1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/constMethodFlags.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/inlineKlass.hpp" 40 #include "oops/resolvedFieldEntry.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/basicLock.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/javaThread.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 void InterpreterMacroAssembler::narrow(Register result) { 53 54 // Get method->_constMethod->_result_type 55 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 56 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 57 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 58 59 Label done, notBool, notByte, notChar; 60 61 // common case first 62 cmpw(rscratch1, T_INT); 63 br(Assembler::EQ, done); 64 65 // mask integer result to narrower return type. 66 cmpw(rscratch1, T_BOOLEAN); 67 br(Assembler::NE, notBool); 68 andw(result, result, 0x1); 69 b(done); 70 71 bind(notBool); 72 cmpw(rscratch1, T_BYTE); 73 br(Assembler::NE, notByte); 74 sbfx(result, result, 0, 8); 75 b(done); 76 77 bind(notByte); 78 cmpw(rscratch1, T_CHAR); 79 br(Assembler::NE, notChar); 80 ubfx(result, result, 0, 16); // truncate upper 16 bits 81 b(done); 82 83 bind(notChar); 84 sbfx(result, result, 0, 16); // sign-extend short 85 86 // Nothing to do for T_INT 87 bind(done); 88 } 89 90 void InterpreterMacroAssembler::jump_to_entry(address entry) { 91 assert(entry, "Entry must have been generated by now"); 92 b(entry); 93 } 94 95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 96 if (JvmtiExport::can_pop_frame()) { 97 Label L; 98 // Initiate popframe handling only if it is not already being 99 // processed. If the flag has the popframe_processing bit set, it 100 // means that this code is called *during* popframe handling - we 101 // don't want to reenter. 102 // This method is only called just after the call into the vm in 103 // call_VM_base, so the arg registers are available. 104 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 105 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 106 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 107 // Call Interpreter::remove_activation_preserving_args_entry() to get the 108 // address of the same-named entrypoint in the generated interpreter code. 109 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 110 br(r0); 111 bind(L); 112 } 113 } 114 115 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 117 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 118 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 119 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 120 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 121 switch (state) { 122 case atos: ldr(r0, oop_addr); 123 str(zr, oop_addr); 124 interp_verify_oop(r0, state); break; 125 case ltos: ldr(r0, val_addr); break; 126 case btos: // fall through 127 case ztos: // fall through 128 case ctos: // fall through 129 case stos: // fall through 130 case itos: ldrw(r0, val_addr); break; 131 case ftos: ldrs(v0, val_addr); break; 132 case dtos: ldrd(v0, val_addr); break; 133 case vtos: /* nothing to do */ break; 134 default : ShouldNotReachHere(); 135 } 136 // Clean up tos value in the thread object 137 movw(rscratch1, (int) ilgl); 138 strw(rscratch1, tos_addr); 139 strw(zr, val_addr); 140 } 141 142 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 144 if (JvmtiExport::can_force_early_return()) { 145 Label L; 146 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 147 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 148 149 // Initiate earlyret handling only if it is not already being processed. 150 // If the flag has the earlyret_processing bit set, it means that this code 151 // is called *during* earlyret handling - we don't want to reenter. 152 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 153 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 154 br(Assembler::NE, L); 155 156 // Call Interpreter::remove_activation_early_entry() to get the address of the 157 // same-named entrypoint in the generated interpreter code. 158 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 159 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 160 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 161 br(r0); 162 bind(L); 163 } 164 } 165 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 167 Register reg, 168 int bcp_offset) { 169 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 170 ldrh(reg, Address(rbcp, bcp_offset)); 171 rev16(reg, reg); 172 } 173 174 void InterpreterMacroAssembler::get_dispatch() { 175 uint64_t offset; 176 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 177 // Use add() here after ARDP, rather than lea(). 178 // lea() does not generate anything if its offset is zero. 179 // However, relocs expect to find either an ADD or a load/store 180 // insn after an ADRP. add() always generates an ADD insn, even 181 // for add(Rn, Rn, 0). 182 add(rdispatch, rdispatch, offset); 183 } 184 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 186 int bcp_offset, 187 size_t index_size) { 188 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 189 if (index_size == sizeof(u2)) { 190 load_unsigned_short(index, Address(rbcp, bcp_offset)); 191 } else if (index_size == sizeof(u4)) { 192 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 193 ldrw(index, Address(rbcp, bcp_offset)); 194 } else if (index_size == sizeof(u1)) { 195 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 196 } else { 197 ShouldNotReachHere(); 198 } 199 } 200 201 void InterpreterMacroAssembler::get_method_counters(Register method, 202 Register mcs, Label& skip) { 203 Label has_counters; 204 ldr(mcs, Address(method, Method::method_counters_offset())); 205 cbnz(mcs, has_counters); 206 call_VM(noreg, CAST_FROM_FN_PTR(address, 207 InterpreterRuntime::build_method_counters), method); 208 ldr(mcs, Address(method, Method::method_counters_offset())); 209 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 210 bind(has_counters); 211 } 212 213 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 214 Register t1, Register t2, 215 bool clear_fields, Label& alloc_failed) { 216 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 217 if (DTraceMethodProbes) { 218 // Trigger dtrace event for fastpath 219 push(atos); 220 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 221 pop(atos); 222 } 223 } 224 225 void InterpreterMacroAssembler::read_flat_field(Register entry, 226 Register field_index, Register field_offset, 227 Register temp, Register obj) { 228 Label alloc_failed, done; 229 const Register src = field_offset; 230 const Register alloc_temp = r10; 231 const Register dst_temp = field_index; 232 const Register layout_info = temp; 233 assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp); 234 235 // Grab the inline field klass 236 ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 237 inline_layout_info(rscratch1, field_index, layout_info); 238 239 const Register field_klass = dst_temp; 240 ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset()))); 241 242 // allocate buffer 243 push(obj); // save holder 244 allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, alloc_failed); 245 246 // Have an oop instance buffer, copy into it 247 payload_address(obj, dst_temp, field_klass); // danger, uses rscratch1 248 pop(alloc_temp); // restore holder 249 lea(src, Address(alloc_temp, field_offset)); 250 // call_VM_leaf, clobbers a few regs, save restore new obj 251 push(obj); 252 flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info); 253 pop(obj); 254 b(done); 255 256 bind(alloc_failed); 257 pop(obj); 258 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 259 obj, entry); 260 261 bind(done); 262 membar(Assembler::StoreStore); 263 } 264 265 // Load object from cpool->resolved_references(index) 266 void InterpreterMacroAssembler::load_resolved_reference_at_index( 267 Register result, Register index, Register tmp) { 268 assert_different_registers(result, index); 269 270 get_constant_pool(result); 271 // load pointer for resolved_references[] objArray 272 ldr(result, Address(result, ConstantPool::cache_offset())); 273 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 274 resolve_oop_handle(result, tmp, rscratch2); 275 // Add in the index 276 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 277 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 278 } 279 280 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 281 Register cpool, Register index, Register klass, Register temp) { 282 add(temp, cpool, index, LSL, LogBytesPerWord); 283 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 284 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 285 add(klass, klass, temp, LSL, LogBytesPerWord); 286 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 287 } 288 289 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 290 // subtype of super_klass. 291 // 292 // Args: 293 // r0: superklass 294 // Rsub_klass: subklass 295 // 296 // Kills: 297 // r2, r5 298 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 299 Label& ok_is_subtype, 300 bool profile) { 301 assert(Rsub_klass != r0, "r0 holds superklass"); 302 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 303 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 304 305 // Profile the not-null value's klass. 306 if (profile) { 307 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 308 } 309 310 // Do the check. 311 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 312 } 313 314 // Java Expression Stack 315 316 void InterpreterMacroAssembler::pop_ptr(Register r) { 317 ldr(r, post(esp, wordSize)); 318 } 319 320 void InterpreterMacroAssembler::pop_i(Register r) { 321 ldrw(r, post(esp, wordSize)); 322 } 323 324 void InterpreterMacroAssembler::pop_l(Register r) { 325 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 326 } 327 328 void InterpreterMacroAssembler::push_ptr(Register r) { 329 str(r, pre(esp, -wordSize)); 330 } 331 332 void InterpreterMacroAssembler::push_i(Register r) { 333 str(r, pre(esp, -wordSize)); 334 } 335 336 void InterpreterMacroAssembler::push_l(Register r) { 337 str(zr, pre(esp, -wordSize)); 338 str(r, pre(esp, - wordSize)); 339 } 340 341 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 342 ldrs(r, post(esp, wordSize)); 343 } 344 345 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 346 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 347 } 348 349 void InterpreterMacroAssembler::push_f(FloatRegister r) { 350 strs(r, pre(esp, -wordSize)); 351 } 352 353 void InterpreterMacroAssembler::push_d(FloatRegister r) { 354 strd(r, pre(esp, 2* -wordSize)); 355 } 356 357 void InterpreterMacroAssembler::pop(TosState state) { 358 switch (state) { 359 case atos: pop_ptr(); break; 360 case btos: 361 case ztos: 362 case ctos: 363 case stos: 364 case itos: pop_i(); break; 365 case ltos: pop_l(); break; 366 case ftos: pop_f(); break; 367 case dtos: pop_d(); break; 368 case vtos: /* nothing to do */ break; 369 default: ShouldNotReachHere(); 370 } 371 interp_verify_oop(r0, state); 372 } 373 374 void InterpreterMacroAssembler::push(TosState state) { 375 interp_verify_oop(r0, state); 376 switch (state) { 377 case atos: push_ptr(); break; 378 case btos: 379 case ztos: 380 case ctos: 381 case stos: 382 case itos: push_i(); break; 383 case ltos: push_l(); break; 384 case ftos: push_f(); break; 385 case dtos: push_d(); break; 386 case vtos: /* nothing to do */ break; 387 default : ShouldNotReachHere(); 388 } 389 } 390 391 // Helpers for swap and dup 392 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 393 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 394 } 395 396 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 397 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 398 } 399 400 void InterpreterMacroAssembler::load_float(Address src) { 401 ldrs(v0, src); 402 } 403 404 void InterpreterMacroAssembler::load_double(Address src) { 405 ldrd(v0, src); 406 } 407 408 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 409 // set sender sp 410 mov(r19_sender_sp, sp); 411 // record last_sp 412 sub(rscratch1, esp, rfp); 413 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 414 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 415 } 416 417 // Jump to from_interpreted entry of a call unless single stepping is possible 418 // in this thread in which case we must call the i2i entry 419 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 420 prepare_to_jump_from_interpreted(); 421 422 if (JvmtiExport::can_post_interpreter_events()) { 423 Label run_compiled_code; 424 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 425 // compiled code in threads for which the event is enabled. Check here for 426 // interp_only_mode if these events CAN be enabled. 427 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 428 cbzw(rscratch1, run_compiled_code); 429 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 430 br(rscratch1); 431 bind(run_compiled_code); 432 } 433 434 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 435 br(rscratch1); 436 } 437 438 // The following two routines provide a hook so that an implementation 439 // can schedule the dispatch in two parts. amd64 does not do this. 440 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 441 } 442 443 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 444 dispatch_next(state, step); 445 } 446 447 void InterpreterMacroAssembler::dispatch_base(TosState state, 448 address* table, 449 bool verifyoop, 450 bool generate_poll) { 451 if (VerifyActivationFrameSize) { 452 Label L; 453 sub(rscratch2, rfp, esp); 454 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 455 subs(rscratch2, rscratch2, min_frame_size); 456 br(Assembler::GE, L); 457 stop("broken stack frame"); 458 bind(L); 459 } 460 if (verifyoop) { 461 interp_verify_oop(r0, state); 462 } 463 464 Label safepoint; 465 address* const safepoint_table = Interpreter::safept_table(state); 466 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 467 468 if (needs_thread_local_poll) { 469 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 470 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 471 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 472 } 473 474 if (table == Interpreter::dispatch_table(state)) { 475 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 476 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 477 } else { 478 mov(rscratch2, (address)table); 479 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 480 } 481 br(rscratch2); 482 483 if (needs_thread_local_poll) { 484 bind(safepoint); 485 lea(rscratch2, ExternalAddress((address)safepoint_table)); 486 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 487 br(rscratch2); 488 } 489 } 490 491 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 492 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 493 } 494 495 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 496 dispatch_base(state, Interpreter::normal_table(state)); 497 } 498 499 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 500 dispatch_base(state, Interpreter::normal_table(state), false); 501 } 502 503 504 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 505 // load next bytecode 506 ldrb(rscratch1, Address(pre(rbcp, step))); 507 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 508 } 509 510 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 511 // load current bytecode 512 ldrb(rscratch1, Address(rbcp, 0)); 513 dispatch_base(state, table); 514 } 515 516 // remove activation 517 // 518 // Apply stack watermark barrier. 519 // Unlock the receiver if this is a synchronized method. 520 // Unlock any Java monitors from synchronized blocks. 521 // Remove the activation from the stack. 522 // 523 // If there are locked Java monitors 524 // If throw_monitor_exception 525 // throws IllegalMonitorStateException 526 // Else if install_monitor_exception 527 // installs IllegalMonitorStateException 528 // Else 529 // no error processing 530 void InterpreterMacroAssembler::remove_activation( 531 TosState state, 532 bool throw_monitor_exception, 533 bool install_monitor_exception, 534 bool notify_jvmdi) { 535 // Note: Registers r3 xmm0 may be in use for the 536 // result check if synchronized method 537 Label unlocked, unlock, no_unlock; 538 539 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 540 // that would normally not be safe to use. Such bad returns into unsafe territory of 541 // the stack, will call InterpreterRuntime::at_unwind. 542 Label slow_path; 543 Label fast_path; 544 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 545 br(Assembler::AL, fast_path); 546 bind(slow_path); 547 push(state); 548 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 549 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 550 reset_last_Java_frame(true); 551 pop(state); 552 bind(fast_path); 553 554 // get the value of _do_not_unlock_if_synchronized into r3 555 const Address do_not_unlock_if_synchronized(rthread, 556 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 557 ldrb(r3, do_not_unlock_if_synchronized); 558 strb(zr, do_not_unlock_if_synchronized); // reset the flag 559 560 // get method access flags 561 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 562 ldrh(r2, Address(r1, Method::access_flags_offset())); 563 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 564 565 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 566 // is set. 567 cbnz(r3, no_unlock); 568 569 // unlock monitor 570 push(state); // save result 571 572 // BasicObjectLock will be first in list, since this is a 573 // synchronized method. However, need to check that the object has 574 // not been unlocked by an explicit monitorexit bytecode. 575 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 576 wordSize - (int) sizeof(BasicObjectLock)); 577 // We use c_rarg1 so that if we go slow path it will be the correct 578 // register for unlock_object to pass to VM directly 579 lea(c_rarg1, monitor); // address of first monitor 580 581 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 582 cbnz(r0, unlock); 583 584 pop(state); 585 if (throw_monitor_exception) { 586 // Entry already unlocked, need to throw exception 587 call_VM(noreg, CAST_FROM_FN_PTR(address, 588 InterpreterRuntime::throw_illegal_monitor_state_exception)); 589 should_not_reach_here(); 590 } else { 591 // Monitor already unlocked during a stack unroll. If requested, 592 // install an illegal_monitor_state_exception. Continue with 593 // stack unrolling. 594 if (install_monitor_exception) { 595 call_VM(noreg, CAST_FROM_FN_PTR(address, 596 InterpreterRuntime::new_illegal_monitor_state_exception)); 597 } 598 b(unlocked); 599 } 600 601 bind(unlock); 602 unlock_object(c_rarg1); 603 pop(state); 604 605 // Check that for block-structured locking (i.e., that all locked 606 // objects has been unlocked) 607 bind(unlocked); 608 609 // r0: Might contain return value 610 611 // Check that all monitors are unlocked 612 { 613 Label loop, exception, entry, restart; 614 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 615 const Address monitor_block_top( 616 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 617 const Address monitor_block_bot( 618 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 619 620 bind(restart); 621 // We use c_rarg1 so that if we go slow path it will be the correct 622 // register for unlock_object to pass to VM directly 623 ldr(c_rarg1, monitor_block_top); // derelativize pointer 624 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 625 // c_rarg1 points to current entry, starting with top-most entry 626 627 lea(r19, monitor_block_bot); // points to word before bottom of 628 // monitor block 629 b(entry); 630 631 // Entry already locked, need to throw exception 632 bind(exception); 633 634 if (throw_monitor_exception) { 635 // Throw exception 636 MacroAssembler::call_VM(noreg, 637 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 638 throw_illegal_monitor_state_exception)); 639 should_not_reach_here(); 640 } else { 641 // Stack unrolling. Unlock object and install illegal_monitor_exception. 642 // Unlock does not block, so don't have to worry about the frame. 643 // We don't have to preserve c_rarg1 since we are going to throw an exception. 644 645 push(state); 646 unlock_object(c_rarg1); 647 pop(state); 648 649 if (install_monitor_exception) { 650 call_VM(noreg, CAST_FROM_FN_PTR(address, 651 InterpreterRuntime:: 652 new_illegal_monitor_state_exception)); 653 } 654 655 b(restart); 656 } 657 658 bind(loop); 659 // check if current entry is used 660 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 661 cbnz(rscratch1, exception); 662 663 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 664 bind(entry); 665 cmp(c_rarg1, r19); // check if bottom reached 666 br(Assembler::NE, loop); // if not at bottom then check this entry 667 } 668 669 bind(no_unlock); 670 671 // jvmti support 672 if (notify_jvmdi) { 673 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 674 } else { 675 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 676 } 677 678 // remove activation 679 // get sender esp 680 ldr(rscratch2, 681 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 682 683 if (StackReservedPages > 0) { 684 // testing if reserved zone needs to be re-enabled 685 Label no_reserved_zone_enabling; 686 687 // check if already enabled - if so no re-enabling needed 688 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 689 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 690 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 691 br(Assembler::EQ, no_reserved_zone_enabling); 692 693 // look for an overflow into the stack reserved zone, i.e. 694 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 695 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 696 cmp(rscratch2, rscratch1); 697 br(Assembler::LS, no_reserved_zone_enabling); 698 699 call_VM_leaf( 700 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 701 call_VM(noreg, CAST_FROM_FN_PTR(address, 702 InterpreterRuntime::throw_delayed_StackOverflowError)); 703 should_not_reach_here(); 704 705 bind(no_reserved_zone_enabling); 706 } 707 708 if (state == atos && InlineTypeReturnedAsFields) { 709 // Check if we are returning an non-null inline type and load its fields into registers 710 Label skip; 711 test_oop_is_not_inline_type(r0, rscratch2, skip); 712 713 // Load fields from a buffered value with an inline class specific handler 714 load_klass(rscratch1 /*dst*/, r0 /*src*/); 715 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 716 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 717 // Unpack handler can be null if inline type is not scalarizable in returns 718 cbz(rscratch1, skip); 719 720 blr(rscratch1); 721 #ifdef ASSERT 722 // TODO 8284443 Enable 723 if (StressCallingConvention && false) { 724 Label skip_stress; 725 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 726 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 727 tstw(rscratch1, MethodFlags::has_scalarized_return_flag()); 728 br(Assembler::EQ, skip_stress); 729 load_klass(r0, r0); 730 orr(r0, r0, 1); 731 bind(skip_stress); 732 } 733 #endif 734 bind(skip); 735 // Check above kills sender esp in rscratch2. Reload it. 736 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 737 } 738 739 // restore sender esp 740 mov(esp, rscratch2); 741 // remove frame anchor 742 leave(); 743 // If we're returning to interpreted code we will shortly be 744 // adjusting SP to allow some space for ESP. If we're returning to 745 // compiled code the saved sender SP was saved in sender_sp, so this 746 // restores it. 747 andr(sp, esp, -16); 748 } 749 750 // Lock object 751 // 752 // Args: 753 // c_rarg1: BasicObjectLock to be used for locking 754 // 755 // Kills: 756 // r0 757 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 758 // rscratch1, rscratch2 (scratch regs) 759 void InterpreterMacroAssembler::lock_object(Register lock_reg) 760 { 761 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 762 if (LockingMode == LM_MONITOR) { 763 call_VM_preemptable(noreg, 764 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 765 lock_reg); 766 } else { 767 Label count, done; 768 769 const Register swap_reg = r0; 770 const Register tmp = c_rarg2; 771 const Register obj_reg = c_rarg3; // Will contain the oop 772 const Register tmp2 = c_rarg4; 773 const Register tmp3 = c_rarg5; 774 775 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 776 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 777 const int mark_offset = lock_offset + 778 BasicLock::displaced_header_offset_in_bytes(); 779 780 Label slow_case; 781 782 // Load object pointer into obj_reg %c_rarg3 783 ldr(obj_reg, Address(lock_reg, obj_offset)); 784 785 if (DiagnoseSyncOnValueBasedClasses != 0) { 786 load_klass(tmp, obj_reg); 787 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 788 tst(tmp, KlassFlags::_misc_is_value_based_class); 789 br(Assembler::NE, slow_case); 790 } 791 792 if (LockingMode == LM_LIGHTWEIGHT) { 793 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 794 b(done); 795 } else if (LockingMode == LM_LEGACY) { 796 // Load (object->mark() | 1) into swap_reg 797 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 798 orr(swap_reg, rscratch1, 1); 799 if (EnableValhalla) { 800 // Mask inline_type bit such that we go to the slow path if object is an inline type 801 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 802 } 803 804 // Save (object->mark() | 1) into BasicLock's displaced header 805 str(swap_reg, Address(lock_reg, mark_offset)); 806 807 assert(lock_offset == 0, 808 "displached header must be first word in BasicObjectLock"); 809 810 Label fail; 811 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 812 813 // Fast check for recursive lock. 814 // 815 // Can apply the optimization only if this is a stack lock 816 // allocated in this thread. For efficiency, we can focus on 817 // recently allocated stack locks (instead of reading the stack 818 // base and checking whether 'mark' points inside the current 819 // thread stack): 820 // 1) (mark & 7) == 0, and 821 // 2) sp <= mark < mark + os::pagesize() 822 // 823 // Warning: sp + os::pagesize can overflow the stack base. We must 824 // neither apply the optimization for an inflated lock allocated 825 // just above the thread stack (this is why condition 1 matters) 826 // nor apply the optimization if the stack lock is inside the stack 827 // of another thread. The latter is avoided even in case of overflow 828 // because we have guard pages at the end of all stacks. Hence, if 829 // we go over the stack base and hit the stack of another thread, 830 // this should not be in a writeable area that could contain a 831 // stack lock allocated by that thread. As a consequence, a stack 832 // lock less than page size away from sp is guaranteed to be 833 // owned by the current thread. 834 // 835 // These 3 tests can be done by evaluating the following 836 // expression: ((mark - sp) & (7 - os::vm_page_size())), 837 // assuming both stack pointer and pagesize have their 838 // least significant 3 bits clear. 839 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 840 // NOTE2: aarch64 does not like to subtract sp from rn so take a 841 // copy 842 mov(rscratch1, sp); 843 sub(swap_reg, swap_reg, rscratch1); 844 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 845 846 // Save the test result, for recursive case, the result is zero 847 str(swap_reg, Address(lock_reg, mark_offset)); 848 br(Assembler::NE, slow_case); 849 850 bind(count); 851 inc_held_monitor_count(rscratch1); 852 b(done); 853 } 854 bind(slow_case); 855 856 // Call the runtime routine for slow case 857 call_VM_preemptable(noreg, 858 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 859 lock_reg); 860 861 bind(done); 862 } 863 } 864 865 866 // Unlocks an object. Used in monitorexit bytecode and 867 // remove_activation. Throws an IllegalMonitorException if object is 868 // not locked by current thread. 869 // 870 // Args: 871 // c_rarg1: BasicObjectLock for lock 872 // 873 // Kills: 874 // r0 875 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 876 // rscratch1, rscratch2 (scratch regs) 877 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 878 { 879 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 880 881 if (LockingMode == LM_MONITOR) { 882 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 883 } else { 884 Label count, done; 885 886 const Register swap_reg = r0; 887 const Register header_reg = c_rarg2; // Will contain the old oopMark 888 const Register obj_reg = c_rarg3; // Will contain the oop 889 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 890 891 save_bcp(); // Save in case of exception 892 893 if (LockingMode != LM_LIGHTWEIGHT) { 894 // Convert from BasicObjectLock structure to object and BasicLock 895 // structure Store the BasicLock address into %r0 896 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 897 } 898 899 // Load oop into obj_reg(%c_rarg3) 900 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 901 902 // Free entry 903 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 904 905 Label slow_case; 906 if (LockingMode == LM_LIGHTWEIGHT) { 907 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 908 b(done); 909 } else if (LockingMode == LM_LEGACY) { 910 // Load the old header from BasicLock structure 911 ldr(header_reg, Address(swap_reg, 912 BasicLock::displaced_header_offset_in_bytes())); 913 914 // Test for recursion 915 cbz(header_reg, count); 916 917 // Atomic swap back the old header 918 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 919 920 bind(count); 921 dec_held_monitor_count(rscratch1); 922 b(done); 923 } 924 925 bind(slow_case); 926 // Call the runtime routine for slow case. 927 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 928 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 929 bind(done); 930 restore_bcp(); 931 } 932 } 933 934 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 935 Label& zero_continue) { 936 assert(ProfileInterpreter, "must be profiling interpreter"); 937 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 938 cbz(mdp, zero_continue); 939 } 940 941 // Set the method data pointer for the current bcp. 942 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 943 assert(ProfileInterpreter, "must be profiling interpreter"); 944 Label set_mdp; 945 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 946 947 // Test MDO to avoid the call if it is null. 948 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 949 cbz(r0, set_mdp); 950 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 951 // r0: mdi 952 // mdo is guaranteed to be non-zero here, we checked for it before the call. 953 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 954 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 955 add(r0, r1, r0); 956 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 957 bind(set_mdp); 958 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 959 } 960 961 void InterpreterMacroAssembler::verify_method_data_pointer() { 962 assert(ProfileInterpreter, "must be profiling interpreter"); 963 #ifdef ASSERT 964 Label verify_continue; 965 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 966 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 967 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 968 get_method(r1); 969 970 // If the mdp is valid, it will point to a DataLayout header which is 971 // consistent with the bcp. The converse is highly probable also. 972 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 973 ldr(rscratch1, Address(r1, Method::const_offset())); 974 add(r2, r2, rscratch1, Assembler::LSL); 975 lea(r2, Address(r2, ConstMethod::codes_offset())); 976 cmp(r2, rbcp); 977 br(Assembler::EQ, verify_continue); 978 // r1: method 979 // rbcp: bcp // rbcp == 22 980 // r3: mdp 981 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 982 r1, rbcp, r3); 983 bind(verify_continue); 984 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 985 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 986 #endif // ASSERT 987 } 988 989 990 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 991 int constant, 992 Register value) { 993 assert(ProfileInterpreter, "must be profiling interpreter"); 994 Address data(mdp_in, constant); 995 str(value, data); 996 } 997 998 999 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1000 int constant, 1001 bool decrement) { 1002 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1003 } 1004 1005 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1006 Register reg, 1007 int constant, 1008 bool decrement) { 1009 assert(ProfileInterpreter, "must be profiling interpreter"); 1010 // %%% this does 64bit counters at best it is wasting space 1011 // at worst it is a rare bug when counters overflow 1012 1013 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1014 1015 Address addr1(mdp_in, constant); 1016 Address addr2(rscratch2, reg, Address::lsl(0)); 1017 Address &addr = addr1; 1018 if (reg != noreg) { 1019 lea(rscratch2, addr1); 1020 addr = addr2; 1021 } 1022 1023 if (decrement) { 1024 // Decrement the register. Set condition codes. 1025 // Intel does this 1026 // addptr(data, (int32_t) -DataLayout::counter_increment); 1027 // If the decrement causes the counter to overflow, stay negative 1028 // Label L; 1029 // jcc(Assembler::negative, L); 1030 // addptr(data, (int32_t) DataLayout::counter_increment); 1031 // so we do this 1032 ldr(rscratch1, addr); 1033 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1034 Label L; 1035 br(Assembler::LO, L); // skip store if counter underflow 1036 str(rscratch1, addr); 1037 bind(L); 1038 } else { 1039 assert(DataLayout::counter_increment == 1, 1040 "flow-free idiom only works with 1"); 1041 // Intel does this 1042 // Increment the register. Set carry flag. 1043 // addptr(data, DataLayout::counter_increment); 1044 // If the increment causes the counter to overflow, pull back by 1. 1045 // sbbptr(data, (int32_t)0); 1046 // so we do this 1047 ldr(rscratch1, addr); 1048 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1049 Label L; 1050 br(Assembler::CS, L); // skip store if counter overflow 1051 str(rscratch1, addr); 1052 bind(L); 1053 } 1054 } 1055 1056 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1057 int flag_byte_constant) { 1058 assert(ProfileInterpreter, "must be profiling interpreter"); 1059 int flags_offset = in_bytes(DataLayout::flags_offset()); 1060 // Set the flag 1061 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1062 orr(rscratch1, rscratch1, flag_byte_constant); 1063 strb(rscratch1, Address(mdp_in, flags_offset)); 1064 } 1065 1066 1067 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1068 int offset, 1069 Register value, 1070 Register test_value_out, 1071 Label& not_equal_continue) { 1072 assert(ProfileInterpreter, "must be profiling interpreter"); 1073 if (test_value_out == noreg) { 1074 ldr(rscratch1, Address(mdp_in, offset)); 1075 cmp(value, rscratch1); 1076 } else { 1077 // Put the test value into a register, so caller can use it: 1078 ldr(test_value_out, Address(mdp_in, offset)); 1079 cmp(value, test_value_out); 1080 } 1081 br(Assembler::NE, not_equal_continue); 1082 } 1083 1084 1085 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1086 int offset_of_disp) { 1087 assert(ProfileInterpreter, "must be profiling interpreter"); 1088 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1089 add(mdp_in, mdp_in, rscratch1, LSL); 1090 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1091 } 1092 1093 1094 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1095 Register reg, 1096 int offset_of_disp) { 1097 assert(ProfileInterpreter, "must be profiling interpreter"); 1098 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1099 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1100 add(mdp_in, mdp_in, rscratch1, LSL); 1101 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1102 } 1103 1104 1105 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1106 int constant) { 1107 assert(ProfileInterpreter, "must be profiling interpreter"); 1108 add(mdp_in, mdp_in, (unsigned)constant); 1109 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1110 } 1111 1112 1113 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1114 assert(ProfileInterpreter, "must be profiling interpreter"); 1115 // save/restore across call_VM 1116 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1117 call_VM(noreg, 1118 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1119 return_bci); 1120 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1121 } 1122 1123 1124 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1125 Register bumped_count) { 1126 if (ProfileInterpreter) { 1127 Label profile_continue; 1128 1129 // If no method data exists, go to profile_continue. 1130 // Otherwise, assign to mdp 1131 test_method_data_pointer(mdp, profile_continue); 1132 1133 // We are taking a branch. Increment the taken count. 1134 // We inline increment_mdp_data_at to return bumped_count in a register 1135 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1136 Address data(mdp, in_bytes(JumpData::taken_offset())); 1137 ldr(bumped_count, data); 1138 assert(DataLayout::counter_increment == 1, 1139 "flow-free idiom only works with 1"); 1140 // Intel does this to catch overflow 1141 // addptr(bumped_count, DataLayout::counter_increment); 1142 // sbbptr(bumped_count, 0); 1143 // so we do this 1144 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1145 Label L; 1146 br(Assembler::CS, L); // skip store if counter overflow 1147 str(bumped_count, data); 1148 bind(L); 1149 // The method data pointer needs to be updated to reflect the new target. 1150 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1151 bind(profile_continue); 1152 } 1153 } 1154 1155 1156 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1157 if (ProfileInterpreter) { 1158 Label profile_continue; 1159 1160 // If no method data exists, go to profile_continue. 1161 test_method_data_pointer(mdp, profile_continue); 1162 1163 // We are taking a branch. Increment the not taken count. 1164 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1165 1166 // The method data pointer needs to be updated to correspond to 1167 // the next bytecode 1168 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1169 bind(profile_continue); 1170 } 1171 } 1172 1173 1174 void InterpreterMacroAssembler::profile_call(Register mdp) { 1175 if (ProfileInterpreter) { 1176 Label profile_continue; 1177 1178 // If no method data exists, go to profile_continue. 1179 test_method_data_pointer(mdp, profile_continue); 1180 1181 // We are making a call. Increment the count. 1182 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1183 1184 // The method data pointer needs to be updated to reflect the new target. 1185 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1186 bind(profile_continue); 1187 } 1188 } 1189 1190 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1191 if (ProfileInterpreter) { 1192 Label profile_continue; 1193 1194 // If no method data exists, go to profile_continue. 1195 test_method_data_pointer(mdp, profile_continue); 1196 1197 // We are making a call. Increment the count. 1198 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1199 1200 // The method data pointer needs to be updated to reflect the new target. 1201 update_mdp_by_constant(mdp, 1202 in_bytes(VirtualCallData:: 1203 virtual_call_data_size())); 1204 bind(profile_continue); 1205 } 1206 } 1207 1208 1209 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1210 Register mdp, 1211 Register reg2, 1212 bool receiver_can_be_null) { 1213 if (ProfileInterpreter) { 1214 Label profile_continue; 1215 1216 // If no method data exists, go to profile_continue. 1217 test_method_data_pointer(mdp, profile_continue); 1218 1219 Label skip_receiver_profile; 1220 if (receiver_can_be_null) { 1221 Label not_null; 1222 // We are making a call. Increment the count for null receiver. 1223 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1224 b(skip_receiver_profile); 1225 bind(not_null); 1226 } 1227 1228 // Record the receiver type. 1229 record_klass_in_profile(receiver, mdp, reg2); 1230 bind(skip_receiver_profile); 1231 1232 // The method data pointer needs to be updated to reflect the new target. 1233 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1234 bind(profile_continue); 1235 } 1236 } 1237 1238 // This routine creates a state machine for updating the multi-row 1239 // type profile at a virtual call site (or other type-sensitive bytecode). 1240 // The machine visits each row (of receiver/count) until the receiver type 1241 // is found, or until it runs out of rows. At the same time, it remembers 1242 // the location of the first empty row. (An empty row records null for its 1243 // receiver, and can be allocated for a newly-observed receiver type.) 1244 // Because there are two degrees of freedom in the state, a simple linear 1245 // search will not work; it must be a decision tree. Hence this helper 1246 // function is recursive, to generate the required tree structured code. 1247 // It's the interpreter, so we are trading off code space for speed. 1248 // See below for example code. 1249 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1250 Register receiver, Register mdp, 1251 Register reg2, int start_row, 1252 Label& done) { 1253 if (TypeProfileWidth == 0) { 1254 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1255 } else { 1256 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1257 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1258 } 1259 } 1260 1261 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1262 Register reg2, int start_row, Label& done, int total_rows, 1263 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1264 int last_row = total_rows - 1; 1265 assert(start_row <= last_row, "must be work left to do"); 1266 // Test this row for both the item and for null. 1267 // Take any of three different outcomes: 1268 // 1. found item => increment count and goto done 1269 // 2. found null => keep looking for case 1, maybe allocate this cell 1270 // 3. found something else => keep looking for cases 1 and 2 1271 // Case 3 is handled by a recursive call. 1272 for (int row = start_row; row <= last_row; row++) { 1273 Label next_test; 1274 bool test_for_null_also = (row == start_row); 1275 1276 // See if the item is item[n]. 1277 int item_offset = in_bytes(item_offset_fn(row)); 1278 test_mdp_data_at(mdp, item_offset, item, 1279 (test_for_null_also ? reg2 : noreg), 1280 next_test); 1281 // (Reg2 now contains the item from the CallData.) 1282 1283 // The item is item[n]. Increment count[n]. 1284 int count_offset = in_bytes(item_count_offset_fn(row)); 1285 increment_mdp_data_at(mdp, count_offset); 1286 b(done); 1287 bind(next_test); 1288 1289 if (test_for_null_also) { 1290 Label found_null; 1291 // Failed the equality check on item[n]... Test for null. 1292 if (start_row == last_row) { 1293 // The only thing left to do is handle the null case. 1294 cbz(reg2, found_null); 1295 // Item did not match any saved item and there is no empty row for it. 1296 // Increment total counter to indicate polymorphic case. 1297 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1298 b(done); 1299 bind(found_null); 1300 break; 1301 } 1302 // Since null is rare, make it be the branch-taken case. 1303 cbz(reg2, found_null); 1304 1305 // Put all the "Case 3" tests here. 1306 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1307 item_offset_fn, item_count_offset_fn); 1308 1309 // Found a null. Keep searching for a matching item, 1310 // but remember that this is an empty (unused) slot. 1311 bind(found_null); 1312 } 1313 } 1314 1315 // In the fall-through case, we found no matching item, but we 1316 // observed the item[start_row] is null. 1317 1318 // Fill in the item field and increment the count. 1319 int item_offset = in_bytes(item_offset_fn(start_row)); 1320 set_mdp_data_at(mdp, item_offset, item); 1321 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1322 mov(reg2, DataLayout::counter_increment); 1323 set_mdp_data_at(mdp, count_offset, reg2); 1324 if (start_row > 0) { 1325 b(done); 1326 } 1327 } 1328 1329 // Example state machine code for three profile rows: 1330 // // main copy of decision tree, rooted at row[1] 1331 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1332 // if (row[0].rec != nullptr) { 1333 // // inner copy of decision tree, rooted at row[1] 1334 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1335 // if (row[1].rec != nullptr) { 1336 // // degenerate decision tree, rooted at row[2] 1337 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1338 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1339 // row[2].init(rec); goto done; 1340 // } else { 1341 // // remember row[1] is empty 1342 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1343 // row[1].init(rec); goto done; 1344 // } 1345 // } else { 1346 // // remember row[0] is empty 1347 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1348 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1349 // row[0].init(rec); goto done; 1350 // } 1351 // done: 1352 1353 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1354 Register mdp, Register reg2) { 1355 assert(ProfileInterpreter, "must be profiling"); 1356 Label done; 1357 1358 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1359 1360 bind (done); 1361 } 1362 1363 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1364 Register mdp) { 1365 if (ProfileInterpreter) { 1366 Label profile_continue; 1367 uint row; 1368 1369 // If no method data exists, go to profile_continue. 1370 test_method_data_pointer(mdp, profile_continue); 1371 1372 // Update the total ret count. 1373 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1374 1375 for (row = 0; row < RetData::row_limit(); row++) { 1376 Label next_test; 1377 1378 // See if return_bci is equal to bci[n]: 1379 test_mdp_data_at(mdp, 1380 in_bytes(RetData::bci_offset(row)), 1381 return_bci, noreg, 1382 next_test); 1383 1384 // return_bci is equal to bci[n]. Increment the count. 1385 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1386 1387 // The method data pointer needs to be updated to reflect the new target. 1388 update_mdp_by_offset(mdp, 1389 in_bytes(RetData::bci_displacement_offset(row))); 1390 b(profile_continue); 1391 bind(next_test); 1392 } 1393 1394 update_mdp_for_ret(return_bci); 1395 1396 bind(profile_continue); 1397 } 1398 } 1399 1400 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1401 if (ProfileInterpreter) { 1402 Label profile_continue; 1403 1404 // If no method data exists, go to profile_continue. 1405 test_method_data_pointer(mdp, profile_continue); 1406 1407 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1408 1409 // The method data pointer needs to be updated. 1410 int mdp_delta = in_bytes(BitData::bit_data_size()); 1411 if (TypeProfileCasts) { 1412 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1413 } 1414 update_mdp_by_constant(mdp, mdp_delta); 1415 1416 bind(profile_continue); 1417 } 1418 } 1419 1420 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1421 if (ProfileInterpreter) { 1422 Label profile_continue; 1423 1424 // If no method data exists, go to profile_continue. 1425 test_method_data_pointer(mdp, profile_continue); 1426 1427 // The method data pointer needs to be updated. 1428 int mdp_delta = in_bytes(BitData::bit_data_size()); 1429 if (TypeProfileCasts) { 1430 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1431 1432 // Record the object type. 1433 record_klass_in_profile(klass, mdp, reg2); 1434 } 1435 update_mdp_by_constant(mdp, mdp_delta); 1436 1437 bind(profile_continue); 1438 } 1439 } 1440 1441 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1442 if (ProfileInterpreter) { 1443 Label profile_continue; 1444 1445 // If no method data exists, go to profile_continue. 1446 test_method_data_pointer(mdp, profile_continue); 1447 1448 // Update the default case count 1449 increment_mdp_data_at(mdp, 1450 in_bytes(MultiBranchData::default_count_offset())); 1451 1452 // The method data pointer needs to be updated. 1453 update_mdp_by_offset(mdp, 1454 in_bytes(MultiBranchData:: 1455 default_displacement_offset())); 1456 1457 bind(profile_continue); 1458 } 1459 } 1460 1461 void InterpreterMacroAssembler::profile_switch_case(Register index, 1462 Register mdp, 1463 Register reg2) { 1464 if (ProfileInterpreter) { 1465 Label profile_continue; 1466 1467 // If no method data exists, go to profile_continue. 1468 test_method_data_pointer(mdp, profile_continue); 1469 1470 // Build the base (index * per_case_size_in_bytes()) + 1471 // case_array_offset_in_bytes() 1472 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1473 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1474 Assembler::maddw(index, index, reg2, rscratch1); 1475 1476 // Update the case count 1477 increment_mdp_data_at(mdp, 1478 index, 1479 in_bytes(MultiBranchData::relative_count_offset())); 1480 1481 // The method data pointer needs to be updated. 1482 update_mdp_by_offset(mdp, 1483 index, 1484 in_bytes(MultiBranchData:: 1485 relative_displacement_offset())); 1486 1487 bind(profile_continue); 1488 } 1489 } 1490 1491 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1492 Register array, 1493 Register tmp) { 1494 if (ProfileInterpreter) { 1495 Label profile_continue; 1496 1497 // If no method data exists, go to profile_continue. 1498 test_method_data_pointer(mdp, profile_continue); 1499 1500 mov(tmp, array); 1501 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1502 1503 Label not_flat; 1504 test_non_flat_array_oop(array, tmp, not_flat); 1505 1506 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1507 1508 bind(not_flat); 1509 1510 Label not_null_free; 1511 test_non_null_free_array_oop(array, tmp, not_null_free); 1512 1513 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1514 1515 bind(not_null_free); 1516 1517 bind(profile_continue); 1518 } 1519 } 1520 1521 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1522 Register array, 1523 Register tmp); 1524 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1525 Register array, 1526 Register tmp); 1527 1528 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1529 if (ProfileInterpreter) { 1530 Label profile_continue; 1531 1532 // If no method data exists, go to profile_continue. 1533 test_method_data_pointer(mdp, profile_continue); 1534 1535 Label done, update; 1536 cbnz(element, update); 1537 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1538 b(done); 1539 1540 bind(update); 1541 load_klass(tmp, element); 1542 1543 // Record the object type. 1544 record_klass_in_profile(tmp, mdp, tmp2); 1545 1546 bind(done); 1547 1548 // The method data pointer needs to be updated. 1549 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1550 1551 bind(profile_continue); 1552 } 1553 } 1554 1555 1556 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1557 Register element, 1558 Register tmp) { 1559 if (ProfileInterpreter) { 1560 Label profile_continue; 1561 1562 // If no method data exists, go to profile_continue. 1563 test_method_data_pointer(mdp, profile_continue); 1564 1565 mov(tmp, element); 1566 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1567 1568 // The method data pointer needs to be updated. 1569 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1570 1571 bind(profile_continue); 1572 } 1573 } 1574 1575 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1576 Register left, 1577 Register right, 1578 Register tmp) { 1579 if (ProfileInterpreter) { 1580 Label profile_continue; 1581 1582 // If no method data exists, go to profile_continue. 1583 test_method_data_pointer(mdp, profile_continue); 1584 1585 mov(tmp, left); 1586 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1587 1588 Label left_not_inline_type; 1589 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1590 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1591 bind(left_not_inline_type); 1592 1593 mov(tmp, right); 1594 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1595 1596 Label right_not_inline_type; 1597 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1598 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1599 bind(right_not_inline_type); 1600 1601 bind(profile_continue); 1602 } 1603 } 1604 1605 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1606 if (state == atos) { 1607 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1608 } 1609 } 1610 1611 void InterpreterMacroAssembler::notify_method_entry() { 1612 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1613 // track stack depth. If it is possible to enter interp_only_mode we add 1614 // the code to check if the event should be sent. 1615 if (JvmtiExport::can_post_interpreter_events()) { 1616 Label L; 1617 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1618 cbzw(r3, L); 1619 call_VM(noreg, CAST_FROM_FN_PTR(address, 1620 InterpreterRuntime::post_method_entry)); 1621 bind(L); 1622 } 1623 1624 if (DTraceMethodProbes) { 1625 get_method(c_rarg1); 1626 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1627 rthread, c_rarg1); 1628 } 1629 1630 // RedefineClasses() tracing support for obsolete method entry 1631 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1632 get_method(c_rarg1); 1633 call_VM_leaf( 1634 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1635 rthread, c_rarg1); 1636 } 1637 1638 } 1639 1640 1641 void InterpreterMacroAssembler::notify_method_exit( 1642 TosState state, NotifyMethodExitMode mode) { 1643 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1644 // track stack depth. If it is possible to enter interp_only_mode we add 1645 // the code to check if the event should be sent. 1646 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1647 Label L; 1648 // Note: frame::interpreter_frame_result has a dependency on how the 1649 // method result is saved across the call to post_method_exit. If this 1650 // is changed then the interpreter_frame_result implementation will 1651 // need to be updated too. 1652 1653 // template interpreter will leave the result on the top of the stack. 1654 push(state); 1655 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1656 cbz(r3, L); 1657 call_VM(noreg, 1658 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1659 bind(L); 1660 pop(state); 1661 } 1662 1663 if (DTraceMethodProbes) { 1664 push(state); 1665 get_method(c_rarg1); 1666 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1667 rthread, c_rarg1); 1668 pop(state); 1669 } 1670 } 1671 1672 1673 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1674 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1675 int increment, Address mask, 1676 Register scratch, Register scratch2, 1677 bool preloaded, Condition cond, 1678 Label* where) { 1679 if (!preloaded) { 1680 ldrw(scratch, counter_addr); 1681 } 1682 add(scratch, scratch, increment); 1683 strw(scratch, counter_addr); 1684 ldrw(scratch2, mask); 1685 ands(scratch, scratch, scratch2); 1686 br(cond, *where); 1687 } 1688 1689 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1690 int number_of_arguments) { 1691 // interpreter specific 1692 // 1693 // Note: No need to save/restore rbcp & rlocals pointer since these 1694 // are callee saved registers and no blocking/ GC can happen 1695 // in leaf calls. 1696 #ifdef ASSERT 1697 { 1698 Label L; 1699 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1700 cbz(rscratch1, L); 1701 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1702 " last_sp != nullptr"); 1703 bind(L); 1704 } 1705 #endif /* ASSERT */ 1706 // super call 1707 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1708 } 1709 1710 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1711 Register java_thread, 1712 Register last_java_sp, 1713 address entry_point, 1714 int number_of_arguments, 1715 bool check_exceptions) { 1716 // interpreter specific 1717 // 1718 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1719 // really make a difference for these runtime calls, since they are 1720 // slow anyway. Btw., bcp must be saved/restored since it may change 1721 // due to GC. 1722 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1723 save_bcp(); 1724 #ifdef ASSERT 1725 { 1726 Label L; 1727 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1728 cbz(rscratch1, L); 1729 stop("InterpreterMacroAssembler::call_VM_base:" 1730 " last_sp != nullptr"); 1731 bind(L); 1732 } 1733 #endif /* ASSERT */ 1734 // super call 1735 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1736 entry_point, number_of_arguments, 1737 check_exceptions); 1738 // interpreter specific 1739 restore_bcp(); 1740 restore_locals(); 1741 } 1742 1743 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1744 address entry_point, 1745 Register arg_1) { 1746 assert(arg_1 == c_rarg1, ""); 1747 Label resume_pc, not_preempted; 1748 1749 #ifdef ASSERT 1750 { 1751 Label L; 1752 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1753 cbz(rscratch1, L); 1754 stop("Should not have alternate return address set"); 1755 bind(L); 1756 } 1757 #endif /* ASSERT */ 1758 1759 // Force freeze slow path. 1760 push_cont_fastpath(); 1761 1762 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1763 adr(rscratch1, resume_pc); 1764 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1765 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1766 1767 pop_cont_fastpath(); 1768 1769 // Check if preempted. 1770 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1771 cbz(rscratch1, not_preempted); 1772 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1773 br(rscratch1); 1774 1775 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1776 bind(resume_pc); 1777 restore_after_resume(false /* is_native */); 1778 1779 bind(not_preempted); 1780 } 1781 1782 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1783 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1784 blr(rscratch1); 1785 if (is_native) { 1786 // On resume we need to set up stack as expected 1787 push(dtos); 1788 push(ltos); 1789 } 1790 } 1791 1792 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1793 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1794 Label update, next, none; 1795 1796 verify_oop(obj); 1797 1798 cbnz(obj, update); 1799 orptr(mdo_addr, TypeEntries::null_seen); 1800 b(next); 1801 1802 bind(update); 1803 load_klass(obj, obj); 1804 1805 ldr(rscratch1, mdo_addr); 1806 eor(obj, obj, rscratch1); 1807 tst(obj, TypeEntries::type_klass_mask); 1808 br(Assembler::EQ, next); // klass seen before, nothing to 1809 // do. The unknown bit may have been 1810 // set already but no need to check. 1811 1812 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1813 // already unknown. Nothing to do anymore. 1814 1815 cbz(rscratch1, none); 1816 cmp(rscratch1, (u1)TypeEntries::null_seen); 1817 br(Assembler::EQ, none); 1818 // There is a chance that the checks above 1819 // fail if another thread has just set the 1820 // profiling to this obj's klass 1821 eor(obj, obj, rscratch1); // get back original value before XOR 1822 ldr(rscratch1, mdo_addr); 1823 eor(obj, obj, rscratch1); 1824 tst(obj, TypeEntries::type_klass_mask); 1825 br(Assembler::EQ, next); 1826 1827 // different than before. Cannot keep accurate profile. 1828 orptr(mdo_addr, TypeEntries::type_unknown); 1829 b(next); 1830 1831 bind(none); 1832 // first time here. Set profile type. 1833 str(obj, mdo_addr); 1834 #ifdef ASSERT 1835 andr(obj, obj, TypeEntries::type_mask); 1836 verify_klass_ptr(obj); 1837 #endif 1838 1839 bind(next); 1840 } 1841 1842 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1843 if (!ProfileInterpreter) { 1844 return; 1845 } 1846 1847 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1848 Label profile_continue; 1849 1850 test_method_data_pointer(mdp, profile_continue); 1851 1852 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1853 1854 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1855 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1856 br(Assembler::NE, profile_continue); 1857 1858 if (MethodData::profile_arguments()) { 1859 Label done; 1860 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1861 1862 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1863 if (i > 0 || MethodData::profile_return()) { 1864 // If return value type is profiled we may have no argument to profile 1865 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1866 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1867 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1868 add(rscratch1, mdp, off_to_args); 1869 br(Assembler::LT, done); 1870 } 1871 ldr(tmp, Address(callee, Method::const_offset())); 1872 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1873 // stack offset o (zero based) from the start of the argument 1874 // list, for n arguments translates into offset n - o - 1 from 1875 // the end of the argument list 1876 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1877 sub(tmp, tmp, rscratch1); 1878 sub(tmp, tmp, 1); 1879 Address arg_addr = argument_address(tmp); 1880 ldr(tmp, arg_addr); 1881 1882 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1883 profile_obj_type(tmp, mdo_arg_addr); 1884 1885 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1886 off_to_args += to_add; 1887 } 1888 1889 if (MethodData::profile_return()) { 1890 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1891 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1892 } 1893 1894 add(rscratch1, mdp, off_to_args); 1895 bind(done); 1896 mov(mdp, rscratch1); 1897 1898 if (MethodData::profile_return()) { 1899 // We're right after the type profile for the last 1900 // argument. tmp is the number of cells left in the 1901 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1902 // if there's a return to profile. 1903 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1904 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1905 } 1906 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1907 } else { 1908 assert(MethodData::profile_return(), "either profile call args or call ret"); 1909 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1910 } 1911 1912 // mdp points right after the end of the 1913 // CallTypeData/VirtualCallTypeData, right after the cells for the 1914 // return value type if there's one 1915 1916 bind(profile_continue); 1917 } 1918 } 1919 1920 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1921 assert_different_registers(mdp, ret, tmp, rbcp); 1922 if (ProfileInterpreter && MethodData::profile_return()) { 1923 Label profile_continue, done; 1924 1925 test_method_data_pointer(mdp, profile_continue); 1926 1927 if (MethodData::profile_return_jsr292_only()) { 1928 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1929 1930 // If we don't profile all invoke bytecodes we must make sure 1931 // it's a bytecode we indeed profile. We can't go back to the 1932 // beginning of the ProfileData we intend to update to check its 1933 // type because we're right after it and we don't known its 1934 // length 1935 Label do_profile; 1936 ldrb(rscratch1, Address(rbcp, 0)); 1937 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1938 br(Assembler::EQ, do_profile); 1939 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1940 br(Assembler::EQ, do_profile); 1941 get_method(tmp); 1942 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1943 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1944 br(Assembler::NE, profile_continue); 1945 1946 bind(do_profile); 1947 } 1948 1949 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1950 mov(tmp, ret); 1951 profile_obj_type(tmp, mdo_ret_addr); 1952 1953 bind(profile_continue); 1954 } 1955 } 1956 1957 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1958 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1959 if (ProfileInterpreter && MethodData::profile_parameters()) { 1960 Label profile_continue, done; 1961 1962 test_method_data_pointer(mdp, profile_continue); 1963 1964 // Load the offset of the area within the MDO used for 1965 // parameters. If it's negative we're not profiling any parameters 1966 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1967 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1968 1969 // Compute a pointer to the area for parameters from the offset 1970 // and move the pointer to the slot for the last 1971 // parameters. Collect profiling from last parameter down. 1972 // mdo start + parameters offset + array length - 1 1973 add(mdp, mdp, tmp1); 1974 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1975 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1976 1977 Label loop; 1978 bind(loop); 1979 1980 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1981 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1982 int per_arg_scale = exact_log2(DataLayout::cell_size); 1983 add(rscratch1, mdp, off_base); 1984 add(rscratch2, mdp, type_base); 1985 1986 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1987 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1988 1989 // load offset on the stack from the slot for this parameter 1990 ldr(tmp2, arg_off); 1991 neg(tmp2, tmp2); 1992 // read the parameter from the local area 1993 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1994 1995 // profile the parameter 1996 profile_obj_type(tmp2, arg_type); 1997 1998 // go to next parameter 1999 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 2000 br(Assembler::GE, loop); 2001 2002 bind(profile_continue); 2003 } 2004 } 2005 2006 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2007 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 2008 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2009 // Get address of invokedynamic array 2010 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2011 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2012 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 2013 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 2014 lea(cache, Address(cache, index)); 2015 } 2016 2017 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2018 // Get index out of bytecode pointer 2019 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2020 // Take shortcut if the size is a power of 2 2021 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2022 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2023 } else { 2024 mov(cache, sizeof(ResolvedFieldEntry)); 2025 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2026 } 2027 // Get address of field entries array 2028 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 2029 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 2030 lea(cache, Address(cache, index)); 2031 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 2032 membar(MacroAssembler::LoadLoad); 2033 } 2034 2035 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2036 // Get index out of bytecode pointer 2037 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2038 mov(cache, sizeof(ResolvedMethodEntry)); 2039 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2040 2041 // Get address of field entries array 2042 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 2043 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 2044 lea(cache, Address(cache, index)); 2045 }