1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/constMethodFlags.hpp" 37 #include "oops/markWord.hpp" 38 #include "oops/method.hpp" 39 #include "oops/methodData.hpp" 40 #include "oops/inlineKlass.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/jvmtiThreadState.hpp" 46 #include "runtime/basicLock.hpp" 47 #include "runtime/frame.inline.hpp" 48 #include "runtime/javaThread.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 53 void InterpreterMacroAssembler::narrow(Register result) { 54 55 // Get method->_constMethod->_result_type 56 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 57 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 58 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 59 60 Label done, notBool, notByte, notChar; 61 62 // common case first 63 cmpw(rscratch1, T_INT); 64 br(Assembler::EQ, done); 65 66 // mask integer result to narrower return type. 67 cmpw(rscratch1, T_BOOLEAN); 68 br(Assembler::NE, notBool); 69 andw(result, result, 0x1); 70 b(done); 71 72 bind(notBool); 73 cmpw(rscratch1, T_BYTE); 74 br(Assembler::NE, notByte); 75 sbfx(result, result, 0, 8); 76 b(done); 77 78 bind(notByte); 79 cmpw(rscratch1, T_CHAR); 80 br(Assembler::NE, notChar); 81 ubfx(result, result, 0, 16); // truncate upper 16 bits 82 b(done); 83 84 bind(notChar); 85 sbfx(result, result, 0, 16); // sign-extend short 86 87 // Nothing to do for T_INT 88 bind(done); 89 } 90 91 void InterpreterMacroAssembler::jump_to_entry(address entry) { 92 assert(entry, "Entry must have been generated by now"); 93 b(entry); 94 } 95 96 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 97 if (JvmtiExport::can_pop_frame()) { 98 Label L; 99 // Initiate popframe handling only if it is not already being 100 // processed. If the flag has the popframe_processing bit set, it 101 // means that this code is called *during* popframe handling - we 102 // don't want to reenter. 103 // This method is only called just after the call into the vm in 104 // call_VM_base, so the arg registers are available. 105 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 106 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 107 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 108 // Call Interpreter::remove_activation_preserving_args_entry() to get the 109 // address of the same-named entrypoint in the generated interpreter code. 110 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 111 br(r0); 112 bind(L); 113 } 114 } 115 116 117 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 118 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 119 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 120 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 121 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 122 switch (state) { 123 case atos: ldr(r0, oop_addr); 124 str(zr, oop_addr); 125 interp_verify_oop(r0, state); break; 126 case ltos: ldr(r0, val_addr); break; 127 case btos: // fall through 128 case ztos: // fall through 129 case ctos: // fall through 130 case stos: // fall through 131 case itos: ldrw(r0, val_addr); break; 132 case ftos: ldrs(v0, val_addr); break; 133 case dtos: ldrd(v0, val_addr); break; 134 case vtos: /* nothing to do */ break; 135 default : ShouldNotReachHere(); 136 } 137 // Clean up tos value in the thread object 138 movw(rscratch1, (int) ilgl); 139 strw(rscratch1, tos_addr); 140 strw(zr, val_addr); 141 } 142 143 144 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 145 if (JvmtiExport::can_force_early_return()) { 146 Label L; 147 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 148 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 149 150 // Initiate earlyret handling only if it is not already being processed. 151 // If the flag has the earlyret_processing bit set, it means that this code 152 // is called *during* earlyret handling - we don't want to reenter. 153 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 154 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 155 br(Assembler::NE, L); 156 157 // Call Interpreter::remove_activation_early_entry() to get the address of the 158 // same-named entrypoint in the generated interpreter code. 159 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 160 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 161 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 162 br(r0); 163 bind(L); 164 } 165 } 166 167 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 168 Register reg, 169 int bcp_offset) { 170 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 171 ldrh(reg, Address(rbcp, bcp_offset)); 172 rev16(reg, reg); 173 } 174 175 void InterpreterMacroAssembler::get_dispatch() { 176 uint64_t offset; 177 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 178 // Use add() here after ARDP, rather than lea(). 179 // lea() does not generate anything if its offset is zero. 180 // However, relocs expect to find either an ADD or a load/store 181 // insn after an ADRP. add() always generates an ADD insn, even 182 // for add(Rn, Rn, 0). 183 add(rdispatch, rdispatch, offset); 184 } 185 186 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 187 int bcp_offset, 188 size_t index_size) { 189 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 190 if (index_size == sizeof(u2)) { 191 load_unsigned_short(index, Address(rbcp, bcp_offset)); 192 } else if (index_size == sizeof(u4)) { 193 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 194 ldrw(index, Address(rbcp, bcp_offset)); 195 } else if (index_size == sizeof(u1)) { 196 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 197 } else { 198 ShouldNotReachHere(); 199 } 200 } 201 202 void InterpreterMacroAssembler::get_method_counters(Register method, 203 Register mcs, Label& skip) { 204 Label has_counters; 205 ldr(mcs, Address(method, Method::method_counters_offset())); 206 cbnz(mcs, has_counters); 207 call_VM(noreg, CAST_FROM_FN_PTR(address, 208 InterpreterRuntime::build_method_counters), method); 209 ldr(mcs, Address(method, Method::method_counters_offset())); 210 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 211 bind(has_counters); 212 } 213 214 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 215 Register t1, Register t2, 216 bool clear_fields, Label& alloc_failed) { 217 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 218 { 219 SkipIfEqual skip_if(this, &DTraceAllocProbes, 0); 220 // Trigger dtrace event for fastpath 221 push(atos); 222 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 223 pop(atos); 224 } 225 } 226 227 void InterpreterMacroAssembler::read_flat_field(Register holder_klass, 228 Register field_index, Register field_offset, 229 Register temp, Register obj) { 230 Label alloc_failed, empty_value, done; 231 const Register src = field_offset; 232 const Register alloc_temp = rscratch1; 233 const Register dst_temp = temp; 234 assert_different_registers(obj, holder_klass, field_index, field_offset, dst_temp); 235 236 // Grab the inline field klass 237 push(holder_klass); 238 const Register field_klass = holder_klass; 239 get_inline_type_field_klass(holder_klass, field_index, field_klass); 240 241 //check for empty value klass 242 test_klass_is_empty_inline_type(field_klass, dst_temp, empty_value); 243 244 // allocate buffer 245 push(obj); // save holder 246 allocate_instance(field_klass, obj, alloc_temp, dst_temp, false, alloc_failed); 247 248 // Have an oop instance buffer, copy into it 249 data_for_oop(obj, dst_temp, field_klass); 250 pop(alloc_temp); // restore holder 251 lea(src, Address(alloc_temp, field_offset)); 252 // call_VM_leaf, clobbers a few regs, save restore new obj 253 push(obj); 254 access_value_copy(IS_DEST_UNINITIALIZED, src, dst_temp, field_klass); 255 pop(obj); 256 pop(holder_klass); 257 b(done); 258 259 bind(empty_value); 260 get_empty_inline_type_oop(field_klass, dst_temp, obj); 261 pop(holder_klass); 262 b(done); 263 264 bind(alloc_failed); 265 pop(obj); 266 pop(holder_klass); 267 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 268 obj, field_index, holder_klass); 269 270 bind(done); 271 272 // Ensure the stores to copy the inline field contents are visible 273 // before any subsequent store that publishes this reference. 274 membar(Assembler::StoreStore); 275 } 276 277 // Load object from cpool->resolved_references(index) 278 void InterpreterMacroAssembler::load_resolved_reference_at_index( 279 Register result, Register index, Register tmp) { 280 assert_different_registers(result, index); 281 282 get_constant_pool(result); 283 // load pointer for resolved_references[] objArray 284 ldr(result, Address(result, ConstantPool::cache_offset())); 285 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 286 resolve_oop_handle(result, tmp, rscratch2); 287 // Add in the index 288 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 289 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 290 } 291 292 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 293 Register cpool, Register index, Register klass, Register temp) { 294 add(temp, cpool, index, LSL, LogBytesPerWord); 295 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 296 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 297 add(klass, klass, temp, LSL, LogBytesPerWord); 298 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 299 } 300 301 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 302 // subtype of super_klass. 303 // 304 // Args: 305 // r0: superklass 306 // Rsub_klass: subklass 307 // 308 // Kills: 309 // r2, r5 310 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 311 Label& ok_is_subtype, 312 bool profile) { 313 assert(Rsub_klass != r0, "r0 holds superklass"); 314 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 315 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 316 317 // Profile the not-null value's klass. 318 if (profile) { 319 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 320 } 321 322 // Do the check. 323 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 324 } 325 326 // Java Expression Stack 327 328 void InterpreterMacroAssembler::pop_ptr(Register r) { 329 ldr(r, post(esp, wordSize)); 330 } 331 332 void InterpreterMacroAssembler::pop_i(Register r) { 333 ldrw(r, post(esp, wordSize)); 334 } 335 336 void InterpreterMacroAssembler::pop_l(Register r) { 337 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 338 } 339 340 void InterpreterMacroAssembler::push_ptr(Register r) { 341 str(r, pre(esp, -wordSize)); 342 } 343 344 void InterpreterMacroAssembler::push_i(Register r) { 345 str(r, pre(esp, -wordSize)); 346 } 347 348 void InterpreterMacroAssembler::push_l(Register r) { 349 str(zr, pre(esp, -wordSize)); 350 str(r, pre(esp, - wordSize)); 351 } 352 353 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 354 ldrs(r, post(esp, wordSize)); 355 } 356 357 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 358 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 359 } 360 361 void InterpreterMacroAssembler::push_f(FloatRegister r) { 362 strs(r, pre(esp, -wordSize)); 363 } 364 365 void InterpreterMacroAssembler::push_d(FloatRegister r) { 366 strd(r, pre(esp, 2* -wordSize)); 367 } 368 369 void InterpreterMacroAssembler::pop(TosState state) { 370 switch (state) { 371 case atos: pop_ptr(); break; 372 case btos: 373 case ztos: 374 case ctos: 375 case stos: 376 case itos: pop_i(); break; 377 case ltos: pop_l(); break; 378 case ftos: pop_f(); break; 379 case dtos: pop_d(); break; 380 case vtos: /* nothing to do */ break; 381 default: ShouldNotReachHere(); 382 } 383 interp_verify_oop(r0, state); 384 } 385 386 void InterpreterMacroAssembler::push(TosState state) { 387 interp_verify_oop(r0, state); 388 switch (state) { 389 case atos: push_ptr(); break; 390 case btos: 391 case ztos: 392 case ctos: 393 case stos: 394 case itos: push_i(); break; 395 case ltos: push_l(); break; 396 case ftos: push_f(); break; 397 case dtos: push_d(); break; 398 case vtos: /* nothing to do */ break; 399 default : ShouldNotReachHere(); 400 } 401 } 402 403 // Helpers for swap and dup 404 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 405 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 406 } 407 408 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 409 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 410 } 411 412 void InterpreterMacroAssembler::load_float(Address src) { 413 ldrs(v0, src); 414 } 415 416 void InterpreterMacroAssembler::load_double(Address src) { 417 ldrd(v0, src); 418 } 419 420 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 421 // set sender sp 422 mov(r19_sender_sp, sp); 423 // record last_sp 424 sub(rscratch1, esp, rfp); 425 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 426 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 427 } 428 429 // Jump to from_interpreted entry of a call unless single stepping is possible 430 // in this thread in which case we must call the i2i entry 431 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 432 prepare_to_jump_from_interpreted(); 433 434 if (JvmtiExport::can_post_interpreter_events()) { 435 Label run_compiled_code; 436 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 437 // compiled code in threads for which the event is enabled. Check here for 438 // interp_only_mode if these events CAN be enabled. 439 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 440 cbzw(rscratch1, run_compiled_code); 441 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 442 br(rscratch1); 443 bind(run_compiled_code); 444 } 445 446 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 447 br(rscratch1); 448 } 449 450 // The following two routines provide a hook so that an implementation 451 // can schedule the dispatch in two parts. amd64 does not do this. 452 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 453 } 454 455 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 456 dispatch_next(state, step); 457 } 458 459 void InterpreterMacroAssembler::dispatch_base(TosState state, 460 address* table, 461 bool verifyoop, 462 bool generate_poll) { 463 if (VerifyActivationFrameSize) { 464 Unimplemented(); 465 } 466 if (verifyoop) { 467 interp_verify_oop(r0, state); 468 } 469 470 Label safepoint; 471 address* const safepoint_table = Interpreter::safept_table(state); 472 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 473 474 if (needs_thread_local_poll) { 475 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 476 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 477 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 478 } 479 480 if (table == Interpreter::dispatch_table(state)) { 481 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 482 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 483 } else { 484 mov(rscratch2, (address)table); 485 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 486 } 487 br(rscratch2); 488 489 if (needs_thread_local_poll) { 490 bind(safepoint); 491 lea(rscratch2, ExternalAddress((address)safepoint_table)); 492 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 493 br(rscratch2); 494 } 495 } 496 497 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 498 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 499 } 500 501 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 502 dispatch_base(state, Interpreter::normal_table(state)); 503 } 504 505 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 506 dispatch_base(state, Interpreter::normal_table(state), false); 507 } 508 509 510 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 511 // load next bytecode 512 ldrb(rscratch1, Address(pre(rbcp, step))); 513 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 514 } 515 516 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 517 // load current bytecode 518 ldrb(rscratch1, Address(rbcp, 0)); 519 dispatch_base(state, table); 520 } 521 522 // remove activation 523 // 524 // Apply stack watermark barrier. 525 // Unlock the receiver if this is a synchronized method. 526 // Unlock any Java monitors from synchronized blocks. 527 // Remove the activation from the stack. 528 // 529 // If there are locked Java monitors 530 // If throw_monitor_exception 531 // throws IllegalMonitorStateException 532 // Else if install_monitor_exception 533 // installs IllegalMonitorStateException 534 // Else 535 // no error processing 536 void InterpreterMacroAssembler::remove_activation( 537 TosState state, 538 bool throw_monitor_exception, 539 bool install_monitor_exception, 540 bool notify_jvmdi) { 541 // Note: Registers r3 xmm0 may be in use for the 542 // result check if synchronized method 543 Label unlocked, unlock, no_unlock; 544 545 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 546 // that would normally not be safe to use. Such bad returns into unsafe territory of 547 // the stack, will call InterpreterRuntime::at_unwind. 548 Label slow_path; 549 Label fast_path; 550 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 551 br(Assembler::AL, fast_path); 552 bind(slow_path); 553 push(state); 554 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 555 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 556 reset_last_Java_frame(true); 557 pop(state); 558 bind(fast_path); 559 560 // get the value of _do_not_unlock_if_synchronized into r3 561 const Address do_not_unlock_if_synchronized(rthread, 562 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 563 ldrb(r3, do_not_unlock_if_synchronized); 564 strb(zr, do_not_unlock_if_synchronized); // reset the flag 565 566 // get method access flags 567 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 568 ldr(r2, Address(r1, Method::access_flags_offset())); 569 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 570 571 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 572 // is set. 573 cbnz(r3, no_unlock); 574 575 // unlock monitor 576 push(state); // save result 577 578 // BasicObjectLock will be first in list, since this is a 579 // synchronized method. However, need to check that the object has 580 // not been unlocked by an explicit monitorexit bytecode. 581 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 582 wordSize - (int) sizeof(BasicObjectLock)); 583 // We use c_rarg1 so that if we go slow path it will be the correct 584 // register for unlock_object to pass to VM directly 585 lea(c_rarg1, monitor); // address of first monitor 586 587 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 588 cbnz(r0, unlock); 589 590 pop(state); 591 if (throw_monitor_exception) { 592 // Entry already unlocked, need to throw exception 593 call_VM(noreg, CAST_FROM_FN_PTR(address, 594 InterpreterRuntime::throw_illegal_monitor_state_exception)); 595 should_not_reach_here(); 596 } else { 597 // Monitor already unlocked during a stack unroll. If requested, 598 // install an illegal_monitor_state_exception. Continue with 599 // stack unrolling. 600 if (install_monitor_exception) { 601 call_VM(noreg, CAST_FROM_FN_PTR(address, 602 InterpreterRuntime::new_illegal_monitor_state_exception)); 603 } 604 b(unlocked); 605 } 606 607 bind(unlock); 608 unlock_object(c_rarg1); 609 pop(state); 610 611 // Check that for block-structured locking (i.e., that all locked 612 // objects has been unlocked) 613 bind(unlocked); 614 615 // r0: Might contain return value 616 617 // Check that all monitors are unlocked 618 { 619 Label loop, exception, entry, restart; 620 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 621 const Address monitor_block_top( 622 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 623 const Address monitor_block_bot( 624 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 625 626 bind(restart); 627 // We use c_rarg1 so that if we go slow path it will be the correct 628 // register for unlock_object to pass to VM directly 629 ldr(c_rarg1, monitor_block_top); // derelativize pointer 630 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 631 // c_rarg1 points to current entry, starting with top-most entry 632 633 lea(r19, monitor_block_bot); // points to word before bottom of 634 // monitor block 635 b(entry); 636 637 // Entry already locked, need to throw exception 638 bind(exception); 639 640 if (throw_monitor_exception) { 641 // Throw exception 642 MacroAssembler::call_VM(noreg, 643 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 644 throw_illegal_monitor_state_exception)); 645 should_not_reach_here(); 646 } else { 647 // Stack unrolling. Unlock object and install illegal_monitor_exception. 648 // Unlock does not block, so don't have to worry about the frame. 649 // We don't have to preserve c_rarg1 since we are going to throw an exception. 650 651 push(state); 652 unlock_object(c_rarg1); 653 pop(state); 654 655 if (install_monitor_exception) { 656 call_VM(noreg, CAST_FROM_FN_PTR(address, 657 InterpreterRuntime:: 658 new_illegal_monitor_state_exception)); 659 } 660 661 b(restart); 662 } 663 664 bind(loop); 665 // check if current entry is used 666 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 667 cbnz(rscratch1, exception); 668 669 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 670 bind(entry); 671 cmp(c_rarg1, r19); // check if bottom reached 672 br(Assembler::NE, loop); // if not at bottom then check this entry 673 } 674 675 bind(no_unlock); 676 677 // jvmti support 678 if (notify_jvmdi) { 679 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 680 } else { 681 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 682 } 683 684 // remove activation 685 // get sender esp 686 ldr(rscratch2, 687 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 688 689 if (StackReservedPages > 0) { 690 // testing if reserved zone needs to be re-enabled 691 Label no_reserved_zone_enabling; 692 693 // check if already enabled - if so no re-enabling needed 694 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 695 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 696 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 697 br(Assembler::EQ, no_reserved_zone_enabling); 698 699 // look for an overflow into the stack reserved zone, i.e. 700 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 701 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 702 cmp(rscratch2, rscratch1); 703 br(Assembler::LS, no_reserved_zone_enabling); 704 705 call_VM_leaf( 706 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 707 call_VM(noreg, CAST_FROM_FN_PTR(address, 708 InterpreterRuntime::throw_delayed_StackOverflowError)); 709 should_not_reach_here(); 710 711 bind(no_reserved_zone_enabling); 712 } 713 714 if (state == atos && InlineTypeReturnedAsFields) { 715 // Check if we are returning an non-null inline type and load its fields into registers 716 Label skip; 717 test_oop_is_not_inline_type(r0, rscratch2, skip); 718 719 // Load fields from a buffered value with an inline class specific handler 720 load_klass(rscratch1 /*dst*/, r0 /*src*/); 721 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 722 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 723 // Unpack handler can be null if inline type is not scalarizable in returns 724 cbz(rscratch1, skip); 725 726 blr(rscratch1); 727 #ifdef ASSERT 728 // TODO 8284443 Enable 729 if (StressCallingConvention && false) { 730 Label skip_stress; 731 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 732 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 733 tstw(rscratch1, MethodFlags::has_scalarized_return_flag()); 734 br(Assembler::EQ, skip_stress); 735 load_klass(r0, r0); 736 orr(r0, r0, 1); 737 bind(skip_stress); 738 } 739 #endif 740 bind(skip); 741 // Check above kills sender esp in rscratch2. Reload it. 742 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 743 } 744 745 // restore sender esp 746 mov(esp, rscratch2); 747 // remove frame anchor 748 leave(); 749 // If we're returning to interpreted code we will shortly be 750 // adjusting SP to allow some space for ESP. If we're returning to 751 // compiled code the saved sender SP was saved in sender_sp, so this 752 // restores it. 753 andr(sp, esp, -16); 754 } 755 756 // Lock object 757 // 758 // Args: 759 // c_rarg1: BasicObjectLock to be used for locking 760 // 761 // Kills: 762 // r0 763 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 764 // rscratch1, rscratch2 (scratch regs) 765 void InterpreterMacroAssembler::lock_object(Register lock_reg) 766 { 767 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 768 if (LockingMode == LM_MONITOR) { 769 call_VM(noreg, 770 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 771 lock_reg); 772 } else { 773 Label count, done; 774 775 const Register swap_reg = r0; 776 const Register tmp = c_rarg2; 777 const Register obj_reg = c_rarg3; // Will contain the oop 778 const Register tmp2 = c_rarg4; 779 const Register tmp3 = c_rarg5; 780 781 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 782 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 783 const int mark_offset = lock_offset + 784 BasicLock::displaced_header_offset_in_bytes(); 785 786 Label slow_case; 787 788 // Load object pointer into obj_reg %c_rarg3 789 ldr(obj_reg, Address(lock_reg, obj_offset)); 790 791 if (DiagnoseSyncOnValueBasedClasses != 0) { 792 load_klass(tmp, obj_reg); 793 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 794 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 795 br(Assembler::NE, slow_case); 796 } 797 798 if (LockingMode == LM_LIGHTWEIGHT) { 799 lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case); 800 b(count); 801 } else if (LockingMode == LM_LEGACY) { 802 // Load (object->mark() | 1) into swap_reg 803 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 804 orr(swap_reg, rscratch1, 1); 805 if (EnableValhalla) { 806 // Mask inline_type bit such that we go to the slow path if object is an inline type 807 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 808 } 809 810 // Save (object->mark() | 1) into BasicLock's displaced header 811 str(swap_reg, Address(lock_reg, mark_offset)); 812 813 assert(lock_offset == 0, 814 "displached header must be first word in BasicObjectLock"); 815 816 Label fail; 817 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 818 819 // Fast check for recursive lock. 820 // 821 // Can apply the optimization only if this is a stack lock 822 // allocated in this thread. For efficiency, we can focus on 823 // recently allocated stack locks (instead of reading the stack 824 // base and checking whether 'mark' points inside the current 825 // thread stack): 826 // 1) (mark & 7) == 0, and 827 // 2) sp <= mark < mark + os::pagesize() 828 // 829 // Warning: sp + os::pagesize can overflow the stack base. We must 830 // neither apply the optimization for an inflated lock allocated 831 // just above the thread stack (this is why condition 1 matters) 832 // nor apply the optimization if the stack lock is inside the stack 833 // of another thread. The latter is avoided even in case of overflow 834 // because we have guard pages at the end of all stacks. Hence, if 835 // we go over the stack base and hit the stack of another thread, 836 // this should not be in a writeable area that could contain a 837 // stack lock allocated by that thread. As a consequence, a stack 838 // lock less than page size away from sp is guaranteed to be 839 // owned by the current thread. 840 // 841 // These 3 tests can be done by evaluating the following 842 // expression: ((mark - sp) & (7 - os::vm_page_size())), 843 // assuming both stack pointer and pagesize have their 844 // least significant 3 bits clear. 845 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 846 // NOTE2: aarch64 does not like to subtract sp from rn so take a 847 // copy 848 mov(rscratch1, sp); 849 sub(swap_reg, swap_reg, rscratch1); 850 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 851 852 // Save the test result, for recursive case, the result is zero 853 str(swap_reg, Address(lock_reg, mark_offset)); 854 br(Assembler::EQ, count); 855 } 856 bind(slow_case); 857 858 // Call the runtime routine for slow case 859 if (LockingMode == LM_LIGHTWEIGHT) { 860 call_VM(noreg, 861 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 862 obj_reg); 863 } else { 864 call_VM(noreg, 865 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 866 lock_reg); 867 } 868 b(done); 869 870 bind(count); 871 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 872 873 bind(done); 874 } 875 } 876 877 878 // Unlocks an object. Used in monitorexit bytecode and 879 // remove_activation. Throws an IllegalMonitorException if object is 880 // not locked by current thread. 881 // 882 // Args: 883 // c_rarg1: BasicObjectLock for lock 884 // 885 // Kills: 886 // r0 887 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 888 // rscratch1, rscratch2 (scratch regs) 889 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 890 { 891 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 892 893 if (LockingMode == LM_MONITOR) { 894 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 895 } else { 896 Label count, done; 897 898 const Register swap_reg = r0; 899 const Register header_reg = c_rarg2; // Will contain the old oopMark 900 const Register obj_reg = c_rarg3; // Will contain the oop 901 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 902 903 save_bcp(); // Save in case of exception 904 905 if (LockingMode != LM_LIGHTWEIGHT) { 906 // Convert from BasicObjectLock structure to object and BasicLock 907 // structure Store the BasicLock address into %r0 908 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 909 } 910 911 // Load oop into obj_reg(%c_rarg3) 912 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 913 914 // Free entry 915 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 916 917 if (LockingMode == LM_LIGHTWEIGHT) { 918 Label slow_case; 919 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 920 b(count); 921 bind(slow_case); 922 } else if (LockingMode == LM_LEGACY) { 923 // Load the old header from BasicLock structure 924 ldr(header_reg, Address(swap_reg, 925 BasicLock::displaced_header_offset_in_bytes())); 926 927 // Test for recursion 928 cbz(header_reg, count); 929 930 // Atomic swap back the old header 931 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 932 } 933 // Call the runtime routine for slow case. 934 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 935 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 936 b(done); 937 938 bind(count); 939 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 940 941 bind(done); 942 restore_bcp(); 943 } 944 } 945 946 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 947 Label& zero_continue) { 948 assert(ProfileInterpreter, "must be profiling interpreter"); 949 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 950 cbz(mdp, zero_continue); 951 } 952 953 // Set the method data pointer for the current bcp. 954 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 955 assert(ProfileInterpreter, "must be profiling interpreter"); 956 Label set_mdp; 957 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 958 959 // Test MDO to avoid the call if it is null. 960 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 961 cbz(r0, set_mdp); 962 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 963 // r0: mdi 964 // mdo is guaranteed to be non-zero here, we checked for it before the call. 965 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 966 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 967 add(r0, r1, r0); 968 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 969 bind(set_mdp); 970 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 971 } 972 973 void InterpreterMacroAssembler::verify_method_data_pointer() { 974 assert(ProfileInterpreter, "must be profiling interpreter"); 975 #ifdef ASSERT 976 Label verify_continue; 977 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 978 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 979 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 980 get_method(r1); 981 982 // If the mdp is valid, it will point to a DataLayout header which is 983 // consistent with the bcp. The converse is highly probable also. 984 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 985 ldr(rscratch1, Address(r1, Method::const_offset())); 986 add(r2, r2, rscratch1, Assembler::LSL); 987 lea(r2, Address(r2, ConstMethod::codes_offset())); 988 cmp(r2, rbcp); 989 br(Assembler::EQ, verify_continue); 990 // r1: method 991 // rbcp: bcp // rbcp == 22 992 // r3: mdp 993 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 994 r1, rbcp, r3); 995 bind(verify_continue); 996 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 997 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 998 #endif // ASSERT 999 } 1000 1001 1002 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1003 int constant, 1004 Register value) { 1005 assert(ProfileInterpreter, "must be profiling interpreter"); 1006 Address data(mdp_in, constant); 1007 str(value, data); 1008 } 1009 1010 1011 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1012 int constant, 1013 bool decrement) { 1014 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1015 } 1016 1017 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1018 Register reg, 1019 int constant, 1020 bool decrement) { 1021 assert(ProfileInterpreter, "must be profiling interpreter"); 1022 // %%% this does 64bit counters at best it is wasting space 1023 // at worst it is a rare bug when counters overflow 1024 1025 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1026 1027 Address addr1(mdp_in, constant); 1028 Address addr2(rscratch2, reg, Address::lsl(0)); 1029 Address &addr = addr1; 1030 if (reg != noreg) { 1031 lea(rscratch2, addr1); 1032 addr = addr2; 1033 } 1034 1035 if (decrement) { 1036 // Decrement the register. Set condition codes. 1037 // Intel does this 1038 // addptr(data, (int32_t) -DataLayout::counter_increment); 1039 // If the decrement causes the counter to overflow, stay negative 1040 // Label L; 1041 // jcc(Assembler::negative, L); 1042 // addptr(data, (int32_t) DataLayout::counter_increment); 1043 // so we do this 1044 ldr(rscratch1, addr); 1045 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1046 Label L; 1047 br(Assembler::LO, L); // skip store if counter underflow 1048 str(rscratch1, addr); 1049 bind(L); 1050 } else { 1051 assert(DataLayout::counter_increment == 1, 1052 "flow-free idiom only works with 1"); 1053 // Intel does this 1054 // Increment the register. Set carry flag. 1055 // addptr(data, DataLayout::counter_increment); 1056 // If the increment causes the counter to overflow, pull back by 1. 1057 // sbbptr(data, (int32_t)0); 1058 // so we do this 1059 ldr(rscratch1, addr); 1060 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1061 Label L; 1062 br(Assembler::CS, L); // skip store if counter overflow 1063 str(rscratch1, addr); 1064 bind(L); 1065 } 1066 } 1067 1068 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1069 int flag_byte_constant) { 1070 assert(ProfileInterpreter, "must be profiling interpreter"); 1071 int flags_offset = in_bytes(DataLayout::flags_offset()); 1072 // Set the flag 1073 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1074 orr(rscratch1, rscratch1, flag_byte_constant); 1075 strb(rscratch1, Address(mdp_in, flags_offset)); 1076 } 1077 1078 1079 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1080 int offset, 1081 Register value, 1082 Register test_value_out, 1083 Label& not_equal_continue) { 1084 assert(ProfileInterpreter, "must be profiling interpreter"); 1085 if (test_value_out == noreg) { 1086 ldr(rscratch1, Address(mdp_in, offset)); 1087 cmp(value, rscratch1); 1088 } else { 1089 // Put the test value into a register, so caller can use it: 1090 ldr(test_value_out, Address(mdp_in, offset)); 1091 cmp(value, test_value_out); 1092 } 1093 br(Assembler::NE, not_equal_continue); 1094 } 1095 1096 1097 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1098 int offset_of_disp) { 1099 assert(ProfileInterpreter, "must be profiling interpreter"); 1100 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1101 add(mdp_in, mdp_in, rscratch1, LSL); 1102 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1103 } 1104 1105 1106 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1107 Register reg, 1108 int offset_of_disp) { 1109 assert(ProfileInterpreter, "must be profiling interpreter"); 1110 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1111 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1112 add(mdp_in, mdp_in, rscratch1, LSL); 1113 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1114 } 1115 1116 1117 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1118 int constant) { 1119 assert(ProfileInterpreter, "must be profiling interpreter"); 1120 add(mdp_in, mdp_in, (unsigned)constant); 1121 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1122 } 1123 1124 1125 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1126 assert(ProfileInterpreter, "must be profiling interpreter"); 1127 // save/restore across call_VM 1128 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1129 call_VM(noreg, 1130 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1131 return_bci); 1132 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1133 } 1134 1135 1136 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1137 Register bumped_count) { 1138 if (ProfileInterpreter) { 1139 Label profile_continue; 1140 1141 // If no method data exists, go to profile_continue. 1142 // Otherwise, assign to mdp 1143 test_method_data_pointer(mdp, profile_continue); 1144 1145 // We are taking a branch. Increment the taken count. 1146 // We inline increment_mdp_data_at to return bumped_count in a register 1147 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1148 Address data(mdp, in_bytes(JumpData::taken_offset())); 1149 ldr(bumped_count, data); 1150 assert(DataLayout::counter_increment == 1, 1151 "flow-free idiom only works with 1"); 1152 // Intel does this to catch overflow 1153 // addptr(bumped_count, DataLayout::counter_increment); 1154 // sbbptr(bumped_count, 0); 1155 // so we do this 1156 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1157 Label L; 1158 br(Assembler::CS, L); // skip store if counter overflow 1159 str(bumped_count, data); 1160 bind(L); 1161 // The method data pointer needs to be updated to reflect the new target. 1162 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1163 bind(profile_continue); 1164 } 1165 } 1166 1167 1168 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1169 if (ProfileInterpreter) { 1170 Label profile_continue; 1171 1172 // If no method data exists, go to profile_continue. 1173 test_method_data_pointer(mdp, profile_continue); 1174 1175 // We are taking a branch. Increment the not taken count. 1176 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1177 1178 // The method data pointer needs to be updated to correspond to 1179 // the next bytecode 1180 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1181 bind(profile_continue); 1182 } 1183 } 1184 1185 1186 void InterpreterMacroAssembler::profile_call(Register mdp) { 1187 if (ProfileInterpreter) { 1188 Label profile_continue; 1189 1190 // If no method data exists, go to profile_continue. 1191 test_method_data_pointer(mdp, profile_continue); 1192 1193 // We are making a call. Increment the count. 1194 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1195 1196 // The method data pointer needs to be updated to reflect the new target. 1197 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1198 bind(profile_continue); 1199 } 1200 } 1201 1202 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1203 if (ProfileInterpreter) { 1204 Label profile_continue; 1205 1206 // If no method data exists, go to profile_continue. 1207 test_method_data_pointer(mdp, profile_continue); 1208 1209 // We are making a call. Increment the count. 1210 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1211 1212 // The method data pointer needs to be updated to reflect the new target. 1213 update_mdp_by_constant(mdp, 1214 in_bytes(VirtualCallData:: 1215 virtual_call_data_size())); 1216 bind(profile_continue); 1217 } 1218 } 1219 1220 1221 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1222 Register mdp, 1223 Register reg2, 1224 bool receiver_can_be_null) { 1225 if (ProfileInterpreter) { 1226 Label profile_continue; 1227 1228 // If no method data exists, go to profile_continue. 1229 test_method_data_pointer(mdp, profile_continue); 1230 1231 Label skip_receiver_profile; 1232 if (receiver_can_be_null) { 1233 Label not_null; 1234 // We are making a call. Increment the count for null receiver. 1235 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1236 b(skip_receiver_profile); 1237 bind(not_null); 1238 } 1239 1240 // Record the receiver type. 1241 record_klass_in_profile(receiver, mdp, reg2); 1242 bind(skip_receiver_profile); 1243 1244 // The method data pointer needs to be updated to reflect the new target. 1245 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1246 bind(profile_continue); 1247 } 1248 } 1249 1250 // This routine creates a state machine for updating the multi-row 1251 // type profile at a virtual call site (or other type-sensitive bytecode). 1252 // The machine visits each row (of receiver/count) until the receiver type 1253 // is found, or until it runs out of rows. At the same time, it remembers 1254 // the location of the first empty row. (An empty row records null for its 1255 // receiver, and can be allocated for a newly-observed receiver type.) 1256 // Because there are two degrees of freedom in the state, a simple linear 1257 // search will not work; it must be a decision tree. Hence this helper 1258 // function is recursive, to generate the required tree structured code. 1259 // It's the interpreter, so we are trading off code space for speed. 1260 // See below for example code. 1261 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1262 Register receiver, Register mdp, 1263 Register reg2, int start_row, 1264 Label& done) { 1265 if (TypeProfileWidth == 0) { 1266 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1267 } else { 1268 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1269 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1270 } 1271 } 1272 1273 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1274 Register reg2, int start_row, Label& done, int total_rows, 1275 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1276 int last_row = total_rows - 1; 1277 assert(start_row <= last_row, "must be work left to do"); 1278 // Test this row for both the item and for null. 1279 // Take any of three different outcomes: 1280 // 1. found item => increment count and goto done 1281 // 2. found null => keep looking for case 1, maybe allocate this cell 1282 // 3. found something else => keep looking for cases 1 and 2 1283 // Case 3 is handled by a recursive call. 1284 for (int row = start_row; row <= last_row; row++) { 1285 Label next_test; 1286 bool test_for_null_also = (row == start_row); 1287 1288 // See if the item is item[n]. 1289 int item_offset = in_bytes(item_offset_fn(row)); 1290 test_mdp_data_at(mdp, item_offset, item, 1291 (test_for_null_also ? reg2 : noreg), 1292 next_test); 1293 // (Reg2 now contains the item from the CallData.) 1294 1295 // The item is item[n]. Increment count[n]. 1296 int count_offset = in_bytes(item_count_offset_fn(row)); 1297 increment_mdp_data_at(mdp, count_offset); 1298 b(done); 1299 bind(next_test); 1300 1301 if (test_for_null_also) { 1302 Label found_null; 1303 // Failed the equality check on item[n]... Test for null. 1304 if (start_row == last_row) { 1305 // The only thing left to do is handle the null case. 1306 cbz(reg2, found_null); 1307 // Item did not match any saved item and there is no empty row for it. 1308 // Increment total counter to indicate polymorphic case. 1309 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1310 b(done); 1311 bind(found_null); 1312 break; 1313 } 1314 // Since null is rare, make it be the branch-taken case. 1315 cbz(reg2, found_null); 1316 1317 // Put all the "Case 3" tests here. 1318 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1319 item_offset_fn, item_count_offset_fn); 1320 1321 // Found a null. Keep searching for a matching item, 1322 // but remember that this is an empty (unused) slot. 1323 bind(found_null); 1324 } 1325 } 1326 1327 // In the fall-through case, we found no matching item, but we 1328 // observed the item[start_row] is null. 1329 1330 // Fill in the item field and increment the count. 1331 int item_offset = in_bytes(item_offset_fn(start_row)); 1332 set_mdp_data_at(mdp, item_offset, item); 1333 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1334 mov(reg2, DataLayout::counter_increment); 1335 set_mdp_data_at(mdp, count_offset, reg2); 1336 if (start_row > 0) { 1337 b(done); 1338 } 1339 } 1340 1341 // Example state machine code for three profile rows: 1342 // // main copy of decision tree, rooted at row[1] 1343 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1344 // if (row[0].rec != nullptr) { 1345 // // inner copy of decision tree, rooted at row[1] 1346 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1347 // if (row[1].rec != nullptr) { 1348 // // degenerate decision tree, rooted at row[2] 1349 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1350 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1351 // row[2].init(rec); goto done; 1352 // } else { 1353 // // remember row[1] is empty 1354 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1355 // row[1].init(rec); goto done; 1356 // } 1357 // } else { 1358 // // remember row[0] is empty 1359 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1360 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1361 // row[0].init(rec); goto done; 1362 // } 1363 // done: 1364 1365 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1366 Register mdp, Register reg2) { 1367 assert(ProfileInterpreter, "must be profiling"); 1368 Label done; 1369 1370 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1371 1372 bind (done); 1373 } 1374 1375 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1376 Register mdp) { 1377 if (ProfileInterpreter) { 1378 Label profile_continue; 1379 uint row; 1380 1381 // If no method data exists, go to profile_continue. 1382 test_method_data_pointer(mdp, profile_continue); 1383 1384 // Update the total ret count. 1385 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1386 1387 for (row = 0; row < RetData::row_limit(); row++) { 1388 Label next_test; 1389 1390 // See if return_bci is equal to bci[n]: 1391 test_mdp_data_at(mdp, 1392 in_bytes(RetData::bci_offset(row)), 1393 return_bci, noreg, 1394 next_test); 1395 1396 // return_bci is equal to bci[n]. Increment the count. 1397 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1398 1399 // The method data pointer needs to be updated to reflect the new target. 1400 update_mdp_by_offset(mdp, 1401 in_bytes(RetData::bci_displacement_offset(row))); 1402 b(profile_continue); 1403 bind(next_test); 1404 } 1405 1406 update_mdp_for_ret(return_bci); 1407 1408 bind(profile_continue); 1409 } 1410 } 1411 1412 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1413 if (ProfileInterpreter) { 1414 Label profile_continue; 1415 1416 // If no method data exists, go to profile_continue. 1417 test_method_data_pointer(mdp, profile_continue); 1418 1419 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1420 1421 // The method data pointer needs to be updated. 1422 int mdp_delta = in_bytes(BitData::bit_data_size()); 1423 if (TypeProfileCasts) { 1424 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1425 } 1426 update_mdp_by_constant(mdp, mdp_delta); 1427 1428 bind(profile_continue); 1429 } 1430 } 1431 1432 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1433 if (ProfileInterpreter) { 1434 Label profile_continue; 1435 1436 // If no method data exists, go to profile_continue. 1437 test_method_data_pointer(mdp, profile_continue); 1438 1439 // The method data pointer needs to be updated. 1440 int mdp_delta = in_bytes(BitData::bit_data_size()); 1441 if (TypeProfileCasts) { 1442 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1443 1444 // Record the object type. 1445 record_klass_in_profile(klass, mdp, reg2); 1446 } 1447 update_mdp_by_constant(mdp, mdp_delta); 1448 1449 bind(profile_continue); 1450 } 1451 } 1452 1453 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1454 if (ProfileInterpreter) { 1455 Label profile_continue; 1456 1457 // If no method data exists, go to profile_continue. 1458 test_method_data_pointer(mdp, profile_continue); 1459 1460 // Update the default case count 1461 increment_mdp_data_at(mdp, 1462 in_bytes(MultiBranchData::default_count_offset())); 1463 1464 // The method data pointer needs to be updated. 1465 update_mdp_by_offset(mdp, 1466 in_bytes(MultiBranchData:: 1467 default_displacement_offset())); 1468 1469 bind(profile_continue); 1470 } 1471 } 1472 1473 void InterpreterMacroAssembler::profile_switch_case(Register index, 1474 Register mdp, 1475 Register reg2) { 1476 if (ProfileInterpreter) { 1477 Label profile_continue; 1478 1479 // If no method data exists, go to profile_continue. 1480 test_method_data_pointer(mdp, profile_continue); 1481 1482 // Build the base (index * per_case_size_in_bytes()) + 1483 // case_array_offset_in_bytes() 1484 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1485 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1486 Assembler::maddw(index, index, reg2, rscratch1); 1487 1488 // Update the case count 1489 increment_mdp_data_at(mdp, 1490 index, 1491 in_bytes(MultiBranchData::relative_count_offset())); 1492 1493 // The method data pointer needs to be updated. 1494 update_mdp_by_offset(mdp, 1495 index, 1496 in_bytes(MultiBranchData:: 1497 relative_displacement_offset())); 1498 1499 bind(profile_continue); 1500 } 1501 } 1502 1503 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1504 Register array, 1505 Register tmp) { 1506 if (ProfileInterpreter) { 1507 Label profile_continue; 1508 1509 // If no method data exists, go to profile_continue. 1510 test_method_data_pointer(mdp, profile_continue); 1511 1512 mov(tmp, array); 1513 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1514 1515 Label not_flat; 1516 test_non_flat_array_oop(array, tmp, not_flat); 1517 1518 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1519 1520 bind(not_flat); 1521 1522 Label not_null_free; 1523 test_non_null_free_array_oop(array, tmp, not_null_free); 1524 1525 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1526 1527 bind(not_null_free); 1528 1529 bind(profile_continue); 1530 } 1531 } 1532 1533 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1534 Register array, 1535 Register tmp); 1536 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1537 Register array, 1538 Register tmp); 1539 1540 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1541 if (ProfileInterpreter) { 1542 Label profile_continue; 1543 1544 // If no method data exists, go to profile_continue. 1545 test_method_data_pointer(mdp, profile_continue); 1546 1547 Label done, update; 1548 cbnz(element, update); 1549 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1550 b(done); 1551 1552 bind(update); 1553 load_klass(tmp, element); 1554 1555 // Record the object type. 1556 record_klass_in_profile(tmp, mdp, tmp2); 1557 1558 bind(done); 1559 1560 // The method data pointer needs to be updated. 1561 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1562 1563 bind(profile_continue); 1564 } 1565 } 1566 1567 1568 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1569 Register element, 1570 Register tmp) { 1571 if (ProfileInterpreter) { 1572 Label profile_continue; 1573 1574 // If no method data exists, go to profile_continue. 1575 test_method_data_pointer(mdp, profile_continue); 1576 1577 mov(tmp, element); 1578 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1579 1580 // The method data pointer needs to be updated. 1581 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1582 1583 bind(profile_continue); 1584 } 1585 } 1586 1587 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1588 Register left, 1589 Register right, 1590 Register tmp) { 1591 if (ProfileInterpreter) { 1592 Label profile_continue; 1593 1594 // If no method data exists, go to profile_continue. 1595 test_method_data_pointer(mdp, profile_continue); 1596 1597 mov(tmp, left); 1598 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1599 1600 Label left_not_inline_type; 1601 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1602 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1603 bind(left_not_inline_type); 1604 1605 mov(tmp, right); 1606 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1607 1608 Label right_not_inline_type; 1609 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1610 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1611 bind(right_not_inline_type); 1612 1613 bind(profile_continue); 1614 } 1615 } 1616 1617 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1618 if (state == atos) { 1619 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1620 } 1621 } 1622 1623 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1624 1625 1626 void InterpreterMacroAssembler::notify_method_entry() { 1627 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1628 // track stack depth. If it is possible to enter interp_only_mode we add 1629 // the code to check if the event should be sent. 1630 if (JvmtiExport::can_post_interpreter_events()) { 1631 Label L; 1632 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1633 cbzw(r3, L); 1634 call_VM(noreg, CAST_FROM_FN_PTR(address, 1635 InterpreterRuntime::post_method_entry)); 1636 bind(L); 1637 } 1638 1639 { 1640 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1641 get_method(c_rarg1); 1642 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1643 rthread, c_rarg1); 1644 } 1645 1646 // RedefineClasses() tracing support for obsolete method entry 1647 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1648 get_method(c_rarg1); 1649 call_VM_leaf( 1650 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1651 rthread, c_rarg1); 1652 } 1653 1654 } 1655 1656 1657 void InterpreterMacroAssembler::notify_method_exit( 1658 TosState state, NotifyMethodExitMode mode) { 1659 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1660 // track stack depth. If it is possible to enter interp_only_mode we add 1661 // the code to check if the event should be sent. 1662 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1663 Label L; 1664 // Note: frame::interpreter_frame_result has a dependency on how the 1665 // method result is saved across the call to post_method_exit. If this 1666 // is changed then the interpreter_frame_result implementation will 1667 // need to be updated too. 1668 1669 // template interpreter will leave the result on the top of the stack. 1670 push(state); 1671 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1672 cbz(r3, L); 1673 call_VM(noreg, 1674 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1675 bind(L); 1676 pop(state); 1677 } 1678 1679 { 1680 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1681 push(state); 1682 get_method(c_rarg1); 1683 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1684 rthread, c_rarg1); 1685 pop(state); 1686 } 1687 } 1688 1689 1690 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1691 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1692 int increment, Address mask, 1693 Register scratch, Register scratch2, 1694 bool preloaded, Condition cond, 1695 Label* where) { 1696 if (!preloaded) { 1697 ldrw(scratch, counter_addr); 1698 } 1699 add(scratch, scratch, increment); 1700 strw(scratch, counter_addr); 1701 ldrw(scratch2, mask); 1702 ands(scratch, scratch, scratch2); 1703 br(cond, *where); 1704 } 1705 1706 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1707 int number_of_arguments) { 1708 // interpreter specific 1709 // 1710 // Note: No need to save/restore rbcp & rlocals pointer since these 1711 // are callee saved registers and no blocking/ GC can happen 1712 // in leaf calls. 1713 #ifdef ASSERT 1714 { 1715 Label L; 1716 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1717 cbz(rscratch1, L); 1718 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1719 " last_sp != nullptr"); 1720 bind(L); 1721 } 1722 #endif /* ASSERT */ 1723 // super call 1724 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1725 } 1726 1727 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1728 Register java_thread, 1729 Register last_java_sp, 1730 address entry_point, 1731 int number_of_arguments, 1732 bool check_exceptions) { 1733 // interpreter specific 1734 // 1735 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1736 // really make a difference for these runtime calls, since they are 1737 // slow anyway. Btw., bcp must be saved/restored since it may change 1738 // due to GC. 1739 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1740 save_bcp(); 1741 #ifdef ASSERT 1742 { 1743 Label L; 1744 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1745 cbz(rscratch1, L); 1746 stop("InterpreterMacroAssembler::call_VM_base:" 1747 " last_sp != nullptr"); 1748 bind(L); 1749 } 1750 #endif /* ASSERT */ 1751 // super call 1752 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1753 entry_point, number_of_arguments, 1754 check_exceptions); 1755 // interpreter specific 1756 restore_bcp(); 1757 restore_locals(); 1758 } 1759 1760 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1761 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1762 Label update, next, none; 1763 1764 verify_oop(obj); 1765 1766 cbnz(obj, update); 1767 orptr(mdo_addr, TypeEntries::null_seen); 1768 b(next); 1769 1770 bind(update); 1771 load_klass(obj, obj); 1772 1773 ldr(rscratch1, mdo_addr); 1774 eor(obj, obj, rscratch1); 1775 tst(obj, TypeEntries::type_klass_mask); 1776 br(Assembler::EQ, next); // klass seen before, nothing to 1777 // do. The unknown bit may have been 1778 // set already but no need to check. 1779 1780 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1781 // already unknown. Nothing to do anymore. 1782 1783 cbz(rscratch1, none); 1784 cmp(rscratch1, (u1)TypeEntries::null_seen); 1785 br(Assembler::EQ, none); 1786 // There is a chance that the checks above 1787 // fail if another thread has just set the 1788 // profiling to this obj's klass 1789 eor(obj, obj, rscratch1); // get back original value before XOR 1790 ldr(rscratch1, mdo_addr); 1791 eor(obj, obj, rscratch1); 1792 tst(obj, TypeEntries::type_klass_mask); 1793 br(Assembler::EQ, next); 1794 1795 // different than before. Cannot keep accurate profile. 1796 orptr(mdo_addr, TypeEntries::type_unknown); 1797 b(next); 1798 1799 bind(none); 1800 // first time here. Set profile type. 1801 str(obj, mdo_addr); 1802 #ifdef ASSERT 1803 andr(obj, obj, TypeEntries::type_mask); 1804 verify_klass_ptr(obj); 1805 #endif 1806 1807 bind(next); 1808 } 1809 1810 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1811 if (!ProfileInterpreter) { 1812 return; 1813 } 1814 1815 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1816 Label profile_continue; 1817 1818 test_method_data_pointer(mdp, profile_continue); 1819 1820 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1821 1822 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1823 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1824 br(Assembler::NE, profile_continue); 1825 1826 if (MethodData::profile_arguments()) { 1827 Label done; 1828 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1829 1830 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1831 if (i > 0 || MethodData::profile_return()) { 1832 // If return value type is profiled we may have no argument to profile 1833 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1834 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1835 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1836 add(rscratch1, mdp, off_to_args); 1837 br(Assembler::LT, done); 1838 } 1839 ldr(tmp, Address(callee, Method::const_offset())); 1840 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1841 // stack offset o (zero based) from the start of the argument 1842 // list, for n arguments translates into offset n - o - 1 from 1843 // the end of the argument list 1844 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1845 sub(tmp, tmp, rscratch1); 1846 sub(tmp, tmp, 1); 1847 Address arg_addr = argument_address(tmp); 1848 ldr(tmp, arg_addr); 1849 1850 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1851 profile_obj_type(tmp, mdo_arg_addr); 1852 1853 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1854 off_to_args += to_add; 1855 } 1856 1857 if (MethodData::profile_return()) { 1858 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1859 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1860 } 1861 1862 add(rscratch1, mdp, off_to_args); 1863 bind(done); 1864 mov(mdp, rscratch1); 1865 1866 if (MethodData::profile_return()) { 1867 // We're right after the type profile for the last 1868 // argument. tmp is the number of cells left in the 1869 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1870 // if there's a return to profile. 1871 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1872 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1873 } 1874 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1875 } else { 1876 assert(MethodData::profile_return(), "either profile call args or call ret"); 1877 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1878 } 1879 1880 // mdp points right after the end of the 1881 // CallTypeData/VirtualCallTypeData, right after the cells for the 1882 // return value type if there's one 1883 1884 bind(profile_continue); 1885 } 1886 } 1887 1888 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1889 assert_different_registers(mdp, ret, tmp, rbcp); 1890 if (ProfileInterpreter && MethodData::profile_return()) { 1891 Label profile_continue, done; 1892 1893 test_method_data_pointer(mdp, profile_continue); 1894 1895 if (MethodData::profile_return_jsr292_only()) { 1896 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1897 1898 // If we don't profile all invoke bytecodes we must make sure 1899 // it's a bytecode we indeed profile. We can't go back to the 1900 // beginning of the ProfileData we intend to update to check its 1901 // type because we're right after it and we don't known its 1902 // length 1903 Label do_profile; 1904 ldrb(rscratch1, Address(rbcp, 0)); 1905 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1906 br(Assembler::EQ, do_profile); 1907 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1908 br(Assembler::EQ, do_profile); 1909 get_method(tmp); 1910 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1911 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1912 br(Assembler::NE, profile_continue); 1913 1914 bind(do_profile); 1915 } 1916 1917 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1918 mov(tmp, ret); 1919 profile_obj_type(tmp, mdo_ret_addr); 1920 1921 bind(profile_continue); 1922 } 1923 } 1924 1925 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1926 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1927 if (ProfileInterpreter && MethodData::profile_parameters()) { 1928 Label profile_continue, done; 1929 1930 test_method_data_pointer(mdp, profile_continue); 1931 1932 // Load the offset of the area within the MDO used for 1933 // parameters. If it's negative we're not profiling any parameters 1934 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1935 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1936 1937 // Compute a pointer to the area for parameters from the offset 1938 // and move the pointer to the slot for the last 1939 // parameters. Collect profiling from last parameter down. 1940 // mdo start + parameters offset + array length - 1 1941 add(mdp, mdp, tmp1); 1942 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1943 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1944 1945 Label loop; 1946 bind(loop); 1947 1948 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1949 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1950 int per_arg_scale = exact_log2(DataLayout::cell_size); 1951 add(rscratch1, mdp, off_base); 1952 add(rscratch2, mdp, type_base); 1953 1954 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1955 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1956 1957 // load offset on the stack from the slot for this parameter 1958 ldr(tmp2, arg_off); 1959 neg(tmp2, tmp2); 1960 // read the parameter from the local area 1961 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1962 1963 // profile the parameter 1964 profile_obj_type(tmp2, arg_type); 1965 1966 // go to next parameter 1967 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1968 br(Assembler::GE, loop); 1969 1970 bind(profile_continue); 1971 } 1972 } 1973 1974 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1975 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1976 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1977 // Get address of invokedynamic array 1978 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1979 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 1980 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1981 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1982 lea(cache, Address(cache, index)); 1983 } 1984 1985 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 1986 // Get index out of bytecode pointer 1987 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 1988 // Take shortcut if the size is a power of 2 1989 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 1990 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 1991 } else { 1992 mov(cache, sizeof(ResolvedFieldEntry)); 1993 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 1994 } 1995 // Get address of field entries array 1996 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 1997 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 1998 lea(cache, Address(cache, index)); 1999 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 2000 membar(MacroAssembler::LoadLoad); 2001 } 2002 2003 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2004 // Get index out of bytecode pointer 2005 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2006 mov(cache, sizeof(ResolvedMethodEntry)); 2007 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2008 2009 // Get address of field entries array 2010 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 2011 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 2012 lea(cache, Address(cache, index)); 2013 }