1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInlineKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "code/compiledIC.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "vmreg_aarch64.inline.hpp" 48 49 50 #ifndef PRODUCT 51 #define COMMENT(x) do { __ block_comment(x); } while (0) 52 #else 53 #define COMMENT(x) 54 #endif 55 56 NEEDS_CLEANUP // remove this definitions ? 57 const Register SYNC_header = r0; // synchronization header 58 const Register SHIFT_count = r0; // where count for shift operations must be 59 60 #define __ _masm-> 61 62 63 static void select_different_registers(Register preserve, 64 Register extra, 65 Register &tmp1, 66 Register &tmp2) { 67 if (tmp1 == preserve) { 68 assert_different_registers(tmp1, tmp2, extra); 69 tmp1 = extra; 70 } else if (tmp2 == preserve) { 71 assert_different_registers(tmp1, tmp2, extra); 72 tmp2 = extra; 73 } 74 assert_different_registers(preserve, tmp1, tmp2); 75 } 76 77 78 79 static void select_different_registers(Register preserve, 80 Register extra, 81 Register &tmp1, 82 Register &tmp2, 83 Register &tmp3) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, tmp3, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, tmp3, extra); 89 tmp2 = extra; 90 } else if (tmp3 == preserve) { 91 assert_different_registers(tmp1, tmp2, tmp3, extra); 92 tmp3 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2, tmp3); 95 } 96 97 98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 99 100 101 LIR_Opr LIR_Assembler::receiverOpr() { 102 return FrameMap::receiver_opr; 103 } 104 105 LIR_Opr LIR_Assembler::osrBufferPointer() { 106 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 107 } 108 109 //--------------fpu register translations----------------------- 110 111 112 address LIR_Assembler::float_constant(float f) { 113 address const_addr = __ float_constant(f); 114 if (const_addr == nullptr) { 115 bailout("const section overflow"); 116 return __ code()->consts()->start(); 117 } else { 118 return const_addr; 119 } 120 } 121 122 123 address LIR_Assembler::double_constant(double d) { 124 address const_addr = __ double_constant(d); 125 if (const_addr == nullptr) { 126 bailout("const section overflow"); 127 return __ code()->consts()->start(); 128 } else { 129 return const_addr; 130 } 131 } 132 133 address LIR_Assembler::int_constant(jlong n) { 134 address const_addr = __ long_constant(n); 135 if (const_addr == nullptr) { 136 bailout("const section overflow"); 137 return __ code()->consts()->start(); 138 } else { 139 return const_addr; 140 } 141 } 142 143 void LIR_Assembler::breakpoint() { Unimplemented(); } 144 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 146 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 148 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 150 //------------------------------------------- 151 152 static Register as_reg(LIR_Opr op) { 153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 154 } 155 156 static jlong as_long(LIR_Opr data) { 157 jlong result; 158 switch (data->type()) { 159 case T_INT: 160 result = (data->as_jint()); 161 break; 162 case T_LONG: 163 result = (data->as_jlong()); 164 break; 165 default: 166 ShouldNotReachHere(); 167 result = 0; // unreachable 168 } 169 return result; 170 } 171 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 173 Register base = addr->base()->as_pointer_register(); 174 LIR_Opr opr = addr->index(); 175 if (opr->is_cpu_register()) { 176 Register index; 177 if (opr->is_single_cpu()) 178 index = opr->as_register(); 179 else 180 index = opr->as_register_lo(); 181 assert(addr->disp() == 0, "must be"); 182 switch(opr->type()) { 183 case T_INT: 184 return Address(base, index, Address::sxtw(addr->scale())); 185 case T_LONG: 186 return Address(base, index, Address::lsl(addr->scale())); 187 default: 188 ShouldNotReachHere(); 189 } 190 } else { 191 assert(addr->scale() == 0, 192 "expected for immediate operand, was: %d", addr->scale()); 193 ptrdiff_t offset = ptrdiff_t(addr->disp()); 194 // NOTE: Does not handle any 16 byte vector access. 195 const uint type_size = type2aelembytes(addr->type(), true); 196 return __ legitimize_address(Address(base, offset), type_size, tmp); 197 } 198 return Address(); 199 } 200 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 202 ShouldNotReachHere(); 203 return Address(); 204 } 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 211 return as_Address(addr, rscratch1); // Ouch 212 // FIXME: This needs to be much more clever. See x86. 213 } 214 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 216 // not encodable as a base + (immediate) offset, generate an explicit address 217 // calculation to hold the address in a temporary register. 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 219 precond(size == 4 || size == 8); 220 Address addr = frame_map()->address_for_slot(index, adjust); 221 precond(addr.getMode() == Address::base_plus_offset); 222 precond(addr.base() == sp); 223 precond(addr.offset() > 0); 224 uint mask = size - 1; 225 assert((addr.offset() & mask) == 0, "scaled offsets only"); 226 return __ legitimize_address(addr, size, tmp); 227 } 228 229 void LIR_Assembler::osr_entry() { 230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 231 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 232 ValueStack* entry_state = osr_entry->state(); 233 int number_of_locks = entry_state->locks_size(); 234 235 // we jump here if osr happens with the interpreter 236 // state set up to continue at the beginning of the 237 // loop that triggered osr - in particular, we have 238 // the following registers setup: 239 // 240 // r2: osr buffer 241 // 242 243 // build frame 244 ciMethod* m = compilation()->method(); 245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 246 247 // OSR buffer is 248 // 249 // locals[nlocals-1..0] 250 // monitors[0..number_of_locks] 251 // 252 // locals is a direct copy of the interpreter frame so in the osr buffer 253 // so first slot in the local array is the last local from the interpreter 254 // and last slot is local[0] (receiver) from the interpreter 255 // 256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 258 // in the interpreter frame (the method lock if a sync method) 259 260 // Initialize monitors in the compiled activation. 261 // r2: pointer to osr buffer 262 // 263 // All other registers are dead at this point and the locals will be 264 // copied into place by code emitted in the IR. 265 266 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 268 int monitor_offset = BytesPerWord * method()->max_locals() + 269 (2 * BytesPerWord) * (number_of_locks - 1); 270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 271 // the OSR buffer using 2 word entries: first the lock and then 272 // the oop. 273 for (int i = 0; i < number_of_locks; i++) { 274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 275 #ifdef ASSERT 276 // verify the interpreter's monitor has a non-null object 277 { 278 Label L; 279 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 280 __ cbnz(rscratch1, L); 281 __ stop("locked object is null"); 282 __ bind(L); 283 } 284 #endif 285 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 286 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 287 __ str(r19, frame_map()->address_for_monitor_lock(i)); 288 __ str(r20, frame_map()->address_for_monitor_object(i)); 289 } 290 } 291 } 292 293 294 // inline cache check; done before the frame is built. 295 int LIR_Assembler::check_icache() { 296 return __ ic_check(CodeEntryAlignment); 297 } 298 299 void LIR_Assembler::clinit_barrier(ciMethod* method) { 300 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 301 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 302 303 Label L_skip_barrier; 304 305 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 306 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 307 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 308 __ bind(L_skip_barrier); 309 } 310 311 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 312 if (o == nullptr) { 313 __ mov(reg, zr); 314 } else { 315 __ movoop(reg, o); 316 } 317 } 318 319 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 320 address target = nullptr; 321 relocInfo::relocType reloc_type = relocInfo::none; 322 323 switch (patching_id(info)) { 324 case PatchingStub::access_field_id: 325 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 326 reloc_type = relocInfo::section_word_type; 327 break; 328 case PatchingStub::load_klass_id: 329 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 330 reloc_type = relocInfo::metadata_type; 331 break; 332 case PatchingStub::load_mirror_id: 333 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 334 reloc_type = relocInfo::oop_type; 335 break; 336 case PatchingStub::load_appendix_id: 337 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 338 reloc_type = relocInfo::oop_type; 339 break; 340 default: ShouldNotReachHere(); 341 } 342 343 __ far_call(RuntimeAddress(target)); 344 add_call_info_here(info); 345 } 346 347 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 348 deoptimize_trap(info); 349 } 350 351 352 // This specifies the rsp decrement needed to build the frame 353 int LIR_Assembler::initial_frame_size_in_bytes() const { 354 // if rounding, must let FrameMap know! 355 356 return in_bytes(frame_map()->framesize_in_bytes()); 357 } 358 359 360 int LIR_Assembler::emit_exception_handler() { 361 // generate code for exception handler 362 address handler_base = __ start_a_stub(exception_handler_size()); 363 if (handler_base == nullptr) { 364 // not enough space left for the handler 365 bailout("exception handler overflow"); 366 return -1; 367 } 368 369 int offset = code_offset(); 370 371 // the exception oop and pc are in r0, and r3 372 // no other registers need to be preserved, so invalidate them 373 __ invalidate_registers(false, true, true, false, true, true); 374 375 // check that there is really an exception 376 __ verify_not_null_oop(r0); 377 378 // search an exception handler (r0: exception oop, r3: throwing pc) 379 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id))); 380 __ should_not_reach_here(); 381 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 382 __ end_a_stub(); 383 384 return offset; 385 } 386 387 388 // Emit the code to remove the frame from the stack in the exception 389 // unwind path. 390 int LIR_Assembler::emit_unwind_handler() { 391 #ifndef PRODUCT 392 if (CommentedAssembly) { 393 _masm->block_comment("Unwind handler"); 394 } 395 #endif 396 397 int offset = code_offset(); 398 399 // Fetch the exception from TLS and clear out exception related thread state 400 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 401 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 403 404 __ bind(_unwind_handler_entry); 405 __ verify_not_null_oop(r0); 406 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 407 __ mov(r19, r0); // Preserve the exception 408 } 409 410 // Perform needed unlocking 411 MonitorExitStub* stub = nullptr; 412 if (method()->is_synchronized()) { 413 monitor_address(0, FrameMap::r0_opr); 414 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 415 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 416 __ bind(*stub->continuation()); 417 } 418 419 if (compilation()->env()->dtrace_method_probes()) { 420 __ mov(c_rarg0, rthread); 421 __ mov_metadata(c_rarg1, method()->constant_encoding()); 422 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 423 } 424 425 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 426 __ mov(r0, r19); // Restore the exception 427 } 428 429 // remove the activation and dispatch to the unwind handler 430 __ block_comment("remove_frame and dispatch to the unwind handler"); 431 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 432 __ far_jump(RuntimeAddress(Runtime1::entry_for(StubId::c1_unwind_exception_id))); 433 434 // Emit the slow path assembly 435 if (stub != nullptr) { 436 stub->emit_code(this); 437 } 438 439 return offset; 440 } 441 442 443 int LIR_Assembler::emit_deopt_handler() { 444 // generate code for exception handler 445 address handler_base = __ start_a_stub(deopt_handler_size()); 446 if (handler_base == nullptr) { 447 // not enough space left for the handler 448 bailout("deopt handler overflow"); 449 return -1; 450 } 451 452 int offset = code_offset(); 453 454 __ adr(lr, pc()); 455 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 456 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 457 __ end_a_stub(); 458 459 return offset; 460 } 461 462 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 463 _masm->code_section()->relocate(adr, relocInfo::poll_type); 464 int pc_offset = code_offset(); 465 flush_debug_info(pc_offset); 466 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 467 if (info->exception_handlers() != nullptr) { 468 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 469 } 470 } 471 472 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 473 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 474 475 if (InlineTypeReturnedAsFields) { 476 // Check if we are returning an non-null inline type and load its fields into registers 477 ciType* return_type = compilation()->method()->return_type(); 478 if (return_type->is_inlinetype()) { 479 ciInlineKlass* vk = return_type->as_inline_klass(); 480 if (vk->can_be_returned_as_fields()) { 481 address unpack_handler = vk->unpack_handler(); 482 assert(unpack_handler != nullptr, "must be"); 483 __ far_call(RuntimeAddress(unpack_handler)); 484 } 485 } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) { 486 Label skip; 487 Label not_null; 488 __ cbnz(r0, not_null); 489 // Returned value is null, zero all return registers because they may belong to oop fields 490 __ mov(j_rarg1, zr); 491 __ mov(j_rarg2, zr); 492 __ mov(j_rarg3, zr); 493 __ mov(j_rarg4, zr); 494 __ mov(j_rarg5, zr); 495 __ mov(j_rarg6, zr); 496 __ mov(j_rarg7, zr); 497 __ b(skip); 498 __ bind(not_null); 499 500 // Check if we are returning an non-null inline type and load its fields into registers 501 __ test_oop_is_not_inline_type(r0, rscratch2, skip, /* can_be_null= */ false); 502 503 // Load fields from a buffered value with an inline class specific handler 504 __ load_klass(rscratch1 /*dst*/, r0 /*src*/); 505 __ ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 506 __ ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 507 // Unpack handler can be null if inline type is not scalarizable in returns 508 __ cbz(rscratch1, skip); 509 __ blr(rscratch1); 510 511 __ bind(skip); 512 } 513 // At this point, r0 points to the value object (for interpreter or C1 caller). 514 // The fields of the object are copied into registers (for C2 caller). 515 } 516 517 // Pop the stack before the safepoint code 518 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 519 520 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 521 __ reserved_stack_check(); 522 } 523 524 code_stub->set_safepoint_offset(__ offset()); 525 __ relocate(relocInfo::poll_return_type); 526 __ safepoint_poll(*code_stub->entry(), true /* at_return */, true /* in_nmethod */); 527 __ ret(lr); 528 } 529 530 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) { 531 return (__ store_inline_type_fields_to_buf(vk, false)); 532 } 533 534 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 535 guarantee(info != nullptr, "Shouldn't be null"); 536 __ get_polling_page(rscratch1, relocInfo::poll_type); 537 add_debug_info_for_branch(info); // This isn't just debug info: 538 // it's the oop map 539 __ read_polling_page(rscratch1, relocInfo::poll_type); 540 return __ offset(); 541 } 542 543 544 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 545 if (from_reg == r31_sp) 546 from_reg = sp; 547 if (to_reg == r31_sp) 548 to_reg = sp; 549 __ mov(to_reg, from_reg); 550 } 551 552 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 553 554 555 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 556 assert(src->is_constant(), "should not call otherwise"); 557 assert(dest->is_register(), "should not call otherwise"); 558 LIR_Const* c = src->as_constant_ptr(); 559 560 switch (c->type()) { 561 case T_INT: { 562 assert(patch_code == lir_patch_none, "no patching handled here"); 563 __ movw(dest->as_register(), c->as_jint()); 564 break; 565 } 566 567 case T_ADDRESS: { 568 assert(patch_code == lir_patch_none, "no patching handled here"); 569 __ mov(dest->as_register(), c->as_jint()); 570 break; 571 } 572 573 case T_LONG: { 574 assert(patch_code == lir_patch_none, "no patching handled here"); 575 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 576 break; 577 } 578 579 case T_OBJECT: { 580 if (patch_code != lir_patch_none) { 581 jobject2reg_with_patching(dest->as_register(), info); 582 } else { 583 jobject2reg(c->as_jobject(), dest->as_register()); 584 } 585 break; 586 } 587 588 case T_METADATA: { 589 if (patch_code != lir_patch_none) { 590 klass2reg_with_patching(dest->as_register(), info); 591 } else { 592 __ mov_metadata(dest->as_register(), c->as_metadata()); 593 } 594 break; 595 } 596 597 case T_FLOAT: { 598 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 599 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 600 } else { 601 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 602 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 603 } 604 break; 605 } 606 607 case T_DOUBLE: { 608 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 609 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 610 } else { 611 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 612 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 613 } 614 break; 615 } 616 617 default: 618 ShouldNotReachHere(); 619 } 620 } 621 622 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 623 LIR_Const* c = src->as_constant_ptr(); 624 switch (c->type()) { 625 case T_OBJECT: 626 { 627 if (! c->as_jobject()) 628 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 629 else { 630 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 631 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 632 } 633 } 634 break; 635 case T_ADDRESS: 636 { 637 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 638 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 639 } 640 case T_INT: 641 case T_FLOAT: 642 { 643 Register reg = zr; 644 if (c->as_jint_bits() == 0) 645 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 646 else { 647 __ movw(rscratch1, c->as_jint_bits()); 648 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 649 } 650 } 651 break; 652 case T_LONG: 653 case T_DOUBLE: 654 { 655 Register reg = zr; 656 if (c->as_jlong_bits() == 0) 657 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 658 lo_word_offset_in_bytes)); 659 else { 660 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 661 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 662 lo_word_offset_in_bytes)); 663 } 664 } 665 break; 666 default: 667 ShouldNotReachHere(); 668 } 669 } 670 671 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 672 assert(src->is_constant(), "should not call otherwise"); 673 LIR_Const* c = src->as_constant_ptr(); 674 LIR_Address* to_addr = dest->as_address_ptr(); 675 676 void (Assembler::* insn)(Register Rt, const Address &adr); 677 678 switch (type) { 679 case T_ADDRESS: 680 assert(c->as_jint() == 0, "should be"); 681 insn = &Assembler::str; 682 break; 683 case T_LONG: 684 assert(c->as_jlong() == 0, "should be"); 685 insn = &Assembler::str; 686 break; 687 case T_INT: 688 assert(c->as_jint() == 0, "should be"); 689 insn = &Assembler::strw; 690 break; 691 case T_OBJECT: 692 case T_ARRAY: 693 // Non-null case is not handled on aarch64 but handled on x86 694 // FIXME: do we need to add it here? 695 assert(c->as_jobject() == nullptr, "should be"); 696 if (UseCompressedOops && !wide) { 697 insn = &Assembler::strw; 698 } else { 699 insn = &Assembler::str; 700 } 701 break; 702 case T_CHAR: 703 case T_SHORT: 704 assert(c->as_jint() == 0, "should be"); 705 insn = &Assembler::strh; 706 break; 707 case T_BOOLEAN: 708 case T_BYTE: 709 assert(c->as_jint() == 0, "should be"); 710 insn = &Assembler::strb; 711 break; 712 default: 713 ShouldNotReachHere(); 714 insn = &Assembler::str; // unreachable 715 } 716 717 if (info) add_debug_info_for_null_check_here(info); 718 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 719 } 720 721 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 722 assert(src->is_register(), "should not call otherwise"); 723 assert(dest->is_register(), "should not call otherwise"); 724 725 // move between cpu-registers 726 if (dest->is_single_cpu()) { 727 if (src->type() == T_LONG) { 728 // Can do LONG -> OBJECT 729 move_regs(src->as_register_lo(), dest->as_register()); 730 return; 731 } 732 assert(src->is_single_cpu(), "must match"); 733 if (src->type() == T_OBJECT) { 734 __ verify_oop(src->as_register()); 735 } 736 move_regs(src->as_register(), dest->as_register()); 737 738 } else if (dest->is_double_cpu()) { 739 if (is_reference_type(src->type())) { 740 // Surprising to me but we can see move of a long to t_object 741 __ verify_oop(src->as_register()); 742 move_regs(src->as_register(), dest->as_register_lo()); 743 return; 744 } 745 assert(src->is_double_cpu(), "must match"); 746 Register f_lo = src->as_register_lo(); 747 Register f_hi = src->as_register_hi(); 748 Register t_lo = dest->as_register_lo(); 749 Register t_hi = dest->as_register_hi(); 750 assert(f_hi == f_lo, "must be same"); 751 assert(t_hi == t_lo, "must be same"); 752 move_regs(f_lo, t_lo); 753 754 } else if (dest->is_single_fpu()) { 755 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 756 757 } else if (dest->is_double_fpu()) { 758 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 759 760 } else { 761 ShouldNotReachHere(); 762 } 763 } 764 765 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 766 precond(src->is_register() && dest->is_stack()); 767 768 uint const c_sz32 = sizeof(uint32_t); 769 uint const c_sz64 = sizeof(uint64_t); 770 771 if (src->is_single_cpu()) { 772 int index = dest->single_stack_ix(); 773 if (is_reference_type(type)) { 774 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 775 __ verify_oop(src->as_register()); 776 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 777 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 778 } else { 779 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 780 } 781 782 } else if (src->is_double_cpu()) { 783 int index = dest->double_stack_ix(); 784 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 785 __ str(src->as_register_lo(), dest_addr_LO); 786 787 } else if (src->is_single_fpu()) { 788 int index = dest->single_stack_ix(); 789 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 790 791 } else if (src->is_double_fpu()) { 792 int index = dest->double_stack_ix(); 793 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 794 795 } else { 796 ShouldNotReachHere(); 797 } 798 } 799 800 801 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 802 LIR_Address* to_addr = dest->as_address_ptr(); 803 PatchingStub* patch = nullptr; 804 Register compressed_src = rscratch1; 805 806 if (patch_code != lir_patch_none) { 807 deoptimize_trap(info); 808 return; 809 } 810 811 if (is_reference_type(type)) { 812 __ verify_oop(src->as_register()); 813 814 if (UseCompressedOops && !wide) { 815 __ encode_heap_oop(compressed_src, src->as_register()); 816 } else { 817 compressed_src = src->as_register(); 818 } 819 } 820 821 int null_check_here = code_offset(); 822 switch (type) { 823 case T_FLOAT: { 824 __ strs(src->as_float_reg(), as_Address(to_addr)); 825 break; 826 } 827 828 case T_DOUBLE: { 829 __ strd(src->as_double_reg(), as_Address(to_addr)); 830 break; 831 } 832 833 case T_ARRAY: // fall through 834 case T_OBJECT: // fall through 835 if (UseCompressedOops && !wide) { 836 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 837 } else { 838 __ str(compressed_src, as_Address(to_addr)); 839 } 840 break; 841 case T_METADATA: 842 // We get here to store a method pointer to the stack to pass to 843 // a dtrace runtime call. This can't work on 64 bit with 844 // compressed klass ptrs: T_METADATA can be a compressed klass 845 // ptr or a 64 bit method pointer. 846 ShouldNotReachHere(); 847 __ str(src->as_register(), as_Address(to_addr)); 848 break; 849 case T_ADDRESS: 850 __ str(src->as_register(), as_Address(to_addr)); 851 break; 852 case T_INT: 853 __ strw(src->as_register(), as_Address(to_addr)); 854 break; 855 856 case T_LONG: { 857 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 858 break; 859 } 860 861 case T_BYTE: // fall through 862 case T_BOOLEAN: { 863 __ strb(src->as_register(), as_Address(to_addr)); 864 break; 865 } 866 867 case T_CHAR: // fall through 868 case T_SHORT: 869 __ strh(src->as_register(), as_Address(to_addr)); 870 break; 871 872 default: 873 ShouldNotReachHere(); 874 } 875 if (info != nullptr) { 876 add_debug_info_for_null_check(null_check_here, info); 877 } 878 } 879 880 881 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 882 precond(src->is_stack() && dest->is_register()); 883 884 uint const c_sz32 = sizeof(uint32_t); 885 uint const c_sz64 = sizeof(uint64_t); 886 887 if (dest->is_single_cpu()) { 888 int index = src->single_stack_ix(); 889 if (is_reference_type(type)) { 890 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 891 __ verify_oop(dest->as_register()); 892 } else if (type == T_METADATA || type == T_ADDRESS) { 893 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 894 } else { 895 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 896 } 897 898 } else if (dest->is_double_cpu()) { 899 int index = src->double_stack_ix(); 900 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 901 __ ldr(dest->as_register_lo(), src_addr_LO); 902 903 } else if (dest->is_single_fpu()) { 904 int index = src->single_stack_ix(); 905 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 906 907 } else if (dest->is_double_fpu()) { 908 int index = src->double_stack_ix(); 909 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 910 911 } else { 912 ShouldNotReachHere(); 913 } 914 } 915 916 917 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 918 address target = nullptr; 919 relocInfo::relocType reloc_type = relocInfo::none; 920 921 switch (patching_id(info)) { 922 case PatchingStub::access_field_id: 923 target = Runtime1::entry_for(StubId::c1_access_field_patching_id); 924 reloc_type = relocInfo::section_word_type; 925 break; 926 case PatchingStub::load_klass_id: 927 target = Runtime1::entry_for(StubId::c1_load_klass_patching_id); 928 reloc_type = relocInfo::metadata_type; 929 break; 930 case PatchingStub::load_mirror_id: 931 target = Runtime1::entry_for(StubId::c1_load_mirror_patching_id); 932 reloc_type = relocInfo::oop_type; 933 break; 934 case PatchingStub::load_appendix_id: 935 target = Runtime1::entry_for(StubId::c1_load_appendix_patching_id); 936 reloc_type = relocInfo::oop_type; 937 break; 938 default: ShouldNotReachHere(); 939 } 940 941 __ far_call(RuntimeAddress(target)); 942 add_call_info_here(info); 943 } 944 945 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 946 947 LIR_Opr temp; 948 if (type == T_LONG || type == T_DOUBLE) 949 temp = FrameMap::rscratch1_long_opr; 950 else 951 temp = FrameMap::rscratch1_opr; 952 953 stack2reg(src, temp, src->type()); 954 reg2stack(temp, dest, dest->type()); 955 } 956 957 958 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 959 LIR_Address* addr = src->as_address_ptr(); 960 LIR_Address* from_addr = src->as_address_ptr(); 961 962 if (addr->base()->type() == T_OBJECT) { 963 __ verify_oop(addr->base()->as_pointer_register()); 964 } 965 966 if (patch_code != lir_patch_none) { 967 deoptimize_trap(info); 968 return; 969 } 970 971 if (info != nullptr) { 972 add_debug_info_for_null_check_here(info); 973 } 974 int null_check_here = code_offset(); 975 switch (type) { 976 case T_FLOAT: { 977 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 978 break; 979 } 980 981 case T_DOUBLE: { 982 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 983 break; 984 } 985 986 case T_ARRAY: // fall through 987 case T_OBJECT: // fall through 988 if (UseCompressedOops && !wide) { 989 __ ldrw(dest->as_register(), as_Address(from_addr)); 990 } else { 991 __ ldr(dest->as_register(), as_Address(from_addr)); 992 } 993 break; 994 case T_METADATA: 995 // We get here to store a method pointer to the stack to pass to 996 // a dtrace runtime call. This can't work on 64 bit with 997 // compressed klass ptrs: T_METADATA can be a compressed klass 998 // ptr or a 64 bit method pointer. 999 ShouldNotReachHere(); 1000 __ ldr(dest->as_register(), as_Address(from_addr)); 1001 break; 1002 case T_ADDRESS: 1003 __ ldr(dest->as_register(), as_Address(from_addr)); 1004 break; 1005 case T_INT: 1006 __ ldrw(dest->as_register(), as_Address(from_addr)); 1007 break; 1008 1009 case T_LONG: { 1010 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 1011 break; 1012 } 1013 1014 case T_BYTE: 1015 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1016 break; 1017 case T_BOOLEAN: { 1018 __ ldrb(dest->as_register(), as_Address(from_addr)); 1019 break; 1020 } 1021 1022 case T_CHAR: 1023 __ ldrh(dest->as_register(), as_Address(from_addr)); 1024 break; 1025 case T_SHORT: 1026 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1027 break; 1028 1029 default: 1030 ShouldNotReachHere(); 1031 } 1032 1033 if (is_reference_type(type)) { 1034 if (UseCompressedOops && !wide) { 1035 __ decode_heap_oop(dest->as_register()); 1036 } 1037 1038 __ verify_oop(dest->as_register()); 1039 } 1040 } 1041 1042 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) { 1043 assert(dst->is_cpu_register(), "must be"); 1044 assert(dst->type() == src->type(), "must be"); 1045 1046 if (src->is_cpu_register()) { 1047 reg2reg(src, dst); 1048 } else if (src->is_stack()) { 1049 stack2reg(src, dst, dst->type()); 1050 } else if (src->is_constant()) { 1051 const2reg(src, dst, lir_patch_none, nullptr); 1052 } else { 1053 ShouldNotReachHere(); 1054 } 1055 } 1056 1057 int LIR_Assembler::array_element_size(BasicType type) const { 1058 int elem_size = type2aelembytes(type); 1059 return exact_log2(elem_size); 1060 } 1061 1062 1063 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1064 switch (op->code()) { 1065 case lir_idiv: 1066 case lir_irem: 1067 arithmetic_idiv(op->code(), 1068 op->in_opr1(), 1069 op->in_opr2(), 1070 op->in_opr3(), 1071 op->result_opr(), 1072 op->info()); 1073 break; 1074 case lir_fmad: 1075 __ fmaddd(op->result_opr()->as_double_reg(), 1076 op->in_opr1()->as_double_reg(), 1077 op->in_opr2()->as_double_reg(), 1078 op->in_opr3()->as_double_reg()); 1079 break; 1080 case lir_fmaf: 1081 __ fmadds(op->result_opr()->as_float_reg(), 1082 op->in_opr1()->as_float_reg(), 1083 op->in_opr2()->as_float_reg(), 1084 op->in_opr3()->as_float_reg()); 1085 break; 1086 default: ShouldNotReachHere(); break; 1087 } 1088 } 1089 1090 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1091 #ifdef ASSERT 1092 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1093 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1094 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1095 #endif 1096 1097 if (op->cond() == lir_cond_always) { 1098 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1099 __ b(*(op->label())); 1100 } else { 1101 Assembler::Condition acond; 1102 if (op->code() == lir_cond_float_branch) { 1103 bool is_unordered = (op->ublock() == op->block()); 1104 // Assembler::EQ does not permit unordered branches, so we add 1105 // another branch here. Likewise, Assembler::NE does not permit 1106 // ordered branches. 1107 if ((is_unordered && op->cond() == lir_cond_equal) 1108 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1109 __ br(Assembler::VS, *(op->ublock()->label())); 1110 switch(op->cond()) { 1111 case lir_cond_equal: acond = Assembler::EQ; break; 1112 case lir_cond_notEqual: acond = Assembler::NE; break; 1113 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1114 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1115 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1116 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1117 default: ShouldNotReachHere(); 1118 acond = Assembler::EQ; // unreachable 1119 } 1120 } else { 1121 switch (op->cond()) { 1122 case lir_cond_equal: acond = Assembler::EQ; break; 1123 case lir_cond_notEqual: acond = Assembler::NE; break; 1124 case lir_cond_less: acond = Assembler::LT; break; 1125 case lir_cond_lessEqual: acond = Assembler::LE; break; 1126 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1127 case lir_cond_greater: acond = Assembler::GT; break; 1128 case lir_cond_belowEqual: acond = Assembler::LS; break; 1129 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1130 default: ShouldNotReachHere(); 1131 acond = Assembler::EQ; // unreachable 1132 } 1133 } 1134 __ br(acond,*(op->label())); 1135 } 1136 } 1137 1138 1139 1140 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1141 LIR_Opr src = op->in_opr(); 1142 LIR_Opr dest = op->result_opr(); 1143 1144 switch (op->bytecode()) { 1145 case Bytecodes::_i2f: 1146 { 1147 __ scvtfws(dest->as_float_reg(), src->as_register()); 1148 break; 1149 } 1150 case Bytecodes::_i2d: 1151 { 1152 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1153 break; 1154 } 1155 case Bytecodes::_l2d: 1156 { 1157 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1158 break; 1159 } 1160 case Bytecodes::_l2f: 1161 { 1162 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1163 break; 1164 } 1165 case Bytecodes::_f2d: 1166 { 1167 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1168 break; 1169 } 1170 case Bytecodes::_d2f: 1171 { 1172 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1173 break; 1174 } 1175 case Bytecodes::_i2c: 1176 { 1177 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1178 break; 1179 } 1180 case Bytecodes::_i2l: 1181 { 1182 __ sxtw(dest->as_register_lo(), src->as_register()); 1183 break; 1184 } 1185 case Bytecodes::_i2s: 1186 { 1187 __ sxth(dest->as_register(), src->as_register()); 1188 break; 1189 } 1190 case Bytecodes::_i2b: 1191 { 1192 __ sxtb(dest->as_register(), src->as_register()); 1193 break; 1194 } 1195 case Bytecodes::_l2i: 1196 { 1197 _masm->block_comment("FIXME: This could be a no-op"); 1198 __ uxtw(dest->as_register(), src->as_register_lo()); 1199 break; 1200 } 1201 case Bytecodes::_d2l: 1202 { 1203 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1204 break; 1205 } 1206 case Bytecodes::_f2i: 1207 { 1208 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1209 break; 1210 } 1211 case Bytecodes::_f2l: 1212 { 1213 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1214 break; 1215 } 1216 case Bytecodes::_d2i: 1217 { 1218 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1219 break; 1220 } 1221 default: ShouldNotReachHere(); 1222 } 1223 } 1224 1225 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1226 if (op->init_check()) { 1227 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1228 __ ldarb(rscratch1, rscratch1); 1229 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1230 add_debug_info_for_null_check_here(op->stub()->info()); 1231 __ br(Assembler::NE, *op->stub()->entry()); 1232 } 1233 __ allocate_object(op->obj()->as_register(), 1234 op->tmp1()->as_register(), 1235 op->tmp2()->as_register(), 1236 op->header_size(), 1237 op->object_size(), 1238 op->klass()->as_register(), 1239 *op->stub()->entry()); 1240 __ bind(*op->stub()->continuation()); 1241 } 1242 1243 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1244 Register len = op->len()->as_register(); 1245 __ uxtw(len, len); 1246 1247 if (UseSlowPath || op->always_slow_path() || 1248 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1249 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1250 __ b(*op->stub()->entry()); 1251 } else { 1252 Register tmp1 = op->tmp1()->as_register(); 1253 Register tmp2 = op->tmp2()->as_register(); 1254 Register tmp3 = op->tmp3()->as_register(); 1255 if (len == tmp1) { 1256 tmp1 = tmp3; 1257 } else if (len == tmp2) { 1258 tmp2 = tmp3; 1259 } else if (len == tmp3) { 1260 // everything is ok 1261 } else { 1262 __ mov(tmp3, len); 1263 } 1264 __ allocate_array(op->obj()->as_register(), 1265 len, 1266 tmp1, 1267 tmp2, 1268 arrayOopDesc::base_offset_in_bytes(op->type()), 1269 array_element_size(op->type()), 1270 op->klass()->as_register(), 1271 *op->stub()->entry(), 1272 op->zero_array()); 1273 } 1274 __ bind(*op->stub()->continuation()); 1275 } 1276 1277 void LIR_Assembler::type_profile_helper(Register mdo, 1278 ciMethodData *md, ciProfileData *data, 1279 Register recv, Label* update_done) { 1280 1281 // Given a profile data offset, generate an Address which points to 1282 // the corresponding slot in mdo->data(). 1283 // Clobbers rscratch2. 1284 auto slot_at = [=](ByteSize offset) -> Address { 1285 return __ form_address(rscratch2, mdo, 1286 md->byte_offset_of_slot(data, offset), 1287 LogBytesPerWord); 1288 }; 1289 1290 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1291 Label next_test; 1292 // See if the receiver is receiver[n]. 1293 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1294 __ cmp(recv, rscratch1); 1295 __ br(Assembler::NE, next_test); 1296 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1297 DataLayout::counter_increment); 1298 __ b(*update_done); 1299 __ bind(next_test); 1300 } 1301 1302 // Didn't find receiver; find next empty slot and fill it in 1303 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1304 Label next_test; 1305 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1306 __ ldr(rscratch1, recv_addr); 1307 __ cbnz(rscratch1, next_test); 1308 __ str(recv, recv_addr); 1309 __ mov(rscratch1, DataLayout::counter_increment); 1310 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1311 __ b(*update_done); 1312 __ bind(next_test); 1313 } 1314 } 1315 1316 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1317 // we always need a stub for the failure case. 1318 CodeStub* stub = op->stub(); 1319 Register obj = op->object()->as_register(); 1320 Register k_RInfo = op->tmp1()->as_register(); 1321 Register klass_RInfo = op->tmp2()->as_register(); 1322 Register dst = op->result_opr()->as_register(); 1323 ciKlass* k = op->klass(); 1324 Register Rtmp1 = noreg; 1325 1326 // check if it needs to be profiled 1327 ciMethodData* md; 1328 ciProfileData* data; 1329 1330 const bool should_profile = op->should_profile(); 1331 1332 if (should_profile) { 1333 ciMethod* method = op->profiled_method(); 1334 assert(method != nullptr, "Should have method"); 1335 int bci = op->profiled_bci(); 1336 md = method->method_data_or_null(); 1337 assert(md != nullptr, "Sanity"); 1338 data = md->bci_to_data(bci); 1339 assert(data != nullptr, "need data for type check"); 1340 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1341 } 1342 Label* success_target = success; 1343 Label* failure_target = failure; 1344 1345 if (obj == k_RInfo) { 1346 k_RInfo = dst; 1347 } else if (obj == klass_RInfo) { 1348 klass_RInfo = dst; 1349 } 1350 if (k->is_loaded() && !UseCompressedClassPointers) { 1351 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1352 } else { 1353 Rtmp1 = op->tmp3()->as_register(); 1354 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1355 } 1356 1357 assert_different_registers(obj, k_RInfo, klass_RInfo); 1358 1359 if (op->need_null_check()) { 1360 if (should_profile) { 1361 Register mdo = klass_RInfo; 1362 __ mov_metadata(mdo, md->constant_encoding()); 1363 Label not_null; 1364 __ cbnz(obj, not_null); 1365 // Object is null; update MDO and exit 1366 Address data_addr 1367 = __ form_address(rscratch2, mdo, 1368 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1369 0); 1370 __ ldrb(rscratch1, data_addr); 1371 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1372 __ strb(rscratch1, data_addr); 1373 __ b(*obj_is_null); 1374 __ bind(not_null); 1375 1376 Label update_done; 1377 Register recv = k_RInfo; 1378 __ load_klass(recv, obj); 1379 type_profile_helper(mdo, md, data, recv, &update_done); 1380 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1381 __ addptr(counter_addr, DataLayout::counter_increment); 1382 1383 __ bind(update_done); 1384 } else { 1385 __ cbz(obj, *obj_is_null); 1386 } 1387 } 1388 1389 if (!k->is_loaded()) { 1390 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1391 } else { 1392 __ mov_metadata(k_RInfo, k->constant_encoding()); 1393 } 1394 __ verify_oop(obj); 1395 1396 if (op->fast_check()) { 1397 // get object class 1398 // not a safepoint as obj null check happens earlier 1399 __ load_klass(rscratch1, obj); 1400 __ cmp( rscratch1, k_RInfo); 1401 1402 __ br(Assembler::NE, *failure_target); 1403 // successful cast, fall through to profile or jump 1404 } else { 1405 // get object class 1406 // not a safepoint as obj null check happens earlier 1407 __ load_klass(klass_RInfo, obj); 1408 if (k->is_loaded()) { 1409 // See if we get an immediate positive hit 1410 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1411 __ cmp(k_RInfo, rscratch1); 1412 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1413 __ br(Assembler::NE, *failure_target); 1414 // successful cast, fall through to profile or jump 1415 } else { 1416 // See if we get an immediate positive hit 1417 __ br(Assembler::EQ, *success_target); 1418 // check for self 1419 __ cmp(klass_RInfo, k_RInfo); 1420 __ br(Assembler::EQ, *success_target); 1421 1422 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1423 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1424 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1425 // result is a boolean 1426 __ cbzw(klass_RInfo, *failure_target); 1427 // successful cast, fall through to profile or jump 1428 } 1429 } else { 1430 // perform the fast part of the checking logic 1431 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1432 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1433 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1434 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1435 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1436 // result is a boolean 1437 __ cbz(k_RInfo, *failure_target); 1438 // successful cast, fall through to profile or jump 1439 } 1440 } 1441 __ b(*success); 1442 } 1443 1444 1445 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1446 const bool should_profile = op->should_profile(); 1447 1448 LIR_Code code = op->code(); 1449 if (code == lir_store_check) { 1450 Register value = op->object()->as_register(); 1451 Register array = op->array()->as_register(); 1452 Register k_RInfo = op->tmp1()->as_register(); 1453 Register klass_RInfo = op->tmp2()->as_register(); 1454 Register Rtmp1 = op->tmp3()->as_register(); 1455 1456 CodeStub* stub = op->stub(); 1457 1458 // check if it needs to be profiled 1459 ciMethodData* md; 1460 ciProfileData* data; 1461 1462 if (should_profile) { 1463 ciMethod* method = op->profiled_method(); 1464 assert(method != nullptr, "Should have method"); 1465 int bci = op->profiled_bci(); 1466 md = method->method_data_or_null(); 1467 assert(md != nullptr, "Sanity"); 1468 data = md->bci_to_data(bci); 1469 assert(data != nullptr, "need data for type check"); 1470 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1471 } 1472 Label done; 1473 Label* success_target = &done; 1474 Label* failure_target = stub->entry(); 1475 1476 if (should_profile) { 1477 Label not_null; 1478 Register mdo = klass_RInfo; 1479 __ mov_metadata(mdo, md->constant_encoding()); 1480 __ cbnz(value, not_null); 1481 // Object is null; update MDO and exit 1482 Address data_addr 1483 = __ form_address(rscratch2, mdo, 1484 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1485 __ ldrb(rscratch1, data_addr); 1486 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1487 __ strb(rscratch1, data_addr); 1488 __ b(done); 1489 __ bind(not_null); 1490 1491 Label update_done; 1492 Register recv = k_RInfo; 1493 __ load_klass(recv, value); 1494 type_profile_helper(mdo, md, data, recv, &update_done); 1495 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1496 __ addptr(counter_addr, DataLayout::counter_increment); 1497 __ bind(update_done); 1498 } else { 1499 __ cbz(value, done); 1500 } 1501 1502 add_debug_info_for_null_check_here(op->info_for_exception()); 1503 __ load_klass(k_RInfo, array); 1504 __ load_klass(klass_RInfo, value); 1505 1506 // get instance klass (it's already uncompressed) 1507 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1508 // perform the fast part of the checking logic 1509 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1510 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1511 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1512 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 1513 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1514 // result is a boolean 1515 __ cbzw(k_RInfo, *failure_target); 1516 // fall through to the success case 1517 1518 __ bind(done); 1519 } else if (code == lir_checkcast) { 1520 Register obj = op->object()->as_register(); 1521 Register dst = op->result_opr()->as_register(); 1522 Label success; 1523 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1524 __ bind(success); 1525 if (dst != obj) { 1526 __ mov(dst, obj); 1527 } 1528 } else if (code == lir_instanceof) { 1529 Register obj = op->object()->as_register(); 1530 Register dst = op->result_opr()->as_register(); 1531 Label success, failure, done; 1532 emit_typecheck_helper(op, &success, &failure, &failure); 1533 __ bind(failure); 1534 __ mov(dst, zr); 1535 __ b(done); 1536 __ bind(success); 1537 __ mov(dst, 1); 1538 __ bind(done); 1539 } else { 1540 ShouldNotReachHere(); 1541 } 1542 } 1543 1544 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) { 1545 // We are loading/storing from/to an array that *may* be a flat array (the 1546 // declared type is Object[], abstract[], interface[] or VT.ref[]). 1547 // If this array is a flat array, take the slow path. 1548 __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1549 if (!op->value()->is_illegal()) { 1550 // The array is not a flat array, but it might be null-free. If we are storing 1551 // a null into a null-free array, take the slow path (which will throw NPE). 1552 Label skip; 1553 __ cbnz(op->value()->as_register(), skip); 1554 __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1555 __ bind(skip); 1556 } 1557 } 1558 1559 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) { 1560 // We are storing into an array that *may* be null-free (the declared type is 1561 // Object[], abstract[], interface[] or VT.ref[]). 1562 Label test_mark_word; 1563 Register tmp = op->tmp()->as_register(); 1564 __ ldr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes())); 1565 __ tst(tmp, markWord::unlocked_value); 1566 __ br(Assembler::NE, test_mark_word); 1567 __ load_prototype_header(tmp, op->array()->as_register()); 1568 __ bind(test_mark_word); 1569 __ tst(tmp, markWord::null_free_array_bit_in_place); 1570 } 1571 1572 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) { 1573 Label L_oops_equal; 1574 Label L_oops_not_equal; 1575 Label L_end; 1576 1577 Register left = op->left()->as_register(); 1578 Register right = op->right()->as_register(); 1579 1580 __ cmp(left, right); 1581 __ br(Assembler::EQ, L_oops_equal); 1582 1583 // (1) Null check -- if one of the operands is null, the other must not be null (because 1584 // the two references are not equal), so they are not substitutable, 1585 // FIXME: do null check only if the operand is nullable 1586 { 1587 __ cbz(left, L_oops_not_equal); 1588 __ cbz(right, L_oops_not_equal); 1589 } 1590 1591 ciKlass* left_klass = op->left_klass(); 1592 ciKlass* right_klass = op->right_klass(); 1593 1594 // (2) Inline type check -- if either of the operands is not a inline type, 1595 // they are not substitutable. We do this only if we are not sure that the 1596 // operands are inline type 1597 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 1598 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 1599 Register tmp1 = op->tmp1()->as_register(); 1600 __ mov(tmp1, markWord::inline_type_pattern); 1601 __ ldr(rscratch1, Address(left, oopDesc::mark_offset_in_bytes())); 1602 __ andr(tmp1, tmp1, rscratch1); 1603 __ ldr(rscratch1, Address(right, oopDesc::mark_offset_in_bytes())); 1604 __ andr(tmp1, tmp1, rscratch1); 1605 __ cmp(tmp1, (u1)markWord::inline_type_pattern); 1606 __ br(Assembler::NE, L_oops_not_equal); 1607 } 1608 1609 // (3) Same klass check: if the operands are of different klasses, they are not substitutable. 1610 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 1611 // No need to load klass -- the operands are statically known to be the same inline klass. 1612 __ b(*op->stub()->entry()); 1613 } else { 1614 Register left_klass_op = op->left_klass_op()->as_register(); 1615 Register right_klass_op = op->right_klass_op()->as_register(); 1616 1617 if (UseCompressedClassPointers) { 1618 __ ldrw(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1619 __ ldrw(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1620 __ cmpw(left_klass_op, right_klass_op); 1621 } else { 1622 __ ldr(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1623 __ ldr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1624 __ cmp(left_klass_op, right_klass_op); 1625 } 1626 1627 __ br(Assembler::EQ, *op->stub()->entry()); // same klass -> do slow check 1628 // fall through to L_oops_not_equal 1629 } 1630 1631 __ bind(L_oops_not_equal); 1632 move(op->not_equal_result(), op->result_opr()); 1633 __ b(L_end); 1634 1635 __ bind(L_oops_equal); 1636 move(op->equal_result(), op->result_opr()); 1637 __ b(L_end); 1638 1639 // We've returned from the stub. R0 contains 0x0 IFF the two 1640 // operands are not substitutable. (Don't compare against 0x1 in case the 1641 // C compiler is naughty) 1642 __ bind(*op->stub()->continuation()); 1643 __ cbz(r0, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal 1644 move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal 1645 // fall-through 1646 __ bind(L_end); 1647 } 1648 1649 1650 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1651 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1652 __ cset(rscratch1, Assembler::NE); 1653 __ membar(__ AnyAny); 1654 } 1655 1656 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1657 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1658 __ cset(rscratch1, Assembler::NE); 1659 __ membar(__ AnyAny); 1660 } 1661 1662 1663 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1664 Register addr; 1665 if (op->addr()->is_register()) { 1666 addr = as_reg(op->addr()); 1667 } else { 1668 assert(op->addr()->is_address(), "what else?"); 1669 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1670 assert(addr_ptr->disp() == 0, "need 0 disp"); 1671 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1672 addr = as_reg(addr_ptr->base()); 1673 } 1674 Register newval = as_reg(op->new_value()); 1675 Register cmpval = as_reg(op->cmp_value()); 1676 1677 if (op->code() == lir_cas_obj) { 1678 if (UseCompressedOops) { 1679 Register t1 = op->tmp1()->as_register(); 1680 assert(op->tmp1()->is_valid(), "must be"); 1681 __ encode_heap_oop(t1, cmpval); 1682 cmpval = t1; 1683 __ encode_heap_oop(rscratch2, newval); 1684 newval = rscratch2; 1685 casw(addr, newval, cmpval); 1686 } else { 1687 casl(addr, newval, cmpval); 1688 } 1689 } else if (op->code() == lir_cas_int) { 1690 casw(addr, newval, cmpval); 1691 } else { 1692 casl(addr, newval, cmpval); 1693 } 1694 } 1695 1696 1697 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1698 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1699 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1700 1701 Assembler::Condition acond, ncond; 1702 switch (condition) { 1703 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1704 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1705 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1706 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1707 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1708 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1709 case lir_cond_belowEqual: 1710 case lir_cond_aboveEqual: 1711 default: ShouldNotReachHere(); 1712 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1713 } 1714 1715 assert(result->is_single_cpu() || result->is_double_cpu(), 1716 "expect single register for result"); 1717 if (opr1->is_constant() && opr2->is_constant() 1718 && opr1->type() == T_INT && opr2->type() == T_INT) { 1719 jint val1 = opr1->as_jint(); 1720 jint val2 = opr2->as_jint(); 1721 if (val1 == 0 && val2 == 1) { 1722 __ cset(result->as_register(), ncond); 1723 return; 1724 } else if (val1 == 1 && val2 == 0) { 1725 __ cset(result->as_register(), acond); 1726 return; 1727 } 1728 } 1729 1730 if (opr1->is_constant() && opr2->is_constant() 1731 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1732 jlong val1 = opr1->as_jlong(); 1733 jlong val2 = opr2->as_jlong(); 1734 if (val1 == 0 && val2 == 1) { 1735 __ cset(result->as_register_lo(), ncond); 1736 return; 1737 } else if (val1 == 1 && val2 == 0) { 1738 __ cset(result->as_register_lo(), acond); 1739 return; 1740 } 1741 } 1742 1743 if (opr1->is_stack()) { 1744 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1745 opr1 = FrameMap::rscratch1_opr; 1746 } else if (opr1->is_constant()) { 1747 LIR_Opr tmp 1748 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1749 const2reg(opr1, tmp, lir_patch_none, nullptr); 1750 opr1 = tmp; 1751 } 1752 1753 if (opr2->is_stack()) { 1754 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1755 opr2 = FrameMap::rscratch2_opr; 1756 } else if (opr2->is_constant()) { 1757 LIR_Opr tmp 1758 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1759 const2reg(opr2, tmp, lir_patch_none, nullptr); 1760 opr2 = tmp; 1761 } 1762 1763 if (result->type() == T_LONG) 1764 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1765 else 1766 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1767 } 1768 1769 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1770 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1771 1772 if (left->is_single_cpu()) { 1773 Register lreg = left->as_register(); 1774 Register dreg = as_reg(dest); 1775 1776 if (right->is_single_cpu()) { 1777 // cpu register - cpu register 1778 1779 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1780 "should be"); 1781 Register rreg = right->as_register(); 1782 switch (code) { 1783 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1784 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1785 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1786 default: ShouldNotReachHere(); 1787 } 1788 1789 } else if (right->is_double_cpu()) { 1790 Register rreg = right->as_register_lo(); 1791 // single_cpu + double_cpu: can happen with obj+long 1792 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1793 switch (code) { 1794 case lir_add: __ add(dreg, lreg, rreg); break; 1795 case lir_sub: __ sub(dreg, lreg, rreg); break; 1796 default: ShouldNotReachHere(); 1797 } 1798 } else if (right->is_constant()) { 1799 // cpu register - constant 1800 jlong c; 1801 1802 // FIXME. This is fugly: we really need to factor all this logic. 1803 switch(right->type()) { 1804 case T_LONG: 1805 c = right->as_constant_ptr()->as_jlong(); 1806 break; 1807 case T_INT: 1808 case T_ADDRESS: 1809 c = right->as_constant_ptr()->as_jint(); 1810 break; 1811 default: 1812 ShouldNotReachHere(); 1813 c = 0; // unreachable 1814 break; 1815 } 1816 1817 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1818 if (c == 0 && dreg == lreg) { 1819 COMMENT("effective nop elided"); 1820 return; 1821 } 1822 switch(left->type()) { 1823 case T_INT: 1824 switch (code) { 1825 case lir_add: __ addw(dreg, lreg, c); break; 1826 case lir_sub: __ subw(dreg, lreg, c); break; 1827 default: ShouldNotReachHere(); 1828 } 1829 break; 1830 case T_OBJECT: 1831 case T_ADDRESS: 1832 switch (code) { 1833 case lir_add: __ add(dreg, lreg, c); break; 1834 case lir_sub: __ sub(dreg, lreg, c); break; 1835 default: ShouldNotReachHere(); 1836 } 1837 break; 1838 default: 1839 ShouldNotReachHere(); 1840 } 1841 } else { 1842 ShouldNotReachHere(); 1843 } 1844 1845 } else if (left->is_double_cpu()) { 1846 Register lreg_lo = left->as_register_lo(); 1847 1848 if (right->is_double_cpu()) { 1849 // cpu register - cpu register 1850 Register rreg_lo = right->as_register_lo(); 1851 switch (code) { 1852 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1853 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1854 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1855 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1856 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1857 default: 1858 ShouldNotReachHere(); 1859 } 1860 1861 } else if (right->is_constant()) { 1862 jlong c = right->as_constant_ptr()->as_jlong(); 1863 Register dreg = as_reg(dest); 1864 switch (code) { 1865 case lir_add: 1866 case lir_sub: 1867 if (c == 0 && dreg == lreg_lo) { 1868 COMMENT("effective nop elided"); 1869 return; 1870 } 1871 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1872 break; 1873 case lir_div: 1874 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1875 if (c == 1) { 1876 // move lreg_lo to dreg if divisor is 1 1877 __ mov(dreg, lreg_lo); 1878 } else { 1879 unsigned int shift = log2i_exact(c); 1880 // use rscratch1 as intermediate result register 1881 __ asr(rscratch1, lreg_lo, 63); 1882 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1883 __ asr(dreg, rscratch1, shift); 1884 } 1885 break; 1886 case lir_rem: 1887 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1888 if (c == 1) { 1889 // move 0 to dreg if divisor is 1 1890 __ mov(dreg, zr); 1891 } else { 1892 // use rscratch1 as intermediate result register 1893 __ negs(rscratch1, lreg_lo); 1894 __ andr(dreg, lreg_lo, c - 1); 1895 __ andr(rscratch1, rscratch1, c - 1); 1896 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1897 } 1898 break; 1899 default: 1900 ShouldNotReachHere(); 1901 } 1902 } else { 1903 ShouldNotReachHere(); 1904 } 1905 } else if (left->is_single_fpu()) { 1906 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1907 switch (code) { 1908 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1909 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1910 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1911 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1912 default: 1913 ShouldNotReachHere(); 1914 } 1915 } else if (left->is_double_fpu()) { 1916 if (right->is_double_fpu()) { 1917 // fpu register - fpu register 1918 switch (code) { 1919 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1920 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1921 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1922 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1923 default: 1924 ShouldNotReachHere(); 1925 } 1926 } else { 1927 if (right->is_constant()) { 1928 ShouldNotReachHere(); 1929 } 1930 ShouldNotReachHere(); 1931 } 1932 } else if (left->is_single_stack() || left->is_address()) { 1933 assert(left == dest, "left and dest must be equal"); 1934 ShouldNotReachHere(); 1935 } else { 1936 ShouldNotReachHere(); 1937 } 1938 } 1939 1940 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1941 switch(code) { 1942 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1943 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1944 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1945 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1946 default : ShouldNotReachHere(); 1947 } 1948 } 1949 1950 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1951 1952 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1953 Register Rleft = left->is_single_cpu() ? left->as_register() : 1954 left->as_register_lo(); 1955 if (dst->is_single_cpu()) { 1956 Register Rdst = dst->as_register(); 1957 if (right->is_constant()) { 1958 switch (code) { 1959 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1960 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1961 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1962 default: ShouldNotReachHere(); break; 1963 } 1964 } else { 1965 Register Rright = right->is_single_cpu() ? right->as_register() : 1966 right->as_register_lo(); 1967 switch (code) { 1968 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1969 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1970 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1971 default: ShouldNotReachHere(); break; 1972 } 1973 } 1974 } else { 1975 Register Rdst = dst->as_register_lo(); 1976 if (right->is_constant()) { 1977 switch (code) { 1978 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1979 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1980 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1981 default: ShouldNotReachHere(); break; 1982 } 1983 } else { 1984 Register Rright = right->is_single_cpu() ? right->as_register() : 1985 right->as_register_lo(); 1986 switch (code) { 1987 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1988 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1989 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1990 default: ShouldNotReachHere(); break; 1991 } 1992 } 1993 } 1994 } 1995 1996 1997 1998 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1999 2000 // opcode check 2001 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 2002 bool is_irem = (code == lir_irem); 2003 2004 // operand check 2005 assert(left->is_single_cpu(), "left must be register"); 2006 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2007 assert(result->is_single_cpu(), "result must be register"); 2008 Register lreg = left->as_register(); 2009 Register dreg = result->as_register(); 2010 2011 // power-of-2 constant check and codegen 2012 if (right->is_constant()) { 2013 int c = right->as_constant_ptr()->as_jint(); 2014 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 2015 if (is_irem) { 2016 if (c == 1) { 2017 // move 0 to dreg if divisor is 1 2018 __ movw(dreg, zr); 2019 } else { 2020 // use rscratch1 as intermediate result register 2021 __ negsw(rscratch1, lreg); 2022 __ andw(dreg, lreg, c - 1); 2023 __ andw(rscratch1, rscratch1, c - 1); 2024 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 2025 } 2026 } else { 2027 if (c == 1) { 2028 // move lreg to dreg if divisor is 1 2029 __ movw(dreg, lreg); 2030 } else { 2031 unsigned int shift = exact_log2(c); 2032 // use rscratch1 as intermediate result register 2033 __ asrw(rscratch1, lreg, 31); 2034 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 2035 __ asrw(dreg, rscratch1, shift); 2036 } 2037 } 2038 } else { 2039 Register rreg = right->as_register(); 2040 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 2041 } 2042 } 2043 2044 2045 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2046 if (opr1->is_constant() && opr2->is_single_cpu()) { 2047 // tableswitch 2048 Register reg = as_reg(opr2); 2049 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 2050 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 2051 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 2052 Register reg1 = as_reg(opr1); 2053 if (opr2->is_single_cpu()) { 2054 // cpu register - cpu register 2055 Register reg2 = opr2->as_register(); 2056 if (is_reference_type(opr1->type())) { 2057 __ cmpoop(reg1, reg2); 2058 } else { 2059 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2060 __ cmpw(reg1, reg2); 2061 } 2062 return; 2063 } 2064 if (opr2->is_double_cpu()) { 2065 // cpu register - cpu register 2066 Register reg2 = opr2->as_register_lo(); 2067 __ cmp(reg1, reg2); 2068 return; 2069 } 2070 2071 if (opr2->is_constant()) { 2072 bool is_32bit = false; // width of register operand 2073 jlong imm; 2074 2075 switch(opr2->type()) { 2076 case T_INT: 2077 imm = opr2->as_constant_ptr()->as_jint(); 2078 is_32bit = true; 2079 break; 2080 case T_LONG: 2081 imm = opr2->as_constant_ptr()->as_jlong(); 2082 break; 2083 case T_ADDRESS: 2084 imm = opr2->as_constant_ptr()->as_jint(); 2085 break; 2086 case T_METADATA: 2087 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 2088 break; 2089 case T_OBJECT: 2090 case T_ARRAY: 2091 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 2092 __ cmpoop(reg1, rscratch1); 2093 return; 2094 default: 2095 ShouldNotReachHere(); 2096 imm = 0; // unreachable 2097 break; 2098 } 2099 2100 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 2101 if (is_32bit) 2102 __ cmpw(reg1, imm); 2103 else 2104 __ subs(zr, reg1, imm); 2105 return; 2106 } else { 2107 __ mov(rscratch1, imm); 2108 if (is_32bit) 2109 __ cmpw(reg1, rscratch1); 2110 else 2111 __ cmp(reg1, rscratch1); 2112 return; 2113 } 2114 } else 2115 ShouldNotReachHere(); 2116 } else if (opr1->is_single_fpu()) { 2117 FloatRegister reg1 = opr1->as_float_reg(); 2118 assert(opr2->is_single_fpu(), "expect single float register"); 2119 FloatRegister reg2 = opr2->as_float_reg(); 2120 __ fcmps(reg1, reg2); 2121 } else if (opr1->is_double_fpu()) { 2122 FloatRegister reg1 = opr1->as_double_reg(); 2123 assert(opr2->is_double_fpu(), "expect double float register"); 2124 FloatRegister reg2 = opr2->as_double_reg(); 2125 __ fcmpd(reg1, reg2); 2126 } else { 2127 ShouldNotReachHere(); 2128 } 2129 } 2130 2131 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2132 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2133 bool is_unordered_less = (code == lir_ucmp_fd2i); 2134 if (left->is_single_fpu()) { 2135 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2136 } else if (left->is_double_fpu()) { 2137 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2138 } else { 2139 ShouldNotReachHere(); 2140 } 2141 } else if (code == lir_cmp_l2i) { 2142 Label done; 2143 __ cmp(left->as_register_lo(), right->as_register_lo()); 2144 __ mov(dst->as_register(), (uint64_t)-1L); 2145 __ br(Assembler::LT, done); 2146 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2147 __ bind(done); 2148 } else { 2149 ShouldNotReachHere(); 2150 } 2151 } 2152 2153 2154 void LIR_Assembler::align_call(LIR_Code code) { } 2155 2156 2157 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2158 address call = __ trampoline_call(Address(op->addr(), rtype)); 2159 if (call == nullptr) { 2160 bailout("trampoline stub overflow"); 2161 return; 2162 } 2163 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2164 __ post_call_nop(); 2165 } 2166 2167 2168 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2169 address call = __ ic_call(op->addr()); 2170 if (call == nullptr) { 2171 bailout("trampoline stub overflow"); 2172 return; 2173 } 2174 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2175 __ post_call_nop(); 2176 } 2177 2178 void LIR_Assembler::emit_static_call_stub() { 2179 address call_pc = __ pc(); 2180 address stub = __ start_a_stub(call_stub_size()); 2181 if (stub == nullptr) { 2182 bailout("static call stub overflow"); 2183 return; 2184 } 2185 2186 int start = __ offset(); 2187 2188 __ relocate(static_stub_Relocation::spec(call_pc)); 2189 __ emit_static_call_stub(); 2190 2191 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2192 <= call_stub_size(), "stub too big"); 2193 __ end_a_stub(); 2194 } 2195 2196 2197 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2198 assert(exceptionOop->as_register() == r0, "must match"); 2199 assert(exceptionPC->as_register() == r3, "must match"); 2200 2201 // exception object is not added to oop map by LinearScan 2202 // (LinearScan assumes that no oops are in fixed registers) 2203 info->add_register_oop(exceptionOop); 2204 StubId unwind_id; 2205 2206 // get current pc information 2207 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2208 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2209 // As no instructions have been generated yet for this LIR node it's 2210 // possible that an oop map already exists for the current offset. 2211 // In that case insert an dummy NOP here to ensure all oop map PCs 2212 // are unique. See JDK-8237483. 2213 __ nop(); 2214 } 2215 int pc_for_athrow_offset = __ offset(); 2216 InternalAddress pc_for_athrow(__ pc()); 2217 __ adr(exceptionPC->as_register(), pc_for_athrow); 2218 add_call_info(pc_for_athrow_offset, info); // for exception handler 2219 2220 __ verify_not_null_oop(r0); 2221 // search an exception handler (r0: exception oop, r3: throwing pc) 2222 if (compilation()->has_fpu_code()) { 2223 unwind_id = StubId::c1_handle_exception_id; 2224 } else { 2225 unwind_id = StubId::c1_handle_exception_nofpu_id; 2226 } 2227 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2228 2229 // FIXME: enough room for two byte trap ???? 2230 __ nop(); 2231 } 2232 2233 2234 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2235 assert(exceptionOop->as_register() == r0, "must match"); 2236 2237 __ b(_unwind_handler_entry); 2238 } 2239 2240 2241 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2242 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2243 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2244 2245 switch (left->type()) { 2246 case T_INT: { 2247 switch (code) { 2248 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2249 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2250 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2251 default: 2252 ShouldNotReachHere(); 2253 break; 2254 } 2255 break; 2256 case T_LONG: 2257 case T_ADDRESS: 2258 case T_OBJECT: 2259 switch (code) { 2260 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2261 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2262 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2263 default: 2264 ShouldNotReachHere(); 2265 break; 2266 } 2267 break; 2268 default: 2269 ShouldNotReachHere(); 2270 break; 2271 } 2272 } 2273 } 2274 2275 2276 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2277 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2278 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2279 2280 switch (left->type()) { 2281 case T_INT: { 2282 switch (code) { 2283 case lir_shl: __ lslw (dreg, lreg, count); break; 2284 case lir_shr: __ asrw (dreg, lreg, count); break; 2285 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2286 default: 2287 ShouldNotReachHere(); 2288 break; 2289 } 2290 break; 2291 case T_LONG: 2292 case T_ADDRESS: 2293 case T_OBJECT: 2294 switch (code) { 2295 case lir_shl: __ lsl (dreg, lreg, count); break; 2296 case lir_shr: __ asr (dreg, lreg, count); break; 2297 case lir_ushr: __ lsr (dreg, lreg, count); break; 2298 default: 2299 ShouldNotReachHere(); 2300 break; 2301 } 2302 break; 2303 default: 2304 ShouldNotReachHere(); 2305 break; 2306 } 2307 } 2308 } 2309 2310 2311 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2312 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2313 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2314 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2315 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2316 } 2317 2318 2319 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2320 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2321 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2322 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2323 __ mov (rscratch1, c); 2324 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2325 } 2326 2327 2328 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2329 ShouldNotReachHere(); 2330 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2331 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2332 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2333 __ lea(rscratch1, __ constant_oop_address(o)); 2334 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2335 } 2336 2337 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) { 2338 if (null_check) { 2339 __ cbz(obj, *slow_path->entry()); 2340 } 2341 if (is_dest) { 2342 __ test_null_free_array_oop(obj, tmp, *slow_path->entry()); 2343 // TODO 8350865 Flat no longer implies null-free, so we need to check for flat dest. Can we do better here? 2344 __ test_flat_array_oop(obj, tmp, *slow_path->entry()); 2345 } else { 2346 __ test_flat_array_oop(obj, tmp, *slow_path->entry()); 2347 } 2348 } 2349 2350 // This code replaces a call to arraycopy; no exception may 2351 // be thrown in this code, they must be thrown in the System.arraycopy 2352 // activation frame; we could save some checks if this would not be the case 2353 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2354 ciArrayKlass* default_type = op->expected_type(); 2355 Register src = op->src()->as_register(); 2356 Register dst = op->dst()->as_register(); 2357 Register src_pos = op->src_pos()->as_register(); 2358 Register dst_pos = op->dst_pos()->as_register(); 2359 Register length = op->length()->as_register(); 2360 Register tmp = op->tmp()->as_register(); 2361 2362 CodeStub* stub = op->stub(); 2363 int flags = op->flags(); 2364 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2365 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2366 2367 if (flags & LIR_OpArrayCopy::always_slow_path) { 2368 __ b(*stub->entry()); 2369 __ bind(*stub->continuation()); 2370 return; 2371 } 2372 2373 // if we don't know anything, just go through the generic arraycopy 2374 if (default_type == nullptr // || basic_type == T_OBJECT 2375 ) { 2376 Label done; 2377 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2378 2379 // Save the arguments in case the generic arraycopy fails and we 2380 // have to fall back to the JNI stub 2381 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2382 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2383 __ str(src, Address(sp, 4*BytesPerWord)); 2384 2385 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2386 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2387 2388 // The arguments are in java calling convention so we shift them 2389 // to C convention 2390 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2391 __ mov(c_rarg0, j_rarg0); 2392 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2393 __ mov(c_rarg1, j_rarg1); 2394 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2395 __ mov(c_rarg2, j_rarg2); 2396 assert_different_registers(c_rarg3, j_rarg4); 2397 __ mov(c_rarg3, j_rarg3); 2398 __ mov(c_rarg4, j_rarg4); 2399 #ifndef PRODUCT 2400 if (PrintC1Statistics) { 2401 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2402 } 2403 #endif 2404 __ far_call(RuntimeAddress(copyfunc_addr)); 2405 2406 __ cbz(r0, *stub->continuation()); 2407 2408 // Reload values from the stack so they are where the stub 2409 // expects them. 2410 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2411 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2412 __ ldr(src, Address(sp, 4*BytesPerWord)); 2413 2414 // r0 is -1^K where K == partial copied count 2415 __ eonw(rscratch1, r0, zr); 2416 // adjust length down and src/end pos up by partial copied count 2417 __ subw(length, length, rscratch1); 2418 __ addw(src_pos, src_pos, rscratch1); 2419 __ addw(dst_pos, dst_pos, rscratch1); 2420 __ b(*stub->entry()); 2421 2422 __ bind(*stub->continuation()); 2423 return; 2424 } 2425 2426 // Handle inline type arrays 2427 if (flags & LIR_OpArrayCopy::src_inlinetype_check) { 2428 arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check)); 2429 } 2430 if (flags & LIR_OpArrayCopy::dst_inlinetype_check) { 2431 arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check)); 2432 } 2433 2434 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2435 2436 int elem_size = type2aelembytes(basic_type); 2437 int scale = exact_log2(elem_size); 2438 2439 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2440 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2441 2442 // test for null 2443 if (flags & LIR_OpArrayCopy::src_null_check) { 2444 __ cbz(src, *stub->entry()); 2445 } 2446 if (flags & LIR_OpArrayCopy::dst_null_check) { 2447 __ cbz(dst, *stub->entry()); 2448 } 2449 2450 // If the compiler was not able to prove that exact type of the source or the destination 2451 // of the arraycopy is an array type, check at runtime if the source or the destination is 2452 // an instance type. 2453 if (flags & LIR_OpArrayCopy::type_check) { 2454 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2455 __ load_klass(tmp, dst); 2456 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2457 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2458 __ br(Assembler::GE, *stub->entry()); 2459 } 2460 2461 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2462 __ load_klass(tmp, src); 2463 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2464 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2465 __ br(Assembler::GE, *stub->entry()); 2466 } 2467 } 2468 2469 // check if negative 2470 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2471 __ cmpw(src_pos, 0); 2472 __ br(Assembler::LT, *stub->entry()); 2473 } 2474 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2475 __ cmpw(dst_pos, 0); 2476 __ br(Assembler::LT, *stub->entry()); 2477 } 2478 2479 if (flags & LIR_OpArrayCopy::length_positive_check) { 2480 __ cmpw(length, 0); 2481 __ br(Assembler::LT, *stub->entry()); 2482 } 2483 2484 if (flags & LIR_OpArrayCopy::src_range_check) { 2485 __ addw(tmp, src_pos, length); 2486 __ ldrw(rscratch1, src_length_addr); 2487 __ cmpw(tmp, rscratch1); 2488 __ br(Assembler::HI, *stub->entry()); 2489 } 2490 if (flags & LIR_OpArrayCopy::dst_range_check) { 2491 __ addw(tmp, dst_pos, length); 2492 __ ldrw(rscratch1, dst_length_addr); 2493 __ cmpw(tmp, rscratch1); 2494 __ br(Assembler::HI, *stub->entry()); 2495 } 2496 2497 if (flags & LIR_OpArrayCopy::type_check) { 2498 // We don't know the array types are compatible 2499 if (basic_type != T_OBJECT) { 2500 // Simple test for basic type arrays 2501 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2502 __ br(Assembler::NE, *stub->entry()); 2503 } else { 2504 // For object arrays, if src is a sub class of dst then we can 2505 // safely do the copy. 2506 Label cont, slow; 2507 2508 #define PUSH(r1, r2) \ 2509 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2510 2511 #define POP(r1, r2) \ 2512 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2513 2514 __ PUSH(src, dst); 2515 2516 __ load_klass(src, src); 2517 __ load_klass(dst, dst); 2518 2519 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2520 2521 __ PUSH(src, dst); 2522 __ far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_slow_subtype_check_id))); 2523 __ POP(src, dst); 2524 2525 __ cbnz(src, cont); 2526 2527 __ bind(slow); 2528 __ POP(src, dst); 2529 2530 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2531 if (copyfunc_addr != nullptr) { // use stub if available 2532 // src is not a sub class of dst so we have to do a 2533 // per-element check. 2534 2535 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2536 if ((flags & mask) != mask) { 2537 // Check that at least both of them object arrays. 2538 assert(flags & mask, "one of the two should be known to be an object array"); 2539 2540 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2541 __ load_klass(tmp, src); 2542 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2543 __ load_klass(tmp, dst); 2544 } 2545 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2546 Address klass_lh_addr(tmp, lh_offset); 2547 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2548 __ ldrw(rscratch1, klass_lh_addr); 2549 __ mov(rscratch2, objArray_lh); 2550 __ eorw(rscratch1, rscratch1, rscratch2); 2551 __ cbnzw(rscratch1, *stub->entry()); 2552 } 2553 2554 // Spill because stubs can use any register they like and it's 2555 // easier to restore just those that we care about. 2556 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2557 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2558 __ str(src, Address(sp, 4*BytesPerWord)); 2559 2560 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2561 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2562 assert_different_registers(c_rarg0, dst, dst_pos, length); 2563 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2564 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2565 assert_different_registers(c_rarg1, dst, length); 2566 __ uxtw(c_rarg2, length); 2567 assert_different_registers(c_rarg2, dst); 2568 2569 __ load_klass(c_rarg4, dst); 2570 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2571 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2572 __ far_call(RuntimeAddress(copyfunc_addr)); 2573 2574 #ifndef PRODUCT 2575 if (PrintC1Statistics) { 2576 Label failed; 2577 __ cbnz(r0, failed); 2578 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2579 __ bind(failed); 2580 } 2581 #endif 2582 2583 __ cbz(r0, *stub->continuation()); 2584 2585 #ifndef PRODUCT 2586 if (PrintC1Statistics) { 2587 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2588 } 2589 #endif 2590 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2591 2592 // Restore previously spilled arguments 2593 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2594 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2595 __ ldr(src, Address(sp, 4*BytesPerWord)); 2596 2597 // return value is -1^K where K is partial copied count 2598 __ eonw(rscratch1, r0, zr); 2599 // adjust length down and src/end pos up by partial copied count 2600 __ subw(length, length, rscratch1); 2601 __ addw(src_pos, src_pos, rscratch1); 2602 __ addw(dst_pos, dst_pos, rscratch1); 2603 } 2604 2605 __ b(*stub->entry()); 2606 2607 __ bind(cont); 2608 __ POP(src, dst); 2609 } 2610 } 2611 2612 #ifdef ASSERT 2613 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2614 // Sanity check the known type with the incoming class. For the 2615 // primitive case the types must match exactly with src.klass and 2616 // dst.klass each exactly matching the default type. For the 2617 // object array case, if no type check is needed then either the 2618 // dst type is exactly the expected type and the src type is a 2619 // subtype which we can't check or src is the same array as dst 2620 // but not necessarily exactly of type default_type. 2621 Label known_ok, halt; 2622 __ mov_metadata(tmp, default_type->constant_encoding()); 2623 2624 if (basic_type != T_OBJECT) { 2625 __ cmp_klass(dst, tmp, rscratch1); 2626 __ br(Assembler::NE, halt); 2627 __ cmp_klass(src, tmp, rscratch1); 2628 __ br(Assembler::EQ, known_ok); 2629 } else { 2630 __ cmp_klass(dst, tmp, rscratch1); 2631 __ br(Assembler::EQ, known_ok); 2632 __ cmp(src, dst); 2633 __ br(Assembler::EQ, known_ok); 2634 } 2635 __ bind(halt); 2636 __ stop("incorrect type information in arraycopy"); 2637 __ bind(known_ok); 2638 } 2639 #endif 2640 2641 #ifndef PRODUCT 2642 if (PrintC1Statistics) { 2643 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2644 } 2645 #endif 2646 2647 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2648 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2649 assert_different_registers(c_rarg0, dst, dst_pos, length); 2650 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2651 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2652 assert_different_registers(c_rarg1, dst, length); 2653 __ uxtw(c_rarg2, length); 2654 assert_different_registers(c_rarg2, dst); 2655 2656 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2657 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2658 const char *name; 2659 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2660 2661 CodeBlob *cb = CodeCache::find_blob(entry); 2662 if (cb) { 2663 __ far_call(RuntimeAddress(entry)); 2664 } else { 2665 __ call_VM_leaf(entry, 3); 2666 } 2667 2668 if (stub != nullptr) { 2669 __ bind(*stub->continuation()); 2670 } 2671 } 2672 2673 2674 2675 2676 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2677 Register obj = op->obj_opr()->as_register(); // may not be an oop 2678 Register hdr = op->hdr_opr()->as_register(); 2679 Register lock = op->lock_opr()->as_register(); 2680 Register temp = op->scratch_opr()->as_register(); 2681 if (op->code() == lir_lock) { 2682 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2683 // add debug info for NullPointerException only if one is possible 2684 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2685 if (op->info() != nullptr) { 2686 add_debug_info_for_null_check(null_check_offset, op->info()); 2687 } 2688 // done 2689 } else if (op->code() == lir_unlock) { 2690 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2691 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2692 } else { 2693 Unimplemented(); 2694 } 2695 __ bind(*op->stub()->continuation()); 2696 } 2697 2698 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2699 Register obj = op->obj()->as_pointer_register(); 2700 Register result = op->result_opr()->as_pointer_register(); 2701 2702 CodeEmitInfo* info = op->info(); 2703 if (info != nullptr) { 2704 add_debug_info_for_null_check_here(info); 2705 } 2706 2707 __ load_klass(result, obj); 2708 } 2709 2710 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2711 ciMethod* method = op->profiled_method(); 2712 int bci = op->profiled_bci(); 2713 ciMethod* callee = op->profiled_callee(); 2714 2715 // Update counter for all call types 2716 ciMethodData* md = method->method_data_or_null(); 2717 assert(md != nullptr, "Sanity"); 2718 ciProfileData* data = md->bci_to_data(bci); 2719 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2720 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2721 Register mdo = op->mdo()->as_register(); 2722 __ mov_metadata(mdo, md->constant_encoding()); 2723 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2724 // Perform additional virtual call profiling for invokevirtual and 2725 // invokeinterface bytecodes 2726 if (op->should_profile_receiver_type()) { 2727 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2728 Register recv = op->recv()->as_register(); 2729 assert_different_registers(mdo, recv); 2730 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2731 ciKlass* known_klass = op->known_holder(); 2732 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2733 // We know the type that will be seen at this call site; we can 2734 // statically update the MethodData* rather than needing to do 2735 // dynamic tests on the receiver type 2736 2737 // NOTE: we should probably put a lock around this search to 2738 // avoid collisions by concurrent compilations 2739 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2740 uint i; 2741 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2742 ciKlass* receiver = vc_data->receiver(i); 2743 if (known_klass->equals(receiver)) { 2744 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2745 __ addptr(data_addr, DataLayout::counter_increment); 2746 return; 2747 } 2748 } 2749 2750 // Receiver type not found in profile data; select an empty slot 2751 2752 // Note that this is less efficient than it should be because it 2753 // always does a write to the receiver part of the 2754 // VirtualCallData rather than just the first time 2755 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2756 ciKlass* receiver = vc_data->receiver(i); 2757 if (receiver == nullptr) { 2758 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2759 Address recv_addr = 2760 __ form_address(rscratch2, mdo, 2761 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2762 LogBytesPerWord); 2763 __ str(rscratch1, recv_addr); 2764 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2765 __ addptr(data_addr, DataLayout::counter_increment); 2766 return; 2767 } 2768 } 2769 } else { 2770 __ load_klass(recv, recv); 2771 Label update_done; 2772 type_profile_helper(mdo, md, data, recv, &update_done); 2773 // Receiver did not match any saved receiver and there is no empty row for it. 2774 // Increment total counter to indicate polymorphic case. 2775 __ addptr(counter_addr, DataLayout::counter_increment); 2776 2777 __ bind(update_done); 2778 } 2779 } else { 2780 // Static call 2781 __ addptr(counter_addr, DataLayout::counter_increment); 2782 } 2783 } 2784 2785 2786 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2787 Unimplemented(); 2788 } 2789 2790 2791 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2792 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2793 } 2794 2795 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2796 assert(op->crc()->is_single_cpu(), "crc must be register"); 2797 assert(op->val()->is_single_cpu(), "byte value must be register"); 2798 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2799 Register crc = op->crc()->as_register(); 2800 Register val = op->val()->as_register(); 2801 Register res = op->result_opr()->as_register(); 2802 2803 assert_different_registers(val, crc, res); 2804 uint64_t offset; 2805 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2806 __ add(res, res, offset); 2807 2808 __ mvnw(crc, crc); // ~crc 2809 __ update_byte_crc32(crc, val, res); 2810 __ mvnw(res, crc); // ~crc 2811 } 2812 2813 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2814 COMMENT("emit_profile_type {"); 2815 Register obj = op->obj()->as_register(); 2816 Register tmp = op->tmp()->as_pointer_register(); 2817 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2818 ciKlass* exact_klass = op->exact_klass(); 2819 intptr_t current_klass = op->current_klass(); 2820 bool not_null = op->not_null(); 2821 bool no_conflict = op->no_conflict(); 2822 2823 Label update, next, none; 2824 2825 bool do_null = !not_null; 2826 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2827 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2828 2829 assert(do_null || do_update, "why are we here?"); 2830 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2831 assert(mdo_addr.base() != rscratch1, "wrong register"); 2832 2833 __ verify_oop(obj); 2834 2835 if (tmp != obj) { 2836 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2837 __ mov(tmp, obj); 2838 } else { 2839 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2840 } 2841 if (do_null) { 2842 __ cbnz(tmp, update); 2843 if (!TypeEntries::was_null_seen(current_klass)) { 2844 __ ldr(rscratch2, mdo_addr); 2845 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2846 __ str(rscratch2, mdo_addr); 2847 } 2848 if (do_update) { 2849 #ifndef ASSERT 2850 __ b(next); 2851 } 2852 #else 2853 __ b(next); 2854 } 2855 } else { 2856 __ cbnz(tmp, update); 2857 __ stop("unexpected null obj"); 2858 #endif 2859 } 2860 2861 __ bind(update); 2862 2863 if (do_update) { 2864 #ifdef ASSERT 2865 if (exact_klass != nullptr) { 2866 Label ok; 2867 __ load_klass(tmp, tmp); 2868 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2869 __ eor(rscratch1, tmp, rscratch1); 2870 __ cbz(rscratch1, ok); 2871 __ stop("exact klass and actual klass differ"); 2872 __ bind(ok); 2873 } 2874 #endif 2875 if (!no_conflict) { 2876 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2877 if (exact_klass != nullptr) { 2878 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2879 } else { 2880 __ load_klass(tmp, tmp); 2881 } 2882 2883 __ ldr(rscratch2, mdo_addr); 2884 __ eor(tmp, tmp, rscratch2); 2885 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2886 // klass seen before, nothing to do. The unknown bit may have been 2887 // set already but no need to check. 2888 __ cbz(rscratch1, next); 2889 2890 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2891 2892 if (TypeEntries::is_type_none(current_klass)) { 2893 __ cbz(rscratch2, none); 2894 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2895 __ br(Assembler::EQ, none); 2896 // There is a chance that the checks above 2897 // fail if another thread has just set the 2898 // profiling to this obj's klass 2899 __ dmb(Assembler::ISHLD); 2900 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2901 __ ldr(rscratch2, mdo_addr); 2902 __ eor(tmp, tmp, rscratch2); 2903 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2904 __ cbz(rscratch1, next); 2905 } 2906 } else { 2907 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2908 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2909 2910 __ ldr(tmp, mdo_addr); 2911 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2912 } 2913 2914 // different than before. Cannot keep accurate profile. 2915 __ ldr(rscratch2, mdo_addr); 2916 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2917 __ str(rscratch2, mdo_addr); 2918 2919 if (TypeEntries::is_type_none(current_klass)) { 2920 __ b(next); 2921 2922 __ bind(none); 2923 // first time here. Set profile type. 2924 __ str(tmp, mdo_addr); 2925 #ifdef ASSERT 2926 __ andr(tmp, tmp, TypeEntries::type_mask); 2927 __ verify_klass_ptr(tmp); 2928 #endif 2929 } 2930 } else { 2931 // There's a single possible klass at this profile point 2932 assert(exact_klass != nullptr, "should be"); 2933 if (TypeEntries::is_type_none(current_klass)) { 2934 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2935 __ ldr(rscratch2, mdo_addr); 2936 __ eor(tmp, tmp, rscratch2); 2937 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2938 __ cbz(rscratch1, next); 2939 #ifdef ASSERT 2940 { 2941 Label ok; 2942 __ ldr(rscratch1, mdo_addr); 2943 __ cbz(rscratch1, ok); 2944 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2945 __ br(Assembler::EQ, ok); 2946 // may have been set by another thread 2947 __ dmb(Assembler::ISHLD); 2948 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2949 __ ldr(rscratch2, mdo_addr); 2950 __ eor(rscratch2, rscratch1, rscratch2); 2951 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2952 __ cbz(rscratch2, ok); 2953 2954 __ stop("unexpected profiling mismatch"); 2955 __ bind(ok); 2956 } 2957 #endif 2958 // first time here. Set profile type. 2959 __ str(tmp, mdo_addr); 2960 #ifdef ASSERT 2961 __ andr(tmp, tmp, TypeEntries::type_mask); 2962 __ verify_klass_ptr(tmp); 2963 #endif 2964 } else { 2965 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2966 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2967 2968 __ ldr(tmp, mdo_addr); 2969 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2970 2971 __ orr(tmp, tmp, TypeEntries::type_unknown); 2972 __ str(tmp, mdo_addr); 2973 // FIXME: Write barrier needed here? 2974 } 2975 } 2976 2977 __ bind(next); 2978 } 2979 COMMENT("} emit_profile_type"); 2980 } 2981 2982 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 2983 Register obj = op->obj()->as_register(); 2984 Register tmp = op->tmp()->as_pointer_register(); 2985 bool not_null = op->not_null(); 2986 int flag = op->flag(); 2987 2988 Label not_inline_type; 2989 if (!not_null) { 2990 __ cbz(obj, not_inline_type); 2991 } 2992 2993 __ test_oop_is_not_inline_type(obj, tmp, not_inline_type); 2994 2995 Address mdo_addr = as_Address(op->mdp()->as_address_ptr(), rscratch2); 2996 __ ldrb(rscratch1, mdo_addr); 2997 __ orr(rscratch1, rscratch1, flag); 2998 __ strb(rscratch1, mdo_addr); 2999 3000 __ bind(not_inline_type); 3001 } 3002 3003 void LIR_Assembler::align_backward_branch_target() { 3004 } 3005 3006 3007 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3008 // tmp must be unused 3009 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 3010 3011 if (left->is_single_cpu()) { 3012 assert(dest->is_single_cpu(), "expect single result reg"); 3013 __ negw(dest->as_register(), left->as_register()); 3014 } else if (left->is_double_cpu()) { 3015 assert(dest->is_double_cpu(), "expect double result reg"); 3016 __ neg(dest->as_register_lo(), left->as_register_lo()); 3017 } else if (left->is_single_fpu()) { 3018 assert(dest->is_single_fpu(), "expect single float result reg"); 3019 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 3020 } else { 3021 assert(left->is_double_fpu(), "expect double float operand reg"); 3022 assert(dest->is_double_fpu(), "expect double float result reg"); 3023 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 3024 } 3025 } 3026 3027 3028 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3029 if (patch_code != lir_patch_none) { 3030 deoptimize_trap(info); 3031 return; 3032 } 3033 3034 __ lea(dest->as_pointer_register(), as_Address(addr->as_address_ptr())); 3035 } 3036 3037 3038 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3039 assert(!tmp->is_valid(), "don't need temporary"); 3040 3041 CodeBlob *cb = CodeCache::find_blob(dest); 3042 if (cb) { 3043 __ far_call(RuntimeAddress(dest)); 3044 } else { 3045 __ mov(rscratch1, RuntimeAddress(dest)); 3046 __ blr(rscratch1); 3047 } 3048 3049 if (info != nullptr) { 3050 add_call_info_here(info); 3051 } 3052 __ post_call_nop(); 3053 } 3054 3055 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3056 if (dest->is_address() || src->is_address()) { 3057 move_op(src, dest, type, lir_patch_none, info, /*wide*/false); 3058 } else { 3059 ShouldNotReachHere(); 3060 } 3061 } 3062 3063 #ifdef ASSERT 3064 // emit run-time assertion 3065 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3066 assert(op->code() == lir_assert, "must be"); 3067 3068 if (op->in_opr1()->is_valid()) { 3069 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3070 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3071 } else { 3072 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3073 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3074 } 3075 3076 Label ok; 3077 if (op->condition() != lir_cond_always) { 3078 Assembler::Condition acond = Assembler::AL; 3079 switch (op->condition()) { 3080 case lir_cond_equal: acond = Assembler::EQ; break; 3081 case lir_cond_notEqual: acond = Assembler::NE; break; 3082 case lir_cond_less: acond = Assembler::LT; break; 3083 case lir_cond_lessEqual: acond = Assembler::LE; break; 3084 case lir_cond_greaterEqual: acond = Assembler::GE; break; 3085 case lir_cond_greater: acond = Assembler::GT; break; 3086 case lir_cond_belowEqual: acond = Assembler::LS; break; 3087 case lir_cond_aboveEqual: acond = Assembler::HS; break; 3088 default: ShouldNotReachHere(); 3089 } 3090 __ br(acond, ok); 3091 } 3092 if (op->halt()) { 3093 const char* str = __ code_string(op->msg()); 3094 __ stop(str); 3095 } else { 3096 breakpoint(); 3097 } 3098 __ bind(ok); 3099 } 3100 #endif 3101 3102 #ifndef PRODUCT 3103 #define COMMENT(x) do { __ block_comment(x); } while (0) 3104 #else 3105 #define COMMENT(x) 3106 #endif 3107 3108 void LIR_Assembler::membar() { 3109 COMMENT("membar"); 3110 __ membar(MacroAssembler::AnyAny); 3111 } 3112 3113 void LIR_Assembler::membar_acquire() { 3114 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 3115 } 3116 3117 void LIR_Assembler::membar_release() { 3118 __ membar(Assembler::LoadStore|Assembler::StoreStore); 3119 } 3120 3121 void LIR_Assembler::membar_loadload() { 3122 __ membar(Assembler::LoadLoad); 3123 } 3124 3125 void LIR_Assembler::membar_storestore() { 3126 __ membar(MacroAssembler::StoreStore); 3127 } 3128 3129 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 3130 3131 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 3132 3133 void LIR_Assembler::on_spin_wait() { 3134 __ spin_wait(); 3135 } 3136 3137 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3138 __ mov(result_reg->as_register(), rthread); 3139 } 3140 3141 void LIR_Assembler::check_orig_pc() { 3142 __ ldr(rscratch2, frame_map()->address_for_orig_pc_addr()); 3143 __ cmp(rscratch2, (u1)NULL_WORD); 3144 } 3145 3146 void LIR_Assembler::peephole(LIR_List *lir) { 3147 #if 0 3148 if (tableswitch_count >= max_tableswitches) 3149 return; 3150 3151 /* 3152 This finite-state automaton recognizes sequences of compare-and- 3153 branch instructions. We will turn them into a tableswitch. You 3154 could argue that C1 really shouldn't be doing this sort of 3155 optimization, but without it the code is really horrible. 3156 */ 3157 3158 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3159 int first_key, last_key = -2147483648; 3160 int next_key = 0; 3161 int start_insn = -1; 3162 int last_insn = -1; 3163 Register reg = noreg; 3164 LIR_Opr reg_opr; 3165 state = start_s; 3166 3167 LIR_OpList* inst = lir->instructions_list(); 3168 for (int i = 0; i < inst->length(); i++) { 3169 LIR_Op* op = inst->at(i); 3170 switch (state) { 3171 case start_s: 3172 first_key = -1; 3173 start_insn = i; 3174 switch (op->code()) { 3175 case lir_cmp: 3176 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3177 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3178 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3179 && opr2->is_constant() 3180 && opr2->type() == T_INT) { 3181 reg_opr = opr1; 3182 reg = opr1->as_register(); 3183 first_key = opr2->as_constant_ptr()->as_jint(); 3184 next_key = first_key + 1; 3185 state = cmp_s; 3186 goto next_state; 3187 } 3188 break; 3189 } 3190 break; 3191 case cmp_s: 3192 switch (op->code()) { 3193 case lir_branch: 3194 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3195 state = beq_s; 3196 last_insn = i; 3197 goto next_state; 3198 } 3199 } 3200 state = start_s; 3201 break; 3202 case beq_s: 3203 switch (op->code()) { 3204 case lir_cmp: { 3205 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3206 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3207 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3208 && opr1->as_register() == reg 3209 && opr2->is_constant() 3210 && opr2->type() == T_INT 3211 && opr2->as_constant_ptr()->as_jint() == next_key) { 3212 last_key = next_key; 3213 next_key++; 3214 state = cmp_s; 3215 goto next_state; 3216 } 3217 } 3218 } 3219 last_key = next_key; 3220 state = start_s; 3221 break; 3222 default: 3223 assert(false, "impossible state"); 3224 } 3225 if (state == start_s) { 3226 if (first_key < last_key - 5L && reg != noreg) { 3227 { 3228 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3229 // reg->encoding(), 3230 // start_insn, first_key, last_key); 3231 // for (int i = 0; i < inst->length(); i++) { 3232 // inst->at(i)->print(); 3233 // tty->print("\n"); 3234 // } 3235 // tty->print("\n"); 3236 } 3237 3238 struct tableswitch *sw = &switches[tableswitch_count]; 3239 sw->_insn_index = start_insn, sw->_first_key = first_key, 3240 sw->_last_key = last_key, sw->_reg = reg; 3241 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3242 { 3243 // Insert the new table of branches 3244 int offset = last_insn; 3245 for (int n = first_key; n < last_key; n++) { 3246 inst->insert_before 3247 (last_insn + 1, 3248 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3249 inst->at(offset)->as_OpBranch()->label())); 3250 offset -= 2, i++; 3251 } 3252 } 3253 // Delete all the old compare-and-branch instructions 3254 for (int n = first_key; n < last_key; n++) { 3255 inst->remove_at(start_insn); 3256 inst->remove_at(start_insn); 3257 } 3258 // Insert the tableswitch instruction 3259 inst->insert_before(start_insn, 3260 new LIR_Op2(lir_cmp, lir_cond_always, 3261 LIR_OprFact::intConst(tableswitch_count), 3262 reg_opr)); 3263 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3264 tableswitch_count++; 3265 } 3266 reg = noreg; 3267 last_key = -2147483648; 3268 } 3269 next_state: 3270 ; 3271 } 3272 #endif 3273 } 3274 3275 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3276 Address addr = as_Address(src->as_address_ptr()); 3277 BasicType type = src->type(); 3278 bool is_oop = is_reference_type(type); 3279 3280 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3281 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3282 3283 switch(type) { 3284 case T_INT: 3285 xchg = &MacroAssembler::atomic_xchgalw; 3286 add = &MacroAssembler::atomic_addalw; 3287 break; 3288 case T_LONG: 3289 xchg = &MacroAssembler::atomic_xchgal; 3290 add = &MacroAssembler::atomic_addal; 3291 break; 3292 case T_OBJECT: 3293 case T_ARRAY: 3294 if (UseCompressedOops) { 3295 xchg = &MacroAssembler::atomic_xchgalw; 3296 add = &MacroAssembler::atomic_addalw; 3297 } else { 3298 xchg = &MacroAssembler::atomic_xchgal; 3299 add = &MacroAssembler::atomic_addal; 3300 } 3301 break; 3302 default: 3303 ShouldNotReachHere(); 3304 xchg = &MacroAssembler::atomic_xchgal; 3305 add = &MacroAssembler::atomic_addal; // unreachable 3306 } 3307 3308 switch (code) { 3309 case lir_xadd: 3310 { 3311 RegisterOrConstant inc; 3312 Register tmp = as_reg(tmp_op); 3313 Register dst = as_reg(dest); 3314 if (data->is_constant()) { 3315 inc = RegisterOrConstant(as_long(data)); 3316 assert_different_registers(dst, addr.base(), tmp, 3317 rscratch1, rscratch2); 3318 } else { 3319 inc = RegisterOrConstant(as_reg(data)); 3320 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3321 rscratch1, rscratch2); 3322 } 3323 __ lea(tmp, addr); 3324 (_masm->*add)(dst, inc, tmp); 3325 break; 3326 } 3327 case lir_xchg: 3328 { 3329 Register tmp = tmp_op->as_register(); 3330 Register obj = as_reg(data); 3331 Register dst = as_reg(dest); 3332 if (is_oop && UseCompressedOops) { 3333 __ encode_heap_oop(rscratch2, obj); 3334 obj = rscratch2; 3335 } 3336 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3337 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3338 __ lea(tmp, addr); 3339 (_masm->*xchg)(dst, obj, tmp); 3340 if (is_oop && UseCompressedOops) { 3341 __ decode_heap_oop(dst); 3342 } 3343 } 3344 break; 3345 default: 3346 ShouldNotReachHere(); 3347 } 3348 if(!UseLSE) { 3349 __ membar(__ AnyAny); 3350 } 3351 } 3352 3353 #undef __