1 /* 2 * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_Compilation.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArray.hpp" 35 #include "ci/ciInlineKlass.hpp" 36 #include "ci/ciObjArrayKlass.hpp" 37 #include "ci/ciTypeArrayKlass.hpp" 38 #include "compiler/compilerDefinitions.inline.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "utilities/powerOfTwo.hpp" 42 #include "vmreg_aarch64.inline.hpp" 43 44 #ifdef ASSERT 45 #define __ gen()->lir(__FILE__, __LINE__)-> 46 #else 47 #define __ gen()->lir()-> 48 #endif 49 50 // Item will be loaded into a byte register; Intel only 51 void LIRItem::load_byte_item() { 52 load_item(); 53 } 54 55 56 void LIRItem::load_nonconstant() { 57 LIR_Opr r = value()->operand(); 58 if (r->is_constant()) { 59 _result = r; 60 } else { 61 load_item(); 62 } 63 } 64 65 //-------------------------------------------------------------- 66 // LIRGenerator 67 //-------------------------------------------------------------- 68 69 70 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; } 71 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; } 72 LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 73 LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 74 LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 75 LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 76 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 77 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; } 78 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 79 80 81 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 82 LIR_Opr opr; 83 switch (type->tag()) { 84 case intTag: opr = FrameMap::r0_opr; break; 85 case objectTag: opr = FrameMap::r0_oop_opr; break; 86 case longTag: opr = FrameMap::long0_opr; break; 87 case floatTag: opr = FrameMap::fpu0_float_opr; break; 88 case doubleTag: opr = FrameMap::fpu0_double_opr; break; 89 90 case addressTag: 91 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 92 } 93 94 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 95 return opr; 96 } 97 98 99 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 100 LIR_Opr reg = new_register(T_INT); 101 set_vreg_flag(reg, LIRGenerator::byte_reg); 102 return reg; 103 } 104 105 106 void LIRGenerator::init_temps_for_substitutability_check(LIR_Opr& tmp1, LIR_Opr& tmp2) { 107 tmp1 = new_register(T_INT); 108 tmp2 = LIR_OprFact::illegalOpr; 109 } 110 111 112 //--------- loading items into registers -------------------------------- 113 114 115 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 116 if (v->type()->as_IntConstant() != nullptr) { 117 return v->type()->as_IntConstant()->value() == 0L; 118 } else if (v->type()->as_LongConstant() != nullptr) { 119 return v->type()->as_LongConstant()->value() == 0L; 120 } else if (v->type()->as_ObjectConstant() != nullptr) { 121 return v->type()->as_ObjectConstant()->value()->is_null_object(); 122 } else { 123 return false; 124 } 125 } 126 127 bool LIRGenerator::can_inline_as_constant(Value v) const { 128 // FIXME: Just a guess 129 if (v->type()->as_IntConstant() != nullptr) { 130 return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value()); 131 } else if (v->type()->as_LongConstant() != nullptr) { 132 return v->type()->as_LongConstant()->value() == 0L; 133 } else if (v->type()->as_ObjectConstant() != nullptr) { 134 return v->type()->as_ObjectConstant()->value()->is_null_object(); 135 } else { 136 return false; 137 } 138 } 139 140 141 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; } 142 143 144 LIR_Opr LIRGenerator::safepoint_poll_register() { 145 return LIR_OprFact::illegalOpr; 146 } 147 148 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 150 int shift, int disp, BasicType type) { 151 assert(base->is_register(), "must be"); 152 intx large_disp = disp; 153 154 // accumulate fixed displacements 155 if (index->is_constant()) { 156 LIR_Const *constant = index->as_constant_ptr(); 157 if (constant->type() == T_INT) { 158 large_disp += ((intx)index->as_jint()) << shift; 159 } else { 160 assert(constant->type() == T_LONG, "should be"); 161 jlong c = index->as_jlong() << shift; 162 if ((jlong)((jint)c) == c) { 163 large_disp += c; 164 index = LIR_OprFact::illegalOpr; 165 } else { 166 LIR_Opr tmp = new_register(T_LONG); 167 __ move(index, tmp); 168 index = tmp; 169 // apply shift and displacement below 170 } 171 } 172 } 173 174 if (index->is_register()) { 175 // apply the shift and accumulate the displacement 176 if (shift > 0) { 177 // Use long register to avoid overflow when shifting large index values left. 178 LIR_Opr tmp = new_register(T_LONG); 179 __ convert(Bytecodes::_i2l, index, tmp); 180 __ shift_left(tmp, shift, tmp); 181 index = tmp; 182 } 183 if (large_disp != 0) { 184 LIR_Opr tmp = new_pointer_register(); 185 if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) { 186 __ add(index, LIR_OprFact::intptrConst(large_disp), tmp); 187 index = tmp; 188 } else { 189 __ move(LIR_OprFact::intptrConst(large_disp), tmp); 190 __ add(tmp, index, tmp); 191 index = tmp; 192 } 193 large_disp = 0; 194 } 195 } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) { 196 // index is illegal so replace it with the displacement loaded into a register 197 index = new_pointer_register(); 198 __ move(LIR_OprFact::intptrConst(large_disp), index); 199 large_disp = 0; 200 } 201 202 // at this point we either have base + index or base + displacement 203 if (large_disp == 0 && index->is_register()) { 204 return new LIR_Address(base, index, type); 205 } else { 206 assert(Address::offset_ok_for_immed(large_disp, shift), "failed for large_disp: " INTPTR_FORMAT " and shift %d", large_disp, shift); 207 return new LIR_Address(base, large_disp, type); 208 } 209 } 210 211 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 212 BasicType type) { 213 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 214 int elem_size = type2aelembytes(type); 215 int shift = exact_log2(elem_size); 216 return generate_address(array_opr, index_opr, shift, offset_in_bytes, type); 217 } 218 219 LIR_Opr LIRGenerator::load_immediate(jlong x, BasicType type) { 220 LIR_Opr r; 221 if (type == T_LONG) { 222 r = LIR_OprFact::longConst(x); 223 if (!Assembler::operand_valid_for_logical_immediate(false, x)) { 224 LIR_Opr tmp = new_register(type); 225 __ move(r, tmp); 226 return tmp; 227 } 228 } else if (type == T_INT) { 229 r = LIR_OprFact::intConst(checked_cast<jint>(x)); 230 if (!Assembler::operand_valid_for_logical_immediate(true, x)) { 231 // This is all rather nasty. We don't know whether our constant 232 // is required for a logical or an arithmetic operation, wo we 233 // don't know what the range of valid values is!! 234 LIR_Opr tmp = new_register(type); 235 __ move(r, tmp); 236 return tmp; 237 } 238 } else { 239 ShouldNotReachHere(); 240 } 241 return r; 242 } 243 244 245 246 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 247 LIR_Opr pointer = new_pointer_register(); 248 __ move(LIR_OprFact::intptrConst(counter), pointer); 249 LIR_Address* addr = new LIR_Address(pointer, type); 250 increment_counter(addr, step); 251 } 252 253 254 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 255 LIR_Opr imm; 256 switch(addr->type()) { 257 case T_INT: 258 imm = LIR_OprFact::intConst(step); 259 break; 260 case T_LONG: 261 imm = LIR_OprFact::longConst(step); 262 break; 263 default: 264 ShouldNotReachHere(); 265 } 266 LIR_Opr reg = new_register(addr->type()); 267 __ load(addr, reg); 268 __ add(reg, imm, reg); 269 __ store(reg, addr); 270 } 271 272 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 273 LIR_Opr reg = new_register(T_INT); 274 __ load(generate_address(base, disp, T_INT), reg, info); 275 __ cmp(condition, reg, LIR_OprFact::intConst(c)); 276 } 277 278 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 279 LIR_Opr reg1 = new_register(T_INT); 280 __ load(generate_address(base, disp, type), reg1, info); 281 __ cmp(condition, reg, reg1); 282 } 283 284 285 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 286 juint u_value = (juint)c; 287 if (is_power_of_2(u_value - 1)) { 288 __ shift_left(left, exact_log2(u_value - 1), tmp); 289 __ add(tmp, left, result); 290 return true; 291 } else if (is_power_of_2(u_value + 1)) { 292 __ shift_left(left, exact_log2(u_value + 1), tmp); 293 __ sub(tmp, left, result); 294 return true; 295 } else if (c == -1) { 296 __ negate(left, result); 297 return true; 298 } 299 return false; 300 } 301 302 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 303 BasicType type = item->type(); 304 __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type)); 305 } 306 307 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { 308 LIR_Opr tmp1 = new_register(objectType); 309 LIR_Opr tmp2 = new_register(objectType); 310 LIR_Opr tmp3 = new_register(objectType); 311 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); 312 } 313 314 //---------------------------------------------------------------------- 315 // visitor functions 316 //---------------------------------------------------------------------- 317 318 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 319 assert(x->is_pinned(),""); 320 LIRItem obj(x->obj(), this); 321 obj.load_item(); 322 323 set_no_result(x); 324 325 // "lock" stores the address of the monitor stack slot, so this is not an oop 326 LIR_Opr lock = new_register(T_INT); 327 LIR_Opr scratch = new_register(T_INT); 328 329 CodeEmitInfo* info_for_exception = nullptr; 330 if (x->needs_null_check()) { 331 info_for_exception = state_for(x); 332 } 333 334 CodeStub* throw_ie_stub = 335 x->maybe_inlinetype() ? 336 new SimpleExceptionStub(C1StubId::throw_identity_exception_id, obj.result(), state_for(x)) : 337 nullptr; 338 339 // this CodeEmitInfo must not have the xhandlers because here the 340 // object is already locked (xhandlers expect object to be unlocked) 341 CodeEmitInfo* info = state_for(x, x->state(), true); 342 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 343 x->monitor_no(), info_for_exception, info, throw_ie_stub); 344 } 345 346 347 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 348 assert(x->is_pinned(),""); 349 350 LIRItem obj(x->obj(), this); 351 obj.dont_load_item(); 352 353 LIR_Opr lock = new_register(T_INT); 354 LIR_Opr obj_temp = new_register(T_INT); 355 LIR_Opr scratch = new_register(T_INT); 356 set_no_result(x); 357 monitor_exit(obj_temp, lock, syncTempOpr(), scratch, x->monitor_no()); 358 } 359 360 void LIRGenerator::do_NegateOp(NegateOp* x) { 361 362 LIRItem from(x->x(), this); 363 from.load_item(); 364 LIR_Opr result = rlock_result(x); 365 __ negate (from.result(), result); 366 367 } 368 369 // for _fadd, _fmul, _fsub, _fdiv, _frem 370 // _dadd, _dmul, _dsub, _ddiv, _drem 371 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 372 373 if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) { 374 // float remainder is implemented as a direct call into the runtime 375 LIRItem right(x->x(), this); 376 LIRItem left(x->y(), this); 377 378 BasicTypeList signature(2); 379 if (x->op() == Bytecodes::_frem) { 380 signature.append(T_FLOAT); 381 signature.append(T_FLOAT); 382 } else { 383 signature.append(T_DOUBLE); 384 signature.append(T_DOUBLE); 385 } 386 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 387 388 const LIR_Opr result_reg = result_register_for(x->type()); 389 left.load_item_force(cc->at(1)); 390 right.load_item(); 391 392 __ move(right.result(), cc->at(0)); 393 394 address entry; 395 if (x->op() == Bytecodes::_frem) { 396 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); 397 } else { 398 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); 399 } 400 401 LIR_Opr result = rlock_result(x); 402 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 403 __ move(result_reg, result); 404 405 return; 406 } 407 408 LIRItem left(x->x(), this); 409 LIRItem right(x->y(), this); 410 LIRItem* left_arg = &left; 411 LIRItem* right_arg = &right; 412 413 // Always load right hand side. 414 right.load_item(); 415 416 if (!left.is_register()) 417 left.load_item(); 418 419 LIR_Opr reg = rlock(x); 420 421 arithmetic_op_fpu(x->op(), reg, left.result(), right.result()); 422 423 set_result(x, round_item(reg)); 424 } 425 426 // for _ladd, _lmul, _lsub, _ldiv, _lrem 427 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 428 429 // missing test if instr is commutative and if we should swap 430 LIRItem left(x->x(), this); 431 LIRItem right(x->y(), this); 432 433 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { 434 435 left.load_item(); 436 bool need_zero_check = true; 437 if (right.is_constant()) { 438 jlong c = right.get_jlong_constant(); 439 // no need to do div-by-zero check if the divisor is a non-zero constant 440 if (c != 0) need_zero_check = false; 441 // do not load right if the divisor is a power-of-2 constant 442 if (c > 0 && is_power_of_2(c)) { 443 right.dont_load_item(); 444 } else { 445 right.load_item(); 446 } 447 } else { 448 right.load_item(); 449 } 450 if (need_zero_check) { 451 CodeEmitInfo* info = state_for(x); 452 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 453 __ branch(lir_cond_equal, new DivByZeroStub(info)); 454 } 455 456 rlock_result(x); 457 switch (x->op()) { 458 case Bytecodes::_lrem: 459 __ rem (left.result(), right.result(), x->operand()); 460 break; 461 case Bytecodes::_ldiv: 462 __ div (left.result(), right.result(), x->operand()); 463 break; 464 default: 465 ShouldNotReachHere(); 466 break; 467 } 468 469 470 } else { 471 assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, 472 "expect lmul, ladd or lsub"); 473 // add, sub, mul 474 left.load_item(); 475 if (! right.is_register()) { 476 if (x->op() == Bytecodes::_lmul 477 || ! right.is_constant() 478 || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) { 479 right.load_item(); 480 } else { // add, sub 481 assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub"); 482 // don't load constants to save register 483 right.load_nonconstant(); 484 } 485 } 486 rlock_result(x); 487 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), nullptr); 488 } 489 } 490 491 // for: _iadd, _imul, _isub, _idiv, _irem 492 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 493 494 // Test if instr is commutative and if we should swap 495 LIRItem left(x->x(), this); 496 LIRItem right(x->y(), this); 497 LIRItem* left_arg = &left; 498 LIRItem* right_arg = &right; 499 if (x->is_commutative() && left.is_stack() && right.is_register()) { 500 // swap them if left is real stack (or cached) and right is real register(not cached) 501 left_arg = &right; 502 right_arg = &left; 503 } 504 505 left_arg->load_item(); 506 507 // do not need to load right, as we can handle stack and constants 508 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 509 510 rlock_result(x); 511 bool need_zero_check = true; 512 if (right.is_constant()) { 513 jint c = right.get_jint_constant(); 514 // no need to do div-by-zero check if the divisor is a non-zero constant 515 if (c != 0) need_zero_check = false; 516 // do not load right if the divisor is a power-of-2 constant 517 if (c > 0 && is_power_of_2(c)) { 518 right_arg->dont_load_item(); 519 } else { 520 right_arg->load_item(); 521 } 522 } else { 523 right_arg->load_item(); 524 } 525 if (need_zero_check) { 526 CodeEmitInfo* info = state_for(x); 527 __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0)); 528 __ branch(lir_cond_equal, new DivByZeroStub(info)); 529 } 530 531 LIR_Opr ill = LIR_OprFact::illegalOpr; 532 if (x->op() == Bytecodes::_irem) { 533 __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr); 534 } else if (x->op() == Bytecodes::_idiv) { 535 __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr); 536 } 537 538 } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) { 539 if (right.is_constant() 540 && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) { 541 right.load_nonconstant(); 542 } else { 543 right.load_item(); 544 } 545 rlock_result(x); 546 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr); 547 } else { 548 assert (x->op() == Bytecodes::_imul, "expect imul"); 549 if (right.is_constant()) { 550 jint c = right.get_jint_constant(); 551 if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) { 552 right_arg->dont_load_item(); 553 } else { 554 // Cannot use constant op. 555 right_arg->load_item(); 556 } 557 } else { 558 right.load_item(); 559 } 560 rlock_result(x); 561 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT)); 562 } 563 } 564 565 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 566 // when an operand with use count 1 is the left operand, then it is 567 // likely that no move for 2-operand-LIR-form is necessary 568 if (x->is_commutative() && x->y()->as_Constant() == nullptr && x->x()->use_count() > x->y()->use_count()) { 569 x->swap_operands(); 570 } 571 572 ValueTag tag = x->type()->tag(); 573 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 574 switch (tag) { 575 case floatTag: 576 case doubleTag: do_ArithmeticOp_FPU(x); return; 577 case longTag: do_ArithmeticOp_Long(x); return; 578 case intTag: do_ArithmeticOp_Int(x); return; 579 default: ShouldNotReachHere(); return; 580 } 581 } 582 583 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 584 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 585 586 LIRItem left(x->x(), this); 587 LIRItem right(x->y(), this); 588 589 left.load_item(); 590 591 rlock_result(x); 592 if (right.is_constant()) { 593 right.dont_load_item(); 594 595 switch (x->op()) { 596 case Bytecodes::_ishl: { 597 int c = right.get_jint_constant() & 0x1f; 598 __ shift_left(left.result(), c, x->operand()); 599 break; 600 } 601 case Bytecodes::_ishr: { 602 int c = right.get_jint_constant() & 0x1f; 603 __ shift_right(left.result(), c, x->operand()); 604 break; 605 } 606 case Bytecodes::_iushr: { 607 int c = right.get_jint_constant() & 0x1f; 608 __ unsigned_shift_right(left.result(), c, x->operand()); 609 break; 610 } 611 case Bytecodes::_lshl: { 612 int c = right.get_jint_constant() & 0x3f; 613 __ shift_left(left.result(), c, x->operand()); 614 break; 615 } 616 case Bytecodes::_lshr: { 617 int c = right.get_jint_constant() & 0x3f; 618 __ shift_right(left.result(), c, x->operand()); 619 break; 620 } 621 case Bytecodes::_lushr: { 622 int c = right.get_jint_constant() & 0x3f; 623 __ unsigned_shift_right(left.result(), c, x->operand()); 624 break; 625 } 626 default: 627 ShouldNotReachHere(); 628 } 629 } else { 630 right.load_item(); 631 LIR_Opr tmp = new_register(T_INT); 632 switch (x->op()) { 633 case Bytecodes::_ishl: { 634 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 635 __ shift_left(left.result(), tmp, x->operand(), tmp); 636 break; 637 } 638 case Bytecodes::_ishr: { 639 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 640 __ shift_right(left.result(), tmp, x->operand(), tmp); 641 break; 642 } 643 case Bytecodes::_iushr: { 644 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 645 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 646 break; 647 } 648 case Bytecodes::_lshl: { 649 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 650 __ shift_left(left.result(), tmp, x->operand(), tmp); 651 break; 652 } 653 case Bytecodes::_lshr: { 654 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 655 __ shift_right(left.result(), tmp, x->operand(), tmp); 656 break; 657 } 658 case Bytecodes::_lushr: { 659 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 660 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 661 break; 662 } 663 default: 664 ShouldNotReachHere(); 665 } 666 } 667 } 668 669 // _iand, _land, _ior, _lor, _ixor, _lxor 670 void LIRGenerator::do_LogicOp(LogicOp* x) { 671 672 LIRItem left(x->x(), this); 673 LIRItem right(x->y(), this); 674 675 left.load_item(); 676 677 rlock_result(x); 678 if (right.is_constant() 679 && ((right.type()->tag() == intTag 680 && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant())) 681 || (right.type()->tag() == longTag 682 && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) { 683 right.dont_load_item(); 684 } else { 685 right.load_item(); 686 } 687 switch (x->op()) { 688 case Bytecodes::_iand: 689 case Bytecodes::_land: 690 __ logical_and(left.result(), right.result(), x->operand()); break; 691 case Bytecodes::_ior: 692 case Bytecodes::_lor: 693 __ logical_or (left.result(), right.result(), x->operand()); break; 694 case Bytecodes::_ixor: 695 case Bytecodes::_lxor: 696 __ logical_xor(left.result(), right.result(), x->operand()); break; 697 default: Unimplemented(); 698 } 699 } 700 701 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 702 void LIRGenerator::do_CompareOp(CompareOp* x) { 703 LIRItem left(x->x(), this); 704 LIRItem right(x->y(), this); 705 ValueTag tag = x->x()->type()->tag(); 706 if (tag == longTag) { 707 left.set_destroys_register(); 708 } 709 left.load_item(); 710 right.load_item(); 711 LIR_Opr reg = rlock_result(x); 712 713 if (x->x()->type()->is_float_kind()) { 714 Bytecodes::Code code = x->op(); 715 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 716 } else if (x->x()->type()->tag() == longTag) { 717 __ lcmp2int(left.result(), right.result(), reg); 718 } else { 719 Unimplemented(); 720 } 721 } 722 723 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { 724 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 725 new_value.load_item(); 726 cmp_value.load_item(); 727 LIR_Opr result = new_register(T_INT); 728 if (is_reference_type(type)) { 729 __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result); 730 } else if (type == T_INT) { 731 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 732 } else if (type == T_LONG) { 733 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 734 } else { 735 ShouldNotReachHere(); 736 Unimplemented(); 737 } 738 __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result); 739 return result; 740 } 741 742 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { 743 bool is_oop = is_reference_type(type); 744 LIR_Opr result = new_register(type); 745 value.load_item(); 746 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); 747 LIR_Opr tmp = new_register(T_INT); 748 __ xchg(addr, value.result(), result, tmp); 749 return result; 750 } 751 752 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { 753 LIR_Opr result = new_register(type); 754 value.load_item(); 755 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); 756 LIR_Opr tmp = new_register(T_INT); 757 __ xadd(addr, value.result(), result, tmp); 758 return result; 759 } 760 761 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 762 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 763 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 764 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 765 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 766 x->id() == vmIntrinsics::_dlog10) { 767 do_LibmIntrinsic(x); 768 return; 769 } 770 switch (x->id()) { 771 case vmIntrinsics::_dabs: 772 case vmIntrinsics::_dsqrt: 773 case vmIntrinsics::_dsqrt_strict: 774 case vmIntrinsics::_floatToFloat16: 775 case vmIntrinsics::_float16ToFloat: { 776 assert(x->number_of_arguments() == 1, "wrong type"); 777 LIRItem value(x->argument_at(0), this); 778 value.load_item(); 779 LIR_Opr src = value.result(); 780 LIR_Opr dst = rlock_result(x); 781 782 switch (x->id()) { 783 case vmIntrinsics::_dsqrt: 784 case vmIntrinsics::_dsqrt_strict: { 785 __ sqrt(src, dst, LIR_OprFact::illegalOpr); 786 break; 787 } 788 case vmIntrinsics::_dabs: { 789 __ abs(src, dst, LIR_OprFact::illegalOpr); 790 break; 791 } 792 case vmIntrinsics::_floatToFloat16: { 793 LIR_Opr tmp = new_register(T_FLOAT); 794 __ f2hf(src, dst, tmp); 795 break; 796 } 797 case vmIntrinsics::_float16ToFloat: { 798 LIR_Opr tmp = new_register(T_FLOAT); 799 __ hf2f(src, dst, tmp); 800 break; 801 } 802 default: 803 ShouldNotReachHere(); 804 } 805 break; 806 } 807 default: 808 ShouldNotReachHere(); 809 } 810 } 811 812 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 813 LIRItem value(x->argument_at(0), this); 814 value.set_destroys_register(); 815 816 LIR_Opr calc_result = rlock_result(x); 817 LIR_Opr result_reg = result_register_for(x->type()); 818 819 CallingConvention* cc = nullptr; 820 821 if (x->id() == vmIntrinsics::_dpow) { 822 LIRItem value1(x->argument_at(1), this); 823 824 value1.set_destroys_register(); 825 826 BasicTypeList signature(2); 827 signature.append(T_DOUBLE); 828 signature.append(T_DOUBLE); 829 cc = frame_map()->c_calling_convention(&signature); 830 value.load_item_force(cc->at(0)); 831 value1.load_item_force(cc->at(1)); 832 } else { 833 BasicTypeList signature(1); 834 signature.append(T_DOUBLE); 835 cc = frame_map()->c_calling_convention(&signature); 836 value.load_item_force(cc->at(0)); 837 } 838 839 switch (x->id()) { 840 case vmIntrinsics::_dexp: 841 if (StubRoutines::dexp() != nullptr) { 842 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 843 } else { 844 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 845 } 846 break; 847 case vmIntrinsics::_dlog: 848 // Math.log intrinsic is not implemented on AArch64 (see JDK-8210858), 849 // but we can still call the shared runtime. 850 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 851 break; 852 case vmIntrinsics::_dlog10: 853 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 854 break; 855 case vmIntrinsics::_dpow: 856 if (StubRoutines::dpow() != nullptr) { 857 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 858 } else { 859 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 860 } 861 break; 862 case vmIntrinsics::_dsin: 863 if (StubRoutines::dsin() != nullptr) { 864 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 865 } else { 866 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 867 } 868 break; 869 case vmIntrinsics::_dcos: 870 if (StubRoutines::dcos() != nullptr) { 871 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 872 } else { 873 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 874 } 875 break; 876 case vmIntrinsics::_dtan: 877 if (StubRoutines::dtan() != nullptr) { 878 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 879 } else { 880 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 881 } 882 break; 883 default: ShouldNotReachHere(); 884 } 885 __ move(result_reg, calc_result); 886 } 887 888 889 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 890 assert(x->number_of_arguments() == 5, "wrong type"); 891 892 // Make all state_for calls early since they can emit code 893 CodeEmitInfo* info = nullptr; 894 if (x->state_before() != nullptr && x->state_before()->force_reexecute()) { 895 info = state_for(x, x->state_before()); 896 info->set_force_reexecute(); 897 } else { 898 info = state_for(x, x->state()); 899 } 900 901 LIRItem src(x->argument_at(0), this); 902 LIRItem src_pos(x->argument_at(1), this); 903 LIRItem dst(x->argument_at(2), this); 904 LIRItem dst_pos(x->argument_at(3), this); 905 LIRItem length(x->argument_at(4), this); 906 907 // operands for arraycopy must use fixed registers, otherwise 908 // LinearScan will fail allocation (because arraycopy always needs a 909 // call) 910 911 // The java calling convention will give us enough registers 912 // so that on the stub side the args will be perfect already. 913 // On the other slow/special case side we call C and the arg 914 // positions are not similar enough to pick one as the best. 915 // Also because the java calling convention is a "shifted" version 916 // of the C convention we can process the java args trivially into C 917 // args without worry of overwriting during the xfer 918 919 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 920 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 921 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 922 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 923 length.load_item_force (FrameMap::as_opr(j_rarg4)); 924 925 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 926 927 set_no_result(x); 928 929 int flags; 930 ciArrayKlass* expected_type; 931 arraycopy_helper(x, &flags, &expected_type); 932 if (x->check_flag(Instruction::OmitChecksFlag)) { 933 flags = 0; 934 } 935 936 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 937 } 938 939 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 940 assert(UseCRC32Intrinsics, "why are we here?"); 941 // Make all state_for calls early since they can emit code 942 LIR_Opr result = rlock_result(x); 943 switch (x->id()) { 944 case vmIntrinsics::_updateCRC32: { 945 LIRItem crc(x->argument_at(0), this); 946 LIRItem val(x->argument_at(1), this); 947 // val is destroyed by update_crc32 948 val.set_destroys_register(); 949 crc.load_item(); 950 val.load_item(); 951 __ update_crc32(crc.result(), val.result(), result); 952 break; 953 } 954 case vmIntrinsics::_updateBytesCRC32: 955 case vmIntrinsics::_updateByteBufferCRC32: { 956 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 957 958 LIRItem crc(x->argument_at(0), this); 959 LIRItem buf(x->argument_at(1), this); 960 LIRItem off(x->argument_at(2), this); 961 LIRItem len(x->argument_at(3), this); 962 buf.load_item(); 963 off.load_nonconstant(); 964 965 LIR_Opr index = off.result(); 966 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 967 if (off.result()->is_constant()) { 968 index = LIR_OprFact::illegalOpr; 969 offset += off.result()->as_jint(); 970 } 971 LIR_Opr base_op = buf.result(); 972 973 if (index->is_valid()) { 974 LIR_Opr tmp = new_register(T_LONG); 975 __ convert(Bytecodes::_i2l, index, tmp); 976 index = tmp; 977 } 978 979 if (offset) { 980 LIR_Opr tmp = new_pointer_register(); 981 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 982 base_op = tmp; 983 offset = 0; 984 } 985 986 LIR_Address* a = new LIR_Address(base_op, 987 index, 988 offset, 989 T_BYTE); 990 BasicTypeList signature(3); 991 signature.append(T_INT); 992 signature.append(T_ADDRESS); 993 signature.append(T_INT); 994 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 995 const LIR_Opr result_reg = result_register_for(x->type()); 996 997 LIR_Opr addr = new_pointer_register(); 998 __ leal(LIR_OprFact::address(a), addr); 999 1000 crc.load_item_force(cc->at(0)); 1001 __ move(addr, cc->at(1)); 1002 len.load_item_force(cc->at(2)); 1003 1004 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 1005 __ move(result_reg, result); 1006 1007 break; 1008 } 1009 default: { 1010 ShouldNotReachHere(); 1011 } 1012 } 1013 } 1014 1015 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 1016 assert(UseCRC32CIntrinsics, "why are we here?"); 1017 // Make all state_for calls early since they can emit code 1018 LIR_Opr result = rlock_result(x); 1019 switch (x->id()) { 1020 case vmIntrinsics::_updateBytesCRC32C: 1021 case vmIntrinsics::_updateDirectByteBufferCRC32C: { 1022 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C); 1023 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 1024 1025 LIRItem crc(x->argument_at(0), this); 1026 LIRItem buf(x->argument_at(1), this); 1027 LIRItem off(x->argument_at(2), this); 1028 LIRItem end(x->argument_at(3), this); 1029 1030 buf.load_item(); 1031 off.load_nonconstant(); 1032 end.load_nonconstant(); 1033 1034 // len = end - off 1035 LIR_Opr len = end.result(); 1036 LIR_Opr tmpA = new_register(T_INT); 1037 LIR_Opr tmpB = new_register(T_INT); 1038 __ move(end.result(), tmpA); 1039 __ move(off.result(), tmpB); 1040 __ sub(tmpA, tmpB, tmpA); 1041 len = tmpA; 1042 1043 LIR_Opr index = off.result(); 1044 if(off.result()->is_constant()) { 1045 index = LIR_OprFact::illegalOpr; 1046 offset += off.result()->as_jint(); 1047 } 1048 LIR_Opr base_op = buf.result(); 1049 1050 if (index->is_valid()) { 1051 LIR_Opr tmp = new_register(T_LONG); 1052 __ convert(Bytecodes::_i2l, index, tmp); 1053 index = tmp; 1054 } 1055 1056 if (offset) { 1057 LIR_Opr tmp = new_pointer_register(); 1058 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 1059 base_op = tmp; 1060 offset = 0; 1061 } 1062 1063 LIR_Address* a = new LIR_Address(base_op, 1064 index, 1065 offset, 1066 T_BYTE); 1067 BasicTypeList signature(3); 1068 signature.append(T_INT); 1069 signature.append(T_ADDRESS); 1070 signature.append(T_INT); 1071 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1072 const LIR_Opr result_reg = result_register_for(x->type()); 1073 1074 LIR_Opr addr = new_pointer_register(); 1075 __ leal(LIR_OprFact::address(a), addr); 1076 1077 crc.load_item_force(cc->at(0)); 1078 __ move(addr, cc->at(1)); 1079 __ move(len, cc->at(2)); 1080 1081 __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args()); 1082 __ move(result_reg, result); 1083 1084 break; 1085 } 1086 default: { 1087 ShouldNotReachHere(); 1088 } 1089 } 1090 } 1091 1092 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 1093 assert(x->number_of_arguments() == 3, "wrong type"); 1094 assert(UseFMA, "Needs FMA instructions support."); 1095 LIRItem value(x->argument_at(0), this); 1096 LIRItem value1(x->argument_at(1), this); 1097 LIRItem value2(x->argument_at(2), this); 1098 1099 value.load_item(); 1100 value1.load_item(); 1101 value2.load_item(); 1102 1103 LIR_Opr calc_input = value.result(); 1104 LIR_Opr calc_input1 = value1.result(); 1105 LIR_Opr calc_input2 = value2.result(); 1106 LIR_Opr calc_result = rlock_result(x); 1107 1108 switch (x->id()) { 1109 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 1110 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 1111 default: ShouldNotReachHere(); 1112 } 1113 } 1114 1115 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1116 fatal("vectorizedMismatch intrinsic is not implemented on this platform"); 1117 } 1118 1119 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1120 // _i2b, _i2c, _i2s 1121 void LIRGenerator::do_Convert(Convert* x) { 1122 LIRItem value(x->value(), this); 1123 value.load_item(); 1124 LIR_Opr input = value.result(); 1125 LIR_Opr result = rlock(x); 1126 1127 // arguments of lir_convert 1128 LIR_Opr conv_input = input; 1129 LIR_Opr conv_result = result; 1130 1131 __ convert(x->op(), conv_input, conv_result); 1132 1133 assert(result->is_virtual(), "result must be virtual register"); 1134 set_result(x, result); 1135 } 1136 1137 void LIRGenerator::do_NewInstance(NewInstance* x) { 1138 #ifndef PRODUCT 1139 if (PrintNotLoaded && !x->klass()->is_loaded()) { 1140 tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci()); 1141 } 1142 #endif 1143 CodeEmitInfo* info = state_for(x, x->needs_state_before() ? x->state_before() : x->state()); 1144 LIR_Opr reg = result_register_for(x->type()); 1145 new_instance(reg, x->klass(), x->is_unresolved(), 1146 /* allow_inline */ false, 1147 FrameMap::r10_oop_opr, 1148 FrameMap::r11_oop_opr, 1149 FrameMap::r4_oop_opr, 1150 LIR_OprFact::illegalOpr, 1151 FrameMap::r3_metadata_opr, info); 1152 LIR_Opr result = rlock_result(x); 1153 __ move(reg, result); 1154 } 1155 1156 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1157 CodeEmitInfo* info = nullptr; 1158 if (x->state_before() != nullptr && x->state_before()->force_reexecute()) { 1159 info = state_for(x, x->state_before()); 1160 info->set_force_reexecute(); 1161 } else { 1162 info = state_for(x, x->state()); 1163 } 1164 1165 LIRItem length(x->length(), this); 1166 length.load_item_force(FrameMap::r19_opr); 1167 1168 LIR_Opr reg = result_register_for(x->type()); 1169 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1170 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1171 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1172 LIR_Opr tmp4 = reg; 1173 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1174 LIR_Opr len = length.result(); 1175 BasicType elem_type = x->elt_type(); 1176 1177 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1178 1179 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1180 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path, x->zero_array()); 1181 1182 LIR_Opr result = rlock_result(x); 1183 __ move(reg, result); 1184 } 1185 1186 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1187 LIRItem length(x->length(), this); 1188 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1189 // and therefore provide the state before the parameters have been consumed 1190 CodeEmitInfo* patching_info = nullptr; 1191 if (!x->klass()->is_loaded() || PatchALot) { 1192 patching_info = state_for(x, x->state_before()); 1193 } 1194 1195 CodeEmitInfo* info = state_for(x, x->state()); 1196 1197 LIR_Opr reg = result_register_for(x->type()); 1198 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1199 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1200 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1201 LIR_Opr tmp4 = reg; 1202 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1203 1204 length.load_item_force(FrameMap::r19_opr); 1205 LIR_Opr len = length.result(); 1206 1207 ciKlass* obj = (ciKlass*) x->exact_type(); 1208 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info, x->is_null_free()); 1209 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1210 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1211 } 1212 1213 klass2reg_with_patching(klass_reg, obj, patching_info); 1214 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path, true, x->is_null_free()); 1215 1216 LIR_Opr result = rlock_result(x); 1217 __ move(reg, result); 1218 } 1219 1220 1221 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1222 Values* dims = x->dims(); 1223 int i = dims->length(); 1224 LIRItemList* items = new LIRItemList(i, i, nullptr); 1225 while (i-- > 0) { 1226 LIRItem* size = new LIRItem(dims->at(i), this); 1227 items->at_put(i, size); 1228 } 1229 1230 // Evaluate state_for early since it may emit code. 1231 CodeEmitInfo* patching_info = nullptr; 1232 if (!x->klass()->is_loaded() || PatchALot) { 1233 patching_info = state_for(x, x->state_before()); 1234 1235 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1236 // clone all handlers (NOTE: Usually this is handled transparently 1237 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1238 // is done explicitly here because a stub isn't being used). 1239 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1240 } 1241 CodeEmitInfo* info = state_for(x, x->state()); 1242 1243 i = dims->length(); 1244 while (i-- > 0) { 1245 LIRItem* size = items->at(i); 1246 size->load_item(); 1247 1248 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1249 } 1250 1251 LIR_Opr klass_reg = FrameMap::r0_metadata_opr; 1252 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1253 1254 LIR_Opr rank = FrameMap::r19_opr; 1255 __ move(LIR_OprFact::intConst(x->rank()), rank); 1256 LIR_Opr varargs = FrameMap::r2_opr; 1257 __ move(FrameMap::sp_opr, varargs); 1258 LIR_OprList* args = new LIR_OprList(3); 1259 args->append(klass_reg); 1260 args->append(rank); 1261 args->append(varargs); 1262 LIR_Opr reg = result_register_for(x->type()); 1263 __ call_runtime(Runtime1::entry_for(C1StubId::new_multi_array_id), 1264 LIR_OprFact::illegalOpr, 1265 reg, args, info); 1266 1267 LIR_Opr result = rlock_result(x); 1268 __ move(reg, result); 1269 } 1270 1271 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1272 // nothing to do for now 1273 } 1274 1275 void LIRGenerator::do_CheckCast(CheckCast* x) { 1276 LIRItem obj(x->obj(), this); 1277 1278 CodeEmitInfo* patching_info = nullptr; 1279 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { 1280 // must do this before locking the destination register as an oop register, 1281 // and before the obj is loaded (the latter is for deoptimization) 1282 patching_info = state_for(x, x->state_before()); 1283 } 1284 obj.load_item(); 1285 1286 // info for exceptions 1287 CodeEmitInfo* info_for_exception = 1288 (x->needs_exception_state() ? state_for(x) : 1289 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1290 if (x->is_null_free()) { 1291 __ null_check(obj.result(), new CodeEmitInfo(info_for_exception)); 1292 } 1293 1294 CodeStub* stub; 1295 if (x->is_incompatible_class_change_check()) { 1296 assert(patching_info == nullptr, "can't patch this"); 1297 stub = new SimpleExceptionStub(C1StubId::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1298 } else if (x->is_invokespecial_receiver_check()) { 1299 assert(patching_info == nullptr, "can't patch this"); 1300 stub = new DeoptimizeStub(info_for_exception, 1301 Deoptimization::Reason_class_check, 1302 Deoptimization::Action_none); 1303 } else { 1304 stub = new SimpleExceptionStub(C1StubId::throw_class_cast_exception_id, obj.result(), info_for_exception); 1305 } 1306 LIR_Opr reg = rlock_result(x); 1307 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1308 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1309 tmp3 = new_register(objectType); 1310 } 1311 1312 1313 __ checkcast(reg, obj.result(), x->klass(), 1314 new_register(objectType), new_register(objectType), tmp3, 1315 x->direct_compare(), info_for_exception, patching_info, stub, 1316 x->profiled_method(), x->profiled_bci(), x->is_null_free()); 1317 1318 } 1319 1320 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1321 LIRItem obj(x->obj(), this); 1322 1323 // result and test object may not be in same register 1324 LIR_Opr reg = rlock_result(x); 1325 CodeEmitInfo* patching_info = nullptr; 1326 if ((!x->klass()->is_loaded() || PatchALot)) { 1327 // must do this before locking the destination register as an oop register 1328 patching_info = state_for(x, x->state_before()); 1329 } 1330 obj.load_item(); 1331 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1332 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1333 tmp3 = new_register(objectType); 1334 } 1335 __ instanceof(reg, obj.result(), x->klass(), 1336 new_register(objectType), new_register(objectType), tmp3, 1337 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1338 } 1339 1340 void LIRGenerator::do_If(If* x) { 1341 assert(x->number_of_sux() == 2, "inconsistency"); 1342 ValueTag tag = x->x()->type()->tag(); 1343 bool is_safepoint = x->is_safepoint(); 1344 1345 If::Condition cond = x->cond(); 1346 1347 LIRItem xitem(x->x(), this); 1348 LIRItem yitem(x->y(), this); 1349 LIRItem* xin = &xitem; 1350 LIRItem* yin = &yitem; 1351 1352 if (tag == longTag) { 1353 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1354 // mirror for other conditions 1355 if (cond == If::gtr || cond == If::leq) { 1356 cond = Instruction::mirror(cond); 1357 xin = &yitem; 1358 yin = &xitem; 1359 } 1360 xin->set_destroys_register(); 1361 } 1362 xin->load_item(); 1363 1364 if (tag == longTag) { 1365 if (yin->is_constant() 1366 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) { 1367 yin->dont_load_item(); 1368 } else { 1369 yin->load_item(); 1370 } 1371 } else if (tag == intTag) { 1372 if (yin->is_constant() 1373 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) { 1374 yin->dont_load_item(); 1375 } else { 1376 yin->load_item(); 1377 } 1378 } else { 1379 yin->load_item(); 1380 } 1381 1382 set_no_result(x); 1383 1384 LIR_Opr left = xin->result(); 1385 LIR_Opr right = yin->result(); 1386 1387 // add safepoint before generating condition code so it can be recomputed 1388 if (x->is_safepoint()) { 1389 // increment backedge counter if needed 1390 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), 1391 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); 1392 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); 1393 } 1394 1395 if (x->substitutability_check()) { 1396 substitutability_check(x, *xin, *yin); 1397 } else { 1398 __ cmp(lir_cond(cond), left, right); 1399 } 1400 1401 // Generate branch profiling. Profiling code doesn't kill flags. 1402 profile_branch(x, cond); 1403 move_to_phi(x->state()); 1404 if (x->x()->type()->is_float_kind()) { 1405 __ branch(lir_cond(cond), x->tsux(), x->usux()); 1406 } else { 1407 __ branch(lir_cond(cond), x->tsux()); 1408 } 1409 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1410 __ jump(x->default_sux()); 1411 } 1412 1413 LIR_Opr LIRGenerator::getThreadPointer() { 1414 return FrameMap::as_pointer_opr(rthread); 1415 } 1416 1417 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); } 1418 1419 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1420 CodeEmitInfo* info) { 1421 __ volatile_store_mem_reg(value, address, info); 1422 } 1423 1424 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1425 CodeEmitInfo* info) { 1426 // 8179954: We need to make sure that the code generated for 1427 // volatile accesses forms a sequentially-consistent set of 1428 // operations when combined with STLR and LDAR. Without a leading 1429 // membar it's possible for a simple Dekker test to fail if loads 1430 // use LD;DMB but stores use STLR. This can happen if C2 compiles 1431 // the stores in one method and C1 compiles the loads in another. 1432 if (!CompilerConfig::is_c1_only_no_jvmci()) { 1433 __ membar(); 1434 } 1435 __ volatile_load_mem_reg(address, result, info); 1436 }