1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "compiler/oopMap.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "memory/universe.hpp" 30 #include "oops/markWord.hpp" 31 #include "oops/method.hpp" 32 #include "oops/oop.inline.hpp" 33 #include "prims/methodHandles.hpp" 34 #include "runtime/frame.inline.hpp" 35 #include "runtime/handles.inline.hpp" 36 #include "runtime/javaCalls.hpp" 37 #include "runtime/monitorChunk.hpp" 38 #include "runtime/os.inline.hpp" 39 #include "runtime/signature.hpp" 40 #include "runtime/stackWatermarkSet.hpp" 41 #include "runtime/stubCodeGenerator.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "vmreg_aarch64.inline.hpp" 44 #ifdef COMPILER1 45 #include "c1/c1_Runtime1.hpp" 46 #include "runtime/vframeArray.hpp" 47 #endif 48 49 #ifdef ASSERT 50 void RegisterMap::check_location_valid() { 51 } 52 #endif 53 54 55 // Profiling/safepoint support 56 57 bool frame::safe_for_sender(JavaThread *thread) { 58 if (is_heap_frame()) { 59 return true; 60 } 61 address sp = (address)_sp; 62 address fp = (address)_fp; 63 address unextended_sp = (address)_unextended_sp; 64 65 // consider stack guards when trying to determine "safe" stack pointers 66 // sp must be within the usable part of the stack (not in guards) 67 if (!thread->is_in_usable_stack(sp)) { 68 return false; 69 } 70 71 // When we are running interpreted code the machine stack pointer, SP, is 72 // set low enough so that the Java expression stack can grow and shrink 73 // without ever exceeding the machine stack bounds. So, ESP >= SP. 74 75 // When we call out of an interpreted method, SP is incremented so that 76 // the space between SP and ESP is removed. The SP saved in the callee's 77 // frame is the SP *before* this increment. So, when we walk a stack of 78 // interpreter frames the sender's SP saved in a frame might be less than 79 // the SP at the point of call. 80 81 // So unextended sp must be within the stack but we need not to check 82 // that unextended sp >= sp 83 if (!thread->is_in_full_stack_checked(unextended_sp)) { 84 return false; 85 } 86 87 // an fp must be within the stack and above (but not equal) sp 88 // second evaluation on fp+ is added to handle situation where fp is -1 89 bool fp_safe = thread->is_in_stack_range_excl(fp, sp) && 90 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*))); 91 92 // We know sp/unextended_sp are safe only fp is questionable here 93 94 // If the current frame is known to the code cache then we can attempt to 95 // to construct the sender and do some validation of it. This goes a long way 96 // toward eliminating issues when we get in frame construction code 97 98 if (_cb != nullptr ) { 99 100 // First check if frame is complete and tester is reliable 101 // Unfortunately we can only check frame complete for runtime stubs and nmethod 102 // other generic buffer blobs are more problematic so we just assume they are 103 // ok. adapter blobs never have a frame complete and are never ok. 104 105 if (!_cb->is_frame_complete_at(_pc)) { 106 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 107 return false; 108 } 109 } 110 111 // Could just be some random pointer within the codeBlob 112 if (!_cb->code_contains(_pc)) { 113 return false; 114 } 115 116 // Entry frame checks 117 if (is_entry_frame()) { 118 // an entry frame must have a valid fp. 119 return fp_safe && is_entry_frame_valid(thread); 120 } else if (is_upcall_stub_frame()) { 121 return fp_safe; 122 } 123 124 intptr_t* sender_sp = nullptr; 125 intptr_t* sender_unextended_sp = nullptr; 126 address sender_pc = nullptr; 127 intptr_t* saved_fp = nullptr; 128 129 if (is_interpreted_frame()) { 130 // fp must be safe 131 if (!fp_safe) { 132 return false; 133 } 134 135 // for interpreted frames, the value below is the sender "raw" sp, 136 // which can be different from the sender unextended sp (the sp seen 137 // by the sender) because of current frame local variables 138 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 139 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 140 saved_fp = (intptr_t*) this->fp()[link_offset]; 141 sender_pc = pauth_strip_verifiable((address) this->fp()[return_addr_offset]); 142 } else { 143 // must be some sort of compiled/runtime frame 144 // fp does not have to be safe (although it could be check for c1?) 145 146 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 147 if (_cb->frame_size() <= 0) { 148 return false; 149 } 150 151 sender_sp = _unextended_sp + _cb->frame_size(); 152 // Is sender_sp safe? 153 if (!thread->is_in_full_stack_checked((address)sender_sp)) { 154 return false; 155 } 156 // Note: frame::sender_sp_offset is only valid for compiled frame 157 intptr_t **saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset); 158 saved_fp = *saved_fp_addr; 159 // Note: PAC authentication may fail in case broken frame is passed in. 160 // Just strip it for now. 161 sender_pc = pauth_strip_pointer((address) *(sender_sp - 1)); 162 163 // Repair the sender sp if this is a method with scalarized inline type args 164 sender_sp = repair_sender_sp(sender_sp, saved_fp_addr); 165 sender_unextended_sp = sender_sp; 166 } 167 if (Continuation::is_return_barrier_entry(sender_pc)) { 168 // sender_pc might be invalid so check that the frame 169 // actually belongs to a Continuation. 170 if (!Continuation::is_frame_in_continuation(thread, *this)) { 171 return false; 172 } 173 // If our sender_pc is the return barrier, then our "real" sender is the continuation entry 174 frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp); 175 sender_sp = s.sp(); 176 sender_pc = s.pc(); 177 } 178 179 // If the potential sender is the interpreter then we can do some more checking 180 if (Interpreter::contains(sender_pc)) { 181 182 // fp is always saved in a recognizable place in any code we generate. However 183 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp 184 // is really a frame pointer. 185 186 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 187 return false; 188 } 189 190 // construct the potential sender 191 192 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 193 194 return sender.is_interpreted_frame_valid(thread); 195 196 } 197 198 // We must always be able to find a recognizable pc 199 CodeBlob* sender_blob = CodeCache::find_blob(sender_pc); 200 if (sender_pc == nullptr || sender_blob == nullptr) { 201 return false; 202 } 203 204 // Could just be some random pointer within the codeBlob 205 if (!sender_blob->code_contains(sender_pc)) { 206 return false; 207 } 208 209 // We should never be able to see an adapter if the current frame is something from code cache 210 if (sender_blob->is_adapter_blob()) { 211 return false; 212 } 213 214 // Could be the call_stub 215 if (StubRoutines::returns_to_call_stub(sender_pc)) { 216 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 217 return false; 218 } 219 220 // construct the potential sender 221 222 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 223 224 // Validate the JavaCallWrapper an entry frame must have 225 address jcw = (address)sender.entry_frame_call_wrapper(); 226 227 return thread->is_in_stack_range_excl(jcw, (address)sender.fp()); 228 } else if (sender_blob->is_upcall_stub()) { 229 return false; 230 } 231 232 nmethod* nm = sender_blob->as_nmethod_or_null(); 233 if (nm != nullptr) { 234 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 235 nm->method()->is_method_handle_intrinsic()) { 236 return false; 237 } 238 } 239 240 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 241 // because the return address counts against the callee's frame. 242 243 if (sender_blob->frame_size() <= 0) { 244 assert(!sender_blob->is_nmethod(), "should count return address at least"); 245 return false; 246 } 247 248 // We should never be able to see anything here except an nmethod. If something in the 249 // code cache (current frame) is called by an entity within the code cache that entity 250 // should not be anything but the call stub (already covered), the interpreter (already covered) 251 // or an nmethod. 252 253 if (!sender_blob->is_nmethod()) { 254 return false; 255 } 256 257 // Could put some more validation for the potential non-interpreted sender 258 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 259 260 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 261 262 // We've validated the potential sender that would be created 263 return true; 264 } 265 266 // Must be native-compiled frame. Since sender will try and use fp to find 267 // linkages it must be safe 268 269 if (!fp_safe) { 270 return false; 271 } 272 273 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 274 275 if ( (address) this->fp()[return_addr_offset] == nullptr) return false; 276 277 278 // could try and do some more potential verification of native frame if we could think of some... 279 280 return true; 281 282 } 283 284 void frame::patch_pc(Thread* thread, address pc) { 285 assert(_cb == CodeCache::find_blob(pc), "unexpected pc"); 286 address* pc_addr = &(((address*) sp())[-1]); 287 address signed_pc = pauth_sign_return_address(pc); 288 address pc_old = pauth_strip_verifiable(*pc_addr); 289 290 if (TracePcPatching) { 291 tty->print("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 292 p2i(pc_addr), p2i(pc_old), p2i(pc)); 293 if (VM_Version::use_rop_protection()) { 294 tty->print(" [signed " INTPTR_FORMAT " -> " INTPTR_FORMAT "]", p2i(*pc_addr), p2i(signed_pc)); 295 } 296 tty->print_cr(""); 297 } 298 299 assert(!Continuation::is_return_barrier_entry(pc_old), "return barrier"); 300 301 // Either the return address is the original one or we are going to 302 // patch in the same address that's already there. 303 assert(_pc == pc_old || pc == pc_old || pc_old == nullptr, ""); 304 DEBUG_ONLY(address old_pc = _pc;) 305 *pc_addr = signed_pc; 306 _pc = pc; // must be set before call to get_deopt_original_pc 307 address original_pc = get_deopt_original_pc(); 308 if (original_pc != nullptr) { 309 assert(original_pc == old_pc, "expected original PC to be stored before patching"); 310 _deopt_state = is_deoptimized; 311 _pc = original_pc; 312 } else { 313 _deopt_state = not_deoptimized; 314 } 315 } 316 317 intptr_t* frame::entry_frame_argument_at(int offset) const { 318 // convert offset to index to deal with tsi 319 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 320 // Entry frame's arguments are always in relation to unextended_sp() 321 return &unextended_sp()[index]; 322 } 323 324 // locals 325 326 void frame::interpreter_frame_set_locals(intptr_t* locs) { 327 assert(is_interpreted_frame(), "interpreted frame expected"); 328 // set relativized locals 329 ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp())); 330 } 331 332 // sender_sp 333 334 intptr_t* frame::interpreter_frame_sender_sp() const { 335 assert(is_interpreted_frame(), "interpreted frame expected"); 336 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 337 } 338 339 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 340 assert(is_interpreted_frame(), "interpreted frame expected"); 341 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 342 } 343 344 345 // monitor elements 346 347 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 348 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 349 } 350 351 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 352 BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset); 353 // make sure the pointer points inside the frame 354 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 355 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); 356 return result; 357 } 358 359 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 360 assert(is_interpreted_frame(), "interpreted frame expected"); 361 // set relativized monitor_block_top 362 ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp()); 363 assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, ""); 364 } 365 366 // Used by template based interpreter deoptimization 367 void frame::interpreter_frame_set_last_sp(intptr_t* sp) { 368 assert(is_interpreted_frame(), "interpreted frame expected"); 369 // set relativized last_sp 370 ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0); 371 } 372 373 // Used by template based interpreter deoptimization 374 void frame::interpreter_frame_set_extended_sp(intptr_t* sp) { 375 assert(is_interpreted_frame(), "interpreted frame expected"); 376 // set relativized extended_sp 377 ptr_at_put(interpreter_frame_extended_sp_offset, (sp - fp())); 378 } 379 380 frame frame::sender_for_entry_frame(RegisterMap* map) const { 381 assert(map != nullptr, "map must be set"); 382 // Java frame called from C; skip all C frames and return top C 383 // frame of that chunk as the sender 384 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 385 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 386 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 387 // Since we are walking the stack now this nested anchor is obviously walkable 388 // even if it wasn't when it was stacked. 389 jfa->make_walkable(); 390 map->clear(); 391 assert(map->include_argument_oops(), "should be set by clear"); 392 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 393 fr.set_sp_is_trusted(); 394 395 return fr; 396 } 397 398 UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const { 399 assert(frame.is_upcall_stub_frame(), "wrong frame"); 400 // need unextended_sp here, since normal sp is wrong for interpreter callees 401 return reinterpret_cast<UpcallStub::FrameData*>( 402 reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset)); 403 } 404 405 bool frame::upcall_stub_frame_is_first() const { 406 assert(is_upcall_stub_frame(), "must be optimzed entry frame"); 407 UpcallStub* blob = _cb->as_upcall_stub(); 408 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 409 return jfa->last_Java_sp() == nullptr; 410 } 411 412 frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const { 413 assert(map != nullptr, "map must be set"); 414 UpcallStub* blob = _cb->as_upcall_stub(); 415 // Java frame called from C; skip all C frames and return top C 416 // frame of that chunk as the sender 417 JavaFrameAnchor* jfa = blob->jfa_for_frame(*this); 418 assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to"); 419 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 420 // Since we are walking the stack now this nested anchor is obviously walkable 421 // even if it wasn't when it was stacked. 422 jfa->make_walkable(); 423 map->clear(); 424 assert(map->include_argument_oops(), "should be set by clear"); 425 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 426 427 return fr; 428 } 429 430 #if defined(ASSERT) 431 static address get_register_address_in_stub(const frame& stub_fr, VMReg reg) { 432 RegisterMap map(nullptr, 433 RegisterMap::UpdateMap::include, 434 RegisterMap::ProcessFrames::skip, 435 RegisterMap::WalkContinuation::skip); 436 stub_fr.oop_map()->update_register_map(&stub_fr, &map); 437 return map.location(reg, stub_fr.sp()); 438 } 439 #endif 440 441 JavaThread** frame::saved_thread_address(const frame& f) { 442 CodeBlob* cb = f.cb(); 443 assert(cb != nullptr && cb->is_runtime_stub(), "invalid frame"); 444 445 JavaThread** thread_addr; 446 #ifdef COMPILER1 447 if (cb == Runtime1::blob_for(C1StubId::monitorenter_id) || 448 cb == Runtime1::blob_for(C1StubId::monitorenter_nofpu_id)) { 449 thread_addr = (JavaThread**)(f.sp() + Runtime1::runtime_blob_current_thread_offset(f)); 450 } else 451 #endif 452 { 453 // c2 only saves rbp in the stub frame so nothing to do. 454 thread_addr = nullptr; 455 } 456 assert(get_register_address_in_stub(f, SharedRuntime::thread_register()) == (address)thread_addr, "wrong thread address"); 457 return thread_addr; 458 } 459 460 //------------------------------------------------------------------------------ 461 // frame::verify_deopt_original_pc 462 // 463 // Verifies the calculated original PC of a deoptimization PC for the 464 // given unextended SP. 465 #ifdef ASSERT 466 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp) { 467 frame fr; 468 469 // This is ugly but it's better than to change {get,set}_original_pc 470 // to take an SP value as argument. And it's only a debugging 471 // method anyway. 472 fr._unextended_sp = unextended_sp; 473 474 address original_pc = nm->get_original_pc(&fr); 475 assert(nm->insts_contains_inclusive(original_pc), 476 "original PC must be in the main code section of the compiled method (or must be immediately following it)"); 477 } 478 #endif 479 480 //------------------------------------------------------------------------------ 481 // frame::adjust_unextended_sp 482 #ifdef ASSERT 483 void frame::adjust_unextended_sp() { 484 // On aarch64, sites calling method handle intrinsics and lambda forms are treated 485 // as any other call site. Therefore, no special action is needed when we are 486 // returning to any of these call sites. 487 488 if (_cb != nullptr) { 489 nmethod* sender_nm = _cb->as_nmethod_or_null(); 490 if (sender_nm != nullptr) { 491 // If the sender PC is a deoptimization point, get the original PC. 492 if (sender_nm->is_deopt_entry(_pc) || 493 sender_nm->is_deopt_mh_entry(_pc)) { 494 verify_deopt_original_pc(sender_nm, _unextended_sp); 495 } 496 } 497 } 498 } 499 #endif 500 501 502 //------------------------------------------------------------------------------ 503 // frame::sender_for_interpreter_frame 504 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 505 // SP is the raw SP from the sender after adapter or interpreter 506 // extension. 507 intptr_t* sender_sp = this->sender_sp(); 508 509 // This is the sp before any possible extension (adapter/locals). 510 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 511 intptr_t* sender_fp = link(); 512 513 #if COMPILER2_OR_JVMCI 514 if (map->update_map()) { 515 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 516 } 517 #endif // COMPILER2_OR_JVMCI 518 519 // For ROP protection, Interpreter will have signed the sender_pc, 520 // but there is no requirement to authenticate it here. 521 address sender_pc = pauth_strip_verifiable(sender_pc_maybe_signed()); 522 523 if (Continuation::is_return_barrier_entry(sender_pc)) { 524 if (map->walk_cont()) { // about to walk into an h-stack 525 return Continuation::top_frame(*this, map); 526 } else { 527 return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp); 528 } 529 } 530 531 return frame(sender_sp, unextended_sp, sender_fp, sender_pc); 532 } 533 534 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 535 assert(is_interpreted_frame(), "Not an interpreted frame"); 536 // These are reasonable sanity checks 537 if (fp() == nullptr || (intptr_t(fp()) & (wordSize-1)) != 0) { 538 return false; 539 } 540 if (sp() == nullptr || (intptr_t(sp()) & (wordSize-1)) != 0) { 541 return false; 542 } 543 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 544 return false; 545 } 546 // These are hacks to keep us out of trouble. 547 // The problem with these is that they mask other problems 548 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 549 return false; 550 } 551 552 // do some validation of frame elements 553 554 // first the method 555 556 Method* m = safe_interpreter_frame_method(); 557 558 // validate the method we'd find in this potential sender 559 if (!Method::is_valid_method(m)) return false; 560 561 // stack frames shouldn't be much larger than max_stack elements 562 // this test requires the use of unextended_sp which is the sp as seen by 563 // the current frame, and not sp which is the "raw" pc which could point 564 // further because of local variables of the callee method inserted after 565 // method arguments 566 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 567 return false; 568 } 569 570 // validate bci/bcx 571 572 address bcp = interpreter_frame_bcp(); 573 if (m->validate_bci_from_bcp(bcp) < 0) { 574 return false; 575 } 576 577 // validate constantPoolCache* 578 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 579 if (MetaspaceObj::is_valid(cp) == false) return false; 580 581 // validate locals 582 583 address locals = (address)interpreter_frame_locals(); 584 return thread->is_in_stack_range_incl(locals, (address)fp()); 585 } 586 587 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 588 assert(is_interpreted_frame(), "interpreted frame expected"); 589 Method* method = interpreter_frame_method(); 590 BasicType type = method->result_type(); 591 592 intptr_t* tos_addr; 593 if (method->is_native()) { 594 // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0 595 // Prior to calling into the runtime to report the method_exit the possible 596 // return value is pushed to the native stack. If the result is a jfloat/jdouble 597 // then ST0 is saved before EAX/EDX. See the note in generate_native_result 598 tos_addr = (intptr_t*)sp(); 599 if (type == T_FLOAT || type == T_DOUBLE) { 600 // This is times two because we do a push(ltos) after pushing XMM0 601 // and that takes two interpreter stack slots. 602 tos_addr += 2 * Interpreter::stackElementWords; 603 } 604 } else { 605 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 606 } 607 608 switch (type) { 609 case T_OBJECT : 610 case T_ARRAY : { 611 oop obj; 612 if (method->is_native()) { 613 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 614 } else { 615 oop* obj_p = (oop*)tos_addr; 616 obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p; 617 } 618 assert(Universe::is_in_heap_or_null(obj), "sanity check"); 619 *oop_result = obj; 620 break; 621 } 622 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 623 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 624 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 625 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 626 case T_INT : value_result->i = *(jint*)tos_addr; break; 627 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 628 case T_FLOAT : { 629 value_result->f = *(jfloat*)tos_addr; 630 break; 631 } 632 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 633 case T_VOID : /* Nothing to do */ break; 634 default : ShouldNotReachHere(); 635 } 636 637 return type; 638 } 639 640 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 641 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 642 return &interpreter_frame_tos_address()[index]; 643 } 644 645 #ifndef PRODUCT 646 647 #define DESCRIBE_FP_OFFSET(name) \ 648 values.describe(frame_no, fp() + frame::name##_offset, #name) 649 650 void frame::describe_pd(FrameValues& values, int frame_no) { 651 if (is_interpreted_frame()) { 652 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 653 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 654 DESCRIBE_FP_OFFSET(interpreter_frame_method); 655 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 656 DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp); 657 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 658 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 659 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 660 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 661 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 662 } 663 664 if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) { 665 intptr_t* ret_pc_loc; 666 intptr_t* fp_loc; 667 if (is_interpreted_frame()) { 668 ret_pc_loc = fp() + return_addr_offset; 669 fp_loc = fp(); 670 } else { 671 ret_pc_loc = real_fp() - return_addr_offset; 672 fp_loc = real_fp() - sender_sp_offset; 673 } 674 address ret_pc = *(address*)ret_pc_loc; 675 values.describe(frame_no, ret_pc_loc, 676 Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address"); 677 values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender 678 } 679 } 680 #endif 681 682 intptr_t *frame::initial_deoptimization_info() { 683 // Not used on aarch64, but we must return something. 684 return nullptr; 685 } 686 687 #undef DESCRIBE_FP_OFFSET 688 689 #define DESCRIBE_FP_OFFSET(name) \ 690 { \ 691 uintptr_t *p = (uintptr_t *)fp; \ 692 printf(INTPTR_FORMAT " " INTPTR_FORMAT " %s\n", \ 693 (uintptr_t)(p + frame::name##_offset), \ 694 p[frame::name##_offset], #name); \ 695 } 696 697 static THREAD_LOCAL uintptr_t nextfp; 698 static THREAD_LOCAL uintptr_t nextpc; 699 static THREAD_LOCAL uintptr_t nextsp; 700 static THREAD_LOCAL RegisterMap *reg_map; 701 702 static void printbc(Method *m, intptr_t bcx) { 703 const char *name; 704 char buf[16]; 705 if (m->validate_bci_from_bcp((address)bcx) < 0 706 || !m->contains((address)bcx)) { 707 name = "???"; 708 snprintf(buf, sizeof buf, "(bad)"); 709 } else { 710 int bci = m->bci_from((address)bcx); 711 snprintf(buf, sizeof buf, "%d", bci); 712 name = Bytecodes::name(m->code_at(bci)); 713 } 714 ResourceMark rm; 715 printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name); 716 } 717 718 static void internal_pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, uintptr_t bcx) { 719 if (! fp) 720 return; 721 722 DESCRIBE_FP_OFFSET(return_addr); 723 DESCRIBE_FP_OFFSET(link); 724 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 725 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 726 DESCRIBE_FP_OFFSET(interpreter_frame_method); 727 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 728 DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp); 729 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 730 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 731 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 732 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 733 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 734 uintptr_t *p = (uintptr_t *)fp; 735 736 // We want to see all frames, native and Java. For compiled and 737 // interpreted frames we have special information that allows us to 738 // unwind them; for everything else we assume that the native frame 739 // pointer chain is intact. 740 frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc); 741 if (this_frame.is_compiled_frame() || 742 this_frame.is_interpreted_frame()) { 743 frame sender = this_frame.sender(reg_map); 744 nextfp = (uintptr_t)sender.fp(); 745 nextpc = (uintptr_t)sender.pc(); 746 nextsp = (uintptr_t)sender.unextended_sp(); 747 } else { 748 nextfp = p[frame::link_offset]; 749 nextpc = p[frame::return_addr_offset]; 750 nextsp = (uintptr_t)&p[frame::sender_sp_offset]; 751 } 752 753 if (bcx == -1ULL) 754 bcx = p[frame::interpreter_frame_bcp_offset]; 755 756 if (Interpreter::contains((address)pc)) { 757 Method* m = (Method*)p[frame::interpreter_frame_method_offset]; 758 if(m && m->is_method()) { 759 printbc(m, bcx); 760 } else 761 printf("not a Method\n"); 762 } else { 763 CodeBlob *cb = CodeCache::find_blob((address)pc); 764 if (cb != nullptr) { 765 if (cb->is_nmethod()) { 766 ResourceMark rm; 767 nmethod* nm = (nmethod*)cb; 768 printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string()); 769 } else if (cb->name()) { 770 printf("CodeBlob %s\n", cb->name()); 771 } 772 } 773 } 774 } 775 776 extern "C" void npf() { 777 CodeBlob *cb = CodeCache::find_blob((address)nextpc); 778 // C2 does not always chain the frame pointers when it can, instead 779 // preferring to use fixed offsets from SP, so a simple leave() does 780 // not work. Instead, it adds the frame size to SP then pops FP and 781 // LR. We have to do the same thing to get a good call chain. 782 if (cb && cb->frame_size()) 783 nextfp = nextsp + wordSize * (cb->frame_size() - 2); 784 internal_pf (nextsp, nextfp, nextpc, -1); 785 } 786 787 extern "C" void pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, 788 uintptr_t bcx, uintptr_t thread) { 789 if (!reg_map) { 790 reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtInternal); 791 ::new (reg_map) RegisterMap(reinterpret_cast<JavaThread*>(thread), 792 RegisterMap::UpdateMap::skip, 793 RegisterMap::ProcessFrames::include, 794 RegisterMap::WalkContinuation::skip); 795 } else { 796 *reg_map = RegisterMap(reinterpret_cast<JavaThread*>(thread), 797 RegisterMap::UpdateMap::skip, 798 RegisterMap::ProcessFrames::include, 799 RegisterMap::WalkContinuation::skip); 800 } 801 802 { 803 CodeBlob *cb = CodeCache::find_blob((address)pc); 804 if (cb && cb->frame_size()) 805 fp = sp + wordSize * (cb->frame_size() - 2); 806 } 807 internal_pf(sp, fp, pc, bcx); 808 } 809 810 // support for printing out where we are in a Java method 811 // needs to be passed current fp and bcp register values 812 // prints method name, bc index and bytecode name 813 extern "C" void pm(uintptr_t fp, uintptr_t bcx) { 814 DESCRIBE_FP_OFFSET(interpreter_frame_method); 815 uintptr_t *p = (uintptr_t *)fp; 816 Method* m = (Method*)p[frame::interpreter_frame_method_offset]; 817 printbc(m, bcx); 818 } 819 820 #ifndef PRODUCT 821 // This is a generic constructor which is only used by pns() in debug.cpp. 822 frame::frame(void* sp, void* fp, void* pc) { 823 init((intptr_t*)sp, (intptr_t*)fp, (address)pc); 824 } 825 826 #endif 827 828 // Check for a method with scalarized inline type arguments that needs 829 // a stack repair and return the repaired sender stack pointer. 830 intptr_t* frame::repair_sender_sp(intptr_t* sender_sp, intptr_t** saved_fp_addr) const { 831 nmethod* nm = _cb->as_nmethod_or_null(); 832 if (nm != nullptr && nm->needs_stack_repair()) { 833 // The stack increment resides just below the saved FP on the stack and 834 // records the total frame size excluding the two words for saving FP and LR. 835 intptr_t* sp_inc_addr = (intptr_t*) (saved_fp_addr - 1); 836 assert(*sp_inc_addr % StackAlignmentInBytes == 0, "sp_inc not aligned"); 837 int real_frame_size = (*sp_inc_addr / wordSize) + 2; 838 assert(real_frame_size >= _cb->frame_size() && real_frame_size <= 1000000, "invalid frame size"); 839 sender_sp = unextended_sp() + real_frame_size; 840 } 841 return sender_sp; 842 } 843 844 void JavaFrameAnchor::make_walkable() { 845 // last frame set? 846 if (last_Java_sp() == nullptr) return; 847 // already walkable? 848 if (walkable()) return; 849 vmassert(last_Java_sp() != nullptr, "not called from Java code?"); 850 vmassert(last_Java_pc() == nullptr, "already walkable"); 851 _last_Java_pc = (address)_last_Java_sp[-1]; 852 vmassert(walkable(), "something went wrong"); 853 }