235         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3236         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3237         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3238             && opr1->as_register() == reg
3239             && opr2->is_constant()
3240             && opr2->type() == T_INT
3241             && opr2->as_constant_ptr()->as_jint() == next_key) {
3242           last_key = next_key;
3243           next_key++;
3244           state = cmp_s;
3245           goto next_state;
3246         }
3247       }
3248       }
3249       last_key = next_key;
3250       state = start_s;
3251       break;
3252     default:
3253       assert(false, "impossible state");
3254     }
3255     if (state == start_s) {
3256       if (first_key < last_key - 5L && reg != noreg) {
3257         {
3258           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3259           //        reg->encoding(),
3260           //        start_insn, first_key, last_key);
3261           //   for (int i = 0; i < inst->length(); i++) {
3262           //     inst->at(i)->print();
3263           //     tty->print("\n");
3264           //   }
3265           //   tty->print("\n");
3266         }
3267 
3268         struct tableswitch *sw = &switches[tableswitch_count];
3269         sw->_insn_index = start_insn, sw->_first_key = first_key,
3270           sw->_last_key = last_key, sw->_reg = reg;
3271         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3272         {
3273           // Insert the new table of branches
3274           int offset = last_insn;
3275           for (int n = first_key; n < last_key; n++) {
3276             inst->insert_before
3277               (last_insn + 1,
3278                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3279                                 inst->at(offset)->as_OpBranch()->label()));
3280             offset -= 2, i++;
3281           }
3282         }
3283         // Delete all the old compare-and-branch instructions
3284         for (int n = first_key; n < last_key; n++) {
3285           inst->remove_at(start_insn);
3286           inst->remove_at(start_insn);
3287         }
3288         // Insert the tableswitch instruction
3289         inst->insert_before(start_insn,
3290                             new LIR_Op2(lir_cmp, lir_cond_always,
3291                                         LIR_OprFact::intConst(tableswitch_count),
3292                                         reg_opr));
3293         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3294         tableswitch_count++;
3295       }
3296       reg = noreg;
3297       last_key = -2147483648;
3298     }
3299   next_state:
3300     ;
3301   }
3302 #endif
3303 }
3304 
3305 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3306   Address addr = as_Address(src->as_address_ptr());
3307   BasicType type = src->type();
3308   bool is_oop = is_reference_type(type);
3309 
3310   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3311   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3312 
3313   switch(type) {
3314   case T_INT:
3315     xchg = &MacroAssembler::atomic_xchgalw;
3316     add = &MacroAssembler::atomic_addalw;
3317     break;
3318   case T_LONG:
3319     xchg = &MacroAssembler::atomic_xchgal;
3320     add = &MacroAssembler::atomic_addal;
3321     break;
3322   case T_OBJECT:
3323   case T_ARRAY:
3324     if (UseCompressedOops) {
3325       xchg = &MacroAssembler::atomic_xchgalw;
3326       add = &MacroAssembler::atomic_addalw;
3327     } else {
3328       xchg = &MacroAssembler::atomic_xchgal;
3329       add = &MacroAssembler::atomic_addal;
3330     }
3331     break;
3332   default:
3333     ShouldNotReachHere();
3334     xchg = &MacroAssembler::atomic_xchgal;
3335     add = &MacroAssembler::atomic_addal; // unreachable
3336   }
3337 
3338   switch (code) {
3339   case lir_xadd:
3340     {
3341       RegisterOrConstant inc;
3342       Register tmp = as_reg(tmp_op);
3343       Register dst = as_reg(dest);
3344       if (data->is_constant()) {
3345         inc = RegisterOrConstant(as_long(data));
3346         assert_different_registers(dst, addr.base(), tmp,
3347                                    rscratch1, rscratch2);
3348       } else {
3349         inc = RegisterOrConstant(as_reg(data));
3350         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3351                                    rscratch1, rscratch2);
3352       }
3353       __ lea(tmp, addr);
3354       (_masm->*add)(dst, inc, tmp);
3355       break;
3356     }
3357   case lir_xchg:
3358     {
3359       Register tmp = tmp_op->as_register();
3360       Register obj = as_reg(data);
3361       Register dst = as_reg(dest);
3362       if (is_oop && UseCompressedOops) {
3363         __ encode_heap_oop(rscratch2, obj);
3364         obj = rscratch2;
3365       }
3366       assert_different_registers(obj, addr.base(), tmp, rscratch1);
3367       assert_different_registers(dst, addr.base(), tmp, rscratch1);
3368       __ lea(tmp, addr);
3369       (_masm->*xchg)(dst, obj, tmp);
3370       if (is_oop && UseCompressedOops) {
3371         __ decode_heap_oop(dst);
3372       }
3373     }
3374     break;
3375   default:
3376     ShouldNotReachHere();
3377   }
3378   __ membar(__ AnyAny);
3379 }
3380 
3381 #undef __