1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/assembler.hpp" 28 #include "asm/assembler.inline.hpp" 29 #include "ci/ciEnv.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == nullptr, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 // codecache size <= 128M 679 if (!MacroAssembler::far_branches()) { 680 return false; 681 } 682 // codecache size > 240M 683 if (MacroAssembler::codestub_branch_needs_far_jump()) { 684 return true; 685 } 686 // codecache size: 128M..240M 687 return !CodeCache::is_non_nmethod(addr); 688 } 689 690 void MacroAssembler::far_call(Address entry, Register tmp) { 691 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 692 assert(CodeCache::find_blob(entry.target()) != nullptr, 693 "destination of far call not found in code cache"); 694 assert(entry.rspec().type() == relocInfo::external_word_type 695 || entry.rspec().type() == relocInfo::runtime_call_type 696 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 697 if (target_needs_far_branch(entry.target())) { 698 uint64_t offset; 699 // We can use ADRP here because we know that the total size of 700 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 701 adrp(tmp, entry, offset); 702 add(tmp, tmp, offset); 703 blr(tmp); 704 } else { 705 bl(entry); 706 } 707 } 708 709 int MacroAssembler::far_jump(Address entry, Register tmp) { 710 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 711 assert(CodeCache::find_blob(entry.target()) != nullptr, 712 "destination of far call not found in code cache"); 713 assert(entry.rspec().type() == relocInfo::external_word_type 714 || entry.rspec().type() == relocInfo::runtime_call_type 715 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 716 address start = pc(); 717 if (target_needs_far_branch(entry.target())) { 718 uint64_t offset; 719 // We can use ADRP here because we know that the total size of 720 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 721 adrp(tmp, entry, offset); 722 add(tmp, tmp, offset); 723 br(tmp); 724 } else { 725 b(entry); 726 } 727 return pc() - start; 728 } 729 730 void MacroAssembler::reserved_stack_check() { 731 // testing if reserved zone needs to be enabled 732 Label no_reserved_zone_enabling; 733 734 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 735 cmp(sp, rscratch1); 736 br(Assembler::LO, no_reserved_zone_enabling); 737 738 enter(); // LR and FP are live. 739 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 740 mov(c_rarg0, rthread); 741 blr(rscratch1); 742 leave(); 743 744 // We have already removed our own frame. 745 // throw_delayed_StackOverflowError will think that it's been 746 // called by our caller. 747 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 748 br(rscratch1); 749 should_not_reach_here(); 750 751 bind(no_reserved_zone_enabling); 752 } 753 754 static void pass_arg0(MacroAssembler* masm, Register arg) { 755 if (c_rarg0 != arg ) { 756 masm->mov(c_rarg0, arg); 757 } 758 } 759 760 static void pass_arg1(MacroAssembler* masm, Register arg) { 761 if (c_rarg1 != arg ) { 762 masm->mov(c_rarg1, arg); 763 } 764 } 765 766 static void pass_arg2(MacroAssembler* masm, Register arg) { 767 if (c_rarg2 != arg ) { 768 masm->mov(c_rarg2, arg); 769 } 770 } 771 772 static void pass_arg3(MacroAssembler* masm, Register arg) { 773 if (c_rarg3 != arg ) { 774 masm->mov(c_rarg3, arg); 775 } 776 } 777 778 void MacroAssembler::call_VM_base(Register oop_result, 779 Register java_thread, 780 Register last_java_sp, 781 address entry_point, 782 int number_of_arguments, 783 bool check_exceptions) { 784 // determine java_thread register 785 if (!java_thread->is_valid()) { 786 java_thread = rthread; 787 } 788 789 // determine last_java_sp register 790 if (!last_java_sp->is_valid()) { 791 last_java_sp = esp; 792 } 793 794 // debugging support 795 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 796 assert(java_thread == rthread, "unexpected register"); 797 #ifdef ASSERT 798 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 799 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 800 #endif // ASSERT 801 802 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 803 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 804 805 // push java thread (becomes first argument of C function) 806 807 mov(c_rarg0, java_thread); 808 809 // set last Java frame before call 810 assert(last_java_sp != rfp, "can't use rfp"); 811 812 Label l; 813 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 814 815 // do the call, remove parameters 816 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 817 818 // lr could be poisoned with PAC signature during throw_pending_exception 819 // if it was tail-call optimized by compiler, since lr is not callee-saved 820 // reload it with proper value 821 adr(lr, l); 822 823 // reset last Java frame 824 // Only interpreter should have to clear fp 825 reset_last_Java_frame(true); 826 827 // C++ interp handles this in the interpreter 828 check_and_handle_popframe(java_thread); 829 check_and_handle_earlyret(java_thread); 830 831 if (check_exceptions) { 832 // check for pending exceptions (java_thread is set upon return) 833 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 834 Label ok; 835 cbz(rscratch1, ok); 836 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 837 br(rscratch1); 838 bind(ok); 839 } 840 841 // get oop result if there is one and reset the value in the thread 842 if (oop_result->is_valid()) { 843 get_vm_result(oop_result, java_thread); 844 } 845 } 846 847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 848 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 849 } 850 851 // Check the entry target is always reachable from any branch. 852 static bool is_always_within_branch_range(Address entry) { 853 const address target = entry.target(); 854 855 if (!CodeCache::contains(target)) { 856 // We always use trampolines for callees outside CodeCache. 857 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 858 return false; 859 } 860 861 if (!MacroAssembler::far_branches()) { 862 return true; 863 } 864 865 if (entry.rspec().type() == relocInfo::runtime_call_type) { 866 // Runtime calls are calls of a non-compiled method (stubs, adapters). 867 // Non-compiled methods stay forever in CodeCache. 868 // We check whether the longest possible branch is within the branch range. 869 assert(CodeCache::find_blob(target) != nullptr && 870 !CodeCache::find_blob(target)->is_nmethod(), 871 "runtime call of compiled method"); 872 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 873 const address left_longest_branch_start = CodeCache::low_bound(); 874 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 875 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 876 return is_reachable; 877 } 878 879 return false; 880 } 881 882 // Maybe emit a call via a trampoline. If the code cache is small 883 // trampolines won't be emitted. 884 address MacroAssembler::trampoline_call(Address entry) { 885 assert(entry.rspec().type() == relocInfo::runtime_call_type 886 || entry.rspec().type() == relocInfo::opt_virtual_call_type 887 || entry.rspec().type() == relocInfo::static_call_type 888 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 889 890 address target = entry.target(); 891 892 if (!is_always_within_branch_range(entry)) { 893 if (!in_scratch_emit_size()) { 894 // We don't want to emit a trampoline if C2 is generating dummy 895 // code during its branch shortening phase. 896 if (entry.rspec().type() == relocInfo::runtime_call_type) { 897 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 898 code()->share_trampoline_for(entry.target(), offset()); 899 } else { 900 address stub = emit_trampoline_stub(offset(), target); 901 if (stub == nullptr) { 902 postcond(pc() == badAddress); 903 return nullptr; // CodeCache is full 904 } 905 } 906 } 907 target = pc(); 908 } 909 910 address call_pc = pc(); 911 relocate(entry.rspec()); 912 bl(target); 913 914 postcond(pc() != badAddress); 915 return call_pc; 916 } 917 918 // Emit a trampoline stub for a call to a target which is too far away. 919 // 920 // code sequences: 921 // 922 // call-site: 923 // branch-and-link to <destination> or <trampoline stub> 924 // 925 // Related trampoline stub for this call site in the stub section: 926 // load the call target from the constant pool 927 // branch (LR still points to the call site above) 928 929 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 930 address dest) { 931 // Max stub size: alignment nop, TrampolineStub. 932 address stub = start_a_stub(max_trampoline_stub_size()); 933 if (stub == nullptr) { 934 return nullptr; // CodeBuffer::expand failed 935 } 936 937 // Create a trampoline stub relocation which relates this trampoline stub 938 // with the call instruction at insts_call_instruction_offset in the 939 // instructions code-section. 940 align(wordSize); 941 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 942 + insts_call_instruction_offset)); 943 const int stub_start_offset = offset(); 944 945 // Now, create the trampoline stub's code: 946 // - load the call 947 // - call 948 Label target; 949 ldr(rscratch1, target); 950 br(rscratch1); 951 bind(target); 952 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 953 "should be"); 954 emit_int64((int64_t)dest); 955 956 const address stub_start_addr = addr_at(stub_start_offset); 957 958 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 959 960 end_a_stub(); 961 return stub_start_addr; 962 } 963 964 int MacroAssembler::max_trampoline_stub_size() { 965 // Max stub size: alignment nop, TrampolineStub. 966 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 967 } 968 969 void MacroAssembler::emit_static_call_stub() { 970 // CompiledDirectCall::set_to_interpreted knows the 971 // exact layout of this stub. 972 973 isb(); 974 mov_metadata(rmethod, nullptr); 975 976 // Jump to the entry point of the c2i stub. 977 movptr(rscratch1, 0); 978 br(rscratch1); 979 } 980 981 int MacroAssembler::static_call_stub_size() { 982 // isb; movk; movz; movz; movk; movz; movz; br 983 return 8 * NativeInstruction::instruction_size; 984 } 985 986 void MacroAssembler::c2bool(Register x) { 987 // implements x == 0 ? 0 : 1 988 // note: must only look at least-significant byte of x 989 // since C-style booleans are stored in one byte 990 // only! (was bug) 991 tst(x, 0xff); 992 cset(x, Assembler::NE); 993 } 994 995 address MacroAssembler::ic_call(address entry, jint method_index) { 996 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 997 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 998 // uintptr_t offset; 999 // ldr_constant(rscratch2, const_ptr); 1000 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1001 return trampoline_call(Address(entry, rh)); 1002 } 1003 1004 int MacroAssembler::ic_check_size() { 1005 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1006 return NativeInstruction::instruction_size * 7; 1007 } else { 1008 return NativeInstruction::instruction_size * 5; 1009 } 1010 } 1011 1012 int MacroAssembler::ic_check(int end_alignment) { 1013 Register receiver = j_rarg0; 1014 Register data = rscratch2; 1015 Register tmp1 = rscratch1; 1016 Register tmp2 = r10; 1017 1018 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1019 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1020 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1021 // before the inline cache check here, and not after 1022 align(end_alignment, offset() + ic_check_size()); 1023 1024 int uep_offset = offset(); 1025 1026 if (UseCompressedClassPointers) { 1027 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1028 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1029 cmpw(tmp1, tmp2); 1030 } else { 1031 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1032 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1033 cmp(tmp1, tmp2); 1034 } 1035 1036 Label dont; 1037 br(Assembler::EQ, dont); 1038 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1039 bind(dont); 1040 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1041 1042 return uep_offset; 1043 } 1044 1045 // Implementation of call_VM versions 1046 1047 void MacroAssembler::call_VM(Register oop_result, 1048 address entry_point, 1049 bool check_exceptions) { 1050 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1051 } 1052 1053 void MacroAssembler::call_VM(Register oop_result, 1054 address entry_point, 1055 Register arg_1, 1056 bool check_exceptions) { 1057 pass_arg1(this, arg_1); 1058 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1059 } 1060 1061 void MacroAssembler::call_VM(Register oop_result, 1062 address entry_point, 1063 Register arg_1, 1064 Register arg_2, 1065 bool check_exceptions) { 1066 assert_different_registers(arg_1, c_rarg2); 1067 pass_arg2(this, arg_2); 1068 pass_arg1(this, arg_1); 1069 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1070 } 1071 1072 void MacroAssembler::call_VM(Register oop_result, 1073 address entry_point, 1074 Register arg_1, 1075 Register arg_2, 1076 Register arg_3, 1077 bool check_exceptions) { 1078 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1079 assert_different_registers(arg_2, c_rarg3); 1080 pass_arg3(this, arg_3); 1081 1082 pass_arg2(this, arg_2); 1083 1084 pass_arg1(this, arg_1); 1085 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1086 } 1087 1088 void MacroAssembler::call_VM(Register oop_result, 1089 Register last_java_sp, 1090 address entry_point, 1091 int number_of_arguments, 1092 bool check_exceptions) { 1093 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1094 } 1095 1096 void MacroAssembler::call_VM(Register oop_result, 1097 Register last_java_sp, 1098 address entry_point, 1099 Register arg_1, 1100 bool check_exceptions) { 1101 pass_arg1(this, arg_1); 1102 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1103 } 1104 1105 void MacroAssembler::call_VM(Register oop_result, 1106 Register last_java_sp, 1107 address entry_point, 1108 Register arg_1, 1109 Register arg_2, 1110 bool check_exceptions) { 1111 1112 assert_different_registers(arg_1, c_rarg2); 1113 pass_arg2(this, arg_2); 1114 pass_arg1(this, arg_1); 1115 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1116 } 1117 1118 void MacroAssembler::call_VM(Register oop_result, 1119 Register last_java_sp, 1120 address entry_point, 1121 Register arg_1, 1122 Register arg_2, 1123 Register arg_3, 1124 bool check_exceptions) { 1125 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1126 assert_different_registers(arg_2, c_rarg3); 1127 pass_arg3(this, arg_3); 1128 pass_arg2(this, arg_2); 1129 pass_arg1(this, arg_1); 1130 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1131 } 1132 1133 1134 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1135 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1136 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1137 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1138 } 1139 1140 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1141 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1142 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1143 } 1144 1145 void MacroAssembler::align(int modulus) { 1146 align(modulus, offset()); 1147 } 1148 1149 // Ensure that the code at target bytes offset from the current offset() is aligned 1150 // according to modulus. 1151 void MacroAssembler::align(int modulus, int target) { 1152 int delta = target - offset(); 1153 while ((offset() + delta) % modulus != 0) nop(); 1154 } 1155 1156 void MacroAssembler::post_call_nop() { 1157 if (!Continuations::enabled()) { 1158 return; 1159 } 1160 InstructionMark im(this); 1161 relocate(post_call_nop_Relocation::spec()); 1162 InlineSkippedInstructionsCounter skipCounter(this); 1163 nop(); 1164 movk(zr, 0); 1165 movk(zr, 0); 1166 } 1167 1168 // these are no-ops overridden by InterpreterMacroAssembler 1169 1170 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1171 1172 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1173 1174 // Look up the method for a megamorphic invokeinterface call. 1175 // The target method is determined by <intf_klass, itable_index>. 1176 // The receiver klass is in recv_klass. 1177 // On success, the result will be in method_result, and execution falls through. 1178 // On failure, execution transfers to the given label. 1179 void MacroAssembler::lookup_interface_method(Register recv_klass, 1180 Register intf_klass, 1181 RegisterOrConstant itable_index, 1182 Register method_result, 1183 Register scan_temp, 1184 Label& L_no_such_interface, 1185 bool return_method) { 1186 assert_different_registers(recv_klass, intf_klass, scan_temp); 1187 assert_different_registers(method_result, intf_klass, scan_temp); 1188 assert(recv_klass != method_result || !return_method, 1189 "recv_klass can be destroyed when method isn't needed"); 1190 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1191 "caller must use same register for non-constant itable index as for method"); 1192 1193 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1194 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1195 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1196 int scan_step = itableOffsetEntry::size() * wordSize; 1197 int vte_size = vtableEntry::size_in_bytes(); 1198 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1199 1200 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1201 1202 // Could store the aligned, prescaled offset in the klass. 1203 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1204 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1205 add(scan_temp, scan_temp, vtable_base); 1206 1207 if (return_method) { 1208 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1209 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1210 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1211 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1212 if (itentry_off) 1213 add(recv_klass, recv_klass, itentry_off); 1214 } 1215 1216 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1217 // if (scan->interface() == intf) { 1218 // result = (klass + scan->offset() + itable_index); 1219 // } 1220 // } 1221 Label search, found_method; 1222 1223 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1224 cmp(intf_klass, method_result); 1225 br(Assembler::EQ, found_method); 1226 bind(search); 1227 // Check that the previous entry is non-null. A null entry means that 1228 // the receiver class doesn't implement the interface, and wasn't the 1229 // same as when the caller was compiled. 1230 cbz(method_result, L_no_such_interface); 1231 if (itableOffsetEntry::interface_offset() != 0) { 1232 add(scan_temp, scan_temp, scan_step); 1233 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1234 } else { 1235 ldr(method_result, Address(pre(scan_temp, scan_step))); 1236 } 1237 cmp(intf_klass, method_result); 1238 br(Assembler::NE, search); 1239 1240 bind(found_method); 1241 1242 // Got a hit. 1243 if (return_method) { 1244 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1245 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1246 } 1247 } 1248 1249 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1250 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1251 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1252 // The target method is determined by <holder_klass, itable_index>. 1253 // The receiver klass is in recv_klass. 1254 // On success, the result will be in method_result, and execution falls through. 1255 // On failure, execution transfers to the given label. 1256 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1257 Register holder_klass, 1258 Register resolved_klass, 1259 Register method_result, 1260 Register temp_itbl_klass, 1261 Register scan_temp, 1262 int itable_index, 1263 Label& L_no_such_interface) { 1264 // 'method_result' is only used as output register at the very end of this method. 1265 // Until then we can reuse it as 'holder_offset'. 1266 Register holder_offset = method_result; 1267 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1268 1269 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1270 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1271 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1272 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1273 1274 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1275 1276 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1277 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1278 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1279 // temp_itbl_klass = itable[0]._interface; 1280 int vtblEntrySize = vtableEntry::size_in_bytes(); 1281 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1282 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1283 mov(holder_offset, zr); 1284 // scan_temp = &(itable[0]._interface) 1285 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1286 1287 // Initial checks: 1288 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1289 // - if (itable[0] == holder_klass), shortcut to "holder found" 1290 // - if (itable[0] == 0), no such interface 1291 cmp(resolved_klass, holder_klass); 1292 br(Assembler::NE, L_loop_search_resolved_entry); 1293 cmp(holder_klass, temp_itbl_klass); 1294 br(Assembler::EQ, L_holder_found); 1295 cbz(temp_itbl_klass, L_no_such_interface); 1296 1297 // Loop: Look for holder_klass record in itable 1298 // do { 1299 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1300 // if (temp_itbl_klass == holder_klass) { 1301 // goto L_holder_found; // Found! 1302 // } 1303 // } while (temp_itbl_klass != 0); 1304 // goto L_no_such_interface // Not found. 1305 Label L_search_holder; 1306 bind(L_search_holder); 1307 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1308 cmp(holder_klass, temp_itbl_klass); 1309 br(Assembler::EQ, L_holder_found); 1310 cbnz(temp_itbl_klass, L_search_holder); 1311 1312 b(L_no_such_interface); 1313 1314 // Loop: Look for resolved_class record in itable 1315 // while (true) { 1316 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1317 // if (temp_itbl_klass == 0) { 1318 // goto L_no_such_interface; 1319 // } 1320 // if (temp_itbl_klass == resolved_klass) { 1321 // goto L_resolved_found; // Found! 1322 // } 1323 // if (temp_itbl_klass == holder_klass) { 1324 // holder_offset = scan_temp; 1325 // } 1326 // } 1327 // 1328 Label L_loop_search_resolved; 1329 bind(L_loop_search_resolved); 1330 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1331 bind(L_loop_search_resolved_entry); 1332 cbz(temp_itbl_klass, L_no_such_interface); 1333 cmp(resolved_klass, temp_itbl_klass); 1334 br(Assembler::EQ, L_resolved_found); 1335 cmp(holder_klass, temp_itbl_klass); 1336 br(Assembler::NE, L_loop_search_resolved); 1337 mov(holder_offset, scan_temp); 1338 b(L_loop_search_resolved); 1339 1340 // See if we already have a holder klass. If not, go and scan for it. 1341 bind(L_resolved_found); 1342 cbz(holder_offset, L_search_holder); 1343 mov(scan_temp, holder_offset); 1344 1345 // Finally, scan_temp contains holder_klass vtable offset 1346 bind(L_holder_found); 1347 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1348 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1349 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1350 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1351 } 1352 1353 // virtual method calling 1354 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1355 RegisterOrConstant vtable_index, 1356 Register method_result) { 1357 assert(vtableEntry::size() * wordSize == 8, 1358 "adjust the scaling in the code below"); 1359 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1360 1361 if (vtable_index.is_register()) { 1362 lea(method_result, Address(recv_klass, 1363 vtable_index.as_register(), 1364 Address::lsl(LogBytesPerWord))); 1365 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1366 } else { 1367 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1368 ldr(method_result, 1369 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1370 } 1371 } 1372 1373 void MacroAssembler::check_klass_subtype(Register sub_klass, 1374 Register super_klass, 1375 Register temp_reg, 1376 Label& L_success) { 1377 Label L_failure; 1378 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1379 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1380 bind(L_failure); 1381 } 1382 1383 1384 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1385 Register super_klass, 1386 Register temp_reg, 1387 Label* L_success, 1388 Label* L_failure, 1389 Label* L_slow_path, 1390 Register super_check_offset) { 1391 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1392 bool must_load_sco = ! super_check_offset->is_valid(); 1393 if (must_load_sco) { 1394 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1395 } 1396 1397 Label L_fallthrough; 1398 int label_nulls = 0; 1399 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1400 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1401 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1402 assert(label_nulls <= 1, "at most one null in the batch"); 1403 1404 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1405 Address super_check_offset_addr(super_klass, sco_offset); 1406 1407 // Hacked jmp, which may only be used just before L_fallthrough. 1408 #define final_jmp(label) \ 1409 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1410 else b(label) /*omit semi*/ 1411 1412 // If the pointers are equal, we are done (e.g., String[] elements). 1413 // This self-check enables sharing of secondary supertype arrays among 1414 // non-primary types such as array-of-interface. Otherwise, each such 1415 // type would need its own customized SSA. 1416 // We move this check to the front of the fast path because many 1417 // type checks are in fact trivially successful in this manner, 1418 // so we get a nicely predicted branch right at the start of the check. 1419 cmp(sub_klass, super_klass); 1420 br(Assembler::EQ, *L_success); 1421 1422 // Check the supertype display: 1423 if (must_load_sco) { 1424 ldrw(temp_reg, super_check_offset_addr); 1425 super_check_offset = temp_reg; 1426 } 1427 1428 Address super_check_addr(sub_klass, super_check_offset); 1429 ldr(rscratch1, super_check_addr); 1430 cmp(super_klass, rscratch1); // load displayed supertype 1431 br(Assembler::EQ, *L_success); 1432 1433 // This check has worked decisively for primary supers. 1434 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1435 // (Secondary supers are interfaces and very deeply nested subtypes.) 1436 // This works in the same check above because of a tricky aliasing 1437 // between the super_cache and the primary super display elements. 1438 // (The 'super_check_addr' can address either, as the case requires.) 1439 // Note that the cache is updated below if it does not help us find 1440 // what we need immediately. 1441 // So if it was a primary super, we can just fail immediately. 1442 // Otherwise, it's the slow path for us (no success at this point). 1443 1444 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1445 if (L_failure == &L_fallthrough) { 1446 cbz(rscratch1, *L_slow_path); 1447 } else { 1448 cbnz(rscratch1, *L_failure); 1449 final_jmp(*L_slow_path); 1450 } 1451 1452 bind(L_fallthrough); 1453 1454 #undef final_jmp 1455 } 1456 1457 // These two are taken from x86, but they look generally useful 1458 1459 // scans count pointer sized words at [addr] for occurrence of value, 1460 // generic 1461 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1462 Register scratch) { 1463 Label Lloop, Lexit; 1464 cbz(count, Lexit); 1465 bind(Lloop); 1466 ldr(scratch, post(addr, wordSize)); 1467 cmp(value, scratch); 1468 br(EQ, Lexit); 1469 sub(count, count, 1); 1470 cbnz(count, Lloop); 1471 bind(Lexit); 1472 } 1473 1474 // scans count 4 byte words at [addr] for occurrence of value, 1475 // generic 1476 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1477 Register scratch) { 1478 Label Lloop, Lexit; 1479 cbz(count, Lexit); 1480 bind(Lloop); 1481 ldrw(scratch, post(addr, wordSize)); 1482 cmpw(value, scratch); 1483 br(EQ, Lexit); 1484 sub(count, count, 1); 1485 cbnz(count, Lloop); 1486 bind(Lexit); 1487 } 1488 1489 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1490 Register super_klass, 1491 Register temp_reg, 1492 Register temp2_reg, 1493 Label* L_success, 1494 Label* L_failure, 1495 bool set_cond_codes) { 1496 // NB! Callers may assume that, when temp2_reg is a valid register, 1497 // this code sets it to a nonzero value. 1498 1499 assert_different_registers(sub_klass, super_klass, temp_reg); 1500 if (temp2_reg != noreg) 1501 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1502 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1503 1504 Label L_fallthrough; 1505 int label_nulls = 0; 1506 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1507 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1508 assert(label_nulls <= 1, "at most one null in the batch"); 1509 1510 // a couple of useful fields in sub_klass: 1511 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1512 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1513 Address secondary_supers_addr(sub_klass, ss_offset); 1514 Address super_cache_addr( sub_klass, sc_offset); 1515 1516 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1517 1518 // Do a linear scan of the secondary super-klass chain. 1519 // This code is rarely used, so simplicity is a virtue here. 1520 // The repne_scan instruction uses fixed registers, which we must spill. 1521 // Don't worry too much about pre-existing connections with the input regs. 1522 1523 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1524 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1525 1526 RegSet pushed_registers; 1527 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1528 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1529 1530 if (super_klass != r0) { 1531 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1532 } 1533 1534 push(pushed_registers, sp); 1535 1536 // Get super_klass value into r0 (even if it was in r5 or r2). 1537 if (super_klass != r0) { 1538 mov(r0, super_klass); 1539 } 1540 1541 #ifndef PRODUCT 1542 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1543 #endif //PRODUCT 1544 1545 // We will consult the secondary-super array. 1546 ldr(r5, secondary_supers_addr); 1547 // Load the array length. 1548 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1549 // Skip to start of data. 1550 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1551 1552 cmp(sp, zr); // Clear Z flag; SP is never zero 1553 // Scan R2 words at [R5] for an occurrence of R0. 1554 // Set NZ/Z based on last compare. 1555 repne_scan(r5, r0, r2, rscratch1); 1556 1557 // Unspill the temp. registers: 1558 pop(pushed_registers, sp); 1559 1560 br(Assembler::NE, *L_failure); 1561 1562 // Success. Cache the super we found and proceed in triumph. 1563 1564 if (UseSecondarySupersCache) { 1565 str(super_klass, super_cache_addr); 1566 } 1567 1568 if (L_success != &L_fallthrough) { 1569 b(*L_success); 1570 } 1571 1572 #undef IS_A_TEMP 1573 1574 bind(L_fallthrough); 1575 } 1576 1577 // If Register r is invalid, remove a new register from 1578 // available_regs, and add new register to regs_to_push. 1579 Register MacroAssembler::allocate_if_noreg(Register r, 1580 RegSetIterator<Register> &available_regs, 1581 RegSet ®s_to_push) { 1582 if (!r->is_valid()) { 1583 r = *available_regs++; 1584 regs_to_push += r; 1585 } 1586 return r; 1587 } 1588 1589 // check_klass_subtype_slow_path_table() looks for super_klass in the 1590 // hash table belonging to super_klass, branching to L_success or 1591 // L_failure as appropriate. This is essentially a shim which 1592 // allocates registers as necessary then calls 1593 // lookup_secondary_supers_table() to do the work. Any of the temp 1594 // regs may be noreg, in which case this logic will chooses some 1595 // registers push and pop them from the stack. 1596 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1597 Register super_klass, 1598 Register temp_reg, 1599 Register temp2_reg, 1600 Register temp3_reg, 1601 Register result_reg, 1602 FloatRegister vtemp, 1603 Label* L_success, 1604 Label* L_failure, 1605 bool set_cond_codes) { 1606 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1607 1608 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1609 1610 Label L_fallthrough; 1611 int label_nulls = 0; 1612 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1613 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1614 assert(label_nulls <= 1, "at most one null in the batch"); 1615 1616 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1617 1618 RegSetIterator<Register> available_regs 1619 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1620 1621 RegSet pushed_regs; 1622 1623 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1624 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1625 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1626 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1627 1628 push(pushed_regs, sp); 1629 1630 lookup_secondary_supers_table_var(sub_klass, 1631 super_klass, 1632 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1633 nullptr); 1634 cmp(result_reg, zr); 1635 1636 // Unspill the temp. registers: 1637 pop(pushed_regs, sp); 1638 1639 // NB! Callers may assume that, when set_cond_codes is true, this 1640 // code sets temp2_reg to a nonzero value. 1641 if (set_cond_codes) { 1642 mov(temp2_reg, 1); 1643 } 1644 1645 br(Assembler::NE, *L_failure); 1646 1647 if (L_success != &L_fallthrough) { 1648 b(*L_success); 1649 } 1650 1651 bind(L_fallthrough); 1652 } 1653 1654 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1655 Register super_klass, 1656 Register temp_reg, 1657 Register temp2_reg, 1658 Label* L_success, 1659 Label* L_failure, 1660 bool set_cond_codes) { 1661 if (UseSecondarySupersTable) { 1662 check_klass_subtype_slow_path_table 1663 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1664 /*vtemp*/fnoreg, 1665 L_success, L_failure, set_cond_codes); 1666 } else { 1667 check_klass_subtype_slow_path_linear 1668 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1669 } 1670 } 1671 1672 1673 // Ensure that the inline code and the stub are using the same registers. 1674 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1675 do { \ 1676 assert(r_super_klass == r0 && \ 1677 r_array_base == r1 && \ 1678 r_array_length == r2 && \ 1679 (r_array_index == r3 || r_array_index == noreg) && \ 1680 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1681 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1682 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1683 } while(0) 1684 1685 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1686 Register r_super_klass, 1687 Register temp1, 1688 Register temp2, 1689 Register temp3, 1690 FloatRegister vtemp, 1691 Register result, 1692 u1 super_klass_slot, 1693 bool stub_is_near) { 1694 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1695 1696 Label L_fallthrough; 1697 1698 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1699 1700 const Register 1701 r_array_base = temp1, // r1 1702 r_array_length = temp2, // r2 1703 r_array_index = temp3, // r3 1704 r_bitmap = rscratch2; 1705 1706 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1707 1708 u1 bit = super_klass_slot; 1709 1710 // Make sure that result is nonzero if the TBZ below misses. 1711 mov(result, 1); 1712 1713 // We're going to need the bitmap in a vector reg and in a core reg, 1714 // so load both now. 1715 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1716 if (bit != 0) { 1717 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1718 } 1719 // First check the bitmap to see if super_klass might be present. If 1720 // the bit is zero, we are certain that super_klass is not one of 1721 // the secondary supers. 1722 tbz(r_bitmap, bit, L_fallthrough); 1723 1724 // Get the first array index that can contain super_klass into r_array_index. 1725 if (bit != 0) { 1726 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1727 cnt(vtemp, T8B, vtemp); 1728 addv(vtemp, T8B, vtemp); 1729 fmovd(r_array_index, vtemp); 1730 } else { 1731 mov(r_array_index, (u1)1); 1732 } 1733 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1734 1735 // We will consult the secondary-super array. 1736 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1737 1738 // The value i in r_array_index is >= 1, so even though r_array_base 1739 // points to the length, we don't need to adjust it to point to the 1740 // data. 1741 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1742 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1743 1744 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1745 eor(result, result, r_super_klass); 1746 cbz(result, L_fallthrough); // Found a match 1747 1748 // Is there another entry to check? Consult the bitmap. 1749 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1750 1751 // Linear probe. 1752 if (bit != 0) { 1753 ror(r_bitmap, r_bitmap, bit); 1754 } 1755 1756 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1757 // The next slot to be inspected, by the stub we're about to call, 1758 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1759 // have been checked. 1760 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1761 if (stub_is_near) { 1762 bl(stub); 1763 } else { 1764 address call = trampoline_call(stub); 1765 if (call == nullptr) { 1766 return false; // trampoline allocation failed 1767 } 1768 } 1769 1770 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1771 1772 bind(L_fallthrough); 1773 1774 if (VerifySecondarySupers) { 1775 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1776 temp1, temp2, result); // r1, r2, r5 1777 } 1778 return true; 1779 } 1780 1781 // At runtime, return 0 in result if r_super_klass is a superclass of 1782 // r_sub_klass, otherwise return nonzero. Use this version of 1783 // lookup_secondary_supers_table() if you don't know ahead of time 1784 // which superclass will be searched for. Used by interpreter and 1785 // runtime stubs. It is larger and has somewhat greater latency than 1786 // the version above, which takes a constant super_klass_slot. 1787 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1788 Register r_super_klass, 1789 Register temp1, 1790 Register temp2, 1791 Register temp3, 1792 FloatRegister vtemp, 1793 Register result, 1794 Label *L_success) { 1795 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1796 1797 Label L_fallthrough; 1798 1799 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1800 1801 const Register 1802 r_array_index = temp3, 1803 slot = rscratch1, 1804 r_bitmap = rscratch2; 1805 1806 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1807 1808 // Make sure that result is nonzero if the test below misses. 1809 mov(result, 1); 1810 1811 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1812 1813 // First check the bitmap to see if super_klass might be present. If 1814 // the bit is zero, we are certain that super_klass is not one of 1815 // the secondary supers. 1816 1817 // This next instruction is equivalent to: 1818 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1819 // sub(temp2, tmp_reg, slot); 1820 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1821 lslv(temp2, r_bitmap, temp2); 1822 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1823 1824 bool must_save_v0 = (vtemp == fnoreg); 1825 if (must_save_v0) { 1826 // temp1 and result are free, so use them to preserve vtemp 1827 vtemp = v0; 1828 mov(temp1, vtemp, D, 0); 1829 mov(result, vtemp, D, 1); 1830 } 1831 1832 // Get the first array index that can contain super_klass into r_array_index. 1833 mov(vtemp, D, 0, temp2); 1834 cnt(vtemp, T8B, vtemp); 1835 addv(vtemp, T8B, vtemp); 1836 mov(r_array_index, vtemp, D, 0); 1837 1838 if (must_save_v0) { 1839 mov(vtemp, D, 0, temp1 ); 1840 mov(vtemp, D, 1, result); 1841 } 1842 1843 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1844 1845 const Register 1846 r_array_base = temp1, 1847 r_array_length = temp2; 1848 1849 // The value i in r_array_index is >= 1, so even though r_array_base 1850 // points to the length, we don't need to adjust it to point to the 1851 // data. 1852 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1853 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1854 1855 // We will consult the secondary-super array. 1856 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1857 1858 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1859 eor(result, result, r_super_klass); 1860 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1861 1862 // Is there another entry to check? Consult the bitmap. 1863 rorv(r_bitmap, r_bitmap, slot); 1864 // rol(r_bitmap, r_bitmap, 1); 1865 tbz(r_bitmap, 1, L_fallthrough); 1866 1867 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1868 // The next slot to be inspected, by the logic we're about to call, 1869 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1870 // have been checked. 1871 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1872 r_bitmap, r_array_length, result, /*is_stub*/false); 1873 1874 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1875 1876 bind(L_fallthrough); 1877 1878 if (VerifySecondarySupers) { 1879 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1880 temp1, temp2, result); // r1, r2, r5 1881 } 1882 1883 if (L_success) { 1884 cbz(result, *L_success); 1885 } 1886 } 1887 1888 // Called by code generated by check_klass_subtype_slow_path 1889 // above. This is called when there is a collision in the hashed 1890 // lookup in the secondary supers array. 1891 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1892 Register r_array_base, 1893 Register r_array_index, 1894 Register r_bitmap, 1895 Register temp1, 1896 Register result, 1897 bool is_stub) { 1898 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1899 1900 const Register 1901 r_array_length = temp1, 1902 r_sub_klass = noreg; // unused 1903 1904 if (is_stub) { 1905 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1906 } 1907 1908 Label L_fallthrough, L_huge; 1909 1910 // Load the array length. 1911 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1912 // And adjust the array base to point to the data. 1913 // NB! Effectively increments current slot index by 1. 1914 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1915 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1916 1917 // The bitmap is full to bursting. 1918 // Implicit invariant: BITMAP_FULL implies (length > 0) 1919 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1920 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1921 br(GT, L_huge); 1922 1923 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1924 // current slot (at secondary_supers[r_array_index]) has not yet 1925 // been inspected, and r_array_index may be out of bounds if we 1926 // wrapped around the end of the array. 1927 1928 { // This is conventional linear probing, but instead of terminating 1929 // when a null entry is found in the table, we maintain a bitmap 1930 // in which a 0 indicates missing entries. 1931 // As long as the bitmap is not completely full, 1932 // array_length == popcount(bitmap). The array_length check above 1933 // guarantees there are 0s in the bitmap, so the loop eventually 1934 // terminates. 1935 Label L_loop; 1936 bind(L_loop); 1937 1938 // Check for wraparound. 1939 cmp(r_array_index, r_array_length); 1940 csel(r_array_index, zr, r_array_index, GE); 1941 1942 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1943 eor(result, rscratch1, r_super_klass); 1944 cbz(result, L_fallthrough); 1945 1946 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1947 1948 ror(r_bitmap, r_bitmap, 1); 1949 add(r_array_index, r_array_index, 1); 1950 b(L_loop); 1951 } 1952 1953 { // Degenerate case: more than 64 secondary supers. 1954 // FIXME: We could do something smarter here, maybe a vectorized 1955 // comparison or a binary search, but is that worth any added 1956 // complexity? 1957 bind(L_huge); 1958 cmp(sp, zr); // Clear Z flag; SP is never zero 1959 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1960 cset(result, NE); // result == 0 iff we got a match. 1961 } 1962 1963 bind(L_fallthrough); 1964 } 1965 1966 // Make sure that the hashed lookup and a linear scan agree. 1967 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1968 Register r_super_klass, 1969 Register temp1, 1970 Register temp2, 1971 Register result) { 1972 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1973 1974 const Register 1975 r_array_base = temp1, 1976 r_array_length = temp2, 1977 r_array_index = noreg, // unused 1978 r_bitmap = noreg; // unused 1979 1980 BLOCK_COMMENT("verify_secondary_supers_table {"); 1981 1982 // We will consult the secondary-super array. 1983 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1984 1985 // Load the array length. 1986 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1987 // And adjust the array base to point to the data. 1988 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1989 1990 cmp(sp, zr); // Clear Z flag; SP is never zero 1991 // Scan R2 words at [R5] for an occurrence of R0. 1992 // Set NZ/Z based on last compare. 1993 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 1994 // rscratch1 == 0 iff we got a match. 1995 cset(rscratch1, NE); 1996 1997 Label passed; 1998 cmp(result, zr); 1999 cset(result, NE); // normalize result to 0/1 for comparison 2000 2001 cmp(rscratch1, result); 2002 br(EQ, passed); 2003 { 2004 mov(r0, r_super_klass); // r0 <- r0 2005 mov(r1, r_sub_klass); // r1 <- r4 2006 mov(r2, /*expected*/rscratch1); // r2 <- r8 2007 mov(r3, result); // r3 <- r5 2008 mov(r4, (address)("mismatch")); // r4 <- const 2009 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2010 should_not_reach_here(); 2011 } 2012 bind(passed); 2013 2014 BLOCK_COMMENT("} verify_secondary_supers_table"); 2015 } 2016 2017 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2018 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2019 assert_different_registers(klass, rthread, scratch); 2020 2021 Label L_fallthrough, L_tmp; 2022 if (L_fast_path == nullptr) { 2023 L_fast_path = &L_fallthrough; 2024 } else if (L_slow_path == nullptr) { 2025 L_slow_path = &L_fallthrough; 2026 } 2027 // Fast path check: class is fully initialized 2028 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2029 ldarb(scratch, scratch); 2030 subs(zr, scratch, InstanceKlass::fully_initialized); 2031 br(Assembler::EQ, *L_fast_path); 2032 2033 // Fast path check: current thread is initializer thread 2034 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2035 cmp(rthread, scratch); 2036 2037 if (L_slow_path == &L_fallthrough) { 2038 br(Assembler::EQ, *L_fast_path); 2039 bind(*L_slow_path); 2040 } else if (L_fast_path == &L_fallthrough) { 2041 br(Assembler::NE, *L_slow_path); 2042 bind(*L_fast_path); 2043 } else { 2044 Unimplemented(); 2045 } 2046 } 2047 2048 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2049 if (!VerifyOops) return; 2050 2051 // Pass register number to verify_oop_subroutine 2052 const char* b = nullptr; 2053 { 2054 ResourceMark rm; 2055 stringStream ss; 2056 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2057 b = code_string(ss.as_string()); 2058 } 2059 BLOCK_COMMENT("verify_oop {"); 2060 2061 strip_return_address(); // This might happen within a stack frame. 2062 protect_return_address(); 2063 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2064 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2065 2066 mov(r0, reg); 2067 movptr(rscratch1, (uintptr_t)(address)b); 2068 2069 // call indirectly to solve generation ordering problem 2070 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2071 ldr(rscratch2, Address(rscratch2)); 2072 blr(rscratch2); 2073 2074 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2075 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2076 authenticate_return_address(); 2077 2078 BLOCK_COMMENT("} verify_oop"); 2079 } 2080 2081 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2082 if (!VerifyOops) return; 2083 2084 const char* b = nullptr; 2085 { 2086 ResourceMark rm; 2087 stringStream ss; 2088 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2089 b = code_string(ss.as_string()); 2090 } 2091 BLOCK_COMMENT("verify_oop_addr {"); 2092 2093 strip_return_address(); // This might happen within a stack frame. 2094 protect_return_address(); 2095 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2096 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2097 2098 // addr may contain sp so we will have to adjust it based on the 2099 // pushes that we just did. 2100 if (addr.uses(sp)) { 2101 lea(r0, addr); 2102 ldr(r0, Address(r0, 4 * wordSize)); 2103 } else { 2104 ldr(r0, addr); 2105 } 2106 movptr(rscratch1, (uintptr_t)(address)b); 2107 2108 // call indirectly to solve generation ordering problem 2109 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2110 ldr(rscratch2, Address(rscratch2)); 2111 blr(rscratch2); 2112 2113 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2114 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2115 authenticate_return_address(); 2116 2117 BLOCK_COMMENT("} verify_oop_addr"); 2118 } 2119 2120 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2121 int extra_slot_offset) { 2122 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2123 int stackElementSize = Interpreter::stackElementSize; 2124 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2125 #ifdef ASSERT 2126 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2127 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2128 #endif 2129 if (arg_slot.is_constant()) { 2130 return Address(esp, arg_slot.as_constant() * stackElementSize 2131 + offset); 2132 } else { 2133 add(rscratch1, esp, arg_slot.as_register(), 2134 ext::uxtx, exact_log2(stackElementSize)); 2135 return Address(rscratch1, offset); 2136 } 2137 } 2138 2139 void MacroAssembler::call_VM_leaf_base(address entry_point, 2140 int number_of_arguments, 2141 Label *retaddr) { 2142 Label E, L; 2143 2144 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2145 2146 mov(rscratch1, entry_point); 2147 blr(rscratch1); 2148 if (retaddr) 2149 bind(*retaddr); 2150 2151 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2152 } 2153 2154 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2155 call_VM_leaf_base(entry_point, number_of_arguments); 2156 } 2157 2158 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2159 pass_arg0(this, arg_0); 2160 call_VM_leaf_base(entry_point, 1); 2161 } 2162 2163 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2164 assert_different_registers(arg_1, c_rarg0); 2165 pass_arg0(this, arg_0); 2166 pass_arg1(this, arg_1); 2167 call_VM_leaf_base(entry_point, 2); 2168 } 2169 2170 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2171 Register arg_1, Register arg_2) { 2172 assert_different_registers(arg_1, c_rarg0); 2173 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2174 pass_arg0(this, arg_0); 2175 pass_arg1(this, arg_1); 2176 pass_arg2(this, arg_2); 2177 call_VM_leaf_base(entry_point, 3); 2178 } 2179 2180 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2181 pass_arg0(this, arg_0); 2182 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2183 } 2184 2185 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2186 2187 assert_different_registers(arg_0, c_rarg1); 2188 pass_arg1(this, arg_1); 2189 pass_arg0(this, arg_0); 2190 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2191 } 2192 2193 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2194 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2195 assert_different_registers(arg_1, c_rarg2); 2196 pass_arg2(this, arg_2); 2197 pass_arg1(this, arg_1); 2198 pass_arg0(this, arg_0); 2199 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2200 } 2201 2202 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2203 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2204 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2205 assert_different_registers(arg_2, c_rarg3); 2206 pass_arg3(this, arg_3); 2207 pass_arg2(this, arg_2); 2208 pass_arg1(this, arg_1); 2209 pass_arg0(this, arg_0); 2210 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2211 } 2212 2213 void MacroAssembler::null_check(Register reg, int offset) { 2214 if (needs_explicit_null_check(offset)) { 2215 // provoke OS null exception if reg is null by 2216 // accessing M[reg] w/o changing any registers 2217 // NOTE: this is plenty to provoke a segv 2218 ldr(zr, Address(reg)); 2219 } else { 2220 // nothing to do, (later) access of M[reg + offset] 2221 // will provoke OS null exception if reg is null 2222 } 2223 } 2224 2225 // MacroAssembler protected routines needed to implement 2226 // public methods 2227 2228 void MacroAssembler::mov(Register r, Address dest) { 2229 code_section()->relocate(pc(), dest.rspec()); 2230 uint64_t imm64 = (uint64_t)dest.target(); 2231 movptr(r, imm64); 2232 } 2233 2234 // Move a constant pointer into r. In AArch64 mode the virtual 2235 // address space is 48 bits in size, so we only need three 2236 // instructions to create a patchable instruction sequence that can 2237 // reach anywhere. 2238 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2239 #ifndef PRODUCT 2240 { 2241 char buffer[64]; 2242 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2243 block_comment(buffer); 2244 } 2245 #endif 2246 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2247 movz(r, imm64 & 0xffff); 2248 imm64 >>= 16; 2249 movk(r, imm64 & 0xffff, 16); 2250 imm64 >>= 16; 2251 movk(r, imm64 & 0xffff, 32); 2252 } 2253 2254 // Macro to mov replicated immediate to vector register. 2255 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2256 // the upper 56/48/32 bits must be zeros for B/H/S type. 2257 // Vd will get the following values for different arrangements in T 2258 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2259 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2260 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2261 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2262 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2263 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2264 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2265 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2266 // Clobbers rscratch1 2267 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2268 assert(T != T1Q, "unsupported"); 2269 if (T == T1D || T == T2D) { 2270 int imm = operand_valid_for_movi_immediate(imm64, T); 2271 if (-1 != imm) { 2272 movi(Vd, T, imm); 2273 } else { 2274 mov(rscratch1, imm64); 2275 dup(Vd, T, rscratch1); 2276 } 2277 return; 2278 } 2279 2280 #ifdef ASSERT 2281 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2282 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2283 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2284 #endif 2285 int shift = operand_valid_for_movi_immediate(imm64, T); 2286 uint32_t imm32 = imm64 & 0xffffffffULL; 2287 if (shift >= 0) { 2288 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2289 } else { 2290 movw(rscratch1, imm32); 2291 dup(Vd, T, rscratch1); 2292 } 2293 } 2294 2295 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2296 { 2297 #ifndef PRODUCT 2298 { 2299 char buffer[64]; 2300 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2301 block_comment(buffer); 2302 } 2303 #endif 2304 if (operand_valid_for_logical_immediate(false, imm64)) { 2305 orr(dst, zr, imm64); 2306 } else { 2307 // we can use a combination of MOVZ or MOVN with 2308 // MOVK to build up the constant 2309 uint64_t imm_h[4]; 2310 int zero_count = 0; 2311 int neg_count = 0; 2312 int i; 2313 for (i = 0; i < 4; i++) { 2314 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2315 if (imm_h[i] == 0) { 2316 zero_count++; 2317 } else if (imm_h[i] == 0xffffL) { 2318 neg_count++; 2319 } 2320 } 2321 if (zero_count == 4) { 2322 // one MOVZ will do 2323 movz(dst, 0); 2324 } else if (neg_count == 4) { 2325 // one MOVN will do 2326 movn(dst, 0); 2327 } else if (zero_count == 3) { 2328 for (i = 0; i < 4; i++) { 2329 if (imm_h[i] != 0L) { 2330 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2331 break; 2332 } 2333 } 2334 } else if (neg_count == 3) { 2335 // one MOVN will do 2336 for (int i = 0; i < 4; i++) { 2337 if (imm_h[i] != 0xffffL) { 2338 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2339 break; 2340 } 2341 } 2342 } else if (zero_count == 2) { 2343 // one MOVZ and one MOVK will do 2344 for (i = 0; i < 3; i++) { 2345 if (imm_h[i] != 0L) { 2346 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2347 i++; 2348 break; 2349 } 2350 } 2351 for (;i < 4; i++) { 2352 if (imm_h[i] != 0L) { 2353 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2354 } 2355 } 2356 } else if (neg_count == 2) { 2357 // one MOVN and one MOVK will do 2358 for (i = 0; i < 4; i++) { 2359 if (imm_h[i] != 0xffffL) { 2360 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2361 i++; 2362 break; 2363 } 2364 } 2365 for (;i < 4; i++) { 2366 if (imm_h[i] != 0xffffL) { 2367 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2368 } 2369 } 2370 } else if (zero_count == 1) { 2371 // one MOVZ and two MOVKs will do 2372 for (i = 0; i < 4; i++) { 2373 if (imm_h[i] != 0L) { 2374 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2375 i++; 2376 break; 2377 } 2378 } 2379 for (;i < 4; i++) { 2380 if (imm_h[i] != 0x0L) { 2381 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2382 } 2383 } 2384 } else if (neg_count == 1) { 2385 // one MOVN and two MOVKs will do 2386 for (i = 0; i < 4; i++) { 2387 if (imm_h[i] != 0xffffL) { 2388 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2389 i++; 2390 break; 2391 } 2392 } 2393 for (;i < 4; i++) { 2394 if (imm_h[i] != 0xffffL) { 2395 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2396 } 2397 } 2398 } else { 2399 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2400 movz(dst, (uint32_t)imm_h[0], 0); 2401 for (i = 1; i < 4; i++) { 2402 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2403 } 2404 } 2405 } 2406 } 2407 2408 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2409 { 2410 #ifndef PRODUCT 2411 { 2412 char buffer[64]; 2413 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2414 block_comment(buffer); 2415 } 2416 #endif 2417 if (operand_valid_for_logical_immediate(true, imm32)) { 2418 orrw(dst, zr, imm32); 2419 } else { 2420 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2421 // constant 2422 uint32_t imm_h[2]; 2423 imm_h[0] = imm32 & 0xffff; 2424 imm_h[1] = ((imm32 >> 16) & 0xffff); 2425 if (imm_h[0] == 0) { 2426 movzw(dst, imm_h[1], 16); 2427 } else if (imm_h[0] == 0xffff) { 2428 movnw(dst, imm_h[1] ^ 0xffff, 16); 2429 } else if (imm_h[1] == 0) { 2430 movzw(dst, imm_h[0], 0); 2431 } else if (imm_h[1] == 0xffff) { 2432 movnw(dst, imm_h[0] ^ 0xffff, 0); 2433 } else { 2434 // use a MOVZ and MOVK (makes it easier to debug) 2435 movzw(dst, imm_h[0], 0); 2436 movkw(dst, imm_h[1], 16); 2437 } 2438 } 2439 } 2440 2441 // Form an address from base + offset in Rd. Rd may or may 2442 // not actually be used: you must use the Address that is returned. 2443 // It is up to you to ensure that the shift provided matches the size 2444 // of your data. 2445 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2446 if (Address::offset_ok_for_immed(byte_offset, shift)) 2447 // It fits; no need for any heroics 2448 return Address(base, byte_offset); 2449 2450 // Don't do anything clever with negative or misaligned offsets 2451 unsigned mask = (1 << shift) - 1; 2452 if (byte_offset < 0 || byte_offset & mask) { 2453 mov(Rd, byte_offset); 2454 add(Rd, base, Rd); 2455 return Address(Rd); 2456 } 2457 2458 // See if we can do this with two 12-bit offsets 2459 { 2460 uint64_t word_offset = byte_offset >> shift; 2461 uint64_t masked_offset = word_offset & 0xfff000; 2462 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2463 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2464 add(Rd, base, masked_offset << shift); 2465 word_offset -= masked_offset; 2466 return Address(Rd, word_offset << shift); 2467 } 2468 } 2469 2470 // Do it the hard way 2471 mov(Rd, byte_offset); 2472 add(Rd, base, Rd); 2473 return Address(Rd); 2474 } 2475 2476 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2477 bool want_remainder, Register scratch) 2478 { 2479 // Full implementation of Java idiv and irem. The function 2480 // returns the (pc) offset of the div instruction - may be needed 2481 // for implicit exceptions. 2482 // 2483 // constraint : ra/rb =/= scratch 2484 // normal case 2485 // 2486 // input : ra: dividend 2487 // rb: divisor 2488 // 2489 // result: either 2490 // quotient (= ra idiv rb) 2491 // remainder (= ra irem rb) 2492 2493 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2494 2495 int idivl_offset = offset(); 2496 if (! want_remainder) { 2497 sdivw(result, ra, rb); 2498 } else { 2499 sdivw(scratch, ra, rb); 2500 Assembler::msubw(result, scratch, rb, ra); 2501 } 2502 2503 return idivl_offset; 2504 } 2505 2506 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2507 bool want_remainder, Register scratch) 2508 { 2509 // Full implementation of Java ldiv and lrem. The function 2510 // returns the (pc) offset of the div instruction - may be needed 2511 // for implicit exceptions. 2512 // 2513 // constraint : ra/rb =/= scratch 2514 // normal case 2515 // 2516 // input : ra: dividend 2517 // rb: divisor 2518 // 2519 // result: either 2520 // quotient (= ra idiv rb) 2521 // remainder (= ra irem rb) 2522 2523 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2524 2525 int idivq_offset = offset(); 2526 if (! want_remainder) { 2527 sdiv(result, ra, rb); 2528 } else { 2529 sdiv(scratch, ra, rb); 2530 Assembler::msub(result, scratch, rb, ra); 2531 } 2532 2533 return idivq_offset; 2534 } 2535 2536 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2537 address prev = pc() - NativeMembar::instruction_size; 2538 address last = code()->last_insn(); 2539 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2540 NativeMembar *bar = NativeMembar_at(prev); 2541 if (AlwaysMergeDMB) { 2542 bar->set_kind(bar->get_kind() | order_constraint); 2543 BLOCK_COMMENT("merged membar(always)"); 2544 return; 2545 } 2546 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2547 // doing so would introduce a StoreLoad which the caller did not 2548 // intend 2549 if (bar->get_kind() == order_constraint 2550 || bar->get_kind() == AnyAny 2551 || order_constraint == AnyAny) { 2552 // We are merging two memory barrier instructions. On AArch64 we 2553 // can do this simply by ORing them together. 2554 bar->set_kind(bar->get_kind() | order_constraint); 2555 BLOCK_COMMENT("merged membar"); 2556 return; 2557 } else { 2558 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2559 // We need check the last 2 instructions 2560 address prev2 = prev - NativeMembar::instruction_size; 2561 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2562 NativeMembar *bar2 = NativeMembar_at(prev2); 2563 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2564 BLOCK_COMMENT("merged membar(elided)"); 2565 return; 2566 } 2567 } 2568 } 2569 code()->set_last_insn(pc()); 2570 dmb(Assembler::barrier(order_constraint)); 2571 } 2572 2573 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2574 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2575 merge_ldst(rt, adr, size_in_bytes, is_store); 2576 code()->clear_last_insn(); 2577 return true; 2578 } else { 2579 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2580 const uint64_t mask = size_in_bytes - 1; 2581 if (adr.getMode() == Address::base_plus_offset && 2582 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2583 code()->set_last_insn(pc()); 2584 } 2585 return false; 2586 } 2587 } 2588 2589 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2590 // We always try to merge two adjacent loads into one ldp. 2591 if (!try_merge_ldst(Rx, adr, 8, false)) { 2592 Assembler::ldr(Rx, adr); 2593 } 2594 } 2595 2596 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2597 // We always try to merge two adjacent loads into one ldp. 2598 if (!try_merge_ldst(Rw, adr, 4, false)) { 2599 Assembler::ldrw(Rw, adr); 2600 } 2601 } 2602 2603 void MacroAssembler::str(Register Rx, const Address &adr) { 2604 // We always try to merge two adjacent stores into one stp. 2605 if (!try_merge_ldst(Rx, adr, 8, true)) { 2606 Assembler::str(Rx, adr); 2607 } 2608 } 2609 2610 void MacroAssembler::strw(Register Rw, const Address &adr) { 2611 // We always try to merge two adjacent stores into one stp. 2612 if (!try_merge_ldst(Rw, adr, 4, true)) { 2613 Assembler::strw(Rw, adr); 2614 } 2615 } 2616 2617 // MacroAssembler routines found actually to be needed 2618 2619 void MacroAssembler::push(Register src) 2620 { 2621 str(src, Address(pre(esp, -1 * wordSize))); 2622 } 2623 2624 void MacroAssembler::pop(Register dst) 2625 { 2626 ldr(dst, Address(post(esp, 1 * wordSize))); 2627 } 2628 2629 // Note: load_unsigned_short used to be called load_unsigned_word. 2630 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2631 int off = offset(); 2632 ldrh(dst, src); 2633 return off; 2634 } 2635 2636 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2637 int off = offset(); 2638 ldrb(dst, src); 2639 return off; 2640 } 2641 2642 int MacroAssembler::load_signed_short(Register dst, Address src) { 2643 int off = offset(); 2644 ldrsh(dst, src); 2645 return off; 2646 } 2647 2648 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2649 int off = offset(); 2650 ldrsb(dst, src); 2651 return off; 2652 } 2653 2654 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2655 int off = offset(); 2656 ldrshw(dst, src); 2657 return off; 2658 } 2659 2660 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2661 int off = offset(); 2662 ldrsbw(dst, src); 2663 return off; 2664 } 2665 2666 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2667 switch (size_in_bytes) { 2668 case 8: ldr(dst, src); break; 2669 case 4: ldrw(dst, src); break; 2670 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2671 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2672 default: ShouldNotReachHere(); 2673 } 2674 } 2675 2676 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2677 switch (size_in_bytes) { 2678 case 8: str(src, dst); break; 2679 case 4: strw(src, dst); break; 2680 case 2: strh(src, dst); break; 2681 case 1: strb(src, dst); break; 2682 default: ShouldNotReachHere(); 2683 } 2684 } 2685 2686 void MacroAssembler::decrementw(Register reg, int value) 2687 { 2688 if (value < 0) { incrementw(reg, -value); return; } 2689 if (value == 0) { return; } 2690 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2691 /* else */ { 2692 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2693 movw(rscratch2, (unsigned)value); 2694 subw(reg, reg, rscratch2); 2695 } 2696 } 2697 2698 void MacroAssembler::decrement(Register reg, int value) 2699 { 2700 if (value < 0) { increment(reg, -value); return; } 2701 if (value == 0) { return; } 2702 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2703 /* else */ { 2704 assert(reg != rscratch2, "invalid dst for register decrement"); 2705 mov(rscratch2, (uint64_t)value); 2706 sub(reg, reg, rscratch2); 2707 } 2708 } 2709 2710 void MacroAssembler::decrementw(Address dst, int value) 2711 { 2712 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2713 if (dst.getMode() == Address::literal) { 2714 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2715 lea(rscratch2, dst); 2716 dst = Address(rscratch2); 2717 } 2718 ldrw(rscratch1, dst); 2719 decrementw(rscratch1, value); 2720 strw(rscratch1, dst); 2721 } 2722 2723 void MacroAssembler::decrement(Address dst, int value) 2724 { 2725 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2726 if (dst.getMode() == Address::literal) { 2727 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2728 lea(rscratch2, dst); 2729 dst = Address(rscratch2); 2730 } 2731 ldr(rscratch1, dst); 2732 decrement(rscratch1, value); 2733 str(rscratch1, dst); 2734 } 2735 2736 void MacroAssembler::incrementw(Register reg, int value) 2737 { 2738 if (value < 0) { decrementw(reg, -value); return; } 2739 if (value == 0) { return; } 2740 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2741 /* else */ { 2742 assert(reg != rscratch2, "invalid dst for register increment"); 2743 movw(rscratch2, (unsigned)value); 2744 addw(reg, reg, rscratch2); 2745 } 2746 } 2747 2748 void MacroAssembler::increment(Register reg, int value) 2749 { 2750 if (value < 0) { decrement(reg, -value); return; } 2751 if (value == 0) { return; } 2752 if (value < (1 << 12)) { add(reg, reg, value); return; } 2753 /* else */ { 2754 assert(reg != rscratch2, "invalid dst for register increment"); 2755 movw(rscratch2, (unsigned)value); 2756 add(reg, reg, rscratch2); 2757 } 2758 } 2759 2760 void MacroAssembler::incrementw(Address dst, int value) 2761 { 2762 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2763 if (dst.getMode() == Address::literal) { 2764 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2765 lea(rscratch2, dst); 2766 dst = Address(rscratch2); 2767 } 2768 ldrw(rscratch1, dst); 2769 incrementw(rscratch1, value); 2770 strw(rscratch1, dst); 2771 } 2772 2773 void MacroAssembler::increment(Address dst, int value) 2774 { 2775 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2776 if (dst.getMode() == Address::literal) { 2777 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2778 lea(rscratch2, dst); 2779 dst = Address(rscratch2); 2780 } 2781 ldr(rscratch1, dst); 2782 increment(rscratch1, value); 2783 str(rscratch1, dst); 2784 } 2785 2786 // Push lots of registers in the bit set supplied. Don't push sp. 2787 // Return the number of words pushed 2788 int MacroAssembler::push(unsigned int bitset, Register stack) { 2789 int words_pushed = 0; 2790 2791 // Scan bitset to accumulate register pairs 2792 unsigned char regs[32]; 2793 int count = 0; 2794 for (int reg = 0; reg <= 30; reg++) { 2795 if (1 & bitset) 2796 regs[count++] = reg; 2797 bitset >>= 1; 2798 } 2799 regs[count++] = zr->raw_encoding(); 2800 count &= ~1; // Only push an even number of regs 2801 2802 if (count) { 2803 stp(as_Register(regs[0]), as_Register(regs[1]), 2804 Address(pre(stack, -count * wordSize))); 2805 words_pushed += 2; 2806 } 2807 for (int i = 2; i < count; i += 2) { 2808 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2809 Address(stack, i * wordSize)); 2810 words_pushed += 2; 2811 } 2812 2813 assert(words_pushed == count, "oops, pushed != count"); 2814 2815 return count; 2816 } 2817 2818 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2819 int words_pushed = 0; 2820 2821 // Scan bitset to accumulate register pairs 2822 unsigned char regs[32]; 2823 int count = 0; 2824 for (int reg = 0; reg <= 30; reg++) { 2825 if (1 & bitset) 2826 regs[count++] = reg; 2827 bitset >>= 1; 2828 } 2829 regs[count++] = zr->raw_encoding(); 2830 count &= ~1; 2831 2832 for (int i = 2; i < count; i += 2) { 2833 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2834 Address(stack, i * wordSize)); 2835 words_pushed += 2; 2836 } 2837 if (count) { 2838 ldp(as_Register(regs[0]), as_Register(regs[1]), 2839 Address(post(stack, count * wordSize))); 2840 words_pushed += 2; 2841 } 2842 2843 assert(words_pushed == count, "oops, pushed != count"); 2844 2845 return count; 2846 } 2847 2848 // Push lots of registers in the bit set supplied. Don't push sp. 2849 // Return the number of dwords pushed 2850 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2851 int words_pushed = 0; 2852 bool use_sve = false; 2853 int sve_vector_size_in_bytes = 0; 2854 2855 #ifdef COMPILER2 2856 use_sve = Matcher::supports_scalable_vector(); 2857 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2858 #endif 2859 2860 // Scan bitset to accumulate register pairs 2861 unsigned char regs[32]; 2862 int count = 0; 2863 for (int reg = 0; reg <= 31; reg++) { 2864 if (1 & bitset) 2865 regs[count++] = reg; 2866 bitset >>= 1; 2867 } 2868 2869 if (count == 0) { 2870 return 0; 2871 } 2872 2873 if (mode == PushPopFull) { 2874 if (use_sve && sve_vector_size_in_bytes > 16) { 2875 mode = PushPopSVE; 2876 } else { 2877 mode = PushPopNeon; 2878 } 2879 } 2880 2881 #ifndef PRODUCT 2882 { 2883 char buffer[48]; 2884 if (mode == PushPopSVE) { 2885 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2886 } else if (mode == PushPopNeon) { 2887 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2888 } else { 2889 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2890 } 2891 block_comment(buffer); 2892 } 2893 #endif 2894 2895 if (mode == PushPopSVE) { 2896 sub(stack, stack, sve_vector_size_in_bytes * count); 2897 for (int i = 0; i < count; i++) { 2898 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2899 } 2900 return count * sve_vector_size_in_bytes / 8; 2901 } 2902 2903 if (mode == PushPopNeon) { 2904 if (count == 1) { 2905 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2906 return 2; 2907 } 2908 2909 bool odd = (count & 1) == 1; 2910 int push_slots = count + (odd ? 1 : 0); 2911 2912 // Always pushing full 128 bit registers. 2913 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2914 words_pushed += 2; 2915 2916 for (int i = 2; i + 1 < count; i += 2) { 2917 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2918 words_pushed += 2; 2919 } 2920 2921 if (odd) { 2922 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2923 words_pushed++; 2924 } 2925 2926 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2927 return count * 2; 2928 } 2929 2930 if (mode == PushPopFp) { 2931 bool odd = (count & 1) == 1; 2932 int push_slots = count + (odd ? 1 : 0); 2933 2934 if (count == 1) { 2935 // Stack pointer must be 16 bytes aligned 2936 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2937 return 1; 2938 } 2939 2940 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2941 words_pushed += 2; 2942 2943 for (int i = 2; i + 1 < count; i += 2) { 2944 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2945 words_pushed += 2; 2946 } 2947 2948 if (odd) { 2949 // Stack pointer must be 16 bytes aligned 2950 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2951 words_pushed++; 2952 } 2953 2954 assert(words_pushed == count, "oops, pushed != count"); 2955 2956 return count; 2957 } 2958 2959 return 0; 2960 } 2961 2962 // Return the number of dwords popped 2963 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2964 int words_pushed = 0; 2965 bool use_sve = false; 2966 int sve_vector_size_in_bytes = 0; 2967 2968 #ifdef COMPILER2 2969 use_sve = Matcher::supports_scalable_vector(); 2970 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2971 #endif 2972 // Scan bitset to accumulate register pairs 2973 unsigned char regs[32]; 2974 int count = 0; 2975 for (int reg = 0; reg <= 31; reg++) { 2976 if (1 & bitset) 2977 regs[count++] = reg; 2978 bitset >>= 1; 2979 } 2980 2981 if (count == 0) { 2982 return 0; 2983 } 2984 2985 if (mode == PushPopFull) { 2986 if (use_sve && sve_vector_size_in_bytes > 16) { 2987 mode = PushPopSVE; 2988 } else { 2989 mode = PushPopNeon; 2990 } 2991 } 2992 2993 #ifndef PRODUCT 2994 { 2995 char buffer[48]; 2996 if (mode == PushPopSVE) { 2997 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 2998 } else if (mode == PushPopNeon) { 2999 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3000 } else { 3001 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3002 } 3003 block_comment(buffer); 3004 } 3005 #endif 3006 3007 if (mode == PushPopSVE) { 3008 for (int i = count - 1; i >= 0; i--) { 3009 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3010 } 3011 add(stack, stack, sve_vector_size_in_bytes * count); 3012 return count * sve_vector_size_in_bytes / 8; 3013 } 3014 3015 if (mode == PushPopNeon) { 3016 if (count == 1) { 3017 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3018 return 2; 3019 } 3020 3021 bool odd = (count & 1) == 1; 3022 int push_slots = count + (odd ? 1 : 0); 3023 3024 if (odd) { 3025 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3026 words_pushed++; 3027 } 3028 3029 for (int i = 2; i + 1 < count; i += 2) { 3030 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3031 words_pushed += 2; 3032 } 3033 3034 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3035 words_pushed += 2; 3036 3037 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3038 3039 return count * 2; 3040 } 3041 3042 if (mode == PushPopFp) { 3043 bool odd = (count & 1) == 1; 3044 int push_slots = count + (odd ? 1 : 0); 3045 3046 if (count == 1) { 3047 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3048 return 1; 3049 } 3050 3051 if (odd) { 3052 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3053 words_pushed++; 3054 } 3055 3056 for (int i = 2; i + 1 < count; i += 2) { 3057 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3058 words_pushed += 2; 3059 } 3060 3061 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3062 words_pushed += 2; 3063 3064 assert(words_pushed == count, "oops, pushed != count"); 3065 3066 return count; 3067 } 3068 3069 return 0; 3070 } 3071 3072 // Return the number of dwords pushed 3073 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3074 bool use_sve = false; 3075 int sve_predicate_size_in_slots = 0; 3076 3077 #ifdef COMPILER2 3078 use_sve = Matcher::supports_scalable_vector(); 3079 if (use_sve) { 3080 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3081 } 3082 #endif 3083 3084 if (!use_sve) { 3085 return 0; 3086 } 3087 3088 unsigned char regs[PRegister::number_of_registers]; 3089 int count = 0; 3090 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3091 if (1 & bitset) 3092 regs[count++] = reg; 3093 bitset >>= 1; 3094 } 3095 3096 if (count == 0) { 3097 return 0; 3098 } 3099 3100 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3101 VMRegImpl::stack_slot_size * count, 16); 3102 sub(stack, stack, total_push_bytes); 3103 for (int i = 0; i < count; i++) { 3104 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3105 } 3106 return total_push_bytes / 8; 3107 } 3108 3109 // Return the number of dwords popped 3110 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3111 bool use_sve = false; 3112 int sve_predicate_size_in_slots = 0; 3113 3114 #ifdef COMPILER2 3115 use_sve = Matcher::supports_scalable_vector(); 3116 if (use_sve) { 3117 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3118 } 3119 #endif 3120 3121 if (!use_sve) { 3122 return 0; 3123 } 3124 3125 unsigned char regs[PRegister::number_of_registers]; 3126 int count = 0; 3127 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3128 if (1 & bitset) 3129 regs[count++] = reg; 3130 bitset >>= 1; 3131 } 3132 3133 if (count == 0) { 3134 return 0; 3135 } 3136 3137 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3138 VMRegImpl::stack_slot_size * count, 16); 3139 for (int i = count - 1; i >= 0; i--) { 3140 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3141 } 3142 add(stack, stack, total_pop_bytes); 3143 return total_pop_bytes / 8; 3144 } 3145 3146 #ifdef ASSERT 3147 void MacroAssembler::verify_heapbase(const char* msg) { 3148 #if 0 3149 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3150 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3151 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3152 // rheapbase is allocated as general register 3153 return; 3154 } 3155 if (CheckCompressedOops) { 3156 Label ok; 3157 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3158 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3159 br(Assembler::EQ, ok); 3160 stop(msg); 3161 bind(ok); 3162 pop(1 << rscratch1->encoding(), sp); 3163 } 3164 #endif 3165 } 3166 #endif 3167 3168 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3169 assert_different_registers(value, tmp1, tmp2); 3170 Label done, tagged, weak_tagged; 3171 3172 cbz(value, done); // Use null as-is. 3173 tst(value, JNIHandles::tag_mask); // Test for tag. 3174 br(Assembler::NE, tagged); 3175 3176 // Resolve local handle 3177 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3178 verify_oop(value); 3179 b(done); 3180 3181 bind(tagged); 3182 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3183 tbnz(value, 0, weak_tagged); // Test for weak tag. 3184 3185 // Resolve global handle 3186 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3187 verify_oop(value); 3188 b(done); 3189 3190 bind(weak_tagged); 3191 // Resolve jweak. 3192 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3193 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3194 verify_oop(value); 3195 3196 bind(done); 3197 } 3198 3199 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3200 assert_different_registers(value, tmp1, tmp2); 3201 Label done; 3202 3203 cbz(value, done); // Use null as-is. 3204 3205 #ifdef ASSERT 3206 { 3207 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3208 Label valid_global_tag; 3209 tbnz(value, 1, valid_global_tag); // Test for global tag 3210 stop("non global jobject using resolve_global_jobject"); 3211 bind(valid_global_tag); 3212 } 3213 #endif 3214 3215 // Resolve global handle 3216 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3217 verify_oop(value); 3218 3219 bind(done); 3220 } 3221 3222 void MacroAssembler::stop(const char* msg) { 3223 BLOCK_COMMENT(msg); 3224 dcps1(0xdeae); 3225 emit_int64((uintptr_t)msg); 3226 } 3227 3228 void MacroAssembler::unimplemented(const char* what) { 3229 const char* buf = nullptr; 3230 { 3231 ResourceMark rm; 3232 stringStream ss; 3233 ss.print("unimplemented: %s", what); 3234 buf = code_string(ss.as_string()); 3235 } 3236 stop(buf); 3237 } 3238 3239 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3240 #ifdef ASSERT 3241 Label OK; 3242 br(cc, OK); 3243 stop(msg); 3244 bind(OK); 3245 #endif 3246 } 3247 3248 // If a constant does not fit in an immediate field, generate some 3249 // number of MOV instructions and then perform the operation. 3250 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3251 add_sub_imm_insn insn1, 3252 add_sub_reg_insn insn2, 3253 bool is32) { 3254 assert(Rd != zr, "Rd = zr and not setting flags?"); 3255 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3256 if (fits) { 3257 (this->*insn1)(Rd, Rn, imm); 3258 } else { 3259 if (uabs(imm) < (1 << 24)) { 3260 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3261 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3262 } else { 3263 assert_different_registers(Rd, Rn); 3264 mov(Rd, imm); 3265 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3266 } 3267 } 3268 } 3269 3270 // Separate vsn which sets the flags. Optimisations are more restricted 3271 // because we must set the flags correctly. 3272 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3273 add_sub_imm_insn insn1, 3274 add_sub_reg_insn insn2, 3275 bool is32) { 3276 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3277 if (fits) { 3278 (this->*insn1)(Rd, Rn, imm); 3279 } else { 3280 assert_different_registers(Rd, Rn); 3281 assert(Rd != zr, "overflow in immediate operand"); 3282 mov(Rd, imm); 3283 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3284 } 3285 } 3286 3287 3288 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3289 if (increment.is_register()) { 3290 add(Rd, Rn, increment.as_register()); 3291 } else { 3292 add(Rd, Rn, increment.as_constant()); 3293 } 3294 } 3295 3296 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3297 if (increment.is_register()) { 3298 addw(Rd, Rn, increment.as_register()); 3299 } else { 3300 addw(Rd, Rn, increment.as_constant()); 3301 } 3302 } 3303 3304 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3305 if (decrement.is_register()) { 3306 sub(Rd, Rn, decrement.as_register()); 3307 } else { 3308 sub(Rd, Rn, decrement.as_constant()); 3309 } 3310 } 3311 3312 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3313 if (decrement.is_register()) { 3314 subw(Rd, Rn, decrement.as_register()); 3315 } else { 3316 subw(Rd, Rn, decrement.as_constant()); 3317 } 3318 } 3319 3320 void MacroAssembler::reinit_heapbase() 3321 { 3322 if (UseCompressedOops) { 3323 if (Universe::is_fully_initialized()) { 3324 mov(rheapbase, CompressedOops::base()); 3325 } else { 3326 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3327 ldr(rheapbase, Address(rheapbase)); 3328 } 3329 } 3330 } 3331 3332 // this simulates the behaviour of the x86 cmpxchg instruction using a 3333 // load linked/store conditional pair. we use the acquire/release 3334 // versions of these instructions so that we flush pending writes as 3335 // per Java semantics. 3336 3337 // n.b the x86 version assumes the old value to be compared against is 3338 // in rax and updates rax with the value located in memory if the 3339 // cmpxchg fails. we supply a register for the old value explicitly 3340 3341 // the aarch64 load linked/store conditional instructions do not 3342 // accept an offset. so, unlike x86, we must provide a plain register 3343 // to identify the memory word to be compared/exchanged rather than a 3344 // register+offset Address. 3345 3346 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3347 Label &succeed, Label *fail) { 3348 // oldv holds comparison value 3349 // newv holds value to write in exchange 3350 // addr identifies memory word to compare against/update 3351 if (UseLSE) { 3352 mov(tmp, oldv); 3353 casal(Assembler::xword, oldv, newv, addr); 3354 cmp(tmp, oldv); 3355 br(Assembler::EQ, succeed); 3356 membar(AnyAny); 3357 } else { 3358 Label retry_load, nope; 3359 prfm(Address(addr), PSTL1STRM); 3360 bind(retry_load); 3361 // flush and load exclusive from the memory location 3362 // and fail if it is not what we expect 3363 ldaxr(tmp, addr); 3364 cmp(tmp, oldv); 3365 br(Assembler::NE, nope); 3366 // if we store+flush with no intervening write tmp will be zero 3367 stlxr(tmp, newv, addr); 3368 cbzw(tmp, succeed); 3369 // retry so we only ever return after a load fails to compare 3370 // ensures we don't return a stale value after a failed write. 3371 b(retry_load); 3372 // if the memory word differs we return it in oldv and signal a fail 3373 bind(nope); 3374 membar(AnyAny); 3375 mov(oldv, tmp); 3376 } 3377 if (fail) 3378 b(*fail); 3379 } 3380 3381 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3382 Label &succeed, Label *fail) { 3383 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3384 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3385 } 3386 3387 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3388 Label &succeed, Label *fail) { 3389 // oldv holds comparison value 3390 // newv holds value to write in exchange 3391 // addr identifies memory word to compare against/update 3392 // tmp returns 0/1 for success/failure 3393 if (UseLSE) { 3394 mov(tmp, oldv); 3395 casal(Assembler::word, oldv, newv, addr); 3396 cmp(tmp, oldv); 3397 br(Assembler::EQ, succeed); 3398 membar(AnyAny); 3399 } else { 3400 Label retry_load, nope; 3401 prfm(Address(addr), PSTL1STRM); 3402 bind(retry_load); 3403 // flush and load exclusive from the memory location 3404 // and fail if it is not what we expect 3405 ldaxrw(tmp, addr); 3406 cmp(tmp, oldv); 3407 br(Assembler::NE, nope); 3408 // if we store+flush with no intervening write tmp will be zero 3409 stlxrw(tmp, newv, addr); 3410 cbzw(tmp, succeed); 3411 // retry so we only ever return after a load fails to compare 3412 // ensures we don't return a stale value after a failed write. 3413 b(retry_load); 3414 // if the memory word differs we return it in oldv and signal a fail 3415 bind(nope); 3416 membar(AnyAny); 3417 mov(oldv, tmp); 3418 } 3419 if (fail) 3420 b(*fail); 3421 } 3422 3423 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3424 // doesn't retry and may fail spuriously. If the oldval is wanted, 3425 // Pass a register for the result, otherwise pass noreg. 3426 3427 // Clobbers rscratch1 3428 void MacroAssembler::cmpxchg(Register addr, Register expected, 3429 Register new_val, 3430 enum operand_size size, 3431 bool acquire, bool release, 3432 bool weak, 3433 Register result) { 3434 if (result == noreg) result = rscratch1; 3435 BLOCK_COMMENT("cmpxchg {"); 3436 if (UseLSE) { 3437 mov(result, expected); 3438 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3439 compare_eq(result, expected, size); 3440 #ifdef ASSERT 3441 // Poison rscratch1 which is written on !UseLSE branch 3442 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3443 #endif 3444 } else { 3445 Label retry_load, done; 3446 prfm(Address(addr), PSTL1STRM); 3447 bind(retry_load); 3448 load_exclusive(result, addr, size, acquire); 3449 compare_eq(result, expected, size); 3450 br(Assembler::NE, done); 3451 store_exclusive(rscratch1, new_val, addr, size, release); 3452 if (weak) { 3453 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3454 } else { 3455 cbnzw(rscratch1, retry_load); 3456 } 3457 bind(done); 3458 } 3459 BLOCK_COMMENT("} cmpxchg"); 3460 } 3461 3462 // A generic comparison. Only compares for equality, clobbers rscratch1. 3463 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3464 if (size == xword) { 3465 cmp(rm, rn); 3466 } else if (size == word) { 3467 cmpw(rm, rn); 3468 } else if (size == halfword) { 3469 eorw(rscratch1, rm, rn); 3470 ands(zr, rscratch1, 0xffff); 3471 } else if (size == byte) { 3472 eorw(rscratch1, rm, rn); 3473 ands(zr, rscratch1, 0xff); 3474 } else { 3475 ShouldNotReachHere(); 3476 } 3477 } 3478 3479 3480 static bool different(Register a, RegisterOrConstant b, Register c) { 3481 if (b.is_constant()) 3482 return a != c; 3483 else 3484 return a != b.as_register() && a != c && b.as_register() != c; 3485 } 3486 3487 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3488 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3489 if (UseLSE) { \ 3490 prev = prev->is_valid() ? prev : zr; \ 3491 if (incr.is_register()) { \ 3492 AOP(sz, incr.as_register(), prev, addr); \ 3493 } else { \ 3494 mov(rscratch2, incr.as_constant()); \ 3495 AOP(sz, rscratch2, prev, addr); \ 3496 } \ 3497 return; \ 3498 } \ 3499 Register result = rscratch2; \ 3500 if (prev->is_valid()) \ 3501 result = different(prev, incr, addr) ? prev : rscratch2; \ 3502 \ 3503 Label retry_load; \ 3504 prfm(Address(addr), PSTL1STRM); \ 3505 bind(retry_load); \ 3506 LDXR(result, addr); \ 3507 OP(rscratch1, result, incr); \ 3508 STXR(rscratch2, rscratch1, addr); \ 3509 cbnzw(rscratch2, retry_load); \ 3510 if (prev->is_valid() && prev != result) { \ 3511 IOP(prev, rscratch1, incr); \ 3512 } \ 3513 } 3514 3515 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3516 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3517 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3518 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3519 3520 #undef ATOMIC_OP 3521 3522 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3523 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3524 if (UseLSE) { \ 3525 prev = prev->is_valid() ? prev : zr; \ 3526 AOP(sz, newv, prev, addr); \ 3527 return; \ 3528 } \ 3529 Register result = rscratch2; \ 3530 if (prev->is_valid()) \ 3531 result = different(prev, newv, addr) ? prev : rscratch2; \ 3532 \ 3533 Label retry_load; \ 3534 prfm(Address(addr), PSTL1STRM); \ 3535 bind(retry_load); \ 3536 LDXR(result, addr); \ 3537 STXR(rscratch1, newv, addr); \ 3538 cbnzw(rscratch1, retry_load); \ 3539 if (prev->is_valid() && prev != result) \ 3540 mov(prev, result); \ 3541 } 3542 3543 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3544 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3545 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3546 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3547 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3548 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3549 3550 #undef ATOMIC_XCHG 3551 3552 #ifndef PRODUCT 3553 extern "C" void findpc(intptr_t x); 3554 #endif 3555 3556 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3557 { 3558 // In order to get locks to work, we need to fake a in_VM state 3559 if (ShowMessageBoxOnError ) { 3560 JavaThread* thread = JavaThread::current(); 3561 JavaThreadState saved_state = thread->thread_state(); 3562 thread->set_thread_state(_thread_in_vm); 3563 #ifndef PRODUCT 3564 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3565 ttyLocker ttyl; 3566 BytecodeCounter::print(); 3567 } 3568 #endif 3569 if (os::message_box(msg, "Execution stopped, print registers?")) { 3570 ttyLocker ttyl; 3571 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3572 #ifndef PRODUCT 3573 tty->cr(); 3574 findpc(pc); 3575 tty->cr(); 3576 #endif 3577 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3578 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3579 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3580 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3581 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3582 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3583 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3584 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3585 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3586 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3587 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3588 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3589 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3590 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3591 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3592 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3593 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3594 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3595 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3596 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3597 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3598 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3599 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3600 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3601 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3602 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3603 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3604 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3605 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3606 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3607 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3608 BREAKPOINT; 3609 } 3610 } 3611 fatal("DEBUG MESSAGE: %s", msg); 3612 } 3613 3614 RegSet MacroAssembler::call_clobbered_gp_registers() { 3615 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3616 #ifndef R18_RESERVED 3617 regs += r18_tls; 3618 #endif 3619 return regs; 3620 } 3621 3622 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3623 int step = 4 * wordSize; 3624 push(call_clobbered_gp_registers() - exclude, sp); 3625 sub(sp, sp, step); 3626 mov(rscratch1, -step); 3627 // Push v0-v7, v16-v31. 3628 for (int i = 31; i>= 4; i -= 4) { 3629 if (i <= v7->encoding() || i >= v16->encoding()) 3630 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3631 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3632 } 3633 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3634 as_FloatRegister(3), T1D, Address(sp)); 3635 } 3636 3637 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3638 for (int i = 0; i < 32; i += 4) { 3639 if (i <= v7->encoding() || i >= v16->encoding()) 3640 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3641 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3642 } 3643 3644 reinitialize_ptrue(); 3645 3646 pop(call_clobbered_gp_registers() - exclude, sp); 3647 } 3648 3649 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3650 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3651 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3652 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3653 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3654 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3655 sve_str(as_FloatRegister(i), Address(sp, i)); 3656 } 3657 } else { 3658 int step = (save_vectors ? 8 : 4) * wordSize; 3659 mov(rscratch1, -step); 3660 sub(sp, sp, step); 3661 for (int i = 28; i >= 4; i -= 4) { 3662 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3663 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3664 } 3665 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3666 } 3667 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3668 sub(sp, sp, total_predicate_in_bytes); 3669 for (int i = 0; i < PRegister::number_of_registers; i++) { 3670 sve_str(as_PRegister(i), Address(sp, i)); 3671 } 3672 } 3673 } 3674 3675 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3676 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3677 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3678 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3679 sve_ldr(as_PRegister(i), Address(sp, i)); 3680 } 3681 add(sp, sp, total_predicate_in_bytes); 3682 } 3683 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3684 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3685 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3686 } 3687 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3688 } else { 3689 int step = (restore_vectors ? 8 : 4) * wordSize; 3690 for (int i = 0; i <= 28; i += 4) 3691 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3692 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3693 } 3694 3695 // We may use predicate registers and rely on ptrue with SVE, 3696 // regardless of wide vector (> 8 bytes) used or not. 3697 if (use_sve) { 3698 reinitialize_ptrue(); 3699 } 3700 3701 // integer registers except lr & sp 3702 pop(RegSet::range(r0, r17), sp); 3703 #ifdef R18_RESERVED 3704 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3705 pop(RegSet::range(r20, r29), sp); 3706 #else 3707 pop(RegSet::range(r18_tls, r29), sp); 3708 #endif 3709 } 3710 3711 /** 3712 * Helpers for multiply_to_len(). 3713 */ 3714 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3715 Register src1, Register src2) { 3716 adds(dest_lo, dest_lo, src1); 3717 adc(dest_hi, dest_hi, zr); 3718 adds(dest_lo, dest_lo, src2); 3719 adc(final_dest_hi, dest_hi, zr); 3720 } 3721 3722 // Generate an address from (r + r1 extend offset). "size" is the 3723 // size of the operand. The result may be in rscratch2. 3724 Address MacroAssembler::offsetted_address(Register r, Register r1, 3725 Address::extend ext, int offset, int size) { 3726 if (offset || (ext.shift() % size != 0)) { 3727 lea(rscratch2, Address(r, r1, ext)); 3728 return Address(rscratch2, offset); 3729 } else { 3730 return Address(r, r1, ext); 3731 } 3732 } 3733 3734 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3735 { 3736 assert(offset >= 0, "spill to negative address?"); 3737 // Offset reachable ? 3738 // Not aligned - 9 bits signed offset 3739 // Aligned - 12 bits unsigned offset shifted 3740 Register base = sp; 3741 if ((offset & (size-1)) && offset >= (1<<8)) { 3742 add(tmp, base, offset & ((1<<12)-1)); 3743 base = tmp; 3744 offset &= -1u<<12; 3745 } 3746 3747 if (offset >= (1<<12) * size) { 3748 add(tmp, base, offset & (((1<<12)-1)<<12)); 3749 base = tmp; 3750 offset &= ~(((1<<12)-1)<<12); 3751 } 3752 3753 return Address(base, offset); 3754 } 3755 3756 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3757 assert(offset >= 0, "spill to negative address?"); 3758 3759 Register base = sp; 3760 3761 // An immediate offset in the range 0 to 255 which is multiplied 3762 // by the current vector or predicate register size in bytes. 3763 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3764 return Address(base, offset / sve_reg_size_in_bytes); 3765 } 3766 3767 add(tmp, base, offset); 3768 return Address(tmp); 3769 } 3770 3771 // Checks whether offset is aligned. 3772 // Returns true if it is, else false. 3773 bool MacroAssembler::merge_alignment_check(Register base, 3774 size_t size, 3775 int64_t cur_offset, 3776 int64_t prev_offset) const { 3777 if (AvoidUnalignedAccesses) { 3778 if (base == sp) { 3779 // Checks whether low offset if aligned to pair of registers. 3780 int64_t pair_mask = size * 2 - 1; 3781 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3782 return (offset & pair_mask) == 0; 3783 } else { // If base is not sp, we can't guarantee the access is aligned. 3784 return false; 3785 } 3786 } else { 3787 int64_t mask = size - 1; 3788 // Load/store pair instruction only supports element size aligned offset. 3789 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3790 } 3791 } 3792 3793 // Checks whether current and previous loads/stores can be merged. 3794 // Returns true if it can be merged, else false. 3795 bool MacroAssembler::ldst_can_merge(Register rt, 3796 const Address &adr, 3797 size_t cur_size_in_bytes, 3798 bool is_store) const { 3799 address prev = pc() - NativeInstruction::instruction_size; 3800 address last = code()->last_insn(); 3801 3802 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3803 return false; 3804 } 3805 3806 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3807 return false; 3808 } 3809 3810 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3811 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3812 3813 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3814 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3815 3816 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3817 return false; 3818 } 3819 3820 int64_t max_offset = 63 * prev_size_in_bytes; 3821 int64_t min_offset = -64 * prev_size_in_bytes; 3822 3823 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3824 3825 // Only same base can be merged. 3826 if (adr.base() != prev_ldst->base()) { 3827 return false; 3828 } 3829 3830 int64_t cur_offset = adr.offset(); 3831 int64_t prev_offset = prev_ldst->offset(); 3832 size_t diff = abs(cur_offset - prev_offset); 3833 if (diff != prev_size_in_bytes) { 3834 return false; 3835 } 3836 3837 // Following cases can not be merged: 3838 // ldr x2, [x2, #8] 3839 // ldr x3, [x2, #16] 3840 // or: 3841 // ldr x2, [x3, #8] 3842 // ldr x2, [x3, #16] 3843 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3844 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3845 return false; 3846 } 3847 3848 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3849 // Offset range must be in ldp/stp instruction's range. 3850 if (low_offset > max_offset || low_offset < min_offset) { 3851 return false; 3852 } 3853 3854 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3855 return true; 3856 } 3857 3858 return false; 3859 } 3860 3861 // Merge current load/store with previous load/store into ldp/stp. 3862 void MacroAssembler::merge_ldst(Register rt, 3863 const Address &adr, 3864 size_t cur_size_in_bytes, 3865 bool is_store) { 3866 3867 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3868 3869 Register rt_low, rt_high; 3870 address prev = pc() - NativeInstruction::instruction_size; 3871 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3872 3873 int64_t offset; 3874 3875 if (adr.offset() < prev_ldst->offset()) { 3876 offset = adr.offset(); 3877 rt_low = rt; 3878 rt_high = prev_ldst->target(); 3879 } else { 3880 offset = prev_ldst->offset(); 3881 rt_low = prev_ldst->target(); 3882 rt_high = rt; 3883 } 3884 3885 Address adr_p = Address(prev_ldst->base(), offset); 3886 // Overwrite previous generated binary. 3887 code_section()->set_end(prev); 3888 3889 const size_t sz = prev_ldst->size_in_bytes(); 3890 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3891 if (!is_store) { 3892 BLOCK_COMMENT("merged ldr pair"); 3893 if (sz == 8) { 3894 ldp(rt_low, rt_high, adr_p); 3895 } else { 3896 ldpw(rt_low, rt_high, adr_p); 3897 } 3898 } else { 3899 BLOCK_COMMENT("merged str pair"); 3900 if (sz == 8) { 3901 stp(rt_low, rt_high, adr_p); 3902 } else { 3903 stpw(rt_low, rt_high, adr_p); 3904 } 3905 } 3906 } 3907 3908 /** 3909 * Multiply 64 bit by 64 bit first loop. 3910 */ 3911 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3912 Register y, Register y_idx, Register z, 3913 Register carry, Register product, 3914 Register idx, Register kdx) { 3915 // 3916 // jlong carry, x[], y[], z[]; 3917 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3918 // huge_128 product = y[idx] * x[xstart] + carry; 3919 // z[kdx] = (jlong)product; 3920 // carry = (jlong)(product >>> 64); 3921 // } 3922 // z[xstart] = carry; 3923 // 3924 3925 Label L_first_loop, L_first_loop_exit; 3926 Label L_one_x, L_one_y, L_multiply; 3927 3928 subsw(xstart, xstart, 1); 3929 br(Assembler::MI, L_one_x); 3930 3931 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3932 ldr(x_xstart, Address(rscratch1)); 3933 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3934 3935 bind(L_first_loop); 3936 subsw(idx, idx, 1); 3937 br(Assembler::MI, L_first_loop_exit); 3938 subsw(idx, idx, 1); 3939 br(Assembler::MI, L_one_y); 3940 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3941 ldr(y_idx, Address(rscratch1)); 3942 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3943 bind(L_multiply); 3944 3945 // AArch64 has a multiply-accumulate instruction that we can't use 3946 // here because it has no way to process carries, so we have to use 3947 // separate add and adc instructions. Bah. 3948 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3949 mul(product, x_xstart, y_idx); 3950 adds(product, product, carry); 3951 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3952 3953 subw(kdx, kdx, 2); 3954 ror(product, product, 32); // back to big-endian 3955 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3956 3957 b(L_first_loop); 3958 3959 bind(L_one_y); 3960 ldrw(y_idx, Address(y, 0)); 3961 b(L_multiply); 3962 3963 bind(L_one_x); 3964 ldrw(x_xstart, Address(x, 0)); 3965 b(L_first_loop); 3966 3967 bind(L_first_loop_exit); 3968 } 3969 3970 /** 3971 * Multiply 128 bit by 128. Unrolled inner loop. 3972 * 3973 */ 3974 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3975 Register carry, Register carry2, 3976 Register idx, Register jdx, 3977 Register yz_idx1, Register yz_idx2, 3978 Register tmp, Register tmp3, Register tmp4, 3979 Register tmp6, Register product_hi) { 3980 3981 // jlong carry, x[], y[], z[]; 3982 // int kdx = ystart+1; 3983 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3984 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3985 // jlong carry2 = (jlong)(tmp3 >>> 64); 3986 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3987 // carry = (jlong)(tmp4 >>> 64); 3988 // z[kdx+idx+1] = (jlong)tmp3; 3989 // z[kdx+idx] = (jlong)tmp4; 3990 // } 3991 // idx += 2; 3992 // if (idx > 0) { 3993 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3994 // z[kdx+idx] = (jlong)yz_idx1; 3995 // carry = (jlong)(yz_idx1 >>> 64); 3996 // } 3997 // 3998 3999 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4000 4001 lsrw(jdx, idx, 2); 4002 4003 bind(L_third_loop); 4004 4005 subsw(jdx, jdx, 1); 4006 br(Assembler::MI, L_third_loop_exit); 4007 subw(idx, idx, 4); 4008 4009 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4010 4011 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4012 4013 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4014 4015 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4016 ror(yz_idx2, yz_idx2, 32); 4017 4018 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4019 4020 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4021 umulh(tmp4, product_hi, yz_idx1); 4022 4023 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4024 ror(rscratch2, rscratch2, 32); 4025 4026 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4027 umulh(carry2, product_hi, yz_idx2); 4028 4029 // propagate sum of both multiplications into carry:tmp4:tmp3 4030 adds(tmp3, tmp3, carry); 4031 adc(tmp4, tmp4, zr); 4032 adds(tmp3, tmp3, rscratch1); 4033 adcs(tmp4, tmp4, tmp); 4034 adc(carry, carry2, zr); 4035 adds(tmp4, tmp4, rscratch2); 4036 adc(carry, carry, zr); 4037 4038 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4039 ror(tmp4, tmp4, 32); 4040 stp(tmp4, tmp3, Address(tmp6, 0)); 4041 4042 b(L_third_loop); 4043 bind (L_third_loop_exit); 4044 4045 andw (idx, idx, 0x3); 4046 cbz(idx, L_post_third_loop_done); 4047 4048 Label L_check_1; 4049 subsw(idx, idx, 2); 4050 br(Assembler::MI, L_check_1); 4051 4052 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4053 ldr(yz_idx1, Address(rscratch1, 0)); 4054 ror(yz_idx1, yz_idx1, 32); 4055 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4056 umulh(tmp4, product_hi, yz_idx1); 4057 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4058 ldr(yz_idx2, Address(rscratch1, 0)); 4059 ror(yz_idx2, yz_idx2, 32); 4060 4061 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4062 4063 ror(tmp3, tmp3, 32); 4064 str(tmp3, Address(rscratch1, 0)); 4065 4066 bind (L_check_1); 4067 4068 andw (idx, idx, 0x1); 4069 subsw(idx, idx, 1); 4070 br(Assembler::MI, L_post_third_loop_done); 4071 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4072 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4073 umulh(carry2, tmp4, product_hi); 4074 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4075 4076 add2_with_carry(carry2, tmp3, tmp4, carry); 4077 4078 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4079 extr(carry, carry2, tmp3, 32); 4080 4081 bind(L_post_third_loop_done); 4082 } 4083 4084 /** 4085 * Code for BigInteger::multiplyToLen() intrinsic. 4086 * 4087 * r0: x 4088 * r1: xlen 4089 * r2: y 4090 * r3: ylen 4091 * r4: z 4092 * r5: tmp0 4093 * r10: tmp1 4094 * r11: tmp2 4095 * r12: tmp3 4096 * r13: tmp4 4097 * r14: tmp5 4098 * r15: tmp6 4099 * r16: tmp7 4100 * 4101 */ 4102 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4103 Register z, Register tmp0, 4104 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4105 Register tmp5, Register tmp6, Register product_hi) { 4106 4107 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4108 4109 const Register idx = tmp1; 4110 const Register kdx = tmp2; 4111 const Register xstart = tmp3; 4112 4113 const Register y_idx = tmp4; 4114 const Register carry = tmp5; 4115 const Register product = xlen; 4116 const Register x_xstart = tmp0; 4117 4118 // First Loop. 4119 // 4120 // final static long LONG_MASK = 0xffffffffL; 4121 // int xstart = xlen - 1; 4122 // int ystart = ylen - 1; 4123 // long carry = 0; 4124 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4125 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4126 // z[kdx] = (int)product; 4127 // carry = product >>> 32; 4128 // } 4129 // z[xstart] = (int)carry; 4130 // 4131 4132 movw(idx, ylen); // idx = ylen; 4133 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4134 mov(carry, zr); // carry = 0; 4135 4136 Label L_done; 4137 4138 movw(xstart, xlen); 4139 subsw(xstart, xstart, 1); 4140 br(Assembler::MI, L_done); 4141 4142 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4143 4144 Label L_second_loop; 4145 cbzw(kdx, L_second_loop); 4146 4147 Label L_carry; 4148 subw(kdx, kdx, 1); 4149 cbzw(kdx, L_carry); 4150 4151 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4152 lsr(carry, carry, 32); 4153 subw(kdx, kdx, 1); 4154 4155 bind(L_carry); 4156 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4157 4158 // Second and third (nested) loops. 4159 // 4160 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4161 // carry = 0; 4162 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4163 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4164 // (z[k] & LONG_MASK) + carry; 4165 // z[k] = (int)product; 4166 // carry = product >>> 32; 4167 // } 4168 // z[i] = (int)carry; 4169 // } 4170 // 4171 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4172 4173 const Register jdx = tmp1; 4174 4175 bind(L_second_loop); 4176 mov(carry, zr); // carry = 0; 4177 movw(jdx, ylen); // j = ystart+1 4178 4179 subsw(xstart, xstart, 1); // i = xstart-1; 4180 br(Assembler::MI, L_done); 4181 4182 str(z, Address(pre(sp, -4 * wordSize))); 4183 4184 Label L_last_x; 4185 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4186 subsw(xstart, xstart, 1); // i = xstart-1; 4187 br(Assembler::MI, L_last_x); 4188 4189 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4190 ldr(product_hi, Address(rscratch1)); 4191 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4192 4193 Label L_third_loop_prologue; 4194 bind(L_third_loop_prologue); 4195 4196 str(ylen, Address(sp, wordSize)); 4197 stp(x, xstart, Address(sp, 2 * wordSize)); 4198 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4199 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4200 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4201 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4202 4203 addw(tmp3, xlen, 1); 4204 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4205 subsw(tmp3, tmp3, 1); 4206 br(Assembler::MI, L_done); 4207 4208 lsr(carry, carry, 32); 4209 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4210 b(L_second_loop); 4211 4212 // Next infrequent code is moved outside loops. 4213 bind(L_last_x); 4214 ldrw(product_hi, Address(x, 0)); 4215 b(L_third_loop_prologue); 4216 4217 bind(L_done); 4218 } 4219 4220 // Code for BigInteger::mulAdd intrinsic 4221 // out = r0 4222 // in = r1 4223 // offset = r2 (already out.length-offset) 4224 // len = r3 4225 // k = r4 4226 // 4227 // pseudo code from java implementation: 4228 // carry = 0; 4229 // offset = out.length-offset - 1; 4230 // for (int j=len-1; j >= 0; j--) { 4231 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4232 // out[offset--] = (int)product; 4233 // carry = product >>> 32; 4234 // } 4235 // return (int)carry; 4236 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4237 Register len, Register k) { 4238 Label LOOP, END; 4239 // pre-loop 4240 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4241 csel(out, zr, out, Assembler::EQ); 4242 br(Assembler::EQ, END); 4243 add(in, in, len, LSL, 2); // in[j+1] address 4244 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4245 mov(out, zr); // used to keep carry now 4246 BIND(LOOP); 4247 ldrw(rscratch1, Address(pre(in, -4))); 4248 madd(rscratch1, rscratch1, k, out); 4249 ldrw(rscratch2, Address(pre(offset, -4))); 4250 add(rscratch1, rscratch1, rscratch2); 4251 strw(rscratch1, Address(offset)); 4252 lsr(out, rscratch1, 32); 4253 subs(len, len, 1); 4254 br(Assembler::NE, LOOP); 4255 BIND(END); 4256 } 4257 4258 /** 4259 * Emits code to update CRC-32 with a byte value according to constants in table 4260 * 4261 * @param [in,out]crc Register containing the crc. 4262 * @param [in]val Register containing the byte to fold into the CRC. 4263 * @param [in]table Register containing the table of crc constants. 4264 * 4265 * uint32_t crc; 4266 * val = crc_table[(val ^ crc) & 0xFF]; 4267 * crc = val ^ (crc >> 8); 4268 * 4269 */ 4270 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4271 eor(val, val, crc); 4272 andr(val, val, 0xff); 4273 ldrw(val, Address(table, val, Address::lsl(2))); 4274 eor(crc, val, crc, Assembler::LSR, 8); 4275 } 4276 4277 /** 4278 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4279 * 4280 * @param [in,out]crc Register containing the crc. 4281 * @param [in]v Register containing the 32-bit to fold into the CRC. 4282 * @param [in]table0 Register containing table 0 of crc constants. 4283 * @param [in]table1 Register containing table 1 of crc constants. 4284 * @param [in]table2 Register containing table 2 of crc constants. 4285 * @param [in]table3 Register containing table 3 of crc constants. 4286 * 4287 * uint32_t crc; 4288 * v = crc ^ v 4289 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4290 * 4291 */ 4292 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4293 Register table0, Register table1, Register table2, Register table3, 4294 bool upper) { 4295 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4296 uxtb(tmp, v); 4297 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4298 ubfx(tmp, v, 8, 8); 4299 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4300 eor(crc, crc, tmp); 4301 ubfx(tmp, v, 16, 8); 4302 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4303 eor(crc, crc, tmp); 4304 ubfx(tmp, v, 24, 8); 4305 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4306 eor(crc, crc, tmp); 4307 } 4308 4309 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4310 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4311 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4312 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4313 4314 subs(tmp0, len, 384); 4315 mvnw(crc, crc); 4316 br(Assembler::GE, CRC_by128_pre); 4317 BIND(CRC_less128); 4318 subs(len, len, 32); 4319 br(Assembler::GE, CRC_by32_loop); 4320 BIND(CRC_less32); 4321 adds(len, len, 32 - 4); 4322 br(Assembler::GE, CRC_by4_loop); 4323 adds(len, len, 4); 4324 br(Assembler::GT, CRC_by1_loop); 4325 b(L_exit); 4326 4327 BIND(CRC_by32_loop); 4328 ldp(tmp0, tmp1, Address(buf)); 4329 crc32x(crc, crc, tmp0); 4330 ldp(tmp2, tmp3, Address(buf, 16)); 4331 crc32x(crc, crc, tmp1); 4332 add(buf, buf, 32); 4333 crc32x(crc, crc, tmp2); 4334 subs(len, len, 32); 4335 crc32x(crc, crc, tmp3); 4336 br(Assembler::GE, CRC_by32_loop); 4337 cmn(len, (u1)32); 4338 br(Assembler::NE, CRC_less32); 4339 b(L_exit); 4340 4341 BIND(CRC_by4_loop); 4342 ldrw(tmp0, Address(post(buf, 4))); 4343 subs(len, len, 4); 4344 crc32w(crc, crc, tmp0); 4345 br(Assembler::GE, CRC_by4_loop); 4346 adds(len, len, 4); 4347 br(Assembler::LE, L_exit); 4348 BIND(CRC_by1_loop); 4349 ldrb(tmp0, Address(post(buf, 1))); 4350 subs(len, len, 1); 4351 crc32b(crc, crc, tmp0); 4352 br(Assembler::GT, CRC_by1_loop); 4353 b(L_exit); 4354 4355 BIND(CRC_by128_pre); 4356 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4357 4*256*sizeof(juint) + 8*sizeof(juint)); 4358 mov(crc, 0); 4359 crc32x(crc, crc, tmp0); 4360 crc32x(crc, crc, tmp1); 4361 4362 cbnz(len, CRC_less128); 4363 4364 BIND(L_exit); 4365 mvnw(crc, crc); 4366 } 4367 4368 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4369 Register len, Register tmp0, Register tmp1, Register tmp2, 4370 Register tmp3) { 4371 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4372 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4373 4374 mvnw(crc, crc); 4375 4376 subs(len, len, 128); 4377 br(Assembler::GE, CRC_by64_pre); 4378 BIND(CRC_less64); 4379 adds(len, len, 128-32); 4380 br(Assembler::GE, CRC_by32_loop); 4381 BIND(CRC_less32); 4382 adds(len, len, 32-4); 4383 br(Assembler::GE, CRC_by4_loop); 4384 adds(len, len, 4); 4385 br(Assembler::GT, CRC_by1_loop); 4386 b(L_exit); 4387 4388 BIND(CRC_by32_loop); 4389 ldp(tmp0, tmp1, Address(post(buf, 16))); 4390 subs(len, len, 32); 4391 crc32x(crc, crc, tmp0); 4392 ldr(tmp2, Address(post(buf, 8))); 4393 crc32x(crc, crc, tmp1); 4394 ldr(tmp3, Address(post(buf, 8))); 4395 crc32x(crc, crc, tmp2); 4396 crc32x(crc, crc, tmp3); 4397 br(Assembler::GE, CRC_by32_loop); 4398 cmn(len, (u1)32); 4399 br(Assembler::NE, CRC_less32); 4400 b(L_exit); 4401 4402 BIND(CRC_by4_loop); 4403 ldrw(tmp0, Address(post(buf, 4))); 4404 subs(len, len, 4); 4405 crc32w(crc, crc, tmp0); 4406 br(Assembler::GE, CRC_by4_loop); 4407 adds(len, len, 4); 4408 br(Assembler::LE, L_exit); 4409 BIND(CRC_by1_loop); 4410 ldrb(tmp0, Address(post(buf, 1))); 4411 subs(len, len, 1); 4412 crc32b(crc, crc, tmp0); 4413 br(Assembler::GT, CRC_by1_loop); 4414 b(L_exit); 4415 4416 BIND(CRC_by64_pre); 4417 sub(buf, buf, 8); 4418 ldp(tmp0, tmp1, Address(buf, 8)); 4419 crc32x(crc, crc, tmp0); 4420 ldr(tmp2, Address(buf, 24)); 4421 crc32x(crc, crc, tmp1); 4422 ldr(tmp3, Address(buf, 32)); 4423 crc32x(crc, crc, tmp2); 4424 ldr(tmp0, Address(buf, 40)); 4425 crc32x(crc, crc, tmp3); 4426 ldr(tmp1, Address(buf, 48)); 4427 crc32x(crc, crc, tmp0); 4428 ldr(tmp2, Address(buf, 56)); 4429 crc32x(crc, crc, tmp1); 4430 ldr(tmp3, Address(pre(buf, 64))); 4431 4432 b(CRC_by64_loop); 4433 4434 align(CodeEntryAlignment); 4435 BIND(CRC_by64_loop); 4436 subs(len, len, 64); 4437 crc32x(crc, crc, tmp2); 4438 ldr(tmp0, Address(buf, 8)); 4439 crc32x(crc, crc, tmp3); 4440 ldr(tmp1, Address(buf, 16)); 4441 crc32x(crc, crc, tmp0); 4442 ldr(tmp2, Address(buf, 24)); 4443 crc32x(crc, crc, tmp1); 4444 ldr(tmp3, Address(buf, 32)); 4445 crc32x(crc, crc, tmp2); 4446 ldr(tmp0, Address(buf, 40)); 4447 crc32x(crc, crc, tmp3); 4448 ldr(tmp1, Address(buf, 48)); 4449 crc32x(crc, crc, tmp0); 4450 ldr(tmp2, Address(buf, 56)); 4451 crc32x(crc, crc, tmp1); 4452 ldr(tmp3, Address(pre(buf, 64))); 4453 br(Assembler::GE, CRC_by64_loop); 4454 4455 // post-loop 4456 crc32x(crc, crc, tmp2); 4457 crc32x(crc, crc, tmp3); 4458 4459 sub(len, len, 64); 4460 add(buf, buf, 8); 4461 cmn(len, (u1)128); 4462 br(Assembler::NE, CRC_less64); 4463 BIND(L_exit); 4464 mvnw(crc, crc); 4465 } 4466 4467 /** 4468 * @param crc register containing existing CRC (32-bit) 4469 * @param buf register pointing to input byte buffer (byte*) 4470 * @param len register containing number of bytes 4471 * @param table register that will contain address of CRC table 4472 * @param tmp scratch register 4473 */ 4474 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4475 Register table0, Register table1, Register table2, Register table3, 4476 Register tmp, Register tmp2, Register tmp3) { 4477 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4478 4479 if (UseCryptoPmullForCRC32) { 4480 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4481 return; 4482 } 4483 4484 if (UseCRC32) { 4485 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4486 return; 4487 } 4488 4489 mvnw(crc, crc); 4490 4491 { 4492 uint64_t offset; 4493 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4494 add(table0, table0, offset); 4495 } 4496 add(table1, table0, 1*256*sizeof(juint)); 4497 add(table2, table0, 2*256*sizeof(juint)); 4498 add(table3, table0, 3*256*sizeof(juint)); 4499 4500 { // Neon code start 4501 cmp(len, (u1)64); 4502 br(Assembler::LT, L_by16); 4503 eor(v16, T16B, v16, v16); 4504 4505 Label L_fold; 4506 4507 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4508 4509 ld1(v0, v1, T2D, post(buf, 32)); 4510 ld1r(v4, T2D, post(tmp, 8)); 4511 ld1r(v5, T2D, post(tmp, 8)); 4512 ld1r(v6, T2D, post(tmp, 8)); 4513 ld1r(v7, T2D, post(tmp, 8)); 4514 mov(v16, S, 0, crc); 4515 4516 eor(v0, T16B, v0, v16); 4517 sub(len, len, 64); 4518 4519 BIND(L_fold); 4520 pmull(v22, T8H, v0, v5, T8B); 4521 pmull(v20, T8H, v0, v7, T8B); 4522 pmull(v23, T8H, v0, v4, T8B); 4523 pmull(v21, T8H, v0, v6, T8B); 4524 4525 pmull2(v18, T8H, v0, v5, T16B); 4526 pmull2(v16, T8H, v0, v7, T16B); 4527 pmull2(v19, T8H, v0, v4, T16B); 4528 pmull2(v17, T8H, v0, v6, T16B); 4529 4530 uzp1(v24, T8H, v20, v22); 4531 uzp2(v25, T8H, v20, v22); 4532 eor(v20, T16B, v24, v25); 4533 4534 uzp1(v26, T8H, v16, v18); 4535 uzp2(v27, T8H, v16, v18); 4536 eor(v16, T16B, v26, v27); 4537 4538 ushll2(v22, T4S, v20, T8H, 8); 4539 ushll(v20, T4S, v20, T4H, 8); 4540 4541 ushll2(v18, T4S, v16, T8H, 8); 4542 ushll(v16, T4S, v16, T4H, 8); 4543 4544 eor(v22, T16B, v23, v22); 4545 eor(v18, T16B, v19, v18); 4546 eor(v20, T16B, v21, v20); 4547 eor(v16, T16B, v17, v16); 4548 4549 uzp1(v17, T2D, v16, v20); 4550 uzp2(v21, T2D, v16, v20); 4551 eor(v17, T16B, v17, v21); 4552 4553 ushll2(v20, T2D, v17, T4S, 16); 4554 ushll(v16, T2D, v17, T2S, 16); 4555 4556 eor(v20, T16B, v20, v22); 4557 eor(v16, T16B, v16, v18); 4558 4559 uzp1(v17, T2D, v20, v16); 4560 uzp2(v21, T2D, v20, v16); 4561 eor(v28, T16B, v17, v21); 4562 4563 pmull(v22, T8H, v1, v5, T8B); 4564 pmull(v20, T8H, v1, v7, T8B); 4565 pmull(v23, T8H, v1, v4, T8B); 4566 pmull(v21, T8H, v1, v6, T8B); 4567 4568 pmull2(v18, T8H, v1, v5, T16B); 4569 pmull2(v16, T8H, v1, v7, T16B); 4570 pmull2(v19, T8H, v1, v4, T16B); 4571 pmull2(v17, T8H, v1, v6, T16B); 4572 4573 ld1(v0, v1, T2D, post(buf, 32)); 4574 4575 uzp1(v24, T8H, v20, v22); 4576 uzp2(v25, T8H, v20, v22); 4577 eor(v20, T16B, v24, v25); 4578 4579 uzp1(v26, T8H, v16, v18); 4580 uzp2(v27, T8H, v16, v18); 4581 eor(v16, T16B, v26, v27); 4582 4583 ushll2(v22, T4S, v20, T8H, 8); 4584 ushll(v20, T4S, v20, T4H, 8); 4585 4586 ushll2(v18, T4S, v16, T8H, 8); 4587 ushll(v16, T4S, v16, T4H, 8); 4588 4589 eor(v22, T16B, v23, v22); 4590 eor(v18, T16B, v19, v18); 4591 eor(v20, T16B, v21, v20); 4592 eor(v16, T16B, v17, v16); 4593 4594 uzp1(v17, T2D, v16, v20); 4595 uzp2(v21, T2D, v16, v20); 4596 eor(v16, T16B, v17, v21); 4597 4598 ushll2(v20, T2D, v16, T4S, 16); 4599 ushll(v16, T2D, v16, T2S, 16); 4600 4601 eor(v20, T16B, v22, v20); 4602 eor(v16, T16B, v16, v18); 4603 4604 uzp1(v17, T2D, v20, v16); 4605 uzp2(v21, T2D, v20, v16); 4606 eor(v20, T16B, v17, v21); 4607 4608 shl(v16, T2D, v28, 1); 4609 shl(v17, T2D, v20, 1); 4610 4611 eor(v0, T16B, v0, v16); 4612 eor(v1, T16B, v1, v17); 4613 4614 subs(len, len, 32); 4615 br(Assembler::GE, L_fold); 4616 4617 mov(crc, 0); 4618 mov(tmp, v0, D, 0); 4619 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4620 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4621 mov(tmp, v0, D, 1); 4622 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4623 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4624 mov(tmp, v1, D, 0); 4625 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4626 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4627 mov(tmp, v1, D, 1); 4628 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4629 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4630 4631 add(len, len, 32); 4632 } // Neon code end 4633 4634 BIND(L_by16); 4635 subs(len, len, 16); 4636 br(Assembler::GE, L_by16_loop); 4637 adds(len, len, 16-4); 4638 br(Assembler::GE, L_by4_loop); 4639 adds(len, len, 4); 4640 br(Assembler::GT, L_by1_loop); 4641 b(L_exit); 4642 4643 BIND(L_by4_loop); 4644 ldrw(tmp, Address(post(buf, 4))); 4645 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4646 subs(len, len, 4); 4647 br(Assembler::GE, L_by4_loop); 4648 adds(len, len, 4); 4649 br(Assembler::LE, L_exit); 4650 BIND(L_by1_loop); 4651 subs(len, len, 1); 4652 ldrb(tmp, Address(post(buf, 1))); 4653 update_byte_crc32(crc, tmp, table0); 4654 br(Assembler::GT, L_by1_loop); 4655 b(L_exit); 4656 4657 align(CodeEntryAlignment); 4658 BIND(L_by16_loop); 4659 subs(len, len, 16); 4660 ldp(tmp, tmp3, Address(post(buf, 16))); 4661 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4662 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4663 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4664 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4665 br(Assembler::GE, L_by16_loop); 4666 adds(len, len, 16-4); 4667 br(Assembler::GE, L_by4_loop); 4668 adds(len, len, 4); 4669 br(Assembler::GT, L_by1_loop); 4670 BIND(L_exit); 4671 mvnw(crc, crc); 4672 } 4673 4674 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4675 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4676 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4677 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4678 4679 subs(tmp0, len, 384); 4680 br(Assembler::GE, CRC_by128_pre); 4681 BIND(CRC_less128); 4682 subs(len, len, 32); 4683 br(Assembler::GE, CRC_by32_loop); 4684 BIND(CRC_less32); 4685 adds(len, len, 32 - 4); 4686 br(Assembler::GE, CRC_by4_loop); 4687 adds(len, len, 4); 4688 br(Assembler::GT, CRC_by1_loop); 4689 b(L_exit); 4690 4691 BIND(CRC_by32_loop); 4692 ldp(tmp0, tmp1, Address(buf)); 4693 crc32cx(crc, crc, tmp0); 4694 ldr(tmp2, Address(buf, 16)); 4695 crc32cx(crc, crc, tmp1); 4696 ldr(tmp3, Address(buf, 24)); 4697 crc32cx(crc, crc, tmp2); 4698 add(buf, buf, 32); 4699 subs(len, len, 32); 4700 crc32cx(crc, crc, tmp3); 4701 br(Assembler::GE, CRC_by32_loop); 4702 cmn(len, (u1)32); 4703 br(Assembler::NE, CRC_less32); 4704 b(L_exit); 4705 4706 BIND(CRC_by4_loop); 4707 ldrw(tmp0, Address(post(buf, 4))); 4708 subs(len, len, 4); 4709 crc32cw(crc, crc, tmp0); 4710 br(Assembler::GE, CRC_by4_loop); 4711 adds(len, len, 4); 4712 br(Assembler::LE, L_exit); 4713 BIND(CRC_by1_loop); 4714 ldrb(tmp0, Address(post(buf, 1))); 4715 subs(len, len, 1); 4716 crc32cb(crc, crc, tmp0); 4717 br(Assembler::GT, CRC_by1_loop); 4718 b(L_exit); 4719 4720 BIND(CRC_by128_pre); 4721 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4722 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4723 mov(crc, 0); 4724 crc32cx(crc, crc, tmp0); 4725 crc32cx(crc, crc, tmp1); 4726 4727 cbnz(len, CRC_less128); 4728 4729 BIND(L_exit); 4730 } 4731 4732 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4733 Register len, Register tmp0, Register tmp1, Register tmp2, 4734 Register tmp3) { 4735 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4736 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4737 4738 subs(len, len, 128); 4739 br(Assembler::GE, CRC_by64_pre); 4740 BIND(CRC_less64); 4741 adds(len, len, 128-32); 4742 br(Assembler::GE, CRC_by32_loop); 4743 BIND(CRC_less32); 4744 adds(len, len, 32-4); 4745 br(Assembler::GE, CRC_by4_loop); 4746 adds(len, len, 4); 4747 br(Assembler::GT, CRC_by1_loop); 4748 b(L_exit); 4749 4750 BIND(CRC_by32_loop); 4751 ldp(tmp0, tmp1, Address(post(buf, 16))); 4752 subs(len, len, 32); 4753 crc32cx(crc, crc, tmp0); 4754 ldr(tmp2, Address(post(buf, 8))); 4755 crc32cx(crc, crc, tmp1); 4756 ldr(tmp3, Address(post(buf, 8))); 4757 crc32cx(crc, crc, tmp2); 4758 crc32cx(crc, crc, tmp3); 4759 br(Assembler::GE, CRC_by32_loop); 4760 cmn(len, (u1)32); 4761 br(Assembler::NE, CRC_less32); 4762 b(L_exit); 4763 4764 BIND(CRC_by4_loop); 4765 ldrw(tmp0, Address(post(buf, 4))); 4766 subs(len, len, 4); 4767 crc32cw(crc, crc, tmp0); 4768 br(Assembler::GE, CRC_by4_loop); 4769 adds(len, len, 4); 4770 br(Assembler::LE, L_exit); 4771 BIND(CRC_by1_loop); 4772 ldrb(tmp0, Address(post(buf, 1))); 4773 subs(len, len, 1); 4774 crc32cb(crc, crc, tmp0); 4775 br(Assembler::GT, CRC_by1_loop); 4776 b(L_exit); 4777 4778 BIND(CRC_by64_pre); 4779 sub(buf, buf, 8); 4780 ldp(tmp0, tmp1, Address(buf, 8)); 4781 crc32cx(crc, crc, tmp0); 4782 ldr(tmp2, Address(buf, 24)); 4783 crc32cx(crc, crc, tmp1); 4784 ldr(tmp3, Address(buf, 32)); 4785 crc32cx(crc, crc, tmp2); 4786 ldr(tmp0, Address(buf, 40)); 4787 crc32cx(crc, crc, tmp3); 4788 ldr(tmp1, Address(buf, 48)); 4789 crc32cx(crc, crc, tmp0); 4790 ldr(tmp2, Address(buf, 56)); 4791 crc32cx(crc, crc, tmp1); 4792 ldr(tmp3, Address(pre(buf, 64))); 4793 4794 b(CRC_by64_loop); 4795 4796 align(CodeEntryAlignment); 4797 BIND(CRC_by64_loop); 4798 subs(len, len, 64); 4799 crc32cx(crc, crc, tmp2); 4800 ldr(tmp0, Address(buf, 8)); 4801 crc32cx(crc, crc, tmp3); 4802 ldr(tmp1, Address(buf, 16)); 4803 crc32cx(crc, crc, tmp0); 4804 ldr(tmp2, Address(buf, 24)); 4805 crc32cx(crc, crc, tmp1); 4806 ldr(tmp3, Address(buf, 32)); 4807 crc32cx(crc, crc, tmp2); 4808 ldr(tmp0, Address(buf, 40)); 4809 crc32cx(crc, crc, tmp3); 4810 ldr(tmp1, Address(buf, 48)); 4811 crc32cx(crc, crc, tmp0); 4812 ldr(tmp2, Address(buf, 56)); 4813 crc32cx(crc, crc, tmp1); 4814 ldr(tmp3, Address(pre(buf, 64))); 4815 br(Assembler::GE, CRC_by64_loop); 4816 4817 // post-loop 4818 crc32cx(crc, crc, tmp2); 4819 crc32cx(crc, crc, tmp3); 4820 4821 sub(len, len, 64); 4822 add(buf, buf, 8); 4823 cmn(len, (u1)128); 4824 br(Assembler::NE, CRC_less64); 4825 BIND(L_exit); 4826 } 4827 4828 /** 4829 * @param crc register containing existing CRC (32-bit) 4830 * @param buf register pointing to input byte buffer (byte*) 4831 * @param len register containing number of bytes 4832 * @param table register that will contain address of CRC table 4833 * @param tmp scratch register 4834 */ 4835 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4836 Register table0, Register table1, Register table2, Register table3, 4837 Register tmp, Register tmp2, Register tmp3) { 4838 if (UseCryptoPmullForCRC32) { 4839 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4840 } else { 4841 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4842 } 4843 } 4844 4845 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4846 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4847 Label CRC_by128_loop; 4848 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4849 4850 sub(len, len, 256); 4851 Register table = tmp0; 4852 { 4853 uint64_t offset; 4854 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4855 add(table, table, offset); 4856 } 4857 add(table, table, table_offset); 4858 4859 // Registers v0..v7 are used as data registers. 4860 // Registers v16..v31 are used as tmp registers. 4861 sub(buf, buf, 0x10); 4862 ldrq(v0, Address(buf, 0x10)); 4863 ldrq(v1, Address(buf, 0x20)); 4864 ldrq(v2, Address(buf, 0x30)); 4865 ldrq(v3, Address(buf, 0x40)); 4866 ldrq(v4, Address(buf, 0x50)); 4867 ldrq(v5, Address(buf, 0x60)); 4868 ldrq(v6, Address(buf, 0x70)); 4869 ldrq(v7, Address(pre(buf, 0x80))); 4870 4871 movi(v31, T4S, 0); 4872 mov(v31, S, 0, crc); 4873 eor(v0, T16B, v0, v31); 4874 4875 // Register v16 contains constants from the crc table. 4876 ldrq(v16, Address(table)); 4877 b(CRC_by128_loop); 4878 4879 align(OptoLoopAlignment); 4880 BIND(CRC_by128_loop); 4881 pmull (v17, T1Q, v0, v16, T1D); 4882 pmull2(v18, T1Q, v0, v16, T2D); 4883 ldrq(v0, Address(buf, 0x10)); 4884 eor3(v0, T16B, v17, v18, v0); 4885 4886 pmull (v19, T1Q, v1, v16, T1D); 4887 pmull2(v20, T1Q, v1, v16, T2D); 4888 ldrq(v1, Address(buf, 0x20)); 4889 eor3(v1, T16B, v19, v20, v1); 4890 4891 pmull (v21, T1Q, v2, v16, T1D); 4892 pmull2(v22, T1Q, v2, v16, T2D); 4893 ldrq(v2, Address(buf, 0x30)); 4894 eor3(v2, T16B, v21, v22, v2); 4895 4896 pmull (v23, T1Q, v3, v16, T1D); 4897 pmull2(v24, T1Q, v3, v16, T2D); 4898 ldrq(v3, Address(buf, 0x40)); 4899 eor3(v3, T16B, v23, v24, v3); 4900 4901 pmull (v25, T1Q, v4, v16, T1D); 4902 pmull2(v26, T1Q, v4, v16, T2D); 4903 ldrq(v4, Address(buf, 0x50)); 4904 eor3(v4, T16B, v25, v26, v4); 4905 4906 pmull (v27, T1Q, v5, v16, T1D); 4907 pmull2(v28, T1Q, v5, v16, T2D); 4908 ldrq(v5, Address(buf, 0x60)); 4909 eor3(v5, T16B, v27, v28, v5); 4910 4911 pmull (v29, T1Q, v6, v16, T1D); 4912 pmull2(v30, T1Q, v6, v16, T2D); 4913 ldrq(v6, Address(buf, 0x70)); 4914 eor3(v6, T16B, v29, v30, v6); 4915 4916 // Reuse registers v23, v24. 4917 // Using them won't block the first instruction of the next iteration. 4918 pmull (v23, T1Q, v7, v16, T1D); 4919 pmull2(v24, T1Q, v7, v16, T2D); 4920 ldrq(v7, Address(pre(buf, 0x80))); 4921 eor3(v7, T16B, v23, v24, v7); 4922 4923 subs(len, len, 0x80); 4924 br(Assembler::GE, CRC_by128_loop); 4925 4926 // fold into 512 bits 4927 // Use v31 for constants because v16 can be still in use. 4928 ldrq(v31, Address(table, 0x10)); 4929 4930 pmull (v17, T1Q, v0, v31, T1D); 4931 pmull2(v18, T1Q, v0, v31, T2D); 4932 eor3(v0, T16B, v17, v18, v4); 4933 4934 pmull (v19, T1Q, v1, v31, T1D); 4935 pmull2(v20, T1Q, v1, v31, T2D); 4936 eor3(v1, T16B, v19, v20, v5); 4937 4938 pmull (v21, T1Q, v2, v31, T1D); 4939 pmull2(v22, T1Q, v2, v31, T2D); 4940 eor3(v2, T16B, v21, v22, v6); 4941 4942 pmull (v23, T1Q, v3, v31, T1D); 4943 pmull2(v24, T1Q, v3, v31, T2D); 4944 eor3(v3, T16B, v23, v24, v7); 4945 4946 // fold into 128 bits 4947 // Use v17 for constants because v31 can be still in use. 4948 ldrq(v17, Address(table, 0x20)); 4949 pmull (v25, T1Q, v0, v17, T1D); 4950 pmull2(v26, T1Q, v0, v17, T2D); 4951 eor3(v3, T16B, v3, v25, v26); 4952 4953 // Use v18 for constants because v17 can be still in use. 4954 ldrq(v18, Address(table, 0x30)); 4955 pmull (v27, T1Q, v1, v18, T1D); 4956 pmull2(v28, T1Q, v1, v18, T2D); 4957 eor3(v3, T16B, v3, v27, v28); 4958 4959 // Use v19 for constants because v18 can be still in use. 4960 ldrq(v19, Address(table, 0x40)); 4961 pmull (v29, T1Q, v2, v19, T1D); 4962 pmull2(v30, T1Q, v2, v19, T2D); 4963 eor3(v0, T16B, v3, v29, v30); 4964 4965 add(len, len, 0x80); 4966 add(buf, buf, 0x10); 4967 4968 mov(tmp0, v0, D, 0); 4969 mov(tmp1, v0, D, 1); 4970 } 4971 4972 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4973 Address adr; 4974 switch(dst.getMode()) { 4975 case Address::base_plus_offset: 4976 // This is the expected mode, although we allow all the other 4977 // forms below. 4978 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4979 break; 4980 default: 4981 lea(rscratch2, dst); 4982 adr = Address(rscratch2); 4983 break; 4984 } 4985 ldr(rscratch1, adr); 4986 add(rscratch1, rscratch1, src); 4987 str(rscratch1, adr); 4988 } 4989 4990 void MacroAssembler::cmpptr(Register src1, Address src2) { 4991 uint64_t offset; 4992 adrp(rscratch1, src2, offset); 4993 ldr(rscratch1, Address(rscratch1, offset)); 4994 cmp(src1, rscratch1); 4995 } 4996 4997 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4998 cmp(obj1, obj2); 4999 } 5000 5001 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5002 load_method_holder(rresult, rmethod); 5003 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5004 } 5005 5006 void MacroAssembler::load_method_holder(Register holder, Register method) { 5007 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5008 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5009 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5010 } 5011 5012 void MacroAssembler::load_klass(Register dst, Register src) { 5013 if (UseCompressedClassPointers) { 5014 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5015 decode_klass_not_null(dst); 5016 } else { 5017 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5018 } 5019 } 5020 5021 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5022 if (RestoreMXCSROnJNICalls) { 5023 Label OK; 5024 get_fpcr(tmp1); 5025 mov(tmp2, tmp1); 5026 // Set FPCR to the state we need. We do want Round to Nearest. We 5027 // don't want non-IEEE rounding modes or floating-point traps. 5028 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5029 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5030 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5031 eor(tmp2, tmp1, tmp2); 5032 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5033 set_fpcr(tmp1); 5034 bind(OK); 5035 } 5036 } 5037 5038 // ((OopHandle)result).resolve(); 5039 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5040 // OopHandle::resolve is an indirection. 5041 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5042 } 5043 5044 // ((WeakHandle)result).resolve(); 5045 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5046 assert_different_registers(result, tmp1, tmp2); 5047 Label resolved; 5048 5049 // A null weak handle resolves to null. 5050 cbz(result, resolved); 5051 5052 // Only 64 bit platforms support GCs that require a tmp register 5053 // WeakHandle::resolve is an indirection like jweak. 5054 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5055 result, Address(result), tmp1, tmp2); 5056 bind(resolved); 5057 } 5058 5059 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5060 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5061 ldr(dst, Address(rmethod, Method::const_offset())); 5062 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5063 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5064 ldr(dst, Address(dst, mirror_offset)); 5065 resolve_oop_handle(dst, tmp1, tmp2); 5066 } 5067 5068 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 5069 if (UseCompressedClassPointers) { 5070 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 5071 if (CompressedKlassPointers::base() == nullptr) { 5072 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 5073 return; 5074 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5075 && CompressedKlassPointers::shift() == 0) { 5076 // Only the bottom 32 bits matter 5077 cmpw(trial_klass, tmp); 5078 return; 5079 } 5080 decode_klass_not_null(tmp); 5081 } else { 5082 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 5083 } 5084 cmp(trial_klass, tmp); 5085 } 5086 5087 void MacroAssembler::store_klass(Register dst, Register src) { 5088 // FIXME: Should this be a store release? concurrent gcs assumes 5089 // klass length is valid if klass field is not null. 5090 if (UseCompressedClassPointers) { 5091 encode_klass_not_null(src); 5092 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5093 } else { 5094 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5095 } 5096 } 5097 5098 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5099 if (UseCompressedClassPointers) { 5100 // Store to klass gap in destination 5101 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5102 } 5103 } 5104 5105 // Algorithm must match CompressedOops::encode. 5106 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5107 #ifdef ASSERT 5108 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5109 #endif 5110 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5111 if (CompressedOops::base() == nullptr) { 5112 if (CompressedOops::shift() != 0) { 5113 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5114 lsr(d, s, LogMinObjAlignmentInBytes); 5115 } else { 5116 mov(d, s); 5117 } 5118 } else { 5119 subs(d, s, rheapbase); 5120 csel(d, d, zr, Assembler::HS); 5121 lsr(d, d, LogMinObjAlignmentInBytes); 5122 5123 /* Old algorithm: is this any worse? 5124 Label nonnull; 5125 cbnz(r, nonnull); 5126 sub(r, r, rheapbase); 5127 bind(nonnull); 5128 lsr(r, r, LogMinObjAlignmentInBytes); 5129 */ 5130 } 5131 } 5132 5133 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5134 #ifdef ASSERT 5135 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5136 if (CheckCompressedOops) { 5137 Label ok; 5138 cbnz(r, ok); 5139 stop("null oop passed to encode_heap_oop_not_null"); 5140 bind(ok); 5141 } 5142 #endif 5143 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5144 if (CompressedOops::base() != nullptr) { 5145 sub(r, r, rheapbase); 5146 } 5147 if (CompressedOops::shift() != 0) { 5148 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5149 lsr(r, r, LogMinObjAlignmentInBytes); 5150 } 5151 } 5152 5153 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5154 #ifdef ASSERT 5155 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5156 if (CheckCompressedOops) { 5157 Label ok; 5158 cbnz(src, ok); 5159 stop("null oop passed to encode_heap_oop_not_null2"); 5160 bind(ok); 5161 } 5162 #endif 5163 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5164 5165 Register data = src; 5166 if (CompressedOops::base() != nullptr) { 5167 sub(dst, src, rheapbase); 5168 data = dst; 5169 } 5170 if (CompressedOops::shift() != 0) { 5171 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5172 lsr(dst, data, LogMinObjAlignmentInBytes); 5173 data = dst; 5174 } 5175 if (data == src) 5176 mov(dst, src); 5177 } 5178 5179 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5180 #ifdef ASSERT 5181 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5182 #endif 5183 if (CompressedOops::base() == nullptr) { 5184 if (CompressedOops::shift() != 0) { 5185 lsl(d, s, CompressedOops::shift()); 5186 } else if (d != s) { 5187 mov(d, s); 5188 } 5189 } else { 5190 Label done; 5191 if (d != s) 5192 mov(d, s); 5193 cbz(s, done); 5194 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5195 bind(done); 5196 } 5197 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5198 } 5199 5200 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5201 assert (UseCompressedOops, "should only be used for compressed headers"); 5202 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5203 // Cannot assert, unverified entry point counts instructions (see .ad file) 5204 // vtableStubs also counts instructions in pd_code_size_limit. 5205 // Also do not verify_oop as this is called by verify_oop. 5206 if (CompressedOops::shift() != 0) { 5207 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5208 if (CompressedOops::base() != nullptr) { 5209 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5210 } else { 5211 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5212 } 5213 } else { 5214 assert (CompressedOops::base() == nullptr, "sanity"); 5215 } 5216 } 5217 5218 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5219 assert (UseCompressedOops, "should only be used for compressed headers"); 5220 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5221 // Cannot assert, unverified entry point counts instructions (see .ad file) 5222 // vtableStubs also counts instructions in pd_code_size_limit. 5223 // Also do not verify_oop as this is called by verify_oop. 5224 if (CompressedOops::shift() != 0) { 5225 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5226 if (CompressedOops::base() != nullptr) { 5227 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5228 } else { 5229 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5230 } 5231 } else { 5232 assert (CompressedOops::base() == nullptr, "sanity"); 5233 if (dst != src) { 5234 mov(dst, src); 5235 } 5236 } 5237 } 5238 5239 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5240 5241 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5242 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5243 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5244 5245 if (_klass_decode_mode != KlassDecodeNone) { 5246 return _klass_decode_mode; 5247 } 5248 5249 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 5250 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 5251 5252 if (CompressedKlassPointers::base() == nullptr) { 5253 return (_klass_decode_mode = KlassDecodeZero); 5254 } 5255 5256 if (operand_valid_for_logical_immediate( 5257 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 5258 const size_t range = CompressedKlassPointers::klass_range_end() - CompressedKlassPointers::base(); 5259 const uint64_t range_mask = (1ULL << log2i(range)) - 1; 5260 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 5261 return (_klass_decode_mode = KlassDecodeXor); 5262 } 5263 } 5264 5265 const uint64_t shifted_base = 5266 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5267 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 5268 "compressed class base bad alignment"); 5269 5270 return (_klass_decode_mode = KlassDecodeMovk); 5271 } 5272 5273 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5274 switch (klass_decode_mode()) { 5275 case KlassDecodeZero: 5276 if (CompressedKlassPointers::shift() != 0) { 5277 lsr(dst, src, LogKlassAlignmentInBytes); 5278 } else { 5279 if (dst != src) mov(dst, src); 5280 } 5281 break; 5282 5283 case KlassDecodeXor: 5284 if (CompressedKlassPointers::shift() != 0) { 5285 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5286 lsr(dst, dst, LogKlassAlignmentInBytes); 5287 } else { 5288 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5289 } 5290 break; 5291 5292 case KlassDecodeMovk: 5293 if (CompressedKlassPointers::shift() != 0) { 5294 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 5295 } else { 5296 movw(dst, src); 5297 } 5298 break; 5299 5300 case KlassDecodeNone: 5301 ShouldNotReachHere(); 5302 break; 5303 } 5304 } 5305 5306 void MacroAssembler::encode_klass_not_null(Register r) { 5307 encode_klass_not_null(r, r); 5308 } 5309 5310 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5311 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5312 5313 switch (klass_decode_mode()) { 5314 case KlassDecodeZero: 5315 if (CompressedKlassPointers::shift() != 0) { 5316 lsl(dst, src, LogKlassAlignmentInBytes); 5317 } else { 5318 if (dst != src) mov(dst, src); 5319 } 5320 break; 5321 5322 case KlassDecodeXor: 5323 if (CompressedKlassPointers::shift() != 0) { 5324 lsl(dst, src, LogKlassAlignmentInBytes); 5325 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5326 } else { 5327 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5328 } 5329 break; 5330 5331 case KlassDecodeMovk: { 5332 const uint64_t shifted_base = 5333 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5334 5335 if (dst != src) movw(dst, src); 5336 movk(dst, shifted_base >> 32, 32); 5337 5338 if (CompressedKlassPointers::shift() != 0) { 5339 lsl(dst, dst, LogKlassAlignmentInBytes); 5340 } 5341 5342 break; 5343 } 5344 5345 case KlassDecodeNone: 5346 ShouldNotReachHere(); 5347 break; 5348 } 5349 } 5350 5351 void MacroAssembler::decode_klass_not_null(Register r) { 5352 decode_klass_not_null(r, r); 5353 } 5354 5355 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5356 #ifdef ASSERT 5357 { 5358 ThreadInVMfromUnknown tiv; 5359 assert (UseCompressedOops, "should only be used for compressed oops"); 5360 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5361 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5362 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5363 } 5364 #endif 5365 int oop_index = oop_recorder()->find_index(obj); 5366 InstructionMark im(this); 5367 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5368 code_section()->relocate(inst_mark(), rspec); 5369 movz(dst, 0xDEAD, 16); 5370 movk(dst, 0xBEEF); 5371 } 5372 5373 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5374 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5375 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5376 int index = oop_recorder()->find_index(k); 5377 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5378 5379 InstructionMark im(this); 5380 RelocationHolder rspec = metadata_Relocation::spec(index); 5381 code_section()->relocate(inst_mark(), rspec); 5382 narrowKlass nk = CompressedKlassPointers::encode(k); 5383 movz(dst, (nk >> 16), 16); 5384 movk(dst, nk & 0xffff); 5385 } 5386 5387 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5388 Register dst, Address src, 5389 Register tmp1, Register tmp2) { 5390 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5391 decorators = AccessInternal::decorator_fixup(decorators, type); 5392 bool as_raw = (decorators & AS_RAW) != 0; 5393 if (as_raw) { 5394 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5395 } else { 5396 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5397 } 5398 } 5399 5400 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5401 Address dst, Register val, 5402 Register tmp1, Register tmp2, Register tmp3) { 5403 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5404 decorators = AccessInternal::decorator_fixup(decorators, type); 5405 bool as_raw = (decorators & AS_RAW) != 0; 5406 if (as_raw) { 5407 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5408 } else { 5409 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5410 } 5411 } 5412 5413 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5414 Register tmp2, DecoratorSet decorators) { 5415 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5416 } 5417 5418 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5419 Register tmp2, DecoratorSet decorators) { 5420 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5421 } 5422 5423 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5424 Register tmp2, Register tmp3, DecoratorSet decorators) { 5425 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5426 } 5427 5428 // Used for storing nulls. 5429 void MacroAssembler::store_heap_oop_null(Address dst) { 5430 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5431 } 5432 5433 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5434 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5435 int index = oop_recorder()->allocate_metadata_index(obj); 5436 RelocationHolder rspec = metadata_Relocation::spec(index); 5437 return Address((address)obj, rspec); 5438 } 5439 5440 // Move an oop into a register. 5441 void MacroAssembler::movoop(Register dst, jobject obj) { 5442 int oop_index; 5443 if (obj == nullptr) { 5444 oop_index = oop_recorder()->allocate_oop_index(obj); 5445 } else { 5446 #ifdef ASSERT 5447 { 5448 ThreadInVMfromUnknown tiv; 5449 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5450 } 5451 #endif 5452 oop_index = oop_recorder()->find_index(obj); 5453 } 5454 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5455 5456 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5457 mov(dst, Address((address)obj, rspec)); 5458 } else { 5459 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5460 ldr_constant(dst, Address(dummy, rspec)); 5461 } 5462 5463 } 5464 5465 // Move a metadata address into a register. 5466 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5467 int oop_index; 5468 if (obj == nullptr) { 5469 oop_index = oop_recorder()->allocate_metadata_index(obj); 5470 } else { 5471 oop_index = oop_recorder()->find_index(obj); 5472 } 5473 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5474 mov(dst, Address((address)obj, rspec)); 5475 } 5476 5477 Address MacroAssembler::constant_oop_address(jobject obj) { 5478 #ifdef ASSERT 5479 { 5480 ThreadInVMfromUnknown tiv; 5481 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5482 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5483 } 5484 #endif 5485 int oop_index = oop_recorder()->find_index(obj); 5486 return Address((address)obj, oop_Relocation::spec(oop_index)); 5487 } 5488 5489 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5490 void MacroAssembler::tlab_allocate(Register obj, 5491 Register var_size_in_bytes, 5492 int con_size_in_bytes, 5493 Register t1, 5494 Register t2, 5495 Label& slow_case) { 5496 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5497 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5498 } 5499 5500 void MacroAssembler::verify_tlab() { 5501 #ifdef ASSERT 5502 if (UseTLAB && VerifyOops) { 5503 Label next, ok; 5504 5505 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5506 5507 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5508 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5509 cmp(rscratch2, rscratch1); 5510 br(Assembler::HS, next); 5511 STOP("assert(top >= start)"); 5512 should_not_reach_here(); 5513 5514 bind(next); 5515 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5516 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5517 cmp(rscratch2, rscratch1); 5518 br(Assembler::HS, ok); 5519 STOP("assert(top <= end)"); 5520 should_not_reach_here(); 5521 5522 bind(ok); 5523 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5524 } 5525 #endif 5526 } 5527 5528 // Writes to stack successive pages until offset reached to check for 5529 // stack overflow + shadow pages. This clobbers tmp. 5530 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5531 assert_different_registers(tmp, size, rscratch1); 5532 mov(tmp, sp); 5533 // Bang stack for total size given plus shadow page size. 5534 // Bang one page at a time because large size can bang beyond yellow and 5535 // red zones. 5536 Label loop; 5537 mov(rscratch1, (int)os::vm_page_size()); 5538 bind(loop); 5539 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5540 subsw(size, size, rscratch1); 5541 str(size, Address(tmp)); 5542 br(Assembler::GT, loop); 5543 5544 // Bang down shadow pages too. 5545 // At this point, (tmp-0) is the last address touched, so don't 5546 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5547 // was post-decremented.) Skip this address by starting at i=1, and 5548 // touch a few more pages below. N.B. It is important to touch all 5549 // the way down to and including i=StackShadowPages. 5550 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5551 // this could be any sized move but this is can be a debugging crumb 5552 // so the bigger the better. 5553 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5554 str(size, Address(tmp)); 5555 } 5556 } 5557 5558 // Move the address of the polling page into dest. 5559 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5560 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5561 } 5562 5563 // Read the polling page. The address of the polling page must 5564 // already be in r. 5565 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5566 address mark; 5567 { 5568 InstructionMark im(this); 5569 code_section()->relocate(inst_mark(), rtype); 5570 ldrw(zr, Address(r, 0)); 5571 mark = inst_mark(); 5572 } 5573 verify_cross_modify_fence_not_required(); 5574 return mark; 5575 } 5576 5577 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5578 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5579 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5580 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5581 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5582 int64_t offset_low = dest_page - low_page; 5583 int64_t offset_high = dest_page - high_page; 5584 5585 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5586 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5587 5588 InstructionMark im(this); 5589 code_section()->relocate(inst_mark(), dest.rspec()); 5590 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5591 // the code cache so that if it is relocated we know it will still reach 5592 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5593 _adrp(reg1, dest.target()); 5594 } else { 5595 uint64_t target = (uint64_t)dest.target(); 5596 uint64_t adrp_target 5597 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5598 5599 _adrp(reg1, (address)adrp_target); 5600 movk(reg1, target >> 32, 32); 5601 } 5602 byte_offset = (uint64_t)dest.target() & 0xfff; 5603 } 5604 5605 void MacroAssembler::load_byte_map_base(Register reg) { 5606 CardTable::CardValue* byte_map_base = 5607 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5608 5609 // Strictly speaking the byte_map_base isn't an address at all, and it might 5610 // even be negative. It is thus materialised as a constant. 5611 mov(reg, (uint64_t)byte_map_base); 5612 } 5613 5614 void MacroAssembler::build_frame(int framesize) { 5615 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5616 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5617 protect_return_address(); 5618 if (framesize < ((1 << 9) + 2 * wordSize)) { 5619 sub(sp, sp, framesize); 5620 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5621 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5622 } else { 5623 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5624 if (PreserveFramePointer) mov(rfp, sp); 5625 if (framesize < ((1 << 12) + 2 * wordSize)) 5626 sub(sp, sp, framesize - 2 * wordSize); 5627 else { 5628 mov(rscratch1, framesize - 2 * wordSize); 5629 sub(sp, sp, rscratch1); 5630 } 5631 } 5632 verify_cross_modify_fence_not_required(); 5633 } 5634 5635 void MacroAssembler::remove_frame(int framesize) { 5636 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5637 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5638 if (framesize < ((1 << 9) + 2 * wordSize)) { 5639 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5640 add(sp, sp, framesize); 5641 } else { 5642 if (framesize < ((1 << 12) + 2 * wordSize)) 5643 add(sp, sp, framesize - 2 * wordSize); 5644 else { 5645 mov(rscratch1, framesize - 2 * wordSize); 5646 add(sp, sp, rscratch1); 5647 } 5648 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5649 } 5650 authenticate_return_address(); 5651 } 5652 5653 5654 // This method counts leading positive bytes (highest bit not set) in provided byte array 5655 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5656 // Simple and most common case of aligned small array which is not at the 5657 // end of memory page is placed here. All other cases are in stub. 5658 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5659 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5660 assert_different_registers(ary1, len, result); 5661 5662 mov(result, len); 5663 cmpw(len, 0); 5664 br(LE, DONE); 5665 cmpw(len, 4 * wordSize); 5666 br(GE, STUB_LONG); // size > 32 then go to stub 5667 5668 int shift = 64 - exact_log2(os::vm_page_size()); 5669 lsl(rscratch1, ary1, shift); 5670 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5671 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5672 br(CS, STUB); // at the end of page then go to stub 5673 subs(len, len, wordSize); 5674 br(LT, END); 5675 5676 BIND(LOOP); 5677 ldr(rscratch1, Address(post(ary1, wordSize))); 5678 tst(rscratch1, UPPER_BIT_MASK); 5679 br(NE, SET_RESULT); 5680 subs(len, len, wordSize); 5681 br(GE, LOOP); 5682 cmpw(len, -wordSize); 5683 br(EQ, DONE); 5684 5685 BIND(END); 5686 ldr(rscratch1, Address(ary1)); 5687 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5688 lslv(rscratch1, rscratch1, rscratch2); 5689 tst(rscratch1, UPPER_BIT_MASK); 5690 br(NE, SET_RESULT); 5691 b(DONE); 5692 5693 BIND(STUB); 5694 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5695 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5696 address tpc1 = trampoline_call(count_pos); 5697 if (tpc1 == nullptr) { 5698 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5699 postcond(pc() == badAddress); 5700 return nullptr; 5701 } 5702 b(DONE); 5703 5704 BIND(STUB_LONG); 5705 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5706 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5707 address tpc2 = trampoline_call(count_pos_long); 5708 if (tpc2 == nullptr) { 5709 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5710 postcond(pc() == badAddress); 5711 return nullptr; 5712 } 5713 b(DONE); 5714 5715 BIND(SET_RESULT); 5716 5717 add(len, len, wordSize); 5718 sub(result, result, len); 5719 5720 BIND(DONE); 5721 postcond(pc() != badAddress); 5722 return pc(); 5723 } 5724 5725 // Clobbers: rscratch1, rscratch2, rflags 5726 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5727 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5728 Register tmp4, Register tmp5, Register result, 5729 Register cnt1, int elem_size) { 5730 Label DONE, SAME; 5731 Register tmp1 = rscratch1; 5732 Register tmp2 = rscratch2; 5733 int elem_per_word = wordSize/elem_size; 5734 int log_elem_size = exact_log2(elem_size); 5735 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5736 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5737 int base_offset 5738 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5739 // When the length offset is not aligned to 8 bytes, 5740 // then we align it down. This is valid because the new 5741 // offset will always be the klass which is the same 5742 // for type arrays. 5743 int start_offset = align_down(length_offset, BytesPerWord); 5744 int extra_length = base_offset - start_offset; 5745 assert(start_offset == length_offset || start_offset == klass_offset, 5746 "start offset must be 8-byte-aligned or be the klass offset"); 5747 assert(base_offset != start_offset, "must include the length field"); 5748 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5749 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5750 5751 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5752 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5753 5754 #ifndef PRODUCT 5755 { 5756 const char kind = (elem_size == 2) ? 'U' : 'L'; 5757 char comment[64]; 5758 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5759 BLOCK_COMMENT(comment); 5760 } 5761 #endif 5762 5763 // if (a1 == a2) 5764 // return true; 5765 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5766 br(EQ, SAME); 5767 5768 if (UseSimpleArrayEquals) { 5769 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5770 // if (a1 == nullptr || a2 == nullptr) 5771 // return false; 5772 // a1 & a2 == 0 means (some-pointer is null) or 5773 // (very-rare-or-even-probably-impossible-pointer-values) 5774 // so, we can save one branch in most cases 5775 tst(a1, a2); 5776 mov(result, false); 5777 br(EQ, A_MIGHT_BE_NULL); 5778 // if (a1.length != a2.length) 5779 // return false; 5780 bind(A_IS_NOT_NULL); 5781 ldrw(cnt1, Address(a1, length_offset)); 5782 // Increase loop counter by diff between base- and actual start-offset. 5783 addw(cnt1, cnt1, extra_length); 5784 lea(a1, Address(a1, start_offset)); 5785 lea(a2, Address(a2, start_offset)); 5786 // Check for short strings, i.e. smaller than wordSize. 5787 subs(cnt1, cnt1, elem_per_word); 5788 br(Assembler::LT, SHORT); 5789 // Main 8 byte comparison loop. 5790 bind(NEXT_WORD); { 5791 ldr(tmp1, Address(post(a1, wordSize))); 5792 ldr(tmp2, Address(post(a2, wordSize))); 5793 subs(cnt1, cnt1, elem_per_word); 5794 eor(tmp5, tmp1, tmp2); 5795 cbnz(tmp5, DONE); 5796 } br(GT, NEXT_WORD); 5797 // Last longword. In the case where length == 4 we compare the 5798 // same longword twice, but that's still faster than another 5799 // conditional branch. 5800 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5801 // length == 4. 5802 if (log_elem_size > 0) 5803 lsl(cnt1, cnt1, log_elem_size); 5804 ldr(tmp3, Address(a1, cnt1)); 5805 ldr(tmp4, Address(a2, cnt1)); 5806 eor(tmp5, tmp3, tmp4); 5807 cbnz(tmp5, DONE); 5808 b(SAME); 5809 bind(A_MIGHT_BE_NULL); 5810 // in case both a1 and a2 are not-null, proceed with loads 5811 cbz(a1, DONE); 5812 cbz(a2, DONE); 5813 b(A_IS_NOT_NULL); 5814 bind(SHORT); 5815 5816 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5817 { 5818 ldrw(tmp1, Address(post(a1, 4))); 5819 ldrw(tmp2, Address(post(a2, 4))); 5820 eorw(tmp5, tmp1, tmp2); 5821 cbnzw(tmp5, DONE); 5822 } 5823 bind(TAIL03); 5824 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5825 { 5826 ldrh(tmp3, Address(post(a1, 2))); 5827 ldrh(tmp4, Address(post(a2, 2))); 5828 eorw(tmp5, tmp3, tmp4); 5829 cbnzw(tmp5, DONE); 5830 } 5831 bind(TAIL01); 5832 if (elem_size == 1) { // Only needed when comparing byte arrays. 5833 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5834 { 5835 ldrb(tmp1, a1); 5836 ldrb(tmp2, a2); 5837 eorw(tmp5, tmp1, tmp2); 5838 cbnzw(tmp5, DONE); 5839 } 5840 } 5841 } else { 5842 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5843 CSET_EQ, LAST_CHECK; 5844 mov(result, false); 5845 cbz(a1, DONE); 5846 ldrw(cnt1, Address(a1, length_offset)); 5847 cbz(a2, DONE); 5848 // Increase loop counter by diff between base- and actual start-offset. 5849 addw(cnt1, cnt1, extra_length); 5850 5851 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5852 // faster to perform another branch before comparing a1 and a2 5853 cmp(cnt1, (u1)elem_per_word); 5854 br(LE, SHORT); // short or same 5855 ldr(tmp3, Address(pre(a1, start_offset))); 5856 subs(zr, cnt1, stubBytesThreshold); 5857 br(GE, STUB); 5858 ldr(tmp4, Address(pre(a2, start_offset))); 5859 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5860 5861 // Main 16 byte comparison loop with 2 exits 5862 bind(NEXT_DWORD); { 5863 ldr(tmp1, Address(pre(a1, wordSize))); 5864 ldr(tmp2, Address(pre(a2, wordSize))); 5865 subs(cnt1, cnt1, 2 * elem_per_word); 5866 br(LE, TAIL); 5867 eor(tmp4, tmp3, tmp4); 5868 cbnz(tmp4, DONE); 5869 ldr(tmp3, Address(pre(a1, wordSize))); 5870 ldr(tmp4, Address(pre(a2, wordSize))); 5871 cmp(cnt1, (u1)elem_per_word); 5872 br(LE, TAIL2); 5873 cmp(tmp1, tmp2); 5874 } br(EQ, NEXT_DWORD); 5875 b(DONE); 5876 5877 bind(TAIL); 5878 eor(tmp4, tmp3, tmp4); 5879 eor(tmp2, tmp1, tmp2); 5880 lslv(tmp2, tmp2, tmp5); 5881 orr(tmp5, tmp4, tmp2); 5882 cmp(tmp5, zr); 5883 b(CSET_EQ); 5884 5885 bind(TAIL2); 5886 eor(tmp2, tmp1, tmp2); 5887 cbnz(tmp2, DONE); 5888 b(LAST_CHECK); 5889 5890 bind(STUB); 5891 ldr(tmp4, Address(pre(a2, start_offset))); 5892 if (elem_size == 2) { // convert to byte counter 5893 lsl(cnt1, cnt1, 1); 5894 } 5895 eor(tmp5, tmp3, tmp4); 5896 cbnz(tmp5, DONE); 5897 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5898 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5899 address tpc = trampoline_call(stub); 5900 if (tpc == nullptr) { 5901 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5902 postcond(pc() == badAddress); 5903 return nullptr; 5904 } 5905 b(DONE); 5906 5907 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5908 // so, if a2 == null => return false(0), else return true, so we can return a2 5909 mov(result, a2); 5910 b(DONE); 5911 bind(SHORT); 5912 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5913 ldr(tmp3, Address(a1, start_offset)); 5914 ldr(tmp4, Address(a2, start_offset)); 5915 bind(LAST_CHECK); 5916 eor(tmp4, tmp3, tmp4); 5917 lslv(tmp5, tmp4, tmp5); 5918 cmp(tmp5, zr); 5919 bind(CSET_EQ); 5920 cset(result, EQ); 5921 b(DONE); 5922 } 5923 5924 bind(SAME); 5925 mov(result, true); 5926 // That's it. 5927 bind(DONE); 5928 5929 BLOCK_COMMENT("} array_equals"); 5930 postcond(pc() != badAddress); 5931 return pc(); 5932 } 5933 5934 // Compare Strings 5935 5936 // For Strings we're passed the address of the first characters in a1 5937 // and a2 and the length in cnt1. 5938 // There are two implementations. For arrays >= 8 bytes, all 5939 // comparisons (including the final one, which may overlap) are 5940 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 5941 // halfword, then a short, and then a byte. 5942 5943 void MacroAssembler::string_equals(Register a1, Register a2, 5944 Register result, Register cnt1) 5945 { 5946 Label SAME, DONE, SHORT, NEXT_WORD; 5947 Register tmp1 = rscratch1; 5948 Register tmp2 = rscratch2; 5949 Register cnt2 = tmp2; // cnt2 only used in array length compare 5950 5951 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5952 5953 #ifndef PRODUCT 5954 { 5955 char comment[64]; 5956 snprintf(comment, sizeof comment, "{string_equalsL"); 5957 BLOCK_COMMENT(comment); 5958 } 5959 #endif 5960 5961 mov(result, false); 5962 5963 // Check for short strings, i.e. smaller than wordSize. 5964 subs(cnt1, cnt1, wordSize); 5965 br(Assembler::LT, SHORT); 5966 // Main 8 byte comparison loop. 5967 bind(NEXT_WORD); { 5968 ldr(tmp1, Address(post(a1, wordSize))); 5969 ldr(tmp2, Address(post(a2, wordSize))); 5970 subs(cnt1, cnt1, wordSize); 5971 eor(tmp1, tmp1, tmp2); 5972 cbnz(tmp1, DONE); 5973 } br(GT, NEXT_WORD); 5974 // Last longword. In the case where length == 4 we compare the 5975 // same longword twice, but that's still faster than another 5976 // conditional branch. 5977 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5978 // length == 4. 5979 ldr(tmp1, Address(a1, cnt1)); 5980 ldr(tmp2, Address(a2, cnt1)); 5981 eor(tmp2, tmp1, tmp2); 5982 cbnz(tmp2, DONE); 5983 b(SAME); 5984 5985 bind(SHORT); 5986 Label TAIL03, TAIL01; 5987 5988 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 5989 { 5990 ldrw(tmp1, Address(post(a1, 4))); 5991 ldrw(tmp2, Address(post(a2, 4))); 5992 eorw(tmp1, tmp1, tmp2); 5993 cbnzw(tmp1, DONE); 5994 } 5995 bind(TAIL03); 5996 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 5997 { 5998 ldrh(tmp1, Address(post(a1, 2))); 5999 ldrh(tmp2, Address(post(a2, 2))); 6000 eorw(tmp1, tmp1, tmp2); 6001 cbnzw(tmp1, DONE); 6002 } 6003 bind(TAIL01); 6004 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6005 { 6006 ldrb(tmp1, a1); 6007 ldrb(tmp2, a2); 6008 eorw(tmp1, tmp1, tmp2); 6009 cbnzw(tmp1, DONE); 6010 } 6011 // Arrays are equal. 6012 bind(SAME); 6013 mov(result, true); 6014 6015 // That's it. 6016 bind(DONE); 6017 BLOCK_COMMENT("} string_equals"); 6018 } 6019 6020 6021 // The size of the blocks erased by the zero_blocks stub. We must 6022 // handle anything smaller than this ourselves in zero_words(). 6023 const int MacroAssembler::zero_words_block_size = 8; 6024 6025 // zero_words() is used by C2 ClearArray patterns and by 6026 // C1_MacroAssembler. It is as small as possible, handling small word 6027 // counts locally and delegating anything larger to the zero_blocks 6028 // stub. It is expanded many times in compiled code, so it is 6029 // important to keep it short. 6030 6031 // ptr: Address of a buffer to be zeroed. 6032 // cnt: Count in HeapWords. 6033 // 6034 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6035 address MacroAssembler::zero_words(Register ptr, Register cnt) 6036 { 6037 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6038 6039 BLOCK_COMMENT("zero_words {"); 6040 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6041 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6042 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6043 6044 subs(rscratch1, cnt, zero_words_block_size); 6045 Label around; 6046 br(LO, around); 6047 { 6048 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6049 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6050 // Make sure this is a C2 compilation. C1 allocates space only for 6051 // trampoline stubs generated by Call LIR ops, and in any case it 6052 // makes sense for a C1 compilation task to proceed as quickly as 6053 // possible. 6054 CompileTask* task; 6055 if (StubRoutines::aarch64::complete() 6056 && Thread::current()->is_Compiler_thread() 6057 && (task = ciEnv::current()->task()) 6058 && is_c2_compile(task->comp_level())) { 6059 address tpc = trampoline_call(zero_blocks); 6060 if (tpc == nullptr) { 6061 DEBUG_ONLY(reset_labels(around)); 6062 return nullptr; 6063 } 6064 } else { 6065 far_call(zero_blocks); 6066 } 6067 } 6068 bind(around); 6069 6070 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6071 // for us. 6072 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6073 Label l; 6074 tbz(cnt, exact_log2(i), l); 6075 for (int j = 0; j < i; j += 2) { 6076 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6077 } 6078 bind(l); 6079 } 6080 { 6081 Label l; 6082 tbz(cnt, 0, l); 6083 str(zr, Address(ptr)); 6084 bind(l); 6085 } 6086 6087 BLOCK_COMMENT("} zero_words"); 6088 return pc(); 6089 } 6090 6091 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6092 // cnt: Immediate count in HeapWords. 6093 // 6094 // r10, r11, rscratch1, and rscratch2 are clobbered. 6095 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6096 { 6097 assert(wordSize <= BlockZeroingLowLimit, 6098 "increase BlockZeroingLowLimit"); 6099 address result = nullptr; 6100 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6101 #ifndef PRODUCT 6102 { 6103 char buf[64]; 6104 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6105 BLOCK_COMMENT(buf); 6106 } 6107 #endif 6108 if (cnt >= 16) { 6109 uint64_t loops = cnt/16; 6110 if (loops > 1) { 6111 mov(rscratch2, loops - 1); 6112 } 6113 { 6114 Label loop; 6115 bind(loop); 6116 for (int i = 0; i < 16; i += 2) { 6117 stp(zr, zr, Address(base, i * BytesPerWord)); 6118 } 6119 add(base, base, 16 * BytesPerWord); 6120 if (loops > 1) { 6121 subs(rscratch2, rscratch2, 1); 6122 br(GE, loop); 6123 } 6124 } 6125 } 6126 cnt %= 16; 6127 int i = cnt & 1; // store any odd word to start 6128 if (i) str(zr, Address(base)); 6129 for (; i < (int)cnt; i += 2) { 6130 stp(zr, zr, Address(base, i * wordSize)); 6131 } 6132 BLOCK_COMMENT("} zero_words"); 6133 result = pc(); 6134 } else { 6135 mov(r10, base); mov(r11, cnt); 6136 result = zero_words(r10, r11); 6137 } 6138 return result; 6139 } 6140 6141 // Zero blocks of memory by using DC ZVA. 6142 // 6143 // Aligns the base address first sufficiently for DC ZVA, then uses 6144 // DC ZVA repeatedly for every full block. cnt is the size to be 6145 // zeroed in HeapWords. Returns the count of words left to be zeroed 6146 // in cnt. 6147 // 6148 // NOTE: This is intended to be used in the zero_blocks() stub. If 6149 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6150 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6151 Register tmp = rscratch1; 6152 Register tmp2 = rscratch2; 6153 int zva_length = VM_Version::zva_length(); 6154 Label initial_table_end, loop_zva; 6155 Label fini; 6156 6157 // Base must be 16 byte aligned. If not just return and let caller handle it 6158 tst(base, 0x0f); 6159 br(Assembler::NE, fini); 6160 // Align base with ZVA length. 6161 neg(tmp, base); 6162 andr(tmp, tmp, zva_length - 1); 6163 6164 // tmp: the number of bytes to be filled to align the base with ZVA length. 6165 add(base, base, tmp); 6166 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6167 adr(tmp2, initial_table_end); 6168 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6169 br(tmp2); 6170 6171 for (int i = -zva_length + 16; i < 0; i += 16) 6172 stp(zr, zr, Address(base, i)); 6173 bind(initial_table_end); 6174 6175 sub(cnt, cnt, zva_length >> 3); 6176 bind(loop_zva); 6177 dc(Assembler::ZVA, base); 6178 subs(cnt, cnt, zva_length >> 3); 6179 add(base, base, zva_length); 6180 br(Assembler::GE, loop_zva); 6181 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6182 bind(fini); 6183 } 6184 6185 // base: Address of a buffer to be filled, 8 bytes aligned. 6186 // cnt: Count in 8-byte unit. 6187 // value: Value to be filled with. 6188 // base will point to the end of the buffer after filling. 6189 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6190 { 6191 // Algorithm: 6192 // 6193 // if (cnt == 0) { 6194 // return; 6195 // } 6196 // if ((p & 8) != 0) { 6197 // *p++ = v; 6198 // } 6199 // 6200 // scratch1 = cnt & 14; 6201 // cnt -= scratch1; 6202 // p += scratch1; 6203 // switch (scratch1 / 2) { 6204 // do { 6205 // cnt -= 16; 6206 // p[-16] = v; 6207 // p[-15] = v; 6208 // case 7: 6209 // p[-14] = v; 6210 // p[-13] = v; 6211 // case 6: 6212 // p[-12] = v; 6213 // p[-11] = v; 6214 // // ... 6215 // case 1: 6216 // p[-2] = v; 6217 // p[-1] = v; 6218 // case 0: 6219 // p += 16; 6220 // } while (cnt); 6221 // } 6222 // if ((cnt & 1) == 1) { 6223 // *p++ = v; 6224 // } 6225 6226 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6227 6228 Label fini, skip, entry, loop; 6229 const int unroll = 8; // Number of stp instructions we'll unroll 6230 6231 cbz(cnt, fini); 6232 tbz(base, 3, skip); 6233 str(value, Address(post(base, 8))); 6234 sub(cnt, cnt, 1); 6235 bind(skip); 6236 6237 andr(rscratch1, cnt, (unroll-1) * 2); 6238 sub(cnt, cnt, rscratch1); 6239 add(base, base, rscratch1, Assembler::LSL, 3); 6240 adr(rscratch2, entry); 6241 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6242 br(rscratch2); 6243 6244 bind(loop); 6245 add(base, base, unroll * 16); 6246 for (int i = -unroll; i < 0; i++) 6247 stp(value, value, Address(base, i * 16)); 6248 bind(entry); 6249 subs(cnt, cnt, unroll * 2); 6250 br(Assembler::GE, loop); 6251 6252 tbz(cnt, 0, fini); 6253 str(value, Address(post(base, 8))); 6254 bind(fini); 6255 } 6256 6257 // Intrinsic for 6258 // 6259 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6260 // return the number of characters copied. 6261 // - java/lang/StringUTF16.compress 6262 // return index of non-latin1 character if copy fails, otherwise 'len'. 6263 // 6264 // This version always returns the number of characters copied, and does not 6265 // clobber the 'len' register. A successful copy will complete with the post- 6266 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6267 // post-condition: 0 <= 'res' < 'len'. 6268 // 6269 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6270 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6271 // beyond the acceptable, even though the footprint would be smaller. 6272 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6273 // avoid additional bloat. 6274 // 6275 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6276 void MacroAssembler::encode_iso_array(Register src, Register dst, 6277 Register len, Register res, bool ascii, 6278 FloatRegister vtmp0, FloatRegister vtmp1, 6279 FloatRegister vtmp2, FloatRegister vtmp3, 6280 FloatRegister vtmp4, FloatRegister vtmp5) 6281 { 6282 Register cnt = res; 6283 Register max = rscratch1; 6284 Register chk = rscratch2; 6285 6286 prfm(Address(src), PLDL1STRM); 6287 movw(cnt, len); 6288 6289 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6290 6291 Label LOOP_32, DONE_32, FAIL_32; 6292 6293 BIND(LOOP_32); 6294 { 6295 cmpw(cnt, 32); 6296 br(LT, DONE_32); 6297 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6298 // Extract lower bytes. 6299 FloatRegister vlo0 = vtmp4; 6300 FloatRegister vlo1 = vtmp5; 6301 uzp1(vlo0, T16B, vtmp0, vtmp1); 6302 uzp1(vlo1, T16B, vtmp2, vtmp3); 6303 // Merge bits... 6304 orr(vtmp0, T16B, vtmp0, vtmp1); 6305 orr(vtmp2, T16B, vtmp2, vtmp3); 6306 // Extract merged upper bytes. 6307 FloatRegister vhix = vtmp0; 6308 uzp2(vhix, T16B, vtmp0, vtmp2); 6309 // ISO-check on hi-parts (all zero). 6310 // ASCII-check on lo-parts (no sign). 6311 FloatRegister vlox = vtmp1; // Merge lower bytes. 6312 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6313 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6314 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6315 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6316 ASCII(orr(chk, chk, max)); 6317 cbnz(chk, FAIL_32); 6318 subw(cnt, cnt, 32); 6319 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6320 b(LOOP_32); 6321 } 6322 BIND(FAIL_32); 6323 sub(src, src, 64); 6324 BIND(DONE_32); 6325 6326 Label LOOP_8, SKIP_8; 6327 6328 BIND(LOOP_8); 6329 { 6330 cmpw(cnt, 8); 6331 br(LT, SKIP_8); 6332 FloatRegister vhi = vtmp0; 6333 FloatRegister vlo = vtmp1; 6334 ld1(vtmp3, T8H, src); 6335 uzp1(vlo, T16B, vtmp3, vtmp3); 6336 uzp2(vhi, T16B, vtmp3, vtmp3); 6337 // ISO-check on hi-parts (all zero). 6338 // ASCII-check on lo-parts (no sign). 6339 ASCII(cm(LT, vtmp2, T16B, vlo)); 6340 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6341 ASCII(umov(max, vtmp2, B, 0)); 6342 ASCII(orr(chk, chk, max)); 6343 cbnz(chk, SKIP_8); 6344 6345 strd(vlo, Address(post(dst, 8))); 6346 subw(cnt, cnt, 8); 6347 add(src, src, 16); 6348 b(LOOP_8); 6349 } 6350 BIND(SKIP_8); 6351 6352 #undef ASCII 6353 6354 Label LOOP, DONE; 6355 6356 cbz(cnt, DONE); 6357 BIND(LOOP); 6358 { 6359 Register chr = rscratch1; 6360 ldrh(chr, Address(post(src, 2))); 6361 tst(chr, ascii ? 0xff80 : 0xff00); 6362 br(NE, DONE); 6363 strb(chr, Address(post(dst, 1))); 6364 subs(cnt, cnt, 1); 6365 br(GT, LOOP); 6366 } 6367 BIND(DONE); 6368 // Return index where we stopped. 6369 subw(res, len, cnt); 6370 } 6371 6372 // Inflate byte[] array to char[]. 6373 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6374 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6375 FloatRegister vtmp1, FloatRegister vtmp2, 6376 FloatRegister vtmp3, Register tmp4) { 6377 Label big, done, after_init, to_stub; 6378 6379 assert_different_registers(src, dst, len, tmp4, rscratch1); 6380 6381 fmovd(vtmp1, 0.0); 6382 lsrw(tmp4, len, 3); 6383 bind(after_init); 6384 cbnzw(tmp4, big); 6385 // Short string: less than 8 bytes. 6386 { 6387 Label loop, tiny; 6388 6389 cmpw(len, 4); 6390 br(LT, tiny); 6391 // Use SIMD to do 4 bytes. 6392 ldrs(vtmp2, post(src, 4)); 6393 zip1(vtmp3, T8B, vtmp2, vtmp1); 6394 subw(len, len, 4); 6395 strd(vtmp3, post(dst, 8)); 6396 6397 cbzw(len, done); 6398 6399 // Do the remaining bytes by steam. 6400 bind(loop); 6401 ldrb(tmp4, post(src, 1)); 6402 strh(tmp4, post(dst, 2)); 6403 subw(len, len, 1); 6404 6405 bind(tiny); 6406 cbnz(len, loop); 6407 6408 b(done); 6409 } 6410 6411 if (SoftwarePrefetchHintDistance >= 0) { 6412 bind(to_stub); 6413 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6414 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6415 address tpc = trampoline_call(stub); 6416 if (tpc == nullptr) { 6417 DEBUG_ONLY(reset_labels(big, done)); 6418 postcond(pc() == badAddress); 6419 return nullptr; 6420 } 6421 b(after_init); 6422 } 6423 6424 // Unpack the bytes 8 at a time. 6425 bind(big); 6426 { 6427 Label loop, around, loop_last, loop_start; 6428 6429 if (SoftwarePrefetchHintDistance >= 0) { 6430 const int large_loop_threshold = (64 + 16)/8; 6431 ldrd(vtmp2, post(src, 8)); 6432 andw(len, len, 7); 6433 cmp(tmp4, (u1)large_loop_threshold); 6434 br(GE, to_stub); 6435 b(loop_start); 6436 6437 bind(loop); 6438 ldrd(vtmp2, post(src, 8)); 6439 bind(loop_start); 6440 subs(tmp4, tmp4, 1); 6441 br(EQ, loop_last); 6442 zip1(vtmp2, T16B, vtmp2, vtmp1); 6443 ldrd(vtmp3, post(src, 8)); 6444 st1(vtmp2, T8H, post(dst, 16)); 6445 subs(tmp4, tmp4, 1); 6446 zip1(vtmp3, T16B, vtmp3, vtmp1); 6447 st1(vtmp3, T8H, post(dst, 16)); 6448 br(NE, loop); 6449 b(around); 6450 bind(loop_last); 6451 zip1(vtmp2, T16B, vtmp2, vtmp1); 6452 st1(vtmp2, T8H, post(dst, 16)); 6453 bind(around); 6454 cbz(len, done); 6455 } else { 6456 andw(len, len, 7); 6457 bind(loop); 6458 ldrd(vtmp2, post(src, 8)); 6459 sub(tmp4, tmp4, 1); 6460 zip1(vtmp3, T16B, vtmp2, vtmp1); 6461 st1(vtmp3, T8H, post(dst, 16)); 6462 cbnz(tmp4, loop); 6463 } 6464 } 6465 6466 // Do the tail of up to 8 bytes. 6467 add(src, src, len); 6468 ldrd(vtmp3, Address(src, -8)); 6469 add(dst, dst, len, ext::uxtw, 1); 6470 zip1(vtmp3, T16B, vtmp3, vtmp1); 6471 strq(vtmp3, Address(dst, -16)); 6472 6473 bind(done); 6474 postcond(pc() != badAddress); 6475 return pc(); 6476 } 6477 6478 // Compress char[] array to byte[]. 6479 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6480 // Return the array length if every element in array can be encoded, 6481 // otherwise, the index of first non-latin1 (> 0xff) character. 6482 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6483 Register res, 6484 FloatRegister tmp0, FloatRegister tmp1, 6485 FloatRegister tmp2, FloatRegister tmp3, 6486 FloatRegister tmp4, FloatRegister tmp5) { 6487 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6488 } 6489 6490 // java.math.round(double a) 6491 // Returns the closest long to the argument, with ties rounding to 6492 // positive infinity. This requires some fiddling for corner 6493 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6494 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6495 FloatRegister ftmp) { 6496 Label DONE; 6497 BLOCK_COMMENT("java_round_double: { "); 6498 fmovd(rscratch1, src); 6499 // Use RoundToNearestTiesAway unless src small and -ve. 6500 fcvtasd(dst, src); 6501 // Test if src >= 0 || abs(src) >= 0x1.0p52 6502 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6503 mov(rscratch2, julong_cast(0x1.0p52)); 6504 cmp(rscratch1, rscratch2); 6505 br(HS, DONE); { 6506 // src < 0 && abs(src) < 0x1.0p52 6507 // src may have a fractional part, so add 0.5 6508 fmovd(ftmp, 0.5); 6509 faddd(ftmp, src, ftmp); 6510 // Convert double to jlong, use RoundTowardsNegative 6511 fcvtmsd(dst, ftmp); 6512 } 6513 bind(DONE); 6514 BLOCK_COMMENT("} java_round_double"); 6515 } 6516 6517 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6518 FloatRegister ftmp) { 6519 Label DONE; 6520 BLOCK_COMMENT("java_round_float: { "); 6521 fmovs(rscratch1, src); 6522 // Use RoundToNearestTiesAway unless src small and -ve. 6523 fcvtassw(dst, src); 6524 // Test if src >= 0 || abs(src) >= 0x1.0p23 6525 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6526 mov(rscratch2, jint_cast(0x1.0p23f)); 6527 cmp(rscratch1, rscratch2); 6528 br(HS, DONE); { 6529 // src < 0 && |src| < 0x1.0p23 6530 // src may have a fractional part, so add 0.5 6531 fmovs(ftmp, 0.5f); 6532 fadds(ftmp, src, ftmp); 6533 // Convert float to jint, use RoundTowardsNegative 6534 fcvtmssw(dst, ftmp); 6535 } 6536 bind(DONE); 6537 BLOCK_COMMENT("} java_round_float"); 6538 } 6539 6540 // get_thread() can be called anywhere inside generated code so we 6541 // need to save whatever non-callee save context might get clobbered 6542 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6543 // the call setup code. 6544 // 6545 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6546 // On other systems, the helper is a usual C function. 6547 // 6548 void MacroAssembler::get_thread(Register dst) { 6549 RegSet saved_regs = 6550 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6551 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6552 6553 protect_return_address(); 6554 push(saved_regs, sp); 6555 6556 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6557 blr(lr); 6558 if (dst != c_rarg0) { 6559 mov(dst, c_rarg0); 6560 } 6561 6562 pop(saved_regs, sp); 6563 authenticate_return_address(); 6564 } 6565 6566 void MacroAssembler::cache_wb(Address line) { 6567 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6568 assert(line.index() == noreg, "index should be noreg"); 6569 assert(line.offset() == 0, "offset should be 0"); 6570 // would like to assert this 6571 // assert(line._ext.shift == 0, "shift should be zero"); 6572 if (VM_Version::supports_dcpop()) { 6573 // writeback using clear virtual address to point of persistence 6574 dc(Assembler::CVAP, line.base()); 6575 } else { 6576 // no need to generate anything as Unsafe.writebackMemory should 6577 // never invoke this stub 6578 } 6579 } 6580 6581 void MacroAssembler::cache_wbsync(bool is_pre) { 6582 // we only need a barrier post sync 6583 if (!is_pre) { 6584 membar(Assembler::AnyAny); 6585 } 6586 } 6587 6588 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6589 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6590 return; 6591 } 6592 // Make sure that native code does not change SVE vector length. 6593 Label verify_ok; 6594 movw(tmp, zr); 6595 sve_inc(tmp, B); 6596 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6597 br(EQ, verify_ok); 6598 stop("Error: SVE vector length has changed since jvm startup"); 6599 bind(verify_ok); 6600 } 6601 6602 void MacroAssembler::verify_ptrue() { 6603 Label verify_ok; 6604 if (!UseSVE) { 6605 return; 6606 } 6607 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6608 sve_dec(rscratch1, B); 6609 cbz(rscratch1, verify_ok); 6610 stop("Error: the preserved predicate register (p7) elements are not all true"); 6611 bind(verify_ok); 6612 } 6613 6614 void MacroAssembler::safepoint_isb() { 6615 isb(); 6616 #ifndef PRODUCT 6617 if (VerifyCrossModifyFence) { 6618 // Clear the thread state. 6619 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6620 } 6621 #endif 6622 } 6623 6624 #ifndef PRODUCT 6625 void MacroAssembler::verify_cross_modify_fence_not_required() { 6626 if (VerifyCrossModifyFence) { 6627 // Check if thread needs a cross modify fence. 6628 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6629 Label fence_not_required; 6630 cbz(rscratch1, fence_not_required); 6631 // If it does then fail. 6632 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6633 mov(c_rarg0, rthread); 6634 blr(rscratch1); 6635 bind(fence_not_required); 6636 } 6637 } 6638 #endif 6639 6640 void MacroAssembler::spin_wait() { 6641 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6642 switch (VM_Version::spin_wait_desc().inst()) { 6643 case SpinWait::NOP: 6644 nop(); 6645 break; 6646 case SpinWait::ISB: 6647 isb(); 6648 break; 6649 case SpinWait::YIELD: 6650 yield(); 6651 break; 6652 default: 6653 ShouldNotReachHere(); 6654 } 6655 } 6656 } 6657 6658 // Stack frame creation/removal 6659 6660 void MacroAssembler::enter(bool strip_ret_addr) { 6661 if (strip_ret_addr) { 6662 // Addresses can only be signed once. If there are multiple nested frames being created 6663 // in the same function, then the return address needs stripping first. 6664 strip_return_address(); 6665 } 6666 protect_return_address(); 6667 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6668 mov(rfp, sp); 6669 } 6670 6671 void MacroAssembler::leave() { 6672 mov(sp, rfp); 6673 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6674 authenticate_return_address(); 6675 } 6676 6677 // ROP Protection 6678 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6679 // destroying stack frames or whenever directly loading/storing the LR to memory. 6680 // If ROP protection is not set then these functions are no-ops. 6681 // For more details on PAC see pauth_aarch64.hpp. 6682 6683 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6684 // Uses value zero as the modifier. 6685 // 6686 void MacroAssembler::protect_return_address() { 6687 if (VM_Version::use_rop_protection()) { 6688 check_return_address(); 6689 paciaz(); 6690 } 6691 } 6692 6693 // Sign the return value in the given register. Use before updating the LR in the existing stack 6694 // frame for the current function. 6695 // Uses value zero as the modifier. 6696 // 6697 void MacroAssembler::protect_return_address(Register return_reg) { 6698 if (VM_Version::use_rop_protection()) { 6699 check_return_address(return_reg); 6700 paciza(return_reg); 6701 } 6702 } 6703 6704 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6705 // Uses value zero as the modifier. 6706 // 6707 void MacroAssembler::authenticate_return_address() { 6708 if (VM_Version::use_rop_protection()) { 6709 autiaz(); 6710 check_return_address(); 6711 } 6712 } 6713 6714 // Authenticate the return value in the given register. Use before updating the LR in the existing 6715 // stack frame for the current function. 6716 // Uses value zero as the modifier. 6717 // 6718 void MacroAssembler::authenticate_return_address(Register return_reg) { 6719 if (VM_Version::use_rop_protection()) { 6720 autiza(return_reg); 6721 check_return_address(return_reg); 6722 } 6723 } 6724 6725 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6726 // there is no guaranteed way of authenticating the LR. 6727 // 6728 void MacroAssembler::strip_return_address() { 6729 if (VM_Version::use_rop_protection()) { 6730 xpaclri(); 6731 } 6732 } 6733 6734 #ifndef PRODUCT 6735 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6736 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6737 // it is difficult to debug back to the callee function. 6738 // This function simply loads from the address in the given register. 6739 // Use directly after authentication to catch authentication failures. 6740 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6741 // 6742 void MacroAssembler::check_return_address(Register return_reg) { 6743 if (VM_Version::use_rop_protection()) { 6744 ldr(zr, Address(return_reg)); 6745 } 6746 } 6747 #endif 6748 6749 // The java_calling_convention describes stack locations as ideal slots on 6750 // a frame with no abi restrictions. Since we must observe abi restrictions 6751 // (like the placement of the register window) the slots must be biased by 6752 // the following value. 6753 static int reg2offset_in(VMReg r) { 6754 // Account for saved rfp and lr 6755 // This should really be in_preserve_stack_slots 6756 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6757 } 6758 6759 static int reg2offset_out(VMReg r) { 6760 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6761 } 6762 6763 // On 64bit we will store integer like items to the stack as 6764 // 64bits items (AArch64 ABI) even though java would only store 6765 // 32bits for a parameter. On 32bit it will simply be 32bits 6766 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6767 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6768 if (src.first()->is_stack()) { 6769 if (dst.first()->is_stack()) { 6770 // stack to stack 6771 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6772 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6773 } else { 6774 // stack to reg 6775 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6776 } 6777 } else if (dst.first()->is_stack()) { 6778 // reg to stack 6779 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6780 } else { 6781 if (dst.first() != src.first()) { 6782 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6783 } 6784 } 6785 } 6786 6787 // An oop arg. Must pass a handle not the oop itself 6788 void MacroAssembler::object_move( 6789 OopMap* map, 6790 int oop_handle_offset, 6791 int framesize_in_slots, 6792 VMRegPair src, 6793 VMRegPair dst, 6794 bool is_receiver, 6795 int* receiver_offset) { 6796 6797 // must pass a handle. First figure out the location we use as a handle 6798 6799 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6800 6801 // See if oop is null if it is we need no handle 6802 6803 if (src.first()->is_stack()) { 6804 6805 // Oop is already on the stack as an argument 6806 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6807 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6808 if (is_receiver) { 6809 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6810 } 6811 6812 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6813 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6814 // conditionally move a null 6815 cmp(rscratch1, zr); 6816 csel(rHandle, zr, rHandle, Assembler::EQ); 6817 } else { 6818 6819 // Oop is in an a register we must store it to the space we reserve 6820 // on the stack for oop_handles and pass a handle if oop is non-null 6821 6822 const Register rOop = src.first()->as_Register(); 6823 int oop_slot; 6824 if (rOop == j_rarg0) 6825 oop_slot = 0; 6826 else if (rOop == j_rarg1) 6827 oop_slot = 1; 6828 else if (rOop == j_rarg2) 6829 oop_slot = 2; 6830 else if (rOop == j_rarg3) 6831 oop_slot = 3; 6832 else if (rOop == j_rarg4) 6833 oop_slot = 4; 6834 else if (rOop == j_rarg5) 6835 oop_slot = 5; 6836 else if (rOop == j_rarg6) 6837 oop_slot = 6; 6838 else { 6839 assert(rOop == j_rarg7, "wrong register"); 6840 oop_slot = 7; 6841 } 6842 6843 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6844 int offset = oop_slot*VMRegImpl::stack_slot_size; 6845 6846 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6847 // Store oop in handle area, may be null 6848 str(rOop, Address(sp, offset)); 6849 if (is_receiver) { 6850 *receiver_offset = offset; 6851 } 6852 6853 cmp(rOop, zr); 6854 lea(rHandle, Address(sp, offset)); 6855 // conditionally move a null 6856 csel(rHandle, zr, rHandle, Assembler::EQ); 6857 } 6858 6859 // If arg is on the stack then place it otherwise it is already in correct reg. 6860 if (dst.first()->is_stack()) { 6861 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6862 } 6863 } 6864 6865 // A float arg may have to do float reg int reg conversion 6866 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6867 if (src.first()->is_stack()) { 6868 if (dst.first()->is_stack()) { 6869 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6870 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6871 } else { 6872 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6873 } 6874 } else if (src.first() != dst.first()) { 6875 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6876 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6877 else 6878 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6879 } 6880 } 6881 6882 // A long move 6883 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6884 if (src.first()->is_stack()) { 6885 if (dst.first()->is_stack()) { 6886 // stack to stack 6887 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6888 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6889 } else { 6890 // stack to reg 6891 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6892 } 6893 } else if (dst.first()->is_stack()) { 6894 // reg to stack 6895 // Do we really have to sign extend??? 6896 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6897 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6898 } else { 6899 if (dst.first() != src.first()) { 6900 mov(dst.first()->as_Register(), src.first()->as_Register()); 6901 } 6902 } 6903 } 6904 6905 6906 // A double move 6907 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 6908 if (src.first()->is_stack()) { 6909 if (dst.first()->is_stack()) { 6910 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6911 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6912 } else { 6913 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6914 } 6915 } else if (src.first() != dst.first()) { 6916 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6917 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6918 else 6919 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6920 } 6921 } 6922 6923 // Implements lightweight-locking. 6924 // 6925 // - obj: the object to be locked 6926 // - t1, t2, t3: temporary registers, will be destroyed 6927 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 6928 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 6929 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6930 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 6931 6932 Label push; 6933 const Register top = t1; 6934 const Register mark = t2; 6935 const Register t = t3; 6936 6937 // Preload the markWord. It is important that this is the first 6938 // instruction emitted as it is part of C1's null check semantics. 6939 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 6940 6941 if (UseObjectMonitorTable) { 6942 // Clear cache in case fast locking succeeds. 6943 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 6944 } 6945 6946 // Check if the lock-stack is full. 6947 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6948 cmpw(top, (unsigned)LockStack::end_offset()); 6949 br(Assembler::GE, slow); 6950 6951 // Check for recursion. 6952 subw(t, top, oopSize); 6953 ldr(t, Address(rthread, t)); 6954 cmp(obj, t); 6955 br(Assembler::EQ, push); 6956 6957 // Check header for monitor (0b10). 6958 tst(mark, markWord::monitor_value); 6959 br(Assembler::NE, slow); 6960 6961 // Try to lock. Transition lock bits 0b01 => 0b00 6962 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 6963 orr(mark, mark, markWord::unlocked_value); 6964 eor(t, mark, markWord::unlocked_value); 6965 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 6966 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 6967 br(Assembler::NE, slow); 6968 6969 bind(push); 6970 // After successful lock, push object on lock-stack. 6971 str(obj, Address(rthread, top)); 6972 addw(top, top, oopSize); 6973 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6974 } 6975 6976 // Implements lightweight-unlocking. 6977 // 6978 // - obj: the object to be unlocked 6979 // - t1, t2, t3: temporary registers 6980 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 6981 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 6982 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6983 // cmpxchg clobbers rscratch1. 6984 assert_different_registers(obj, t1, t2, t3, rscratch1); 6985 6986 #ifdef ASSERT 6987 { 6988 // Check for lock-stack underflow. 6989 Label stack_ok; 6990 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6991 cmpw(t1, (unsigned)LockStack::start_offset()); 6992 br(Assembler::GE, stack_ok); 6993 STOP("Lock-stack underflow"); 6994 bind(stack_ok); 6995 } 6996 #endif 6997 6998 Label unlocked, push_and_slow; 6999 const Register top = t1; 7000 const Register mark = t2; 7001 const Register t = t3; 7002 7003 // Check if obj is top of lock-stack. 7004 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7005 subw(top, top, oopSize); 7006 ldr(t, Address(rthread, top)); 7007 cmp(obj, t); 7008 br(Assembler::NE, slow); 7009 7010 // Pop lock-stack. 7011 DEBUG_ONLY(str(zr, Address(rthread, top));) 7012 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7013 7014 // Check if recursive. 7015 subw(t, top, oopSize); 7016 ldr(t, Address(rthread, t)); 7017 cmp(obj, t); 7018 br(Assembler::EQ, unlocked); 7019 7020 // Not recursive. Check header for monitor (0b10). 7021 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7022 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7023 7024 #ifdef ASSERT 7025 // Check header not unlocked (0b01). 7026 Label not_unlocked; 7027 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7028 stop("lightweight_unlock already unlocked"); 7029 bind(not_unlocked); 7030 #endif 7031 7032 // Try to unlock. Transition lock bits 0b00 => 0b01 7033 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7034 orr(t, mark, markWord::unlocked_value); 7035 cmpxchg(obj, mark, t, Assembler::xword, 7036 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7037 br(Assembler::EQ, unlocked); 7038 7039 bind(push_and_slow); 7040 // Restore lock-stack and handle the unlock in runtime. 7041 DEBUG_ONLY(str(obj, Address(rthread, top));) 7042 addw(top, top, oopSize); 7043 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7044 b(slow); 7045 7046 bind(unlocked); 7047 }