1 /* 2 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/inlineKlass.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "prims/jvmtiThreadState.hpp" 42 #include "runtime/basicLock.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/javaThread.hpp" 45 #include "runtime/safepointMechanism.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 void InterpreterMacroAssembler::narrow(Register result) { 50 51 // Get method->_constMethod->_result_type 52 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 53 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 54 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 55 56 Label done, notBool, notByte, notChar; 57 58 // common case first 59 cmpw(rscratch1, T_INT); 60 br(Assembler::EQ, done); 61 62 // mask integer result to narrower return type. 63 cmpw(rscratch1, T_BOOLEAN); 64 br(Assembler::NE, notBool); 65 andw(result, result, 0x1); 66 b(done); 67 68 bind(notBool); 69 cmpw(rscratch1, T_BYTE); 70 br(Assembler::NE, notByte); 71 sbfx(result, result, 0, 8); 72 b(done); 73 74 bind(notByte); 75 cmpw(rscratch1, T_CHAR); 76 br(Assembler::NE, notChar); 77 ubfx(result, result, 0, 16); // truncate upper 16 bits 78 b(done); 79 80 bind(notChar); 81 sbfx(result, result, 0, 16); // sign-extend short 82 83 // Nothing to do for T_INT 84 bind(done); 85 } 86 87 void InterpreterMacroAssembler::jump_to_entry(address entry) { 88 assert(entry, "Entry must have been generated by now"); 89 b(entry); 90 } 91 92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 93 if (JvmtiExport::can_pop_frame()) { 94 Label L; 95 // Initiate popframe handling only if it is not already being 96 // processed. If the flag has the popframe_processing bit set, it 97 // means that this code is called *during* popframe handling - we 98 // don't want to reenter. 99 // This method is only called just after the call into the vm in 100 // call_VM_base, so the arg registers are available. 101 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 102 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 103 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 104 // Call Interpreter::remove_activation_preserving_args_entry() to get the 105 // address of the same-named entrypoint in the generated interpreter code. 106 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 107 br(r0); 108 bind(L); 109 } 110 } 111 112 113 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 114 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 115 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 116 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 117 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 118 switch (state) { 119 case atos: ldr(r0, oop_addr); 120 str(zr, oop_addr); 121 interp_verify_oop(r0, state); break; 122 case ltos: ldr(r0, val_addr); break; 123 case btos: // fall through 124 case ztos: // fall through 125 case ctos: // fall through 126 case stos: // fall through 127 case itos: ldrw(r0, val_addr); break; 128 case ftos: ldrs(v0, val_addr); break; 129 case dtos: ldrd(v0, val_addr); break; 130 case vtos: /* nothing to do */ break; 131 default : ShouldNotReachHere(); 132 } 133 // Clean up tos value in the thread object 134 movw(rscratch1, (int) ilgl); 135 strw(rscratch1, tos_addr); 136 strw(zr, val_addr); 137 } 138 139 140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 141 if (JvmtiExport::can_force_early_return()) { 142 Label L; 143 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 144 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit; 145 146 // Initiate earlyret handling only if it is not already being processed. 147 // If the flag has the earlyret_processing bit set, it means that this code 148 // is called *during* earlyret handling - we don't want to reenter. 149 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 150 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 151 br(Assembler::NE, L); 152 153 // Call Interpreter::remove_activation_early_entry() to get the address of the 154 // same-named entrypoint in the generated interpreter code. 155 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 156 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 157 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 158 br(r0); 159 bind(L); 160 } 161 } 162 163 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 164 Register reg, 165 int bcp_offset) { 166 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 167 ldrh(reg, Address(rbcp, bcp_offset)); 168 rev16(reg, reg); 169 } 170 171 void InterpreterMacroAssembler::get_dispatch() { 172 uint64_t offset; 173 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 174 // Use add() here after ARDP, rather than lea(). 175 // lea() does not generate anything if its offset is zero. 176 // However, relocs expect to find either an ADD or a load/store 177 // insn after an ADRP. add() always generates an ADD insn, even 178 // for add(Rn, Rn, 0). 179 add(rdispatch, rdispatch, offset); 180 } 181 182 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 183 int bcp_offset, 184 size_t index_size) { 185 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 186 if (index_size == sizeof(u2)) { 187 load_unsigned_short(index, Address(rbcp, bcp_offset)); 188 } else if (index_size == sizeof(u4)) { 189 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 190 ldrw(index, Address(rbcp, bcp_offset)); 191 // Check if the secondary index definition is still ~x, otherwise 192 // we have to change the following assembler code to calculate the 193 // plain index. 194 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 195 eonw(index, index, zr); // convert to plain index 196 } else if (index_size == sizeof(u1)) { 197 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 198 } else { 199 ShouldNotReachHere(); 200 } 201 } 202 203 // Return 204 // Rindex: index into constant pool 205 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 206 // 207 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 208 // the true address of the cache entry. 209 // 210 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 211 Register index, 212 int bcp_offset, 213 size_t index_size) { 214 assert_different_registers(cache, index); 215 assert_different_registers(cache, rcpool); 216 get_cache_index_at_bcp(index, bcp_offset, index_size); 217 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 218 // convert from field index to ConstantPoolCacheEntry 219 // aarch64 already has the cache in rcpool so there is no need to 220 // install it in cache. instead we pre-add the indexed offset to 221 // rcpool and return it in cache. All clients of this method need to 222 // be modified accordingly. 223 add(cache, rcpool, index, Assembler::LSL, 5); 224 } 225 226 227 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 228 Register index, 229 Register bytecode, 230 int byte_no, 231 int bcp_offset, 232 size_t index_size) { 233 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 234 // We use a 32-bit load here since the layout of 64-bit words on 235 // little-endian machines allow us that. 236 // n.b. unlike x86 cache already includes the index offset 237 lea(bytecode, Address(cache, 238 ConstantPoolCache::base_offset() 239 + ConstantPoolCacheEntry::indices_offset())); 240 ldarw(bytecode, bytecode); 241 const int shift_count = (1 + byte_no) * BitsPerByte; 242 ubfx(bytecode, bytecode, shift_count, BitsPerByte); 243 } 244 245 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 246 Register tmp, 247 int bcp_offset, 248 size_t index_size) { 249 assert(cache != tmp, "must use different register"); 250 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 251 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 252 // convert from field index to ConstantPoolCacheEntry index 253 // and from word offset to byte offset 254 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 255 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 256 // skip past the header 257 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 258 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry 259 } 260 261 void InterpreterMacroAssembler::get_method_counters(Register method, 262 Register mcs, Label& skip) { 263 Label has_counters; 264 ldr(mcs, Address(method, Method::method_counters_offset())); 265 cbnz(mcs, has_counters); 266 call_VM(noreg, CAST_FROM_FN_PTR(address, 267 InterpreterRuntime::build_method_counters), method); 268 ldr(mcs, Address(method, Method::method_counters_offset())); 269 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 270 bind(has_counters); 271 } 272 273 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 274 Register t1, Register t2, 275 bool clear_fields, Label& alloc_failed) { 276 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 277 { 278 SkipIfEqual skip_if(this, &DTraceAllocProbes, 0); 279 // Trigger dtrace event for fastpath 280 push(atos); 281 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 282 pop(atos); 283 } 284 } 285 286 void InterpreterMacroAssembler::read_inlined_field(Register holder_klass, 287 Register field_index, Register field_offset, 288 Register temp, Register obj) { 289 Label alloc_failed, empty_value, done; 290 const Register src = field_offset; 291 const Register alloc_temp = rscratch1; 292 const Register dst_temp = temp; 293 assert_different_registers(obj, holder_klass, field_index, field_offset, dst_temp); 294 295 // Grab the inline field klass 296 push(holder_klass); 297 const Register field_klass = holder_klass; 298 get_inline_type_field_klass(holder_klass, field_index, field_klass); 299 300 //check for empty value klass 301 test_klass_is_empty_inline_type(field_klass, dst_temp, empty_value); 302 303 // allocate buffer 304 push(obj); // save holder 305 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 306 307 // Have an oop instance buffer, copy into it 308 data_for_oop(obj, dst_temp, field_klass); 309 pop(alloc_temp); // restore holder 310 lea(src, Address(alloc_temp, field_offset)); 311 // call_VM_leaf, clobbers a few regs, save restore new obj 312 push(obj); 313 access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, field_klass); 314 pop(obj); 315 pop(holder_klass); 316 b(done); 317 318 bind(empty_value); 319 get_empty_inline_type_oop(field_klass, dst_temp, obj); 320 pop(holder_klass); 321 b(done); 322 323 bind(alloc_failed); 324 pop(obj); 325 pop(holder_klass); 326 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_inlined_field), 327 obj, field_index, holder_klass); 328 329 bind(done); 330 331 // Ensure the stores to copy the inline field contents are visible 332 // before any subsequent store that publishes this reference. 333 membar(Assembler::StoreStore); 334 } 335 336 // Load object from cpool->resolved_references(index) 337 void InterpreterMacroAssembler::load_resolved_reference_at_index( 338 Register result, Register index, Register tmp) { 339 assert_different_registers(result, index); 340 341 get_constant_pool(result); 342 // load pointer for resolved_references[] objArray 343 ldr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 344 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 345 resolve_oop_handle(result, tmp, rscratch2); 346 // Add in the index 347 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 348 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 349 } 350 351 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 352 Register cpool, Register index, Register klass, Register temp) { 353 add(temp, cpool, index, LSL, LogBytesPerWord); 354 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 355 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 356 add(klass, klass, temp, LSL, LogBytesPerWord); 357 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 358 } 359 360 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 361 Register method, 362 Register cache) { 363 const int method_offset = in_bytes( 364 ConstantPoolCache::base_offset() + 365 ((byte_no == TemplateTable::f2_byte) 366 ? ConstantPoolCacheEntry::f2_offset() 367 : ConstantPoolCacheEntry::f1_offset())); 368 369 ldr(method, Address(cache, method_offset)); // get f1 Method* 370 } 371 372 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 373 // subtype of super_klass. 374 // 375 // Args: 376 // r0: superklass 377 // Rsub_klass: subklass 378 // 379 // Kills: 380 // r2, r5 381 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 382 Label& ok_is_subtype, 383 bool profile) { 384 assert(Rsub_klass != r0, "r0 holds superklass"); 385 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 386 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 387 388 // Profile the not-null value's klass. 389 if (profile) { 390 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 391 } 392 393 // Do the check. 394 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 395 396 // Profile the failure of the check. 397 if (profile) { 398 profile_typecheck_failed(r2); // blows r2 399 } 400 } 401 402 // Java Expression Stack 403 404 void InterpreterMacroAssembler::pop_ptr(Register r) { 405 ldr(r, post(esp, wordSize)); 406 } 407 408 void InterpreterMacroAssembler::pop_i(Register r) { 409 ldrw(r, post(esp, wordSize)); 410 } 411 412 void InterpreterMacroAssembler::pop_l(Register r) { 413 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 414 } 415 416 void InterpreterMacroAssembler::push_ptr(Register r) { 417 str(r, pre(esp, -wordSize)); 418 } 419 420 void InterpreterMacroAssembler::push_i(Register r) { 421 str(r, pre(esp, -wordSize)); 422 } 423 424 void InterpreterMacroAssembler::push_l(Register r) { 425 str(zr, pre(esp, -wordSize)); 426 str(r, pre(esp, - wordSize)); 427 } 428 429 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 430 ldrs(r, post(esp, wordSize)); 431 } 432 433 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 434 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 435 } 436 437 void InterpreterMacroAssembler::push_f(FloatRegister r) { 438 strs(r, pre(esp, -wordSize)); 439 } 440 441 void InterpreterMacroAssembler::push_d(FloatRegister r) { 442 strd(r, pre(esp, 2* -wordSize)); 443 } 444 445 void InterpreterMacroAssembler::pop(TosState state) { 446 switch (state) { 447 case atos: pop_ptr(); break; 448 case btos: 449 case ztos: 450 case ctos: 451 case stos: 452 case itos: pop_i(); break; 453 case ltos: pop_l(); break; 454 case ftos: pop_f(); break; 455 case dtos: pop_d(); break; 456 case vtos: /* nothing to do */ break; 457 default: ShouldNotReachHere(); 458 } 459 interp_verify_oop(r0, state); 460 } 461 462 void InterpreterMacroAssembler::push(TosState state) { 463 interp_verify_oop(r0, state); 464 switch (state) { 465 case atos: push_ptr(); break; 466 case btos: 467 case ztos: 468 case ctos: 469 case stos: 470 case itos: push_i(); break; 471 case ltos: push_l(); break; 472 case ftos: push_f(); break; 473 case dtos: push_d(); break; 474 case vtos: /* nothing to do */ break; 475 default : ShouldNotReachHere(); 476 } 477 } 478 479 // Helpers for swap and dup 480 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 481 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 482 } 483 484 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 485 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 486 } 487 488 void InterpreterMacroAssembler::load_float(Address src) { 489 ldrs(v0, src); 490 } 491 492 void InterpreterMacroAssembler::load_double(Address src) { 493 ldrd(v0, src); 494 } 495 496 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 497 // set sender sp 498 mov(r19_sender_sp, sp); 499 // record last_sp 500 str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 501 } 502 503 // Jump to from_interpreted entry of a call unless single stepping is possible 504 // in this thread in which case we must call the i2i entry 505 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 506 prepare_to_jump_from_interpreted(); 507 508 if (JvmtiExport::can_post_interpreter_events()) { 509 Label run_compiled_code; 510 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 511 // compiled code in threads for which the event is enabled. Check here for 512 // interp_only_mode if these events CAN be enabled. 513 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 514 cbzw(rscratch1, run_compiled_code); 515 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 516 br(rscratch1); 517 bind(run_compiled_code); 518 } 519 520 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 521 br(rscratch1); 522 } 523 524 // The following two routines provide a hook so that an implementation 525 // can schedule the dispatch in two parts. amd64 does not do this. 526 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 527 } 528 529 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 530 dispatch_next(state, step); 531 } 532 533 void InterpreterMacroAssembler::dispatch_base(TosState state, 534 address* table, 535 bool verifyoop, 536 bool generate_poll) { 537 if (VerifyActivationFrameSize) { 538 Unimplemented(); 539 } 540 if (verifyoop) { 541 interp_verify_oop(r0, state); 542 } 543 544 Label safepoint; 545 address* const safepoint_table = Interpreter::safept_table(state); 546 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 547 548 if (needs_thread_local_poll) { 549 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 550 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 551 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 552 } 553 554 if (table == Interpreter::dispatch_table(state)) { 555 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 556 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 557 } else { 558 mov(rscratch2, (address)table); 559 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 560 } 561 br(rscratch2); 562 563 if (needs_thread_local_poll) { 564 bind(safepoint); 565 lea(rscratch2, ExternalAddress((address)safepoint_table)); 566 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 567 br(rscratch2); 568 } 569 } 570 571 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 572 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 573 } 574 575 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 576 dispatch_base(state, Interpreter::normal_table(state)); 577 } 578 579 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 580 dispatch_base(state, Interpreter::normal_table(state), false); 581 } 582 583 584 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 585 // load next bytecode 586 ldrb(rscratch1, Address(pre(rbcp, step))); 587 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 588 } 589 590 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 591 // load current bytecode 592 ldrb(rscratch1, Address(rbcp, 0)); 593 dispatch_base(state, table); 594 } 595 596 // remove activation 597 // 598 // Apply stack watermark barrier. 599 // Unlock the receiver if this is a synchronized method. 600 // Unlock any Java monitors from synchronized blocks. 601 // Remove the activation from the stack. 602 // 603 // If there are locked Java monitors 604 // If throw_monitor_exception 605 // throws IllegalMonitorStateException 606 // Else if install_monitor_exception 607 // installs IllegalMonitorStateException 608 // Else 609 // no error processing 610 void InterpreterMacroAssembler::remove_activation( 611 TosState state, 612 bool throw_monitor_exception, 613 bool install_monitor_exception, 614 bool notify_jvmdi) { 615 // Note: Registers r3 xmm0 may be in use for the 616 // result check if synchronized method 617 Label unlocked, unlock, no_unlock; 618 619 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 620 // that would normally not be safe to use. Such bad returns into unsafe territory of 621 // the stack, will call InterpreterRuntime::at_unwind. 622 Label slow_path; 623 Label fast_path; 624 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 625 br(Assembler::AL, fast_path); 626 bind(slow_path); 627 push(state); 628 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 629 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 630 reset_last_Java_frame(true); 631 pop(state); 632 bind(fast_path); 633 634 // get the value of _do_not_unlock_if_synchronized into r3 635 const Address do_not_unlock_if_synchronized(rthread, 636 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 637 ldrb(r3, do_not_unlock_if_synchronized); 638 strb(zr, do_not_unlock_if_synchronized); // reset the flag 639 640 // get method access flags 641 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 642 ldr(r2, Address(r1, Method::access_flags_offset())); 643 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 644 645 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 646 // is set. 647 cbnz(r3, no_unlock); 648 649 // unlock monitor 650 push(state); // save result 651 652 // BasicObjectLock will be first in list, since this is a 653 // synchronized method. However, need to check that the object has 654 // not been unlocked by an explicit monitorexit bytecode. 655 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 656 wordSize - (int) sizeof(BasicObjectLock)); 657 // We use c_rarg1 so that if we go slow path it will be the correct 658 // register for unlock_object to pass to VM directly 659 lea(c_rarg1, monitor); // address of first monitor 660 661 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 662 cbnz(r0, unlock); 663 664 pop(state); 665 if (throw_monitor_exception) { 666 // Entry already unlocked, need to throw exception 667 call_VM(noreg, CAST_FROM_FN_PTR(address, 668 InterpreterRuntime::throw_illegal_monitor_state_exception)); 669 should_not_reach_here(); 670 } else { 671 // Monitor already unlocked during a stack unroll. If requested, 672 // install an illegal_monitor_state_exception. Continue with 673 // stack unrolling. 674 if (install_monitor_exception) { 675 call_VM(noreg, CAST_FROM_FN_PTR(address, 676 InterpreterRuntime::new_illegal_monitor_state_exception)); 677 } 678 b(unlocked); 679 } 680 681 bind(unlock); 682 unlock_object(c_rarg1); 683 pop(state); 684 685 // Check that for block-structured locking (i.e., that all locked 686 // objects has been unlocked) 687 bind(unlocked); 688 689 // r0: Might contain return value 690 691 // Check that all monitors are unlocked 692 { 693 Label loop, exception, entry, restart; 694 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 695 const Address monitor_block_top( 696 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 697 const Address monitor_block_bot( 698 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 699 700 bind(restart); 701 // We use c_rarg1 so that if we go slow path it will be the correct 702 // register for unlock_object to pass to VM directly 703 ldr(c_rarg1, monitor_block_top); // points to current entry, starting 704 // with top-most entry 705 lea(r19, monitor_block_bot); // points to word before bottom of 706 // monitor block 707 b(entry); 708 709 // Entry already locked, need to throw exception 710 bind(exception); 711 712 if (throw_monitor_exception) { 713 // Throw exception 714 MacroAssembler::call_VM(noreg, 715 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 716 throw_illegal_monitor_state_exception)); 717 should_not_reach_here(); 718 } else { 719 // Stack unrolling. Unlock object and install illegal_monitor_exception. 720 // Unlock does not block, so don't have to worry about the frame. 721 // We don't have to preserve c_rarg1 since we are going to throw an exception. 722 723 push(state); 724 unlock_object(c_rarg1); 725 pop(state); 726 727 if (install_monitor_exception) { 728 call_VM(noreg, CAST_FROM_FN_PTR(address, 729 InterpreterRuntime:: 730 new_illegal_monitor_state_exception)); 731 } 732 733 b(restart); 734 } 735 736 bind(loop); 737 // check if current entry is used 738 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 739 cbnz(rscratch1, exception); 740 741 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 742 bind(entry); 743 cmp(c_rarg1, r19); // check if bottom reached 744 br(Assembler::NE, loop); // if not at bottom then check this entry 745 } 746 747 bind(no_unlock); 748 749 // jvmti support 750 if (notify_jvmdi) { 751 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 752 } else { 753 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 754 } 755 756 // remove activation 757 // get sender esp 758 ldr(rscratch2, 759 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 760 761 if (StackReservedPages > 0) { 762 // testing if reserved zone needs to be re-enabled 763 Label no_reserved_zone_enabling; 764 765 // look for an overflow into the stack reserved zone, i.e. 766 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 767 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 768 cmp(rscratch2, rscratch1); 769 br(Assembler::LS, no_reserved_zone_enabling); 770 771 call_VM_leaf( 772 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 773 call_VM(noreg, CAST_FROM_FN_PTR(address, 774 InterpreterRuntime::throw_delayed_StackOverflowError)); 775 should_not_reach_here(); 776 777 bind(no_reserved_zone_enabling); 778 } 779 780 781 if (state == atos && InlineTypeReturnedAsFields) { 782 // Check if we are returning an non-null inline type and load its fields into registers 783 Label skip; 784 test_oop_is_not_inline_type(r0, rscratch2, skip); 785 786 // Load fields from a buffered value with an inline class specific handler 787 load_klass(rscratch1 /*dst*/, r0 /*src*/); 788 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 789 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 790 // Unpack handler can be null if inline type is not scalarizable in returns 791 cbz(rscratch1, skip); 792 793 blr(rscratch1); 794 #ifdef ASSERT 795 if (StressInlineTypeReturnedAsFields) { 796 // TODO 8284443 Enable this for value class returns (L-type descriptor) 797 Label skip_stress; 798 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 799 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 800 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 801 cmpw(rscratch1, (u1) T_PRIMITIVE_OBJECT); 802 br(Assembler::NE, skip_stress); 803 load_klass(r0, r0); 804 orr(r0, r0, 1); 805 bind(skip_stress); 806 } 807 #endif 808 bind(skip); 809 // Check above kills sender esp in rscratch2. Reload it. 810 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 811 } 812 813 // restore sender esp 814 mov(esp, rscratch2); 815 // remove frame anchor 816 leave(); 817 // If we're returning to interpreted code we will shortly be 818 // adjusting SP to allow some space for ESP. If we're returning to 819 // compiled code the saved sender SP was saved in sender_sp, so this 820 // restores it. 821 andr(sp, esp, -16); 822 } 823 824 // Lock object 825 // 826 // Args: 827 // c_rarg1: BasicObjectLock to be used for locking 828 // 829 // Kills: 830 // r0 831 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 832 // rscratch1, rscratch2 (scratch regs) 833 void InterpreterMacroAssembler::lock_object(Register lock_reg) 834 { 835 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 836 if (UseHeavyMonitors) { 837 call_VM(noreg, 838 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 839 lock_reg); 840 } else { 841 Label count, done; 842 843 const Register swap_reg = r0; 844 const Register tmp = c_rarg2; 845 const Register obj_reg = c_rarg3; // Will contain the oop 846 847 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 848 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 849 const int mark_offset = lock_offset + 850 BasicLock::displaced_header_offset_in_bytes(); 851 852 Label slow_case; 853 854 // Load object pointer into obj_reg %c_rarg3 855 ldr(obj_reg, Address(lock_reg, obj_offset)); 856 857 if (DiagnoseSyncOnValueBasedClasses != 0) { 858 load_klass(tmp, obj_reg); 859 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 860 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 861 br(Assembler::NE, slow_case); 862 } 863 864 // Load (object->mark() | 1) into swap_reg 865 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 866 orr(swap_reg, rscratch1, 1); 867 if (EnableValhalla) { 868 // Mask inline_type bit such that we go to the slow path if object is an inline type 869 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 870 } 871 872 // Save (object->mark() | 1) into BasicLock's displaced header 873 str(swap_reg, Address(lock_reg, mark_offset)); 874 875 assert(lock_offset == 0, 876 "displached header must be first word in BasicObjectLock"); 877 878 Label fail; 879 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/NULL); 880 881 // Fast check for recursive lock. 882 // 883 // Can apply the optimization only if this is a stack lock 884 // allocated in this thread. For efficiency, we can focus on 885 // recently allocated stack locks (instead of reading the stack 886 // base and checking whether 'mark' points inside the current 887 // thread stack): 888 // 1) (mark & 7) == 0, and 889 // 2) sp <= mark < mark + os::pagesize() 890 // 891 // Warning: sp + os::pagesize can overflow the stack base. We must 892 // neither apply the optimization for an inflated lock allocated 893 // just above the thread stack (this is why condition 1 matters) 894 // nor apply the optimization if the stack lock is inside the stack 895 // of another thread. The latter is avoided even in case of overflow 896 // because we have guard pages at the end of all stacks. Hence, if 897 // we go over the stack base and hit the stack of another thread, 898 // this should not be in a writeable area that could contain a 899 // stack lock allocated by that thread. As a consequence, a stack 900 // lock less than page size away from sp is guaranteed to be 901 // owned by the current thread. 902 // 903 // These 3 tests can be done by evaluating the following 904 // expression: ((mark - sp) & (7 - os::vm_page_size())), 905 // assuming both stack pointer and pagesize have their 906 // least significant 3 bits clear. 907 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 908 // NOTE2: aarch64 does not like to subtract sp from rn so take a 909 // copy 910 mov(rscratch1, sp); 911 sub(swap_reg, swap_reg, rscratch1); 912 ands(swap_reg, swap_reg, (uint64_t)(7 - os::vm_page_size())); 913 914 // Save the test result, for recursive case, the result is zero 915 str(swap_reg, Address(lock_reg, mark_offset)); 916 br(Assembler::EQ, count); 917 918 bind(slow_case); 919 920 // Call the runtime routine for slow case 921 call_VM(noreg, 922 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 923 lock_reg); 924 b(done); 925 926 bind(count); 927 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 928 929 bind(done); 930 } 931 } 932 933 934 // Unlocks an object. Used in monitorexit bytecode and 935 // remove_activation. Throws an IllegalMonitorException if object is 936 // not locked by current thread. 937 // 938 // Args: 939 // c_rarg1: BasicObjectLock for lock 940 // 941 // Kills: 942 // r0 943 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 944 // rscratch1, rscratch2 (scratch regs) 945 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 946 { 947 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 948 949 if (UseHeavyMonitors) { 950 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 951 } else { 952 Label count, done; 953 954 const Register swap_reg = r0; 955 const Register header_reg = c_rarg2; // Will contain the old oopMark 956 const Register obj_reg = c_rarg3; // Will contain the oop 957 958 save_bcp(); // Save in case of exception 959 960 // Convert from BasicObjectLock structure to object and BasicLock 961 // structure Store the BasicLock address into %r0 962 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 963 964 // Load oop into obj_reg(%c_rarg3) 965 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 966 967 // Free entry 968 str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 969 970 // Load the old header from BasicLock structure 971 ldr(header_reg, Address(swap_reg, 972 BasicLock::displaced_header_offset_in_bytes())); 973 974 // Test for recursion 975 cbz(header_reg, count); 976 977 // Atomic swap back the old header 978 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/NULL); 979 980 // Call the runtime routine for slow case. 981 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 982 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 983 b(done); 984 985 bind(count); 986 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 987 988 bind(done); 989 restore_bcp(); 990 } 991 } 992 993 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 994 Label& zero_continue) { 995 assert(ProfileInterpreter, "must be profiling interpreter"); 996 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 997 cbz(mdp, zero_continue); 998 } 999 1000 // Set the method data pointer for the current bcp. 1001 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1002 assert(ProfileInterpreter, "must be profiling interpreter"); 1003 Label set_mdp; 1004 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1005 1006 // Test MDO to avoid the call if it is NULL. 1007 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 1008 cbz(r0, set_mdp); 1009 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 1010 // r0: mdi 1011 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1012 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1013 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 1014 add(r0, r1, r0); 1015 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1016 bind(set_mdp); 1017 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1018 } 1019 1020 void InterpreterMacroAssembler::verify_method_data_pointer() { 1021 assert(ProfileInterpreter, "must be profiling interpreter"); 1022 #ifdef ASSERT 1023 Label verify_continue; 1024 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1025 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 1026 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 1027 get_method(r1); 1028 1029 // If the mdp is valid, it will point to a DataLayout header which is 1030 // consistent with the bcp. The converse is highly probable also. 1031 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 1032 ldr(rscratch1, Address(r1, Method::const_offset())); 1033 add(r2, r2, rscratch1, Assembler::LSL); 1034 lea(r2, Address(r2, ConstMethod::codes_offset())); 1035 cmp(r2, rbcp); 1036 br(Assembler::EQ, verify_continue); 1037 // r1: method 1038 // rbcp: bcp // rbcp == 22 1039 // r3: mdp 1040 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1041 r1, rbcp, r3); 1042 bind(verify_continue); 1043 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 1044 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1045 #endif // ASSERT 1046 } 1047 1048 1049 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1050 int constant, 1051 Register value) { 1052 assert(ProfileInterpreter, "must be profiling interpreter"); 1053 Address data(mdp_in, constant); 1054 str(value, data); 1055 } 1056 1057 1058 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1059 int constant, 1060 bool decrement) { 1061 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1062 } 1063 1064 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1065 Register reg, 1066 int constant, 1067 bool decrement) { 1068 assert(ProfileInterpreter, "must be profiling interpreter"); 1069 // %%% this does 64bit counters at best it is wasting space 1070 // at worst it is a rare bug when counters overflow 1071 1072 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1073 1074 Address addr1(mdp_in, constant); 1075 Address addr2(rscratch2, reg, Address::lsl(0)); 1076 Address &addr = addr1; 1077 if (reg != noreg) { 1078 lea(rscratch2, addr1); 1079 addr = addr2; 1080 } 1081 1082 if (decrement) { 1083 // Decrement the register. Set condition codes. 1084 // Intel does this 1085 // addptr(data, (int32_t) -DataLayout::counter_increment); 1086 // If the decrement causes the counter to overflow, stay negative 1087 // Label L; 1088 // jcc(Assembler::negative, L); 1089 // addptr(data, (int32_t) DataLayout::counter_increment); 1090 // so we do this 1091 ldr(rscratch1, addr); 1092 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1093 Label L; 1094 br(Assembler::LO, L); // skip store if counter underflow 1095 str(rscratch1, addr); 1096 bind(L); 1097 } else { 1098 assert(DataLayout::counter_increment == 1, 1099 "flow-free idiom only works with 1"); 1100 // Intel does this 1101 // Increment the register. Set carry flag. 1102 // addptr(data, DataLayout::counter_increment); 1103 // If the increment causes the counter to overflow, pull back by 1. 1104 // sbbptr(data, (int32_t)0); 1105 // so we do this 1106 ldr(rscratch1, addr); 1107 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1108 Label L; 1109 br(Assembler::CS, L); // skip store if counter overflow 1110 str(rscratch1, addr); 1111 bind(L); 1112 } 1113 } 1114 1115 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1116 int flag_byte_constant) { 1117 assert(ProfileInterpreter, "must be profiling interpreter"); 1118 int flags_offset = in_bytes(DataLayout::flags_offset()); 1119 // Set the flag 1120 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1121 orr(rscratch1, rscratch1, flag_byte_constant); 1122 strb(rscratch1, Address(mdp_in, flags_offset)); 1123 } 1124 1125 1126 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1127 int offset, 1128 Register value, 1129 Register test_value_out, 1130 Label& not_equal_continue) { 1131 assert(ProfileInterpreter, "must be profiling interpreter"); 1132 if (test_value_out == noreg) { 1133 ldr(rscratch1, Address(mdp_in, offset)); 1134 cmp(value, rscratch1); 1135 } else { 1136 // Put the test value into a register, so caller can use it: 1137 ldr(test_value_out, Address(mdp_in, offset)); 1138 cmp(value, test_value_out); 1139 } 1140 br(Assembler::NE, not_equal_continue); 1141 } 1142 1143 1144 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1145 int offset_of_disp) { 1146 assert(ProfileInterpreter, "must be profiling interpreter"); 1147 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1148 add(mdp_in, mdp_in, rscratch1, LSL); 1149 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1150 } 1151 1152 1153 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1154 Register reg, 1155 int offset_of_disp) { 1156 assert(ProfileInterpreter, "must be profiling interpreter"); 1157 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1158 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1159 add(mdp_in, mdp_in, rscratch1, LSL); 1160 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1161 } 1162 1163 1164 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1165 int constant) { 1166 assert(ProfileInterpreter, "must be profiling interpreter"); 1167 add(mdp_in, mdp_in, (unsigned)constant); 1168 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1169 } 1170 1171 1172 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1173 assert(ProfileInterpreter, "must be profiling interpreter"); 1174 // save/restore across call_VM 1175 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1176 call_VM(noreg, 1177 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1178 return_bci); 1179 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1180 } 1181 1182 1183 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1184 Register bumped_count) { 1185 if (ProfileInterpreter) { 1186 Label profile_continue; 1187 1188 // If no method data exists, go to profile_continue. 1189 // Otherwise, assign to mdp 1190 test_method_data_pointer(mdp, profile_continue); 1191 1192 // We are taking a branch. Increment the taken count. 1193 // We inline increment_mdp_data_at to return bumped_count in a register 1194 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1195 Address data(mdp, in_bytes(JumpData::taken_offset())); 1196 ldr(bumped_count, data); 1197 assert(DataLayout::counter_increment == 1, 1198 "flow-free idiom only works with 1"); 1199 // Intel does this to catch overflow 1200 // addptr(bumped_count, DataLayout::counter_increment); 1201 // sbbptr(bumped_count, 0); 1202 // so we do this 1203 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1204 Label L; 1205 br(Assembler::CS, L); // skip store if counter overflow 1206 str(bumped_count, data); 1207 bind(L); 1208 // The method data pointer needs to be updated to reflect the new target. 1209 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1210 bind(profile_continue); 1211 } 1212 } 1213 1214 1215 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1216 if (ProfileInterpreter) { 1217 Label profile_continue; 1218 1219 // If no method data exists, go to profile_continue. 1220 test_method_data_pointer(mdp, profile_continue); 1221 1222 // We are taking a branch. Increment the not taken count. 1223 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1224 1225 // The method data pointer needs to be updated to correspond to 1226 // the next bytecode 1227 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1228 bind(profile_continue); 1229 } 1230 } 1231 1232 1233 void InterpreterMacroAssembler::profile_call(Register mdp) { 1234 if (ProfileInterpreter) { 1235 Label profile_continue; 1236 1237 // If no method data exists, go to profile_continue. 1238 test_method_data_pointer(mdp, profile_continue); 1239 1240 // We are making a call. Increment the count. 1241 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1242 1243 // The method data pointer needs to be updated to reflect the new target. 1244 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1245 bind(profile_continue); 1246 } 1247 } 1248 1249 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1250 if (ProfileInterpreter) { 1251 Label profile_continue; 1252 1253 // If no method data exists, go to profile_continue. 1254 test_method_data_pointer(mdp, profile_continue); 1255 1256 // We are making a call. Increment the count. 1257 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1258 1259 // The method data pointer needs to be updated to reflect the new target. 1260 update_mdp_by_constant(mdp, 1261 in_bytes(VirtualCallData:: 1262 virtual_call_data_size())); 1263 bind(profile_continue); 1264 } 1265 } 1266 1267 1268 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1269 Register mdp, 1270 Register reg2, 1271 bool receiver_can_be_null) { 1272 if (ProfileInterpreter) { 1273 Label profile_continue; 1274 1275 // If no method data exists, go to profile_continue. 1276 test_method_data_pointer(mdp, profile_continue); 1277 1278 Label skip_receiver_profile; 1279 if (receiver_can_be_null) { 1280 Label not_null; 1281 // We are making a call. Increment the count for null receiver. 1282 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1283 b(skip_receiver_profile); 1284 bind(not_null); 1285 } 1286 1287 // Record the receiver type. 1288 record_klass_in_profile(receiver, mdp, reg2, true); 1289 bind(skip_receiver_profile); 1290 1291 // The method data pointer needs to be updated to reflect the new target. 1292 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1293 bind(profile_continue); 1294 } 1295 } 1296 1297 // This routine creates a state machine for updating the multi-row 1298 // type profile at a virtual call site (or other type-sensitive bytecode). 1299 // The machine visits each row (of receiver/count) until the receiver type 1300 // is found, or until it runs out of rows. At the same time, it remembers 1301 // the location of the first empty row. (An empty row records null for its 1302 // receiver, and can be allocated for a newly-observed receiver type.) 1303 // Because there are two degrees of freedom in the state, a simple linear 1304 // search will not work; it must be a decision tree. Hence this helper 1305 // function is recursive, to generate the required tree structured code. 1306 // It's the interpreter, so we are trading off code space for speed. 1307 // See below for example code. 1308 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1309 Register receiver, Register mdp, 1310 Register reg2, int start_row, 1311 Label& done, bool is_virtual_call) { 1312 if (TypeProfileWidth == 0) { 1313 if (is_virtual_call) { 1314 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1315 } 1316 #if INCLUDE_JVMCI 1317 else if (EnableJVMCI) { 1318 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1319 } 1320 #endif // INCLUDE_JVMCI 1321 } else { 1322 int non_profiled_offset = -1; 1323 if (is_virtual_call) { 1324 non_profiled_offset = in_bytes(CounterData::count_offset()); 1325 } 1326 #if INCLUDE_JVMCI 1327 else if (EnableJVMCI) { 1328 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1329 } 1330 #endif // INCLUDE_JVMCI 1331 1332 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1333 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1334 } 1335 } 1336 1337 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1338 Register reg2, int start_row, Label& done, int total_rows, 1339 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1340 int non_profiled_offset) { 1341 int last_row = total_rows - 1; 1342 assert(start_row <= last_row, "must be work left to do"); 1343 // Test this row for both the item and for null. 1344 // Take any of three different outcomes: 1345 // 1. found item => increment count and goto done 1346 // 2. found null => keep looking for case 1, maybe allocate this cell 1347 // 3. found something else => keep looking for cases 1 and 2 1348 // Case 3 is handled by a recursive call. 1349 for (int row = start_row; row <= last_row; row++) { 1350 Label next_test; 1351 bool test_for_null_also = (row == start_row); 1352 1353 // See if the item is item[n]. 1354 int item_offset = in_bytes(item_offset_fn(row)); 1355 test_mdp_data_at(mdp, item_offset, item, 1356 (test_for_null_also ? reg2 : noreg), 1357 next_test); 1358 // (Reg2 now contains the item from the CallData.) 1359 1360 // The item is item[n]. Increment count[n]. 1361 int count_offset = in_bytes(item_count_offset_fn(row)); 1362 increment_mdp_data_at(mdp, count_offset); 1363 b(done); 1364 bind(next_test); 1365 1366 if (test_for_null_also) { 1367 Label found_null; 1368 // Failed the equality check on item[n]... Test for null. 1369 if (start_row == last_row) { 1370 // The only thing left to do is handle the null case. 1371 if (non_profiled_offset >= 0) { 1372 cbz(reg2, found_null); 1373 // Item did not match any saved item and there is no empty row for it. 1374 // Increment total counter to indicate polymorphic case. 1375 increment_mdp_data_at(mdp, non_profiled_offset); 1376 b(done); 1377 bind(found_null); 1378 } else { 1379 cbnz(reg2, done); 1380 } 1381 break; 1382 } 1383 // Since null is rare, make it be the branch-taken case. 1384 cbz(reg2, found_null); 1385 1386 // Put all the "Case 3" tests here. 1387 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1388 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1389 1390 // Found a null. Keep searching for a matching item, 1391 // but remember that this is an empty (unused) slot. 1392 bind(found_null); 1393 } 1394 } 1395 1396 // In the fall-through case, we found no matching item, but we 1397 // observed the item[start_row] is NULL. 1398 1399 // Fill in the item field and increment the count. 1400 int item_offset = in_bytes(item_offset_fn(start_row)); 1401 set_mdp_data_at(mdp, item_offset, item); 1402 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1403 mov(reg2, DataLayout::counter_increment); 1404 set_mdp_data_at(mdp, count_offset, reg2); 1405 if (start_row > 0) { 1406 b(done); 1407 } 1408 } 1409 1410 // Example state machine code for three profile rows: 1411 // // main copy of decision tree, rooted at row[1] 1412 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1413 // if (row[0].rec != NULL) { 1414 // // inner copy of decision tree, rooted at row[1] 1415 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1416 // if (row[1].rec != NULL) { 1417 // // degenerate decision tree, rooted at row[2] 1418 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1419 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1420 // row[2].init(rec); goto done; 1421 // } else { 1422 // // remember row[1] is empty 1423 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1424 // row[1].init(rec); goto done; 1425 // } 1426 // } else { 1427 // // remember row[0] is empty 1428 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1429 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1430 // row[0].init(rec); goto done; 1431 // } 1432 // done: 1433 1434 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1435 Register mdp, Register reg2, 1436 bool is_virtual_call) { 1437 assert(ProfileInterpreter, "must be profiling"); 1438 Label done; 1439 1440 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1441 1442 bind (done); 1443 } 1444 1445 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1446 Register mdp) { 1447 if (ProfileInterpreter) { 1448 Label profile_continue; 1449 uint row; 1450 1451 // If no method data exists, go to profile_continue. 1452 test_method_data_pointer(mdp, profile_continue); 1453 1454 // Update the total ret count. 1455 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1456 1457 for (row = 0; row < RetData::row_limit(); row++) { 1458 Label next_test; 1459 1460 // See if return_bci is equal to bci[n]: 1461 test_mdp_data_at(mdp, 1462 in_bytes(RetData::bci_offset(row)), 1463 return_bci, noreg, 1464 next_test); 1465 1466 // return_bci is equal to bci[n]. Increment the count. 1467 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1468 1469 // The method data pointer needs to be updated to reflect the new target. 1470 update_mdp_by_offset(mdp, 1471 in_bytes(RetData::bci_displacement_offset(row))); 1472 b(profile_continue); 1473 bind(next_test); 1474 } 1475 1476 update_mdp_for_ret(return_bci); 1477 1478 bind(profile_continue); 1479 } 1480 } 1481 1482 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1483 if (ProfileInterpreter) { 1484 Label profile_continue; 1485 1486 // If no method data exists, go to profile_continue. 1487 test_method_data_pointer(mdp, profile_continue); 1488 1489 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1490 1491 // The method data pointer needs to be updated. 1492 int mdp_delta = in_bytes(BitData::bit_data_size()); 1493 if (TypeProfileCasts) { 1494 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1495 } 1496 update_mdp_by_constant(mdp, mdp_delta); 1497 1498 bind(profile_continue); 1499 } 1500 } 1501 1502 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1503 if (ProfileInterpreter && TypeProfileCasts) { 1504 Label profile_continue; 1505 1506 // If no method data exists, go to profile_continue. 1507 test_method_data_pointer(mdp, profile_continue); 1508 1509 int count_offset = in_bytes(CounterData::count_offset()); 1510 // Back up the address, since we have already bumped the mdp. 1511 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1512 1513 // *Decrement* the counter. We expect to see zero or small negatives. 1514 increment_mdp_data_at(mdp, count_offset, true); 1515 1516 bind (profile_continue); 1517 } 1518 } 1519 1520 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1521 if (ProfileInterpreter) { 1522 Label profile_continue; 1523 1524 // If no method data exists, go to profile_continue. 1525 test_method_data_pointer(mdp, profile_continue); 1526 1527 // The method data pointer needs to be updated. 1528 int mdp_delta = in_bytes(BitData::bit_data_size()); 1529 if (TypeProfileCasts) { 1530 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1531 1532 // Record the object type. 1533 record_klass_in_profile(klass, mdp, reg2, false); 1534 } 1535 update_mdp_by_constant(mdp, mdp_delta); 1536 1537 bind(profile_continue); 1538 } 1539 } 1540 1541 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1542 if (ProfileInterpreter) { 1543 Label profile_continue; 1544 1545 // If no method data exists, go to profile_continue. 1546 test_method_data_pointer(mdp, profile_continue); 1547 1548 // Update the default case count 1549 increment_mdp_data_at(mdp, 1550 in_bytes(MultiBranchData::default_count_offset())); 1551 1552 // The method data pointer needs to be updated. 1553 update_mdp_by_offset(mdp, 1554 in_bytes(MultiBranchData:: 1555 default_displacement_offset())); 1556 1557 bind(profile_continue); 1558 } 1559 } 1560 1561 void InterpreterMacroAssembler::profile_switch_case(Register index, 1562 Register mdp, 1563 Register reg2) { 1564 if (ProfileInterpreter) { 1565 Label profile_continue; 1566 1567 // If no method data exists, go to profile_continue. 1568 test_method_data_pointer(mdp, profile_continue); 1569 1570 // Build the base (index * per_case_size_in_bytes()) + 1571 // case_array_offset_in_bytes() 1572 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1573 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1574 Assembler::maddw(index, index, reg2, rscratch1); 1575 1576 // Update the case count 1577 increment_mdp_data_at(mdp, 1578 index, 1579 in_bytes(MultiBranchData::relative_count_offset())); 1580 1581 // The method data pointer needs to be updated. 1582 update_mdp_by_offset(mdp, 1583 index, 1584 in_bytes(MultiBranchData:: 1585 relative_displacement_offset())); 1586 1587 bind(profile_continue); 1588 } 1589 } 1590 1591 void InterpreterMacroAssembler::profile_array(Register mdp, 1592 Register array, 1593 Register tmp) { 1594 if (ProfileInterpreter) { 1595 Label profile_continue; 1596 1597 // If no method data exists, go to profile_continue. 1598 test_method_data_pointer(mdp, profile_continue); 1599 1600 mov(tmp, array); 1601 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadStoreData::array_offset()))); 1602 1603 Label not_flat; 1604 test_non_flattened_array_oop(array, tmp, not_flat); 1605 1606 set_mdp_flag_at(mdp, ArrayLoadStoreData::flat_array_byte_constant()); 1607 1608 bind(not_flat); 1609 1610 Label not_null_free; 1611 test_non_null_free_array_oop(array, tmp, not_null_free); 1612 1613 set_mdp_flag_at(mdp, ArrayLoadStoreData::null_free_array_byte_constant()); 1614 1615 bind(not_null_free); 1616 1617 bind(profile_continue); 1618 } 1619 } 1620 1621 void InterpreterMacroAssembler::profile_element(Register mdp, 1622 Register element, 1623 Register tmp) { 1624 if (ProfileInterpreter) { 1625 Label profile_continue; 1626 1627 // If no method data exists, go to profile_continue. 1628 test_method_data_pointer(mdp, profile_continue); 1629 1630 mov(tmp, element); 1631 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadStoreData::element_offset()))); 1632 1633 // The method data pointer needs to be updated. 1634 update_mdp_by_constant(mdp, in_bytes(ArrayLoadStoreData::array_load_store_data_size())); 1635 1636 bind(profile_continue); 1637 } 1638 } 1639 1640 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1641 Register left, 1642 Register right, 1643 Register tmp) { 1644 if (ProfileInterpreter) { 1645 Label profile_continue; 1646 1647 // If no method data exists, go to profile_continue. 1648 test_method_data_pointer(mdp, profile_continue); 1649 1650 mov(tmp, left); 1651 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1652 1653 Label left_not_inline_type; 1654 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1655 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1656 bind(left_not_inline_type); 1657 1658 mov(tmp, right); 1659 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1660 1661 Label right_not_inline_type; 1662 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1663 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1664 bind(right_not_inline_type); 1665 1666 bind(profile_continue); 1667 } 1668 } 1669 1670 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1671 if (state == atos) { 1672 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1673 } 1674 } 1675 1676 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1677 1678 1679 void InterpreterMacroAssembler::notify_method_entry() { 1680 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1681 // track stack depth. If it is possible to enter interp_only_mode we add 1682 // the code to check if the event should be sent. 1683 if (JvmtiExport::can_post_interpreter_events()) { 1684 Label L; 1685 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1686 cbzw(r3, L); 1687 call_VM(noreg, CAST_FROM_FN_PTR(address, 1688 InterpreterRuntime::post_method_entry)); 1689 bind(L); 1690 } 1691 1692 { 1693 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1694 get_method(c_rarg1); 1695 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1696 rthread, c_rarg1); 1697 } 1698 1699 // RedefineClasses() tracing support for obsolete method entry 1700 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1701 get_method(c_rarg1); 1702 call_VM_leaf( 1703 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1704 rthread, c_rarg1); 1705 } 1706 1707 } 1708 1709 1710 void InterpreterMacroAssembler::notify_method_exit( 1711 TosState state, NotifyMethodExitMode mode) { 1712 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1713 // track stack depth. If it is possible to enter interp_only_mode we add 1714 // the code to check if the event should be sent. 1715 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1716 Label L; 1717 // Note: frame::interpreter_frame_result has a dependency on how the 1718 // method result is saved across the call to post_method_exit. If this 1719 // is changed then the interpreter_frame_result implementation will 1720 // need to be updated too. 1721 1722 // template interpreter will leave the result on the top of the stack. 1723 push(state); 1724 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1725 cbz(r3, L); 1726 call_VM(noreg, 1727 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1728 bind(L); 1729 pop(state); 1730 } 1731 1732 { 1733 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1734 push(state); 1735 get_method(c_rarg1); 1736 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1737 rthread, c_rarg1); 1738 pop(state); 1739 } 1740 } 1741 1742 1743 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1744 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1745 int increment, Address mask, 1746 Register scratch, Register scratch2, 1747 bool preloaded, Condition cond, 1748 Label* where) { 1749 if (!preloaded) { 1750 ldrw(scratch, counter_addr); 1751 } 1752 add(scratch, scratch, increment); 1753 strw(scratch, counter_addr); 1754 ldrw(scratch2, mask); 1755 ands(scratch, scratch, scratch2); 1756 br(cond, *where); 1757 } 1758 1759 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1760 int number_of_arguments) { 1761 // interpreter specific 1762 // 1763 // Note: No need to save/restore rbcp & rlocals pointer since these 1764 // are callee saved registers and no blocking/ GC can happen 1765 // in leaf calls. 1766 #ifdef ASSERT 1767 { 1768 Label L; 1769 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1770 cbz(rscratch1, L); 1771 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1772 " last_sp != NULL"); 1773 bind(L); 1774 } 1775 #endif /* ASSERT */ 1776 // super call 1777 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1778 } 1779 1780 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1781 Register java_thread, 1782 Register last_java_sp, 1783 address entry_point, 1784 int number_of_arguments, 1785 bool check_exceptions) { 1786 // interpreter specific 1787 // 1788 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1789 // really make a difference for these runtime calls, since they are 1790 // slow anyway. Btw., bcp must be saved/restored since it may change 1791 // due to GC. 1792 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1793 save_bcp(); 1794 #ifdef ASSERT 1795 { 1796 Label L; 1797 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1798 cbz(rscratch1, L); 1799 stop("InterpreterMacroAssembler::call_VM_base:" 1800 " last_sp != NULL"); 1801 bind(L); 1802 } 1803 #endif /* ASSERT */ 1804 // super call 1805 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1806 entry_point, number_of_arguments, 1807 check_exceptions); 1808 // interpreter specific 1809 restore_bcp(); 1810 restore_locals(); 1811 } 1812 1813 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1814 assert_different_registers(obj, rscratch1); 1815 Label update, next, none; 1816 1817 verify_oop(obj); 1818 1819 cbnz(obj, update); 1820 orptr(mdo_addr, TypeEntries::null_seen); 1821 b(next); 1822 1823 bind(update); 1824 load_klass(obj, obj); 1825 1826 ldr(rscratch1, mdo_addr); 1827 eor(obj, obj, rscratch1); 1828 tst(obj, TypeEntries::type_klass_mask); 1829 br(Assembler::EQ, next); // klass seen before, nothing to 1830 // do. The unknown bit may have been 1831 // set already but no need to check. 1832 1833 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1834 // already unknown. Nothing to do anymore. 1835 1836 ldr(rscratch1, mdo_addr); 1837 cbz(rscratch1, none); 1838 cmp(rscratch1, (u1)TypeEntries::null_seen); 1839 br(Assembler::EQ, none); 1840 // There is a chance that the checks above (re-reading profiling 1841 // data from memory) fail if another thread has just set the 1842 // profiling to this obj's klass 1843 ldr(rscratch1, mdo_addr); 1844 eor(obj, obj, rscratch1); 1845 tst(obj, TypeEntries::type_klass_mask); 1846 br(Assembler::EQ, next); 1847 1848 // different than before. Cannot keep accurate profile. 1849 orptr(mdo_addr, TypeEntries::type_unknown); 1850 b(next); 1851 1852 bind(none); 1853 // first time here. Set profile type. 1854 str(obj, mdo_addr); 1855 1856 bind(next); 1857 } 1858 1859 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1860 if (!ProfileInterpreter) { 1861 return; 1862 } 1863 1864 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1865 Label profile_continue; 1866 1867 test_method_data_pointer(mdp, profile_continue); 1868 1869 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1870 1871 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1872 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1873 br(Assembler::NE, profile_continue); 1874 1875 if (MethodData::profile_arguments()) { 1876 Label done; 1877 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1878 1879 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1880 if (i > 0 || MethodData::profile_return()) { 1881 // If return value type is profiled we may have no argument to profile 1882 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1883 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1884 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1885 add(rscratch1, mdp, off_to_args); 1886 br(Assembler::LT, done); 1887 } 1888 ldr(tmp, Address(callee, Method::const_offset())); 1889 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1890 // stack offset o (zero based) from the start of the argument 1891 // list, for n arguments translates into offset n - o - 1 from 1892 // the end of the argument list 1893 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1894 sub(tmp, tmp, rscratch1); 1895 sub(tmp, tmp, 1); 1896 Address arg_addr = argument_address(tmp); 1897 ldr(tmp, arg_addr); 1898 1899 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1900 profile_obj_type(tmp, mdo_arg_addr); 1901 1902 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1903 off_to_args += to_add; 1904 } 1905 1906 if (MethodData::profile_return()) { 1907 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1908 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1909 } 1910 1911 add(rscratch1, mdp, off_to_args); 1912 bind(done); 1913 mov(mdp, rscratch1); 1914 1915 if (MethodData::profile_return()) { 1916 // We're right after the type profile for the last 1917 // argument. tmp is the number of cells left in the 1918 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1919 // if there's a return to profile. 1920 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1921 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1922 } 1923 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1924 } else { 1925 assert(MethodData::profile_return(), "either profile call args or call ret"); 1926 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1927 } 1928 1929 // mdp points right after the end of the 1930 // CallTypeData/VirtualCallTypeData, right after the cells for the 1931 // return value type if there's one 1932 1933 bind(profile_continue); 1934 } 1935 } 1936 1937 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1938 assert_different_registers(mdp, ret, tmp, rbcp); 1939 if (ProfileInterpreter && MethodData::profile_return()) { 1940 Label profile_continue, done; 1941 1942 test_method_data_pointer(mdp, profile_continue); 1943 1944 if (MethodData::profile_return_jsr292_only()) { 1945 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1946 1947 // If we don't profile all invoke bytecodes we must make sure 1948 // it's a bytecode we indeed profile. We can't go back to the 1949 // beginning of the ProfileData we intend to update to check its 1950 // type because we're right after it and we don't known its 1951 // length 1952 Label do_profile; 1953 ldrb(rscratch1, Address(rbcp, 0)); 1954 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1955 br(Assembler::EQ, do_profile); 1956 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1957 br(Assembler::EQ, do_profile); 1958 get_method(tmp); 1959 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1960 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1961 br(Assembler::NE, profile_continue); 1962 1963 bind(do_profile); 1964 } 1965 1966 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1967 mov(tmp, ret); 1968 profile_obj_type(tmp, mdo_ret_addr); 1969 1970 bind(profile_continue); 1971 } 1972 } 1973 1974 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1975 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1976 if (ProfileInterpreter && MethodData::profile_parameters()) { 1977 Label profile_continue, done; 1978 1979 test_method_data_pointer(mdp, profile_continue); 1980 1981 // Load the offset of the area within the MDO used for 1982 // parameters. If it's negative we're not profiling any parameters 1983 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1984 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1985 1986 // Compute a pointer to the area for parameters from the offset 1987 // and move the pointer to the slot for the last 1988 // parameters. Collect profiling from last parameter down. 1989 // mdo start + parameters offset + array length - 1 1990 add(mdp, mdp, tmp1); 1991 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1992 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1993 1994 Label loop; 1995 bind(loop); 1996 1997 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1998 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1999 int per_arg_scale = exact_log2(DataLayout::cell_size); 2000 add(rscratch1, mdp, off_base); 2001 add(rscratch2, mdp, type_base); 2002 2003 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 2004 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 2005 2006 // load offset on the stack from the slot for this parameter 2007 ldr(tmp2, arg_off); 2008 neg(tmp2, tmp2); 2009 // read the parameter from the local area 2010 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 2011 2012 // profile the parameter 2013 profile_obj_type(tmp2, arg_type); 2014 2015 // go to next parameter 2016 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 2017 br(Assembler::GE, loop); 2018 2019 bind(profile_continue); 2020 } 2021 }