1 /*
   2  * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciInlineKlass.hpp"
  37 #include "ci/ciObjArrayKlass.hpp"
  38 #include "ci/ciTypeArrayKlass.hpp"
  39 #include "compiler/compilerDefinitions.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 #include "vmreg_aarch64.inline.hpp"
  44 
  45 #ifdef ASSERT
  46 #define __ gen()->lir(__FILE__, __LINE__)->
  47 #else
  48 #define __ gen()->lir()->
  49 #endif
  50 
  51 // Item will be loaded into a byte register; Intel only
  52 void LIRItem::load_byte_item() {
  53   load_item();
  54 }
  55 
  56 
  57 void LIRItem::load_nonconstant() {
  58   LIR_Opr r = value()->operand();
  59   if (r->is_constant()) {
  60     _result = r;
  61   } else {
  62     load_item();
  63   }
  64 }
  65 
  66 //--------------------------------------------------------------
  67 //               LIRGenerator
  68 //--------------------------------------------------------------
  69 
  70 
  71 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  72 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  73 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  75 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  76 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  77 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  78 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  79 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  80 
  81 
  82 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  83   LIR_Opr opr;
  84   switch (type->tag()) {
  85     case intTag:     opr = FrameMap::r0_opr;          break;
  86     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  87     case longTag:    opr = FrameMap::long0_opr;        break;
  88     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  89     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  90 
  91     case addressTag:
  92     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  93   }
  94 
  95   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  96   return opr;
  97 }
  98 
  99 
 100 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 101   LIR_Opr reg = new_register(T_INT);
 102   set_vreg_flag(reg, LIRGenerator::byte_reg);
 103   return reg;
 104 }
 105 
 106 
 107 void LIRGenerator::init_temps_for_substitutability_check(LIR_Opr& tmp1, LIR_Opr& tmp2) {
 108   tmp1 = new_register(T_INT);
 109   tmp2 = LIR_OprFact::illegalOpr;
 110 }
 111 
 112 
 113 //--------- loading items into registers --------------------------------
 114 
 115 
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (v->type()->as_IntConstant() != nullptr) {
 118     return v->type()->as_IntConstant()->value() == 0L;
 119   } else if (v->type()->as_LongConstant() != nullptr) {
 120     return v->type()->as_LongConstant()->value() == 0L;
 121   } else if (v->type()->as_ObjectConstant() != nullptr) {
 122     return v->type()->as_ObjectConstant()->value()->is_null_object();
 123   } else {
 124     return false;
 125   }
 126 }
 127 
 128 bool LIRGenerator::can_inline_as_constant(Value v) const {
 129   // FIXME: Just a guess
 130   if (v->type()->as_IntConstant() != nullptr) {
 131     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 132   } else if (v->type()->as_LongConstant() != nullptr) {
 133     return v->type()->as_LongConstant()->value() == 0L;
 134   } else if (v->type()->as_ObjectConstant() != nullptr) {
 135     return v->type()->as_ObjectConstant()->value()->is_null_object();
 136   } else {
 137     return false;
 138   }
 139 }
 140 
 141 
 142 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 143 
 144 
 145 LIR_Opr LIRGenerator::safepoint_poll_register() {
 146   return LIR_OprFact::illegalOpr;
 147 }
 148 
 149 
 150 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 151                                             int shift, int disp, BasicType type) {
 152   assert(base->is_register(), "must be");
 153   intx large_disp = disp;
 154 
 155   // accumulate fixed displacements
 156   if (index->is_constant()) {
 157     LIR_Const *constant = index->as_constant_ptr();
 158     if (constant->type() == T_INT) {
 159       large_disp += ((intx)index->as_jint()) << shift;
 160     } else {
 161       assert(constant->type() == T_LONG, "should be");
 162       jlong c = index->as_jlong() << shift;
 163       if ((jlong)((jint)c) == c) {
 164         large_disp += c;
 165         index = LIR_OprFact::illegalOpr;
 166       } else {
 167         LIR_Opr tmp = new_register(T_LONG);
 168         __ move(index, tmp);
 169         index = tmp;
 170         // apply shift and displacement below
 171       }
 172     }
 173   }
 174 
 175   if (index->is_register()) {
 176     // apply the shift and accumulate the displacement
 177     if (shift > 0) {
 178       // Use long register to avoid overflow when shifting large index values left.
 179       LIR_Opr tmp = new_register(T_LONG);
 180       __ convert(Bytecodes::_i2l, index, tmp);
 181       __ shift_left(tmp, shift, tmp);
 182       index = tmp;
 183     }
 184     if (large_disp != 0) {
 185       LIR_Opr tmp = new_pointer_register();
 186       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 187         __ add(index, LIR_OprFact::intptrConst(large_disp), tmp);
 188         index = tmp;
 189       } else {
 190         __ move(LIR_OprFact::intptrConst(large_disp), tmp);
 191         __ add(tmp, index, tmp);
 192         index = tmp;
 193       }
 194       large_disp = 0;
 195     }
 196   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 197     // index is illegal so replace it with the displacement loaded into a register
 198     index = new_pointer_register();
 199     __ move(LIR_OprFact::intptrConst(large_disp), index);
 200     large_disp = 0;
 201   }
 202 
 203   // at this point we either have base + index or base + displacement
 204   if (large_disp == 0 && index->is_register()) {
 205     return new LIR_Address(base, index, type);
 206   } else {
 207     assert(Address::offset_ok_for_immed(large_disp, shift), "failed for large_disp: " INTPTR_FORMAT " and shift %d", large_disp, shift);
 208     return new LIR_Address(base, large_disp, type);
 209   }
 210 }
 211 
 212 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 213                                               BasicType type) {
 214   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 215   int elem_size = type2aelembytes(type);
 216   int shift = exact_log2(elem_size);
 217   return generate_address(array_opr, index_opr, shift, offset_in_bytes, type);
 218 }
 219 
 220 LIR_Opr LIRGenerator::load_immediate(jlong x, BasicType type) {
 221   LIR_Opr r;
 222   if (type == T_LONG) {
 223     r = LIR_OprFact::longConst(x);
 224     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 225       LIR_Opr tmp = new_register(type);
 226       __ move(r, tmp);
 227       return tmp;
 228     }
 229   } else if (type == T_INT) {
 230     r = LIR_OprFact::intConst(checked_cast<jint>(x));
 231     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 232       // This is all rather nasty.  We don't know whether our constant
 233       // is required for a logical or an arithmetic operation, wo we
 234       // don't know what the range of valid values is!!
 235       LIR_Opr tmp = new_register(type);
 236       __ move(r, tmp);
 237       return tmp;
 238     }
 239   } else {
 240     ShouldNotReachHere();
 241   }
 242   return r;
 243 }
 244 
 245 
 246 
 247 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 248   LIR_Opr pointer = new_pointer_register();
 249   __ move(LIR_OprFact::intptrConst(counter), pointer);
 250   LIR_Address* addr = new LIR_Address(pointer, type);
 251   increment_counter(addr, step);
 252 }
 253 
 254 
 255 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 256   LIR_Opr imm;
 257   switch(addr->type()) {
 258   case T_INT:
 259     imm = LIR_OprFact::intConst(step);
 260     break;
 261   case T_LONG:
 262     imm = LIR_OprFact::longConst(step);
 263     break;
 264   default:
 265     ShouldNotReachHere();
 266   }
 267   LIR_Opr reg = new_register(addr->type());
 268   __ load(addr, reg);
 269   __ add(reg, imm, reg);
 270   __ store(reg, addr);
 271 }
 272 
 273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 274   LIR_Opr reg = new_register(T_INT);
 275   __ load(generate_address(base, disp, T_INT), reg, info);
 276   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 277 }
 278 
 279 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 280   LIR_Opr reg1 = new_register(T_INT);
 281   __ load(generate_address(base, disp, type), reg1, info);
 282   __ cmp(condition, reg, reg1);
 283 }
 284 
 285 
 286 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
 287 
 288   if (is_power_of_2(c - 1)) {
 289     __ shift_left(left, exact_log2(c - 1), tmp);
 290     __ add(tmp, left, result);
 291     return true;
 292   } else if (is_power_of_2(c + 1)) {
 293     __ shift_left(left, exact_log2(c + 1), tmp);
 294     __ sub(tmp, left, result);
 295     return true;
 296   } else {
 297     return false;
 298   }
 299 }
 300 
 301 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 302   BasicType type = item->type();
 303   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 304 }
 305 
 306 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 307     LIR_Opr tmp1 = new_register(objectType);
 308     LIR_Opr tmp2 = new_register(objectType);
 309     LIR_Opr tmp3 = new_register(objectType);
 310     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 311 }
 312 
 313 //----------------------------------------------------------------------
 314 //             visitor functions
 315 //----------------------------------------------------------------------
 316 
 317 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 318   assert(x->is_pinned(),"");
 319   LIRItem obj(x->obj(), this);
 320   obj.load_item();
 321 
 322   set_no_result(x);
 323 
 324   // "lock" stores the address of the monitor stack slot, so this is not an oop
 325   LIR_Opr lock = new_register(T_INT);
 326   LIR_Opr scratch = new_register(T_INT);
 327 
 328   CodeEmitInfo* info_for_exception = nullptr;
 329   if (x->needs_null_check()) {
 330     info_for_exception = state_for(x);
 331   }
 332 
 333   CodeStub* throw_ie_stub =
 334       x->maybe_inlinetype() ?
 335       new SimpleExceptionStub(C1StubId::throw_identity_exception_id, obj.result(), state_for(x)) :
 336       nullptr;
 337 
 338   // this CodeEmitInfo must not have the xhandlers because here the
 339   // object is already locked (xhandlers expect object to be unlocked)
 340   CodeEmitInfo* info = state_for(x, x->state(), true);
 341   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 342                 x->monitor_no(), info_for_exception, info, throw_ie_stub);
 343 }
 344 
 345 
 346 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 347   assert(x->is_pinned(),"");
 348 
 349   LIRItem obj(x->obj(), this);
 350   obj.dont_load_item();
 351 
 352   LIR_Opr lock = new_register(T_INT);
 353   LIR_Opr obj_temp = new_register(T_INT);
 354   LIR_Opr scratch = new_register(T_INT);
 355   set_no_result(x);
 356   monitor_exit(obj_temp, lock, syncTempOpr(), scratch, x->monitor_no());
 357 }
 358 
 359 void LIRGenerator::do_NegateOp(NegateOp* x) {
 360 
 361   LIRItem from(x->x(), this);
 362   from.load_item();
 363   LIR_Opr result = rlock_result(x);
 364   __ negate (from.result(), result);
 365 
 366 }
 367 
 368 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 369 //      _dadd, _dmul, _dsub, _ddiv, _drem
 370 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 371 
 372   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 373     // float remainder is implemented as a direct call into the runtime
 374     LIRItem right(x->x(), this);
 375     LIRItem left(x->y(), this);
 376 
 377     BasicTypeList signature(2);
 378     if (x->op() == Bytecodes::_frem) {
 379       signature.append(T_FLOAT);
 380       signature.append(T_FLOAT);
 381     } else {
 382       signature.append(T_DOUBLE);
 383       signature.append(T_DOUBLE);
 384     }
 385     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 386 
 387     const LIR_Opr result_reg = result_register_for(x->type());
 388     left.load_item_force(cc->at(1));
 389     right.load_item();
 390 
 391     __ move(right.result(), cc->at(0));
 392 
 393     address entry;
 394     if (x->op() == Bytecodes::_frem) {
 395       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 396     } else {
 397       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 398     }
 399 
 400     LIR_Opr result = rlock_result(x);
 401     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 402     __ move(result_reg, result);
 403 
 404     return;
 405   }
 406 
 407   LIRItem left(x->x(),  this);
 408   LIRItem right(x->y(), this);
 409   LIRItem* left_arg  = &left;
 410   LIRItem* right_arg = &right;
 411 
 412   // Always load right hand side.
 413   right.load_item();
 414 
 415   if (!left.is_register())
 416     left.load_item();
 417 
 418   LIR_Opr reg = rlock(x);
 419 
 420   arithmetic_op_fpu(x->op(), reg, left.result(), right.result());
 421 
 422   set_result(x, round_item(reg));
 423 }
 424 
 425 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 426 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 427 
 428   // missing test if instr is commutative and if we should swap
 429   LIRItem left(x->x(), this);
 430   LIRItem right(x->y(), this);
 431 
 432   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 433 
 434     left.load_item();
 435     bool need_zero_check = true;
 436     if (right.is_constant()) {
 437       jlong c = right.get_jlong_constant();
 438       // no need to do div-by-zero check if the divisor is a non-zero constant
 439       if (c != 0) need_zero_check = false;
 440       // do not load right if the divisor is a power-of-2 constant
 441       if (c > 0 && is_power_of_2(c)) {
 442         right.dont_load_item();
 443       } else {
 444         right.load_item();
 445       }
 446     } else {
 447       right.load_item();
 448     }
 449     if (need_zero_check) {
 450       CodeEmitInfo* info = state_for(x);
 451       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 452       __ branch(lir_cond_equal, new DivByZeroStub(info));
 453     }
 454 
 455     rlock_result(x);
 456     switch (x->op()) {
 457     case Bytecodes::_lrem:
 458       __ rem (left.result(), right.result(), x->operand());
 459       break;
 460     case Bytecodes::_ldiv:
 461       __ div (left.result(), right.result(), x->operand());
 462       break;
 463     default:
 464       ShouldNotReachHere();
 465       break;
 466     }
 467 
 468 
 469   } else {
 470     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 471             "expect lmul, ladd or lsub");
 472     // add, sub, mul
 473     left.load_item();
 474     if (! right.is_register()) {
 475       if (x->op() == Bytecodes::_lmul
 476           || ! right.is_constant()
 477           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 478         right.load_item();
 479       } else { // add, sub
 480         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 481         // don't load constants to save register
 482         right.load_nonconstant();
 483       }
 484     }
 485     rlock_result(x);
 486     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), nullptr);
 487   }
 488 }
 489 
 490 // for: _iadd, _imul, _isub, _idiv, _irem
 491 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 492 
 493   // Test if instr is commutative and if we should swap
 494   LIRItem left(x->x(),  this);
 495   LIRItem right(x->y(), this);
 496   LIRItem* left_arg = &left;
 497   LIRItem* right_arg = &right;
 498   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 499     // swap them if left is real stack (or cached) and right is real register(not cached)
 500     left_arg = &right;
 501     right_arg = &left;
 502   }
 503 
 504   left_arg->load_item();
 505 
 506   // do not need to load right, as we can handle stack and constants
 507   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 508 
 509     rlock_result(x);
 510     bool need_zero_check = true;
 511     if (right.is_constant()) {
 512       jint c = right.get_jint_constant();
 513       // no need to do div-by-zero check if the divisor is a non-zero constant
 514       if (c != 0) need_zero_check = false;
 515       // do not load right if the divisor is a power-of-2 constant
 516       if (c > 0 && is_power_of_2(c)) {
 517         right_arg->dont_load_item();
 518       } else {
 519         right_arg->load_item();
 520       }
 521     } else {
 522       right_arg->load_item();
 523     }
 524     if (need_zero_check) {
 525       CodeEmitInfo* info = state_for(x);
 526       __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 527       __ branch(lir_cond_equal, new DivByZeroStub(info));
 528     }
 529 
 530     LIR_Opr ill = LIR_OprFact::illegalOpr;
 531     if (x->op() == Bytecodes::_irem) {
 532       __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr);
 533     } else if (x->op() == Bytecodes::_idiv) {
 534       __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, nullptr);
 535     }
 536 
 537   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 538     if (right.is_constant()
 539         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 540       right.load_nonconstant();
 541     } else {
 542       right.load_item();
 543     }
 544     rlock_result(x);
 545     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 546   } else {
 547     assert (x->op() == Bytecodes::_imul, "expect imul");
 548     if (right.is_constant()) {
 549       jint c = right.get_jint_constant();
 550       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 551         right_arg->dont_load_item();
 552       } else {
 553         // Cannot use constant op.
 554         right_arg->load_item();
 555       }
 556     } else {
 557       right.load_item();
 558     }
 559     rlock_result(x);
 560     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 561   }
 562 }
 563 
 564 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 565   // when an operand with use count 1 is the left operand, then it is
 566   // likely that no move for 2-operand-LIR-form is necessary
 567   if (x->is_commutative() && x->y()->as_Constant() == nullptr && x->x()->use_count() > x->y()->use_count()) {
 568     x->swap_operands();
 569   }
 570 
 571   ValueTag tag = x->type()->tag();
 572   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 573   switch (tag) {
 574     case floatTag:
 575     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 576     case longTag:    do_ArithmeticOp_Long(x); return;
 577     case intTag:     do_ArithmeticOp_Int(x);  return;
 578     default:         ShouldNotReachHere();    return;
 579   }
 580 }
 581 
 582 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 583 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 584 
 585   LIRItem left(x->x(),  this);
 586   LIRItem right(x->y(), this);
 587 
 588   left.load_item();
 589 
 590   rlock_result(x);
 591   if (right.is_constant()) {
 592     right.dont_load_item();
 593 
 594     switch (x->op()) {
 595     case Bytecodes::_ishl: {
 596       int c = right.get_jint_constant() & 0x1f;
 597       __ shift_left(left.result(), c, x->operand());
 598       break;
 599     }
 600     case Bytecodes::_ishr: {
 601       int c = right.get_jint_constant() & 0x1f;
 602       __ shift_right(left.result(), c, x->operand());
 603       break;
 604     }
 605     case Bytecodes::_iushr: {
 606       int c = right.get_jint_constant() & 0x1f;
 607       __ unsigned_shift_right(left.result(), c, x->operand());
 608       break;
 609     }
 610     case Bytecodes::_lshl: {
 611       int c = right.get_jint_constant() & 0x3f;
 612       __ shift_left(left.result(), c, x->operand());
 613       break;
 614     }
 615     case Bytecodes::_lshr: {
 616       int c = right.get_jint_constant() & 0x3f;
 617       __ shift_right(left.result(), c, x->operand());
 618       break;
 619     }
 620     case Bytecodes::_lushr: {
 621       int c = right.get_jint_constant() & 0x3f;
 622       __ unsigned_shift_right(left.result(), c, x->operand());
 623       break;
 624     }
 625     default:
 626       ShouldNotReachHere();
 627     }
 628   } else {
 629     right.load_item();
 630     LIR_Opr tmp = new_register(T_INT);
 631     switch (x->op()) {
 632     case Bytecodes::_ishl: {
 633       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 634       __ shift_left(left.result(), tmp, x->operand(), tmp);
 635       break;
 636     }
 637     case Bytecodes::_ishr: {
 638       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 639       __ shift_right(left.result(), tmp, x->operand(), tmp);
 640       break;
 641     }
 642     case Bytecodes::_iushr: {
 643       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 644       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 645       break;
 646     }
 647     case Bytecodes::_lshl: {
 648       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 649       __ shift_left(left.result(), tmp, x->operand(), tmp);
 650       break;
 651     }
 652     case Bytecodes::_lshr: {
 653       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 654       __ shift_right(left.result(), tmp, x->operand(), tmp);
 655       break;
 656     }
 657     case Bytecodes::_lushr: {
 658       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 659       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 660       break;
 661     }
 662     default:
 663       ShouldNotReachHere();
 664     }
 665   }
 666 }
 667 
 668 // _iand, _land, _ior, _lor, _ixor, _lxor
 669 void LIRGenerator::do_LogicOp(LogicOp* x) {
 670 
 671   LIRItem left(x->x(),  this);
 672   LIRItem right(x->y(), this);
 673 
 674   left.load_item();
 675 
 676   rlock_result(x);
 677   if (right.is_constant()
 678       && ((right.type()->tag() == intTag
 679            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 680           || (right.type()->tag() == longTag
 681               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 682     right.dont_load_item();
 683   } else {
 684     right.load_item();
 685   }
 686   switch (x->op()) {
 687   case Bytecodes::_iand:
 688   case Bytecodes::_land:
 689     __ logical_and(left.result(), right.result(), x->operand()); break;
 690   case Bytecodes::_ior:
 691   case Bytecodes::_lor:
 692     __ logical_or (left.result(), right.result(), x->operand()); break;
 693   case Bytecodes::_ixor:
 694   case Bytecodes::_lxor:
 695     __ logical_xor(left.result(), right.result(), x->operand()); break;
 696   default: Unimplemented();
 697   }
 698 }
 699 
 700 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 701 void LIRGenerator::do_CompareOp(CompareOp* x) {
 702   LIRItem left(x->x(), this);
 703   LIRItem right(x->y(), this);
 704   ValueTag tag = x->x()->type()->tag();
 705   if (tag == longTag) {
 706     left.set_destroys_register();
 707   }
 708   left.load_item();
 709   right.load_item();
 710   LIR_Opr reg = rlock_result(x);
 711 
 712   if (x->x()->type()->is_float_kind()) {
 713     Bytecodes::Code code = x->op();
 714     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 715   } else if (x->x()->type()->tag() == longTag) {
 716     __ lcmp2int(left.result(), right.result(), reg);
 717   } else {
 718     Unimplemented();
 719   }
 720 }
 721 
 722 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 723   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 724   new_value.load_item();
 725   cmp_value.load_item();
 726   LIR_Opr result = new_register(T_INT);
 727   if (is_reference_type(type)) {
 728     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 729   } else if (type == T_INT) {
 730     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 731   } else if (type == T_LONG) {
 732     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 733   } else {
 734     ShouldNotReachHere();
 735     Unimplemented();
 736   }
 737   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 738   return result;
 739 }
 740 
 741 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 742   bool is_oop = is_reference_type(type);
 743   LIR_Opr result = new_register(type);
 744   value.load_item();
 745   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 746   LIR_Opr tmp = new_register(T_INT);
 747   __ xchg(addr, value.result(), result, tmp);
 748   return result;
 749 }
 750 
 751 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 752   LIR_Opr result = new_register(type);
 753   value.load_item();
 754   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 755   LIR_Opr tmp = new_register(T_INT);
 756   __ xadd(addr, value.result(), result, tmp);
 757   return result;
 758 }
 759 
 760 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 761   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 762   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 763       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 764       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 765       x->id() == vmIntrinsics::_dlog10) {
 766     do_LibmIntrinsic(x);
 767     return;
 768   }
 769   switch (x->id()) {
 770     case vmIntrinsics::_dabs:
 771     case vmIntrinsics::_dsqrt:
 772     case vmIntrinsics::_dsqrt_strict:
 773     case vmIntrinsics::_floatToFloat16:
 774     case vmIntrinsics::_float16ToFloat: {
 775       assert(x->number_of_arguments() == 1, "wrong type");
 776       LIRItem value(x->argument_at(0), this);
 777       value.load_item();
 778       LIR_Opr src = value.result();
 779       LIR_Opr dst = rlock_result(x);
 780 
 781       switch (x->id()) {
 782         case vmIntrinsics::_dsqrt:
 783         case vmIntrinsics::_dsqrt_strict: {
 784           __ sqrt(src, dst, LIR_OprFact::illegalOpr);
 785           break;
 786         }
 787         case vmIntrinsics::_dabs: {
 788           __ abs(src, dst, LIR_OprFact::illegalOpr);
 789           break;
 790         }
 791         case vmIntrinsics::_floatToFloat16: {
 792           LIR_Opr tmp = new_register(T_FLOAT);
 793           __ move(LIR_OprFact::floatConst(-0.0), tmp);
 794           __ f2hf(src, dst, tmp);
 795           break;
 796         }
 797         case vmIntrinsics::_float16ToFloat: {
 798           LIR_Opr tmp = new_register(T_FLOAT);
 799           __ move(LIR_OprFact::floatConst(-0.0), tmp);
 800           __ hf2f(src, dst, tmp);
 801           break;
 802         }
 803         default:
 804           ShouldNotReachHere();
 805       }
 806       break;
 807     }
 808     default:
 809       ShouldNotReachHere();
 810   }
 811 }
 812 
 813 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 814   LIRItem value(x->argument_at(0), this);
 815   value.set_destroys_register();
 816 
 817   LIR_Opr calc_result = rlock_result(x);
 818   LIR_Opr result_reg = result_register_for(x->type());
 819 
 820   CallingConvention* cc = nullptr;
 821 
 822   if (x->id() == vmIntrinsics::_dpow) {
 823     LIRItem value1(x->argument_at(1), this);
 824 
 825     value1.set_destroys_register();
 826 
 827     BasicTypeList signature(2);
 828     signature.append(T_DOUBLE);
 829     signature.append(T_DOUBLE);
 830     cc = frame_map()->c_calling_convention(&signature);
 831     value.load_item_force(cc->at(0));
 832     value1.load_item_force(cc->at(1));
 833   } else {
 834     BasicTypeList signature(1);
 835     signature.append(T_DOUBLE);
 836     cc = frame_map()->c_calling_convention(&signature);
 837     value.load_item_force(cc->at(0));
 838   }
 839 
 840   switch (x->id()) {
 841     case vmIntrinsics::_dexp:
 842       if (StubRoutines::dexp() != nullptr) {
 843         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 844       } else {
 845         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 846       }
 847       break;
 848     case vmIntrinsics::_dlog:
 849       // Math.log intrinsic is not implemented on AArch64 (see JDK-8210858),
 850       // but we can still call the shared runtime.
 851       __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 852       break;
 853     case vmIntrinsics::_dlog10:
 854       __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 855       break;
 856     case vmIntrinsics::_dpow:
 857       if (StubRoutines::dpow() != nullptr) {
 858         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 859       } else {
 860         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 861       }
 862       break;
 863     case vmIntrinsics::_dsin:
 864       if (StubRoutines::dsin() != nullptr) {
 865         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 866       } else {
 867         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 868       }
 869       break;
 870     case vmIntrinsics::_dcos:
 871       if (StubRoutines::dcos() != nullptr) {
 872         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 873       } else {
 874         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 875       }
 876       break;
 877     case vmIntrinsics::_dtan:
 878       if (StubRoutines::dtan() != nullptr) {
 879         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 880       } else {
 881         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 882       }
 883       break;
 884     default:  ShouldNotReachHere();
 885   }
 886   __ move(result_reg, calc_result);
 887 }
 888 
 889 
 890 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 891   assert(x->number_of_arguments() == 5, "wrong type");
 892 
 893   // Make all state_for calls early since they can emit code
 894   CodeEmitInfo* info = nullptr;
 895   if (x->state_before() != nullptr && x->state_before()->force_reexecute()) {
 896     info = state_for(x, x->state_before());
 897     info->set_force_reexecute();
 898   } else {
 899     info = state_for(x, x->state());
 900   }
 901 
 902   LIRItem src(x->argument_at(0), this);
 903   LIRItem src_pos(x->argument_at(1), this);
 904   LIRItem dst(x->argument_at(2), this);
 905   LIRItem dst_pos(x->argument_at(3), this);
 906   LIRItem length(x->argument_at(4), this);
 907 
 908   // operands for arraycopy must use fixed registers, otherwise
 909   // LinearScan will fail allocation (because arraycopy always needs a
 910   // call)
 911 
 912   // The java calling convention will give us enough registers
 913   // so that on the stub side the args will be perfect already.
 914   // On the other slow/special case side we call C and the arg
 915   // positions are not similar enough to pick one as the best.
 916   // Also because the java calling convention is a "shifted" version
 917   // of the C convention we can process the java args trivially into C
 918   // args without worry of overwriting during the xfer
 919 
 920   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 921   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 922   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 923   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 924   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 925 
 926   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 927 
 928   set_no_result(x);
 929 
 930   int flags;
 931   ciArrayKlass* expected_type;
 932   arraycopy_helper(x, &flags, &expected_type);
 933   if (x->check_flag(Instruction::OmitChecksFlag)) {
 934     flags = 0;
 935   }
 936 
 937   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 938 }
 939 
 940 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 941   assert(UseCRC32Intrinsics, "why are we here?");
 942   // Make all state_for calls early since they can emit code
 943   LIR_Opr result = rlock_result(x);
 944   switch (x->id()) {
 945     case vmIntrinsics::_updateCRC32: {
 946       LIRItem crc(x->argument_at(0), this);
 947       LIRItem val(x->argument_at(1), this);
 948       // val is destroyed by update_crc32
 949       val.set_destroys_register();
 950       crc.load_item();
 951       val.load_item();
 952       __ update_crc32(crc.result(), val.result(), result);
 953       break;
 954     }
 955     case vmIntrinsics::_updateBytesCRC32:
 956     case vmIntrinsics::_updateByteBufferCRC32: {
 957       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 958 
 959       LIRItem crc(x->argument_at(0), this);
 960       LIRItem buf(x->argument_at(1), this);
 961       LIRItem off(x->argument_at(2), this);
 962       LIRItem len(x->argument_at(3), this);
 963       buf.load_item();
 964       off.load_nonconstant();
 965 
 966       LIR_Opr index = off.result();
 967       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 968       if (off.result()->is_constant()) {
 969         index = LIR_OprFact::illegalOpr;
 970         offset += off.result()->as_jint();
 971       }
 972       LIR_Opr base_op = buf.result();
 973 
 974       if (index->is_valid()) {
 975         LIR_Opr tmp = new_register(T_LONG);
 976         __ convert(Bytecodes::_i2l, index, tmp);
 977         index = tmp;
 978       }
 979 
 980       if (offset) {
 981         LIR_Opr tmp = new_pointer_register();
 982         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 983         base_op = tmp;
 984         offset = 0;
 985       }
 986 
 987       LIR_Address* a = new LIR_Address(base_op,
 988                                        index,
 989                                        offset,
 990                                        T_BYTE);
 991       BasicTypeList signature(3);
 992       signature.append(T_INT);
 993       signature.append(T_ADDRESS);
 994       signature.append(T_INT);
 995       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 996       const LIR_Opr result_reg = result_register_for(x->type());
 997 
 998       LIR_Opr addr = new_pointer_register();
 999       __ leal(LIR_OprFact::address(a), addr);
1000 
1001       crc.load_item_force(cc->at(0));
1002       __ move(addr, cc->at(1));
1003       len.load_item_force(cc->at(2));
1004 
1005       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1006       __ move(result_reg, result);
1007 
1008       break;
1009     }
1010     default: {
1011       ShouldNotReachHere();
1012     }
1013   }
1014 }
1015 
1016 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1017   assert(UseCRC32CIntrinsics, "why are we here?");
1018   // Make all state_for calls early since they can emit code
1019   LIR_Opr result = rlock_result(x);
1020   switch (x->id()) {
1021     case vmIntrinsics::_updateBytesCRC32C:
1022     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1023       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1024       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1025 
1026       LIRItem crc(x->argument_at(0), this);
1027       LIRItem buf(x->argument_at(1), this);
1028       LIRItem off(x->argument_at(2), this);
1029       LIRItem end(x->argument_at(3), this);
1030 
1031       buf.load_item();
1032       off.load_nonconstant();
1033       end.load_nonconstant();
1034 
1035       // len = end - off
1036       LIR_Opr len  = end.result();
1037       LIR_Opr tmpA = new_register(T_INT);
1038       LIR_Opr tmpB = new_register(T_INT);
1039       __ move(end.result(), tmpA);
1040       __ move(off.result(), tmpB);
1041       __ sub(tmpA, tmpB, tmpA);
1042       len = tmpA;
1043 
1044       LIR_Opr index = off.result();
1045       if(off.result()->is_constant()) {
1046         index = LIR_OprFact::illegalOpr;
1047         offset += off.result()->as_jint();
1048       }
1049       LIR_Opr base_op = buf.result();
1050 
1051       if (index->is_valid()) {
1052         LIR_Opr tmp = new_register(T_LONG);
1053         __ convert(Bytecodes::_i2l, index, tmp);
1054         index = tmp;
1055       }
1056 
1057       if (offset) {
1058         LIR_Opr tmp = new_pointer_register();
1059         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1060         base_op = tmp;
1061         offset = 0;
1062       }
1063 
1064       LIR_Address* a = new LIR_Address(base_op,
1065                                        index,
1066                                        offset,
1067                                        T_BYTE);
1068       BasicTypeList signature(3);
1069       signature.append(T_INT);
1070       signature.append(T_ADDRESS);
1071       signature.append(T_INT);
1072       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1073       const LIR_Opr result_reg = result_register_for(x->type());
1074 
1075       LIR_Opr addr = new_pointer_register();
1076       __ leal(LIR_OprFact::address(a), addr);
1077 
1078       crc.load_item_force(cc->at(0));
1079       __ move(addr, cc->at(1));
1080       __ move(len, cc->at(2));
1081 
1082       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1083       __ move(result_reg, result);
1084 
1085       break;
1086     }
1087     default: {
1088       ShouldNotReachHere();
1089     }
1090   }
1091 }
1092 
1093 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1094   assert(x->number_of_arguments() == 3, "wrong type");
1095   assert(UseFMA, "Needs FMA instructions support.");
1096   LIRItem value(x->argument_at(0), this);
1097   LIRItem value1(x->argument_at(1), this);
1098   LIRItem value2(x->argument_at(2), this);
1099 
1100   value.load_item();
1101   value1.load_item();
1102   value2.load_item();
1103 
1104   LIR_Opr calc_input = value.result();
1105   LIR_Opr calc_input1 = value1.result();
1106   LIR_Opr calc_input2 = value2.result();
1107   LIR_Opr calc_result = rlock_result(x);
1108 
1109   switch (x->id()) {
1110   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1111   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1112   default:                    ShouldNotReachHere();
1113   }
1114 }
1115 
1116 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1117   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1118 }
1119 
1120 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1121 // _i2b, _i2c, _i2s
1122 void LIRGenerator::do_Convert(Convert* x) {
1123   LIRItem value(x->value(), this);
1124   value.load_item();
1125   LIR_Opr input = value.result();
1126   LIR_Opr result = rlock(x);
1127 
1128   // arguments of lir_convert
1129   LIR_Opr conv_input = input;
1130   LIR_Opr conv_result = result;
1131 
1132   __ convert(x->op(), conv_input, conv_result);
1133 
1134   assert(result->is_virtual(), "result must be virtual register");
1135   set_result(x, result);
1136 }
1137 
1138 void LIRGenerator::do_NewInstance(NewInstance* x) {
1139 #ifndef PRODUCT
1140   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1141     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1142   }
1143 #endif
1144   CodeEmitInfo* info = state_for(x, x->needs_state_before() ? x->state_before() : x->state());
1145   LIR_Opr reg = result_register_for(x->type());
1146   new_instance(reg, x->klass(), x->is_unresolved(),
1147                /* allow_inline */ false,
1148                FrameMap::r10_oop_opr,
1149                FrameMap::r11_oop_opr,
1150                FrameMap::r4_oop_opr,
1151                LIR_OprFact::illegalOpr,
1152                FrameMap::r3_metadata_opr, info);
1153   LIR_Opr result = rlock_result(x);
1154   __ move(reg, result);
1155 }
1156 
1157 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1158   CodeEmitInfo* info = nullptr;
1159   if (x->state_before() != nullptr && x->state_before()->force_reexecute()) {
1160     info = state_for(x, x->state_before());
1161     info->set_force_reexecute();
1162   } else {
1163     info = state_for(x, x->state());
1164   }
1165 
1166   LIRItem length(x->length(), this);
1167   length.load_item_force(FrameMap::r19_opr);
1168 
1169   LIR_Opr reg = result_register_for(x->type());
1170   LIR_Opr tmp1 = FrameMap::r10_oop_opr;
1171   LIR_Opr tmp2 = FrameMap::r11_oop_opr;
1172   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1173   LIR_Opr tmp4 = reg;
1174   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1175   LIR_Opr len = length.result();
1176   BasicType elem_type = x->elt_type();
1177 
1178   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1179 
1180   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1181   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path, x->zero_array());
1182 
1183   LIR_Opr result = rlock_result(x);
1184   __ move(reg, result);
1185 }
1186 
1187 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1188   LIRItem length(x->length(), this);
1189   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1190   // and therefore provide the state before the parameters have been consumed
1191   CodeEmitInfo* patching_info = nullptr;
1192   if (!x->klass()->is_loaded() || PatchALot) {
1193     patching_info =  state_for(x, x->state_before());
1194   }
1195 
1196   CodeEmitInfo* info = state_for(x, x->state());
1197 
1198   LIR_Opr reg = result_register_for(x->type());
1199   LIR_Opr tmp1 = FrameMap::r10_oop_opr;
1200   LIR_Opr tmp2 = FrameMap::r11_oop_opr;
1201   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1202   LIR_Opr tmp4 = reg;
1203   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1204 
1205   length.load_item_force(FrameMap::r19_opr);
1206   LIR_Opr len = length.result();
1207 
1208   ciKlass* obj = (ciKlass*) x->exact_type();
1209   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info, x->is_null_free());
1210   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1211     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1212   }
1213 
1214   klass2reg_with_patching(klass_reg, obj, patching_info);
1215   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path, true, x->is_null_free());
1216 
1217   LIR_Opr result = rlock_result(x);
1218   __ move(reg, result);
1219 }
1220 
1221 
1222 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1223   Values* dims = x->dims();
1224   int i = dims->length();
1225   LIRItemList* items = new LIRItemList(i, i, nullptr);
1226   while (i-- > 0) {
1227     LIRItem* size = new LIRItem(dims->at(i), this);
1228     items->at_put(i, size);
1229   }
1230 
1231   // Evaluate state_for early since it may emit code.
1232   CodeEmitInfo* patching_info = nullptr;
1233   if (!x->klass()->is_loaded() || PatchALot) {
1234     patching_info = state_for(x, x->state_before());
1235 
1236     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1237     // clone all handlers (NOTE: Usually this is handled transparently
1238     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1239     // is done explicitly here because a stub isn't being used).
1240     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1241   }
1242   CodeEmitInfo* info = state_for(x, x->state());
1243 
1244   i = dims->length();
1245   while (i-- > 0) {
1246     LIRItem* size = items->at(i);
1247     size->load_item();
1248 
1249     store_stack_parameter(size->result(), in_ByteSize(i*4));
1250   }
1251 
1252   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1253   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1254 
1255   LIR_Opr rank = FrameMap::r19_opr;
1256   __ move(LIR_OprFact::intConst(x->rank()), rank);
1257   LIR_Opr varargs = FrameMap::r2_opr;
1258   __ move(FrameMap::sp_opr, varargs);
1259   LIR_OprList* args = new LIR_OprList(3);
1260   args->append(klass_reg);
1261   args->append(rank);
1262   args->append(varargs);
1263   LIR_Opr reg = result_register_for(x->type());
1264   __ call_runtime(Runtime1::entry_for(C1StubId::new_multi_array_id),
1265                   LIR_OprFact::illegalOpr,
1266                   reg, args, info);
1267 
1268   LIR_Opr result = rlock_result(x);
1269   __ move(reg, result);
1270 }
1271 
1272 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1273   // nothing to do for now
1274 }
1275 
1276 void LIRGenerator::do_CheckCast(CheckCast* x) {
1277   LIRItem obj(x->obj(), this);
1278 
1279   CodeEmitInfo* patching_info = nullptr;
1280   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1281     // must do this before locking the destination register as an oop register,
1282     // and before the obj is loaded (the latter is for deoptimization)
1283     patching_info = state_for(x, x->state_before());
1284   }
1285   obj.load_item();
1286 
1287   // info for exceptions
1288   CodeEmitInfo* info_for_exception =
1289       (x->needs_exception_state() ? state_for(x) :
1290                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1291   if (x->is_null_free()) {
1292     __ null_check(obj.result(), new CodeEmitInfo(info_for_exception));
1293   }
1294 
1295   CodeStub* stub;
1296   if (x->is_incompatible_class_change_check()) {
1297     assert(patching_info == nullptr, "can't patch this");
1298     stub = new SimpleExceptionStub(C1StubId::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1299   } else if (x->is_invokespecial_receiver_check()) {
1300     assert(patching_info == nullptr, "can't patch this");
1301     stub = new DeoptimizeStub(info_for_exception,
1302                               Deoptimization::Reason_class_check,
1303                               Deoptimization::Action_none);
1304   } else {
1305     stub = new SimpleExceptionStub(C1StubId::throw_class_cast_exception_id, obj.result(), info_for_exception);
1306   }
1307   LIR_Opr reg = rlock_result(x);
1308   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1309   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1310     tmp3 = new_register(objectType);
1311   }
1312 
1313 
1314   __ checkcast(reg, obj.result(), x->klass(),
1315                new_register(objectType), new_register(objectType), tmp3,
1316                x->direct_compare(), info_for_exception, patching_info, stub,
1317                x->profiled_method(), x->profiled_bci(), x->is_null_free());
1318 
1319 }
1320 
1321 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1322   LIRItem obj(x->obj(), this);
1323 
1324   // result and test object may not be in same register
1325   LIR_Opr reg = rlock_result(x);
1326   CodeEmitInfo* patching_info = nullptr;
1327   if ((!x->klass()->is_loaded() || PatchALot)) {
1328     // must do this before locking the destination register as an oop register
1329     patching_info = state_for(x, x->state_before());
1330   }
1331   obj.load_item();
1332   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1333   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1334     tmp3 = new_register(objectType);
1335   }
1336   __ instanceof(reg, obj.result(), x->klass(),
1337                 new_register(objectType), new_register(objectType), tmp3,
1338                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1339 }
1340 
1341 void LIRGenerator::do_If(If* x) {
1342   assert(x->number_of_sux() == 2, "inconsistency");
1343   ValueTag tag = x->x()->type()->tag();
1344   bool is_safepoint = x->is_safepoint();
1345 
1346   If::Condition cond = x->cond();
1347 
1348   LIRItem xitem(x->x(), this);
1349   LIRItem yitem(x->y(), this);
1350   LIRItem* xin = &xitem;
1351   LIRItem* yin = &yitem;
1352 
1353   if (tag == longTag) {
1354     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1355     // mirror for other conditions
1356     if (cond == If::gtr || cond == If::leq) {
1357       cond = Instruction::mirror(cond);
1358       xin = &yitem;
1359       yin = &xitem;
1360     }
1361     xin->set_destroys_register();
1362   }
1363   xin->load_item();
1364 
1365   if (tag == longTag) {
1366     if (yin->is_constant()
1367         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1368       yin->dont_load_item();
1369     } else {
1370       yin->load_item();
1371     }
1372   } else if (tag == intTag) {
1373     if (yin->is_constant()
1374         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1375       yin->dont_load_item();
1376     } else {
1377       yin->load_item();
1378     }
1379   } else {
1380     yin->load_item();
1381   }
1382 
1383   set_no_result(x);
1384 
1385   LIR_Opr left = xin->result();
1386   LIR_Opr right = yin->result();
1387 
1388   // add safepoint before generating condition code so it can be recomputed
1389   if (x->is_safepoint()) {
1390     // increment backedge counter if needed
1391     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1392         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1393     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1394   }
1395 
1396   if (x->substitutability_check()) {
1397     substitutability_check(x, *xin, *yin);
1398   } else {
1399     __ cmp(lir_cond(cond), left, right);
1400   }
1401 
1402   // Generate branch profiling. Profiling code doesn't kill flags.
1403   profile_branch(x, cond);
1404   move_to_phi(x->state());
1405   if (x->x()->type()->is_float_kind()) {
1406     __ branch(lir_cond(cond), x->tsux(), x->usux());
1407   } else {
1408     __ branch(lir_cond(cond), x->tsux());
1409   }
1410   assert(x->default_sux() == x->fsux(), "wrong destination above");
1411   __ jump(x->default_sux());
1412 }
1413 
1414 LIR_Opr LIRGenerator::getThreadPointer() {
1415    return FrameMap::as_pointer_opr(rthread);
1416 }
1417 
1418 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1419 
1420 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1421                                         CodeEmitInfo* info) {
1422   __ volatile_store_mem_reg(value, address, info);
1423 }
1424 
1425 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1426                                        CodeEmitInfo* info) {
1427   // 8179954: We need to make sure that the code generated for
1428   // volatile accesses forms a sequentially-consistent set of
1429   // operations when combined with STLR and LDAR.  Without a leading
1430   // membar it's possible for a simple Dekker test to fail if loads
1431   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1432   // the stores in one method and C1 compiles the loads in another.
1433   if (!CompilerConfig::is_c1_only_no_jvmci()) {
1434     __ membar();
1435   }
1436   __ volatile_load_mem_reg(address, result, info);
1437 }