1 /*
  2  * Copyright (c) 2018, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "classfile/classLoaderData.hpp"
 27 #include "gc/shared/barrierSet.hpp"
 28 #include "gc/shared/barrierSetAssembler.hpp"
 29 #include "gc/shared/barrierSetNMethod.hpp"
 30 #include "gc/shared/barrierSetRuntime.hpp"
 31 #include "gc/shared/collectedHeap.hpp"
 32 #include "interpreter/interp_masm.hpp"
 33 #include "memory/universe.hpp"
 34 #include "runtime/javaThread.hpp"
 35 #include "runtime/jniHandles.hpp"
 36 #include "runtime/sharedRuntime.hpp"
 37 #include "runtime/stubRoutines.hpp"
 38 #ifdef COMPILER2
 39 #include "code/vmreg.inline.hpp"
 40 #include "gc/shared/c2/barrierSetC2.hpp"
 41 #endif // COMPILER2
 42 
 43 
 44 #define __ masm->
 45 
 46 void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
 47                                   Register dst, Address src, Register tmp1, Register tmp2) {
 48 
 49   // LR is live.  It must be saved around calls.
 50 
 51   bool in_heap = (decorators & IN_HEAP) != 0;
 52   bool in_native = (decorators & IN_NATIVE) != 0;
 53   bool is_not_null = (decorators & IS_NOT_NULL) != 0;
 54 
 55   switch (type) {
 56   case T_OBJECT:
 57   case T_ARRAY: {
 58     if (in_heap) {
 59       if (UseCompressedOops) {
 60         __ ldrw(dst, src);
 61         if (is_not_null) {
 62           __ decode_heap_oop_not_null(dst);
 63         } else {
 64           __ decode_heap_oop(dst);
 65         }
 66       } else {
 67         __ ldr(dst, src);
 68       }
 69     } else {
 70       assert(in_native, "why else?");
 71       __ ldr(dst, src);
 72     }
 73     break;
 74   }
 75   case T_BOOLEAN: __ load_unsigned_byte (dst, src); break;
 76   case T_BYTE:    __ load_signed_byte   (dst, src); break;
 77   case T_CHAR:    __ load_unsigned_short(dst, src); break;
 78   case T_SHORT:   __ load_signed_short  (dst, src); break;
 79   case T_INT:     __ ldrw               (dst, src); break;
 80   case T_LONG:    __ ldr                (dst, src); break;
 81   case T_ADDRESS: __ ldr                (dst, src); break;
 82   case T_FLOAT:   __ ldrs               (v0, src);  break;
 83   case T_DOUBLE:  __ ldrd               (v0, src);  break;
 84   default: Unimplemented();
 85   }
 86 }
 87 
 88 void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
 89                                    Address dst, Register val, Register tmp1, Register tmp2, Register tmp3) {
 90   bool in_heap = (decorators & IN_HEAP) != 0;
 91   bool in_native = (decorators & IN_NATIVE) != 0;
 92   bool is_not_null = (decorators & IS_NOT_NULL) != 0;
 93 
 94   switch (type) {
 95   case T_OBJECT:
 96   case T_ARRAY: {
 97     if (in_heap) {
 98       if (val == noreg) {
 99         assert(!is_not_null, "inconsistent access");
100         if (UseCompressedOops) {
101           __ strw(zr, dst);
102         } else {
103           __ str(zr, dst);
104         }
105       } else {
106         if (UseCompressedOops) {
107           assert(!dst.uses(val), "not enough registers");
108           if (is_not_null) {
109             __ encode_heap_oop_not_null(val);
110           } else {
111             __ encode_heap_oop(val);
112           }
113           __ strw(val, dst);
114         } else {
115           __ str(val, dst);
116         }
117       }
118     } else {
119       assert(in_native, "why else?");
120       assert(val != noreg, "not supported");
121       __ str(val, dst);
122     }
123     break;
124   }
125   case T_BOOLEAN:
126     __ andw(val, val, 0x1);  // boolean is true if LSB is 1
127     __ strb(val, dst);
128     break;
129   case T_BYTE:    __ strb(val, dst); break;
130   case T_CHAR:    __ strh(val, dst); break;
131   case T_SHORT:   __ strh(val, dst); break;
132   case T_INT:     __ strw(val, dst); break;
133   case T_LONG:    __ str (val, dst); break;
134   case T_ADDRESS: __ str (val, dst); break;
135   case T_FLOAT:   __ strs(v0,  dst); break;
136   case T_DOUBLE:  __ strd(v0,  dst); break;
137   default: Unimplemented();
138   }
139 }
140 
141 void BarrierSetAssembler::flat_field_copy(MacroAssembler* masm, DecoratorSet decorators,
142                                      Register src, Register dst, Register inline_layout_info) {
143   // flat_field_copy implementation is fairly complex, and there are not any
144   // "short-cuts" to be made from asm. What there is, appears to have the same
145   // cost in C++, so just "call_VM_leaf" for now rather than maintain hundreds
146   // of hand-rolled instructions...
147   if (decorators & IS_DEST_UNINITIALIZED) {
148     __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSetRuntime::value_copy_is_dest_uninitialized), src, dst, inline_layout_info);
149   } else {
150     __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSetRuntime::value_copy), src, dst, inline_layout_info);
151   }
152 }
153 
154 void BarrierSetAssembler::copy_load_at(MacroAssembler* masm,
155                                        DecoratorSet decorators,
156                                        BasicType type,
157                                        size_t bytes,
158                                        Register dst1,
159                                        Register dst2,
160                                        Address src,
161                                        Register tmp) {
162   if (bytes == 1) {
163     assert(dst2 == noreg, "invariant");
164     __ ldrb(dst1, src);
165   } else if (bytes == 2) {
166     assert(dst2 == noreg, "invariant");
167     __ ldrh(dst1, src);
168   } else if (bytes == 4) {
169     assert(dst2 == noreg, "invariant");
170     __ ldrw(dst1, src);
171   } else if (bytes == 8) {
172     assert(dst2 == noreg, "invariant");
173     __ ldr(dst1, src);
174   } else if (bytes == 16) {
175     assert(dst2 != noreg, "invariant");
176     assert(dst2 != dst1, "invariant");
177     __ ldp(dst1, dst2, src);
178   } else {
179     // Not the right size
180     ShouldNotReachHere();
181   }
182   if ((decorators & ARRAYCOPY_CHECKCAST) != 0 && UseCompressedOops) {
183     __ decode_heap_oop(dst1);
184   }
185 }
186 
187 void BarrierSetAssembler::copy_store_at(MacroAssembler* masm,
188                                         DecoratorSet decorators,
189                                         BasicType type,
190                                         size_t bytes,
191                                         Address dst,
192                                         Register src1,
193                                         Register src2,
194                                         Register tmp1,
195                                         Register tmp2,
196                                         Register tmp3) {
197   if ((decorators & ARRAYCOPY_CHECKCAST) != 0 && UseCompressedOops) {
198     __ encode_heap_oop(src1);
199   }
200   if (bytes == 1) {
201     assert(src2 == noreg, "invariant");
202     __ strb(src1, dst);
203   } else if (bytes == 2) {
204     assert(src2 == noreg, "invariant");
205     __ strh(src1, dst);
206   } else if (bytes == 4) {
207     assert(src2 == noreg, "invariant");
208     __ strw(src1, dst);
209   } else if (bytes == 8) {
210     assert(src2 == noreg, "invariant");
211     __ str(src1, dst);
212   } else if (bytes == 16) {
213     assert(src2 != noreg, "invariant");
214     assert(src2 != src1, "invariant");
215     __ stp(src1, src2, dst);
216   } else {
217     // Not the right size
218     ShouldNotReachHere();
219   }
220 }
221 
222 void BarrierSetAssembler::copy_load_at(MacroAssembler* masm,
223                                        DecoratorSet decorators,
224                                        BasicType type,
225                                        size_t bytes,
226                                        FloatRegister dst1,
227                                        FloatRegister dst2,
228                                        Address src,
229                                        Register tmp1,
230                                        Register tmp2,
231                                        FloatRegister vec_tmp) {
232   if (bytes == 32) {
233     __ ldpq(dst1, dst2, src);
234   } else {
235     ShouldNotReachHere();
236   }
237 }
238 
239 void BarrierSetAssembler::copy_store_at(MacroAssembler* masm,
240                                         DecoratorSet decorators,
241                                         BasicType type,
242                                         size_t bytes,
243                                         Address dst,
244                                         FloatRegister src1,
245                                         FloatRegister src2,
246                                         Register tmp1,
247                                         Register tmp2,
248                                         Register tmp3,
249                                         FloatRegister vec_tmp1,
250                                         FloatRegister vec_tmp2,
251                                         FloatRegister vec_tmp3) {
252   if (bytes == 32) {
253     __ stpq(src1, src2, dst);
254   } else {
255     ShouldNotReachHere();
256   }
257 }
258 
259 void BarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env,
260                                                         Register obj, Register tmp, Label& slowpath) {
261   // If mask changes we need to ensure that the inverse is still encodable as an immediate
262   STATIC_ASSERT(JNIHandles::tag_mask == 0b11);
263   __ andr(obj, obj, ~JNIHandles::tag_mask);
264   __ ldr(obj, Address(obj, 0));             // *obj
265 }
266 
267 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
268 void BarrierSetAssembler::tlab_allocate(MacroAssembler* masm, Register obj,
269                                         Register var_size_in_bytes,
270                                         int con_size_in_bytes,
271                                         Register t1,
272                                         Register t2,
273                                         Label& slow_case) {
274   assert_different_registers(obj, t2);
275   assert_different_registers(obj, var_size_in_bytes);
276   Register end = t2;
277 
278   // verify_tlab();
279 
280   __ ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
281   if (var_size_in_bytes == noreg) {
282     __ lea(end, Address(obj, con_size_in_bytes));
283   } else {
284     __ lea(end, Address(obj, var_size_in_bytes));
285   }
286   __ ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
287   __ cmp(end, rscratch1);
288   __ br(Assembler::HI, slow_case);
289 
290   // update the tlab top pointer
291   __ str(end, Address(rthread, JavaThread::tlab_top_offset()));
292 
293   // recover var_size_in_bytes if necessary
294   if (var_size_in_bytes == end) {
295     __ sub(var_size_in_bytes, var_size_in_bytes, obj);
296   }
297   // verify_tlab();
298 }
299 
300 static volatile uint32_t _patching_epoch = 0;
301 
302 address BarrierSetAssembler::patching_epoch_addr() {
303   return (address)&_patching_epoch;
304 }
305 
306 void BarrierSetAssembler::increment_patching_epoch() {
307   Atomic::inc(&_patching_epoch);
308 }
309 
310 void BarrierSetAssembler::clear_patching_epoch() {
311   _patching_epoch = 0;
312 }
313 
314 void BarrierSetAssembler::nmethod_entry_barrier(MacroAssembler* masm, Label* slow_path, Label* continuation, Label* guard) {
315   BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
316 
317   if (bs_nm == nullptr) {
318     return;
319   }
320 
321   Label local_guard;
322   Label skip_barrier;
323   NMethodPatchingType patching_type = nmethod_patching_type();
324 
325   if (slow_path == nullptr) {
326     guard = &local_guard;
327   }
328 
329   // If the slow path is out of line in a stub, we flip the condition
330   Assembler::Condition condition = slow_path == nullptr ? Assembler::EQ : Assembler::NE;
331   Label& barrier_target = slow_path == nullptr ? skip_barrier : *slow_path;
332 
333   __ ldrw(rscratch1, *guard);
334 
335   if (patching_type == NMethodPatchingType::stw_instruction_and_data_patch) {
336     // With STW patching, no data or instructions are updated concurrently,
337     // which means there isn't really any need for any fencing for neither
338     // data nor instruction modifications happening concurrently. The
339     // instruction patching is handled with isb fences on the way back
340     // from the safepoint to Java. So here we can do a plain conditional
341     // branch with no fencing.
342     Address thread_disarmed_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset()));
343     __ ldrw(rscratch2, thread_disarmed_addr);
344     __ cmp(rscratch1, rscratch2);
345   } else if (patching_type == NMethodPatchingType::conc_instruction_and_data_patch) {
346     // If we patch code we need both a code patching and a loadload
347     // fence. It's not super cheap, so we use a global epoch mechanism
348     // to hide them in a slow path.
349     // The high level idea of the global epoch mechanism is to detect
350     // when any thread has performed the required fencing, after the
351     // last nmethod was disarmed. This implies that the required
352     // fencing has been performed for all preceding nmethod disarms
353     // as well. Therefore, we do not need any further fencing.
354     __ lea(rscratch2, ExternalAddress((address)&_patching_epoch));
355     // Embed an artificial data dependency to order the guard load
356     // before the epoch load.
357     __ orr(rscratch2, rscratch2, rscratch1, Assembler::LSR, 32);
358     // Read the global epoch value.
359     __ ldrw(rscratch2, rscratch2);
360     // Combine the guard value (low order) with the epoch value (high order).
361     __ orr(rscratch1, rscratch1, rscratch2, Assembler::LSL, 32);
362     // Compare the global values with the thread-local values.
363     Address thread_disarmed_and_epoch_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset()));
364     __ ldr(rscratch2, thread_disarmed_and_epoch_addr);
365     __ cmp(rscratch1, rscratch2);
366   } else {
367     assert(patching_type == NMethodPatchingType::conc_data_patch, "must be");
368     // Subsequent loads of oops must occur after load of guard value.
369     // BarrierSetNMethod::disarm sets guard with release semantics.
370     __ membar(__ LoadLoad);
371     Address thread_disarmed_addr(rthread, in_bytes(bs_nm->thread_disarmed_guard_value_offset()));
372     __ ldrw(rscratch2, thread_disarmed_addr);
373     __ cmpw(rscratch1, rscratch2);
374   }
375   __ br(condition, barrier_target);
376 
377   if (slow_path == nullptr) {
378     __ lea(rscratch1, RuntimeAddress(StubRoutines::method_entry_barrier()));
379     __ blr(rscratch1);
380     __ b(skip_barrier);
381 
382     __ bind(local_guard);
383 
384     __ emit_int32(0);   // nmethod guard value. Skipped over in common case.
385   } else {
386     __ bind(*continuation);
387   }
388 
389   __ bind(skip_barrier);
390 }
391 
392 void BarrierSetAssembler::c2i_entry_barrier(MacroAssembler* masm) {
393   BarrierSetNMethod* bs = BarrierSet::barrier_set()->barrier_set_nmethod();
394   if (bs == nullptr) {
395     return;
396   }
397 
398   Label bad_call;
399   __ cbz(rmethod, bad_call);
400 
401   // Pointer chase to the method holder to find out if the method is concurrently unloading.
402   Label method_live;
403   __ load_method_holder_cld(rscratch1, rmethod);
404 
405   // Is it a strong CLD?
406   __ ldrw(rscratch2, Address(rscratch1, ClassLoaderData::keep_alive_ref_count_offset()));
407   __ cbnz(rscratch2, method_live);
408 
409   // Is it a weak but alive CLD?
410   __ push(RegSet::of(r10), sp);
411   __ ldr(r10, Address(rscratch1, ClassLoaderData::holder_offset()));
412 
413   __ resolve_weak_handle(r10, rscratch1, rscratch2);
414   __ mov(rscratch1, r10);
415   __ pop(RegSet::of(r10), sp);
416   __ cbnz(rscratch1, method_live);
417 
418   __ bind(bad_call);
419 
420   __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
421   __ bind(method_live);
422 }
423 
424 void BarrierSetAssembler::check_oop(MacroAssembler* masm, Register obj, Register tmp1, Register tmp2, Label& error) {
425   // Check if the oop is in the right area of memory
426   __ mov(tmp2, (intptr_t) Universe::verify_oop_mask());
427   __ andr(tmp1, obj, tmp2);
428   __ mov(tmp2, (intptr_t) Universe::verify_oop_bits());
429 
430   // Compare tmp1 and tmp2.  We don't use a compare
431   // instruction here because the flags register is live.
432   __ eor(tmp1, tmp1, tmp2);
433   __ cbnz(tmp1, error);
434 
435   // make sure klass is 'reasonable', which is not zero.
436   __ load_klass(obj, obj); // get klass
437   __ cbz(obj, error);      // if klass is null it is broken
438 }
439 
440 #ifdef COMPILER2
441 
442 OptoReg::Name BarrierSetAssembler::encode_float_vector_register_size(const Node* node, OptoReg::Name opto_reg) {
443   switch (node->ideal_reg()) {
444     case Op_RegF:
445       // No need to refine. The original encoding is already fine to distinguish.
446       assert(opto_reg % 4 == 0, "Float register should only occupy a single slot");
447       break;
448     // Use different encoding values of the same fp/vector register to help distinguish different sizes.
449     // Such as V16. The OptoReg::name and its corresponding slot value are
450     // "V16": 64, "V16_H": 65, "V16_J": 66, "V16_K": 67.
451     case Op_RegD:
452     case Op_VecD:
453       opto_reg &= ~3;
454       opto_reg |= 1;
455       break;
456     case Op_VecX:
457       opto_reg &= ~3;
458       opto_reg |= 2;
459       break;
460     case Op_VecA:
461       opto_reg &= ~3;
462       opto_reg |= 3;
463       break;
464     default:
465       assert(false, "unexpected ideal register");
466       ShouldNotReachHere();
467   }
468   return opto_reg;
469 }
470 
471 OptoReg::Name BarrierSetAssembler::refine_register(const Node* node, OptoReg::Name opto_reg) {
472   if (!OptoReg::is_reg(opto_reg)) {
473     return OptoReg::Bad;
474   }
475 
476   const VMReg vm_reg = OptoReg::as_VMReg(opto_reg);
477   if (vm_reg->is_FloatRegister()) {
478     opto_reg = encode_float_vector_register_size(node, opto_reg);
479   }
480 
481   return opto_reg;
482 }
483 
484 #undef __
485 #define __ _masm->
486 
487 void SaveLiveRegisters::initialize(BarrierStubC2* stub) {
488   int index = -1;
489   GrowableArray<RegisterData> registers;
490   VMReg prev_vm_reg = VMRegImpl::Bad();
491 
492   RegMaskIterator rmi(stub->preserve_set());
493   while (rmi.has_next()) {
494     OptoReg::Name opto_reg = rmi.next();
495     VMReg vm_reg = OptoReg::as_VMReg(opto_reg);
496 
497     if (vm_reg->is_Register()) {
498       // GPR may have one or two slots in regmask
499       // Determine whether the current vm_reg is the same physical register as the previous one
500       if (is_same_register(vm_reg, prev_vm_reg)) {
501         registers.at(index)._slots++;
502       } else {
503         RegisterData reg_data = { vm_reg, 1 };
504         index = registers.append(reg_data);
505       }
506     } else if (vm_reg->is_FloatRegister()) {
507       // We have size encoding in OptoReg of stub->preserve_set()
508       // After encoding, float/neon/sve register has only one slot in regmask
509       // Decode it to get the actual size
510       VMReg vm_reg_base = vm_reg->as_FloatRegister()->as_VMReg();
511       int slots = decode_float_vector_register_size(opto_reg);
512       RegisterData reg_data = { vm_reg_base, slots };
513       index = registers.append(reg_data);
514     } else if (vm_reg->is_PRegister()) {
515       // PRegister has only one slot in regmask
516       RegisterData reg_data = { vm_reg, 1 };
517       index = registers.append(reg_data);
518     } else {
519       assert(false, "Unknown register type");
520       ShouldNotReachHere();
521     }
522     prev_vm_reg = vm_reg;
523   }
524 
525   // Record registers that needs to be saved/restored
526   for (GrowableArrayIterator<RegisterData> it = registers.begin(); it != registers.end(); ++it) {
527     RegisterData reg_data = *it;
528     VMReg vm_reg = reg_data._reg;
529     int slots = reg_data._slots;
530     if (vm_reg->is_Register()) {
531       assert(slots == 1 || slots == 2, "Unexpected register save size");
532       _gp_regs += RegSet::of(vm_reg->as_Register());
533     } else if (vm_reg->is_FloatRegister()) {
534       if (slots == 1 || slots == 2) {
535         _fp_regs += FloatRegSet::of(vm_reg->as_FloatRegister());
536       } else if (slots == 4) {
537         _neon_regs += FloatRegSet::of(vm_reg->as_FloatRegister());
538       } else {
539         assert(slots == Matcher::scalable_vector_reg_size(T_FLOAT), "Unexpected register save size");
540         _sve_regs += FloatRegSet::of(vm_reg->as_FloatRegister());
541       }
542     } else {
543       assert(vm_reg->is_PRegister() && slots == 1, "Unknown register type");
544       _p_regs += PRegSet::of(vm_reg->as_PRegister());
545     }
546   }
547 
548   // Remove C-ABI SOE registers and scratch regs
549   _gp_regs -= RegSet::range(r19, r30) + RegSet::of(r8, r9);
550 
551   // Remove C-ABI SOE fp registers
552   _fp_regs -= FloatRegSet::range(v8, v15);
553 }
554 
555 enum RC SaveLiveRegisters::rc_class(VMReg reg) {
556   if (reg->is_reg()) {
557     if (reg->is_Register()) {
558       return rc_int;
559     } else if (reg->is_FloatRegister()) {
560       return rc_float;
561     } else if (reg->is_PRegister()) {
562       return rc_predicate;
563     }
564   }
565   if (reg->is_stack()) {
566     return rc_stack;
567   }
568   return rc_bad;
569 }
570 
571 bool SaveLiveRegisters::is_same_register(VMReg reg1, VMReg reg2) {
572   if (reg1 == reg2) {
573     return true;
574   }
575   if (rc_class(reg1) == rc_class(reg2)) {
576     if (reg1->is_Register()) {
577       return reg1->as_Register() == reg2->as_Register();
578     } else if (reg1->is_FloatRegister()) {
579       return reg1->as_FloatRegister() == reg2->as_FloatRegister();
580     } else if (reg1->is_PRegister()) {
581       return reg1->as_PRegister() == reg2->as_PRegister();
582     }
583   }
584   return false;
585 }
586 
587 int SaveLiveRegisters::decode_float_vector_register_size(OptoReg::Name opto_reg) {
588   switch (opto_reg & 3) {
589     case 0:
590       return 1;
591     case 1:
592       return 2;
593     case 2:
594       return 4;
595     case 3:
596       return Matcher::scalable_vector_reg_size(T_FLOAT);
597     default:
598       ShouldNotReachHere();
599       return 0;
600   }
601 }
602 
603 SaveLiveRegisters::SaveLiveRegisters(MacroAssembler* masm, BarrierStubC2* stub)
604   : _masm(masm),
605     _gp_regs(),
606     _fp_regs(),
607     _neon_regs(),
608     _sve_regs(),
609     _p_regs() {
610 
611   // Figure out what registers to save/restore
612   initialize(stub);
613 
614   // Save registers
615   __ push(_gp_regs, sp);
616   __ push_fp(_fp_regs, sp, MacroAssembler::PushPopFp);
617   __ push_fp(_neon_regs, sp, MacroAssembler::PushPopNeon);
618   __ push_fp(_sve_regs, sp, MacroAssembler::PushPopSVE);
619   __ push_p(_p_regs, sp);
620 }
621 
622 SaveLiveRegisters::~SaveLiveRegisters() {
623   // Restore registers
624   __ pop_p(_p_regs, sp);
625   __ pop_fp(_sve_regs, sp, MacroAssembler::PushPopSVE);
626   __ pop_fp(_neon_regs, sp, MacroAssembler::PushPopNeon);
627   __ pop_fp(_fp_regs, sp, MacroAssembler::PushPopFp);
628 
629   // External runtime call may clobber ptrue reg
630   __ reinitialize_ptrue();
631 
632   __ pop(_gp_regs, sp);
633 }
634 
635 #endif // COMPILER2