1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_Instruction.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_LIRGenerator.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArray.hpp" 36 #include "ci/ciObjArrayKlass.hpp" 37 #include "ci/ciTypeArrayKlass.hpp" 38 #include "compiler/compilerDefinitions.inline.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "utilities/powerOfTwo.hpp" 42 #include "vmreg_aarch64.inline.hpp" 43 44 #ifdef ASSERT 45 #define __ gen()->lir(__FILE__, __LINE__)-> 46 #else 47 #define __ gen()->lir()-> 48 #endif 49 50 // Item will be loaded into a byte register; Intel only 51 void LIRItem::load_byte_item() { 52 load_item(); 53 } 54 55 56 void LIRItem::load_nonconstant() { 57 LIR_Opr r = value()->operand(); 58 if (r->is_constant()) { 59 _result = r; 60 } else { 61 load_item(); 62 } 63 } 64 65 //-------------------------------------------------------------- 66 // LIRGenerator 67 //-------------------------------------------------------------- 68 69 70 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; } 71 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; } 72 LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 73 LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 74 LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 75 LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 76 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 77 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; } 78 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 79 80 81 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 82 LIR_Opr opr; 83 switch (type->tag()) { 84 case intTag: opr = FrameMap::r0_opr; break; 85 case objectTag: opr = FrameMap::r0_oop_opr; break; 86 case longTag: opr = FrameMap::long0_opr; break; 87 case floatTag: opr = FrameMap::fpu0_float_opr; break; 88 case doubleTag: opr = FrameMap::fpu0_double_opr; break; 89 90 case addressTag: 91 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 92 } 93 94 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 95 return opr; 96 } 97 98 99 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 100 LIR_Opr reg = new_register(T_INT); 101 set_vreg_flag(reg, LIRGenerator::byte_reg); 102 return reg; 103 } 104 105 106 //--------- loading items into registers -------------------------------- 107 108 109 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 110 if (v->type()->as_IntConstant() != nullptr) { 111 return v->type()->as_IntConstant()->value() == 0L; 112 } else if (v->type()->as_LongConstant() != nullptr) { 113 return v->type()->as_LongConstant()->value() == 0L; 114 } else if (v->type()->as_ObjectConstant() != nullptr) { 115 return v->type()->as_ObjectConstant()->value()->is_null_object(); 116 } else { 117 return false; 118 } 119 } 120 121 bool LIRGenerator::can_inline_as_constant(Value v) const { 122 // FIXME: Just a guess 123 if (v->type()->as_IntConstant() != nullptr) { 124 return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value()); 125 } else if (v->type()->as_LongConstant() != nullptr) { 126 return v->type()->as_LongConstant()->value() == 0L; 127 } else if (v->type()->as_ObjectConstant() != nullptr) { 128 return v->type()->as_ObjectConstant()->value()->is_null_object(); 129 } else { 130 return false; 131 } 132 } 133 134 135 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; } 136 137 138 LIR_Opr LIRGenerator::safepoint_poll_register() { 139 return LIR_OprFact::illegalOpr; 140 } 141 142 143 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 144 int shift, int disp, BasicType type) { 145 assert(base->is_register(), "must be"); 146 intx large_disp = disp; 147 148 // accumulate fixed displacements 149 if (index->is_constant()) { 150 LIR_Const *constant = index->as_constant_ptr(); 151 if (constant->type() == T_INT) { 152 large_disp += ((intx)index->as_jint()) << shift; 153 } else { 154 assert(constant->type() == T_LONG, "should be"); 155 jlong c = index->as_jlong() << shift; 156 if ((jlong)((jint)c) == c) { 157 large_disp += c; 158 index = LIR_OprFact::illegalOpr; 159 } else { 160 LIR_Opr tmp = new_register(T_LONG); 161 __ move(index, tmp); 162 index = tmp; 163 // apply shift and displacement below 164 } 165 } 166 } 167 168 if (index->is_register()) { 169 // apply the shift and accumulate the displacement 170 if (shift > 0) { 171 // Use long register to avoid overflow when shifting large index values left. 172 LIR_Opr tmp = new_register(T_LONG); 173 __ convert(Bytecodes::_i2l, index, tmp); 174 __ shift_left(tmp, shift, tmp); 175 index = tmp; 176 } 177 if (large_disp != 0) { 178 LIR_Opr tmp = new_pointer_register(); 179 if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) { 180 __ add(index, LIR_OprFact::intptrConst(large_disp), tmp); 181 index = tmp; 182 } else { 183 __ move(LIR_OprFact::intptrConst(large_disp), tmp); 184 __ add(tmp, index, tmp); 185 index = tmp; 186 } 187 large_disp = 0; 188 } 189 } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) { 190 // index is illegal so replace it with the displacement loaded into a register 191 index = new_pointer_register(); 192 __ move(LIR_OprFact::intptrConst(large_disp), index); 193 large_disp = 0; 194 } 195 196 // at this point we either have base + index or base + displacement 197 if (large_disp == 0 && index->is_register()) { 198 return new LIR_Address(base, index, type); 199 } else { 200 assert(Address::offset_ok_for_immed(large_disp, shift), "failed for large_disp: " INTPTR_FORMAT " and shift %d", large_disp, shift); 201 return new LIR_Address(base, large_disp, type); 202 } 203 } 204 205 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 206 BasicType type) { 207 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 208 int elem_size = type2aelembytes(type); 209 int shift = exact_log2(elem_size); 210 return generate_address(array_opr, index_opr, shift, offset_in_bytes, type); 211 } 212 213 LIR_Opr LIRGenerator::load_immediate(jlong x, BasicType type) { 214 LIR_Opr r; 215 if (type == T_LONG) { 216 r = LIR_OprFact::longConst(x); 217 if (!Assembler::operand_valid_for_logical_immediate(false, x)) { 218 LIR_Opr tmp = new_register(type); 219 __ move(r, tmp); 220 return tmp; 221 } 222 } else if (type == T_INT) { 223 r = LIR_OprFact::intConst(checked_cast<jint>(x)); 224 if (!Assembler::operand_valid_for_logical_immediate(true, x)) { 225 // This is all rather nasty. We don't know whether our constant 226 // is required for a logical or an arithmetic operation, wo we 227 // don't know what the range of valid values is!! 228 LIR_Opr tmp = new_register(type); 229 __ move(r, tmp); 230 return tmp; 231 } 232 } else { 233 ShouldNotReachHere(); 234 } 235 return r; 236 } 237 238 239 240 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 241 LIR_Opr pointer = new_pointer_register(); 242 __ move(LIR_OprFact::intptrConst(counter), pointer); 243 LIR_Address* addr = new LIR_Address(pointer, type); 244 increment_counter(addr, step); 245 } 246 247 248 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 249 LIR_Opr imm; 250 switch(addr->type()) { 251 case T_INT: 252 imm = LIR_OprFact::intConst(step); 253 break; 254 case T_LONG: 255 imm = LIR_OprFact::longConst(step); 256 break; 257 default: 258 ShouldNotReachHere(); 259 } 260 LIR_Opr reg = new_register(addr->type()); 261 __ load(addr, reg); 262 __ add(reg, imm, reg); 263 __ store(reg, addr); 264 } 265 266 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 267 LIR_Opr reg = new_register(T_INT); 268 __ load(generate_address(base, disp, T_INT), reg, info); 269 __ cmp(condition, reg, LIR_OprFact::intConst(c)); 270 } 271 272 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 273 LIR_Opr reg1 = new_register(T_INT); 274 __ load(generate_address(base, disp, type), reg1, info); 275 __ cmp(condition, reg, reg1); 276 } 277 278 279 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 280 281 if (is_power_of_2(c - 1)) { 282 __ shift_left(left, exact_log2(c - 1), tmp); 283 __ add(tmp, left, result); 284 return true; 285 } else if (is_power_of_2(c + 1)) { 286 __ shift_left(left, exact_log2(c + 1), tmp); 287 __ sub(tmp, left, result); 288 return true; 289 } else { 290 return false; 291 } 292 } 293 294 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 295 BasicType type = item->type(); 296 __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type)); 297 } 298 299 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { 300 LIR_Opr tmp1 = new_register(objectType); 301 LIR_Opr tmp2 = new_register(objectType); 302 LIR_Opr tmp3 = new_register(objectType); 303 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); 304 } 305 306 //---------------------------------------------------------------------- 307 // visitor functions 308 //---------------------------------------------------------------------- 309 310 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 311 assert(x->is_pinned(),""); 312 LIRItem obj(x->obj(), this); 313 obj.load_item(); 314 315 set_no_result(x); 316 317 // "lock" stores the address of the monitor stack slot, so this is not an oop 318 LIR_Opr lock = new_register(T_INT); 319 LIR_Opr scratch = new_register(T_INT); 320 321 CodeEmitInfo* info_for_exception = nullptr; 322 if (x->needs_null_check()) { 323 info_for_exception = state_for(x); 324 } 325 // this CodeEmitInfo must not have the xhandlers because here the 326 // object is already locked (xhandlers expect object to be unlocked) 327 CodeEmitInfo* info = state_for(x, x->state(), true); 328 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 329 x->monitor_no(), info_for_exception, info); 330 } 331 332 333 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 334 assert(x->is_pinned(),""); 335 336 LIRItem obj(x->obj(), this); 337 obj.dont_load_item(); 338 339 LIR_Opr lock = new_register(T_INT); 340 LIR_Opr obj_temp = new_register(T_INT); 341 LIR_Opr scratch = new_register(T_INT); 342 set_no_result(x); 343 monitor_exit(obj_temp, lock, syncTempOpr(), scratch, x->monitor_no()); 344 } 345 346 void LIRGenerator::do_NegateOp(NegateOp* x) { 347 348 LIRItem from(x->x(), this); 349 from.load_item(); 350 LIR_Opr result = rlock_result(x); 351 __ negate (from.result(), result); 352 353 } 354 355 // for _fadd, _fmul, _fsub, _fdiv, _frem 356 // _dadd, _dmul, _dsub, _ddiv, _drem 357 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 358 359 if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) { 360 // float remainder is implemented as a direct call into the runtime 361 LIRItem right(x->x(), this); 362 LIRItem left(x->y(), this); 363 364 BasicTypeList signature(2); 365 if (x->op() == Bytecodes::_frem) { 366 signature.append(T_FLOAT); 367 signature.append(T_FLOAT); 368 } else { 369 signature.append(T_DOUBLE); 370 signature.append(T_DOUBLE); 371 } 372 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 373 374 const LIR_Opr result_reg = result_register_for(x->type()); 375 left.load_item_force(cc->at(1)); 376 right.load_item(); 377 378 __ move(right.result(), cc->at(0)); 379 380 address entry; 381 if (x->op() == Bytecodes::_frem) { 382 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); 383 } else { 384 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); 385 } 386 387 LIR_Opr result = rlock_result(x); 388 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 389 __ move(result_reg, result); 390 391 return; 392 } 393 394 LIRItem left(x->x(), this); 395 LIRItem right(x->y(), this); 396 LIRItem* left_arg = &left; 397 LIRItem* right_arg = &right; 398 399 // Always load right hand side. 400 right.load_item(); 401 402 if (!left.is_register()) 403 left.load_item(); 404 405 LIR_Opr reg = rlock(x); 406 407 arithmetic_op_fpu(x->op(), reg, left.result(), right.result()); 408 409 set_result(x, round_item(reg)); 410 } 411 412 // for _ladd, _lmul, _lsub, _ldiv, _lrem 413 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 414 415 // missing test if instr is commutative and if we should swap 416 LIRItem left(x->x(), this); 417 LIRItem right(x->y(), this); 418 419 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { 420 421 left.load_item(); 422 bool need_zero_check = true; 423 if (right.is_constant()) { 424 jlong c = right.get_jlong_constant(); 425 // no need to do div-by-zero check if the divisor is a non-zero constant 426 if (c != 0) need_zero_check = false; 427 // do not load right if the divisor is a power-of-2 constant 428 if (c > 0 && is_power_of_2(c)) { 429 right.dont_load_item(); 430 } else { 431 right.load_item(); 432 } 433 } else { 434 right.load_item(); 435 } 436 if (need_zero_check) { 437 CodeEmitInfo* info = state_for(x); 438 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 439 __ branch(lir_cond_equal, new DivByZeroStub(info)); 440 } 441 442 rlock_result(x); 443 switch (x->op()) { 444 case Bytecodes::_lrem: 445 __ rem (left.result(), right.result(), x->operand()); 446 break; 447 case Bytecodes::_ldiv: 448 __ div (left.result(), right.result(), x->operand()); 449 break; 450 default: 451 ShouldNotReachHere(); 452 break; 453 } 454 455 456 } else { 457 assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, 458 "expect lmul, ladd or lsub"); 459 // add, sub, mul 460 left.load_item(); 461 if (! right.is_register()) { 462 if (x->op() == Bytecodes::_lmul 463 || ! right.is_constant() 464 || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) { 465 right.load_item(); 466 } else { // add, sub 467 assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub"); 468 // don't load constants to save register 469 right.load_nonconstant(); 470 } 471 } 472 rlock_result(x); 473 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), nullptr); 474 } 475 } 476 477 // for: _iadd, _imul, _isub, _idiv, _irem 478 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 479 480 // Test if instr is commutative and if we should swap 481 LIRItem left(x->x(), this); 482 LIRItem right(x->y(), this); 483 LIRItem* left_arg = &left; 484 LIRItem* right_arg = &right; 485 if (x->is_commutative() && left.is_stack() && right.is_register()) { 486 // swap them if left is real stack (or cached) and right is real register(not cached) 487 left_arg = &right; 488 right_arg = &left; 489 } 490 491 left_arg->load_item(); 492 493 // do not need to load right, as we can handle stack and constants 494 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 495 496 rlock_result(x); 497 bool need_zero_check = true; 498 if (right.is_constant()) { 499 jint c = right.get_jint_constant(); 500 // no need to do div-by-zero check if the divisor is a non-zero constant 501 if (c != 0) need_zero_check = false; 502 // do not load right if the divisor is a power-of-2 constant 503 if (c > 0 && is_power_of_2(c)) { 504 right_arg->dont_load_item(); 505 } else { 506 right_arg->load_item(); 507 } 508 } else { 509 right_arg->load_item(); 510 } 511 if (need_zero_check) { 512 CodeEmitInfo* info = state_for(x); 513 __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0)); 514 __ branch(lir_cond_equal, new DivByZeroStub(info)); 515 } 516 517 LIR_Opr ill = LIR_OprFact::illegalOpr; 518 if (x->op() == Bytecodes::_irem) { 519 __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr); 520 } else if (x->op() == Bytecodes::_idiv) { 521 __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr); 522 } 523 524 } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) { 525 if (right.is_constant() 526 && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) { 527 right.load_nonconstant(); 528 } else { 529 right.load_item(); 530 } 531 rlock_result(x); 532 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr); 533 } else { 534 assert (x->op() == Bytecodes::_imul, "expect imul"); 535 if (right.is_constant()) { 536 jint c = right.get_jint_constant(); 537 if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) { 538 right_arg->dont_load_item(); 539 } else { 540 // Cannot use constant op. 541 right_arg->load_item(); 542 } 543 } else { 544 right.load_item(); 545 } 546 rlock_result(x); 547 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT)); 548 } 549 } 550 551 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 552 // when an operand with use count 1 is the left operand, then it is 553 // likely that no move for 2-operand-LIR-form is necessary 554 if (x->is_commutative() && x->y()->as_Constant() == nullptr && x->x()->use_count() > x->y()->use_count()) { 555 x->swap_operands(); 556 } 557 558 ValueTag tag = x->type()->tag(); 559 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 560 switch (tag) { 561 case floatTag: 562 case doubleTag: do_ArithmeticOp_FPU(x); return; 563 case longTag: do_ArithmeticOp_Long(x); return; 564 case intTag: do_ArithmeticOp_Int(x); return; 565 default: ShouldNotReachHere(); return; 566 } 567 } 568 569 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 570 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 571 572 LIRItem left(x->x(), this); 573 LIRItem right(x->y(), this); 574 575 left.load_item(); 576 577 rlock_result(x); 578 if (right.is_constant()) { 579 right.dont_load_item(); 580 581 switch (x->op()) { 582 case Bytecodes::_ishl: { 583 int c = right.get_jint_constant() & 0x1f; 584 __ shift_left(left.result(), c, x->operand()); 585 break; 586 } 587 case Bytecodes::_ishr: { 588 int c = right.get_jint_constant() & 0x1f; 589 __ shift_right(left.result(), c, x->operand()); 590 break; 591 } 592 case Bytecodes::_iushr: { 593 int c = right.get_jint_constant() & 0x1f; 594 __ unsigned_shift_right(left.result(), c, x->operand()); 595 break; 596 } 597 case Bytecodes::_lshl: { 598 int c = right.get_jint_constant() & 0x3f; 599 __ shift_left(left.result(), c, x->operand()); 600 break; 601 } 602 case Bytecodes::_lshr: { 603 int c = right.get_jint_constant() & 0x3f; 604 __ shift_right(left.result(), c, x->operand()); 605 break; 606 } 607 case Bytecodes::_lushr: { 608 int c = right.get_jint_constant() & 0x3f; 609 __ unsigned_shift_right(left.result(), c, x->operand()); 610 break; 611 } 612 default: 613 ShouldNotReachHere(); 614 } 615 } else { 616 right.load_item(); 617 LIR_Opr tmp = new_register(T_INT); 618 switch (x->op()) { 619 case Bytecodes::_ishl: { 620 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 621 __ shift_left(left.result(), tmp, x->operand(), tmp); 622 break; 623 } 624 case Bytecodes::_ishr: { 625 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 626 __ shift_right(left.result(), tmp, x->operand(), tmp); 627 break; 628 } 629 case Bytecodes::_iushr: { 630 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 631 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 632 break; 633 } 634 case Bytecodes::_lshl: { 635 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 636 __ shift_left(left.result(), tmp, x->operand(), tmp); 637 break; 638 } 639 case Bytecodes::_lshr: { 640 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 641 __ shift_right(left.result(), tmp, x->operand(), tmp); 642 break; 643 } 644 case Bytecodes::_lushr: { 645 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 646 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 647 break; 648 } 649 default: 650 ShouldNotReachHere(); 651 } 652 } 653 } 654 655 // _iand, _land, _ior, _lor, _ixor, _lxor 656 void LIRGenerator::do_LogicOp(LogicOp* x) { 657 658 LIRItem left(x->x(), this); 659 LIRItem right(x->y(), this); 660 661 left.load_item(); 662 663 rlock_result(x); 664 if (right.is_constant() 665 && ((right.type()->tag() == intTag 666 && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant())) 667 || (right.type()->tag() == longTag 668 && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) { 669 right.dont_load_item(); 670 } else { 671 right.load_item(); 672 } 673 switch (x->op()) { 674 case Bytecodes::_iand: 675 case Bytecodes::_land: 676 __ logical_and(left.result(), right.result(), x->operand()); break; 677 case Bytecodes::_ior: 678 case Bytecodes::_lor: 679 __ logical_or (left.result(), right.result(), x->operand()); break; 680 case Bytecodes::_ixor: 681 case Bytecodes::_lxor: 682 __ logical_xor(left.result(), right.result(), x->operand()); break; 683 default: Unimplemented(); 684 } 685 } 686 687 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 688 void LIRGenerator::do_CompareOp(CompareOp* x) { 689 LIRItem left(x->x(), this); 690 LIRItem right(x->y(), this); 691 ValueTag tag = x->x()->type()->tag(); 692 if (tag == longTag) { 693 left.set_destroys_register(); 694 } 695 left.load_item(); 696 right.load_item(); 697 LIR_Opr reg = rlock_result(x); 698 699 if (x->x()->type()->is_float_kind()) { 700 Bytecodes::Code code = x->op(); 701 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 702 } else if (x->x()->type()->tag() == longTag) { 703 __ lcmp2int(left.result(), right.result(), reg); 704 } else { 705 Unimplemented(); 706 } 707 } 708 709 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { 710 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 711 new_value.load_item(); 712 cmp_value.load_item(); 713 LIR_Opr result = new_register(T_INT); 714 if (is_reference_type(type)) { 715 __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result); 716 } else if (type == T_INT) { 717 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 718 } else if (type == T_LONG) { 719 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 720 } else { 721 ShouldNotReachHere(); 722 Unimplemented(); 723 } 724 __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result); 725 return result; 726 } 727 728 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { 729 bool is_oop = is_reference_type(type); 730 LIR_Opr result = new_register(type); 731 value.load_item(); 732 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); 733 LIR_Opr tmp = new_register(T_INT); 734 __ xchg(addr, value.result(), result, tmp); 735 return result; 736 } 737 738 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { 739 LIR_Opr result = new_register(type); 740 value.load_item(); 741 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); 742 LIR_Opr tmp = new_register(T_INT); 743 __ xadd(addr, value.result(), result, tmp); 744 return result; 745 } 746 747 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 748 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 749 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 750 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 751 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 752 x->id() == vmIntrinsics::_dlog10) { 753 do_LibmIntrinsic(x); 754 return; 755 } 756 switch (x->id()) { 757 case vmIntrinsics::_dabs: 758 case vmIntrinsics::_dsqrt: 759 case vmIntrinsics::_dsqrt_strict: 760 case vmIntrinsics::_floatToFloat16: 761 case vmIntrinsics::_float16ToFloat: { 762 assert(x->number_of_arguments() == 1, "wrong type"); 763 LIRItem value(x->argument_at(0), this); 764 value.load_item(); 765 LIR_Opr src = value.result(); 766 LIR_Opr dst = rlock_result(x); 767 768 switch (x->id()) { 769 case vmIntrinsics::_dsqrt: 770 case vmIntrinsics::_dsqrt_strict: { 771 __ sqrt(src, dst, LIR_OprFact::illegalOpr); 772 break; 773 } 774 case vmIntrinsics::_dabs: { 775 __ abs(src, dst, LIR_OprFact::illegalOpr); 776 break; 777 } 778 case vmIntrinsics::_floatToFloat16: { 779 LIR_Opr tmp = new_register(T_FLOAT); 780 __ move(LIR_OprFact::floatConst(-0.0), tmp); 781 __ f2hf(src, dst, tmp); 782 break; 783 } 784 case vmIntrinsics::_float16ToFloat: { 785 LIR_Opr tmp = new_register(T_FLOAT); 786 __ move(LIR_OprFact::floatConst(-0.0), tmp); 787 __ hf2f(src, dst, tmp); 788 break; 789 } 790 default: 791 ShouldNotReachHere(); 792 } 793 break; 794 } 795 default: 796 ShouldNotReachHere(); 797 } 798 } 799 800 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 801 LIRItem value(x->argument_at(0), this); 802 value.set_destroys_register(); 803 804 LIR_Opr calc_result = rlock_result(x); 805 LIR_Opr result_reg = result_register_for(x->type()); 806 807 CallingConvention* cc = nullptr; 808 809 if (x->id() == vmIntrinsics::_dpow) { 810 LIRItem value1(x->argument_at(1), this); 811 812 value1.set_destroys_register(); 813 814 BasicTypeList signature(2); 815 signature.append(T_DOUBLE); 816 signature.append(T_DOUBLE); 817 cc = frame_map()->c_calling_convention(&signature); 818 value.load_item_force(cc->at(0)); 819 value1.load_item_force(cc->at(1)); 820 } else { 821 BasicTypeList signature(1); 822 signature.append(T_DOUBLE); 823 cc = frame_map()->c_calling_convention(&signature); 824 value.load_item_force(cc->at(0)); 825 } 826 827 switch (x->id()) { 828 case vmIntrinsics::_dexp: 829 if (StubRoutines::dexp() != nullptr) { 830 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 831 } else { 832 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 833 } 834 break; 835 case vmIntrinsics::_dlog: 836 // Math.log intrinsic is not implemented on AArch64 (see JDK-8210858), 837 // but we can still call the shared runtime. 838 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 839 break; 840 case vmIntrinsics::_dlog10: 841 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 842 break; 843 case vmIntrinsics::_dpow: 844 if (StubRoutines::dpow() != nullptr) { 845 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 846 } else { 847 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 848 } 849 break; 850 case vmIntrinsics::_dsin: 851 if (StubRoutines::dsin() != nullptr) { 852 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 853 } else { 854 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 855 } 856 break; 857 case vmIntrinsics::_dcos: 858 if (StubRoutines::dcos() != nullptr) { 859 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 860 } else { 861 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 862 } 863 break; 864 case vmIntrinsics::_dtan: 865 if (StubRoutines::dtan() != nullptr) { 866 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 867 } else { 868 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 869 } 870 break; 871 default: ShouldNotReachHere(); 872 } 873 __ move(result_reg, calc_result); 874 } 875 876 877 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 878 assert(x->number_of_arguments() == 5, "wrong type"); 879 880 // Make all state_for calls early since they can emit code 881 CodeEmitInfo* info = nullptr; 882 if (x->state_before() != nullptr && x->state_before()->force_reexecute()) { 883 info = state_for(x, x->state_before()); 884 info->set_force_reexecute(); 885 } else { 886 info = state_for(x, x->state()); 887 } 888 889 LIRItem src(x->argument_at(0), this); 890 LIRItem src_pos(x->argument_at(1), this); 891 LIRItem dst(x->argument_at(2), this); 892 LIRItem dst_pos(x->argument_at(3), this); 893 LIRItem length(x->argument_at(4), this); 894 895 // operands for arraycopy must use fixed registers, otherwise 896 // LinearScan will fail allocation (because arraycopy always needs a 897 // call) 898 899 // The java calling convention will give us enough registers 900 // so that on the stub side the args will be perfect already. 901 // On the other slow/special case side we call C and the arg 902 // positions are not similar enough to pick one as the best. 903 // Also because the java calling convention is a "shifted" version 904 // of the C convention we can process the java args trivially into C 905 // args without worry of overwriting during the xfer 906 907 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 908 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 909 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 910 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 911 length.load_item_force (FrameMap::as_opr(j_rarg4)); 912 913 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 914 915 set_no_result(x); 916 917 int flags; 918 ciArrayKlass* expected_type; 919 arraycopy_helper(x, &flags, &expected_type); 920 if (x->check_flag(Instruction::OmitChecksFlag)) { 921 flags = 0; 922 } 923 924 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 925 } 926 927 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 928 assert(UseCRC32Intrinsics, "why are we here?"); 929 // Make all state_for calls early since they can emit code 930 LIR_Opr result = rlock_result(x); 931 switch (x->id()) { 932 case vmIntrinsics::_updateCRC32: { 933 LIRItem crc(x->argument_at(0), this); 934 LIRItem val(x->argument_at(1), this); 935 // val is destroyed by update_crc32 936 val.set_destroys_register(); 937 crc.load_item(); 938 val.load_item(); 939 __ update_crc32(crc.result(), val.result(), result); 940 break; 941 } 942 case vmIntrinsics::_updateBytesCRC32: 943 case vmIntrinsics::_updateByteBufferCRC32: { 944 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 945 946 LIRItem crc(x->argument_at(0), this); 947 LIRItem buf(x->argument_at(1), this); 948 LIRItem off(x->argument_at(2), this); 949 LIRItem len(x->argument_at(3), this); 950 buf.load_item(); 951 off.load_nonconstant(); 952 953 LIR_Opr index = off.result(); 954 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 955 if (off.result()->is_constant()) { 956 index = LIR_OprFact::illegalOpr; 957 offset += off.result()->as_jint(); 958 } 959 LIR_Opr base_op = buf.result(); 960 961 if (index->is_valid()) { 962 LIR_Opr tmp = new_register(T_LONG); 963 __ convert(Bytecodes::_i2l, index, tmp); 964 index = tmp; 965 } 966 967 if (offset) { 968 LIR_Opr tmp = new_pointer_register(); 969 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 970 base_op = tmp; 971 offset = 0; 972 } 973 974 LIR_Address* a = new LIR_Address(base_op, 975 index, 976 offset, 977 T_BYTE); 978 BasicTypeList signature(3); 979 signature.append(T_INT); 980 signature.append(T_ADDRESS); 981 signature.append(T_INT); 982 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 983 const LIR_Opr result_reg = result_register_for(x->type()); 984 985 LIR_Opr addr = new_pointer_register(); 986 __ leal(LIR_OprFact::address(a), addr); 987 988 crc.load_item_force(cc->at(0)); 989 __ move(addr, cc->at(1)); 990 len.load_item_force(cc->at(2)); 991 992 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 993 __ move(result_reg, result); 994 995 break; 996 } 997 default: { 998 ShouldNotReachHere(); 999 } 1000 } 1001 } 1002 1003 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 1004 assert(UseCRC32CIntrinsics, "why are we here?"); 1005 // Make all state_for calls early since they can emit code 1006 LIR_Opr result = rlock_result(x); 1007 switch (x->id()) { 1008 case vmIntrinsics::_updateBytesCRC32C: 1009 case vmIntrinsics::_updateDirectByteBufferCRC32C: { 1010 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C); 1011 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 1012 1013 LIRItem crc(x->argument_at(0), this); 1014 LIRItem buf(x->argument_at(1), this); 1015 LIRItem off(x->argument_at(2), this); 1016 LIRItem end(x->argument_at(3), this); 1017 1018 buf.load_item(); 1019 off.load_nonconstant(); 1020 end.load_nonconstant(); 1021 1022 // len = end - off 1023 LIR_Opr len = end.result(); 1024 LIR_Opr tmpA = new_register(T_INT); 1025 LIR_Opr tmpB = new_register(T_INT); 1026 __ move(end.result(), tmpA); 1027 __ move(off.result(), tmpB); 1028 __ sub(tmpA, tmpB, tmpA); 1029 len = tmpA; 1030 1031 LIR_Opr index = off.result(); 1032 if(off.result()->is_constant()) { 1033 index = LIR_OprFact::illegalOpr; 1034 offset += off.result()->as_jint(); 1035 } 1036 LIR_Opr base_op = buf.result(); 1037 1038 if (index->is_valid()) { 1039 LIR_Opr tmp = new_register(T_LONG); 1040 __ convert(Bytecodes::_i2l, index, tmp); 1041 index = tmp; 1042 } 1043 1044 if (offset) { 1045 LIR_Opr tmp = new_pointer_register(); 1046 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 1047 base_op = tmp; 1048 offset = 0; 1049 } 1050 1051 LIR_Address* a = new LIR_Address(base_op, 1052 index, 1053 offset, 1054 T_BYTE); 1055 BasicTypeList signature(3); 1056 signature.append(T_INT); 1057 signature.append(T_ADDRESS); 1058 signature.append(T_INT); 1059 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1060 const LIR_Opr result_reg = result_register_for(x->type()); 1061 1062 LIR_Opr addr = new_pointer_register(); 1063 __ leal(LIR_OprFact::address(a), addr); 1064 1065 crc.load_item_force(cc->at(0)); 1066 __ move(addr, cc->at(1)); 1067 __ move(len, cc->at(2)); 1068 1069 __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args()); 1070 __ move(result_reg, result); 1071 1072 break; 1073 } 1074 default: { 1075 ShouldNotReachHere(); 1076 } 1077 } 1078 } 1079 1080 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 1081 assert(x->number_of_arguments() == 3, "wrong type"); 1082 assert(UseFMA, "Needs FMA instructions support."); 1083 LIRItem value(x->argument_at(0), this); 1084 LIRItem value1(x->argument_at(1), this); 1085 LIRItem value2(x->argument_at(2), this); 1086 1087 value.load_item(); 1088 value1.load_item(); 1089 value2.load_item(); 1090 1091 LIR_Opr calc_input = value.result(); 1092 LIR_Opr calc_input1 = value1.result(); 1093 LIR_Opr calc_input2 = value2.result(); 1094 LIR_Opr calc_result = rlock_result(x); 1095 1096 switch (x->id()) { 1097 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 1098 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 1099 default: ShouldNotReachHere(); 1100 } 1101 } 1102 1103 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1104 fatal("vectorizedMismatch intrinsic is not implemented on this platform"); 1105 } 1106 1107 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1108 // _i2b, _i2c, _i2s 1109 void LIRGenerator::do_Convert(Convert* x) { 1110 LIRItem value(x->value(), this); 1111 value.load_item(); 1112 LIR_Opr input = value.result(); 1113 LIR_Opr result = rlock(x); 1114 1115 // arguments of lir_convert 1116 LIR_Opr conv_input = input; 1117 LIR_Opr conv_result = result; 1118 1119 __ convert(x->op(), conv_input, conv_result); 1120 1121 assert(result->is_virtual(), "result must be virtual register"); 1122 set_result(x, result); 1123 } 1124 1125 void LIRGenerator::do_NewInstance(NewInstance* x) { 1126 #ifndef PRODUCT 1127 if (PrintNotLoaded && !x->klass()->is_loaded()) { 1128 tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci()); 1129 } 1130 #endif 1131 CodeEmitInfo* info = state_for(x, x->state()); 1132 LIR_Opr reg = result_register_for(x->type()); 1133 new_instance(reg, x->klass(), x->is_unresolved(), 1134 FrameMap::r10_oop_opr, 1135 FrameMap::r11_oop_opr, 1136 FrameMap::r4_oop_opr, 1137 LIR_OprFact::illegalOpr, 1138 FrameMap::r3_metadata_opr, info); 1139 LIR_Opr result = rlock_result(x); 1140 __ move(reg, result); 1141 } 1142 1143 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1144 CodeEmitInfo* info = nullptr; 1145 if (x->state_before() != nullptr && x->state_before()->force_reexecute()) { 1146 info = state_for(x, x->state_before()); 1147 info->set_force_reexecute(); 1148 } else { 1149 info = state_for(x, x->state()); 1150 } 1151 1152 LIRItem length(x->length(), this); 1153 length.load_item_force(FrameMap::r19_opr); 1154 1155 LIR_Opr reg = result_register_for(x->type()); 1156 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1157 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1158 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1159 LIR_Opr tmp4 = reg; 1160 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1161 LIR_Opr len = length.result(); 1162 BasicType elem_type = x->elt_type(); 1163 1164 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1165 1166 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1167 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path, x->zero_array()); 1168 1169 LIR_Opr result = rlock_result(x); 1170 __ move(reg, result); 1171 } 1172 1173 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1174 LIRItem length(x->length(), this); 1175 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1176 // and therefore provide the state before the parameters have been consumed 1177 CodeEmitInfo* patching_info = nullptr; 1178 if (!x->klass()->is_loaded() || PatchALot) { 1179 patching_info = state_for(x, x->state_before()); 1180 } 1181 1182 CodeEmitInfo* info = state_for(x, x->state()); 1183 1184 LIR_Opr reg = result_register_for(x->type()); 1185 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1186 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1187 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1188 LIR_Opr tmp4 = reg; 1189 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1190 1191 length.load_item_force(FrameMap::r19_opr); 1192 LIR_Opr len = length.result(); 1193 1194 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); 1195 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1196 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1197 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1198 } 1199 klass2reg_with_patching(klass_reg, obj, patching_info); 1200 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1201 1202 LIR_Opr result = rlock_result(x); 1203 __ move(reg, result); 1204 } 1205 1206 1207 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1208 Values* dims = x->dims(); 1209 int i = dims->length(); 1210 LIRItemList* items = new LIRItemList(i, i, nullptr); 1211 while (i-- > 0) { 1212 LIRItem* size = new LIRItem(dims->at(i), this); 1213 items->at_put(i, size); 1214 } 1215 1216 // Evaluate state_for early since it may emit code. 1217 CodeEmitInfo* patching_info = nullptr; 1218 if (!x->klass()->is_loaded() || PatchALot) { 1219 patching_info = state_for(x, x->state_before()); 1220 1221 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1222 // clone all handlers (NOTE: Usually this is handled transparently 1223 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1224 // is done explicitly here because a stub isn't being used). 1225 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1226 } 1227 CodeEmitInfo* info = state_for(x, x->state()); 1228 1229 i = dims->length(); 1230 while (i-- > 0) { 1231 LIRItem* size = items->at(i); 1232 size->load_item(); 1233 1234 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1235 } 1236 1237 LIR_Opr klass_reg = FrameMap::r0_metadata_opr; 1238 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1239 1240 LIR_Opr rank = FrameMap::r19_opr; 1241 __ move(LIR_OprFact::intConst(x->rank()), rank); 1242 LIR_Opr varargs = FrameMap::r2_opr; 1243 __ move(FrameMap::sp_opr, varargs); 1244 LIR_OprList* args = new LIR_OprList(3); 1245 args->append(klass_reg); 1246 args->append(rank); 1247 args->append(varargs); 1248 LIR_Opr reg = result_register_for(x->type()); 1249 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), 1250 LIR_OprFact::illegalOpr, 1251 reg, args, info); 1252 1253 LIR_Opr result = rlock_result(x); 1254 __ move(reg, result); 1255 } 1256 1257 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1258 // nothing to do for now 1259 } 1260 1261 void LIRGenerator::do_CheckCast(CheckCast* x) { 1262 LIRItem obj(x->obj(), this); 1263 1264 CodeEmitInfo* patching_info = nullptr; 1265 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { 1266 // must do this before locking the destination register as an oop register, 1267 // and before the obj is loaded (the latter is for deoptimization) 1268 patching_info = state_for(x, x->state_before()); 1269 } 1270 obj.load_item(); 1271 1272 // info for exceptions 1273 CodeEmitInfo* info_for_exception = 1274 (x->needs_exception_state() ? state_for(x) : 1275 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1276 1277 CodeStub* stub; 1278 if (x->is_incompatible_class_change_check()) { 1279 assert(patching_info == nullptr, "can't patch this"); 1280 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1281 } else if (x->is_invokespecial_receiver_check()) { 1282 assert(patching_info == nullptr, "can't patch this"); 1283 stub = new DeoptimizeStub(info_for_exception, 1284 Deoptimization::Reason_class_check, 1285 Deoptimization::Action_none); 1286 } else { 1287 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); 1288 } 1289 LIR_Opr reg = rlock_result(x); 1290 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1291 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1292 tmp3 = new_register(objectType); 1293 } 1294 __ checkcast(reg, obj.result(), x->klass(), 1295 new_register(objectType), new_register(objectType), tmp3, 1296 x->direct_compare(), info_for_exception, patching_info, stub, 1297 x->profiled_method(), x->profiled_bci()); 1298 } 1299 1300 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1301 LIRItem obj(x->obj(), this); 1302 1303 // result and test object may not be in same register 1304 LIR_Opr reg = rlock_result(x); 1305 CodeEmitInfo* patching_info = nullptr; 1306 if ((!x->klass()->is_loaded() || PatchALot)) { 1307 // must do this before locking the destination register as an oop register 1308 patching_info = state_for(x, x->state_before()); 1309 } 1310 obj.load_item(); 1311 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1312 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1313 tmp3 = new_register(objectType); 1314 } 1315 __ instanceof(reg, obj.result(), x->klass(), 1316 new_register(objectType), new_register(objectType), tmp3, 1317 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1318 } 1319 1320 void LIRGenerator::do_If(If* x) { 1321 assert(x->number_of_sux() == 2, "inconsistency"); 1322 ValueTag tag = x->x()->type()->tag(); 1323 bool is_safepoint = x->is_safepoint(); 1324 1325 If::Condition cond = x->cond(); 1326 1327 LIRItem xitem(x->x(), this); 1328 LIRItem yitem(x->y(), this); 1329 LIRItem* xin = &xitem; 1330 LIRItem* yin = &yitem; 1331 1332 if (tag == longTag) { 1333 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1334 // mirror for other conditions 1335 if (cond == If::gtr || cond == If::leq) { 1336 cond = Instruction::mirror(cond); 1337 xin = &yitem; 1338 yin = &xitem; 1339 } 1340 xin->set_destroys_register(); 1341 } 1342 xin->load_item(); 1343 1344 if (tag == longTag) { 1345 if (yin->is_constant() 1346 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) { 1347 yin->dont_load_item(); 1348 } else { 1349 yin->load_item(); 1350 } 1351 } else if (tag == intTag) { 1352 if (yin->is_constant() 1353 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) { 1354 yin->dont_load_item(); 1355 } else { 1356 yin->load_item(); 1357 } 1358 } else { 1359 yin->load_item(); 1360 } 1361 1362 set_no_result(x); 1363 1364 LIR_Opr left = xin->result(); 1365 LIR_Opr right = yin->result(); 1366 1367 // add safepoint before generating condition code so it can be recomputed 1368 if (x->is_safepoint()) { 1369 // increment backedge counter if needed 1370 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), 1371 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); 1372 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); 1373 } 1374 1375 __ cmp(lir_cond(cond), left, right); 1376 // Generate branch profiling. Profiling code doesn't kill flags. 1377 profile_branch(x, cond); 1378 move_to_phi(x->state()); 1379 if (x->x()->type()->is_float_kind()) { 1380 __ branch(lir_cond(cond), x->tsux(), x->usux()); 1381 } else { 1382 __ branch(lir_cond(cond), x->tsux()); 1383 } 1384 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1385 __ jump(x->default_sux()); 1386 } 1387 1388 LIR_Opr LIRGenerator::getThreadPointer() { 1389 return FrameMap::as_pointer_opr(rthread); 1390 } 1391 1392 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); } 1393 1394 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1395 CodeEmitInfo* info) { 1396 __ volatile_store_mem_reg(value, address, info); 1397 } 1398 1399 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1400 CodeEmitInfo* info) { 1401 // 8179954: We need to make sure that the code generated for 1402 // volatile accesses forms a sequentially-consistent set of 1403 // operations when combined with STLR and LDAR. Without a leading 1404 // membar it's possible for a simple Dekker test to fail if loads 1405 // use LD;DMB but stores use STLR. This can happen if C2 compiles 1406 // the stores in one method and C1 compiles the loads in another. 1407 if (!CompilerConfig::is_c1_only_no_jvmci()) { 1408 __ membar(); 1409 } 1410 __ volatile_load_mem_reg(address, result, info); 1411 }