1 /* 2 * Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderData.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/barrierSetAssembler.hpp" 29 #include "gc/shared/barrierSetNMethod.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "interpreter/interp_masm.hpp" 32 #include "memory/universe.hpp" 33 #include "runtime/javaThread.hpp" 34 #include "runtime/jniHandles.hpp" 35 #include "runtime/sharedRuntime.hpp" 36 #include "runtime/stubRoutines.hpp" 37 38 39 #define __ masm-> 40 41 void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, 42 Register dst, Address src, Register tmp1, Register tmp2) { 43 44 // LR is live. It must be saved around calls. 45 46 bool in_heap = (decorators & IN_HEAP) != 0; 47 bool in_native = (decorators & IN_NATIVE) != 0; 48 bool is_not_null = (decorators & IS_NOT_NULL) != 0; 49 switch (type) { 50 case T_OBJECT: 51 case T_ARRAY: { 52 if (in_heap) { 53 if (UseCompressedOops) { 54 __ ldrw(dst, src); 55 if (is_not_null) { 56 __ decode_heap_oop_not_null(dst); 57 } else { 58 __ decode_heap_oop(dst); 59 } 60 } else { 61 __ ldr(dst, src); 62 } 63 } else { 64 assert(in_native, "why else?"); 65 __ ldr(dst, src); 66 } 67 break; 68 } 69 case T_BOOLEAN: __ load_unsigned_byte (dst, src); break; 70 case T_BYTE: __ load_signed_byte (dst, src); break; 71 case T_CHAR: __ load_unsigned_short(dst, src); break; 72 case T_SHORT: __ load_signed_short (dst, src); break; 73 case T_INT: __ ldrw (dst, src); break; 74 case T_LONG: __ ldr (dst, src); break; 75 case T_ADDRESS: __ ldr (dst, src); break; 76 case T_FLOAT: __ ldrs (v0, src); break; 77 case T_DOUBLE: __ ldrd (v0, src); break; 78 default: Unimplemented(); 79 } 80 } 81 82 void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, 83 Address dst, Register val, Register tmp1, Register tmp2, Register tmp3) { 84 bool in_heap = (decorators & IN_HEAP) != 0; 85 bool in_native = (decorators & IN_NATIVE) != 0; 86 switch (type) { 87 case T_OBJECT: 88 case T_ARRAY: { 89 val = val == noreg ? zr : val; 90 if (in_heap) { 91 if (UseCompressedOops) { 92 assert(!dst.uses(val), "not enough registers"); 93 if (val != zr) { 94 __ encode_heap_oop(val); 95 } 96 __ strw(val, dst); 97 } else { 98 __ str(val, dst); 99 } 100 } else { 101 assert(in_native, "why else?"); 102 __ str(val, dst); 103 } 104 break; 105 } 106 case T_BOOLEAN: 107 __ andw(val, val, 0x1); // boolean is true if LSB is 1 108 __ strb(val, dst); 109 break; 110 case T_BYTE: __ strb(val, dst); break; 111 case T_CHAR: __ strh(val, dst); break; 112 case T_SHORT: __ strh(val, dst); break; 113 case T_INT: __ strw(val, dst); break; 114 case T_LONG: __ str (val, dst); break; 115 case T_ADDRESS: __ str (val, dst); break; 116 case T_FLOAT: __ strs(v0, dst); break; 117 case T_DOUBLE: __ strd(v0, dst); break; 118 default: Unimplemented(); 119 } 120 } 121 122 void BarrierSetAssembler::copy_load_at(MacroAssembler* masm, 123 DecoratorSet decorators, 124 BasicType type, 125 size_t bytes, 126 Register dst1, 127 Register dst2, 128 Address src, 129 Register tmp) { 130 if (bytes == 1) { 131 assert(dst2 == noreg, "invariant"); 132 __ ldrb(dst1, src); 133 } else if (bytes == 2) { 134 assert(dst2 == noreg, "invariant"); 135 __ ldrh(dst1, src); 136 } else if (bytes == 4) { 137 assert(dst2 == noreg, "invariant"); 138 __ ldrw(dst1, src); 139 } else if (bytes == 8) { 140 assert(dst2 == noreg, "invariant"); 141 __ ldr(dst1, src); 142 } else if (bytes == 16) { 143 assert(dst2 != noreg, "invariant"); 144 assert(dst2 != dst1, "invariant"); 145 __ ldp(dst1, dst2, src); 146 } else { 147 // Not the right size 148 ShouldNotReachHere(); 149 } 150 if ((decorators & ARRAYCOPY_CHECKCAST) != 0 && UseCompressedOops) { 151 __ decode_heap_oop(dst1); 152 } 153 } 154 155 void BarrierSetAssembler::copy_store_at(MacroAssembler* masm, 156 DecoratorSet decorators, 157 BasicType type, 158 size_t bytes, 159 Address dst, 160 Register src1, 161 Register src2, 162 Register tmp1, 163 Register tmp2, 164 Register tmp3) { 165 if ((decorators & ARRAYCOPY_CHECKCAST) != 0 && UseCompressedOops) { 166 __ encode_heap_oop(src1); 167 } 168 if (bytes == 1) { 169 assert(src2 == noreg, "invariant"); 170 __ strb(src1, dst); 171 } else if (bytes == 2) { 172 assert(src2 == noreg, "invariant"); 173 __ strh(src1, dst); 174 } else if (bytes == 4) { 175 assert(src2 == noreg, "invariant"); 176 __ strw(src1, dst); 177 } else if (bytes == 8) { 178 assert(src2 == noreg, "invariant"); 179 __ str(src1, dst); 180 } else if (bytes == 16) { 181 assert(src2 != noreg, "invariant"); 182 assert(src2 != src1, "invariant"); 183 __ stp(src1, src2, dst); 184 } else { 185 // Not the right size 186 ShouldNotReachHere(); 187 } 188 } 189 190 void BarrierSetAssembler::copy_load_at(MacroAssembler* masm, 191 DecoratorSet decorators, 192 BasicType type, 193 size_t bytes, 194 FloatRegister dst1, 195 FloatRegister dst2, 196 Address src, 197 Register tmp1, 198 Register tmp2, 199 FloatRegister vec_tmp) { 200 if (bytes == 32) { 201 __ ldpq(dst1, dst2, src); 202 } else { 203 ShouldNotReachHere(); 204 } 205 } 206 207 void BarrierSetAssembler::copy_store_at(MacroAssembler* masm, 208 DecoratorSet decorators, 209 BasicType type, 210 size_t bytes, 211 Address dst, 212 FloatRegister src1, 213 FloatRegister src2, 214 Register tmp1, 215 Register tmp2, 216 Register tmp3, 217 FloatRegister vec_tmp1, 218 FloatRegister vec_tmp2, 219 FloatRegister vec_tmp3) { 220 if (bytes == 32) { 221 __ stpq(src1, src2, dst); 222 } else { 223 ShouldNotReachHere(); 224 } 225 } 226 227 void BarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env, 228 Register obj, Register tmp, Label& slowpath) { 229 // If mask changes we need to ensure that the inverse is still encodable as an immediate 230 STATIC_ASSERT(JNIHandles::tag_mask == 0b11); 231 __ andr(obj, obj, ~JNIHandles::tag_mask); 232 __ ldr(obj, Address(obj, 0)); // *obj 233 } 234 235 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 236 void BarrierSetAssembler::tlab_allocate(MacroAssembler* masm, Register obj, 237 Register var_size_in_bytes, 238 int con_size_in_bytes, 239 Register t1, 240 Register t2, 241 Label& slow_case) { 242 assert_different_registers(obj, t2); 243 assert_different_registers(obj, var_size_in_bytes); 244 Register end = t2; 245 246 // verify_tlab(); 247 248 __ ldr(obj, Address(rthread, JavaThread::tlab_top_offset())); 249 if (var_size_in_bytes == noreg) { 250 __ lea(end, Address(obj, con_size_in_bytes)); 251 } else { 252 __ lea(end, Address(obj, var_size_in_bytes)); 253 } 254 __ ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset())); 255 __ cmp(end, rscratch1); 256 __ br(Assembler::HI, slow_case); 257 258 // update the tlab top pointer 259 __ str(end, Address(rthread, JavaThread::tlab_top_offset())); 260 261 // recover var_size_in_bytes if necessary 262 if (var_size_in_bytes == end) { 263 __ sub(var_size_in_bytes, var_size_in_bytes, obj); 264 } 265 // verify_tlab(); 266 } 267 268 void BarrierSetAssembler::incr_allocated_bytes(MacroAssembler* masm, 269 Register var_size_in_bytes, 270 int con_size_in_bytes, 271 Register t1) { 272 assert(t1->is_valid(), "need temp reg"); 273 274 __ ldr(t1, Address(rthread, in_bytes(JavaThread::allocated_bytes_offset()))); 275 if (var_size_in_bytes->is_valid()) { 276 __ add(t1, t1, var_size_in_bytes); 277 } else { 278 __ add(t1, t1, con_size_in_bytes); 279 } 280 __ str(t1, Address(rthread, in_bytes(JavaThread::allocated_bytes_offset()))); 281 } 282 283 static volatile uint32_t _patching_epoch = 0; 284 285 address BarrierSetAssembler::patching_epoch_addr() { 286 return (address)&_patching_epoch; 287 } 288 289 void BarrierSetAssembler::increment_patching_epoch() { 290 Atomic::inc(&_patching_epoch); 291 } 292 293 void BarrierSetAssembler::clear_patching_epoch() { 294 _patching_epoch = 0; 295 } 296 297 void BarrierSetAssembler::nmethod_entry_barrier(MacroAssembler* masm, Label* slow_path, Label* continuation, Label* guard) { 298 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 299 300 if (bs_nm == nullptr) { 301 return; 302 } 303 304 Label local_guard; 305 Label skip_barrier; 306 NMethodPatchingType patching_type = nmethod_patching_type(); 307 308 if (slow_path == nullptr) { 309 guard = &local_guard; 310 } 311 312 // If the slow path is out of line in a stub, we flip the condition 313 Assembler::Condition condition = slow_path == nullptr ? Assembler::EQ : Assembler::NE; 314 Label& barrier_target = slow_path == nullptr ? skip_barrier : *slow_path; 315 316 __ ldrw(rscratch1, *guard); 317 318 if (patching_type == NMethodPatchingType::stw_instruction_and_data_patch) { 319 // With STW patching, no data or instructions are updated concurrently, 320 // which means there isn't really any need for any fencing for neither 321 // data nor instruction modifications happening concurrently. The 322 // instruction patching is handled with isb fences on the way back 323 // from the safepoint to Java. So here we can do a plain conditional 324 // branch with no fencing. 325 Address thread_disarmed_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset())); 326 __ ldrw(rscratch2, thread_disarmed_addr); 327 __ cmp(rscratch1, rscratch2); 328 } else if (patching_type == NMethodPatchingType::conc_instruction_and_data_patch) { 329 // If we patch code we need both a code patching and a loadload 330 // fence. It's not super cheap, so we use a global epoch mechanism 331 // to hide them in a slow path. 332 // The high level idea of the global epoch mechanism is to detect 333 // when any thread has performed the required fencing, after the 334 // last nmethod was disarmed. This implies that the required 335 // fencing has been performed for all preceding nmethod disarms 336 // as well. Therefore, we do not need any further fencing. 337 __ lea(rscratch2, ExternalAddress((address)&_patching_epoch)); 338 // Embed an artificial data dependency to order the guard load 339 // before the epoch load. 340 __ orr(rscratch2, rscratch2, rscratch1, Assembler::LSR, 32); 341 // Read the global epoch value. 342 __ ldrw(rscratch2, rscratch2); 343 // Combine the guard value (low order) with the epoch value (high order). 344 __ orr(rscratch1, rscratch1, rscratch2, Assembler::LSL, 32); 345 // Compare the global values with the thread-local values. 346 Address thread_disarmed_and_epoch_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset())); 347 __ ldr(rscratch2, thread_disarmed_and_epoch_addr); 348 __ cmp(rscratch1, rscratch2); 349 } else { 350 assert(patching_type == NMethodPatchingType::conc_data_patch, "must be"); 351 // Subsequent loads of oops must occur after load of guard value. 352 // BarrierSetNMethod::disarm sets guard with release semantics. 353 __ membar(__ LoadLoad); 354 Address thread_disarmed_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset())); 355 __ ldrw(rscratch2, thread_disarmed_addr); 356 __ cmpw(rscratch1, rscratch2); 357 } 358 __ br(condition, barrier_target); 359 360 if (slow_path == nullptr) { 361 __ movptr(rscratch1, (uintptr_t) StubRoutines::aarch64::method_entry_barrier()); 362 __ blr(rscratch1); 363 __ b(skip_barrier); 364 365 __ bind(local_guard); 366 367 __ emit_int32(0); // nmethod guard value. Skipped over in common case. 368 } else { 369 __ bind(*continuation); 370 } 371 372 __ bind(skip_barrier); 373 } 374 375 void BarrierSetAssembler::c2i_entry_barrier(MacroAssembler* masm) { 376 BarrierSetNMethod* bs = BarrierSet::barrier_set()->barrier_set_nmethod(); 377 if (bs == nullptr) { 378 return; 379 } 380 381 Label bad_call; 382 __ cbz(rmethod, bad_call); 383 384 // Pointer chase to the method holder to find out if the method is concurrently unloading. 385 Label method_live; 386 __ load_method_holder_cld(rscratch1, rmethod); 387 388 // Is it a strong CLD? 389 __ ldrw(rscratch2, Address(rscratch1, ClassLoaderData::keep_alive_offset())); 390 __ cbnz(rscratch2, method_live); 391 392 // Is it a weak but alive CLD? 393 __ push(RegSet::of(r10), sp); 394 __ ldr(r10, Address(rscratch1, ClassLoaderData::holder_offset())); 395 396 __ resolve_weak_handle(r10, rscratch1, rscratch2); 397 __ mov(rscratch1, r10); 398 __ pop(RegSet::of(r10), sp); 399 __ cbnz(rscratch1, method_live); 400 401 __ bind(bad_call); 402 403 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 404 __ bind(method_live); 405 } 406 407 void BarrierSetAssembler::check_oop(MacroAssembler* masm, Register obj, Register tmp1, Register tmp2, Label& error) { 408 // Check if the oop is in the right area of memory 409 __ mov(tmp2, (intptr_t) Universe::verify_oop_mask()); 410 __ andr(tmp1, obj, tmp2); 411 __ mov(tmp2, (intptr_t) Universe::verify_oop_bits()); 412 413 // Compare tmp1 and tmp2. We don't use a compare 414 // instruction here because the flags register is live. 415 __ eor(tmp1, tmp1, tmp2); 416 __ cbnz(tmp1, error); 417 418 // make sure klass is 'reasonable', which is not zero. 419 __ load_klass(obj, obj); // get klass 420 __ cbz(obj, error); // if klass is null it is broken 421 }