1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_Compilation.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArray.hpp" 35 #include "ci/ciObjArrayKlass.hpp" 36 #include "ci/ciTypeArrayKlass.hpp" 37 #include "compiler/compilerDefinitions.inline.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/stubRoutines.hpp" 40 #include "utilities/powerOfTwo.hpp" 41 #include "vmreg_aarch64.inline.hpp" 42 43 #ifdef ASSERT 44 #define __ gen()->lir(__FILE__, __LINE__)-> 45 #else 46 #define __ gen()->lir()-> 47 #endif 48 49 // Item will be loaded into a byte register; Intel only 50 void LIRItem::load_byte_item() { 51 load_item(); 52 } 53 54 55 void LIRItem::load_nonconstant() { 56 LIR_Opr r = value()->operand(); 57 if (r->is_constant()) { 58 _result = r; 59 } else { 60 load_item(); 61 } 62 } 63 64 //-------------------------------------------------------------- 65 // LIRGenerator 66 //-------------------------------------------------------------- 67 68 69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; } 70 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; } 71 LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 72 LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 73 LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 74 LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 75 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 76 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; } 77 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 78 79 80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 81 LIR_Opr opr; 82 switch (type->tag()) { 83 case intTag: opr = FrameMap::r0_opr; break; 84 case objectTag: opr = FrameMap::r0_oop_opr; break; 85 case longTag: opr = FrameMap::long0_opr; break; 86 case floatTag: opr = FrameMap::fpu0_float_opr; break; 87 case doubleTag: opr = FrameMap::fpu0_double_opr; break; 88 89 case addressTag: 90 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 91 } 92 93 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 94 return opr; 95 } 96 97 98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 99 LIR_Opr reg = new_register(T_INT); 100 set_vreg_flag(reg, LIRGenerator::byte_reg); 101 return reg; 102 } 103 104 105 //--------- loading items into registers -------------------------------- 106 107 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 109 if (v->type()->as_IntConstant() != nullptr) { 110 return v->type()->as_IntConstant()->value() == 0L; 111 } else if (v->type()->as_LongConstant() != nullptr) { 112 return v->type()->as_LongConstant()->value() == 0L; 113 } else if (v->type()->as_ObjectConstant() != nullptr) { 114 return v->type()->as_ObjectConstant()->value()->is_null_object(); 115 } else { 116 return false; 117 } 118 } 119 120 bool LIRGenerator::can_inline_as_constant(Value v) const { 121 // FIXME: Just a guess 122 if (v->type()->as_IntConstant() != nullptr) { 123 return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value()); 124 } else if (v->type()->as_LongConstant() != nullptr) { 125 return v->type()->as_LongConstant()->value() == 0L; 126 } else if (v->type()->as_ObjectConstant() != nullptr) { 127 return v->type()->as_ObjectConstant()->value()->is_null_object(); 128 } else { 129 return false; 130 } 131 } 132 133 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; } 135 136 137 LIR_Opr LIRGenerator::safepoint_poll_register() { 138 return LIR_OprFact::illegalOpr; 139 } 140 141 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 143 int shift, int disp, BasicType type) { 144 assert(base->is_register(), "must be"); 145 intx large_disp = disp; 146 147 // accumulate fixed displacements 148 if (index->is_constant()) { 149 LIR_Const *constant = index->as_constant_ptr(); 150 if (constant->type() == T_INT) { 151 large_disp += ((intx)index->as_jint()) << shift; 152 } else { 153 assert(constant->type() == T_LONG, "should be"); 154 jlong c = index->as_jlong() << shift; 155 if ((jlong)((jint)c) == c) { 156 large_disp += c; 157 index = LIR_OprFact::illegalOpr; 158 } else { 159 LIR_Opr tmp = new_register(T_LONG); 160 __ move(index, tmp); 161 index = tmp; 162 // apply shift and displacement below 163 } 164 } 165 } 166 167 if (index->is_register()) { 168 // apply the shift and accumulate the displacement 169 if (shift > 0) { 170 // Use long register to avoid overflow when shifting large index values left. 171 LIR_Opr tmp = new_register(T_LONG); 172 __ convert(Bytecodes::_i2l, index, tmp); 173 __ shift_left(tmp, shift, tmp); 174 index = tmp; 175 } 176 if (large_disp != 0) { 177 LIR_Opr tmp = new_pointer_register(); 178 if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) { 179 __ add(index, LIR_OprFact::intptrConst(large_disp), tmp); 180 index = tmp; 181 } else { 182 __ move(LIR_OprFact::intptrConst(large_disp), tmp); 183 __ add(tmp, index, tmp); 184 index = tmp; 185 } 186 large_disp = 0; 187 } 188 } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) { 189 // index is illegal so replace it with the displacement loaded into a register 190 index = new_pointer_register(); 191 __ move(LIR_OprFact::intptrConst(large_disp), index); 192 large_disp = 0; 193 } 194 195 // at this point we either have base + index or base + displacement 196 if (large_disp == 0 && index->is_register()) { 197 return new LIR_Address(base, index, type); 198 } else { 199 assert(Address::offset_ok_for_immed(large_disp, shift), "failed for large_disp: " INTPTR_FORMAT " and shift %d", large_disp, shift); 200 return new LIR_Address(base, large_disp, type); 201 } 202 } 203 204 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 205 BasicType type) { 206 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 207 int elem_size = type2aelembytes(type); 208 int shift = exact_log2(elem_size); 209 return generate_address(array_opr, index_opr, shift, offset_in_bytes, type); 210 } 211 212 LIR_Opr LIRGenerator::load_immediate(jlong x, BasicType type) { 213 LIR_Opr r; 214 if (type == T_LONG) { 215 r = LIR_OprFact::longConst(x); 216 if (!Assembler::operand_valid_for_logical_immediate(false, x)) { 217 LIR_Opr tmp = new_register(type); 218 __ move(r, tmp); 219 return tmp; 220 } 221 } else if (type == T_INT) { 222 r = LIR_OprFact::intConst(checked_cast<jint>(x)); 223 if (!Assembler::operand_valid_for_logical_immediate(true, x)) { 224 // This is all rather nasty. We don't know whether our constant 225 // is required for a logical or an arithmetic operation, wo we 226 // don't know what the range of valid values is!! 227 LIR_Opr tmp = new_register(type); 228 __ move(r, tmp); 229 return tmp; 230 } 231 } else { 232 ShouldNotReachHere(); 233 } 234 return r; 235 } 236 237 238 239 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 240 LIR_Opr pointer = new_pointer_register(); 241 __ move(LIR_OprFact::intptrConst(counter), pointer); 242 LIR_Address* addr = new LIR_Address(pointer, type); 243 increment_counter(addr, step); 244 } 245 246 247 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 248 LIR_Opr imm; 249 switch(addr->type()) { 250 case T_INT: 251 imm = LIR_OprFact::intConst(step); 252 break; 253 case T_LONG: 254 imm = LIR_OprFact::longConst(step); 255 break; 256 default: 257 ShouldNotReachHere(); 258 } 259 LIR_Opr reg = new_register(addr->type()); 260 __ load(addr, reg); 261 __ add(reg, imm, reg); 262 __ store(reg, addr); 263 } 264 265 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 266 LIR_Opr reg = new_register(T_INT); 267 __ load(generate_address(base, disp, T_INT), reg, info); 268 __ cmp(condition, reg, LIR_OprFact::intConst(c)); 269 } 270 271 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 272 LIR_Opr reg1 = new_register(T_INT); 273 __ load(generate_address(base, disp, type), reg1, info); 274 __ cmp(condition, reg, reg1); 275 } 276 277 278 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 279 juint u_value = (juint)c; 280 if (is_power_of_2(u_value - 1)) { 281 __ shift_left(left, exact_log2(u_value - 1), tmp); 282 __ add(tmp, left, result); 283 return true; 284 } else if (is_power_of_2(u_value + 1)) { 285 __ shift_left(left, exact_log2(u_value + 1), tmp); 286 __ sub(tmp, left, result); 287 return true; 288 } else if (c == -1) { 289 __ negate(left, result); 290 return true; 291 } 292 return false; 293 } 294 295 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 296 BasicType type = item->type(); 297 __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type)); 298 } 299 300 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { 301 LIR_Opr tmp1 = new_register(objectType); 302 LIR_Opr tmp2 = new_register(objectType); 303 LIR_Opr tmp3 = new_register(objectType); 304 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); 305 } 306 307 //---------------------------------------------------------------------- 308 // visitor functions 309 //---------------------------------------------------------------------- 310 311 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 312 assert(x->is_pinned(),""); 313 LIRItem obj(x->obj(), this); 314 obj.load_item(); 315 316 set_no_result(x); 317 318 // "lock" stores the address of the monitor stack slot, so this is not an oop 319 LIR_Opr lock = new_register(T_INT); 320 LIR_Opr scratch = new_register(T_INT); 321 322 CodeEmitInfo* info_for_exception = nullptr; 323 if (x->needs_null_check()) { 324 info_for_exception = state_for(x); 325 } 326 // this CodeEmitInfo must not have the xhandlers because here the 327 // object is already locked (xhandlers expect object to be unlocked) 328 CodeEmitInfo* info = state_for(x, x->state(), true); 329 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 330 x->monitor_no(), info_for_exception, info); 331 } 332 333 334 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 335 assert(x->is_pinned(),""); 336 337 LIRItem obj(x->obj(), this); 338 obj.dont_load_item(); 339 340 LIR_Opr lock = new_register(T_INT); 341 LIR_Opr obj_temp = new_register(T_INT); 342 LIR_Opr scratch = new_register(T_INT); 343 set_no_result(x); 344 monitor_exit(obj_temp, lock, syncTempOpr(), scratch, x->monitor_no()); 345 } 346 347 void LIRGenerator::do_NegateOp(NegateOp* x) { 348 349 LIRItem from(x->x(), this); 350 from.load_item(); 351 LIR_Opr result = rlock_result(x); 352 __ negate (from.result(), result); 353 354 } 355 356 // for _fadd, _fmul, _fsub, _fdiv, _frem 357 // _dadd, _dmul, _dsub, _ddiv, _drem 358 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 359 360 if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) { 361 // float remainder is implemented as a direct call into the runtime 362 LIRItem right(x->x(), this); 363 LIRItem left(x->y(), this); 364 365 BasicTypeList signature(2); 366 if (x->op() == Bytecodes::_frem) { 367 signature.append(T_FLOAT); 368 signature.append(T_FLOAT); 369 } else { 370 signature.append(T_DOUBLE); 371 signature.append(T_DOUBLE); 372 } 373 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 374 375 const LIR_Opr result_reg = result_register_for(x->type()); 376 left.load_item_force(cc->at(1)); 377 right.load_item(); 378 379 __ move(right.result(), cc->at(0)); 380 381 address entry; 382 if (x->op() == Bytecodes::_frem) { 383 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); 384 } else { 385 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); 386 } 387 388 LIR_Opr result = rlock_result(x); 389 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 390 __ move(result_reg, result); 391 392 return; 393 } 394 395 LIRItem left(x->x(), this); 396 LIRItem right(x->y(), this); 397 LIRItem* left_arg = &left; 398 LIRItem* right_arg = &right; 399 400 // Always load right hand side. 401 right.load_item(); 402 403 if (!left.is_register()) 404 left.load_item(); 405 406 LIR_Opr reg = rlock(x); 407 408 arithmetic_op_fpu(x->op(), reg, left.result(), right.result()); 409 410 set_result(x, round_item(reg)); 411 } 412 413 // for _ladd, _lmul, _lsub, _ldiv, _lrem 414 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 415 416 // missing test if instr is commutative and if we should swap 417 LIRItem left(x->x(), this); 418 LIRItem right(x->y(), this); 419 420 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { 421 422 left.load_item(); 423 bool need_zero_check = true; 424 if (right.is_constant()) { 425 jlong c = right.get_jlong_constant(); 426 // no need to do div-by-zero check if the divisor is a non-zero constant 427 if (c != 0) need_zero_check = false; 428 // do not load right if the divisor is a power-of-2 constant 429 if (c > 0 && is_power_of_2(c)) { 430 right.dont_load_item(); 431 } else { 432 right.load_item(); 433 } 434 } else { 435 right.load_item(); 436 } 437 if (need_zero_check) { 438 CodeEmitInfo* info = state_for(x); 439 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 440 __ branch(lir_cond_equal, new DivByZeroStub(info)); 441 } 442 443 rlock_result(x); 444 switch (x->op()) { 445 case Bytecodes::_lrem: 446 __ rem (left.result(), right.result(), x->operand()); 447 break; 448 case Bytecodes::_ldiv: 449 __ div (left.result(), right.result(), x->operand()); 450 break; 451 default: 452 ShouldNotReachHere(); 453 break; 454 } 455 456 457 } else { 458 assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, 459 "expect lmul, ladd or lsub"); 460 // add, sub, mul 461 left.load_item(); 462 if (! right.is_register()) { 463 if (x->op() == Bytecodes::_lmul 464 || ! right.is_constant() 465 || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) { 466 right.load_item(); 467 } else { // add, sub 468 assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub"); 469 // don't load constants to save register 470 right.load_nonconstant(); 471 } 472 } 473 rlock_result(x); 474 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), nullptr); 475 } 476 } 477 478 // for: _iadd, _imul, _isub, _idiv, _irem 479 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 480 481 // Test if instr is commutative and if we should swap 482 LIRItem left(x->x(), this); 483 LIRItem right(x->y(), this); 484 LIRItem* left_arg = &left; 485 LIRItem* right_arg = &right; 486 if (x->is_commutative() && left.is_stack() && right.is_register()) { 487 // swap them if left is real stack (or cached) and right is real register(not cached) 488 left_arg = &right; 489 right_arg = &left; 490 } 491 492 left_arg->load_item(); 493 494 // do not need to load right, as we can handle stack and constants 495 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 496 497 rlock_result(x); 498 bool need_zero_check = true; 499 if (right.is_constant()) { 500 jint c = right.get_jint_constant(); 501 // no need to do div-by-zero check if the divisor is a non-zero constant 502 if (c != 0) need_zero_check = false; 503 // do not load right if the divisor is a power-of-2 constant 504 if (c > 0 && is_power_of_2(c)) { 505 right_arg->dont_load_item(); 506 } else { 507 right_arg->load_item(); 508 } 509 } else { 510 right_arg->load_item(); 511 } 512 if (need_zero_check) { 513 CodeEmitInfo* info = state_for(x); 514 __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0)); 515 __ branch(lir_cond_equal, new DivByZeroStub(info)); 516 } 517 518 LIR_Opr ill = LIR_OprFact::illegalOpr; 519 if (x->op() == Bytecodes::_irem) { 520 __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr); 521 } else if (x->op() == Bytecodes::_idiv) { 522 __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr); 523 } 524 525 } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) { 526 if (right.is_constant() 527 && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) { 528 right.load_nonconstant(); 529 } else { 530 right.load_item(); 531 } 532 rlock_result(x); 533 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr); 534 } else { 535 assert (x->op() == Bytecodes::_imul, "expect imul"); 536 if (right.is_constant()) { 537 jint c = right.get_jint_constant(); 538 if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) { 539 right_arg->dont_load_item(); 540 } else { 541 // Cannot use constant op. 542 right_arg->load_item(); 543 } 544 } else { 545 right.load_item(); 546 } 547 rlock_result(x); 548 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT)); 549 } 550 } 551 552 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 553 // when an operand with use count 1 is the left operand, then it is 554 // likely that no move for 2-operand-LIR-form is necessary 555 if (x->is_commutative() && x->y()->as_Constant() == nullptr && x->x()->use_count() > x->y()->use_count()) { 556 x->swap_operands(); 557 } 558 559 ValueTag tag = x->type()->tag(); 560 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 561 switch (tag) { 562 case floatTag: 563 case doubleTag: do_ArithmeticOp_FPU(x); return; 564 case longTag: do_ArithmeticOp_Long(x); return; 565 case intTag: do_ArithmeticOp_Int(x); return; 566 default: ShouldNotReachHere(); return; 567 } 568 } 569 570 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 571 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 572 573 LIRItem left(x->x(), this); 574 LIRItem right(x->y(), this); 575 576 left.load_item(); 577 578 rlock_result(x); 579 if (right.is_constant()) { 580 right.dont_load_item(); 581 582 switch (x->op()) { 583 case Bytecodes::_ishl: { 584 int c = right.get_jint_constant() & 0x1f; 585 __ shift_left(left.result(), c, x->operand()); 586 break; 587 } 588 case Bytecodes::_ishr: { 589 int c = right.get_jint_constant() & 0x1f; 590 __ shift_right(left.result(), c, x->operand()); 591 break; 592 } 593 case Bytecodes::_iushr: { 594 int c = right.get_jint_constant() & 0x1f; 595 __ unsigned_shift_right(left.result(), c, x->operand()); 596 break; 597 } 598 case Bytecodes::_lshl: { 599 int c = right.get_jint_constant() & 0x3f; 600 __ shift_left(left.result(), c, x->operand()); 601 break; 602 } 603 case Bytecodes::_lshr: { 604 int c = right.get_jint_constant() & 0x3f; 605 __ shift_right(left.result(), c, x->operand()); 606 break; 607 } 608 case Bytecodes::_lushr: { 609 int c = right.get_jint_constant() & 0x3f; 610 __ unsigned_shift_right(left.result(), c, x->operand()); 611 break; 612 } 613 default: 614 ShouldNotReachHere(); 615 } 616 } else { 617 right.load_item(); 618 LIR_Opr tmp = new_register(T_INT); 619 switch (x->op()) { 620 case Bytecodes::_ishl: { 621 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 622 __ shift_left(left.result(), tmp, x->operand(), tmp); 623 break; 624 } 625 case Bytecodes::_ishr: { 626 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 627 __ shift_right(left.result(), tmp, x->operand(), tmp); 628 break; 629 } 630 case Bytecodes::_iushr: { 631 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 632 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 633 break; 634 } 635 case Bytecodes::_lshl: { 636 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 637 __ shift_left(left.result(), tmp, x->operand(), tmp); 638 break; 639 } 640 case Bytecodes::_lshr: { 641 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 642 __ shift_right(left.result(), tmp, x->operand(), tmp); 643 break; 644 } 645 case Bytecodes::_lushr: { 646 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 647 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 648 break; 649 } 650 default: 651 ShouldNotReachHere(); 652 } 653 } 654 } 655 656 // _iand, _land, _ior, _lor, _ixor, _lxor 657 void LIRGenerator::do_LogicOp(LogicOp* x) { 658 659 LIRItem left(x->x(), this); 660 LIRItem right(x->y(), this); 661 662 left.load_item(); 663 664 rlock_result(x); 665 if (right.is_constant() 666 && ((right.type()->tag() == intTag 667 && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant())) 668 || (right.type()->tag() == longTag 669 && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) { 670 right.dont_load_item(); 671 } else { 672 right.load_item(); 673 } 674 switch (x->op()) { 675 case Bytecodes::_iand: 676 case Bytecodes::_land: 677 __ logical_and(left.result(), right.result(), x->operand()); break; 678 case Bytecodes::_ior: 679 case Bytecodes::_lor: 680 __ logical_or (left.result(), right.result(), x->operand()); break; 681 case Bytecodes::_ixor: 682 case Bytecodes::_lxor: 683 __ logical_xor(left.result(), right.result(), x->operand()); break; 684 default: Unimplemented(); 685 } 686 } 687 688 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 689 void LIRGenerator::do_CompareOp(CompareOp* x) { 690 LIRItem left(x->x(), this); 691 LIRItem right(x->y(), this); 692 ValueTag tag = x->x()->type()->tag(); 693 if (tag == longTag) { 694 left.set_destroys_register(); 695 } 696 left.load_item(); 697 right.load_item(); 698 LIR_Opr reg = rlock_result(x); 699 700 if (x->x()->type()->is_float_kind()) { 701 Bytecodes::Code code = x->op(); 702 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 703 } else if (x->x()->type()->tag() == longTag) { 704 __ lcmp2int(left.result(), right.result(), reg); 705 } else { 706 Unimplemented(); 707 } 708 } 709 710 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { 711 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 712 new_value.load_item(); 713 cmp_value.load_item(); 714 LIR_Opr result = new_register(T_INT); 715 if (is_reference_type(type)) { 716 __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result); 717 } else if (type == T_INT) { 718 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 719 } else if (type == T_LONG) { 720 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 721 } else { 722 ShouldNotReachHere(); 723 Unimplemented(); 724 } 725 __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result); 726 return result; 727 } 728 729 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { 730 bool is_oop = is_reference_type(type); 731 LIR_Opr result = new_register(type); 732 value.load_item(); 733 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); 734 LIR_Opr tmp = new_register(T_INT); 735 __ xchg(addr, value.result(), result, tmp); 736 return result; 737 } 738 739 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { 740 LIR_Opr result = new_register(type); 741 value.load_item(); 742 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); 743 LIR_Opr tmp = new_register(T_INT); 744 __ xadd(addr, value.result(), result, tmp); 745 return result; 746 } 747 748 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 749 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 750 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 751 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 752 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 753 x->id() == vmIntrinsics::_dlog10) { 754 do_LibmIntrinsic(x); 755 return; 756 } 757 switch (x->id()) { 758 case vmIntrinsics::_dabs: 759 case vmIntrinsics::_dsqrt: 760 case vmIntrinsics::_dsqrt_strict: 761 case vmIntrinsics::_floatToFloat16: 762 case vmIntrinsics::_float16ToFloat: { 763 assert(x->number_of_arguments() == 1, "wrong type"); 764 LIRItem value(x->argument_at(0), this); 765 value.load_item(); 766 LIR_Opr src = value.result(); 767 LIR_Opr dst = rlock_result(x); 768 769 switch (x->id()) { 770 case vmIntrinsics::_dsqrt: 771 case vmIntrinsics::_dsqrt_strict: { 772 __ sqrt(src, dst, LIR_OprFact::illegalOpr); 773 break; 774 } 775 case vmIntrinsics::_dabs: { 776 __ abs(src, dst, LIR_OprFact::illegalOpr); 777 break; 778 } 779 case vmIntrinsics::_floatToFloat16: { 780 LIR_Opr tmp = new_register(T_FLOAT); 781 __ f2hf(src, dst, tmp); 782 break; 783 } 784 case vmIntrinsics::_float16ToFloat: { 785 LIR_Opr tmp = new_register(T_FLOAT); 786 __ hf2f(src, dst, tmp); 787 break; 788 } 789 default: 790 ShouldNotReachHere(); 791 } 792 break; 793 } 794 default: 795 ShouldNotReachHere(); 796 } 797 } 798 799 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 800 LIRItem value(x->argument_at(0), this); 801 value.set_destroys_register(); 802 803 LIR_Opr calc_result = rlock_result(x); 804 LIR_Opr result_reg = result_register_for(x->type()); 805 806 CallingConvention* cc = nullptr; 807 808 if (x->id() == vmIntrinsics::_dpow) { 809 LIRItem value1(x->argument_at(1), this); 810 811 value1.set_destroys_register(); 812 813 BasicTypeList signature(2); 814 signature.append(T_DOUBLE); 815 signature.append(T_DOUBLE); 816 cc = frame_map()->c_calling_convention(&signature); 817 value.load_item_force(cc->at(0)); 818 value1.load_item_force(cc->at(1)); 819 } else { 820 BasicTypeList signature(1); 821 signature.append(T_DOUBLE); 822 cc = frame_map()->c_calling_convention(&signature); 823 value.load_item_force(cc->at(0)); 824 } 825 826 switch (x->id()) { 827 case vmIntrinsics::_dexp: 828 if (StubRoutines::dexp() != nullptr) { 829 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 830 } else { 831 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 832 } 833 break; 834 case vmIntrinsics::_dlog: 835 // Math.log intrinsic is not implemented on AArch64 (see JDK-8210858), 836 // but we can still call the shared runtime. 837 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 838 break; 839 case vmIntrinsics::_dlog10: 840 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 841 break; 842 case vmIntrinsics::_dpow: 843 if (StubRoutines::dpow() != nullptr) { 844 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 845 } else { 846 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 847 } 848 break; 849 case vmIntrinsics::_dsin: 850 if (StubRoutines::dsin() != nullptr) { 851 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 852 } else { 853 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 854 } 855 break; 856 case vmIntrinsics::_dcos: 857 if (StubRoutines::dcos() != nullptr) { 858 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 859 } else { 860 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 861 } 862 break; 863 case vmIntrinsics::_dtan: 864 if (StubRoutines::dtan() != nullptr) { 865 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 866 } else { 867 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 868 } 869 break; 870 default: ShouldNotReachHere(); 871 } 872 __ move(result_reg, calc_result); 873 } 874 875 876 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 877 assert(x->number_of_arguments() == 5, "wrong type"); 878 879 // Make all state_for calls early since they can emit code 880 CodeEmitInfo* info = nullptr; 881 if (x->state_before() != nullptr && x->state_before()->force_reexecute()) { 882 info = state_for(x, x->state_before()); 883 info->set_force_reexecute(); 884 } else { 885 info = state_for(x, x->state()); 886 } 887 888 LIRItem src(x->argument_at(0), this); 889 LIRItem src_pos(x->argument_at(1), this); 890 LIRItem dst(x->argument_at(2), this); 891 LIRItem dst_pos(x->argument_at(3), this); 892 LIRItem length(x->argument_at(4), this); 893 894 // operands for arraycopy must use fixed registers, otherwise 895 // LinearScan will fail allocation (because arraycopy always needs a 896 // call) 897 898 // The java calling convention will give us enough registers 899 // so that on the stub side the args will be perfect already. 900 // On the other slow/special case side we call C and the arg 901 // positions are not similar enough to pick one as the best. 902 // Also because the java calling convention is a "shifted" version 903 // of the C convention we can process the java args trivially into C 904 // args without worry of overwriting during the xfer 905 906 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 907 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 908 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 909 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 910 length.load_item_force (FrameMap::as_opr(j_rarg4)); 911 912 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 913 914 set_no_result(x); 915 916 int flags; 917 ciArrayKlass* expected_type; 918 arraycopy_helper(x, &flags, &expected_type); 919 if (x->check_flag(Instruction::OmitChecksFlag)) { 920 flags = 0; 921 } 922 923 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 924 } 925 926 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 927 assert(UseCRC32Intrinsics, "why are we here?"); 928 // Make all state_for calls early since they can emit code 929 LIR_Opr result = rlock_result(x); 930 switch (x->id()) { 931 case vmIntrinsics::_updateCRC32: { 932 LIRItem crc(x->argument_at(0), this); 933 LIRItem val(x->argument_at(1), this); 934 // val is destroyed by update_crc32 935 val.set_destroys_register(); 936 crc.load_item(); 937 val.load_item(); 938 __ update_crc32(crc.result(), val.result(), result); 939 break; 940 } 941 case vmIntrinsics::_updateBytesCRC32: 942 case vmIntrinsics::_updateByteBufferCRC32: { 943 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 944 945 LIRItem crc(x->argument_at(0), this); 946 LIRItem buf(x->argument_at(1), this); 947 LIRItem off(x->argument_at(2), this); 948 LIRItem len(x->argument_at(3), this); 949 buf.load_item(); 950 off.load_nonconstant(); 951 952 LIR_Opr index = off.result(); 953 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 954 if (off.result()->is_constant()) { 955 index = LIR_OprFact::illegalOpr; 956 offset += off.result()->as_jint(); 957 } 958 LIR_Opr base_op = buf.result(); 959 960 if (index->is_valid()) { 961 LIR_Opr tmp = new_register(T_LONG); 962 __ convert(Bytecodes::_i2l, index, tmp); 963 index = tmp; 964 } 965 966 if (offset) { 967 LIR_Opr tmp = new_pointer_register(); 968 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 969 base_op = tmp; 970 offset = 0; 971 } 972 973 LIR_Address* a = new LIR_Address(base_op, 974 index, 975 offset, 976 T_BYTE); 977 BasicTypeList signature(3); 978 signature.append(T_INT); 979 signature.append(T_ADDRESS); 980 signature.append(T_INT); 981 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 982 const LIR_Opr result_reg = result_register_for(x->type()); 983 984 LIR_Opr addr = new_pointer_register(); 985 __ leal(LIR_OprFact::address(a), addr); 986 987 crc.load_item_force(cc->at(0)); 988 __ move(addr, cc->at(1)); 989 len.load_item_force(cc->at(2)); 990 991 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 992 __ move(result_reg, result); 993 994 break; 995 } 996 default: { 997 ShouldNotReachHere(); 998 } 999 } 1000 } 1001 1002 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 1003 assert(UseCRC32CIntrinsics, "why are we here?"); 1004 // Make all state_for calls early since they can emit code 1005 LIR_Opr result = rlock_result(x); 1006 switch (x->id()) { 1007 case vmIntrinsics::_updateBytesCRC32C: 1008 case vmIntrinsics::_updateDirectByteBufferCRC32C: { 1009 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C); 1010 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 1011 1012 LIRItem crc(x->argument_at(0), this); 1013 LIRItem buf(x->argument_at(1), this); 1014 LIRItem off(x->argument_at(2), this); 1015 LIRItem end(x->argument_at(3), this); 1016 1017 buf.load_item(); 1018 off.load_nonconstant(); 1019 end.load_nonconstant(); 1020 1021 // len = end - off 1022 LIR_Opr len = end.result(); 1023 LIR_Opr tmpA = new_register(T_INT); 1024 LIR_Opr tmpB = new_register(T_INT); 1025 __ move(end.result(), tmpA); 1026 __ move(off.result(), tmpB); 1027 __ sub(tmpA, tmpB, tmpA); 1028 len = tmpA; 1029 1030 LIR_Opr index = off.result(); 1031 if(off.result()->is_constant()) { 1032 index = LIR_OprFact::illegalOpr; 1033 offset += off.result()->as_jint(); 1034 } 1035 LIR_Opr base_op = buf.result(); 1036 1037 if (index->is_valid()) { 1038 LIR_Opr tmp = new_register(T_LONG); 1039 __ convert(Bytecodes::_i2l, index, tmp); 1040 index = tmp; 1041 } 1042 1043 if (offset) { 1044 LIR_Opr tmp = new_pointer_register(); 1045 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 1046 base_op = tmp; 1047 offset = 0; 1048 } 1049 1050 LIR_Address* a = new LIR_Address(base_op, 1051 index, 1052 offset, 1053 T_BYTE); 1054 BasicTypeList signature(3); 1055 signature.append(T_INT); 1056 signature.append(T_ADDRESS); 1057 signature.append(T_INT); 1058 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1059 const LIR_Opr result_reg = result_register_for(x->type()); 1060 1061 LIR_Opr addr = new_pointer_register(); 1062 __ leal(LIR_OprFact::address(a), addr); 1063 1064 crc.load_item_force(cc->at(0)); 1065 __ move(addr, cc->at(1)); 1066 __ move(len, cc->at(2)); 1067 1068 __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args()); 1069 __ move(result_reg, result); 1070 1071 break; 1072 } 1073 default: { 1074 ShouldNotReachHere(); 1075 } 1076 } 1077 } 1078 1079 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 1080 assert(x->number_of_arguments() == 3, "wrong type"); 1081 assert(UseFMA, "Needs FMA instructions support."); 1082 LIRItem value(x->argument_at(0), this); 1083 LIRItem value1(x->argument_at(1), this); 1084 LIRItem value2(x->argument_at(2), this); 1085 1086 value.load_item(); 1087 value1.load_item(); 1088 value2.load_item(); 1089 1090 LIR_Opr calc_input = value.result(); 1091 LIR_Opr calc_input1 = value1.result(); 1092 LIR_Opr calc_input2 = value2.result(); 1093 LIR_Opr calc_result = rlock_result(x); 1094 1095 switch (x->id()) { 1096 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 1097 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 1098 default: ShouldNotReachHere(); 1099 } 1100 } 1101 1102 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1103 fatal("vectorizedMismatch intrinsic is not implemented on this platform"); 1104 } 1105 1106 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1107 // _i2b, _i2c, _i2s 1108 void LIRGenerator::do_Convert(Convert* x) { 1109 LIRItem value(x->value(), this); 1110 value.load_item(); 1111 LIR_Opr input = value.result(); 1112 LIR_Opr result = rlock(x); 1113 1114 // arguments of lir_convert 1115 LIR_Opr conv_input = input; 1116 LIR_Opr conv_result = result; 1117 1118 __ convert(x->op(), conv_input, conv_result); 1119 1120 assert(result->is_virtual(), "result must be virtual register"); 1121 set_result(x, result); 1122 } 1123 1124 void LIRGenerator::do_NewInstance(NewInstance* x) { 1125 #ifndef PRODUCT 1126 if (PrintNotLoaded && !x->klass()->is_loaded()) { 1127 tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci()); 1128 } 1129 #endif 1130 CodeEmitInfo* info = state_for(x, x->state()); 1131 LIR_Opr reg = result_register_for(x->type()); 1132 new_instance(reg, x->klass(), x->is_unresolved(), 1133 FrameMap::r10_oop_opr, 1134 FrameMap::r11_oop_opr, 1135 FrameMap::r4_oop_opr, 1136 LIR_OprFact::illegalOpr, 1137 FrameMap::r3_metadata_opr, info); 1138 LIR_Opr result = rlock_result(x); 1139 __ move(reg, result); 1140 } 1141 1142 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1143 CodeEmitInfo* info = nullptr; 1144 if (x->state_before() != nullptr && x->state_before()->force_reexecute()) { 1145 info = state_for(x, x->state_before()); 1146 info->set_force_reexecute(); 1147 } else { 1148 info = state_for(x, x->state()); 1149 } 1150 1151 LIRItem length(x->length(), this); 1152 length.load_item_force(FrameMap::r19_opr); 1153 1154 LIR_Opr reg = result_register_for(x->type()); 1155 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1156 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1157 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1158 LIR_Opr tmp4 = reg; 1159 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1160 LIR_Opr len = length.result(); 1161 BasicType elem_type = x->elt_type(); 1162 1163 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1164 1165 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1166 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path, x->zero_array()); 1167 1168 LIR_Opr result = rlock_result(x); 1169 __ move(reg, result); 1170 } 1171 1172 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1173 LIRItem length(x->length(), this); 1174 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1175 // and therefore provide the state before the parameters have been consumed 1176 CodeEmitInfo* patching_info = nullptr; 1177 if (!x->klass()->is_loaded() || PatchALot) { 1178 patching_info = state_for(x, x->state_before()); 1179 } 1180 1181 CodeEmitInfo* info = state_for(x, x->state()); 1182 1183 LIR_Opr reg = result_register_for(x->type()); 1184 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1185 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1186 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1187 LIR_Opr tmp4 = reg; 1188 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1189 1190 length.load_item_force(FrameMap::r19_opr); 1191 LIR_Opr len = length.result(); 1192 1193 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); 1194 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1195 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1196 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1197 } 1198 klass2reg_with_patching(klass_reg, obj, patching_info); 1199 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1200 1201 LIR_Opr result = rlock_result(x); 1202 __ move(reg, result); 1203 } 1204 1205 1206 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1207 Values* dims = x->dims(); 1208 int i = dims->length(); 1209 LIRItemList* items = new LIRItemList(i, i, nullptr); 1210 while (i-- > 0) { 1211 LIRItem* size = new LIRItem(dims->at(i), this); 1212 items->at_put(i, size); 1213 } 1214 1215 // Evaluate state_for early since it may emit code. 1216 CodeEmitInfo* patching_info = nullptr; 1217 if (!x->klass()->is_loaded() || PatchALot) { 1218 patching_info = state_for(x, x->state_before()); 1219 1220 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1221 // clone all handlers (NOTE: Usually this is handled transparently 1222 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1223 // is done explicitly here because a stub isn't being used). 1224 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1225 } 1226 CodeEmitInfo* info = state_for(x, x->state()); 1227 1228 i = dims->length(); 1229 while (i-- > 0) { 1230 LIRItem* size = items->at(i); 1231 size->load_item(); 1232 1233 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1234 } 1235 1236 LIR_Opr klass_reg = FrameMap::r0_metadata_opr; 1237 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1238 1239 LIR_Opr rank = FrameMap::r19_opr; 1240 __ move(LIR_OprFact::intConst(x->rank()), rank); 1241 LIR_Opr varargs = FrameMap::r2_opr; 1242 __ move(FrameMap::sp_opr, varargs); 1243 LIR_OprList* args = new LIR_OprList(3); 1244 args->append(klass_reg); 1245 args->append(rank); 1246 args->append(varargs); 1247 LIR_Opr reg = result_register_for(x->type()); 1248 __ call_runtime(Runtime1::entry_for(C1StubId::new_multi_array_id), 1249 LIR_OprFact::illegalOpr, 1250 reg, args, info); 1251 1252 LIR_Opr result = rlock_result(x); 1253 __ move(reg, result); 1254 } 1255 1256 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1257 // nothing to do for now 1258 } 1259 1260 void LIRGenerator::do_CheckCast(CheckCast* x) { 1261 LIRItem obj(x->obj(), this); 1262 1263 CodeEmitInfo* patching_info = nullptr; 1264 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { 1265 // must do this before locking the destination register as an oop register, 1266 // and before the obj is loaded (the latter is for deoptimization) 1267 patching_info = state_for(x, x->state_before()); 1268 } 1269 obj.load_item(); 1270 1271 // info for exceptions 1272 CodeEmitInfo* info_for_exception = 1273 (x->needs_exception_state() ? state_for(x) : 1274 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1275 1276 CodeStub* stub; 1277 if (x->is_incompatible_class_change_check()) { 1278 assert(patching_info == nullptr, "can't patch this"); 1279 stub = new SimpleExceptionStub(C1StubId::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1280 } else if (x->is_invokespecial_receiver_check()) { 1281 assert(patching_info == nullptr, "can't patch this"); 1282 stub = new DeoptimizeStub(info_for_exception, 1283 Deoptimization::Reason_class_check, 1284 Deoptimization::Action_none); 1285 } else { 1286 stub = new SimpleExceptionStub(C1StubId::throw_class_cast_exception_id, obj.result(), info_for_exception); 1287 } 1288 LIR_Opr reg = rlock_result(x); 1289 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1290 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1291 tmp3 = new_register(objectType); 1292 } 1293 __ checkcast(reg, obj.result(), x->klass(), 1294 new_register(objectType), new_register(objectType), tmp3, 1295 x->direct_compare(), info_for_exception, patching_info, stub, 1296 x->profiled_method(), x->profiled_bci()); 1297 } 1298 1299 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1300 LIRItem obj(x->obj(), this); 1301 1302 // result and test object may not be in same register 1303 LIR_Opr reg = rlock_result(x); 1304 CodeEmitInfo* patching_info = nullptr; 1305 if ((!x->klass()->is_loaded() || PatchALot)) { 1306 // must do this before locking the destination register as an oop register 1307 patching_info = state_for(x, x->state_before()); 1308 } 1309 obj.load_item(); 1310 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1311 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1312 tmp3 = new_register(objectType); 1313 } 1314 __ instanceof(reg, obj.result(), x->klass(), 1315 new_register(objectType), new_register(objectType), tmp3, 1316 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1317 } 1318 1319 void LIRGenerator::do_If(If* x) { 1320 assert(x->number_of_sux() == 2, "inconsistency"); 1321 ValueTag tag = x->x()->type()->tag(); 1322 bool is_safepoint = x->is_safepoint(); 1323 1324 If::Condition cond = x->cond(); 1325 1326 LIRItem xitem(x->x(), this); 1327 LIRItem yitem(x->y(), this); 1328 LIRItem* xin = &xitem; 1329 LIRItem* yin = &yitem; 1330 1331 if (tag == longTag) { 1332 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1333 // mirror for other conditions 1334 if (cond == If::gtr || cond == If::leq) { 1335 cond = Instruction::mirror(cond); 1336 xin = &yitem; 1337 yin = &xitem; 1338 } 1339 xin->set_destroys_register(); 1340 } 1341 xin->load_item(); 1342 1343 if (tag == longTag) { 1344 if (yin->is_constant() 1345 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) { 1346 yin->dont_load_item(); 1347 } else { 1348 yin->load_item(); 1349 } 1350 } else if (tag == intTag) { 1351 if (yin->is_constant() 1352 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) { 1353 yin->dont_load_item(); 1354 } else { 1355 yin->load_item(); 1356 } 1357 } else { 1358 yin->load_item(); 1359 } 1360 1361 set_no_result(x); 1362 1363 LIR_Opr left = xin->result(); 1364 LIR_Opr right = yin->result(); 1365 1366 // add safepoint before generating condition code so it can be recomputed 1367 if (x->is_safepoint()) { 1368 // increment backedge counter if needed 1369 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), 1370 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); 1371 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); 1372 } 1373 1374 __ cmp(lir_cond(cond), left, right); 1375 // Generate branch profiling. Profiling code doesn't kill flags. 1376 profile_branch(x, cond); 1377 move_to_phi(x->state()); 1378 if (x->x()->type()->is_float_kind()) { 1379 __ branch(lir_cond(cond), x->tsux(), x->usux()); 1380 } else { 1381 __ branch(lir_cond(cond), x->tsux()); 1382 } 1383 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1384 __ jump(x->default_sux()); 1385 } 1386 1387 LIR_Opr LIRGenerator::getThreadPointer() { 1388 return FrameMap::as_pointer_opr(rthread); 1389 } 1390 1391 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); } 1392 1393 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1394 CodeEmitInfo* info) { 1395 __ volatile_store_mem_reg(value, address, info); 1396 } 1397 1398 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1399 CodeEmitInfo* info) { 1400 // 8179954: We need to make sure that the code generated for 1401 // volatile accesses forms a sequentially-consistent set of 1402 // operations when combined with STLR and LDAR. Without a leading 1403 // membar it's possible for a simple Dekker test to fail if loads 1404 // use LD;DMB but stores use STLR. This can happen if C2 compiles 1405 // the stores in one method and C1 compiles the loads in another. 1406 if (!CompilerConfig::is_c1_only_no_jvmci()) { 1407 __ membar(); 1408 } 1409 __ volatile_load_mem_reg(address, result, info); 1410 }