1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "asm/assembler.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInlineKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "code/compiledIC.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "vmreg_aarch64.inline.hpp" 48 49 50 #ifndef PRODUCT 51 #define COMMENT(x) do { __ block_comment(x); } while (0) 52 #else 53 #define COMMENT(x) 54 #endif 55 56 NEEDS_CLEANUP // remove this definitions ? 57 const Register SYNC_header = r0; // synchronization header 58 const Register SHIFT_count = r0; // where count for shift operations must be 59 60 #define __ _masm-> 61 62 63 static void select_different_registers(Register preserve, 64 Register extra, 65 Register &tmp1, 66 Register &tmp2) { 67 if (tmp1 == preserve) { 68 assert_different_registers(tmp1, tmp2, extra); 69 tmp1 = extra; 70 } else if (tmp2 == preserve) { 71 assert_different_registers(tmp1, tmp2, extra); 72 tmp2 = extra; 73 } 74 assert_different_registers(preserve, tmp1, tmp2); 75 } 76 77 78 79 static void select_different_registers(Register preserve, 80 Register extra, 81 Register &tmp1, 82 Register &tmp2, 83 Register &tmp3) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, tmp3, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, tmp3, extra); 89 tmp2 = extra; 90 } else if (tmp3 == preserve) { 91 assert_different_registers(tmp1, tmp2, tmp3, extra); 92 tmp3 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2, tmp3); 95 } 96 97 98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 99 100 101 LIR_Opr LIR_Assembler::receiverOpr() { 102 return FrameMap::receiver_opr; 103 } 104 105 LIR_Opr LIR_Assembler::osrBufferPointer() { 106 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 107 } 108 109 //--------------fpu register translations----------------------- 110 111 112 address LIR_Assembler::float_constant(float f) { 113 address const_addr = __ float_constant(f); 114 if (const_addr == nullptr) { 115 bailout("const section overflow"); 116 return __ code()->consts()->start(); 117 } else { 118 return const_addr; 119 } 120 } 121 122 123 address LIR_Assembler::double_constant(double d) { 124 address const_addr = __ double_constant(d); 125 if (const_addr == nullptr) { 126 bailout("const section overflow"); 127 return __ code()->consts()->start(); 128 } else { 129 return const_addr; 130 } 131 } 132 133 address LIR_Assembler::int_constant(jlong n) { 134 address const_addr = __ long_constant(n); 135 if (const_addr == nullptr) { 136 bailout("const section overflow"); 137 return __ code()->consts()->start(); 138 } else { 139 return const_addr; 140 } 141 } 142 143 void LIR_Assembler::breakpoint() { Unimplemented(); } 144 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 146 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 148 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 150 //------------------------------------------- 151 152 static Register as_reg(LIR_Opr op) { 153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 154 } 155 156 static jlong as_long(LIR_Opr data) { 157 jlong result; 158 switch (data->type()) { 159 case T_INT: 160 result = (data->as_jint()); 161 break; 162 case T_LONG: 163 result = (data->as_jlong()); 164 break; 165 default: 166 ShouldNotReachHere(); 167 result = 0; // unreachable 168 } 169 return result; 170 } 171 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 173 Register base = addr->base()->as_pointer_register(); 174 LIR_Opr opr = addr->index(); 175 if (opr->is_cpu_register()) { 176 Register index; 177 if (opr->is_single_cpu()) 178 index = opr->as_register(); 179 else 180 index = opr->as_register_lo(); 181 assert(addr->disp() == 0, "must be"); 182 switch(opr->type()) { 183 case T_INT: 184 return Address(base, index, Address::sxtw(addr->scale())); 185 case T_LONG: 186 return Address(base, index, Address::lsl(addr->scale())); 187 default: 188 ShouldNotReachHere(); 189 } 190 } else { 191 assert(addr->scale() == 0, 192 "expected for immediate operand, was: %d", addr->scale()); 193 ptrdiff_t offset = ptrdiff_t(addr->disp()); 194 // NOTE: Does not handle any 16 byte vector access. 195 const uint type_size = type2aelembytes(addr->type(), true); 196 return __ legitimize_address(Address(base, offset), type_size, tmp); 197 } 198 return Address(); 199 } 200 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 202 ShouldNotReachHere(); 203 return Address(); 204 } 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 211 return as_Address(addr, rscratch1); // Ouch 212 // FIXME: This needs to be much more clever. See x86. 213 } 214 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 216 // not encodable as a base + (immediate) offset, generate an explicit address 217 // calculation to hold the address in a temporary register. 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 219 precond(size == 4 || size == 8); 220 Address addr = frame_map()->address_for_slot(index, adjust); 221 precond(addr.getMode() == Address::base_plus_offset); 222 precond(addr.base() == sp); 223 precond(addr.offset() > 0); 224 uint mask = size - 1; 225 assert((addr.offset() & mask) == 0, "scaled offsets only"); 226 return __ legitimize_address(addr, size, tmp); 227 } 228 229 void LIR_Assembler::osr_entry() { 230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 231 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 232 ValueStack* entry_state = osr_entry->state(); 233 int number_of_locks = entry_state->locks_size(); 234 235 // we jump here if osr happens with the interpreter 236 // state set up to continue at the beginning of the 237 // loop that triggered osr - in particular, we have 238 // the following registers setup: 239 // 240 // r2: osr buffer 241 // 242 243 // build frame 244 ciMethod* m = compilation()->method(); 245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 246 247 // OSR buffer is 248 // 249 // locals[nlocals-1..0] 250 // monitors[0..number_of_locks] 251 // 252 // locals is a direct copy of the interpreter frame so in the osr buffer 253 // so first slot in the local array is the last local from the interpreter 254 // and last slot is local[0] (receiver) from the interpreter 255 // 256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 258 // in the interpreter frame (the method lock if a sync method) 259 260 // Initialize monitors in the compiled activation. 261 // r2: pointer to osr buffer 262 // 263 // All other registers are dead at this point and the locals will be 264 // copied into place by code emitted in the IR. 265 266 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 268 int monitor_offset = BytesPerWord * method()->max_locals() + 269 (2 * BytesPerWord) * (number_of_locks - 1); 270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 271 // the OSR buffer using 2 word entries: first the lock and then 272 // the oop. 273 for (int i = 0; i < number_of_locks; i++) { 274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 275 #ifdef ASSERT 276 // verify the interpreter's monitor has a non-null object 277 { 278 Label L; 279 __ ldr(rscratch1, __ form_address(rscratch1, OSR_buf, slot_offset + 1*BytesPerWord, 0)); 280 __ cbnz(rscratch1, L); 281 __ stop("locked object is null"); 282 __ bind(L); 283 } 284 #endif 285 __ ldr(r19, __ form_address(rscratch1, OSR_buf, slot_offset, 0)); 286 __ ldr(r20, __ form_address(rscratch1, OSR_buf, slot_offset + BytesPerWord, 0)); 287 __ str(r19, frame_map()->address_for_monitor_lock(i)); 288 __ str(r20, frame_map()->address_for_monitor_object(i)); 289 } 290 } 291 } 292 293 294 // inline cache check; done before the frame is built. 295 int LIR_Assembler::check_icache() { 296 return __ ic_check(CodeEntryAlignment); 297 } 298 299 void LIR_Assembler::clinit_barrier(ciMethod* method) { 300 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 301 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 302 303 Label L_skip_barrier; 304 305 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 306 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 307 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 308 __ bind(L_skip_barrier); 309 } 310 311 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 312 if (o == nullptr) { 313 __ mov(reg, zr); 314 } else { 315 __ movoop(reg, o); 316 } 317 } 318 319 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 320 address target = nullptr; 321 relocInfo::relocType reloc_type = relocInfo::none; 322 323 switch (patching_id(info)) { 324 case PatchingStub::access_field_id: 325 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 326 reloc_type = relocInfo::section_word_type; 327 break; 328 case PatchingStub::load_klass_id: 329 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 330 reloc_type = relocInfo::metadata_type; 331 break; 332 case PatchingStub::load_mirror_id: 333 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 334 reloc_type = relocInfo::oop_type; 335 break; 336 case PatchingStub::load_appendix_id: 337 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 338 reloc_type = relocInfo::oop_type; 339 break; 340 default: ShouldNotReachHere(); 341 } 342 343 __ far_call(RuntimeAddress(target)); 344 add_call_info_here(info); 345 } 346 347 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 348 deoptimize_trap(info); 349 } 350 351 352 // This specifies the rsp decrement needed to build the frame 353 int LIR_Assembler::initial_frame_size_in_bytes() const { 354 // if rounding, must let FrameMap know! 355 356 return in_bytes(frame_map()->framesize_in_bytes()); 357 } 358 359 360 int LIR_Assembler::emit_exception_handler() { 361 // generate code for exception handler 362 address handler_base = __ start_a_stub(exception_handler_size()); 363 if (handler_base == nullptr) { 364 // not enough space left for the handler 365 bailout("exception handler overflow"); 366 return -1; 367 } 368 369 int offset = code_offset(); 370 371 // the exception oop and pc are in r0, and r3 372 // no other registers need to be preserved, so invalidate them 373 __ invalidate_registers(false, true, true, false, true, true); 374 375 // check that there is really an exception 376 __ verify_not_null_oop(r0); 377 378 // search an exception handler (r0: exception oop, r3: throwing pc) 379 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 380 __ should_not_reach_here(); 381 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 382 __ end_a_stub(); 383 384 return offset; 385 } 386 387 388 // Emit the code to remove the frame from the stack in the exception 389 // unwind path. 390 int LIR_Assembler::emit_unwind_handler() { 391 #ifndef PRODUCT 392 if (CommentedAssembly) { 393 _masm->block_comment("Unwind handler"); 394 } 395 #endif 396 397 int offset = code_offset(); 398 399 // Fetch the exception from TLS and clear out exception related thread state 400 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 401 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 402 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 403 404 __ bind(_unwind_handler_entry); 405 __ verify_not_null_oop(r0); 406 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 407 __ mov(r19, r0); // Preserve the exception 408 } 409 410 // Perform needed unlocking 411 MonitorExitStub* stub = nullptr; 412 if (method()->is_synchronized()) { 413 monitor_address(0, FrameMap::r0_opr); 414 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 415 if (LockingMode == LM_MONITOR) { 416 __ b(*stub->entry()); 417 } else { 418 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 419 } 420 __ bind(*stub->continuation()); 421 } 422 423 if (compilation()->env()->dtrace_method_probes()) { 424 __ mov(c_rarg0, rthread); 425 __ mov_metadata(c_rarg1, method()->constant_encoding()); 426 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 427 } 428 429 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 430 __ mov(r0, r19); // Restore the exception 431 } 432 433 // remove the activation and dispatch to the unwind handler 434 __ block_comment("remove_frame and dispatch to the unwind handler"); 435 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 436 __ far_jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 437 438 // Emit the slow path assembly 439 if (stub != nullptr) { 440 stub->emit_code(this); 441 } 442 443 return offset; 444 } 445 446 447 int LIR_Assembler::emit_deopt_handler() { 448 // generate code for exception handler 449 address handler_base = __ start_a_stub(deopt_handler_size()); 450 if (handler_base == nullptr) { 451 // not enough space left for the handler 452 bailout("deopt handler overflow"); 453 return -1; 454 } 455 456 int offset = code_offset(); 457 458 __ adr(lr, pc()); 459 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 460 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 461 __ end_a_stub(); 462 463 return offset; 464 } 465 466 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 467 _masm->code_section()->relocate(adr, relocInfo::poll_type); 468 int pc_offset = code_offset(); 469 flush_debug_info(pc_offset); 470 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 471 if (info->exception_handlers() != nullptr) { 472 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 473 } 474 } 475 476 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 477 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 478 479 if (InlineTypeReturnedAsFields) { 480 // Check if we are returning an non-null inline type and load its fields into registers 481 ciType* return_type = compilation()->method()->return_type(); 482 if (return_type->is_inlinetype()) { 483 ciInlineKlass* vk = return_type->as_inline_klass(); 484 if (vk->can_be_returned_as_fields()) { 485 address unpack_handler = vk->unpack_handler(); 486 assert(unpack_handler != nullptr, "must be"); 487 __ far_call(RuntimeAddress(unpack_handler)); 488 } 489 } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) { 490 Label skip; 491 Label not_null; 492 __ cbnz(r0, not_null); 493 // Returned value is null, zero all return registers because they may belong to oop fields 494 __ mov(j_rarg1, zr); 495 __ mov(j_rarg2, zr); 496 __ mov(j_rarg3, zr); 497 __ mov(j_rarg4, zr); 498 __ mov(j_rarg5, zr); 499 __ mov(j_rarg6, zr); 500 __ mov(j_rarg7, zr); 501 __ b(skip); 502 __ bind(not_null); 503 504 // Check if we are returning an non-null inline type and load its fields into registers 505 __ test_oop_is_not_inline_type(r0, rscratch2, skip, /* can_be_null= */ false); 506 507 // Load fields from a buffered value with an inline class specific handler 508 __ load_klass(rscratch1 /*dst*/, r0 /*src*/); 509 __ ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 510 __ ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 511 // Unpack handler can be null if inline type is not scalarizable in returns 512 __ cbz(rscratch1, skip); 513 __ blr(rscratch1); 514 515 __ bind(skip); 516 } 517 // At this point, r0 points to the value object (for interpreter or C1 caller). 518 // The fields of the object are copied into registers (for C2 caller). 519 } 520 521 // Pop the stack before the safepoint code 522 __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair()); 523 524 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 525 __ reserved_stack_check(); 526 } 527 528 code_stub->set_safepoint_offset(__ offset()); 529 __ relocate(relocInfo::poll_return_type); 530 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 531 __ ret(lr); 532 } 533 534 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) { 535 return (__ store_inline_type_fields_to_buf(vk, false)); 536 } 537 538 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 539 guarantee(info != nullptr, "Shouldn't be null"); 540 __ get_polling_page(rscratch1, relocInfo::poll_type); 541 add_debug_info_for_branch(info); // This isn't just debug info: 542 // it's the oop map 543 __ read_polling_page(rscratch1, relocInfo::poll_type); 544 return __ offset(); 545 } 546 547 548 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 549 if (from_reg == r31_sp) 550 from_reg = sp; 551 if (to_reg == r31_sp) 552 to_reg = sp; 553 __ mov(to_reg, from_reg); 554 } 555 556 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 557 558 559 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 560 assert(src->is_constant(), "should not call otherwise"); 561 assert(dest->is_register(), "should not call otherwise"); 562 LIR_Const* c = src->as_constant_ptr(); 563 564 switch (c->type()) { 565 case T_INT: { 566 assert(patch_code == lir_patch_none, "no patching handled here"); 567 __ movw(dest->as_register(), c->as_jint()); 568 break; 569 } 570 571 case T_ADDRESS: { 572 assert(patch_code == lir_patch_none, "no patching handled here"); 573 __ mov(dest->as_register(), c->as_jint()); 574 break; 575 } 576 577 case T_LONG: { 578 assert(patch_code == lir_patch_none, "no patching handled here"); 579 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 580 break; 581 } 582 583 case T_OBJECT: { 584 if (patch_code != lir_patch_none) { 585 jobject2reg_with_patching(dest->as_register(), info); 586 } else { 587 jobject2reg(c->as_jobject(), dest->as_register()); 588 } 589 break; 590 } 591 592 case T_METADATA: { 593 if (patch_code != lir_patch_none) { 594 klass2reg_with_patching(dest->as_register(), info); 595 } else { 596 __ mov_metadata(dest->as_register(), c->as_metadata()); 597 } 598 break; 599 } 600 601 case T_FLOAT: { 602 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 603 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 604 } else { 605 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 606 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 607 } 608 break; 609 } 610 611 case T_DOUBLE: { 612 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 613 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 614 } else { 615 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 616 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 617 } 618 break; 619 } 620 621 default: 622 ShouldNotReachHere(); 623 } 624 } 625 626 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 627 LIR_Const* c = src->as_constant_ptr(); 628 switch (c->type()) { 629 case T_OBJECT: 630 { 631 if (! c->as_jobject()) 632 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 633 else { 634 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 635 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 636 } 637 } 638 break; 639 case T_ADDRESS: 640 { 641 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr); 642 reg2stack(FrameMap::rscratch1_opr, dest, c->type()); 643 } 644 case T_INT: 645 case T_FLOAT: 646 { 647 Register reg = zr; 648 if (c->as_jint_bits() == 0) 649 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 650 else { 651 __ movw(rscratch1, c->as_jint_bits()); 652 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 653 } 654 } 655 break; 656 case T_LONG: 657 case T_DOUBLE: 658 { 659 Register reg = zr; 660 if (c->as_jlong_bits() == 0) 661 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 662 lo_word_offset_in_bytes)); 663 else { 664 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 665 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 666 lo_word_offset_in_bytes)); 667 } 668 } 669 break; 670 default: 671 ShouldNotReachHere(); 672 } 673 } 674 675 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 676 assert(src->is_constant(), "should not call otherwise"); 677 LIR_Const* c = src->as_constant_ptr(); 678 LIR_Address* to_addr = dest->as_address_ptr(); 679 680 void (Assembler::* insn)(Register Rt, const Address &adr); 681 682 switch (type) { 683 case T_ADDRESS: 684 assert(c->as_jint() == 0, "should be"); 685 insn = &Assembler::str; 686 break; 687 case T_LONG: 688 assert(c->as_jlong() == 0, "should be"); 689 insn = &Assembler::str; 690 break; 691 case T_INT: 692 assert(c->as_jint() == 0, "should be"); 693 insn = &Assembler::strw; 694 break; 695 case T_OBJECT: 696 case T_ARRAY: 697 // Non-null case is not handled on aarch64 but handled on x86 698 // FIXME: do we need to add it here? 699 assert(c->as_jobject() == nullptr, "should be"); 700 if (UseCompressedOops && !wide) { 701 insn = &Assembler::strw; 702 } else { 703 insn = &Assembler::str; 704 } 705 break; 706 case T_CHAR: 707 case T_SHORT: 708 assert(c->as_jint() == 0, "should be"); 709 insn = &Assembler::strh; 710 break; 711 case T_BOOLEAN: 712 case T_BYTE: 713 assert(c->as_jint() == 0, "should be"); 714 insn = &Assembler::strb; 715 break; 716 default: 717 ShouldNotReachHere(); 718 insn = &Assembler::str; // unreachable 719 } 720 721 if (info) add_debug_info_for_null_check_here(info); 722 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 723 } 724 725 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 726 assert(src->is_register(), "should not call otherwise"); 727 assert(dest->is_register(), "should not call otherwise"); 728 729 // move between cpu-registers 730 if (dest->is_single_cpu()) { 731 if (src->type() == T_LONG) { 732 // Can do LONG -> OBJECT 733 move_regs(src->as_register_lo(), dest->as_register()); 734 return; 735 } 736 assert(src->is_single_cpu(), "must match"); 737 if (src->type() == T_OBJECT) { 738 __ verify_oop(src->as_register()); 739 } 740 move_regs(src->as_register(), dest->as_register()); 741 742 } else if (dest->is_double_cpu()) { 743 if (is_reference_type(src->type())) { 744 // Surprising to me but we can see move of a long to t_object 745 __ verify_oop(src->as_register()); 746 move_regs(src->as_register(), dest->as_register_lo()); 747 return; 748 } 749 assert(src->is_double_cpu(), "must match"); 750 Register f_lo = src->as_register_lo(); 751 Register f_hi = src->as_register_hi(); 752 Register t_lo = dest->as_register_lo(); 753 Register t_hi = dest->as_register_hi(); 754 assert(f_hi == f_lo, "must be same"); 755 assert(t_hi == t_lo, "must be same"); 756 move_regs(f_lo, t_lo); 757 758 } else if (dest->is_single_fpu()) { 759 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 760 761 } else if (dest->is_double_fpu()) { 762 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 763 764 } else { 765 ShouldNotReachHere(); 766 } 767 } 768 769 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 770 precond(src->is_register() && dest->is_stack()); 771 772 uint const c_sz32 = sizeof(uint32_t); 773 uint const c_sz64 = sizeof(uint64_t); 774 775 if (src->is_single_cpu()) { 776 int index = dest->single_stack_ix(); 777 if (is_reference_type(type)) { 778 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 779 __ verify_oop(src->as_register()); 780 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 781 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 782 } else { 783 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 784 } 785 786 } else if (src->is_double_cpu()) { 787 int index = dest->double_stack_ix(); 788 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 789 __ str(src->as_register_lo(), dest_addr_LO); 790 791 } else if (src->is_single_fpu()) { 792 int index = dest->single_stack_ix(); 793 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 794 795 } else if (src->is_double_fpu()) { 796 int index = dest->double_stack_ix(); 797 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 798 799 } else { 800 ShouldNotReachHere(); 801 } 802 } 803 804 805 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 806 LIR_Address* to_addr = dest->as_address_ptr(); 807 PatchingStub* patch = nullptr; 808 Register compressed_src = rscratch1; 809 810 if (patch_code != lir_patch_none) { 811 deoptimize_trap(info); 812 return; 813 } 814 815 if (is_reference_type(type)) { 816 __ verify_oop(src->as_register()); 817 818 if (UseCompressedOops && !wide) { 819 __ encode_heap_oop(compressed_src, src->as_register()); 820 } else { 821 compressed_src = src->as_register(); 822 } 823 } 824 825 int null_check_here = code_offset(); 826 switch (type) { 827 case T_FLOAT: { 828 __ strs(src->as_float_reg(), as_Address(to_addr)); 829 break; 830 } 831 832 case T_DOUBLE: { 833 __ strd(src->as_double_reg(), as_Address(to_addr)); 834 break; 835 } 836 837 case T_ARRAY: // fall through 838 case T_OBJECT: // fall through 839 if (UseCompressedOops && !wide) { 840 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 841 } else { 842 __ str(compressed_src, as_Address(to_addr)); 843 } 844 break; 845 case T_METADATA: 846 // We get here to store a method pointer to the stack to pass to 847 // a dtrace runtime call. This can't work on 64 bit with 848 // compressed klass ptrs: T_METADATA can be a compressed klass 849 // ptr or a 64 bit method pointer. 850 ShouldNotReachHere(); 851 __ str(src->as_register(), as_Address(to_addr)); 852 break; 853 case T_ADDRESS: 854 __ str(src->as_register(), as_Address(to_addr)); 855 break; 856 case T_INT: 857 __ strw(src->as_register(), as_Address(to_addr)); 858 break; 859 860 case T_LONG: { 861 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 862 break; 863 } 864 865 case T_BYTE: // fall through 866 case T_BOOLEAN: { 867 __ strb(src->as_register(), as_Address(to_addr)); 868 break; 869 } 870 871 case T_CHAR: // fall through 872 case T_SHORT: 873 __ strh(src->as_register(), as_Address(to_addr)); 874 break; 875 876 default: 877 ShouldNotReachHere(); 878 } 879 if (info != nullptr) { 880 add_debug_info_for_null_check(null_check_here, info); 881 } 882 } 883 884 885 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 886 precond(src->is_stack() && dest->is_register()); 887 888 uint const c_sz32 = sizeof(uint32_t); 889 uint const c_sz64 = sizeof(uint64_t); 890 891 if (dest->is_single_cpu()) { 892 int index = src->single_stack_ix(); 893 if (is_reference_type(type)) { 894 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 895 __ verify_oop(dest->as_register()); 896 } else if (type == T_METADATA || type == T_ADDRESS) { 897 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 898 } else { 899 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 900 } 901 902 } else if (dest->is_double_cpu()) { 903 int index = src->double_stack_ix(); 904 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 905 __ ldr(dest->as_register_lo(), src_addr_LO); 906 907 } else if (dest->is_single_fpu()) { 908 int index = src->single_stack_ix(); 909 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 910 911 } else if (dest->is_double_fpu()) { 912 int index = src->double_stack_ix(); 913 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 914 915 } else { 916 ShouldNotReachHere(); 917 } 918 } 919 920 921 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 922 address target = nullptr; 923 relocInfo::relocType reloc_type = relocInfo::none; 924 925 switch (patching_id(info)) { 926 case PatchingStub::access_field_id: 927 target = Runtime1::entry_for(C1StubId::access_field_patching_id); 928 reloc_type = relocInfo::section_word_type; 929 break; 930 case PatchingStub::load_klass_id: 931 target = Runtime1::entry_for(C1StubId::load_klass_patching_id); 932 reloc_type = relocInfo::metadata_type; 933 break; 934 case PatchingStub::load_mirror_id: 935 target = Runtime1::entry_for(C1StubId::load_mirror_patching_id); 936 reloc_type = relocInfo::oop_type; 937 break; 938 case PatchingStub::load_appendix_id: 939 target = Runtime1::entry_for(C1StubId::load_appendix_patching_id); 940 reloc_type = relocInfo::oop_type; 941 break; 942 default: ShouldNotReachHere(); 943 } 944 945 __ far_call(RuntimeAddress(target)); 946 add_call_info_here(info); 947 } 948 949 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 950 951 LIR_Opr temp; 952 if (type == T_LONG || type == T_DOUBLE) 953 temp = FrameMap::rscratch1_long_opr; 954 else 955 temp = FrameMap::rscratch1_opr; 956 957 stack2reg(src, temp, src->type()); 958 reg2stack(temp, dest, dest->type()); 959 } 960 961 962 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 963 LIR_Address* addr = src->as_address_ptr(); 964 LIR_Address* from_addr = src->as_address_ptr(); 965 966 if (addr->base()->type() == T_OBJECT) { 967 __ verify_oop(addr->base()->as_pointer_register()); 968 } 969 970 if (patch_code != lir_patch_none) { 971 deoptimize_trap(info); 972 return; 973 } 974 975 if (info != nullptr) { 976 add_debug_info_for_null_check_here(info); 977 } 978 int null_check_here = code_offset(); 979 switch (type) { 980 case T_FLOAT: { 981 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 982 break; 983 } 984 985 case T_DOUBLE: { 986 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 987 break; 988 } 989 990 case T_ARRAY: // fall through 991 case T_OBJECT: // fall through 992 if (UseCompressedOops && !wide) { 993 __ ldrw(dest->as_register(), as_Address(from_addr)); 994 } else { 995 __ ldr(dest->as_register(), as_Address(from_addr)); 996 } 997 break; 998 case T_METADATA: 999 // We get here to store a method pointer to the stack to pass to 1000 // a dtrace runtime call. This can't work on 64 bit with 1001 // compressed klass ptrs: T_METADATA can be a compressed klass 1002 // ptr or a 64 bit method pointer. 1003 ShouldNotReachHere(); 1004 __ ldr(dest->as_register(), as_Address(from_addr)); 1005 break; 1006 case T_ADDRESS: 1007 __ ldr(dest->as_register(), as_Address(from_addr)); 1008 break; 1009 case T_INT: 1010 __ ldrw(dest->as_register(), as_Address(from_addr)); 1011 break; 1012 1013 case T_LONG: { 1014 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 1015 break; 1016 } 1017 1018 case T_BYTE: 1019 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1020 break; 1021 case T_BOOLEAN: { 1022 __ ldrb(dest->as_register(), as_Address(from_addr)); 1023 break; 1024 } 1025 1026 case T_CHAR: 1027 __ ldrh(dest->as_register(), as_Address(from_addr)); 1028 break; 1029 case T_SHORT: 1030 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1031 break; 1032 1033 default: 1034 ShouldNotReachHere(); 1035 } 1036 1037 if (is_reference_type(type)) { 1038 if (UseCompressedOops && !wide) { 1039 __ decode_heap_oop(dest->as_register()); 1040 } 1041 1042 __ verify_oop(dest->as_register()); 1043 } 1044 } 1045 1046 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) { 1047 assert(dst->is_cpu_register(), "must be"); 1048 assert(dst->type() == src->type(), "must be"); 1049 1050 if (src->is_cpu_register()) { 1051 reg2reg(src, dst); 1052 } else if (src->is_stack()) { 1053 stack2reg(src, dst, dst->type()); 1054 } else if (src->is_constant()) { 1055 const2reg(src, dst, lir_patch_none, nullptr); 1056 } else { 1057 ShouldNotReachHere(); 1058 } 1059 } 1060 1061 int LIR_Assembler::array_element_size(BasicType type) const { 1062 int elem_size = type2aelembytes(type); 1063 return exact_log2(elem_size); 1064 } 1065 1066 1067 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1068 switch (op->code()) { 1069 case lir_idiv: 1070 case lir_irem: 1071 arithmetic_idiv(op->code(), 1072 op->in_opr1(), 1073 op->in_opr2(), 1074 op->in_opr3(), 1075 op->result_opr(), 1076 op->info()); 1077 break; 1078 case lir_fmad: 1079 __ fmaddd(op->result_opr()->as_double_reg(), 1080 op->in_opr1()->as_double_reg(), 1081 op->in_opr2()->as_double_reg(), 1082 op->in_opr3()->as_double_reg()); 1083 break; 1084 case lir_fmaf: 1085 __ fmadds(op->result_opr()->as_float_reg(), 1086 op->in_opr1()->as_float_reg(), 1087 op->in_opr2()->as_float_reg(), 1088 op->in_opr3()->as_float_reg()); 1089 break; 1090 default: ShouldNotReachHere(); break; 1091 } 1092 } 1093 1094 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1095 #ifdef ASSERT 1096 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1097 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1098 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1099 #endif 1100 1101 if (op->cond() == lir_cond_always) { 1102 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1103 __ b(*(op->label())); 1104 } else { 1105 Assembler::Condition acond; 1106 if (op->code() == lir_cond_float_branch) { 1107 bool is_unordered = (op->ublock() == op->block()); 1108 // Assembler::EQ does not permit unordered branches, so we add 1109 // another branch here. Likewise, Assembler::NE does not permit 1110 // ordered branches. 1111 if ((is_unordered && op->cond() == lir_cond_equal) 1112 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1113 __ br(Assembler::VS, *(op->ublock()->label())); 1114 switch(op->cond()) { 1115 case lir_cond_equal: acond = Assembler::EQ; break; 1116 case lir_cond_notEqual: acond = Assembler::NE; break; 1117 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1118 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1119 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1120 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1121 default: ShouldNotReachHere(); 1122 acond = Assembler::EQ; // unreachable 1123 } 1124 } else { 1125 switch (op->cond()) { 1126 case lir_cond_equal: acond = Assembler::EQ; break; 1127 case lir_cond_notEqual: acond = Assembler::NE; break; 1128 case lir_cond_less: acond = Assembler::LT; break; 1129 case lir_cond_lessEqual: acond = Assembler::LE; break; 1130 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1131 case lir_cond_greater: acond = Assembler::GT; break; 1132 case lir_cond_belowEqual: acond = Assembler::LS; break; 1133 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1134 default: ShouldNotReachHere(); 1135 acond = Assembler::EQ; // unreachable 1136 } 1137 } 1138 __ br(acond,*(op->label())); 1139 } 1140 } 1141 1142 1143 1144 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1145 LIR_Opr src = op->in_opr(); 1146 LIR_Opr dest = op->result_opr(); 1147 1148 switch (op->bytecode()) { 1149 case Bytecodes::_i2f: 1150 { 1151 __ scvtfws(dest->as_float_reg(), src->as_register()); 1152 break; 1153 } 1154 case Bytecodes::_i2d: 1155 { 1156 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1157 break; 1158 } 1159 case Bytecodes::_l2d: 1160 { 1161 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1162 break; 1163 } 1164 case Bytecodes::_l2f: 1165 { 1166 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1167 break; 1168 } 1169 case Bytecodes::_f2d: 1170 { 1171 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1172 break; 1173 } 1174 case Bytecodes::_d2f: 1175 { 1176 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1177 break; 1178 } 1179 case Bytecodes::_i2c: 1180 { 1181 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1182 break; 1183 } 1184 case Bytecodes::_i2l: 1185 { 1186 __ sxtw(dest->as_register_lo(), src->as_register()); 1187 break; 1188 } 1189 case Bytecodes::_i2s: 1190 { 1191 __ sxth(dest->as_register(), src->as_register()); 1192 break; 1193 } 1194 case Bytecodes::_i2b: 1195 { 1196 __ sxtb(dest->as_register(), src->as_register()); 1197 break; 1198 } 1199 case Bytecodes::_l2i: 1200 { 1201 _masm->block_comment("FIXME: This could be a no-op"); 1202 __ uxtw(dest->as_register(), src->as_register_lo()); 1203 break; 1204 } 1205 case Bytecodes::_d2l: 1206 { 1207 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1208 break; 1209 } 1210 case Bytecodes::_f2i: 1211 { 1212 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1213 break; 1214 } 1215 case Bytecodes::_f2l: 1216 { 1217 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1218 break; 1219 } 1220 case Bytecodes::_d2i: 1221 { 1222 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1223 break; 1224 } 1225 default: ShouldNotReachHere(); 1226 } 1227 } 1228 1229 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1230 if (op->init_check()) { 1231 __ lea(rscratch1, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 1232 __ ldarb(rscratch1, rscratch1); 1233 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1234 add_debug_info_for_null_check_here(op->stub()->info()); 1235 __ br(Assembler::NE, *op->stub()->entry()); 1236 } 1237 __ allocate_object(op->obj()->as_register(), 1238 op->tmp1()->as_register(), 1239 op->tmp2()->as_register(), 1240 op->header_size(), 1241 op->object_size(), 1242 op->klass()->as_register(), 1243 *op->stub()->entry()); 1244 __ bind(*op->stub()->continuation()); 1245 } 1246 1247 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1248 Register len = op->len()->as_register(); 1249 __ uxtw(len, len); 1250 1251 if (UseSlowPath || op->is_null_free() || 1252 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1253 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1254 __ b(*op->stub()->entry()); 1255 } else { 1256 Register tmp1 = op->tmp1()->as_register(); 1257 Register tmp2 = op->tmp2()->as_register(); 1258 Register tmp3 = op->tmp3()->as_register(); 1259 if (len == tmp1) { 1260 tmp1 = tmp3; 1261 } else if (len == tmp2) { 1262 tmp2 = tmp3; 1263 } else if (len == tmp3) { 1264 // everything is ok 1265 } else { 1266 __ mov(tmp3, len); 1267 } 1268 __ allocate_array(op->obj()->as_register(), 1269 len, 1270 tmp1, 1271 tmp2, 1272 arrayOopDesc::base_offset_in_bytes(op->type()), 1273 array_element_size(op->type()), 1274 op->klass()->as_register(), 1275 *op->stub()->entry(), 1276 op->zero_array()); 1277 } 1278 __ bind(*op->stub()->continuation()); 1279 } 1280 1281 void LIR_Assembler::type_profile_helper(Register mdo, 1282 ciMethodData *md, ciProfileData *data, 1283 Register recv, Label* update_done) { 1284 1285 // Given a profile data offset, generate an Address which points to 1286 // the corresponding slot in mdo->data(). 1287 // Clobbers rscratch2. 1288 auto slot_at = [=](ByteSize offset) -> Address { 1289 return __ form_address(rscratch2, mdo, 1290 md->byte_offset_of_slot(data, offset), 1291 LogBytesPerWord); 1292 }; 1293 1294 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1295 Label next_test; 1296 // See if the receiver is receiver[n]. 1297 __ ldr(rscratch1, slot_at(ReceiverTypeData::receiver_offset(i))); 1298 __ cmp(recv, rscratch1); 1299 __ br(Assembler::NE, next_test); 1300 __ addptr(slot_at(ReceiverTypeData::receiver_count_offset(i)), 1301 DataLayout::counter_increment); 1302 __ b(*update_done); 1303 __ bind(next_test); 1304 } 1305 1306 // Didn't find receiver; find next empty slot and fill it in 1307 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1308 Label next_test; 1309 Address recv_addr(slot_at(ReceiverTypeData::receiver_offset(i))); 1310 __ ldr(rscratch1, recv_addr); 1311 __ cbnz(rscratch1, next_test); 1312 __ str(recv, recv_addr); 1313 __ mov(rscratch1, DataLayout::counter_increment); 1314 __ str(rscratch1, slot_at(ReceiverTypeData::receiver_count_offset(i))); 1315 __ b(*update_done); 1316 __ bind(next_test); 1317 } 1318 } 1319 1320 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1321 // we always need a stub for the failure case. 1322 CodeStub* stub = op->stub(); 1323 Register obj = op->object()->as_register(); 1324 Register k_RInfo = op->tmp1()->as_register(); 1325 Register klass_RInfo = op->tmp2()->as_register(); 1326 Register dst = op->result_opr()->as_register(); 1327 ciKlass* k = op->klass(); 1328 Register Rtmp1 = noreg; 1329 1330 // check if it needs to be profiled 1331 ciMethodData* md; 1332 ciProfileData* data; 1333 1334 const bool should_profile = op->should_profile(); 1335 1336 if (should_profile) { 1337 ciMethod* method = op->profiled_method(); 1338 assert(method != nullptr, "Should have method"); 1339 int bci = op->profiled_bci(); 1340 md = method->method_data_or_null(); 1341 assert(md != nullptr, "Sanity"); 1342 data = md->bci_to_data(bci); 1343 assert(data != nullptr, "need data for type check"); 1344 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1345 } 1346 Label* success_target = success; 1347 Label* failure_target = failure; 1348 1349 if (obj == k_RInfo) { 1350 k_RInfo = dst; 1351 } else if (obj == klass_RInfo) { 1352 klass_RInfo = dst; 1353 } 1354 if (k->is_loaded() && !UseCompressedClassPointers) { 1355 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1356 } else { 1357 Rtmp1 = op->tmp3()->as_register(); 1358 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1359 } 1360 1361 assert_different_registers(obj, k_RInfo, klass_RInfo); 1362 1363 if (op->need_null_check()) { 1364 if (should_profile) { 1365 Register mdo = klass_RInfo; 1366 __ mov_metadata(mdo, md->constant_encoding()); 1367 Label not_null; 1368 __ cbnz(obj, not_null); 1369 // Object is null; update MDO and exit 1370 Address data_addr 1371 = __ form_address(rscratch2, mdo, 1372 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1373 0); 1374 __ ldrb(rscratch1, data_addr); 1375 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1376 __ strb(rscratch1, data_addr); 1377 __ b(*obj_is_null); 1378 __ bind(not_null); 1379 1380 Label update_done; 1381 Register recv = k_RInfo; 1382 __ load_klass(recv, obj); 1383 type_profile_helper(mdo, md, data, recv, &update_done); 1384 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1385 __ addptr(counter_addr, DataLayout::counter_increment); 1386 1387 __ bind(update_done); 1388 } else { 1389 __ cbz(obj, *obj_is_null); 1390 } 1391 } 1392 1393 if (!k->is_loaded()) { 1394 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1395 } else { 1396 __ mov_metadata(k_RInfo, k->constant_encoding()); 1397 } 1398 __ verify_oop(obj); 1399 1400 if (op->fast_check()) { 1401 // get object class 1402 // not a safepoint as obj null check happens earlier 1403 __ load_klass(rscratch1, obj); 1404 __ cmp( rscratch1, k_RInfo); 1405 1406 __ br(Assembler::NE, *failure_target); 1407 // successful cast, fall through to profile or jump 1408 } else { 1409 // get object class 1410 // not a safepoint as obj null check happens earlier 1411 __ load_klass(klass_RInfo, obj); 1412 if (k->is_loaded()) { 1413 // See if we get an immediate positive hit 1414 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1415 __ cmp(k_RInfo, rscratch1); 1416 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1417 __ br(Assembler::NE, *failure_target); 1418 // successful cast, fall through to profile or jump 1419 } else { 1420 // See if we get an immediate positive hit 1421 __ br(Assembler::EQ, *success_target); 1422 // check for self 1423 __ cmp(klass_RInfo, k_RInfo); 1424 __ br(Assembler::EQ, *success_target); 1425 1426 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1427 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1428 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1429 // result is a boolean 1430 __ cbzw(klass_RInfo, *failure_target); 1431 // successful cast, fall through to profile or jump 1432 } 1433 } else { 1434 // perform the fast part of the checking logic 1435 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1436 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1437 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1438 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1439 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1440 // result is a boolean 1441 __ cbz(k_RInfo, *failure_target); 1442 // successful cast, fall through to profile or jump 1443 } 1444 } 1445 __ b(*success); 1446 } 1447 1448 1449 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1450 const bool should_profile = op->should_profile(); 1451 1452 LIR_Code code = op->code(); 1453 if (code == lir_store_check) { 1454 Register value = op->object()->as_register(); 1455 Register array = op->array()->as_register(); 1456 Register k_RInfo = op->tmp1()->as_register(); 1457 Register klass_RInfo = op->tmp2()->as_register(); 1458 Register Rtmp1 = op->tmp3()->as_register(); 1459 1460 CodeStub* stub = op->stub(); 1461 1462 // check if it needs to be profiled 1463 ciMethodData* md; 1464 ciProfileData* data; 1465 1466 if (should_profile) { 1467 ciMethod* method = op->profiled_method(); 1468 assert(method != nullptr, "Should have method"); 1469 int bci = op->profiled_bci(); 1470 md = method->method_data_or_null(); 1471 assert(md != nullptr, "Sanity"); 1472 data = md->bci_to_data(bci); 1473 assert(data != nullptr, "need data for type check"); 1474 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1475 } 1476 Label done; 1477 Label* success_target = &done; 1478 Label* failure_target = stub->entry(); 1479 1480 if (should_profile) { 1481 Label not_null; 1482 Register mdo = klass_RInfo; 1483 __ mov_metadata(mdo, md->constant_encoding()); 1484 __ cbnz(value, not_null); 1485 // Object is null; update MDO and exit 1486 Address data_addr 1487 = __ form_address(rscratch2, mdo, 1488 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 0); 1489 __ ldrb(rscratch1, data_addr); 1490 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1491 __ strb(rscratch1, data_addr); 1492 __ b(done); 1493 __ bind(not_null); 1494 1495 Label update_done; 1496 Register recv = k_RInfo; 1497 __ load_klass(recv, value); 1498 type_profile_helper(mdo, md, data, recv, &update_done); 1499 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1500 __ addptr(counter_addr, DataLayout::counter_increment); 1501 __ bind(update_done); 1502 } else { 1503 __ cbz(value, done); 1504 } 1505 1506 add_debug_info_for_null_check_here(op->info_for_exception()); 1507 __ load_klass(k_RInfo, array); 1508 __ load_klass(klass_RInfo, value); 1509 1510 // get instance klass (it's already uncompressed) 1511 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1512 // perform the fast part of the checking logic 1513 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1514 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1515 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1516 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1517 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1518 // result is a boolean 1519 __ cbzw(k_RInfo, *failure_target); 1520 // fall through to the success case 1521 1522 __ bind(done); 1523 } else if (code == lir_checkcast) { 1524 Register obj = op->object()->as_register(); 1525 Register dst = op->result_opr()->as_register(); 1526 Label success; 1527 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1528 __ bind(success); 1529 if (dst != obj) { 1530 __ mov(dst, obj); 1531 } 1532 } else if (code == lir_instanceof) { 1533 Register obj = op->object()->as_register(); 1534 Register dst = op->result_opr()->as_register(); 1535 Label success, failure, done; 1536 emit_typecheck_helper(op, &success, &failure, &failure); 1537 __ bind(failure); 1538 __ mov(dst, zr); 1539 __ b(done); 1540 __ bind(success); 1541 __ mov(dst, 1); 1542 __ bind(done); 1543 } else { 1544 ShouldNotReachHere(); 1545 } 1546 } 1547 1548 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) { 1549 // We are loading/storing from/to an array that *may* be a flat array (the 1550 // declared type is Object[], abstract[], interface[] or VT.ref[]). 1551 // If this array is a flat array, take the slow path. 1552 __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1553 if (!op->value()->is_illegal()) { 1554 // The array is not a flat array, but it might be null-free. If we are storing 1555 // a null into a null-free array, take the slow path (which will throw NPE). 1556 Label skip; 1557 __ cbnz(op->value()->as_register(), skip); 1558 __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry()); 1559 __ bind(skip); 1560 } 1561 } 1562 1563 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) { 1564 // We are storing into an array that *may* be null-free (the declared type is 1565 // Object[], abstract[], interface[] or VT.ref[]). 1566 Label test_mark_word; 1567 Register tmp = op->tmp()->as_register(); 1568 __ ldr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes())); 1569 __ tst(tmp, markWord::unlocked_value); 1570 __ br(Assembler::NE, test_mark_word); 1571 __ load_prototype_header(tmp, op->array()->as_register()); 1572 __ bind(test_mark_word); 1573 __ tst(tmp, markWord::null_free_array_bit_in_place); 1574 } 1575 1576 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) { 1577 Label L_oops_equal; 1578 Label L_oops_not_equal; 1579 Label L_end; 1580 1581 Register left = op->left()->as_register(); 1582 Register right = op->right()->as_register(); 1583 1584 __ cmp(left, right); 1585 __ br(Assembler::EQ, L_oops_equal); 1586 1587 // (1) Null check -- if one of the operands is null, the other must not be null (because 1588 // the two references are not equal), so they are not substitutable, 1589 // FIXME: do null check only if the operand is nullable 1590 { 1591 __ cbz(left, L_oops_not_equal); 1592 __ cbz(right, L_oops_not_equal); 1593 } 1594 1595 ciKlass* left_klass = op->left_klass(); 1596 ciKlass* right_klass = op->right_klass(); 1597 1598 // (2) Inline type check -- if either of the operands is not a inline type, 1599 // they are not substitutable. We do this only if we are not sure that the 1600 // operands are inline type 1601 if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node. 1602 !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) { 1603 Register tmp1 = op->tmp1()->as_register(); 1604 __ mov(tmp1, markWord::inline_type_pattern); 1605 __ ldr(rscratch1, Address(left, oopDesc::mark_offset_in_bytes())); 1606 __ andr(tmp1, tmp1, rscratch1); 1607 __ ldr(rscratch1, Address(right, oopDesc::mark_offset_in_bytes())); 1608 __ andr(tmp1, tmp1, rscratch1); 1609 __ cmp(tmp1, (u1)markWord::inline_type_pattern); 1610 __ br(Assembler::NE, L_oops_not_equal); 1611 } 1612 1613 // (3) Same klass check: if the operands are of different klasses, they are not substitutable. 1614 if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) { 1615 // No need to load klass -- the operands are statically known to be the same inline klass. 1616 __ b(*op->stub()->entry()); 1617 } else { 1618 Register left_klass_op = op->left_klass_op()->as_register(); 1619 Register right_klass_op = op->right_klass_op()->as_register(); 1620 1621 if (UseCompressedClassPointers) { 1622 __ ldrw(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1623 __ ldrw(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1624 __ cmpw(left_klass_op, right_klass_op); 1625 } else { 1626 __ ldr(left_klass_op, Address(left, oopDesc::klass_offset_in_bytes())); 1627 __ ldr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes())); 1628 __ cmp(left_klass_op, right_klass_op); 1629 } 1630 1631 __ br(Assembler::EQ, *op->stub()->entry()); // same klass -> do slow check 1632 // fall through to L_oops_not_equal 1633 } 1634 1635 __ bind(L_oops_not_equal); 1636 move(op->not_equal_result(), op->result_opr()); 1637 __ b(L_end); 1638 1639 __ bind(L_oops_equal); 1640 move(op->equal_result(), op->result_opr()); 1641 __ b(L_end); 1642 1643 // We've returned from the stub. R0 contains 0x0 IFF the two 1644 // operands are not substitutable. (Don't compare against 0x1 in case the 1645 // C compiler is naughty) 1646 __ bind(*op->stub()->continuation()); 1647 __ cbz(r0, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal 1648 move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal 1649 // fall-through 1650 __ bind(L_end); 1651 } 1652 1653 1654 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1655 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1656 __ cset(rscratch1, Assembler::NE); 1657 __ membar(__ AnyAny); 1658 } 1659 1660 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1661 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1662 __ cset(rscratch1, Assembler::NE); 1663 __ membar(__ AnyAny); 1664 } 1665 1666 1667 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1668 Register addr; 1669 if (op->addr()->is_register()) { 1670 addr = as_reg(op->addr()); 1671 } else { 1672 assert(op->addr()->is_address(), "what else?"); 1673 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1674 assert(addr_ptr->disp() == 0, "need 0 disp"); 1675 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index"); 1676 addr = as_reg(addr_ptr->base()); 1677 } 1678 Register newval = as_reg(op->new_value()); 1679 Register cmpval = as_reg(op->cmp_value()); 1680 1681 if (op->code() == lir_cas_obj) { 1682 if (UseCompressedOops) { 1683 Register t1 = op->tmp1()->as_register(); 1684 assert(op->tmp1()->is_valid(), "must be"); 1685 __ encode_heap_oop(t1, cmpval); 1686 cmpval = t1; 1687 __ encode_heap_oop(rscratch2, newval); 1688 newval = rscratch2; 1689 casw(addr, newval, cmpval); 1690 } else { 1691 casl(addr, newval, cmpval); 1692 } 1693 } else if (op->code() == lir_cas_int) { 1694 casw(addr, newval, cmpval); 1695 } else { 1696 casl(addr, newval, cmpval); 1697 } 1698 } 1699 1700 1701 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1702 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1703 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64"); 1704 1705 Assembler::Condition acond, ncond; 1706 switch (condition) { 1707 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1708 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1709 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1710 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1711 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1712 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1713 case lir_cond_belowEqual: 1714 case lir_cond_aboveEqual: 1715 default: ShouldNotReachHere(); 1716 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1717 } 1718 1719 assert(result->is_single_cpu() || result->is_double_cpu(), 1720 "expect single register for result"); 1721 if (opr1->is_constant() && opr2->is_constant() 1722 && opr1->type() == T_INT && opr2->type() == T_INT) { 1723 jint val1 = opr1->as_jint(); 1724 jint val2 = opr2->as_jint(); 1725 if (val1 == 0 && val2 == 1) { 1726 __ cset(result->as_register(), ncond); 1727 return; 1728 } else if (val1 == 1 && val2 == 0) { 1729 __ cset(result->as_register(), acond); 1730 return; 1731 } 1732 } 1733 1734 if (opr1->is_constant() && opr2->is_constant() 1735 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1736 jlong val1 = opr1->as_jlong(); 1737 jlong val2 = opr2->as_jlong(); 1738 if (val1 == 0 && val2 == 1) { 1739 __ cset(result->as_register_lo(), ncond); 1740 return; 1741 } else if (val1 == 1 && val2 == 0) { 1742 __ cset(result->as_register_lo(), acond); 1743 return; 1744 } 1745 } 1746 1747 if (opr1->is_stack()) { 1748 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1749 opr1 = FrameMap::rscratch1_opr; 1750 } else if (opr1->is_constant()) { 1751 LIR_Opr tmp 1752 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1753 const2reg(opr1, tmp, lir_patch_none, nullptr); 1754 opr1 = tmp; 1755 } 1756 1757 if (opr2->is_stack()) { 1758 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1759 opr2 = FrameMap::rscratch2_opr; 1760 } else if (opr2->is_constant()) { 1761 LIR_Opr tmp 1762 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1763 const2reg(opr2, tmp, lir_patch_none, nullptr); 1764 opr2 = tmp; 1765 } 1766 1767 if (result->type() == T_LONG) 1768 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1769 else 1770 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1771 } 1772 1773 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info) { 1774 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1775 1776 if (left->is_single_cpu()) { 1777 Register lreg = left->as_register(); 1778 Register dreg = as_reg(dest); 1779 1780 if (right->is_single_cpu()) { 1781 // cpu register - cpu register 1782 1783 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1784 "should be"); 1785 Register rreg = right->as_register(); 1786 switch (code) { 1787 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1788 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1789 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1790 default: ShouldNotReachHere(); 1791 } 1792 1793 } else if (right->is_double_cpu()) { 1794 Register rreg = right->as_register_lo(); 1795 // single_cpu + double_cpu: can happen with obj+long 1796 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1797 switch (code) { 1798 case lir_add: __ add(dreg, lreg, rreg); break; 1799 case lir_sub: __ sub(dreg, lreg, rreg); break; 1800 default: ShouldNotReachHere(); 1801 } 1802 } else if (right->is_constant()) { 1803 // cpu register - constant 1804 jlong c; 1805 1806 // FIXME. This is fugly: we really need to factor all this logic. 1807 switch(right->type()) { 1808 case T_LONG: 1809 c = right->as_constant_ptr()->as_jlong(); 1810 break; 1811 case T_INT: 1812 case T_ADDRESS: 1813 c = right->as_constant_ptr()->as_jint(); 1814 break; 1815 default: 1816 ShouldNotReachHere(); 1817 c = 0; // unreachable 1818 break; 1819 } 1820 1821 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1822 if (c == 0 && dreg == lreg) { 1823 COMMENT("effective nop elided"); 1824 return; 1825 } 1826 switch(left->type()) { 1827 case T_INT: 1828 switch (code) { 1829 case lir_add: __ addw(dreg, lreg, c); break; 1830 case lir_sub: __ subw(dreg, lreg, c); break; 1831 default: ShouldNotReachHere(); 1832 } 1833 break; 1834 case T_OBJECT: 1835 case T_ADDRESS: 1836 switch (code) { 1837 case lir_add: __ add(dreg, lreg, c); break; 1838 case lir_sub: __ sub(dreg, lreg, c); break; 1839 default: ShouldNotReachHere(); 1840 } 1841 break; 1842 default: 1843 ShouldNotReachHere(); 1844 } 1845 } else { 1846 ShouldNotReachHere(); 1847 } 1848 1849 } else if (left->is_double_cpu()) { 1850 Register lreg_lo = left->as_register_lo(); 1851 1852 if (right->is_double_cpu()) { 1853 // cpu register - cpu register 1854 Register rreg_lo = right->as_register_lo(); 1855 switch (code) { 1856 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1857 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1858 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1859 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1860 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1861 default: 1862 ShouldNotReachHere(); 1863 } 1864 1865 } else if (right->is_constant()) { 1866 jlong c = right->as_constant_ptr()->as_jlong(); 1867 Register dreg = as_reg(dest); 1868 switch (code) { 1869 case lir_add: 1870 case lir_sub: 1871 if (c == 0 && dreg == lreg_lo) { 1872 COMMENT("effective nop elided"); 1873 return; 1874 } 1875 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1876 break; 1877 case lir_div: 1878 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1879 if (c == 1) { 1880 // move lreg_lo to dreg if divisor is 1 1881 __ mov(dreg, lreg_lo); 1882 } else { 1883 unsigned int shift = log2i_exact(c); 1884 // use rscratch1 as intermediate result register 1885 __ asr(rscratch1, lreg_lo, 63); 1886 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1887 __ asr(dreg, rscratch1, shift); 1888 } 1889 break; 1890 case lir_rem: 1891 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1892 if (c == 1) { 1893 // move 0 to dreg if divisor is 1 1894 __ mov(dreg, zr); 1895 } else { 1896 // use rscratch1 as intermediate result register 1897 __ negs(rscratch1, lreg_lo); 1898 __ andr(dreg, lreg_lo, c - 1); 1899 __ andr(rscratch1, rscratch1, c - 1); 1900 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1901 } 1902 break; 1903 default: 1904 ShouldNotReachHere(); 1905 } 1906 } else { 1907 ShouldNotReachHere(); 1908 } 1909 } else if (left->is_single_fpu()) { 1910 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1911 switch (code) { 1912 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1913 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1914 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1915 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1916 default: 1917 ShouldNotReachHere(); 1918 } 1919 } else if (left->is_double_fpu()) { 1920 if (right->is_double_fpu()) { 1921 // fpu register - fpu register 1922 switch (code) { 1923 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1924 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1925 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1926 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1927 default: 1928 ShouldNotReachHere(); 1929 } 1930 } else { 1931 if (right->is_constant()) { 1932 ShouldNotReachHere(); 1933 } 1934 ShouldNotReachHere(); 1935 } 1936 } else if (left->is_single_stack() || left->is_address()) { 1937 assert(left == dest, "left and dest must be equal"); 1938 ShouldNotReachHere(); 1939 } else { 1940 ShouldNotReachHere(); 1941 } 1942 } 1943 1944 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1945 switch(code) { 1946 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1947 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1948 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break; 1949 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break; 1950 default : ShouldNotReachHere(); 1951 } 1952 } 1953 1954 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1955 1956 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1957 Register Rleft = left->is_single_cpu() ? left->as_register() : 1958 left->as_register_lo(); 1959 if (dst->is_single_cpu()) { 1960 Register Rdst = dst->as_register(); 1961 if (right->is_constant()) { 1962 switch (code) { 1963 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1964 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1965 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1966 default: ShouldNotReachHere(); break; 1967 } 1968 } else { 1969 Register Rright = right->is_single_cpu() ? right->as_register() : 1970 right->as_register_lo(); 1971 switch (code) { 1972 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1973 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1974 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1975 default: ShouldNotReachHere(); break; 1976 } 1977 } 1978 } else { 1979 Register Rdst = dst->as_register_lo(); 1980 if (right->is_constant()) { 1981 switch (code) { 1982 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1983 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1984 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1985 default: ShouldNotReachHere(); break; 1986 } 1987 } else { 1988 Register Rright = right->is_single_cpu() ? right->as_register() : 1989 right->as_register_lo(); 1990 switch (code) { 1991 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1992 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1993 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1994 default: ShouldNotReachHere(); break; 1995 } 1996 } 1997 } 1998 } 1999 2000 2001 2002 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 2003 2004 // opcode check 2005 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 2006 bool is_irem = (code == lir_irem); 2007 2008 // operand check 2009 assert(left->is_single_cpu(), "left must be register"); 2010 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2011 assert(result->is_single_cpu(), "result must be register"); 2012 Register lreg = left->as_register(); 2013 Register dreg = result->as_register(); 2014 2015 // power-of-2 constant check and codegen 2016 if (right->is_constant()) { 2017 int c = right->as_constant_ptr()->as_jint(); 2018 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 2019 if (is_irem) { 2020 if (c == 1) { 2021 // move 0 to dreg if divisor is 1 2022 __ movw(dreg, zr); 2023 } else { 2024 // use rscratch1 as intermediate result register 2025 __ negsw(rscratch1, lreg); 2026 __ andw(dreg, lreg, c - 1); 2027 __ andw(rscratch1, rscratch1, c - 1); 2028 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 2029 } 2030 } else { 2031 if (c == 1) { 2032 // move lreg to dreg if divisor is 1 2033 __ movw(dreg, lreg); 2034 } else { 2035 unsigned int shift = exact_log2(c); 2036 // use rscratch1 as intermediate result register 2037 __ asrw(rscratch1, lreg, 31); 2038 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 2039 __ asrw(dreg, rscratch1, shift); 2040 } 2041 } 2042 } else { 2043 Register rreg = right->as_register(); 2044 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 2045 } 2046 } 2047 2048 2049 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2050 if (opr1->is_constant() && opr2->is_single_cpu()) { 2051 // tableswitch 2052 Register reg = as_reg(opr2); 2053 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 2054 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 2055 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 2056 Register reg1 = as_reg(opr1); 2057 if (opr2->is_single_cpu()) { 2058 // cpu register - cpu register 2059 Register reg2 = opr2->as_register(); 2060 if (is_reference_type(opr1->type())) { 2061 __ cmpoop(reg1, reg2); 2062 } else { 2063 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2064 __ cmpw(reg1, reg2); 2065 } 2066 return; 2067 } 2068 if (opr2->is_double_cpu()) { 2069 // cpu register - cpu register 2070 Register reg2 = opr2->as_register_lo(); 2071 __ cmp(reg1, reg2); 2072 return; 2073 } 2074 2075 if (opr2->is_constant()) { 2076 bool is_32bit = false; // width of register operand 2077 jlong imm; 2078 2079 switch(opr2->type()) { 2080 case T_INT: 2081 imm = opr2->as_constant_ptr()->as_jint(); 2082 is_32bit = true; 2083 break; 2084 case T_LONG: 2085 imm = opr2->as_constant_ptr()->as_jlong(); 2086 break; 2087 case T_ADDRESS: 2088 imm = opr2->as_constant_ptr()->as_jint(); 2089 break; 2090 case T_METADATA: 2091 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 2092 break; 2093 case T_OBJECT: 2094 case T_ARRAY: 2095 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 2096 __ cmpoop(reg1, rscratch1); 2097 return; 2098 default: 2099 ShouldNotReachHere(); 2100 imm = 0; // unreachable 2101 break; 2102 } 2103 2104 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 2105 if (is_32bit) 2106 __ cmpw(reg1, imm); 2107 else 2108 __ subs(zr, reg1, imm); 2109 return; 2110 } else { 2111 __ mov(rscratch1, imm); 2112 if (is_32bit) 2113 __ cmpw(reg1, rscratch1); 2114 else 2115 __ cmp(reg1, rscratch1); 2116 return; 2117 } 2118 } else 2119 ShouldNotReachHere(); 2120 } else if (opr1->is_single_fpu()) { 2121 FloatRegister reg1 = opr1->as_float_reg(); 2122 assert(opr2->is_single_fpu(), "expect single float register"); 2123 FloatRegister reg2 = opr2->as_float_reg(); 2124 __ fcmps(reg1, reg2); 2125 } else if (opr1->is_double_fpu()) { 2126 FloatRegister reg1 = opr1->as_double_reg(); 2127 assert(opr2->is_double_fpu(), "expect double float register"); 2128 FloatRegister reg2 = opr2->as_double_reg(); 2129 __ fcmpd(reg1, reg2); 2130 } else { 2131 ShouldNotReachHere(); 2132 } 2133 } 2134 2135 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2136 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2137 bool is_unordered_less = (code == lir_ucmp_fd2i); 2138 if (left->is_single_fpu()) { 2139 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2140 } else if (left->is_double_fpu()) { 2141 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2142 } else { 2143 ShouldNotReachHere(); 2144 } 2145 } else if (code == lir_cmp_l2i) { 2146 Label done; 2147 __ cmp(left->as_register_lo(), right->as_register_lo()); 2148 __ mov(dst->as_register(), (uint64_t)-1L); 2149 __ br(Assembler::LT, done); 2150 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2151 __ bind(done); 2152 } else { 2153 ShouldNotReachHere(); 2154 } 2155 } 2156 2157 2158 void LIR_Assembler::align_call(LIR_Code code) { } 2159 2160 2161 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2162 address call = __ trampoline_call(Address(op->addr(), rtype)); 2163 if (call == nullptr) { 2164 bailout("trampoline stub overflow"); 2165 return; 2166 } 2167 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2168 __ post_call_nop(); 2169 } 2170 2171 2172 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2173 address call = __ ic_call(op->addr()); 2174 if (call == nullptr) { 2175 bailout("trampoline stub overflow"); 2176 return; 2177 } 2178 add_call_info(code_offset(), op->info(), op->maybe_return_as_fields()); 2179 __ post_call_nop(); 2180 } 2181 2182 void LIR_Assembler::emit_static_call_stub() { 2183 address call_pc = __ pc(); 2184 address stub = __ start_a_stub(call_stub_size()); 2185 if (stub == nullptr) { 2186 bailout("static call stub overflow"); 2187 return; 2188 } 2189 2190 int start = __ offset(); 2191 2192 __ relocate(static_stub_Relocation::spec(call_pc)); 2193 __ emit_static_call_stub(); 2194 2195 assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size() 2196 <= call_stub_size(), "stub too big"); 2197 __ end_a_stub(); 2198 } 2199 2200 2201 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2202 assert(exceptionOop->as_register() == r0, "must match"); 2203 assert(exceptionPC->as_register() == r3, "must match"); 2204 2205 // exception object is not added to oop map by LinearScan 2206 // (LinearScan assumes that no oops are in fixed registers) 2207 info->add_register_oop(exceptionOop); 2208 C1StubId unwind_id; 2209 2210 // get current pc information 2211 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2212 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2213 // As no instructions have been generated yet for this LIR node it's 2214 // possible that an oop map already exists for the current offset. 2215 // In that case insert an dummy NOP here to ensure all oop map PCs 2216 // are unique. See JDK-8237483. 2217 __ nop(); 2218 } 2219 int pc_for_athrow_offset = __ offset(); 2220 InternalAddress pc_for_athrow(__ pc()); 2221 __ adr(exceptionPC->as_register(), pc_for_athrow); 2222 add_call_info(pc_for_athrow_offset, info); // for exception handler 2223 2224 __ verify_not_null_oop(r0); 2225 // search an exception handler (r0: exception oop, r3: throwing pc) 2226 if (compilation()->has_fpu_code()) { 2227 unwind_id = C1StubId::handle_exception_id; 2228 } else { 2229 unwind_id = C1StubId::handle_exception_nofpu_id; 2230 } 2231 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2232 2233 // FIXME: enough room for two byte trap ???? 2234 __ nop(); 2235 } 2236 2237 2238 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2239 assert(exceptionOop->as_register() == r0, "must match"); 2240 2241 __ b(_unwind_handler_entry); 2242 } 2243 2244 2245 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2246 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2247 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2248 2249 switch (left->type()) { 2250 case T_INT: { 2251 switch (code) { 2252 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2253 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2254 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2255 default: 2256 ShouldNotReachHere(); 2257 break; 2258 } 2259 break; 2260 case T_LONG: 2261 case T_ADDRESS: 2262 case T_OBJECT: 2263 switch (code) { 2264 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2265 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2266 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2267 default: 2268 ShouldNotReachHere(); 2269 break; 2270 } 2271 break; 2272 default: 2273 ShouldNotReachHere(); 2274 break; 2275 } 2276 } 2277 } 2278 2279 2280 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2281 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2282 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2283 2284 switch (left->type()) { 2285 case T_INT: { 2286 switch (code) { 2287 case lir_shl: __ lslw (dreg, lreg, count); break; 2288 case lir_shr: __ asrw (dreg, lreg, count); break; 2289 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2290 default: 2291 ShouldNotReachHere(); 2292 break; 2293 } 2294 break; 2295 case T_LONG: 2296 case T_ADDRESS: 2297 case T_OBJECT: 2298 switch (code) { 2299 case lir_shl: __ lsl (dreg, lreg, count); break; 2300 case lir_shr: __ asr (dreg, lreg, count); break; 2301 case lir_ushr: __ lsr (dreg, lreg, count); break; 2302 default: 2303 ShouldNotReachHere(); 2304 break; 2305 } 2306 break; 2307 default: 2308 ShouldNotReachHere(); 2309 break; 2310 } 2311 } 2312 } 2313 2314 2315 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2316 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2317 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2318 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2319 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2320 } 2321 2322 2323 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2324 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2325 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2326 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2327 __ mov (rscratch1, c); 2328 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2329 } 2330 2331 2332 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2333 ShouldNotReachHere(); 2334 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2335 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2336 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2337 __ lea(rscratch1, __ constant_oop_address(o)); 2338 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2339 } 2340 2341 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) { 2342 if (null_check) { 2343 __ cbz(obj, *slow_path->entry()); 2344 } 2345 if (is_dest) { 2346 __ test_null_free_array_oop(obj, tmp, *slow_path->entry()); 2347 // TODO 8350865 Flat no longer implies null-free, so we need to check for flat dest. Can we do better here? 2348 __ test_flat_array_oop(obj, tmp, *slow_path->entry()); 2349 } else { 2350 __ test_flat_array_oop(obj, tmp, *slow_path->entry()); 2351 } 2352 } 2353 2354 // This code replaces a call to arraycopy; no exception may 2355 // be thrown in this code, they must be thrown in the System.arraycopy 2356 // activation frame; we could save some checks if this would not be the case 2357 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2358 ciArrayKlass* default_type = op->expected_type(); 2359 Register src = op->src()->as_register(); 2360 Register dst = op->dst()->as_register(); 2361 Register src_pos = op->src_pos()->as_register(); 2362 Register dst_pos = op->dst_pos()->as_register(); 2363 Register length = op->length()->as_register(); 2364 Register tmp = op->tmp()->as_register(); 2365 2366 CodeStub* stub = op->stub(); 2367 int flags = op->flags(); 2368 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 2369 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2370 2371 if (flags & LIR_OpArrayCopy::always_slow_path) { 2372 __ b(*stub->entry()); 2373 __ bind(*stub->continuation()); 2374 return; 2375 } 2376 2377 // if we don't know anything, just go through the generic arraycopy 2378 if (default_type == nullptr // || basic_type == T_OBJECT 2379 ) { 2380 Label done; 2381 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2382 2383 // Save the arguments in case the generic arraycopy fails and we 2384 // have to fall back to the JNI stub 2385 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2386 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2387 __ str(src, Address(sp, 4*BytesPerWord)); 2388 2389 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2390 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 2391 2392 // The arguments are in java calling convention so we shift them 2393 // to C convention 2394 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2395 __ mov(c_rarg0, j_rarg0); 2396 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2397 __ mov(c_rarg1, j_rarg1); 2398 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2399 __ mov(c_rarg2, j_rarg2); 2400 assert_different_registers(c_rarg3, j_rarg4); 2401 __ mov(c_rarg3, j_rarg3); 2402 __ mov(c_rarg4, j_rarg4); 2403 #ifndef PRODUCT 2404 if (PrintC1Statistics) { 2405 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2406 } 2407 #endif 2408 __ far_call(RuntimeAddress(copyfunc_addr)); 2409 2410 __ cbz(r0, *stub->continuation()); 2411 2412 // Reload values from the stack so they are where the stub 2413 // expects them. 2414 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2415 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2416 __ ldr(src, Address(sp, 4*BytesPerWord)); 2417 2418 // r0 is -1^K where K == partial copied count 2419 __ eonw(rscratch1, r0, zr); 2420 // adjust length down and src/end pos up by partial copied count 2421 __ subw(length, length, rscratch1); 2422 __ addw(src_pos, src_pos, rscratch1); 2423 __ addw(dst_pos, dst_pos, rscratch1); 2424 __ b(*stub->entry()); 2425 2426 __ bind(*stub->continuation()); 2427 return; 2428 } 2429 2430 // Handle inline type arrays 2431 if (flags & LIR_OpArrayCopy::src_inlinetype_check) { 2432 arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check)); 2433 } 2434 if (flags & LIR_OpArrayCopy::dst_inlinetype_check) { 2435 arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check)); 2436 } 2437 2438 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2439 2440 int elem_size = type2aelembytes(basic_type); 2441 int scale = exact_log2(elem_size); 2442 2443 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2444 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2445 2446 // test for null 2447 if (flags & LIR_OpArrayCopy::src_null_check) { 2448 __ cbz(src, *stub->entry()); 2449 } 2450 if (flags & LIR_OpArrayCopy::dst_null_check) { 2451 __ cbz(dst, *stub->entry()); 2452 } 2453 2454 // If the compiler was not able to prove that exact type of the source or the destination 2455 // of the arraycopy is an array type, check at runtime if the source or the destination is 2456 // an instance type. 2457 if (flags & LIR_OpArrayCopy::type_check) { 2458 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2459 __ load_klass(tmp, dst); 2460 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2461 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2462 __ br(Assembler::GE, *stub->entry()); 2463 } 2464 2465 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2466 __ load_klass(tmp, src); 2467 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2468 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2469 __ br(Assembler::GE, *stub->entry()); 2470 } 2471 } 2472 2473 // check if negative 2474 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2475 __ cmpw(src_pos, 0); 2476 __ br(Assembler::LT, *stub->entry()); 2477 } 2478 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2479 __ cmpw(dst_pos, 0); 2480 __ br(Assembler::LT, *stub->entry()); 2481 } 2482 2483 if (flags & LIR_OpArrayCopy::length_positive_check) { 2484 __ cmpw(length, 0); 2485 __ br(Assembler::LT, *stub->entry()); 2486 } 2487 2488 if (flags & LIR_OpArrayCopy::src_range_check) { 2489 __ addw(tmp, src_pos, length); 2490 __ ldrw(rscratch1, src_length_addr); 2491 __ cmpw(tmp, rscratch1); 2492 __ br(Assembler::HI, *stub->entry()); 2493 } 2494 if (flags & LIR_OpArrayCopy::dst_range_check) { 2495 __ addw(tmp, dst_pos, length); 2496 __ ldrw(rscratch1, dst_length_addr); 2497 __ cmpw(tmp, rscratch1); 2498 __ br(Assembler::HI, *stub->entry()); 2499 } 2500 2501 if (flags & LIR_OpArrayCopy::type_check) { 2502 // We don't know the array types are compatible 2503 if (basic_type != T_OBJECT) { 2504 // Simple test for basic type arrays 2505 __ cmp_klasses_from_objects(src, dst, tmp, rscratch1); 2506 __ br(Assembler::NE, *stub->entry()); 2507 } else { 2508 // For object arrays, if src is a sub class of dst then we can 2509 // safely do the copy. 2510 Label cont, slow; 2511 2512 #define PUSH(r1, r2) \ 2513 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2514 2515 #define POP(r1, r2) \ 2516 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2517 2518 __ PUSH(src, dst); 2519 2520 __ load_klass(src, src); 2521 __ load_klass(dst, dst); 2522 2523 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 2524 2525 __ PUSH(src, dst); 2526 __ far_call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 2527 __ POP(src, dst); 2528 2529 __ cbnz(src, cont); 2530 2531 __ bind(slow); 2532 __ POP(src, dst); 2533 2534 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2535 if (copyfunc_addr != nullptr) { // use stub if available 2536 // src is not a sub class of dst so we have to do a 2537 // per-element check. 2538 2539 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2540 if ((flags & mask) != mask) { 2541 // Check that at least both of them object arrays. 2542 assert(flags & mask, "one of the two should be known to be an object array"); 2543 2544 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2545 __ load_klass(tmp, src); 2546 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2547 __ load_klass(tmp, dst); 2548 } 2549 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2550 Address klass_lh_addr(tmp, lh_offset); 2551 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2552 __ ldrw(rscratch1, klass_lh_addr); 2553 __ mov(rscratch2, objArray_lh); 2554 __ eorw(rscratch1, rscratch1, rscratch2); 2555 __ cbnzw(rscratch1, *stub->entry()); 2556 } 2557 2558 // Spill because stubs can use any register they like and it's 2559 // easier to restore just those that we care about. 2560 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2561 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2562 __ str(src, Address(sp, 4*BytesPerWord)); 2563 2564 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2565 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2566 assert_different_registers(c_rarg0, dst, dst_pos, length); 2567 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2568 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2569 assert_different_registers(c_rarg1, dst, length); 2570 __ uxtw(c_rarg2, length); 2571 assert_different_registers(c_rarg2, dst); 2572 2573 __ load_klass(c_rarg4, dst); 2574 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2575 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2576 __ far_call(RuntimeAddress(copyfunc_addr)); 2577 2578 #ifndef PRODUCT 2579 if (PrintC1Statistics) { 2580 Label failed; 2581 __ cbnz(r0, failed); 2582 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2583 __ bind(failed); 2584 } 2585 #endif 2586 2587 __ cbz(r0, *stub->continuation()); 2588 2589 #ifndef PRODUCT 2590 if (PrintC1Statistics) { 2591 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2592 } 2593 #endif 2594 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2595 2596 // Restore previously spilled arguments 2597 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2598 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2599 __ ldr(src, Address(sp, 4*BytesPerWord)); 2600 2601 // return value is -1^K where K is partial copied count 2602 __ eonw(rscratch1, r0, zr); 2603 // adjust length down and src/end pos up by partial copied count 2604 __ subw(length, length, rscratch1); 2605 __ addw(src_pos, src_pos, rscratch1); 2606 __ addw(dst_pos, dst_pos, rscratch1); 2607 } 2608 2609 __ b(*stub->entry()); 2610 2611 __ bind(cont); 2612 __ POP(src, dst); 2613 } 2614 } 2615 2616 #ifdef ASSERT 2617 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2618 // Sanity check the known type with the incoming class. For the 2619 // primitive case the types must match exactly with src.klass and 2620 // dst.klass each exactly matching the default type. For the 2621 // object array case, if no type check is needed then either the 2622 // dst type is exactly the expected type and the src type is a 2623 // subtype which we can't check or src is the same array as dst 2624 // but not necessarily exactly of type default_type. 2625 Label known_ok, halt; 2626 __ mov_metadata(tmp, default_type->constant_encoding()); 2627 2628 if (basic_type != T_OBJECT) { 2629 __ cmp_klass(dst, tmp, rscratch1); 2630 __ br(Assembler::NE, halt); 2631 __ cmp_klass(src, tmp, rscratch1); 2632 __ br(Assembler::EQ, known_ok); 2633 } else { 2634 __ cmp_klass(dst, tmp, rscratch1); 2635 __ br(Assembler::EQ, known_ok); 2636 __ cmp(src, dst); 2637 __ br(Assembler::EQ, known_ok); 2638 } 2639 __ bind(halt); 2640 __ stop("incorrect type information in arraycopy"); 2641 __ bind(known_ok); 2642 } 2643 #endif 2644 2645 #ifndef PRODUCT 2646 if (PrintC1Statistics) { 2647 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2648 } 2649 #endif 2650 2651 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2652 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2653 assert_different_registers(c_rarg0, dst, dst_pos, length); 2654 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2655 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2656 assert_different_registers(c_rarg1, dst, length); 2657 __ uxtw(c_rarg2, length); 2658 assert_different_registers(c_rarg2, dst); 2659 2660 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2661 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2662 const char *name; 2663 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2664 2665 CodeBlob *cb = CodeCache::find_blob(entry); 2666 if (cb) { 2667 __ far_call(RuntimeAddress(entry)); 2668 } else { 2669 __ call_VM_leaf(entry, 3); 2670 } 2671 2672 if (stub != nullptr) { 2673 __ bind(*stub->continuation()); 2674 } 2675 } 2676 2677 2678 2679 2680 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2681 Register obj = op->obj_opr()->as_register(); // may not be an oop 2682 Register hdr = op->hdr_opr()->as_register(); 2683 Register lock = op->lock_opr()->as_register(); 2684 Register temp = op->scratch_opr()->as_register(); 2685 if (LockingMode == LM_MONITOR) { 2686 if (op->info() != nullptr) { 2687 add_debug_info_for_null_check_here(op->info()); 2688 __ null_check(obj, -1); 2689 } 2690 __ b(*op->stub()->entry()); 2691 } else if (op->code() == lir_lock) { 2692 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2693 // add debug info for NullPointerException only if one is possible 2694 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2695 if (op->info() != nullptr) { 2696 add_debug_info_for_null_check(null_check_offset, op->info()); 2697 } 2698 // done 2699 } else if (op->code() == lir_unlock) { 2700 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2701 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2702 } else { 2703 Unimplemented(); 2704 } 2705 __ bind(*op->stub()->continuation()); 2706 } 2707 2708 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2709 Register obj = op->obj()->as_pointer_register(); 2710 Register result = op->result_opr()->as_pointer_register(); 2711 2712 CodeEmitInfo* info = op->info(); 2713 if (info != nullptr) { 2714 add_debug_info_for_null_check_here(info); 2715 } 2716 2717 __ load_klass(result, obj); 2718 } 2719 2720 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2721 ciMethod* method = op->profiled_method(); 2722 int bci = op->profiled_bci(); 2723 ciMethod* callee = op->profiled_callee(); 2724 2725 // Update counter for all call types 2726 ciMethodData* md = method->method_data_or_null(); 2727 assert(md != nullptr, "Sanity"); 2728 ciProfileData* data = md->bci_to_data(bci); 2729 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2730 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2731 Register mdo = op->mdo()->as_register(); 2732 __ mov_metadata(mdo, md->constant_encoding()); 2733 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2734 // Perform additional virtual call profiling for invokevirtual and 2735 // invokeinterface bytecodes 2736 if (op->should_profile_receiver_type()) { 2737 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2738 Register recv = op->recv()->as_register(); 2739 assert_different_registers(mdo, recv); 2740 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2741 ciKlass* known_klass = op->known_holder(); 2742 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2743 // We know the type that will be seen at this call site; we can 2744 // statically update the MethodData* rather than needing to do 2745 // dynamic tests on the receiver type 2746 2747 // NOTE: we should probably put a lock around this search to 2748 // avoid collisions by concurrent compilations 2749 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2750 uint i; 2751 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2752 ciKlass* receiver = vc_data->receiver(i); 2753 if (known_klass->equals(receiver)) { 2754 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2755 __ addptr(data_addr, DataLayout::counter_increment); 2756 return; 2757 } 2758 } 2759 2760 // Receiver type not found in profile data; select an empty slot 2761 2762 // Note that this is less efficient than it should be because it 2763 // always does a write to the receiver part of the 2764 // VirtualCallData rather than just the first time 2765 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2766 ciKlass* receiver = vc_data->receiver(i); 2767 if (receiver == nullptr) { 2768 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2769 Address recv_addr = 2770 __ form_address(rscratch2, mdo, 2771 md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)), 2772 LogBytesPerWord); 2773 __ str(rscratch1, recv_addr); 2774 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2775 __ addptr(data_addr, DataLayout::counter_increment); 2776 return; 2777 } 2778 } 2779 } else { 2780 __ load_klass(recv, recv); 2781 Label update_done; 2782 type_profile_helper(mdo, md, data, recv, &update_done); 2783 // Receiver did not match any saved receiver and there is no empty row for it. 2784 // Increment total counter to indicate polymorphic case. 2785 __ addptr(counter_addr, DataLayout::counter_increment); 2786 2787 __ bind(update_done); 2788 } 2789 } else { 2790 // Static call 2791 __ addptr(counter_addr, DataLayout::counter_increment); 2792 } 2793 } 2794 2795 2796 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2797 Unimplemented(); 2798 } 2799 2800 2801 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2802 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2803 } 2804 2805 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2806 assert(op->crc()->is_single_cpu(), "crc must be register"); 2807 assert(op->val()->is_single_cpu(), "byte value must be register"); 2808 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2809 Register crc = op->crc()->as_register(); 2810 Register val = op->val()->as_register(); 2811 Register res = op->result_opr()->as_register(); 2812 2813 assert_different_registers(val, crc, res); 2814 uint64_t offset; 2815 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2816 __ add(res, res, offset); 2817 2818 __ mvnw(crc, crc); // ~crc 2819 __ update_byte_crc32(crc, val, res); 2820 __ mvnw(res, crc); // ~crc 2821 } 2822 2823 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2824 COMMENT("emit_profile_type {"); 2825 Register obj = op->obj()->as_register(); 2826 Register tmp = op->tmp()->as_pointer_register(); 2827 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2828 ciKlass* exact_klass = op->exact_klass(); 2829 intptr_t current_klass = op->current_klass(); 2830 bool not_null = op->not_null(); 2831 bool no_conflict = op->no_conflict(); 2832 2833 Label update, next, none; 2834 2835 bool do_null = !not_null; 2836 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2837 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2838 2839 assert(do_null || do_update, "why are we here?"); 2840 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2841 assert(mdo_addr.base() != rscratch1, "wrong register"); 2842 2843 __ verify_oop(obj); 2844 2845 if (tmp != obj) { 2846 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2847 __ mov(tmp, obj); 2848 } else { 2849 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2850 } 2851 if (do_null) { 2852 __ cbnz(tmp, update); 2853 if (!TypeEntries::was_null_seen(current_klass)) { 2854 __ ldr(rscratch2, mdo_addr); 2855 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2856 __ str(rscratch2, mdo_addr); 2857 } 2858 if (do_update) { 2859 #ifndef ASSERT 2860 __ b(next); 2861 } 2862 #else 2863 __ b(next); 2864 } 2865 } else { 2866 __ cbnz(tmp, update); 2867 __ stop("unexpected null obj"); 2868 #endif 2869 } 2870 2871 __ bind(update); 2872 2873 if (do_update) { 2874 #ifdef ASSERT 2875 if (exact_klass != nullptr) { 2876 Label ok; 2877 __ load_klass(tmp, tmp); 2878 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2879 __ eor(rscratch1, tmp, rscratch1); 2880 __ cbz(rscratch1, ok); 2881 __ stop("exact klass and actual klass differ"); 2882 __ bind(ok); 2883 } 2884 #endif 2885 if (!no_conflict) { 2886 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2887 if (exact_klass != nullptr) { 2888 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2889 } else { 2890 __ load_klass(tmp, tmp); 2891 } 2892 2893 __ ldr(rscratch2, mdo_addr); 2894 __ eor(tmp, tmp, rscratch2); 2895 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2896 // klass seen before, nothing to do. The unknown bit may have been 2897 // set already but no need to check. 2898 __ cbz(rscratch1, next); 2899 2900 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2901 2902 if (TypeEntries::is_type_none(current_klass)) { 2903 __ cbz(rscratch2, none); 2904 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2905 __ br(Assembler::EQ, none); 2906 // There is a chance that the checks above 2907 // fail if another thread has just set the 2908 // profiling to this obj's klass 2909 __ dmb(Assembler::ISHLD); 2910 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2911 __ ldr(rscratch2, mdo_addr); 2912 __ eor(tmp, tmp, rscratch2); 2913 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2914 __ cbz(rscratch1, next); 2915 } 2916 } else { 2917 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2918 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2919 2920 __ ldr(tmp, mdo_addr); 2921 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2922 } 2923 2924 // different than before. Cannot keep accurate profile. 2925 __ ldr(rscratch2, mdo_addr); 2926 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2927 __ str(rscratch2, mdo_addr); 2928 2929 if (TypeEntries::is_type_none(current_klass)) { 2930 __ b(next); 2931 2932 __ bind(none); 2933 // first time here. Set profile type. 2934 __ str(tmp, mdo_addr); 2935 #ifdef ASSERT 2936 __ andr(tmp, tmp, TypeEntries::type_mask); 2937 __ verify_klass_ptr(tmp); 2938 #endif 2939 } 2940 } else { 2941 // There's a single possible klass at this profile point 2942 assert(exact_klass != nullptr, "should be"); 2943 if (TypeEntries::is_type_none(current_klass)) { 2944 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2945 __ ldr(rscratch2, mdo_addr); 2946 __ eor(tmp, tmp, rscratch2); 2947 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2948 __ cbz(rscratch1, next); 2949 #ifdef ASSERT 2950 { 2951 Label ok; 2952 __ ldr(rscratch1, mdo_addr); 2953 __ cbz(rscratch1, ok); 2954 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2955 __ br(Assembler::EQ, ok); 2956 // may have been set by another thread 2957 __ dmb(Assembler::ISHLD); 2958 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2959 __ ldr(rscratch2, mdo_addr); 2960 __ eor(rscratch2, rscratch1, rscratch2); 2961 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2962 __ cbz(rscratch2, ok); 2963 2964 __ stop("unexpected profiling mismatch"); 2965 __ bind(ok); 2966 } 2967 #endif 2968 // first time here. Set profile type. 2969 __ str(tmp, mdo_addr); 2970 #ifdef ASSERT 2971 __ andr(tmp, tmp, TypeEntries::type_mask); 2972 __ verify_klass_ptr(tmp); 2973 #endif 2974 } else { 2975 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 2976 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2977 2978 __ ldr(tmp, mdo_addr); 2979 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2980 2981 __ orr(tmp, tmp, TypeEntries::type_unknown); 2982 __ str(tmp, mdo_addr); 2983 // FIXME: Write barrier needed here? 2984 } 2985 } 2986 2987 __ bind(next); 2988 } 2989 COMMENT("} emit_profile_type"); 2990 } 2991 2992 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 2993 Register obj = op->obj()->as_register(); 2994 Register tmp = op->tmp()->as_pointer_register(); 2995 bool not_null = op->not_null(); 2996 int flag = op->flag(); 2997 2998 Label not_inline_type; 2999 if (!not_null) { 3000 __ cbz(obj, not_inline_type); 3001 } 3002 3003 __ test_oop_is_not_inline_type(obj, tmp, not_inline_type); 3004 3005 Address mdo_addr = as_Address(op->mdp()->as_address_ptr(), rscratch2); 3006 __ ldrb(rscratch1, mdo_addr); 3007 __ orr(rscratch1, rscratch1, flag); 3008 __ strb(rscratch1, mdo_addr); 3009 3010 __ bind(not_inline_type); 3011 } 3012 3013 void LIR_Assembler::align_backward_branch_target() { 3014 } 3015 3016 3017 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3018 // tmp must be unused 3019 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 3020 3021 if (left->is_single_cpu()) { 3022 assert(dest->is_single_cpu(), "expect single result reg"); 3023 __ negw(dest->as_register(), left->as_register()); 3024 } else if (left->is_double_cpu()) { 3025 assert(dest->is_double_cpu(), "expect double result reg"); 3026 __ neg(dest->as_register_lo(), left->as_register_lo()); 3027 } else if (left->is_single_fpu()) { 3028 assert(dest->is_single_fpu(), "expect single float result reg"); 3029 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 3030 } else { 3031 assert(left->is_double_fpu(), "expect double float operand reg"); 3032 assert(dest->is_double_fpu(), "expect double float result reg"); 3033 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 3034 } 3035 } 3036 3037 3038 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3039 if (patch_code != lir_patch_none) { 3040 deoptimize_trap(info); 3041 return; 3042 } 3043 3044 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 3045 } 3046 3047 3048 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3049 assert(!tmp->is_valid(), "don't need temporary"); 3050 3051 CodeBlob *cb = CodeCache::find_blob(dest); 3052 if (cb) { 3053 __ far_call(RuntimeAddress(dest)); 3054 } else { 3055 __ mov(rscratch1, RuntimeAddress(dest)); 3056 __ blr(rscratch1); 3057 } 3058 3059 if (info != nullptr) { 3060 add_call_info_here(info); 3061 } 3062 __ post_call_nop(); 3063 } 3064 3065 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3066 if (dest->is_address() || src->is_address()) { 3067 move_op(src, dest, type, lir_patch_none, info, /*wide*/false); 3068 } else { 3069 ShouldNotReachHere(); 3070 } 3071 } 3072 3073 #ifdef ASSERT 3074 // emit run-time assertion 3075 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3076 assert(op->code() == lir_assert, "must be"); 3077 3078 if (op->in_opr1()->is_valid()) { 3079 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3080 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3081 } else { 3082 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3083 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3084 } 3085 3086 Label ok; 3087 if (op->condition() != lir_cond_always) { 3088 Assembler::Condition acond = Assembler::AL; 3089 switch (op->condition()) { 3090 case lir_cond_equal: acond = Assembler::EQ; break; 3091 case lir_cond_notEqual: acond = Assembler::NE; break; 3092 case lir_cond_less: acond = Assembler::LT; break; 3093 case lir_cond_lessEqual: acond = Assembler::LE; break; 3094 case lir_cond_greaterEqual: acond = Assembler::GE; break; 3095 case lir_cond_greater: acond = Assembler::GT; break; 3096 case lir_cond_belowEqual: acond = Assembler::LS; break; 3097 case lir_cond_aboveEqual: acond = Assembler::HS; break; 3098 default: ShouldNotReachHere(); 3099 } 3100 __ br(acond, ok); 3101 } 3102 if (op->halt()) { 3103 const char* str = __ code_string(op->msg()); 3104 __ stop(str); 3105 } else { 3106 breakpoint(); 3107 } 3108 __ bind(ok); 3109 } 3110 #endif 3111 3112 #ifndef PRODUCT 3113 #define COMMENT(x) do { __ block_comment(x); } while (0) 3114 #else 3115 #define COMMENT(x) 3116 #endif 3117 3118 void LIR_Assembler::membar() { 3119 COMMENT("membar"); 3120 __ membar(MacroAssembler::AnyAny); 3121 } 3122 3123 void LIR_Assembler::membar_acquire() { 3124 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 3125 } 3126 3127 void LIR_Assembler::membar_release() { 3128 __ membar(Assembler::LoadStore|Assembler::StoreStore); 3129 } 3130 3131 void LIR_Assembler::membar_loadload() { 3132 __ membar(Assembler::LoadLoad); 3133 } 3134 3135 void LIR_Assembler::membar_storestore() { 3136 __ membar(MacroAssembler::StoreStore); 3137 } 3138 3139 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 3140 3141 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 3142 3143 void LIR_Assembler::on_spin_wait() { 3144 __ spin_wait(); 3145 } 3146 3147 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3148 __ mov(result_reg->as_register(), rthread); 3149 } 3150 3151 void LIR_Assembler::check_orig_pc() { 3152 __ ldr(rscratch2, frame_map()->address_for_orig_pc_addr()); 3153 __ cmp(rscratch2, (u1)NULL_WORD); 3154 } 3155 3156 void LIR_Assembler::peephole(LIR_List *lir) { 3157 #if 0 3158 if (tableswitch_count >= max_tableswitches) 3159 return; 3160 3161 /* 3162 This finite-state automaton recognizes sequences of compare-and- 3163 branch instructions. We will turn them into a tableswitch. You 3164 could argue that C1 really shouldn't be doing this sort of 3165 optimization, but without it the code is really horrible. 3166 */ 3167 3168 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3169 int first_key, last_key = -2147483648; 3170 int next_key = 0; 3171 int start_insn = -1; 3172 int last_insn = -1; 3173 Register reg = noreg; 3174 LIR_Opr reg_opr; 3175 state = start_s; 3176 3177 LIR_OpList* inst = lir->instructions_list(); 3178 for (int i = 0; i < inst->length(); i++) { 3179 LIR_Op* op = inst->at(i); 3180 switch (state) { 3181 case start_s: 3182 first_key = -1; 3183 start_insn = i; 3184 switch (op->code()) { 3185 case lir_cmp: 3186 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3187 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3188 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3189 && opr2->is_constant() 3190 && opr2->type() == T_INT) { 3191 reg_opr = opr1; 3192 reg = opr1->as_register(); 3193 first_key = opr2->as_constant_ptr()->as_jint(); 3194 next_key = first_key + 1; 3195 state = cmp_s; 3196 goto next_state; 3197 } 3198 break; 3199 } 3200 break; 3201 case cmp_s: 3202 switch (op->code()) { 3203 case lir_branch: 3204 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3205 state = beq_s; 3206 last_insn = i; 3207 goto next_state; 3208 } 3209 } 3210 state = start_s; 3211 break; 3212 case beq_s: 3213 switch (op->code()) { 3214 case lir_cmp: { 3215 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3216 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3217 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3218 && opr1->as_register() == reg 3219 && opr2->is_constant() 3220 && opr2->type() == T_INT 3221 && opr2->as_constant_ptr()->as_jint() == next_key) { 3222 last_key = next_key; 3223 next_key++; 3224 state = cmp_s; 3225 goto next_state; 3226 } 3227 } 3228 } 3229 last_key = next_key; 3230 state = start_s; 3231 break; 3232 default: 3233 assert(false, "impossible state"); 3234 } 3235 if (state == start_s) { 3236 if (first_key < last_key - 5L && reg != noreg) { 3237 { 3238 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3239 // reg->encoding(), 3240 // start_insn, first_key, last_key); 3241 // for (int i = 0; i < inst->length(); i++) { 3242 // inst->at(i)->print(); 3243 // tty->print("\n"); 3244 // } 3245 // tty->print("\n"); 3246 } 3247 3248 struct tableswitch *sw = &switches[tableswitch_count]; 3249 sw->_insn_index = start_insn, sw->_first_key = first_key, 3250 sw->_last_key = last_key, sw->_reg = reg; 3251 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3252 { 3253 // Insert the new table of branches 3254 int offset = last_insn; 3255 for (int n = first_key; n < last_key; n++) { 3256 inst->insert_before 3257 (last_insn + 1, 3258 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3259 inst->at(offset)->as_OpBranch()->label())); 3260 offset -= 2, i++; 3261 } 3262 } 3263 // Delete all the old compare-and-branch instructions 3264 for (int n = first_key; n < last_key; n++) { 3265 inst->remove_at(start_insn); 3266 inst->remove_at(start_insn); 3267 } 3268 // Insert the tableswitch instruction 3269 inst->insert_before(start_insn, 3270 new LIR_Op2(lir_cmp, lir_cond_always, 3271 LIR_OprFact::intConst(tableswitch_count), 3272 reg_opr)); 3273 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3274 tableswitch_count++; 3275 } 3276 reg = noreg; 3277 last_key = -2147483648; 3278 } 3279 next_state: 3280 ; 3281 } 3282 #endif 3283 } 3284 3285 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3286 Address addr = as_Address(src->as_address_ptr()); 3287 BasicType type = src->type(); 3288 bool is_oop = is_reference_type(type); 3289 3290 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3291 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3292 3293 switch(type) { 3294 case T_INT: 3295 xchg = &MacroAssembler::atomic_xchgalw; 3296 add = &MacroAssembler::atomic_addalw; 3297 break; 3298 case T_LONG: 3299 xchg = &MacroAssembler::atomic_xchgal; 3300 add = &MacroAssembler::atomic_addal; 3301 break; 3302 case T_OBJECT: 3303 case T_ARRAY: 3304 if (UseCompressedOops) { 3305 xchg = &MacroAssembler::atomic_xchgalw; 3306 add = &MacroAssembler::atomic_addalw; 3307 } else { 3308 xchg = &MacroAssembler::atomic_xchgal; 3309 add = &MacroAssembler::atomic_addal; 3310 } 3311 break; 3312 default: 3313 ShouldNotReachHere(); 3314 xchg = &MacroAssembler::atomic_xchgal; 3315 add = &MacroAssembler::atomic_addal; // unreachable 3316 } 3317 3318 switch (code) { 3319 case lir_xadd: 3320 { 3321 RegisterOrConstant inc; 3322 Register tmp = as_reg(tmp_op); 3323 Register dst = as_reg(dest); 3324 if (data->is_constant()) { 3325 inc = RegisterOrConstant(as_long(data)); 3326 assert_different_registers(dst, addr.base(), tmp, 3327 rscratch1, rscratch2); 3328 } else { 3329 inc = RegisterOrConstant(as_reg(data)); 3330 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3331 rscratch1, rscratch2); 3332 } 3333 __ lea(tmp, addr); 3334 (_masm->*add)(dst, inc, tmp); 3335 break; 3336 } 3337 case lir_xchg: 3338 { 3339 Register tmp = tmp_op->as_register(); 3340 Register obj = as_reg(data); 3341 Register dst = as_reg(dest); 3342 if (is_oop && UseCompressedOops) { 3343 __ encode_heap_oop(rscratch2, obj); 3344 obj = rscratch2; 3345 } 3346 assert_different_registers(obj, addr.base(), tmp, rscratch1); 3347 assert_different_registers(dst, addr.base(), tmp, rscratch1); 3348 __ lea(tmp, addr); 3349 (_masm->*xchg)(dst, obj, tmp); 3350 if (is_oop && UseCompressedOops) { 3351 __ decode_heap_oop(dst); 3352 } 3353 } 3354 break; 3355 default: 3356 ShouldNotReachHere(); 3357 } 3358 __ membar(__ AnyAny); 3359 } 3360 3361 #undef __