1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "compiler/compiler_globals.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_aarch64.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "logging/log.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/constMethodFlags.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/inlineKlass.hpp" 40 #include "oops/resolvedFieldEntry.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "oops/resolvedMethodEntry.hpp" 43 #include "prims/jvmtiExport.hpp" 44 #include "prims/jvmtiThreadState.hpp" 45 #include "runtime/basicLock.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/javaThread.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 void InterpreterMacroAssembler::narrow(Register result) { 53 54 // Get method->_constMethod->_result_type 55 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 56 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 57 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 58 59 Label done, notBool, notByte, notChar; 60 61 // common case first 62 cmpw(rscratch1, T_INT); 63 br(Assembler::EQ, done); 64 65 // mask integer result to narrower return type. 66 cmpw(rscratch1, T_BOOLEAN); 67 br(Assembler::NE, notBool); 68 andw(result, result, 0x1); 69 b(done); 70 71 bind(notBool); 72 cmpw(rscratch1, T_BYTE); 73 br(Assembler::NE, notByte); 74 sbfx(result, result, 0, 8); 75 b(done); 76 77 bind(notByte); 78 cmpw(rscratch1, T_CHAR); 79 br(Assembler::NE, notChar); 80 ubfx(result, result, 0, 16); // truncate upper 16 bits 81 b(done); 82 83 bind(notChar); 84 sbfx(result, result, 0, 16); // sign-extend short 85 86 // Nothing to do for T_INT 87 bind(done); 88 } 89 90 void InterpreterMacroAssembler::jump_to_entry(address entry) { 91 assert(entry, "Entry must have been generated by now"); 92 b(entry); 93 } 94 95 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 96 if (JvmtiExport::can_pop_frame()) { 97 Label L; 98 // Initiate popframe handling only if it is not already being 99 // processed. If the flag has the popframe_processing bit set, it 100 // means that this code is called *during* popframe handling - we 101 // don't want to reenter. 102 // This method is only called just after the call into the vm in 103 // call_VM_base, so the arg registers are available. 104 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 105 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 106 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 107 // Call Interpreter::remove_activation_preserving_args_entry() to get the 108 // address of the same-named entrypoint in the generated interpreter code. 109 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 110 br(r0); 111 bind(L); 112 } 113 } 114 115 116 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 117 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 118 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 119 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 120 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 121 switch (state) { 122 case atos: ldr(r0, oop_addr); 123 str(zr, oop_addr); 124 interp_verify_oop(r0, state); break; 125 case ltos: ldr(r0, val_addr); break; 126 case btos: // fall through 127 case ztos: // fall through 128 case ctos: // fall through 129 case stos: // fall through 130 case itos: ldrw(r0, val_addr); break; 131 case ftos: ldrs(v0, val_addr); break; 132 case dtos: ldrd(v0, val_addr); break; 133 case vtos: /* nothing to do */ break; 134 default : ShouldNotReachHere(); 135 } 136 // Clean up tos value in the thread object 137 movw(rscratch1, (int) ilgl); 138 strw(rscratch1, tos_addr); 139 strw(zr, val_addr); 140 } 141 142 143 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 144 if (JvmtiExport::can_force_early_return()) { 145 Label L; 146 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 147 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 148 149 // Initiate earlyret handling only if it is not already being processed. 150 // If the flag has the earlyret_processing bit set, it means that this code 151 // is called *during* earlyret handling - we don't want to reenter. 152 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 153 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 154 br(Assembler::NE, L); 155 156 // Call Interpreter::remove_activation_early_entry() to get the address of the 157 // same-named entrypoint in the generated interpreter code. 158 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 159 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 160 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 161 br(r0); 162 bind(L); 163 } 164 } 165 166 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 167 Register reg, 168 int bcp_offset) { 169 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 170 ldrh(reg, Address(rbcp, bcp_offset)); 171 rev16(reg, reg); 172 } 173 174 void InterpreterMacroAssembler::get_dispatch() { 175 uint64_t offset; 176 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 177 // Use add() here after ARDP, rather than lea(). 178 // lea() does not generate anything if its offset is zero. 179 // However, relocs expect to find either an ADD or a load/store 180 // insn after an ADRP. add() always generates an ADD insn, even 181 // for add(Rn, Rn, 0). 182 add(rdispatch, rdispatch, offset); 183 } 184 185 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 186 int bcp_offset, 187 size_t index_size) { 188 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 189 if (index_size == sizeof(u2)) { 190 load_unsigned_short(index, Address(rbcp, bcp_offset)); 191 } else if (index_size == sizeof(u4)) { 192 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 193 ldrw(index, Address(rbcp, bcp_offset)); 194 } else if (index_size == sizeof(u1)) { 195 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 196 } else { 197 ShouldNotReachHere(); 198 } 199 } 200 201 void InterpreterMacroAssembler::get_method_counters(Register method, 202 Register mcs, Label& skip) { 203 Label has_counters; 204 ldr(mcs, Address(method, Method::method_counters_offset())); 205 cbnz(mcs, has_counters); 206 call_VM(noreg, CAST_FROM_FN_PTR(address, 207 InterpreterRuntime::build_method_counters), method); 208 ldr(mcs, Address(method, Method::method_counters_offset())); 209 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 210 bind(has_counters); 211 } 212 213 void InterpreterMacroAssembler::allocate_instance(Register klass, Register new_obj, 214 Register t1, Register t2, 215 bool clear_fields, Label& alloc_failed) { 216 MacroAssembler::allocate_instance(klass, new_obj, t1, t2, clear_fields, alloc_failed); 217 if (DTraceAllocProbes) { 218 // Trigger dtrace event for fastpath 219 push(atos); 220 call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), new_obj); 221 pop(atos); 222 } 223 } 224 225 void InterpreterMacroAssembler::read_flat_field(Register entry, 226 Register field_index, Register field_offset, 227 Register temp, Register obj) { 228 Label alloc_failed, done; 229 const Register src = field_offset; 230 const Register alloc_temp = r10; 231 const Register dst_temp = field_index; 232 const Register layout_info = temp; 233 assert_different_registers(obj, entry, field_index, field_offset, temp, alloc_temp); 234 235 // Grab the inline field klass 236 ldr(rscratch1, Address(entry, in_bytes(ResolvedFieldEntry::field_holder_offset()))); 237 inline_layout_info(rscratch1, field_index, layout_info); 238 239 const Register field_klass = dst_temp; 240 ldr(field_klass, Address(layout_info, in_bytes(InlineLayoutInfo::klass_offset()))); 241 242 // allocate buffer 243 push(obj); // save holder 244 allocate_instance(field_klass, obj, alloc_temp, rscratch2, false, alloc_failed); 245 246 // Have an oop instance buffer, copy into it 247 payload_address(obj, dst_temp, field_klass); // danger, uses rscratch1 248 pop(alloc_temp); // restore holder 249 lea(src, Address(alloc_temp, field_offset)); 250 // call_VM_leaf, clobbers a few regs, save restore new obj 251 push(obj); 252 flat_field_copy(IS_DEST_UNINITIALIZED, src, dst_temp, layout_info); 253 pop(obj); 254 b(done); 255 256 bind(alloc_failed); 257 pop(obj); 258 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_flat_field), 259 obj, entry); 260 261 bind(done); 262 membar(Assembler::StoreStore); 263 } 264 265 // Load object from cpool->resolved_references(index) 266 void InterpreterMacroAssembler::load_resolved_reference_at_index( 267 Register result, Register index, Register tmp) { 268 assert_different_registers(result, index); 269 270 get_constant_pool(result); 271 // load pointer for resolved_references[] objArray 272 ldr(result, Address(result, ConstantPool::cache_offset())); 273 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 274 resolve_oop_handle(result, tmp, rscratch2); 275 // Add in the index 276 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 277 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 278 } 279 280 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 281 Register cpool, Register index, Register klass, Register temp) { 282 add(temp, cpool, index, LSL, LogBytesPerWord); 283 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 284 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 285 add(klass, klass, temp, LSL, LogBytesPerWord); 286 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 287 } 288 289 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 290 // subtype of super_klass. 291 // 292 // Args: 293 // r0: superklass 294 // Rsub_klass: subklass 295 // 296 // Kills: 297 // r2, r5 298 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 299 Label& ok_is_subtype, 300 bool profile) { 301 assert(Rsub_klass != r0, "r0 holds superklass"); 302 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 303 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 304 305 // Profile the not-null value's klass. 306 if (profile) { 307 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 308 } 309 310 // Do the check. 311 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 312 } 313 314 // Java Expression Stack 315 316 void InterpreterMacroAssembler::pop_ptr(Register r) { 317 ldr(r, post(esp, wordSize)); 318 } 319 320 void InterpreterMacroAssembler::pop_i(Register r) { 321 ldrw(r, post(esp, wordSize)); 322 } 323 324 void InterpreterMacroAssembler::pop_l(Register r) { 325 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 326 } 327 328 void InterpreterMacroAssembler::push_ptr(Register r) { 329 str(r, pre(esp, -wordSize)); 330 } 331 332 void InterpreterMacroAssembler::push_i(Register r) { 333 str(r, pre(esp, -wordSize)); 334 } 335 336 void InterpreterMacroAssembler::push_l(Register r) { 337 str(zr, pre(esp, -wordSize)); 338 str(r, pre(esp, - wordSize)); 339 } 340 341 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 342 ldrs(r, post(esp, wordSize)); 343 } 344 345 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 346 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 347 } 348 349 void InterpreterMacroAssembler::push_f(FloatRegister r) { 350 strs(r, pre(esp, -wordSize)); 351 } 352 353 void InterpreterMacroAssembler::push_d(FloatRegister r) { 354 strd(r, pre(esp, 2* -wordSize)); 355 } 356 357 void InterpreterMacroAssembler::pop(TosState state) { 358 switch (state) { 359 case atos: pop_ptr(); break; 360 case btos: 361 case ztos: 362 case ctos: 363 case stos: 364 case itos: pop_i(); break; 365 case ltos: pop_l(); break; 366 case ftos: pop_f(); break; 367 case dtos: pop_d(); break; 368 case vtos: /* nothing to do */ break; 369 default: ShouldNotReachHere(); 370 } 371 interp_verify_oop(r0, state); 372 } 373 374 void InterpreterMacroAssembler::push(TosState state) { 375 interp_verify_oop(r0, state); 376 switch (state) { 377 case atos: push_ptr(); break; 378 case btos: 379 case ztos: 380 case ctos: 381 case stos: 382 case itos: push_i(); break; 383 case ltos: push_l(); break; 384 case ftos: push_f(); break; 385 case dtos: push_d(); break; 386 case vtos: /* nothing to do */ break; 387 default : ShouldNotReachHere(); 388 } 389 } 390 391 // Helpers for swap and dup 392 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 393 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 394 } 395 396 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 397 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 398 } 399 400 void InterpreterMacroAssembler::load_float(Address src) { 401 ldrs(v0, src); 402 } 403 404 void InterpreterMacroAssembler::load_double(Address src) { 405 ldrd(v0, src); 406 } 407 408 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 409 // set sender sp 410 mov(r19_sender_sp, sp); 411 // record last_sp 412 sub(rscratch1, esp, rfp); 413 asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 414 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 415 } 416 417 // Jump to from_interpreted entry of a call unless single stepping is possible 418 // in this thread in which case we must call the i2i entry 419 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 420 prepare_to_jump_from_interpreted(); 421 422 if (JvmtiExport::can_post_interpreter_events()) { 423 Label run_compiled_code; 424 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 425 // compiled code in threads for which the event is enabled. Check here for 426 // interp_only_mode if these events CAN be enabled. 427 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 428 cbzw(rscratch1, run_compiled_code); 429 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 430 br(rscratch1); 431 bind(run_compiled_code); 432 } 433 434 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 435 br(rscratch1); 436 } 437 438 // The following two routines provide a hook so that an implementation 439 // can schedule the dispatch in two parts. amd64 does not do this. 440 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 441 } 442 443 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 444 dispatch_next(state, step); 445 } 446 447 void InterpreterMacroAssembler::dispatch_base(TosState state, 448 address* table, 449 bool verifyoop, 450 bool generate_poll) { 451 if (VerifyActivationFrameSize) { 452 Label L; 453 sub(rscratch2, rfp, esp); 454 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; 455 subs(rscratch2, rscratch2, min_frame_size); 456 br(Assembler::GE, L); 457 stop("broken stack frame"); 458 bind(L); 459 } 460 if (verifyoop) { 461 interp_verify_oop(r0, state); 462 } 463 464 Label safepoint; 465 address* const safepoint_table = Interpreter::safept_table(state); 466 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 467 468 if (needs_thread_local_poll) { 469 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 470 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 471 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 472 } 473 474 if (table == Interpreter::dispatch_table(state)) { 475 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 476 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 477 } else { 478 mov(rscratch2, (address)table); 479 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 480 } 481 br(rscratch2); 482 483 if (needs_thread_local_poll) { 484 bind(safepoint); 485 lea(rscratch2, ExternalAddress((address)safepoint_table)); 486 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 487 br(rscratch2); 488 } 489 } 490 491 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 492 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 493 } 494 495 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 496 dispatch_base(state, Interpreter::normal_table(state)); 497 } 498 499 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 500 dispatch_base(state, Interpreter::normal_table(state), false); 501 } 502 503 504 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 505 // load next bytecode 506 ldrb(rscratch1, Address(pre(rbcp, step))); 507 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 508 } 509 510 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 511 // load current bytecode 512 ldrb(rscratch1, Address(rbcp, 0)); 513 dispatch_base(state, table); 514 } 515 516 // remove activation 517 // 518 // Unlock the receiver if this is a synchronized method. 519 // Unlock any Java monitors from synchronized blocks. 520 // Apply stack watermark barrier. 521 // Notify JVMTI. 522 // Remove the activation from the stack. 523 // 524 // If there are locked Java monitors 525 // If throw_monitor_exception 526 // throws IllegalMonitorStateException 527 // Else if install_monitor_exception 528 // installs IllegalMonitorStateException 529 // Else 530 // no error processing 531 void InterpreterMacroAssembler::remove_activation(TosState state, 532 bool throw_monitor_exception, 533 bool install_monitor_exception, 534 bool notify_jvmdi) { 535 // Note: Registers r3 xmm0 may be in use for the 536 // result check if synchronized method 537 Label unlocked, unlock, no_unlock; 538 539 // get the value of _do_not_unlock_if_synchronized into r3 540 const Address do_not_unlock_if_synchronized(rthread, 541 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 542 ldrb(r3, do_not_unlock_if_synchronized); 543 strb(zr, do_not_unlock_if_synchronized); // reset the flag 544 545 // get method access flags 546 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 547 ldrh(r2, Address(r1, Method::access_flags_offset())); 548 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 549 550 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 551 // is set. 552 cbnz(r3, no_unlock); 553 554 // unlock monitor 555 push(state); // save result 556 557 // BasicObjectLock will be first in list, since this is a 558 // synchronized method. However, need to check that the object has 559 // not been unlocked by an explicit monitorexit bytecode. 560 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 561 wordSize - (int) sizeof(BasicObjectLock)); 562 // We use c_rarg1 so that if we go slow path it will be the correct 563 // register for unlock_object to pass to VM directly 564 lea(c_rarg1, monitor); // address of first monitor 565 566 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 567 cbnz(r0, unlock); 568 569 pop(state); 570 if (throw_monitor_exception) { 571 // Entry already unlocked, need to throw exception 572 call_VM(noreg, CAST_FROM_FN_PTR(address, 573 InterpreterRuntime::throw_illegal_monitor_state_exception)); 574 should_not_reach_here(); 575 } else { 576 // Monitor already unlocked during a stack unroll. If requested, 577 // install an illegal_monitor_state_exception. Continue with 578 // stack unrolling. 579 if (install_monitor_exception) { 580 call_VM(noreg, CAST_FROM_FN_PTR(address, 581 InterpreterRuntime::new_illegal_monitor_state_exception)); 582 } 583 b(unlocked); 584 } 585 586 bind(unlock); 587 unlock_object(c_rarg1); 588 pop(state); 589 590 // Check that for block-structured locking (i.e., that all locked 591 // objects has been unlocked) 592 bind(unlocked); 593 594 // r0: Might contain return value 595 596 // Check that all monitors are unlocked 597 { 598 Label loop, exception, entry, restart; 599 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 600 const Address monitor_block_top( 601 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 602 const Address monitor_block_bot( 603 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 604 605 bind(restart); 606 // We use c_rarg1 so that if we go slow path it will be the correct 607 // register for unlock_object to pass to VM directly 608 ldr(c_rarg1, monitor_block_top); // derelativize pointer 609 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize))); 610 // c_rarg1 points to current entry, starting with top-most entry 611 612 lea(r19, monitor_block_bot); // points to word before bottom of 613 // monitor block 614 b(entry); 615 616 // Entry already locked, need to throw exception 617 bind(exception); 618 619 if (throw_monitor_exception) { 620 // Throw exception 621 MacroAssembler::call_VM(noreg, 622 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 623 throw_illegal_monitor_state_exception)); 624 should_not_reach_here(); 625 } else { 626 // Stack unrolling. Unlock object and install illegal_monitor_exception. 627 // Unlock does not block, so don't have to worry about the frame. 628 // We don't have to preserve c_rarg1 since we are going to throw an exception. 629 630 push(state); 631 unlock_object(c_rarg1); 632 pop(state); 633 634 if (install_monitor_exception) { 635 call_VM(noreg, CAST_FROM_FN_PTR(address, 636 InterpreterRuntime:: 637 new_illegal_monitor_state_exception)); 638 } 639 640 b(restart); 641 } 642 643 bind(loop); 644 // check if current entry is used 645 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 646 cbnz(rscratch1, exception); 647 648 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 649 bind(entry); 650 cmp(c_rarg1, r19); // check if bottom reached 651 br(Assembler::NE, loop); // if not at bottom then check this entry 652 } 653 654 bind(no_unlock); 655 656 JFR_ONLY(enter_jfr_critical_section();) 657 658 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 659 // that would normally not be safe to use. Such bad returns into unsafe territory of 660 // the stack, will call InterpreterRuntime::at_unwind. 661 Label slow_path; 662 Label fast_path; 663 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 664 br(Assembler::AL, fast_path); 665 bind(slow_path); 666 push(state); 667 set_last_Java_frame(esp, rfp, pc(), rscratch1); 668 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 669 reset_last_Java_frame(true); 670 pop(state); 671 bind(fast_path); 672 673 // JVMTI support. Make sure the safepoint poll test is issued prior. 674 if (notify_jvmdi) { 675 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 676 } else { 677 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 678 } 679 680 // remove activation 681 // get sender esp 682 ldr(rscratch2, 683 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 684 685 if (StackReservedPages > 0) { 686 // testing if reserved zone needs to be re-enabled 687 Label no_reserved_zone_enabling; 688 689 // check if already enabled - if so no re-enabling needed 690 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 691 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 692 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 693 br(Assembler::EQ, no_reserved_zone_enabling); 694 695 // look for an overflow into the stack reserved zone, i.e. 696 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 697 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 698 cmp(rscratch2, rscratch1); 699 br(Assembler::LS, no_reserved_zone_enabling); 700 701 JFR_ONLY(leave_jfr_critical_section();) 702 703 call_VM_leaf( 704 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 705 call_VM(noreg, CAST_FROM_FN_PTR(address, 706 InterpreterRuntime::throw_delayed_StackOverflowError)); 707 should_not_reach_here(); 708 709 bind(no_reserved_zone_enabling); 710 } 711 712 if (state == atos && InlineTypeReturnedAsFields) { 713 Label skip; 714 Label not_null; 715 cbnz(r0, not_null); 716 // Returned value is null, zero all return registers because they may belong to oop fields 717 mov(j_rarg1, zr); 718 mov(j_rarg2, zr); 719 mov(j_rarg3, zr); 720 mov(j_rarg4, zr); 721 mov(j_rarg5, zr); 722 mov(j_rarg6, zr); 723 mov(j_rarg7, zr); 724 b(skip); 725 bind(not_null); 726 727 // Check if we are returning an non-null inline type and load its fields into registers 728 test_oop_is_not_inline_type(r0, rscratch2, skip, /* can_be_null= */ false); 729 730 // Load fields from a buffered value with an inline class specific handler 731 load_klass(rscratch1 /*dst*/, r0 /*src*/); 732 ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 733 ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset())); 734 // Unpack handler can be null if inline type is not scalarizable in returns 735 cbz(rscratch1, skip); 736 737 blr(rscratch1); 738 #ifdef ASSERT 739 // TODO 8284443 Enable 740 if (StressCallingConvention && false) { 741 Label skip_stress; 742 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 743 ldrw(rscratch1, Address(rscratch1, Method::flags_offset())); 744 tstw(rscratch1, MethodFlags::has_scalarized_return_flag()); 745 br(Assembler::EQ, skip_stress); 746 load_klass(r0, r0); 747 orr(r0, r0, 1); 748 bind(skip_stress); 749 } 750 #endif 751 bind(skip); 752 // Check above kills sender esp in rscratch2. Reload it. 753 ldr(rscratch2, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 754 } 755 756 // remove frame anchor 757 leave(); 758 759 JFR_ONLY(leave_jfr_critical_section();) 760 761 // restore sender esp 762 mov(esp, rscratch2); 763 764 // If we're returning to interpreted code we will shortly be 765 // adjusting SP to allow some space for ESP. If we're returning to 766 // compiled code the saved sender SP was saved in sender_sp, so this 767 // restores it. 768 andr(sp, esp, -16); 769 } 770 771 #if INCLUDE_JFR 772 void InterpreterMacroAssembler::enter_jfr_critical_section() { 773 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 774 mov(rscratch1, true); 775 strb(rscratch1, sampling_critical_section); 776 } 777 778 void InterpreterMacroAssembler::leave_jfr_critical_section() { 779 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR)); 780 strb(zr, sampling_critical_section); 781 } 782 #endif // INCLUDE_JFR 783 784 // Lock object 785 // 786 // Args: 787 // c_rarg1: BasicObjectLock to be used for locking 788 // 789 // Kills: 790 // r0 791 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 792 // rscratch1, rscratch2 (scratch regs) 793 void InterpreterMacroAssembler::lock_object(Register lock_reg) 794 { 795 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 796 if (LockingMode == LM_MONITOR) { 797 call_VM_preemptable(noreg, 798 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 799 lock_reg); 800 } else { 801 Label count, done; 802 803 const Register swap_reg = r0; 804 const Register tmp = c_rarg2; 805 const Register obj_reg = c_rarg3; // Will contain the oop 806 const Register tmp2 = c_rarg4; 807 const Register tmp3 = c_rarg5; 808 809 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 810 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 811 const int mark_offset = lock_offset + 812 BasicLock::displaced_header_offset_in_bytes(); 813 814 Label slow_case; 815 816 // Load object pointer into obj_reg %c_rarg3 817 ldr(obj_reg, Address(lock_reg, obj_offset)); 818 819 if (LockingMode == LM_LIGHTWEIGHT) { 820 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case); 821 b(done); 822 } else if (LockingMode == LM_LEGACY) { 823 824 if (DiagnoseSyncOnValueBasedClasses != 0) { 825 load_klass(tmp, obj_reg); 826 ldrb(tmp, Address(tmp, Klass::misc_flags_offset())); 827 tst(tmp, KlassFlags::_misc_is_value_based_class); 828 br(Assembler::NE, slow_case); 829 } 830 831 // Load (object->mark() | 1) into swap_reg 832 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 833 orr(swap_reg, rscratch1, 1); 834 if (EnableValhalla) { 835 // Mask inline_type bit such that we go to the slow path if object is an inline type 836 andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 837 } 838 839 // Save (object->mark() | 1) into BasicLock's displaced header 840 str(swap_reg, Address(lock_reg, mark_offset)); 841 842 assert(lock_offset == 0, 843 "displached header must be first word in BasicObjectLock"); 844 845 Label fail; 846 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 847 848 // Fast check for recursive lock. 849 // 850 // Can apply the optimization only if this is a stack lock 851 // allocated in this thread. For efficiency, we can focus on 852 // recently allocated stack locks (instead of reading the stack 853 // base and checking whether 'mark' points inside the current 854 // thread stack): 855 // 1) (mark & 7) == 0, and 856 // 2) sp <= mark < mark + os::pagesize() 857 // 858 // Warning: sp + os::pagesize can overflow the stack base. We must 859 // neither apply the optimization for an inflated lock allocated 860 // just above the thread stack (this is why condition 1 matters) 861 // nor apply the optimization if the stack lock is inside the stack 862 // of another thread. The latter is avoided even in case of overflow 863 // because we have guard pages at the end of all stacks. Hence, if 864 // we go over the stack base and hit the stack of another thread, 865 // this should not be in a writeable area that could contain a 866 // stack lock allocated by that thread. As a consequence, a stack 867 // lock less than page size away from sp is guaranteed to be 868 // owned by the current thread. 869 // 870 // These 3 tests can be done by evaluating the following 871 // expression: ((mark - sp) & (7 - os::vm_page_size())), 872 // assuming both stack pointer and pagesize have their 873 // least significant 3 bits clear. 874 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 875 // NOTE2: aarch64 does not like to subtract sp from rn so take a 876 // copy 877 mov(rscratch1, sp); 878 sub(swap_reg, swap_reg, rscratch1); 879 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 880 881 // Save the test result, for recursive case, the result is zero 882 str(swap_reg, Address(lock_reg, mark_offset)); 883 br(Assembler::NE, slow_case); 884 885 bind(count); 886 inc_held_monitor_count(rscratch1); 887 b(done); 888 } 889 bind(slow_case); 890 891 // Call the runtime routine for slow case 892 call_VM_preemptable(noreg, 893 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 894 lock_reg); 895 896 bind(done); 897 } 898 } 899 900 901 // Unlocks an object. Used in monitorexit bytecode and 902 // remove_activation. Throws an IllegalMonitorException if object is 903 // not locked by current thread. 904 // 905 // Args: 906 // c_rarg1: BasicObjectLock for lock 907 // 908 // Kills: 909 // r0 910 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 911 // rscratch1, rscratch2 (scratch regs) 912 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 913 { 914 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 915 916 if (LockingMode == LM_MONITOR) { 917 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 918 } else { 919 Label count, done; 920 921 const Register swap_reg = r0; 922 const Register header_reg = c_rarg2; // Will contain the old oopMark 923 const Register obj_reg = c_rarg3; // Will contain the oop 924 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 925 926 save_bcp(); // Save in case of exception 927 928 if (LockingMode != LM_LIGHTWEIGHT) { 929 // Convert from BasicObjectLock structure to object and BasicLock 930 // structure Store the BasicLock address into %r0 931 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 932 } 933 934 // Load oop into obj_reg(%c_rarg3) 935 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 936 937 // Free entry 938 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 939 940 Label slow_case; 941 if (LockingMode == LM_LIGHTWEIGHT) { 942 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 943 b(done); 944 } else if (LockingMode == LM_LEGACY) { 945 // Load the old header from BasicLock structure 946 ldr(header_reg, Address(swap_reg, 947 BasicLock::displaced_header_offset_in_bytes())); 948 949 // Test for recursion 950 cbz(header_reg, count); 951 952 // Atomic swap back the old header 953 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, &slow_case); 954 955 bind(count); 956 dec_held_monitor_count(rscratch1); 957 b(done); 958 } 959 960 bind(slow_case); 961 // Call the runtime routine for slow case. 962 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 963 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 964 bind(done); 965 restore_bcp(); 966 } 967 } 968 969 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 970 Label& zero_continue) { 971 assert(ProfileInterpreter, "must be profiling interpreter"); 972 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 973 cbz(mdp, zero_continue); 974 } 975 976 // Set the method data pointer for the current bcp. 977 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 978 assert(ProfileInterpreter, "must be profiling interpreter"); 979 Label set_mdp; 980 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 981 982 // Test MDO to avoid the call if it is null. 983 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 984 cbz(r0, set_mdp); 985 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 986 // r0: mdi 987 // mdo is guaranteed to be non-zero here, we checked for it before the call. 988 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 989 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 990 add(r0, r1, r0); 991 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 992 bind(set_mdp); 993 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 994 } 995 996 void InterpreterMacroAssembler::verify_method_data_pointer() { 997 assert(ProfileInterpreter, "must be profiling interpreter"); 998 #ifdef ASSERT 999 Label verify_continue; 1000 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 1001 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 1002 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 1003 get_method(r1); 1004 1005 // If the mdp is valid, it will point to a DataLayout header which is 1006 // consistent with the bcp. The converse is highly probable also. 1007 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 1008 ldr(rscratch1, Address(r1, Method::const_offset())); 1009 add(r2, r2, rscratch1, Assembler::LSL); 1010 lea(r2, Address(r2, ConstMethod::codes_offset())); 1011 cmp(r2, rbcp); 1012 br(Assembler::EQ, verify_continue); 1013 // r1: method 1014 // rbcp: bcp // rbcp == 22 1015 // r3: mdp 1016 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1017 r1, rbcp, r3); 1018 bind(verify_continue); 1019 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 1020 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 1021 #endif // ASSERT 1022 } 1023 1024 1025 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1026 int constant, 1027 Register value) { 1028 assert(ProfileInterpreter, "must be profiling interpreter"); 1029 Address data(mdp_in, constant); 1030 str(value, data); 1031 } 1032 1033 1034 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1035 int constant, 1036 bool decrement) { 1037 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1038 } 1039 1040 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1041 Register reg, 1042 int constant, 1043 bool decrement) { 1044 assert(ProfileInterpreter, "must be profiling interpreter"); 1045 // %%% this does 64bit counters at best it is wasting space 1046 // at worst it is a rare bug when counters overflow 1047 1048 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 1049 1050 Address addr1(mdp_in, constant); 1051 Address addr2(rscratch2, reg, Address::lsl(0)); 1052 Address &addr = addr1; 1053 if (reg != noreg) { 1054 lea(rscratch2, addr1); 1055 addr = addr2; 1056 } 1057 1058 if (decrement) { 1059 // Decrement the register. Set condition codes. 1060 // Intel does this 1061 // addptr(data, (int32_t) -DataLayout::counter_increment); 1062 // If the decrement causes the counter to overflow, stay negative 1063 // Label L; 1064 // jcc(Assembler::negative, L); 1065 // addptr(data, (int32_t) DataLayout::counter_increment); 1066 // so we do this 1067 ldr(rscratch1, addr); 1068 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1069 Label L; 1070 br(Assembler::LO, L); // skip store if counter underflow 1071 str(rscratch1, addr); 1072 bind(L); 1073 } else { 1074 assert(DataLayout::counter_increment == 1, 1075 "flow-free idiom only works with 1"); 1076 // Intel does this 1077 // Increment the register. Set carry flag. 1078 // addptr(data, DataLayout::counter_increment); 1079 // If the increment causes the counter to overflow, pull back by 1. 1080 // sbbptr(data, (int32_t)0); 1081 // so we do this 1082 ldr(rscratch1, addr); 1083 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1084 Label L; 1085 br(Assembler::CS, L); // skip store if counter overflow 1086 str(rscratch1, addr); 1087 bind(L); 1088 } 1089 } 1090 1091 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1092 int flag_byte_constant) { 1093 assert(ProfileInterpreter, "must be profiling interpreter"); 1094 int flags_offset = in_bytes(DataLayout::flags_offset()); 1095 // Set the flag 1096 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1097 orr(rscratch1, rscratch1, flag_byte_constant); 1098 strb(rscratch1, Address(mdp_in, flags_offset)); 1099 } 1100 1101 1102 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1103 int offset, 1104 Register value, 1105 Register test_value_out, 1106 Label& not_equal_continue) { 1107 assert(ProfileInterpreter, "must be profiling interpreter"); 1108 if (test_value_out == noreg) { 1109 ldr(rscratch1, Address(mdp_in, offset)); 1110 cmp(value, rscratch1); 1111 } else { 1112 // Put the test value into a register, so caller can use it: 1113 ldr(test_value_out, Address(mdp_in, offset)); 1114 cmp(value, test_value_out); 1115 } 1116 br(Assembler::NE, not_equal_continue); 1117 } 1118 1119 1120 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1121 int offset_of_disp) { 1122 assert(ProfileInterpreter, "must be profiling interpreter"); 1123 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1124 add(mdp_in, mdp_in, rscratch1, LSL); 1125 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1126 } 1127 1128 1129 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1130 Register reg, 1131 int offset_of_disp) { 1132 assert(ProfileInterpreter, "must be profiling interpreter"); 1133 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1134 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1135 add(mdp_in, mdp_in, rscratch1, LSL); 1136 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1137 } 1138 1139 1140 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1141 int constant) { 1142 assert(ProfileInterpreter, "must be profiling interpreter"); 1143 add(mdp_in, mdp_in, (unsigned)constant); 1144 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1145 } 1146 1147 1148 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1149 assert(ProfileInterpreter, "must be profiling interpreter"); 1150 // save/restore across call_VM 1151 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1152 call_VM(noreg, 1153 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1154 return_bci); 1155 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1156 } 1157 1158 1159 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1160 Register bumped_count) { 1161 if (ProfileInterpreter) { 1162 Label profile_continue; 1163 1164 // If no method data exists, go to profile_continue. 1165 // Otherwise, assign to mdp 1166 test_method_data_pointer(mdp, profile_continue); 1167 1168 // We are taking a branch. Increment the taken count. 1169 // We inline increment_mdp_data_at to return bumped_count in a register 1170 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1171 Address data(mdp, in_bytes(JumpData::taken_offset())); 1172 ldr(bumped_count, data); 1173 assert(DataLayout::counter_increment == 1, 1174 "flow-free idiom only works with 1"); 1175 // Intel does this to catch overflow 1176 // addptr(bumped_count, DataLayout::counter_increment); 1177 // sbbptr(bumped_count, 0); 1178 // so we do this 1179 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1180 Label L; 1181 br(Assembler::CS, L); // skip store if counter overflow 1182 str(bumped_count, data); 1183 bind(L); 1184 // The method data pointer needs to be updated to reflect the new target. 1185 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1186 bind(profile_continue); 1187 } 1188 } 1189 1190 1191 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp, bool acmp) { 1192 if (ProfileInterpreter) { 1193 Label profile_continue; 1194 1195 // If no method data exists, go to profile_continue. 1196 test_method_data_pointer(mdp, profile_continue); 1197 1198 // We are taking a branch. Increment the not taken count. 1199 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1200 1201 // The method data pointer needs to be updated to correspond to 1202 // the next bytecode 1203 update_mdp_by_constant(mdp, acmp ? in_bytes(ACmpData::acmp_data_size()) : in_bytes(BranchData::branch_data_size())); 1204 bind(profile_continue); 1205 } 1206 } 1207 1208 1209 void InterpreterMacroAssembler::profile_call(Register mdp) { 1210 if (ProfileInterpreter) { 1211 Label profile_continue; 1212 1213 // If no method data exists, go to profile_continue. 1214 test_method_data_pointer(mdp, profile_continue); 1215 1216 // We are making a call. Increment the count. 1217 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1218 1219 // The method data pointer needs to be updated to reflect the new target. 1220 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1221 bind(profile_continue); 1222 } 1223 } 1224 1225 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1226 if (ProfileInterpreter) { 1227 Label profile_continue; 1228 1229 // If no method data exists, go to profile_continue. 1230 test_method_data_pointer(mdp, profile_continue); 1231 1232 // We are making a call. Increment the count. 1233 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1234 1235 // The method data pointer needs to be updated to reflect the new target. 1236 update_mdp_by_constant(mdp, 1237 in_bytes(VirtualCallData:: 1238 virtual_call_data_size())); 1239 bind(profile_continue); 1240 } 1241 } 1242 1243 1244 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1245 Register mdp, 1246 Register reg2, 1247 bool receiver_can_be_null) { 1248 if (ProfileInterpreter) { 1249 Label profile_continue; 1250 1251 // If no method data exists, go to profile_continue. 1252 test_method_data_pointer(mdp, profile_continue); 1253 1254 Label skip_receiver_profile; 1255 if (receiver_can_be_null) { 1256 Label not_null; 1257 // We are making a call. Increment the count for null receiver. 1258 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1259 b(skip_receiver_profile); 1260 bind(not_null); 1261 } 1262 1263 // Record the receiver type. 1264 record_klass_in_profile(receiver, mdp, reg2); 1265 bind(skip_receiver_profile); 1266 1267 // The method data pointer needs to be updated to reflect the new target. 1268 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1269 bind(profile_continue); 1270 } 1271 } 1272 1273 // This routine creates a state machine for updating the multi-row 1274 // type profile at a virtual call site (or other type-sensitive bytecode). 1275 // The machine visits each row (of receiver/count) until the receiver type 1276 // is found, or until it runs out of rows. At the same time, it remembers 1277 // the location of the first empty row. (An empty row records null for its 1278 // receiver, and can be allocated for a newly-observed receiver type.) 1279 // Because there are two degrees of freedom in the state, a simple linear 1280 // search will not work; it must be a decision tree. Hence this helper 1281 // function is recursive, to generate the required tree structured code. 1282 // It's the interpreter, so we are trading off code space for speed. 1283 // See below for example code. 1284 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1285 Register receiver, Register mdp, 1286 Register reg2, int start_row, 1287 Label& done) { 1288 if (TypeProfileWidth == 0) { 1289 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1290 } else { 1291 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1292 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset); 1293 } 1294 } 1295 1296 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1297 Register reg2, int start_row, Label& done, int total_rows, 1298 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) { 1299 int last_row = total_rows - 1; 1300 assert(start_row <= last_row, "must be work left to do"); 1301 // Test this row for both the item and for null. 1302 // Take any of three different outcomes: 1303 // 1. found item => increment count and goto done 1304 // 2. found null => keep looking for case 1, maybe allocate this cell 1305 // 3. found something else => keep looking for cases 1 and 2 1306 // Case 3 is handled by a recursive call. 1307 for (int row = start_row; row <= last_row; row++) { 1308 Label next_test; 1309 bool test_for_null_also = (row == start_row); 1310 1311 // See if the item is item[n]. 1312 int item_offset = in_bytes(item_offset_fn(row)); 1313 test_mdp_data_at(mdp, item_offset, item, 1314 (test_for_null_also ? reg2 : noreg), 1315 next_test); 1316 // (Reg2 now contains the item from the CallData.) 1317 1318 // The item is item[n]. Increment count[n]. 1319 int count_offset = in_bytes(item_count_offset_fn(row)); 1320 increment_mdp_data_at(mdp, count_offset); 1321 b(done); 1322 bind(next_test); 1323 1324 if (test_for_null_also) { 1325 Label found_null; 1326 // Failed the equality check on item[n]... Test for null. 1327 if (start_row == last_row) { 1328 // The only thing left to do is handle the null case. 1329 cbz(reg2, found_null); 1330 // Item did not match any saved item and there is no empty row for it. 1331 // Increment total counter to indicate polymorphic case. 1332 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1333 b(done); 1334 bind(found_null); 1335 break; 1336 } 1337 // Since null is rare, make it be the branch-taken case. 1338 cbz(reg2, found_null); 1339 1340 // Put all the "Case 3" tests here. 1341 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1342 item_offset_fn, item_count_offset_fn); 1343 1344 // Found a null. Keep searching for a matching item, 1345 // but remember that this is an empty (unused) slot. 1346 bind(found_null); 1347 } 1348 } 1349 1350 // In the fall-through case, we found no matching item, but we 1351 // observed the item[start_row] is null. 1352 1353 // Fill in the item field and increment the count. 1354 int item_offset = in_bytes(item_offset_fn(start_row)); 1355 set_mdp_data_at(mdp, item_offset, item); 1356 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1357 mov(reg2, DataLayout::counter_increment); 1358 set_mdp_data_at(mdp, count_offset, reg2); 1359 if (start_row > 0) { 1360 b(done); 1361 } 1362 } 1363 1364 // Example state machine code for three profile rows: 1365 // // main copy of decision tree, rooted at row[1] 1366 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1367 // if (row[0].rec != nullptr) { 1368 // // inner copy of decision tree, rooted at row[1] 1369 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1370 // if (row[1].rec != nullptr) { 1371 // // degenerate decision tree, rooted at row[2] 1372 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1373 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1374 // row[2].init(rec); goto done; 1375 // } else { 1376 // // remember row[1] is empty 1377 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1378 // row[1].init(rec); goto done; 1379 // } 1380 // } else { 1381 // // remember row[0] is empty 1382 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1383 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1384 // row[0].init(rec); goto done; 1385 // } 1386 // done: 1387 1388 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1389 Register mdp, Register reg2) { 1390 assert(ProfileInterpreter, "must be profiling"); 1391 Label done; 1392 1393 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1394 1395 bind (done); 1396 } 1397 1398 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1399 Register mdp) { 1400 if (ProfileInterpreter) { 1401 Label profile_continue; 1402 uint row; 1403 1404 // If no method data exists, go to profile_continue. 1405 test_method_data_pointer(mdp, profile_continue); 1406 1407 // Update the total ret count. 1408 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1409 1410 for (row = 0; row < RetData::row_limit(); row++) { 1411 Label next_test; 1412 1413 // See if return_bci is equal to bci[n]: 1414 test_mdp_data_at(mdp, 1415 in_bytes(RetData::bci_offset(row)), 1416 return_bci, noreg, 1417 next_test); 1418 1419 // return_bci is equal to bci[n]. Increment the count. 1420 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1421 1422 // The method data pointer needs to be updated to reflect the new target. 1423 update_mdp_by_offset(mdp, 1424 in_bytes(RetData::bci_displacement_offset(row))); 1425 b(profile_continue); 1426 bind(next_test); 1427 } 1428 1429 update_mdp_for_ret(return_bci); 1430 1431 bind(profile_continue); 1432 } 1433 } 1434 1435 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1436 if (ProfileInterpreter) { 1437 Label profile_continue; 1438 1439 // If no method data exists, go to profile_continue. 1440 test_method_data_pointer(mdp, profile_continue); 1441 1442 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1443 1444 // The method data pointer needs to be updated. 1445 int mdp_delta = in_bytes(BitData::bit_data_size()); 1446 if (TypeProfileCasts) { 1447 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1448 } 1449 update_mdp_by_constant(mdp, mdp_delta); 1450 1451 bind(profile_continue); 1452 } 1453 } 1454 1455 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1456 if (ProfileInterpreter) { 1457 Label profile_continue; 1458 1459 // If no method data exists, go to profile_continue. 1460 test_method_data_pointer(mdp, profile_continue); 1461 1462 // The method data pointer needs to be updated. 1463 int mdp_delta = in_bytes(BitData::bit_data_size()); 1464 if (TypeProfileCasts) { 1465 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1466 1467 // Record the object type. 1468 record_klass_in_profile(klass, mdp, reg2); 1469 } 1470 update_mdp_by_constant(mdp, mdp_delta); 1471 1472 bind(profile_continue); 1473 } 1474 } 1475 1476 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1477 if (ProfileInterpreter) { 1478 Label profile_continue; 1479 1480 // If no method data exists, go to profile_continue. 1481 test_method_data_pointer(mdp, profile_continue); 1482 1483 // Update the default case count 1484 increment_mdp_data_at(mdp, 1485 in_bytes(MultiBranchData::default_count_offset())); 1486 1487 // The method data pointer needs to be updated. 1488 update_mdp_by_offset(mdp, 1489 in_bytes(MultiBranchData:: 1490 default_displacement_offset())); 1491 1492 bind(profile_continue); 1493 } 1494 } 1495 1496 void InterpreterMacroAssembler::profile_switch_case(Register index, 1497 Register mdp, 1498 Register reg2) { 1499 if (ProfileInterpreter) { 1500 Label profile_continue; 1501 1502 // If no method data exists, go to profile_continue. 1503 test_method_data_pointer(mdp, profile_continue); 1504 1505 // Build the base (index * per_case_size_in_bytes()) + 1506 // case_array_offset_in_bytes() 1507 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1508 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1509 Assembler::maddw(index, index, reg2, rscratch1); 1510 1511 // Update the case count 1512 increment_mdp_data_at(mdp, 1513 index, 1514 in_bytes(MultiBranchData::relative_count_offset())); 1515 1516 // The method data pointer needs to be updated. 1517 update_mdp_by_offset(mdp, 1518 index, 1519 in_bytes(MultiBranchData:: 1520 relative_displacement_offset())); 1521 1522 bind(profile_continue); 1523 } 1524 } 1525 1526 template <class ArrayData> void InterpreterMacroAssembler::profile_array_type(Register mdp, 1527 Register array, 1528 Register tmp) { 1529 if (ProfileInterpreter) { 1530 Label profile_continue; 1531 1532 // If no method data exists, go to profile_continue. 1533 test_method_data_pointer(mdp, profile_continue); 1534 1535 mov(tmp, array); 1536 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayData::array_offset()))); 1537 1538 Label not_flat; 1539 test_non_flat_array_oop(array, tmp, not_flat); 1540 1541 set_mdp_flag_at(mdp, ArrayData::flat_array_byte_constant()); 1542 1543 bind(not_flat); 1544 1545 Label not_null_free; 1546 test_non_null_free_array_oop(array, tmp, not_null_free); 1547 1548 set_mdp_flag_at(mdp, ArrayData::null_free_array_byte_constant()); 1549 1550 bind(not_null_free); 1551 1552 bind(profile_continue); 1553 } 1554 } 1555 1556 template void InterpreterMacroAssembler::profile_array_type<ArrayLoadData>(Register mdp, 1557 Register array, 1558 Register tmp); 1559 template void InterpreterMacroAssembler::profile_array_type<ArrayStoreData>(Register mdp, 1560 Register array, 1561 Register tmp); 1562 1563 void InterpreterMacroAssembler::profile_multiple_element_types(Register mdp, Register element, Register tmp, const Register tmp2) { 1564 if (ProfileInterpreter) { 1565 Label profile_continue; 1566 1567 // If no method data exists, go to profile_continue. 1568 test_method_data_pointer(mdp, profile_continue); 1569 1570 Label done, update; 1571 cbnz(element, update); 1572 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1573 b(done); 1574 1575 bind(update); 1576 load_klass(tmp, element); 1577 1578 // Record the object type. 1579 record_klass_in_profile(tmp, mdp, tmp2); 1580 1581 bind(done); 1582 1583 // The method data pointer needs to be updated. 1584 update_mdp_by_constant(mdp, in_bytes(ArrayStoreData::array_store_data_size())); 1585 1586 bind(profile_continue); 1587 } 1588 } 1589 1590 1591 void InterpreterMacroAssembler::profile_element_type(Register mdp, 1592 Register element, 1593 Register tmp) { 1594 if (ProfileInterpreter) { 1595 Label profile_continue; 1596 1597 // If no method data exists, go to profile_continue. 1598 test_method_data_pointer(mdp, profile_continue); 1599 1600 mov(tmp, element); 1601 profile_obj_type(tmp, Address(mdp, in_bytes(ArrayLoadData::element_offset()))); 1602 1603 // The method data pointer needs to be updated. 1604 update_mdp_by_constant(mdp, in_bytes(ArrayLoadData::array_load_data_size())); 1605 1606 bind(profile_continue); 1607 } 1608 } 1609 1610 void InterpreterMacroAssembler::profile_acmp(Register mdp, 1611 Register left, 1612 Register right, 1613 Register tmp) { 1614 if (ProfileInterpreter) { 1615 Label profile_continue; 1616 1617 // If no method data exists, go to profile_continue. 1618 test_method_data_pointer(mdp, profile_continue); 1619 1620 mov(tmp, left); 1621 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::left_offset()))); 1622 1623 Label left_not_inline_type; 1624 test_oop_is_not_inline_type(left, tmp, left_not_inline_type); 1625 set_mdp_flag_at(mdp, ACmpData::left_inline_type_byte_constant()); 1626 bind(left_not_inline_type); 1627 1628 mov(tmp, right); 1629 profile_obj_type(tmp, Address(mdp, in_bytes(ACmpData::right_offset()))); 1630 1631 Label right_not_inline_type; 1632 test_oop_is_not_inline_type(right, tmp, right_not_inline_type); 1633 set_mdp_flag_at(mdp, ACmpData::right_inline_type_byte_constant()); 1634 bind(right_not_inline_type); 1635 1636 bind(profile_continue); 1637 } 1638 } 1639 1640 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1641 if (state == atos) { 1642 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1643 } 1644 } 1645 1646 void InterpreterMacroAssembler::notify_method_entry() { 1647 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1648 // track stack depth. If it is possible to enter interp_only_mode we add 1649 // the code to check if the event should be sent. 1650 if (JvmtiExport::can_post_interpreter_events()) { 1651 Label L; 1652 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1653 cbzw(r3, L); 1654 call_VM(noreg, CAST_FROM_FN_PTR(address, 1655 InterpreterRuntime::post_method_entry)); 1656 bind(L); 1657 } 1658 1659 if (DTraceMethodProbes) { 1660 get_method(c_rarg1); 1661 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1662 rthread, c_rarg1); 1663 } 1664 1665 // RedefineClasses() tracing support for obsolete method entry 1666 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1667 get_method(c_rarg1); 1668 call_VM_leaf( 1669 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1670 rthread, c_rarg1); 1671 } 1672 1673 } 1674 1675 1676 void InterpreterMacroAssembler::notify_method_exit( 1677 TosState state, NotifyMethodExitMode mode) { 1678 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1679 // track stack depth. If it is possible to enter interp_only_mode we add 1680 // the code to check if the event should be sent. 1681 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1682 Label L; 1683 // Note: frame::interpreter_frame_result has a dependency on how the 1684 // method result is saved across the call to post_method_exit. If this 1685 // is changed then the interpreter_frame_result implementation will 1686 // need to be updated too. 1687 1688 // template interpreter will leave the result on the top of the stack. 1689 push(state); 1690 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1691 cbz(r3, L); 1692 call_VM(noreg, 1693 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1694 bind(L); 1695 pop(state); 1696 } 1697 1698 if (DTraceMethodProbes) { 1699 push(state); 1700 get_method(c_rarg1); 1701 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1702 rthread, c_rarg1); 1703 pop(state); 1704 } 1705 } 1706 1707 1708 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1709 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1710 int increment, Address mask, 1711 Register scratch, Register scratch2, 1712 bool preloaded, Condition cond, 1713 Label* where) { 1714 if (!preloaded) { 1715 ldrw(scratch, counter_addr); 1716 } 1717 add(scratch, scratch, increment); 1718 strw(scratch, counter_addr); 1719 ldrw(scratch2, mask); 1720 ands(scratch, scratch, scratch2); 1721 br(cond, *where); 1722 } 1723 1724 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1725 int number_of_arguments) { 1726 // interpreter specific 1727 // 1728 // Note: No need to save/restore rbcp & rlocals pointer since these 1729 // are callee saved registers and no blocking/ GC can happen 1730 // in leaf calls. 1731 #ifdef ASSERT 1732 { 1733 Label L; 1734 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1735 cbz(rscratch1, L); 1736 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1737 " last_sp != nullptr"); 1738 bind(L); 1739 } 1740 #endif /* ASSERT */ 1741 // super call 1742 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1743 } 1744 1745 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1746 Register java_thread, 1747 Register last_java_sp, 1748 address entry_point, 1749 int number_of_arguments, 1750 bool check_exceptions) { 1751 // interpreter specific 1752 // 1753 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1754 // really make a difference for these runtime calls, since they are 1755 // slow anyway. Btw., bcp must be saved/restored since it may change 1756 // due to GC. 1757 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1758 save_bcp(); 1759 #ifdef ASSERT 1760 { 1761 Label L; 1762 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1763 cbz(rscratch1, L); 1764 stop("InterpreterMacroAssembler::call_VM_base:" 1765 " last_sp != nullptr"); 1766 bind(L); 1767 } 1768 #endif /* ASSERT */ 1769 // super call 1770 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1771 entry_point, number_of_arguments, 1772 check_exceptions); 1773 // interpreter specific 1774 restore_bcp(); 1775 restore_locals(); 1776 } 1777 1778 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, 1779 address entry_point, 1780 Register arg_1) { 1781 assert(arg_1 == c_rarg1, ""); 1782 Label resume_pc, not_preempted; 1783 1784 #ifdef ASSERT 1785 { 1786 Label L; 1787 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1788 cbz(rscratch1, L); 1789 stop("Should not have alternate return address set"); 1790 bind(L); 1791 } 1792 #endif /* ASSERT */ 1793 1794 // Force freeze slow path. 1795 push_cont_fastpath(); 1796 1797 // Make VM call. In case of preemption set last_pc to the one we want to resume to. 1798 adr(rscratch1, resume_pc); 1799 str(rscratch1, Address(rthread, JavaThread::last_Java_pc_offset())); 1800 call_VM_base(oop_result, noreg, noreg, entry_point, 1, false /*check_exceptions*/); 1801 1802 pop_cont_fastpath(); 1803 1804 // Check if preempted. 1805 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1806 cbz(rscratch1, not_preempted); 1807 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1808 br(rscratch1); 1809 1810 // In case of preemption, this is where we will resume once we finally acquire the monitor. 1811 bind(resume_pc); 1812 restore_after_resume(false /* is_native */); 1813 1814 bind(not_preempted); 1815 } 1816 1817 void InterpreterMacroAssembler::restore_after_resume(bool is_native) { 1818 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter())); 1819 blr(rscratch1); 1820 if (is_native) { 1821 // On resume we need to set up stack as expected 1822 push(dtos); 1823 push(ltos); 1824 } 1825 } 1826 1827 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1828 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1829 Label update, next, none; 1830 1831 verify_oop(obj); 1832 1833 cbnz(obj, update); 1834 orptr(mdo_addr, TypeEntries::null_seen); 1835 b(next); 1836 1837 bind(update); 1838 load_klass(obj, obj); 1839 1840 ldr(rscratch1, mdo_addr); 1841 eor(obj, obj, rscratch1); 1842 tst(obj, TypeEntries::type_klass_mask); 1843 br(Assembler::EQ, next); // klass seen before, nothing to 1844 // do. The unknown bit may have been 1845 // set already but no need to check. 1846 1847 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1848 // already unknown. Nothing to do anymore. 1849 1850 cbz(rscratch1, none); 1851 cmp(rscratch1, (u1)TypeEntries::null_seen); 1852 br(Assembler::EQ, none); 1853 // There is a chance that the checks above 1854 // fail if another thread has just set the 1855 // profiling to this obj's klass 1856 eor(obj, obj, rscratch1); // get back original value before XOR 1857 ldr(rscratch1, mdo_addr); 1858 eor(obj, obj, rscratch1); 1859 tst(obj, TypeEntries::type_klass_mask); 1860 br(Assembler::EQ, next); 1861 1862 // different than before. Cannot keep accurate profile. 1863 orptr(mdo_addr, TypeEntries::type_unknown); 1864 b(next); 1865 1866 bind(none); 1867 // first time here. Set profile type. 1868 str(obj, mdo_addr); 1869 #ifdef ASSERT 1870 andr(obj, obj, TypeEntries::type_mask); 1871 verify_klass_ptr(obj); 1872 #endif 1873 1874 bind(next); 1875 } 1876 1877 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1878 if (!ProfileInterpreter) { 1879 return; 1880 } 1881 1882 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1883 Label profile_continue; 1884 1885 test_method_data_pointer(mdp, profile_continue); 1886 1887 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1888 1889 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1890 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1891 br(Assembler::NE, profile_continue); 1892 1893 if (MethodData::profile_arguments()) { 1894 Label done; 1895 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1896 1897 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1898 if (i > 0 || MethodData::profile_return()) { 1899 // If return value type is profiled we may have no argument to profile 1900 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1901 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1902 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1903 add(rscratch1, mdp, off_to_args); 1904 br(Assembler::LT, done); 1905 } 1906 ldr(tmp, Address(callee, Method::const_offset())); 1907 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1908 // stack offset o (zero based) from the start of the argument 1909 // list, for n arguments translates into offset n - o - 1 from 1910 // the end of the argument list 1911 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1912 sub(tmp, tmp, rscratch1); 1913 sub(tmp, tmp, 1); 1914 Address arg_addr = argument_address(tmp); 1915 ldr(tmp, arg_addr); 1916 1917 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1918 profile_obj_type(tmp, mdo_arg_addr); 1919 1920 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1921 off_to_args += to_add; 1922 } 1923 1924 if (MethodData::profile_return()) { 1925 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1926 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1927 } 1928 1929 add(rscratch1, mdp, off_to_args); 1930 bind(done); 1931 mov(mdp, rscratch1); 1932 1933 if (MethodData::profile_return()) { 1934 // We're right after the type profile for the last 1935 // argument. tmp is the number of cells left in the 1936 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1937 // if there's a return to profile. 1938 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1939 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1940 } 1941 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1942 } else { 1943 assert(MethodData::profile_return(), "either profile call args or call ret"); 1944 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1945 } 1946 1947 // mdp points right after the end of the 1948 // CallTypeData/VirtualCallTypeData, right after the cells for the 1949 // return value type if there's one 1950 1951 bind(profile_continue); 1952 } 1953 } 1954 1955 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1956 assert_different_registers(mdp, ret, tmp, rbcp); 1957 if (ProfileInterpreter && MethodData::profile_return()) { 1958 Label profile_continue, done; 1959 1960 test_method_data_pointer(mdp, profile_continue); 1961 1962 if (MethodData::profile_return_jsr292_only()) { 1963 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1964 1965 // If we don't profile all invoke bytecodes we must make sure 1966 // it's a bytecode we indeed profile. We can't go back to the 1967 // beginning of the ProfileData we intend to update to check its 1968 // type because we're right after it and we don't known its 1969 // length 1970 Label do_profile; 1971 ldrb(rscratch1, Address(rbcp, 0)); 1972 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1973 br(Assembler::EQ, do_profile); 1974 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1975 br(Assembler::EQ, do_profile); 1976 get_method(tmp); 1977 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1978 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1979 br(Assembler::NE, profile_continue); 1980 1981 bind(do_profile); 1982 } 1983 1984 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1985 mov(tmp, ret); 1986 profile_obj_type(tmp, mdo_ret_addr); 1987 1988 bind(profile_continue); 1989 } 1990 } 1991 1992 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1993 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1994 if (ProfileInterpreter && MethodData::profile_parameters()) { 1995 Label profile_continue, done; 1996 1997 test_method_data_pointer(mdp, profile_continue); 1998 1999 // Load the offset of the area within the MDO used for 2000 // parameters. If it's negative we're not profiling any parameters 2001 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 2002 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 2003 2004 // Compute a pointer to the area for parameters from the offset 2005 // and move the pointer to the slot for the last 2006 // parameters. Collect profiling from last parameter down. 2007 // mdo start + parameters offset + array length - 1 2008 add(mdp, mdp, tmp1); 2009 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 2010 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 2011 2012 Label loop; 2013 bind(loop); 2014 2015 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 2016 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 2017 int per_arg_scale = exact_log2(DataLayout::cell_size); 2018 add(rscratch1, mdp, off_base); 2019 add(rscratch2, mdp, type_base); 2020 2021 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 2022 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 2023 2024 // load offset on the stack from the slot for this parameter 2025 ldr(tmp2, arg_off); 2026 neg(tmp2, tmp2); 2027 // read the parameter from the local area 2028 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 2029 2030 // profile the parameter 2031 profile_obj_type(tmp2, arg_type); 2032 2033 // go to next parameter 2034 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 2035 br(Assembler::GE, loop); 2036 2037 bind(profile_continue); 2038 } 2039 } 2040 2041 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2042 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 2043 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2044 // Get address of invokedynamic array 2045 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2046 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 2047 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 2048 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 2049 lea(cache, Address(cache, index)); 2050 } 2051 2052 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 2053 // Get index out of bytecode pointer 2054 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2055 // Take shortcut if the size is a power of 2 2056 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 2057 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2 2058 } else { 2059 mov(cache, sizeof(ResolvedFieldEntry)); 2060 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 2061 } 2062 // Get address of field entries array 2063 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset())); 2064 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 2065 lea(cache, Address(cache, index)); 2066 // Prevents stale data from being read after the bytecode is patched to the fast bytecode 2067 membar(MacroAssembler::LoadLoad); 2068 } 2069 2070 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 2071 // Get index out of bytecode pointer 2072 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 2073 mov(cache, sizeof(ResolvedMethodEntry)); 2074 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 2075 2076 // Get address of field entries array 2077 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset())); 2078 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 2079 lea(cache, Address(cache, index)); 2080 }