1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/compiler_globals.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interp_masm_aarch64.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/constMethodFlags.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/inlineKlass.hpp"
  40 #include "oops/resolvedFieldEntry.hpp"
  41 #include "oops/resolvedIndyEntry.hpp"
  42 #include "oops/resolvedMethodEntry.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/basicLock.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/javaThread.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 void InterpreterMacroAssembler::narrow(Register result) {
  53 
  54   // Get method->_constMethod->_result_type
  55   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  56   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  57   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  58 
  59   Label done, notBool, notByte, notChar;
  60 
  61   // common case first
  62   cmpw(rscratch1, T_INT);
  63   br(Assembler::EQ, done);
  64 
  65   // mask integer result to narrower return type.
  66   cmpw(rscratch1, T_BOOLEAN);
  67   br(Assembler::NE, notBool);
  68   andw(result, result, 0x1);
  69   b(done);
  70 
  71   bind(notBool);
  72   cmpw(rscratch1, T_BYTE);
  73   br(Assembler::NE, notByte);
  74   sbfx(result, result, 0, 8);
  75   b(done);
  76 
  77   bind(notByte);
  78   cmpw(rscratch1, T_CHAR);
  79   br(Assembler::NE, notChar);
  80   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  81   b(done);
  82 
  83   bind(notChar);
  84   sbfx(result, result, 0, 16);     // sign-extend short
  85 
  86   // Nothing to do for T_INT
  87   bind(done);
  88 }
  89 
  90 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  91   assert(entry, "Entry must have been generated by now");
  92   b(entry);
  93 }
  94 
  95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  96   if (JvmtiExport::can_pop_frame()) {
  97     Label L;
  98     // Initiate popframe handling only if it is not already being
  99     // processed.  If the flag has the popframe_processing bit set, it
 100     // means that this code is called *during* popframe handling - we
 101     // don't want to reenter.
 102     // This method is only called just after the call into the vm in
 103     // call_VM_base, so the arg registers are available.
 104     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 105     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 106     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 107     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 108     // address of the same-named entrypoint in the generated interpreter code.
 109     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 110     br(r0);
 111     bind(L);
 112   }
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 117   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 118   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 119   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 120   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 121   switch (state) {
 122     case atos: ldr(r0, oop_addr);
 123                str(zr, oop_addr);
 124                interp_verify_oop(r0, state);        break;
 125     case ltos: ldr(r0, val_addr);                   break;
 126     case btos:                                   // fall through
 127     case ztos:                                   // fall through
 128     case ctos:                                   // fall through
 129     case stos:                                   // fall through
 130     case itos: ldrw(r0, val_addr);                  break;
 131     case ftos: ldrs(v0, val_addr);                  break;
 132     case dtos: ldrd(v0, val_addr);                  break;
 133     case vtos: /* nothing to do */                  break;
 134     default  : ShouldNotReachHere();
 135   }
 136   // Clean up tos value in the thread object
 137   movw(rscratch1, (int) ilgl);
 138   strw(rscratch1, tos_addr);
 139   strw(zr, val_addr);
 140 }
 141 
 142 
 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 144   if (JvmtiExport::can_force_early_return()) {
 145     Label L;
 146     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 147     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 148 
 149     // Initiate earlyret handling only if it is not already being processed.
 150     // If the flag has the earlyret_processing bit set, it means that this code
 151     // is called *during* earlyret handling - we don't want to reenter.
 152     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 153     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 154     br(Assembler::NE, L);
 155 
 156     // Call Interpreter::remove_activation_early_entry() to get the address of the
 157     // same-named entrypoint in the generated interpreter code.
 158     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 159     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 160     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 161     br(r0);
 162     bind(L);
 163   }
 164 }
 165 
 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 167   Register reg,
 168   int bcp_offset) {
 169   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 170   ldrh(reg, Address(rbcp, bcp_offset));
 171   rev16(reg, reg);
 172 }
 173 
 174 void InterpreterMacroAssembler::get_dispatch() {
 175   uint64_t offset;
 176   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 177   // Use add() here after ARDP, rather than lea().
 178   // lea() does not generate anything if its offset is zero.
 179   // However, relocs expect to find either an ADD or a load/store
 180   // insn after an ADRP.  add() always generates an ADD insn, even
 181   // for add(Rn, Rn, 0).
 182   add(rdispatch, rdispatch, offset);
 183 }
 184 
 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 186                                                        int bcp_offset,
 187                                                        size_t index_size) {
 188   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 189   if (index_size == sizeof(u2)) {
 190     load_unsigned_short(index, Address(rbcp, bcp_offset));
 191   } else if (index_size == sizeof(u4)) {
 192     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 193     ldrw(index, Address(rbcp, bcp_offset));
 194   } else if (index_size == sizeof(u1)) {
 195     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 196   } else {
 197     ShouldNotReachHere();
 198   }
 199 }
 200 
 201 void InterpreterMacroAssembler::get_method_counters(Register method,
 202                                                     Register mcs, Label& skip) {
 203   Label has_counters;
 204   ldr(mcs, Address(method, Method::method_counters_offset()));
 205   cbnz(mcs, has_counters);
 206   call_VM(noreg, CAST_FROM_FN_PTR(address,
 207           InterpreterRuntime::build_method_counters), method);
 208   ldr(mcs, Address(method, Method::method_counters_offset()));
 209   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 210   bind(has_counters);
 211 }
 212 
 213 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj,
 214                                                   Register t1, Register t2,
 215                                                   bool clear_fields, Label& alloc_failed) {
 216   MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed);
 217   if (DTraceAllocProbes) {
 218     // Trigger dtrace event for fastpath
 219     push(atos);
 220     call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj);
 221     pop(atos);
 222   }
 223 }
 224 
 225 void InterpreterMacroAssembler::read_flat_field(Register entry,
 226                                                 Register field_index, Register field_offset,
 227                                                 Register temp, Register obj) {
 228   Label failed_alloc, slow_path, done;
 229   const Register src = field_offset;
 230   const Register alloc_temp = r10;
 231   const Register dst_temp   = field_index;
 232   const Register layout_info = temp;
 233   assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp, rscratch1);
 234 
 235   load_unsigned_byte(temp, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
 236   // If the field is nullable, jump to slow path
 237   tbz(temp, ResolvedFieldEntry::is_null_free_inline_type_shift, slow_path);
 238 
 239   // Grab the inline field klass
 240   ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
 241   inline_layout_info(rscratch1, field_index, layout_info);
 242 
 243   const Register field_klass = dst_temp;
 244   ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset())));
 245 
 246   // allocate buffer
 247   push(obj); // save holder
 248   allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, failed_alloc);
 249 
 250   // Have an oop instance buffer, copy into it
 251   payload_address(obj, dst_temp, field_klass);  // danger, uses rscratch1
 252   pop(alloc_temp);             // restore holder
 253   lea(src, Address(alloc_temp, field_offset));
 254   // call_VM_leaf, clobbers a few regs, save restore new obj
 255   push(obj);
 256   flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info);
 257   pop(obj);
 258   b(done);
 259 
 260   bind(failed_alloc);
 261   pop(obj);
 262   bind(slow_path);
 263   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field),
 264           obj, entry);
 265 
 266   bind(done);
 267   membar(Assembler::StoreStore);
 268 }
 269 
 270 void InterpreterMacroAssembler::write_flat_field(Register entry, Register field_offset,
 271                                                  Register tmp1, Register tmp2,
 272                                                  Register obj) {
 273   assert_different_registers(entry, field_offset, tmp1, tmp2, obj);
 274   Label slow_path, done;
 275 
 276   load_unsigned_byte(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
 277   test_field_is_not_null_free_inline_type(tmp1, noreg /* temp */, slow_path);
 278 
 279   null_check(r0); // FIXME JDK-8341120
 280 
 281   add(obj, obj, field_offset);
 282 
 283   load_klass(tmp1, r0);
 284   payload_address(r0, r0, tmp1);
 285 
 286   Register layout_info = field_offset;
 287   load_unsigned_short(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
 288   ldr(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
 289   inline_layout_info(tmp2, tmp1, layout_info);
 290 
 291   flat_field_copy(IN_HEAP, r0, obj, layout_info);
 292   b(done);
 293 
 294   bind(slow_path);
 295   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flat_field), obj, r0, entry);
 296   bind(done);
 297 }
 298 
 299 // Load object from cpool->resolved_references(index)
 300 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 301                                            Register result, Register index, Register tmp) {
 302   assert_different_registers(result, index);
 303 
 304   get_constant_pool(result);
 305   // load pointer for resolved_references[] objArray
 306   ldr(result, Address(result, ConstantPool::cache_offset()));
 307   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 308   resolve_oop_handle(result, tmp, rscratch2);
 309   // Add in the index
 310   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 311   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 312 }
 313 
 314 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 315                              Register cpool, Register index, Register klass, Register temp) {
 316   add(temp, cpool, index, LSL, LogBytesPerWord);
 317   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 318   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 319   add(klass, klass, temp, LSL, LogBytesPerWord);
 320   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 321 }
 322 
 323 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 324 // subtype of super_klass.
 325 //
 326 // Args:
 327 //      r0: superklass
 328 //      Rsub_klass: subklass
 329 //
 330 // Kills:
 331 //      r2, r5
 332 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 333                                                   Label& ok_is_subtype,
 334                                                   bool profile) {
 335   assert(Rsub_klass != r0, "r0 holds superklass");
 336   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 337   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 338 
 339   // Profile the not-null value's klass.
 340   if (profile) {
 341     profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 342   }
 343 
 344   // Do the check.
 345   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 346 }
 347 
 348 // Java Expression Stack
 349 
 350 void InterpreterMacroAssembler::pop_ptr(Register r) {
 351   ldr(r, post(esp, wordSize));
 352 }
 353 
 354 void InterpreterMacroAssembler::pop_i(Register r) {
 355   ldrw(r, post(esp, wordSize));
 356 }
 357 
 358 void InterpreterMacroAssembler::pop_l(Register r) {
 359   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 360 }
 361 
 362 void InterpreterMacroAssembler::push_ptr(Register r) {
 363   str(r, pre(esp, -wordSize));
 364  }
 365 
 366 void InterpreterMacroAssembler::push_i(Register r) {
 367   str(r, pre(esp, -wordSize));
 368 }
 369 
 370 void InterpreterMacroAssembler::push_l(Register r) {
 371   str(zr, pre(esp, -wordSize));
 372   str(r, pre(esp, - wordSize));
 373 }
 374 
 375 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 376   ldrs(r, post(esp, wordSize));
 377 }
 378 
 379 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 380   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 381 }
 382 
 383 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 384   strs(r, pre(esp, -wordSize));
 385 }
 386 
 387 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 388   strd(r, pre(esp, 2* -wordSize));
 389 }
 390 
 391 void InterpreterMacroAssembler::pop(TosState state) {
 392   switch (state) {
 393   case atos: pop_ptr();                 break;
 394   case btos:
 395   case ztos:
 396   case ctos:
 397   case stos:
 398   case itos: pop_i();                   break;
 399   case ltos: pop_l();                   break;
 400   case ftos: pop_f();                   break;
 401   case dtos: pop_d();                   break;
 402   case vtos: /* nothing to do */        break;
 403   default:   ShouldNotReachHere();
 404   }
 405   interp_verify_oop(r0, state);
 406 }
 407 
 408 void InterpreterMacroAssembler::push(TosState state) {
 409   interp_verify_oop(r0, state);
 410   switch (state) {
 411   case atos: push_ptr();                break;
 412   case btos:
 413   case ztos:
 414   case ctos:
 415   case stos:
 416   case itos: push_i();                  break;
 417   case ltos: push_l();                  break;
 418   case ftos: push_f();                  break;
 419   case dtos: push_d();                  break;
 420   case vtos: /* nothing to do */        break;
 421   default  : ShouldNotReachHere();
 422   }
 423 }
 424 
 425 // Helpers for swap and dup
 426 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 427   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 428 }
 429 
 430 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 431   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 432 }
 433 
 434 void InterpreterMacroAssembler::load_float(Address src) {
 435   ldrs(v0, src);
 436 }
 437 
 438 void InterpreterMacroAssembler::load_double(Address src) {
 439   ldrd(v0, src);
 440 }
 441 
 442 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 443   // set sender sp
 444   mov(r19_sender_sp, sp);
 445   // record last_sp
 446   sub(rscratch1, esp, rfp);
 447   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 448   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 449 }
 450 
 451 // Jump to from_interpreted entry of a call unless single stepping is possible
 452 // in this thread in which case we must call the i2i entry
 453 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 454   prepare_to_jump_from_interpreted();
 455 
 456   if (JvmtiExport::can_post_interpreter_events()) {
 457     Label run_compiled_code;
 458     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 459     // compiled code in threads for which the event is enabled.  Check here for
 460     // interp_only_mode if these events CAN be enabled.
 461     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 462     cbzw(rscratch1, run_compiled_code);
 463     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 464     br(rscratch1);
 465     bind(run_compiled_code);
 466   }
 467 
 468   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 469   br(rscratch1);
 470 }
 471 
 472 // The following two routines provide a hook so that an implementation
 473 // can schedule the dispatch in two parts.  amd64 does not do this.
 474 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 475 }
 476 
 477 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 478     dispatch_next(state, step);
 479 }
 480 
 481 void InterpreterMacroAssembler::dispatch_base(TosState state,
 482                                               address* table,
 483                                               bool verifyoop,
 484                                               bool generate_poll) {
 485   if (VerifyActivationFrameSize) {
 486     Label L;
 487     sub(rscratch2, rfp, esp);
 488     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 489     subs(rscratch2, rscratch2, min_frame_size);
 490     br(Assembler::GE, L);
 491     stop("broken stack frame");
 492     bind(L);
 493   }
 494   if (verifyoop) {
 495     interp_verify_oop(r0, state);
 496   }
 497 
 498   Label safepoint;
 499   address* const safepoint_table = Interpreter::safept_table(state);
 500   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 501 
 502   if (needs_thread_local_poll) {
 503     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 504     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 505     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 506   }
 507 
 508   if (table == Interpreter::dispatch_table(state)) {
 509     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 510     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 511   } else {
 512     mov(rscratch2, (address)table);
 513     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 514   }
 515   br(rscratch2);
 516 
 517   if (needs_thread_local_poll) {
 518     bind(safepoint);
 519     lea(rscratch2, ExternalAddress((address)safepoint_table));
 520     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 521     br(rscratch2);
 522   }
 523 }
 524 
 525 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 526   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 527 }
 528 
 529 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 530   dispatch_base(state, Interpreter::normal_table(state));
 531 }
 532 
 533 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 534   dispatch_base(state, Interpreter::normal_table(state), false);
 535 }
 536 
 537 
 538 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 539   // load next bytecode
 540   ldrb(rscratch1, Address(pre(rbcp, step)));
 541   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 542 }
 543 
 544 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 545   // load current bytecode
 546   ldrb(rscratch1, Address(rbcp, 0));
 547   dispatch_base(state, table);
 548 }
 549 
 550 // remove activation
 551 //
 552 // Unlock the receiver if this is a synchronized method.
 553 // Unlock any Java monitors from synchronized blocks.
 554 // Apply stack watermark barrier.
 555 // Notify JVMTI.
 556 // Remove the activation from the stack.
 557 //
 558 // If there are locked Java monitors
 559 //    If throw_monitor_exception
 560 //       throws IllegalMonitorStateException
 561 //    Else if install_monitor_exception
 562 //       installs IllegalMonitorStateException
 563 //    Else
 564 //       no error processing
 565 void InterpreterMacroAssembler::remove_activation(TosState state,
 566                                                   bool throw_monitor_exception,
 567                                                   bool install_monitor_exception,
 568                                                   bool notify_jvmdi) {
 569   // Note: Registers r3 xmm0 may be in use for the
 570   // result check if synchronized method
 571   Label unlocked, unlock, no_unlock;
 572 
 573   // get the value of _do_not_unlock_if_synchronized into r3
 574   const Address do_not_unlock_if_synchronized(rthread,
 575     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 576   ldrb(r3, do_not_unlock_if_synchronized);
 577   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 578 
 579  // get method access flags
 580   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 581   ldrh(r2, Address(r1, Method::access_flags_offset()));
 582   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 583 
 584   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 585   // is set.
 586   cbnz(r3, no_unlock);
 587 
 588   // unlock monitor
 589   push(state); // save result
 590 
 591   // BasicObjectLock will be first in list, since this is a
 592   // synchronized method. However, need to check that the object has
 593   // not been unlocked by an explicit monitorexit bytecode.
 594   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 595                         wordSize - (int) sizeof(BasicObjectLock));
 596   // We use c_rarg1 so that if we go slow path it will be the correct
 597   // register for unlock_object to pass to VM directly
 598   lea(c_rarg1, monitor); // address of first monitor
 599 
 600   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 601   cbnz(r0, unlock);
 602 
 603   pop(state);
 604   if (throw_monitor_exception) {
 605     // Entry already unlocked, need to throw exception
 606     call_VM(noreg, CAST_FROM_FN_PTR(address,
 607                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 608     should_not_reach_here();
 609   } else {
 610     // Monitor already unlocked during a stack unroll. If requested,
 611     // install an illegal_monitor_state_exception.  Continue with
 612     // stack unrolling.
 613     if (install_monitor_exception) {
 614       call_VM(noreg, CAST_FROM_FN_PTR(address,
 615                      InterpreterRuntime::new_illegal_monitor_state_exception));
 616     }
 617     b(unlocked);
 618   }
 619 
 620   bind(unlock);
 621   unlock_object(c_rarg1);
 622   pop(state);
 623 
 624   // Check that for block-structured locking (i.e., that all locked
 625   // objects has been unlocked)
 626   bind(unlocked);
 627 
 628   // r0: Might contain return value
 629 
 630   // Check that all monitors are unlocked
 631   {
 632     Label loop, exception, entry, restart;
 633     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 634     const Address monitor_block_top(
 635         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 636     const Address monitor_block_bot(
 637         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 638 
 639     bind(restart);
 640     // We use c_rarg1 so that if we go slow path it will be the correct
 641     // register for unlock_object to pass to VM directly
 642     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 643     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 644     // c_rarg1 points to current entry, starting with top-most entry
 645 
 646     lea(r19, monitor_block_bot);  // points to word before bottom of
 647                                   // monitor block
 648     b(entry);
 649 
 650     // Entry already locked, need to throw exception
 651     bind(exception);
 652 
 653     if (throw_monitor_exception) {
 654       // Throw exception
 655       MacroAssembler::call_VM(noreg,
 656                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 657                                    throw_illegal_monitor_state_exception));
 658       should_not_reach_here();
 659     } else {
 660       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 661       // Unlock does not block, so don't have to worry about the frame.
 662       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 663 
 664       push(state);
 665       unlock_object(c_rarg1);
 666       pop(state);
 667 
 668       if (install_monitor_exception) {
 669         call_VM(noreg, CAST_FROM_FN_PTR(address,
 670                                         InterpreterRuntime::
 671                                         new_illegal_monitor_state_exception));
 672       }
 673 
 674       b(restart);
 675     }
 676 
 677     bind(loop);
 678     // check if current entry is used
 679     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 680     cbnz(rscratch1, exception);
 681 
 682     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 683     bind(entry);
 684     cmp(c_rarg1, r19); // check if bottom reached
 685     br(Assembler::NE, loop); // if not at bottom then check this entry
 686   }
 687 
 688   bind(no_unlock);
 689 
 690   JFR_ONLY(enter_jfr_critical_section();)
 691 
 692   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 693   // that would normally not be safe to use. Such bad returns into unsafe territory of
 694   // the stack, will call InterpreterRuntime::at_unwind.
 695   Label slow_path;
 696   Label fast_path;
 697   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
 698   br(Assembler::AL, fast_path);
 699   bind(slow_path);
 700   push(state);
 701   set_last_Java_frame(esp, rfp, pc(), rscratch1);
 702   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 703   reset_last_Java_frame(true);
 704   pop(state);
 705   bind(fast_path);
 706 
 707   // JVMTI support. Make sure the safepoint poll test is issued prior.
 708   if (notify_jvmdi) {
 709     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 710   } else {
 711     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 712   }
 713 
 714   // remove activation
 715   // get sender esp
 716   ldr(rscratch2,
 717       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 718 
 719   if (StackReservedPages > 0) {
 720     // testing if reserved zone needs to be re-enabled
 721     Label no_reserved_zone_enabling;
 722 
 723     // check if already enabled - if so no re-enabling needed
 724     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 725     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 726     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 727     br(Assembler::EQ, no_reserved_zone_enabling);
 728 
 729     // look for an overflow into the stack reserved zone, i.e.
 730     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 731     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 732     cmp(rscratch2, rscratch1);
 733     br(Assembler::LS, no_reserved_zone_enabling);
 734 
 735     JFR_ONLY(leave_jfr_critical_section();)
 736 
 737     call_VM_leaf(
 738       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 739     call_VM(noreg, CAST_FROM_FN_PTR(address,
 740                    InterpreterRuntime::throw_delayed_StackOverflowError));
 741     should_not_reach_here();
 742 
 743     bind(no_reserved_zone_enabling);
 744   }
 745 
 746   if (state == atos && InlineTypeReturnedAsFields) {
 747     Label skip;
 748     Label not_null;
 749     cbnz(r0, not_null);
 750     // Returned value is null, zero all return registers because they may belong to oop fields
 751     mov(j_rarg1, zr);
 752     mov(j_rarg2, zr);
 753     mov(j_rarg3, zr);
 754     mov(j_rarg4, zr);
 755     mov(j_rarg5, zr);
 756     mov(j_rarg6, zr);
 757     mov(j_rarg7, zr);
 758     b(skip);
 759     bind(not_null);
 760 
 761     // Check if we are returning an non-null inline type and load its fields into registers
 762     test_oop_is_not_inline_type(r0, rscratch2, skip, /* can_be_null= */ false);
 763 
 764     // Load fields from a buffered value with an inline class specific handler
 765     load_klass(rscratch1 /*dst*/, r0 /*src*/);
 766     ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 767     ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset()));
 768     // Unpack handler can be null if inline type is not scalarizable in returns
 769     cbz(rscratch1, skip);
 770 
 771     blr(rscratch1);
 772 #ifdef ASSERT
 773     // TODO 8284443 Enable
 774     if (StressCallingConvention && false) {
 775       Label skip_stress;
 776       ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 777       ldrw(rscratch1, Address(rscratch1, Method::flags_offset()));
 778       tstw(rscratch1, MethodFlags::has_scalarized_return_flag());
 779       br(Assembler::EQ, skip_stress);
 780       load_klass(r0, r0);
 781       orr(r0, r0, 1);
 782       bind(skip_stress);
 783     }
 784 #endif
 785     bind(skip);
 786     // Check above kills sender esp in rscratch2. Reload it.
 787     ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 788   }
 789 
 790   // remove frame anchor
 791   leave();
 792 
 793   JFR_ONLY(leave_jfr_critical_section();)
 794 
 795   // restore sender esp
 796   mov(esp, rscratch2);
 797 
 798   // If we're returning to interpreted code we will shortly be
 799   // adjusting SP to allow some space for ESP.  If we're returning to
 800   // compiled code the saved sender SP was saved in sender_sp, so this
 801   // restores it.
 802   andr(sp, esp, -16);
 803 }
 804 
 805 #if INCLUDE_JFR
 806 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 807   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 808   mov(rscratch1, true);
 809   strb(rscratch1, sampling_critical_section);
 810 }
 811 
 812 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 813   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 814   strb(zr, sampling_critical_section);
 815 }
 816 #endif // INCLUDE_JFR
 817 
 818 // Lock object
 819 //
 820 // Args:
 821 //      c_rarg1: BasicObjectLock to be used for locking
 822 //
 823 // Kills:
 824 //      r0
 825 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 826 //      rscratch1, rscratch2 (scratch regs)
 827 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 828 {
 829   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 830 
 831   const Register tmp = c_rarg2;
 832   const Register obj_reg = c_rarg3; // Will contain the oop
 833   const Register tmp2 = c_rarg4;
 834   const Register tmp3 = c_rarg5;
 835 
 836   // Load object pointer into obj_reg %c_rarg3
 837   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 838 
 839   Label slow_case, done;
 840   lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 841   b(done);
 842 
 843   bind(slow_case);
 844 
 845   // Call the runtime routine for slow case
 846   call_VM_preemptable(noreg,
 847           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 848           lock_reg);
 849 
 850   bind(done);
 851 }
 852 
 853 
 854 // Unlocks an object. Used in monitorexit bytecode and
 855 // remove_activation.  Throws an IllegalMonitorException if object is
 856 // not locked by current thread.
 857 //
 858 // Args:
 859 //      c_rarg1: BasicObjectLock for lock
 860 //
 861 // Kills:
 862 //      r0
 863 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 864 //      rscratch1, rscratch2 (scratch regs)
 865 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 866 {
 867   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 868 
 869   const Register swap_reg   = r0;
 870   const Register header_reg = c_rarg2;  // Will contain the old oopMark
 871   const Register obj_reg    = c_rarg3;  // Will contain the oop
 872   const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
 873 
 874   save_bcp(); // Save in case of exception
 875 
 876   // Load oop into obj_reg(%c_rarg3)
 877   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 878 
 879   // Free entry
 880   str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 881 
 882   Label slow_case, done;
 883   lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 884   b(done);
 885 
 886   bind(slow_case);
 887   // Call the runtime routine for slow case.
 888   str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 889   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 890   bind(done);
 891   restore_bcp();
 892 }
 893 
 894 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 895                                                          Label& zero_continue) {
 896   assert(ProfileInterpreter, "must be profiling interpreter");
 897   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 898   cbz(mdp, zero_continue);
 899 }
 900 
 901 // Set the method data pointer for the current bcp.
 902 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 903   assert(ProfileInterpreter, "must be profiling interpreter");
 904   Label set_mdp;
 905   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 906 
 907   // Test MDO to avoid the call if it is null.
 908   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 909   cbz(r0, set_mdp);
 910   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 911   // r0: mdi
 912   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 913   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 914   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 915   add(r0, r1, r0);
 916   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 917   bind(set_mdp);
 918   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 919 }
 920 
 921 void InterpreterMacroAssembler::verify_method_data_pointer() {
 922   assert(ProfileInterpreter, "must be profiling interpreter");
 923 #ifdef ASSERT
 924   Label verify_continue;
 925   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 926   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 927   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 928   get_method(r1);
 929 
 930   // If the mdp is valid, it will point to a DataLayout header which is
 931   // consistent with the bcp.  The converse is highly probable also.
 932   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 933   ldr(rscratch1, Address(r1, Method::const_offset()));
 934   add(r2, r2, rscratch1, Assembler::LSL);
 935   lea(r2, Address(r2, ConstMethod::codes_offset()));
 936   cmp(r2, rbcp);
 937   br(Assembler::EQ, verify_continue);
 938   // r1: method
 939   // rbcp: bcp // rbcp == 22
 940   // r3: mdp
 941   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 942                r1, rbcp, r3);
 943   bind(verify_continue);
 944   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 945   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 946 #endif // ASSERT
 947 }
 948 
 949 
 950 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 951                                                 int constant,
 952                                                 Register value) {
 953   assert(ProfileInterpreter, "must be profiling interpreter");
 954   Address data(mdp_in, constant);
 955   str(value, data);
 956 }
 957 
 958 
 959 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 960                                                       int constant) {
 961   increment_mdp_data_at(mdp_in, noreg, constant);
 962 }
 963 
 964 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 965                                                       Register index,
 966                                                       int constant) {
 967   assert(ProfileInterpreter, "must be profiling interpreter");
 968 
 969   assert_different_registers(rscratch2, rscratch1, mdp_in, index);
 970 
 971   Address addr1(mdp_in, constant);
 972   Address addr2(rscratch2, index, Address::lsl(0));
 973   Address &addr = addr1;
 974   if (index != noreg) {
 975     lea(rscratch2, addr1);
 976     addr = addr2;
 977   }
 978 
 979   increment(addr, DataLayout::counter_increment);
 980 }
 981 
 982 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 983                                                 int flag_byte_constant) {
 984   assert(ProfileInterpreter, "must be profiling interpreter");
 985   int flags_offset = in_bytes(DataLayout::flags_offset());
 986   // Set the flag
 987   ldrb(rscratch1, Address(mdp_in, flags_offset));
 988   orr(rscratch1, rscratch1, flag_byte_constant);
 989   strb(rscratch1, Address(mdp_in, flags_offset));
 990 }
 991 
 992 
 993 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 994                                                  int offset,
 995                                                  Register value,
 996                                                  Register test_value_out,
 997                                                  Label& not_equal_continue) {
 998   assert(ProfileInterpreter, "must be profiling interpreter");
 999   if (test_value_out == noreg) {
1000     ldr(rscratch1, Address(mdp_in, offset));
1001     cmp(value, rscratch1);
1002   } else {
1003     // Put the test value into a register, so caller can use it:
1004     ldr(test_value_out, Address(mdp_in, offset));
1005     cmp(value, test_value_out);
1006   }
1007   br(Assembler::NE, not_equal_continue);
1008 }
1009 
1010 
1011 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1012                                                      int offset_of_disp) {
1013   assert(ProfileInterpreter, "must be profiling interpreter");
1014   ldr(rscratch1, Address(mdp_in, offset_of_disp));
1015   add(mdp_in, mdp_in, rscratch1, LSL);
1016   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1017 }
1018 
1019 
1020 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1021                                                      Register reg,
1022                                                      int offset_of_disp) {
1023   assert(ProfileInterpreter, "must be profiling interpreter");
1024   lea(rscratch1, Address(mdp_in, offset_of_disp));
1025   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1026   add(mdp_in, mdp_in, rscratch1, LSL);
1027   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1028 }
1029 
1030 
1031 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1032                                                        int constant) {
1033   assert(ProfileInterpreter, "must be profiling interpreter");
1034   add(mdp_in, mdp_in, (unsigned)constant);
1035   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1036 }
1037 
1038 
1039 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1040   assert(ProfileInterpreter, "must be profiling interpreter");
1041   // save/restore across call_VM
1042   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1043   call_VM(noreg,
1044           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1045           return_bci);
1046   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1047 }
1048 
1049 
1050 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1051   if (ProfileInterpreter) {
1052     Label profile_continue;
1053 
1054     // If no method data exists, go to profile_continue.
1055     test_method_data_pointer(mdp, profile_continue);
1056 
1057     // We are taking a branch.  Increment the taken count.
1058     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1059 
1060     // The method data pointer needs to be updated to reflect the new target.
1061     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1062     bind(profile_continue);
1063   }
1064 }
1065 
1066 
1067 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) {
1068   if (ProfileInterpreter) {
1069     Label profile_continue;
1070 
1071     // If no method data exists, go to profile_continue.
1072     test_method_data_pointer(mdp, profile_continue);
1073 
1074     // We are not taking a branch.  Increment the not taken count.
1075     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1076 
1077     // The method data pointer needs to be updated to correspond to
1078     // the next bytecode
1079     update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size()));
1080     bind(profile_continue);
1081   }
1082 }
1083 
1084 
1085 void InterpreterMacroAssembler::profile_call(Register mdp) {
1086   if (ProfileInterpreter) {
1087     Label profile_continue;
1088 
1089     // If no method data exists, go to profile_continue.
1090     test_method_data_pointer(mdp, profile_continue);
1091 
1092     // We are making a call.  Increment the count.
1093     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1094 
1095     // The method data pointer needs to be updated to reflect the new target.
1096     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1097     bind(profile_continue);
1098   }
1099 }
1100 
1101 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1102   if (ProfileInterpreter) {
1103     Label profile_continue;
1104 
1105     // If no method data exists, go to profile_continue.
1106     test_method_data_pointer(mdp, profile_continue);
1107 
1108     // We are making a call.  Increment the count.
1109     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1110 
1111     // The method data pointer needs to be updated to reflect the new target.
1112     update_mdp_by_constant(mdp,
1113                            in_bytes(VirtualCallData::
1114                                     virtual_call_data_size()));
1115     bind(profile_continue);
1116   }
1117 }
1118 
1119 
1120 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1121                                                      Register mdp,
1122                                                      Register reg2,
1123                                                      bool receiver_can_be_null) {
1124   if (ProfileInterpreter) {
1125     Label profile_continue;
1126 
1127     // If no method data exists, go to profile_continue.
1128     test_method_data_pointer(mdp, profile_continue);
1129 
1130     Label skip_receiver_profile;
1131     if (receiver_can_be_null) {
1132       Label not_null;
1133       // We are making a call.  Increment the count for null receiver.
1134       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1135       b(skip_receiver_profile);
1136       bind(not_null);
1137     }
1138 
1139     // Record the receiver type.
1140     record_klass_in_profile(receiver, mdp, reg2);
1141     bind(skip_receiver_profile);
1142 
1143     // The method data pointer needs to be updated to reflect the new target.
1144     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1145     bind(profile_continue);
1146   }
1147 }
1148 
1149 // This routine creates a state machine for updating the multi-row
1150 // type profile at a virtual call site (or other type-sensitive bytecode).
1151 // The machine visits each row (of receiver/count) until the receiver type
1152 // is found, or until it runs out of rows.  At the same time, it remembers
1153 // the location of the first empty row.  (An empty row records null for its
1154 // receiver, and can be allocated for a newly-observed receiver type.)
1155 // Because there are two degrees of freedom in the state, a simple linear
1156 // search will not work; it must be a decision tree.  Hence this helper
1157 // function is recursive, to generate the required tree structured code.
1158 // It's the interpreter, so we are trading off code space for speed.
1159 // See below for example code.
1160 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1161                                         Register receiver, Register mdp,
1162                                         Register reg2, int start_row,
1163                                         Label& done) {
1164   if (TypeProfileWidth == 0) {
1165     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1166   } else {
1167     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1168         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1169   }
1170 }
1171 
1172 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1173                                         Register reg2, int start_row, Label& done, int total_rows,
1174                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1175   int last_row = total_rows - 1;
1176   assert(start_row <= last_row, "must be work left to do");
1177   // Test this row for both the item and for null.
1178   // Take any of three different outcomes:
1179   //   1. found item => increment count and goto done
1180   //   2. found null => keep looking for case 1, maybe allocate this cell
1181   //   3. found something else => keep looking for cases 1 and 2
1182   // Case 3 is handled by a recursive call.
1183   for (int row = start_row; row <= last_row; row++) {
1184     Label next_test;
1185     bool test_for_null_also = (row == start_row);
1186 
1187     // See if the item is item[n].
1188     int item_offset = in_bytes(item_offset_fn(row));
1189     test_mdp_data_at(mdp, item_offset, item,
1190                      (test_for_null_also ? reg2 : noreg),
1191                      next_test);
1192     // (Reg2 now contains the item from the CallData.)
1193 
1194     // The item is item[n].  Increment count[n].
1195     int count_offset = in_bytes(item_count_offset_fn(row));
1196     increment_mdp_data_at(mdp, count_offset);
1197     b(done);
1198     bind(next_test);
1199 
1200     if (test_for_null_also) {
1201       Label found_null;
1202       // Failed the equality check on item[n]...  Test for null.
1203       if (start_row == last_row) {
1204         // The only thing left to do is handle the null case.
1205         cbz(reg2, found_null);
1206         // Item did not match any saved item and there is no empty row for it.
1207         // Increment total counter to indicate polymorphic case.
1208         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1209         b(done);
1210         bind(found_null);
1211         break;
1212       }
1213       // Since null is rare, make it be the branch-taken case.
1214       cbz(reg2, found_null);
1215 
1216       // Put all the "Case 3" tests here.
1217       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1218         item_offset_fn, item_count_offset_fn);
1219 
1220       // Found a null.  Keep searching for a matching item,
1221       // but remember that this is an empty (unused) slot.
1222       bind(found_null);
1223     }
1224   }
1225 
1226   // In the fall-through case, we found no matching item, but we
1227   // observed the item[start_row] is null.
1228 
1229   // Fill in the item field and increment the count.
1230   int item_offset = in_bytes(item_offset_fn(start_row));
1231   set_mdp_data_at(mdp, item_offset, item);
1232   int count_offset = in_bytes(item_count_offset_fn(start_row));
1233   mov(reg2, DataLayout::counter_increment);
1234   set_mdp_data_at(mdp, count_offset, reg2);
1235   if (start_row > 0) {
1236     b(done);
1237   }
1238 }
1239 
1240 // Example state machine code for three profile rows:
1241 //   // main copy of decision tree, rooted at row[1]
1242 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1243 //   if (row[0].rec != nullptr) {
1244 //     // inner copy of decision tree, rooted at row[1]
1245 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1246 //     if (row[1].rec != nullptr) {
1247 //       // degenerate decision tree, rooted at row[2]
1248 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1249 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1250 //       row[2].init(rec); goto done;
1251 //     } else {
1252 //       // remember row[1] is empty
1253 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1254 //       row[1].init(rec); goto done;
1255 //     }
1256 //   } else {
1257 //     // remember row[0] is empty
1258 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1259 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1260 //     row[0].init(rec); goto done;
1261 //   }
1262 //   done:
1263 
1264 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1265                                                         Register mdp, Register reg2) {
1266   assert(ProfileInterpreter, "must be profiling");
1267   Label done;
1268 
1269   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1270 
1271   bind (done);
1272 }
1273 
1274 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1275                                             Register mdp) {
1276   if (ProfileInterpreter) {
1277     Label profile_continue;
1278     uint row;
1279 
1280     // If no method data exists, go to profile_continue.
1281     test_method_data_pointer(mdp, profile_continue);
1282 
1283     // Update the total ret count.
1284     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1285 
1286     for (row = 0; row < RetData::row_limit(); row++) {
1287       Label next_test;
1288 
1289       // See if return_bci is equal to bci[n]:
1290       test_mdp_data_at(mdp,
1291                        in_bytes(RetData::bci_offset(row)),
1292                        return_bci, noreg,
1293                        next_test);
1294 
1295       // return_bci is equal to bci[n].  Increment the count.
1296       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1297 
1298       // The method data pointer needs to be updated to reflect the new target.
1299       update_mdp_by_offset(mdp,
1300                            in_bytes(RetData::bci_displacement_offset(row)));
1301       b(profile_continue);
1302       bind(next_test);
1303     }
1304 
1305     update_mdp_for_ret(return_bci);
1306 
1307     bind(profile_continue);
1308   }
1309 }
1310 
1311 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1312   if (ProfileInterpreter) {
1313     Label profile_continue;
1314 
1315     // If no method data exists, go to profile_continue.
1316     test_method_data_pointer(mdp, profile_continue);
1317 
1318     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1319 
1320     // The method data pointer needs to be updated.
1321     int mdp_delta = in_bytes(BitData::bit_data_size());
1322     if (TypeProfileCasts) {
1323       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1324     }
1325     update_mdp_by_constant(mdp, mdp_delta);
1326 
1327     bind(profile_continue);
1328   }
1329 }
1330 
1331 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1332   if (ProfileInterpreter) {
1333     Label profile_continue;
1334 
1335     // If no method data exists, go to profile_continue.
1336     test_method_data_pointer(mdp, profile_continue);
1337 
1338     // The method data pointer needs to be updated.
1339     int mdp_delta = in_bytes(BitData::bit_data_size());
1340     if (TypeProfileCasts) {
1341       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1342 
1343       // Record the object type.
1344       record_klass_in_profile(klass, mdp, reg2);
1345     }
1346     update_mdp_by_constant(mdp, mdp_delta);
1347 
1348     bind(profile_continue);
1349   }
1350 }
1351 
1352 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1353   if (ProfileInterpreter) {
1354     Label profile_continue;
1355 
1356     // If no method data exists, go to profile_continue.
1357     test_method_data_pointer(mdp, profile_continue);
1358 
1359     // Update the default case count
1360     increment_mdp_data_at(mdp,
1361                           in_bytes(MultiBranchData::default_count_offset()));
1362 
1363     // The method data pointer needs to be updated.
1364     update_mdp_by_offset(mdp,
1365                          in_bytes(MultiBranchData::
1366                                   default_displacement_offset()));
1367 
1368     bind(profile_continue);
1369   }
1370 }
1371 
1372 void InterpreterMacroAssembler::profile_switch_case(Register index,
1373                                                     Register mdp,
1374                                                     Register reg2) {
1375   if (ProfileInterpreter) {
1376     Label profile_continue;
1377 
1378     // If no method data exists, go to profile_continue.
1379     test_method_data_pointer(mdp, profile_continue);
1380 
1381     // Build the base (index * per_case_size_in_bytes()) +
1382     // case_array_offset_in_bytes()
1383     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1384     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1385     Assembler::maddw(index, index, reg2, rscratch1);
1386 
1387     // Update the case count
1388     increment_mdp_data_at(mdp,
1389                           index,
1390                           in_bytes(MultiBranchData::relative_count_offset()));
1391 
1392     // The method data pointer needs to be updated.
1393     update_mdp_by_offset(mdp,
1394                          index,
1395                          in_bytes(MultiBranchData::
1396                                   relative_displacement_offset()));
1397 
1398     bind(profile_continue);
1399   }
1400 }
1401 
1402 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp,
1403                                                                               Register array,
1404                                                                               Register tmp) {
1405   if (ProfileInterpreter) {
1406     Label profile_continue;
1407 
1408     // If no method data exists, go to profile_continue.
1409     test_method_data_pointer(mdp, profile_continue);
1410 
1411     mov(tmp, array);
1412     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset())));
1413 
1414     Label not_flat;
1415     test_non_flat_array_oop(array, tmp, not_flat);
1416 
1417     set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant());
1418 
1419     bind(not_flat);
1420 
1421     Label not_null_free;
1422     test_non_null_free_array_oop(array, tmp, not_null_free);
1423 
1424     set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant());
1425 
1426     bind(not_null_free);
1427 
1428     bind(profile_continue);
1429   }
1430 }
1431 
1432 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp,
1433                                                                            Register array,
1434                                                                            Register tmp);
1435 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp,
1436                                                                             Register array,
1437                                                                             Register tmp);
1438 
1439 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) {
1440   if (ProfileInterpreter) {
1441     Label profile_continue;
1442 
1443     // If no method data exists, go to profile_continue.
1444     test_method_data_pointer(mdp, profile_continue);
1445 
1446     Label done, update;
1447     cbnz(element, update);
1448     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1449     b(done);
1450 
1451     bind(update);
1452     load_klass(tmp, element);
1453 
1454     // Record the object type.
1455     record_klass_in_profile(tmp, mdp, tmp2);
1456 
1457     bind(done);
1458 
1459     // The method data pointer needs to be updated.
1460     update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size()));
1461 
1462     bind(profile_continue);
1463   }
1464 }
1465 
1466 
1467 void InterpreterMacroAssembler::profile_element_type(Register mdp,
1468                                                      Register element,
1469                                                      Register tmp) {
1470   if (ProfileInterpreter) {
1471     Label profile_continue;
1472 
1473     // If no method data exists, go to profile_continue.
1474     test_method_data_pointer(mdp, profile_continue);
1475 
1476     mov(tmp, element);
1477     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset())));
1478 
1479     // The method data pointer needs to be updated.
1480     update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size()));
1481 
1482     bind(profile_continue);
1483   }
1484 }
1485 
1486 void InterpreterMacroAssembler::profile_acmp(Register mdp,
1487                                              Register left,
1488                                              Register right,
1489                                              Register tmp) {
1490   if (ProfileInterpreter) {
1491     Label profile_continue;
1492 
1493     // If no method data exists, go to profile_continue.
1494     test_method_data_pointer(mdp, profile_continue);
1495 
1496     mov(tmp, left);
1497     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset())));
1498 
1499     Label left_not_inline_type;
1500     test_oop_is_not_inline_type(left, tmp, left_not_inline_type);
1501     set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant());
1502     bind(left_not_inline_type);
1503 
1504     mov(tmp, right);
1505     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset())));
1506 
1507     Label right_not_inline_type;
1508     test_oop_is_not_inline_type(right, tmp, right_not_inline_type);
1509     set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant());
1510     bind(right_not_inline_type);
1511 
1512     bind(profile_continue);
1513   }
1514 }
1515 
1516 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1517   if (state == atos) {
1518     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1519   }
1520 }
1521 
1522 void InterpreterMacroAssembler::notify_method_entry() {
1523   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1524   // track stack depth.  If it is possible to enter interp_only_mode we add
1525   // the code to check if the event should be sent.
1526   if (JvmtiExport::can_post_interpreter_events()) {
1527     Label L;
1528     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1529     cbzw(r3, L);
1530     call_VM(noreg, CAST_FROM_FN_PTR(address,
1531                                     InterpreterRuntime::post_method_entry));
1532     bind(L);
1533   }
1534 
1535   if (DTraceMethodProbes) {
1536     get_method(c_rarg1);
1537     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1538                  rthread, c_rarg1);
1539   }
1540 
1541   // RedefineClasses() tracing support for obsolete method entry
1542   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1543     get_method(c_rarg1);
1544     call_VM_leaf(
1545       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1546       rthread, c_rarg1);
1547   }
1548 
1549  }
1550 
1551 
1552 void InterpreterMacroAssembler::notify_method_exit(
1553     TosState state, NotifyMethodExitMode mode) {
1554   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1555   // track stack depth.  If it is possible to enter interp_only_mode we add
1556   // the code to check if the event should be sent.
1557   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1558     Label L;
1559     // Note: frame::interpreter_frame_result has a dependency on how the
1560     // method result is saved across the call to post_method_exit. If this
1561     // is changed then the interpreter_frame_result implementation will
1562     // need to be updated too.
1563 
1564     // template interpreter will leave the result on the top of the stack.
1565     push(state);
1566     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1567     cbz(r3, L);
1568     call_VM(noreg,
1569             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1570     bind(L);
1571     pop(state);
1572   }
1573 
1574   if (DTraceMethodProbes) {
1575     push(state);
1576     get_method(c_rarg1);
1577     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1578                  rthread, c_rarg1);
1579     pop(state);
1580   }
1581 }
1582 
1583 
1584 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1585 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1586                                                         int increment, Address mask,
1587                                                         Register scratch, Register scratch2,
1588                                                         bool preloaded, Condition cond,
1589                                                         Label* where) {
1590   if (!preloaded) {
1591     ldrw(scratch, counter_addr);
1592   }
1593   add(scratch, scratch, increment);
1594   strw(scratch, counter_addr);
1595   ldrw(scratch2, mask);
1596   ands(scratch, scratch, scratch2);
1597   br(cond, *where);
1598 }
1599 
1600 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1601                                                   int number_of_arguments) {
1602   // interpreter specific
1603   //
1604   // Note: No need to save/restore rbcp & rlocals pointer since these
1605   //       are callee saved registers and no blocking/ GC can happen
1606   //       in leaf calls.
1607 #ifdef ASSERT
1608   {
1609     Label L;
1610     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1611     cbz(rscratch1, L);
1612     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1613          " last_sp != nullptr");
1614     bind(L);
1615   }
1616 #endif /* ASSERT */
1617   // super call
1618   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1619 }
1620 
1621 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1622                                              Register java_thread,
1623                                              Register last_java_sp,
1624                                              address  entry_point,
1625                                              int      number_of_arguments,
1626                                              bool     check_exceptions) {
1627   // interpreter specific
1628   //
1629   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1630   //       really make a difference for these runtime calls, since they are
1631   //       slow anyway. Btw., bcp must be saved/restored since it may change
1632   //       due to GC.
1633   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1634   save_bcp();
1635 #ifdef ASSERT
1636   {
1637     Label L;
1638     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1639     cbz(rscratch1, L);
1640     stop("InterpreterMacroAssembler::call_VM_base:"
1641          " last_sp != nullptr");
1642     bind(L);
1643   }
1644 #endif /* ASSERT */
1645   // super call
1646   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1647                                entry_point, number_of_arguments,
1648                      check_exceptions);
1649 // interpreter specific
1650   restore_bcp();
1651   restore_locals();
1652 }
1653 
1654 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1655                                                     address entry_point,
1656                                                     Register arg_1) {
1657   assert(arg_1 == c_rarg1, "");
1658   Label resume_pc, not_preempted;
1659 
1660 #ifdef ASSERT
1661   {
1662     Label L;
1663     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1664     cbz(rscratch1, L);
1665     stop("Should not have alternate return address set");
1666     bind(L);
1667   }
1668 #endif /* ASSERT */
1669 
1670   // Force freeze slow path.
1671   push_cont_fastpath();
1672 
1673   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1674   adr(rscratch1, resume_pc);
1675   str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset()));
1676   call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/);
1677 
1678   pop_cont_fastpath();
1679 
1680   // Check if preempted.
1681   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1682   cbz(rscratch1, not_preempted);
1683   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1684   br(rscratch1);
1685 
1686   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1687   bind(resume_pc);
1688   restore_after_resume(false /* is_native */);
1689 
1690   bind(not_preempted);
1691 }
1692 
1693 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1694   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1695   blr(rscratch1);
1696   if (is_native) {
1697     // On resume we need to set up stack as expected
1698     push(dtos);
1699     push(ltos);
1700   }
1701 }
1702 
1703 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1704   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1705   Label update, next, none;
1706 
1707   verify_oop(obj);
1708 
1709   cbnz(obj, update);
1710   orptr(mdo_addr, TypeEntries::null_seen);
1711   b(next);
1712 
1713   bind(update);
1714   load_klass(obj, obj);
1715 
1716   ldr(rscratch1, mdo_addr);
1717   eor(obj, obj, rscratch1);
1718   tst(obj, TypeEntries::type_klass_mask);
1719   br(Assembler::EQ, next); // klass seen before, nothing to
1720                            // do. The unknown bit may have been
1721                            // set already but no need to check.
1722 
1723   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1724   // already unknown. Nothing to do anymore.
1725 
1726   cbz(rscratch1, none);
1727   cmp(rscratch1, (u1)TypeEntries::null_seen);
1728   br(Assembler::EQ, none);
1729   // There is a chance that the checks above
1730   // fail if another thread has just set the
1731   // profiling to this obj's klass
1732   eor(obj, obj, rscratch1); // get back original value before XOR
1733   ldr(rscratch1, mdo_addr);
1734   eor(obj, obj, rscratch1);
1735   tst(obj, TypeEntries::type_klass_mask);
1736   br(Assembler::EQ, next);
1737 
1738   // different than before. Cannot keep accurate profile.
1739   orptr(mdo_addr, TypeEntries::type_unknown);
1740   b(next);
1741 
1742   bind(none);
1743   // first time here. Set profile type.
1744   str(obj, mdo_addr);
1745 #ifdef ASSERT
1746   andr(obj, obj, TypeEntries::type_mask);
1747   verify_klass_ptr(obj);
1748 #endif
1749 
1750   bind(next);
1751 }
1752 
1753 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1754   if (!ProfileInterpreter) {
1755     return;
1756   }
1757 
1758   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1759     Label profile_continue;
1760 
1761     test_method_data_pointer(mdp, profile_continue);
1762 
1763     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1764 
1765     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1766     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1767     br(Assembler::NE, profile_continue);
1768 
1769     if (MethodData::profile_arguments()) {
1770       Label done;
1771       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1772 
1773       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1774         if (i > 0 || MethodData::profile_return()) {
1775           // If return value type is profiled we may have no argument to profile
1776           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1777           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1778           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1779           add(rscratch1, mdp, off_to_args);
1780           br(Assembler::LT, done);
1781         }
1782         ldr(tmp, Address(callee, Method::const_offset()));
1783         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1784         // stack offset o (zero based) from the start of the argument
1785         // list, for n arguments translates into offset n - o - 1 from
1786         // the end of the argument list
1787         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1788         sub(tmp, tmp, rscratch1);
1789         sub(tmp, tmp, 1);
1790         Address arg_addr = argument_address(tmp);
1791         ldr(tmp, arg_addr);
1792 
1793         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1794         profile_obj_type(tmp, mdo_arg_addr);
1795 
1796         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1797         off_to_args += to_add;
1798       }
1799 
1800       if (MethodData::profile_return()) {
1801         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1802         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1803       }
1804 
1805       add(rscratch1, mdp, off_to_args);
1806       bind(done);
1807       mov(mdp, rscratch1);
1808 
1809       if (MethodData::profile_return()) {
1810         // We're right after the type profile for the last
1811         // argument. tmp is the number of cells left in the
1812         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1813         // if there's a return to profile.
1814         assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1815         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1816       }
1817       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1818     } else {
1819       assert(MethodData::profile_return(), "either profile call args or call ret");
1820       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1821     }
1822 
1823     // mdp points right after the end of the
1824     // CallTypeData/VirtualCallTypeData, right after the cells for the
1825     // return value type if there's one
1826 
1827     bind(profile_continue);
1828   }
1829 }
1830 
1831 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1832   assert_different_registers(mdp, ret, tmp, rbcp);
1833   if (ProfileInterpreter && MethodData::profile_return()) {
1834     Label profile_continue, done;
1835 
1836     test_method_data_pointer(mdp, profile_continue);
1837 
1838     if (MethodData::profile_return_jsr292_only()) {
1839       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1840 
1841       // If we don't profile all invoke bytecodes we must make sure
1842       // it's a bytecode we indeed profile. We can't go back to the
1843       // beginning of the ProfileData we intend to update to check its
1844       // type because we're right after it and we don't known its
1845       // length
1846       Label do_profile;
1847       ldrb(rscratch1, Address(rbcp, 0));
1848       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1849       br(Assembler::EQ, do_profile);
1850       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1851       br(Assembler::EQ, do_profile);
1852       get_method(tmp);
1853       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1854       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1855       br(Assembler::NE, profile_continue);
1856 
1857       bind(do_profile);
1858     }
1859 
1860     Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
1861     mov(tmp, ret);
1862     profile_obj_type(tmp, mdo_ret_addr);
1863 
1864     bind(profile_continue);
1865   }
1866 }
1867 
1868 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1869   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1870   if (ProfileInterpreter && MethodData::profile_parameters()) {
1871     Label profile_continue, done;
1872 
1873     test_method_data_pointer(mdp, profile_continue);
1874 
1875     // Load the offset of the area within the MDO used for
1876     // parameters. If it's negative we're not profiling any parameters
1877     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1878     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1879 
1880     // Compute a pointer to the area for parameters from the offset
1881     // and move the pointer to the slot for the last
1882     // parameters. Collect profiling from last parameter down.
1883     // mdo start + parameters offset + array length - 1
1884     add(mdp, mdp, tmp1);
1885     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1886     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1887 
1888     Label loop;
1889     bind(loop);
1890 
1891     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1892     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1893     int per_arg_scale = exact_log2(DataLayout::cell_size);
1894     add(rscratch1, mdp, off_base);
1895     add(rscratch2, mdp, type_base);
1896 
1897     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1898     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1899 
1900     // load offset on the stack from the slot for this parameter
1901     ldr(tmp2, arg_off);
1902     neg(tmp2, tmp2);
1903     // read the parameter from the local area
1904     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1905 
1906     // profile the parameter
1907     profile_obj_type(tmp2, arg_type);
1908 
1909     // go to next parameter
1910     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1911     br(Assembler::GE, loop);
1912 
1913     bind(profile_continue);
1914   }
1915 }
1916 
1917 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1918   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1919   get_cache_index_at_bcp(index, 1, sizeof(u4));
1920   // Get address of invokedynamic array
1921   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1922   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1923   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1924   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1925   lea(cache, Address(cache, index));
1926 }
1927 
1928 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1929   // Get index out of bytecode pointer
1930   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1931   // Take shortcut if the size is a power of 2
1932   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1933     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1934   } else {
1935     mov(cache, sizeof(ResolvedFieldEntry));
1936     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1937   }
1938   // Get address of field entries array
1939   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1940   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1941   lea(cache, Address(cache, index));
1942   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1943   membar(MacroAssembler::LoadLoad);
1944 }
1945 
1946 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1947   // Get index out of bytecode pointer
1948   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1949   mov(cache, sizeof(ResolvedMethodEntry));
1950   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1951 
1952   // Get address of field entries array
1953   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1954   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1955   lea(cache, Address(cache, index));
1956 }