1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/assembler.hpp" 29 #include "c1/c1_CodeStubs.hpp" 30 #include "c1/c1_Compilation.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_MacroAssembler.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArrayKlass.hpp" 36 #include "ci/ciInlineKlass.hpp" 37 #include "ci/ciInstance.hpp" 38 #include "code/compiledIC.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/gc_globals.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/objArrayKlass.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 #include "vmreg_aarch64.inline.hpp" 49 50 51 #ifndef PRODUCT 52 #define COMMENT(x) do { __ block_comment(x); } while (0) 53 #else 54 #define COMMENT(x) 55 #endif 56 57 NEEDS_CLEANUP // remove this definitions ? 58 const Register SYNC_header = r0; // synchronization header 59 const Register SHIFT_count = r0; // where count for shift operations must be 60 61 #define __ _masm-> 62 63 64 static void select_different_registers(Register preserve, 65 Register extra, 66 Register &tmp1, 67 Register &tmp2) { 68 if (tmp1 == preserve) { 69 assert_different_registers(tmp1, tmp2, extra); 70 tmp1 = extra; 71 } else if (tmp2 == preserve) { 72 assert_different_registers(tmp1, tmp2, extra); 73 tmp2 = extra; 74 } 75 assert_different_registers(preserve, tmp1, tmp2); 76 } 77 78 79 80 static void select_different_registers(Register preserve, 81 Register extra, 82 Register &tmp1, 83 Register &tmp2, 84 Register &tmp3) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, tmp3, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, tmp3, extra); 90 tmp2 = extra; 91 } else if (tmp3 == preserve) { 92 assert_different_registers(tmp1, tmp2, tmp3, extra); 93 tmp3 = extra; 94 } 95 assert_different_registers(preserve, tmp1, tmp2, tmp3); 96 } 97 98 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 100 101 102 LIR_Opr LIR_Assembler::receiverOpr() { 103 return FrameMap::receiver_opr; 104 } 105 106 LIR_Opr LIR_Assembler::osrBufferPointer() { 107 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 108 } 109 110 //--------------fpu register translations----------------------- 111 112 113 address LIR_Assembler::float_constant(float f) { 114 address const_addr = __ float_constant(f); 115 if (const_addr == nullptr) { 116 bailout("const section overflow"); 117 return __ code()->consts()->start(); 118 } else { 119 return const_addr; 120 } 121 } 122 123 124 address LIR_Assembler::double_constant(double d) { 125 address const_addr = __ double_constant(d); 126 if (const_addr == nullptr) { 127 bailout("const section overflow"); 128 return __ code()->consts()->start(); 129 } else { 130 return const_addr; 131 } 132 } 133 134 address LIR_Assembler::int_constant(jlong n) { 135 address const_addr = __ long_constant(n); 136 if (const_addr == nullptr) { 137 bailout("const section overflow"); 138 return __ code()->consts()->start(); 139 } else { 140 return const_addr; 141 } 142 } 143 144 void LIR_Assembler::breakpoint() { Unimplemented(); } 145 146 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 147 148 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 149 150 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 151 //------------------------------------------- 152 153 static Register as_reg(LIR_Opr op) { 154 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 155 } 156 157 static jlong as_long(LIR_Opr data) { 158 jlong result; 159 switch (data->type()) { 160 case T_INT: 161 result = (data->as_jint()); 162 break; 163 case T_LONG: 164 result = (data->as_jlong()); 165 break; 166 default: 167 ShouldNotReachHere(); 168 result = 0; // unreachable 169 } 170 return result; 171 } 172 173 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 174 Register base = addr->base()->as_pointer_register(); 175 LIR_Opr opr = addr->index(); 176 if (opr->is_cpu_register()) { 177 Register index; 178 if (opr->is_single_cpu()) 179 index = opr->as_register(); 180 else 181 index = opr->as_register_lo(); 182 assert(addr->disp() == 0, "must be"); 183 switch(opr->type()) { 184 case T_INT: 185 return Address(base, index, Address::sxtw(addr->scale())); 186 case T_LONG: 187 return Address(base, index, Address::lsl(addr->scale())); 188 default: 189 ShouldNotReachHere(); 190 } 191 } else { 192 assert(addr->scale() == 0, 193 "expected for immediate operand, was: %d", addr->scale()); 194 ptrdiff_t offset = ptrdiff_t(addr->disp()); 195 // NOTE: Does not handle any 16 byte vector access. 196 const uint type_size = type2aelembytes(addr->type(), true); 197 return __ legitimize_address(Address(base, offset), type_size, tmp); 198 } 199 return Address(); 200 } 201 202 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 203 ShouldNotReachHere(); 204 return Address(); 205 } 206 207 Address LIR_Assembler::as_Address(LIR_Address* addr) { 208 return as_Address(addr, rscratch1); 209 } 210 211 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 212 return as_Address(addr, rscratch1); // Ouch 213 // FIXME: This needs to be much more clever. See x86. 214 } 215 216 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 217 // not encodable as a base + (immediate) offset, generate an explicit address 218 // calculation to hold the address in a temporary register. 219 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 220 precond(size == 4 || size == 8); 221 Address addr = frame_map()->address_for_slot(index, adjust); 222 precond(addr.getMode() == Address::base_plus_offset); 223 precond(addr.base() == sp); 224 precond(addr.offset() > 0); 225 uint mask = size - 1; 226 assert((addr.offset() & mask) == 0, "scaled offsets only"); 227 return __ legitimize_address(addr, size, tmp); 228 } 229 230 void LIR_Assembler::osr_entry() { 231 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 232 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 233 ValueStack* entry_state = osr_entry->state(); 234 int number_of_locks = entry_state->locks_size(); 235 236 // we jump here if osr happens with the interpreter 237 // state set up to continue at the beginning of the 238 // loop that triggered osr - in particular, we have 239 // the following registers setup: 240 // 241 // r2: osr buffer 242 // 243 244 // build frame 245 ciMethod* m = compilation()->method(); 246 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 247 248 // OSR buffer is 249 // 250 // locals[nlocals-1..0] 251 // monitors[0..number_of_locks] 252 // 253 // locals is a direct copy of the interpreter frame so in the osr buffer 254 // so first slot in the local array is the last local from the interpreter 255 // and last slot is local[0] (receiver) from the interpreter 256 // 257 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 258 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 259 // in the interpreter frame (the method lock if a sync method) 260 261 // Initialize monitors in the compiled activation. 262 // r2: pointer to osr buffer 263 // 264 // All other registers are dead at this point and the locals will be 265 // copied into place by code emitted in the IR. 266 267 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 268 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 269 int monitor_offset = BytesPerWord * method()->max_locals() + 270 (2 * BytesPerWord) * (number_of_locks - 1); 271 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 272 // the OSR buffer using 2 word entries: first the lock and then 273 // the oop. 274 for (int i = 0; i < number_of_locks; i++) { 275 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 276 #ifdef ASSERT 277 // verify the interpreter's monitor has a non-null object 278 { 279 Label L; 280 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 281 __ cbnz(rscratch1, L); 282 __ stop("locked object is null"); 283 __ bind(L); 284 } 285 #endif 286 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 287 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 288 __ str(r19, frame_map()->address_for_monitor_lock(i)); 289 __ str(r20, frame_map()->address_for_monitor_object(i)); 290 } 291 } 292 } 293 294 295 // inline cache check; done before the frame is built. 296 int LIR_Assembler::check_icache() { 297 return __ ic_check(CodeEntryAlignment); 298 } 299 300 void LIR_Assembler::clinit_barrier(ciMethod* method) { 301 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 302 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 303 304 Label L_skip_barrier; 305 306 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 307 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 308 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 309 __ bind(L_skip_barrier); 310 } 311 312 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 313 if (o == nullptr) { 314 __ mov(reg, zr); 315 } else { 316 __ movoop(reg, o); 317 } 318 } 319 320 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 321 address target = nullptr; 322 relocInfo::relocType reloc_type = relocInfo::none; 323 324 switch (patching_id(info)) { 325 case PatchingStub::access_field_id: 326 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 327 reloc_type = relocInfo::section_word_type; 328 break; 329 case PatchingStub::load_klass_id: 330 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 331 reloc_type = relocInfo::metadata_type; 332 break; 333 case PatchingStub::load_mirror_id: 334 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 335 reloc_type = relocInfo::oop_type; 336 break; 337 case PatchingStub::load_appendix_id: 338 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 339 reloc_type = relocInfo::oop_type; 340 break; 341 default: ShouldNotReachHere(); 342 } 343 344 __ far_call(RuntimeAddress(target)); 345 add_call_info_here(info); 346 } 347 348 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 349 deoptimize_trap(info); 350 } 351 352 353 // This specifies the rsp decrement needed to build the frame 354 int LIR_Assembler::initial_frame_size_in_bytes() const { 355 // if rounding, must let FrameMap know! 356 357 return in_bytes(frame_map()->framesize_in_bytes()); 358 } 359 360 361 int LIR_Assembler::emit_exception_handler() { 362 // generate code for exception handler 363 address handler_base = __ start_a_stub(exception_handler_size()); 364 if (handler_base == nullptr) { 365 // not enough space left for the handler 366 bailout("exception handler overflow"); 367 return -1; 368 } 369 370 int offset = code_offset(); 371 372 // the exception oop and pc are in r0, and r3 373 // no other registers need to be preserved, so invalidate them 374 __ invalidate_registers(false, true, true, false, true, true); 375 376 // check that there is really an exception 377 __ verify_not_null_oop(r0); 378 379 // search an exception handler (r0: exception oop, r3: throwing pc) 380 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 381 __ should_not_reach_here(); 382 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 383 __ end_a_stub(); 384 385 return offset; 386 } 387 388 389 // Emit the code to remove the frame from the stack in the exception 390 // unwind path. 391 int LIR_Assembler::emit_unwind_handler() { 392 #ifndef PRODUCT 393 if (CommentedAssembly) { 394 _masm->block_comment("Unwind handler"); 395 } 396 #endif 397 398 int offset = code_offset(); 399 400 // Fetch the exception from TLS and clear out exception related thread state 401 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 403 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 404 405 __ bind(_unwind_handler_entry); 406 __ verify_not_null_oop(r0); 407 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 408 __ mov(r19, r0); // Preserve the exception 409 } 410 411 // Perform needed unlocking 412 MonitorExitStub* stub = nullptr; 413 if (method()->is_synchronized()) { 414 monitor_address(0, FrameMap::r0_opr); 415 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 416 if (LockingMode == LM_MONITOR) { 417 __ b(*stub->entry()); 418 } else { 419 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 420 } 421 __ bind(*stub->continuation()); 422 } 423 424 if (compilation()->env()->dtrace_method_probes()) { 425 __ mov(c_rarg0, rthread); 426 __ mov_metadata(c_rarg1, method()->constant_encoding()); 427 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 428 } 429 430 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 431 __ mov(r0, r19); // Restore the exception 432 } 433 434 // remove the activation and dispatch to the unwind handler 435 __ block_comment("remove_frame and dispatch to the unwind handler"); 436 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 437 __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 438 439 // Emit the slow path assembly 440 if (stub != nullptr) { 441 stub->emit_code(this); 442 } 443 444 return offset; 445 } 446 447 448 int LIR_Assembler::emit_deopt_handler() { 449 // generate code for exception handler 450 address handler_base = __ start_a_stub(deopt_handler_size()); 451 if (handler_base == nullptr) { 452 // not enough space left for the handler 453 bailout("deopt handler overflow"); 454 return -1; 455 } 456 457 int offset = code_offset(); 458 459 __ adr(lr, pc()); 460 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 461 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 462 __ end_a_stub(); 463 464 return offset; 465 } 466 467 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 468 _masm->code_section()->relocate(adr, relocInfo::poll_type); 469 int pc_offset = code_offset(); 470 flush_debug_info(pc_offset); 471 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 472 if (info->exception_handlers() != nullptr) { 473 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 474 } 475 } 476 477 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 478 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 479 480 if (InlineTypeReturnedAsFields) { 481 // Check if we are returning an non-null inline type and load its fields into registers 482 ciType* return_type = compilation()->method()->return_type(); 483 if (return_type->is_inlinetype()) { 484 ciInlineKlass* vk = return_type->as_inline_klass(); 485 if (vk->can_be_returned_as_fields()) { 486 address unpack_handler = vk->unpack_handler(); 487 assert(unpack_handler != nullptr, "must be"); 488 __ far_call(RuntimeAddress(unpack_handler)); 489 } 490 } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) { 491 Label skip; 492 __ test_oop_is_not_inline_type(r0, rscratch2, skip); 493 494 // Load fields from a buffered value with an inline class specific handler 495 __ load_klass(rscratch1 /*dst*/, r0 /*src*/); 496 __ ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 497 __ ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 498 // Unpack handler can be null if inline type is not scalarizable in returns 499 __ cbz(rscratch1, skip); 500 __ blr(rscratch1); 501 502 __ bind(skip); 503 } 504 // At this point, r0 points to the value object (for interpreter or C1 caller). 505 // The fields of the object are copied into registers (for C2 caller). 506 } 507 508 // Pop the stack before the safepoint code 509 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 510 511 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 512 __ reserved_stack_check(); 513 } 514 515 code_stub->set_safepoint_offset(__ offset()); 516 __ relocate(relocInfo::poll_return_type); 517 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 518 __ ret(lr); 519 } 520 521 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) { 522 return (__ store_inline_type_fields_to_buf(vk, false)); 523 } 524 525 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 526 guarantee(info != nullptr, "Shouldn't be null"); 527 __ get_polling_page(rscratch1, relocInfo::poll_type); 528 add_debug_info_for_branch(info); // This isn't just debug info: 529 // it's the oop map 530 __ read_polling_page(rscratch1, relocInfo::poll_type); 531 return __ offset(); 532 } 533 534 535 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 536 if (from_reg == r31_sp) 537 from_reg = sp; 538 if (to_reg == r31_sp) 539 to_reg = sp; 540 __ mov(to_reg, from_reg); 541 } 542 543 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 544 545 546 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 547 assert(src->is_constant(), "should not call otherwise"); 548 assert(dest->is_register(), "should not call otherwise"); 549 LIR_Const* c = src->as_constant_ptr(); 550 551 switch (c->type()) { 552 case T_INT: { 553 assert(patch_code == lir_patch_none, "no patching handled here"); 554 __ movw(dest->as_register(), c->as_jint()); 555 break; 556 } 557 558 case T_ADDRESS: { 559 assert(patch_code == lir_patch_none, "no patching handled here"); 560 __ mov(dest->as_register(), c->as_jint()); 561 break; 562 } 563 564 case T_LONG: { 565 assert(patch_code == lir_patch_none, "no patching handled here"); 566 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 567 break; 568 } 569 570 case T_OBJECT: { 571 if (patch_code != lir_patch_none) { 572 jobject2reg_with_patching(dest->as_register(), info); 573 } else { 574 jobject2reg(c->as_jobject(), dest->as_register()); 575 } 576 break; 577 } 578 579 case T_METADATA: { 580 if (patch_code != lir_patch_none) { 581 klass2reg_with_patching(dest->as_register(), info); 582 } else { 583 __ mov_metadata(dest->as_register(), c->as_metadata()); 584 } 585 break; 586 } 587 588 case T_FLOAT: { 589 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 590 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 591 } else { 592 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 593 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 594 } 595 break; 596 } 597 598 case T_DOUBLE: { 599 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 600 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 601 } else { 602 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 603 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 604 } 605 break; 606 } 607 608 default: 609 ShouldNotReachHere(); 610 } 611 } 612 613 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 614 LIR_Const* c = src->as_constant_ptr(); 615 switch (c->type()) { 616 case T_OBJECT: 617 { 618 if (! c->as_jobject()) 619 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 620 else { 621 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 622 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 623 } 624 } 625 break; 626 case T_ADDRESS: 627 { 628 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 629 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 630 } 631 case T_INT: 632 case T_FLOAT: 633 { 634 Register reg = zr; 635 if (c->as_jint_bits() == 0) 636 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 637 else { 638 __ movw(rscratch1, c->as_jint_bits()); 639 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 640 } 641 } 642 break; 643 case T_LONG: 644 case T_DOUBLE: 645 { 646 Register reg = zr; 647 if (c->as_jlong_bits() == 0) 648 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 649 lo_word_offset_in_bytes)); 650 else { 651 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 652 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 653 lo_word_offset_in_bytes)); 654 } 655 } 656 break; 657 default: 658 ShouldNotReachHere(); 659 } 660 } 661 662 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 663 assert(src->is_constant(), "should not call otherwise"); 664 LIR_Const* c = src->as_constant_ptr(); 665 LIR_Address* to_addr = dest->as_address_ptr(); 666 667 void (Assembler::* insn)(Register Rt, const Address &adr); 668 669 switch (type) { 670 case T_ADDRESS: 671 assert(c->as_jint() == 0, "should be"); 672 insn = &Assembler::str; 673 break; 674 case T_LONG: 675 assert(c->as_jlong() == 0, "should be"); 676 insn = &Assembler::str; 677 break; 678 case T_INT: 679 assert(c->as_jint() == 0, "should be"); 680 insn = &Assembler::strw; 681 break; 682 case T_OBJECT: 683 case T_ARRAY: 684 // Non-null case is not handled on aarch64 but handled on x86 685 // FIXME: do we need to add it here? 686 assert(c->as_jobject() == nullptr, "should be"); 687 if (UseCompressedOops && !wide) { 688 insn = &Assembler::strw; 689 } else { 690 insn = &Assembler::str; 691 } 692 break; 693 case T_CHAR: 694 case T_SHORT: 695 assert(c->as_jint() == 0, "should be"); 696 insn = &Assembler::strh; 697 break; 698 case T_BOOLEAN: 699 case T_BYTE: 700 assert(c->as_jint() == 0, "should be"); 701 insn = &Assembler::strb; 702 break; 703 default: 704 ShouldNotReachHere(); 705 insn = &Assembler::str; // unreachable 706 } 707 708 if (info) add_debug_info_for_null_check_here(info); 709 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 710 } 711 712 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 713 assert(src->is_register(), "should not call otherwise"); 714 assert(dest->is_register(), "should not call otherwise"); 715 716 // move between cpu-registers 717 if (dest->is_single_cpu()) { 718 if (src->type() == T_LONG) { 719 // Can do LONG -> OBJECT 720 move_regs(src->as_register_lo(), dest->as_register()); 721 return; 722 } 723 assert(src->is_single_cpu(), "must match"); 724 if (src->type() == T_OBJECT) { 725 __ verify_oop(src->as_register()); 726 } 727 move_regs(src->as_register(), dest->as_register()); 728 729 } else if (dest->is_double_cpu()) { 730 if (is_reference_type(src->type())) { 731 // Surprising to me but we can see move of a long to t_object 732 __ verify_oop(src->as_register()); 733 move_regs(src->as_register(), dest->as_register_lo()); 734 return; 735 } 736 assert(src->is_double_cpu(), "must match"); 737 Register f_lo = src->as_register_lo(); 738 Register f_hi = src->as_register_hi(); 739 Register t_lo = dest->as_register_lo(); 740 Register t_hi = dest->as_register_hi(); 741 assert(f_hi == f_lo, "must be same"); 742 assert(t_hi == t_lo, "must be same"); 743 move_regs(f_lo, t_lo); 744 745 } else if (dest->is_single_fpu()) { 746 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 747 748 } else if (dest->is_double_fpu()) { 749 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 750 751 } else { 752 ShouldNotReachHere(); 753 } 754 } 755 756 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 757 precond(src->is_register() && dest->is_stack()); 758 759 uint const c_sz32 = sizeof(uint32_t); 760 uint const c_sz64 = sizeof(uint64_t); 761 762 if (src->is_single_cpu()) { 763 int index = dest->single_stack_ix(); 764 if (is_reference_type(type)) { 765 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 766 __ verify_oop(src->as_register()); 767 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 768 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 769 } else { 770 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 771 } 772 773 } else if (src->is_double_cpu()) { 774 int index = dest->double_stack_ix(); 775 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 776 __ str(src->as_register_lo(), dest_addr_LO); 777 778 } else if (src->is_single_fpu()) { 779 int index = dest->single_stack_ix(); 780 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 781 782 } else if (src->is_double_fpu()) { 783 int index = dest->double_stack_ix(); 784 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 785 786 } else { 787 ShouldNotReachHere(); 788 } 789 } 790 791 792 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 793 LIR_Address* to_addr = dest->as_address_ptr(); 794 PatchingStub* patch = nullptr; 795 Register compressed_src = rscratch1; 796 797 if (patch_code != lir_patch_none) { 798 deoptimize_trap(info); 799 return; 800 } 801 802 if (is_reference_type(type)) { 803 __ verify_oop(src->as_register()); 804 805 if (UseCompressedOops && !wide) { 806 __ encode_heap_oop(compressed_src, src->as_register()); 807 } else { 808 compressed_src = src->as_register(); 809 } 810 } 811 812 int null_check_here = code_offset(); 813 switch (type) { 814 case T_FLOAT: { 815 __ strs(src->as_float_reg(), as_Address(to_addr)); 816 break; 817 } 818 819 case T_DOUBLE: { 820 __ strd(src->as_double_reg(), as_Address(to_addr)); 821 break; 822 } 823 824 case T_ARRAY: // fall through 825 case T_OBJECT: // fall through 826 if (UseCompressedOops && !wide) { 827 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 828 } else { 829 __ str(compressed_src, as_Address(to_addr)); 830 } 831 break; 832 case T_METADATA: 833 // We get here to store a method pointer to the stack to pass to 834 // a dtrace runtime call. This can't work on 64 bit with 835 // compressed klass ptrs: T_METADATA can be a compressed klass 836 // ptr or a 64 bit method pointer. 837 ShouldNotReachHere(); 838 __ str(src->as_register(), as_Address(to_addr)); 839 break; 840 case T_ADDRESS: 841 __ str(src->as_register(), as_Address(to_addr)); 842 break; 843 case T_INT: 844 __ strw(src->as_register(), as_Address(to_addr)); 845 break; 846 847 case T_LONG: { 848 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 849 break; 850 } 851 852 case T_BYTE: // fall through 853 case T_BOOLEAN: { 854 __ strb(src->as_register(), as_Address(to_addr)); 855 break; 856 } 857 858 case T_CHAR: // fall through 859 case T_SHORT: 860 __ strh(src->as_register(), as_Address(to_addr)); 861 break; 862 863 default: 864 ShouldNotReachHere(); 865 } 866 if (info != nullptr) { 867 add_debug_info_for_null_check(null_check_here, info); 868 } 869 } 870 871 872 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 873 precond(src->is_stack() && dest->is_register()); 874 875 uint const c_sz32 = sizeof(uint32_t); 876 uint const c_sz64 = sizeof(uint64_t); 877 878 if (dest->is_single_cpu()) { 879 int index = src->single_stack_ix(); 880 if (is_reference_type(type)) { 881 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 882 __ verify_oop(dest->as_register()); 883 } else if (type == T_METADATA || type == T_ADDRESS) { 884 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 885 } else { 886 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 887 } 888 889 } else if (dest->is_double_cpu()) { 890 int index = src->double_stack_ix(); 891 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 892 __ ldr(dest->as_register_lo(), src_addr_LO); 893 894 } else if (dest->is_single_fpu()) { 895 int index = src->single_stack_ix(); 896 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 897 898 } else if (dest->is_double_fpu()) { 899 int index = src->double_stack_ix(); 900 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 901 902 } else { 903 ShouldNotReachHere(); 904 } 905 } 906 907 908 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 909 address target = nullptr; 910 relocInfo::relocType reloc_type = relocInfo::none; 911 912 switch (patching_id(info)) { 913 case PatchingStub::access_field_id: 914 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 915 reloc_type = relocInfo::section_word_type; 916 break; 917 case PatchingStub::load_klass_id: 918 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 919 reloc_type = relocInfo::metadata_type; 920 break; 921 case PatchingStub::load_mirror_id: 922 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 923 reloc_type = relocInfo::oop_type; 924 break; 925 case PatchingStub::load_appendix_id: 926 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 927 reloc_type = relocInfo::oop_type; 928 break; 929 default: ShouldNotReachHere(); 930 } 931 932 __ far_call(RuntimeAddress(target)); 933 add_call_info_here(info); 934 } 935 936 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 937 938 LIR_Opr temp; 939 if (type == T_LONG || type == T_DOUBLE) 940 temp = FrameMap::rscratch1_long_opr; 941 else 942 temp = FrameMap::rscratch1_opr; 943 944 stack2reg(src, temp, src->type()); 945 reg2stack(temp, dest, dest->type(), false); 946 } 947 948 949 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 950 LIR_Address* addr = src->as_address_ptr(); 951 LIR_Address* from_addr = src->as_address_ptr(); 952 953 if (addr->base()->type() == T_OBJECT) { 954 __ verify_oop(addr->base()->as_pointer_register()); 955 } 956 957 if (patch_code != lir_patch_none) { 958 deoptimize_trap(info); 959 return; 960 } 961 962 if (info != nullptr) { 963 add_debug_info_for_null_check_here(info); 964 } 965 int null_check_here = code_offset(); 966 switch (type) { 967 case T_FLOAT: { 968 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 969 break; 970 } 971 972 case T_DOUBLE: { 973 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 974 break; 975 } 976 977 case T_ARRAY: // fall through 978 case T_OBJECT: // fall through 979 if (UseCompressedOops && !wide) { 980 __ ldrw(dest->as_register(), as_Address(from_addr)); 981 } else { 982 __ ldr(dest->as_register(), as_Address(from_addr)); 983 } 984 break; 985 case T_METADATA: 986 // We get here to store a method pointer to the stack to pass to 987 // a dtrace runtime call. This can't work on 64 bit with 988 // compressed klass ptrs: T_METADATA can be a compressed klass 989 // ptr or a 64 bit method pointer. 990 ShouldNotReachHere(); 991 __ ldr(dest->as_register(), as_Address(from_addr)); 992 break; 993 case T_ADDRESS: 994 __ ldr(dest->as_register(), as_Address(from_addr)); 995 break; 996 case T_INT: 997 __ ldrw(dest->as_register(), as_Address(from_addr)); 998 break; 999 1000 case T_LONG: { 1001 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 1002 break; 1003 } 1004 1005 case T_BYTE: 1006 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1007 break; 1008 case T_BOOLEAN: { 1009 __ ldrb(dest->as_register(), as_Address(from_addr)); 1010 break; 1011 } 1012 1013 case T_CHAR: 1014 __ ldrh(dest->as_register(), as_Address(from_addr)); 1015 break; 1016 case T_SHORT: 1017 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1018 break; 1019 1020 default: 1021 ShouldNotReachHere(); 1022 } 1023 1024 if (is_reference_type(type)) { 1025 if (UseCompressedOops && !wide) { 1026 __ decode_heap_oop(dest->as_register()); 1027 } 1028 1029 __ verify_oop(dest->as_register()); 1030 } 1031 } 1032 1033 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) { 1034 assert(dst->is_cpu_register(), "must be"); 1035 assert(dst->type() == src->type(), "must be"); 1036 1037 if (src->is_cpu_register()) { 1038 reg2reg(src, dst); 1039 } else if (src->is_stack()) { 1040 stack2reg(src, dst, dst->type()); 1041 } else if (src->is_constant()) { 1042 const2reg(src, dst, lir_patch_none, nullptr); 1043 } else { 1044 ShouldNotReachHere(); 1045 } 1046 } 1047 1048 int LIR_Assembler::array_element_size(BasicType type) const { 1049 int elem_size = type2aelembytes(type); 1050 return exact_log2(elem_size); 1051 } 1052 1053 1054 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1055 switch (op->code()) { 1056 case lir_idiv: 1057 case lir_irem: 1058 arithmetic_idiv(op->code(), 1059 op->in_opr1(), 1060 op->in_opr2(), 1061 op->in_opr3(), 1062 op->result_opr(), 1063 op->info()); 1064 break; 1065 case lir_fmad: 1066 __ fmaddd(op->result_opr()->as_double_reg(), 1067 op->in_opr1()->as_double_reg(), 1068 op->in_opr2()->as_double_reg(), 1069 op->in_opr3()->as_double_reg()); 1070 break; 1071 case lir_fmaf: 1072 __ fmadds(op->result_opr()->as_float_reg(), 1073 op->in_opr1()->as_float_reg(), 1074 op->in_opr2()->as_float_reg(), 1075 op->in_opr3()->as_float_reg()); 1076 break; 1077 default: ShouldNotReachHere(); break; 1078 } 1079 } 1080 1081 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1082 #ifdef ASSERT 1083 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1084 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1085 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1086 #endif 1087 1088 if (op->cond() == lir_cond_always) { 1089 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1090 __ b(*(op->label())); 1091 } else { 1092 Assembler::Condition acond; 1093 if (op->code() == lir_cond_float_branch) { 1094 bool is_unordered = (op->ublock() == op->block()); 1095 // Assembler::EQ does not permit unordered branches, so we add 1096 // another branch here. Likewise, Assembler::NE does not permit 1097 // ordered branches. 1098 if ((is_unordered && op->cond() == lir_cond_equal) 1099 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1100 __ br(Assembler::VS, *(op->ublock()->label())); 1101 switch(op->cond()) { 1102 case lir_cond_equal: acond = Assembler::EQ; break; 1103 case lir_cond_notEqual: acond = Assembler::NE; break; 1104 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1105 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1106 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1107 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1108 default: ShouldNotReachHere(); 1109 acond = Assembler::EQ; // unreachable 1110 } 1111 } else { 1112 switch (op->cond()) { 1113 case lir_cond_equal: acond = Assembler::EQ; break; 1114 case lir_cond_notEqual: acond = Assembler::NE; break; 1115 case lir_cond_less: acond = Assembler::LT; break; 1116 case lir_cond_lessEqual: acond = Assembler::LE; break; 1117 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1118 case lir_cond_greater: acond = Assembler::GT; break; 1119 case lir_cond_belowEqual: acond = Assembler::LS; break; 1120 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1121 default: ShouldNotReachHere(); 1122 acond = Assembler::EQ; // unreachable 1123 } 1124 } 1125 __ br(acond,*(op->label())); 1126 } 1127 } 1128 1129 1130 1131 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1132 LIR_Opr src = op->in_opr(); 1133 LIR_Opr dest = op->result_opr(); 1134 1135 switch (op->bytecode()) { 1136 case Bytecodes::_i2f: 1137 { 1138 __ scvtfws(dest->as_float_reg(), src->as_register()); 1139 break; 1140 } 1141 case Bytecodes::_i2d: 1142 { 1143 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1144 break; 1145 } 1146 case Bytecodes::_l2d: 1147 { 1148 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1149 break; 1150 } 1151 case Bytecodes::_l2f: 1152 { 1153 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1154 break; 1155 } 1156 case Bytecodes::_f2d: 1157 { 1158 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1159 break; 1160 } 1161 case Bytecodes::_d2f: 1162 { 1163 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1164 break; 1165 } 1166 case Bytecodes::_i2c: 1167 { 1168 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1169 break; 1170 } 1171 case Bytecodes::_i2l: 1172 { 1173 __ sxtw(dest->as_register_lo(), src->as_register()); 1174 break; 1175 } 1176 case Bytecodes::_i2s: 1177 { 1178 __ sxth(dest->as_register(), src->as_register()); 1179 break; 1180 } 1181 case Bytecodes::_i2b: 1182 { 1183 __ sxtb(dest->as_register(), src->as_register()); 1184 break; 1185 } 1186 case Bytecodes::_l2i: 1187 { 1188 _masm->block_comment("FIXME: This could be a no-op"); 1189 __ uxtw(dest->as_register(), src->as_register_lo()); 1190 break; 1191 } 1192 case Bytecodes::_d2l: 1193 { 1194 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1195 break; 1196 } 1197 case Bytecodes::_f2i: 1198 { 1199 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1200 break; 1201 } 1202 case Bytecodes::_f2l: 1203 { 1204 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1205 break; 1206 } 1207 case Bytecodes::_d2i: 1208 { 1209 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1210 break; 1211 } 1212 default: ShouldNotReachHere(); 1213 } 1214 } 1215 1216 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1217 if (op->init_check()) { 1218 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1219 __ ldarb(rscratch1, rscratch1); 1220 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1221 add_debug_info_for_null_check_here(op->stub()->info()); 1222 __ br(Assembler::NE, *op->stub()->entry()); 1223 } 1224 __ allocate_object(op->obj()->as_register(), 1225 op->tmp1()->as_register(), 1226 op->tmp2()->as_register(), 1227 op->header_size(), 1228 op->object_size(), 1229 op->klass()->as_register(), 1230 *op->stub()->entry()); 1231 __ bind(*op->stub()->continuation()); 1232 } 1233 1234 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1235 Register len = op->len()->as_register(); 1236 __ uxtw(len, len); 1237 1238 if (UseSlowPath || op->is_null_free() || 1239 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1240 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1241 __ b(*op->stub()->entry()); 1242 } else { 1243 Register tmp1 = op->tmp1()->as_register(); 1244 Register tmp2 = op->tmp2()->as_register(); 1245 Register tmp3 = op->tmp3()->as_register(); 1246 if (len == tmp1) { 1247 tmp1 = tmp3; 1248 } else if (len == tmp2) { 1249 tmp2 = tmp3; 1250 } else if (len == tmp3) { 1251 // everything is ok 1252 } else { 1253 __ mov(tmp3, len); 1254 } 1255 __ allocate_array(op->obj()->as_register(), 1256 len, 1257 tmp1, 1258 tmp2, 1259 arrayOopDesc::base_offset_in_bytes(op->type()), 1260 array_element_size(op->type()), 1261 op->klass()->as_register(), 1262 *op->stub()->entry(), 1263 op->zero_array()); 1264 } 1265 __ bind(*op->stub()->continuation()); 1266 } 1267 1268 void LIR_Assembler::type_profile_helper(Register mdo, 1269 ciMethodData *md, ciProfileData *data, 1270 Register recv, Label* update_done) { 1271 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1272 Label next_test; 1273 // See if the receiver is receiver[n]. 1274 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1275 __ ldr(rscratch1, Address(rscratch2)); 1276 __ cmp(recv, rscratch1); 1277 __ br(Assembler::NE, next_test); 1278 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1279 __ addptr(data_addr, DataLayout::counter_increment); 1280 __ b(*update_done); 1281 __ bind(next_test); 1282 } 1283 1284 // Didn't find receiver; find next empty slot and fill it in 1285 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1286 Label next_test; 1287 __ lea(rscratch2, 1288 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1289 Address recv_addr(rscratch2); 1290 __ ldr(rscratch1, recv_addr); 1291 __ cbnz(rscratch1, next_test); 1292 __ str(recv, recv_addr); 1293 __ mov(rscratch1, DataLayout::counter_increment); 1294 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); 1295 __ str(rscratch1, Address(rscratch2)); 1296 __ b(*update_done); 1297 __ bind(next_test); 1298 } 1299 } 1300 1301 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1302 // we always need a stub for the failure case. 1303 CodeStub* stub = op->stub(); 1304 Register obj = op->object()->as_register(); 1305 Register k_RInfo = op->tmp1()->as_register(); 1306 Register klass_RInfo = op->tmp2()->as_register(); 1307 Register dst = op->result_opr()->as_register(); 1308 ciKlass* k = op->klass(); 1309 Register Rtmp1 = noreg; 1310 1311 // check if it needs to be profiled 1312 ciMethodData* md; 1313 ciProfileData* data; 1314 1315 const bool should_profile = op->should_profile(); 1316 1317 if (should_profile) { 1318 ciMethod* method = op->profiled_method(); 1319 assert(method != nullptr, "Should have method"); 1320 int bci = op->profiled_bci(); 1321 md = method->method_data_or_null(); 1322 assert(md != nullptr, "Sanity"); 1323 data = md->bci_to_data(bci); 1324 assert(data != nullptr, "need data for type check"); 1325 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1326 } 1327 Label* success_target = success; 1328 Label* failure_target = failure; 1329 1330 if (obj == k_RInfo) { 1331 k_RInfo = dst; 1332 } else if (obj == klass_RInfo) { 1333 klass_RInfo = dst; 1334 } 1335 if (k->is_loaded() && !UseCompressedClassPointers) { 1336 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1337 } else { 1338 Rtmp1 = op->tmp3()->as_register(); 1339 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1340 } 1341 1342 assert_different_registers(obj, k_RInfo, klass_RInfo); 1343 1344 if (op->need_null_check()) { 1345 if (should_profile) { 1346 Register mdo = klass_RInfo; 1347 __ mov_metadata(mdo, md->constant_encoding()); 1348 Label not_null; 1349 __ cbnz(obj, not_null); 1350 // Object is null; update MDO and exit 1351 Address data_addr 1352 = __ form_address(rscratch2, mdo, 1353 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1354 0); 1355 __ ldrb(rscratch1, data_addr); 1356 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1357 __ strb(rscratch1, data_addr); 1358 __ b(*obj_is_null); 1359 __ bind(not_null); 1360 1361 Label update_done; 1362 Register recv = k_RInfo; 1363 __ load_klass(recv, obj); 1364 type_profile_helper(mdo, md, data, recv, &update_done); 1365 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1366 __ addptr(counter_addr, DataLayout::counter_increment); 1367 1368 __ bind(update_done); 1369 } else { 1370 __ cbz(obj, *obj_is_null); 1371 } 1372 } 1373 1374 if (!k->is_loaded()) { 1375 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1376 } else { 1377 __ mov_metadata(k_RInfo, k->constant_encoding()); 1378 } 1379 __ verify_oop(obj); 1380 1381 if (op->fast_check()) { 1382 // get object class 1383 // not a safepoint as obj null check happens earlier 1384 __ load_klass(rscratch1, obj); 1385 __ cmp( rscratch1, k_RInfo); 1386 1387 __ br(Assembler::NE, *failure_target); 1388 // successful cast, fall through to profile or jump 1389 } else { 1390 // get object class 1391 // not a safepoint as obj null check happens earlier 1392 __ load_klass(klass_RInfo, obj); 1393 if (k->is_loaded()) { 1394 // See if we get an immediate positive hit 1395 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1396 __ cmp(k_RInfo, rscratch1); 1397 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1398 __ br(Assembler::NE, *failure_target); 1399 // successful cast, fall through to profile or jump 1400 } else { 1401 // See if we get an immediate positive hit 1402 __ br(Assembler::EQ, *success_target); 1403 // check for self 1404 __ cmp(klass_RInfo, k_RInfo); 1405 __ br(Assembler::EQ, *success_target); 1406 1407 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1408 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1409 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1410 // result is a boolean 1411 __ cbzw(klass_RInfo, *failure_target); 1412 // successful cast, fall through to profile or jump 1413 } 1414 } else { 1415 // perform the fast part of the checking logic 1416 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1417 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1418 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1419 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1420 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1421 // result is a boolean 1422 __ cbz(k_RInfo, *failure_target); 1423 // successful cast, fall through to profile or jump 1424 } 1425 } 1426 __ b(*success); 1427 } 1428 1429 1430 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1431 const bool should_profile = op->should_profile(); 1432 1433 LIR_Code code = op->code(); 1434 if (code == lir_store_check) { 1435 Register value = op->object()->as_register(); 1436 Register array = op->array()->as_register(); 1437 Register k_RInfo = op->tmp1()->as_register(); 1438 Register klass_RInfo = op->tmp2()->as_register(); 1439 Register Rtmp1 = op->tmp3()->as_register(); 1440 1441 CodeStub* stub = op->stub(); 1442 1443 // check if it needs to be profiled 1444 ciMethodData* md; 1445 ciProfileData* data; 1446 1447 if (should_profile) { 1448 ciMethod* method = op->profiled_method(); 1449 assert(method != nullptr, "Should have method"); 1450 int bci = op->profiled_bci(); 1451 md = method->method_data_or_null(); 1452 assert(md != nullptr, "Sanity"); 1453 data = md->bci_to_data(bci); 1454 assert(data != nullptr, "need data for type check"); 1455 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1456 } 1457 Label done; 1458 Label* success_target = &done; 1459 Label* failure_target = stub->entry(); 1460 1461 if (should_profile) { 1462 Label not_null; 1463 Register mdo = klass_RInfo; 1464 __ mov_metadata(mdo, md->constant_encoding()); 1465 __ cbnz(value, not_null); 1466 // Object is null; update MDO and exit 1467 Address data_addr 1468 = __ form_address(rscratch2, mdo, 1469 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1470 0); 1471 __ ldrb(rscratch1, data_addr); 1472 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1473 __ strb(rscratch1, data_addr); 1474 __ b(done); 1475 __ bind(not_null); 1476 1477 Label update_done; 1478 Register recv = k_RInfo; 1479 __ load_klass(recv, value); 1480 type_profile_helper(mdo, md, data, recv, &update_done); 1481 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1482 __ addptr(counter_addr, DataLayout::counter_increment); 1483 __ bind(update_done); 1484 } else { 1485 __ cbz(value, done); 1486 } 1487 1488 add_debug_info_for_null_check_here(op->info_for_exception()); 1489 __ load_klass(k_RInfo, array); 1490 __ load_klass(klass_RInfo, value); 1491 1492 // get instance klass (it's already uncompressed) 1493 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1494 // perform the fast part of the checking logic 1495 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1496 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1497 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1498 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1499 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1500 // result is a boolean 1501 __ cbzw(k_RInfo, *failure_target); 1502 // fall through to the success case 1503 1504 __ bind(done); 1505 } else if (code == lir_checkcast) { 1506 Register obj = op->object()->as_register(); 1507 Register dst = op->result_opr()->as_register(); 1508 Label success; 1509 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1510 __ bind(success); 1511 if (dst != obj) { 1512 __ mov(dst, obj); 1513 } 1514 } else if (code == lir_instanceof) { 1515 Register obj = op->object()->as_register(); 1516 Register dst = op->result_opr()->as_register(); 1517 Label success, failure, done; 1518 emit_typecheck_helper(op, &success, &failure, &failure); 1519 __ bind(failure); 1520 __ mov(dst, zr); 1521 __ b(done); 1522 __ bind(success); 1523 __ mov(dst, 1); 1524 __ bind(done); 1525 } else { 1526 ShouldNotReachHere(); 1527 } 1528 } 1529 1530 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) { 1531 // We are loading/storing from/to an array that *may* be a flat array (the 1532 // declared type is Object[], abstract[], interface[] or VT.ref[]). 1533 // If this array is a flat array, take the slow path. 1534 __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1535 if (!op->value()->is_illegal()) { 1536 // The array is not a flat array, but it might be null-free. If we are storing 1537 // a null into a null-free array, take the slow path (which will throw NPE). 1538 Label skip; 1539 __ cbnz(op->value()->as_register(), skip); 1540 __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1541 __ bind(skip); 1542 } 1543 } 1544 1545 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) { 1546 // We are storing into an array that *may* be null-free (the declared type is 1547 // Object[], abstract[], interface[] or VT.ref[]). 1548 Label test_mark_word; 1549 Register tmp = op->tmp()->as_register(); 1550 __ ldr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes())); 1551 __ tst(tmp, markWord::unlocked_value); 1552 __ br(Assembler::NE, test_mark_word); 1553 __ load_prototype_header(tmp, op->array()->as_register()); 1554 __ bind(test_mark_word); 1555 __ tst(tmp, markWord::null_free_array_bit_in_place); 1556 } 1557 1558 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) { 1559 Label L_oops_equal; 1560 Label L_oops_not_equal; 1561 Label L_end; 1562 1563 Register left = op->left()->as_register(); 1564 Register right = op->right()->as_register(); 1565 1566 __ cmp(left, right); 1567 __ br(Assembler::EQ, L_oops_equal); 1568 1569 // (1) Null check -- if one of the operands is null, the other must not be null (because 1570 // the two references are not equal), so they are not substitutable, 1571 // FIXME: do null check only if the operand is nullable 1572 { 1573 __ cbz(left, L_oops_not_equal); 1574 __ cbz(right, L_oops_not_equal); 1575 } 1576 1577 ciKlass* left_klass = op->left_klass(); 1578 ciKlass* right_klass = op->right_klass(); 1579 1580 // (2) Inline type check -- if either of the operands is not a inline type, 1581 // they are not substitutable. We do this only if we are not sure that the 1582 // operands are inline type 1583 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 1584 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 1585 Register tmp1 = op->tmp1()->as_register(); 1586 __ mov(tmp1, markWord::inline_type_pattern); 1587 __ ldr(rscratch1, Address(left, oopDesc::mark_offset_in_bytes())); 1588 __ andr(tmp1, tmp1, rscratch1); 1589 __ ldr(rscratch1, Address(right, oopDesc::mark_offset_in_bytes())); 1590 __ andr(tmp1, tmp1, rscratch1); 1591 __ cmp(tmp1, (u1)markWord::inline_type_pattern); 1592 __ br(Assembler::NE, L_oops_not_equal); 1593 } 1594 1595 // (3) Same klass check: if the operands are of different klasses, they are not substitutable. 1596 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 1597 // No need to load klass -- the operands are statically known to be the same inline klass. 1598 __ b(*op->stub()->entry()); 1599 } else { 1600 Register left_klass_op = op->left_klass_op()->as_register(); 1601 Register right_klass_op = op->right_klass_op()->as_register(); 1602 1603 if (UseCompressedClassPointers) { 1604 __ ldrw(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1605 __ ldrw(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1606 __ cmpw(left_klass_op, right_klass_op); 1607 } else { 1608 __ ldr(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1609 __ ldr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1610 __ cmp(left_klass_op, right_klass_op); 1611 } 1612 1613 __ br(Assembler::EQ, *op->stub()->entry()); // same klass -> do slow check 1614 // fall through to L_oops_not_equal 1615 } 1616 1617 __ bind(L_oops_not_equal); 1618 move(op->not_equal_result(), op->result_opr()); 1619 __ b(L_end); 1620 1621 __ bind(L_oops_equal); 1622 move(op->equal_result(), op->result_opr()); 1623 __ b(L_end); 1624 1625 // We've returned from the stub. R0 contains 0x0 IFF the two 1626 // operands are not substitutable. (Don't compare against 0x1 in case the 1627 // C compiler is naughty) 1628 __ bind(*op->stub()->continuation()); 1629 __ cbz(r0, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal 1630 move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal 1631 // fall-through 1632 __ bind(L_end); 1633 } 1634 1635 1636 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1637 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1638 __ cset(rscratch1, Assembler::NE); 1639 __ membar(__ AnyAny); 1640 } 1641 1642 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1643 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1644 __ cset(rscratch1, Assembler::NE); 1645 __ membar(__ AnyAny); 1646 } 1647 1648 1649 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1650 Register addr; 1651 if (op->addr()->is_register()) { 1652 addr = as_reg(op->addr()); 1653 } else { 1654 assert(op->addr()->is_address(), "what else?"); 1655 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1656 assert(addr_ptr->disp() == 0, "need 0 disp"); 1657 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1658 addr = as_reg(addr_ptr->base()); 1659 } 1660 Register newval = as_reg(op->new_value()); 1661 Register cmpval = as_reg(op->cmp_value()); 1662 1663 if (op->code() == lir_cas_obj) { 1664 if (UseCompressedOops) { 1665 Register t1 = op->tmp1()->as_register(); 1666 assert(op->tmp1()->is_valid(), "must be"); 1667 __ encode_heap_oop(t1, cmpval); 1668 cmpval = t1; 1669 __ encode_heap_oop(rscratch2, newval); 1670 newval = rscratch2; 1671 casw(addr, newval, cmpval); 1672 } else { 1673 casl(addr, newval, cmpval); 1674 } 1675 } else if (op->code() == lir_cas_int) { 1676 casw(addr, newval, cmpval); 1677 } else { 1678 casl(addr, newval, cmpval); 1679 } 1680 } 1681 1682 1683 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1684 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1685 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1686 1687 Assembler::Condition acond, ncond; 1688 switch (condition) { 1689 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1690 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1691 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1692 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1693 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1694 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1695 case lir_cond_belowEqual: 1696 case lir_cond_aboveEqual: 1697 default: ShouldNotReachHere(); 1698 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1699 } 1700 1701 assert(result->is_single_cpu() || result->is_double_cpu(), 1702 "expect single register for result"); 1703 if (opr1->is_constant() && opr2->is_constant() 1704 && opr1->type() == T_INT && opr2->type() == T_INT) { 1705 jint val1 = opr1->as_jint(); 1706 jint val2 = opr2->as_jint(); 1707 if (val1 == 0 && val2 == 1) { 1708 __ cset(result->as_register(), ncond); 1709 return; 1710 } else if (val1 == 1 && val2 == 0) { 1711 __ cset(result->as_register(), acond); 1712 return; 1713 } 1714 } 1715 1716 if (opr1->is_constant() && opr2->is_constant() 1717 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1718 jlong val1 = opr1->as_jlong(); 1719 jlong val2 = opr2->as_jlong(); 1720 if (val1 == 0 && val2 == 1) { 1721 __ cset(result->as_register_lo(), ncond); 1722 return; 1723 } else if (val1 == 1 && val2 == 0) { 1724 __ cset(result->as_register_lo(), acond); 1725 return; 1726 } 1727 } 1728 1729 if (opr1->is_stack()) { 1730 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1731 opr1 = FrameMap::rscratch1_opr; 1732 } else if (opr1->is_constant()) { 1733 LIR_Opr tmp 1734 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1735 const2reg(opr1, tmp, lir_patch_none, nullptr); 1736 opr1 = tmp; 1737 } 1738 1739 if (opr2->is_stack()) { 1740 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1741 opr2 = FrameMap::rscratch2_opr; 1742 } else if (opr2->is_constant()) { 1743 LIR_Opr tmp 1744 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1745 const2reg(opr2, tmp, lir_patch_none, nullptr); 1746 opr2 = tmp; 1747 } 1748 1749 if (result->type() == T_LONG) 1750 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1751 else 1752 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1753 } 1754 1755 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1756 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1757 1758 if (left->is_single_cpu()) { 1759 Register lreg = left->as_register(); 1760 Register dreg = as_reg(dest); 1761 1762 if (right->is_single_cpu()) { 1763 // cpu register - cpu register 1764 1765 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1766 "should be"); 1767 Register rreg = right->as_register(); 1768 switch (code) { 1769 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1770 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1771 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1772 default: ShouldNotReachHere(); 1773 } 1774 1775 } else if (right->is_double_cpu()) { 1776 Register rreg = right->as_register_lo(); 1777 // single_cpu + double_cpu: can happen with obj+long 1778 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1779 switch (code) { 1780 case lir_add: __ add(dreg, lreg, rreg); break; 1781 case lir_sub: __ sub(dreg, lreg, rreg); break; 1782 default: ShouldNotReachHere(); 1783 } 1784 } else if (right->is_constant()) { 1785 // cpu register - constant 1786 jlong c; 1787 1788 // FIXME. This is fugly: we really need to factor all this logic. 1789 switch(right->type()) { 1790 case T_LONG: 1791 c = right->as_constant_ptr()->as_jlong(); 1792 break; 1793 case T_INT: 1794 case T_ADDRESS: 1795 c = right->as_constant_ptr()->as_jint(); 1796 break; 1797 default: 1798 ShouldNotReachHere(); 1799 c = 0; // unreachable 1800 break; 1801 } 1802 1803 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1804 if (c == 0 && dreg == lreg) { 1805 COMMENT("effective nop elided"); 1806 return; 1807 } 1808 switch(left->type()) { 1809 case T_INT: 1810 switch (code) { 1811 case lir_add: __ addw(dreg, lreg, c); break; 1812 case lir_sub: __ subw(dreg, lreg, c); break; 1813 default: ShouldNotReachHere(); 1814 } 1815 break; 1816 case T_OBJECT: 1817 case T_ADDRESS: 1818 switch (code) { 1819 case lir_add: __ add(dreg, lreg, c); break; 1820 case lir_sub: __ sub(dreg, lreg, c); break; 1821 default: ShouldNotReachHere(); 1822 } 1823 break; 1824 default: 1825 ShouldNotReachHere(); 1826 } 1827 } else { 1828 ShouldNotReachHere(); 1829 } 1830 1831 } else if (left->is_double_cpu()) { 1832 Register lreg_lo = left->as_register_lo(); 1833 1834 if (right->is_double_cpu()) { 1835 // cpu register - cpu register 1836 Register rreg_lo = right->as_register_lo(); 1837 switch (code) { 1838 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1839 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1840 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1841 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1842 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1843 default: 1844 ShouldNotReachHere(); 1845 } 1846 1847 } else if (right->is_constant()) { 1848 jlong c = right->as_constant_ptr()->as_jlong(); 1849 Register dreg = as_reg(dest); 1850 switch (code) { 1851 case lir_add: 1852 case lir_sub: 1853 if (c == 0 && dreg == lreg_lo) { 1854 COMMENT("effective nop elided"); 1855 return; 1856 } 1857 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1858 break; 1859 case lir_div: 1860 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1861 if (c == 1) { 1862 // move lreg_lo to dreg if divisor is 1 1863 __ mov(dreg, lreg_lo); 1864 } else { 1865 unsigned int shift = log2i_exact(c); 1866 // use rscratch1 as intermediate result register 1867 __ asr(rscratch1, lreg_lo, 63); 1868 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1869 __ asr(dreg, rscratch1, shift); 1870 } 1871 break; 1872 case lir_rem: 1873 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1874 if (c == 1) { 1875 // move 0 to dreg if divisor is 1 1876 __ mov(dreg, zr); 1877 } else { 1878 // use rscratch1 as intermediate result register 1879 __ negs(rscratch1, lreg_lo); 1880 __ andr(dreg, lreg_lo, c - 1); 1881 __ andr(rscratch1, rscratch1, c - 1); 1882 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1883 } 1884 break; 1885 default: 1886 ShouldNotReachHere(); 1887 } 1888 } else { 1889 ShouldNotReachHere(); 1890 } 1891 } else if (left->is_single_fpu()) { 1892 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1893 switch (code) { 1894 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1895 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1896 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1897 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1898 default: 1899 ShouldNotReachHere(); 1900 } 1901 } else if (left->is_double_fpu()) { 1902 if (right->is_double_fpu()) { 1903 // fpu register - fpu register 1904 switch (code) { 1905 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1906 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1907 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1908 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1909 default: 1910 ShouldNotReachHere(); 1911 } 1912 } else { 1913 if (right->is_constant()) { 1914 ShouldNotReachHere(); 1915 } 1916 ShouldNotReachHere(); 1917 } 1918 } else if (left->is_single_stack() || left->is_address()) { 1919 assert(left == dest, "left and dest must be equal"); 1920 ShouldNotReachHere(); 1921 } else { 1922 ShouldNotReachHere(); 1923 } 1924 } 1925 1926 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1927 1928 1929 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1930 switch(code) { 1931 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1932 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1933 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1934 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1935 default : ShouldNotReachHere(); 1936 } 1937 } 1938 1939 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1940 1941 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1942 Register Rleft = left->is_single_cpu() ? left->as_register() : 1943 left->as_register_lo(); 1944 if (dst->is_single_cpu()) { 1945 Register Rdst = dst->as_register(); 1946 if (right->is_constant()) { 1947 switch (code) { 1948 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1949 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1950 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1951 default: ShouldNotReachHere(); break; 1952 } 1953 } else { 1954 Register Rright = right->is_single_cpu() ? right->as_register() : 1955 right->as_register_lo(); 1956 switch (code) { 1957 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1958 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1959 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1960 default: ShouldNotReachHere(); break; 1961 } 1962 } 1963 } else { 1964 Register Rdst = dst->as_register_lo(); 1965 if (right->is_constant()) { 1966 switch (code) { 1967 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1968 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1969 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1970 default: ShouldNotReachHere(); break; 1971 } 1972 } else { 1973 Register Rright = right->is_single_cpu() ? right->as_register() : 1974 right->as_register_lo(); 1975 switch (code) { 1976 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1977 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1978 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1979 default: ShouldNotReachHere(); break; 1980 } 1981 } 1982 } 1983 } 1984 1985 1986 1987 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1988 1989 // opcode check 1990 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1991 bool is_irem = (code == lir_irem); 1992 1993 // operand check 1994 assert(left->is_single_cpu(), "left must be register"); 1995 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1996 assert(result->is_single_cpu(), "result must be register"); 1997 Register lreg = left->as_register(); 1998 Register dreg = result->as_register(); 1999 2000 // power-of-2 constant check and codegen 2001 if (right->is_constant()) { 2002 int c = right->as_constant_ptr()->as_jint(); 2003 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 2004 if (is_irem) { 2005 if (c == 1) { 2006 // move 0 to dreg if divisor is 1 2007 __ movw(dreg, zr); 2008 } else { 2009 // use rscratch1 as intermediate result register 2010 __ negsw(rscratch1, lreg); 2011 __ andw(dreg, lreg, c - 1); 2012 __ andw(rscratch1, rscratch1, c - 1); 2013 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 2014 } 2015 } else { 2016 if (c == 1) { 2017 // move lreg to dreg if divisor is 1 2018 __ movw(dreg, lreg); 2019 } else { 2020 unsigned int shift = exact_log2(c); 2021 // use rscratch1 as intermediate result register 2022 __ asrw(rscratch1, lreg, 31); 2023 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 2024 __ asrw(dreg, rscratch1, shift); 2025 } 2026 } 2027 } else { 2028 Register rreg = right->as_register(); 2029 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 2030 } 2031 } 2032 2033 2034 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2035 if (opr1->is_constant() && opr2->is_single_cpu()) { 2036 // tableswitch 2037 Register reg = as_reg(opr2); 2038 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 2039 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 2040 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 2041 Register reg1 = as_reg(opr1); 2042 if (opr2->is_single_cpu()) { 2043 // cpu register - cpu register 2044 Register reg2 = opr2->as_register(); 2045 if (is_reference_type(opr1->type())) { 2046 __ cmpoop(reg1, reg2); 2047 } else { 2048 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2049 __ cmpw(reg1, reg2); 2050 } 2051 return; 2052 } 2053 if (opr2->is_double_cpu()) { 2054 // cpu register - cpu register 2055 Register reg2 = opr2->as_register_lo(); 2056 __ cmp(reg1, reg2); 2057 return; 2058 } 2059 2060 if (opr2->is_constant()) { 2061 bool is_32bit = false; // width of register operand 2062 jlong imm; 2063 2064 switch(opr2->type()) { 2065 case T_INT: 2066 imm = opr2->as_constant_ptr()->as_jint(); 2067 is_32bit = true; 2068 break; 2069 case T_LONG: 2070 imm = opr2->as_constant_ptr()->as_jlong(); 2071 break; 2072 case T_ADDRESS: 2073 imm = opr2->as_constant_ptr()->as_jint(); 2074 break; 2075 case T_METADATA: 2076 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 2077 break; 2078 case T_OBJECT: 2079 case T_ARRAY: 2080 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 2081 __ cmpoop(reg1, rscratch1); 2082 return; 2083 default: 2084 ShouldNotReachHere(); 2085 imm = 0; // unreachable 2086 break; 2087 } 2088 2089 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 2090 if (is_32bit) 2091 __ cmpw(reg1, imm); 2092 else 2093 __ subs(zr, reg1, imm); 2094 return; 2095 } else { 2096 __ mov(rscratch1, imm); 2097 if (is_32bit) 2098 __ cmpw(reg1, rscratch1); 2099 else 2100 __ cmp(reg1, rscratch1); 2101 return; 2102 } 2103 } else 2104 ShouldNotReachHere(); 2105 } else if (opr1->is_single_fpu()) { 2106 FloatRegister reg1 = opr1->as_float_reg(); 2107 assert(opr2->is_single_fpu(), "expect single float register"); 2108 FloatRegister reg2 = opr2->as_float_reg(); 2109 __ fcmps(reg1, reg2); 2110 } else if (opr1->is_double_fpu()) { 2111 FloatRegister reg1 = opr1->as_double_reg(); 2112 assert(opr2->is_double_fpu(), "expect double float register"); 2113 FloatRegister reg2 = opr2->as_double_reg(); 2114 __ fcmpd(reg1, reg2); 2115 } else { 2116 ShouldNotReachHere(); 2117 } 2118 } 2119 2120 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2121 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2122 bool is_unordered_less = (code == lir_ucmp_fd2i); 2123 if (left->is_single_fpu()) { 2124 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2125 } else if (left->is_double_fpu()) { 2126 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2127 } else { 2128 ShouldNotReachHere(); 2129 } 2130 } else if (code == lir_cmp_l2i) { 2131 Label done; 2132 __ cmp(left->as_register_lo(), right->as_register_lo()); 2133 __ mov(dst->as_register(), (uint64_t)-1L); 2134 __ br(Assembler::LT, done); 2135 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2136 __ bind(done); 2137 } else { 2138 ShouldNotReachHere(); 2139 } 2140 } 2141 2142 2143 void LIR_Assembler::align_call(LIR_Code code) { } 2144 2145 2146 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2147 address call = __ trampoline_call(Address(op->addr(), rtype)); 2148 if (call == nullptr) { 2149 bailout("trampoline stub overflow"); 2150 return; 2151 } 2152 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2153 __ post_call_nop(); 2154 } 2155 2156 2157 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2158 address call = __ ic_call(op->addr()); 2159 if (call == nullptr) { 2160 bailout("trampoline stub overflow"); 2161 return; 2162 } 2163 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2164 __ post_call_nop(); 2165 } 2166 2167 void LIR_Assembler::emit_static_call_stub() { 2168 address call_pc = __ pc(); 2169 address stub = __ start_a_stub(call_stub_size()); 2170 if (stub == nullptr) { 2171 bailout("static call stub overflow"); 2172 return; 2173 } 2174 2175 int start = __ offset(); 2176 2177 __ relocate(static_stub_Relocation::spec(call_pc)); 2178 __ emit_static_call_stub(); 2179 2180 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2181 <= call_stub_size(), "stub too big"); 2182 __ end_a_stub(); 2183 } 2184 2185 2186 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2187 assert(exceptionOop->as_register() == r0, "must match"); 2188 assert(exceptionPC->as_register() == r3, "must match"); 2189 2190 // exception object is not added to oop map by LinearScan 2191 // (LinearScan assumes that no oops are in fixed registers) 2192 info->add_register_oop(exceptionOop); 2193 C1StubId unwind_id; 2194 2195 // get current pc information 2196 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2197 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2198 // As no instructions have been generated yet for this LIR node it's 2199 // possible that an oop map already exists for the current offset. 2200 // In that case insert an dummy NOP here to ensure all oop map PCs 2201 // are unique. See JDK-8237483. 2202 __ nop(); 2203 } 2204 int pc_for_athrow_offset = __ offset(); 2205 InternalAddress pc_for_athrow(__ pc()); 2206 __ adr(exceptionPC->as_register(), pc_for_athrow); 2207 add_call_info(pc_for_athrow_offset, info); // for exception handler 2208 2209 __ verify_not_null_oop(r0); 2210 // search an exception handler (r0: exception oop, r3: throwing pc) 2211 if (compilation()->has_fpu_code()) { 2212 unwind_id = C1StubId::handle_exception_id; 2213 } else { 2214 unwind_id = C1StubId::handle_exception_nofpu_id; 2215 } 2216 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2217 2218 // FIXME: enough room for two byte trap ???? 2219 __ nop(); 2220 } 2221 2222 2223 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2224 assert(exceptionOop->as_register() == r0, "must match"); 2225 2226 __ b(_unwind_handler_entry); 2227 } 2228 2229 2230 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2231 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2232 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2233 2234 switch (left->type()) { 2235 case T_INT: { 2236 switch (code) { 2237 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2238 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2239 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2240 default: 2241 ShouldNotReachHere(); 2242 break; 2243 } 2244 break; 2245 case T_LONG: 2246 case T_ADDRESS: 2247 case T_OBJECT: 2248 switch (code) { 2249 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2250 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2251 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2252 default: 2253 ShouldNotReachHere(); 2254 break; 2255 } 2256 break; 2257 default: 2258 ShouldNotReachHere(); 2259 break; 2260 } 2261 } 2262 } 2263 2264 2265 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2266 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2267 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2268 2269 switch (left->type()) { 2270 case T_INT: { 2271 switch (code) { 2272 case lir_shl: __ lslw (dreg, lreg, count); break; 2273 case lir_shr: __ asrw (dreg, lreg, count); break; 2274 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2275 default: 2276 ShouldNotReachHere(); 2277 break; 2278 } 2279 break; 2280 case T_LONG: 2281 case T_ADDRESS: 2282 case T_OBJECT: 2283 switch (code) { 2284 case lir_shl: __ lsl (dreg, lreg, count); break; 2285 case lir_shr: __ asr (dreg, lreg, count); break; 2286 case lir_ushr: __ lsr (dreg, lreg, count); break; 2287 default: 2288 ShouldNotReachHere(); 2289 break; 2290 } 2291 break; 2292 default: 2293 ShouldNotReachHere(); 2294 break; 2295 } 2296 } 2297 } 2298 2299 2300 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2301 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2302 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2303 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2304 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2305 } 2306 2307 2308 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2309 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2310 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2311 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2312 __ mov (rscratch1, c); 2313 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2314 } 2315 2316 2317 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2318 ShouldNotReachHere(); 2319 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2320 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2321 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2322 __ lea(rscratch1, __ constant_oop_address(o)); 2323 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2324 } 2325 2326 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) { 2327 if (null_check) { 2328 __ cbz(obj, *slow_path->entry()); 2329 } 2330 if (is_dest) { 2331 __ test_null_free_array_oop(obj, tmp, *slow_path->entry()); 2332 } else { 2333 __ test_flat_array_oop(obj, tmp, *slow_path->entry()); 2334 } 2335 } 2336 2337 // This code replaces a call to arraycopy; no exception may 2338 // be thrown in this code, they must be thrown in the System.arraycopy 2339 // activation frame; we could save some checks if this would not be the case 2340 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2341 ciArrayKlass* default_type = op->expected_type(); 2342 Register src = op->src()->as_register(); 2343 Register dst = op->dst()->as_register(); 2344 Register src_pos = op->src_pos()->as_register(); 2345 Register dst_pos = op->dst_pos()->as_register(); 2346 Register length = op->length()->as_register(); 2347 Register tmp = op->tmp()->as_register(); 2348 2349 CodeStub* stub = op->stub(); 2350 int flags = op->flags(); 2351 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2352 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2353 2354 if (flags & LIR_OpArrayCopy::always_slow_path) { 2355 __ b(*stub->entry()); 2356 __ bind(*stub->continuation()); 2357 return; 2358 } 2359 2360 // if we don't know anything, just go through the generic arraycopy 2361 if (default_type == nullptr // || basic_type == T_OBJECT 2362 ) { 2363 Label done; 2364 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2365 2366 // Save the arguments in case the generic arraycopy fails and we 2367 // have to fall back to the JNI stub 2368 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2369 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2370 __ str(src, Address(sp, 4*BytesPerWord)); 2371 2372 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2373 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2374 2375 // The arguments are in java calling convention so we shift them 2376 // to C convention 2377 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2378 __ mov(c_rarg0, j_rarg0); 2379 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2380 __ mov(c_rarg1, j_rarg1); 2381 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2382 __ mov(c_rarg2, j_rarg2); 2383 assert_different_registers(c_rarg3, j_rarg4); 2384 __ mov(c_rarg3, j_rarg3); 2385 __ mov(c_rarg4, j_rarg4); 2386 #ifndef PRODUCT 2387 if (PrintC1Statistics) { 2388 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2389 } 2390 #endif 2391 __ far_call(RuntimeAddress(copyfunc_addr)); 2392 2393 __ cbz(r0, *stub->continuation()); 2394 2395 // Reload values from the stack so they are where the stub 2396 // expects them. 2397 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2398 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2399 __ ldr(src, Address(sp, 4*BytesPerWord)); 2400 2401 // r0 is -1^K where K == partial copied count 2402 __ eonw(rscratch1, r0, zr); 2403 // adjust length down and src/end pos up by partial copied count 2404 __ subw(length, length, rscratch1); 2405 __ addw(src_pos, src_pos, rscratch1); 2406 __ addw(dst_pos, dst_pos, rscratch1); 2407 __ b(*stub->entry()); 2408 2409 __ bind(*stub->continuation()); 2410 return; 2411 } 2412 2413 // Handle inline type arrays 2414 if (flags & LIR_OpArrayCopy::src_inlinetype_check) { 2415 arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check)); 2416 } 2417 2418 if (flags & LIR_OpArrayCopy::dst_inlinetype_check) { 2419 arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check)); 2420 } 2421 2422 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2423 2424 int elem_size = type2aelembytes(basic_type); 2425 int scale = exact_log2(elem_size); 2426 2427 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2428 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2429 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2430 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2431 2432 // test for null 2433 if (flags & LIR_OpArrayCopy::src_null_check) { 2434 __ cbz(src, *stub->entry()); 2435 } 2436 if (flags & LIR_OpArrayCopy::dst_null_check) { 2437 __ cbz(dst, *stub->entry()); 2438 } 2439 2440 // If the compiler was not able to prove that exact type of the source or the destination 2441 // of the arraycopy is an array type, check at runtime if the source or the destination is 2442 // an instance type. 2443 if (flags & LIR_OpArrayCopy::type_check) { 2444 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2445 __ load_klass(tmp, dst); 2446 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2447 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2448 __ br(Assembler::GE, *stub->entry()); 2449 } 2450 2451 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2452 __ load_klass(tmp, src); 2453 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2454 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2455 __ br(Assembler::GE, *stub->entry()); 2456 } 2457 } 2458 2459 // check if negative 2460 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2461 __ cmpw(src_pos, 0); 2462 __ br(Assembler::LT, *stub->entry()); 2463 } 2464 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2465 __ cmpw(dst_pos, 0); 2466 __ br(Assembler::LT, *stub->entry()); 2467 } 2468 2469 if (flags & LIR_OpArrayCopy::length_positive_check) { 2470 __ cmpw(length, 0); 2471 __ br(Assembler::LT, *stub->entry()); 2472 } 2473 2474 if (flags & LIR_OpArrayCopy::src_range_check) { 2475 __ addw(tmp, src_pos, length); 2476 __ ldrw(rscratch1, src_length_addr); 2477 __ cmpw(tmp, rscratch1); 2478 __ br(Assembler::HI, *stub->entry()); 2479 } 2480 if (flags & LIR_OpArrayCopy::dst_range_check) { 2481 __ addw(tmp, dst_pos, length); 2482 __ ldrw(rscratch1, dst_length_addr); 2483 __ cmpw(tmp, rscratch1); 2484 __ br(Assembler::HI, *stub->entry()); 2485 } 2486 2487 if (flags & LIR_OpArrayCopy::type_check) { 2488 // We don't know the array types are compatible 2489 if (basic_type != T_OBJECT) { 2490 // Simple test for basic type arrays 2491 if (UseCompressedClassPointers) { 2492 __ ldrw(tmp, src_klass_addr); 2493 __ ldrw(rscratch1, dst_klass_addr); 2494 __ cmpw(tmp, rscratch1); 2495 } else { 2496 __ ldr(tmp, src_klass_addr); 2497 __ ldr(rscratch1, dst_klass_addr); 2498 __ cmp(tmp, rscratch1); 2499 } 2500 __ br(Assembler::NE, *stub->entry()); 2501 } else { 2502 // For object arrays, if src is a sub class of dst then we can 2503 // safely do the copy. 2504 Label cont, slow; 2505 2506 #define PUSH(r1, r2) \ 2507 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2508 2509 #define POP(r1, r2) \ 2510 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2511 2512 __ PUSH(src, dst); 2513 2514 __ load_klass(src, src); 2515 __ load_klass(dst, dst); 2516 2517 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2518 2519 __ PUSH(src, dst); 2520 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2521 __ POP(src, dst); 2522 2523 __ cbnz(src, cont); 2524 2525 __ bind(slow); 2526 __ POP(src, dst); 2527 2528 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2529 if (copyfunc_addr != nullptr) { // use stub if available 2530 // src is not a sub class of dst so we have to do a 2531 // per-element check. 2532 2533 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2534 if ((flags & mask) != mask) { 2535 // Check that at least both of them object arrays. 2536 assert(flags & mask, "one of the two should be known to be an object array"); 2537 2538 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2539 __ load_klass(tmp, src); 2540 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2541 __ load_klass(tmp, dst); 2542 } 2543 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2544 Address klass_lh_addr(tmp, lh_offset); 2545 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2546 __ ldrw(rscratch1, klass_lh_addr); 2547 __ mov(rscratch2, objArray_lh); 2548 __ eorw(rscratch1, rscratch1, rscratch2); 2549 __ cbnzw(rscratch1, *stub->entry()); 2550 } 2551 2552 // Spill because stubs can use any register they like and it's 2553 // easier to restore just those that we care about. 2554 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2555 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2556 __ str(src, Address(sp, 4*BytesPerWord)); 2557 2558 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2559 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2560 assert_different_registers(c_rarg0, dst, dst_pos, length); 2561 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2562 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2563 assert_different_registers(c_rarg1, dst, length); 2564 __ uxtw(c_rarg2, length); 2565 assert_different_registers(c_rarg2, dst); 2566 2567 __ load_klass(c_rarg4, dst); 2568 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2569 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2570 __ far_call(RuntimeAddress(copyfunc_addr)); 2571 2572 #ifndef PRODUCT 2573 if (PrintC1Statistics) { 2574 Label failed; 2575 __ cbnz(r0, failed); 2576 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2577 __ bind(failed); 2578 } 2579 #endif 2580 2581 __ cbz(r0, *stub->continuation()); 2582 2583 #ifndef PRODUCT 2584 if (PrintC1Statistics) { 2585 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2586 } 2587 #endif 2588 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2589 2590 // Restore previously spilled arguments 2591 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2592 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2593 __ ldr(src, Address(sp, 4*BytesPerWord)); 2594 2595 // return value is -1^K where K is partial copied count 2596 __ eonw(rscratch1, r0, zr); 2597 // adjust length down and src/end pos up by partial copied count 2598 __ subw(length, length, rscratch1); 2599 __ addw(src_pos, src_pos, rscratch1); 2600 __ addw(dst_pos, dst_pos, rscratch1); 2601 } 2602 2603 __ b(*stub->entry()); 2604 2605 __ bind(cont); 2606 __ POP(src, dst); 2607 } 2608 } 2609 2610 #ifdef ASSERT 2611 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2612 // Sanity check the known type with the incoming class. For the 2613 // primitive case the types must match exactly with src.klass and 2614 // dst.klass each exactly matching the default type. For the 2615 // object array case, if no type check is needed then either the 2616 // dst type is exactly the expected type and the src type is a 2617 // subtype which we can't check or src is the same array as dst 2618 // but not necessarily exactly of type default_type. 2619 Label known_ok, halt; 2620 __ mov_metadata(tmp, default_type->constant_encoding()); 2621 if (UseCompressedClassPointers) { 2622 __ encode_klass_not_null(tmp); 2623 } 2624 2625 if (basic_type != T_OBJECT) { 2626 2627 if (UseCompressedClassPointers) { 2628 __ ldrw(rscratch1, dst_klass_addr); 2629 __ cmpw(tmp, rscratch1); 2630 } else { 2631 __ ldr(rscratch1, dst_klass_addr); 2632 __ cmp(tmp, rscratch1); 2633 } 2634 __ br(Assembler::NE, halt); 2635 if (UseCompressedClassPointers) { 2636 __ ldrw(rscratch1, src_klass_addr); 2637 __ cmpw(tmp, rscratch1); 2638 } else { 2639 __ ldr(rscratch1, src_klass_addr); 2640 __ cmp(tmp, rscratch1); 2641 } 2642 __ br(Assembler::EQ, known_ok); 2643 } else { 2644 if (UseCompressedClassPointers) { 2645 __ ldrw(rscratch1, dst_klass_addr); 2646 __ cmpw(tmp, rscratch1); 2647 } else { 2648 __ ldr(rscratch1, dst_klass_addr); 2649 __ cmp(tmp, rscratch1); 2650 } 2651 __ br(Assembler::EQ, known_ok); 2652 __ cmp(src, dst); 2653 __ br(Assembler::EQ, known_ok); 2654 } 2655 __ bind(halt); 2656 __ stop("incorrect type information in arraycopy"); 2657 __ bind(known_ok); 2658 } 2659 #endif 2660 2661 #ifndef PRODUCT 2662 if (PrintC1Statistics) { 2663 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2664 } 2665 #endif 2666 2667 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2668 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2669 assert_different_registers(c_rarg0, dst, dst_pos, length); 2670 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2671 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2672 assert_different_registers(c_rarg1, dst, length); 2673 __ uxtw(c_rarg2, length); 2674 assert_different_registers(c_rarg2, dst); 2675 2676 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2677 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2678 const char *name; 2679 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2680 2681 CodeBlob *cb = CodeCache::find_blob(entry); 2682 if (cb) { 2683 __ far_call(RuntimeAddress(entry)); 2684 } else { 2685 __ call_VM_leaf(entry, 3); 2686 } 2687 2688 if (stub != nullptr) { 2689 __ bind(*stub->continuation()); 2690 } 2691 } 2692 2693 2694 2695 2696 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2697 Register obj = op->obj_opr()->as_register(); // may not be an oop 2698 Register hdr = op->hdr_opr()->as_register(); 2699 Register lock = op->lock_opr()->as_register(); 2700 Register temp = op->scratch_opr()->as_register(); 2701 if (LockingMode == LM_MONITOR) { 2702 if (op->info() != nullptr) { 2703 add_debug_info_for_null_check_here(op->info()); 2704 __ null_check(obj, -1); 2705 } 2706 __ b(*op->stub()->entry()); 2707 } else if (op->code() == lir_lock) { 2708 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2709 // add debug info for NullPointerException only if one is possible 2710 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2711 if (op->info() != nullptr) { 2712 add_debug_info_for_null_check(null_check_offset, op->info()); 2713 } 2714 // done 2715 } else if (op->code() == lir_unlock) { 2716 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2717 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2718 } else { 2719 Unimplemented(); 2720 } 2721 __ bind(*op->stub()->continuation()); 2722 } 2723 2724 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2725 Register obj = op->obj()->as_pointer_register(); 2726 Register result = op->result_opr()->as_pointer_register(); 2727 2728 CodeEmitInfo* info = op->info(); 2729 if (info != nullptr) { 2730 add_debug_info_for_null_check_here(info); 2731 } 2732 2733 if (UseCompressedClassPointers) { 2734 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2735 __ decode_klass_not_null(result); 2736 } else { 2737 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2738 } 2739 } 2740 2741 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2742 ciMethod* method = op->profiled_method(); 2743 int bci = op->profiled_bci(); 2744 ciMethod* callee = op->profiled_callee(); 2745 2746 // Update counter for all call types 2747 ciMethodData* md = method->method_data_or_null(); 2748 assert(md != nullptr, "Sanity"); 2749 ciProfileData* data = md->bci_to_data(bci); 2750 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2751 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2752 Register mdo = op->mdo()->as_register(); 2753 __ mov_metadata(mdo, md->constant_encoding()); 2754 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2755 // Perform additional virtual call profiling for invokevirtual and 2756 // invokeinterface bytecodes 2757 if (op->should_profile_receiver_type()) { 2758 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2759 Register recv = op->recv()->as_register(); 2760 assert_different_registers(mdo, recv); 2761 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2762 ciKlass* known_klass = op->known_holder(); 2763 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2764 // We know the type that will be seen at this call site; we can 2765 // statically update the MethodData* rather than needing to do 2766 // dynamic tests on the receiver type 2767 2768 // NOTE: we should probably put a lock around this search to 2769 // avoid collisions by concurrent compilations 2770 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2771 uint i; 2772 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2773 ciKlass* receiver = vc_data->receiver(i); 2774 if (known_klass->equals(receiver)) { 2775 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2776 __ addptr(data_addr, DataLayout::counter_increment); 2777 return; 2778 } 2779 } 2780 2781 // Receiver type not found in profile data; select an empty slot 2782 2783 // Note that this is less efficient than it should be because it 2784 // always does a write to the receiver part of the 2785 // VirtualCallData rather than just the first time 2786 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2787 ciKlass* receiver = vc_data->receiver(i); 2788 if (receiver == nullptr) { 2789 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2790 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2791 __ lea(rscratch2, recv_addr); 2792 __ str(rscratch1, Address(rscratch2)); 2793 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2794 __ addptr(data_addr, DataLayout::counter_increment); 2795 return; 2796 } 2797 } 2798 } else { 2799 __ load_klass(recv, recv); 2800 Label update_done; 2801 type_profile_helper(mdo, md, data, recv, &update_done); 2802 // Receiver did not match any saved receiver and there is no empty row for it. 2803 // Increment total counter to indicate polymorphic case. 2804 __ addptr(counter_addr, DataLayout::counter_increment); 2805 2806 __ bind(update_done); 2807 } 2808 } else { 2809 // Static call 2810 __ addptr(counter_addr, DataLayout::counter_increment); 2811 } 2812 } 2813 2814 2815 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2816 Unimplemented(); 2817 } 2818 2819 2820 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2821 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2822 } 2823 2824 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2825 assert(op->crc()->is_single_cpu(), "crc must be register"); 2826 assert(op->val()->is_single_cpu(), "byte value must be register"); 2827 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2828 Register crc = op->crc()->as_register(); 2829 Register val = op->val()->as_register(); 2830 Register res = op->result_opr()->as_register(); 2831 2832 assert_different_registers(val, crc, res); 2833 uint64_t offset; 2834 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2835 __ add(res, res, offset); 2836 2837 __ mvnw(crc, crc); // ~crc 2838 __ update_byte_crc32(crc, val, res); 2839 __ mvnw(res, crc); // ~crc 2840 } 2841 2842 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2843 COMMENT("emit_profile_type {"); 2844 Register obj = op->obj()->as_register(); 2845 Register tmp = op->tmp()->as_pointer_register(); 2846 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2847 ciKlass* exact_klass = op->exact_klass(); 2848 intptr_t current_klass = op->current_klass(); 2849 bool not_null = op->not_null(); 2850 bool no_conflict = op->no_conflict(); 2851 2852 Label update, next, none; 2853 2854 bool do_null = !not_null; 2855 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2856 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2857 2858 assert(do_null || do_update, "why are we here?"); 2859 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2860 assert(mdo_addr.base() != rscratch1, "wrong register"); 2861 2862 __ verify_oop(obj); 2863 2864 if (tmp != obj) { 2865 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2866 __ mov(tmp, obj); 2867 } else { 2868 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2869 } 2870 if (do_null) { 2871 __ cbnz(tmp, update); 2872 if (!TypeEntries::was_null_seen(current_klass)) { 2873 __ ldr(rscratch2, mdo_addr); 2874 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2875 __ str(rscratch2, mdo_addr); 2876 } 2877 if (do_update) { 2878 #ifndef ASSERT 2879 __ b(next); 2880 } 2881 #else 2882 __ b(next); 2883 } 2884 } else { 2885 __ cbnz(tmp, update); 2886 __ stop("unexpected null obj"); 2887 #endif 2888 } 2889 2890 __ bind(update); 2891 2892 if (do_update) { 2893 #ifdef ASSERT 2894 if (exact_klass != nullptr) { 2895 Label ok; 2896 __ load_klass(tmp, tmp); 2897 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2898 __ eor(rscratch1, tmp, rscratch1); 2899 __ cbz(rscratch1, ok); 2900 __ stop("exact klass and actual klass differ"); 2901 __ bind(ok); 2902 } 2903 #endif 2904 if (!no_conflict) { 2905 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2906 if (exact_klass != nullptr) { 2907 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2908 } else { 2909 __ load_klass(tmp, tmp); 2910 } 2911 2912 __ ldr(rscratch2, mdo_addr); 2913 __ eor(tmp, tmp, rscratch2); 2914 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2915 // klass seen before, nothing to do. The unknown bit may have been 2916 // set already but no need to check. 2917 __ cbz(rscratch1, next); 2918 2919 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2920 2921 if (TypeEntries::is_type_none(current_klass)) { 2922 __ cbz(rscratch2, none); 2923 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2924 __ br(Assembler::EQ, none); 2925 // There is a chance that the checks above 2926 // fail if another thread has just set the 2927 // profiling to this obj's klass 2928 __ dmb(Assembler::ISHLD); 2929 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2930 __ ldr(rscratch2, mdo_addr); 2931 __ eor(tmp, tmp, rscratch2); 2932 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2933 __ cbz(rscratch1, next); 2934 } 2935 } else { 2936 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2937 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2938 2939 __ ldr(tmp, mdo_addr); 2940 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2941 } 2942 2943 // different than before. Cannot keep accurate profile. 2944 __ ldr(rscratch2, mdo_addr); 2945 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2946 __ str(rscratch2, mdo_addr); 2947 2948 if (TypeEntries::is_type_none(current_klass)) { 2949 __ b(next); 2950 2951 __ bind(none); 2952 // first time here. Set profile type. 2953 __ str(tmp, mdo_addr); 2954 #ifdef ASSERT 2955 __ andr(tmp, tmp, TypeEntries::type_mask); 2956 __ verify_klass_ptr(tmp); 2957 #endif 2958 } 2959 } else { 2960 // There's a single possible klass at this profile point 2961 assert(exact_klass != nullptr, "should be"); 2962 if (TypeEntries::is_type_none(current_klass)) { 2963 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2964 __ ldr(rscratch2, mdo_addr); 2965 __ eor(tmp, tmp, rscratch2); 2966 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2967 __ cbz(rscratch1, next); 2968 #ifdef ASSERT 2969 { 2970 Label ok; 2971 __ ldr(rscratch1, mdo_addr); 2972 __ cbz(rscratch1, ok); 2973 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2974 __ br(Assembler::EQ, ok); 2975 // may have been set by another thread 2976 __ dmb(Assembler::ISHLD); 2977 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2978 __ ldr(rscratch2, mdo_addr); 2979 __ eor(rscratch2, rscratch1, rscratch2); 2980 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2981 __ cbz(rscratch2, ok); 2982 2983 __ stop("unexpected profiling mismatch"); 2984 __ bind(ok); 2985 } 2986 #endif 2987 // first time here. Set profile type. 2988 __ str(tmp, mdo_addr); 2989 #ifdef ASSERT 2990 __ andr(tmp, tmp, TypeEntries::type_mask); 2991 __ verify_klass_ptr(tmp); 2992 #endif 2993 } else { 2994 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2995 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2996 2997 __ ldr(tmp, mdo_addr); 2998 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2999 3000 __ orr(tmp, tmp, TypeEntries::type_unknown); 3001 __ str(tmp, mdo_addr); 3002 // FIXME: Write barrier needed here? 3003 } 3004 } 3005 3006 __ bind(next); 3007 } 3008 COMMENT("} emit_profile_type"); 3009 } 3010 3011 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 3012 Register obj = op->obj()->as_register(); 3013 Register tmp = op->tmp()->as_pointer_register(); 3014 bool not_null = op->not_null(); 3015 int flag = op->flag(); 3016 3017 Label not_inline_type; 3018 if (!not_null) { 3019 __ cbz(obj, not_inline_type); 3020 } 3021 3022 __ test_oop_is_not_inline_type(obj, tmp, not_inline_type); 3023 3024 Address mdo_addr = as_Address(op->mdp()->as_address_ptr(), rscratch2); 3025 __ ldrb(rscratch1, mdo_addr); 3026 __ orr(rscratch1, rscratch1, flag); 3027 __ strb(rscratch1, mdo_addr); 3028 3029 __ bind(not_inline_type); 3030 } 3031 3032 void LIR_Assembler::align_backward_branch_target() { 3033 } 3034 3035 3036 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3037 // tmp must be unused 3038 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 3039 3040 if (left->is_single_cpu()) { 3041 assert(dest->is_single_cpu(), "expect single result reg"); 3042 __ negw(dest->as_register(), left->as_register()); 3043 } else if (left->is_double_cpu()) { 3044 assert(dest->is_double_cpu(), "expect double result reg"); 3045 __ neg(dest->as_register_lo(), left->as_register_lo()); 3046 } else if (left->is_single_fpu()) { 3047 assert(dest->is_single_fpu(), "expect single float result reg"); 3048 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 3049 } else { 3050 assert(left->is_double_fpu(), "expect double float operand reg"); 3051 assert(dest->is_double_fpu(), "expect double float result reg"); 3052 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 3053 } 3054 } 3055 3056 3057 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3058 if (patch_code != lir_patch_none) { 3059 deoptimize_trap(info); 3060 return; 3061 } 3062 3063 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 3064 } 3065 3066 3067 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3068 assert(!tmp->is_valid(), "don't need temporary"); 3069 3070 CodeBlob *cb = CodeCache::find_blob(dest); 3071 if (cb) { 3072 __ far_call(RuntimeAddress(dest)); 3073 } else { 3074 __ mov(rscratch1, RuntimeAddress(dest)); 3075 __ blr(rscratch1); 3076 } 3077 3078 if (info != nullptr) { 3079 add_call_info_here(info); 3080 } 3081 __ post_call_nop(); 3082 } 3083 3084 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3085 if (dest->is_address() || src->is_address()) { 3086 move_op(src, dest, type, lir_patch_none, info, 3087 /*pop_fpu_stack*/false, /*wide*/false); 3088 } else { 3089 ShouldNotReachHere(); 3090 } 3091 } 3092 3093 #ifdef ASSERT 3094 // emit run-time assertion 3095 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3096 assert(op->code() == lir_assert, "must be"); 3097 3098 if (op->in_opr1()->is_valid()) { 3099 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3100 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3101 } else { 3102 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3103 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3104 } 3105 3106 Label ok; 3107 if (op->condition() != lir_cond_always) { 3108 Assembler::Condition acond = Assembler::AL; 3109 switch (op->condition()) { 3110 case lir_cond_equal: acond = Assembler::EQ; break; 3111 case lir_cond_notEqual: acond = Assembler::NE; break; 3112 case lir_cond_less: acond = Assembler::LT; break; 3113 case lir_cond_lessEqual: acond = Assembler::LE; break; 3114 case lir_cond_greaterEqual: acond = Assembler::GE; break; 3115 case lir_cond_greater: acond = Assembler::GT; break; 3116 case lir_cond_belowEqual: acond = Assembler::LS; break; 3117 case lir_cond_aboveEqual: acond = Assembler::HS; break; 3118 default: ShouldNotReachHere(); 3119 } 3120 __ br(acond, ok); 3121 } 3122 if (op->halt()) { 3123 const char* str = __ code_string(op->msg()); 3124 __ stop(str); 3125 } else { 3126 breakpoint(); 3127 } 3128 __ bind(ok); 3129 } 3130 #endif 3131 3132 #ifndef PRODUCT 3133 #define COMMENT(x) do { __ block_comment(x); } while (0) 3134 #else 3135 #define COMMENT(x) 3136 #endif 3137 3138 void LIR_Assembler::membar() { 3139 COMMENT("membar"); 3140 __ membar(MacroAssembler::AnyAny); 3141 } 3142 3143 void LIR_Assembler::membar_acquire() { 3144 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 3145 } 3146 3147 void LIR_Assembler::membar_release() { 3148 __ membar(Assembler::LoadStore|Assembler::StoreStore); 3149 } 3150 3151 void LIR_Assembler::membar_loadload() { 3152 __ membar(Assembler::LoadLoad); 3153 } 3154 3155 void LIR_Assembler::membar_storestore() { 3156 __ membar(MacroAssembler::StoreStore); 3157 } 3158 3159 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 3160 3161 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 3162 3163 void LIR_Assembler::on_spin_wait() { 3164 __ spin_wait(); 3165 } 3166 3167 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3168 __ mov(result_reg->as_register(), rthread); 3169 } 3170 3171 void LIR_Assembler::check_orig_pc() { 3172 __ ldr(rscratch2, frame_map()->address_for_orig_pc_addr()); 3173 __ cmp(rscratch2, (u1)NULL_WORD); 3174 } 3175 3176 void LIR_Assembler::peephole(LIR_List *lir) { 3177 #if 0 3178 if (tableswitch_count >= max_tableswitches) 3179 return; 3180 3181 /* 3182 This finite-state automaton recognizes sequences of compare-and- 3183 branch instructions. We will turn them into a tableswitch. You 3184 could argue that C1 really shouldn't be doing this sort of 3185 optimization, but without it the code is really horrible. 3186 */ 3187 3188 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3189 int first_key, last_key = -2147483648; 3190 int next_key = 0; 3191 int start_insn = -1; 3192 int last_insn = -1; 3193 Register reg = noreg; 3194 LIR_Opr reg_opr; 3195 state = start_s; 3196 3197 LIR_OpList* inst = lir->instructions_list(); 3198 for (int i = 0; i < inst->length(); i++) { 3199 LIR_Op* op = inst->at(i); 3200 switch (state) { 3201 case start_s: 3202 first_key = -1; 3203 start_insn = i; 3204 switch (op->code()) { 3205 case lir_cmp: 3206 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3207 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3208 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3209 && opr2->is_constant() 3210 && opr2->type() == T_INT) { 3211 reg_opr = opr1; 3212 reg = opr1->as_register(); 3213 first_key = opr2->as_constant_ptr()->as_jint(); 3214 next_key = first_key + 1; 3215 state = cmp_s; 3216 goto next_state; 3217 } 3218 break; 3219 } 3220 break; 3221 case cmp_s: 3222 switch (op->code()) { 3223 case lir_branch: 3224 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3225 state = beq_s; 3226 last_insn = i; 3227 goto next_state; 3228 } 3229 } 3230 state = start_s; 3231 break; 3232 case beq_s: 3233 switch (op->code()) { 3234 case lir_cmp: { 3235 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3236 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3237 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3238 && opr1->as_register() == reg 3239 && opr2->is_constant() 3240 && opr2->type() == T_INT 3241 && opr2->as_constant_ptr()->as_jint() == next_key) { 3242 last_key = next_key; 3243 next_key++; 3244 state = cmp_s; 3245 goto next_state; 3246 } 3247 } 3248 } 3249 last_key = next_key; 3250 state = start_s; 3251 break; 3252 default: 3253 assert(false, "impossible state"); 3254 } 3255 if (state == start_s) { 3256 if (first_key < last_key - 5L && reg != noreg) { 3257 { 3258 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3259 // reg->encoding(), 3260 // start_insn, first_key, last_key); 3261 // for (int i = 0; i < inst->length(); i++) { 3262 // inst->at(i)->print(); 3263 // tty->print("\n"); 3264 // } 3265 // tty->print("\n"); 3266 } 3267 3268 struct tableswitch *sw = &switches[tableswitch_count]; 3269 sw->_insn_index = start_insn, sw->_first_key = first_key, 3270 sw->_last_key = last_key, sw->_reg = reg; 3271 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3272 { 3273 // Insert the new table of branches 3274 int offset = last_insn; 3275 for (int n = first_key; n < last_key; n++) { 3276 inst->insert_before 3277 (last_insn + 1, 3278 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3279 inst->at(offset)->as_OpBranch()->label())); 3280 offset -= 2, i++; 3281 } 3282 } 3283 // Delete all the old compare-and-branch instructions 3284 for (int n = first_key; n < last_key; n++) { 3285 inst->remove_at(start_insn); 3286 inst->remove_at(start_insn); 3287 } 3288 // Insert the tableswitch instruction 3289 inst->insert_before(start_insn, 3290 new LIR_Op2(lir_cmp, lir_cond_always, 3291 LIR_OprFact::intConst(tableswitch_count), 3292 reg_opr)); 3293 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3294 tableswitch_count++; 3295 } 3296 reg = noreg; 3297 last_key = -2147483648; 3298 } 3299 next_state: 3300 ; 3301 } 3302 #endif 3303 } 3304 3305 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3306 Address addr = as_Address(src->as_address_ptr()); 3307 BasicType type = src->type(); 3308 bool is_oop = is_reference_type(type); 3309 3310 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3311 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3312 3313 switch(type) { 3314 case T_INT: 3315 xchg = &MacroAssembler::atomic_xchgalw; 3316 add = &MacroAssembler::atomic_addalw; 3317 break; 3318 case T_LONG: 3319 xchg = &MacroAssembler::atomic_xchgal; 3320 add = &MacroAssembler::atomic_addal; 3321 break; 3322 case T_OBJECT: 3323 case T_ARRAY: 3324 if (UseCompressedOops) { 3325 xchg = &MacroAssembler::atomic_xchgalw; 3326 add = &MacroAssembler::atomic_addalw; 3327 } else { 3328 xchg = &MacroAssembler::atomic_xchgal; 3329 add = &MacroAssembler::atomic_addal; 3330 } 3331 break; 3332 default: 3333 ShouldNotReachHere(); 3334 xchg = &MacroAssembler::atomic_xchgal; 3335 add = &MacroAssembler::atomic_addal; // unreachable 3336 } 3337 3338 switch (code) { 3339 case lir_xadd: 3340 { 3341 RegisterOrConstant inc; 3342 Register tmp = as_reg(tmp_op); 3343 Register dst = as_reg(dest); 3344 if (data->is_constant()) { 3345 inc = RegisterOrConstant(as_long(data)); 3346 assert_different_registers(dst, addr.base(), tmp, 3347 rscratch1, rscratch2); 3348 } else { 3349 inc = RegisterOrConstant(as_reg(data)); 3350 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3351 rscratch1, rscratch2); 3352 } 3353 __ lea(tmp, addr); 3354 (_masm->*add)(dst, inc, tmp); 3355 break; 3356 } 3357 case lir_xchg: 3358 { 3359 Register tmp = tmp_op->as_register(); 3360 Register obj = as_reg(data); 3361 Register dst = as_reg(dest); 3362 if (is_oop && UseCompressedOops) { 3363 __ encode_heap_oop(rscratch2, obj); 3364 obj = rscratch2; 3365 } 3366 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3367 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3368 __ lea(tmp, addr); 3369 (_masm->*xchg)(dst, obj, tmp); 3370 if (is_oop && UseCompressedOops) { 3371 __ decode_heap_oop(dst); 3372 } 3373 } 3374 break; 3375 default: 3376 ShouldNotReachHere(); 3377 } 3378 __ membar(__ AnyAny); 3379 } 3380 3381 #undef __