1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/assembler.hpp" 29 #include "c1/c1_CodeStubs.hpp" 30 #include "c1/c1_Compilation.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_MacroAssembler.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArrayKlass.hpp" 36 #include "ci/ciInlineKlass.hpp" 37 #include "ci/ciInstance.hpp" 38 #include "code/compiledIC.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gc_globals.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/objArrayKlass.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_aarch64.inline.hpp" 49 50 51 #ifndef PRODUCT 52 #define COMMENT(x) do { __ block_comment(x); } while (0) 53 #else 54 #define COMMENT(x) 55 #endif 56 57 NEEDS_CLEANUP // remove this definitions ? 58 const Register SYNC_header = r0; // synchronization header 59 const Register SHIFT_count = r0; // where count for shift operations must be 60 61 #define __ _masm-> 62 63 64 static void select_different_registers(Register preserve, 65 Register extra, 66 Register &tmp1, 67 Register &tmp2) { 68 if (tmp1 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp1 = extra; 71 } else if (tmp2 == preserve) { 72 assert_different_registers(tmp1, tmp2, extra); 73 tmp2 = extra; 74 } 75 assert_different_registers(preserve, tmp1, tmp2); 76 } 77 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2, 84 Register &tmp3) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp2 = extra; 91 } else if (tmp3 == preserve) { 92 assert_different_registers(tmp1, tmp2, tmp3, extra); 93 tmp3 = extra; 94 } 95 assert_different_registers(preserve, tmp1, tmp2, tmp3); 96 } 97 98 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 100 101 102 LIR_Opr LIR_Assembler::receiverOpr() { 103 return FrameMap::receiver_opr; 104 } 105 106 LIR_Opr LIR_Assembler::osrBufferPointer() { 107 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 108 } 109 110 //--------------fpu register translations----------------------- 111 112 113 address LIR_Assembler::float_constant(float f) { 114 address const_addr = __ float_constant(f); 115 if (const_addr == nullptr) { 116 bailout("const section overflow"); 117 return __ code()->consts()->start(); 118 } else { 119 return const_addr; 120 } 121 } 122 123 124 address LIR_Assembler::double_constant(double d) { 125 address const_addr = __ double_constant(d); 126 if (const_addr == nullptr) { 127 bailout("const section overflow"); 128 return __ code()->consts()->start(); 129 } else { 130 return const_addr; 131 } 132 } 133 134 address LIR_Assembler::int_constant(jlong n) { 135 address const_addr = __ long_constant(n); 136 if (const_addr == nullptr) { 137 bailout("const section overflow"); 138 return __ code()->consts()->start(); 139 } else { 140 return const_addr; 141 } 142 } 143 144 void LIR_Assembler::breakpoint() { Unimplemented(); } 145 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 147 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 149 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 151 //------------------------------------------- 152 153 static Register as_reg(LIR_Opr op) { 154 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 155 } 156 157 static jlong as_long(LIR_Opr data) { 158 jlong result; 159 switch (data->type()) { 160 case T_INT: 161 result = (data->as_jint()); 162 break; 163 case T_LONG: 164 result = (data->as_jlong()); 165 break; 166 default: 167 ShouldNotReachHere(); 168 result = 0; // unreachable 169 } 170 return result; 171 } 172 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 174 Register base = addr->base()->as_pointer_register(); 175 LIR_Opr opr = addr->index(); 176 if (opr->is_cpu_register()) { 177 Register index; 178 if (opr->is_single_cpu()) 179 index = opr->as_register(); 180 else 181 index = opr->as_register_lo(); 182 assert(addr->disp() == 0, "must be"); 183 switch(opr->type()) { 184 case T_INT: 185 return Address(base, index, Address::sxtw(addr->scale())); 186 case T_LONG: 187 return Address(base, index, Address::lsl(addr->scale())); 188 default: 189 ShouldNotReachHere(); 190 } 191 } else { 192 assert(addr->scale() == 0, 193 "expected for immediate operand, was: %d", addr->scale()); 194 ptrdiff_t offset = ptrdiff_t(addr->disp()); 195 // NOTE: Does not handle any 16 byte vector access. 196 const uint type_size = type2aelembytes(addr->type(), true); 197 return __ legitimize_address(Address(base, offset), type_size, tmp); 198 } 199 return Address(); 200 } 201 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 203 ShouldNotReachHere(); 204 return Address(); 205 } 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 212 return as_Address(addr, rscratch1); // Ouch 213 // FIXME: This needs to be much more clever. See x86. 214 } 215 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 217 // not encodable as a base + (immediate) offset, generate an explicit address 218 // calculation to hold the address in a temporary register. 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 220 precond(size == 4 || size == 8); 221 Address addr = frame_map()->address_for_slot(index, adjust); 222 precond(addr.getMode() == Address::base_plus_offset); 223 precond(addr.base() == sp); 224 precond(addr.offset() > 0); 225 uint mask = size - 1; 226 assert((addr.offset() & mask) == 0, "scaled offsets only"); 227 return __ legitimize_address(addr, size, tmp); 228 } 229 230 void LIR_Assembler::osr_entry() { 231 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 232 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 233 ValueStack* entry_state = osr_entry->state(); 234 int number_of_locks = entry_state->locks_size(); 235 236 // we jump here if osr happens with the interpreter 237 // state set up to continue at the beginning of the 238 // loop that triggered osr - in particular, we have 239 // the following registers setup: 240 // 241 // r2: osr buffer 242 // 243 244 // build frame 245 ciMethod* m = compilation()->method(); 246 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 247 248 // OSR buffer is 249 // 250 // locals[nlocals-1..0] 251 // monitors[0..number_of_locks] 252 // 253 // locals is a direct copy of the interpreter frame so in the osr buffer 254 // so first slot in the local array is the last local from the interpreter 255 // and last slot is local[0] (receiver) from the interpreter 256 // 257 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 258 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 259 // in the interpreter frame (the method lock if a sync method) 260 261 // Initialize monitors in the compiled activation. 262 // r2: pointer to osr buffer 263 // 264 // All other registers are dead at this point and the locals will be 265 // copied into place by code emitted in the IR. 266 267 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 268 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 269 int monitor_offset = BytesPerWord * method()->max_locals() + 270 (2 * BytesPerWord) * (number_of_locks - 1); 271 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 272 // the OSR buffer using 2 word entries: first the lock and then 273 // the oop. 274 for (int i = 0; i < number_of_locks; i++) { 275 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 276 #ifdef ASSERT 277 // verify the interpreter's monitor has a non-null object 278 { 279 Label L; 280 __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 281 __ cbnz(rscratch1, L); 282 __ stop("locked object is null"); 283 __ bind(L); 284 } 285 #endif 286 __ ldr(r19, Address(OSR_buf, slot_offset)); 287 __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord)); 288 __ str(r19, frame_map()->address_for_monitor_lock(i)); 289 __ str(r20, frame_map()->address_for_monitor_object(i)); 290 } 291 } 292 } 293 294 295 // inline cache check; done before the frame is built. 296 int LIR_Assembler::check_icache() { 297 return __ ic_check(CodeEntryAlignment); 298 } 299 300 void LIR_Assembler::clinit_barrier(ciMethod* method) { 301 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 302 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 303 304 Label L_skip_barrier; 305 306 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 307 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 308 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 309 __ bind(L_skip_barrier); 310 } 311 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 313 if (o == nullptr) { 314 __ mov(reg, zr); 315 } else { 316 __ movoop(reg, o); 317 } 318 } 319 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 321 address target = nullptr; 322 relocInfo::relocType reloc_type = relocInfo::none; 323 324 switch (patching_id(info)) { 325 case PatchingStub::access_field_id: 326 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 327 reloc_type = relocInfo::section_word_type; 328 break; 329 case PatchingStub::load_klass_id: 330 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 331 reloc_type = relocInfo::metadata_type; 332 break; 333 case PatchingStub::load_mirror_id: 334 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 335 reloc_type = relocInfo::oop_type; 336 break; 337 case PatchingStub::load_appendix_id: 338 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 339 reloc_type = relocInfo::oop_type; 340 break; 341 default: ShouldNotReachHere(); 342 } 343 344 __ far_call(RuntimeAddress(target)); 345 add_call_info_here(info); 346 } 347 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 349 deoptimize_trap(info); 350 } 351 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 return in_bytes(frame_map()->framesize_in_bytes()); 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in r0, and r3 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(r0); 378 379 // search an exception handler (r0: exception oop, r3: throwing pc) 380 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 403 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(r0); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(r19, r0); // Preserve the exception 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::r0_opr); 415 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 416 if (LockingMode == LM_MONITOR) { 417 __ b(*stub->entry()); 418 } else { 419 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 420 } 421 __ bind(*stub->continuation()); 422 } 423 424 if (compilation()->env()->dtrace_method_probes()) { 425 __ mov(c_rarg0, rthread); 426 __ mov_metadata(c_rarg1, method()->constant_encoding()); 427 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 428 } 429 430 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 431 __ mov(r0, r19); // Restore the exception 432 } 433 434 // remove the activation and dispatch to the unwind handler 435 __ block_comment("remove_frame and dispatch to the unwind handler"); 436 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 437 __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 438 439 // Emit the slow path assembly 440 if (stub != nullptr) { 441 stub->emit_code(this); 442 } 443 444 return offset; 445 } 446 447 448 int LIR_Assembler::emit_deopt_handler() { 449 // generate code for exception handler 450 address handler_base = __ start_a_stub(deopt_handler_size()); 451 if (handler_base == nullptr) { 452 // not enough space left for the handler 453 bailout("deopt handler overflow"); 454 return -1; 455 } 456 457 int offset = code_offset(); 458 459 __ adr(lr, pc()); 460 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 461 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 462 __ end_a_stub(); 463 464 return offset; 465 } 466 467 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 468 _masm->code_section()->relocate(adr, relocInfo::poll_type); 469 int pc_offset = code_offset(); 470 flush_debug_info(pc_offset); 471 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 472 if (info->exception_handlers() != nullptr) { 473 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 474 } 475 } 476 477 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 478 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 479 480 if (InlineTypeReturnedAsFields) { 481 // Check if we are returning an non-null inline type and load its fields into registers 482 ciType* return_type = compilation()->method()->return_type(); 483 if (return_type->is_inlinetype()) { 484 ciInlineKlass* vk = return_type->as_inline_klass(); 485 if (vk->can_be_returned_as_fields()) { 486 address unpack_handler = vk->unpack_handler(); 487 assert(unpack_handler != nullptr, "must be"); 488 __ far_call(RuntimeAddress(unpack_handler)); 489 } 490 } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) { 491 Label skip; 492 __ test_oop_is_not_inline_type(r0, rscratch2, skip); 493 494 // Load fields from a buffered value with an inline class specific handler 495 __ load_klass(rscratch1 /*dst*/, r0 /*src*/); 496 __ ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 497 __ ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 498 // Unpack handler can be null if inline type is not scalarizable in returns 499 __ cbz(rscratch1, skip); 500 __ blr(rscratch1); 501 502 __ bind(skip); 503 } 504 // At this point, r0 points to the value object (for interpreter or C1 caller). 505 // The fields of the object are copied into registers (for C2 caller). 506 } 507 508 // Pop the stack before the safepoint code 509 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 510 511 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 512 __ reserved_stack_check(); 513 } 514 515 code_stub->set_safepoint_offset(__ offset()); 516 __ relocate(relocInfo::poll_return_type); 517 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 518 __ ret(lr); 519 } 520 521 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) { 522 return (__ store_inline_type_fields_to_buf(vk, false)); 523 } 524 525 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 526 guarantee(info != nullptr, "Shouldn't be null"); 527 __ get_polling_page(rscratch1, relocInfo::poll_type); 528 add_debug_info_for_branch(info); // This isn't just debug info: 529 // it's the oop map 530 __ read_polling_page(rscratch1, relocInfo::poll_type); 531 return __ offset(); 532 } 533 534 535 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 536 if (from_reg == r31_sp) 537 from_reg = sp; 538 if (to_reg == r31_sp) 539 to_reg = sp; 540 __ mov(to_reg, from_reg); 541 } 542 543 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 544 545 546 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 547 assert(src->is_constant(), "should not call otherwise"); 548 assert(dest->is_register(), "should not call otherwise"); 549 LIR_Const* c = src->as_constant_ptr(); 550 551 switch (c->type()) { 552 case T_INT: { 553 assert(patch_code == lir_patch_none, "no patching handled here"); 554 __ movw(dest->as_register(), c->as_jint()); 555 break; 556 } 557 558 case T_ADDRESS: { 559 assert(patch_code == lir_patch_none, "no patching handled here"); 560 __ mov(dest->as_register(), c->as_jint()); 561 break; 562 } 563 564 case T_LONG: { 565 assert(patch_code == lir_patch_none, "no patching handled here"); 566 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 567 break; 568 } 569 570 case T_OBJECT: { 571 if (patch_code != lir_patch_none) { 572 jobject2reg_with_patching(dest->as_register(), info); 573 } else { 574 jobject2reg(c->as_jobject(), dest->as_register()); 575 } 576 break; 577 } 578 579 case T_METADATA: { 580 if (patch_code != lir_patch_none) { 581 klass2reg_with_patching(dest->as_register(), info); 582 } else { 583 __ mov_metadata(dest->as_register(), c->as_metadata()); 584 } 585 break; 586 } 587 588 case T_FLOAT: { 589 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 590 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 591 } else { 592 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 593 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 594 } 595 break; 596 } 597 598 case T_DOUBLE: { 599 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 600 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 601 } else { 602 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 603 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 604 } 605 break; 606 } 607 608 default: 609 ShouldNotReachHere(); 610 } 611 } 612 613 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 614 LIR_Const* c = src->as_constant_ptr(); 615 switch (c->type()) { 616 case T_OBJECT: 617 { 618 if (! c->as_jobject()) 619 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 620 else { 621 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 622 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 623 } 624 } 625 break; 626 case T_ADDRESS: 627 { 628 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 629 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 630 } 631 case T_INT: 632 case T_FLOAT: 633 { 634 Register reg = zr; 635 if (c->as_jint_bits() == 0) 636 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 637 else { 638 __ movw(rscratch1, c->as_jint_bits()); 639 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 640 } 641 } 642 break; 643 case T_LONG: 644 case T_DOUBLE: 645 { 646 Register reg = zr; 647 if (c->as_jlong_bits() == 0) 648 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 649 lo_word_offset_in_bytes)); 650 else { 651 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 652 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 653 lo_word_offset_in_bytes)); 654 } 655 } 656 break; 657 default: 658 ShouldNotReachHere(); 659 } 660 } 661 662 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 663 assert(src->is_constant(), "should not call otherwise"); 664 LIR_Const* c = src->as_constant_ptr(); 665 LIR_Address* to_addr = dest->as_address_ptr(); 666 667 void (Assembler::* insn)(Register Rt, const Address &adr); 668 669 switch (type) { 670 case T_ADDRESS: 671 assert(c->as_jint() == 0, "should be"); 672 insn = &Assembler::str; 673 break; 674 case T_LONG: 675 assert(c->as_jlong() == 0, "should be"); 676 insn = &Assembler::str; 677 break; 678 case T_INT: 679 assert(c->as_jint() == 0, "should be"); 680 insn = &Assembler::strw; 681 break; 682 case T_OBJECT: 683 case T_ARRAY: 684 // Non-null case is not handled on aarch64 but handled on x86 685 // FIXME: do we need to add it here? 686 assert(c->as_jobject() == nullptr, "should be"); 687 if (UseCompressedOops && !wide) { 688 insn = &Assembler::strw; 689 } else { 690 insn = &Assembler::str; 691 } 692 break; 693 case T_CHAR: 694 case T_SHORT: 695 assert(c->as_jint() == 0, "should be"); 696 insn = &Assembler::strh; 697 break; 698 case T_BOOLEAN: 699 case T_BYTE: 700 assert(c->as_jint() == 0, "should be"); 701 insn = &Assembler::strb; 702 break; 703 default: 704 ShouldNotReachHere(); 705 insn = &Assembler::str; // unreachable 706 } 707 708 if (info) add_debug_info_for_null_check_here(info); 709 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 710 } 711 712 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 713 assert(src->is_register(), "should not call otherwise"); 714 assert(dest->is_register(), "should not call otherwise"); 715 716 // move between cpu-registers 717 if (dest->is_single_cpu()) { 718 if (src->type() == T_LONG) { 719 // Can do LONG -> OBJECT 720 move_regs(src->as_register_lo(), dest->as_register()); 721 return; 722 } 723 assert(src->is_single_cpu(), "must match"); 724 if (src->type() == T_OBJECT) { 725 __ verify_oop(src->as_register()); 726 } 727 move_regs(src->as_register(), dest->as_register()); 728 729 } else if (dest->is_double_cpu()) { 730 if (is_reference_type(src->type())) { 731 // Surprising to me but we can see move of a long to t_object 732 __ verify_oop(src->as_register()); 733 move_regs(src->as_register(), dest->as_register_lo()); 734 return; 735 } 736 assert(src->is_double_cpu(), "must match"); 737 Register f_lo = src->as_register_lo(); 738 Register f_hi = src->as_register_hi(); 739 Register t_lo = dest->as_register_lo(); 740 Register t_hi = dest->as_register_hi(); 741 assert(f_hi == f_lo, "must be same"); 742 assert(t_hi == t_lo, "must be same"); 743 move_regs(f_lo, t_lo); 744 745 } else if (dest->is_single_fpu()) { 746 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 747 748 } else if (dest->is_double_fpu()) { 749 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 750 751 } else { 752 ShouldNotReachHere(); 753 } 754 } 755 756 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 757 precond(src->is_register() && dest->is_stack()); 758 759 uint const c_sz32 = sizeof(uint32_t); 760 uint const c_sz64 = sizeof(uint64_t); 761 762 if (src->is_single_cpu()) { 763 int index = dest->single_stack_ix(); 764 if (is_reference_type(type)) { 765 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 766 __ verify_oop(src->as_register()); 767 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 768 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 769 } else { 770 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 771 } 772 773 } else if (src->is_double_cpu()) { 774 int index = dest->double_stack_ix(); 775 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 776 __ str(src->as_register_lo(), dest_addr_LO); 777 778 } else if (src->is_single_fpu()) { 779 int index = dest->single_stack_ix(); 780 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 781 782 } else if (src->is_double_fpu()) { 783 int index = dest->double_stack_ix(); 784 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 785 786 } else { 787 ShouldNotReachHere(); 788 } 789 } 790 791 792 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 793 LIR_Address* to_addr = dest->as_address_ptr(); 794 PatchingStub* patch = nullptr; 795 Register compressed_src = rscratch1; 796 797 if (patch_code != lir_patch_none) { 798 deoptimize_trap(info); 799 return; 800 } 801 802 if (is_reference_type(type)) { 803 __ verify_oop(src->as_register()); 804 805 if (UseCompressedOops && !wide) { 806 __ encode_heap_oop(compressed_src, src->as_register()); 807 } else { 808 compressed_src = src->as_register(); 809 } 810 } 811 812 int null_check_here = code_offset(); 813 switch (type) { 814 case T_FLOAT: { 815 __ strs(src->as_float_reg(), as_Address(to_addr)); 816 break; 817 } 818 819 case T_DOUBLE: { 820 __ strd(src->as_double_reg(), as_Address(to_addr)); 821 break; 822 } 823 824 case T_ARRAY: // fall through 825 case T_OBJECT: // fall through 826 if (UseCompressedOops && !wide) { 827 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 828 } else { 829 __ str(compressed_src, as_Address(to_addr)); 830 } 831 break; 832 case T_METADATA: 833 // We get here to store a method pointer to the stack to pass to 834 // a dtrace runtime call. This can't work on 64 bit with 835 // compressed klass ptrs: T_METADATA can be a compressed klass 836 // ptr or a 64 bit method pointer. 837 ShouldNotReachHere(); 838 __ str(src->as_register(), as_Address(to_addr)); 839 break; 840 case T_ADDRESS: 841 __ str(src->as_register(), as_Address(to_addr)); 842 break; 843 case T_INT: 844 __ strw(src->as_register(), as_Address(to_addr)); 845 break; 846 847 case T_LONG: { 848 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 849 break; 850 } 851 852 case T_BYTE: // fall through 853 case T_BOOLEAN: { 854 __ strb(src->as_register(), as_Address(to_addr)); 855 break; 856 } 857 858 case T_CHAR: // fall through 859 case T_SHORT: 860 __ strh(src->as_register(), as_Address(to_addr)); 861 break; 862 863 default: 864 ShouldNotReachHere(); 865 } 866 if (info != nullptr) { 867 add_debug_info_for_null_check(null_check_here, info); 868 } 869 } 870 871 872 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 873 precond(src->is_stack() && dest->is_register()); 874 875 uint const c_sz32 = sizeof(uint32_t); 876 uint const c_sz64 = sizeof(uint64_t); 877 878 if (dest->is_single_cpu()) { 879 int index = src->single_stack_ix(); 880 if (is_reference_type(type)) { 881 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 882 __ verify_oop(dest->as_register()); 883 } else if (type == T_METADATA || type == T_ADDRESS) { 884 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 885 } else { 886 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 887 } 888 889 } else if (dest->is_double_cpu()) { 890 int index = src->double_stack_ix(); 891 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 892 __ ldr(dest->as_register_lo(), src_addr_LO); 893 894 } else if (dest->is_single_fpu()) { 895 int index = src->single_stack_ix(); 896 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 897 898 } else if (dest->is_double_fpu()) { 899 int index = src->double_stack_ix(); 900 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 901 902 } else { 903 ShouldNotReachHere(); 904 } 905 } 906 907 908 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 909 address target = nullptr; 910 relocInfo::relocType reloc_type = relocInfo::none; 911 912 switch (patching_id(info)) { 913 case PatchingStub::access_field_id: 914 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 915 reloc_type = relocInfo::section_word_type; 916 break; 917 case PatchingStub::load_klass_id: 918 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 919 reloc_type = relocInfo::metadata_type; 920 break; 921 case PatchingStub::load_mirror_id: 922 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 923 reloc_type = relocInfo::oop_type; 924 break; 925 case PatchingStub::load_appendix_id: 926 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 927 reloc_type = relocInfo::oop_type; 928 break; 929 default: ShouldNotReachHere(); 930 } 931 932 __ far_call(RuntimeAddress(target)); 933 add_call_info_here(info); 934 } 935 936 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 937 938 LIR_Opr temp; 939 if (type == T_LONG || type == T_DOUBLE) 940 temp = FrameMap::rscratch1_long_opr; 941 else 942 temp = FrameMap::rscratch1_opr; 943 944 stack2reg(src, temp, src->type()); 945 reg2stack(temp, dest, dest->type(), false); 946 } 947 948 949 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 950 LIR_Address* addr = src->as_address_ptr(); 951 LIR_Address* from_addr = src->as_address_ptr(); 952 953 if (addr->base()->type() == T_OBJECT) { 954 __ verify_oop(addr->base()->as_pointer_register()); 955 } 956 957 if (patch_code != lir_patch_none) { 958 deoptimize_trap(info); 959 return; 960 } 961 962 if (info != nullptr) { 963 add_debug_info_for_null_check_here(info); 964 } 965 int null_check_here = code_offset(); 966 switch (type) { 967 case T_FLOAT: { 968 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 969 break; 970 } 971 972 case T_DOUBLE: { 973 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 974 break; 975 } 976 977 case T_ARRAY: // fall through 978 case T_OBJECT: // fall through 979 if (UseCompressedOops && !wide) { 980 __ ldrw(dest->as_register(), as_Address(from_addr)); 981 } else { 982 __ ldr(dest->as_register(), as_Address(from_addr)); 983 } 984 break; 985 case T_METADATA: 986 // We get here to store a method pointer to the stack to pass to 987 // a dtrace runtime call. This can't work on 64 bit with 988 // compressed klass ptrs: T_METADATA can be a compressed klass 989 // ptr or a 64 bit method pointer. 990 ShouldNotReachHere(); 991 __ ldr(dest->as_register(), as_Address(from_addr)); 992 break; 993 case T_ADDRESS: 994 __ ldr(dest->as_register(), as_Address(from_addr)); 995 break; 996 case T_INT: 997 __ ldrw(dest->as_register(), as_Address(from_addr)); 998 break; 999 1000 case T_LONG: { 1001 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 1002 break; 1003 } 1004 1005 case T_BYTE: 1006 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1007 break; 1008 case T_BOOLEAN: { 1009 __ ldrb(dest->as_register(), as_Address(from_addr)); 1010 break; 1011 } 1012 1013 case T_CHAR: 1014 __ ldrh(dest->as_register(), as_Address(from_addr)); 1015 break; 1016 case T_SHORT: 1017 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1018 break; 1019 1020 default: 1021 ShouldNotReachHere(); 1022 } 1023 1024 if (is_reference_type(type)) { 1025 if (UseCompressedOops && !wide) { 1026 __ decode_heap_oop(dest->as_register()); 1027 } 1028 1029 if (!(UseZGC && !ZGenerational)) { 1030 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1031 __ verify_oop(dest->as_register()); 1032 } 1033 } 1034 } 1035 1036 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) { 1037 assert(dst->is_cpu_register(), "must be"); 1038 assert(dst->type() == src->type(), "must be"); 1039 1040 if (src->is_cpu_register()) { 1041 reg2reg(src, dst); 1042 } else if (src->is_stack()) { 1043 stack2reg(src, dst, dst->type()); 1044 } else if (src->is_constant()) { 1045 const2reg(src, dst, lir_patch_none, nullptr); 1046 } else { 1047 ShouldNotReachHere(); 1048 } 1049 } 1050 1051 int LIR_Assembler::array_element_size(BasicType type) const { 1052 int elem_size = type2aelembytes(type); 1053 return exact_log2(elem_size); 1054 } 1055 1056 1057 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1058 switch (op->code()) { 1059 case lir_idiv: 1060 case lir_irem: 1061 arithmetic_idiv(op->code(), 1062 op->in_opr1(), 1063 op->in_opr2(), 1064 op->in_opr3(), 1065 op->result_opr(), 1066 op->info()); 1067 break; 1068 case lir_fmad: 1069 __ fmaddd(op->result_opr()->as_double_reg(), 1070 op->in_opr1()->as_double_reg(), 1071 op->in_opr2()->as_double_reg(), 1072 op->in_opr3()->as_double_reg()); 1073 break; 1074 case lir_fmaf: 1075 __ fmadds(op->result_opr()->as_float_reg(), 1076 op->in_opr1()->as_float_reg(), 1077 op->in_opr2()->as_float_reg(), 1078 op->in_opr3()->as_float_reg()); 1079 break; 1080 default: ShouldNotReachHere(); break; 1081 } 1082 } 1083 1084 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1085 #ifdef ASSERT 1086 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1087 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1088 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1089 #endif 1090 1091 if (op->cond() == lir_cond_always) { 1092 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1093 __ b(*(op->label())); 1094 } else { 1095 Assembler::Condition acond; 1096 if (op->code() == lir_cond_float_branch) { 1097 bool is_unordered = (op->ublock() == op->block()); 1098 // Assembler::EQ does not permit unordered branches, so we add 1099 // another branch here. Likewise, Assembler::NE does not permit 1100 // ordered branches. 1101 if ((is_unordered && op->cond() == lir_cond_equal) 1102 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1103 __ br(Assembler::VS, *(op->ublock()->label())); 1104 switch(op->cond()) { 1105 case lir_cond_equal: acond = Assembler::EQ; break; 1106 case lir_cond_notEqual: acond = Assembler::NE; break; 1107 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1108 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1109 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1110 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1111 default: ShouldNotReachHere(); 1112 acond = Assembler::EQ; // unreachable 1113 } 1114 } else { 1115 switch (op->cond()) { 1116 case lir_cond_equal: acond = Assembler::EQ; break; 1117 case lir_cond_notEqual: acond = Assembler::NE; break; 1118 case lir_cond_less: acond = Assembler::LT; break; 1119 case lir_cond_lessEqual: acond = Assembler::LE; break; 1120 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1121 case lir_cond_greater: acond = Assembler::GT; break; 1122 case lir_cond_belowEqual: acond = Assembler::LS; break; 1123 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1124 default: ShouldNotReachHere(); 1125 acond = Assembler::EQ; // unreachable 1126 } 1127 } 1128 __ br(acond,*(op->label())); 1129 } 1130 } 1131 1132 1133 1134 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1135 LIR_Opr src = op->in_opr(); 1136 LIR_Opr dest = op->result_opr(); 1137 1138 switch (op->bytecode()) { 1139 case Bytecodes::_i2f: 1140 { 1141 __ scvtfws(dest->as_float_reg(), src->as_register()); 1142 break; 1143 } 1144 case Bytecodes::_i2d: 1145 { 1146 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1147 break; 1148 } 1149 case Bytecodes::_l2d: 1150 { 1151 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1152 break; 1153 } 1154 case Bytecodes::_l2f: 1155 { 1156 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1157 break; 1158 } 1159 case Bytecodes::_f2d: 1160 { 1161 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1162 break; 1163 } 1164 case Bytecodes::_d2f: 1165 { 1166 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1167 break; 1168 } 1169 case Bytecodes::_i2c: 1170 { 1171 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1172 break; 1173 } 1174 case Bytecodes::_i2l: 1175 { 1176 __ sxtw(dest->as_register_lo(), src->as_register()); 1177 break; 1178 } 1179 case Bytecodes::_i2s: 1180 { 1181 __ sxth(dest->as_register(), src->as_register()); 1182 break; 1183 } 1184 case Bytecodes::_i2b: 1185 { 1186 __ sxtb(dest->as_register(), src->as_register()); 1187 break; 1188 } 1189 case Bytecodes::_l2i: 1190 { 1191 _masm->block_comment("FIXME: This could be a no-op"); 1192 __ uxtw(dest->as_register(), src->as_register_lo()); 1193 break; 1194 } 1195 case Bytecodes::_d2l: 1196 { 1197 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1198 break; 1199 } 1200 case Bytecodes::_f2i: 1201 { 1202 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1203 break; 1204 } 1205 case Bytecodes::_f2l: 1206 { 1207 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1208 break; 1209 } 1210 case Bytecodes::_d2i: 1211 { 1212 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1213 break; 1214 } 1215 default: ShouldNotReachHere(); 1216 } 1217 } 1218 1219 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1220 if (op->init_check()) { 1221 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1222 __ ldarb(rscratch1, rscratch1); 1223 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1224 add_debug_info_for_null_check_here(op->stub()->info()); 1225 __ br(Assembler::NE, *op->stub()->entry()); 1226 } 1227 __ allocate_object(op->obj()->as_register(), 1228 op->tmp1()->as_register(), 1229 op->tmp2()->as_register(), 1230 op->header_size(), 1231 op->object_size(), 1232 op->klass()->as_register(), 1233 *op->stub()->entry()); 1234 __ bind(*op->stub()->continuation()); 1235 } 1236 1237 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1238 Register len = op->len()->as_register(); 1239 __ uxtw(len, len); 1240 1241 if (UseSlowPath || op->is_null_free() || 1242 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1243 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1244 __ b(*op->stub()->entry()); 1245 } else { 1246 Register tmp1 = op->tmp1()->as_register(); 1247 Register tmp2 = op->tmp2()->as_register(); 1248 Register tmp3 = op->tmp3()->as_register(); 1249 if (len == tmp1) { 1250 tmp1 = tmp3; 1251 } else if (len == tmp2) { 1252 tmp2 = tmp3; 1253 } else if (len == tmp3) { 1254 // everything is ok 1255 } else { 1256 __ mov(tmp3, len); 1257 } 1258 __ allocate_array(op->obj()->as_register(), 1259 len, 1260 tmp1, 1261 tmp2, 1262 arrayOopDesc::base_offset_in_bytes(op->type()), 1263 array_element_size(op->type()), 1264 op->klass()->as_register(), 1265 *op->stub()->entry(), 1266 op->zero_array()); 1267 } 1268 __ bind(*op->stub()->continuation()); 1269 } 1270 1271 void LIR_Assembler::type_profile_helper(Register mdo, 1272 ciMethodData *md, ciProfileData *data, 1273 Register recv, Label* update_done) { 1274 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1275 Label next_test; 1276 // See if the receiver is receiver[n]. 1277 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1278 __ ldr(rscratch1, Address(rscratch2)); 1279 __ cmp(recv, rscratch1); 1280 __ br(Assembler::NE, next_test); 1281 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1282 __ addptr(data_addr, DataLayout::counter_increment); 1283 __ b(*update_done); 1284 __ bind(next_test); 1285 } 1286 1287 // Didn't find receiver; find next empty slot and fill it in 1288 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1289 Label next_test; 1290 __ lea(rscratch2, 1291 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1292 Address recv_addr(rscratch2); 1293 __ ldr(rscratch1, recv_addr); 1294 __ cbnz(rscratch1, next_test); 1295 __ str(recv, recv_addr); 1296 __ mov(rscratch1, DataLayout::counter_increment); 1297 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); 1298 __ str(rscratch1, Address(rscratch2)); 1299 __ b(*update_done); 1300 __ bind(next_test); 1301 } 1302 } 1303 1304 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1305 // we always need a stub for the failure case. 1306 CodeStub* stub = op->stub(); 1307 Register obj = op->object()->as_register(); 1308 Register k_RInfo = op->tmp1()->as_register(); 1309 Register klass_RInfo = op->tmp2()->as_register(); 1310 Register dst = op->result_opr()->as_register(); 1311 ciKlass* k = op->klass(); 1312 Register Rtmp1 = noreg; 1313 1314 // check if it needs to be profiled 1315 ciMethodData* md; 1316 ciProfileData* data; 1317 1318 const bool should_profile = op->should_profile(); 1319 1320 if (should_profile) { 1321 ciMethod* method = op->profiled_method(); 1322 assert(method != nullptr, "Should have method"); 1323 int bci = op->profiled_bci(); 1324 md = method->method_data_or_null(); 1325 assert(md != nullptr, "Sanity"); 1326 data = md->bci_to_data(bci); 1327 assert(data != nullptr, "need data for type check"); 1328 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1329 } 1330 Label* success_target = success; 1331 Label* failure_target = failure; 1332 1333 if (obj == k_RInfo) { 1334 k_RInfo = dst; 1335 } else if (obj == klass_RInfo) { 1336 klass_RInfo = dst; 1337 } 1338 if (k->is_loaded() && !UseCompressedClassPointers) { 1339 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1340 } else { 1341 Rtmp1 = op->tmp3()->as_register(); 1342 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1343 } 1344 1345 assert_different_registers(obj, k_RInfo, klass_RInfo); 1346 1347 if (op->need_null_check()) { 1348 if (should_profile) { 1349 Register mdo = klass_RInfo; 1350 __ mov_metadata(mdo, md->constant_encoding()); 1351 Label not_null; 1352 __ cbnz(obj, not_null); 1353 // Object is null; update MDO and exit 1354 Address data_addr 1355 = __ form_address(rscratch2, mdo, 1356 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1357 0); 1358 __ ldrb(rscratch1, data_addr); 1359 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1360 __ strb(rscratch1, data_addr); 1361 __ b(*obj_is_null); 1362 __ bind(not_null); 1363 1364 Label update_done; 1365 Register recv = k_RInfo; 1366 __ load_klass(recv, obj); 1367 type_profile_helper(mdo, md, data, recv, &update_done); 1368 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1369 __ addptr(counter_addr, DataLayout::counter_increment); 1370 1371 __ bind(update_done); 1372 } else { 1373 __ cbz(obj, *obj_is_null); 1374 } 1375 } 1376 1377 if (!k->is_loaded()) { 1378 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1379 } else { 1380 __ mov_metadata(k_RInfo, k->constant_encoding()); 1381 } 1382 __ verify_oop(obj); 1383 1384 if (op->fast_check()) { 1385 // get object class 1386 // not a safepoint as obj null check happens earlier 1387 __ load_klass(rscratch1, obj); 1388 __ cmp( rscratch1, k_RInfo); 1389 1390 __ br(Assembler::NE, *failure_target); 1391 // successful cast, fall through to profile or jump 1392 } else { 1393 // get object class 1394 // not a safepoint as obj null check happens earlier 1395 __ load_klass(klass_RInfo, obj); 1396 if (k->is_loaded()) { 1397 // See if we get an immediate positive hit 1398 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1399 __ cmp(k_RInfo, rscratch1); 1400 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1401 __ br(Assembler::NE, *failure_target); 1402 // successful cast, fall through to profile or jump 1403 } else { 1404 // See if we get an immediate positive hit 1405 __ br(Assembler::EQ, *success_target); 1406 // check for self 1407 __ cmp(klass_RInfo, k_RInfo); 1408 __ br(Assembler::EQ, *success_target); 1409 1410 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1411 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1412 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1413 // result is a boolean 1414 __ cbzw(klass_RInfo, *failure_target); 1415 // successful cast, fall through to profile or jump 1416 } 1417 } else { 1418 // perform the fast part of the checking logic 1419 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1420 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1421 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1422 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1423 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1424 // result is a boolean 1425 __ cbz(k_RInfo, *failure_target); 1426 // successful cast, fall through to profile or jump 1427 } 1428 } 1429 __ b(*success); 1430 } 1431 1432 1433 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1434 const bool should_profile = op->should_profile(); 1435 1436 LIR_Code code = op->code(); 1437 if (code == lir_store_check) { 1438 Register value = op->object()->as_register(); 1439 Register array = op->array()->as_register(); 1440 Register k_RInfo = op->tmp1()->as_register(); 1441 Register klass_RInfo = op->tmp2()->as_register(); 1442 Register Rtmp1 = op->tmp3()->as_register(); 1443 1444 CodeStub* stub = op->stub(); 1445 1446 // check if it needs to be profiled 1447 ciMethodData* md; 1448 ciProfileData* data; 1449 1450 if (should_profile) { 1451 ciMethod* method = op->profiled_method(); 1452 assert(method != nullptr, "Should have method"); 1453 int bci = op->profiled_bci(); 1454 md = method->method_data_or_null(); 1455 assert(md != nullptr, "Sanity"); 1456 data = md->bci_to_data(bci); 1457 assert(data != nullptr, "need data for type check"); 1458 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1459 } 1460 Label done; 1461 Label* success_target = &done; 1462 Label* failure_target = stub->entry(); 1463 1464 if (should_profile) { 1465 Label not_null; 1466 Register mdo = klass_RInfo; 1467 __ mov_metadata(mdo, md->constant_encoding()); 1468 __ cbnz(value, not_null); 1469 // Object is null; update MDO and exit 1470 Address data_addr 1471 = __ form_address(rscratch2, mdo, 1472 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1473 0); 1474 __ ldrb(rscratch1, data_addr); 1475 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1476 __ strb(rscratch1, data_addr); 1477 __ b(done); 1478 __ bind(not_null); 1479 1480 Label update_done; 1481 Register recv = k_RInfo; 1482 __ load_klass(recv, value); 1483 type_profile_helper(mdo, md, data, recv, &update_done); 1484 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1485 __ addptr(counter_addr, DataLayout::counter_increment); 1486 __ bind(update_done); 1487 } else { 1488 __ cbz(value, done); 1489 } 1490 1491 add_debug_info_for_null_check_here(op->info_for_exception()); 1492 __ load_klass(k_RInfo, array); 1493 __ load_klass(klass_RInfo, value); 1494 1495 // get instance klass (it's already uncompressed) 1496 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1497 // perform the fast part of the checking logic 1498 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1499 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1500 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1501 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1502 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1503 // result is a boolean 1504 __ cbzw(k_RInfo, *failure_target); 1505 // fall through to the success case 1506 1507 __ bind(done); 1508 } else if (code == lir_checkcast) { 1509 Register obj = op->object()->as_register(); 1510 Register dst = op->result_opr()->as_register(); 1511 Label success; 1512 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1513 __ bind(success); 1514 if (dst != obj) { 1515 __ mov(dst, obj); 1516 } 1517 } else if (code == lir_instanceof) { 1518 Register obj = op->object()->as_register(); 1519 Register dst = op->result_opr()->as_register(); 1520 Label success, failure, done; 1521 emit_typecheck_helper(op, &success, &failure, &failure); 1522 __ bind(failure); 1523 __ mov(dst, zr); 1524 __ b(done); 1525 __ bind(success); 1526 __ mov(dst, 1); 1527 __ bind(done); 1528 } else { 1529 ShouldNotReachHere(); 1530 } 1531 } 1532 1533 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) { 1534 // We are loading/storing from/to an array that *may* be a flat array (the 1535 // declared type is Object[], abstract[], interface[] or VT.ref[]). 1536 // If this array is a flat array, take the slow path. 1537 __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1538 if (!op->value()->is_illegal()) { 1539 // The array is not a flat array, but it might be null-free. If we are storing 1540 // a null into a null-free array, take the slow path (which will throw NPE). 1541 Label skip; 1542 __ cbnz(op->value()->as_register(), skip); 1543 __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1544 __ bind(skip); 1545 } 1546 } 1547 1548 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) { 1549 // We are storing into an array that *may* be null-free (the declared type is 1550 // Object[], abstract[], interface[] or VT.ref[]). 1551 Label test_mark_word; 1552 Register tmp = op->tmp()->as_register(); 1553 __ ldr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes())); 1554 __ tst(tmp, markWord::unlocked_value); 1555 __ br(Assembler::NE, test_mark_word); 1556 __ load_prototype_header(tmp, op->array()->as_register()); 1557 __ bind(test_mark_word); 1558 __ tst(tmp, markWord::null_free_array_bit_in_place); 1559 } 1560 1561 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) { 1562 Label L_oops_equal; 1563 Label L_oops_not_equal; 1564 Label L_end; 1565 1566 Register left = op->left()->as_register(); 1567 Register right = op->right()->as_register(); 1568 1569 __ cmp(left, right); 1570 __ br(Assembler::EQ, L_oops_equal); 1571 1572 // (1) Null check -- if one of the operands is null, the other must not be null (because 1573 // the two references are not equal), so they are not substitutable, 1574 // FIXME: do null check only if the operand is nullable 1575 { 1576 __ cbz(left, L_oops_not_equal); 1577 __ cbz(right, L_oops_not_equal); 1578 } 1579 1580 ciKlass* left_klass = op->left_klass(); 1581 ciKlass* right_klass = op->right_klass(); 1582 1583 // (2) Inline type check -- if either of the operands is not a inline type, 1584 // they are not substitutable. We do this only if we are not sure that the 1585 // operands are inline type 1586 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 1587 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 1588 Register tmp1 = op->tmp1()->as_register(); 1589 __ mov(tmp1, markWord::inline_type_pattern); 1590 __ ldr(rscratch1, Address(left, oopDesc::mark_offset_in_bytes())); 1591 __ andr(tmp1, tmp1, rscratch1); 1592 __ ldr(rscratch1, Address(right, oopDesc::mark_offset_in_bytes())); 1593 __ andr(tmp1, tmp1, rscratch1); 1594 __ cmp(tmp1, (u1)markWord::inline_type_pattern); 1595 __ br(Assembler::NE, L_oops_not_equal); 1596 } 1597 1598 // (3) Same klass check: if the operands are of different klasses, they are not substitutable. 1599 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 1600 // No need to load klass -- the operands are statically known to be the same inline klass. 1601 __ b(*op->stub()->entry()); 1602 } else { 1603 Register left_klass_op = op->left_klass_op()->as_register(); 1604 Register right_klass_op = op->right_klass_op()->as_register(); 1605 1606 if (UseCompressedClassPointers) { 1607 __ ldrw(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1608 __ ldrw(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1609 __ cmpw(left_klass_op, right_klass_op); 1610 } else { 1611 __ ldr(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1612 __ ldr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1613 __ cmp(left_klass_op, right_klass_op); 1614 } 1615 1616 __ br(Assembler::EQ, *op->stub()->entry()); // same klass -> do slow check 1617 // fall through to L_oops_not_equal 1618 } 1619 1620 __ bind(L_oops_not_equal); 1621 move(op->not_equal_result(), op->result_opr()); 1622 __ b(L_end); 1623 1624 __ bind(L_oops_equal); 1625 move(op->equal_result(), op->result_opr()); 1626 __ b(L_end); 1627 1628 // We've returned from the stub. R0 contains 0x0 IFF the two 1629 // operands are not substitutable. (Don't compare against 0x1 in case the 1630 // C compiler is naughty) 1631 __ bind(*op->stub()->continuation()); 1632 __ cbz(r0, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal 1633 move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal 1634 // fall-through 1635 __ bind(L_end); 1636 } 1637 1638 1639 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1640 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1641 __ cset(rscratch1, Assembler::NE); 1642 __ membar(__ AnyAny); 1643 } 1644 1645 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1646 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1647 __ cset(rscratch1, Assembler::NE); 1648 __ membar(__ AnyAny); 1649 } 1650 1651 1652 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1653 Register addr; 1654 if (op->addr()->is_register()) { 1655 addr = as_reg(op->addr()); 1656 } else { 1657 assert(op->addr()->is_address(), "what else?"); 1658 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1659 assert(addr_ptr->disp() == 0, "need 0 disp"); 1660 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1661 addr = as_reg(addr_ptr->base()); 1662 } 1663 Register newval = as_reg(op->new_value()); 1664 Register cmpval = as_reg(op->cmp_value()); 1665 1666 if (op->code() == lir_cas_obj) { 1667 if (UseCompressedOops) { 1668 Register t1 = op->tmp1()->as_register(); 1669 assert(op->tmp1()->is_valid(), "must be"); 1670 __ encode_heap_oop(t1, cmpval); 1671 cmpval = t1; 1672 __ encode_heap_oop(rscratch2, newval); 1673 newval = rscratch2; 1674 casw(addr, newval, cmpval); 1675 } else { 1676 casl(addr, newval, cmpval); 1677 } 1678 } else if (op->code() == lir_cas_int) { 1679 casw(addr, newval, cmpval); 1680 } else { 1681 casl(addr, newval, cmpval); 1682 } 1683 } 1684 1685 1686 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1687 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1688 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1689 1690 Assembler::Condition acond, ncond; 1691 switch (condition) { 1692 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1693 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1694 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1695 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1696 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1697 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1698 case lir_cond_belowEqual: 1699 case lir_cond_aboveEqual: 1700 default: ShouldNotReachHere(); 1701 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1702 } 1703 1704 assert(result->is_single_cpu() || result->is_double_cpu(), 1705 "expect single register for result"); 1706 if (opr1->is_constant() && opr2->is_constant() 1707 && opr1->type() == T_INT && opr2->type() == T_INT) { 1708 jint val1 = opr1->as_jint(); 1709 jint val2 = opr2->as_jint(); 1710 if (val1 == 0 && val2 == 1) { 1711 __ cset(result->as_register(), ncond); 1712 return; 1713 } else if (val1 == 1 && val2 == 0) { 1714 __ cset(result->as_register(), acond); 1715 return; 1716 } 1717 } 1718 1719 if (opr1->is_constant() && opr2->is_constant() 1720 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1721 jlong val1 = opr1->as_jlong(); 1722 jlong val2 = opr2->as_jlong(); 1723 if (val1 == 0 && val2 == 1) { 1724 __ cset(result->as_register_lo(), ncond); 1725 return; 1726 } else if (val1 == 1 && val2 == 0) { 1727 __ cset(result->as_register_lo(), acond); 1728 return; 1729 } 1730 } 1731 1732 if (opr1->is_stack()) { 1733 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1734 opr1 = FrameMap::rscratch1_opr; 1735 } else if (opr1->is_constant()) { 1736 LIR_Opr tmp 1737 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1738 const2reg(opr1, tmp, lir_patch_none, nullptr); 1739 opr1 = tmp; 1740 } 1741 1742 if (opr2->is_stack()) { 1743 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1744 opr2 = FrameMap::rscratch2_opr; 1745 } else if (opr2->is_constant()) { 1746 LIR_Opr tmp 1747 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1748 const2reg(opr2, tmp, lir_patch_none, nullptr); 1749 opr2 = tmp; 1750 } 1751 1752 if (result->type() == T_LONG) 1753 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1754 else 1755 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1756 } 1757 1758 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1759 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1760 1761 if (left->is_single_cpu()) { 1762 Register lreg = left->as_register(); 1763 Register dreg = as_reg(dest); 1764 1765 if (right->is_single_cpu()) { 1766 // cpu register - cpu register 1767 1768 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1769 "should be"); 1770 Register rreg = right->as_register(); 1771 switch (code) { 1772 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1773 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1774 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1775 default: ShouldNotReachHere(); 1776 } 1777 1778 } else if (right->is_double_cpu()) { 1779 Register rreg = right->as_register_lo(); 1780 // single_cpu + double_cpu: can happen with obj+long 1781 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1782 switch (code) { 1783 case lir_add: __ add(dreg, lreg, rreg); break; 1784 case lir_sub: __ sub(dreg, lreg, rreg); break; 1785 default: ShouldNotReachHere(); 1786 } 1787 } else if (right->is_constant()) { 1788 // cpu register - constant 1789 jlong c; 1790 1791 // FIXME. This is fugly: we really need to factor all this logic. 1792 switch(right->type()) { 1793 case T_LONG: 1794 c = right->as_constant_ptr()->as_jlong(); 1795 break; 1796 case T_INT: 1797 case T_ADDRESS: 1798 c = right->as_constant_ptr()->as_jint(); 1799 break; 1800 default: 1801 ShouldNotReachHere(); 1802 c = 0; // unreachable 1803 break; 1804 } 1805 1806 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1807 if (c == 0 && dreg == lreg) { 1808 COMMENT("effective nop elided"); 1809 return; 1810 } 1811 switch(left->type()) { 1812 case T_INT: 1813 switch (code) { 1814 case lir_add: __ addw(dreg, lreg, c); break; 1815 case lir_sub: __ subw(dreg, lreg, c); break; 1816 default: ShouldNotReachHere(); 1817 } 1818 break; 1819 case T_OBJECT: 1820 case T_ADDRESS: 1821 switch (code) { 1822 case lir_add: __ add(dreg, lreg, c); break; 1823 case lir_sub: __ sub(dreg, lreg, c); break; 1824 default: ShouldNotReachHere(); 1825 } 1826 break; 1827 default: 1828 ShouldNotReachHere(); 1829 } 1830 } else { 1831 ShouldNotReachHere(); 1832 } 1833 1834 } else if (left->is_double_cpu()) { 1835 Register lreg_lo = left->as_register_lo(); 1836 1837 if (right->is_double_cpu()) { 1838 // cpu register - cpu register 1839 Register rreg_lo = right->as_register_lo(); 1840 switch (code) { 1841 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1842 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1843 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1844 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1845 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1846 default: 1847 ShouldNotReachHere(); 1848 } 1849 1850 } else if (right->is_constant()) { 1851 jlong c = right->as_constant_ptr()->as_jlong(); 1852 Register dreg = as_reg(dest); 1853 switch (code) { 1854 case lir_add: 1855 case lir_sub: 1856 if (c == 0 && dreg == lreg_lo) { 1857 COMMENT("effective nop elided"); 1858 return; 1859 } 1860 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1861 break; 1862 case lir_div: 1863 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1864 if (c == 1) { 1865 // move lreg_lo to dreg if divisor is 1 1866 __ mov(dreg, lreg_lo); 1867 } else { 1868 unsigned int shift = log2i_exact(c); 1869 // use rscratch1 as intermediate result register 1870 __ asr(rscratch1, lreg_lo, 63); 1871 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1872 __ asr(dreg, rscratch1, shift); 1873 } 1874 break; 1875 case lir_rem: 1876 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1877 if (c == 1) { 1878 // move 0 to dreg if divisor is 1 1879 __ mov(dreg, zr); 1880 } else { 1881 // use rscratch1 as intermediate result register 1882 __ negs(rscratch1, lreg_lo); 1883 __ andr(dreg, lreg_lo, c - 1); 1884 __ andr(rscratch1, rscratch1, c - 1); 1885 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1886 } 1887 break; 1888 default: 1889 ShouldNotReachHere(); 1890 } 1891 } else { 1892 ShouldNotReachHere(); 1893 } 1894 } else if (left->is_single_fpu()) { 1895 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1896 switch (code) { 1897 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1898 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1899 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1900 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1901 default: 1902 ShouldNotReachHere(); 1903 } 1904 } else if (left->is_double_fpu()) { 1905 if (right->is_double_fpu()) { 1906 // fpu register - fpu register 1907 switch (code) { 1908 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1909 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1910 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1911 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1912 default: 1913 ShouldNotReachHere(); 1914 } 1915 } else { 1916 if (right->is_constant()) { 1917 ShouldNotReachHere(); 1918 } 1919 ShouldNotReachHere(); 1920 } 1921 } else if (left->is_single_stack() || left->is_address()) { 1922 assert(left == dest, "left and dest must be equal"); 1923 ShouldNotReachHere(); 1924 } else { 1925 ShouldNotReachHere(); 1926 } 1927 } 1928 1929 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1930 1931 1932 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1933 switch(code) { 1934 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1935 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1936 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1937 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1938 default : ShouldNotReachHere(); 1939 } 1940 } 1941 1942 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1943 1944 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1945 Register Rleft = left->is_single_cpu() ? left->as_register() : 1946 left->as_register_lo(); 1947 if (dst->is_single_cpu()) { 1948 Register Rdst = dst->as_register(); 1949 if (right->is_constant()) { 1950 switch (code) { 1951 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1952 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1953 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1954 default: ShouldNotReachHere(); break; 1955 } 1956 } else { 1957 Register Rright = right->is_single_cpu() ? right->as_register() : 1958 right->as_register_lo(); 1959 switch (code) { 1960 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1961 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1962 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1963 default: ShouldNotReachHere(); break; 1964 } 1965 } 1966 } else { 1967 Register Rdst = dst->as_register_lo(); 1968 if (right->is_constant()) { 1969 switch (code) { 1970 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1971 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1972 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1973 default: ShouldNotReachHere(); break; 1974 } 1975 } else { 1976 Register Rright = right->is_single_cpu() ? right->as_register() : 1977 right->as_register_lo(); 1978 switch (code) { 1979 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1980 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1981 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1982 default: ShouldNotReachHere(); break; 1983 } 1984 } 1985 } 1986 } 1987 1988 1989 1990 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1991 1992 // opcode check 1993 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1994 bool is_irem = (code == lir_irem); 1995 1996 // operand check 1997 assert(left->is_single_cpu(), "left must be register"); 1998 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1999 assert(result->is_single_cpu(), "result must be register"); 2000 Register lreg = left->as_register(); 2001 Register dreg = result->as_register(); 2002 2003 // power-of-2 constant check and codegen 2004 if (right->is_constant()) { 2005 int c = right->as_constant_ptr()->as_jint(); 2006 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 2007 if (is_irem) { 2008 if (c == 1) { 2009 // move 0 to dreg if divisor is 1 2010 __ movw(dreg, zr); 2011 } else { 2012 // use rscratch1 as intermediate result register 2013 __ negsw(rscratch1, lreg); 2014 __ andw(dreg, lreg, c - 1); 2015 __ andw(rscratch1, rscratch1, c - 1); 2016 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 2017 } 2018 } else { 2019 if (c == 1) { 2020 // move lreg to dreg if divisor is 1 2021 __ movw(dreg, lreg); 2022 } else { 2023 unsigned int shift = exact_log2(c); 2024 // use rscratch1 as intermediate result register 2025 __ asrw(rscratch1, lreg, 31); 2026 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 2027 __ asrw(dreg, rscratch1, shift); 2028 } 2029 } 2030 } else { 2031 Register rreg = right->as_register(); 2032 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 2033 } 2034 } 2035 2036 2037 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2038 if (opr1->is_constant() && opr2->is_single_cpu()) { 2039 // tableswitch 2040 Register reg = as_reg(opr2); 2041 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 2042 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 2043 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 2044 Register reg1 = as_reg(opr1); 2045 if (opr2->is_single_cpu()) { 2046 // cpu register - cpu register 2047 Register reg2 = opr2->as_register(); 2048 if (is_reference_type(opr1->type())) { 2049 __ cmpoop(reg1, reg2); 2050 } else { 2051 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2052 __ cmpw(reg1, reg2); 2053 } 2054 return; 2055 } 2056 if (opr2->is_double_cpu()) { 2057 // cpu register - cpu register 2058 Register reg2 = opr2->as_register_lo(); 2059 __ cmp(reg1, reg2); 2060 return; 2061 } 2062 2063 if (opr2->is_constant()) { 2064 bool is_32bit = false; // width of register operand 2065 jlong imm; 2066 2067 switch(opr2->type()) { 2068 case T_INT: 2069 imm = opr2->as_constant_ptr()->as_jint(); 2070 is_32bit = true; 2071 break; 2072 case T_LONG: 2073 imm = opr2->as_constant_ptr()->as_jlong(); 2074 break; 2075 case T_ADDRESS: 2076 imm = opr2->as_constant_ptr()->as_jint(); 2077 break; 2078 case T_METADATA: 2079 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 2080 break; 2081 case T_OBJECT: 2082 case T_ARRAY: 2083 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 2084 __ cmpoop(reg1, rscratch1); 2085 return; 2086 default: 2087 ShouldNotReachHere(); 2088 imm = 0; // unreachable 2089 break; 2090 } 2091 2092 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 2093 if (is_32bit) 2094 __ cmpw(reg1, imm); 2095 else 2096 __ subs(zr, reg1, imm); 2097 return; 2098 } else { 2099 __ mov(rscratch1, imm); 2100 if (is_32bit) 2101 __ cmpw(reg1, rscratch1); 2102 else 2103 __ cmp(reg1, rscratch1); 2104 return; 2105 } 2106 } else 2107 ShouldNotReachHere(); 2108 } else if (opr1->is_single_fpu()) { 2109 FloatRegister reg1 = opr1->as_float_reg(); 2110 assert(opr2->is_single_fpu(), "expect single float register"); 2111 FloatRegister reg2 = opr2->as_float_reg(); 2112 __ fcmps(reg1, reg2); 2113 } else if (opr1->is_double_fpu()) { 2114 FloatRegister reg1 = opr1->as_double_reg(); 2115 assert(opr2->is_double_fpu(), "expect double float register"); 2116 FloatRegister reg2 = opr2->as_double_reg(); 2117 __ fcmpd(reg1, reg2); 2118 } else { 2119 ShouldNotReachHere(); 2120 } 2121 } 2122 2123 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2124 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2125 bool is_unordered_less = (code == lir_ucmp_fd2i); 2126 if (left->is_single_fpu()) { 2127 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2128 } else if (left->is_double_fpu()) { 2129 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2130 } else { 2131 ShouldNotReachHere(); 2132 } 2133 } else if (code == lir_cmp_l2i) { 2134 Label done; 2135 __ cmp(left->as_register_lo(), right->as_register_lo()); 2136 __ mov(dst->as_register(), (uint64_t)-1L); 2137 __ br(Assembler::LT, done); 2138 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2139 __ bind(done); 2140 } else { 2141 ShouldNotReachHere(); 2142 } 2143 } 2144 2145 2146 void LIR_Assembler::align_call(LIR_Code code) { } 2147 2148 2149 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2150 address call = __ trampoline_call(Address(op->addr(), rtype)); 2151 if (call == nullptr) { 2152 bailout("trampoline stub overflow"); 2153 return; 2154 } 2155 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2156 __ post_call_nop(); 2157 } 2158 2159 2160 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2161 address call = __ ic_call(op->addr()); 2162 if (call == nullptr) { 2163 bailout("trampoline stub overflow"); 2164 return; 2165 } 2166 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2167 __ post_call_nop(); 2168 } 2169 2170 void LIR_Assembler::emit_static_call_stub() { 2171 address call_pc = __ pc(); 2172 address stub = __ start_a_stub(call_stub_size()); 2173 if (stub == nullptr) { 2174 bailout("static call stub overflow"); 2175 return; 2176 } 2177 2178 int start = __ offset(); 2179 2180 __ relocate(static_stub_Relocation::spec(call_pc)); 2181 __ emit_static_call_stub(); 2182 2183 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2184 <= call_stub_size(), "stub too big"); 2185 __ end_a_stub(); 2186 } 2187 2188 2189 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2190 assert(exceptionOop->as_register() == r0, "must match"); 2191 assert(exceptionPC->as_register() == r3, "must match"); 2192 2193 // exception object is not added to oop map by LinearScan 2194 // (LinearScan assumes that no oops are in fixed registers) 2195 info->add_register_oop(exceptionOop); 2196 C1StubId unwind_id; 2197 2198 // get current pc information 2199 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2200 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2201 // As no instructions have been generated yet for this LIR node it's 2202 // possible that an oop map already exists for the current offset. 2203 // In that case insert an dummy NOP here to ensure all oop map PCs 2204 // are unique. See JDK-8237483. 2205 __ nop(); 2206 } 2207 int pc_for_athrow_offset = __ offset(); 2208 InternalAddress pc_for_athrow(__ pc()); 2209 __ adr(exceptionPC->as_register(), pc_for_athrow); 2210 add_call_info(pc_for_athrow_offset, info); // for exception handler 2211 2212 __ verify_not_null_oop(r0); 2213 // search an exception handler (r0: exception oop, r3: throwing pc) 2214 if (compilation()->has_fpu_code()) { 2215 unwind_id = C1StubId::handle_exception_id; 2216 } else { 2217 unwind_id = C1StubId::handle_exception_nofpu_id; 2218 } 2219 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2220 2221 // FIXME: enough room for two byte trap ???? 2222 __ nop(); 2223 } 2224 2225 2226 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2227 assert(exceptionOop->as_register() == r0, "must match"); 2228 2229 __ b(_unwind_handler_entry); 2230 } 2231 2232 2233 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2234 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2235 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2236 2237 switch (left->type()) { 2238 case T_INT: { 2239 switch (code) { 2240 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2241 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2242 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2243 default: 2244 ShouldNotReachHere(); 2245 break; 2246 } 2247 break; 2248 case T_LONG: 2249 case T_ADDRESS: 2250 case T_OBJECT: 2251 switch (code) { 2252 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2253 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2254 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2255 default: 2256 ShouldNotReachHere(); 2257 break; 2258 } 2259 break; 2260 default: 2261 ShouldNotReachHere(); 2262 break; 2263 } 2264 } 2265 } 2266 2267 2268 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2269 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2270 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2271 2272 switch (left->type()) { 2273 case T_INT: { 2274 switch (code) { 2275 case lir_shl: __ lslw (dreg, lreg, count); break; 2276 case lir_shr: __ asrw (dreg, lreg, count); break; 2277 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2278 default: 2279 ShouldNotReachHere(); 2280 break; 2281 } 2282 break; 2283 case T_LONG: 2284 case T_ADDRESS: 2285 case T_OBJECT: 2286 switch (code) { 2287 case lir_shl: __ lsl (dreg, lreg, count); break; 2288 case lir_shr: __ asr (dreg, lreg, count); break; 2289 case lir_ushr: __ lsr (dreg, lreg, count); break; 2290 default: 2291 ShouldNotReachHere(); 2292 break; 2293 } 2294 break; 2295 default: 2296 ShouldNotReachHere(); 2297 break; 2298 } 2299 } 2300 } 2301 2302 2303 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2304 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2305 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2306 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2307 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2308 } 2309 2310 2311 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2312 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2313 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2314 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2315 __ mov (rscratch1, c); 2316 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2317 } 2318 2319 2320 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2321 ShouldNotReachHere(); 2322 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2323 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2324 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2325 __ lea(rscratch1, __ constant_oop_address(o)); 2326 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2327 } 2328 2329 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) { 2330 if (null_check) { 2331 __ cbz(obj, *slow_path->entry()); 2332 } 2333 if (is_dest) { 2334 __ test_null_free_array_oop(obj, tmp, *slow_path->entry()); 2335 } else { 2336 __ test_flat_array_oop(obj, tmp, *slow_path->entry()); 2337 } 2338 } 2339 2340 // This code replaces a call to arraycopy; no exception may 2341 // be thrown in this code, they must be thrown in the System.arraycopy 2342 // activation frame; we could save some checks if this would not be the case 2343 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2344 ciArrayKlass* default_type = op->expected_type(); 2345 Register src = op->src()->as_register(); 2346 Register dst = op->dst()->as_register(); 2347 Register src_pos = op->src_pos()->as_register(); 2348 Register dst_pos = op->dst_pos()->as_register(); 2349 Register length = op->length()->as_register(); 2350 Register tmp = op->tmp()->as_register(); 2351 2352 CodeStub* stub = op->stub(); 2353 int flags = op->flags(); 2354 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2355 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2356 2357 if (flags & LIR_OpArrayCopy::always_slow_path) { 2358 __ b(*stub->entry()); 2359 __ bind(*stub->continuation()); 2360 return; 2361 } 2362 2363 // if we don't know anything, just go through the generic arraycopy 2364 if (default_type == nullptr // || basic_type == T_OBJECT 2365 ) { 2366 Label done; 2367 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2368 2369 // Save the arguments in case the generic arraycopy fails and we 2370 // have to fall back to the JNI stub 2371 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2372 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2373 __ str(src, Address(sp, 4*BytesPerWord)); 2374 2375 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2376 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2377 2378 // The arguments are in java calling convention so we shift them 2379 // to C convention 2380 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2381 __ mov(c_rarg0, j_rarg0); 2382 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2383 __ mov(c_rarg1, j_rarg1); 2384 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2385 __ mov(c_rarg2, j_rarg2); 2386 assert_different_registers(c_rarg3, j_rarg4); 2387 __ mov(c_rarg3, j_rarg3); 2388 __ mov(c_rarg4, j_rarg4); 2389 #ifndef PRODUCT 2390 if (PrintC1Statistics) { 2391 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2392 } 2393 #endif 2394 __ far_call(RuntimeAddress(copyfunc_addr)); 2395 2396 __ cbz(r0, *stub->continuation()); 2397 2398 // Reload values from the stack so they are where the stub 2399 // expects them. 2400 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2401 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2402 __ ldr(src, Address(sp, 4*BytesPerWord)); 2403 2404 // r0 is -1^K where K == partial copied count 2405 __ eonw(rscratch1, r0, zr); 2406 // adjust length down and src/end pos up by partial copied count 2407 __ subw(length, length, rscratch1); 2408 __ addw(src_pos, src_pos, rscratch1); 2409 __ addw(dst_pos, dst_pos, rscratch1); 2410 __ b(*stub->entry()); 2411 2412 __ bind(*stub->continuation()); 2413 return; 2414 } 2415 2416 // Handle inline type arrays 2417 if (flags & LIR_OpArrayCopy::src_inlinetype_check) { 2418 arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check)); 2419 } 2420 2421 if (flags & LIR_OpArrayCopy::dst_inlinetype_check) { 2422 arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check)); 2423 } 2424 2425 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2426 2427 int elem_size = type2aelembytes(basic_type); 2428 int scale = exact_log2(elem_size); 2429 2430 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2431 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2432 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2433 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2434 2435 // test for null 2436 if (flags & LIR_OpArrayCopy::src_null_check) { 2437 __ cbz(src, *stub->entry()); 2438 } 2439 if (flags & LIR_OpArrayCopy::dst_null_check) { 2440 __ cbz(dst, *stub->entry()); 2441 } 2442 2443 // If the compiler was not able to prove that exact type of the source or the destination 2444 // of the arraycopy is an array type, check at runtime if the source or the destination is 2445 // an instance type. 2446 if (flags & LIR_OpArrayCopy::type_check) { 2447 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2448 __ load_klass(tmp, dst); 2449 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2450 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2451 __ br(Assembler::GE, *stub->entry()); 2452 } 2453 2454 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2455 __ load_klass(tmp, src); 2456 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2457 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2458 __ br(Assembler::GE, *stub->entry()); 2459 } 2460 } 2461 2462 // check if negative 2463 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2464 __ cmpw(src_pos, 0); 2465 __ br(Assembler::LT, *stub->entry()); 2466 } 2467 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2468 __ cmpw(dst_pos, 0); 2469 __ br(Assembler::LT, *stub->entry()); 2470 } 2471 2472 if (flags & LIR_OpArrayCopy::length_positive_check) { 2473 __ cmpw(length, 0); 2474 __ br(Assembler::LT, *stub->entry()); 2475 } 2476 2477 if (flags & LIR_OpArrayCopy::src_range_check) { 2478 __ addw(tmp, src_pos, length); 2479 __ ldrw(rscratch1, src_length_addr); 2480 __ cmpw(tmp, rscratch1); 2481 __ br(Assembler::HI, *stub->entry()); 2482 } 2483 if (flags & LIR_OpArrayCopy::dst_range_check) { 2484 __ addw(tmp, dst_pos, length); 2485 __ ldrw(rscratch1, dst_length_addr); 2486 __ cmpw(tmp, rscratch1); 2487 __ br(Assembler::HI, *stub->entry()); 2488 } 2489 2490 if (flags & LIR_OpArrayCopy::type_check) { 2491 // We don't know the array types are compatible 2492 if (basic_type != T_OBJECT) { 2493 // Simple test for basic type arrays 2494 if (UseCompressedClassPointers) { 2495 __ ldrw(tmp, src_klass_addr); 2496 __ ldrw(rscratch1, dst_klass_addr); 2497 __ cmpw(tmp, rscratch1); 2498 } else { 2499 __ ldr(tmp, src_klass_addr); 2500 __ ldr(rscratch1, dst_klass_addr); 2501 __ cmp(tmp, rscratch1); 2502 } 2503 __ br(Assembler::NE, *stub->entry()); 2504 } else { 2505 // For object arrays, if src is a sub class of dst then we can 2506 // safely do the copy. 2507 Label cont, slow; 2508 2509 #define PUSH(r1, r2) \ 2510 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2511 2512 #define POP(r1, r2) \ 2513 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2514 2515 __ PUSH(src, dst); 2516 2517 __ load_klass(src, src); 2518 __ load_klass(dst, dst); 2519 2520 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2521 2522 __ PUSH(src, dst); 2523 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2524 __ POP(src, dst); 2525 2526 __ cbnz(src, cont); 2527 2528 __ bind(slow); 2529 __ POP(src, dst); 2530 2531 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2532 if (copyfunc_addr != nullptr) { // use stub if available 2533 // src is not a sub class of dst so we have to do a 2534 // per-element check. 2535 2536 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2537 if ((flags & mask) != mask) { 2538 // Check that at least both of them object arrays. 2539 assert(flags & mask, "one of the two should be known to be an object array"); 2540 2541 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2542 __ load_klass(tmp, src); 2543 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2544 __ load_klass(tmp, dst); 2545 } 2546 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2547 Address klass_lh_addr(tmp, lh_offset); 2548 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2549 __ ldrw(rscratch1, klass_lh_addr); 2550 __ mov(rscratch2, objArray_lh); 2551 __ eorw(rscratch1, rscratch1, rscratch2); 2552 __ cbnzw(rscratch1, *stub->entry()); 2553 } 2554 2555 // Spill because stubs can use any register they like and it's 2556 // easier to restore just those that we care about. 2557 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2558 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2559 __ str(src, Address(sp, 4*BytesPerWord)); 2560 2561 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2562 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2563 assert_different_registers(c_rarg0, dst, dst_pos, length); 2564 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2565 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2566 assert_different_registers(c_rarg1, dst, length); 2567 __ uxtw(c_rarg2, length); 2568 assert_different_registers(c_rarg2, dst); 2569 2570 __ load_klass(c_rarg4, dst); 2571 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2572 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2573 __ far_call(RuntimeAddress(copyfunc_addr)); 2574 2575 #ifndef PRODUCT 2576 if (PrintC1Statistics) { 2577 Label failed; 2578 __ cbnz(r0, failed); 2579 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2580 __ bind(failed); 2581 } 2582 #endif 2583 2584 __ cbz(r0, *stub->continuation()); 2585 2586 #ifndef PRODUCT 2587 if (PrintC1Statistics) { 2588 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2589 } 2590 #endif 2591 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2592 2593 // Restore previously spilled arguments 2594 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2595 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2596 __ ldr(src, Address(sp, 4*BytesPerWord)); 2597 2598 // return value is -1^K where K is partial copied count 2599 __ eonw(rscratch1, r0, zr); 2600 // adjust length down and src/end pos up by partial copied count 2601 __ subw(length, length, rscratch1); 2602 __ addw(src_pos, src_pos, rscratch1); 2603 __ addw(dst_pos, dst_pos, rscratch1); 2604 } 2605 2606 __ b(*stub->entry()); 2607 2608 __ bind(cont); 2609 __ POP(src, dst); 2610 } 2611 } 2612 2613 #ifdef ASSERT 2614 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2615 // Sanity check the known type with the incoming class. For the 2616 // primitive case the types must match exactly with src.klass and 2617 // dst.klass each exactly matching the default type. For the 2618 // object array case, if no type check is needed then either the 2619 // dst type is exactly the expected type and the src type is a 2620 // subtype which we can't check or src is the same array as dst 2621 // but not necessarily exactly of type default_type. 2622 Label known_ok, halt; 2623 __ mov_metadata(tmp, default_type->constant_encoding()); 2624 if (UseCompressedClassPointers) { 2625 __ encode_klass_not_null(tmp); 2626 } 2627 2628 if (basic_type != T_OBJECT) { 2629 2630 if (UseCompressedClassPointers) { 2631 __ ldrw(rscratch1, dst_klass_addr); 2632 __ cmpw(tmp, rscratch1); 2633 } else { 2634 __ ldr(rscratch1, dst_klass_addr); 2635 __ cmp(tmp, rscratch1); 2636 } 2637 __ br(Assembler::NE, halt); 2638 if (UseCompressedClassPointers) { 2639 __ ldrw(rscratch1, src_klass_addr); 2640 __ cmpw(tmp, rscratch1); 2641 } else { 2642 __ ldr(rscratch1, src_klass_addr); 2643 __ cmp(tmp, rscratch1); 2644 } 2645 __ br(Assembler::EQ, known_ok); 2646 } else { 2647 if (UseCompressedClassPointers) { 2648 __ ldrw(rscratch1, dst_klass_addr); 2649 __ cmpw(tmp, rscratch1); 2650 } else { 2651 __ ldr(rscratch1, dst_klass_addr); 2652 __ cmp(tmp, rscratch1); 2653 } 2654 __ br(Assembler::EQ, known_ok); 2655 __ cmp(src, dst); 2656 __ br(Assembler::EQ, known_ok); 2657 } 2658 __ bind(halt); 2659 __ stop("incorrect type information in arraycopy"); 2660 __ bind(known_ok); 2661 } 2662 #endif 2663 2664 #ifndef PRODUCT 2665 if (PrintC1Statistics) { 2666 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2667 } 2668 #endif 2669 2670 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2671 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2672 assert_different_registers(c_rarg0, dst, dst_pos, length); 2673 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2674 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2675 assert_different_registers(c_rarg1, dst, length); 2676 __ uxtw(c_rarg2, length); 2677 assert_different_registers(c_rarg2, dst); 2678 2679 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2680 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2681 const char *name; 2682 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2683 2684 CodeBlob *cb = CodeCache::find_blob(entry); 2685 if (cb) { 2686 __ far_call(RuntimeAddress(entry)); 2687 } else { 2688 __ call_VM_leaf(entry, 3); 2689 } 2690 2691 if (stub != nullptr) { 2692 __ bind(*stub->continuation()); 2693 } 2694 } 2695 2696 2697 2698 2699 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2700 Register obj = op->obj_opr()->as_register(); // may not be an oop 2701 Register hdr = op->hdr_opr()->as_register(); 2702 Register lock = op->lock_opr()->as_register(); 2703 Register temp = op->scratch_opr()->as_register(); 2704 if (LockingMode == LM_MONITOR) { 2705 if (op->info() != nullptr) { 2706 add_debug_info_for_null_check_here(op->info()); 2707 __ null_check(obj, -1); 2708 } 2709 __ b(*op->stub()->entry()); 2710 } else if (op->code() == lir_lock) { 2711 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2712 // add debug info for NullPointerException only if one is possible 2713 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2714 if (op->info() != nullptr) { 2715 add_debug_info_for_null_check(null_check_offset, op->info()); 2716 } 2717 // done 2718 } else if (op->code() == lir_unlock) { 2719 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2720 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2721 } else { 2722 Unimplemented(); 2723 } 2724 __ bind(*op->stub()->continuation()); 2725 } 2726 2727 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2728 Register obj = op->obj()->as_pointer_register(); 2729 Register result = op->result_opr()->as_pointer_register(); 2730 2731 CodeEmitInfo* info = op->info(); 2732 if (info != nullptr) { 2733 add_debug_info_for_null_check_here(info); 2734 } 2735 2736 if (UseCompressedClassPointers) { 2737 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2738 __ decode_klass_not_null(result); 2739 } else { 2740 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2741 } 2742 } 2743 2744 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2745 ciMethod* method = op->profiled_method(); 2746 int bci = op->profiled_bci(); 2747 ciMethod* callee = op->profiled_callee(); 2748 2749 // Update counter for all call types 2750 ciMethodData* md = method->method_data_or_null(); 2751 assert(md != nullptr, "Sanity"); 2752 ciProfileData* data = md->bci_to_data(bci); 2753 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2754 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2755 Register mdo = op->mdo()->as_register(); 2756 __ mov_metadata(mdo, md->constant_encoding()); 2757 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2758 // Perform additional virtual call profiling for invokevirtual and 2759 // invokeinterface bytecodes 2760 if (op->should_profile_receiver_type()) { 2761 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2762 Register recv = op->recv()->as_register(); 2763 assert_different_registers(mdo, recv); 2764 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2765 ciKlass* known_klass = op->known_holder(); 2766 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2767 // We know the type that will be seen at this call site; we can 2768 // statically update the MethodData* rather than needing to do 2769 // dynamic tests on the receiver type 2770 2771 // NOTE: we should probably put a lock around this search to 2772 // avoid collisions by concurrent compilations 2773 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2774 uint i; 2775 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2776 ciKlass* receiver = vc_data->receiver(i); 2777 if (known_klass->equals(receiver)) { 2778 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2779 __ addptr(data_addr, DataLayout::counter_increment); 2780 return; 2781 } 2782 } 2783 2784 // Receiver type not found in profile data; select an empty slot 2785 2786 // Note that this is less efficient than it should be because it 2787 // always does a write to the receiver part of the 2788 // VirtualCallData rather than just the first time 2789 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2790 ciKlass* receiver = vc_data->receiver(i); 2791 if (receiver == nullptr) { 2792 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2793 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2794 __ lea(rscratch2, recv_addr); 2795 __ str(rscratch1, Address(rscratch2)); 2796 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2797 __ addptr(data_addr, DataLayout::counter_increment); 2798 return; 2799 } 2800 } 2801 } else { 2802 __ load_klass(recv, recv); 2803 Label update_done; 2804 type_profile_helper(mdo, md, data, recv, &update_done); 2805 // Receiver did not match any saved receiver and there is no empty row for it. 2806 // Increment total counter to indicate polymorphic case. 2807 __ addptr(counter_addr, DataLayout::counter_increment); 2808 2809 __ bind(update_done); 2810 } 2811 } else { 2812 // Static call 2813 __ addptr(counter_addr, DataLayout::counter_increment); 2814 } 2815 } 2816 2817 2818 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2819 Unimplemented(); 2820 } 2821 2822 2823 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2824 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2825 } 2826 2827 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2828 assert(op->crc()->is_single_cpu(), "crc must be register"); 2829 assert(op->val()->is_single_cpu(), "byte value must be register"); 2830 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2831 Register crc = op->crc()->as_register(); 2832 Register val = op->val()->as_register(); 2833 Register res = op->result_opr()->as_register(); 2834 2835 assert_different_registers(val, crc, res); 2836 uint64_t offset; 2837 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2838 __ add(res, res, offset); 2839 2840 __ mvnw(crc, crc); // ~crc 2841 __ update_byte_crc32(crc, val, res); 2842 __ mvnw(res, crc); // ~crc 2843 } 2844 2845 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2846 COMMENT("emit_profile_type {"); 2847 Register obj = op->obj()->as_register(); 2848 Register tmp = op->tmp()->as_pointer_register(); 2849 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2850 ciKlass* exact_klass = op->exact_klass(); 2851 intptr_t current_klass = op->current_klass(); 2852 bool not_null = op->not_null(); 2853 bool no_conflict = op->no_conflict(); 2854 2855 Label update, next, none; 2856 2857 bool do_null = !not_null; 2858 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2859 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2860 2861 assert(do_null || do_update, "why are we here?"); 2862 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2863 assert(mdo_addr.base() != rscratch1, "wrong register"); 2864 2865 __ verify_oop(obj); 2866 2867 if (tmp != obj) { 2868 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2869 __ mov(tmp, obj); 2870 } else { 2871 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2872 } 2873 if (do_null) { 2874 __ cbnz(tmp, update); 2875 if (!TypeEntries::was_null_seen(current_klass)) { 2876 __ ldr(rscratch2, mdo_addr); 2877 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2878 __ str(rscratch2, mdo_addr); 2879 } 2880 if (do_update) { 2881 #ifndef ASSERT 2882 __ b(next); 2883 } 2884 #else 2885 __ b(next); 2886 } 2887 } else { 2888 __ cbnz(tmp, update); 2889 __ stop("unexpected null obj"); 2890 #endif 2891 } 2892 2893 __ bind(update); 2894 2895 if (do_update) { 2896 #ifdef ASSERT 2897 if (exact_klass != nullptr) { 2898 Label ok; 2899 __ load_klass(tmp, tmp); 2900 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2901 __ eor(rscratch1, tmp, rscratch1); 2902 __ cbz(rscratch1, ok); 2903 __ stop("exact klass and actual klass differ"); 2904 __ bind(ok); 2905 } 2906 #endif 2907 if (!no_conflict) { 2908 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2909 if (exact_klass != nullptr) { 2910 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2911 } else { 2912 __ load_klass(tmp, tmp); 2913 } 2914 2915 __ ldr(rscratch2, mdo_addr); 2916 __ eor(tmp, tmp, rscratch2); 2917 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2918 // klass seen before, nothing to do. The unknown bit may have been 2919 // set already but no need to check. 2920 __ cbz(rscratch1, next); 2921 2922 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2923 2924 if (TypeEntries::is_type_none(current_klass)) { 2925 __ cbz(rscratch2, none); 2926 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2927 __ br(Assembler::EQ, none); 2928 // There is a chance that the checks above 2929 // fail if another thread has just set the 2930 // profiling to this obj's klass 2931 __ dmb(Assembler::ISHLD); 2932 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2933 __ ldr(rscratch2, mdo_addr); 2934 __ eor(tmp, tmp, rscratch2); 2935 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2936 __ cbz(rscratch1, next); 2937 } 2938 } else { 2939 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2940 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2941 2942 __ ldr(tmp, mdo_addr); 2943 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2944 } 2945 2946 // different than before. Cannot keep accurate profile. 2947 __ ldr(rscratch2, mdo_addr); 2948 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2949 __ str(rscratch2, mdo_addr); 2950 2951 if (TypeEntries::is_type_none(current_klass)) { 2952 __ b(next); 2953 2954 __ bind(none); 2955 // first time here. Set profile type. 2956 __ str(tmp, mdo_addr); 2957 #ifdef ASSERT 2958 __ andr(tmp, tmp, TypeEntries::type_mask); 2959 __ verify_klass_ptr(tmp); 2960 #endif 2961 } 2962 } else { 2963 // There's a single possible klass at this profile point 2964 assert(exact_klass != nullptr, "should be"); 2965 if (TypeEntries::is_type_none(current_klass)) { 2966 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2967 __ ldr(rscratch2, mdo_addr); 2968 __ eor(tmp, tmp, rscratch2); 2969 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2970 __ cbz(rscratch1, next); 2971 #ifdef ASSERT 2972 { 2973 Label ok; 2974 __ ldr(rscratch1, mdo_addr); 2975 __ cbz(rscratch1, ok); 2976 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2977 __ br(Assembler::EQ, ok); 2978 // may have been set by another thread 2979 __ dmb(Assembler::ISHLD); 2980 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2981 __ ldr(rscratch2, mdo_addr); 2982 __ eor(rscratch2, rscratch1, rscratch2); 2983 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2984 __ cbz(rscratch2, ok); 2985 2986 __ stop("unexpected profiling mismatch"); 2987 __ bind(ok); 2988 } 2989 #endif 2990 // first time here. Set profile type. 2991 __ str(tmp, mdo_addr); 2992 #ifdef ASSERT 2993 __ andr(tmp, tmp, TypeEntries::type_mask); 2994 __ verify_klass_ptr(tmp); 2995 #endif 2996 } else { 2997 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2998 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2999 3000 __ ldr(tmp, mdo_addr); 3001 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 3002 3003 __ orr(tmp, tmp, TypeEntries::type_unknown); 3004 __ str(tmp, mdo_addr); 3005 // FIXME: Write barrier needed here? 3006 } 3007 } 3008 3009 __ bind(next); 3010 } 3011 COMMENT("} emit_profile_type"); 3012 } 3013 3014 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 3015 Register obj = op->obj()->as_register(); 3016 Register tmp = op->tmp()->as_pointer_register(); 3017 bool not_null = op->not_null(); 3018 int flag = op->flag(); 3019 3020 Label not_inline_type; 3021 if (!not_null) { 3022 __ cbz(obj, not_inline_type); 3023 } 3024 3025 __ test_oop_is_not_inline_type(obj, tmp, not_inline_type); 3026 3027 Address mdo_addr = as_Address(op->mdp()->as_address_ptr(), rscratch2); 3028 __ ldrb(rscratch1, mdo_addr); 3029 __ orr(rscratch1, rscratch1, flag); 3030 __ strb(rscratch1, mdo_addr); 3031 3032 __ bind(not_inline_type); 3033 } 3034 3035 void LIR_Assembler::align_backward_branch_target() { 3036 } 3037 3038 3039 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3040 // tmp must be unused 3041 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 3042 3043 if (left->is_single_cpu()) { 3044 assert(dest->is_single_cpu(), "expect single result reg"); 3045 __ negw(dest->as_register(), left->as_register()); 3046 } else if (left->is_double_cpu()) { 3047 assert(dest->is_double_cpu(), "expect double result reg"); 3048 __ neg(dest->as_register_lo(), left->as_register_lo()); 3049 } else if (left->is_single_fpu()) { 3050 assert(dest->is_single_fpu(), "expect single float result reg"); 3051 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 3052 } else { 3053 assert(left->is_double_fpu(), "expect double float operand reg"); 3054 assert(dest->is_double_fpu(), "expect double float result reg"); 3055 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 3056 } 3057 } 3058 3059 3060 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3061 if (patch_code != lir_patch_none) { 3062 deoptimize_trap(info); 3063 return; 3064 } 3065 3066 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 3067 } 3068 3069 3070 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3071 assert(!tmp->is_valid(), "don't need temporary"); 3072 3073 CodeBlob *cb = CodeCache::find_blob(dest); 3074 if (cb) { 3075 __ far_call(RuntimeAddress(dest)); 3076 } else { 3077 __ mov(rscratch1, RuntimeAddress(dest)); 3078 __ blr(rscratch1); 3079 } 3080 3081 if (info != nullptr) { 3082 add_call_info_here(info); 3083 } 3084 __ post_call_nop(); 3085 } 3086 3087 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3088 if (dest->is_address() || src->is_address()) { 3089 move_op(src, dest, type, lir_patch_none, info, 3090 /*pop_fpu_stack*/false, /*wide*/false); 3091 } else { 3092 ShouldNotReachHere(); 3093 } 3094 } 3095 3096 #ifdef ASSERT 3097 // emit run-time assertion 3098 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3099 assert(op->code() == lir_assert, "must be"); 3100 3101 if (op->in_opr1()->is_valid()) { 3102 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3103 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3104 } else { 3105 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3106 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3107 } 3108 3109 Label ok; 3110 if (op->condition() != lir_cond_always) { 3111 Assembler::Condition acond = Assembler::AL; 3112 switch (op->condition()) { 3113 case lir_cond_equal: acond = Assembler::EQ; break; 3114 case lir_cond_notEqual: acond = Assembler::NE; break; 3115 case lir_cond_less: acond = Assembler::LT; break; 3116 case lir_cond_lessEqual: acond = Assembler::LE; break; 3117 case lir_cond_greaterEqual: acond = Assembler::GE; break; 3118 case lir_cond_greater: acond = Assembler::GT; break; 3119 case lir_cond_belowEqual: acond = Assembler::LS; break; 3120 case lir_cond_aboveEqual: acond = Assembler::HS; break; 3121 default: ShouldNotReachHere(); 3122 } 3123 __ br(acond, ok); 3124 } 3125 if (op->halt()) { 3126 const char* str = __ code_string(op->msg()); 3127 __ stop(str); 3128 } else { 3129 breakpoint(); 3130 } 3131 __ bind(ok); 3132 } 3133 #endif 3134 3135 #ifndef PRODUCT 3136 #define COMMENT(x) do { __ block_comment(x); } while (0) 3137 #else 3138 #define COMMENT(x) 3139 #endif 3140 3141 void LIR_Assembler::membar() { 3142 COMMENT("membar"); 3143 __ membar(MacroAssembler::AnyAny); 3144 } 3145 3146 void LIR_Assembler::membar_acquire() { 3147 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 3148 } 3149 3150 void LIR_Assembler::membar_release() { 3151 __ membar(Assembler::LoadStore|Assembler::StoreStore); 3152 } 3153 3154 void LIR_Assembler::membar_loadload() { 3155 __ membar(Assembler::LoadLoad); 3156 } 3157 3158 void LIR_Assembler::membar_storestore() { 3159 __ membar(MacroAssembler::StoreStore); 3160 } 3161 3162 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 3163 3164 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 3165 3166 void LIR_Assembler::on_spin_wait() { 3167 __ spin_wait(); 3168 } 3169 3170 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3171 __ mov(result_reg->as_register(), rthread); 3172 } 3173 3174 void LIR_Assembler::check_orig_pc() { 3175 __ ldr(rscratch2, frame_map()->address_for_orig_pc_addr()); 3176 __ cmp(rscratch2, (u1)NULL_WORD); 3177 } 3178 3179 void LIR_Assembler::peephole(LIR_List *lir) { 3180 #if 0 3181 if (tableswitch_count >= max_tableswitches) 3182 return; 3183 3184 /* 3185 This finite-state automaton recognizes sequences of compare-and- 3186 branch instructions. We will turn them into a tableswitch. You 3187 could argue that C1 really shouldn't be doing this sort of 3188 optimization, but without it the code is really horrible. 3189 */ 3190 3191 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3192 int first_key, last_key = -2147483648; 3193 int next_key = 0; 3194 int start_insn = -1; 3195 int last_insn = -1; 3196 Register reg = noreg; 3197 LIR_Opr reg_opr; 3198 state = start_s; 3199 3200 LIR_OpList* inst = lir->instructions_list(); 3201 for (int i = 0; i < inst->length(); i++) { 3202 LIR_Op* op = inst->at(i); 3203 switch (state) { 3204 case start_s: 3205 first_key = -1; 3206 start_insn = i; 3207 switch (op->code()) { 3208 case lir_cmp: 3209 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3210 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3211 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3212 && opr2->is_constant() 3213 && opr2->type() == T_INT) { 3214 reg_opr = opr1; 3215 reg = opr1->as_register(); 3216 first_key = opr2->as_constant_ptr()->as_jint(); 3217 next_key = first_key + 1; 3218 state = cmp_s; 3219 goto next_state; 3220 } 3221 break; 3222 } 3223 break; 3224 case cmp_s: 3225 switch (op->code()) { 3226 case lir_branch: 3227 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3228 state = beq_s; 3229 last_insn = i; 3230 goto next_state; 3231 } 3232 } 3233 state = start_s; 3234 break; 3235 case beq_s: 3236 switch (op->code()) { 3237 case lir_cmp: { 3238 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3239 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3240 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3241 && opr1->as_register() == reg 3242 && opr2->is_constant() 3243 && opr2->type() == T_INT 3244 && opr2->as_constant_ptr()->as_jint() == next_key) { 3245 last_key = next_key; 3246 next_key++; 3247 state = cmp_s; 3248 goto next_state; 3249 } 3250 } 3251 } 3252 last_key = next_key; 3253 state = start_s; 3254 break; 3255 default: 3256 assert(false, "impossible state"); 3257 } 3258 if (state == start_s) { 3259 if (first_key < last_key - 5L && reg != noreg) { 3260 { 3261 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3262 // reg->encoding(), 3263 // start_insn, first_key, last_key); 3264 // for (int i = 0; i < inst->length(); i++) { 3265 // inst->at(i)->print(); 3266 // tty->print("\n"); 3267 // } 3268 // tty->print("\n"); 3269 } 3270 3271 struct tableswitch *sw = &switches[tableswitch_count]; 3272 sw->_insn_index = start_insn, sw->_first_key = first_key, 3273 sw->_last_key = last_key, sw->_reg = reg; 3274 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3275 { 3276 // Insert the new table of branches 3277 int offset = last_insn; 3278 for (int n = first_key; n < last_key; n++) { 3279 inst->insert_before 3280 (last_insn + 1, 3281 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3282 inst->at(offset)->as_OpBranch()->label())); 3283 offset -= 2, i++; 3284 } 3285 } 3286 // Delete all the old compare-and-branch instructions 3287 for (int n = first_key; n < last_key; n++) { 3288 inst->remove_at(start_insn); 3289 inst->remove_at(start_insn); 3290 } 3291 // Insert the tableswitch instruction 3292 inst->insert_before(start_insn, 3293 new LIR_Op2(lir_cmp, lir_cond_always, 3294 LIR_OprFact::intConst(tableswitch_count), 3295 reg_opr)); 3296 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3297 tableswitch_count++; 3298 } 3299 reg = noreg; 3300 last_key = -2147483648; 3301 } 3302 next_state: 3303 ; 3304 } 3305 #endif 3306 } 3307 3308 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3309 Address addr = as_Address(src->as_address_ptr()); 3310 BasicType type = src->type(); 3311 bool is_oop = is_reference_type(type); 3312 3313 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3314 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3315 3316 switch(type) { 3317 case T_INT: 3318 xchg = &MacroAssembler::atomic_xchgalw; 3319 add = &MacroAssembler::atomic_addalw; 3320 break; 3321 case T_LONG: 3322 xchg = &MacroAssembler::atomic_xchgal; 3323 add = &MacroAssembler::atomic_addal; 3324 break; 3325 case T_OBJECT: 3326 case T_ARRAY: 3327 if (UseCompressedOops) { 3328 xchg = &MacroAssembler::atomic_xchgalw; 3329 add = &MacroAssembler::atomic_addalw; 3330 } else { 3331 xchg = &MacroAssembler::atomic_xchgal; 3332 add = &MacroAssembler::atomic_addal; 3333 } 3334 break; 3335 default: 3336 ShouldNotReachHere(); 3337 xchg = &MacroAssembler::atomic_xchgal; 3338 add = &MacroAssembler::atomic_addal; // unreachable 3339 } 3340 3341 switch (code) { 3342 case lir_xadd: 3343 { 3344 RegisterOrConstant inc; 3345 Register tmp = as_reg(tmp_op); 3346 Register dst = as_reg(dest); 3347 if (data->is_constant()) { 3348 inc = RegisterOrConstant(as_long(data)); 3349 assert_different_registers(dst, addr.base(), tmp, 3350 rscratch1, rscratch2); 3351 } else { 3352 inc = RegisterOrConstant(as_reg(data)); 3353 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3354 rscratch1, rscratch2); 3355 } 3356 __ lea(tmp, addr); 3357 (_masm->*add)(dst, inc, tmp); 3358 break; 3359 } 3360 case lir_xchg: 3361 { 3362 Register tmp = tmp_op->as_register(); 3363 Register obj = as_reg(data); 3364 Register dst = as_reg(dest); 3365 if (is_oop && UseCompressedOops) { 3366 __ encode_heap_oop(rscratch2, obj); 3367 obj = rscratch2; 3368 } 3369 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3370 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3371 __ lea(tmp, addr); 3372 (_masm->*xchg)(dst, obj, tmp); 3373 if (is_oop && UseCompressedOops) { 3374 __ decode_heap_oop(dst); 3375 } 3376 } 3377 break; 3378 default: 3379 ShouldNotReachHere(); 3380 } 3381 __ membar(__ AnyAny); 3382 } 3383 3384 #undef __