1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/compiler_globals.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interp_masm_aarch64.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/constMethodFlags.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/inlineKlass.hpp"
  40 #include "oops/resolvedFieldEntry.hpp"
  41 #include "oops/resolvedIndyEntry.hpp"
  42 #include "oops/resolvedMethodEntry.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/basicLock.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/javaThread.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 void InterpreterMacroAssembler::narrow(Register result) {
  53 
  54   // Get method->_constMethod->_result_type
  55   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  56   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  57   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  58 
  59   Label done, notBool, notByte, notChar;
  60 
  61   // common case first
  62   cmpw(rscratch1, T_INT);
  63   br(Assembler::EQ, done);
  64 
  65   // mask integer result to narrower return type.
  66   cmpw(rscratch1, T_BOOLEAN);
  67   br(Assembler::NE, notBool);
  68   andw(result, result, 0x1);
  69   b(done);
  70 
  71   bind(notBool);
  72   cmpw(rscratch1, T_BYTE);
  73   br(Assembler::NE, notByte);
  74   sbfx(result, result, 0, 8);
  75   b(done);
  76 
  77   bind(notByte);
  78   cmpw(rscratch1, T_CHAR);
  79   br(Assembler::NE, notChar);
  80   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  81   b(done);
  82 
  83   bind(notChar);
  84   sbfx(result, result, 0, 16);     // sign-extend short
  85 
  86   // Nothing to do for T_INT
  87   bind(done);
  88 }
  89 
  90 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  91   assert(entry, "Entry must have been generated by now");
  92   b(entry);
  93 }
  94 
  95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  96   if (JvmtiExport::can_pop_frame()) {
  97     Label L;
  98     // Initiate popframe handling only if it is not already being
  99     // processed.  If the flag has the popframe_processing bit set, it
 100     // means that this code is called *during* popframe handling - we
 101     // don't want to reenter.
 102     // This method is only called just after the call into the vm in
 103     // call_VM_base, so the arg registers are available.
 104     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 105     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 106     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 107     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 108     // address of the same-named entrypoint in the generated interpreter code.
 109     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 110     br(r0);
 111     bind(L);
 112   }
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 117   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 118   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 119   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 120   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 121   switch (state) {
 122     case atos: ldr(r0, oop_addr);
 123                str(zr, oop_addr);
 124                interp_verify_oop(r0, state);        break;
 125     case ltos: ldr(r0, val_addr);                   break;
 126     case btos:                                   // fall through
 127     case ztos:                                   // fall through
 128     case ctos:                                   // fall through
 129     case stos:                                   // fall through
 130     case itos: ldrw(r0, val_addr);                  break;
 131     case ftos: ldrs(v0, val_addr);                  break;
 132     case dtos: ldrd(v0, val_addr);                  break;
 133     case vtos: /* nothing to do */                  break;
 134     default  : ShouldNotReachHere();
 135   }
 136   // Clean up tos value in the thread object
 137   movw(rscratch1, (int) ilgl);
 138   strw(rscratch1, tos_addr);
 139   strw(zr, val_addr);
 140 }
 141 
 142 
 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 144   if (JvmtiExport::can_force_early_return()) {
 145     Label L;
 146     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 147     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
 148 
 149     // Initiate earlyret handling only if it is not already being processed.
 150     // If the flag has the earlyret_processing bit set, it means that this code
 151     // is called *during* earlyret handling - we don't want to reenter.
 152     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 153     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 154     br(Assembler::NE, L);
 155 
 156     // Call Interpreter::remove_activation_early_entry() to get the address of the
 157     // same-named entrypoint in the generated interpreter code.
 158     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 159     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 160     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 161     br(r0);
 162     bind(L);
 163   }
 164 }
 165 
 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 167   Register reg,
 168   int bcp_offset) {
 169   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 170   ldrh(reg, Address(rbcp, bcp_offset));
 171   rev16(reg, reg);
 172 }
 173 
 174 void InterpreterMacroAssembler::get_dispatch() {
 175   uint64_t offset;
 176   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 177   // Use add() here after ARDP, rather than lea().
 178   // lea() does not generate anything if its offset is zero.
 179   // However, relocs expect to find either an ADD or a load/store
 180   // insn after an ADRP.  add() always generates an ADD insn, even
 181   // for add(Rn, Rn, 0).
 182   add(rdispatch, rdispatch, offset);
 183 }
 184 
 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 186                                                        int bcp_offset,
 187                                                        size_t index_size) {
 188   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 189   if (index_size == sizeof(u2)) {
 190     load_unsigned_short(index, Address(rbcp, bcp_offset));
 191   } else if (index_size == sizeof(u4)) {
 192     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 193     ldrw(index, Address(rbcp, bcp_offset));
 194   } else if (index_size == sizeof(u1)) {
 195     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 196   } else {
 197     ShouldNotReachHere();
 198   }
 199 }
 200 
 201 void InterpreterMacroAssembler::get_method_counters(Register method,
 202                                                     Register mcs, Label& skip) {
 203   Label has_counters;
 204   ldr(mcs, Address(method, Method::method_counters_offset()));
 205   cbnz(mcs, has_counters);
 206   call_VM(noreg, CAST_FROM_FN_PTR(address,
 207           InterpreterRuntime::build_method_counters), method);
 208   ldr(mcs, Address(method, Method::method_counters_offset()));
 209   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 210   bind(has_counters);
 211 }
 212 
 213 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj,
 214                                                   Register t1, Register t2,
 215                                                   bool clear_fields, Label& alloc_failed) {
 216   MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed);
 217   if (DTraceAllocProbes) {
 218     // Trigger dtrace event for fastpath
 219     push(atos);
 220     call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj);
 221     pop(atos);
 222   }
 223 }
 224 
 225 void InterpreterMacroAssembler::read_flat_field(Register entry,
 226                                                 Register field_index, Register field_offset,
 227                                                 Register temp, Register obj) {
 228   Label failed_alloc, slow_path, done;
 229   const Register src = field_offset;
 230   const Register alloc_temp = r10;
 231   const Register dst_temp   = field_index;
 232   const Register layout_info = temp;
 233   assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp, rscratch1);
 234 
 235   load_unsigned_byte(temp, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
 236   // If the field is nullable, jump to slow path
 237   tbz(temp, ResolvedFieldEntry::is_null_free_inline_type_shift, slow_path);
 238 
 239   // Grab the inline field klass
 240   ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
 241   inline_layout_info(rscratch1, field_index, layout_info);
 242 
 243   const Register field_klass = dst_temp;
 244   ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset())));
 245 
 246   // allocate buffer
 247   push(obj); // save holder
 248   allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, failed_alloc);
 249 
 250   // Have an oop instance buffer, copy into it
 251   payload_address(obj, dst_temp, field_klass);  // danger, uses rscratch1
 252   pop(alloc_temp);             // restore holder
 253   lea(src, Address(alloc_temp, field_offset));
 254   // call_VM_leaf, clobbers a few regs, save restore new obj
 255   push(obj);
 256   flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info);
 257   pop(obj);
 258   b(done);
 259 
 260   bind(failed_alloc);
 261   pop(obj);
 262   bind(slow_path);
 263   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field),
 264           obj, entry);
 265 
 266   bind(done);
 267   membar(Assembler::StoreStore);
 268 }
 269 
 270 void InterpreterMacroAssembler::write_flat_field(Register entry, Register field_offset,
 271                                                  Register tmp1, Register tmp2,
 272                                                  Register obj) {
 273   assert_different_registers(entry, field_offset, tmp1, tmp2, obj);
 274   Label slow_path, done;
 275 
 276   load_unsigned_byte(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset())));
 277   test_field_is_not_null_free_inline_type(tmp1, noreg /* temp */, slow_path);
 278 
 279   null_check(r0); // FIXME JDK-8341120
 280 
 281   add(obj, obj, field_offset);
 282 
 283   load_klass(tmp1, r0);
 284   payload_address(r0, r0, tmp1);
 285 
 286   Register layout_info = field_offset;
 287   load_unsigned_short(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset())));
 288   ldr(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset())));
 289   inline_layout_info(tmp2, tmp1, layout_info);
 290 
 291   flat_field_copy(IN_HEAP, r0, obj, layout_info);
 292   b(done);
 293 
 294   bind(slow_path);
 295   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flat_field), obj, r0, entry);
 296   bind(done);
 297 }
 298 
 299 // Load object from cpool->resolved_references(index)
 300 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 301                                            Register result, Register index, Register tmp) {
 302   assert_different_registers(result, index);
 303 
 304   get_constant_pool(result);
 305   // load pointer for resolved_references[] objArray
 306   ldr(result, Address(result, ConstantPool::cache_offset()));
 307   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
 308   resolve_oop_handle(result, tmp, rscratch2);
 309   // Add in the index
 310   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 311   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
 312 }
 313 
 314 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 315                              Register cpool, Register index, Register klass, Register temp) {
 316   add(temp, cpool, index, LSL, LogBytesPerWord);
 317   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 318   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
 319   add(klass, klass, temp, LSL, LogBytesPerWord);
 320   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 321 }
 322 
 323 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 324 // subtype of super_klass.
 325 //
 326 // Args:
 327 //      r0: superklass
 328 //      Rsub_klass: subklass
 329 //
 330 // Kills:
 331 //      r2, r5
 332 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 333                                                   Label& ok_is_subtype,
 334                                                   bool profile) {
 335   assert(Rsub_klass != r0, "r0 holds superklass");
 336   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 337   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 338 
 339   // Profile the not-null value's klass.
 340   if (profile) {
 341     profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 342   }
 343 
 344   // Do the check.
 345   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 346 }
 347 
 348 // Java Expression Stack
 349 
 350 void InterpreterMacroAssembler::pop_ptr(Register r) {
 351   ldr(r, post(esp, wordSize));
 352 }
 353 
 354 void InterpreterMacroAssembler::pop_i(Register r) {
 355   ldrw(r, post(esp, wordSize));
 356 }
 357 
 358 void InterpreterMacroAssembler::pop_l(Register r) {
 359   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 360 }
 361 
 362 void InterpreterMacroAssembler::push_ptr(Register r) {
 363   str(r, pre(esp, -wordSize));
 364  }
 365 
 366 void InterpreterMacroAssembler::push_i(Register r) {
 367   str(r, pre(esp, -wordSize));
 368 }
 369 
 370 void InterpreterMacroAssembler::push_l(Register r) {
 371   str(zr, pre(esp, -wordSize));
 372   str(r, pre(esp, - wordSize));
 373 }
 374 
 375 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 376   ldrs(r, post(esp, wordSize));
 377 }
 378 
 379 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 380   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 381 }
 382 
 383 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 384   strs(r, pre(esp, -wordSize));
 385 }
 386 
 387 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 388   strd(r, pre(esp, 2* -wordSize));
 389 }
 390 
 391 void InterpreterMacroAssembler::pop(TosState state) {
 392   switch (state) {
 393   case atos: pop_ptr();                 break;
 394   case btos:
 395   case ztos:
 396   case ctos:
 397   case stos:
 398   case itos: pop_i();                   break;
 399   case ltos: pop_l();                   break;
 400   case ftos: pop_f();                   break;
 401   case dtos: pop_d();                   break;
 402   case vtos: /* nothing to do */        break;
 403   default:   ShouldNotReachHere();
 404   }
 405   interp_verify_oop(r0, state);
 406 }
 407 
 408 void InterpreterMacroAssembler::push(TosState state) {
 409   interp_verify_oop(r0, state);
 410   switch (state) {
 411   case atos: push_ptr();                break;
 412   case btos:
 413   case ztos:
 414   case ctos:
 415   case stos:
 416   case itos: push_i();                  break;
 417   case ltos: push_l();                  break;
 418   case ftos: push_f();                  break;
 419   case dtos: push_d();                  break;
 420   case vtos: /* nothing to do */        break;
 421   default  : ShouldNotReachHere();
 422   }
 423 }
 424 
 425 // Helpers for swap and dup
 426 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 427   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 428 }
 429 
 430 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 431   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 432 }
 433 
 434 void InterpreterMacroAssembler::load_float(Address src) {
 435   ldrs(v0, src);
 436 }
 437 
 438 void InterpreterMacroAssembler::load_double(Address src) {
 439   ldrd(v0, src);
 440 }
 441 
 442 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 443   // set sender sp
 444   mov(r19_sender_sp, sp);
 445   // record last_sp
 446   sub(rscratch1, esp, rfp);
 447   asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 448   str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 449 }
 450 
 451 // Jump to from_interpreted entry of a call unless single stepping is possible
 452 // in this thread in which case we must call the i2i entry
 453 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 454   prepare_to_jump_from_interpreted();
 455 
 456   if (JvmtiExport::can_post_interpreter_events()) {
 457     Label run_compiled_code;
 458     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 459     // compiled code in threads for which the event is enabled.  Check here for
 460     // interp_only_mode if these events CAN be enabled.
 461     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 462     cbzw(rscratch1, run_compiled_code);
 463     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 464     br(rscratch1);
 465     bind(run_compiled_code);
 466   }
 467 
 468   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 469   br(rscratch1);
 470 }
 471 
 472 // The following two routines provide a hook so that an implementation
 473 // can schedule the dispatch in two parts.  amd64 does not do this.
 474 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 475 }
 476 
 477 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 478     dispatch_next(state, step);
 479 }
 480 
 481 void InterpreterMacroAssembler::dispatch_base(TosState state,
 482                                               address* table,
 483                                               bool verifyoop,
 484                                               bool generate_poll) {
 485   if (VerifyActivationFrameSize) {
 486     Label L;
 487     sub(rscratch2, rfp, esp);
 488     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 489     subs(rscratch2, rscratch2, min_frame_size);
 490     br(Assembler::GE, L);
 491     stop("broken stack frame");
 492     bind(L);
 493   }
 494   if (verifyoop) {
 495     interp_verify_oop(r0, state);
 496   }
 497 
 498   Label safepoint;
 499   address* const safepoint_table = Interpreter::safept_table(state);
 500   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 501 
 502   if (needs_thread_local_poll) {
 503     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 504     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 505     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 506   }
 507 
 508   if (table == Interpreter::dispatch_table(state)) {
 509     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 510     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 511   } else {
 512     mov(rscratch2, (address)table);
 513     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 514   }
 515   br(rscratch2);
 516 
 517   if (needs_thread_local_poll) {
 518     bind(safepoint);
 519     lea(rscratch2, ExternalAddress((address)safepoint_table));
 520     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 521     br(rscratch2);
 522   }
 523 }
 524 
 525 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 526   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 527 }
 528 
 529 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 530   dispatch_base(state, Interpreter::normal_table(state));
 531 }
 532 
 533 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 534   dispatch_base(state, Interpreter::normal_table(state), false);
 535 }
 536 
 537 
 538 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 539   // load next bytecode
 540   ldrb(rscratch1, Address(pre(rbcp, step)));
 541   dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
 542 }
 543 
 544 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 545   // load current bytecode
 546   ldrb(rscratch1, Address(rbcp, 0));
 547   dispatch_base(state, table);
 548 }
 549 
 550 // remove activation
 551 //
 552 // Unlock the receiver if this is a synchronized method.
 553 // Unlock any Java monitors from synchronized blocks.
 554 // Apply stack watermark barrier.
 555 // Notify JVMTI.
 556 // Remove the activation from the stack.
 557 //
 558 // If there are locked Java monitors
 559 //    If throw_monitor_exception
 560 //       throws IllegalMonitorStateException
 561 //    Else if install_monitor_exception
 562 //       installs IllegalMonitorStateException
 563 //    Else
 564 //       no error processing
 565 void InterpreterMacroAssembler::remove_activation(TosState state,
 566                                                   bool throw_monitor_exception,
 567                                                   bool install_monitor_exception,
 568                                                   bool notify_jvmdi) {
 569   // Note: Registers r3 xmm0 may be in use for the
 570   // result check if synchronized method
 571   Label unlocked, unlock, no_unlock;
 572 
 573 #ifdef ASSERT
 574   Label not_preempted;
 575   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
 576   cbz(rscratch1, not_preempted);
 577   stop("remove_activation: should not have alternate return address set");
 578   bind(not_preempted);
 579 #endif /* ASSERT */
 580 
 581   // get the value of _do_not_unlock_if_synchronized into r3
 582   const Address do_not_unlock_if_synchronized(rthread,
 583     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 584   ldrb(r3, do_not_unlock_if_synchronized);
 585   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 586 
 587  // get method access flags
 588   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 589   ldrh(r2, Address(r1, Method::access_flags_offset()));
 590   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 591 
 592   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 593   // is set.
 594   cbnz(r3, no_unlock);
 595 
 596   // unlock monitor
 597   push(state); // save result
 598 
 599   // BasicObjectLock will be first in list, since this is a
 600   // synchronized method. However, need to check that the object has
 601   // not been unlocked by an explicit monitorexit bytecode.
 602   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 603                         wordSize - (int) sizeof(BasicObjectLock));
 604   // We use c_rarg1 so that if we go slow path it will be the correct
 605   // register for unlock_object to pass to VM directly
 606   lea(c_rarg1, monitor); // address of first monitor
 607 
 608   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
 609   cbnz(r0, unlock);
 610 
 611   pop(state);
 612   if (throw_monitor_exception) {
 613     // Entry already unlocked, need to throw exception
 614     call_VM(noreg, CAST_FROM_FN_PTR(address,
 615                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 616     should_not_reach_here();
 617   } else {
 618     // Monitor already unlocked during a stack unroll. If requested,
 619     // install an illegal_monitor_state_exception.  Continue with
 620     // stack unrolling.
 621     if (install_monitor_exception) {
 622       call_VM(noreg, CAST_FROM_FN_PTR(address,
 623                      InterpreterRuntime::new_illegal_monitor_state_exception));
 624     }
 625     b(unlocked);
 626   }
 627 
 628   bind(unlock);
 629   unlock_object(c_rarg1);
 630   pop(state);
 631 
 632   // Check that for block-structured locking (i.e., that all locked
 633   // objects has been unlocked)
 634   bind(unlocked);
 635 
 636   // r0: Might contain return value
 637 
 638   // Check that all monitors are unlocked
 639   {
 640     Label loop, exception, entry, restart;
 641     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 642     const Address monitor_block_top(
 643         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 644     const Address monitor_block_bot(
 645         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 646 
 647     bind(restart);
 648     // We use c_rarg1 so that if we go slow path it will be the correct
 649     // register for unlock_object to pass to VM directly
 650     ldr(c_rarg1, monitor_block_top); // derelativize pointer
 651     lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
 652     // c_rarg1 points to current entry, starting with top-most entry
 653 
 654     lea(r19, monitor_block_bot);  // points to word before bottom of
 655                                   // monitor block
 656     b(entry);
 657 
 658     // Entry already locked, need to throw exception
 659     bind(exception);
 660 
 661     if (throw_monitor_exception) {
 662       // Throw exception
 663       MacroAssembler::call_VM(noreg,
 664                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 665                                    throw_illegal_monitor_state_exception));
 666       should_not_reach_here();
 667     } else {
 668       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 669       // Unlock does not block, so don't have to worry about the frame.
 670       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 671 
 672       push(state);
 673       unlock_object(c_rarg1);
 674       pop(state);
 675 
 676       if (install_monitor_exception) {
 677         call_VM(noreg, CAST_FROM_FN_PTR(address,
 678                                         InterpreterRuntime::
 679                                         new_illegal_monitor_state_exception));
 680       }
 681 
 682       b(restart);
 683     }
 684 
 685     bind(loop);
 686     // check if current entry is used
 687     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
 688     cbnz(rscratch1, exception);
 689 
 690     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 691     bind(entry);
 692     cmp(c_rarg1, r19); // check if bottom reached
 693     br(Assembler::NE, loop); // if not at bottom then check this entry
 694   }
 695 
 696   bind(no_unlock);
 697 
 698   JFR_ONLY(enter_jfr_critical_section();)
 699 
 700   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 701   // that would normally not be safe to use. Such bad returns into unsafe territory of
 702   // the stack, will call InterpreterRuntime::at_unwind.
 703   Label slow_path;
 704   Label fast_path;
 705   safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
 706   br(Assembler::AL, fast_path);
 707   bind(slow_path);
 708   push(state);
 709   set_last_Java_frame(esp, rfp, pc(), rscratch1);
 710   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 711   reset_last_Java_frame(true);
 712   pop(state);
 713   bind(fast_path);
 714 
 715   // JVMTI support. Make sure the safepoint poll test is issued prior.
 716   if (notify_jvmdi) {
 717     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 718   } else {
 719     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 720   }
 721 
 722   // remove activation
 723   // get sender esp
 724   ldr(rscratch2,
 725       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 726 
 727   if (StackReservedPages > 0) {
 728     // testing if reserved zone needs to be re-enabled
 729     Label no_reserved_zone_enabling;
 730 
 731     // check if already enabled - if so no re-enabling needed
 732     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 733     ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
 734     cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
 735     br(Assembler::EQ, no_reserved_zone_enabling);
 736 
 737     // look for an overflow into the stack reserved zone, i.e.
 738     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 739     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 740     cmp(rscratch2, rscratch1);
 741     br(Assembler::LS, no_reserved_zone_enabling);
 742 
 743     JFR_ONLY(leave_jfr_critical_section();)
 744 
 745     call_VM_leaf(
 746       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 747     call_VM(noreg, CAST_FROM_FN_PTR(address,
 748                    InterpreterRuntime::throw_delayed_StackOverflowError));
 749     should_not_reach_here();
 750 
 751     bind(no_reserved_zone_enabling);
 752   }
 753 
 754   if (state == atos && InlineTypeReturnedAsFields) {
 755     Label skip;
 756     Label not_null;
 757     cbnz(r0, not_null);
 758     // Returned value is null, zero all return registers because they may belong to oop fields
 759     mov(j_rarg1, zr);
 760     mov(j_rarg2, zr);
 761     mov(j_rarg3, zr);
 762     mov(j_rarg4, zr);
 763     mov(j_rarg5, zr);
 764     mov(j_rarg6, zr);
 765     mov(j_rarg7, zr);
 766     b(skip);
 767     bind(not_null);
 768 
 769     // Check if we are returning an non-null inline type and load its fields into registers
 770     test_oop_is_not_inline_type(r0, rscratch2, skip, /* can_be_null= */ false);
 771 
 772     // Load fields from a buffered value with an inline class specific handler
 773     load_klass(rscratch1 /*dst*/, r0 /*src*/);
 774     ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 775     ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset()));
 776     // Unpack handler can be null if inline type is not scalarizable in returns
 777     cbz(rscratch1, skip);
 778 
 779     blr(rscratch1);
 780 #ifdef ASSERT
 781     // TODO 8284443 Enable
 782     if (StressCallingConvention && false) {
 783       Label skip_stress;
 784       ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 785       ldrw(rscratch1, Address(rscratch1, Method::flags_offset()));
 786       tstw(rscratch1, MethodFlags::has_scalarized_return_flag());
 787       br(Assembler::EQ, skip_stress);
 788       load_klass(r0, r0);
 789       orr(r0, r0, 1);
 790       bind(skip_stress);
 791     }
 792 #endif
 793     bind(skip);
 794     // Check above kills sender esp in rscratch2. Reload it.
 795     ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 796   }
 797 
 798   // remove frame anchor
 799   leave();
 800 
 801   JFR_ONLY(leave_jfr_critical_section();)
 802 
 803   // restore sender esp
 804   mov(esp, rscratch2);
 805 
 806   // If we're returning to interpreted code we will shortly be
 807   // adjusting SP to allow some space for ESP.  If we're returning to
 808   // compiled code the saved sender SP was saved in sender_sp, so this
 809   // restores it.
 810   andr(sp, esp, -16);
 811 }
 812 
 813 #if INCLUDE_JFR
 814 void InterpreterMacroAssembler::enter_jfr_critical_section() {
 815   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 816   mov(rscratch1, true);
 817   strb(rscratch1, sampling_critical_section);
 818 }
 819 
 820 void InterpreterMacroAssembler::leave_jfr_critical_section() {
 821   const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
 822   strb(zr, sampling_critical_section);
 823 }
 824 #endif // INCLUDE_JFR
 825 
 826 // Lock object
 827 //
 828 // Args:
 829 //      c_rarg1: BasicObjectLock to be used for locking
 830 //
 831 // Kills:
 832 //      r0
 833 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
 834 //      rscratch1, rscratch2 (scratch regs)
 835 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 836 {
 837   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 838 
 839   const Register tmp = c_rarg2;
 840   const Register obj_reg = c_rarg3; // Will contain the oop
 841   const Register tmp2 = c_rarg4;
 842   const Register tmp3 = c_rarg5;
 843 
 844   // Load object pointer into obj_reg %c_rarg3
 845   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 846 
 847   Label slow_case, done;
 848   fast_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
 849   b(done);
 850 
 851   bind(slow_case);
 852 
 853   // Call the runtime routine for slow case
 854   call_VM_preemptable(noreg,
 855           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 856           lock_reg);
 857 
 858   bind(done);
 859 }
 860 
 861 
 862 // Unlocks an object. Used in monitorexit bytecode and
 863 // remove_activation.  Throws an IllegalMonitorException if object is
 864 // not locked by current thread.
 865 //
 866 // Args:
 867 //      c_rarg1: BasicObjectLock for lock
 868 //
 869 // Kills:
 870 //      r0
 871 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 872 //      rscratch1, rscratch2 (scratch regs)
 873 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 874 {
 875   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 876 
 877   const Register swap_reg   = r0;
 878   const Register header_reg = c_rarg2;  // Will contain the old oopMark
 879   const Register obj_reg    = c_rarg3;  // Will contain the oop
 880   const Register tmp_reg    = c_rarg4;  // Temporary used by fast_unlock
 881 
 882   save_bcp(); // Save in case of exception
 883 
 884   // Load oop into obj_reg(%c_rarg3)
 885   ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
 886 
 887   // Free entry
 888   str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
 889 
 890   Label slow_case, done;
 891   fast_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
 892   b(done);
 893 
 894   bind(slow_case);
 895   // Call the runtime routine for slow case.
 896   str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
 897   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 898   bind(done);
 899   restore_bcp();
 900 }
 901 
 902 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 903                                                          Label& zero_continue) {
 904   assert(ProfileInterpreter, "must be profiling interpreter");
 905   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 906   cbz(mdp, zero_continue);
 907 }
 908 
 909 // Set the method data pointer for the current bcp.
 910 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 911   assert(ProfileInterpreter, "must be profiling interpreter");
 912   Label set_mdp;
 913   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 914 
 915   // Test MDO to avoid the call if it is null.
 916   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 917   cbz(r0, set_mdp);
 918   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 919   // r0: mdi
 920   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 921   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 922   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 923   add(r0, r1, r0);
 924   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 925   bind(set_mdp);
 926   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 927 }
 928 
 929 void InterpreterMacroAssembler::verify_method_data_pointer() {
 930   assert(ProfileInterpreter, "must be profiling interpreter");
 931 #ifdef ASSERT
 932   Label verify_continue;
 933   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 934   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 935   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 936   get_method(r1);
 937 
 938   // If the mdp is valid, it will point to a DataLayout header which is
 939   // consistent with the bcp.  The converse is highly probable also.
 940   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 941   ldr(rscratch1, Address(r1, Method::const_offset()));
 942   add(r2, r2, rscratch1, Assembler::LSL);
 943   lea(r2, Address(r2, ConstMethod::codes_offset()));
 944   cmp(r2, rbcp);
 945   br(Assembler::EQ, verify_continue);
 946   // r1: method
 947   // rbcp: bcp // rbcp == 22
 948   // r3: mdp
 949   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 950                r1, rbcp, r3);
 951   bind(verify_continue);
 952   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 953   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 954 #endif // ASSERT
 955 }
 956 
 957 
 958 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 959                                                 int constant,
 960                                                 Register value) {
 961   assert(ProfileInterpreter, "must be profiling interpreter");
 962   Address data(mdp_in, constant);
 963   str(value, data);
 964 }
 965 
 966 
 967 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 968                                                       int constant) {
 969   increment_mdp_data_at(mdp_in, noreg, constant);
 970 }
 971 
 972 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 973                                                       Register index,
 974                                                       int constant) {
 975   assert(ProfileInterpreter, "must be profiling interpreter");
 976 
 977   assert_different_registers(rscratch2, rscratch1, mdp_in, index);
 978 
 979   Address addr1(mdp_in, constant);
 980   Address addr2(rscratch2, index, Address::lsl(0));
 981   Address &addr = addr1;
 982   if (index != noreg) {
 983     lea(rscratch2, addr1);
 984     addr = addr2;
 985   }
 986 
 987   increment(addr, DataLayout::counter_increment);
 988 }
 989 
 990 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 991                                                 int flag_byte_constant) {
 992   assert(ProfileInterpreter, "must be profiling interpreter");
 993   int flags_offset = in_bytes(DataLayout::flags_offset());
 994   // Set the flag
 995   ldrb(rscratch1, Address(mdp_in, flags_offset));
 996   orr(rscratch1, rscratch1, flag_byte_constant);
 997   strb(rscratch1, Address(mdp_in, flags_offset));
 998 }
 999 
1000 
1001 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1002                                                  int offset,
1003                                                  Register value,
1004                                                  Register test_value_out,
1005                                                  Label& not_equal_continue) {
1006   assert(ProfileInterpreter, "must be profiling interpreter");
1007   if (test_value_out == noreg) {
1008     ldr(rscratch1, Address(mdp_in, offset));
1009     cmp(value, rscratch1);
1010   } else {
1011     // Put the test value into a register, so caller can use it:
1012     ldr(test_value_out, Address(mdp_in, offset));
1013     cmp(value, test_value_out);
1014   }
1015   br(Assembler::NE, not_equal_continue);
1016 }
1017 
1018 
1019 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1020                                                      int offset_of_disp) {
1021   assert(ProfileInterpreter, "must be profiling interpreter");
1022   ldr(rscratch1, Address(mdp_in, offset_of_disp));
1023   add(mdp_in, mdp_in, rscratch1, LSL);
1024   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1025 }
1026 
1027 
1028 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1029                                                      Register reg,
1030                                                      int offset_of_disp) {
1031   assert(ProfileInterpreter, "must be profiling interpreter");
1032   lea(rscratch1, Address(mdp_in, offset_of_disp));
1033   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1034   add(mdp_in, mdp_in, rscratch1, LSL);
1035   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1036 }
1037 
1038 
1039 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1040                                                        int constant) {
1041   assert(ProfileInterpreter, "must be profiling interpreter");
1042   add(mdp_in, mdp_in, (unsigned)constant);
1043   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1044 }
1045 
1046 
1047 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1048   assert(ProfileInterpreter, "must be profiling interpreter");
1049   // save/restore across call_VM
1050   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1051   call_VM(noreg,
1052           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1053           return_bci);
1054   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1055 }
1056 
1057 
1058 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
1059   if (ProfileInterpreter) {
1060     Label profile_continue;
1061 
1062     // If no method data exists, go to profile_continue.
1063     test_method_data_pointer(mdp, profile_continue);
1064 
1065     // We are taking a branch.  Increment the taken count.
1066     increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1067 
1068     // The method data pointer needs to be updated to reflect the new target.
1069     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1070     bind(profile_continue);
1071   }
1072 }
1073 
1074 
1075 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) {
1076   if (ProfileInterpreter) {
1077     Label profile_continue;
1078 
1079     // If no method data exists, go to profile_continue.
1080     test_method_data_pointer(mdp, profile_continue);
1081 
1082     // We are not taking a branch.  Increment the not taken count.
1083     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1084 
1085     // The method data pointer needs to be updated to correspond to
1086     // the next bytecode
1087     update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size()));
1088     bind(profile_continue);
1089   }
1090 }
1091 
1092 
1093 void InterpreterMacroAssembler::profile_call(Register mdp) {
1094   if (ProfileInterpreter) {
1095     Label profile_continue;
1096 
1097     // If no method data exists, go to profile_continue.
1098     test_method_data_pointer(mdp, profile_continue);
1099 
1100     // We are making a call.  Increment the count.
1101     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1102 
1103     // The method data pointer needs to be updated to reflect the new target.
1104     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1105     bind(profile_continue);
1106   }
1107 }
1108 
1109 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1110   if (ProfileInterpreter) {
1111     Label profile_continue;
1112 
1113     // If no method data exists, go to profile_continue.
1114     test_method_data_pointer(mdp, profile_continue);
1115 
1116     // We are making a call.  Increment the count.
1117     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1118 
1119     // The method data pointer needs to be updated to reflect the new target.
1120     update_mdp_by_constant(mdp,
1121                            in_bytes(VirtualCallData::
1122                                     virtual_call_data_size()));
1123     bind(profile_continue);
1124   }
1125 }
1126 
1127 
1128 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1129                                                      Register mdp,
1130                                                      Register reg2,
1131                                                      bool receiver_can_be_null) {
1132   if (ProfileInterpreter) {
1133     Label profile_continue;
1134 
1135     // If no method data exists, go to profile_continue.
1136     test_method_data_pointer(mdp, profile_continue);
1137 
1138     Label skip_receiver_profile;
1139     if (receiver_can_be_null) {
1140       Label not_null;
1141       // We are making a call.  Increment the count for null receiver.
1142       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1143       b(skip_receiver_profile);
1144       bind(not_null);
1145     }
1146 
1147     // Record the receiver type.
1148     record_klass_in_profile(receiver, mdp, reg2);
1149     bind(skip_receiver_profile);
1150 
1151     // The method data pointer needs to be updated to reflect the new target.
1152     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1153     bind(profile_continue);
1154   }
1155 }
1156 
1157 // This routine creates a state machine for updating the multi-row
1158 // type profile at a virtual call site (or other type-sensitive bytecode).
1159 // The machine visits each row (of receiver/count) until the receiver type
1160 // is found, or until it runs out of rows.  At the same time, it remembers
1161 // the location of the first empty row.  (An empty row records null for its
1162 // receiver, and can be allocated for a newly-observed receiver type.)
1163 // Because there are two degrees of freedom in the state, a simple linear
1164 // search will not work; it must be a decision tree.  Hence this helper
1165 // function is recursive, to generate the required tree structured code.
1166 // It's the interpreter, so we are trading off code space for speed.
1167 // See below for example code.
1168 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1169                                         Register receiver, Register mdp,
1170                                         Register reg2, int start_row,
1171                                         Label& done) {
1172   if (TypeProfileWidth == 0) {
1173     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1174   } else {
1175     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1176         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1177   }
1178 }
1179 
1180 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1181                                         Register reg2, int start_row, Label& done, int total_rows,
1182                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1183   int last_row = total_rows - 1;
1184   assert(start_row <= last_row, "must be work left to do");
1185   // Test this row for both the item and for null.
1186   // Take any of three different outcomes:
1187   //   1. found item => increment count and goto done
1188   //   2. found null => keep looking for case 1, maybe allocate this cell
1189   //   3. found something else => keep looking for cases 1 and 2
1190   // Case 3 is handled by a recursive call.
1191   for (int row = start_row; row <= last_row; row++) {
1192     Label next_test;
1193     bool test_for_null_also = (row == start_row);
1194 
1195     // See if the item is item[n].
1196     int item_offset = in_bytes(item_offset_fn(row));
1197     test_mdp_data_at(mdp, item_offset, item,
1198                      (test_for_null_also ? reg2 : noreg),
1199                      next_test);
1200     // (Reg2 now contains the item from the CallData.)
1201 
1202     // The item is item[n].  Increment count[n].
1203     int count_offset = in_bytes(item_count_offset_fn(row));
1204     increment_mdp_data_at(mdp, count_offset);
1205     b(done);
1206     bind(next_test);
1207 
1208     if (test_for_null_also) {
1209       Label found_null;
1210       // Failed the equality check on item[n]...  Test for null.
1211       if (start_row == last_row) {
1212         // The only thing left to do is handle the null case.
1213         cbz(reg2, found_null);
1214         // Item did not match any saved item and there is no empty row for it.
1215         // Increment total counter to indicate polymorphic case.
1216         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1217         b(done);
1218         bind(found_null);
1219         break;
1220       }
1221       // Since null is rare, make it be the branch-taken case.
1222       cbz(reg2, found_null);
1223 
1224       // Put all the "Case 3" tests here.
1225       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1226         item_offset_fn, item_count_offset_fn);
1227 
1228       // Found a null.  Keep searching for a matching item,
1229       // but remember that this is an empty (unused) slot.
1230       bind(found_null);
1231     }
1232   }
1233 
1234   // In the fall-through case, we found no matching item, but we
1235   // observed the item[start_row] is null.
1236 
1237   // Fill in the item field and increment the count.
1238   int item_offset = in_bytes(item_offset_fn(start_row));
1239   set_mdp_data_at(mdp, item_offset, item);
1240   int count_offset = in_bytes(item_count_offset_fn(start_row));
1241   mov(reg2, DataLayout::counter_increment);
1242   set_mdp_data_at(mdp, count_offset, reg2);
1243   if (start_row > 0) {
1244     b(done);
1245   }
1246 }
1247 
1248 // Example state machine code for three profile rows:
1249 //   // main copy of decision tree, rooted at row[1]
1250 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1251 //   if (row[0].rec != nullptr) {
1252 //     // inner copy of decision tree, rooted at row[1]
1253 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1254 //     if (row[1].rec != nullptr) {
1255 //       // degenerate decision tree, rooted at row[2]
1256 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1257 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1258 //       row[2].init(rec); goto done;
1259 //     } else {
1260 //       // remember row[1] is empty
1261 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1262 //       row[1].init(rec); goto done;
1263 //     }
1264 //   } else {
1265 //     // remember row[0] is empty
1266 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1267 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1268 //     row[0].init(rec); goto done;
1269 //   }
1270 //   done:
1271 
1272 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1273                                                         Register mdp, Register reg2) {
1274   assert(ProfileInterpreter, "must be profiling");
1275   Label done;
1276 
1277   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1278 
1279   bind (done);
1280 }
1281 
1282 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1283                                             Register mdp) {
1284   if (ProfileInterpreter) {
1285     Label profile_continue;
1286     uint row;
1287 
1288     // If no method data exists, go to profile_continue.
1289     test_method_data_pointer(mdp, profile_continue);
1290 
1291     // Update the total ret count.
1292     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1293 
1294     for (row = 0; row < RetData::row_limit(); row++) {
1295       Label next_test;
1296 
1297       // See if return_bci is equal to bci[n]:
1298       test_mdp_data_at(mdp,
1299                        in_bytes(RetData::bci_offset(row)),
1300                        return_bci, noreg,
1301                        next_test);
1302 
1303       // return_bci is equal to bci[n].  Increment the count.
1304       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1305 
1306       // The method data pointer needs to be updated to reflect the new target.
1307       update_mdp_by_offset(mdp,
1308                            in_bytes(RetData::bci_displacement_offset(row)));
1309       b(profile_continue);
1310       bind(next_test);
1311     }
1312 
1313     update_mdp_for_ret(return_bci);
1314 
1315     bind(profile_continue);
1316   }
1317 }
1318 
1319 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1320   if (ProfileInterpreter) {
1321     Label profile_continue;
1322 
1323     // If no method data exists, go to profile_continue.
1324     test_method_data_pointer(mdp, profile_continue);
1325 
1326     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1327 
1328     // The method data pointer needs to be updated.
1329     int mdp_delta = in_bytes(BitData::bit_data_size());
1330     if (TypeProfileCasts) {
1331       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1332     }
1333     update_mdp_by_constant(mdp, mdp_delta);
1334 
1335     bind(profile_continue);
1336   }
1337 }
1338 
1339 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1340   if (ProfileInterpreter) {
1341     Label profile_continue;
1342 
1343     // If no method data exists, go to profile_continue.
1344     test_method_data_pointer(mdp, profile_continue);
1345 
1346     // The method data pointer needs to be updated.
1347     int mdp_delta = in_bytes(BitData::bit_data_size());
1348     if (TypeProfileCasts) {
1349       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1350 
1351       // Record the object type.
1352       record_klass_in_profile(klass, mdp, reg2);
1353     }
1354     update_mdp_by_constant(mdp, mdp_delta);
1355 
1356     bind(profile_continue);
1357   }
1358 }
1359 
1360 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1361   if (ProfileInterpreter) {
1362     Label profile_continue;
1363 
1364     // If no method data exists, go to profile_continue.
1365     test_method_data_pointer(mdp, profile_continue);
1366 
1367     // Update the default case count
1368     increment_mdp_data_at(mdp,
1369                           in_bytes(MultiBranchData::default_count_offset()));
1370 
1371     // The method data pointer needs to be updated.
1372     update_mdp_by_offset(mdp,
1373                          in_bytes(MultiBranchData::
1374                                   default_displacement_offset()));
1375 
1376     bind(profile_continue);
1377   }
1378 }
1379 
1380 void InterpreterMacroAssembler::profile_switch_case(Register index,
1381                                                     Register mdp,
1382                                                     Register reg2) {
1383   if (ProfileInterpreter) {
1384     Label profile_continue;
1385 
1386     // If no method data exists, go to profile_continue.
1387     test_method_data_pointer(mdp, profile_continue);
1388 
1389     // Build the base (index * per_case_size_in_bytes()) +
1390     // case_array_offset_in_bytes()
1391     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1392     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1393     Assembler::maddw(index, index, reg2, rscratch1);
1394 
1395     // Update the case count
1396     increment_mdp_data_at(mdp,
1397                           index,
1398                           in_bytes(MultiBranchData::relative_count_offset()));
1399 
1400     // The method data pointer needs to be updated.
1401     update_mdp_by_offset(mdp,
1402                          index,
1403                          in_bytes(MultiBranchData::
1404                                   relative_displacement_offset()));
1405 
1406     bind(profile_continue);
1407   }
1408 }
1409 
1410 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp,
1411                                                                               Register array,
1412                                                                               Register tmp) {
1413   if (ProfileInterpreter) {
1414     Label profile_continue;
1415 
1416     // If no method data exists, go to profile_continue.
1417     test_method_data_pointer(mdp, profile_continue);
1418 
1419     mov(tmp, array);
1420     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset())));
1421 
1422     Label not_flat;
1423     test_non_flat_array_oop(array, tmp, not_flat);
1424 
1425     set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant());
1426 
1427     bind(not_flat);
1428 
1429     Label not_null_free;
1430     test_non_null_free_array_oop(array, tmp, not_null_free);
1431 
1432     set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant());
1433 
1434     bind(not_null_free);
1435 
1436     bind(profile_continue);
1437   }
1438 }
1439 
1440 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp,
1441                                                                            Register array,
1442                                                                            Register tmp);
1443 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp,
1444                                                                             Register array,
1445                                                                             Register tmp);
1446 
1447 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) {
1448   if (ProfileInterpreter) {
1449     Label profile_continue;
1450 
1451     // If no method data exists, go to profile_continue.
1452     test_method_data_pointer(mdp, profile_continue);
1453 
1454     Label done, update;
1455     cbnz(element, update);
1456     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1457     b(done);
1458 
1459     bind(update);
1460     load_klass(tmp, element);
1461 
1462     // Record the object type.
1463     record_klass_in_profile(tmp, mdp, tmp2);
1464 
1465     bind(done);
1466 
1467     // The method data pointer needs to be updated.
1468     update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size()));
1469 
1470     bind(profile_continue);
1471   }
1472 }
1473 
1474 
1475 void InterpreterMacroAssembler::profile_element_type(Register mdp,
1476                                                      Register element,
1477                                                      Register tmp) {
1478   if (ProfileInterpreter) {
1479     Label profile_continue;
1480 
1481     // If no method data exists, go to profile_continue.
1482     test_method_data_pointer(mdp, profile_continue);
1483 
1484     mov(tmp, element);
1485     profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset())));
1486 
1487     // The method data pointer needs to be updated.
1488     update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size()));
1489 
1490     bind(profile_continue);
1491   }
1492 }
1493 
1494 void InterpreterMacroAssembler::profile_acmp(Register mdp,
1495                                              Register left,
1496                                              Register right,
1497                                              Register tmp) {
1498   if (ProfileInterpreter) {
1499     Label profile_continue;
1500 
1501     // If no method data exists, go to profile_continue.
1502     test_method_data_pointer(mdp, profile_continue);
1503 
1504     mov(tmp, left);
1505     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset())));
1506 
1507     Label left_not_inline_type;
1508     test_oop_is_not_inline_type(left, tmp, left_not_inline_type);
1509     set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant());
1510     bind(left_not_inline_type);
1511 
1512     mov(tmp, right);
1513     profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset())));
1514 
1515     Label right_not_inline_type;
1516     test_oop_is_not_inline_type(right, tmp, right_not_inline_type);
1517     set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant());
1518     bind(right_not_inline_type);
1519 
1520     bind(profile_continue);
1521   }
1522 }
1523 
1524 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1525   if (state == atos) {
1526     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1527   }
1528 }
1529 
1530 void InterpreterMacroAssembler::notify_method_entry() {
1531   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1532   // track stack depth.  If it is possible to enter interp_only_mode we add
1533   // the code to check if the event should be sent.
1534   if (JvmtiExport::can_post_interpreter_events()) {
1535     Label L;
1536     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1537     cbzw(r3, L);
1538     call_VM(noreg, CAST_FROM_FN_PTR(address,
1539                                     InterpreterRuntime::post_method_entry));
1540     bind(L);
1541   }
1542 
1543   if (DTraceMethodProbes) {
1544     get_method(c_rarg1);
1545     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1546                  rthread, c_rarg1);
1547   }
1548 
1549   // RedefineClasses() tracing support for obsolete method entry
1550   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1551     get_method(c_rarg1);
1552     call_VM_leaf(
1553       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1554       rthread, c_rarg1);
1555   }
1556 
1557  }
1558 
1559 
1560 void InterpreterMacroAssembler::notify_method_exit(
1561     TosState state, NotifyMethodExitMode mode) {
1562   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1563   // track stack depth.  If it is possible to enter interp_only_mode we add
1564   // the code to check if the event should be sent.
1565   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1566     Label L;
1567     // Note: frame::interpreter_frame_result has a dependency on how the
1568     // method result is saved across the call to post_method_exit. If this
1569     // is changed then the interpreter_frame_result implementation will
1570     // need to be updated too.
1571 
1572     // template interpreter will leave the result on the top of the stack.
1573     push(state);
1574     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1575     cbz(r3, L);
1576     call_VM(noreg,
1577             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1578     bind(L);
1579     pop(state);
1580   }
1581 
1582   if (DTraceMethodProbes) {
1583     push(state);
1584     get_method(c_rarg1);
1585     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1586                  rthread, c_rarg1);
1587     pop(state);
1588   }
1589 }
1590 
1591 
1592 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1593 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1594                                                         int increment, Address mask,
1595                                                         Register scratch, Register scratch2,
1596                                                         bool preloaded, Condition cond,
1597                                                         Label* where) {
1598   if (!preloaded) {
1599     ldrw(scratch, counter_addr);
1600   }
1601   add(scratch, scratch, increment);
1602   strw(scratch, counter_addr);
1603   ldrw(scratch2, mask);
1604   ands(scratch, scratch, scratch2);
1605   br(cond, *where);
1606 }
1607 
1608 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1609                                                   int number_of_arguments) {
1610   // interpreter specific
1611   //
1612   // Note: No need to save/restore rbcp & rlocals pointer since these
1613   //       are callee saved registers and no blocking/ GC can happen
1614   //       in leaf calls.
1615 #ifdef ASSERT
1616   {
1617     Label L;
1618     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1619     cbz(rscratch1, L);
1620     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1621          " last_sp != nullptr");
1622     bind(L);
1623   }
1624 #endif /* ASSERT */
1625   // super call
1626   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1627 }
1628 
1629 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1630                                              Register java_thread,
1631                                              Register last_java_sp,
1632                                              Label*   return_pc,
1633                                              address  entry_point,
1634                                              int      number_of_arguments,
1635                                              bool     check_exceptions) {
1636   // interpreter specific
1637   //
1638   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1639   //       really make a difference for these runtime calls, since they are
1640   //       slow anyway. Btw., bcp must be saved/restored since it may change
1641   //       due to GC.
1642   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1643   save_bcp();
1644 #ifdef ASSERT
1645   {
1646     Label L;
1647     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1648     cbz(rscratch1, L);
1649     stop("InterpreterMacroAssembler::call_VM_base:"
1650          " last_sp != nullptr");
1651     bind(L);
1652   }
1653 #endif /* ASSERT */
1654   // super call
1655   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1656                                return_pc, entry_point,
1657                                number_of_arguments, check_exceptions);
1658 // interpreter specific
1659   restore_bcp();
1660   restore_locals();
1661 }
1662 
1663 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
1664                                                            address entry_point,
1665                                                            int number_of_arguments,
1666                                                            bool check_exceptions) {
1667   assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
1668   Label resume_pc, not_preempted;
1669 
1670 #ifdef ASSERT
1671   {
1672     Label L1, L2;
1673     ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1674     cbz(rscratch1, L1);
1675     stop("call_VM_preemptable_helper: Should not have alternate return address set");
1676     bind(L1);
1677     // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
1678     incrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1679     ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1680     cmpw(rscratch1, 0);
1681     br(Assembler::GT, L2);
1682     stop("call_VM_preemptable_helper: should be > 0");
1683     bind(L2);
1684   }
1685 #endif /* ASSERT */
1686 
1687   // Force freeze slow path.
1688   push_cont_fastpath();
1689 
1690   // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1691   // Note: call_VM_base will use resume_pc label to set last_Java_pc.
1692   call_VM_base(noreg, noreg, noreg, &resume_pc, entry_point, number_of_arguments, false /*check_exceptions*/);
1693 
1694   pop_cont_fastpath();
1695 
1696 #ifdef ASSERT
1697   {
1698     Label L;
1699     decrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1700     ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1701     cmpw(rscratch1, 0);
1702     br(Assembler::GE, L);
1703     stop("call_VM_preemptable_helper: should be >= 0");
1704     bind(L);
1705   }
1706 #endif /* ASSERT */
1707 
1708   // Check if preempted.
1709   ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1710   cbz(rscratch1, not_preempted);
1711   str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1712   br(rscratch1);
1713 
1714   // In case of preemption, this is where we will resume once we finally acquire the monitor.
1715   bind(resume_pc);
1716   restore_after_resume(false /* is_native */);
1717 
1718   bind(not_preempted);
1719   if (check_exceptions) {
1720     // check for pending exceptions
1721     ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1722     Label ok;
1723     cbz(rscratch1, ok);
1724     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1725     br(rscratch1);
1726     bind(ok);
1727   }
1728 
1729   // get oop result if there is one and reset the value in the thread
1730   if (oop_result->is_valid()) {
1731     get_vm_result_oop(oop_result, rthread);
1732   }
1733 }
1734 
1735 static void pass_arg1(MacroAssembler* masm, Register arg) {
1736   if (c_rarg1 != arg ) {
1737     masm->mov(c_rarg1, arg);
1738   }
1739 }
1740 
1741 static void pass_arg2(MacroAssembler* masm, Register arg) {
1742   if (c_rarg2 != arg ) {
1743     masm->mov(c_rarg2, arg);
1744   }
1745 }
1746 
1747 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1748                                          address entry_point,
1749                                          Register arg_1,
1750                                          bool check_exceptions) {
1751   pass_arg1(this, arg_1);
1752   call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
1753 }
1754 
1755 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1756                                          address entry_point,
1757                                          Register arg_1,
1758                                          Register arg_2,
1759                                          bool check_exceptions) {
1760   LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
1761   pass_arg2(this, arg_2);
1762   pass_arg1(this, arg_1);
1763   call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
1764 }
1765 
1766 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1767   lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1768   blr(rscratch1);
1769   if (is_native) {
1770     // On resume we need to set up stack as expected
1771     push(dtos);
1772     push(ltos);
1773   }
1774 }
1775 
1776 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1777   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1778   Label update, next, none;
1779 
1780   verify_oop(obj);
1781 
1782   cbnz(obj, update);
1783   orptr(mdo_addr, TypeEntries::null_seen);
1784   b(next);
1785 
1786   bind(update);
1787   load_klass(obj, obj);
1788 
1789   ldr(rscratch1, mdo_addr);
1790   eor(obj, obj, rscratch1);
1791   tst(obj, TypeEntries::type_klass_mask);
1792   br(Assembler::EQ, next); // klass seen before, nothing to
1793                            // do. The unknown bit may have been
1794                            // set already but no need to check.
1795 
1796   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1797   // already unknown. Nothing to do anymore.
1798 
1799   cbz(rscratch1, none);
1800   cmp(rscratch1, (u1)TypeEntries::null_seen);
1801   br(Assembler::EQ, none);
1802   // There is a chance that the checks above
1803   // fail if another thread has just set the
1804   // profiling to this obj's klass
1805   eor(obj, obj, rscratch1); // get back original value before XOR
1806   ldr(rscratch1, mdo_addr);
1807   eor(obj, obj, rscratch1);
1808   tst(obj, TypeEntries::type_klass_mask);
1809   br(Assembler::EQ, next);
1810 
1811   // different than before. Cannot keep accurate profile.
1812   orptr(mdo_addr, TypeEntries::type_unknown);
1813   b(next);
1814 
1815   bind(none);
1816   // first time here. Set profile type.
1817   str(obj, mdo_addr);
1818 #ifdef ASSERT
1819   andr(obj, obj, TypeEntries::type_mask);
1820   verify_klass_ptr(obj);
1821 #endif
1822 
1823   bind(next);
1824 }
1825 
1826 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1827   if (!ProfileInterpreter) {
1828     return;
1829   }
1830 
1831   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1832     Label profile_continue;
1833 
1834     test_method_data_pointer(mdp, profile_continue);
1835 
1836     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1837 
1838     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1839     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1840     br(Assembler::NE, profile_continue);
1841 
1842     if (MethodData::profile_arguments()) {
1843       Label done;
1844       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1845 
1846       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1847         if (i > 0 || MethodData::profile_return()) {
1848           // If return value type is profiled we may have no argument to profile
1849           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1850           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1851           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1852           add(rscratch1, mdp, off_to_args);
1853           br(Assembler::LT, done);
1854         }
1855         ldr(tmp, Address(callee, Method::const_offset()));
1856         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1857         // stack offset o (zero based) from the start of the argument
1858         // list, for n arguments translates into offset n - o - 1 from
1859         // the end of the argument list
1860         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1861         sub(tmp, tmp, rscratch1);
1862         sub(tmp, tmp, 1);
1863         Address arg_addr = argument_address(tmp);
1864         ldr(tmp, arg_addr);
1865 
1866         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1867         profile_obj_type(tmp, mdo_arg_addr);
1868 
1869         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1870         off_to_args += to_add;
1871       }
1872 
1873       if (MethodData::profile_return()) {
1874         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1875         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1876       }
1877 
1878       add(rscratch1, mdp, off_to_args);
1879       bind(done);
1880       mov(mdp, rscratch1);
1881 
1882       if (MethodData::profile_return()) {
1883         // We're right after the type profile for the last
1884         // argument. tmp is the number of cells left in the
1885         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1886         // if there's a return to profile.
1887         assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1888         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1889       }
1890       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1891     } else {
1892       assert(MethodData::profile_return(), "either profile call args or call ret");
1893       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1894     }
1895 
1896     // mdp points right after the end of the
1897     // CallTypeData/VirtualCallTypeData, right after the cells for the
1898     // return value type if there's one
1899 
1900     bind(profile_continue);
1901   }
1902 }
1903 
1904 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1905   assert_different_registers(mdp, ret, tmp, rbcp);
1906   if (ProfileInterpreter && MethodData::profile_return()) {
1907     Label profile_continue, done;
1908 
1909     test_method_data_pointer(mdp, profile_continue);
1910 
1911     if (MethodData::profile_return_jsr292_only()) {
1912       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1913 
1914       // If we don't profile all invoke bytecodes we must make sure
1915       // it's a bytecode we indeed profile. We can't go back to the
1916       // beginning of the ProfileData we intend to update to check its
1917       // type because we're right after it and we don't known its
1918       // length
1919       Label do_profile;
1920       ldrb(rscratch1, Address(rbcp, 0));
1921       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1922       br(Assembler::EQ, do_profile);
1923       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1924       br(Assembler::EQ, do_profile);
1925       get_method(tmp);
1926       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1927       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1928       br(Assembler::NE, profile_continue);
1929 
1930       bind(do_profile);
1931     }
1932 
1933     Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
1934     mov(tmp, ret);
1935     profile_obj_type(tmp, mdo_ret_addr);
1936 
1937     bind(profile_continue);
1938   }
1939 }
1940 
1941 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1942   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1943   if (ProfileInterpreter && MethodData::profile_parameters()) {
1944     Label profile_continue, done;
1945 
1946     test_method_data_pointer(mdp, profile_continue);
1947 
1948     // Load the offset of the area within the MDO used for
1949     // parameters. If it's negative we're not profiling any parameters
1950     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1951     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1952 
1953     // Compute a pointer to the area for parameters from the offset
1954     // and move the pointer to the slot for the last
1955     // parameters. Collect profiling from last parameter down.
1956     // mdo start + parameters offset + array length - 1
1957     add(mdp, mdp, tmp1);
1958     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1959     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1960 
1961     Label loop;
1962     bind(loop);
1963 
1964     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1965     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1966     int per_arg_scale = exact_log2(DataLayout::cell_size);
1967     add(rscratch1, mdp, off_base);
1968     add(rscratch2, mdp, type_base);
1969 
1970     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1971     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1972 
1973     // load offset on the stack from the slot for this parameter
1974     ldr(tmp2, arg_off);
1975     neg(tmp2, tmp2);
1976     // read the parameter from the local area
1977     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1978 
1979     // profile the parameter
1980     profile_obj_type(tmp2, arg_type);
1981 
1982     // go to next parameter
1983     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1984     br(Assembler::GE, loop);
1985 
1986     bind(profile_continue);
1987   }
1988 }
1989 
1990 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1991   // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1992   get_cache_index_at_bcp(index, 1, sizeof(u4));
1993   // Get address of invokedynamic array
1994   ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1995   // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1996   lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1997   add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1998   lea(cache, Address(cache, index));
1999 }
2000 
2001 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
2002   // Get index out of bytecode pointer
2003   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2004   // Take shortcut if the size is a power of 2
2005   if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
2006     lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
2007   } else {
2008     mov(cache, sizeof(ResolvedFieldEntry));
2009     mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
2010   }
2011   // Get address of field entries array
2012   ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
2013   add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
2014   lea(cache, Address(cache, index));
2015   // Prevents stale data from being read after the bytecode is patched to the fast bytecode
2016   membar(MacroAssembler::LoadLoad);
2017 }
2018 
2019 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
2020   // Get index out of bytecode pointer
2021   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2022   mov(cache, sizeof(ResolvedMethodEntry));
2023   mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
2024 
2025   // Get address of field entries array
2026   ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
2027   add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
2028   lea(cache, Address(cache, index));
2029 }
2030 
2031 #ifdef ASSERT
2032 void InterpreterMacroAssembler::verify_field_offset(Register reg) {
2033   // Verify the field offset is not in the header, implicitly checks for 0
2034   Label L;
2035   subs(zr, reg, oopDesc::base_offset_in_bytes());
2036   br(Assembler::GE, L);
2037   stop("bad field offset");
2038   bind(L);
2039 }
2040 #endif