1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "compiler/oopMap.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "memory/universe.hpp" 31 #include "oops/markWord.hpp" 32 #include "oops/method.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/methodHandles.hpp" 35 #include "runtime/frame.inline.hpp" 36 #include "runtime/handles.inline.hpp" 37 #include "runtime/javaCalls.hpp" 38 #include "runtime/monitorChunk.hpp" 39 #include "runtime/os.inline.hpp" 40 #include "runtime/signature.hpp" 41 #include "runtime/stackWatermarkSet.hpp" 42 #include "runtime/stubCodeGenerator.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "vmreg_aarch64.inline.hpp" 45 #ifdef COMPILER1 46 #include "c1/c1_Runtime1.hpp" 47 #include "runtime/vframeArray.hpp" 48 #endif 49 50 #ifdef ASSERT 51 void RegisterMap::check_location_valid() { 52 } 53 #endif 54 55 56 // Profiling/safepoint support 57 58 bool frame::safe_for_sender(JavaThread *thread) { 59 if (is_heap_frame()) { 60 return true; 61 } 62 address sp = (address)_sp; 63 address fp = (address)_fp; 64 address unextended_sp = (address)_unextended_sp; 65 66 // consider stack guards when trying to determine "safe" stack pointers 67 // sp must be within the usable part of the stack (not in guards) 68 if (!thread->is_in_usable_stack(sp)) { 69 return false; 70 } 71 72 // When we are running interpreted code the machine stack pointer, SP, is 73 // set low enough so that the Java expression stack can grow and shrink 74 // without ever exceeding the machine stack bounds. So, ESP >= SP. 75 76 // When we call out of an interpreted method, SP is incremented so that 77 // the space between SP and ESP is removed. The SP saved in the callee's 78 // frame is the SP *before* this increment. So, when we walk a stack of 79 // interpreter frames the sender's SP saved in a frame might be less than 80 // the SP at the point of call. 81 82 // So unextended sp must be within the stack but we need not to check 83 // that unextended sp >= sp 84 if (!thread->is_in_full_stack_checked(unextended_sp)) { 85 return false; 86 } 87 88 // an fp must be within the stack and above (but not equal) sp 89 // second evaluation on fp+ is added to handle situation where fp is -1 90 bool fp_safe = thread->is_in_stack_range_excl(fp, sp) && 91 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*))); 92 93 // We know sp/unextended_sp are safe only fp is questionable here 94 95 // If the current frame is known to the code cache then we can attempt to 96 // to construct the sender and do some validation of it. This goes a long way 97 // toward eliminating issues when we get in frame construction code 98 99 if (_cb != nullptr ) { 100 101 // First check if frame is complete and tester is reliable 102 // Unfortunately we can only check frame complete for runtime stubs and nmethod 103 // other generic buffer blobs are more problematic so we just assume they are 104 // ok. adapter blobs never have a frame complete and are never ok. 105 106 if (!_cb->is_frame_complete_at(_pc)) { 107 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 108 return false; 109 } 110 } 111 112 // Could just be some random pointer within the codeBlob 113 if (!_cb->code_contains(_pc)) { 114 return false; 115 } 116 117 // Entry frame checks 118 if (is_entry_frame()) { 119 // an entry frame must have a valid fp. 120 return fp_safe && is_entry_frame_valid(thread); 121 } else if (is_upcall_stub_frame()) { 122 return fp_safe; 123 } 124 125 intptr_t* sender_sp = nullptr; 126 intptr_t* sender_unextended_sp = nullptr; 127 address sender_pc = nullptr; 128 intptr_t* saved_fp = nullptr; 129 130 if (is_interpreted_frame()) { 131 // fp must be safe 132 if (!fp_safe) { 133 return false; 134 } 135 136 // for interpreted frames, the value below is the sender "raw" sp, 137 // which can be different from the sender unextended sp (the sp seen 138 // by the sender) because of current frame local variables 139 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 140 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 141 saved_fp = (intptr_t*) this->fp()[link_offset]; 142 sender_pc = pauth_strip_verifiable((address) this->fp()[return_addr_offset]); 143 } else { 144 // must be some sort of compiled/runtime frame 145 // fp does not have to be safe (although it could be check for c1?) 146 147 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 148 if (_cb->frame_size() <= 0) { 149 return false; 150 } 151 152 sender_sp = _unextended_sp + _cb->frame_size(); 153 // Is sender_sp safe? 154 if (!thread->is_in_full_stack_checked((address)sender_sp)) { 155 return false; 156 } 157 sender_unextended_sp = sender_sp; 158 // Note: frame::sender_sp_offset is only valid for compiled frame 159 saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset); 160 // Note: PAC authentication may fail in case broken frame is passed in. 161 // Just strip it for now. 162 sender_pc = pauth_strip_pointer((address) *(sender_sp - 1)); 163 } 164 165 if (Continuation::is_return_barrier_entry(sender_pc)) { 166 // If our sender_pc is the return barrier, then our "real" sender is the continuation entry 167 frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp); 168 sender_sp = s.sp(); 169 sender_pc = s.pc(); 170 } 171 172 // If the potential sender is the interpreter then we can do some more checking 173 if (Interpreter::contains(sender_pc)) { 174 175 // fp is always saved in a recognizable place in any code we generate. However 176 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp 177 // is really a frame pointer. 178 179 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 180 return false; 181 } 182 183 // construct the potential sender 184 185 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 186 187 return sender.is_interpreted_frame_valid(thread); 188 189 } 190 191 // We must always be able to find a recognizable pc 192 CodeBlob* sender_blob = CodeCache::find_blob(sender_pc); 193 if (sender_pc == nullptr || sender_blob == nullptr) { 194 return false; 195 } 196 197 // Could just be some random pointer within the codeBlob 198 if (!sender_blob->code_contains(sender_pc)) { 199 return false; 200 } 201 202 // We should never be able to see an adapter if the current frame is something from code cache 203 if (sender_blob->is_adapter_blob()) { 204 return false; 205 } 206 207 // Could be the call_stub 208 if (StubRoutines::returns_to_call_stub(sender_pc)) { 209 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 210 return false; 211 } 212 213 // construct the potential sender 214 215 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 216 217 // Validate the JavaCallWrapper an entry frame must have 218 address jcw = (address)sender.entry_frame_call_wrapper(); 219 220 return thread->is_in_stack_range_excl(jcw, (address)sender.fp()); 221 } else if (sender_blob->is_upcall_stub()) { 222 return false; 223 } 224 225 nmethod* nm = sender_blob->as_nmethod_or_null(); 226 if (nm != nullptr) { 227 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 228 nm->method()->is_method_handle_intrinsic()) { 229 return false; 230 } 231 } 232 233 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 234 // because the return address counts against the callee's frame. 235 236 if (sender_blob->frame_size() <= 0) { 237 assert(!sender_blob->is_nmethod(), "should count return address at least"); 238 return false; 239 } 240 241 // We should never be able to see anything here except an nmethod. If something in the 242 // code cache (current frame) is called by an entity within the code cache that entity 243 // should not be anything but the call stub (already covered), the interpreter (already covered) 244 // or an nmethod. 245 246 if (!sender_blob->is_nmethod()) { 247 return false; 248 } 249 250 // Could put some more validation for the potential non-interpreted sender 251 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 252 253 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 254 255 // We've validated the potential sender that would be created 256 return true; 257 } 258 259 // Must be native-compiled frame. Since sender will try and use fp to find 260 // linkages it must be safe 261 262 if (!fp_safe) { 263 return false; 264 } 265 266 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 267 268 if ( (address) this->fp()[return_addr_offset] == nullptr) return false; 269 270 271 // could try and do some more potential verification of native frame if we could think of some... 272 273 return true; 274 275 } 276 277 void frame::patch_pc(Thread* thread, address pc) { 278 assert(_cb == CodeCache::find_blob(pc), "unexpected pc"); 279 address* pc_addr = &(((address*) sp())[-1]); 280 address signed_pc = pauth_sign_return_address(pc); 281 address pc_old = pauth_strip_verifiable(*pc_addr); 282 283 if (TracePcPatching) { 284 tty->print("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 285 p2i(pc_addr), p2i(pc_old), p2i(pc)); 286 if (VM_Version::use_rop_protection()) { 287 tty->print(" [signed " INTPTR_FORMAT " -> " INTPTR_FORMAT "]", p2i(*pc_addr), p2i(signed_pc)); 288 } 289 tty->print_cr(""); 290 } 291 292 assert(!Continuation::is_return_barrier_entry(pc_old), "return barrier"); 293 294 // Either the return address is the original one or we are going to 295 // patch in the same address that's already there. 296 assert(_pc == pc_old || pc == pc_old || pc_old == 0, ""); 297 DEBUG_ONLY(address old_pc = _pc;) 298 *pc_addr = signed_pc; 299 _pc = pc; // must be set before call to get_deopt_original_pc 300 address original_pc = get_deopt_original_pc(); 301 if (original_pc != nullptr) { 302 assert(original_pc == old_pc, "expected original PC to be stored before patching"); 303 _deopt_state = is_deoptimized; 304 _pc = original_pc; 305 } else { 306 _deopt_state = not_deoptimized; 307 } 308 } 309 310 intptr_t* frame::entry_frame_argument_at(int offset) const { 311 // convert offset to index to deal with tsi 312 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 313 // Entry frame's arguments are always in relation to unextended_sp() 314 return &unextended_sp()[index]; 315 } 316 317 // locals 318 319 void frame::interpreter_frame_set_locals(intptr_t* locs) { 320 assert(is_interpreted_frame(), "interpreted frame expected"); 321 // set relativized locals 322 ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp())); 323 } 324 325 // sender_sp 326 327 intptr_t* frame::interpreter_frame_sender_sp() const { 328 assert(is_interpreted_frame(), "interpreted frame expected"); 329 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 330 } 331 332 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 333 assert(is_interpreted_frame(), "interpreted frame expected"); 334 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 335 } 336 337 338 // monitor elements 339 340 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 341 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 342 } 343 344 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 345 BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset); 346 // make sure the pointer points inside the frame 347 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 348 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); 349 return result; 350 } 351 352 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 353 assert(is_interpreted_frame(), "interpreted frame expected"); 354 // set relativized monitor_block_top 355 ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp()); 356 assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, ""); 357 } 358 359 // Used by template based interpreter deoptimization 360 void frame::interpreter_frame_set_last_sp(intptr_t* sp) { 361 assert(is_interpreted_frame(), "interpreted frame expected"); 362 // set relativized last_sp 363 ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0); 364 } 365 366 // Used by template based interpreter deoptimization 367 void frame::interpreter_frame_set_extended_sp(intptr_t* sp) { 368 assert(is_interpreted_frame(), "interpreted frame expected"); 369 // set relativized extended_sp 370 ptr_at_put(interpreter_frame_extended_sp_offset, (sp - fp())); 371 } 372 373 frame frame::sender_for_entry_frame(RegisterMap* map) const { 374 assert(map != nullptr, "map must be set"); 375 // Java frame called from C; skip all C frames and return top C 376 // frame of that chunk as the sender 377 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 378 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 379 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 380 // Since we are walking the stack now this nested anchor is obviously walkable 381 // even if it wasn't when it was stacked. 382 jfa->make_walkable(); 383 map->clear(); 384 assert(map->include_argument_oops(), "should be set by clear"); 385 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 386 fr.set_sp_is_trusted(); 387 388 return fr; 389 } 390 391 UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const { 392 assert(frame.is_upcall_stub_frame(), "wrong frame"); 393 // need unextended_sp here, since normal sp is wrong for interpreter callees 394 return reinterpret_cast<UpcallStub::FrameData*>( 395 reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset)); 396 } 397 398 bool frame::upcall_stub_frame_is_first() const { 399 assert(is_upcall_stub_frame(), "must be optimzed entry frame"); 400 UpcallStub* blob = _cb->as_upcall_stub(); 401 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 402 return jfa->last_Java_sp() == nullptr; 403 } 404 405 frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const { 406 assert(map != nullptr, "map must be set"); 407 UpcallStub* blob = _cb->as_upcall_stub(); 408 // Java frame called from C; skip all C frames and return top C 409 // frame of that chunk as the sender 410 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 411 assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to"); 412 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 413 // Since we are walking the stack now this nested anchor is obviously walkable 414 // even if it wasn't when it was stacked. 415 jfa->make_walkable(); 416 map->clear(); 417 assert(map->include_argument_oops(), "should be set by clear"); 418 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 419 420 return fr; 421 } 422 423 //------------------------------------------------------------------------------ 424 // frame::verify_deopt_original_pc 425 // 426 // Verifies the calculated original PC of a deoptimization PC for the 427 // given unextended SP. 428 #ifdef ASSERT 429 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp) { 430 frame fr; 431 432 // This is ugly but it's better than to change {get,set}_original_pc 433 // to take an SP value as argument. And it's only a debugging 434 // method anyway. 435 fr._unextended_sp = unextended_sp; 436 437 address original_pc = nm->get_original_pc(&fr); 438 assert(nm->insts_contains_inclusive(original_pc), 439 "original PC must be in the main code section of the compiled method (or must be immediately following it)"); 440 } 441 #endif 442 443 //------------------------------------------------------------------------------ 444 // frame::adjust_unextended_sp 445 #ifdef ASSERT 446 void frame::adjust_unextended_sp() { 447 // On aarch64, sites calling method handle intrinsics and lambda forms are treated 448 // as any other call site. Therefore, no special action is needed when we are 449 // returning to any of these call sites. 450 451 if (_cb != nullptr) { 452 nmethod* sender_nm = _cb->as_nmethod_or_null(); 453 if (sender_nm != nullptr) { 454 // If the sender PC is a deoptimization point, get the original PC. 455 if (sender_nm->is_deopt_entry(_pc) || 456 sender_nm->is_deopt_mh_entry(_pc)) { 457 verify_deopt_original_pc(sender_nm, _unextended_sp); 458 } 459 } 460 } 461 } 462 #endif 463 464 465 //------------------------------------------------------------------------------ 466 // frame::sender_for_interpreter_frame 467 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 468 // SP is the raw SP from the sender after adapter or interpreter 469 // extension. 470 intptr_t* sender_sp = this->sender_sp(); 471 472 // This is the sp before any possible extension (adapter/locals). 473 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 474 intptr_t* sender_fp = link(); 475 476 #if COMPILER2_OR_JVMCI 477 if (map->update_map()) { 478 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 479 } 480 #endif // COMPILER2_OR_JVMCI 481 482 // For ROP protection, Interpreter will have signed the sender_pc, 483 // but there is no requirement to authenticate it here. 484 address sender_pc = pauth_strip_verifiable(sender_pc_maybe_signed()); 485 486 if (Continuation::is_return_barrier_entry(sender_pc)) { 487 if (map->walk_cont()) { // about to walk into an h-stack 488 return Continuation::top_frame(*this, map); 489 } else { 490 return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp); 491 } 492 } 493 494 return frame(sender_sp, unextended_sp, sender_fp, sender_pc); 495 } 496 497 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 498 assert(is_interpreted_frame(), "Not an interpreted frame"); 499 // These are reasonable sanity checks 500 if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) { 501 return false; 502 } 503 if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) { 504 return false; 505 } 506 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 507 return false; 508 } 509 // These are hacks to keep us out of trouble. 510 // The problem with these is that they mask other problems 511 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 512 return false; 513 } 514 515 // do some validation of frame elements 516 517 // first the method 518 519 Method* m = safe_interpreter_frame_method(); 520 521 // validate the method we'd find in this potential sender 522 if (!Method::is_valid_method(m)) return false; 523 524 // stack frames shouldn't be much larger than max_stack elements 525 // this test requires the use of unextended_sp which is the sp as seen by 526 // the current frame, and not sp which is the "raw" pc which could point 527 // further because of local variables of the callee method inserted after 528 // method arguments 529 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 530 return false; 531 } 532 533 // validate bci/bcx 534 535 address bcp = interpreter_frame_bcp(); 536 if (m->validate_bci_from_bcp(bcp) < 0) { 537 return false; 538 } 539 540 // validate constantPoolCache* 541 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 542 if (MetaspaceObj::is_valid(cp) == false) return false; 543 544 // validate locals 545 546 address locals = (address)interpreter_frame_locals(); 547 return thread->is_in_stack_range_incl(locals, (address)fp()); 548 } 549 550 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 551 assert(is_interpreted_frame(), "interpreted frame expected"); 552 Method* method = interpreter_frame_method(); 553 BasicType type = method->result_type(); 554 555 intptr_t* tos_addr; 556 if (method->is_native()) { 557 // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0 558 // Prior to calling into the runtime to report the method_exit the possible 559 // return value is pushed to the native stack. If the result is a jfloat/jdouble 560 // then ST0 is saved before EAX/EDX. See the note in generate_native_result 561 tos_addr = (intptr_t*)sp(); 562 if (type == T_FLOAT || type == T_DOUBLE) { 563 // This is times two because we do a push(ltos) after pushing XMM0 564 // and that takes two interpreter stack slots. 565 tos_addr += 2 * Interpreter::stackElementWords; 566 } 567 } else { 568 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 569 } 570 571 switch (type) { 572 case T_OBJECT : 573 case T_ARRAY : { 574 oop obj; 575 if (method->is_native()) { 576 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 577 } else { 578 oop* obj_p = (oop*)tos_addr; 579 obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p; 580 } 581 assert(Universe::is_in_heap_or_null(obj), "sanity check"); 582 *oop_result = obj; 583 break; 584 } 585 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 586 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 587 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 588 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 589 case T_INT : value_result->i = *(jint*)tos_addr; break; 590 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 591 case T_FLOAT : { 592 value_result->f = *(jfloat*)tos_addr; 593 break; 594 } 595 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 596 case T_VOID : /* Nothing to do */ break; 597 default : ShouldNotReachHere(); 598 } 599 600 return type; 601 } 602 603 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 604 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 605 return &interpreter_frame_tos_address()[index]; 606 } 607 608 #ifndef PRODUCT 609 610 #define DESCRIBE_FP_OFFSET(name) \ 611 values.describe(frame_no, fp() + frame::name##_offset, #name) 612 613 void frame::describe_pd(FrameValues& values, int frame_no) { 614 if (is_interpreted_frame()) { 615 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 616 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 617 DESCRIBE_FP_OFFSET(interpreter_frame_method); 618 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 619 DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp); 620 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 621 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 622 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 623 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 624 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 625 } 626 627 if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) { 628 intptr_t* ret_pc_loc; 629 intptr_t* fp_loc; 630 if (is_interpreted_frame()) { 631 ret_pc_loc = fp() + return_addr_offset; 632 fp_loc = fp(); 633 } else { 634 ret_pc_loc = real_fp() - return_addr_offset; 635 fp_loc = real_fp() - sender_sp_offset; 636 } 637 address ret_pc = *(address*)ret_pc_loc; 638 values.describe(frame_no, ret_pc_loc, 639 Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address"); 640 values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender 641 } 642 } 643 #endif 644 645 intptr_t *frame::initial_deoptimization_info() { 646 // Not used on aarch64, but we must return something. 647 return nullptr; 648 } 649 650 #undef DESCRIBE_FP_OFFSET 651 652 #define DESCRIBE_FP_OFFSET(name) \ 653 { \ 654 uintptr_t *p = (uintptr_t *)fp; \ 655 printf(INTPTR_FORMAT " " INTPTR_FORMAT " %s\n", \ 656 (uintptr_t)(p + frame::name##_offset), \ 657 p[frame::name##_offset], #name); \ 658 } 659 660 static THREAD_LOCAL uintptr_t nextfp; 661 static THREAD_LOCAL uintptr_t nextpc; 662 static THREAD_LOCAL uintptr_t nextsp; 663 static THREAD_LOCAL RegisterMap *reg_map; 664 665 static void printbc(Method *m, intptr_t bcx) { 666 const char *name; 667 char buf[16]; 668 if (m->validate_bci_from_bcp((address)bcx) < 0 669 || !m->contains((address)bcx)) { 670 name = "???"; 671 snprintf(buf, sizeof buf, "(bad)"); 672 } else { 673 int bci = m->bci_from((address)bcx); 674 snprintf(buf, sizeof buf, "%d", bci); 675 name = Bytecodes::name(m->code_at(bci)); 676 } 677 ResourceMark rm; 678 printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name); 679 } 680 681 static void internal_pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, uintptr_t bcx) { 682 if (! fp) 683 return; 684 685 DESCRIBE_FP_OFFSET(return_addr); 686 DESCRIBE_FP_OFFSET(link); 687 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 688 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 689 DESCRIBE_FP_OFFSET(interpreter_frame_method); 690 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 691 DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp); 692 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 693 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 694 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 695 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 696 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 697 uintptr_t *p = (uintptr_t *)fp; 698 699 // We want to see all frames, native and Java. For compiled and 700 // interpreted frames we have special information that allows us to 701 // unwind them; for everything else we assume that the native frame 702 // pointer chain is intact. 703 frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc); 704 if (this_frame.is_compiled_frame() || 705 this_frame.is_interpreted_frame()) { 706 frame sender = this_frame.sender(reg_map); 707 nextfp = (uintptr_t)sender.fp(); 708 nextpc = (uintptr_t)sender.pc(); 709 nextsp = (uintptr_t)sender.unextended_sp(); 710 } else { 711 nextfp = p[frame::link_offset]; 712 nextpc = p[frame::return_addr_offset]; 713 nextsp = (uintptr_t)&p[frame::sender_sp_offset]; 714 } 715 716 if (bcx == -1ULL) 717 bcx = p[frame::interpreter_frame_bcp_offset]; 718 719 if (Interpreter::contains((address)pc)) { 720 Method* m = (Method*)p[frame::interpreter_frame_method_offset]; 721 if(m && m->is_method()) { 722 printbc(m, bcx); 723 } else 724 printf("not a Method\n"); 725 } else { 726 CodeBlob *cb = CodeCache::find_blob((address)pc); 727 if (cb != nullptr) { 728 if (cb->is_nmethod()) { 729 ResourceMark rm; 730 nmethod* nm = (nmethod*)cb; 731 printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string()); 732 } else if (cb->name()) { 733 printf("CodeBlob %s\n", cb->name()); 734 } 735 } 736 } 737 } 738 739 extern "C" void npf() { 740 CodeBlob *cb = CodeCache::find_blob((address)nextpc); 741 // C2 does not always chain the frame pointers when it can, instead 742 // preferring to use fixed offsets from SP, so a simple leave() does 743 // not work. Instead, it adds the frame size to SP then pops FP and 744 // LR. We have to do the same thing to get a good call chain. 745 if (cb && cb->frame_size()) 746 nextfp = nextsp + wordSize * (cb->frame_size() - 2); 747 internal_pf (nextsp, nextfp, nextpc, -1); 748 } 749 750 extern "C" void pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, 751 uintptr_t bcx, uintptr_t thread) { 752 if (!reg_map) { 753 reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtInternal); 754 ::new (reg_map) RegisterMap(reinterpret_cast<JavaThread*>(thread), 755 RegisterMap::UpdateMap::skip, 756 RegisterMap::ProcessFrames::include, 757 RegisterMap::WalkContinuation::skip); 758 } else { 759 *reg_map = RegisterMap(reinterpret_cast<JavaThread*>(thread), 760 RegisterMap::UpdateMap::skip, 761 RegisterMap::ProcessFrames::include, 762 RegisterMap::WalkContinuation::skip); 763 } 764 765 { 766 CodeBlob *cb = CodeCache::find_blob((address)pc); 767 if (cb && cb->frame_size()) 768 fp = sp + wordSize * (cb->frame_size() - 2); 769 } 770 internal_pf(sp, fp, pc, bcx); 771 } 772 773 // support for printing out where we are in a Java method 774 // needs to be passed current fp and bcp register values 775 // prints method name, bc index and bytecode name 776 extern "C" void pm(uintptr_t fp, uintptr_t bcx) { 777 DESCRIBE_FP_OFFSET(interpreter_frame_method); 778 uintptr_t *p = (uintptr_t *)fp; 779 Method* m = (Method*)p[frame::interpreter_frame_method_offset]; 780 printbc(m, bcx); 781 } 782 783 #ifndef PRODUCT 784 // This is a generic constructor which is only used by pns() in debug.cpp. 785 frame::frame(void* sp, void* fp, void* pc) { 786 init((intptr_t*)sp, (intptr_t*)fp, (address)pc); 787 } 788 789 #endif 790 791 void JavaFrameAnchor::make_walkable() { 792 // last frame set? 793 if (last_Java_sp() == nullptr) return; 794 // already walkable? 795 if (walkable()) return; 796 vmassert(last_Java_sp() != nullptr, "not called from Java code?"); 797 vmassert(last_Java_pc() == nullptr, "already walkable"); 798 _last_Java_pc = (address)_last_Java_sp[-1]; 799 vmassert(walkable(), "something went wrong"); 800 }