1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/constMethodFlags.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/inlineKlass.hpp" 40 #include "oops/resolvedFieldEntry.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/basicLock.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/javaThread.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 void InterpreterMacroAssembler::narrow(Register result) { 53 54 // Get method->_constMethod->_result_type 55 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 56 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 57 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 58 59 Label done, notBool, notByte, notChar; 60 61 // common case first 62 cmpw(rscratch1, T_INT); 63 br(Assembler::EQ, done); 64 65 // mask integer result to narrower return type. 66 cmpw(rscratch1, T_BOOLEAN); 67 br(Assembler::NE, notBool); 68 andw(result, result, 0x1); 69 b(done); 70 71 bind(notBool); 72 cmpw(rscratch1, T_BYTE); 73 br(Assembler::NE, notByte); 74 sbfx(result, result, 0, 8); 75 b(done); 76 77 bind(notByte); 78 cmpw(rscratch1, T_CHAR); 79 br(Assembler::NE, notChar); 80 ubfx(result, result, 0, 16); // truncate upper 16 bits 81 b(done); 82 83 bind(notChar); 84 sbfx(result, result, 0, 16); // sign-extend short 85 86 // Nothing to do for T_INT 87 bind(done); 88 } 89 90 void InterpreterMacroAssembler::jump_to_entry(address entry) { 91 assert(entry, "Entry must have been generated by now"); 92 b(entry); 93 } 94 95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 96 if (JvmtiExport::can_pop_frame()) { 97 Label L; 98 // Initiate popframe handling only if it is not already being 99 // processed. If the flag has the popframe_processing bit set, it 100 // means that this code is called *during* popframe handling - we 101 // don't want to reenter. 102 // This method is only called just after the call into the vm in 103 // call_VM_base, so the arg registers are available. 104 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 105 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 106 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 107 // Call Interpreter::remove_activation_preserving_args_entry() to get the 108 // address of the same-named entrypoint in the generated interpreter code. 109 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 110 br(r0); 111 bind(L); 112 } 113 } 114 115 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 117 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 118 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 119 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 120 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 121 switch (state) { 122 case atos: ldr(r0, oop_addr); 123 str(zr, oop_addr); 124 interp_verify_oop(r0, state); break; 125 case ltos: ldr(r0, val_addr); break; 126 case btos: // fall through 127 case ztos: // fall through 128 case ctos: // fall through 129 case stos: // fall through 130 case itos: ldrw(r0, val_addr); break; 131 case ftos: ldrs(v0, val_addr); break; 132 case dtos: ldrd(v0, val_addr); break; 133 case vtos: /* nothing to do */ break; 134 default : ShouldNotReachHere(); 135 } 136 // Clean up tos value in the thread object 137 movw(rscratch1, (int) ilgl); 138 strw(rscratch1, tos_addr); 139 strw(zr, val_addr); 140 } 141 142 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 144 if (JvmtiExport::can_force_early_return()) { 145 Label L; 146 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 147 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 148 149 // Initiate earlyret handling only if it is not already being processed. 150 // If the flag has the earlyret_processing bit set, it means that this code 151 // is called *during* earlyret handling - we don't want to reenter. 152 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 153 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 154 br(Assembler::NE, L); 155 156 // Call Interpreter::remove_activation_early_entry() to get the address of the 157 // same-named entrypoint in the generated interpreter code. 158 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 159 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 160 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 161 br(r0); 162 bind(L); 163 } 164 } 165 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 167 Register reg, 168 int bcp_offset) { 169 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 170 ldrh(reg, Address(rbcp, bcp_offset)); 171 rev16(reg, reg); 172 } 173 174 void InterpreterMacroAssembler::get_dispatch() { 175 uint64_t offset; 176 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 177 // Use add() here after ARDP, rather than lea(). 178 // lea() does not generate anything if its offset is zero. 179 // However, relocs expect to find either an ADD or a load/store 180 // insn after an ADRP. add() always generates an ADD insn, even 181 // for add(Rn, Rn, 0). 182 add(rdispatch, rdispatch, offset); 183 } 184 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 186 int bcp_offset, 187 size_t index_size) { 188 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 189 if (index_size == sizeof(u2)) { 190 load_unsigned_short(index, Address(rbcp, bcp_offset)); 191 } else if (index_size == sizeof(u4)) { 192 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 193 ldrw(index, Address(rbcp, bcp_offset)); 194 } else if (index_size == sizeof(u1)) { 195 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 196 } else { 197 ShouldNotReachHere(); 198 } 199 } 200 201 void InterpreterMacroAssembler::get_method_counters(Register method, 202 Register mcs, Label& skip) { 203 Label has_counters; 204 ldr(mcs, Address(method, Method::method_counters_offset())); 205 cbnz(mcs, has_counters); 206 call_VM(noreg, CAST_FROM_FN_PTR(address, 207 InterpreterRuntime::build_method_counters), method); 208 ldr(mcs, Address(method, Method::method_counters_offset())); 209 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 210 bind(has_counters); 211 } 212 213 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 214 Register t1, Register t2, 215 bool clear_fields, Label& alloc_failed) { 216 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 217 if (DTraceAllocProbes) { 218 // Trigger dtrace event for fastpath 219 push(atos); 220 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 221 pop(atos); 222 } 223 } 224 225 void InterpreterMacroAssembler::read_flat_field(Register entry, 226 Register field_index, Register field_offset, 227 Register temp, Register obj) { 228 Label failed_alloc, slow_path, done; 229 const Register src = field_offset; 230 const Register alloc_temp = r10; 231 const Register dst_temp = field_index; 232 const Register layout_info = temp; 233 assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp, rscratch1); 234 235 load_unsigned_byte(temp, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset()))); 236 // If the field is nullable, jump to slow path 237 tbz(temp, ResolvedFieldEntry::is_null_free_inline_type_shift, slow_path); 238 239 // Grab the inline field klass 240 ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 241 inline_layout_info(rscratch1, field_index, layout_info); 242 243 const Register field_klass = dst_temp; 244 ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset()))); 245 246 // allocate buffer 247 push(obj); // save holder 248 allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, failed_alloc); 249 250 // Have an oop instance buffer, copy into it 251 payload_address(obj, dst_temp, field_klass); // danger, uses rscratch1 252 pop(alloc_temp); // restore holder 253 lea(src, Address(alloc_temp, field_offset)); 254 // call_VM_leaf, clobbers a few regs, save restore new obj 255 push(obj); 256 flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info); 257 pop(obj); 258 b(done); 259 260 bind(failed_alloc); 261 pop(obj); 262 bind(slow_path); 263 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 264 obj, entry); 265 266 bind(done); 267 membar(Assembler::StoreStore); 268 } 269 270 void InterpreterMacroAssembler::write_flat_field(Register entry, Register field_offset, 271 Register tmp1, Register tmp2, 272 Register obj) { 273 assert_different_registers(entry, field_offset, tmp1, tmp2, obj); 274 Label slow_path, done; 275 276 load_unsigned_byte(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::flags_offset()))); 277 test_field_is_not_null_free_inline_type(tmp1, noreg /* temp */, slow_path); 278 279 null_check(r0); // FIXME JDK-8341120 280 281 add(obj, obj, field_offset); 282 283 load_klass(tmp1, r0); 284 payload_address(r0, r0, tmp1); 285 286 Register layout_info = field_offset; 287 load_unsigned_short(tmp1, Address(entry, in_bytes(ResolvedFieldEntry::field_index_offset()))); 288 ldr(tmp2, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 289 inline_layout_info(tmp2, tmp1, layout_info); 290 291 flat_field_copy(IN_HEAP, r0, obj, layout_info); 292 b(done); 293 294 bind(slow_path); 295 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_flat_field), obj, r0, entry); 296 bind(done); 297 } 298 299 // Load object from cpool->resolved_references(index) 300 void InterpreterMacroAssembler::load_resolved_reference_at_index( 301 Register result, Register index, Register tmp) { 302 assert_different_registers(result, index); 303 304 get_constant_pool(result); 305 // load pointer for resolved_references[] objArray 306 ldr(result, Address(result, ConstantPool::cache_offset())); 307 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 308 resolve_oop_handle(result, tmp, rscratch2); 309 // Add in the index 310 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 311 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 312 } 313 314 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 315 Register cpool, Register index, Register klass, Register temp) { 316 add(temp, cpool, index, LSL, LogBytesPerWord); 317 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 318 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 319 add(klass, klass, temp, LSL, LogBytesPerWord); 320 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 321 } 322 323 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 324 // subtype of super_klass. 325 // 326 // Args: 327 // r0: superklass 328 // Rsub_klass: subklass 329 // 330 // Kills: 331 // r2, r5 332 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 333 Label& ok_is_subtype, 334 bool profile) { 335 assert(Rsub_klass != r0, "r0 holds superklass"); 336 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 337 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 338 339 // Profile the not-null value's klass. 340 if (profile) { 341 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 342 } 343 344 // Do the check. 345 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 346 } 347 348 // Java Expression Stack 349 350 void InterpreterMacroAssembler::pop_ptr(Register r) { 351 ldr(r, post(esp, wordSize)); 352 } 353 354 void InterpreterMacroAssembler::pop_i(Register r) { 355 ldrw(r, post(esp, wordSize)); 356 } 357 358 void InterpreterMacroAssembler::pop_l(Register r) { 359 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 360 } 361 362 void InterpreterMacroAssembler::push_ptr(Register r) { 363 str(r, pre(esp, -wordSize)); 364 } 365 366 void InterpreterMacroAssembler::push_i(Register r) { 367 str(r, pre(esp, -wordSize)); 368 } 369 370 void InterpreterMacroAssembler::push_l(Register r) { 371 str(zr, pre(esp, -wordSize)); 372 str(r, pre(esp, - wordSize)); 373 } 374 375 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 376 ldrs(r, post(esp, wordSize)); 377 } 378 379 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 380 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 381 } 382 383 void InterpreterMacroAssembler::push_f(FloatRegister r) { 384 strs(r, pre(esp, -wordSize)); 385 } 386 387 void InterpreterMacroAssembler::push_d(FloatRegister r) { 388 strd(r, pre(esp, 2* -wordSize)); 389 } 390 391 void InterpreterMacroAssembler::pop(TosState state) { 392 switch (state) { 393 case atos: pop_ptr(); break; 394 case btos: 395 case ztos: 396 case ctos: 397 case stos: 398 case itos: pop_i(); break; 399 case ltos: pop_l(); break; 400 case ftos: pop_f(); break; 401 case dtos: pop_d(); break; 402 case vtos: /* nothing to do */ break; 403 default: ShouldNotReachHere(); 404 } 405 interp_verify_oop(r0, state); 406 } 407 408 void InterpreterMacroAssembler::push(TosState state) { 409 interp_verify_oop(r0, state); 410 switch (state) { 411 case atos: push_ptr(); break; 412 case btos: 413 case ztos: 414 case ctos: 415 case stos: 416 case itos: push_i(); break; 417 case ltos: push_l(); break; 418 case ftos: push_f(); break; 419 case dtos: push_d(); break; 420 case vtos: /* nothing to do */ break; 421 default : ShouldNotReachHere(); 422 } 423 } 424 425 // Helpers for swap and dup 426 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 427 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 428 } 429 430 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 431 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 432 } 433 434 void InterpreterMacroAssembler::load_float(Address src) { 435 ldrs(v0, src); 436 } 437 438 void InterpreterMacroAssembler::load_double(Address src) { 439 ldrd(v0, src); 440 } 441 442 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 443 // set sender sp 444 mov(r19_sender_sp, sp); 445 // record last_sp 446 sub(rscratch1, esp, rfp); 447 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 448 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 449 } 450 451 // Jump to from_interpreted entry of a call unless single stepping is possible 452 // in this thread in which case we must call the i2i entry 453 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 454 prepare_to_jump_from_interpreted(); 455 456 if (JvmtiExport::can_post_interpreter_events()) { 457 Label run_compiled_code; 458 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 459 // compiled code in threads for which the event is enabled. Check here for 460 // interp_only_mode if these events CAN be enabled. 461 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 462 cbzw(rscratch1, run_compiled_code); 463 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 464 br(rscratch1); 465 bind(run_compiled_code); 466 } 467 468 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 469 br(rscratch1); 470 } 471 472 // The following two routines provide a hook so that an implementation 473 // can schedule the dispatch in two parts. amd64 does not do this. 474 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 475 } 476 477 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 478 dispatch_next(state, step); 479 } 480 481 void InterpreterMacroAssembler::dispatch_base(TosState state, 482 address* table, 483 bool verifyoop, 484 bool generate_poll) { 485 if (VerifyActivationFrameSize) { 486 Label L; 487 sub(rscratch2, rfp, esp); 488 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 489 subs(rscratch2, rscratch2, min_frame_size); 490 br(Assembler::GE, L); 491 stop("broken stack frame"); 492 bind(L); 493 } 494 if (verifyoop) { 495 interp_verify_oop(r0, state); 496 } 497 498 Label safepoint; 499 address* const safepoint_table = Interpreter::safept_table(state); 500 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 501 502 if (needs_thread_local_poll) { 503 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 504 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 505 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 506 } 507 508 if (table == Interpreter::dispatch_table(state)) { 509 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 510 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 511 } else { 512 mov(rscratch2, (address)table); 513 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 514 } 515 br(rscratch2); 516 517 if (needs_thread_local_poll) { 518 bind(safepoint); 519 lea(rscratch2, ExternalAddress((address)safepoint_table)); 520 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 521 br(rscratch2); 522 } 523 } 524 525 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 526 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 527 } 528 529 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 530 dispatch_base(state, Interpreter::normal_table(state)); 531 } 532 533 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 534 dispatch_base(state, Interpreter::normal_table(state), false); 535 } 536 537 538 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 539 // load next bytecode 540 ldrb(rscratch1, Address(pre(rbcp, step))); 541 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 542 } 543 544 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 545 // load current bytecode 546 ldrb(rscratch1, Address(rbcp, 0)); 547 dispatch_base(state, table); 548 } 549 550 // remove activation 551 // 552 // Unlock the receiver if this is a synchronized method. 553 // Unlock any Java monitors from synchronized blocks. 554 // Apply stack watermark barrier. 555 // Notify JVMTI. 556 // Remove the activation from the stack. 557 // 558 // If there are locked Java monitors 559 // If throw_monitor_exception 560 // throws IllegalMonitorStateException 561 // Else if install_monitor_exception 562 // installs IllegalMonitorStateException 563 // Else 564 // no error processing 565 void InterpreterMacroAssembler::remove_activation(TosState state, 566 bool throw_monitor_exception, 567 bool install_monitor_exception, 568 bool notify_jvmdi) { 569 // Note: Registers r3 xmm0 may be in use for the 570 // result check if synchronized method 571 Label unlocked, unlock, no_unlock; 572 573 // get the value of _do_not_unlock_if_synchronized into r3 574 const Address do_not_unlock_if_synchronized(rthread, 575 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 576 ldrb(r3, do_not_unlock_if_synchronized); 577 strb(zr, do_not_unlock_if_synchronized); // reset the flag 578 579 // get method access flags 580 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 581 ldrh(r2, Address(r1, Method::access_flags_offset())); 582 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 583 584 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 585 // is set. 586 cbnz(r3, no_unlock); 587 588 // unlock monitor 589 push(state); // save result 590 591 // BasicObjectLock will be first in list, since this is a 592 // synchronized method. However, need to check that the object has 593 // not been unlocked by an explicit monitorexit bytecode. 594 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 595 wordSize - (int) sizeof(BasicObjectLock)); 596 // We use c_rarg1 so that if we go slow path it will be the correct 597 // register for unlock_object to pass to VM directly 598 lea(c_rarg1, monitor); // address of first monitor 599 600 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 601 cbnz(r0, unlock); 602 603 pop(state); 604 if (throw_monitor_exception) { 605 // Entry already unlocked, need to throw exception 606 call_VM(noreg, CAST_FROM_FN_PTR(address, 607 InterpreterRuntime::throw_illegal_monitor_state_exception)); 608 should_not_reach_here(); 609 } else { 610 // Monitor already unlocked during a stack unroll. If requested, 611 // install an illegal_monitor_state_exception. Continue with 612 // stack unrolling. 613 if (install_monitor_exception) { 614 call_VM(noreg, CAST_FROM_FN_PTR(address, 615 InterpreterRuntime::new_illegal_monitor_state_exception)); 616 } 617 b(unlocked); 618 } 619 620 bind(unlock); 621 unlock_object(c_rarg1); 622 pop(state); 623 624 // Check that for block-structured locking (i.e., that all locked 625 // objects has been unlocked) 626 bind(unlocked); 627 628 // r0: Might contain return value 629 630 // Check that all monitors are unlocked 631 { 632 Label loop, exception, entry, restart; 633 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 634 const Address monitor_block_top( 635 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 636 const Address monitor_block_bot( 637 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 638 639 bind(restart); 640 // We use c_rarg1 so that if we go slow path it will be the correct 641 // register for unlock_object to pass to VM directly 642 ldr(c_rarg1, monitor_block_top); // derelativize pointer 643 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 644 // c_rarg1 points to current entry, starting with top-most entry 645 646 lea(r19, monitor_block_bot); // points to word before bottom of 647 // monitor block 648 b(entry); 649 650 // Entry already locked, need to throw exception 651 bind(exception); 652 653 if (throw_monitor_exception) { 654 // Throw exception 655 MacroAssembler::call_VM(noreg, 656 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 657 throw_illegal_monitor_state_exception)); 658 should_not_reach_here(); 659 } else { 660 // Stack unrolling. Unlock object and install illegal_monitor_exception. 661 // Unlock does not block, so don't have to worry about the frame. 662 // We don't have to preserve c_rarg1 since we are going to throw an exception. 663 664 push(state); 665 unlock_object(c_rarg1); 666 pop(state); 667 668 if (install_monitor_exception) { 669 call_VM(noreg, CAST_FROM_FN_PTR(address, 670 InterpreterRuntime:: 671 new_illegal_monitor_state_exception)); 672 } 673 674 b(restart); 675 } 676 677 bind(loop); 678 // check if current entry is used 679 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 680 cbnz(rscratch1, exception); 681 682 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 683 bind(entry); 684 cmp(c_rarg1, r19); // check if bottom reached 685 br(Assembler::NE, loop); // if not at bottom then check this entry 686 } 687 688 bind(no_unlock); 689 690 JFR_ONLY(enter_jfr_critical_section();) 691 692 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 693 // that would normally not be safe to use. Such bad returns into unsafe territory of 694 // the stack, will call InterpreterRuntime::at_unwind. 695 Label slow_path; 696 Label fast_path; 697 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */); 698 br(Assembler::AL, fast_path); 699 bind(slow_path); 700 push(state); 701 set_last_Java_frame(esp, rfp, pc(), rscratch1); 702 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 703 reset_last_Java_frame(true); 704 pop(state); 705 bind(fast_path); 706 707 // JVMTI support. Make sure the safepoint poll test is issued prior. 708 if (notify_jvmdi) { 709 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 710 } else { 711 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 712 } 713 714 // remove activation 715 // get sender esp 716 ldr(rscratch2, 717 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 718 719 if (StackReservedPages > 0) { 720 // testing if reserved zone needs to be re-enabled 721 Label no_reserved_zone_enabling; 722 723 // check if already enabled - if so no re-enabling needed 724 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 725 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 726 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 727 br(Assembler::EQ, no_reserved_zone_enabling); 728 729 // look for an overflow into the stack reserved zone, i.e. 730 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 731 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 732 cmp(rscratch2, rscratch1); 733 br(Assembler::LS, no_reserved_zone_enabling); 734 735 JFR_ONLY(leave_jfr_critical_section();) 736 737 call_VM_leaf( 738 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 739 call_VM(noreg, CAST_FROM_FN_PTR(address, 740 InterpreterRuntime::throw_delayed_StackOverflowError)); 741 should_not_reach_here(); 742 743 bind(no_reserved_zone_enabling); 744 } 745 746 if (state == atos && InlineTypeReturnedAsFields) { 747 Label skip; 748 Label not_null; 749 cbnz(r0, not_null); 750 // Returned value is null, zero all return registers because they may belong to oop fields 751 mov(j_rarg1, zr); 752 mov(j_rarg2, zr); 753 mov(j_rarg3, zr); 754 mov(j_rarg4, zr); 755 mov(j_rarg5, zr); 756 mov(j_rarg6, zr); 757 mov(j_rarg7, zr); 758 b(skip); 759 bind(not_null); 760 761 // Check if we are returning an non-null inline type and load its fields into registers 762 test_oop_is_not_inline_type(r0, rscratch2, skip, /* can_be_null= */ false); 763 764 // Load fields from a buffered value with an inline class specific handler 765 load_klass(rscratch1 /*dst*/, r0 /*src*/); 766 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 767 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 768 // Unpack handler can be null if inline type is not scalarizable in returns 769 cbz(rscratch1, skip); 770 771 blr(rscratch1); 772 #ifdef ASSERT 773 // TODO 8284443 Enable 774 if (StressCallingConvention && false) { 775 Label skip_stress; 776 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 777 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 778 tstw(rscratch1, MethodFlags::has_scalarized_return_flag()); 779 br(Assembler::EQ, skip_stress); 780 load_klass(r0, r0); 781 orr(r0, r0, 1); 782 bind(skip_stress); 783 } 784 #endif 785 bind(skip); 786 // Check above kills sender esp in rscratch2. Reload it. 787 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 788 } 789 790 // remove frame anchor 791 leave(); 792 793 JFR_ONLY(leave_jfr_critical_section();) 794 795 // restore sender esp 796 mov(esp, rscratch2); 797 798 // If we're returning to interpreted code we will shortly be 799 // adjusting SP to allow some space for ESP. If we're returning to 800 // compiled code the saved sender SP was saved in sender_sp, so this 801 // restores it. 802 andr(sp, esp, -16); 803 } 804 805 #if INCLUDE_JFR 806 void InterpreterMacroAssembler::enter_jfr_critical_section() { 807 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 808 mov(rscratch1, true); 809 strb(rscratch1, sampling_critical_section); 810 } 811 812 void InterpreterMacroAssembler::leave_jfr_critical_section() { 813 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 814 strb(zr, sampling_critical_section); 815 } 816 #endif // INCLUDE_JFR 817 818 // Lock object 819 // 820 // Args: 821 // c_rarg1: BasicObjectLock to be used for locking 822 // 823 // Kills: 824 // r0 825 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 826 // rscratch1, rscratch2 (scratch regs) 827 void InterpreterMacroAssembler::lock_object(Register lock_reg) 828 { 829 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 830 if (LockingMode == LM_MONITOR) { 831 call_VM_preemptable(noreg, 832 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 833 lock_reg); 834 } else { 835 Label count, done; 836 837 const Register swap_reg = r0; 838 const Register tmp = c_rarg2; 839 const Register obj_reg = c_rarg3; // Will contain the oop 840 const Register tmp2 = c_rarg4; 841 const Register tmp3 = c_rarg5; 842 843 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 844 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 845 const int mark_offset = lock_offset + 846 BasicLock::displaced_header_offset_in_bytes(); 847 848 Label slow_case; 849 850 // Load object pointer into obj_reg %c_rarg3 851 ldr(obj_reg, Address(lock_reg, obj_offset)); 852 853 if (LockingMode == LM_LIGHTWEIGHT) { 854 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 855 b(done); 856 } else if (LockingMode == LM_LEGACY) { 857 858 if (DiagnoseSyncOnValueBasedClasses != 0) { 859 load_klass(tmp, obj_reg); 860 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 861 tst(tmp, KlassFlags::_misc_is_value_based_class); 862 br(Assembler::NE, slow_case); 863 } 864 865 // Load (object->mark() | 1) into swap_reg 866 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 867 orr(swap_reg, rscratch1, 1); 868 if (EnableValhalla) { 869 // Mask inline_type bit such that we go to the slow path if object is an inline type 870 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 871 } 872 873 // Save (object->mark() | 1) into BasicLock's displaced header 874 str(swap_reg, Address(lock_reg, mark_offset)); 875 876 assert(lock_offset == 0, 877 "displached header must be first word in BasicObjectLock"); 878 879 Label fail; 880 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 881 882 // Fast check for recursive lock. 883 // 884 // Can apply the optimization only if this is a stack lock 885 // allocated in this thread. For efficiency, we can focus on 886 // recently allocated stack locks (instead of reading the stack 887 // base and checking whether 'mark' points inside the current 888 // thread stack): 889 // 1) (mark & 7) == 0, and 890 // 2) sp <= mark < mark + os::pagesize() 891 // 892 // Warning: sp + os::pagesize can overflow the stack base. We must 893 // neither apply the optimization for an inflated lock allocated 894 // just above the thread stack (this is why condition 1 matters) 895 // nor apply the optimization if the stack lock is inside the stack 896 // of another thread. The latter is avoided even in case of overflow 897 // because we have guard pages at the end of all stacks. Hence, if 898 // we go over the stack base and hit the stack of another thread, 899 // this should not be in a writeable area that could contain a 900 // stack lock allocated by that thread. As a consequence, a stack 901 // lock less than page size away from sp is guaranteed to be 902 // owned by the current thread. 903 // 904 // These 3 tests can be done by evaluating the following 905 // expression: ((mark - sp) & (7 - os::vm_page_size())), 906 // assuming both stack pointer and pagesize have their 907 // least significant 3 bits clear. 908 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 909 // NOTE2: aarch64 does not like to subtract sp from rn so take a 910 // copy 911 mov(rscratch1, sp); 912 sub(swap_reg, swap_reg, rscratch1); 913 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 914 915 // Save the test result, for recursive case, the result is zero 916 str(swap_reg, Address(lock_reg, mark_offset)); 917 br(Assembler::NE, slow_case); 918 919 bind(count); 920 inc_held_monitor_count(rscratch1); 921 b(done); 922 } 923 bind(slow_case); 924 925 // Call the runtime routine for slow case 926 call_VM_preemptable(noreg, 927 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 928 lock_reg); 929 930 bind(done); 931 } 932 } 933 934 935 // Unlocks an object. Used in monitorexit bytecode and 936 // remove_activation. Throws an IllegalMonitorException if object is 937 // not locked by current thread. 938 // 939 // Args: 940 // c_rarg1: BasicObjectLock for lock 941 // 942 // Kills: 943 // r0 944 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 945 // rscratch1, rscratch2 (scratch regs) 946 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 947 { 948 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 949 950 if (LockingMode == LM_MONITOR) { 951 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 952 } else { 953 Label count, done; 954 955 const Register swap_reg = r0; 956 const Register header_reg = c_rarg2; // Will contain the old oopMark 957 const Register obj_reg = c_rarg3; // Will contain the oop 958 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 959 960 save_bcp(); // Save in case of exception 961 962 if (LockingMode != LM_LIGHTWEIGHT) { 963 // Convert from BasicObjectLock structure to object and BasicLock 964 // structure Store the BasicLock address into %r0 965 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 966 } 967 968 // Load oop into obj_reg(%c_rarg3) 969 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 970 971 // Free entry 972 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 973 974 Label slow_case; 975 if (LockingMode == LM_LIGHTWEIGHT) { 976 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 977 b(done); 978 } else if (LockingMode == LM_LEGACY) { 979 // Load the old header from BasicLock structure 980 ldr(header_reg, Address(swap_reg, 981 BasicLock::displaced_header_offset_in_bytes())); 982 983 // Test for recursion 984 cbz(header_reg, count); 985 986 // Atomic swap back the old header 987 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 988 989 bind(count); 990 dec_held_monitor_count(rscratch1); 991 b(done); 992 } 993 994 bind(slow_case); 995 // Call the runtime routine for slow case. 996 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 997 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 998 bind(done); 999 restore_bcp(); 1000 } 1001 } 1002 1003 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1004 Label& zero_continue) { 1005 assert(ProfileInterpreter, "must be profiling interpreter"); 1006 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1007 cbz(mdp, zero_continue); 1008 } 1009 1010 // Set the method data pointer for the current bcp. 1011 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1012 assert(ProfileInterpreter, "must be profiling interpreter"); 1013 Label set_mdp; 1014 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1015 1016 // Test MDO to avoid the call if it is null. 1017 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 1018 cbz(r0, set_mdp); 1019 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 1020 // r0: mdi 1021 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1022 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1023 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 1024 add(r0, r1, r0); 1025 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1026 bind(set_mdp); 1027 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1028 } 1029 1030 void InterpreterMacroAssembler::verify_method_data_pointer() { 1031 assert(ProfileInterpreter, "must be profiling interpreter"); 1032 #ifdef ASSERT 1033 Label verify_continue; 1034 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1035 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 1036 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 1037 get_method(r1); 1038 1039 // If the mdp is valid, it will point to a DataLayout header which is 1040 // consistent with the bcp. The converse is highly probable also. 1041 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 1042 ldr(rscratch1, Address(r1, Method::const_offset())); 1043 add(r2, r2, rscratch1, Assembler::LSL); 1044 lea(r2, Address(r2, ConstMethod::codes_offset())); 1045 cmp(r2, rbcp); 1046 br(Assembler::EQ, verify_continue); 1047 // r1: method 1048 // rbcp: bcp // rbcp == 22 1049 // r3: mdp 1050 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1051 r1, rbcp, r3); 1052 bind(verify_continue); 1053 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 1054 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1055 #endif // ASSERT 1056 } 1057 1058 1059 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1060 int constant, 1061 Register value) { 1062 assert(ProfileInterpreter, "must be profiling interpreter"); 1063 Address data(mdp_in, constant); 1064 str(value, data); 1065 } 1066 1067 1068 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1069 int constant) { 1070 increment_mdp_data_at(mdp_in, noreg, constant); 1071 } 1072 1073 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1074 Register index, 1075 int constant) { 1076 assert(ProfileInterpreter, "must be profiling interpreter"); 1077 1078 assert_different_registers(rscratch2, rscratch1, mdp_in, index); 1079 1080 Address addr1(mdp_in, constant); 1081 Address addr2(rscratch2, index, Address::lsl(0)); 1082 Address &addr = addr1; 1083 if (index != noreg) { 1084 lea(rscratch2, addr1); 1085 addr = addr2; 1086 } 1087 1088 increment(addr, DataLayout::counter_increment); 1089 } 1090 1091 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1092 int flag_byte_constant) { 1093 assert(ProfileInterpreter, "must be profiling interpreter"); 1094 int flags_offset = in_bytes(DataLayout::flags_offset()); 1095 // Set the flag 1096 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1097 orr(rscratch1, rscratch1, flag_byte_constant); 1098 strb(rscratch1, Address(mdp_in, flags_offset)); 1099 } 1100 1101 1102 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1103 int offset, 1104 Register value, 1105 Register test_value_out, 1106 Label& not_equal_continue) { 1107 assert(ProfileInterpreter, "must be profiling interpreter"); 1108 if (test_value_out == noreg) { 1109 ldr(rscratch1, Address(mdp_in, offset)); 1110 cmp(value, rscratch1); 1111 } else { 1112 // Put the test value into a register, so caller can use it: 1113 ldr(test_value_out, Address(mdp_in, offset)); 1114 cmp(value, test_value_out); 1115 } 1116 br(Assembler::NE, not_equal_continue); 1117 } 1118 1119 1120 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1121 int offset_of_disp) { 1122 assert(ProfileInterpreter, "must be profiling interpreter"); 1123 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1124 add(mdp_in, mdp_in, rscratch1, LSL); 1125 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1126 } 1127 1128 1129 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1130 Register reg, 1131 int offset_of_disp) { 1132 assert(ProfileInterpreter, "must be profiling interpreter"); 1133 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1134 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1135 add(mdp_in, mdp_in, rscratch1, LSL); 1136 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1137 } 1138 1139 1140 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1141 int constant) { 1142 assert(ProfileInterpreter, "must be profiling interpreter"); 1143 add(mdp_in, mdp_in, (unsigned)constant); 1144 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1145 } 1146 1147 1148 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1149 assert(ProfileInterpreter, "must be profiling interpreter"); 1150 // save/restore across call_VM 1151 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1152 call_VM(noreg, 1153 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1154 return_bci); 1155 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1156 } 1157 1158 1159 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) { 1160 if (ProfileInterpreter) { 1161 Label profile_continue; 1162 1163 // If no method data exists, go to profile_continue. 1164 test_method_data_pointer(mdp, profile_continue); 1165 1166 // We are taking a branch. Increment the taken count. 1167 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1168 1169 // The method data pointer needs to be updated to reflect the new target. 1170 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1171 bind(profile_continue); 1172 } 1173 } 1174 1175 1176 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1177 if (ProfileInterpreter) { 1178 Label profile_continue; 1179 1180 // If no method data exists, go to profile_continue. 1181 test_method_data_pointer(mdp, profile_continue); 1182 1183 // We are not taking a branch. Increment the not taken count. 1184 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1185 1186 // The method data pointer needs to be updated to correspond to 1187 // the next bytecode 1188 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1189 bind(profile_continue); 1190 } 1191 } 1192 1193 1194 void InterpreterMacroAssembler::profile_call(Register mdp) { 1195 if (ProfileInterpreter) { 1196 Label profile_continue; 1197 1198 // If no method data exists, go to profile_continue. 1199 test_method_data_pointer(mdp, profile_continue); 1200 1201 // We are making a call. Increment the count. 1202 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1203 1204 // The method data pointer needs to be updated to reflect the new target. 1205 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1206 bind(profile_continue); 1207 } 1208 } 1209 1210 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1211 if (ProfileInterpreter) { 1212 Label profile_continue; 1213 1214 // If no method data exists, go to profile_continue. 1215 test_method_data_pointer(mdp, profile_continue); 1216 1217 // We are making a call. Increment the count. 1218 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1219 1220 // The method data pointer needs to be updated to reflect the new target. 1221 update_mdp_by_constant(mdp, 1222 in_bytes(VirtualCallData:: 1223 virtual_call_data_size())); 1224 bind(profile_continue); 1225 } 1226 } 1227 1228 1229 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1230 Register mdp, 1231 Register reg2, 1232 bool receiver_can_be_null) { 1233 if (ProfileInterpreter) { 1234 Label profile_continue; 1235 1236 // If no method data exists, go to profile_continue. 1237 test_method_data_pointer(mdp, profile_continue); 1238 1239 Label skip_receiver_profile; 1240 if (receiver_can_be_null) { 1241 Label not_null; 1242 // We are making a call. Increment the count for null receiver. 1243 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1244 b(skip_receiver_profile); 1245 bind(not_null); 1246 } 1247 1248 // Record the receiver type. 1249 record_klass_in_profile(receiver, mdp, reg2); 1250 bind(skip_receiver_profile); 1251 1252 // The method data pointer needs to be updated to reflect the new target. 1253 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1254 bind(profile_continue); 1255 } 1256 } 1257 1258 // This routine creates a state machine for updating the multi-row 1259 // type profile at a virtual call site (or other type-sensitive bytecode). 1260 // The machine visits each row (of receiver/count) until the receiver type 1261 // is found, or until it runs out of rows. At the same time, it remembers 1262 // the location of the first empty row. (An empty row records null for its 1263 // receiver, and can be allocated for a newly-observed receiver type.) 1264 // Because there are two degrees of freedom in the state, a simple linear 1265 // search will not work; it must be a decision tree. Hence this helper 1266 // function is recursive, to generate the required tree structured code. 1267 // It's the interpreter, so we are trading off code space for speed. 1268 // See below for example code. 1269 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1270 Register receiver, Register mdp, 1271 Register reg2, int start_row, 1272 Label& done) { 1273 if (TypeProfileWidth == 0) { 1274 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1275 } else { 1276 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1277 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1278 } 1279 } 1280 1281 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1282 Register reg2, int start_row, Label& done, int total_rows, 1283 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1284 int last_row = total_rows - 1; 1285 assert(start_row <= last_row, "must be work left to do"); 1286 // Test this row for both the item and for null. 1287 // Take any of three different outcomes: 1288 // 1. found item => increment count and goto done 1289 // 2. found null => keep looking for case 1, maybe allocate this cell 1290 // 3. found something else => keep looking for cases 1 and 2 1291 // Case 3 is handled by a recursive call. 1292 for (int row = start_row; row <= last_row; row++) { 1293 Label next_test; 1294 bool test_for_null_also = (row == start_row); 1295 1296 // See if the item is item[n]. 1297 int item_offset = in_bytes(item_offset_fn(row)); 1298 test_mdp_data_at(mdp, item_offset, item, 1299 (test_for_null_also ? reg2 : noreg), 1300 next_test); 1301 // (Reg2 now contains the item from the CallData.) 1302 1303 // The item is item[n]. Increment count[n]. 1304 int count_offset = in_bytes(item_count_offset_fn(row)); 1305 increment_mdp_data_at(mdp, count_offset); 1306 b(done); 1307 bind(next_test); 1308 1309 if (test_for_null_also) { 1310 Label found_null; 1311 // Failed the equality check on item[n]... Test for null. 1312 if (start_row == last_row) { 1313 // The only thing left to do is handle the null case. 1314 cbz(reg2, found_null); 1315 // Item did not match any saved item and there is no empty row for it. 1316 // Increment total counter to indicate polymorphic case. 1317 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1318 b(done); 1319 bind(found_null); 1320 break; 1321 } 1322 // Since null is rare, make it be the branch-taken case. 1323 cbz(reg2, found_null); 1324 1325 // Put all the "Case 3" tests here. 1326 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1327 item_offset_fn, item_count_offset_fn); 1328 1329 // Found a null. Keep searching for a matching item, 1330 // but remember that this is an empty (unused) slot. 1331 bind(found_null); 1332 } 1333 } 1334 1335 // In the fall-through case, we found no matching item, but we 1336 // observed the item[start_row] is null. 1337 1338 // Fill in the item field and increment the count. 1339 int item_offset = in_bytes(item_offset_fn(start_row)); 1340 set_mdp_data_at(mdp, item_offset, item); 1341 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1342 mov(reg2, DataLayout::counter_increment); 1343 set_mdp_data_at(mdp, count_offset, reg2); 1344 if (start_row > 0) { 1345 b(done); 1346 } 1347 } 1348 1349 // Example state machine code for three profile rows: 1350 // // main copy of decision tree, rooted at row[1] 1351 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1352 // if (row[0].rec != nullptr) { 1353 // // inner copy of decision tree, rooted at row[1] 1354 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1355 // if (row[1].rec != nullptr) { 1356 // // degenerate decision tree, rooted at row[2] 1357 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1358 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1359 // row[2].init(rec); goto done; 1360 // } else { 1361 // // remember row[1] is empty 1362 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1363 // row[1].init(rec); goto done; 1364 // } 1365 // } else { 1366 // // remember row[0] is empty 1367 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1368 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1369 // row[0].init(rec); goto done; 1370 // } 1371 // done: 1372 1373 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1374 Register mdp, Register reg2) { 1375 assert(ProfileInterpreter, "must be profiling"); 1376 Label done; 1377 1378 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1379 1380 bind (done); 1381 } 1382 1383 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1384 Register mdp) { 1385 if (ProfileInterpreter) { 1386 Label profile_continue; 1387 uint row; 1388 1389 // If no method data exists, go to profile_continue. 1390 test_method_data_pointer(mdp, profile_continue); 1391 1392 // Update the total ret count. 1393 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1394 1395 for (row = 0; row < RetData::row_limit(); row++) { 1396 Label next_test; 1397 1398 // See if return_bci is equal to bci[n]: 1399 test_mdp_data_at(mdp, 1400 in_bytes(RetData::bci_offset(row)), 1401 return_bci, noreg, 1402 next_test); 1403 1404 // return_bci is equal to bci[n]. Increment the count. 1405 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1406 1407 // The method data pointer needs to be updated to reflect the new target. 1408 update_mdp_by_offset(mdp, 1409 in_bytes(RetData::bci_displacement_offset(row))); 1410 b(profile_continue); 1411 bind(next_test); 1412 } 1413 1414 update_mdp_for_ret(return_bci); 1415 1416 bind(profile_continue); 1417 } 1418 } 1419 1420 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1421 if (ProfileInterpreter) { 1422 Label profile_continue; 1423 1424 // If no method data exists, go to profile_continue. 1425 test_method_data_pointer(mdp, profile_continue); 1426 1427 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1428 1429 // The method data pointer needs to be updated. 1430 int mdp_delta = in_bytes(BitData::bit_data_size()); 1431 if (TypeProfileCasts) { 1432 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1433 } 1434 update_mdp_by_constant(mdp, mdp_delta); 1435 1436 bind(profile_continue); 1437 } 1438 } 1439 1440 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1441 if (ProfileInterpreter) { 1442 Label profile_continue; 1443 1444 // If no method data exists, go to profile_continue. 1445 test_method_data_pointer(mdp, profile_continue); 1446 1447 // The method data pointer needs to be updated. 1448 int mdp_delta = in_bytes(BitData::bit_data_size()); 1449 if (TypeProfileCasts) { 1450 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1451 1452 // Record the object type. 1453 record_klass_in_profile(klass, mdp, reg2); 1454 } 1455 update_mdp_by_constant(mdp, mdp_delta); 1456 1457 bind(profile_continue); 1458 } 1459 } 1460 1461 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1462 if (ProfileInterpreter) { 1463 Label profile_continue; 1464 1465 // If no method data exists, go to profile_continue. 1466 test_method_data_pointer(mdp, profile_continue); 1467 1468 // Update the default case count 1469 increment_mdp_data_at(mdp, 1470 in_bytes(MultiBranchData::default_count_offset())); 1471 1472 // The method data pointer needs to be updated. 1473 update_mdp_by_offset(mdp, 1474 in_bytes(MultiBranchData:: 1475 default_displacement_offset())); 1476 1477 bind(profile_continue); 1478 } 1479 } 1480 1481 void InterpreterMacroAssembler::profile_switch_case(Register index, 1482 Register mdp, 1483 Register reg2) { 1484 if (ProfileInterpreter) { 1485 Label profile_continue; 1486 1487 // If no method data exists, go to profile_continue. 1488 test_method_data_pointer(mdp, profile_continue); 1489 1490 // Build the base (index * per_case_size_in_bytes()) + 1491 // case_array_offset_in_bytes() 1492 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1493 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1494 Assembler::maddw(index, index, reg2, rscratch1); 1495 1496 // Update the case count 1497 increment_mdp_data_at(mdp, 1498 index, 1499 in_bytes(MultiBranchData::relative_count_offset())); 1500 1501 // The method data pointer needs to be updated. 1502 update_mdp_by_offset(mdp, 1503 index, 1504 in_bytes(MultiBranchData:: 1505 relative_displacement_offset())); 1506 1507 bind(profile_continue); 1508 } 1509 } 1510 1511 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1512 Register array, 1513 Register tmp) { 1514 if (ProfileInterpreter) { 1515 Label profile_continue; 1516 1517 // If no method data exists, go to profile_continue. 1518 test_method_data_pointer(mdp, profile_continue); 1519 1520 mov(tmp, array); 1521 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1522 1523 Label not_flat; 1524 test_non_flat_array_oop(array, tmp, not_flat); 1525 1526 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1527 1528 bind(not_flat); 1529 1530 Label not_null_free; 1531 test_non_null_free_array_oop(array, tmp, not_null_free); 1532 1533 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1534 1535 bind(not_null_free); 1536 1537 bind(profile_continue); 1538 } 1539 } 1540 1541 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1542 Register array, 1543 Register tmp); 1544 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1545 Register array, 1546 Register tmp); 1547 1548 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1549 if (ProfileInterpreter) { 1550 Label profile_continue; 1551 1552 // If no method data exists, go to profile_continue. 1553 test_method_data_pointer(mdp, profile_continue); 1554 1555 Label done, update; 1556 cbnz(element, update); 1557 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1558 b(done); 1559 1560 bind(update); 1561 load_klass(tmp, element); 1562 1563 // Record the object type. 1564 record_klass_in_profile(tmp, mdp, tmp2); 1565 1566 bind(done); 1567 1568 // The method data pointer needs to be updated. 1569 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1570 1571 bind(profile_continue); 1572 } 1573 } 1574 1575 1576 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1577 Register element, 1578 Register tmp) { 1579 if (ProfileInterpreter) { 1580 Label profile_continue; 1581 1582 // If no method data exists, go to profile_continue. 1583 test_method_data_pointer(mdp, profile_continue); 1584 1585 mov(tmp, element); 1586 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1587 1588 // The method data pointer needs to be updated. 1589 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1590 1591 bind(profile_continue); 1592 } 1593 } 1594 1595 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1596 Register left, 1597 Register right, 1598 Register tmp) { 1599 if (ProfileInterpreter) { 1600 Label profile_continue; 1601 1602 // If no method data exists, go to profile_continue. 1603 test_method_data_pointer(mdp, profile_continue); 1604 1605 mov(tmp, left); 1606 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1607 1608 Label left_not_inline_type; 1609 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1610 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1611 bind(left_not_inline_type); 1612 1613 mov(tmp, right); 1614 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1615 1616 Label right_not_inline_type; 1617 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1618 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1619 bind(right_not_inline_type); 1620 1621 bind(profile_continue); 1622 } 1623 } 1624 1625 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1626 if (state == atos) { 1627 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1628 } 1629 } 1630 1631 void InterpreterMacroAssembler::notify_method_entry() { 1632 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1633 // track stack depth. If it is possible to enter interp_only_mode we add 1634 // the code to check if the event should be sent. 1635 if (JvmtiExport::can_post_interpreter_events()) { 1636 Label L; 1637 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1638 cbzw(r3, L); 1639 call_VM(noreg, CAST_FROM_FN_PTR(address, 1640 InterpreterRuntime::post_method_entry)); 1641 bind(L); 1642 } 1643 1644 if (DTraceMethodProbes) { 1645 get_method(c_rarg1); 1646 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1647 rthread, c_rarg1); 1648 } 1649 1650 // RedefineClasses() tracing support for obsolete method entry 1651 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1652 get_method(c_rarg1); 1653 call_VM_leaf( 1654 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1655 rthread, c_rarg1); 1656 } 1657 1658 } 1659 1660 1661 void InterpreterMacroAssembler::notify_method_exit( 1662 TosState state, NotifyMethodExitMode mode) { 1663 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1664 // track stack depth. If it is possible to enter interp_only_mode we add 1665 // the code to check if the event should be sent. 1666 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1667 Label L; 1668 // Note: frame::interpreter_frame_result has a dependency on how the 1669 // method result is saved across the call to post_method_exit. If this 1670 // is changed then the interpreter_frame_result implementation will 1671 // need to be updated too. 1672 1673 // template interpreter will leave the result on the top of the stack. 1674 push(state); 1675 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1676 cbz(r3, L); 1677 call_VM(noreg, 1678 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1679 bind(L); 1680 pop(state); 1681 } 1682 1683 if (DTraceMethodProbes) { 1684 push(state); 1685 get_method(c_rarg1); 1686 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1687 rthread, c_rarg1); 1688 pop(state); 1689 } 1690 } 1691 1692 1693 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1694 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1695 int increment, Address mask, 1696 Register scratch, Register scratch2, 1697 bool preloaded, Condition cond, 1698 Label* where) { 1699 if (!preloaded) { 1700 ldrw(scratch, counter_addr); 1701 } 1702 add(scratch, scratch, increment); 1703 strw(scratch, counter_addr); 1704 ldrw(scratch2, mask); 1705 ands(scratch, scratch, scratch2); 1706 br(cond, *where); 1707 } 1708 1709 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1710 int number_of_arguments) { 1711 // interpreter specific 1712 // 1713 // Note: No need to save/restore rbcp & rlocals pointer since these 1714 // are callee saved registers and no blocking/ GC can happen 1715 // in leaf calls. 1716 #ifdef ASSERT 1717 { 1718 Label L; 1719 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1720 cbz(rscratch1, L); 1721 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1722 " last_sp != nullptr"); 1723 bind(L); 1724 } 1725 #endif /* ASSERT */ 1726 // super call 1727 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1728 } 1729 1730 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1731 Register java_thread, 1732 Register last_java_sp, 1733 address entry_point, 1734 int number_of_arguments, 1735 bool check_exceptions) { 1736 // interpreter specific 1737 // 1738 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1739 // really make a difference for these runtime calls, since they are 1740 // slow anyway. Btw., bcp must be saved/restored since it may change 1741 // due to GC. 1742 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1743 save_bcp(); 1744 #ifdef ASSERT 1745 { 1746 Label L; 1747 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1748 cbz(rscratch1, L); 1749 stop("InterpreterMacroAssembler::call_VM_base:" 1750 " last_sp != nullptr"); 1751 bind(L); 1752 } 1753 #endif /* ASSERT */ 1754 // super call 1755 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1756 entry_point, number_of_arguments, 1757 check_exceptions); 1758 // interpreter specific 1759 restore_bcp(); 1760 restore_locals(); 1761 } 1762 1763 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1764 address entry_point, 1765 Register arg_1) { 1766 assert(arg_1 == c_rarg1, ""); 1767 Label resume_pc, not_preempted; 1768 1769 #ifdef ASSERT 1770 { 1771 Label L; 1772 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1773 cbz(rscratch1, L); 1774 stop("Should not have alternate return address set"); 1775 bind(L); 1776 } 1777 #endif /* ASSERT */ 1778 1779 // Force freeze slow path. 1780 push_cont_fastpath(); 1781 1782 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1783 adr(rscratch1, resume_pc); 1784 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1785 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1786 1787 pop_cont_fastpath(); 1788 1789 // Check if preempted. 1790 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1791 cbz(rscratch1, not_preempted); 1792 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1793 br(rscratch1); 1794 1795 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1796 bind(resume_pc); 1797 restore_after_resume(false /* is_native */); 1798 1799 bind(not_preempted); 1800 } 1801 1802 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1803 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1804 blr(rscratch1); 1805 if (is_native) { 1806 // On resume we need to set up stack as expected 1807 push(dtos); 1808 push(ltos); 1809 } 1810 } 1811 1812 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1813 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1814 Label update, next, none; 1815 1816 verify_oop(obj); 1817 1818 cbnz(obj, update); 1819 orptr(mdo_addr, TypeEntries::null_seen); 1820 b(next); 1821 1822 bind(update); 1823 load_klass(obj, obj); 1824 1825 ldr(rscratch1, mdo_addr); 1826 eor(obj, obj, rscratch1); 1827 tst(obj, TypeEntries::type_klass_mask); 1828 br(Assembler::EQ, next); // klass seen before, nothing to 1829 // do. The unknown bit may have been 1830 // set already but no need to check. 1831 1832 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1833 // already unknown. Nothing to do anymore. 1834 1835 cbz(rscratch1, none); 1836 cmp(rscratch1, (u1)TypeEntries::null_seen); 1837 br(Assembler::EQ, none); 1838 // There is a chance that the checks above 1839 // fail if another thread has just set the 1840 // profiling to this obj's klass 1841 eor(obj, obj, rscratch1); // get back original value before XOR 1842 ldr(rscratch1, mdo_addr); 1843 eor(obj, obj, rscratch1); 1844 tst(obj, TypeEntries::type_klass_mask); 1845 br(Assembler::EQ, next); 1846 1847 // different than before. Cannot keep accurate profile. 1848 orptr(mdo_addr, TypeEntries::type_unknown); 1849 b(next); 1850 1851 bind(none); 1852 // first time here. Set profile type. 1853 str(obj, mdo_addr); 1854 #ifdef ASSERT 1855 andr(obj, obj, TypeEntries::type_mask); 1856 verify_klass_ptr(obj); 1857 #endif 1858 1859 bind(next); 1860 } 1861 1862 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1863 if (!ProfileInterpreter) { 1864 return; 1865 } 1866 1867 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1868 Label profile_continue; 1869 1870 test_method_data_pointer(mdp, profile_continue); 1871 1872 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1873 1874 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1875 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1876 br(Assembler::NE, profile_continue); 1877 1878 if (MethodData::profile_arguments()) { 1879 Label done; 1880 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1881 1882 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1883 if (i > 0 || MethodData::profile_return()) { 1884 // If return value type is profiled we may have no argument to profile 1885 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1886 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1887 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1888 add(rscratch1, mdp, off_to_args); 1889 br(Assembler::LT, done); 1890 } 1891 ldr(tmp, Address(callee, Method::const_offset())); 1892 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1893 // stack offset o (zero based) from the start of the argument 1894 // list, for n arguments translates into offset n - o - 1 from 1895 // the end of the argument list 1896 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1897 sub(tmp, tmp, rscratch1); 1898 sub(tmp, tmp, 1); 1899 Address arg_addr = argument_address(tmp); 1900 ldr(tmp, arg_addr); 1901 1902 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1903 profile_obj_type(tmp, mdo_arg_addr); 1904 1905 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1906 off_to_args += to_add; 1907 } 1908 1909 if (MethodData::profile_return()) { 1910 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1911 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1912 } 1913 1914 add(rscratch1, mdp, off_to_args); 1915 bind(done); 1916 mov(mdp, rscratch1); 1917 1918 if (MethodData::profile_return()) { 1919 // We're right after the type profile for the last 1920 // argument. tmp is the number of cells left in the 1921 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1922 // if there's a return to profile. 1923 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1924 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1925 } 1926 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1927 } else { 1928 assert(MethodData::profile_return(), "either profile call args or call ret"); 1929 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1930 } 1931 1932 // mdp points right after the end of the 1933 // CallTypeData/VirtualCallTypeData, right after the cells for the 1934 // return value type if there's one 1935 1936 bind(profile_continue); 1937 } 1938 } 1939 1940 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1941 assert_different_registers(mdp, ret, tmp, rbcp); 1942 if (ProfileInterpreter && MethodData::profile_return()) { 1943 Label profile_continue, done; 1944 1945 test_method_data_pointer(mdp, profile_continue); 1946 1947 if (MethodData::profile_return_jsr292_only()) { 1948 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1949 1950 // If we don't profile all invoke bytecodes we must make sure 1951 // it's a bytecode we indeed profile. We can't go back to the 1952 // beginning of the ProfileData we intend to update to check its 1953 // type because we're right after it and we don't known its 1954 // length 1955 Label do_profile; 1956 ldrb(rscratch1, Address(rbcp, 0)); 1957 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1958 br(Assembler::EQ, do_profile); 1959 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1960 br(Assembler::EQ, do_profile); 1961 get_method(tmp); 1962 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1963 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1964 br(Assembler::NE, profile_continue); 1965 1966 bind(do_profile); 1967 } 1968 1969 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1970 mov(tmp, ret); 1971 profile_obj_type(tmp, mdo_ret_addr); 1972 1973 bind(profile_continue); 1974 } 1975 } 1976 1977 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1978 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1979 if (ProfileInterpreter && MethodData::profile_parameters()) { 1980 Label profile_continue, done; 1981 1982 test_method_data_pointer(mdp, profile_continue); 1983 1984 // Load the offset of the area within the MDO used for 1985 // parameters. If it's negative we're not profiling any parameters 1986 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1987 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1988 1989 // Compute a pointer to the area for parameters from the offset 1990 // and move the pointer to the slot for the last 1991 // parameters. Collect profiling from last parameter down. 1992 // mdo start + parameters offset + array length - 1 1993 add(mdp, mdp, tmp1); 1994 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1995 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1996 1997 Label loop; 1998 bind(loop); 1999 2000 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 2001 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 2002 int per_arg_scale = exact_log2(DataLayout::cell_size); 2003 add(rscratch1, mdp, off_base); 2004 add(rscratch2, mdp, type_base); 2005 2006 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 2007 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 2008 2009 // load offset on the stack from the slot for this parameter 2010 ldr(tmp2, arg_off); 2011 neg(tmp2, tmp2); 2012 // read the parameter from the local area 2013 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 2014 2015 // profile the parameter 2016 profile_obj_type(tmp2, arg_type); 2017 2018 // go to next parameter 2019 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 2020 br(Assembler::GE, loop); 2021 2022 bind(profile_continue); 2023 } 2024 } 2025 2026 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2027 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 2028 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2029 // Get address of invokedynamic array 2030 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2031 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2032 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 2033 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 2034 lea(cache, Address(cache, index)); 2035 } 2036 2037 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2038 // Get index out of bytecode pointer 2039 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2040 // Take shortcut if the size is a power of 2 2041 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2042 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2043 } else { 2044 mov(cache, sizeof(ResolvedFieldEntry)); 2045 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2046 } 2047 // Get address of field entries array 2048 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 2049 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 2050 lea(cache, Address(cache, index)); 2051 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 2052 membar(MacroAssembler::LoadLoad); 2053 } 2054 2055 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2056 // Get index out of bytecode pointer 2057 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2058 mov(cache, sizeof(ResolvedMethodEntry)); 2059 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2060 2061 // Get address of field entries array 2062 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 2063 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 2064 lea(cache, Address(cache, index)); 2065 }