1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/method.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 50 void InterpreterMacroAssembler::narrow(Register result) { 51 52 // Get method->_constMethod->_result_type 53 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 54 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 55 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 56 57 Label done, notBool, notByte, notChar; 58 59 // common case first 60 cmpw(rscratch1, T_INT); 61 br(Assembler::EQ, done); 62 63 // mask integer result to narrower return type. 64 cmpw(rscratch1, T_BOOLEAN); 65 br(Assembler::NE, notBool); 66 andw(result, result, 0x1); 67 b(done); 68 69 bind(notBool); 70 cmpw(rscratch1, T_BYTE); 71 br(Assembler::NE, notByte); 72 sbfx(result, result, 0, 8); 73 b(done); 74 75 bind(notByte); 76 cmpw(rscratch1, T_CHAR); 77 br(Assembler::NE, notChar); 78 ubfx(result, result, 0, 16); // truncate upper 16 bits 79 b(done); 80 81 bind(notChar); 82 sbfx(result, result, 0, 16); // sign-extend short 83 84 // Nothing to do for T_INT 85 bind(done); 86 } 87 88 void InterpreterMacroAssembler::jump_to_entry(address entry) { 89 assert(entry, "Entry must have been generated by now"); 90 b(entry); 91 } 92 93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 94 if (JvmtiExport::can_pop_frame()) { 95 Label L; 96 // Initiate popframe handling only if it is not already being 97 // processed. If the flag has the popframe_processing bit set, it 98 // means that this code is called *during* popframe handling - we 99 // don't want to reenter. 100 // This method is only called just after the call into the vm in 101 // call_VM_base, so the arg registers are available. 102 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 103 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 104 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 105 // Call Interpreter::remove_activation_preserving_args_entry() to get the 106 // address of the same-named entrypoint in the generated interpreter code. 107 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 108 br(r0); 109 bind(L); 110 } 111 } 112 113 114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 115 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 116 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 117 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 118 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 119 switch (state) { 120 case atos: ldr(r0, oop_addr); 121 str(zr, oop_addr); 122 interp_verify_oop(r0, state); break; 123 case ltos: ldr(r0, val_addr); break; 124 case btos: // fall through 125 case ztos: // fall through 126 case ctos: // fall through 127 case stos: // fall through 128 case itos: ldrw(r0, val_addr); break; 129 case ftos: ldrs(v0, val_addr); break; 130 case dtos: ldrd(v0, val_addr); break; 131 case vtos: /* nothing to do */ break; 132 default : ShouldNotReachHere(); 133 } 134 // Clean up tos value in the thread object 135 movw(rscratch1, (int) ilgl); 136 strw(rscratch1, tos_addr); 137 strw(zr, val_addr); 138 } 139 140 141 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 142 if (JvmtiExport::can_force_early_return()) { 143 Label L; 144 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 145 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 146 147 // Initiate earlyret handling only if it is not already being processed. 148 // If the flag has the earlyret_processing bit set, it means that this code 149 // is called *during* earlyret handling - we don't want to reenter. 150 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 151 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 152 br(Assembler::NE, L); 153 154 // Call Interpreter::remove_activation_early_entry() to get the address of the 155 // same-named entrypoint in the generated interpreter code. 156 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 157 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 158 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 159 br(r0); 160 bind(L); 161 } 162 } 163 164 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 165 Register reg, 166 int bcp_offset) { 167 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 168 ldrh(reg, Address(rbcp, bcp_offset)); 169 rev16(reg, reg); 170 } 171 172 void InterpreterMacroAssembler::get_dispatch() { 173 uint64_t offset; 174 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 175 // Use add() here after ARDP, rather than lea(). 176 // lea() does not generate anything if its offset is zero. 177 // However, relocs expect to find either an ADD or a load/store 178 // insn after an ADRP. add() always generates an ADD insn, even 179 // for add(Rn, Rn, 0). 180 add(rdispatch, rdispatch, offset); 181 } 182 183 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 184 int bcp_offset, 185 size_t index_size) { 186 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 187 if (index_size == sizeof(u2)) { 188 load_unsigned_short(index, Address(rbcp, bcp_offset)); 189 } else if (index_size == sizeof(u4)) { 190 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 191 ldrw(index, Address(rbcp, bcp_offset)); 192 } else if (index_size == sizeof(u1)) { 193 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 194 } else { 195 ShouldNotReachHere(); 196 } 197 } 198 199 void InterpreterMacroAssembler::get_method_counters(Register method, 200 Register mcs, Label& skip) { 201 Label has_counters; 202 ldr(mcs, Address(method, Method::method_counters_offset())); 203 cbnz(mcs, has_counters); 204 call_VM(noreg, CAST_FROM_FN_PTR(address, 205 InterpreterRuntime::build_method_counters), method); 206 ldr(mcs, Address(method, Method::method_counters_offset())); 207 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 208 bind(has_counters); 209 } 210 211 // Load object from cpool->resolved_references(index) 212 void InterpreterMacroAssembler::load_resolved_reference_at_index( 213 Register result, Register index, Register tmp) { 214 assert_different_registers(result, index); 215 216 get_constant_pool(result); 217 // load pointer for resolved_references[] objArray 218 ldr(result, Address(result, ConstantPool::cache_offset())); 219 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 220 resolve_oop_handle(result, tmp, rscratch2); 221 // Add in the index 222 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 223 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 224 } 225 226 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 227 Register cpool, Register index, Register klass, Register temp) { 228 add(temp, cpool, index, LSL, LogBytesPerWord); 229 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 230 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 231 add(klass, klass, temp, LSL, LogBytesPerWord); 232 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 233 } 234 235 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 236 // subtype of super_klass. 237 // 238 // Args: 239 // r0: superklass 240 // Rsub_klass: subklass 241 // 242 // Kills: 243 // r2, r5 244 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 245 Label& ok_is_subtype) { 246 assert(Rsub_klass != r0, "r0 holds superklass"); 247 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 248 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 249 250 // Profile the not-null value's klass. 251 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 252 253 // Do the check. 254 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 255 } 256 257 // Java Expression Stack 258 259 void InterpreterMacroAssembler::pop_ptr(Register r) { 260 ldr(r, post(esp, wordSize)); 261 } 262 263 void InterpreterMacroAssembler::pop_i(Register r) { 264 ldrw(r, post(esp, wordSize)); 265 } 266 267 void InterpreterMacroAssembler::pop_l(Register r) { 268 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 269 } 270 271 void InterpreterMacroAssembler::push_ptr(Register r) { 272 str(r, pre(esp, -wordSize)); 273 } 274 275 void InterpreterMacroAssembler::push_i(Register r) { 276 str(r, pre(esp, -wordSize)); 277 } 278 279 void InterpreterMacroAssembler::push_l(Register r) { 280 str(zr, pre(esp, -wordSize)); 281 str(r, pre(esp, - wordSize)); 282 } 283 284 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 285 ldrs(r, post(esp, wordSize)); 286 } 287 288 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 289 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 290 } 291 292 void InterpreterMacroAssembler::push_f(FloatRegister r) { 293 strs(r, pre(esp, -wordSize)); 294 } 295 296 void InterpreterMacroAssembler::push_d(FloatRegister r) { 297 strd(r, pre(esp, 2* -wordSize)); 298 } 299 300 void InterpreterMacroAssembler::pop(TosState state) { 301 switch (state) { 302 case atos: pop_ptr(); break; 303 case btos: 304 case ztos: 305 case ctos: 306 case stos: 307 case itos: pop_i(); break; 308 case ltos: pop_l(); break; 309 case ftos: pop_f(); break; 310 case dtos: pop_d(); break; 311 case vtos: /* nothing to do */ break; 312 default: ShouldNotReachHere(); 313 } 314 interp_verify_oop(r0, state); 315 } 316 317 void InterpreterMacroAssembler::push(TosState state) { 318 interp_verify_oop(r0, state); 319 switch (state) { 320 case atos: push_ptr(); break; 321 case btos: 322 case ztos: 323 case ctos: 324 case stos: 325 case itos: push_i(); break; 326 case ltos: push_l(); break; 327 case ftos: push_f(); break; 328 case dtos: push_d(); break; 329 case vtos: /* nothing to do */ break; 330 default : ShouldNotReachHere(); 331 } 332 } 333 334 // Helpers for swap and dup 335 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 336 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 337 } 338 339 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 340 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 341 } 342 343 void InterpreterMacroAssembler::load_float(Address src) { 344 ldrs(v0, src); 345 } 346 347 void InterpreterMacroAssembler::load_double(Address src) { 348 ldrd(v0, src); 349 } 350 351 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 352 // set sender sp 353 mov(r19_sender_sp, sp); 354 // record last_sp 355 sub(rscratch1, esp, rfp); 356 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 357 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 358 } 359 360 // Jump to from_interpreted entry of a call unless single stepping is possible 361 // in this thread in which case we must call the i2i entry 362 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 363 prepare_to_jump_from_interpreted(); 364 365 if (JvmtiExport::can_post_interpreter_events()) { 366 Label run_compiled_code; 367 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 368 // compiled code in threads for which the event is enabled. Check here for 369 // interp_only_mode if these events CAN be enabled. 370 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 371 cbzw(rscratch1, run_compiled_code); 372 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 373 br(rscratch1); 374 bind(run_compiled_code); 375 } 376 377 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 378 br(rscratch1); 379 } 380 381 // The following two routines provide a hook so that an implementation 382 // can schedule the dispatch in two parts. amd64 does not do this. 383 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 384 } 385 386 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 387 dispatch_next(state, step); 388 } 389 390 void InterpreterMacroAssembler::dispatch_base(TosState state, 391 address* table, 392 bool verifyoop, 393 bool generate_poll) { 394 if (VerifyActivationFrameSize) { 395 Label L; 396 sub(rscratch2, rfp, esp); 397 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 398 subs(rscratch2, rscratch2, min_frame_size); 399 br(Assembler::GE, L); 400 stop("broken stack frame"); 401 bind(L); 402 } 403 if (verifyoop) { 404 interp_verify_oop(r0, state); 405 } 406 407 Label safepoint; 408 address* const safepoint_table = Interpreter::safept_table(state); 409 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 410 411 if (needs_thread_local_poll) { 412 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 413 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 414 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 415 } 416 417 if (table == Interpreter::dispatch_table(state)) { 418 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 419 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 420 } else { 421 mov(rscratch2, (address)table); 422 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 423 } 424 br(rscratch2); 425 426 if (needs_thread_local_poll) { 427 bind(safepoint); 428 lea(rscratch2, ExternalAddress((address)safepoint_table)); 429 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 430 br(rscratch2); 431 } 432 } 433 434 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 435 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 436 } 437 438 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 439 dispatch_base(state, Interpreter::normal_table(state)); 440 } 441 442 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 443 dispatch_base(state, Interpreter::normal_table(state), false); 444 } 445 446 447 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 448 // load next bytecode 449 ldrb(rscratch1, Address(pre(rbcp, step))); 450 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 451 } 452 453 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 454 // load current bytecode 455 ldrb(rscratch1, Address(rbcp, 0)); 456 dispatch_base(state, table); 457 } 458 459 // remove activation 460 // 461 // Apply stack watermark barrier. 462 // Unlock the receiver if this is a synchronized method. 463 // Unlock any Java monitors from synchronized blocks. 464 // Remove the activation from the stack. 465 // 466 // If there are locked Java monitors 467 // If throw_monitor_exception 468 // throws IllegalMonitorStateException 469 // Else if install_monitor_exception 470 // installs IllegalMonitorStateException 471 // Else 472 // no error processing 473 void InterpreterMacroAssembler::remove_activation( 474 TosState state, 475 bool throw_monitor_exception, 476 bool install_monitor_exception, 477 bool notify_jvmdi) { 478 // Note: Registers r3 xmm0 may be in use for the 479 // result check if synchronized method 480 Label unlocked, unlock, no_unlock; 481 482 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 483 // that would normally not be safe to use. Such bad returns into unsafe territory of 484 // the stack, will call InterpreterRuntime::at_unwind. 485 Label slow_path; 486 Label fast_path; 487 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 488 br(Assembler::AL, fast_path); 489 bind(slow_path); 490 push(state); 491 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 492 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 493 reset_last_Java_frame(true); 494 pop(state); 495 bind(fast_path); 496 497 // get the value of _do_not_unlock_if_synchronized into r3 498 const Address do_not_unlock_if_synchronized(rthread, 499 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 500 ldrb(r3, do_not_unlock_if_synchronized); 501 strb(zr, do_not_unlock_if_synchronized); // reset the flag 502 503 // get method access flags 504 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 505 ldrh(r2, Address(r1, Method::access_flags_offset())); 506 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 507 508 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 509 // is set. 510 cbnz(r3, no_unlock); 511 512 // unlock monitor 513 push(state); // save result 514 515 // BasicObjectLock will be first in list, since this is a 516 // synchronized method. However, need to check that the object has 517 // not been unlocked by an explicit monitorexit bytecode. 518 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 519 wordSize - (int) sizeof(BasicObjectLock)); 520 // We use c_rarg1 so that if we go slow path it will be the correct 521 // register for unlock_object to pass to VM directly 522 lea(c_rarg1, monitor); // address of first monitor 523 524 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 525 cbnz(r0, unlock); 526 527 pop(state); 528 if (throw_monitor_exception) { 529 // Entry already unlocked, need to throw exception 530 call_VM(noreg, CAST_FROM_FN_PTR(address, 531 InterpreterRuntime::throw_illegal_monitor_state_exception)); 532 should_not_reach_here(); 533 } else { 534 // Monitor already unlocked during a stack unroll. If requested, 535 // install an illegal_monitor_state_exception. Continue with 536 // stack unrolling. 537 if (install_monitor_exception) { 538 call_VM(noreg, CAST_FROM_FN_PTR(address, 539 InterpreterRuntime::new_illegal_monitor_state_exception)); 540 } 541 b(unlocked); 542 } 543 544 bind(unlock); 545 unlock_object(c_rarg1); 546 pop(state); 547 548 // Check that for block-structured locking (i.e., that all locked 549 // objects has been unlocked) 550 bind(unlocked); 551 552 // r0: Might contain return value 553 554 // Check that all monitors are unlocked 555 { 556 Label loop, exception, entry, restart; 557 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 558 const Address monitor_block_top( 559 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 560 const Address monitor_block_bot( 561 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 562 563 bind(restart); 564 // We use c_rarg1 so that if we go slow path it will be the correct 565 // register for unlock_object to pass to VM directly 566 ldr(c_rarg1, monitor_block_top); // derelativize pointer 567 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 568 // c_rarg1 points to current entry, starting with top-most entry 569 570 lea(r19, monitor_block_bot); // points to word before bottom of 571 // monitor block 572 b(entry); 573 574 // Entry already locked, need to throw exception 575 bind(exception); 576 577 if (throw_monitor_exception) { 578 // Throw exception 579 MacroAssembler::call_VM(noreg, 580 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 581 throw_illegal_monitor_state_exception)); 582 should_not_reach_here(); 583 } else { 584 // Stack unrolling. Unlock object and install illegal_monitor_exception. 585 // Unlock does not block, so don't have to worry about the frame. 586 // We don't have to preserve c_rarg1 since we are going to throw an exception. 587 588 push(state); 589 unlock_object(c_rarg1); 590 pop(state); 591 592 if (install_monitor_exception) { 593 call_VM(noreg, CAST_FROM_FN_PTR(address, 594 InterpreterRuntime:: 595 new_illegal_monitor_state_exception)); 596 } 597 598 b(restart); 599 } 600 601 bind(loop); 602 // check if current entry is used 603 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 604 cbnz(rscratch1, exception); 605 606 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 607 bind(entry); 608 cmp(c_rarg1, r19); // check if bottom reached 609 br(Assembler::NE, loop); // if not at bottom then check this entry 610 } 611 612 bind(no_unlock); 613 614 // jvmti support 615 if (notify_jvmdi) { 616 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 617 } else { 618 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 619 } 620 621 // remove activation 622 // get sender esp 623 ldr(rscratch2, 624 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 625 if (StackReservedPages > 0) { 626 // testing if reserved zone needs to be re-enabled 627 Label no_reserved_zone_enabling; 628 629 // check if already enabled - if so no re-enabling needed 630 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 631 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 632 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 633 br(Assembler::EQ, no_reserved_zone_enabling); 634 635 // look for an overflow into the stack reserved zone, i.e. 636 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 637 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 638 cmp(rscratch2, rscratch1); 639 br(Assembler::LS, no_reserved_zone_enabling); 640 641 call_VM_leaf( 642 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 643 call_VM(noreg, CAST_FROM_FN_PTR(address, 644 InterpreterRuntime::throw_delayed_StackOverflowError)); 645 should_not_reach_here(); 646 647 bind(no_reserved_zone_enabling); 648 } 649 650 // restore sender esp 651 mov(esp, rscratch2); 652 // remove frame anchor 653 leave(); 654 // If we're returning to interpreted code we will shortly be 655 // adjusting SP to allow some space for ESP. If we're returning to 656 // compiled code the saved sender SP was saved in sender_sp, so this 657 // restores it. 658 andr(sp, esp, -16); 659 } 660 661 // Lock object 662 // 663 // Args: 664 // c_rarg1: BasicObjectLock to be used for locking 665 // 666 // Kills: 667 // r0 668 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 669 // rscratch1, rscratch2 (scratch regs) 670 void InterpreterMacroAssembler::lock_object(Register lock_reg) 671 { 672 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 673 if (LockingMode == LM_MONITOR) { 674 call_VM_preemptable(noreg, 675 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 676 lock_reg); 677 } else { 678 Label count, done; 679 680 const Register swap_reg = r0; 681 const Register tmp = c_rarg2; 682 const Register obj_reg = c_rarg3; // Will contain the oop 683 const Register tmp2 = c_rarg4; 684 const Register tmp3 = c_rarg5; 685 686 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 687 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 688 const int mark_offset = lock_offset + 689 BasicLock::displaced_header_offset_in_bytes(); 690 691 Label slow_case; 692 693 // Load object pointer into obj_reg %c_rarg3 694 ldr(obj_reg, Address(lock_reg, obj_offset)); 695 696 if (DiagnoseSyncOnValueBasedClasses != 0) { 697 load_klass(tmp, obj_reg); 698 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 699 tst(tmp, KlassFlags::_misc_is_value_based_class); 700 br(Assembler::NE, slow_case); 701 } 702 703 if (LockingMode == LM_LIGHTWEIGHT) { 704 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 705 b(done); 706 } else if (LockingMode == LM_LEGACY) { 707 // Load (object->mark() | 1) into swap_reg 708 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 709 orr(swap_reg, rscratch1, 1); 710 711 // Save (object->mark() | 1) into BasicLock's displaced header 712 str(swap_reg, Address(lock_reg, mark_offset)); 713 714 assert(lock_offset == 0, 715 "displached header must be first word in BasicObjectLock"); 716 717 Label fail; 718 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 719 720 // Fast check for recursive lock. 721 // 722 // Can apply the optimization only if this is a stack lock 723 // allocated in this thread. For efficiency, we can focus on 724 // recently allocated stack locks (instead of reading the stack 725 // base and checking whether 'mark' points inside the current 726 // thread stack): 727 // 1) (mark & 7) == 0, and 728 // 2) sp <= mark < mark + os::pagesize() 729 // 730 // Warning: sp + os::pagesize can overflow the stack base. We must 731 // neither apply the optimization for an inflated lock allocated 732 // just above the thread stack (this is why condition 1 matters) 733 // nor apply the optimization if the stack lock is inside the stack 734 // of another thread. The latter is avoided even in case of overflow 735 // because we have guard pages at the end of all stacks. Hence, if 736 // we go over the stack base and hit the stack of another thread, 737 // this should not be in a writeable area that could contain a 738 // stack lock allocated by that thread. As a consequence, a stack 739 // lock less than page size away from sp is guaranteed to be 740 // owned by the current thread. 741 // 742 // These 3 tests can be done by evaluating the following 743 // expression: ((mark - sp) & (7 - os::vm_page_size())), 744 // assuming both stack pointer and pagesize have their 745 // least significant 3 bits clear. 746 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 747 // NOTE2: aarch64 does not like to subtract sp from rn so take a 748 // copy 749 mov(rscratch1, sp); 750 sub(swap_reg, swap_reg, rscratch1); 751 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 752 753 // Save the test result, for recursive case, the result is zero 754 str(swap_reg, Address(lock_reg, mark_offset)); 755 br(Assembler::NE, slow_case); 756 757 bind(count); 758 inc_held_monitor_count(rscratch1); 759 b(done); 760 } 761 bind(slow_case); 762 763 // Call the runtime routine for slow case 764 call_VM_preemptable(noreg, 765 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 766 lock_reg); 767 768 bind(done); 769 } 770 } 771 772 773 // Unlocks an object. Used in monitorexit bytecode and 774 // remove_activation. Throws an IllegalMonitorException if object is 775 // not locked by current thread. 776 // 777 // Args: 778 // c_rarg1: BasicObjectLock for lock 779 // 780 // Kills: 781 // r0 782 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 783 // rscratch1, rscratch2 (scratch regs) 784 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 785 { 786 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 787 788 if (LockingMode == LM_MONITOR) { 789 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 790 } else { 791 Label count, done; 792 793 const Register swap_reg = r0; 794 const Register header_reg = c_rarg2; // Will contain the old oopMark 795 const Register obj_reg = c_rarg3; // Will contain the oop 796 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 797 798 save_bcp(); // Save in case of exception 799 800 if (LockingMode != LM_LIGHTWEIGHT) { 801 // Convert from BasicObjectLock structure to object and BasicLock 802 // structure Store the BasicLock address into %r0 803 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 804 } 805 806 // Load oop into obj_reg(%c_rarg3) 807 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 808 809 // Free entry 810 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 811 812 Label slow_case; 813 if (LockingMode == LM_LIGHTWEIGHT) { 814 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 815 b(done); 816 } else if (LockingMode == LM_LEGACY) { 817 // Load the old header from BasicLock structure 818 ldr(header_reg, Address(swap_reg, 819 BasicLock::displaced_header_offset_in_bytes())); 820 821 // Test for recursion 822 cbz(header_reg, count); 823 824 // Atomic swap back the old header 825 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 826 827 bind(count); 828 dec_held_monitor_count(rscratch1); 829 b(done); 830 } 831 832 bind(slow_case); 833 // Call the runtime routine for slow case. 834 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 835 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 836 bind(done); 837 restore_bcp(); 838 } 839 } 840 841 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 842 Label& zero_continue) { 843 assert(ProfileInterpreter, "must be profiling interpreter"); 844 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 845 cbz(mdp, zero_continue); 846 } 847 848 // Set the method data pointer for the current bcp. 849 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 850 assert(ProfileInterpreter, "must be profiling interpreter"); 851 Label set_mdp; 852 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 853 854 // Test MDO to avoid the call if it is null. 855 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 856 cbz(r0, set_mdp); 857 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 858 // r0: mdi 859 // mdo is guaranteed to be non-zero here, we checked for it before the call. 860 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 861 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 862 add(r0, r1, r0); 863 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 864 bind(set_mdp); 865 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 866 } 867 868 void InterpreterMacroAssembler::verify_method_data_pointer() { 869 assert(ProfileInterpreter, "must be profiling interpreter"); 870 #ifdef ASSERT 871 Label verify_continue; 872 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 873 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 874 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 875 get_method(r1); 876 877 // If the mdp is valid, it will point to a DataLayout header which is 878 // consistent with the bcp. The converse is highly probable also. 879 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 880 ldr(rscratch1, Address(r1, Method::const_offset())); 881 add(r2, r2, rscratch1, Assembler::LSL); 882 lea(r2, Address(r2, ConstMethod::codes_offset())); 883 cmp(r2, rbcp); 884 br(Assembler::EQ, verify_continue); 885 // r1: method 886 // rbcp: bcp // rbcp == 22 887 // r3: mdp 888 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 889 r1, rbcp, r3); 890 bind(verify_continue); 891 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 892 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 893 #endif // ASSERT 894 } 895 896 897 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 898 int constant, 899 Register value) { 900 assert(ProfileInterpreter, "must be profiling interpreter"); 901 Address data(mdp_in, constant); 902 str(value, data); 903 } 904 905 906 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 907 int constant, 908 bool decrement) { 909 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 910 } 911 912 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 913 Register reg, 914 int constant, 915 bool decrement) { 916 assert(ProfileInterpreter, "must be profiling interpreter"); 917 // %%% this does 64bit counters at best it is wasting space 918 // at worst it is a rare bug when counters overflow 919 920 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 921 922 Address addr1(mdp_in, constant); 923 Address addr2(rscratch2, reg, Address::lsl(0)); 924 Address &addr = addr1; 925 if (reg != noreg) { 926 lea(rscratch2, addr1); 927 addr = addr2; 928 } 929 930 if (decrement) { 931 // Decrement the register. Set condition codes. 932 // Intel does this 933 // addptr(data, (int32_t) -DataLayout::counter_increment); 934 // If the decrement causes the counter to overflow, stay negative 935 // Label L; 936 // jcc(Assembler::negative, L); 937 // addptr(data, (int32_t) DataLayout::counter_increment); 938 // so we do this 939 ldr(rscratch1, addr); 940 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 941 Label L; 942 br(Assembler::LO, L); // skip store if counter underflow 943 str(rscratch1, addr); 944 bind(L); 945 } else { 946 assert(DataLayout::counter_increment == 1, 947 "flow-free idiom only works with 1"); 948 // Intel does this 949 // Increment the register. Set carry flag. 950 // addptr(data, DataLayout::counter_increment); 951 // If the increment causes the counter to overflow, pull back by 1. 952 // sbbptr(data, (int32_t)0); 953 // so we do this 954 ldr(rscratch1, addr); 955 adds(rscratch1, rscratch1, DataLayout::counter_increment); 956 Label L; 957 br(Assembler::CS, L); // skip store if counter overflow 958 str(rscratch1, addr); 959 bind(L); 960 } 961 } 962 963 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 964 int flag_byte_constant) { 965 assert(ProfileInterpreter, "must be profiling interpreter"); 966 int flags_offset = in_bytes(DataLayout::flags_offset()); 967 // Set the flag 968 ldrb(rscratch1, Address(mdp_in, flags_offset)); 969 orr(rscratch1, rscratch1, flag_byte_constant); 970 strb(rscratch1, Address(mdp_in, flags_offset)); 971 } 972 973 974 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 975 int offset, 976 Register value, 977 Register test_value_out, 978 Label& not_equal_continue) { 979 assert(ProfileInterpreter, "must be profiling interpreter"); 980 if (test_value_out == noreg) { 981 ldr(rscratch1, Address(mdp_in, offset)); 982 cmp(value, rscratch1); 983 } else { 984 // Put the test value into a register, so caller can use it: 985 ldr(test_value_out, Address(mdp_in, offset)); 986 cmp(value, test_value_out); 987 } 988 br(Assembler::NE, not_equal_continue); 989 } 990 991 992 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 993 int offset_of_disp) { 994 assert(ProfileInterpreter, "must be profiling interpreter"); 995 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 996 add(mdp_in, mdp_in, rscratch1, LSL); 997 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 998 } 999 1000 1001 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1002 Register reg, 1003 int offset_of_disp) { 1004 assert(ProfileInterpreter, "must be profiling interpreter"); 1005 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1006 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1007 add(mdp_in, mdp_in, rscratch1, LSL); 1008 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1009 } 1010 1011 1012 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1013 int constant) { 1014 assert(ProfileInterpreter, "must be profiling interpreter"); 1015 add(mdp_in, mdp_in, (unsigned)constant); 1016 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1017 } 1018 1019 1020 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1021 assert(ProfileInterpreter, "must be profiling interpreter"); 1022 // save/restore across call_VM 1023 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1024 call_VM(noreg, 1025 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1026 return_bci); 1027 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1028 } 1029 1030 1031 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1032 Register bumped_count) { 1033 if (ProfileInterpreter) { 1034 Label profile_continue; 1035 1036 // If no method data exists, go to profile_continue. 1037 // Otherwise, assign to mdp 1038 test_method_data_pointer(mdp, profile_continue); 1039 1040 // We are taking a branch. Increment the taken count. 1041 // We inline increment_mdp_data_at to return bumped_count in a register 1042 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1043 Address data(mdp, in_bytes(JumpData::taken_offset())); 1044 ldr(bumped_count, data); 1045 assert(DataLayout::counter_increment == 1, 1046 "flow-free idiom only works with 1"); 1047 // Intel does this to catch overflow 1048 // addptr(bumped_count, DataLayout::counter_increment); 1049 // sbbptr(bumped_count, 0); 1050 // so we do this 1051 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1052 Label L; 1053 br(Assembler::CS, L); // skip store if counter overflow 1054 str(bumped_count, data); 1055 bind(L); 1056 // The method data pointer needs to be updated to reflect the new target. 1057 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1058 bind(profile_continue); 1059 } 1060 } 1061 1062 1063 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1064 if (ProfileInterpreter) { 1065 Label profile_continue; 1066 1067 // If no method data exists, go to profile_continue. 1068 test_method_data_pointer(mdp, profile_continue); 1069 1070 // We are taking a branch. Increment the not taken count. 1071 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1072 1073 // The method data pointer needs to be updated to correspond to 1074 // the next bytecode 1075 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1076 bind(profile_continue); 1077 } 1078 } 1079 1080 1081 void InterpreterMacroAssembler::profile_call(Register mdp) { 1082 if (ProfileInterpreter) { 1083 Label profile_continue; 1084 1085 // If no method data exists, go to profile_continue. 1086 test_method_data_pointer(mdp, profile_continue); 1087 1088 // We are making a call. Increment the count. 1089 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1090 1091 // The method data pointer needs to be updated to reflect the new target. 1092 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1093 bind(profile_continue); 1094 } 1095 } 1096 1097 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1098 if (ProfileInterpreter) { 1099 Label profile_continue; 1100 1101 // If no method data exists, go to profile_continue. 1102 test_method_data_pointer(mdp, profile_continue); 1103 1104 // We are making a call. Increment the count. 1105 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1106 1107 // The method data pointer needs to be updated to reflect the new target. 1108 update_mdp_by_constant(mdp, 1109 in_bytes(VirtualCallData:: 1110 virtual_call_data_size())); 1111 bind(profile_continue); 1112 } 1113 } 1114 1115 1116 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1117 Register mdp, 1118 Register reg2, 1119 bool receiver_can_be_null) { 1120 if (ProfileInterpreter) { 1121 Label profile_continue; 1122 1123 // If no method data exists, go to profile_continue. 1124 test_method_data_pointer(mdp, profile_continue); 1125 1126 Label skip_receiver_profile; 1127 if (receiver_can_be_null) { 1128 Label not_null; 1129 // We are making a call. Increment the count for null receiver. 1130 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1131 b(skip_receiver_profile); 1132 bind(not_null); 1133 } 1134 1135 // Record the receiver type. 1136 record_klass_in_profile(receiver, mdp, reg2); 1137 bind(skip_receiver_profile); 1138 1139 // The method data pointer needs to be updated to reflect the new target. 1140 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1141 bind(profile_continue); 1142 } 1143 } 1144 1145 // This routine creates a state machine for updating the multi-row 1146 // type profile at a virtual call site (or other type-sensitive bytecode). 1147 // The machine visits each row (of receiver/count) until the receiver type 1148 // is found, or until it runs out of rows. At the same time, it remembers 1149 // the location of the first empty row. (An empty row records null for its 1150 // receiver, and can be allocated for a newly-observed receiver type.) 1151 // Because there are two degrees of freedom in the state, a simple linear 1152 // search will not work; it must be a decision tree. Hence this helper 1153 // function is recursive, to generate the required tree structured code. 1154 // It's the interpreter, so we are trading off code space for speed. 1155 // See below for example code. 1156 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1157 Register receiver, Register mdp, 1158 Register reg2, int start_row, 1159 Label& done) { 1160 if (TypeProfileWidth == 0) { 1161 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1162 } else { 1163 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1164 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1165 } 1166 } 1167 1168 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1169 Register reg2, int start_row, Label& done, int total_rows, 1170 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1171 int last_row = total_rows - 1; 1172 assert(start_row <= last_row, "must be work left to do"); 1173 // Test this row for both the item and for null. 1174 // Take any of three different outcomes: 1175 // 1. found item => increment count and goto done 1176 // 2. found null => keep looking for case 1, maybe allocate this cell 1177 // 3. found something else => keep looking for cases 1 and 2 1178 // Case 3 is handled by a recursive call. 1179 for (int row = start_row; row <= last_row; row++) { 1180 Label next_test; 1181 bool test_for_null_also = (row == start_row); 1182 1183 // See if the item is item[n]. 1184 int item_offset = in_bytes(item_offset_fn(row)); 1185 test_mdp_data_at(mdp, item_offset, item, 1186 (test_for_null_also ? reg2 : noreg), 1187 next_test); 1188 // (Reg2 now contains the item from the CallData.) 1189 1190 // The item is item[n]. Increment count[n]. 1191 int count_offset = in_bytes(item_count_offset_fn(row)); 1192 increment_mdp_data_at(mdp, count_offset); 1193 b(done); 1194 bind(next_test); 1195 1196 if (test_for_null_also) { 1197 Label found_null; 1198 // Failed the equality check on item[n]... Test for null. 1199 if (start_row == last_row) { 1200 // The only thing left to do is handle the null case. 1201 cbz(reg2, found_null); 1202 // Item did not match any saved item and there is no empty row for it. 1203 // Increment total counter to indicate polymorphic case. 1204 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1205 b(done); 1206 bind(found_null); 1207 break; 1208 } 1209 // Since null is rare, make it be the branch-taken case. 1210 cbz(reg2, found_null); 1211 1212 // Put all the "Case 3" tests here. 1213 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1214 item_offset_fn, item_count_offset_fn); 1215 1216 // Found a null. Keep searching for a matching item, 1217 // but remember that this is an empty (unused) slot. 1218 bind(found_null); 1219 } 1220 } 1221 1222 // In the fall-through case, we found no matching item, but we 1223 // observed the item[start_row] is null. 1224 1225 // Fill in the item field and increment the count. 1226 int item_offset = in_bytes(item_offset_fn(start_row)); 1227 set_mdp_data_at(mdp, item_offset, item); 1228 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1229 mov(reg2, DataLayout::counter_increment); 1230 set_mdp_data_at(mdp, count_offset, reg2); 1231 if (start_row > 0) { 1232 b(done); 1233 } 1234 } 1235 1236 // Example state machine code for three profile rows: 1237 // // main copy of decision tree, rooted at row[1] 1238 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1239 // if (row[0].rec != nullptr) { 1240 // // inner copy of decision tree, rooted at row[1] 1241 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1242 // if (row[1].rec != nullptr) { 1243 // // degenerate decision tree, rooted at row[2] 1244 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1245 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1246 // row[2].init(rec); goto done; 1247 // } else { 1248 // // remember row[1] is empty 1249 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1250 // row[1].init(rec); goto done; 1251 // } 1252 // } else { 1253 // // remember row[0] is empty 1254 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1255 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1256 // row[0].init(rec); goto done; 1257 // } 1258 // done: 1259 1260 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1261 Register mdp, Register reg2) { 1262 assert(ProfileInterpreter, "must be profiling"); 1263 Label done; 1264 1265 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1266 1267 bind (done); 1268 } 1269 1270 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1271 Register mdp) { 1272 if (ProfileInterpreter) { 1273 Label profile_continue; 1274 uint row; 1275 1276 // If no method data exists, go to profile_continue. 1277 test_method_data_pointer(mdp, profile_continue); 1278 1279 // Update the total ret count. 1280 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1281 1282 for (row = 0; row < RetData::row_limit(); row++) { 1283 Label next_test; 1284 1285 // See if return_bci is equal to bci[n]: 1286 test_mdp_data_at(mdp, 1287 in_bytes(RetData::bci_offset(row)), 1288 return_bci, noreg, 1289 next_test); 1290 1291 // return_bci is equal to bci[n]. Increment the count. 1292 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1293 1294 // The method data pointer needs to be updated to reflect the new target. 1295 update_mdp_by_offset(mdp, 1296 in_bytes(RetData::bci_displacement_offset(row))); 1297 b(profile_continue); 1298 bind(next_test); 1299 } 1300 1301 update_mdp_for_ret(return_bci); 1302 1303 bind(profile_continue); 1304 } 1305 } 1306 1307 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1308 if (ProfileInterpreter) { 1309 Label profile_continue; 1310 1311 // If no method data exists, go to profile_continue. 1312 test_method_data_pointer(mdp, profile_continue); 1313 1314 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1315 1316 // The method data pointer needs to be updated. 1317 int mdp_delta = in_bytes(BitData::bit_data_size()); 1318 if (TypeProfileCasts) { 1319 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1320 } 1321 update_mdp_by_constant(mdp, mdp_delta); 1322 1323 bind(profile_continue); 1324 } 1325 } 1326 1327 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1328 if (ProfileInterpreter) { 1329 Label profile_continue; 1330 1331 // If no method data exists, go to profile_continue. 1332 test_method_data_pointer(mdp, profile_continue); 1333 1334 // The method data pointer needs to be updated. 1335 int mdp_delta = in_bytes(BitData::bit_data_size()); 1336 if (TypeProfileCasts) { 1337 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1338 1339 // Record the object type. 1340 record_klass_in_profile(klass, mdp, reg2); 1341 } 1342 update_mdp_by_constant(mdp, mdp_delta); 1343 1344 bind(profile_continue); 1345 } 1346 } 1347 1348 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1349 if (ProfileInterpreter) { 1350 Label profile_continue; 1351 1352 // If no method data exists, go to profile_continue. 1353 test_method_data_pointer(mdp, profile_continue); 1354 1355 // Update the default case count 1356 increment_mdp_data_at(mdp, 1357 in_bytes(MultiBranchData::default_count_offset())); 1358 1359 // The method data pointer needs to be updated. 1360 update_mdp_by_offset(mdp, 1361 in_bytes(MultiBranchData:: 1362 default_displacement_offset())); 1363 1364 bind(profile_continue); 1365 } 1366 } 1367 1368 void InterpreterMacroAssembler::profile_switch_case(Register index, 1369 Register mdp, 1370 Register reg2) { 1371 if (ProfileInterpreter) { 1372 Label profile_continue; 1373 1374 // If no method data exists, go to profile_continue. 1375 test_method_data_pointer(mdp, profile_continue); 1376 1377 // Build the base (index * per_case_size_in_bytes()) + 1378 // case_array_offset_in_bytes() 1379 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1380 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1381 Assembler::maddw(index, index, reg2, rscratch1); 1382 1383 // Update the case count 1384 increment_mdp_data_at(mdp, 1385 index, 1386 in_bytes(MultiBranchData::relative_count_offset())); 1387 1388 // The method data pointer needs to be updated. 1389 update_mdp_by_offset(mdp, 1390 index, 1391 in_bytes(MultiBranchData:: 1392 relative_displacement_offset())); 1393 1394 bind(profile_continue); 1395 } 1396 } 1397 1398 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1399 if (state == atos) { 1400 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1401 } 1402 } 1403 1404 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1405 1406 1407 void InterpreterMacroAssembler::notify_method_entry() { 1408 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1409 // track stack depth. If it is possible to enter interp_only_mode we add 1410 // the code to check if the event should be sent. 1411 if (JvmtiExport::can_post_interpreter_events()) { 1412 Label L; 1413 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1414 cbzw(r3, L); 1415 call_VM(noreg, CAST_FROM_FN_PTR(address, 1416 InterpreterRuntime::post_method_entry)); 1417 bind(L); 1418 } 1419 1420 if (DTraceMethodProbes) { 1421 get_method(c_rarg1); 1422 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1423 rthread, c_rarg1); 1424 } 1425 1426 // RedefineClasses() tracing support for obsolete method entry 1427 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1428 get_method(c_rarg1); 1429 call_VM_leaf( 1430 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1431 rthread, c_rarg1); 1432 } 1433 1434 } 1435 1436 1437 void InterpreterMacroAssembler::notify_method_exit( 1438 TosState state, NotifyMethodExitMode mode) { 1439 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1440 // track stack depth. If it is possible to enter interp_only_mode we add 1441 // the code to check if the event should be sent. 1442 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1443 Label L; 1444 // Note: frame::interpreter_frame_result has a dependency on how the 1445 // method result is saved across the call to post_method_exit. If this 1446 // is changed then the interpreter_frame_result implementation will 1447 // need to be updated too. 1448 1449 // template interpreter will leave the result on the top of the stack. 1450 push(state); 1451 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1452 cbz(r3, L); 1453 call_VM(noreg, 1454 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1455 bind(L); 1456 pop(state); 1457 } 1458 1459 if (DTraceMethodProbes) { 1460 push(state); 1461 get_method(c_rarg1); 1462 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1463 rthread, c_rarg1); 1464 pop(state); 1465 } 1466 } 1467 1468 1469 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1470 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1471 int increment, Address mask, 1472 Register scratch, Register scratch2, 1473 bool preloaded, Condition cond, 1474 Label* where) { 1475 if (!preloaded) { 1476 ldrw(scratch, counter_addr); 1477 } 1478 add(scratch, scratch, increment); 1479 strw(scratch, counter_addr); 1480 ldrw(scratch2, mask); 1481 ands(scratch, scratch, scratch2); 1482 br(cond, *where); 1483 } 1484 1485 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1486 int number_of_arguments) { 1487 // interpreter specific 1488 // 1489 // Note: No need to save/restore rbcp & rlocals pointer since these 1490 // are callee saved registers and no blocking/ GC can happen 1491 // in leaf calls. 1492 #ifdef ASSERT 1493 { 1494 Label L; 1495 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1496 cbz(rscratch1, L); 1497 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1498 " last_sp != nullptr"); 1499 bind(L); 1500 } 1501 #endif /* ASSERT */ 1502 // super call 1503 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1504 } 1505 1506 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1507 Register java_thread, 1508 Register last_java_sp, 1509 address entry_point, 1510 int number_of_arguments, 1511 bool check_exceptions) { 1512 // interpreter specific 1513 // 1514 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1515 // really make a difference for these runtime calls, since they are 1516 // slow anyway. Btw., bcp must be saved/restored since it may change 1517 // due to GC. 1518 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1519 save_bcp(); 1520 #ifdef ASSERT 1521 { 1522 Label L; 1523 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1524 cbz(rscratch1, L); 1525 stop("InterpreterMacroAssembler::call_VM_base:" 1526 " last_sp != nullptr"); 1527 bind(L); 1528 } 1529 #endif /* ASSERT */ 1530 // super call 1531 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1532 entry_point, number_of_arguments, 1533 check_exceptions); 1534 // interpreter specific 1535 restore_bcp(); 1536 restore_locals(); 1537 } 1538 1539 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1540 address entry_point, 1541 Register arg_1) { 1542 assert(arg_1 == c_rarg1, ""); 1543 Label resume_pc, not_preempted; 1544 1545 #ifdef ASSERT 1546 { 1547 Label L; 1548 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1549 cbz(rscratch1, L); 1550 stop("Should not have alternate return address set"); 1551 bind(L); 1552 } 1553 #endif /* ASSERT */ 1554 1555 // Force freeze slow path. 1556 push_cont_fastpath(); 1557 1558 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1559 adr(rscratch1, resume_pc); 1560 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1561 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1562 1563 pop_cont_fastpath(); 1564 1565 // Check if preempted. 1566 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1567 cbz(rscratch1, not_preempted); 1568 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1569 br(rscratch1); 1570 1571 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1572 bind(resume_pc); 1573 restore_after_resume(false /* is_native */); 1574 1575 bind(not_preempted); 1576 } 1577 1578 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1579 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1580 blr(rscratch1); 1581 if (is_native) { 1582 // On resume we need to set up stack as expected 1583 push(dtos); 1584 push(ltos); 1585 } 1586 } 1587 1588 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1589 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1590 Label update, next, none; 1591 1592 verify_oop(obj); 1593 1594 cbnz(obj, update); 1595 orptr(mdo_addr, TypeEntries::null_seen); 1596 b(next); 1597 1598 bind(update); 1599 load_klass(obj, obj); 1600 1601 ldr(rscratch1, mdo_addr); 1602 eor(obj, obj, rscratch1); 1603 tst(obj, TypeEntries::type_klass_mask); 1604 br(Assembler::EQ, next); // klass seen before, nothing to 1605 // do. The unknown bit may have been 1606 // set already but no need to check. 1607 1608 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1609 // already unknown. Nothing to do anymore. 1610 1611 cbz(rscratch1, none); 1612 cmp(rscratch1, (u1)TypeEntries::null_seen); 1613 br(Assembler::EQ, none); 1614 // There is a chance that the checks above 1615 // fail if another thread has just set the 1616 // profiling to this obj's klass 1617 eor(obj, obj, rscratch1); // get back original value before XOR 1618 ldr(rscratch1, mdo_addr); 1619 eor(obj, obj, rscratch1); 1620 tst(obj, TypeEntries::type_klass_mask); 1621 br(Assembler::EQ, next); 1622 1623 // different than before. Cannot keep accurate profile. 1624 orptr(mdo_addr, TypeEntries::type_unknown); 1625 b(next); 1626 1627 bind(none); 1628 // first time here. Set profile type. 1629 str(obj, mdo_addr); 1630 #ifdef ASSERT 1631 andr(obj, obj, TypeEntries::type_mask); 1632 verify_klass_ptr(obj); 1633 #endif 1634 1635 bind(next); 1636 } 1637 1638 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1639 if (!ProfileInterpreter) { 1640 return; 1641 } 1642 1643 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1644 Label profile_continue; 1645 1646 test_method_data_pointer(mdp, profile_continue); 1647 1648 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1649 1650 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1651 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1652 br(Assembler::NE, profile_continue); 1653 1654 if (MethodData::profile_arguments()) { 1655 Label done; 1656 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1657 1658 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1659 if (i > 0 || MethodData::profile_return()) { 1660 // If return value type is profiled we may have no argument to profile 1661 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1662 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1663 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1664 add(rscratch1, mdp, off_to_args); 1665 br(Assembler::LT, done); 1666 } 1667 ldr(tmp, Address(callee, Method::const_offset())); 1668 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1669 // stack offset o (zero based) from the start of the argument 1670 // list, for n arguments translates into offset n - o - 1 from 1671 // the end of the argument list 1672 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1673 sub(tmp, tmp, rscratch1); 1674 sub(tmp, tmp, 1); 1675 Address arg_addr = argument_address(tmp); 1676 ldr(tmp, arg_addr); 1677 1678 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1679 profile_obj_type(tmp, mdo_arg_addr); 1680 1681 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1682 off_to_args += to_add; 1683 } 1684 1685 if (MethodData::profile_return()) { 1686 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1687 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1688 } 1689 1690 add(rscratch1, mdp, off_to_args); 1691 bind(done); 1692 mov(mdp, rscratch1); 1693 1694 if (MethodData::profile_return()) { 1695 // We're right after the type profile for the last 1696 // argument. tmp is the number of cells left in the 1697 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1698 // if there's a return to profile. 1699 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1700 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1701 } 1702 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1703 } else { 1704 assert(MethodData::profile_return(), "either profile call args or call ret"); 1705 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1706 } 1707 1708 // mdp points right after the end of the 1709 // CallTypeData/VirtualCallTypeData, right after the cells for the 1710 // return value type if there's one 1711 1712 bind(profile_continue); 1713 } 1714 } 1715 1716 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1717 assert_different_registers(mdp, ret, tmp, rbcp); 1718 if (ProfileInterpreter && MethodData::profile_return()) { 1719 Label profile_continue, done; 1720 1721 test_method_data_pointer(mdp, profile_continue); 1722 1723 if (MethodData::profile_return_jsr292_only()) { 1724 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1725 1726 // If we don't profile all invoke bytecodes we must make sure 1727 // it's a bytecode we indeed profile. We can't go back to the 1728 // beginning of the ProfileData we intend to update to check its 1729 // type because we're right after it and we don't known its 1730 // length 1731 Label do_profile; 1732 ldrb(rscratch1, Address(rbcp, 0)); 1733 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1734 br(Assembler::EQ, do_profile); 1735 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1736 br(Assembler::EQ, do_profile); 1737 get_method(tmp); 1738 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1739 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1740 br(Assembler::NE, profile_continue); 1741 1742 bind(do_profile); 1743 } 1744 1745 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1746 mov(tmp, ret); 1747 profile_obj_type(tmp, mdo_ret_addr); 1748 1749 bind(profile_continue); 1750 } 1751 } 1752 1753 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1754 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1755 if (ProfileInterpreter && MethodData::profile_parameters()) { 1756 Label profile_continue, done; 1757 1758 test_method_data_pointer(mdp, profile_continue); 1759 1760 // Load the offset of the area within the MDO used for 1761 // parameters. If it's negative we're not profiling any parameters 1762 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1763 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1764 1765 // Compute a pointer to the area for parameters from the offset 1766 // and move the pointer to the slot for the last 1767 // parameters. Collect profiling from last parameter down. 1768 // mdo start + parameters offset + array length - 1 1769 add(mdp, mdp, tmp1); 1770 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1771 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1772 1773 Label loop; 1774 bind(loop); 1775 1776 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1777 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1778 int per_arg_scale = exact_log2(DataLayout::cell_size); 1779 add(rscratch1, mdp, off_base); 1780 add(rscratch2, mdp, type_base); 1781 1782 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1783 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1784 1785 // load offset on the stack from the slot for this parameter 1786 ldr(tmp2, arg_off); 1787 neg(tmp2, tmp2); 1788 // read the parameter from the local area 1789 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1790 1791 // profile the parameter 1792 profile_obj_type(tmp2, arg_type); 1793 1794 // go to next parameter 1795 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1796 br(Assembler::GE, loop); 1797 1798 bind(profile_continue); 1799 } 1800 } 1801 1802 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1803 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1804 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1805 // Get address of invokedynamic array 1806 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1807 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1808 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1809 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1810 lea(cache, Address(cache, index)); 1811 } 1812 1813 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1814 // Get index out of bytecode pointer 1815 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1816 // Take shortcut if the size is a power of 2 1817 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1818 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1819 } else { 1820 mov(cache, sizeof(ResolvedFieldEntry)); 1821 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1822 } 1823 // Get address of field entries array 1824 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1825 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1826 lea(cache, Address(cache, index)); 1827 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1828 membar(MacroAssembler::LoadLoad); 1829 } 1830 1831 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1832 // Get index out of bytecode pointer 1833 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1834 mov(cache, sizeof(ResolvedMethodEntry)); 1835 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1836 1837 // Get address of field entries array 1838 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 1839 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 1840 lea(cache, Address(cache, index)); 1841 }