1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/constMethodFlags.hpp" 37 #include "oops/markWord.hpp" 38 #include "oops/method.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/inlineKlass.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/basicLock.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/javaThread.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 void InterpreterMacroAssembler::narrow(Register result) { 53 54 // Get method->_constMethod->_result_type 55 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 56 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 57 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 58 59 Label done, notBool, notByte, notChar; 60 61 // common case first 62 cmpw(rscratch1, T_INT); 63 br(Assembler::EQ, done); 64 65 // mask integer result to narrower return type. 66 cmpw(rscratch1, T_BOOLEAN); 67 br(Assembler::NE, notBool); 68 andw(result, result, 0x1); 69 b(done); 70 71 bind(notBool); 72 cmpw(rscratch1, T_BYTE); 73 br(Assembler::NE, notByte); 74 sbfx(result, result, 0, 8); 75 b(done); 76 77 bind(notByte); 78 cmpw(rscratch1, T_CHAR); 79 br(Assembler::NE, notChar); 80 ubfx(result, result, 0, 16); // truncate upper 16 bits 81 b(done); 82 83 bind(notChar); 84 sbfx(result, result, 0, 16); // sign-extend short 85 86 // Nothing to do for T_INT 87 bind(done); 88 } 89 90 void InterpreterMacroAssembler::jump_to_entry(address entry) { 91 assert(entry, "Entry must have been generated by now"); 92 b(entry); 93 } 94 95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 96 if (JvmtiExport::can_pop_frame()) { 97 Label L; 98 // Initiate popframe handling only if it is not already being 99 // processed. If the flag has the popframe_processing bit set, it 100 // means that this code is called *during* popframe handling - we 101 // don't want to reenter. 102 // This method is only called just after the call into the vm in 103 // call_VM_base, so the arg registers are available. 104 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 105 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 106 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 107 // Call Interpreter::remove_activation_preserving_args_entry() to get the 108 // address of the same-named entrypoint in the generated interpreter code. 109 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 110 br(r0); 111 bind(L); 112 } 113 } 114 115 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 117 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 118 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 119 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 120 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 121 switch (state) { 122 case atos: ldr(r0, oop_addr); 123 str(zr, oop_addr); 124 interp_verify_oop(r0, state); break; 125 case ltos: ldr(r0, val_addr); break; 126 case btos: // fall through 127 case ztos: // fall through 128 case ctos: // fall through 129 case stos: // fall through 130 case itos: ldrw(r0, val_addr); break; 131 case ftos: ldrs(v0, val_addr); break; 132 case dtos: ldrd(v0, val_addr); break; 133 case vtos: /* nothing to do */ break; 134 default : ShouldNotReachHere(); 135 } 136 // Clean up tos value in the thread object 137 movw(rscratch1, (int) ilgl); 138 strw(rscratch1, tos_addr); 139 strw(zr, val_addr); 140 } 141 142 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 144 if (JvmtiExport::can_force_early_return()) { 145 Label L; 146 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 147 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 148 149 // Initiate earlyret handling only if it is not already being processed. 150 // If the flag has the earlyret_processing bit set, it means that this code 151 // is called *during* earlyret handling - we don't want to reenter. 152 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 153 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 154 br(Assembler::NE, L); 155 156 // Call Interpreter::remove_activation_early_entry() to get the address of the 157 // same-named entrypoint in the generated interpreter code. 158 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 159 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 160 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 161 br(r0); 162 bind(L); 163 } 164 } 165 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 167 Register reg, 168 int bcp_offset) { 169 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 170 ldrh(reg, Address(rbcp, bcp_offset)); 171 rev16(reg, reg); 172 } 173 174 void InterpreterMacroAssembler::get_dispatch() { 175 uint64_t offset; 176 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 177 // Use add() here after ARDP, rather than lea(). 178 // lea() does not generate anything if its offset is zero. 179 // However, relocs expect to find either an ADD or a load/store 180 // insn after an ADRP. add() always generates an ADD insn, even 181 // for add(Rn, Rn, 0). 182 add(rdispatch, rdispatch, offset); 183 } 184 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 186 int bcp_offset, 187 size_t index_size) { 188 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 189 if (index_size == sizeof(u2)) { 190 load_unsigned_short(index, Address(rbcp, bcp_offset)); 191 } else if (index_size == sizeof(u4)) { 192 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 193 ldrw(index, Address(rbcp, bcp_offset)); 194 // Check if the secondary index definition is still ~x, otherwise 195 // we have to change the following assembler code to calculate the 196 // plain index. 197 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 198 eonw(index, index, zr); // convert to plain index 199 } else if (index_size == sizeof(u1)) { 200 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 201 } else { 202 ShouldNotReachHere(); 203 } 204 } 205 206 // Return 207 // Rindex: index into constant pool 208 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 209 // 210 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 211 // the true address of the cache entry. 212 // 213 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 214 Register index, 215 int bcp_offset, 216 size_t index_size) { 217 assert_different_registers(cache, index); 218 assert_different_registers(cache, rcpool); 219 get_cache_index_at_bcp(index, bcp_offset, index_size); 220 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 221 // convert from field index to ConstantPoolCacheEntry 222 // aarch64 already has the cache in rcpool so there is no need to 223 // install it in cache. instead we pre-add the indexed offset to 224 // rcpool and return it in cache. All clients of this method need to 225 // be modified accordingly. 226 add(cache, rcpool, index, Assembler::LSL, 5); 227 } 228 229 230 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 231 Register index, 232 Register bytecode, 233 int byte_no, 234 int bcp_offset, 235 size_t index_size) { 236 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 237 // We use a 32-bit load here since the layout of 64-bit words on 238 // little-endian machines allow us that. 239 // n.b. unlike x86 cache already includes the index offset 240 lea(bytecode, Address(cache, 241 ConstantPoolCache::base_offset() 242 + ConstantPoolCacheEntry::indices_offset())); 243 ldarw(bytecode, bytecode); 244 const int shift_count = (1 + byte_no) * BitsPerByte; 245 ubfx(bytecode, bytecode, shift_count, BitsPerByte); 246 } 247 248 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 249 Register tmp, 250 int bcp_offset, 251 size_t index_size) { 252 assert(cache != tmp, "must use different register"); 253 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 254 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 255 // convert from field index to ConstantPoolCacheEntry index 256 // and from word offset to byte offset 257 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 258 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 259 // skip past the header 260 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 261 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry 262 } 263 264 void InterpreterMacroAssembler::get_method_counters(Register method, 265 Register mcs, Label& skip) { 266 Label has_counters; 267 ldr(mcs, Address(method, Method::method_counters_offset())); 268 cbnz(mcs, has_counters); 269 call_VM(noreg, CAST_FROM_FN_PTR(address, 270 InterpreterRuntime::build_method_counters), method); 271 ldr(mcs, Address(method, Method::method_counters_offset())); 272 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 273 bind(has_counters); 274 } 275 276 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 277 Register t1, Register t2, 278 bool clear_fields, Label& alloc_failed) { 279 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 280 { 281 SkipIfEqual skip_if(this, &DTraceAllocProbes, 0); 282 // Trigger dtrace event for fastpath 283 push(atos); 284 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 285 pop(atos); 286 } 287 } 288 289 void InterpreterMacroAssembler::read_flat_field(Register holder_klass, 290 Register field_index, Register field_offset, 291 Register temp, Register obj) { 292 Label alloc_failed, empty_value, done; 293 const Register src = field_offset; 294 const Register alloc_temp = rscratch1; 295 const Register dst_temp = temp; 296 assert_different_registers(obj, holder_klass, field_index, field_offset, dst_temp); 297 298 // Grab the inline field klass 299 push(holder_klass); 300 const Register field_klass = holder_klass; 301 get_inline_type_field_klass(holder_klass, field_index, field_klass); 302 303 //check for empty value klass 304 test_klass_is_empty_inline_type(field_klass, dst_temp, empty_value); 305 306 // allocate buffer 307 push(obj); // save holder 308 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 309 310 // Have an oop instance buffer, copy into it 311 data_for_oop(obj, dst_temp, field_klass); 312 pop(alloc_temp); // restore holder 313 lea(src, Address(alloc_temp, field_offset)); 314 // call_VM_leaf, clobbers a few regs, save restore new obj 315 push(obj); 316 access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, field_klass); 317 pop(obj); 318 pop(holder_klass); 319 b(done); 320 321 bind(empty_value); 322 get_empty_inline_type_oop(field_klass, dst_temp, obj); 323 pop(holder_klass); 324 b(done); 325 326 bind(alloc_failed); 327 pop(obj); 328 pop(holder_klass); 329 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 330 obj, field_index, holder_klass); 331 332 bind(done); 333 334 // Ensure the stores to copy the inline field contents are visible 335 // before any subsequent store that publishes this reference. 336 membar(Assembler::StoreStore); 337 } 338 339 // Load object from cpool->resolved_references(index) 340 void InterpreterMacroAssembler::load_resolved_reference_at_index( 341 Register result, Register index, Register tmp) { 342 assert_different_registers(result, index); 343 344 get_constant_pool(result); 345 // load pointer for resolved_references[] objArray 346 ldr(result, Address(result, ConstantPool::cache_offset())); 347 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 348 resolve_oop_handle(result, tmp, rscratch2); 349 // Add in the index 350 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 351 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 352 } 353 354 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 355 Register cpool, Register index, Register klass, Register temp) { 356 add(temp, cpool, index, LSL, LogBytesPerWord); 357 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 358 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 359 add(klass, klass, temp, LSL, LogBytesPerWord); 360 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 361 } 362 363 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 364 Register method, 365 Register cache) { 366 const int method_offset = in_bytes( 367 ConstantPoolCache::base_offset() + 368 ((byte_no == TemplateTable::f2_byte) 369 ? ConstantPoolCacheEntry::f2_offset() 370 : ConstantPoolCacheEntry::f1_offset())); 371 372 ldr(method, Address(cache, method_offset)); // get f1 Method* 373 } 374 375 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 376 // subtype of super_klass. 377 // 378 // Args: 379 // r0: superklass 380 // Rsub_klass: subklass 381 // 382 // Kills: 383 // r2, r5 384 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 385 Label& ok_is_subtype, 386 bool profile) { 387 assert(Rsub_klass != r0, "r0 holds superklass"); 388 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 389 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 390 391 // Profile the not-null value's klass. 392 if (profile) { 393 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 394 } 395 396 // Do the check. 397 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 398 } 399 400 // Java Expression Stack 401 402 void InterpreterMacroAssembler::pop_ptr(Register r) { 403 ldr(r, post(esp, wordSize)); 404 } 405 406 void InterpreterMacroAssembler::pop_i(Register r) { 407 ldrw(r, post(esp, wordSize)); 408 } 409 410 void InterpreterMacroAssembler::pop_l(Register r) { 411 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 412 } 413 414 void InterpreterMacroAssembler::push_ptr(Register r) { 415 str(r, pre(esp, -wordSize)); 416 } 417 418 void InterpreterMacroAssembler::push_i(Register r) { 419 str(r, pre(esp, -wordSize)); 420 } 421 422 void InterpreterMacroAssembler::push_l(Register r) { 423 str(zr, pre(esp, -wordSize)); 424 str(r, pre(esp, - wordSize)); 425 } 426 427 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 428 ldrs(r, post(esp, wordSize)); 429 } 430 431 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 432 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 433 } 434 435 void InterpreterMacroAssembler::push_f(FloatRegister r) { 436 strs(r, pre(esp, -wordSize)); 437 } 438 439 void InterpreterMacroAssembler::push_d(FloatRegister r) { 440 strd(r, pre(esp, 2* -wordSize)); 441 } 442 443 void InterpreterMacroAssembler::pop(TosState state) { 444 switch (state) { 445 case atos: pop_ptr(); break; 446 case btos: 447 case ztos: 448 case ctos: 449 case stos: 450 case itos: pop_i(); break; 451 case ltos: pop_l(); break; 452 case ftos: pop_f(); break; 453 case dtos: pop_d(); break; 454 case vtos: /* nothing to do */ break; 455 default: ShouldNotReachHere(); 456 } 457 interp_verify_oop(r0, state); 458 } 459 460 void InterpreterMacroAssembler::push(TosState state) { 461 interp_verify_oop(r0, state); 462 switch (state) { 463 case atos: push_ptr(); break; 464 case btos: 465 case ztos: 466 case ctos: 467 case stos: 468 case itos: push_i(); break; 469 case ltos: push_l(); break; 470 case ftos: push_f(); break; 471 case dtos: push_d(); break; 472 case vtos: /* nothing to do */ break; 473 default : ShouldNotReachHere(); 474 } 475 } 476 477 // Helpers for swap and dup 478 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 479 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 480 } 481 482 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 483 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 484 } 485 486 void InterpreterMacroAssembler::load_float(Address src) { 487 ldrs(v0, src); 488 } 489 490 void InterpreterMacroAssembler::load_double(Address src) { 491 ldrd(v0, src); 492 } 493 494 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 495 // set sender sp 496 mov(r19_sender_sp, sp); 497 // record last_sp 498 sub(rscratch1, esp, rfp); 499 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 500 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 501 } 502 503 // Jump to from_interpreted entry of a call unless single stepping is possible 504 // in this thread in which case we must call the i2i entry 505 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 506 prepare_to_jump_from_interpreted(); 507 508 if (JvmtiExport::can_post_interpreter_events()) { 509 Label run_compiled_code; 510 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 511 // compiled code in threads for which the event is enabled. Check here for 512 // interp_only_mode if these events CAN be enabled. 513 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 514 cbzw(rscratch1, run_compiled_code); 515 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 516 br(rscratch1); 517 bind(run_compiled_code); 518 } 519 520 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 521 br(rscratch1); 522 } 523 524 // The following two routines provide a hook so that an implementation 525 // can schedule the dispatch in two parts. amd64 does not do this. 526 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 527 } 528 529 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 530 dispatch_next(state, step); 531 } 532 533 void InterpreterMacroAssembler::dispatch_base(TosState state, 534 address* table, 535 bool verifyoop, 536 bool generate_poll) { 537 if (VerifyActivationFrameSize) { 538 Unimplemented(); 539 } 540 if (verifyoop) { 541 interp_verify_oop(r0, state); 542 } 543 544 Label safepoint; 545 address* const safepoint_table = Interpreter::safept_table(state); 546 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 547 548 if (needs_thread_local_poll) { 549 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 550 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 551 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 552 } 553 554 if (table == Interpreter::dispatch_table(state)) { 555 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 556 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 557 } else { 558 mov(rscratch2, (address)table); 559 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 560 } 561 br(rscratch2); 562 563 if (needs_thread_local_poll) { 564 bind(safepoint); 565 lea(rscratch2, ExternalAddress((address)safepoint_table)); 566 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 567 br(rscratch2); 568 } 569 } 570 571 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 572 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 573 } 574 575 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 576 dispatch_base(state, Interpreter::normal_table(state)); 577 } 578 579 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 580 dispatch_base(state, Interpreter::normal_table(state), false); 581 } 582 583 584 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 585 // load next bytecode 586 ldrb(rscratch1, Address(pre(rbcp, step))); 587 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 588 } 589 590 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 591 // load current bytecode 592 ldrb(rscratch1, Address(rbcp, 0)); 593 dispatch_base(state, table); 594 } 595 596 // remove activation 597 // 598 // Apply stack watermark barrier. 599 // Unlock the receiver if this is a synchronized method. 600 // Unlock any Java monitors from synchronized blocks. 601 // Remove the activation from the stack. 602 // 603 // If there are locked Java monitors 604 // If throw_monitor_exception 605 // throws IllegalMonitorStateException 606 // Else if install_monitor_exception 607 // installs IllegalMonitorStateException 608 // Else 609 // no error processing 610 void InterpreterMacroAssembler::remove_activation( 611 TosState state, 612 bool throw_monitor_exception, 613 bool install_monitor_exception, 614 bool notify_jvmdi) { 615 // Note: Registers r3 xmm0 may be in use for the 616 // result check if synchronized method 617 Label unlocked, unlock, no_unlock; 618 619 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 620 // that would normally not be safe to use. Such bad returns into unsafe territory of 621 // the stack, will call InterpreterRuntime::at_unwind. 622 Label slow_path; 623 Label fast_path; 624 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 625 br(Assembler::AL, fast_path); 626 bind(slow_path); 627 push(state); 628 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 629 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 630 reset_last_Java_frame(true); 631 pop(state); 632 bind(fast_path); 633 634 // get the value of _do_not_unlock_if_synchronized into r3 635 const Address do_not_unlock_if_synchronized(rthread, 636 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 637 ldrb(r3, do_not_unlock_if_synchronized); 638 strb(zr, do_not_unlock_if_synchronized); // reset the flag 639 640 // get method access flags 641 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 642 ldr(r2, Address(r1, Method::access_flags_offset())); 643 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 644 645 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 646 // is set. 647 cbnz(r3, no_unlock); 648 649 // unlock monitor 650 push(state); // save result 651 652 // BasicObjectLock will be first in list, since this is a 653 // synchronized method. However, need to check that the object has 654 // not been unlocked by an explicit monitorexit bytecode. 655 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 656 wordSize - (int) sizeof(BasicObjectLock)); 657 // We use c_rarg1 so that if we go slow path it will be the correct 658 // register for unlock_object to pass to VM directly 659 lea(c_rarg1, monitor); // address of first monitor 660 661 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 662 cbnz(r0, unlock); 663 664 pop(state); 665 if (throw_monitor_exception) { 666 // Entry already unlocked, need to throw exception 667 call_VM(noreg, CAST_FROM_FN_PTR(address, 668 InterpreterRuntime::throw_illegal_monitor_state_exception)); 669 should_not_reach_here(); 670 } else { 671 // Monitor already unlocked during a stack unroll. If requested, 672 // install an illegal_monitor_state_exception. Continue with 673 // stack unrolling. 674 if (install_monitor_exception) { 675 call_VM(noreg, CAST_FROM_FN_PTR(address, 676 InterpreterRuntime::new_illegal_monitor_state_exception)); 677 } 678 b(unlocked); 679 } 680 681 bind(unlock); 682 unlock_object(c_rarg1); 683 pop(state); 684 685 // Check that for block-structured locking (i.e., that all locked 686 // objects has been unlocked) 687 bind(unlocked); 688 689 // r0: Might contain return value 690 691 // Check that all monitors are unlocked 692 { 693 Label loop, exception, entry, restart; 694 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 695 const Address monitor_block_top( 696 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 697 const Address monitor_block_bot( 698 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 699 700 bind(restart); 701 // We use c_rarg1 so that if we go slow path it will be the correct 702 // register for unlock_object to pass to VM directly 703 ldr(c_rarg1, monitor_block_top); // points to current entry, starting 704 // with top-most entry 705 lea(r19, monitor_block_bot); // points to word before bottom of 706 // monitor block 707 b(entry); 708 709 // Entry already locked, need to throw exception 710 bind(exception); 711 712 if (throw_monitor_exception) { 713 // Throw exception 714 MacroAssembler::call_VM(noreg, 715 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 716 throw_illegal_monitor_state_exception)); 717 should_not_reach_here(); 718 } else { 719 // Stack unrolling. Unlock object and install illegal_monitor_exception. 720 // Unlock does not block, so don't have to worry about the frame. 721 // We don't have to preserve c_rarg1 since we are going to throw an exception. 722 723 push(state); 724 unlock_object(c_rarg1); 725 pop(state); 726 727 if (install_monitor_exception) { 728 call_VM(noreg, CAST_FROM_FN_PTR(address, 729 InterpreterRuntime:: 730 new_illegal_monitor_state_exception)); 731 } 732 733 b(restart); 734 } 735 736 bind(loop); 737 // check if current entry is used 738 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 739 cbnz(rscratch1, exception); 740 741 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 742 bind(entry); 743 cmp(c_rarg1, r19); // check if bottom reached 744 br(Assembler::NE, loop); // if not at bottom then check this entry 745 } 746 747 bind(no_unlock); 748 749 // jvmti support 750 if (notify_jvmdi) { 751 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 752 } else { 753 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 754 } 755 756 // remove activation 757 // get sender esp 758 ldr(rscratch2, 759 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 760 761 if (StackReservedPages > 0) { 762 // testing if reserved zone needs to be re-enabled 763 Label no_reserved_zone_enabling; 764 765 // check if already enabled - if so no re-enabling needed 766 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 767 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 768 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 769 br(Assembler::EQ, no_reserved_zone_enabling); 770 771 // look for an overflow into the stack reserved zone, i.e. 772 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 773 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 774 cmp(rscratch2, rscratch1); 775 br(Assembler::LS, no_reserved_zone_enabling); 776 777 call_VM_leaf( 778 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 779 call_VM(noreg, CAST_FROM_FN_PTR(address, 780 InterpreterRuntime::throw_delayed_StackOverflowError)); 781 should_not_reach_here(); 782 783 bind(no_reserved_zone_enabling); 784 } 785 786 if (state == atos && InlineTypeReturnedAsFields) { 787 // Check if we are returning an non-null inline type and load its fields into registers 788 Label skip; 789 test_oop_is_not_inline_type(r0, rscratch2, skip); 790 791 // Load fields from a buffered value with an inline class specific handler 792 load_klass(rscratch1 /*dst*/, r0 /*src*/); 793 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 794 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 795 // Unpack handler can be null if inline type is not scalarizable in returns 796 cbz(rscratch1, skip); 797 798 blr(rscratch1); 799 #ifdef ASSERT 800 // TODO 8284443 Enable 801 if (StressCallingConvention && false) { 802 Label skip_stress; 803 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 804 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 805 tstw(rscratch1, ConstMethodFlags::has_scalarized_return_flag()); 806 br(Assembler::EQ, skip_stress); 807 load_klass(r0, r0); 808 orr(r0, r0, 1); 809 bind(skip_stress); 810 } 811 #endif 812 bind(skip); 813 // Check above kills sender esp in rscratch2. Reload it. 814 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 815 } 816 817 // restore sender esp 818 mov(esp, rscratch2); 819 // remove frame anchor 820 leave(); 821 // If we're returning to interpreted code we will shortly be 822 // adjusting SP to allow some space for ESP. If we're returning to 823 // compiled code the saved sender SP was saved in sender_sp, so this 824 // restores it. 825 andr(sp, esp, -16); 826 } 827 828 // Lock object 829 // 830 // Args: 831 // c_rarg1: BasicObjectLock to be used for locking 832 // 833 // Kills: 834 // r0 835 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 836 // rscratch1, rscratch2 (scratch regs) 837 void InterpreterMacroAssembler::lock_object(Register lock_reg) 838 { 839 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 840 if (LockingMode == LM_MONITOR) { 841 call_VM(noreg, 842 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 843 lock_reg); 844 } else { 845 Label count, done; 846 847 const Register swap_reg = r0; 848 const Register tmp = c_rarg2; 849 const Register obj_reg = c_rarg3; // Will contain the oop 850 851 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 852 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 853 const int mark_offset = lock_offset + 854 BasicLock::displaced_header_offset_in_bytes(); 855 856 Label slow_case; 857 858 // Load object pointer into obj_reg %c_rarg3 859 ldr(obj_reg, Address(lock_reg, obj_offset)); 860 861 if (DiagnoseSyncOnValueBasedClasses != 0) { 862 load_klass(tmp, obj_reg); 863 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 864 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 865 br(Assembler::NE, slow_case); 866 } 867 868 if (LockingMode == LM_LIGHTWEIGHT) { 869 ldr(tmp, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 870 fast_lock(obj_reg, tmp, rscratch1, rscratch2, slow_case); 871 b(count); 872 } else if (LockingMode == LM_LEGACY) { 873 // Load (object->mark() | 1) into swap_reg 874 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 875 orr(swap_reg, rscratch1, 1); 876 if (EnableValhalla) { 877 // Mask inline_type bit such that we go to the slow path if object is an inline type 878 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 879 } 880 881 // Save (object->mark() | 1) into BasicLock's displaced header 882 str(swap_reg, Address(lock_reg, mark_offset)); 883 884 assert(lock_offset == 0, 885 "displached header must be first word in BasicObjectLock"); 886 887 Label fail; 888 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 889 890 // Fast check for recursive lock. 891 // 892 // Can apply the optimization only if this is a stack lock 893 // allocated in this thread. For efficiency, we can focus on 894 // recently allocated stack locks (instead of reading the stack 895 // base and checking whether 'mark' points inside the current 896 // thread stack): 897 // 1) (mark & 7) == 0, and 898 // 2) sp <= mark < mark + os::pagesize() 899 // 900 // Warning: sp + os::pagesize can overflow the stack base. We must 901 // neither apply the optimization for an inflated lock allocated 902 // just above the thread stack (this is why condition 1 matters) 903 // nor apply the optimization if the stack lock is inside the stack 904 // of another thread. The latter is avoided even in case of overflow 905 // because we have guard pages at the end of all stacks. Hence, if 906 // we go over the stack base and hit the stack of another thread, 907 // this should not be in a writeable area that could contain a 908 // stack lock allocated by that thread. As a consequence, a stack 909 // lock less than page size away from sp is guaranteed to be 910 // owned by the current thread. 911 // 912 // These 3 tests can be done by evaluating the following 913 // expression: ((mark - sp) & (7 - os::vm_page_size())), 914 // assuming both stack pointer and pagesize have their 915 // least significant 3 bits clear. 916 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 917 // NOTE2: aarch64 does not like to subtract sp from rn so take a 918 // copy 919 mov(rscratch1, sp); 920 sub(swap_reg, swap_reg, rscratch1); 921 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 922 923 // Save the test result, for recursive case, the result is zero 924 str(swap_reg, Address(lock_reg, mark_offset)); 925 br(Assembler::EQ, count); 926 } 927 bind(slow_case); 928 929 // Call the runtime routine for slow case 930 if (LockingMode == LM_LIGHTWEIGHT) { 931 call_VM(noreg, 932 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 933 obj_reg); 934 } else { 935 call_VM(noreg, 936 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 937 lock_reg); 938 } 939 b(done); 940 941 bind(count); 942 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 943 944 bind(done); 945 } 946 } 947 948 949 // Unlocks an object. Used in monitorexit bytecode and 950 // remove_activation. Throws an IllegalMonitorException if object is 951 // not locked by current thread. 952 // 953 // Args: 954 // c_rarg1: BasicObjectLock for lock 955 // 956 // Kills: 957 // r0 958 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 959 // rscratch1, rscratch2 (scratch regs) 960 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 961 { 962 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 963 964 if (LockingMode == LM_MONITOR) { 965 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 966 } else { 967 Label count, done; 968 969 const Register swap_reg = r0; 970 const Register header_reg = c_rarg2; // Will contain the old oopMark 971 const Register obj_reg = c_rarg3; // Will contain the oop 972 973 save_bcp(); // Save in case of exception 974 975 if (LockingMode != LM_LIGHTWEIGHT) { 976 // Convert from BasicObjectLock structure to object and BasicLock 977 // structure Store the BasicLock address into %r0 978 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 979 } 980 981 // Load oop into obj_reg(%c_rarg3) 982 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 983 984 // Free entry 985 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 986 987 if (LockingMode == LM_LIGHTWEIGHT) { 988 Label slow_case; 989 990 // Check for non-symmetric locking. This is allowed by the spec and the interpreter 991 // must handle it. 992 Register tmp = rscratch1; 993 // First check for lock-stack underflow. 994 ldrw(tmp, Address(rthread, JavaThread::lock_stack_top_offset())); 995 cmpw(tmp, (unsigned)LockStack::start_offset()); 996 br(Assembler::LE, slow_case); 997 // Then check if the top of the lock-stack matches the unlocked object. 998 subw(tmp, tmp, oopSize); 999 ldr(tmp, Address(rthread, tmp)); 1000 cmpoop(tmp, obj_reg); 1001 br(Assembler::NE, slow_case); 1002 1003 ldr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1004 tbnz(header_reg, exact_log2(markWord::monitor_value), slow_case); 1005 fast_unlock(obj_reg, header_reg, swap_reg, rscratch1, slow_case); 1006 b(count); 1007 bind(slow_case); 1008 } else if (LockingMode == LM_LEGACY) { 1009 // Load the old header from BasicLock structure 1010 ldr(header_reg, Address(swap_reg, 1011 BasicLock::displaced_header_offset_in_bytes())); 1012 1013 // Test for recursion 1014 cbz(header_reg, count); 1015 1016 // Atomic swap back the old header 1017 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 1018 } 1019 // Call the runtime routine for slow case. 1020 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 1021 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1022 b(done); 1023 1024 bind(count); 1025 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1026 1027 bind(done); 1028 restore_bcp(); 1029 } 1030 } 1031 1032 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1033 Label& zero_continue) { 1034 assert(ProfileInterpreter, "must be profiling interpreter"); 1035 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1036 cbz(mdp, zero_continue); 1037 } 1038 1039 // Set the method data pointer for the current bcp. 1040 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1041 assert(ProfileInterpreter, "must be profiling interpreter"); 1042 Label set_mdp; 1043 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1044 1045 // Test MDO to avoid the call if it is null. 1046 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 1047 cbz(r0, set_mdp); 1048 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 1049 // r0: mdi 1050 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1051 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1052 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 1053 add(r0, r1, r0); 1054 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1055 bind(set_mdp); 1056 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1057 } 1058 1059 void InterpreterMacroAssembler::verify_method_data_pointer() { 1060 assert(ProfileInterpreter, "must be profiling interpreter"); 1061 #ifdef ASSERT 1062 Label verify_continue; 1063 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1064 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 1065 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 1066 get_method(r1); 1067 1068 // If the mdp is valid, it will point to a DataLayout header which is 1069 // consistent with the bcp. The converse is highly probable also. 1070 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 1071 ldr(rscratch1, Address(r1, Method::const_offset())); 1072 add(r2, r2, rscratch1, Assembler::LSL); 1073 lea(r2, Address(r2, ConstMethod::codes_offset())); 1074 cmp(r2, rbcp); 1075 br(Assembler::EQ, verify_continue); 1076 // r1: method 1077 // rbcp: bcp // rbcp == 22 1078 // r3: mdp 1079 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1080 r1, rbcp, r3); 1081 bind(verify_continue); 1082 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 1083 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1084 #endif // ASSERT 1085 } 1086 1087 1088 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1089 int constant, 1090 Register value) { 1091 assert(ProfileInterpreter, "must be profiling interpreter"); 1092 Address data(mdp_in, constant); 1093 str(value, data); 1094 } 1095 1096 1097 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1098 int constant, 1099 bool decrement) { 1100 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1101 } 1102 1103 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1104 Register reg, 1105 int constant, 1106 bool decrement) { 1107 assert(ProfileInterpreter, "must be profiling interpreter"); 1108 // %%% this does 64bit counters at best it is wasting space 1109 // at worst it is a rare bug when counters overflow 1110 1111 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1112 1113 Address addr1(mdp_in, constant); 1114 Address addr2(rscratch2, reg, Address::lsl(0)); 1115 Address &addr = addr1; 1116 if (reg != noreg) { 1117 lea(rscratch2, addr1); 1118 addr = addr2; 1119 } 1120 1121 if (decrement) { 1122 // Decrement the register. Set condition codes. 1123 // Intel does this 1124 // addptr(data, (int32_t) -DataLayout::counter_increment); 1125 // If the decrement causes the counter to overflow, stay negative 1126 // Label L; 1127 // jcc(Assembler::negative, L); 1128 // addptr(data, (int32_t) DataLayout::counter_increment); 1129 // so we do this 1130 ldr(rscratch1, addr); 1131 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1132 Label L; 1133 br(Assembler::LO, L); // skip store if counter underflow 1134 str(rscratch1, addr); 1135 bind(L); 1136 } else { 1137 assert(DataLayout::counter_increment == 1, 1138 "flow-free idiom only works with 1"); 1139 // Intel does this 1140 // Increment the register. Set carry flag. 1141 // addptr(data, DataLayout::counter_increment); 1142 // If the increment causes the counter to overflow, pull back by 1. 1143 // sbbptr(data, (int32_t)0); 1144 // so we do this 1145 ldr(rscratch1, addr); 1146 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1147 Label L; 1148 br(Assembler::CS, L); // skip store if counter overflow 1149 str(rscratch1, addr); 1150 bind(L); 1151 } 1152 } 1153 1154 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1155 int flag_byte_constant) { 1156 assert(ProfileInterpreter, "must be profiling interpreter"); 1157 int flags_offset = in_bytes(DataLayout::flags_offset()); 1158 // Set the flag 1159 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1160 orr(rscratch1, rscratch1, flag_byte_constant); 1161 strb(rscratch1, Address(mdp_in, flags_offset)); 1162 } 1163 1164 1165 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1166 int offset, 1167 Register value, 1168 Register test_value_out, 1169 Label& not_equal_continue) { 1170 assert(ProfileInterpreter, "must be profiling interpreter"); 1171 if (test_value_out == noreg) { 1172 ldr(rscratch1, Address(mdp_in, offset)); 1173 cmp(value, rscratch1); 1174 } else { 1175 // Put the test value into a register, so caller can use it: 1176 ldr(test_value_out, Address(mdp_in, offset)); 1177 cmp(value, test_value_out); 1178 } 1179 br(Assembler::NE, not_equal_continue); 1180 } 1181 1182 1183 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1184 int offset_of_disp) { 1185 assert(ProfileInterpreter, "must be profiling interpreter"); 1186 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1187 add(mdp_in, mdp_in, rscratch1, LSL); 1188 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1189 } 1190 1191 1192 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1193 Register reg, 1194 int offset_of_disp) { 1195 assert(ProfileInterpreter, "must be profiling interpreter"); 1196 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1197 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1198 add(mdp_in, mdp_in, rscratch1, LSL); 1199 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1200 } 1201 1202 1203 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1204 int constant) { 1205 assert(ProfileInterpreter, "must be profiling interpreter"); 1206 add(mdp_in, mdp_in, (unsigned)constant); 1207 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1208 } 1209 1210 1211 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1212 assert(ProfileInterpreter, "must be profiling interpreter"); 1213 // save/restore across call_VM 1214 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1215 call_VM(noreg, 1216 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1217 return_bci); 1218 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1219 } 1220 1221 1222 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1223 Register bumped_count) { 1224 if (ProfileInterpreter) { 1225 Label profile_continue; 1226 1227 // If no method data exists, go to profile_continue. 1228 // Otherwise, assign to mdp 1229 test_method_data_pointer(mdp, profile_continue); 1230 1231 // We are taking a branch. Increment the taken count. 1232 // We inline increment_mdp_data_at to return bumped_count in a register 1233 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1234 Address data(mdp, in_bytes(JumpData::taken_offset())); 1235 ldr(bumped_count, data); 1236 assert(DataLayout::counter_increment == 1, 1237 "flow-free idiom only works with 1"); 1238 // Intel does this to catch overflow 1239 // addptr(bumped_count, DataLayout::counter_increment); 1240 // sbbptr(bumped_count, 0); 1241 // so we do this 1242 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1243 Label L; 1244 br(Assembler::CS, L); // skip store if counter overflow 1245 str(bumped_count, data); 1246 bind(L); 1247 // The method data pointer needs to be updated to reflect the new target. 1248 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1249 bind(profile_continue); 1250 } 1251 } 1252 1253 1254 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1255 if (ProfileInterpreter) { 1256 Label profile_continue; 1257 1258 // If no method data exists, go to profile_continue. 1259 test_method_data_pointer(mdp, profile_continue); 1260 1261 // We are taking a branch. Increment the not taken count. 1262 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1263 1264 // The method data pointer needs to be updated to correspond to 1265 // the next bytecode 1266 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1267 bind(profile_continue); 1268 } 1269 } 1270 1271 1272 void InterpreterMacroAssembler::profile_call(Register mdp) { 1273 if (ProfileInterpreter) { 1274 Label profile_continue; 1275 1276 // If no method data exists, go to profile_continue. 1277 test_method_data_pointer(mdp, profile_continue); 1278 1279 // We are making a call. Increment the count. 1280 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1281 1282 // The method data pointer needs to be updated to reflect the new target. 1283 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1284 bind(profile_continue); 1285 } 1286 } 1287 1288 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1289 if (ProfileInterpreter) { 1290 Label profile_continue; 1291 1292 // If no method data exists, go to profile_continue. 1293 test_method_data_pointer(mdp, profile_continue); 1294 1295 // We are making a call. Increment the count. 1296 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1297 1298 // The method data pointer needs to be updated to reflect the new target. 1299 update_mdp_by_constant(mdp, 1300 in_bytes(VirtualCallData:: 1301 virtual_call_data_size())); 1302 bind(profile_continue); 1303 } 1304 } 1305 1306 1307 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1308 Register mdp, 1309 Register reg2, 1310 bool receiver_can_be_null) { 1311 if (ProfileInterpreter) { 1312 Label profile_continue; 1313 1314 // If no method data exists, go to profile_continue. 1315 test_method_data_pointer(mdp, profile_continue); 1316 1317 Label skip_receiver_profile; 1318 if (receiver_can_be_null) { 1319 Label not_null; 1320 // We are making a call. Increment the count for null receiver. 1321 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1322 b(skip_receiver_profile); 1323 bind(not_null); 1324 } 1325 1326 // Record the receiver type. 1327 record_klass_in_profile(receiver, mdp, reg2); 1328 bind(skip_receiver_profile); 1329 1330 // The method data pointer needs to be updated to reflect the new target. 1331 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1332 bind(profile_continue); 1333 } 1334 } 1335 1336 // This routine creates a state machine for updating the multi-row 1337 // type profile at a virtual call site (or other type-sensitive bytecode). 1338 // The machine visits each row (of receiver/count) until the receiver type 1339 // is found, or until it runs out of rows. At the same time, it remembers 1340 // the location of the first empty row. (An empty row records null for its 1341 // receiver, and can be allocated for a newly-observed receiver type.) 1342 // Because there are two degrees of freedom in the state, a simple linear 1343 // search will not work; it must be a decision tree. Hence this helper 1344 // function is recursive, to generate the required tree structured code. 1345 // It's the interpreter, so we are trading off code space for speed. 1346 // See below for example code. 1347 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1348 Register receiver, Register mdp, 1349 Register reg2, int start_row, 1350 Label& done) { 1351 if (TypeProfileWidth == 0) { 1352 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1353 } else { 1354 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1355 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1356 } 1357 } 1358 1359 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1360 Register reg2, int start_row, Label& done, int total_rows, 1361 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1362 int last_row = total_rows - 1; 1363 assert(start_row <= last_row, "must be work left to do"); 1364 // Test this row for both the item and for null. 1365 // Take any of three different outcomes: 1366 // 1. found item => increment count and goto done 1367 // 2. found null => keep looking for case 1, maybe allocate this cell 1368 // 3. found something else => keep looking for cases 1 and 2 1369 // Case 3 is handled by a recursive call. 1370 for (int row = start_row; row <= last_row; row++) { 1371 Label next_test; 1372 bool test_for_null_also = (row == start_row); 1373 1374 // See if the item is item[n]. 1375 int item_offset = in_bytes(item_offset_fn(row)); 1376 test_mdp_data_at(mdp, item_offset, item, 1377 (test_for_null_also ? reg2 : noreg), 1378 next_test); 1379 // (Reg2 now contains the item from the CallData.) 1380 1381 // The item is item[n]. Increment count[n]. 1382 int count_offset = in_bytes(item_count_offset_fn(row)); 1383 increment_mdp_data_at(mdp, count_offset); 1384 b(done); 1385 bind(next_test); 1386 1387 if (test_for_null_also) { 1388 Label found_null; 1389 // Failed the equality check on item[n]... Test for null. 1390 if (start_row == last_row) { 1391 // The only thing left to do is handle the null case. 1392 cbz(reg2, found_null); 1393 // Item did not match any saved item and there is no empty row for it. 1394 // Increment total counter to indicate polymorphic case. 1395 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1396 b(done); 1397 bind(found_null); 1398 break; 1399 } 1400 // Since null is rare, make it be the branch-taken case. 1401 cbz(reg2, found_null); 1402 1403 // Put all the "Case 3" tests here. 1404 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1405 item_offset_fn, item_count_offset_fn); 1406 1407 // Found a null. Keep searching for a matching item, 1408 // but remember that this is an empty (unused) slot. 1409 bind(found_null); 1410 } 1411 } 1412 1413 // In the fall-through case, we found no matching item, but we 1414 // observed the item[start_row] is null. 1415 1416 // Fill in the item field and increment the count. 1417 int item_offset = in_bytes(item_offset_fn(start_row)); 1418 set_mdp_data_at(mdp, item_offset, item); 1419 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1420 mov(reg2, DataLayout::counter_increment); 1421 set_mdp_data_at(mdp, count_offset, reg2); 1422 if (start_row > 0) { 1423 b(done); 1424 } 1425 } 1426 1427 // Example state machine code for three profile rows: 1428 // // main copy of decision tree, rooted at row[1] 1429 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1430 // if (row[0].rec != nullptr) { 1431 // // inner copy of decision tree, rooted at row[1] 1432 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1433 // if (row[1].rec != nullptr) { 1434 // // degenerate decision tree, rooted at row[2] 1435 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1436 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1437 // row[2].init(rec); goto done; 1438 // } else { 1439 // // remember row[1] is empty 1440 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1441 // row[1].init(rec); goto done; 1442 // } 1443 // } else { 1444 // // remember row[0] is empty 1445 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1446 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1447 // row[0].init(rec); goto done; 1448 // } 1449 // done: 1450 1451 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1452 Register mdp, Register reg2) { 1453 assert(ProfileInterpreter, "must be profiling"); 1454 Label done; 1455 1456 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1457 1458 bind (done); 1459 } 1460 1461 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1462 Register mdp) { 1463 if (ProfileInterpreter) { 1464 Label profile_continue; 1465 uint row; 1466 1467 // If no method data exists, go to profile_continue. 1468 test_method_data_pointer(mdp, profile_continue); 1469 1470 // Update the total ret count. 1471 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1472 1473 for (row = 0; row < RetData::row_limit(); row++) { 1474 Label next_test; 1475 1476 // See if return_bci is equal to bci[n]: 1477 test_mdp_data_at(mdp, 1478 in_bytes(RetData::bci_offset(row)), 1479 return_bci, noreg, 1480 next_test); 1481 1482 // return_bci is equal to bci[n]. Increment the count. 1483 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1484 1485 // The method data pointer needs to be updated to reflect the new target. 1486 update_mdp_by_offset(mdp, 1487 in_bytes(RetData::bci_displacement_offset(row))); 1488 b(profile_continue); 1489 bind(next_test); 1490 } 1491 1492 update_mdp_for_ret(return_bci); 1493 1494 bind(profile_continue); 1495 } 1496 } 1497 1498 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1499 if (ProfileInterpreter) { 1500 Label profile_continue; 1501 1502 // If no method data exists, go to profile_continue. 1503 test_method_data_pointer(mdp, profile_continue); 1504 1505 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1506 1507 // The method data pointer needs to be updated. 1508 int mdp_delta = in_bytes(BitData::bit_data_size()); 1509 if (TypeProfileCasts) { 1510 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1511 } 1512 update_mdp_by_constant(mdp, mdp_delta); 1513 1514 bind(profile_continue); 1515 } 1516 } 1517 1518 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1519 if (ProfileInterpreter) { 1520 Label profile_continue; 1521 1522 // If no method data exists, go to profile_continue. 1523 test_method_data_pointer(mdp, profile_continue); 1524 1525 // The method data pointer needs to be updated. 1526 int mdp_delta = in_bytes(BitData::bit_data_size()); 1527 if (TypeProfileCasts) { 1528 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1529 1530 // Record the object type. 1531 record_klass_in_profile(klass, mdp, reg2); 1532 } 1533 update_mdp_by_constant(mdp, mdp_delta); 1534 1535 bind(profile_continue); 1536 } 1537 } 1538 1539 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1540 if (ProfileInterpreter) { 1541 Label profile_continue; 1542 1543 // If no method data exists, go to profile_continue. 1544 test_method_data_pointer(mdp, profile_continue); 1545 1546 // Update the default case count 1547 increment_mdp_data_at(mdp, 1548 in_bytes(MultiBranchData::default_count_offset())); 1549 1550 // The method data pointer needs to be updated. 1551 update_mdp_by_offset(mdp, 1552 in_bytes(MultiBranchData:: 1553 default_displacement_offset())); 1554 1555 bind(profile_continue); 1556 } 1557 } 1558 1559 void InterpreterMacroAssembler::profile_switch_case(Register index, 1560 Register mdp, 1561 Register reg2) { 1562 if (ProfileInterpreter) { 1563 Label profile_continue; 1564 1565 // If no method data exists, go to profile_continue. 1566 test_method_data_pointer(mdp, profile_continue); 1567 1568 // Build the base (index * per_case_size_in_bytes()) + 1569 // case_array_offset_in_bytes() 1570 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1571 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1572 Assembler::maddw(index, index, reg2, rscratch1); 1573 1574 // Update the case count 1575 increment_mdp_data_at(mdp, 1576 index, 1577 in_bytes(MultiBranchData::relative_count_offset())); 1578 1579 // The method data pointer needs to be updated. 1580 update_mdp_by_offset(mdp, 1581 index, 1582 in_bytes(MultiBranchData:: 1583 relative_displacement_offset())); 1584 1585 bind(profile_continue); 1586 } 1587 } 1588 1589 void InterpreterMacroAssembler::profile_array(Register mdp, 1590 Register array, 1591 Register tmp) { 1592 if (ProfileInterpreter) { 1593 Label profile_continue; 1594 1595 // If no method data exists, go to profile_continue. 1596 test_method_data_pointer(mdp, profile_continue); 1597 1598 mov(tmp, array); 1599 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadStoreData::array_offset()))); 1600 1601 Label not_flat; 1602 test_non_flat_array_oop(array, tmp, not_flat); 1603 1604 set_mdp_flag_at(mdp, ArrayLoadStoreData::flat_array_byte_constant()); 1605 1606 bind(not_flat); 1607 1608 Label not_null_free; 1609 test_non_null_free_array_oop(array, tmp, not_null_free); 1610 1611 set_mdp_flag_at(mdp, ArrayLoadStoreData::null_free_array_byte_constant()); 1612 1613 bind(not_null_free); 1614 1615 bind(profile_continue); 1616 } 1617 } 1618 1619 void InterpreterMacroAssembler::profile_element(Register mdp, 1620 Register element, 1621 Register tmp) { 1622 if (ProfileInterpreter) { 1623 Label profile_continue; 1624 1625 // If no method data exists, go to profile_continue. 1626 test_method_data_pointer(mdp, profile_continue); 1627 1628 mov(tmp, element); 1629 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadStoreData::element_offset()))); 1630 1631 // The method data pointer needs to be updated. 1632 update_mdp_by_constant(mdp, in_bytes(ArrayLoadStoreData::array_load_store_data_size())); 1633 1634 bind(profile_continue); 1635 } 1636 } 1637 1638 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1639 Register left, 1640 Register right, 1641 Register tmp) { 1642 if (ProfileInterpreter) { 1643 Label profile_continue; 1644 1645 // If no method data exists, go to profile_continue. 1646 test_method_data_pointer(mdp, profile_continue); 1647 1648 mov(tmp, left); 1649 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1650 1651 Label left_not_inline_type; 1652 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1653 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1654 bind(left_not_inline_type); 1655 1656 mov(tmp, right); 1657 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1658 1659 Label right_not_inline_type; 1660 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1661 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1662 bind(right_not_inline_type); 1663 1664 bind(profile_continue); 1665 } 1666 } 1667 1668 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1669 if (state == atos) { 1670 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1671 } 1672 } 1673 1674 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1675 1676 1677 void InterpreterMacroAssembler::notify_method_entry() { 1678 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1679 // track stack depth. If it is possible to enter interp_only_mode we add 1680 // the code to check if the event should be sent. 1681 if (JvmtiExport::can_post_interpreter_events()) { 1682 Label L; 1683 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1684 cbzw(r3, L); 1685 call_VM(noreg, CAST_FROM_FN_PTR(address, 1686 InterpreterRuntime::post_method_entry)); 1687 bind(L); 1688 } 1689 1690 { 1691 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1692 get_method(c_rarg1); 1693 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1694 rthread, c_rarg1); 1695 } 1696 1697 // RedefineClasses() tracing support for obsolete method entry 1698 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1699 get_method(c_rarg1); 1700 call_VM_leaf( 1701 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1702 rthread, c_rarg1); 1703 } 1704 1705 } 1706 1707 1708 void InterpreterMacroAssembler::notify_method_exit( 1709 TosState state, NotifyMethodExitMode mode) { 1710 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1711 // track stack depth. If it is possible to enter interp_only_mode we add 1712 // the code to check if the event should be sent. 1713 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1714 Label L; 1715 // Note: frame::interpreter_frame_result has a dependency on how the 1716 // method result is saved across the call to post_method_exit. If this 1717 // is changed then the interpreter_frame_result implementation will 1718 // need to be updated too. 1719 1720 // template interpreter will leave the result on the top of the stack. 1721 push(state); 1722 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1723 cbz(r3, L); 1724 call_VM(noreg, 1725 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1726 bind(L); 1727 pop(state); 1728 } 1729 1730 { 1731 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1732 push(state); 1733 get_method(c_rarg1); 1734 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1735 rthread, c_rarg1); 1736 pop(state); 1737 } 1738 } 1739 1740 1741 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1742 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1743 int increment, Address mask, 1744 Register scratch, Register scratch2, 1745 bool preloaded, Condition cond, 1746 Label* where) { 1747 if (!preloaded) { 1748 ldrw(scratch, counter_addr); 1749 } 1750 add(scratch, scratch, increment); 1751 strw(scratch, counter_addr); 1752 ldrw(scratch2, mask); 1753 ands(scratch, scratch, scratch2); 1754 br(cond, *where); 1755 } 1756 1757 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1758 int number_of_arguments) { 1759 // interpreter specific 1760 // 1761 // Note: No need to save/restore rbcp & rlocals pointer since these 1762 // are callee saved registers and no blocking/ GC can happen 1763 // in leaf calls. 1764 #ifdef ASSERT 1765 { 1766 Label L; 1767 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1768 cbz(rscratch1, L); 1769 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1770 " last_sp != nullptr"); 1771 bind(L); 1772 } 1773 #endif /* ASSERT */ 1774 // super call 1775 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1776 } 1777 1778 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1779 Register java_thread, 1780 Register last_java_sp, 1781 address entry_point, 1782 int number_of_arguments, 1783 bool check_exceptions) { 1784 // interpreter specific 1785 // 1786 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1787 // really make a difference for these runtime calls, since they are 1788 // slow anyway. Btw., bcp must be saved/restored since it may change 1789 // due to GC. 1790 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1791 save_bcp(); 1792 #ifdef ASSERT 1793 { 1794 Label L; 1795 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1796 cbz(rscratch1, L); 1797 stop("InterpreterMacroAssembler::call_VM_base:" 1798 " last_sp != nullptr"); 1799 bind(L); 1800 } 1801 #endif /* ASSERT */ 1802 // super call 1803 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1804 entry_point, number_of_arguments, 1805 check_exceptions); 1806 // interpreter specific 1807 restore_bcp(); 1808 restore_locals(); 1809 } 1810 1811 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1812 assert_different_registers(obj, rscratch1); 1813 Label update, next, none; 1814 1815 verify_oop(obj); 1816 1817 cbnz(obj, update); 1818 orptr(mdo_addr, TypeEntries::null_seen); 1819 b(next); 1820 1821 bind(update); 1822 load_klass(obj, obj); 1823 1824 ldr(rscratch1, mdo_addr); 1825 eor(obj, obj, rscratch1); 1826 tst(obj, TypeEntries::type_klass_mask); 1827 br(Assembler::EQ, next); // klass seen before, nothing to 1828 // do. The unknown bit may have been 1829 // set already but no need to check. 1830 1831 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1832 // already unknown. Nothing to do anymore. 1833 1834 ldr(rscratch1, mdo_addr); 1835 cbz(rscratch1, none); 1836 cmp(rscratch1, (u1)TypeEntries::null_seen); 1837 br(Assembler::EQ, none); 1838 // There is a chance that the checks above (re-reading profiling 1839 // data from memory) fail if another thread has just set the 1840 // profiling to this obj's klass 1841 ldr(rscratch1, mdo_addr); 1842 eor(obj, obj, rscratch1); 1843 tst(obj, TypeEntries::type_klass_mask); 1844 br(Assembler::EQ, next); 1845 1846 // different than before. Cannot keep accurate profile. 1847 orptr(mdo_addr, TypeEntries::type_unknown); 1848 b(next); 1849 1850 bind(none); 1851 // first time here. Set profile type. 1852 str(obj, mdo_addr); 1853 1854 bind(next); 1855 } 1856 1857 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1858 if (!ProfileInterpreter) { 1859 return; 1860 } 1861 1862 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1863 Label profile_continue; 1864 1865 test_method_data_pointer(mdp, profile_continue); 1866 1867 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1868 1869 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1870 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1871 br(Assembler::NE, profile_continue); 1872 1873 if (MethodData::profile_arguments()) { 1874 Label done; 1875 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1876 1877 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1878 if (i > 0 || MethodData::profile_return()) { 1879 // If return value type is profiled we may have no argument to profile 1880 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1881 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1882 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1883 add(rscratch1, mdp, off_to_args); 1884 br(Assembler::LT, done); 1885 } 1886 ldr(tmp, Address(callee, Method::const_offset())); 1887 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1888 // stack offset o (zero based) from the start of the argument 1889 // list, for n arguments translates into offset n - o - 1 from 1890 // the end of the argument list 1891 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1892 sub(tmp, tmp, rscratch1); 1893 sub(tmp, tmp, 1); 1894 Address arg_addr = argument_address(tmp); 1895 ldr(tmp, arg_addr); 1896 1897 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1898 profile_obj_type(tmp, mdo_arg_addr); 1899 1900 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1901 off_to_args += to_add; 1902 } 1903 1904 if (MethodData::profile_return()) { 1905 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1906 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1907 } 1908 1909 add(rscratch1, mdp, off_to_args); 1910 bind(done); 1911 mov(mdp, rscratch1); 1912 1913 if (MethodData::profile_return()) { 1914 // We're right after the type profile for the last 1915 // argument. tmp is the number of cells left in the 1916 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1917 // if there's a return to profile. 1918 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1919 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1920 } 1921 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1922 } else { 1923 assert(MethodData::profile_return(), "either profile call args or call ret"); 1924 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1925 } 1926 1927 // mdp points right after the end of the 1928 // CallTypeData/VirtualCallTypeData, right after the cells for the 1929 // return value type if there's one 1930 1931 bind(profile_continue); 1932 } 1933 } 1934 1935 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1936 assert_different_registers(mdp, ret, tmp, rbcp); 1937 if (ProfileInterpreter && MethodData::profile_return()) { 1938 Label profile_continue, done; 1939 1940 test_method_data_pointer(mdp, profile_continue); 1941 1942 if (MethodData::profile_return_jsr292_only()) { 1943 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1944 1945 // If we don't profile all invoke bytecodes we must make sure 1946 // it's a bytecode we indeed profile. We can't go back to the 1947 // beginning of the ProfileData we intend to update to check its 1948 // type because we're right after it and we don't known its 1949 // length 1950 Label do_profile; 1951 ldrb(rscratch1, Address(rbcp, 0)); 1952 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1953 br(Assembler::EQ, do_profile); 1954 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1955 br(Assembler::EQ, do_profile); 1956 get_method(tmp); 1957 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1958 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1959 br(Assembler::NE, profile_continue); 1960 1961 bind(do_profile); 1962 } 1963 1964 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1965 mov(tmp, ret); 1966 profile_obj_type(tmp, mdo_ret_addr); 1967 1968 bind(profile_continue); 1969 } 1970 } 1971 1972 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1973 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1974 if (ProfileInterpreter && MethodData::profile_parameters()) { 1975 Label profile_continue, done; 1976 1977 test_method_data_pointer(mdp, profile_continue); 1978 1979 // Load the offset of the area within the MDO used for 1980 // parameters. If it's negative we're not profiling any parameters 1981 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1982 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1983 1984 // Compute a pointer to the area for parameters from the offset 1985 // and move the pointer to the slot for the last 1986 // parameters. Collect profiling from last parameter down. 1987 // mdo start + parameters offset + array length - 1 1988 add(mdp, mdp, tmp1); 1989 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1990 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1991 1992 Label loop; 1993 bind(loop); 1994 1995 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1996 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1997 int per_arg_scale = exact_log2(DataLayout::cell_size); 1998 add(rscratch1, mdp, off_base); 1999 add(rscratch2, mdp, type_base); 2000 2001 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 2002 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 2003 2004 // load offset on the stack from the slot for this parameter 2005 ldr(tmp2, arg_off); 2006 neg(tmp2, tmp2); 2007 // read the parameter from the local area 2008 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 2009 2010 // profile the parameter 2011 profile_obj_type(tmp2, arg_type); 2012 2013 // go to next parameter 2014 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 2015 br(Assembler::GE, loop); 2016 2017 bind(profile_continue); 2018 } 2019 } 2020 2021 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2022 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 2023 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2024 // Get address of invokedynamic array 2025 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2026 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2027 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 2028 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 2029 lea(cache, Address(cache, index)); 2030 } 2031 2032 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2033 // Get index out of bytecode pointer 2034 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2035 // Take shortcut if the size is a power of 2 2036 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2037 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2038 } else { 2039 mov(cache, sizeof(ResolvedFieldEntry)); 2040 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2041 } 2042 // Get address of field entries array 2043 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 2044 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 2045 lea(cache, Address(cache, index)); 2046 }