1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 #include "compiler/oopMap.hpp"
 27 #include "interpreter/interpreter.hpp"
 28 #include "memory/resourceArea.hpp"
 29 #include "memory/universe.hpp"
 30 #include "oops/markWord.hpp"
 31 #include "oops/method.hpp"
 32 #include "oops/oop.inline.hpp"
 33 #include "prims/methodHandles.hpp"
 34 #include "runtime/frame.inline.hpp"
 35 #include "runtime/handles.inline.hpp"
 36 #include "runtime/javaCalls.hpp"
 37 #include "runtime/monitorChunk.hpp"
 38 #include "runtime/os.inline.hpp"
 39 #include "runtime/signature.hpp"
 40 #include "runtime/stackWatermarkSet.hpp"
 41 #include "runtime/stubCodeGenerator.hpp"
 42 #include "runtime/stubRoutines.hpp"
 43 #include "vmreg_aarch64.inline.hpp"
 44 #ifdef COMPILER1
 45 #include "c1/c1_Runtime1.hpp"
 46 #include "runtime/vframeArray.hpp"
 47 #endif
 48 
 49 #ifdef ASSERT
 50 void RegisterMap::check_location_valid() {
 51 }
 52 #endif
 53 
 54 
 55 // Profiling/safepoint support
 56 
 57 bool frame::safe_for_sender(JavaThread *thread) {
 58   if (is_heap_frame()) {
 59     return true;
 60   }
 61   address   sp = (address)_sp;
 62   address   fp = (address)_fp;
 63   address   unextended_sp = (address)_unextended_sp;
 64 
 65   // consider stack guards when trying to determine "safe" stack pointers
 66   // sp must be within the usable part of the stack (not in guards)
 67   if (!thread->is_in_usable_stack(sp)) {
 68     return false;
 69   }
 70 
 71   // When we are running interpreted code the machine stack pointer, SP, is
 72   // set low enough so that the Java expression stack can grow and shrink
 73   // without ever exceeding the machine stack bounds.  So, ESP >= SP.
 74 
 75   // When we call out of an interpreted method, SP is incremented so that
 76   // the space between SP and ESP is removed.  The SP saved in the callee's
 77   // frame is the SP *before* this increment.  So, when we walk a stack of
 78   // interpreter frames the sender's SP saved in a frame might be less than
 79   // the SP at the point of call.
 80 
 81   // So unextended sp must be within the stack but we need not to check
 82   // that unextended sp >= sp
 83   if (!thread->is_in_full_stack_checked(unextended_sp)) {
 84     return false;
 85   }
 86 
 87   // an fp must be within the stack and above (but not equal) sp
 88   // second evaluation on fp+ is added to handle situation where fp is -1
 89   bool fp_safe = thread->is_in_stack_range_excl(fp, sp) &&
 90                  thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*)));
 91 
 92   // We know sp/unextended_sp are safe only fp is questionable here
 93 
 94   // If the current frame is known to the code cache then we can attempt to
 95   // to construct the sender and do some validation of it. This goes a long way
 96   // toward eliminating issues when we get in frame construction code
 97 
 98   if (_cb != nullptr ) {
 99 
100     // First check if frame is complete and tester is reliable
101     // Unfortunately we can only check frame complete for runtime stubs and nmethod
102     // other generic buffer blobs are more problematic so we just assume they are
103     // ok. adapter blobs never have a frame complete and are never ok.
104 
105     if (!_cb->is_frame_complete_at(_pc)) {
106       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
107         return false;
108       }
109     }
110 
111     // Could just be some random pointer within the codeBlob
112     if (!_cb->code_contains(_pc)) {
113       return false;
114     }
115 
116     // Entry frame checks
117     if (is_entry_frame()) {
118       // an entry frame must have a valid fp.
119       return fp_safe && is_entry_frame_valid(thread);
120     } else if (is_upcall_stub_frame()) {
121       return fp_safe;
122     }
123 
124     intptr_t* sender_sp = nullptr;
125     intptr_t* sender_unextended_sp = nullptr;
126     address   sender_pc = nullptr;
127     intptr_t* saved_fp =  nullptr;
128 
129     if (is_interpreted_frame()) {
130       // fp must be safe
131       if (!fp_safe) {
132         return false;
133       }
134 
135       // for interpreted frames, the value below is the sender "raw" sp,
136       // which can be different from the sender unextended sp (the sp seen
137       // by the sender) because of current frame local variables
138       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
139       sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
140       saved_fp = (intptr_t*) this->fp()[link_offset];
141       sender_pc = pauth_strip_verifiable((address) this->fp()[return_addr_offset]);
142     } else {
143       // must be some sort of compiled/runtime frame
144       // fp does not have to be safe (although it could be check for c1?)
145 
146       // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
147       if (_cb->frame_size() <= 0) {
148         return false;
149       }
150 
151       sender_sp = _unextended_sp + _cb->frame_size();
152       // Is sender_sp safe?
153       if (!thread->is_in_full_stack_checked((address)sender_sp)) {
154         return false;
155       }
156       // Note: frame::sender_sp_offset is only valid for compiled frame
157       intptr_t **saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
158       saved_fp = *saved_fp_addr;
159       // Note: PAC authentication may fail in case broken frame is passed in.
160       // Just strip it for now.
161       sender_pc = pauth_strip_pointer((address) *(sender_sp - 1));
162 
163       // Repair the sender sp if this is a method with scalarized inline type args
164       sender_sp = repair_sender_sp(sender_sp, saved_fp_addr);
165       sender_unextended_sp = sender_sp;
166     }
167     if (Continuation::is_return_barrier_entry(sender_pc)) {
168       // sender_pc might be invalid so check that the frame
169       // actually belongs to a Continuation.
170       if (!Continuation::is_frame_in_continuation(thread, *this)) {
171         return false;
172       }
173       // If our sender_pc is the return barrier, then our "real" sender is the continuation entry
174       frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp);
175       sender_sp = s.sp();
176       sender_pc = s.pc();
177     }
178 
179     // If the potential sender is the interpreter then we can do some more checking
180     if (Interpreter::contains(sender_pc)) {
181 
182       // fp is always saved in a recognizable place in any code we generate. However
183       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
184       // is really a frame pointer.
185 
186       if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
187         return false;
188       }
189 
190       // construct the potential sender
191 
192       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
193 
194       return sender.is_interpreted_frame_valid(thread);
195 
196     }
197 
198     // We must always be able to find a recognizable pc
199     CodeBlob* sender_blob = CodeCache::find_blob(sender_pc);
200     if (sender_pc == nullptr ||  sender_blob == nullptr) {
201       return false;
202     }
203 
204     // Could just be some random pointer within the codeBlob
205     if (!sender_blob->code_contains(sender_pc)) {
206       return false;
207     }
208 
209     // We should never be able to see an adapter if the current frame is something from code cache
210     if (sender_blob->is_adapter_blob()) {
211       return false;
212     }
213 
214     // Could be the call_stub
215     if (StubRoutines::returns_to_call_stub(sender_pc)) {
216       if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
217         return false;
218       }
219 
220       // construct the potential sender
221 
222       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
223 
224       // Validate the JavaCallWrapper an entry frame must have
225       address jcw = (address)sender.entry_frame_call_wrapper();
226 
227       return thread->is_in_stack_range_excl(jcw, (address)sender.fp());
228     } else if (sender_blob->is_upcall_stub()) {
229       return false;
230     }
231 
232     nmethod* nm = sender_blob->as_nmethod_or_null();
233     if (nm != nullptr) {
234       if (nm->is_deopt_entry(sender_pc) || nm->method()->is_method_handle_intrinsic()) {
235         return false;
236       }
237     }
238 
239     // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
240     // because the return address counts against the callee's frame.
241 
242     if (sender_blob->frame_size() <= 0) {
243       assert(!sender_blob->is_nmethod(), "should count return address at least");
244       return false;
245     }
246 
247     // We should never be able to see anything here except an nmethod. If something in the
248     // code cache (current frame) is called by an entity within the code cache that entity
249     // should not be anything but the call stub (already covered), the interpreter (already covered)
250     // or an nmethod.
251 
252     if (!sender_blob->is_nmethod()) {
253         return false;
254     }
255 
256     // Could put some more validation for the potential non-interpreted sender
257     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
258 
259     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
260 
261     // We've validated the potential sender that would be created
262     return true;
263   }
264 
265   // Must be native-compiled frame. Since sender will try and use fp to find
266   // linkages it must be safe
267 
268   if (!fp_safe) {
269     return false;
270   }
271 
272   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
273 
274   if ( (address) this->fp()[return_addr_offset] == nullptr) return false;
275 
276 
277   // could try and do some more potential verification of native frame if we could think of some...
278 
279   return true;
280 
281 }
282 
283 void frame::patch_pc(Thread* thread, address pc) {
284   assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
285   address* pc_addr = &(((address*) sp())[-1]);
286   address signed_pc = pauth_sign_return_address(pc);
287   address pc_old = pauth_strip_verifiable(*pc_addr);
288 
289   if (TracePcPatching) {
290     tty->print("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
291                   p2i(pc_addr), p2i(pc_old), p2i(pc));
292     if (VM_Version::use_rop_protection()) {
293       tty->print(" [signed " INTPTR_FORMAT " -> " INTPTR_FORMAT "]", p2i(*pc_addr), p2i(signed_pc));
294     }
295     tty->print_cr("");
296   }
297 
298   assert(!Continuation::is_return_barrier_entry(pc_old), "return barrier");
299 
300   // Either the return address is the original one or we are going to
301   // patch in the same address that's already there.
302   assert(_pc == pc_old || pc == pc_old || pc_old == nullptr, "");
303   DEBUG_ONLY(address old_pc = _pc;)
304   *pc_addr = signed_pc;
305   _pc = pc; // must be set before call to get_deopt_original_pc
306   address original_pc = get_deopt_original_pc();
307   if (original_pc != nullptr) {
308     assert(original_pc == old_pc, "expected original PC to be stored before patching");
309     _deopt_state = is_deoptimized;
310     _pc = original_pc;
311   } else {
312     _deopt_state = not_deoptimized;
313   }
314 }
315 
316 intptr_t* frame::entry_frame_argument_at(int offset) const {
317   // convert offset to index to deal with tsi
318   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
319   // Entry frame's arguments are always in relation to unextended_sp()
320   return &unextended_sp()[index];
321 }
322 
323 // locals
324 
325 void frame::interpreter_frame_set_locals(intptr_t* locs)  {
326   assert(is_interpreted_frame(), "interpreted frame expected");
327   // set relativized locals
328   ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp()));
329 }
330 
331 // sender_sp
332 
333 intptr_t* frame::interpreter_frame_sender_sp() const {
334   assert(is_interpreted_frame(), "interpreted frame expected");
335   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
336 }
337 
338 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
339   assert(is_interpreted_frame(), "interpreted frame expected");
340   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
341 }
342 
343 
344 // monitor elements
345 
346 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
347   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
348 }
349 
350 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
351   BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset);
352   // make sure the pointer points inside the frame
353   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
354   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
355   return result;
356 }
357 
358 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
359   assert(is_interpreted_frame(), "interpreted frame expected");
360   // set relativized monitor_block_top
361   ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp());
362   assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, "");
363 }
364 
365 // Used by template based interpreter deoptimization
366 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
367   assert(is_interpreted_frame(), "interpreted frame expected");
368   // set relativized last_sp
369   ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0);
370 }
371 
372 // Used by template based interpreter deoptimization
373 void frame::interpreter_frame_set_extended_sp(intptr_t* sp) {
374   assert(is_interpreted_frame(), "interpreted frame expected");
375   // set relativized extended_sp
376   ptr_at_put(interpreter_frame_extended_sp_offset, (sp - fp()));
377 }
378 
379 frame frame::sender_for_entry_frame(RegisterMap* map) const {
380   assert(map != nullptr, "map must be set");
381   // Java frame called from C; skip all C frames and return top C
382   // frame of that chunk as the sender
383   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
384   assert(!entry_frame_is_first(), "next Java fp must be non zero");
385   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
386   // Since we are walking the stack now this nested anchor is obviously walkable
387   // even if it wasn't when it was stacked.
388   jfa->make_walkable();
389   map->clear();
390   assert(map->include_argument_oops(), "should be set by clear");
391   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
392   fr.set_sp_is_trusted();
393 
394   return fr;
395 }
396 
397 UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const {
398   assert(frame.is_upcall_stub_frame(), "wrong frame");
399   // need unextended_sp here, since normal sp is wrong for interpreter callees
400   return reinterpret_cast<UpcallStub::FrameData*>(
401     reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset));
402 }
403 
404 bool frame::upcall_stub_frame_is_first() const {
405   assert(is_upcall_stub_frame(), "must be optimzed entry frame");
406   UpcallStub* blob = _cb->as_upcall_stub();
407   JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
408   return jfa->last_Java_sp() == nullptr;
409 }
410 
411 frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const {
412   assert(map != nullptr, "map must be set");
413   UpcallStub* blob = _cb->as_upcall_stub();
414   // Java frame called from C; skip all C frames and return top C
415   // frame of that chunk as the sender
416   JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
417   assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to");
418   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
419   // Since we are walking the stack now this nested anchor is obviously walkable
420   // even if it wasn't when it was stacked.
421   jfa->make_walkable();
422   map->clear();
423   assert(map->include_argument_oops(), "should be set by clear");
424   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
425 
426   return fr;
427 }
428 
429 #if defined(ASSERT)
430 static address get_register_address_in_stub(const frame& stub_fr, VMReg reg) {
431   RegisterMap map(nullptr,
432                   RegisterMap::UpdateMap::include,
433                   RegisterMap::ProcessFrames::skip,
434                   RegisterMap::WalkContinuation::skip);
435   stub_fr.oop_map()->update_register_map(&stub_fr, &map);
436   return map.location(reg, stub_fr.sp());
437 }
438 #endif
439 
440 JavaThread** frame::saved_thread_address(const frame& f) {
441   CodeBlob* cb = f.cb();
442   assert(cb != nullptr && cb->is_runtime_stub(), "invalid frame");
443 
444   JavaThread** thread_addr;
445 #ifdef COMPILER1
446   if (cb == Runtime1::blob_for(StubId::c1_monitorenter_id) ||
447       cb == Runtime1::blob_for(StubId::c1_monitorenter_nofpu_id)) {
448     thread_addr = (JavaThread**)(f.sp() + Runtime1::runtime_blob_current_thread_offset(f));
449   } else
450 #endif
451   {
452     // c2 only saves rbp in the stub frame so nothing to do.
453     thread_addr = nullptr;
454   }
455   assert(get_register_address_in_stub(f, SharedRuntime::thread_register()) == (address)thread_addr, "wrong thread address");
456   return thread_addr;
457 }
458 
459 //------------------------------------------------------------------------------
460 // frame::sender_for_interpreter_frame
461 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
462   // SP is the raw SP from the sender after adapter or interpreter
463   // extension.
464   intptr_t* sender_sp = this->sender_sp();
465 
466   // This is the sp before any possible extension (adapter/locals).
467   intptr_t* unextended_sp = interpreter_frame_sender_sp();
468   intptr_t* sender_fp = link();
469 
470 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
471   if (map->update_map()) {
472     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
473   }
474 #endif // defined(COMPILER1) || COMPILER1_OR_COMPILER2
475 
476   // For ROP protection, Interpreter will have signed the sender_pc,
477   // but there is no requirement to authenticate it here.
478   address sender_pc = pauth_strip_verifiable(sender_pc_maybe_signed());
479 
480   if (Continuation::is_return_barrier_entry(sender_pc)) {
481     if (map->walk_cont()) { // about to walk into an h-stack
482       return Continuation::top_frame(*this, map);
483     } else {
484       return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp);
485     }
486   }
487 
488   return frame(sender_sp, unextended_sp, sender_fp, sender_pc);
489 }
490 
491 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
492   assert(is_interpreted_frame(), "Not an interpreted frame");
493   // These are reasonable sanity checks
494   if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) {
495     return false;
496   }
497   if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) {
498     return false;
499   }
500   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
501     return false;
502   }
503   // These are hacks to keep us out of trouble.
504   // The problem with these is that they mask other problems
505   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
506     return false;
507   }
508 
509   // do some validation of frame elements
510 
511   // first the method
512 
513   Method* m = safe_interpreter_frame_method();
514 
515   // validate the method we'd find in this potential sender
516   if (!Method::is_valid_method(m)) return false;
517 
518   // stack frames shouldn't be much larger than max_stack elements
519   // this test requires the use of unextended_sp which is the sp as seen by
520   // the current frame, and not sp which is the "raw" pc which could point
521   // further because of local variables of the callee method inserted after
522   // method arguments
523   if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
524     return false;
525   }
526 
527   // validate bci/bcx
528 
529   address  bcp    = interpreter_frame_bcp();
530   if (m->validate_bci_from_bcp(bcp) < 0) {
531     return false;
532   }
533 
534   // validate constantPoolCache*
535   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
536   if (MetaspaceObj::is_valid(cp) == false) return false;
537 
538   // validate locals
539 
540   address locals =  (address)interpreter_frame_locals();
541   return thread->is_in_stack_range_incl(locals, (address)fp());
542 }
543 
544 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
545   assert(is_interpreted_frame(), "interpreted frame expected");
546   Method* method = interpreter_frame_method();
547   BasicType type = method->result_type();
548 
549   intptr_t* tos_addr;
550   if (method->is_native()) {
551     // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0
552     // Prior to calling into the runtime to report the method_exit the possible
553     // return value is pushed to the native stack. If the result is a jfloat/jdouble
554     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
555     tos_addr = (intptr_t*)sp();
556     if (type == T_FLOAT || type == T_DOUBLE) {
557       // This is times two because we do a push(ltos) after pushing XMM0
558       // and that takes two interpreter stack slots.
559       tos_addr += 2 * Interpreter::stackElementWords;
560     }
561   } else {
562     tos_addr = (intptr_t*)interpreter_frame_tos_address();
563   }
564 
565   switch (type) {
566     case T_OBJECT  :
567     case T_ARRAY   : {
568       oop obj;
569       if (method->is_native()) {
570         obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
571       } else {
572         oop* obj_p = (oop*)tos_addr;
573         obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p;
574       }
575       assert(Universe::is_in_heap_or_null(obj), "sanity check");
576       *oop_result = obj;
577       break;
578     }
579     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
580     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
581     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
582     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
583     case T_INT     : value_result->i = *(jint*)tos_addr; break;
584     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
585     case T_FLOAT   : {
586         value_result->f = *(jfloat*)tos_addr;
587       break;
588     }
589     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
590     case T_VOID    : /* Nothing to do */ break;
591     default        : ShouldNotReachHere();
592   }
593 
594   return type;
595 }
596 
597 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
598   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
599   return &interpreter_frame_tos_address()[index];
600 }
601 
602 #ifndef PRODUCT
603 
604 #define DESCRIBE_FP_OFFSET(name) \
605   values.describe(frame_no, fp() + frame::name##_offset, #name)
606 
607 void frame::describe_pd(FrameValues& values, int frame_no) {
608   if (is_interpreted_frame()) {
609     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
610     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
611     DESCRIBE_FP_OFFSET(interpreter_frame_method);
612     DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
613     DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
614     DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
615     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
616     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
617     DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
618     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
619   }
620 
621   if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) {
622     intptr_t* ret_pc_loc;
623     intptr_t* fp_loc;
624     if (is_interpreted_frame()) {
625       ret_pc_loc = fp() + return_addr_offset;
626       fp_loc = fp();
627     } else {
628       ret_pc_loc = real_fp() - return_addr_offset;
629       fp_loc = real_fp() - sender_sp_offset;
630       if (cb()->is_nmethod() && cb()->as_nmethod_or_null()->needs_stack_repair()) {
631         values.describe(frame_no, fp_loc - 1, err_msg("fsize for #%d", frame_no), 1);
632       }
633     }
634     address ret_pc = *(address*)ret_pc_loc;
635     values.describe(frame_no, ret_pc_loc,
636       Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address");
637     values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender
638   }
639 }
640 #endif
641 
642 intptr_t *frame::initial_deoptimization_info() {
643   // Not used on aarch64, but we must return something.
644   return nullptr;
645 }
646 
647 #undef DESCRIBE_FP_OFFSET
648 
649 #define DESCRIBE_FP_OFFSET(name)                     \
650   {                                                  \
651     uintptr_t *p = (uintptr_t *)fp;                  \
652     printf(INTPTR_FORMAT " " INTPTR_FORMAT " %s\n",  \
653            (uintptr_t)(p + frame::name##_offset),    \
654            p[frame::name##_offset], #name);          \
655   }
656 
657 static THREAD_LOCAL uintptr_t nextfp;
658 static THREAD_LOCAL uintptr_t nextpc;
659 static THREAD_LOCAL uintptr_t nextsp;
660 static THREAD_LOCAL RegisterMap *reg_map;
661 
662 static void printbc(Method *m, intptr_t bcx) {
663   const char *name;
664   char buf[16];
665   if (m->validate_bci_from_bcp((address)bcx) < 0
666       || !m->contains((address)bcx)) {
667     name = "???";
668     os::snprintf_checked(buf, sizeof buf, "(bad)");
669   } else {
670     int bci = m->bci_from((address)bcx);
671     os::snprintf_checked(buf, sizeof buf, "%d", bci);
672     name = Bytecodes::name(m->code_at(bci));
673   }
674   ResourceMark rm;
675   printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name);
676 }
677 
678 static void internal_pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, uintptr_t bcx) {
679   if (! fp)
680     return;
681 
682   DESCRIBE_FP_OFFSET(return_addr);
683   DESCRIBE_FP_OFFSET(link);
684   DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
685   DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
686   DESCRIBE_FP_OFFSET(interpreter_frame_method);
687   DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
688   DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
689   DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
690   DESCRIBE_FP_OFFSET(interpreter_frame_cache);
691   DESCRIBE_FP_OFFSET(interpreter_frame_locals);
692   DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
693   DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
694   uintptr_t *p = (uintptr_t *)fp;
695 
696   // We want to see all frames, native and Java.  For compiled and
697   // interpreted frames we have special information that allows us to
698   // unwind them; for everything else we assume that the native frame
699   // pointer chain is intact.
700   frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc);
701   if (this_frame.is_compiled_frame() ||
702       this_frame.is_interpreted_frame()) {
703     frame sender = this_frame.sender(reg_map);
704     nextfp = (uintptr_t)sender.fp();
705     nextpc = (uintptr_t)sender.pc();
706     nextsp = (uintptr_t)sender.unextended_sp();
707   } else {
708     nextfp = p[frame::link_offset];
709     nextpc = p[frame::return_addr_offset];
710     nextsp = (uintptr_t)&p[frame::sender_sp_offset];
711   }
712 
713   if (bcx == -1ULL)
714     bcx = p[frame::interpreter_frame_bcp_offset];
715 
716   if (Interpreter::contains((address)pc)) {
717     Method* m = (Method*)p[frame::interpreter_frame_method_offset];
718     if(m && m->is_method()) {
719       printbc(m, bcx);
720     } else
721       printf("not a Method\n");
722   } else {
723     CodeBlob *cb = CodeCache::find_blob((address)pc);
724     if (cb != nullptr) {
725       if (cb->is_nmethod()) {
726         ResourceMark rm;
727         nmethod* nm = (nmethod*)cb;
728         printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string());
729       } else if (cb->name()) {
730         printf("CodeBlob %s\n", cb->name());
731       }
732     }
733   }
734 }
735 
736 extern "C" void npf() {
737   CodeBlob *cb = CodeCache::find_blob((address)nextpc);
738   // C2 does not always chain the frame pointers when it can, instead
739   // preferring to use fixed offsets from SP, so a simple leave() does
740   // not work.  Instead, it adds the frame size to SP then pops FP and
741   // LR.  We have to do the same thing to get a good call chain.
742   if (cb && cb->frame_size())
743     nextfp = nextsp + wordSize * (cb->frame_size() - 2);
744   internal_pf (nextsp, nextfp, nextpc, -1);
745 }
746 
747 extern "C" void pf(uintptr_t sp, uintptr_t fp, uintptr_t pc,
748                    uintptr_t bcx, uintptr_t thread) {
749   if (!reg_map) {
750     reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtInternal);
751     ::new (reg_map) RegisterMap(reinterpret_cast<JavaThread*>(thread),
752                                 RegisterMap::UpdateMap::skip,
753                                 RegisterMap::ProcessFrames::include,
754                                 RegisterMap::WalkContinuation::skip);
755   } else {
756     *reg_map = RegisterMap(reinterpret_cast<JavaThread*>(thread),
757                            RegisterMap::UpdateMap::skip,
758                            RegisterMap::ProcessFrames::include,
759                            RegisterMap::WalkContinuation::skip);
760   }
761 
762   {
763     CodeBlob *cb = CodeCache::find_blob((address)pc);
764     if (cb && cb->frame_size())
765       fp = sp + wordSize * (cb->frame_size() - 2);
766   }
767   internal_pf(sp, fp, pc, bcx);
768 }
769 
770 // support for printing out where we are in a Java method
771 // needs to be passed current fp and bcp register values
772 // prints method name, bc index and bytecode name
773 extern "C" void pm(uintptr_t fp, uintptr_t bcx) {
774   DESCRIBE_FP_OFFSET(interpreter_frame_method);
775   uintptr_t *p = (uintptr_t *)fp;
776   Method* m = (Method*)p[frame::interpreter_frame_method_offset];
777   printbc(m, bcx);
778 }
779 
780 #ifndef PRODUCT
781 // This is a generic constructor which is only used by pns() in debug.cpp.
782 frame::frame(void* sp, void* fp, void* pc) {
783   init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
784 }
785 
786 #endif
787 
788 // Check for a method with scalarized inline type arguments that needs
789 // a stack repair and return the repaired sender stack pointer.
790 intptr_t* frame::repair_sender_sp(intptr_t* sender_sp, intptr_t** saved_fp_addr) const {
791   nmethod* nm = _cb->as_nmethod_or_null();
792   if (nm != nullptr && nm->needs_stack_repair()) {
793     // The stack increment resides just below the saved FP on the stack and
794     // records the total frame size excluding the two words for saving FP and LR.
795     intptr_t* sp_inc_addr = (intptr_t*) (saved_fp_addr - 1);
796     assert(*sp_inc_addr % StackAlignmentInBytes == 0, "sp_inc not aligned");
797     int real_frame_size = (*sp_inc_addr / wordSize) + 2;
798     assert(real_frame_size >= _cb->frame_size() && real_frame_size <= 1000000, "invalid frame size");
799     sender_sp = unextended_sp() + real_frame_size;
800   }
801   return sender_sp;
802 }
803 
804 intptr_t* frame::repair_sender_sp(nmethod* nm, intptr_t* sp, intptr_t** saved_fp_addr) {
805   assert(nm != nullptr && nm->needs_stack_repair(), "");
806   // The stack increment resides just below the saved FP on the stack and
807   // records the total frame size excluding the two words for saving FP and LR.
808   intptr_t* real_frame_size_addr = (intptr_t*) (saved_fp_addr - 1);
809   int real_frame_size = (*real_frame_size_addr / wordSize) + 2;
810   assert(real_frame_size >= nm->frame_size() && real_frame_size <= 1000000, "invalid frame size");
811   return sp + real_frame_size;
812 }
813 
814 bool frame::was_augmented_on_entry(int& real_size) const {
815   assert(is_compiled_frame(), "");
816   if (_cb->as_nmethod_or_null()->needs_stack_repair()) {
817     intptr_t* real_frame_size_addr = unextended_sp() + _cb->frame_size() - sender_sp_offset - 1;
818     log_trace(continuations)("real_frame_size is addr is " INTPTR_FORMAT, p2i(real_frame_size_addr));
819     real_size = (*real_frame_size_addr / wordSize) + 2;
820     return real_size != _cb->frame_size();
821   }
822   real_size = _cb->frame_size();
823   return false;
824 }
825 
826 void JavaFrameAnchor::make_walkable() {
827   // last frame set?
828   if (last_Java_sp() == nullptr) return;
829   // already walkable?
830   if (walkable()) return;
831   vmassert(last_Java_sp() != nullptr, "not called from Java code?");
832   _last_Java_pc = (address)_last_Java_sp[-1];
833   vmassert(walkable(), "something went wrong");
834 }