1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "c1/c1_MacroAssembler.hpp" 27 #include "c1/c1_Runtime1.hpp" 28 #include "gc/shared/barrierSetAssembler.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/tlab_globals.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "runtime/basicLock.hpp" 37 #include "runtime/os.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/stubRoutines.hpp" 40 41 void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, 42 FloatRegister f0, FloatRegister f1, 43 Register result) 44 { 45 Label done; 46 if (is_float) { 47 fcmps(f0, f1); 48 } else { 49 fcmpd(f0, f1); 50 } 51 if (unordered_result < 0) { 52 // we want -1 for unordered or less than, 0 for equal and 1 for 53 // greater than. 54 cset(result, NE); // Not equal or unordered 55 cneg(result, result, LT); // Less than or unordered 56 } else { 57 // we want -1 for less than, 0 for equal and 1 for unordered or 58 // greater than. 59 cset(result, NE); // Not equal or unordered 60 cneg(result, result, LO); // Less than 61 } 62 } 63 64 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register temp, Label& slow_case) { 65 assert_different_registers(hdr, obj, disp_hdr, temp, rscratch2); 66 int null_check_offset = -1; 67 68 verify_oop(obj); 69 70 // save object being locked into the BasicObjectLock 71 str(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 72 73 null_check_offset = offset(); 74 75 lightweight_lock(disp_hdr, obj, hdr, temp, rscratch2, slow_case); 76 77 return null_check_offset; 78 } 79 80 81 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Register temp, Label& slow_case) { 82 assert_different_registers(hdr, obj, disp_hdr, temp, rscratch2); 83 84 // load object 85 ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 86 verify_oop(obj); 87 88 lightweight_unlock(obj, hdr, temp, rscratch2, slow_case); 89 } 90 91 92 // Defines obj, preserves var_size_in_bytes 93 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { 94 if (UseTLAB) { 95 tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 96 } else { 97 b(slow_case); 98 } 99 } 100 101 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { 102 assert_different_registers(obj, klass, len); 103 104 if (UseCompactObjectHeaders || EnableValhalla) { 105 // COH: Markword contains class pointer which is only known at runtime. 106 // Valhalla: Could have value class which has a different prototype header to a normal object. 107 // In both cases, we need to fetch dynamically. 108 ldr(t1, Address(klass, Klass::prototype_header_offset())); 109 str(t1, Address(obj, oopDesc::mark_offset_in_bytes())); 110 } else { 111 // Otherwise: Can use the statically computed prototype header which is the same for every object. 112 mov(t1, checked_cast<int32_t>(markWord::prototype().value())); 113 str(t1, Address(obj, oopDesc::mark_offset_in_bytes())); 114 } 115 116 if (!UseCompactObjectHeaders) { 117 // COH: Markword already contains class pointer. Nothing else to do. 118 // Otherwise: Fetch klass pointer following the markword 119 if (UseCompressedClassPointers) { // Take care not to kill klass 120 encode_klass_not_null(t1, klass); 121 strw(t1, Address(obj, oopDesc::klass_offset_in_bytes())); 122 } else { 123 str(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 124 } 125 } 126 127 if (len->is_valid()) { 128 strw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); 129 int base_offset = arrayOopDesc::length_offset_in_bytes() + BytesPerInt; 130 if (!is_aligned(base_offset, BytesPerWord)) { 131 assert(is_aligned(base_offset, BytesPerInt), "must be 4-byte aligned"); 132 // Clear gap/first 4 bytes following the length field. 133 strw(zr, Address(obj, base_offset)); 134 } 135 } else if (UseCompressedClassPointers && !UseCompactObjectHeaders) { 136 store_klass_gap(obj, zr); 137 } 138 } 139 140 // preserves obj, destroys len_in_bytes 141 // 142 // Scratch registers: t1 = r10, t2 = r11 143 // 144 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1, Register t2) { 145 assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); 146 assert(t1 == r10 && t2 == r11, "must be"); 147 148 Label done; 149 150 // len_in_bytes is positive and ptr sized 151 subs(len_in_bytes, len_in_bytes, hdr_size_in_bytes); 152 br(Assembler::EQ, done); 153 154 // zero_words() takes ptr in r10 and count in words in r11 155 mov(rscratch1, len_in_bytes); 156 lea(t1, Address(obj, hdr_size_in_bytes)); 157 lsr(t2, rscratch1, LogBytesPerWord); 158 address tpc = zero_words(t1, t2); 159 160 bind(done); 161 if (tpc == nullptr) { 162 Compilation::current()->bailout("no space for trampoline stub"); 163 } 164 } 165 166 167 void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) { 168 assert_different_registers(obj, t1, t2); // XXX really? 169 assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); 170 171 try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case); 172 173 initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2, UseTLAB); 174 } 175 176 // Scratch registers: t1 = r10, t2 = r11 177 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, bool is_tlab_allocated) { 178 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, 179 "con_size_in_bytes is not multiple of alignment"); 180 const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; 181 182 initialize_header(obj, klass, noreg, t1, t2); 183 184 if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { 185 // clear rest of allocated space 186 const Register index = t2; 187 if (var_size_in_bytes != noreg) { 188 mov(index, var_size_in_bytes); 189 initialize_body(obj, index, hdr_size_in_bytes, t1, t2); 190 if (Compilation::current()->bailed_out()) { 191 return; 192 } 193 } else if (con_size_in_bytes > hdr_size_in_bytes) { 194 con_size_in_bytes -= hdr_size_in_bytes; 195 lea(t1, Address(obj, hdr_size_in_bytes)); 196 address tpc = zero_words(t1, con_size_in_bytes / BytesPerWord); 197 if (tpc == nullptr) { 198 Compilation::current()->bailout("no space for trampoline stub"); 199 return; 200 } 201 } 202 } 203 204 membar(StoreStore); 205 206 if (CURRENT_ENV->dtrace_alloc_probes()) { 207 assert(obj == r0, "must be"); 208 far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_dtrace_object_alloc_id))); 209 } 210 211 verify_oop(obj); 212 } 213 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int base_offset_in_bytes, int f, Register klass, Label& slow_case, bool zero_array) { 214 assert_different_registers(obj, len, t1, t2, klass); 215 216 // determine alignment mask 217 assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); 218 219 // check for negative or excessive length 220 mov(rscratch1, (int32_t)max_array_allocation_length); 221 cmp(len, rscratch1); 222 br(Assembler::HS, slow_case); 223 224 const Register arr_size = t2; // okay to be the same 225 // align object end 226 mov(arr_size, (int32_t)base_offset_in_bytes + MinObjAlignmentInBytesMask); 227 add(arr_size, arr_size, len, ext::uxtw, f); 228 andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask); 229 230 try_allocate(obj, arr_size, 0, t1, t2, slow_case); 231 232 initialize_header(obj, klass, len, t1, t2); 233 234 // Align-up to word boundary, because we clear the 4 bytes potentially 235 // following the length field in initialize_header(). 236 int base_offset = align_up(base_offset_in_bytes, BytesPerWord); 237 // clear rest of allocated space 238 if (zero_array) { 239 initialize_body(obj, arr_size, base_offset, t1, t2); 240 } 241 if (Compilation::current()->bailed_out()) { 242 return; 243 } 244 245 membar(StoreStore); 246 247 if (CURRENT_ENV->dtrace_alloc_probes()) { 248 assert(obj == r0, "must be"); 249 far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_dtrace_object_alloc_id))); 250 } 251 252 verify_oop(obj); 253 } 254 255 void C1_MacroAssembler::build_frame_helper(int frame_size_in_bytes, int sp_offset_for_orig_pc, int sp_inc, bool reset_orig_pc, bool needs_stack_repair) { 256 MacroAssembler::build_frame(frame_size_in_bytes); 257 258 if (needs_stack_repair) { 259 save_stack_increment(sp_inc, frame_size_in_bytes); 260 } 261 if (reset_orig_pc) { 262 // Zero orig_pc to detect deoptimization during buffering in the entry points 263 str(zr, Address(sp, sp_offset_for_orig_pc)); 264 } 265 } 266 267 void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes, int sp_offset_for_orig_pc, bool needs_stack_repair, bool has_scalarized_args, Label* verified_inline_entry_label) { 268 // Make sure there is enough stack space for this method's activation. 269 // Note that we do this before creating a frame. 270 assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect"); 271 generate_stack_overflow_check(bang_size_in_bytes); 272 273 build_frame_helper(frame_size_in_bytes, sp_offset_for_orig_pc, 0, has_scalarized_args, needs_stack_repair); 274 275 // Insert nmethod entry barrier into frame. 276 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 277 bs->nmethod_entry_barrier(this, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 278 279 if (verified_inline_entry_label != nullptr) { 280 // Jump here from the scalarized entry points that already created the frame. 281 bind(*verified_inline_entry_label); 282 } 283 } 284 285 void C1_MacroAssembler::verified_entry(bool breakAtEntry) { 286 // If we have to make this method not-entrant we'll overwrite its 287 // first instruction with a jump. For this action to be legal we 288 // must ensure that this first instruction is a B, BL, NOP, BKPT, 289 // SVC, HVC, or SMC. Make it a NOP. 290 nop(); 291 if (C1Breakpoint) brk(1); 292 } 293 294 int C1_MacroAssembler::scalarized_entry(const CompiledEntrySignature* ces, int frame_size_in_bytes, int bang_size_in_bytes, int sp_offset_for_orig_pc, Label& verified_inline_entry_label, bool is_inline_ro_entry) { 295 assert(InlineTypePassFieldsAsArgs, "sanity"); 296 // Make sure there is enough stack space for this method's activation. 297 assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect"); 298 generate_stack_overflow_check(bang_size_in_bytes); 299 300 GrowableArray<SigEntry>* sig = ces->sig(); 301 GrowableArray<SigEntry>* sig_cc = is_inline_ro_entry ? ces->sig_cc_ro() : ces->sig_cc(); 302 VMRegPair* regs = ces->regs(); 303 VMRegPair* regs_cc = is_inline_ro_entry ? ces->regs_cc_ro() : ces->regs_cc(); 304 int args_on_stack = ces->args_on_stack(); 305 int args_on_stack_cc = is_inline_ro_entry ? ces->args_on_stack_cc_ro() : ces->args_on_stack_cc(); 306 307 assert(sig->length() <= sig_cc->length(), "Zero-sized inline class not allowed!"); 308 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sig_cc->length()); 309 int args_passed = sig->length(); 310 int args_passed_cc = SigEntry::fill_sig_bt(sig_cc, sig_bt); 311 312 // Create a temp frame so we can call into the runtime. It must be properly set up to accommodate GC. 313 build_frame_helper(frame_size_in_bytes, sp_offset_for_orig_pc, 0, true, ces->c1_needs_stack_repair()); 314 315 // The runtime call might safepoint, make sure nmethod entry barrier is executed 316 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 317 // C1 code is not hot enough to micro optimize the nmethod entry barrier with an out-of-line stub 318 bs->nmethod_entry_barrier(this, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 319 320 // FIXME -- call runtime only if we cannot in-line allocate all the incoming inline type args. 321 mov(r19, (intptr_t) ces->method()); 322 if (is_inline_ro_entry) { 323 far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_buffer_inline_args_no_receiver_id))); 324 } else { 325 far_call(RuntimeAddress(Runtime1::entry_for(StubId::c1_buffer_inline_args_id))); 326 } 327 int rt_call_offset = offset(); 328 329 // The runtime call returns the new array in r20 instead of the usual r0 330 // because r0 is also j_rarg7 which may be holding a live argument here. 331 Register val_array = r20; 332 333 // Remove the temp frame 334 MacroAssembler::remove_frame(frame_size_in_bytes); 335 336 // Check if we need to extend the stack for packing 337 int sp_inc = 0; 338 if (args_on_stack > args_on_stack_cc) { 339 sp_inc = extend_stack_for_inline_args(args_on_stack); 340 } 341 342 shuffle_inline_args(true, is_inline_ro_entry, sig_cc, 343 args_passed_cc, args_on_stack_cc, regs_cc, // from 344 args_passed, args_on_stack, regs, // to 345 sp_inc, val_array); 346 347 // Create the real frame. Below jump will then skip over the stack banging and frame 348 // setup code in the verified_inline_entry (which has a different real_frame_size). 349 build_frame_helper(frame_size_in_bytes, sp_offset_for_orig_pc, sp_inc, false, ces->c1_needs_stack_repair()); 350 351 b(verified_inline_entry_label); 352 return rt_call_offset; 353 } 354 355 356 void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { 357 // rfp, + 0: link 358 // + 1: return address 359 // + 2: argument with offset 0 360 // + 3: argument with offset 1 361 // + 4: ... 362 363 ldr(reg, Address(rfp, (offset_in_words + 2) * BytesPerWord)); 364 } 365 366 #ifndef PRODUCT 367 368 void C1_MacroAssembler::verify_stack_oop(int stack_offset) { 369 if (!VerifyOops) return; 370 verify_oop_addr(Address(sp, stack_offset)); 371 } 372 373 void C1_MacroAssembler::verify_not_null_oop(Register r) { 374 if (!VerifyOops) return; 375 Label not_null; 376 cbnz(r, not_null); 377 stop("non-null oop required"); 378 bind(not_null); 379 verify_oop(r); 380 } 381 382 void C1_MacroAssembler::invalidate_registers(bool inv_r0, bool inv_r19, bool inv_r2, bool inv_r3, bool inv_r4, bool inv_r5) { 383 #ifdef ASSERT 384 static int nn; 385 if (inv_r0) mov(r0, 0xDEAD); 386 if (inv_r19) mov(r19, 0xDEAD); 387 if (inv_r2) mov(r2, nn++); 388 if (inv_r3) mov(r3, 0xDEAD); 389 if (inv_r4) mov(r4, 0xDEAD); 390 if (inv_r5) mov(r5, 0xDEAD); 391 #endif 392 } 393 #endif // ifndef PRODUCT