1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/constMethodFlags.hpp" 37 #include "oops/markWord.hpp" 38 #include "oops/method.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/inlineKlass.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/jvmtiThreadState.hpp" 46 #include "runtime/basicLock.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 void InterpreterMacroAssembler::narrow(Register result) { 54 55 // Get method->_constMethod->_result_type 56 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 57 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 58 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 59 60 Label done, notBool, notByte, notChar; 61 62 // common case first 63 cmpw(rscratch1, T_INT); 64 br(Assembler::EQ, done); 65 66 // mask integer result to narrower return type. 67 cmpw(rscratch1, T_BOOLEAN); 68 br(Assembler::NE, notBool); 69 andw(result, result, 0x1); 70 b(done); 71 72 bind(notBool); 73 cmpw(rscratch1, T_BYTE); 74 br(Assembler::NE, notByte); 75 sbfx(result, result, 0, 8); 76 b(done); 77 78 bind(notByte); 79 cmpw(rscratch1, T_CHAR); 80 br(Assembler::NE, notChar); 81 ubfx(result, result, 0, 16); // truncate upper 16 bits 82 b(done); 83 84 bind(notChar); 85 sbfx(result, result, 0, 16); // sign-extend short 86 87 // Nothing to do for T_INT 88 bind(done); 89 } 90 91 void InterpreterMacroAssembler::jump_to_entry(address entry) { 92 assert(entry, "Entry must have been generated by now"); 93 b(entry); 94 } 95 96 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 97 if (JvmtiExport::can_pop_frame()) { 98 Label L; 99 // Initiate popframe handling only if it is not already being 100 // processed. If the flag has the popframe_processing bit set, it 101 // means that this code is called *during* popframe handling - we 102 // don't want to reenter. 103 // This method is only called just after the call into the vm in 104 // call_VM_base, so the arg registers are available. 105 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 106 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 107 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 108 // Call Interpreter::remove_activation_preserving_args_entry() to get the 109 // address of the same-named entrypoint in the generated interpreter code. 110 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 111 br(r0); 112 bind(L); 113 } 114 } 115 116 117 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 118 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 119 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 120 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 121 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 122 switch (state) { 123 case atos: ldr(r0, oop_addr); 124 str(zr, oop_addr); 125 interp_verify_oop(r0, state); break; 126 case ltos: ldr(r0, val_addr); break; 127 case btos: // fall through 128 case ztos: // fall through 129 case ctos: // fall through 130 case stos: // fall through 131 case itos: ldrw(r0, val_addr); break; 132 case ftos: ldrs(v0, val_addr); break; 133 case dtos: ldrd(v0, val_addr); break; 134 case vtos: /* nothing to do */ break; 135 default : ShouldNotReachHere(); 136 } 137 // Clean up tos value in the thread object 138 movw(rscratch1, (int) ilgl); 139 strw(rscratch1, tos_addr); 140 strw(zr, val_addr); 141 } 142 143 144 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 145 if (JvmtiExport::can_force_early_return()) { 146 Label L; 147 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 148 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 149 150 // Initiate earlyret handling only if it is not already being processed. 151 // If the flag has the earlyret_processing bit set, it means that this code 152 // is called *during* earlyret handling - we don't want to reenter. 153 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 154 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 155 br(Assembler::NE, L); 156 157 // Call Interpreter::remove_activation_early_entry() to get the address of the 158 // same-named entrypoint in the generated interpreter code. 159 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 160 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 161 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 162 br(r0); 163 bind(L); 164 } 165 } 166 167 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 168 Register reg, 169 int bcp_offset) { 170 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 171 ldrh(reg, Address(rbcp, bcp_offset)); 172 rev16(reg, reg); 173 } 174 175 void InterpreterMacroAssembler::get_dispatch() { 176 uint64_t offset; 177 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 178 // Use add() here after ARDP, rather than lea(). 179 // lea() does not generate anything if its offset is zero. 180 // However, relocs expect to find either an ADD or a load/store 181 // insn after an ADRP. add() always generates an ADD insn, even 182 // for add(Rn, Rn, 0). 183 add(rdispatch, rdispatch, offset); 184 } 185 186 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 187 int bcp_offset, 188 size_t index_size) { 189 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 190 if (index_size == sizeof(u2)) { 191 load_unsigned_short(index, Address(rbcp, bcp_offset)); 192 } else if (index_size == sizeof(u4)) { 193 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 194 ldrw(index, Address(rbcp, bcp_offset)); 195 } else if (index_size == sizeof(u1)) { 196 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 197 } else { 198 ShouldNotReachHere(); 199 } 200 } 201 202 void InterpreterMacroAssembler::get_method_counters(Register method, 203 Register mcs, Label& skip) { 204 Label has_counters; 205 ldr(mcs, Address(method, Method::method_counters_offset())); 206 cbnz(mcs, has_counters); 207 call_VM(noreg, CAST_FROM_FN_PTR(address, 208 InterpreterRuntime::build_method_counters), method); 209 ldr(mcs, Address(method, Method::method_counters_offset())); 210 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 211 bind(has_counters); 212 } 213 214 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 215 Register t1, Register t2, 216 bool clear_fields, Label& alloc_failed) { 217 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 218 { 219 SkipIfEqual skip_if(this, &DTraceAllocProbes, 0); 220 // Trigger dtrace event for fastpath 221 push(atos); 222 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 223 pop(atos); 224 } 225 } 226 227 void InterpreterMacroAssembler::read_flat_field(Register entry, 228 Register field_index, Register field_offset, 229 Register temp, Register obj) { 230 Label alloc_failed, empty_value, done; 231 const Register src = field_offset; 232 const Register alloc_temp = r10; 233 const Register dst_temp = field_index; 234 const Register layout_info = temp; 235 assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp); 236 237 // Grab the inline field klass 238 ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 239 inline_layout_info(rscratch1, field_index, layout_info); 240 241 const Register field_klass = dst_temp; 242 ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset()))); 243 244 // check for empty value klass 245 test_klass_is_empty_inline_type(field_klass, rscratch1, empty_value); 246 247 // allocate buffer 248 push(obj); // save holder 249 allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, alloc_failed); 250 251 // Have an oop instance buffer, copy into it 252 data_for_oop(obj, dst_temp, field_klass); // danger, uses rscratch1 253 pop(alloc_temp); // restore holder 254 lea(src, Address(alloc_temp, field_offset)); 255 // call_VM_leaf, clobbers a few regs, save restore new obj 256 push(obj); 257 flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info); 258 pop(obj); 259 b(done); 260 261 bind(empty_value); 262 get_empty_inline_type_oop(field_klass, alloc_temp, obj); 263 b(done); 264 265 bind(alloc_failed); 266 pop(obj); 267 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 268 obj, entry); 269 270 bind(done); 271 membar(Assembler::StoreStore); 272 } 273 274 // Load object from cpool->resolved_references(index) 275 void InterpreterMacroAssembler::load_resolved_reference_at_index( 276 Register result, Register index, Register tmp) { 277 assert_different_registers(result, index); 278 279 get_constant_pool(result); 280 // load pointer for resolved_references[] objArray 281 ldr(result, Address(result, ConstantPool::cache_offset())); 282 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 283 resolve_oop_handle(result, tmp, rscratch2); 284 // Add in the index 285 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 286 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 287 } 288 289 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 290 Register cpool, Register index, Register klass, Register temp) { 291 add(temp, cpool, index, LSL, LogBytesPerWord); 292 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 293 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 294 add(klass, klass, temp, LSL, LogBytesPerWord); 295 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 296 } 297 298 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 299 // subtype of super_klass. 300 // 301 // Args: 302 // r0: superklass 303 // Rsub_klass: subklass 304 // 305 // Kills: 306 // r2, r5 307 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 308 Label& ok_is_subtype, 309 bool profile) { 310 assert(Rsub_klass != r0, "r0 holds superklass"); 311 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 312 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 313 314 // Profile the not-null value's klass. 315 if (profile) { 316 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 317 } 318 319 // Do the check. 320 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 321 } 322 323 // Java Expression Stack 324 325 void InterpreterMacroAssembler::pop_ptr(Register r) { 326 ldr(r, post(esp, wordSize)); 327 } 328 329 void InterpreterMacroAssembler::pop_i(Register r) { 330 ldrw(r, post(esp, wordSize)); 331 } 332 333 void InterpreterMacroAssembler::pop_l(Register r) { 334 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 335 } 336 337 void InterpreterMacroAssembler::push_ptr(Register r) { 338 str(r, pre(esp, -wordSize)); 339 } 340 341 void InterpreterMacroAssembler::push_i(Register r) { 342 str(r, pre(esp, -wordSize)); 343 } 344 345 void InterpreterMacroAssembler::push_l(Register r) { 346 str(zr, pre(esp, -wordSize)); 347 str(r, pre(esp, - wordSize)); 348 } 349 350 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 351 ldrs(r, post(esp, wordSize)); 352 } 353 354 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 355 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 356 } 357 358 void InterpreterMacroAssembler::push_f(FloatRegister r) { 359 strs(r, pre(esp, -wordSize)); 360 } 361 362 void InterpreterMacroAssembler::push_d(FloatRegister r) { 363 strd(r, pre(esp, 2* -wordSize)); 364 } 365 366 void InterpreterMacroAssembler::pop(TosState state) { 367 switch (state) { 368 case atos: pop_ptr(); break; 369 case btos: 370 case ztos: 371 case ctos: 372 case stos: 373 case itos: pop_i(); break; 374 case ltos: pop_l(); break; 375 case ftos: pop_f(); break; 376 case dtos: pop_d(); break; 377 case vtos: /* nothing to do */ break; 378 default: ShouldNotReachHere(); 379 } 380 interp_verify_oop(r0, state); 381 } 382 383 void InterpreterMacroAssembler::push(TosState state) { 384 interp_verify_oop(r0, state); 385 switch (state) { 386 case atos: push_ptr(); break; 387 case btos: 388 case ztos: 389 case ctos: 390 case stos: 391 case itos: push_i(); break; 392 case ltos: push_l(); break; 393 case ftos: push_f(); break; 394 case dtos: push_d(); break; 395 case vtos: /* nothing to do */ break; 396 default : ShouldNotReachHere(); 397 } 398 } 399 400 // Helpers for swap and dup 401 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 402 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 403 } 404 405 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 406 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 407 } 408 409 void InterpreterMacroAssembler::load_float(Address src) { 410 ldrs(v0, src); 411 } 412 413 void InterpreterMacroAssembler::load_double(Address src) { 414 ldrd(v0, src); 415 } 416 417 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 418 // set sender sp 419 mov(r19_sender_sp, sp); 420 // record last_sp 421 sub(rscratch1, esp, rfp); 422 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 423 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 424 } 425 426 // Jump to from_interpreted entry of a call unless single stepping is possible 427 // in this thread in which case we must call the i2i entry 428 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 429 prepare_to_jump_from_interpreted(); 430 431 if (JvmtiExport::can_post_interpreter_events()) { 432 Label run_compiled_code; 433 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 434 // compiled code in threads for which the event is enabled. Check here for 435 // interp_only_mode if these events CAN be enabled. 436 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 437 cbzw(rscratch1, run_compiled_code); 438 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 439 br(rscratch1); 440 bind(run_compiled_code); 441 } 442 443 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 444 br(rscratch1); 445 } 446 447 // The following two routines provide a hook so that an implementation 448 // can schedule the dispatch in two parts. amd64 does not do this. 449 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 450 } 451 452 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 453 dispatch_next(state, step); 454 } 455 456 void InterpreterMacroAssembler::dispatch_base(TosState state, 457 address* table, 458 bool verifyoop, 459 bool generate_poll) { 460 if (VerifyActivationFrameSize) { 461 Unimplemented(); 462 } 463 if (verifyoop) { 464 interp_verify_oop(r0, state); 465 } 466 467 Label safepoint; 468 address* const safepoint_table = Interpreter::safept_table(state); 469 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 470 471 if (needs_thread_local_poll) { 472 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 473 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 474 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 475 } 476 477 if (table == Interpreter::dispatch_table(state)) { 478 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 479 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 480 } else { 481 mov(rscratch2, (address)table); 482 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 483 } 484 br(rscratch2); 485 486 if (needs_thread_local_poll) { 487 bind(safepoint); 488 lea(rscratch2, ExternalAddress((address)safepoint_table)); 489 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 490 br(rscratch2); 491 } 492 } 493 494 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 495 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 496 } 497 498 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 499 dispatch_base(state, Interpreter::normal_table(state)); 500 } 501 502 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 503 dispatch_base(state, Interpreter::normal_table(state), false); 504 } 505 506 507 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 508 // load next bytecode 509 ldrb(rscratch1, Address(pre(rbcp, step))); 510 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 511 } 512 513 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 514 // load current bytecode 515 ldrb(rscratch1, Address(rbcp, 0)); 516 dispatch_base(state, table); 517 } 518 519 // remove activation 520 // 521 // Apply stack watermark barrier. 522 // Unlock the receiver if this is a synchronized method. 523 // Unlock any Java monitors from synchronized blocks. 524 // Remove the activation from the stack. 525 // 526 // If there are locked Java monitors 527 // If throw_monitor_exception 528 // throws IllegalMonitorStateException 529 // Else if install_monitor_exception 530 // installs IllegalMonitorStateException 531 // Else 532 // no error processing 533 void InterpreterMacroAssembler::remove_activation( 534 TosState state, 535 bool throw_monitor_exception, 536 bool install_monitor_exception, 537 bool notify_jvmdi) { 538 // Note: Registers r3 xmm0 may be in use for the 539 // result check if synchronized method 540 Label unlocked, unlock, no_unlock; 541 542 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 543 // that would normally not be safe to use. Such bad returns into unsafe territory of 544 // the stack, will call InterpreterRuntime::at_unwind. 545 Label slow_path; 546 Label fast_path; 547 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 548 br(Assembler::AL, fast_path); 549 bind(slow_path); 550 push(state); 551 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 552 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 553 reset_last_Java_frame(true); 554 pop(state); 555 bind(fast_path); 556 557 // get the value of _do_not_unlock_if_synchronized into r3 558 const Address do_not_unlock_if_synchronized(rthread, 559 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 560 ldrb(r3, do_not_unlock_if_synchronized); 561 strb(zr, do_not_unlock_if_synchronized); // reset the flag 562 563 // get method access flags 564 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 565 ldr(r2, Address(r1, Method::access_flags_offset())); 566 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 567 568 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 569 // is set. 570 cbnz(r3, no_unlock); 571 572 // unlock monitor 573 push(state); // save result 574 575 // BasicObjectLock will be first in list, since this is a 576 // synchronized method. However, need to check that the object has 577 // not been unlocked by an explicit monitorexit bytecode. 578 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 579 wordSize - (int) sizeof(BasicObjectLock)); 580 // We use c_rarg1 so that if we go slow path it will be the correct 581 // register for unlock_object to pass to VM directly 582 lea(c_rarg1, monitor); // address of first monitor 583 584 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 585 cbnz(r0, unlock); 586 587 pop(state); 588 if (throw_monitor_exception) { 589 // Entry already unlocked, need to throw exception 590 call_VM(noreg, CAST_FROM_FN_PTR(address, 591 InterpreterRuntime::throw_illegal_monitor_state_exception)); 592 should_not_reach_here(); 593 } else { 594 // Monitor already unlocked during a stack unroll. If requested, 595 // install an illegal_monitor_state_exception. Continue with 596 // stack unrolling. 597 if (install_monitor_exception) { 598 call_VM(noreg, CAST_FROM_FN_PTR(address, 599 InterpreterRuntime::new_illegal_monitor_state_exception)); 600 } 601 b(unlocked); 602 } 603 604 bind(unlock); 605 unlock_object(c_rarg1); 606 pop(state); 607 608 // Check that for block-structured locking (i.e., that all locked 609 // objects has been unlocked) 610 bind(unlocked); 611 612 // r0: Might contain return value 613 614 // Check that all monitors are unlocked 615 { 616 Label loop, exception, entry, restart; 617 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 618 const Address monitor_block_top( 619 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 620 const Address monitor_block_bot( 621 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 622 623 bind(restart); 624 // We use c_rarg1 so that if we go slow path it will be the correct 625 // register for unlock_object to pass to VM directly 626 ldr(c_rarg1, monitor_block_top); // derelativize pointer 627 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 628 // c_rarg1 points to current entry, starting with top-most entry 629 630 lea(r19, monitor_block_bot); // points to word before bottom of 631 // monitor block 632 b(entry); 633 634 // Entry already locked, need to throw exception 635 bind(exception); 636 637 if (throw_monitor_exception) { 638 // Throw exception 639 MacroAssembler::call_VM(noreg, 640 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 641 throw_illegal_monitor_state_exception)); 642 should_not_reach_here(); 643 } else { 644 // Stack unrolling. Unlock object and install illegal_monitor_exception. 645 // Unlock does not block, so don't have to worry about the frame. 646 // We don't have to preserve c_rarg1 since we are going to throw an exception. 647 648 push(state); 649 unlock_object(c_rarg1); 650 pop(state); 651 652 if (install_monitor_exception) { 653 call_VM(noreg, CAST_FROM_FN_PTR(address, 654 InterpreterRuntime:: 655 new_illegal_monitor_state_exception)); 656 } 657 658 b(restart); 659 } 660 661 bind(loop); 662 // check if current entry is used 663 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 664 cbnz(rscratch1, exception); 665 666 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 667 bind(entry); 668 cmp(c_rarg1, r19); // check if bottom reached 669 br(Assembler::NE, loop); // if not at bottom then check this entry 670 } 671 672 bind(no_unlock); 673 674 // jvmti support 675 if (notify_jvmdi) { 676 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 677 } else { 678 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 679 } 680 681 // remove activation 682 // get sender esp 683 ldr(rscratch2, 684 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 685 686 if (StackReservedPages > 0) { 687 // testing if reserved zone needs to be re-enabled 688 Label no_reserved_zone_enabling; 689 690 // check if already enabled - if so no re-enabling needed 691 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 692 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 693 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 694 br(Assembler::EQ, no_reserved_zone_enabling); 695 696 // look for an overflow into the stack reserved zone, i.e. 697 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 698 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 699 cmp(rscratch2, rscratch1); 700 br(Assembler::LS, no_reserved_zone_enabling); 701 702 call_VM_leaf( 703 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 704 call_VM(noreg, CAST_FROM_FN_PTR(address, 705 InterpreterRuntime::throw_delayed_StackOverflowError)); 706 should_not_reach_here(); 707 708 bind(no_reserved_zone_enabling); 709 } 710 711 if (state == atos && InlineTypeReturnedAsFields) { 712 // Check if we are returning an non-null inline type and load its fields into registers 713 Label skip; 714 test_oop_is_not_inline_type(r0, rscratch2, skip); 715 716 // Load fields from a buffered value with an inline class specific handler 717 load_klass(rscratch1 /*dst*/, r0 /*src*/); 718 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 719 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 720 // Unpack handler can be null if inline type is not scalarizable in returns 721 cbz(rscratch1, skip); 722 723 blr(rscratch1); 724 #ifdef ASSERT 725 // TODO 8284443 Enable 726 if (StressCallingConvention && false) { 727 Label skip_stress; 728 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 729 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 730 tstw(rscratch1, MethodFlags::has_scalarized_return_flag()); 731 br(Assembler::EQ, skip_stress); 732 load_klass(r0, r0); 733 orr(r0, r0, 1); 734 bind(skip_stress); 735 } 736 #endif 737 bind(skip); 738 // Check above kills sender esp in rscratch2. Reload it. 739 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 740 } 741 742 // restore sender esp 743 mov(esp, rscratch2); 744 // remove frame anchor 745 leave(); 746 // If we're returning to interpreted code we will shortly be 747 // adjusting SP to allow some space for ESP. If we're returning to 748 // compiled code the saved sender SP was saved in sender_sp, so this 749 // restores it. 750 andr(sp, esp, -16); 751 } 752 753 // Lock object 754 // 755 // Args: 756 // c_rarg1: BasicObjectLock to be used for locking 757 // 758 // Kills: 759 // r0 760 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 761 // rscratch1, rscratch2 (scratch regs) 762 void InterpreterMacroAssembler::lock_object(Register lock_reg) 763 { 764 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 765 if (LockingMode == LM_MONITOR) { 766 call_VM(noreg, 767 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 768 lock_reg); 769 } else { 770 Label count, done; 771 772 const Register swap_reg = r0; 773 const Register tmp = c_rarg2; 774 const Register obj_reg = c_rarg3; // Will contain the oop 775 const Register tmp2 = c_rarg4; 776 const Register tmp3 = c_rarg5; 777 778 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 779 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 780 const int mark_offset = lock_offset + 781 BasicLock::displaced_header_offset_in_bytes(); 782 783 Label slow_case; 784 785 // Load object pointer into obj_reg %c_rarg3 786 ldr(obj_reg, Address(lock_reg, obj_offset)); 787 788 if (DiagnoseSyncOnValueBasedClasses != 0) { 789 load_klass(tmp, obj_reg); 790 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 791 tst(tmp, KlassFlags::_misc_is_value_based_class); 792 br(Assembler::NE, slow_case); 793 } 794 795 if (LockingMode == LM_LIGHTWEIGHT) { 796 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 797 b(count); 798 } else if (LockingMode == LM_LEGACY) { 799 // Load (object->mark() | 1) into swap_reg 800 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 801 orr(swap_reg, rscratch1, 1); 802 if (EnableValhalla) { 803 // Mask inline_type bit such that we go to the slow path if object is an inline type 804 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 805 } 806 807 // Save (object->mark() | 1) into BasicLock's displaced header 808 str(swap_reg, Address(lock_reg, mark_offset)); 809 810 assert(lock_offset == 0, 811 "displached header must be first word in BasicObjectLock"); 812 813 Label fail; 814 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 815 816 // Fast check for recursive lock. 817 // 818 // Can apply the optimization only if this is a stack lock 819 // allocated in this thread. For efficiency, we can focus on 820 // recently allocated stack locks (instead of reading the stack 821 // base and checking whether 'mark' points inside the current 822 // thread stack): 823 // 1) (mark & 7) == 0, and 824 // 2) sp <= mark < mark + os::pagesize() 825 // 826 // Warning: sp + os::pagesize can overflow the stack base. We must 827 // neither apply the optimization for an inflated lock allocated 828 // just above the thread stack (this is why condition 1 matters) 829 // nor apply the optimization if the stack lock is inside the stack 830 // of another thread. The latter is avoided even in case of overflow 831 // because we have guard pages at the end of all stacks. Hence, if 832 // we go over the stack base and hit the stack of another thread, 833 // this should not be in a writeable area that could contain a 834 // stack lock allocated by that thread. As a consequence, a stack 835 // lock less than page size away from sp is guaranteed to be 836 // owned by the current thread. 837 // 838 // These 3 tests can be done by evaluating the following 839 // expression: ((mark - sp) & (7 - os::vm_page_size())), 840 // assuming both stack pointer and pagesize have their 841 // least significant 3 bits clear. 842 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 843 // NOTE2: aarch64 does not like to subtract sp from rn so take a 844 // copy 845 mov(rscratch1, sp); 846 sub(swap_reg, swap_reg, rscratch1); 847 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 848 849 // Save the test result, for recursive case, the result is zero 850 str(swap_reg, Address(lock_reg, mark_offset)); 851 br(Assembler::EQ, count); 852 } 853 bind(slow_case); 854 855 // Call the runtime routine for slow case 856 call_VM(noreg, 857 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 858 lock_reg); 859 b(done); 860 861 bind(count); 862 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 863 864 bind(done); 865 } 866 } 867 868 869 // Unlocks an object. Used in monitorexit bytecode and 870 // remove_activation. Throws an IllegalMonitorException if object is 871 // not locked by current thread. 872 // 873 // Args: 874 // c_rarg1: BasicObjectLock for lock 875 // 876 // Kills: 877 // r0 878 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 879 // rscratch1, rscratch2 (scratch regs) 880 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 881 { 882 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 883 884 if (LockingMode == LM_MONITOR) { 885 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 886 } else { 887 Label count, done; 888 889 const Register swap_reg = r0; 890 const Register header_reg = c_rarg2; // Will contain the old oopMark 891 const Register obj_reg = c_rarg3; // Will contain the oop 892 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 893 894 save_bcp(); // Save in case of exception 895 896 if (LockingMode != LM_LIGHTWEIGHT) { 897 // Convert from BasicObjectLock structure to object and BasicLock 898 // structure Store the BasicLock address into %r0 899 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 900 } 901 902 // Load oop into obj_reg(%c_rarg3) 903 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 904 905 // Free entry 906 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 907 908 if (LockingMode == LM_LIGHTWEIGHT) { 909 Label slow_case; 910 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 911 b(count); 912 bind(slow_case); 913 } else if (LockingMode == LM_LEGACY) { 914 // Load the old header from BasicLock structure 915 ldr(header_reg, Address(swap_reg, 916 BasicLock::displaced_header_offset_in_bytes())); 917 918 // Test for recursion 919 cbz(header_reg, count); 920 921 // Atomic swap back the old header 922 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 923 } 924 // Call the runtime routine for slow case. 925 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 926 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 927 b(done); 928 929 bind(count); 930 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 931 932 bind(done); 933 restore_bcp(); 934 } 935 } 936 937 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 938 Label& zero_continue) { 939 assert(ProfileInterpreter, "must be profiling interpreter"); 940 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 941 cbz(mdp, zero_continue); 942 } 943 944 // Set the method data pointer for the current bcp. 945 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 946 assert(ProfileInterpreter, "must be profiling interpreter"); 947 Label set_mdp; 948 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 949 950 // Test MDO to avoid the call if it is null. 951 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 952 cbz(r0, set_mdp); 953 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 954 // r0: mdi 955 // mdo is guaranteed to be non-zero here, we checked for it before the call. 956 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 957 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 958 add(r0, r1, r0); 959 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 960 bind(set_mdp); 961 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 962 } 963 964 void InterpreterMacroAssembler::verify_method_data_pointer() { 965 assert(ProfileInterpreter, "must be profiling interpreter"); 966 #ifdef ASSERT 967 Label verify_continue; 968 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 969 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 970 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 971 get_method(r1); 972 973 // If the mdp is valid, it will point to a DataLayout header which is 974 // consistent with the bcp. The converse is highly probable also. 975 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 976 ldr(rscratch1, Address(r1, Method::const_offset())); 977 add(r2, r2, rscratch1, Assembler::LSL); 978 lea(r2, Address(r2, ConstMethod::codes_offset())); 979 cmp(r2, rbcp); 980 br(Assembler::EQ, verify_continue); 981 // r1: method 982 // rbcp: bcp // rbcp == 22 983 // r3: mdp 984 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 985 r1, rbcp, r3); 986 bind(verify_continue); 987 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 988 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 989 #endif // ASSERT 990 } 991 992 993 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 994 int constant, 995 Register value) { 996 assert(ProfileInterpreter, "must be profiling interpreter"); 997 Address data(mdp_in, constant); 998 str(value, data); 999 } 1000 1001 1002 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1003 int constant, 1004 bool decrement) { 1005 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1006 } 1007 1008 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1009 Register reg, 1010 int constant, 1011 bool decrement) { 1012 assert(ProfileInterpreter, "must be profiling interpreter"); 1013 // %%% this does 64bit counters at best it is wasting space 1014 // at worst it is a rare bug when counters overflow 1015 1016 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1017 1018 Address addr1(mdp_in, constant); 1019 Address addr2(rscratch2, reg, Address::lsl(0)); 1020 Address &addr = addr1; 1021 if (reg != noreg) { 1022 lea(rscratch2, addr1); 1023 addr = addr2; 1024 } 1025 1026 if (decrement) { 1027 // Decrement the register. Set condition codes. 1028 // Intel does this 1029 // addptr(data, (int32_t) -DataLayout::counter_increment); 1030 // If the decrement causes the counter to overflow, stay negative 1031 // Label L; 1032 // jcc(Assembler::negative, L); 1033 // addptr(data, (int32_t) DataLayout::counter_increment); 1034 // so we do this 1035 ldr(rscratch1, addr); 1036 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1037 Label L; 1038 br(Assembler::LO, L); // skip store if counter underflow 1039 str(rscratch1, addr); 1040 bind(L); 1041 } else { 1042 assert(DataLayout::counter_increment == 1, 1043 "flow-free idiom only works with 1"); 1044 // Intel does this 1045 // Increment the register. Set carry flag. 1046 // addptr(data, DataLayout::counter_increment); 1047 // If the increment causes the counter to overflow, pull back by 1. 1048 // sbbptr(data, (int32_t)0); 1049 // so we do this 1050 ldr(rscratch1, addr); 1051 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1052 Label L; 1053 br(Assembler::CS, L); // skip store if counter overflow 1054 str(rscratch1, addr); 1055 bind(L); 1056 } 1057 } 1058 1059 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1060 int flag_byte_constant) { 1061 assert(ProfileInterpreter, "must be profiling interpreter"); 1062 int flags_offset = in_bytes(DataLayout::flags_offset()); 1063 // Set the flag 1064 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1065 orr(rscratch1, rscratch1, flag_byte_constant); 1066 strb(rscratch1, Address(mdp_in, flags_offset)); 1067 } 1068 1069 1070 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1071 int offset, 1072 Register value, 1073 Register test_value_out, 1074 Label& not_equal_continue) { 1075 assert(ProfileInterpreter, "must be profiling interpreter"); 1076 if (test_value_out == noreg) { 1077 ldr(rscratch1, Address(mdp_in, offset)); 1078 cmp(value, rscratch1); 1079 } else { 1080 // Put the test value into a register, so caller can use it: 1081 ldr(test_value_out, Address(mdp_in, offset)); 1082 cmp(value, test_value_out); 1083 } 1084 br(Assembler::NE, not_equal_continue); 1085 } 1086 1087 1088 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1089 int offset_of_disp) { 1090 assert(ProfileInterpreter, "must be profiling interpreter"); 1091 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1092 add(mdp_in, mdp_in, rscratch1, LSL); 1093 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1094 } 1095 1096 1097 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1098 Register reg, 1099 int offset_of_disp) { 1100 assert(ProfileInterpreter, "must be profiling interpreter"); 1101 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1102 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1103 add(mdp_in, mdp_in, rscratch1, LSL); 1104 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1105 } 1106 1107 1108 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1109 int constant) { 1110 assert(ProfileInterpreter, "must be profiling interpreter"); 1111 add(mdp_in, mdp_in, (unsigned)constant); 1112 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1113 } 1114 1115 1116 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1117 assert(ProfileInterpreter, "must be profiling interpreter"); 1118 // save/restore across call_VM 1119 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1120 call_VM(noreg, 1121 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1122 return_bci); 1123 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1124 } 1125 1126 1127 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1128 Register bumped_count) { 1129 if (ProfileInterpreter) { 1130 Label profile_continue; 1131 1132 // If no method data exists, go to profile_continue. 1133 // Otherwise, assign to mdp 1134 test_method_data_pointer(mdp, profile_continue); 1135 1136 // We are taking a branch. Increment the taken count. 1137 // We inline increment_mdp_data_at to return bumped_count in a register 1138 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1139 Address data(mdp, in_bytes(JumpData::taken_offset())); 1140 ldr(bumped_count, data); 1141 assert(DataLayout::counter_increment == 1, 1142 "flow-free idiom only works with 1"); 1143 // Intel does this to catch overflow 1144 // addptr(bumped_count, DataLayout::counter_increment); 1145 // sbbptr(bumped_count, 0); 1146 // so we do this 1147 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1148 Label L; 1149 br(Assembler::CS, L); // skip store if counter overflow 1150 str(bumped_count, data); 1151 bind(L); 1152 // The method data pointer needs to be updated to reflect the new target. 1153 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1154 bind(profile_continue); 1155 } 1156 } 1157 1158 1159 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1160 if (ProfileInterpreter) { 1161 Label profile_continue; 1162 1163 // If no method data exists, go to profile_continue. 1164 test_method_data_pointer(mdp, profile_continue); 1165 1166 // We are taking a branch. Increment the not taken count. 1167 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1168 1169 // The method data pointer needs to be updated to correspond to 1170 // the next bytecode 1171 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1172 bind(profile_continue); 1173 } 1174 } 1175 1176 1177 void InterpreterMacroAssembler::profile_call(Register mdp) { 1178 if (ProfileInterpreter) { 1179 Label profile_continue; 1180 1181 // If no method data exists, go to profile_continue. 1182 test_method_data_pointer(mdp, profile_continue); 1183 1184 // We are making a call. Increment the count. 1185 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1186 1187 // The method data pointer needs to be updated to reflect the new target. 1188 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1189 bind(profile_continue); 1190 } 1191 } 1192 1193 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1194 if (ProfileInterpreter) { 1195 Label profile_continue; 1196 1197 // If no method data exists, go to profile_continue. 1198 test_method_data_pointer(mdp, profile_continue); 1199 1200 // We are making a call. Increment the count. 1201 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1202 1203 // The method data pointer needs to be updated to reflect the new target. 1204 update_mdp_by_constant(mdp, 1205 in_bytes(VirtualCallData:: 1206 virtual_call_data_size())); 1207 bind(profile_continue); 1208 } 1209 } 1210 1211 1212 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1213 Register mdp, 1214 Register reg2, 1215 bool receiver_can_be_null) { 1216 if (ProfileInterpreter) { 1217 Label profile_continue; 1218 1219 // If no method data exists, go to profile_continue. 1220 test_method_data_pointer(mdp, profile_continue); 1221 1222 Label skip_receiver_profile; 1223 if (receiver_can_be_null) { 1224 Label not_null; 1225 // We are making a call. Increment the count for null receiver. 1226 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1227 b(skip_receiver_profile); 1228 bind(not_null); 1229 } 1230 1231 // Record the receiver type. 1232 record_klass_in_profile(receiver, mdp, reg2); 1233 bind(skip_receiver_profile); 1234 1235 // The method data pointer needs to be updated to reflect the new target. 1236 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1237 bind(profile_continue); 1238 } 1239 } 1240 1241 // This routine creates a state machine for updating the multi-row 1242 // type profile at a virtual call site (or other type-sensitive bytecode). 1243 // The machine visits each row (of receiver/count) until the receiver type 1244 // is found, or until it runs out of rows. At the same time, it remembers 1245 // the location of the first empty row. (An empty row records null for its 1246 // receiver, and can be allocated for a newly-observed receiver type.) 1247 // Because there are two degrees of freedom in the state, a simple linear 1248 // search will not work; it must be a decision tree. Hence this helper 1249 // function is recursive, to generate the required tree structured code. 1250 // It's the interpreter, so we are trading off code space for speed. 1251 // See below for example code. 1252 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1253 Register receiver, Register mdp, 1254 Register reg2, int start_row, 1255 Label& done) { 1256 if (TypeProfileWidth == 0) { 1257 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1258 } else { 1259 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1260 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1261 } 1262 } 1263 1264 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1265 Register reg2, int start_row, Label& done, int total_rows, 1266 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1267 int last_row = total_rows - 1; 1268 assert(start_row <= last_row, "must be work left to do"); 1269 // Test this row for both the item and for null. 1270 // Take any of three different outcomes: 1271 // 1. found item => increment count and goto done 1272 // 2. found null => keep looking for case 1, maybe allocate this cell 1273 // 3. found something else => keep looking for cases 1 and 2 1274 // Case 3 is handled by a recursive call. 1275 for (int row = start_row; row <= last_row; row++) { 1276 Label next_test; 1277 bool test_for_null_also = (row == start_row); 1278 1279 // See if the item is item[n]. 1280 int item_offset = in_bytes(item_offset_fn(row)); 1281 test_mdp_data_at(mdp, item_offset, item, 1282 (test_for_null_also ? reg2 : noreg), 1283 next_test); 1284 // (Reg2 now contains the item from the CallData.) 1285 1286 // The item is item[n]. Increment count[n]. 1287 int count_offset = in_bytes(item_count_offset_fn(row)); 1288 increment_mdp_data_at(mdp, count_offset); 1289 b(done); 1290 bind(next_test); 1291 1292 if (test_for_null_also) { 1293 Label found_null; 1294 // Failed the equality check on item[n]... Test for null. 1295 if (start_row == last_row) { 1296 // The only thing left to do is handle the null case. 1297 cbz(reg2, found_null); 1298 // Item did not match any saved item and there is no empty row for it. 1299 // Increment total counter to indicate polymorphic case. 1300 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1301 b(done); 1302 bind(found_null); 1303 break; 1304 } 1305 // Since null is rare, make it be the branch-taken case. 1306 cbz(reg2, found_null); 1307 1308 // Put all the "Case 3" tests here. 1309 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1310 item_offset_fn, item_count_offset_fn); 1311 1312 // Found a null. Keep searching for a matching item, 1313 // but remember that this is an empty (unused) slot. 1314 bind(found_null); 1315 } 1316 } 1317 1318 // In the fall-through case, we found no matching item, but we 1319 // observed the item[start_row] is null. 1320 1321 // Fill in the item field and increment the count. 1322 int item_offset = in_bytes(item_offset_fn(start_row)); 1323 set_mdp_data_at(mdp, item_offset, item); 1324 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1325 mov(reg2, DataLayout::counter_increment); 1326 set_mdp_data_at(mdp, count_offset, reg2); 1327 if (start_row > 0) { 1328 b(done); 1329 } 1330 } 1331 1332 // Example state machine code for three profile rows: 1333 // // main copy of decision tree, rooted at row[1] 1334 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1335 // if (row[0].rec != nullptr) { 1336 // // inner copy of decision tree, rooted at row[1] 1337 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1338 // if (row[1].rec != nullptr) { 1339 // // degenerate decision tree, rooted at row[2] 1340 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1341 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1342 // row[2].init(rec); goto done; 1343 // } else { 1344 // // remember row[1] is empty 1345 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1346 // row[1].init(rec); goto done; 1347 // } 1348 // } else { 1349 // // remember row[0] is empty 1350 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1351 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1352 // row[0].init(rec); goto done; 1353 // } 1354 // done: 1355 1356 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1357 Register mdp, Register reg2) { 1358 assert(ProfileInterpreter, "must be profiling"); 1359 Label done; 1360 1361 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1362 1363 bind (done); 1364 } 1365 1366 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1367 Register mdp) { 1368 if (ProfileInterpreter) { 1369 Label profile_continue; 1370 uint row; 1371 1372 // If no method data exists, go to profile_continue. 1373 test_method_data_pointer(mdp, profile_continue); 1374 1375 // Update the total ret count. 1376 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1377 1378 for (row = 0; row < RetData::row_limit(); row++) { 1379 Label next_test; 1380 1381 // See if return_bci is equal to bci[n]: 1382 test_mdp_data_at(mdp, 1383 in_bytes(RetData::bci_offset(row)), 1384 return_bci, noreg, 1385 next_test); 1386 1387 // return_bci is equal to bci[n]. Increment the count. 1388 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1389 1390 // The method data pointer needs to be updated to reflect the new target. 1391 update_mdp_by_offset(mdp, 1392 in_bytes(RetData::bci_displacement_offset(row))); 1393 b(profile_continue); 1394 bind(next_test); 1395 } 1396 1397 update_mdp_for_ret(return_bci); 1398 1399 bind(profile_continue); 1400 } 1401 } 1402 1403 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1404 if (ProfileInterpreter) { 1405 Label profile_continue; 1406 1407 // If no method data exists, go to profile_continue. 1408 test_method_data_pointer(mdp, profile_continue); 1409 1410 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1411 1412 // The method data pointer needs to be updated. 1413 int mdp_delta = in_bytes(BitData::bit_data_size()); 1414 if (TypeProfileCasts) { 1415 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1416 } 1417 update_mdp_by_constant(mdp, mdp_delta); 1418 1419 bind(profile_continue); 1420 } 1421 } 1422 1423 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1424 if (ProfileInterpreter) { 1425 Label profile_continue; 1426 1427 // If no method data exists, go to profile_continue. 1428 test_method_data_pointer(mdp, profile_continue); 1429 1430 // The method data pointer needs to be updated. 1431 int mdp_delta = in_bytes(BitData::bit_data_size()); 1432 if (TypeProfileCasts) { 1433 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1434 1435 // Record the object type. 1436 record_klass_in_profile(klass, mdp, reg2); 1437 } 1438 update_mdp_by_constant(mdp, mdp_delta); 1439 1440 bind(profile_continue); 1441 } 1442 } 1443 1444 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1445 if (ProfileInterpreter) { 1446 Label profile_continue; 1447 1448 // If no method data exists, go to profile_continue. 1449 test_method_data_pointer(mdp, profile_continue); 1450 1451 // Update the default case count 1452 increment_mdp_data_at(mdp, 1453 in_bytes(MultiBranchData::default_count_offset())); 1454 1455 // The method data pointer needs to be updated. 1456 update_mdp_by_offset(mdp, 1457 in_bytes(MultiBranchData:: 1458 default_displacement_offset())); 1459 1460 bind(profile_continue); 1461 } 1462 } 1463 1464 void InterpreterMacroAssembler::profile_switch_case(Register index, 1465 Register mdp, 1466 Register reg2) { 1467 if (ProfileInterpreter) { 1468 Label profile_continue; 1469 1470 // If no method data exists, go to profile_continue. 1471 test_method_data_pointer(mdp, profile_continue); 1472 1473 // Build the base (index * per_case_size_in_bytes()) + 1474 // case_array_offset_in_bytes() 1475 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1476 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1477 Assembler::maddw(index, index, reg2, rscratch1); 1478 1479 // Update the case count 1480 increment_mdp_data_at(mdp, 1481 index, 1482 in_bytes(MultiBranchData::relative_count_offset())); 1483 1484 // The method data pointer needs to be updated. 1485 update_mdp_by_offset(mdp, 1486 index, 1487 in_bytes(MultiBranchData:: 1488 relative_displacement_offset())); 1489 1490 bind(profile_continue); 1491 } 1492 } 1493 1494 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1495 Register array, 1496 Register tmp) { 1497 if (ProfileInterpreter) { 1498 Label profile_continue; 1499 1500 // If no method data exists, go to profile_continue. 1501 test_method_data_pointer(mdp, profile_continue); 1502 1503 mov(tmp, array); 1504 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1505 1506 Label not_flat; 1507 test_non_flat_array_oop(array, tmp, not_flat); 1508 1509 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1510 1511 bind(not_flat); 1512 1513 Label not_null_free; 1514 test_non_null_free_array_oop(array, tmp, not_null_free); 1515 1516 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1517 1518 bind(not_null_free); 1519 1520 bind(profile_continue); 1521 } 1522 } 1523 1524 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1525 Register array, 1526 Register tmp); 1527 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1528 Register array, 1529 Register tmp); 1530 1531 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1532 if (ProfileInterpreter) { 1533 Label profile_continue; 1534 1535 // If no method data exists, go to profile_continue. 1536 test_method_data_pointer(mdp, profile_continue); 1537 1538 Label done, update; 1539 cbnz(element, update); 1540 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1541 b(done); 1542 1543 bind(update); 1544 load_klass(tmp, element); 1545 1546 // Record the object type. 1547 record_klass_in_profile(tmp, mdp, tmp2); 1548 1549 bind(done); 1550 1551 // The method data pointer needs to be updated. 1552 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1553 1554 bind(profile_continue); 1555 } 1556 } 1557 1558 1559 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1560 Register element, 1561 Register tmp) { 1562 if (ProfileInterpreter) { 1563 Label profile_continue; 1564 1565 // If no method data exists, go to profile_continue. 1566 test_method_data_pointer(mdp, profile_continue); 1567 1568 mov(tmp, element); 1569 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1570 1571 // The method data pointer needs to be updated. 1572 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1573 1574 bind(profile_continue); 1575 } 1576 } 1577 1578 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1579 Register left, 1580 Register right, 1581 Register tmp) { 1582 if (ProfileInterpreter) { 1583 Label profile_continue; 1584 1585 // If no method data exists, go to profile_continue. 1586 test_method_data_pointer(mdp, profile_continue); 1587 1588 mov(tmp, left); 1589 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1590 1591 Label left_not_inline_type; 1592 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1593 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1594 bind(left_not_inline_type); 1595 1596 mov(tmp, right); 1597 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1598 1599 Label right_not_inline_type; 1600 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1601 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1602 bind(right_not_inline_type); 1603 1604 bind(profile_continue); 1605 } 1606 } 1607 1608 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1609 if (state == atos) { 1610 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1611 } 1612 } 1613 1614 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1615 1616 1617 void InterpreterMacroAssembler::notify_method_entry() { 1618 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1619 // track stack depth. If it is possible to enter interp_only_mode we add 1620 // the code to check if the event should be sent. 1621 if (JvmtiExport::can_post_interpreter_events()) { 1622 Label L; 1623 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1624 cbzw(r3, L); 1625 call_VM(noreg, CAST_FROM_FN_PTR(address, 1626 InterpreterRuntime::post_method_entry)); 1627 bind(L); 1628 } 1629 1630 if (DTraceMethodProbes) { 1631 get_method(c_rarg1); 1632 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1633 rthread, c_rarg1); 1634 } 1635 1636 // RedefineClasses() tracing support for obsolete method entry 1637 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1638 get_method(c_rarg1); 1639 call_VM_leaf( 1640 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1641 rthread, c_rarg1); 1642 } 1643 1644 } 1645 1646 1647 void InterpreterMacroAssembler::notify_method_exit( 1648 TosState state, NotifyMethodExitMode mode) { 1649 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1650 // track stack depth. If it is possible to enter interp_only_mode we add 1651 // the code to check if the event should be sent. 1652 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1653 Label L; 1654 // Note: frame::interpreter_frame_result has a dependency on how the 1655 // method result is saved across the call to post_method_exit. If this 1656 // is changed then the interpreter_frame_result implementation will 1657 // need to be updated too. 1658 1659 // template interpreter will leave the result on the top of the stack. 1660 push(state); 1661 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1662 cbz(r3, L); 1663 call_VM(noreg, 1664 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1665 bind(L); 1666 pop(state); 1667 } 1668 1669 if (DTraceMethodProbes) { 1670 push(state); 1671 get_method(c_rarg1); 1672 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1673 rthread, c_rarg1); 1674 pop(state); 1675 } 1676 } 1677 1678 1679 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1680 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1681 int increment, Address mask, 1682 Register scratch, Register scratch2, 1683 bool preloaded, Condition cond, 1684 Label* where) { 1685 if (!preloaded) { 1686 ldrw(scratch, counter_addr); 1687 } 1688 add(scratch, scratch, increment); 1689 strw(scratch, counter_addr); 1690 ldrw(scratch2, mask); 1691 ands(scratch, scratch, scratch2); 1692 br(cond, *where); 1693 } 1694 1695 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1696 int number_of_arguments) { 1697 // interpreter specific 1698 // 1699 // Note: No need to save/restore rbcp & rlocals pointer since these 1700 // are callee saved registers and no blocking/ GC can happen 1701 // in leaf calls. 1702 #ifdef ASSERT 1703 { 1704 Label L; 1705 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1706 cbz(rscratch1, L); 1707 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1708 " last_sp != nullptr"); 1709 bind(L); 1710 } 1711 #endif /* ASSERT */ 1712 // super call 1713 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1714 } 1715 1716 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1717 Register java_thread, 1718 Register last_java_sp, 1719 address entry_point, 1720 int number_of_arguments, 1721 bool check_exceptions) { 1722 // interpreter specific 1723 // 1724 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1725 // really make a difference for these runtime calls, since they are 1726 // slow anyway. Btw., bcp must be saved/restored since it may change 1727 // due to GC. 1728 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1729 save_bcp(); 1730 #ifdef ASSERT 1731 { 1732 Label L; 1733 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1734 cbz(rscratch1, L); 1735 stop("InterpreterMacroAssembler::call_VM_base:" 1736 " last_sp != nullptr"); 1737 bind(L); 1738 } 1739 #endif /* ASSERT */ 1740 // super call 1741 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1742 entry_point, number_of_arguments, 1743 check_exceptions); 1744 // interpreter specific 1745 restore_bcp(); 1746 restore_locals(); 1747 } 1748 1749 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1750 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1751 Label update, next, none; 1752 1753 verify_oop(obj); 1754 1755 cbnz(obj, update); 1756 orptr(mdo_addr, TypeEntries::null_seen); 1757 b(next); 1758 1759 bind(update); 1760 load_klass(obj, obj); 1761 1762 ldr(rscratch1, mdo_addr); 1763 eor(obj, obj, rscratch1); 1764 tst(obj, TypeEntries::type_klass_mask); 1765 br(Assembler::EQ, next); // klass seen before, nothing to 1766 // do. The unknown bit may have been 1767 // set already but no need to check. 1768 1769 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1770 // already unknown. Nothing to do anymore. 1771 1772 cbz(rscratch1, none); 1773 cmp(rscratch1, (u1)TypeEntries::null_seen); 1774 br(Assembler::EQ, none); 1775 // There is a chance that the checks above 1776 // fail if another thread has just set the 1777 // profiling to this obj's klass 1778 eor(obj, obj, rscratch1); // get back original value before XOR 1779 ldr(rscratch1, mdo_addr); 1780 eor(obj, obj, rscratch1); 1781 tst(obj, TypeEntries::type_klass_mask); 1782 br(Assembler::EQ, next); 1783 1784 // different than before. Cannot keep accurate profile. 1785 orptr(mdo_addr, TypeEntries::type_unknown); 1786 b(next); 1787 1788 bind(none); 1789 // first time here. Set profile type. 1790 str(obj, mdo_addr); 1791 #ifdef ASSERT 1792 andr(obj, obj, TypeEntries::type_mask); 1793 verify_klass_ptr(obj); 1794 #endif 1795 1796 bind(next); 1797 } 1798 1799 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1800 if (!ProfileInterpreter) { 1801 return; 1802 } 1803 1804 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1805 Label profile_continue; 1806 1807 test_method_data_pointer(mdp, profile_continue); 1808 1809 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1810 1811 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1812 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1813 br(Assembler::NE, profile_continue); 1814 1815 if (MethodData::profile_arguments()) { 1816 Label done; 1817 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1818 1819 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1820 if (i > 0 || MethodData::profile_return()) { 1821 // If return value type is profiled we may have no argument to profile 1822 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1823 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1824 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1825 add(rscratch1, mdp, off_to_args); 1826 br(Assembler::LT, done); 1827 } 1828 ldr(tmp, Address(callee, Method::const_offset())); 1829 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1830 // stack offset o (zero based) from the start of the argument 1831 // list, for n arguments translates into offset n - o - 1 from 1832 // the end of the argument list 1833 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1834 sub(tmp, tmp, rscratch1); 1835 sub(tmp, tmp, 1); 1836 Address arg_addr = argument_address(tmp); 1837 ldr(tmp, arg_addr); 1838 1839 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1840 profile_obj_type(tmp, mdo_arg_addr); 1841 1842 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1843 off_to_args += to_add; 1844 } 1845 1846 if (MethodData::profile_return()) { 1847 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1848 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1849 } 1850 1851 add(rscratch1, mdp, off_to_args); 1852 bind(done); 1853 mov(mdp, rscratch1); 1854 1855 if (MethodData::profile_return()) { 1856 // We're right after the type profile for the last 1857 // argument. tmp is the number of cells left in the 1858 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1859 // if there's a return to profile. 1860 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1861 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1862 } 1863 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1864 } else { 1865 assert(MethodData::profile_return(), "either profile call args or call ret"); 1866 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1867 } 1868 1869 // mdp points right after the end of the 1870 // CallTypeData/VirtualCallTypeData, right after the cells for the 1871 // return value type if there's one 1872 1873 bind(profile_continue); 1874 } 1875 } 1876 1877 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1878 assert_different_registers(mdp, ret, tmp, rbcp); 1879 if (ProfileInterpreter && MethodData::profile_return()) { 1880 Label profile_continue, done; 1881 1882 test_method_data_pointer(mdp, profile_continue); 1883 1884 if (MethodData::profile_return_jsr292_only()) { 1885 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1886 1887 // If we don't profile all invoke bytecodes we must make sure 1888 // it's a bytecode we indeed profile. We can't go back to the 1889 // beginning of the ProfileData we intend to update to check its 1890 // type because we're right after it and we don't known its 1891 // length 1892 Label do_profile; 1893 ldrb(rscratch1, Address(rbcp, 0)); 1894 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1895 br(Assembler::EQ, do_profile); 1896 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1897 br(Assembler::EQ, do_profile); 1898 get_method(tmp); 1899 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1900 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1901 br(Assembler::NE, profile_continue); 1902 1903 bind(do_profile); 1904 } 1905 1906 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1907 mov(tmp, ret); 1908 profile_obj_type(tmp, mdo_ret_addr); 1909 1910 bind(profile_continue); 1911 } 1912 } 1913 1914 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1915 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1916 if (ProfileInterpreter && MethodData::profile_parameters()) { 1917 Label profile_continue, done; 1918 1919 test_method_data_pointer(mdp, profile_continue); 1920 1921 // Load the offset of the area within the MDO used for 1922 // parameters. If it's negative we're not profiling any parameters 1923 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1924 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1925 1926 // Compute a pointer to the area for parameters from the offset 1927 // and move the pointer to the slot for the last 1928 // parameters. Collect profiling from last parameter down. 1929 // mdo start + parameters offset + array length - 1 1930 add(mdp, mdp, tmp1); 1931 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1932 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1933 1934 Label loop; 1935 bind(loop); 1936 1937 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1938 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1939 int per_arg_scale = exact_log2(DataLayout::cell_size); 1940 add(rscratch1, mdp, off_base); 1941 add(rscratch2, mdp, type_base); 1942 1943 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1944 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1945 1946 // load offset on the stack from the slot for this parameter 1947 ldr(tmp2, arg_off); 1948 neg(tmp2, tmp2); 1949 // read the parameter from the local area 1950 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1951 1952 // profile the parameter 1953 profile_obj_type(tmp2, arg_type); 1954 1955 // go to next parameter 1956 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1957 br(Assembler::GE, loop); 1958 1959 bind(profile_continue); 1960 } 1961 } 1962 1963 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1964 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1965 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1966 // Get address of invokedynamic array 1967 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1968 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1969 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1970 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1971 lea(cache, Address(cache, index)); 1972 } 1973 1974 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1975 // Get index out of bytecode pointer 1976 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1977 // Take shortcut if the size is a power of 2 1978 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1979 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1980 } else { 1981 mov(cache, sizeof(ResolvedFieldEntry)); 1982 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1983 } 1984 // Get address of field entries array 1985 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1986 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1987 lea(cache, Address(cache, index)); 1988 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 1989 membar(MacroAssembler::LoadLoad); 1990 } 1991 1992 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 1993 // Get index out of bytecode pointer 1994 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1995 mov(cache, sizeof(ResolvedMethodEntry)); 1996 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 1997 1998 // Get address of field entries array 1999 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 2000 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 2001 lea(cache, Address(cache, index)); 2002 }