1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciInlineKlass.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/resolvedFieldEntry.hpp" 52 #include "runtime/continuation.hpp" 53 #include "runtime/globals.hpp" 54 #include "runtime/icache.hpp" 55 #include "runtime/interfaceSupport.inline.hpp" 56 #include "runtime/javaThread.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/signature_cc.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/globalDefinitions.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 #include "vmreg_aarch64.inline.hpp" 64 #ifdef COMPILER1 65 #include "c1/c1_LIRAssembler.hpp" 66 #endif 67 #ifdef COMPILER2 68 #include "oops/oop.hpp" 69 #include "opto/compile.hpp" 70 #include "opto/node.hpp" 71 #include "opto/output.hpp" 72 #endif 73 74 #include <sys/types.h> 75 76 #ifdef PRODUCT 77 #define BLOCK_COMMENT(str) /* nothing */ 78 #else 79 #define BLOCK_COMMENT(str) block_comment(str) 80 #endif 81 #define STOP(str) stop(str); 82 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 83 84 #ifdef ASSERT 85 extern "C" void disnm(intptr_t p); 86 #endif 87 // Target-dependent relocation processing 88 // 89 // Instruction sequences whose target may need to be retrieved or 90 // patched are distinguished by their leading instruction, sorting 91 // them into three main instruction groups and related subgroups. 92 // 93 // 1) Branch, Exception and System (insn count = 1) 94 // 1a) Unconditional branch (immediate): 95 // b/bl imm19 96 // 1b) Compare & branch (immediate): 97 // cbz/cbnz Rt imm19 98 // 1c) Test & branch (immediate): 99 // tbz/tbnz Rt imm14 100 // 1d) Conditional branch (immediate): 101 // b.cond imm19 102 // 103 // 2) Loads and Stores (insn count = 1) 104 // 2a) Load register literal: 105 // ldr Rt imm19 106 // 107 // 3) Data Processing Immediate (insn count = 2 or 3) 108 // 3a) PC-rel. addressing 109 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 110 // adr/adrp Rx imm21; add Ry Rx #imm12 111 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 112 // adr/adrp Rx imm21 113 // adr/adrp Rx imm21; movk Rx #imm16<<32 114 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 115 // The latter form can only happen when the target is an 116 // ExternalAddress, and (by definition) ExternalAddresses don't 117 // move. Because of that property, there is never any need to 118 // patch the last of the three instructions. However, 119 // MacroAssembler::target_addr_for_insn takes all three 120 // instructions into account and returns the correct address. 121 // 3b) Move wide (immediate) 122 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 123 // 124 // A switch on a subset of the instruction's bits provides an 125 // efficient dispatch to these subcases. 126 // 127 // insn[28:26] -> main group ('x' == don't care) 128 // 00x -> UNALLOCATED 129 // 100 -> Data Processing Immediate 130 // 101 -> Branch, Exception and System 131 // x1x -> Loads and Stores 132 // 133 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 134 // n.b. in some cases extra bits need to be checked to verify the 135 // instruction is as expected 136 // 137 // 1) ... xx101x Branch, Exception and System 138 // 1a) 00___x Unconditional branch (immediate) 139 // 1b) 01___0 Compare & branch (immediate) 140 // 1c) 01___1 Test & branch (immediate) 141 // 1d) 10___0 Conditional branch (immediate) 142 // other Should not happen 143 // 144 // 2) ... xxx1x0 Loads and Stores 145 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 146 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 147 // strictly should be 64 bit non-FP/SIMD i.e. 148 // 0101_000 (i.e. requires insn[31:24] == 01011000) 149 // 150 // 3) ... xx100x Data Processing Immediate 151 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 152 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 153 // strictly should be 64 bit movz #imm16<<0 154 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 155 // 156 class RelocActions { 157 protected: 158 typedef int (*reloc_insn)(address insn_addr, address &target); 159 160 virtual reloc_insn adrpMem() = 0; 161 virtual reloc_insn adrpAdd() = 0; 162 virtual reloc_insn adrpMovk() = 0; 163 164 const address _insn_addr; 165 const uint32_t _insn; 166 167 static uint32_t insn_at(address insn_addr, int n) { 168 return ((uint32_t*)insn_addr)[n]; 169 } 170 uint32_t insn_at(int n) const { 171 return insn_at(_insn_addr, n); 172 } 173 174 public: 175 176 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 177 RelocActions(address insn_addr, uint32_t insn) 178 : _insn_addr(insn_addr), _insn(insn) {} 179 180 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 181 virtual int conditionalBranch(address insn_addr, address &target) = 0; 182 virtual int testAndBranch(address insn_addr, address &target) = 0; 183 virtual int loadStore(address insn_addr, address &target) = 0; 184 virtual int adr(address insn_addr, address &target) = 0; 185 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 186 virtual int immediate(address insn_addr, address &target) = 0; 187 virtual void verify(address insn_addr, address &target) = 0; 188 189 int ALWAYSINLINE run(address insn_addr, address &target) { 190 int instructions = 1; 191 192 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 193 switch(dispatch) { 194 case 0b001010: 195 case 0b001011: { 196 instructions = unconditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b101010: // Conditional branch (immediate) 200 case 0b011010: { // Compare & branch (immediate) 201 instructions = conditionalBranch(insn_addr, target); 202 break; 203 } 204 case 0b011011: { 205 instructions = testAndBranch(insn_addr, target); 206 break; 207 } 208 case 0b001100: 209 case 0b001110: 210 case 0b011100: 211 case 0b011110: 212 case 0b101100: 213 case 0b101110: 214 case 0b111100: 215 case 0b111110: { 216 // load/store 217 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 218 // Load register (literal) 219 instructions = loadStore(insn_addr, target); 220 break; 221 } else { 222 // nothing to do 223 assert(target == nullptr, "did not expect to relocate target for polling page load"); 224 } 225 break; 226 } 227 case 0b001000: 228 case 0b011000: 229 case 0b101000: 230 case 0b111000: { 231 // adr/adrp 232 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 233 int shift = Instruction_aarch64::extract(_insn, 31, 31); 234 if (shift) { 235 uint32_t insn2 = insn_at(1); 236 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 9, 5)) { 239 instructions = adrp(insn_addr, target, adrpMem()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpAdd()); 244 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 245 Instruction_aarch64::extract(_insn, 4, 0) == 246 Instruction_aarch64::extract(insn2, 4, 0)) { 247 instructions = adrp(insn_addr, target, adrpMovk()); 248 } else { 249 ShouldNotReachHere(); 250 } 251 } else { 252 instructions = adr(insn_addr, target); 253 } 254 break; 255 } 256 case 0b001001: 257 case 0b011001: 258 case 0b101001: 259 case 0b111001: { 260 instructions = immediate(insn_addr, target); 261 break; 262 } 263 default: { 264 ShouldNotReachHere(); 265 } 266 } 267 268 verify(insn_addr, target); 269 return instructions * NativeInstruction::instruction_size; 270 } 271 }; 272 273 class Patcher : public RelocActions { 274 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 275 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 276 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 277 278 public: 279 Patcher(address insn_addr) : RelocActions(insn_addr) {} 280 281 virtual int unconditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 284 return 1; 285 } 286 virtual int conditionalBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 289 return 1; 290 } 291 virtual int testAndBranch(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 294 return 1; 295 } 296 virtual int loadStore(address insn_addr, address &target) { 297 intptr_t offset = (target - insn_addr) >> 2; 298 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 299 return 1; 300 } 301 virtual int adr(address insn_addr, address &target) { 302 #ifdef ASSERT 303 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 304 #endif 305 // PC-rel. addressing 306 ptrdiff_t offset = target - insn_addr; 307 int offset_lo = offset & 3; 308 offset >>= 2; 309 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 310 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 311 return 1; 312 } 313 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 314 int instructions = 1; 315 #ifdef ASSERT 316 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 317 #endif 318 ptrdiff_t offset = target - insn_addr; 319 instructions = 2; 320 precond(inner != nullptr); 321 // Give the inner reloc a chance to modify the target. 322 address adjusted_target = target; 323 instructions = (*inner)(insn_addr, adjusted_target); 324 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 325 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 326 offset = adr_page - pc_page; 327 int offset_lo = offset & 3; 328 offset >>= 2; 329 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 330 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 331 return instructions; 332 } 333 static int adrpMem_impl(address insn_addr, address &target) { 334 uintptr_t dest = (uintptr_t)target; 335 int offset_lo = dest & 0xfff; 336 uint32_t insn2 = insn_at(insn_addr, 1); 337 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 338 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 339 guarantee(((dest >> size) << size) == dest, "misaligned target"); 340 return 2; 341 } 342 static int adrpAdd_impl(address insn_addr, address &target) { 343 uintptr_t dest = (uintptr_t)target; 344 int offset_lo = dest & 0xfff; 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 346 return 2; 347 } 348 static int adrpMovk_impl(address insn_addr, address &target) { 349 uintptr_t dest = uintptr_t(target); 350 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 351 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 352 target = address(dest); 353 return 2; 354 } 355 virtual int immediate(address insn_addr, address &target) { 356 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 357 uint64_t dest = (uint64_t)target; 358 // Move wide constant 359 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 360 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 361 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 362 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 363 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 364 return 3; 365 } 366 virtual void verify(address insn_addr, address &target) { 367 #ifdef ASSERT 368 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 369 if (!(address_is == target)) { 370 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 371 disnm((intptr_t)insn_addr); 372 assert(address_is == target, "should be"); 373 } 374 #endif 375 } 376 }; 377 378 // If insn1 and insn2 use the same register to form an address, either 379 // by an offsetted LDR or a simple ADD, return the offset. If the 380 // second instruction is an LDR, the offset may be scaled. 381 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 382 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 383 Instruction_aarch64::extract(insn1, 4, 0) == 384 Instruction_aarch64::extract(insn2, 9, 5)) { 385 // Load/store register (unsigned immediate) 386 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 387 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 388 byte_offset <<= size; 389 return true; 390 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 391 Instruction_aarch64::extract(insn1, 4, 0) == 392 Instruction_aarch64::extract(insn2, 4, 0)) { 393 // add (immediate) 394 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 395 return true; 396 } 397 return false; 398 } 399 400 class AArch64Decoder : public RelocActions { 401 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 402 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 403 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 404 405 public: 406 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 407 408 virtual int loadStore(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int unconditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 415 target = insn_addr + (offset << 2); 416 return 1; 417 } 418 virtual int conditionalBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int testAndBranch(address insn_addr, address &target) { 424 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 425 target = address(((uint64_t)insn_addr + (offset << 2))); 426 return 1; 427 } 428 virtual int adr(address insn_addr, address &target) { 429 // PC-rel. addressing 430 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 431 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 432 target = address((uint64_t)insn_addr + offset); 433 return 1; 434 } 435 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 436 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 437 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 438 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 439 int shift = 12; 440 offset <<= shift; 441 uint64_t target_page = ((uint64_t)insn_addr) + offset; 442 target_page &= ((uint64_t)-1) << shift; 443 uint32_t insn2 = insn_at(1); 444 target = address(target_page); 445 precond(inner != nullptr); 446 (*inner)(insn_addr, target); 447 return 2; 448 } 449 static int adrpMem_impl(address insn_addr, address &target) { 450 uint32_t insn2 = insn_at(insn_addr, 1); 451 // Load/store register (unsigned immediate) 452 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 453 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 454 byte_offset <<= size; 455 target += byte_offset; 456 return 2; 457 } 458 static int adrpAdd_impl(address insn_addr, address &target) { 459 uint32_t insn2 = insn_at(insn_addr, 1); 460 // add (immediate) 461 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 462 target += byte_offset; 463 return 2; 464 } 465 static int adrpMovk_impl(address insn_addr, address &target) { 466 uint32_t insn2 = insn_at(insn_addr, 1); 467 uint64_t dest = uint64_t(target); 468 dest = (dest & 0xffff0000ffffffff) | 469 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 470 target = address(dest); 471 472 // We know the destination 4k page. Maybe we have a third 473 // instruction. 474 uint32_t insn = insn_at(insn_addr, 0); 475 uint32_t insn3 = insn_at(insn_addr, 2); 476 ptrdiff_t byte_offset; 477 if (offset_for(insn, insn3, byte_offset)) { 478 target += byte_offset; 479 return 3; 480 } else { 481 return 2; 482 } 483 } 484 virtual int immediate(address insn_addr, address &target) { 485 uint32_t *insns = (uint32_t *)insn_addr; 486 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 487 // Move wide constant: movz, movk, movk. See movptr(). 488 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 490 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 491 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 492 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 493 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 494 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 495 return 3; 496 } 497 virtual void verify(address insn_addr, address &target) { 498 } 499 }; 500 501 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 502 AArch64Decoder decoder(insn_addr, insn); 503 address target; 504 decoder.run(insn_addr, target); 505 return target; 506 } 507 508 // Patch any kind of instruction; there may be several instructions. 509 // Return the total length (in bytes) of the instructions. 510 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 511 Patcher patcher(insn_addr); 512 return patcher.run(insn_addr, target); 513 } 514 515 int MacroAssembler::patch_oop(address insn_addr, address o) { 516 int instructions; 517 unsigned insn = *(unsigned*)insn_addr; 518 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 519 520 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 521 // narrow OOPs by setting the upper 16 bits in the first 522 // instruction. 523 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 524 // Move narrow OOP 525 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 526 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 527 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 528 instructions = 2; 529 } else { 530 // Move wide OOP 531 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 532 uintptr_t dest = (uintptr_t)o; 533 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 534 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 535 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 536 instructions = 3; 537 } 538 return instructions * NativeInstruction::instruction_size; 539 } 540 541 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 542 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 543 // We encode narrow ones by setting the upper 16 bits in the first 544 // instruction. 545 NativeInstruction *insn = nativeInstruction_at(insn_addr); 546 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 547 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 548 549 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 550 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 551 return 2 * NativeInstruction::instruction_size; 552 } 553 554 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 555 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 556 return nullptr; 557 } 558 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 559 } 560 561 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) { 562 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 if (AOTCodeCache::is_on_for_dump()) { 679 return true; 680 } 681 // codecache size <= 128M 682 if (!MacroAssembler::far_branches()) { 683 return false; 684 } 685 // codecache size > 240M 686 if (MacroAssembler::codestub_branch_needs_far_jump()) { 687 return true; 688 } 689 // codecache size: 128M..240M 690 return !CodeCache::is_non_nmethod(addr); 691 } 692 693 void MacroAssembler::far_call(Address entry, Register tmp) { 694 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 695 assert(CodeCache::find_blob(entry.target()) != nullptr, 696 "destination of far call not found in code cache"); 697 assert(entry.rspec().type() == relocInfo::external_word_type 698 || entry.rspec().type() == relocInfo::runtime_call_type 699 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 700 if (target_needs_far_branch(entry.target())) { 701 uint64_t offset; 702 // We can use ADRP here because we know that the total size of 703 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 704 adrp(tmp, entry, offset); 705 add(tmp, tmp, offset); 706 blr(tmp); 707 } else { 708 bl(entry); 709 } 710 } 711 712 int MacroAssembler::far_jump(Address entry, Register tmp) { 713 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 714 assert(CodeCache::find_blob(entry.target()) != nullptr, 715 "destination of far call not found in code cache"); 716 assert(entry.rspec().type() == relocInfo::external_word_type 717 || entry.rspec().type() == relocInfo::runtime_call_type 718 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 719 address start = pc(); 720 if (target_needs_far_branch(entry.target())) { 721 uint64_t offset; 722 // We can use ADRP here because we know that the total size of 723 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 724 adrp(tmp, entry, offset); 725 add(tmp, tmp, offset); 726 br(tmp); 727 } else { 728 b(entry); 729 } 730 return pc() - start; 731 } 732 733 void MacroAssembler::reserved_stack_check() { 734 // testing if reserved zone needs to be enabled 735 Label no_reserved_zone_enabling; 736 737 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 738 cmp(sp, rscratch1); 739 br(Assembler::LO, no_reserved_zone_enabling); 740 741 enter(); // LR and FP are live. 742 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 743 mov(c_rarg0, rthread); 744 blr(rscratch1); 745 leave(); 746 747 // We have already removed our own frame. 748 // throw_delayed_StackOverflowError will think that it's been 749 // called by our caller. 750 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 751 br(rscratch1); 752 should_not_reach_here(); 753 754 bind(no_reserved_zone_enabling); 755 } 756 757 static void pass_arg0(MacroAssembler* masm, Register arg) { 758 if (c_rarg0 != arg ) { 759 masm->mov(c_rarg0, arg); 760 } 761 } 762 763 static void pass_arg1(MacroAssembler* masm, Register arg) { 764 if (c_rarg1 != arg ) { 765 masm->mov(c_rarg1, arg); 766 } 767 } 768 769 static void pass_arg2(MacroAssembler* masm, Register arg) { 770 if (c_rarg2 != arg ) { 771 masm->mov(c_rarg2, arg); 772 } 773 } 774 775 static void pass_arg3(MacroAssembler* masm, Register arg) { 776 if (c_rarg3 != arg ) { 777 masm->mov(c_rarg3, arg); 778 } 779 } 780 781 static bool is_preemptable(address entry_point) { 782 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 783 } 784 785 void MacroAssembler::call_VM_base(Register oop_result, 786 Register java_thread, 787 Register last_java_sp, 788 address entry_point, 789 int number_of_arguments, 790 bool check_exceptions) { 791 // determine java_thread register 792 if (!java_thread->is_valid()) { 793 java_thread = rthread; 794 } 795 796 // determine last_java_sp register 797 if (!last_java_sp->is_valid()) { 798 last_java_sp = esp; 799 } 800 801 // debugging support 802 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 803 assert(java_thread == rthread, "unexpected register"); 804 #ifdef ASSERT 805 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 806 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 807 #endif // ASSERT 808 809 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 810 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 811 812 // push java thread (becomes first argument of C function) 813 814 mov(c_rarg0, java_thread); 815 816 // set last Java frame before call 817 assert(last_java_sp != rfp, "can't use rfp"); 818 819 Label l; 820 if (is_preemptable(entry_point)) { 821 // skip setting last_pc since we already set it to desired value. 822 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 823 } else { 824 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 825 } 826 827 // do the call, remove parameters 828 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 829 830 // lr could be poisoned with PAC signature during throw_pending_exception 831 // if it was tail-call optimized by compiler, since lr is not callee-saved 832 // reload it with proper value 833 adr(lr, l); 834 835 // reset last Java frame 836 // Only interpreter should have to clear fp 837 reset_last_Java_frame(true); 838 839 // C++ interp handles this in the interpreter 840 check_and_handle_popframe(java_thread); 841 check_and_handle_earlyret(java_thread); 842 843 if (check_exceptions) { 844 // check for pending exceptions (java_thread is set upon return) 845 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 846 Label ok; 847 cbz(rscratch1, ok); 848 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 849 br(rscratch1); 850 bind(ok); 851 } 852 853 // get oop result if there is one and reset the value in the thread 854 if (oop_result->is_valid()) { 855 get_vm_result_oop(oop_result, java_thread); 856 } 857 } 858 859 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 860 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 861 } 862 863 // Check the entry target is always reachable from any branch. 864 static bool is_always_within_branch_range(Address entry) { 865 if (AOTCodeCache::is_on_for_dump()) { 866 return false; 867 } 868 const address target = entry.target(); 869 870 if (!CodeCache::contains(target)) { 871 // We always use trampolines for callees outside CodeCache. 872 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 873 return false; 874 } 875 876 if (!MacroAssembler::far_branches()) { 877 return true; 878 } 879 880 if (entry.rspec().type() == relocInfo::runtime_call_type) { 881 // Runtime calls are calls of a non-compiled method (stubs, adapters). 882 // Non-compiled methods stay forever in CodeCache. 883 // We check whether the longest possible branch is within the branch range. 884 assert(CodeCache::find_blob(target) != nullptr && 885 !CodeCache::find_blob(target)->is_nmethod(), 886 "runtime call of compiled method"); 887 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 888 const address left_longest_branch_start = CodeCache::low_bound(); 889 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 890 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 891 return is_reachable; 892 } 893 894 return false; 895 } 896 897 // Maybe emit a call via a trampoline. If the code cache is small 898 // trampolines won't be emitted. 899 address MacroAssembler::trampoline_call(Address entry) { 900 assert(entry.rspec().type() == relocInfo::runtime_call_type 901 || entry.rspec().type() == relocInfo::opt_virtual_call_type 902 || entry.rspec().type() == relocInfo::static_call_type 903 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 904 905 address target = entry.target(); 906 907 if (!is_always_within_branch_range(entry)) { 908 if (!in_scratch_emit_size()) { 909 // We don't want to emit a trampoline if C2 is generating dummy 910 // code during its branch shortening phase. 911 if (entry.rspec().type() == relocInfo::runtime_call_type) { 912 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 913 code()->share_trampoline_for(entry.target(), offset()); 914 } else { 915 address stub = emit_trampoline_stub(offset(), target); 916 if (stub == nullptr) { 917 postcond(pc() == badAddress); 918 return nullptr; // CodeCache is full 919 } 920 } 921 } 922 target = pc(); 923 } 924 925 address call_pc = pc(); 926 relocate(entry.rspec()); 927 bl(target); 928 929 postcond(pc() != badAddress); 930 return call_pc; 931 } 932 933 // Emit a trampoline stub for a call to a target which is too far away. 934 // 935 // code sequences: 936 // 937 // call-site: 938 // branch-and-link to <destination> or <trampoline stub> 939 // 940 // Related trampoline stub for this call site in the stub section: 941 // load the call target from the constant pool 942 // branch (LR still points to the call site above) 943 944 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 945 address dest) { 946 // Max stub size: alignment nop, TrampolineStub. 947 address stub = start_a_stub(max_trampoline_stub_size()); 948 if (stub == nullptr) { 949 return nullptr; // CodeBuffer::expand failed 950 } 951 952 // Create a trampoline stub relocation which relates this trampoline stub 953 // with the call instruction at insts_call_instruction_offset in the 954 // instructions code-section. 955 align(wordSize); 956 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 957 + insts_call_instruction_offset)); 958 const int stub_start_offset = offset(); 959 960 // Now, create the trampoline stub's code: 961 // - load the call 962 // - call 963 Label target; 964 ldr(rscratch1, target); 965 br(rscratch1); 966 bind(target); 967 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 968 "should be"); 969 emit_int64((int64_t)dest); 970 971 const address stub_start_addr = addr_at(stub_start_offset); 972 973 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 974 975 end_a_stub(); 976 return stub_start_addr; 977 } 978 979 int MacroAssembler::max_trampoline_stub_size() { 980 // Max stub size: alignment nop, TrampolineStub. 981 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 982 } 983 984 void MacroAssembler::emit_static_call_stub() { 985 // CompiledDirectCall::set_to_interpreted knows the 986 // exact layout of this stub. 987 988 isb(); 989 mov_metadata(rmethod, nullptr); 990 991 // Jump to the entry point of the c2i stub. 992 if (codestub_branch_needs_far_jump()) { 993 movptr(rscratch1, 0); 994 br(rscratch1); 995 } else { 996 b(pc()); 997 } 998 } 999 1000 int MacroAssembler::static_call_stub_size() { 1001 if (!codestub_branch_needs_far_jump()) { 1002 // isb; movk; movz; movz; b 1003 return 5 * NativeInstruction::instruction_size; 1004 } 1005 // isb; movk; movz; movz; movk; movz; movz; br 1006 return 8 * NativeInstruction::instruction_size; 1007 } 1008 1009 void MacroAssembler::c2bool(Register x) { 1010 // implements x == 0 ? 0 : 1 1011 // note: must only look at least-significant byte of x 1012 // since C-style booleans are stored in one byte 1013 // only! (was bug) 1014 tst(x, 0xff); 1015 cset(x, Assembler::NE); 1016 } 1017 1018 address MacroAssembler::ic_call(address entry, jint method_index) { 1019 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1020 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1021 return trampoline_call(Address(entry, rh)); 1022 } 1023 1024 int MacroAssembler::ic_check_size() { 1025 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1026 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1027 return NativeInstruction::instruction_size * (7 + extra_instructions); 1028 } else { 1029 return NativeInstruction::instruction_size * (5 + extra_instructions); 1030 } 1031 } 1032 1033 int MacroAssembler::ic_check(int end_alignment) { 1034 Register receiver = j_rarg0; 1035 Register data = rscratch2; 1036 Register tmp1 = rscratch1; 1037 Register tmp2 = r10; 1038 1039 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1040 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1041 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1042 // before the inline cache check here, and not after 1043 align(end_alignment, offset() + ic_check_size()); 1044 1045 int uep_offset = offset(); 1046 1047 if (UseCompactObjectHeaders) { 1048 load_narrow_klass_compact(tmp1, receiver); 1049 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1050 cmpw(tmp1, tmp2); 1051 } else if (UseCompressedClassPointers) { 1052 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1053 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1054 cmpw(tmp1, tmp2); 1055 } else { 1056 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1057 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1058 cmp(tmp1, tmp2); 1059 } 1060 1061 Label dont; 1062 br(Assembler::EQ, dont); 1063 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1064 bind(dont); 1065 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1066 1067 return uep_offset; 1068 } 1069 1070 // Implementation of call_VM versions 1071 1072 void MacroAssembler::call_VM(Register oop_result, 1073 address entry_point, 1074 bool check_exceptions) { 1075 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1076 } 1077 1078 void MacroAssembler::call_VM(Register oop_result, 1079 address entry_point, 1080 Register arg_1, 1081 bool check_exceptions) { 1082 pass_arg1(this, arg_1); 1083 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1084 } 1085 1086 void MacroAssembler::call_VM(Register oop_result, 1087 address entry_point, 1088 Register arg_1, 1089 Register arg_2, 1090 bool check_exceptions) { 1091 assert_different_registers(arg_1, c_rarg2); 1092 pass_arg2(this, arg_2); 1093 pass_arg1(this, arg_1); 1094 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1095 } 1096 1097 void MacroAssembler::call_VM(Register oop_result, 1098 address entry_point, 1099 Register arg_1, 1100 Register arg_2, 1101 Register arg_3, 1102 bool check_exceptions) { 1103 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1104 assert_different_registers(arg_2, c_rarg3); 1105 pass_arg3(this, arg_3); 1106 1107 pass_arg2(this, arg_2); 1108 1109 pass_arg1(this, arg_1); 1110 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1111 } 1112 1113 void MacroAssembler::call_VM(Register oop_result, 1114 Register last_java_sp, 1115 address entry_point, 1116 int number_of_arguments, 1117 bool check_exceptions) { 1118 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1119 } 1120 1121 void MacroAssembler::call_VM(Register oop_result, 1122 Register last_java_sp, 1123 address entry_point, 1124 Register arg_1, 1125 bool check_exceptions) { 1126 pass_arg1(this, arg_1); 1127 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1128 } 1129 1130 void MacroAssembler::call_VM(Register oop_result, 1131 Register last_java_sp, 1132 address entry_point, 1133 Register arg_1, 1134 Register arg_2, 1135 bool check_exceptions) { 1136 1137 assert_different_registers(arg_1, c_rarg2); 1138 pass_arg2(this, arg_2); 1139 pass_arg1(this, arg_1); 1140 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1141 } 1142 1143 void MacroAssembler::call_VM(Register oop_result, 1144 Register last_java_sp, 1145 address entry_point, 1146 Register arg_1, 1147 Register arg_2, 1148 Register arg_3, 1149 bool check_exceptions) { 1150 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1151 assert_different_registers(arg_2, c_rarg3); 1152 pass_arg3(this, arg_3); 1153 pass_arg2(this, arg_2); 1154 pass_arg1(this, arg_1); 1155 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1156 } 1157 1158 1159 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1160 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1161 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1162 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1163 } 1164 1165 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1166 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1167 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1168 } 1169 1170 void MacroAssembler::align(int modulus) { 1171 align(modulus, offset()); 1172 } 1173 1174 // Ensure that the code at target bytes offset from the current offset() is aligned 1175 // according to modulus. 1176 void MacroAssembler::align(int modulus, int target) { 1177 int delta = target - offset(); 1178 while ((offset() + delta) % modulus != 0) nop(); 1179 } 1180 1181 void MacroAssembler::post_call_nop() { 1182 if (!Continuations::enabled()) { 1183 return; 1184 } 1185 InstructionMark im(this); 1186 relocate(post_call_nop_Relocation::spec()); 1187 InlineSkippedInstructionsCounter skipCounter(this); 1188 nop(); 1189 movk(zr, 0); 1190 movk(zr, 0); 1191 } 1192 1193 // these are no-ops overridden by InterpreterMacroAssembler 1194 1195 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1196 1197 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1198 1199 // Look up the method for a megamorphic invokeinterface call. 1200 // The target method is determined by <intf_klass, itable_index>. 1201 // The receiver klass is in recv_klass. 1202 // On success, the result will be in method_result, and execution falls through. 1203 // On failure, execution transfers to the given label. 1204 void MacroAssembler::lookup_interface_method(Register recv_klass, 1205 Register intf_klass, 1206 RegisterOrConstant itable_index, 1207 Register method_result, 1208 Register scan_temp, 1209 Label& L_no_such_interface, 1210 bool return_method) { 1211 assert_different_registers(recv_klass, intf_klass, scan_temp); 1212 assert_different_registers(method_result, intf_klass, scan_temp); 1213 assert(recv_klass != method_result || !return_method, 1214 "recv_klass can be destroyed when method isn't needed"); 1215 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1216 "caller must use same register for non-constant itable index as for method"); 1217 1218 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1219 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1220 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1221 int scan_step = itableOffsetEntry::size() * wordSize; 1222 int vte_size = vtableEntry::size_in_bytes(); 1223 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1224 1225 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1226 1227 // Could store the aligned, prescaled offset in the klass. 1228 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1229 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1230 add(scan_temp, scan_temp, vtable_base); 1231 1232 if (return_method) { 1233 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1234 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1235 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1236 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1237 if (itentry_off) 1238 add(recv_klass, recv_klass, itentry_off); 1239 } 1240 1241 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1242 // if (scan->interface() == intf) { 1243 // result = (klass + scan->offset() + itable_index); 1244 // } 1245 // } 1246 Label search, found_method; 1247 1248 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1249 cmp(intf_klass, method_result); 1250 br(Assembler::EQ, found_method); 1251 bind(search); 1252 // Check that the previous entry is non-null. A null entry means that 1253 // the receiver class doesn't implement the interface, and wasn't the 1254 // same as when the caller was compiled. 1255 cbz(method_result, L_no_such_interface); 1256 if (itableOffsetEntry::interface_offset() != 0) { 1257 add(scan_temp, scan_temp, scan_step); 1258 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1259 } else { 1260 ldr(method_result, Address(pre(scan_temp, scan_step))); 1261 } 1262 cmp(intf_klass, method_result); 1263 br(Assembler::NE, search); 1264 1265 bind(found_method); 1266 1267 // Got a hit. 1268 if (return_method) { 1269 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1270 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1271 } 1272 } 1273 1274 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1275 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1276 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1277 // The target method is determined by <holder_klass, itable_index>. 1278 // The receiver klass is in recv_klass. 1279 // On success, the result will be in method_result, and execution falls through. 1280 // On failure, execution transfers to the given label. 1281 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1282 Register holder_klass, 1283 Register resolved_klass, 1284 Register method_result, 1285 Register temp_itbl_klass, 1286 Register scan_temp, 1287 int itable_index, 1288 Label& L_no_such_interface) { 1289 // 'method_result' is only used as output register at the very end of this method. 1290 // Until then we can reuse it as 'holder_offset'. 1291 Register holder_offset = method_result; 1292 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1293 1294 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1295 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1296 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1297 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1298 1299 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1300 1301 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1302 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1303 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1304 // temp_itbl_klass = itable[0]._interface; 1305 int vtblEntrySize = vtableEntry::size_in_bytes(); 1306 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1307 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1308 mov(holder_offset, zr); 1309 // scan_temp = &(itable[0]._interface) 1310 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1311 1312 // Initial checks: 1313 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1314 // - if (itable[0] == holder_klass), shortcut to "holder found" 1315 // - if (itable[0] == 0), no such interface 1316 cmp(resolved_klass, holder_klass); 1317 br(Assembler::NE, L_loop_search_resolved_entry); 1318 cmp(holder_klass, temp_itbl_klass); 1319 br(Assembler::EQ, L_holder_found); 1320 cbz(temp_itbl_klass, L_no_such_interface); 1321 1322 // Loop: Look for holder_klass record in itable 1323 // do { 1324 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1325 // if (temp_itbl_klass == holder_klass) { 1326 // goto L_holder_found; // Found! 1327 // } 1328 // } while (temp_itbl_klass != 0); 1329 // goto L_no_such_interface // Not found. 1330 Label L_search_holder; 1331 bind(L_search_holder); 1332 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1333 cmp(holder_klass, temp_itbl_klass); 1334 br(Assembler::EQ, L_holder_found); 1335 cbnz(temp_itbl_klass, L_search_holder); 1336 1337 b(L_no_such_interface); 1338 1339 // Loop: Look for resolved_class record in itable 1340 // while (true) { 1341 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1342 // if (temp_itbl_klass == 0) { 1343 // goto L_no_such_interface; 1344 // } 1345 // if (temp_itbl_klass == resolved_klass) { 1346 // goto L_resolved_found; // Found! 1347 // } 1348 // if (temp_itbl_klass == holder_klass) { 1349 // holder_offset = scan_temp; 1350 // } 1351 // } 1352 // 1353 Label L_loop_search_resolved; 1354 bind(L_loop_search_resolved); 1355 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1356 bind(L_loop_search_resolved_entry); 1357 cbz(temp_itbl_klass, L_no_such_interface); 1358 cmp(resolved_klass, temp_itbl_klass); 1359 br(Assembler::EQ, L_resolved_found); 1360 cmp(holder_klass, temp_itbl_klass); 1361 br(Assembler::NE, L_loop_search_resolved); 1362 mov(holder_offset, scan_temp); 1363 b(L_loop_search_resolved); 1364 1365 // See if we already have a holder klass. If not, go and scan for it. 1366 bind(L_resolved_found); 1367 cbz(holder_offset, L_search_holder); 1368 mov(scan_temp, holder_offset); 1369 1370 // Finally, scan_temp contains holder_klass vtable offset 1371 bind(L_holder_found); 1372 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1373 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1374 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1375 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1376 } 1377 1378 // virtual method calling 1379 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1380 RegisterOrConstant vtable_index, 1381 Register method_result) { 1382 assert(vtableEntry::size() * wordSize == 8, 1383 "adjust the scaling in the code below"); 1384 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1385 1386 if (vtable_index.is_register()) { 1387 lea(method_result, Address(recv_klass, 1388 vtable_index.as_register(), 1389 Address::lsl(LogBytesPerWord))); 1390 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1391 } else { 1392 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1393 ldr(method_result, 1394 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1395 } 1396 } 1397 1398 void MacroAssembler::check_klass_subtype(Register sub_klass, 1399 Register super_klass, 1400 Register temp_reg, 1401 Label& L_success) { 1402 Label L_failure; 1403 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1404 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1405 bind(L_failure); 1406 } 1407 1408 1409 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1410 Register super_klass, 1411 Register temp_reg, 1412 Label* L_success, 1413 Label* L_failure, 1414 Label* L_slow_path, 1415 Register super_check_offset) { 1416 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1417 bool must_load_sco = ! super_check_offset->is_valid(); 1418 if (must_load_sco) { 1419 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1420 } 1421 1422 Label L_fallthrough; 1423 int label_nulls = 0; 1424 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1425 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1426 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1427 assert(label_nulls <= 1, "at most one null in the batch"); 1428 1429 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1430 Address super_check_offset_addr(super_klass, sco_offset); 1431 1432 // Hacked jmp, which may only be used just before L_fallthrough. 1433 #define final_jmp(label) \ 1434 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1435 else b(label) /*omit semi*/ 1436 1437 // If the pointers are equal, we are done (e.g., String[] elements). 1438 // This self-check enables sharing of secondary supertype arrays among 1439 // non-primary types such as array-of-interface. Otherwise, each such 1440 // type would need its own customized SSA. 1441 // We move this check to the front of the fast path because many 1442 // type checks are in fact trivially successful in this manner, 1443 // so we get a nicely predicted branch right at the start of the check. 1444 cmp(sub_klass, super_klass); 1445 br(Assembler::EQ, *L_success); 1446 1447 // Check the supertype display: 1448 if (must_load_sco) { 1449 ldrw(temp_reg, super_check_offset_addr); 1450 super_check_offset = temp_reg; 1451 } 1452 1453 Address super_check_addr(sub_klass, super_check_offset); 1454 ldr(rscratch1, super_check_addr); 1455 cmp(super_klass, rscratch1); // load displayed supertype 1456 br(Assembler::EQ, *L_success); 1457 1458 // This check has worked decisively for primary supers. 1459 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1460 // (Secondary supers are interfaces and very deeply nested subtypes.) 1461 // This works in the same check above because of a tricky aliasing 1462 // between the super_cache and the primary super display elements. 1463 // (The 'super_check_addr' can address either, as the case requires.) 1464 // Note that the cache is updated below if it does not help us find 1465 // what we need immediately. 1466 // So if it was a primary super, we can just fail immediately. 1467 // Otherwise, it's the slow path for us (no success at this point). 1468 1469 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1470 if (L_failure == &L_fallthrough) { 1471 cbz(rscratch1, *L_slow_path); 1472 } else { 1473 cbnz(rscratch1, *L_failure); 1474 final_jmp(*L_slow_path); 1475 } 1476 1477 bind(L_fallthrough); 1478 1479 #undef final_jmp 1480 } 1481 1482 // These two are taken from x86, but they look generally useful 1483 1484 // scans count pointer sized words at [addr] for occurrence of value, 1485 // generic 1486 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1487 Register scratch) { 1488 Label Lloop, Lexit; 1489 cbz(count, Lexit); 1490 bind(Lloop); 1491 ldr(scratch, post(addr, wordSize)); 1492 cmp(value, scratch); 1493 br(EQ, Lexit); 1494 sub(count, count, 1); 1495 cbnz(count, Lloop); 1496 bind(Lexit); 1497 } 1498 1499 // scans count 4 byte words at [addr] for occurrence of value, 1500 // generic 1501 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1502 Register scratch) { 1503 Label Lloop, Lexit; 1504 cbz(count, Lexit); 1505 bind(Lloop); 1506 ldrw(scratch, post(addr, wordSize)); 1507 cmpw(value, scratch); 1508 br(EQ, Lexit); 1509 sub(count, count, 1); 1510 cbnz(count, Lloop); 1511 bind(Lexit); 1512 } 1513 1514 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1515 Register super_klass, 1516 Register temp_reg, 1517 Register temp2_reg, 1518 Label* L_success, 1519 Label* L_failure, 1520 bool set_cond_codes) { 1521 // NB! Callers may assume that, when temp2_reg is a valid register, 1522 // this code sets it to a nonzero value. 1523 1524 assert_different_registers(sub_klass, super_klass, temp_reg); 1525 if (temp2_reg != noreg) 1526 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1527 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1528 1529 Label L_fallthrough; 1530 int label_nulls = 0; 1531 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1532 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1533 assert(label_nulls <= 1, "at most one null in the batch"); 1534 1535 // a couple of useful fields in sub_klass: 1536 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1537 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1538 Address secondary_supers_addr(sub_klass, ss_offset); 1539 Address super_cache_addr( sub_klass, sc_offset); 1540 1541 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1542 1543 // Do a linear scan of the secondary super-klass chain. 1544 // This code is rarely used, so simplicity is a virtue here. 1545 // The repne_scan instruction uses fixed registers, which we must spill. 1546 // Don't worry too much about pre-existing connections with the input regs. 1547 1548 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1549 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1550 1551 RegSet pushed_registers; 1552 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1553 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1554 1555 if (super_klass != r0) { 1556 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1557 } 1558 1559 push(pushed_registers, sp); 1560 1561 // Get super_klass value into r0 (even if it was in r5 or r2). 1562 if (super_klass != r0) { 1563 mov(r0, super_klass); 1564 } 1565 1566 #ifndef PRODUCT 1567 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1568 #endif //PRODUCT 1569 1570 // We will consult the secondary-super array. 1571 ldr(r5, secondary_supers_addr); 1572 // Load the array length. 1573 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1574 // Skip to start of data. 1575 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1576 1577 cmp(sp, zr); // Clear Z flag; SP is never zero 1578 // Scan R2 words at [R5] for an occurrence of R0. 1579 // Set NZ/Z based on last compare. 1580 repne_scan(r5, r0, r2, rscratch1); 1581 1582 // Unspill the temp. registers: 1583 pop(pushed_registers, sp); 1584 1585 br(Assembler::NE, *L_failure); 1586 1587 // Success. Cache the super we found and proceed in triumph. 1588 1589 if (UseSecondarySupersCache) { 1590 str(super_klass, super_cache_addr); 1591 } 1592 1593 if (L_success != &L_fallthrough) { 1594 b(*L_success); 1595 } 1596 1597 #undef IS_A_TEMP 1598 1599 bind(L_fallthrough); 1600 } 1601 1602 // If Register r is invalid, remove a new register from 1603 // available_regs, and add new register to regs_to_push. 1604 Register MacroAssembler::allocate_if_noreg(Register r, 1605 RegSetIterator<Register> &available_regs, 1606 RegSet ®s_to_push) { 1607 if (!r->is_valid()) { 1608 r = *available_regs++; 1609 regs_to_push += r; 1610 } 1611 return r; 1612 } 1613 1614 // check_klass_subtype_slow_path_table() looks for super_klass in the 1615 // hash table belonging to super_klass, branching to L_success or 1616 // L_failure as appropriate. This is essentially a shim which 1617 // allocates registers as necessary then calls 1618 // lookup_secondary_supers_table() to do the work. Any of the temp 1619 // regs may be noreg, in which case this logic will chooses some 1620 // registers push and pop them from the stack. 1621 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1622 Register super_klass, 1623 Register temp_reg, 1624 Register temp2_reg, 1625 Register temp3_reg, 1626 Register result_reg, 1627 FloatRegister vtemp, 1628 Label* L_success, 1629 Label* L_failure, 1630 bool set_cond_codes) { 1631 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1632 1633 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1634 1635 Label L_fallthrough; 1636 int label_nulls = 0; 1637 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1638 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1639 assert(label_nulls <= 1, "at most one null in the batch"); 1640 1641 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1642 1643 RegSetIterator<Register> available_regs 1644 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1645 1646 RegSet pushed_regs; 1647 1648 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1649 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1650 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1651 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1652 1653 push(pushed_regs, sp); 1654 1655 lookup_secondary_supers_table_var(sub_klass, 1656 super_klass, 1657 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1658 nullptr); 1659 cmp(result_reg, zr); 1660 1661 // Unspill the temp. registers: 1662 pop(pushed_regs, sp); 1663 1664 // NB! Callers may assume that, when set_cond_codes is true, this 1665 // code sets temp2_reg to a nonzero value. 1666 if (set_cond_codes) { 1667 mov(temp2_reg, 1); 1668 } 1669 1670 br(Assembler::NE, *L_failure); 1671 1672 if (L_success != &L_fallthrough) { 1673 b(*L_success); 1674 } 1675 1676 bind(L_fallthrough); 1677 } 1678 1679 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1680 Register super_klass, 1681 Register temp_reg, 1682 Register temp2_reg, 1683 Label* L_success, 1684 Label* L_failure, 1685 bool set_cond_codes) { 1686 if (UseSecondarySupersTable) { 1687 check_klass_subtype_slow_path_table 1688 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1689 /*vtemp*/fnoreg, 1690 L_success, L_failure, set_cond_codes); 1691 } else { 1692 check_klass_subtype_slow_path_linear 1693 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1694 } 1695 } 1696 1697 1698 // Ensure that the inline code and the stub are using the same registers. 1699 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1700 do { \ 1701 assert(r_super_klass == r0 && \ 1702 r_array_base == r1 && \ 1703 r_array_length == r2 && \ 1704 (r_array_index == r3 || r_array_index == noreg) && \ 1705 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1706 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1707 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1708 } while(0) 1709 1710 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1711 Register r_super_klass, 1712 Register temp1, 1713 Register temp2, 1714 Register temp3, 1715 FloatRegister vtemp, 1716 Register result, 1717 u1 super_klass_slot, 1718 bool stub_is_near) { 1719 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1720 1721 Label L_fallthrough; 1722 1723 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1724 1725 const Register 1726 r_array_base = temp1, // r1 1727 r_array_length = temp2, // r2 1728 r_array_index = temp3, // r3 1729 r_bitmap = rscratch2; 1730 1731 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1732 1733 u1 bit = super_klass_slot; 1734 1735 // Make sure that result is nonzero if the TBZ below misses. 1736 mov(result, 1); 1737 1738 // We're going to need the bitmap in a vector reg and in a core reg, 1739 // so load both now. 1740 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1741 if (bit != 0) { 1742 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1743 } 1744 // First check the bitmap to see if super_klass might be present. If 1745 // the bit is zero, we are certain that super_klass is not one of 1746 // the secondary supers. 1747 tbz(r_bitmap, bit, L_fallthrough); 1748 1749 // Get the first array index that can contain super_klass into r_array_index. 1750 if (bit != 0) { 1751 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1752 cnt(vtemp, T8B, vtemp); 1753 addv(vtemp, T8B, vtemp); 1754 fmovd(r_array_index, vtemp); 1755 } else { 1756 mov(r_array_index, (u1)1); 1757 } 1758 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1759 1760 // We will consult the secondary-super array. 1761 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1762 1763 // The value i in r_array_index is >= 1, so even though r_array_base 1764 // points to the length, we don't need to adjust it to point to the 1765 // data. 1766 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1767 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1768 1769 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1770 eor(result, result, r_super_klass); 1771 cbz(result, L_fallthrough); // Found a match 1772 1773 // Is there another entry to check? Consult the bitmap. 1774 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1775 1776 // Linear probe. 1777 if (bit != 0) { 1778 ror(r_bitmap, r_bitmap, bit); 1779 } 1780 1781 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1782 // The next slot to be inspected, by the stub we're about to call, 1783 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1784 // have been checked. 1785 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1786 if (stub_is_near) { 1787 bl(stub); 1788 } else { 1789 address call = trampoline_call(stub); 1790 if (call == nullptr) { 1791 return false; // trampoline allocation failed 1792 } 1793 } 1794 1795 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1796 1797 bind(L_fallthrough); 1798 1799 if (VerifySecondarySupers) { 1800 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1801 temp1, temp2, result); // r1, r2, r5 1802 } 1803 return true; 1804 } 1805 1806 // At runtime, return 0 in result if r_super_klass is a superclass of 1807 // r_sub_klass, otherwise return nonzero. Use this version of 1808 // lookup_secondary_supers_table() if you don't know ahead of time 1809 // which superclass will be searched for. Used by interpreter and 1810 // runtime stubs. It is larger and has somewhat greater latency than 1811 // the version above, which takes a constant super_klass_slot. 1812 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1813 Register r_super_klass, 1814 Register temp1, 1815 Register temp2, 1816 Register temp3, 1817 FloatRegister vtemp, 1818 Register result, 1819 Label *L_success) { 1820 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1821 1822 Label L_fallthrough; 1823 1824 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1825 1826 const Register 1827 r_array_index = temp3, 1828 slot = rscratch1, 1829 r_bitmap = rscratch2; 1830 1831 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1832 1833 // Make sure that result is nonzero if the test below misses. 1834 mov(result, 1); 1835 1836 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1837 1838 // First check the bitmap to see if super_klass might be present. If 1839 // the bit is zero, we are certain that super_klass is not one of 1840 // the secondary supers. 1841 1842 // This next instruction is equivalent to: 1843 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1844 // sub(temp2, tmp_reg, slot); 1845 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1846 lslv(temp2, r_bitmap, temp2); 1847 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1848 1849 bool must_save_v0 = (vtemp == fnoreg); 1850 if (must_save_v0) { 1851 // temp1 and result are free, so use them to preserve vtemp 1852 vtemp = v0; 1853 mov(temp1, vtemp, D, 0); 1854 mov(result, vtemp, D, 1); 1855 } 1856 1857 // Get the first array index that can contain super_klass into r_array_index. 1858 mov(vtemp, D, 0, temp2); 1859 cnt(vtemp, T8B, vtemp); 1860 addv(vtemp, T8B, vtemp); 1861 mov(r_array_index, vtemp, D, 0); 1862 1863 if (must_save_v0) { 1864 mov(vtemp, D, 0, temp1 ); 1865 mov(vtemp, D, 1, result); 1866 } 1867 1868 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1869 1870 const Register 1871 r_array_base = temp1, 1872 r_array_length = temp2; 1873 1874 // The value i in r_array_index is >= 1, so even though r_array_base 1875 // points to the length, we don't need to adjust it to point to the 1876 // data. 1877 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1878 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1879 1880 // We will consult the secondary-super array. 1881 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1882 1883 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1884 eor(result, result, r_super_klass); 1885 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1886 1887 // Is there another entry to check? Consult the bitmap. 1888 rorv(r_bitmap, r_bitmap, slot); 1889 // rol(r_bitmap, r_bitmap, 1); 1890 tbz(r_bitmap, 1, L_fallthrough); 1891 1892 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1893 // The next slot to be inspected, by the logic we're about to call, 1894 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1895 // have been checked. 1896 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1897 r_bitmap, r_array_length, result, /*is_stub*/false); 1898 1899 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1900 1901 bind(L_fallthrough); 1902 1903 if (VerifySecondarySupers) { 1904 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1905 temp1, temp2, result); // r1, r2, r5 1906 } 1907 1908 if (L_success) { 1909 cbz(result, *L_success); 1910 } 1911 } 1912 1913 // Called by code generated by check_klass_subtype_slow_path 1914 // above. This is called when there is a collision in the hashed 1915 // lookup in the secondary supers array. 1916 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1917 Register r_array_base, 1918 Register r_array_index, 1919 Register r_bitmap, 1920 Register temp1, 1921 Register result, 1922 bool is_stub) { 1923 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1924 1925 const Register 1926 r_array_length = temp1, 1927 r_sub_klass = noreg; // unused 1928 1929 if (is_stub) { 1930 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1931 } 1932 1933 Label L_fallthrough, L_huge; 1934 1935 // Load the array length. 1936 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1937 // And adjust the array base to point to the data. 1938 // NB! Effectively increments current slot index by 1. 1939 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1940 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1941 1942 // The bitmap is full to bursting. 1943 // Implicit invariant: BITMAP_FULL implies (length > 0) 1944 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1945 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1946 br(GT, L_huge); 1947 1948 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1949 // current slot (at secondary_supers[r_array_index]) has not yet 1950 // been inspected, and r_array_index may be out of bounds if we 1951 // wrapped around the end of the array. 1952 1953 { // This is conventional linear probing, but instead of terminating 1954 // when a null entry is found in the table, we maintain a bitmap 1955 // in which a 0 indicates missing entries. 1956 // As long as the bitmap is not completely full, 1957 // array_length == popcount(bitmap). The array_length check above 1958 // guarantees there are 0s in the bitmap, so the loop eventually 1959 // terminates. 1960 Label L_loop; 1961 bind(L_loop); 1962 1963 // Check for wraparound. 1964 cmp(r_array_index, r_array_length); 1965 csel(r_array_index, zr, r_array_index, GE); 1966 1967 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1968 eor(result, rscratch1, r_super_klass); 1969 cbz(result, L_fallthrough); 1970 1971 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1972 1973 ror(r_bitmap, r_bitmap, 1); 1974 add(r_array_index, r_array_index, 1); 1975 b(L_loop); 1976 } 1977 1978 { // Degenerate case: more than 64 secondary supers. 1979 // FIXME: We could do something smarter here, maybe a vectorized 1980 // comparison or a binary search, but is that worth any added 1981 // complexity? 1982 bind(L_huge); 1983 cmp(sp, zr); // Clear Z flag; SP is never zero 1984 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1985 cset(result, NE); // result == 0 iff we got a match. 1986 } 1987 1988 bind(L_fallthrough); 1989 } 1990 1991 // Make sure that the hashed lookup and a linear scan agree. 1992 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1993 Register r_super_klass, 1994 Register temp1, 1995 Register temp2, 1996 Register result) { 1997 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1998 1999 const Register 2000 r_array_base = temp1, 2001 r_array_length = temp2, 2002 r_array_index = noreg, // unused 2003 r_bitmap = noreg; // unused 2004 2005 BLOCK_COMMENT("verify_secondary_supers_table {"); 2006 2007 // We will consult the secondary-super array. 2008 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2009 2010 // Load the array length. 2011 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2012 // And adjust the array base to point to the data. 2013 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2014 2015 cmp(sp, zr); // Clear Z flag; SP is never zero 2016 // Scan R2 words at [R5] for an occurrence of R0. 2017 // Set NZ/Z based on last compare. 2018 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2019 // rscratch1 == 0 iff we got a match. 2020 cset(rscratch1, NE); 2021 2022 Label passed; 2023 cmp(result, zr); 2024 cset(result, NE); // normalize result to 0/1 for comparison 2025 2026 cmp(rscratch1, result); 2027 br(EQ, passed); 2028 { 2029 mov(r0, r_super_klass); // r0 <- r0 2030 mov(r1, r_sub_klass); // r1 <- r4 2031 mov(r2, /*expected*/rscratch1); // r2 <- r8 2032 mov(r3, result); // r3 <- r5 2033 mov(r4, (address)("mismatch")); // r4 <- const 2034 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2035 should_not_reach_here(); 2036 } 2037 bind(passed); 2038 2039 BLOCK_COMMENT("} verify_secondary_supers_table"); 2040 } 2041 2042 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2043 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2044 assert_different_registers(klass, rthread, scratch); 2045 2046 Label L_fallthrough, L_tmp; 2047 if (L_fast_path == nullptr) { 2048 L_fast_path = &L_fallthrough; 2049 } else if (L_slow_path == nullptr) { 2050 L_slow_path = &L_fallthrough; 2051 } 2052 // Fast path check: class is fully initialized 2053 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2054 ldarb(scratch, scratch); 2055 cmp(scratch, InstanceKlass::fully_initialized); 2056 br(Assembler::EQ, *L_fast_path); 2057 2058 // Fast path check: current thread is initializer thread 2059 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2060 cmp(rthread, scratch); 2061 2062 if (L_slow_path == &L_fallthrough) { 2063 br(Assembler::EQ, *L_fast_path); 2064 bind(*L_slow_path); 2065 } else if (L_fast_path == &L_fallthrough) { 2066 br(Assembler::NE, *L_slow_path); 2067 bind(*L_fast_path); 2068 } else { 2069 Unimplemented(); 2070 } 2071 } 2072 2073 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2074 if (!VerifyOops || VerifyAdapterSharing) { 2075 // Below address of the code string confuses VerifyAdapterSharing 2076 // because it may differ between otherwise equivalent adapters. 2077 return; 2078 } 2079 2080 // Pass register number to verify_oop_subroutine 2081 const char* b = nullptr; 2082 { 2083 ResourceMark rm; 2084 stringStream ss; 2085 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2086 b = code_string(ss.as_string()); 2087 } 2088 BLOCK_COMMENT("verify_oop {"); 2089 2090 strip_return_address(); // This might happen within a stack frame. 2091 protect_return_address(); 2092 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2093 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2094 2095 mov(r0, reg); 2096 movptr(rscratch1, (uintptr_t)(address)b); 2097 2098 // call indirectly to solve generation ordering problem 2099 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2100 ldr(rscratch2, Address(rscratch2)); 2101 blr(rscratch2); 2102 2103 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2104 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2105 authenticate_return_address(); 2106 2107 BLOCK_COMMENT("} verify_oop"); 2108 } 2109 2110 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2111 if (!VerifyOops || VerifyAdapterSharing) { 2112 // Below address of the code string confuses VerifyAdapterSharing 2113 // because it may differ between otherwise equivalent adapters. 2114 return; 2115 } 2116 2117 const char* b = nullptr; 2118 { 2119 ResourceMark rm; 2120 stringStream ss; 2121 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2122 b = code_string(ss.as_string()); 2123 } 2124 BLOCK_COMMENT("verify_oop_addr {"); 2125 2126 strip_return_address(); // This might happen within a stack frame. 2127 protect_return_address(); 2128 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2129 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2130 2131 // addr may contain sp so we will have to adjust it based on the 2132 // pushes that we just did. 2133 if (addr.uses(sp)) { 2134 lea(r0, addr); 2135 ldr(r0, Address(r0, 4 * wordSize)); 2136 } else { 2137 ldr(r0, addr); 2138 } 2139 movptr(rscratch1, (uintptr_t)(address)b); 2140 2141 // call indirectly to solve generation ordering problem 2142 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2143 ldr(rscratch2, Address(rscratch2)); 2144 blr(rscratch2); 2145 2146 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2147 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2148 authenticate_return_address(); 2149 2150 BLOCK_COMMENT("} verify_oop_addr"); 2151 } 2152 2153 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2154 int extra_slot_offset) { 2155 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2156 int stackElementSize = Interpreter::stackElementSize; 2157 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2158 #ifdef ASSERT 2159 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2160 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2161 #endif 2162 if (arg_slot.is_constant()) { 2163 return Address(esp, arg_slot.as_constant() * stackElementSize 2164 + offset); 2165 } else { 2166 add(rscratch1, esp, arg_slot.as_register(), 2167 ext::uxtx, exact_log2(stackElementSize)); 2168 return Address(rscratch1, offset); 2169 } 2170 } 2171 2172 void MacroAssembler::call_VM_leaf_base(address entry_point, 2173 int number_of_arguments, 2174 Label *retaddr) { 2175 Label E, L; 2176 2177 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2178 2179 mov(rscratch1, RuntimeAddress(entry_point)); 2180 blr(rscratch1); 2181 if (retaddr) 2182 bind(*retaddr); 2183 2184 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2185 } 2186 2187 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2188 call_VM_leaf_base(entry_point, number_of_arguments); 2189 } 2190 2191 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2192 pass_arg0(this, arg_0); 2193 call_VM_leaf_base(entry_point, 1); 2194 } 2195 2196 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2197 assert_different_registers(arg_1, c_rarg0); 2198 pass_arg0(this, arg_0); 2199 pass_arg1(this, arg_1); 2200 call_VM_leaf_base(entry_point, 2); 2201 } 2202 2203 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2204 Register arg_1, Register arg_2) { 2205 assert_different_registers(arg_1, c_rarg0); 2206 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2207 pass_arg0(this, arg_0); 2208 pass_arg1(this, arg_1); 2209 pass_arg2(this, arg_2); 2210 call_VM_leaf_base(entry_point, 3); 2211 } 2212 2213 void MacroAssembler::super_call_VM_leaf(address entry_point) { 2214 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2215 } 2216 2217 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2218 pass_arg0(this, arg_0); 2219 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2220 } 2221 2222 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2223 2224 assert_different_registers(arg_0, c_rarg1); 2225 pass_arg1(this, arg_1); 2226 pass_arg0(this, arg_0); 2227 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2228 } 2229 2230 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2231 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2232 assert_different_registers(arg_1, c_rarg2); 2233 pass_arg2(this, arg_2); 2234 pass_arg1(this, arg_1); 2235 pass_arg0(this, arg_0); 2236 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2237 } 2238 2239 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2240 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2241 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2242 assert_different_registers(arg_2, c_rarg3); 2243 pass_arg3(this, arg_3); 2244 pass_arg2(this, arg_2); 2245 pass_arg1(this, arg_1); 2246 pass_arg0(this, arg_0); 2247 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2248 } 2249 2250 void MacroAssembler::null_check(Register reg, int offset) { 2251 if (needs_explicit_null_check(offset)) { 2252 // provoke OS null exception if reg is null by 2253 // accessing M[reg] w/o changing any registers 2254 // NOTE: this is plenty to provoke a segv 2255 ldr(zr, Address(reg)); 2256 } else { 2257 // nothing to do, (later) access of M[reg + offset] 2258 // will provoke OS null exception if reg is null 2259 } 2260 } 2261 2262 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2263 assert_different_registers(markword, rscratch2); 2264 mov(rscratch2, markWord::inline_type_mask_in_place); 2265 andr(markword, markword, rscratch2); 2266 mov(rscratch2, markWord::inline_type_pattern); 2267 cmp(markword, rscratch2); 2268 br(Assembler::EQ, is_inline_type); 2269 } 2270 2271 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null) { 2272 assert_different_registers(tmp, rscratch1); 2273 if (can_be_null) { 2274 cbz(object, not_inline_type); 2275 } 2276 const int is_inline_type_mask = markWord::inline_type_pattern; 2277 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2278 mov(rscratch1, is_inline_type_mask); 2279 andr(tmp, tmp, rscratch1); 2280 cmp(tmp, rscratch1); 2281 br(Assembler::NE, not_inline_type); 2282 } 2283 2284 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2285 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2286 tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 2287 } 2288 2289 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2290 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2291 tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 2292 } 2293 2294 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2295 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2296 tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat); 2297 } 2298 2299 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2300 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2301 tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker); 2302 } 2303 2304 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2305 Label test_mark_word; 2306 // load mark word 2307 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2308 // check displaced 2309 tst(temp_reg, markWord::unlocked_value); 2310 br(Assembler::NE, test_mark_word); 2311 // slow path use klass prototype 2312 load_prototype_header(temp_reg, oop); 2313 2314 bind(test_mark_word); 2315 andr(temp_reg, temp_reg, test_bit); 2316 if (jmp_set) { 2317 cbnz(temp_reg, jmp_label); 2318 } else { 2319 cbz(temp_reg, jmp_label); 2320 } 2321 } 2322 2323 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) { 2324 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2325 } 2326 2327 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2328 Label&is_non_flat_array) { 2329 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2330 } 2331 2332 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 2333 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2334 } 2335 2336 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2337 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2338 } 2339 2340 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2341 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2342 br(Assembler::NE, is_flat_array); 2343 } 2344 2345 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2346 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2347 br(Assembler::EQ, is_non_flat_array); 2348 } 2349 2350 // MacroAssembler protected routines needed to implement 2351 // public methods 2352 2353 void MacroAssembler::mov(Register r, Address dest) { 2354 code_section()->relocate(pc(), dest.rspec()); 2355 uint64_t imm64 = (uint64_t)dest.target(); 2356 movptr(r, imm64); 2357 } 2358 2359 // Move a constant pointer into r. In AArch64 mode the virtual 2360 // address space is 48 bits in size, so we only need three 2361 // instructions to create a patchable instruction sequence that can 2362 // reach anywhere. 2363 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2364 #ifndef PRODUCT 2365 { 2366 char buffer[64]; 2367 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2368 block_comment(buffer); 2369 } 2370 #endif 2371 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2372 movz(r, imm64 & 0xffff); 2373 imm64 >>= 16; 2374 movk(r, imm64 & 0xffff, 16); 2375 imm64 >>= 16; 2376 movk(r, imm64 & 0xffff, 32); 2377 } 2378 2379 // Macro to mov replicated immediate to vector register. 2380 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2381 // the upper 56/48/32 bits must be zeros for B/H/S type. 2382 // Vd will get the following values for different arrangements in T 2383 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2384 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2385 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2386 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2387 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2388 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2389 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2390 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2391 // Clobbers rscratch1 2392 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2393 assert(T != T1Q, "unsupported"); 2394 if (T == T1D || T == T2D) { 2395 int imm = operand_valid_for_movi_immediate(imm64, T); 2396 if (-1 != imm) { 2397 movi(Vd, T, imm); 2398 } else { 2399 mov(rscratch1, imm64); 2400 dup(Vd, T, rscratch1); 2401 } 2402 return; 2403 } 2404 2405 #ifdef ASSERT 2406 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2407 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2408 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2409 #endif 2410 int shift = operand_valid_for_movi_immediate(imm64, T); 2411 uint32_t imm32 = imm64 & 0xffffffffULL; 2412 if (shift >= 0) { 2413 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2414 } else { 2415 movw(rscratch1, imm32); 2416 dup(Vd, T, rscratch1); 2417 } 2418 } 2419 2420 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2421 { 2422 #ifndef PRODUCT 2423 { 2424 char buffer[64]; 2425 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2426 block_comment(buffer); 2427 } 2428 #endif 2429 if (operand_valid_for_logical_immediate(false, imm64)) { 2430 orr(dst, zr, imm64); 2431 } else { 2432 // we can use a combination of MOVZ or MOVN with 2433 // MOVK to build up the constant 2434 uint64_t imm_h[4]; 2435 int zero_count = 0; 2436 int neg_count = 0; 2437 int i; 2438 for (i = 0; i < 4; i++) { 2439 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2440 if (imm_h[i] == 0) { 2441 zero_count++; 2442 } else if (imm_h[i] == 0xffffL) { 2443 neg_count++; 2444 } 2445 } 2446 if (zero_count == 4) { 2447 // one MOVZ will do 2448 movz(dst, 0); 2449 } else if (neg_count == 4) { 2450 // one MOVN will do 2451 movn(dst, 0); 2452 } else if (zero_count == 3) { 2453 for (i = 0; i < 4; i++) { 2454 if (imm_h[i] != 0L) { 2455 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2456 break; 2457 } 2458 } 2459 } else if (neg_count == 3) { 2460 // one MOVN will do 2461 for (int i = 0; i < 4; i++) { 2462 if (imm_h[i] != 0xffffL) { 2463 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2464 break; 2465 } 2466 } 2467 } else if (zero_count == 2) { 2468 // one MOVZ and one MOVK will do 2469 for (i = 0; i < 3; i++) { 2470 if (imm_h[i] != 0L) { 2471 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2472 i++; 2473 break; 2474 } 2475 } 2476 for (;i < 4; i++) { 2477 if (imm_h[i] != 0L) { 2478 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2479 } 2480 } 2481 } else if (neg_count == 2) { 2482 // one MOVN and one MOVK will do 2483 for (i = 0; i < 4; i++) { 2484 if (imm_h[i] != 0xffffL) { 2485 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2486 i++; 2487 break; 2488 } 2489 } 2490 for (;i < 4; i++) { 2491 if (imm_h[i] != 0xffffL) { 2492 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2493 } 2494 } 2495 } else if (zero_count == 1) { 2496 // one MOVZ and two MOVKs will do 2497 for (i = 0; i < 4; i++) { 2498 if (imm_h[i] != 0L) { 2499 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2500 i++; 2501 break; 2502 } 2503 } 2504 for (;i < 4; i++) { 2505 if (imm_h[i] != 0x0L) { 2506 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2507 } 2508 } 2509 } else if (neg_count == 1) { 2510 // one MOVN and two MOVKs will do 2511 for (i = 0; i < 4; i++) { 2512 if (imm_h[i] != 0xffffL) { 2513 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2514 i++; 2515 break; 2516 } 2517 } 2518 for (;i < 4; i++) { 2519 if (imm_h[i] != 0xffffL) { 2520 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2521 } 2522 } 2523 } else { 2524 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2525 movz(dst, (uint32_t)imm_h[0], 0); 2526 for (i = 1; i < 4; i++) { 2527 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2528 } 2529 } 2530 } 2531 } 2532 2533 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2534 { 2535 #ifndef PRODUCT 2536 { 2537 char buffer[64]; 2538 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2539 block_comment(buffer); 2540 } 2541 #endif 2542 if (operand_valid_for_logical_immediate(true, imm32)) { 2543 orrw(dst, zr, imm32); 2544 } else { 2545 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2546 // constant 2547 uint32_t imm_h[2]; 2548 imm_h[0] = imm32 & 0xffff; 2549 imm_h[1] = ((imm32 >> 16) & 0xffff); 2550 if (imm_h[0] == 0) { 2551 movzw(dst, imm_h[1], 16); 2552 } else if (imm_h[0] == 0xffff) { 2553 movnw(dst, imm_h[1] ^ 0xffff, 16); 2554 } else if (imm_h[1] == 0) { 2555 movzw(dst, imm_h[0], 0); 2556 } else if (imm_h[1] == 0xffff) { 2557 movnw(dst, imm_h[0] ^ 0xffff, 0); 2558 } else { 2559 // use a MOVZ and MOVK (makes it easier to debug) 2560 movzw(dst, imm_h[0], 0); 2561 movkw(dst, imm_h[1], 16); 2562 } 2563 } 2564 } 2565 2566 // Form an address from base + offset in Rd. Rd may or may 2567 // not actually be used: you must use the Address that is returned. 2568 // It is up to you to ensure that the shift provided matches the size 2569 // of your data. 2570 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2571 if (Address::offset_ok_for_immed(byte_offset, shift)) 2572 // It fits; no need for any heroics 2573 return Address(base, byte_offset); 2574 2575 // Don't do anything clever with negative or misaligned offsets 2576 unsigned mask = (1 << shift) - 1; 2577 if (byte_offset < 0 || byte_offset & mask) { 2578 mov(Rd, byte_offset); 2579 add(Rd, base, Rd); 2580 return Address(Rd); 2581 } 2582 2583 // See if we can do this with two 12-bit offsets 2584 { 2585 uint64_t word_offset = byte_offset >> shift; 2586 uint64_t masked_offset = word_offset & 0xfff000; 2587 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2588 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2589 add(Rd, base, masked_offset << shift); 2590 word_offset -= masked_offset; 2591 return Address(Rd, word_offset << shift); 2592 } 2593 } 2594 2595 // Do it the hard way 2596 mov(Rd, byte_offset); 2597 add(Rd, base, Rd); 2598 return Address(Rd); 2599 } 2600 2601 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2602 bool want_remainder, Register scratch) 2603 { 2604 // Full implementation of Java idiv and irem. The function 2605 // returns the (pc) offset of the div instruction - may be needed 2606 // for implicit exceptions. 2607 // 2608 // constraint : ra/rb =/= scratch 2609 // normal case 2610 // 2611 // input : ra: dividend 2612 // rb: divisor 2613 // 2614 // result: either 2615 // quotient (= ra idiv rb) 2616 // remainder (= ra irem rb) 2617 2618 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2619 2620 int idivl_offset = offset(); 2621 if (! want_remainder) { 2622 sdivw(result, ra, rb); 2623 } else { 2624 sdivw(scratch, ra, rb); 2625 Assembler::msubw(result, scratch, rb, ra); 2626 } 2627 2628 return idivl_offset; 2629 } 2630 2631 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2632 bool want_remainder, Register scratch) 2633 { 2634 // Full implementation of Java ldiv and lrem. The function 2635 // returns the (pc) offset of the div instruction - may be needed 2636 // for implicit exceptions. 2637 // 2638 // constraint : ra/rb =/= scratch 2639 // normal case 2640 // 2641 // input : ra: dividend 2642 // rb: divisor 2643 // 2644 // result: either 2645 // quotient (= ra idiv rb) 2646 // remainder (= ra irem rb) 2647 2648 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2649 2650 int idivq_offset = offset(); 2651 if (! want_remainder) { 2652 sdiv(result, ra, rb); 2653 } else { 2654 sdiv(scratch, ra, rb); 2655 Assembler::msub(result, scratch, rb, ra); 2656 } 2657 2658 return idivq_offset; 2659 } 2660 2661 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2662 address prev = pc() - NativeMembar::instruction_size; 2663 address last = code()->last_insn(); 2664 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2665 NativeMembar *bar = NativeMembar_at(prev); 2666 if (AlwaysMergeDMB) { 2667 bar->set_kind(bar->get_kind() | order_constraint); 2668 BLOCK_COMMENT("merged membar(always)"); 2669 return; 2670 } 2671 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2672 // doing so would introduce a StoreLoad which the caller did not 2673 // intend 2674 if (bar->get_kind() == order_constraint 2675 || bar->get_kind() == AnyAny 2676 || order_constraint == AnyAny) { 2677 // We are merging two memory barrier instructions. On AArch64 we 2678 // can do this simply by ORing them together. 2679 bar->set_kind(bar->get_kind() | order_constraint); 2680 BLOCK_COMMENT("merged membar"); 2681 return; 2682 } else { 2683 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2684 // We need check the last 2 instructions 2685 address prev2 = prev - NativeMembar::instruction_size; 2686 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2687 NativeMembar *bar2 = NativeMembar_at(prev2); 2688 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2689 BLOCK_COMMENT("merged membar(elided)"); 2690 return; 2691 } 2692 } 2693 } 2694 code()->set_last_insn(pc()); 2695 dmb(Assembler::barrier(order_constraint)); 2696 } 2697 2698 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2699 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2700 merge_ldst(rt, adr, size_in_bytes, is_store); 2701 code()->clear_last_insn(); 2702 return true; 2703 } else { 2704 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2705 const uint64_t mask = size_in_bytes - 1; 2706 if (adr.getMode() == Address::base_plus_offset && 2707 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2708 code()->set_last_insn(pc()); 2709 } 2710 return false; 2711 } 2712 } 2713 2714 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2715 // We always try to merge two adjacent loads into one ldp. 2716 if (!try_merge_ldst(Rx, adr, 8, false)) { 2717 Assembler::ldr(Rx, adr); 2718 } 2719 } 2720 2721 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2722 // We always try to merge two adjacent loads into one ldp. 2723 if (!try_merge_ldst(Rw, adr, 4, false)) { 2724 Assembler::ldrw(Rw, adr); 2725 } 2726 } 2727 2728 void MacroAssembler::str(Register Rx, const Address &adr) { 2729 // We always try to merge two adjacent stores into one stp. 2730 if (!try_merge_ldst(Rx, adr, 8, true)) { 2731 Assembler::str(Rx, adr); 2732 } 2733 } 2734 2735 void MacroAssembler::strw(Register Rw, const Address &adr) { 2736 // We always try to merge two adjacent stores into one stp. 2737 if (!try_merge_ldst(Rw, adr, 4, true)) { 2738 Assembler::strw(Rw, adr); 2739 } 2740 } 2741 2742 // MacroAssembler routines found actually to be needed 2743 2744 void MacroAssembler::push(Register src) 2745 { 2746 str(src, Address(pre(esp, -1 * wordSize))); 2747 } 2748 2749 void MacroAssembler::pop(Register dst) 2750 { 2751 ldr(dst, Address(post(esp, 1 * wordSize))); 2752 } 2753 2754 // Note: load_unsigned_short used to be called load_unsigned_word. 2755 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2756 int off = offset(); 2757 ldrh(dst, src); 2758 return off; 2759 } 2760 2761 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2762 int off = offset(); 2763 ldrb(dst, src); 2764 return off; 2765 } 2766 2767 int MacroAssembler::load_signed_short(Register dst, Address src) { 2768 int off = offset(); 2769 ldrsh(dst, src); 2770 return off; 2771 } 2772 2773 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2774 int off = offset(); 2775 ldrsb(dst, src); 2776 return off; 2777 } 2778 2779 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2780 int off = offset(); 2781 ldrshw(dst, src); 2782 return off; 2783 } 2784 2785 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2786 int off = offset(); 2787 ldrsbw(dst, src); 2788 return off; 2789 } 2790 2791 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2792 switch (size_in_bytes) { 2793 case 8: ldr(dst, src); break; 2794 case 4: ldrw(dst, src); break; 2795 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2796 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2797 default: ShouldNotReachHere(); 2798 } 2799 } 2800 2801 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2802 switch (size_in_bytes) { 2803 case 8: str(src, dst); break; 2804 case 4: strw(src, dst); break; 2805 case 2: strh(src, dst); break; 2806 case 1: strb(src, dst); break; 2807 default: ShouldNotReachHere(); 2808 } 2809 } 2810 2811 void MacroAssembler::decrementw(Register reg, int value) 2812 { 2813 if (value < 0) { incrementw(reg, -value); return; } 2814 if (value == 0) { return; } 2815 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2816 /* else */ { 2817 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2818 movw(rscratch2, (unsigned)value); 2819 subw(reg, reg, rscratch2); 2820 } 2821 } 2822 2823 void MacroAssembler::decrement(Register reg, int value) 2824 { 2825 if (value < 0) { increment(reg, -value); return; } 2826 if (value == 0) { return; } 2827 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2828 /* else */ { 2829 assert(reg != rscratch2, "invalid dst for register decrement"); 2830 mov(rscratch2, (uint64_t)value); 2831 sub(reg, reg, rscratch2); 2832 } 2833 } 2834 2835 void MacroAssembler::decrementw(Address dst, int value) 2836 { 2837 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2838 if (dst.getMode() == Address::literal) { 2839 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2840 lea(rscratch2, dst); 2841 dst = Address(rscratch2); 2842 } 2843 ldrw(rscratch1, dst); 2844 decrementw(rscratch1, value); 2845 strw(rscratch1, dst); 2846 } 2847 2848 void MacroAssembler::decrement(Address dst, int value) 2849 { 2850 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2851 if (dst.getMode() == Address::literal) { 2852 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2853 lea(rscratch2, dst); 2854 dst = Address(rscratch2); 2855 } 2856 ldr(rscratch1, dst); 2857 decrement(rscratch1, value); 2858 str(rscratch1, dst); 2859 } 2860 2861 void MacroAssembler::incrementw(Register reg, int value) 2862 { 2863 if (value < 0) { decrementw(reg, -value); return; } 2864 if (value == 0) { return; } 2865 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2866 /* else */ { 2867 assert(reg != rscratch2, "invalid dst for register increment"); 2868 movw(rscratch2, (unsigned)value); 2869 addw(reg, reg, rscratch2); 2870 } 2871 } 2872 2873 void MacroAssembler::increment(Register reg, int value) 2874 { 2875 if (value < 0) { decrement(reg, -value); return; } 2876 if (value == 0) { return; } 2877 if (value < (1 << 12)) { add(reg, reg, value); return; } 2878 /* else */ { 2879 assert(reg != rscratch2, "invalid dst for register increment"); 2880 movw(rscratch2, (unsigned)value); 2881 add(reg, reg, rscratch2); 2882 } 2883 } 2884 2885 void MacroAssembler::incrementw(Address dst, int value) 2886 { 2887 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2888 if (dst.getMode() == Address::literal) { 2889 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2890 lea(rscratch2, dst); 2891 dst = Address(rscratch2); 2892 } 2893 ldrw(rscratch1, dst); 2894 incrementw(rscratch1, value); 2895 strw(rscratch1, dst); 2896 } 2897 2898 void MacroAssembler::increment(Address dst, int value) 2899 { 2900 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2901 if (dst.getMode() == Address::literal) { 2902 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2903 lea(rscratch2, dst); 2904 dst = Address(rscratch2); 2905 } 2906 ldr(rscratch1, dst); 2907 increment(rscratch1, value); 2908 str(rscratch1, dst); 2909 } 2910 2911 // Push lots of registers in the bit set supplied. Don't push sp. 2912 // Return the number of words pushed 2913 int MacroAssembler::push(unsigned int bitset, Register stack) { 2914 int words_pushed = 0; 2915 2916 // Scan bitset to accumulate register pairs 2917 unsigned char regs[32]; 2918 int count = 0; 2919 for (int reg = 0; reg <= 30; reg++) { 2920 if (1 & bitset) 2921 regs[count++] = reg; 2922 bitset >>= 1; 2923 } 2924 regs[count++] = zr->raw_encoding(); 2925 count &= ~1; // Only push an even number of regs 2926 2927 if (count) { 2928 stp(as_Register(regs[0]), as_Register(regs[1]), 2929 Address(pre(stack, -count * wordSize))); 2930 words_pushed += 2; 2931 } 2932 for (int i = 2; i < count; i += 2) { 2933 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2934 Address(stack, i * wordSize)); 2935 words_pushed += 2; 2936 } 2937 2938 assert(words_pushed == count, "oops, pushed != count"); 2939 2940 return count; 2941 } 2942 2943 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2944 int words_pushed = 0; 2945 2946 // Scan bitset to accumulate register pairs 2947 unsigned char regs[32]; 2948 int count = 0; 2949 for (int reg = 0; reg <= 30; reg++) { 2950 if (1 & bitset) 2951 regs[count++] = reg; 2952 bitset >>= 1; 2953 } 2954 regs[count++] = zr->raw_encoding(); 2955 count &= ~1; 2956 2957 for (int i = 2; i < count; i += 2) { 2958 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2959 Address(stack, i * wordSize)); 2960 words_pushed += 2; 2961 } 2962 if (count) { 2963 ldp(as_Register(regs[0]), as_Register(regs[1]), 2964 Address(post(stack, count * wordSize))); 2965 words_pushed += 2; 2966 } 2967 2968 assert(words_pushed == count, "oops, pushed != count"); 2969 2970 return count; 2971 } 2972 2973 // Push lots of registers in the bit set supplied. Don't push sp. 2974 // Return the number of dwords pushed 2975 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2976 int words_pushed = 0; 2977 bool use_sve = false; 2978 int sve_vector_size_in_bytes = 0; 2979 2980 #ifdef COMPILER2 2981 use_sve = Matcher::supports_scalable_vector(); 2982 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2983 #endif 2984 2985 // Scan bitset to accumulate register pairs 2986 unsigned char regs[32]; 2987 int count = 0; 2988 for (int reg = 0; reg <= 31; reg++) { 2989 if (1 & bitset) 2990 regs[count++] = reg; 2991 bitset >>= 1; 2992 } 2993 2994 if (count == 0) { 2995 return 0; 2996 } 2997 2998 if (mode == PushPopFull) { 2999 if (use_sve && sve_vector_size_in_bytes > 16) { 3000 mode = PushPopSVE; 3001 } else { 3002 mode = PushPopNeon; 3003 } 3004 } 3005 3006 #ifndef PRODUCT 3007 { 3008 char buffer[48]; 3009 if (mode == PushPopSVE) { 3010 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 3011 } else if (mode == PushPopNeon) { 3012 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 3013 } else { 3014 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 3015 } 3016 block_comment(buffer); 3017 } 3018 #endif 3019 3020 if (mode == PushPopSVE) { 3021 sub(stack, stack, sve_vector_size_in_bytes * count); 3022 for (int i = 0; i < count; i++) { 3023 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 3024 } 3025 return count * sve_vector_size_in_bytes / 8; 3026 } 3027 3028 if (mode == PushPopNeon) { 3029 if (count == 1) { 3030 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 3031 return 2; 3032 } 3033 3034 bool odd = (count & 1) == 1; 3035 int push_slots = count + (odd ? 1 : 0); 3036 3037 // Always pushing full 128 bit registers. 3038 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 3039 words_pushed += 2; 3040 3041 for (int i = 2; i + 1 < count; i += 2) { 3042 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3043 words_pushed += 2; 3044 } 3045 3046 if (odd) { 3047 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3048 words_pushed++; 3049 } 3050 3051 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3052 return count * 2; 3053 } 3054 3055 if (mode == PushPopFp) { 3056 bool odd = (count & 1) == 1; 3057 int push_slots = count + (odd ? 1 : 0); 3058 3059 if (count == 1) { 3060 // Stack pointer must be 16 bytes aligned 3061 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 3062 return 1; 3063 } 3064 3065 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 3066 words_pushed += 2; 3067 3068 for (int i = 2; i + 1 < count; i += 2) { 3069 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3070 words_pushed += 2; 3071 } 3072 3073 if (odd) { 3074 // Stack pointer must be 16 bytes aligned 3075 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3076 words_pushed++; 3077 } 3078 3079 assert(words_pushed == count, "oops, pushed != count"); 3080 3081 return count; 3082 } 3083 3084 return 0; 3085 } 3086 3087 // Return the number of dwords popped 3088 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3089 int words_pushed = 0; 3090 bool use_sve = false; 3091 int sve_vector_size_in_bytes = 0; 3092 3093 #ifdef COMPILER2 3094 use_sve = Matcher::supports_scalable_vector(); 3095 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3096 #endif 3097 // Scan bitset to accumulate register pairs 3098 unsigned char regs[32]; 3099 int count = 0; 3100 for (int reg = 0; reg <= 31; reg++) { 3101 if (1 & bitset) 3102 regs[count++] = reg; 3103 bitset >>= 1; 3104 } 3105 3106 if (count == 0) { 3107 return 0; 3108 } 3109 3110 if (mode == PushPopFull) { 3111 if (use_sve && sve_vector_size_in_bytes > 16) { 3112 mode = PushPopSVE; 3113 } else { 3114 mode = PushPopNeon; 3115 } 3116 } 3117 3118 #ifndef PRODUCT 3119 { 3120 char buffer[48]; 3121 if (mode == PushPopSVE) { 3122 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3123 } else if (mode == PushPopNeon) { 3124 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3125 } else { 3126 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3127 } 3128 block_comment(buffer); 3129 } 3130 #endif 3131 3132 if (mode == PushPopSVE) { 3133 for (int i = count - 1; i >= 0; i--) { 3134 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3135 } 3136 add(stack, stack, sve_vector_size_in_bytes * count); 3137 return count * sve_vector_size_in_bytes / 8; 3138 } 3139 3140 if (mode == PushPopNeon) { 3141 if (count == 1) { 3142 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3143 return 2; 3144 } 3145 3146 bool odd = (count & 1) == 1; 3147 int push_slots = count + (odd ? 1 : 0); 3148 3149 if (odd) { 3150 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3151 words_pushed++; 3152 } 3153 3154 for (int i = 2; i + 1 < count; i += 2) { 3155 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3156 words_pushed += 2; 3157 } 3158 3159 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3160 words_pushed += 2; 3161 3162 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3163 3164 return count * 2; 3165 } 3166 3167 if (mode == PushPopFp) { 3168 bool odd = (count & 1) == 1; 3169 int push_slots = count + (odd ? 1 : 0); 3170 3171 if (count == 1) { 3172 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3173 return 1; 3174 } 3175 3176 if (odd) { 3177 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3178 words_pushed++; 3179 } 3180 3181 for (int i = 2; i + 1 < count; i += 2) { 3182 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3183 words_pushed += 2; 3184 } 3185 3186 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3187 words_pushed += 2; 3188 3189 assert(words_pushed == count, "oops, pushed != count"); 3190 3191 return count; 3192 } 3193 3194 return 0; 3195 } 3196 3197 // Return the number of dwords pushed 3198 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3199 bool use_sve = false; 3200 int sve_predicate_size_in_slots = 0; 3201 3202 #ifdef COMPILER2 3203 use_sve = Matcher::supports_scalable_vector(); 3204 if (use_sve) { 3205 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3206 } 3207 #endif 3208 3209 if (!use_sve) { 3210 return 0; 3211 } 3212 3213 unsigned char regs[PRegister::number_of_registers]; 3214 int count = 0; 3215 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3216 if (1 & bitset) 3217 regs[count++] = reg; 3218 bitset >>= 1; 3219 } 3220 3221 if (count == 0) { 3222 return 0; 3223 } 3224 3225 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3226 VMRegImpl::stack_slot_size * count, 16); 3227 sub(stack, stack, total_push_bytes); 3228 for (int i = 0; i < count; i++) { 3229 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3230 } 3231 return total_push_bytes / 8; 3232 } 3233 3234 // Return the number of dwords popped 3235 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3236 bool use_sve = false; 3237 int sve_predicate_size_in_slots = 0; 3238 3239 #ifdef COMPILER2 3240 use_sve = Matcher::supports_scalable_vector(); 3241 if (use_sve) { 3242 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3243 } 3244 #endif 3245 3246 if (!use_sve) { 3247 return 0; 3248 } 3249 3250 unsigned char regs[PRegister::number_of_registers]; 3251 int count = 0; 3252 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3253 if (1 & bitset) 3254 regs[count++] = reg; 3255 bitset >>= 1; 3256 } 3257 3258 if (count == 0) { 3259 return 0; 3260 } 3261 3262 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3263 VMRegImpl::stack_slot_size * count, 16); 3264 for (int i = count - 1; i >= 0; i--) { 3265 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3266 } 3267 add(stack, stack, total_pop_bytes); 3268 return total_pop_bytes / 8; 3269 } 3270 3271 #ifdef ASSERT 3272 void MacroAssembler::verify_heapbase(const char* msg) { 3273 #if 0 3274 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3275 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3276 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3277 // rheapbase is allocated as general register 3278 return; 3279 } 3280 if (CheckCompressedOops) { 3281 Label ok; 3282 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3283 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3284 br(Assembler::EQ, ok); 3285 stop(msg); 3286 bind(ok); 3287 pop(1 << rscratch1->encoding(), sp); 3288 } 3289 #endif 3290 } 3291 #endif 3292 3293 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3294 assert_different_registers(value, tmp1, tmp2); 3295 Label done, tagged, weak_tagged; 3296 3297 cbz(value, done); // Use null as-is. 3298 tst(value, JNIHandles::tag_mask); // Test for tag. 3299 br(Assembler::NE, tagged); 3300 3301 // Resolve local handle 3302 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3303 verify_oop(value); 3304 b(done); 3305 3306 bind(tagged); 3307 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3308 tbnz(value, 0, weak_tagged); // Test for weak tag. 3309 3310 // Resolve global handle 3311 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3312 verify_oop(value); 3313 b(done); 3314 3315 bind(weak_tagged); 3316 // Resolve jweak. 3317 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3318 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3319 verify_oop(value); 3320 3321 bind(done); 3322 } 3323 3324 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3325 assert_different_registers(value, tmp1, tmp2); 3326 Label done; 3327 3328 cbz(value, done); // Use null as-is. 3329 3330 #ifdef ASSERT 3331 { 3332 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3333 Label valid_global_tag; 3334 tbnz(value, 1, valid_global_tag); // Test for global tag 3335 stop("non global jobject using resolve_global_jobject"); 3336 bind(valid_global_tag); 3337 } 3338 #endif 3339 3340 // Resolve global handle 3341 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3342 verify_oop(value); 3343 3344 bind(done); 3345 } 3346 3347 void MacroAssembler::stop(const char* msg) { 3348 // Skip AOT caching C strings in scratch buffer. 3349 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3350 BLOCK_COMMENT(str); 3351 // load msg into r0 so we can access it from the signal handler 3352 // ExternalAddress enables saving and restoring via the code cache 3353 lea(c_rarg0, ExternalAddress((address) str)); 3354 dcps1(0xdeae); 3355 } 3356 3357 void MacroAssembler::unimplemented(const char* what) { 3358 const char* buf = nullptr; 3359 { 3360 ResourceMark rm; 3361 stringStream ss; 3362 ss.print("unimplemented: %s", what); 3363 buf = code_string(ss.as_string()); 3364 } 3365 stop(buf); 3366 } 3367 3368 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3369 #ifdef ASSERT 3370 Label OK; 3371 br(cc, OK); 3372 stop(msg); 3373 bind(OK); 3374 #endif 3375 } 3376 3377 // If a constant does not fit in an immediate field, generate some 3378 // number of MOV instructions and then perform the operation. 3379 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3380 add_sub_imm_insn insn1, 3381 add_sub_reg_insn insn2, 3382 bool is32) { 3383 assert(Rd != zr, "Rd = zr and not setting flags?"); 3384 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3385 if (fits) { 3386 (this->*insn1)(Rd, Rn, imm); 3387 } else { 3388 if (g_uabs(imm) < (1 << 24)) { 3389 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3390 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3391 } else { 3392 assert_different_registers(Rd, Rn); 3393 mov(Rd, imm); 3394 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3395 } 3396 } 3397 } 3398 3399 // Separate vsn which sets the flags. Optimisations are more restricted 3400 // because we must set the flags correctly. 3401 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3402 add_sub_imm_insn insn1, 3403 add_sub_reg_insn insn2, 3404 bool is32) { 3405 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3406 if (fits) { 3407 (this->*insn1)(Rd, Rn, imm); 3408 } else { 3409 assert_different_registers(Rd, Rn); 3410 assert(Rd != zr, "overflow in immediate operand"); 3411 mov(Rd, imm); 3412 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3413 } 3414 } 3415 3416 3417 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3418 if (increment.is_register()) { 3419 add(Rd, Rn, increment.as_register()); 3420 } else { 3421 add(Rd, Rn, increment.as_constant()); 3422 } 3423 } 3424 3425 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3426 if (increment.is_register()) { 3427 addw(Rd, Rn, increment.as_register()); 3428 } else { 3429 addw(Rd, Rn, increment.as_constant()); 3430 } 3431 } 3432 3433 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3434 if (decrement.is_register()) { 3435 sub(Rd, Rn, decrement.as_register()); 3436 } else { 3437 sub(Rd, Rn, decrement.as_constant()); 3438 } 3439 } 3440 3441 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3442 if (decrement.is_register()) { 3443 subw(Rd, Rn, decrement.as_register()); 3444 } else { 3445 subw(Rd, Rn, decrement.as_constant()); 3446 } 3447 } 3448 3449 void MacroAssembler::reinit_heapbase() 3450 { 3451 if (UseCompressedOops) { 3452 if (Universe::is_fully_initialized()) { 3453 mov(rheapbase, CompressedOops::base()); 3454 } else { 3455 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3456 ldr(rheapbase, Address(rheapbase)); 3457 } 3458 } 3459 } 3460 3461 // this simulates the behaviour of the x86 cmpxchg instruction using a 3462 // load linked/store conditional pair. we use the acquire/release 3463 // versions of these instructions so that we flush pending writes as 3464 // per Java semantics. 3465 3466 // n.b the x86 version assumes the old value to be compared against is 3467 // in rax and updates rax with the value located in memory if the 3468 // cmpxchg fails. we supply a register for the old value explicitly 3469 3470 // the aarch64 load linked/store conditional instructions do not 3471 // accept an offset. so, unlike x86, we must provide a plain register 3472 // to identify the memory word to be compared/exchanged rather than a 3473 // register+offset Address. 3474 3475 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3476 Label &succeed, Label *fail) { 3477 // oldv holds comparison value 3478 // newv holds value to write in exchange 3479 // addr identifies memory word to compare against/update 3480 if (UseLSE) { 3481 mov(tmp, oldv); 3482 casal(Assembler::xword, oldv, newv, addr); 3483 cmp(tmp, oldv); 3484 br(Assembler::EQ, succeed); 3485 membar(AnyAny); 3486 } else { 3487 Label retry_load, nope; 3488 prfm(Address(addr), PSTL1STRM); 3489 bind(retry_load); 3490 // flush and load exclusive from the memory location 3491 // and fail if it is not what we expect 3492 ldaxr(tmp, addr); 3493 cmp(tmp, oldv); 3494 br(Assembler::NE, nope); 3495 // if we store+flush with no intervening write tmp will be zero 3496 stlxr(tmp, newv, addr); 3497 cbzw(tmp, succeed); 3498 // retry so we only ever return after a load fails to compare 3499 // ensures we don't return a stale value after a failed write. 3500 b(retry_load); 3501 // if the memory word differs we return it in oldv and signal a fail 3502 bind(nope); 3503 membar(AnyAny); 3504 mov(oldv, tmp); 3505 } 3506 if (fail) 3507 b(*fail); 3508 } 3509 3510 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3511 Label &succeed, Label *fail) { 3512 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3513 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3514 } 3515 3516 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3517 Label &succeed, Label *fail) { 3518 // oldv holds comparison value 3519 // newv holds value to write in exchange 3520 // addr identifies memory word to compare against/update 3521 // tmp returns 0/1 for success/failure 3522 if (UseLSE) { 3523 mov(tmp, oldv); 3524 casal(Assembler::word, oldv, newv, addr); 3525 cmp(tmp, oldv); 3526 br(Assembler::EQ, succeed); 3527 membar(AnyAny); 3528 } else { 3529 Label retry_load, nope; 3530 prfm(Address(addr), PSTL1STRM); 3531 bind(retry_load); 3532 // flush and load exclusive from the memory location 3533 // and fail if it is not what we expect 3534 ldaxrw(tmp, addr); 3535 cmp(tmp, oldv); 3536 br(Assembler::NE, nope); 3537 // if we store+flush with no intervening write tmp will be zero 3538 stlxrw(tmp, newv, addr); 3539 cbzw(tmp, succeed); 3540 // retry so we only ever return after a load fails to compare 3541 // ensures we don't return a stale value after a failed write. 3542 b(retry_load); 3543 // if the memory word differs we return it in oldv and signal a fail 3544 bind(nope); 3545 membar(AnyAny); 3546 mov(oldv, tmp); 3547 } 3548 if (fail) 3549 b(*fail); 3550 } 3551 3552 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3553 // doesn't retry and may fail spuriously. If the oldval is wanted, 3554 // Pass a register for the result, otherwise pass noreg. 3555 3556 // Clobbers rscratch1 3557 void MacroAssembler::cmpxchg(Register addr, Register expected, 3558 Register new_val, 3559 enum operand_size size, 3560 bool acquire, bool release, 3561 bool weak, 3562 Register result) { 3563 if (result == noreg) result = rscratch1; 3564 BLOCK_COMMENT("cmpxchg {"); 3565 if (UseLSE) { 3566 mov(result, expected); 3567 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3568 compare_eq(result, expected, size); 3569 #ifdef ASSERT 3570 // Poison rscratch1 which is written on !UseLSE branch 3571 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3572 #endif 3573 } else { 3574 Label retry_load, done; 3575 prfm(Address(addr), PSTL1STRM); 3576 bind(retry_load); 3577 load_exclusive(result, addr, size, acquire); 3578 compare_eq(result, expected, size); 3579 br(Assembler::NE, done); 3580 store_exclusive(rscratch1, new_val, addr, size, release); 3581 if (weak) { 3582 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3583 } else { 3584 cbnzw(rscratch1, retry_load); 3585 } 3586 bind(done); 3587 } 3588 BLOCK_COMMENT("} cmpxchg"); 3589 } 3590 3591 // A generic comparison. Only compares for equality, clobbers rscratch1. 3592 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3593 if (size == xword) { 3594 cmp(rm, rn); 3595 } else if (size == word) { 3596 cmpw(rm, rn); 3597 } else if (size == halfword) { 3598 eorw(rscratch1, rm, rn); 3599 ands(zr, rscratch1, 0xffff); 3600 } else if (size == byte) { 3601 eorw(rscratch1, rm, rn); 3602 ands(zr, rscratch1, 0xff); 3603 } else { 3604 ShouldNotReachHere(); 3605 } 3606 } 3607 3608 3609 static bool different(Register a, RegisterOrConstant b, Register c) { 3610 if (b.is_constant()) 3611 return a != c; 3612 else 3613 return a != b.as_register() && a != c && b.as_register() != c; 3614 } 3615 3616 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3617 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3618 if (UseLSE) { \ 3619 prev = prev->is_valid() ? prev : zr; \ 3620 if (incr.is_register()) { \ 3621 AOP(sz, incr.as_register(), prev, addr); \ 3622 } else { \ 3623 mov(rscratch2, incr.as_constant()); \ 3624 AOP(sz, rscratch2, prev, addr); \ 3625 } \ 3626 return; \ 3627 } \ 3628 Register result = rscratch2; \ 3629 if (prev->is_valid()) \ 3630 result = different(prev, incr, addr) ? prev : rscratch2; \ 3631 \ 3632 Label retry_load; \ 3633 prfm(Address(addr), PSTL1STRM); \ 3634 bind(retry_load); \ 3635 LDXR(result, addr); \ 3636 OP(rscratch1, result, incr); \ 3637 STXR(rscratch2, rscratch1, addr); \ 3638 cbnzw(rscratch2, retry_load); \ 3639 if (prev->is_valid() && prev != result) { \ 3640 IOP(prev, rscratch1, incr); \ 3641 } \ 3642 } 3643 3644 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3645 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3646 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3647 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3648 3649 #undef ATOMIC_OP 3650 3651 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3652 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3653 if (UseLSE) { \ 3654 prev = prev->is_valid() ? prev : zr; \ 3655 AOP(sz, newv, prev, addr); \ 3656 return; \ 3657 } \ 3658 Register result = rscratch2; \ 3659 if (prev->is_valid()) \ 3660 result = different(prev, newv, addr) ? prev : rscratch2; \ 3661 \ 3662 Label retry_load; \ 3663 prfm(Address(addr), PSTL1STRM); \ 3664 bind(retry_load); \ 3665 LDXR(result, addr); \ 3666 STXR(rscratch1, newv, addr); \ 3667 cbnzw(rscratch1, retry_load); \ 3668 if (prev->is_valid() && prev != result) \ 3669 mov(prev, result); \ 3670 } 3671 3672 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3673 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3674 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3675 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3676 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3677 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3678 3679 #undef ATOMIC_XCHG 3680 3681 #ifndef PRODUCT 3682 extern "C" void findpc(intptr_t x); 3683 #endif 3684 3685 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3686 { 3687 // In order to get locks to work, we need to fake a in_VM state 3688 if (ShowMessageBoxOnError ) { 3689 JavaThread* thread = JavaThread::current(); 3690 JavaThreadState saved_state = thread->thread_state(); 3691 thread->set_thread_state(_thread_in_vm); 3692 #ifndef PRODUCT 3693 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3694 ttyLocker ttyl; 3695 BytecodeCounter::print(); 3696 } 3697 #endif 3698 if (os::message_box(msg, "Execution stopped, print registers?")) { 3699 ttyLocker ttyl; 3700 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3701 #ifndef PRODUCT 3702 tty->cr(); 3703 findpc(pc); 3704 tty->cr(); 3705 #endif 3706 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3707 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3708 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3709 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3710 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3711 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3712 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3713 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3714 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3715 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3716 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3717 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3718 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3719 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3720 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3721 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3722 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3723 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3724 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3725 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3726 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3727 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3728 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3729 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3730 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3731 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3732 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3733 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3734 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3735 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3736 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3737 BREAKPOINT; 3738 } 3739 } 3740 fatal("DEBUG MESSAGE: %s", msg); 3741 } 3742 3743 RegSet MacroAssembler::call_clobbered_gp_registers() { 3744 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3745 #ifndef R18_RESERVED 3746 regs += r18_tls; 3747 #endif 3748 return regs; 3749 } 3750 3751 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3752 int step = 4 * wordSize; 3753 push(call_clobbered_gp_registers() - exclude, sp); 3754 sub(sp, sp, step); 3755 mov(rscratch1, -step); 3756 // Push v0-v7, v16-v31. 3757 for (int i = 31; i>= 4; i -= 4) { 3758 if (i <= v7->encoding() || i >= v16->encoding()) 3759 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3760 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3761 } 3762 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3763 as_FloatRegister(3), T1D, Address(sp)); 3764 } 3765 3766 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3767 for (int i = 0; i < 32; i += 4) { 3768 if (i <= v7->encoding() || i >= v16->encoding()) 3769 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3770 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3771 } 3772 3773 reinitialize_ptrue(); 3774 3775 pop(call_clobbered_gp_registers() - exclude, sp); 3776 } 3777 3778 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3779 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3780 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3781 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3782 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3783 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3784 sve_str(as_FloatRegister(i), Address(sp, i)); 3785 } 3786 } else { 3787 int step = (save_vectors ? 8 : 4) * wordSize; 3788 mov(rscratch1, -step); 3789 sub(sp, sp, step); 3790 for (int i = 28; i >= 4; i -= 4) { 3791 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3792 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3793 } 3794 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3795 } 3796 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3797 sub(sp, sp, total_predicate_in_bytes); 3798 for (int i = 0; i < PRegister::number_of_registers; i++) { 3799 sve_str(as_PRegister(i), Address(sp, i)); 3800 } 3801 } 3802 } 3803 3804 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3805 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3806 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3807 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3808 sve_ldr(as_PRegister(i), Address(sp, i)); 3809 } 3810 add(sp, sp, total_predicate_in_bytes); 3811 } 3812 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3813 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3814 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3815 } 3816 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3817 } else { 3818 int step = (restore_vectors ? 8 : 4) * wordSize; 3819 for (int i = 0; i <= 28; i += 4) 3820 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3821 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3822 } 3823 3824 // We may use predicate registers and rely on ptrue with SVE, 3825 // regardless of wide vector (> 8 bytes) used or not. 3826 if (use_sve) { 3827 reinitialize_ptrue(); 3828 } 3829 3830 // integer registers except lr & sp 3831 pop(RegSet::range(r0, r17), sp); 3832 #ifdef R18_RESERVED 3833 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3834 pop(RegSet::range(r20, r29), sp); 3835 #else 3836 pop(RegSet::range(r18_tls, r29), sp); 3837 #endif 3838 } 3839 3840 /** 3841 * Helpers for multiply_to_len(). 3842 */ 3843 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3844 Register src1, Register src2) { 3845 adds(dest_lo, dest_lo, src1); 3846 adc(dest_hi, dest_hi, zr); 3847 adds(dest_lo, dest_lo, src2); 3848 adc(final_dest_hi, dest_hi, zr); 3849 } 3850 3851 // Generate an address from (r + r1 extend offset). "size" is the 3852 // size of the operand. The result may be in rscratch2. 3853 Address MacroAssembler::offsetted_address(Register r, Register r1, 3854 Address::extend ext, int offset, int size) { 3855 if (offset || (ext.shift() % size != 0)) { 3856 lea(rscratch2, Address(r, r1, ext)); 3857 return Address(rscratch2, offset); 3858 } else { 3859 return Address(r, r1, ext); 3860 } 3861 } 3862 3863 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3864 { 3865 assert(offset >= 0, "spill to negative address?"); 3866 // Offset reachable ? 3867 // Not aligned - 9 bits signed offset 3868 // Aligned - 12 bits unsigned offset shifted 3869 Register base = sp; 3870 if ((offset & (size-1)) && offset >= (1<<8)) { 3871 add(tmp, base, offset & ((1<<12)-1)); 3872 base = tmp; 3873 offset &= -1u<<12; 3874 } 3875 3876 if (offset >= (1<<12) * size) { 3877 add(tmp, base, offset & (((1<<12)-1)<<12)); 3878 base = tmp; 3879 offset &= ~(((1<<12)-1)<<12); 3880 } 3881 3882 return Address(base, offset); 3883 } 3884 3885 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3886 assert(offset >= 0, "spill to negative address?"); 3887 3888 Register base = sp; 3889 3890 // An immediate offset in the range 0 to 255 which is multiplied 3891 // by the current vector or predicate register size in bytes. 3892 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3893 return Address(base, offset / sve_reg_size_in_bytes); 3894 } 3895 3896 add(tmp, base, offset); 3897 return Address(tmp); 3898 } 3899 3900 // Checks whether offset is aligned. 3901 // Returns true if it is, else false. 3902 bool MacroAssembler::merge_alignment_check(Register base, 3903 size_t size, 3904 int64_t cur_offset, 3905 int64_t prev_offset) const { 3906 if (AvoidUnalignedAccesses) { 3907 if (base == sp) { 3908 // Checks whether low offset if aligned to pair of registers. 3909 int64_t pair_mask = size * 2 - 1; 3910 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3911 return (offset & pair_mask) == 0; 3912 } else { // If base is not sp, we can't guarantee the access is aligned. 3913 return false; 3914 } 3915 } else { 3916 int64_t mask = size - 1; 3917 // Load/store pair instruction only supports element size aligned offset. 3918 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3919 } 3920 } 3921 3922 // Checks whether current and previous loads/stores can be merged. 3923 // Returns true if it can be merged, else false. 3924 bool MacroAssembler::ldst_can_merge(Register rt, 3925 const Address &adr, 3926 size_t cur_size_in_bytes, 3927 bool is_store) const { 3928 address prev = pc() - NativeInstruction::instruction_size; 3929 address last = code()->last_insn(); 3930 3931 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3932 return false; 3933 } 3934 3935 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3936 return false; 3937 } 3938 3939 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3940 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3941 3942 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3943 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3944 3945 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3946 return false; 3947 } 3948 3949 int64_t max_offset = 63 * prev_size_in_bytes; 3950 int64_t min_offset = -64 * prev_size_in_bytes; 3951 3952 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3953 3954 // Only same base can be merged. 3955 if (adr.base() != prev_ldst->base()) { 3956 return false; 3957 } 3958 3959 int64_t cur_offset = adr.offset(); 3960 int64_t prev_offset = prev_ldst->offset(); 3961 size_t diff = abs(cur_offset - prev_offset); 3962 if (diff != prev_size_in_bytes) { 3963 return false; 3964 } 3965 3966 // Following cases can not be merged: 3967 // ldr x2, [x2, #8] 3968 // ldr x3, [x2, #16] 3969 // or: 3970 // ldr x2, [x3, #8] 3971 // ldr x2, [x3, #16] 3972 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3973 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3974 return false; 3975 } 3976 3977 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3978 // Offset range must be in ldp/stp instruction's range. 3979 if (low_offset > max_offset || low_offset < min_offset) { 3980 return false; 3981 } 3982 3983 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3984 return true; 3985 } 3986 3987 return false; 3988 } 3989 3990 // Merge current load/store with previous load/store into ldp/stp. 3991 void MacroAssembler::merge_ldst(Register rt, 3992 const Address &adr, 3993 size_t cur_size_in_bytes, 3994 bool is_store) { 3995 3996 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3997 3998 Register rt_low, rt_high; 3999 address prev = pc() - NativeInstruction::instruction_size; 4000 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 4001 4002 int64_t offset; 4003 4004 if (adr.offset() < prev_ldst->offset()) { 4005 offset = adr.offset(); 4006 rt_low = rt; 4007 rt_high = prev_ldst->target(); 4008 } else { 4009 offset = prev_ldst->offset(); 4010 rt_low = prev_ldst->target(); 4011 rt_high = rt; 4012 } 4013 4014 Address adr_p = Address(prev_ldst->base(), offset); 4015 // Overwrite previous generated binary. 4016 code_section()->set_end(prev); 4017 4018 const size_t sz = prev_ldst->size_in_bytes(); 4019 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 4020 if (!is_store) { 4021 BLOCK_COMMENT("merged ldr pair"); 4022 if (sz == 8) { 4023 ldp(rt_low, rt_high, adr_p); 4024 } else { 4025 ldpw(rt_low, rt_high, adr_p); 4026 } 4027 } else { 4028 BLOCK_COMMENT("merged str pair"); 4029 if (sz == 8) { 4030 stp(rt_low, rt_high, adr_p); 4031 } else { 4032 stpw(rt_low, rt_high, adr_p); 4033 } 4034 } 4035 } 4036 4037 /** 4038 * Multiply 64 bit by 64 bit first loop. 4039 */ 4040 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 4041 Register y, Register y_idx, Register z, 4042 Register carry, Register product, 4043 Register idx, Register kdx) { 4044 // 4045 // jlong carry, x[], y[], z[]; 4046 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4047 // huge_128 product = y[idx] * x[xstart] + carry; 4048 // z[kdx] = (jlong)product; 4049 // carry = (jlong)(product >>> 64); 4050 // } 4051 // z[xstart] = carry; 4052 // 4053 4054 Label L_first_loop, L_first_loop_exit; 4055 Label L_one_x, L_one_y, L_multiply; 4056 4057 subsw(xstart, xstart, 1); 4058 br(Assembler::MI, L_one_x); 4059 4060 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 4061 ldr(x_xstart, Address(rscratch1)); 4062 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 4063 4064 bind(L_first_loop); 4065 subsw(idx, idx, 1); 4066 br(Assembler::MI, L_first_loop_exit); 4067 subsw(idx, idx, 1); 4068 br(Assembler::MI, L_one_y); 4069 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4070 ldr(y_idx, Address(rscratch1)); 4071 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 4072 bind(L_multiply); 4073 4074 // AArch64 has a multiply-accumulate instruction that we can't use 4075 // here because it has no way to process carries, so we have to use 4076 // separate add and adc instructions. Bah. 4077 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 4078 mul(product, x_xstart, y_idx); 4079 adds(product, product, carry); 4080 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 4081 4082 subw(kdx, kdx, 2); 4083 ror(product, product, 32); // back to big-endian 4084 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 4085 4086 b(L_first_loop); 4087 4088 bind(L_one_y); 4089 ldrw(y_idx, Address(y, 0)); 4090 b(L_multiply); 4091 4092 bind(L_one_x); 4093 ldrw(x_xstart, Address(x, 0)); 4094 b(L_first_loop); 4095 4096 bind(L_first_loop_exit); 4097 } 4098 4099 /** 4100 * Multiply 128 bit by 128. Unrolled inner loop. 4101 * 4102 */ 4103 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4104 Register carry, Register carry2, 4105 Register idx, Register jdx, 4106 Register yz_idx1, Register yz_idx2, 4107 Register tmp, Register tmp3, Register tmp4, 4108 Register tmp6, Register product_hi) { 4109 4110 // jlong carry, x[], y[], z[]; 4111 // int kdx = ystart+1; 4112 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4113 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4114 // jlong carry2 = (jlong)(tmp3 >>> 64); 4115 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4116 // carry = (jlong)(tmp4 >>> 64); 4117 // z[kdx+idx+1] = (jlong)tmp3; 4118 // z[kdx+idx] = (jlong)tmp4; 4119 // } 4120 // idx += 2; 4121 // if (idx > 0) { 4122 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4123 // z[kdx+idx] = (jlong)yz_idx1; 4124 // carry = (jlong)(yz_idx1 >>> 64); 4125 // } 4126 // 4127 4128 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4129 4130 lsrw(jdx, idx, 2); 4131 4132 bind(L_third_loop); 4133 4134 subsw(jdx, jdx, 1); 4135 br(Assembler::MI, L_third_loop_exit); 4136 subw(idx, idx, 4); 4137 4138 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4139 4140 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4141 4142 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4143 4144 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4145 ror(yz_idx2, yz_idx2, 32); 4146 4147 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4148 4149 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4150 umulh(tmp4, product_hi, yz_idx1); 4151 4152 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4153 ror(rscratch2, rscratch2, 32); 4154 4155 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4156 umulh(carry2, product_hi, yz_idx2); 4157 4158 // propagate sum of both multiplications into carry:tmp4:tmp3 4159 adds(tmp3, tmp3, carry); 4160 adc(tmp4, tmp4, zr); 4161 adds(tmp3, tmp3, rscratch1); 4162 adcs(tmp4, tmp4, tmp); 4163 adc(carry, carry2, zr); 4164 adds(tmp4, tmp4, rscratch2); 4165 adc(carry, carry, zr); 4166 4167 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4168 ror(tmp4, tmp4, 32); 4169 stp(tmp4, tmp3, Address(tmp6, 0)); 4170 4171 b(L_third_loop); 4172 bind (L_third_loop_exit); 4173 4174 andw (idx, idx, 0x3); 4175 cbz(idx, L_post_third_loop_done); 4176 4177 Label L_check_1; 4178 subsw(idx, idx, 2); 4179 br(Assembler::MI, L_check_1); 4180 4181 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4182 ldr(yz_idx1, Address(rscratch1, 0)); 4183 ror(yz_idx1, yz_idx1, 32); 4184 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4185 umulh(tmp4, product_hi, yz_idx1); 4186 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4187 ldr(yz_idx2, Address(rscratch1, 0)); 4188 ror(yz_idx2, yz_idx2, 32); 4189 4190 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4191 4192 ror(tmp3, tmp3, 32); 4193 str(tmp3, Address(rscratch1, 0)); 4194 4195 bind (L_check_1); 4196 4197 andw (idx, idx, 0x1); 4198 subsw(idx, idx, 1); 4199 br(Assembler::MI, L_post_third_loop_done); 4200 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4201 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4202 umulh(carry2, tmp4, product_hi); 4203 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4204 4205 add2_with_carry(carry2, tmp3, tmp4, carry); 4206 4207 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4208 extr(carry, carry2, tmp3, 32); 4209 4210 bind(L_post_third_loop_done); 4211 } 4212 4213 /** 4214 * Code for BigInteger::multiplyToLen() intrinsic. 4215 * 4216 * r0: x 4217 * r1: xlen 4218 * r2: y 4219 * r3: ylen 4220 * r4: z 4221 * r5: tmp0 4222 * r10: tmp1 4223 * r11: tmp2 4224 * r12: tmp3 4225 * r13: tmp4 4226 * r14: tmp5 4227 * r15: tmp6 4228 * r16: tmp7 4229 * 4230 */ 4231 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4232 Register z, Register tmp0, 4233 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4234 Register tmp5, Register tmp6, Register product_hi) { 4235 4236 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4237 4238 const Register idx = tmp1; 4239 const Register kdx = tmp2; 4240 const Register xstart = tmp3; 4241 4242 const Register y_idx = tmp4; 4243 const Register carry = tmp5; 4244 const Register product = xlen; 4245 const Register x_xstart = tmp0; 4246 4247 // First Loop. 4248 // 4249 // final static long LONG_MASK = 0xffffffffL; 4250 // int xstart = xlen - 1; 4251 // int ystart = ylen - 1; 4252 // long carry = 0; 4253 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4254 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4255 // z[kdx] = (int)product; 4256 // carry = product >>> 32; 4257 // } 4258 // z[xstart] = (int)carry; 4259 // 4260 4261 movw(idx, ylen); // idx = ylen; 4262 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4263 mov(carry, zr); // carry = 0; 4264 4265 Label L_done; 4266 4267 movw(xstart, xlen); 4268 subsw(xstart, xstart, 1); 4269 br(Assembler::MI, L_done); 4270 4271 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4272 4273 Label L_second_loop; 4274 cbzw(kdx, L_second_loop); 4275 4276 Label L_carry; 4277 subw(kdx, kdx, 1); 4278 cbzw(kdx, L_carry); 4279 4280 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4281 lsr(carry, carry, 32); 4282 subw(kdx, kdx, 1); 4283 4284 bind(L_carry); 4285 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4286 4287 // Second and third (nested) loops. 4288 // 4289 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4290 // carry = 0; 4291 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4292 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4293 // (z[k] & LONG_MASK) + carry; 4294 // z[k] = (int)product; 4295 // carry = product >>> 32; 4296 // } 4297 // z[i] = (int)carry; 4298 // } 4299 // 4300 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4301 4302 const Register jdx = tmp1; 4303 4304 bind(L_second_loop); 4305 mov(carry, zr); // carry = 0; 4306 movw(jdx, ylen); // j = ystart+1 4307 4308 subsw(xstart, xstart, 1); // i = xstart-1; 4309 br(Assembler::MI, L_done); 4310 4311 str(z, Address(pre(sp, -4 * wordSize))); 4312 4313 Label L_last_x; 4314 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4315 subsw(xstart, xstart, 1); // i = xstart-1; 4316 br(Assembler::MI, L_last_x); 4317 4318 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4319 ldr(product_hi, Address(rscratch1)); 4320 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4321 4322 Label L_third_loop_prologue; 4323 bind(L_third_loop_prologue); 4324 4325 str(ylen, Address(sp, wordSize)); 4326 stp(x, xstart, Address(sp, 2 * wordSize)); 4327 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4328 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4329 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4330 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4331 4332 addw(tmp3, xlen, 1); 4333 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4334 subsw(tmp3, tmp3, 1); 4335 br(Assembler::MI, L_done); 4336 4337 lsr(carry, carry, 32); 4338 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4339 b(L_second_loop); 4340 4341 // Next infrequent code is moved outside loops. 4342 bind(L_last_x); 4343 ldrw(product_hi, Address(x, 0)); 4344 b(L_third_loop_prologue); 4345 4346 bind(L_done); 4347 } 4348 4349 // Code for BigInteger::mulAdd intrinsic 4350 // out = r0 4351 // in = r1 4352 // offset = r2 (already out.length-offset) 4353 // len = r3 4354 // k = r4 4355 // 4356 // pseudo code from java implementation: 4357 // carry = 0; 4358 // offset = out.length-offset - 1; 4359 // for (int j=len-1; j >= 0; j--) { 4360 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4361 // out[offset--] = (int)product; 4362 // carry = product >>> 32; 4363 // } 4364 // return (int)carry; 4365 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4366 Register len, Register k) { 4367 Label LOOP, END; 4368 // pre-loop 4369 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4370 csel(out, zr, out, Assembler::EQ); 4371 br(Assembler::EQ, END); 4372 add(in, in, len, LSL, 2); // in[j+1] address 4373 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4374 mov(out, zr); // used to keep carry now 4375 BIND(LOOP); 4376 ldrw(rscratch1, Address(pre(in, -4))); 4377 madd(rscratch1, rscratch1, k, out); 4378 ldrw(rscratch2, Address(pre(offset, -4))); 4379 add(rscratch1, rscratch1, rscratch2); 4380 strw(rscratch1, Address(offset)); 4381 lsr(out, rscratch1, 32); 4382 subs(len, len, 1); 4383 br(Assembler::NE, LOOP); 4384 BIND(END); 4385 } 4386 4387 /** 4388 * Emits code to update CRC-32 with a byte value according to constants in table 4389 * 4390 * @param [in,out]crc Register containing the crc. 4391 * @param [in]val Register containing the byte to fold into the CRC. 4392 * @param [in]table Register containing the table of crc constants. 4393 * 4394 * uint32_t crc; 4395 * val = crc_table[(val ^ crc) & 0xFF]; 4396 * crc = val ^ (crc >> 8); 4397 * 4398 */ 4399 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4400 eor(val, val, crc); 4401 andr(val, val, 0xff); 4402 ldrw(val, Address(table, val, Address::lsl(2))); 4403 eor(crc, val, crc, Assembler::LSR, 8); 4404 } 4405 4406 /** 4407 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4408 * 4409 * @param [in,out]crc Register containing the crc. 4410 * @param [in]v Register containing the 32-bit to fold into the CRC. 4411 * @param [in]table0 Register containing table 0 of crc constants. 4412 * @param [in]table1 Register containing table 1 of crc constants. 4413 * @param [in]table2 Register containing table 2 of crc constants. 4414 * @param [in]table3 Register containing table 3 of crc constants. 4415 * 4416 * uint32_t crc; 4417 * v = crc ^ v 4418 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4419 * 4420 */ 4421 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4422 Register table0, Register table1, Register table2, Register table3, 4423 bool upper) { 4424 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4425 uxtb(tmp, v); 4426 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4427 ubfx(tmp, v, 8, 8); 4428 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4429 eor(crc, crc, tmp); 4430 ubfx(tmp, v, 16, 8); 4431 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4432 eor(crc, crc, tmp); 4433 ubfx(tmp, v, 24, 8); 4434 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4435 eor(crc, crc, tmp); 4436 } 4437 4438 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4439 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4440 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4441 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4442 4443 subs(tmp0, len, 384); 4444 mvnw(crc, crc); 4445 br(Assembler::GE, CRC_by128_pre); 4446 BIND(CRC_less128); 4447 subs(len, len, 32); 4448 br(Assembler::GE, CRC_by32_loop); 4449 BIND(CRC_less32); 4450 adds(len, len, 32 - 4); 4451 br(Assembler::GE, CRC_by4_loop); 4452 adds(len, len, 4); 4453 br(Assembler::GT, CRC_by1_loop); 4454 b(L_exit); 4455 4456 BIND(CRC_by32_loop); 4457 ldp(tmp0, tmp1, Address(buf)); 4458 crc32x(crc, crc, tmp0); 4459 ldp(tmp2, tmp3, Address(buf, 16)); 4460 crc32x(crc, crc, tmp1); 4461 add(buf, buf, 32); 4462 crc32x(crc, crc, tmp2); 4463 subs(len, len, 32); 4464 crc32x(crc, crc, tmp3); 4465 br(Assembler::GE, CRC_by32_loop); 4466 cmn(len, (u1)32); 4467 br(Assembler::NE, CRC_less32); 4468 b(L_exit); 4469 4470 BIND(CRC_by4_loop); 4471 ldrw(tmp0, Address(post(buf, 4))); 4472 subs(len, len, 4); 4473 crc32w(crc, crc, tmp0); 4474 br(Assembler::GE, CRC_by4_loop); 4475 adds(len, len, 4); 4476 br(Assembler::LE, L_exit); 4477 BIND(CRC_by1_loop); 4478 ldrb(tmp0, Address(post(buf, 1))); 4479 subs(len, len, 1); 4480 crc32b(crc, crc, tmp0); 4481 br(Assembler::GT, CRC_by1_loop); 4482 b(L_exit); 4483 4484 BIND(CRC_by128_pre); 4485 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4486 4*256*sizeof(juint) + 8*sizeof(juint)); 4487 mov(crc, 0); 4488 crc32x(crc, crc, tmp0); 4489 crc32x(crc, crc, tmp1); 4490 4491 cbnz(len, CRC_less128); 4492 4493 BIND(L_exit); 4494 mvnw(crc, crc); 4495 } 4496 4497 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4498 Register len, Register tmp0, Register tmp1, Register tmp2, 4499 Register tmp3) { 4500 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4501 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4502 4503 mvnw(crc, crc); 4504 4505 subs(len, len, 128); 4506 br(Assembler::GE, CRC_by64_pre); 4507 BIND(CRC_less64); 4508 adds(len, len, 128-32); 4509 br(Assembler::GE, CRC_by32_loop); 4510 BIND(CRC_less32); 4511 adds(len, len, 32-4); 4512 br(Assembler::GE, CRC_by4_loop); 4513 adds(len, len, 4); 4514 br(Assembler::GT, CRC_by1_loop); 4515 b(L_exit); 4516 4517 BIND(CRC_by32_loop); 4518 ldp(tmp0, tmp1, Address(post(buf, 16))); 4519 subs(len, len, 32); 4520 crc32x(crc, crc, tmp0); 4521 ldr(tmp2, Address(post(buf, 8))); 4522 crc32x(crc, crc, tmp1); 4523 ldr(tmp3, Address(post(buf, 8))); 4524 crc32x(crc, crc, tmp2); 4525 crc32x(crc, crc, tmp3); 4526 br(Assembler::GE, CRC_by32_loop); 4527 cmn(len, (u1)32); 4528 br(Assembler::NE, CRC_less32); 4529 b(L_exit); 4530 4531 BIND(CRC_by4_loop); 4532 ldrw(tmp0, Address(post(buf, 4))); 4533 subs(len, len, 4); 4534 crc32w(crc, crc, tmp0); 4535 br(Assembler::GE, CRC_by4_loop); 4536 adds(len, len, 4); 4537 br(Assembler::LE, L_exit); 4538 BIND(CRC_by1_loop); 4539 ldrb(tmp0, Address(post(buf, 1))); 4540 subs(len, len, 1); 4541 crc32b(crc, crc, tmp0); 4542 br(Assembler::GT, CRC_by1_loop); 4543 b(L_exit); 4544 4545 BIND(CRC_by64_pre); 4546 sub(buf, buf, 8); 4547 ldp(tmp0, tmp1, Address(buf, 8)); 4548 crc32x(crc, crc, tmp0); 4549 ldr(tmp2, Address(buf, 24)); 4550 crc32x(crc, crc, tmp1); 4551 ldr(tmp3, Address(buf, 32)); 4552 crc32x(crc, crc, tmp2); 4553 ldr(tmp0, Address(buf, 40)); 4554 crc32x(crc, crc, tmp3); 4555 ldr(tmp1, Address(buf, 48)); 4556 crc32x(crc, crc, tmp0); 4557 ldr(tmp2, Address(buf, 56)); 4558 crc32x(crc, crc, tmp1); 4559 ldr(tmp3, Address(pre(buf, 64))); 4560 4561 b(CRC_by64_loop); 4562 4563 align(CodeEntryAlignment); 4564 BIND(CRC_by64_loop); 4565 subs(len, len, 64); 4566 crc32x(crc, crc, tmp2); 4567 ldr(tmp0, Address(buf, 8)); 4568 crc32x(crc, crc, tmp3); 4569 ldr(tmp1, Address(buf, 16)); 4570 crc32x(crc, crc, tmp0); 4571 ldr(tmp2, Address(buf, 24)); 4572 crc32x(crc, crc, tmp1); 4573 ldr(tmp3, Address(buf, 32)); 4574 crc32x(crc, crc, tmp2); 4575 ldr(tmp0, Address(buf, 40)); 4576 crc32x(crc, crc, tmp3); 4577 ldr(tmp1, Address(buf, 48)); 4578 crc32x(crc, crc, tmp0); 4579 ldr(tmp2, Address(buf, 56)); 4580 crc32x(crc, crc, tmp1); 4581 ldr(tmp3, Address(pre(buf, 64))); 4582 br(Assembler::GE, CRC_by64_loop); 4583 4584 // post-loop 4585 crc32x(crc, crc, tmp2); 4586 crc32x(crc, crc, tmp3); 4587 4588 sub(len, len, 64); 4589 add(buf, buf, 8); 4590 cmn(len, (u1)128); 4591 br(Assembler::NE, CRC_less64); 4592 BIND(L_exit); 4593 mvnw(crc, crc); 4594 } 4595 4596 /** 4597 * @param crc register containing existing CRC (32-bit) 4598 * @param buf register pointing to input byte buffer (byte*) 4599 * @param len register containing number of bytes 4600 * @param table register that will contain address of CRC table 4601 * @param tmp scratch register 4602 */ 4603 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4604 Register table0, Register table1, Register table2, Register table3, 4605 Register tmp, Register tmp2, Register tmp3) { 4606 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4607 4608 if (UseCryptoPmullForCRC32) { 4609 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4610 return; 4611 } 4612 4613 if (UseCRC32) { 4614 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4615 return; 4616 } 4617 4618 mvnw(crc, crc); 4619 4620 { 4621 uint64_t offset; 4622 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4623 add(table0, table0, offset); 4624 } 4625 add(table1, table0, 1*256*sizeof(juint)); 4626 add(table2, table0, 2*256*sizeof(juint)); 4627 add(table3, table0, 3*256*sizeof(juint)); 4628 4629 { // Neon code start 4630 cmp(len, (u1)64); 4631 br(Assembler::LT, L_by16); 4632 eor(v16, T16B, v16, v16); 4633 4634 Label L_fold; 4635 4636 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4637 4638 ld1(v0, v1, T2D, post(buf, 32)); 4639 ld1r(v4, T2D, post(tmp, 8)); 4640 ld1r(v5, T2D, post(tmp, 8)); 4641 ld1r(v6, T2D, post(tmp, 8)); 4642 ld1r(v7, T2D, post(tmp, 8)); 4643 mov(v16, S, 0, crc); 4644 4645 eor(v0, T16B, v0, v16); 4646 sub(len, len, 64); 4647 4648 BIND(L_fold); 4649 pmull(v22, T8H, v0, v5, T8B); 4650 pmull(v20, T8H, v0, v7, T8B); 4651 pmull(v23, T8H, v0, v4, T8B); 4652 pmull(v21, T8H, v0, v6, T8B); 4653 4654 pmull2(v18, T8H, v0, v5, T16B); 4655 pmull2(v16, T8H, v0, v7, T16B); 4656 pmull2(v19, T8H, v0, v4, T16B); 4657 pmull2(v17, T8H, v0, v6, T16B); 4658 4659 uzp1(v24, T8H, v20, v22); 4660 uzp2(v25, T8H, v20, v22); 4661 eor(v20, T16B, v24, v25); 4662 4663 uzp1(v26, T8H, v16, v18); 4664 uzp2(v27, T8H, v16, v18); 4665 eor(v16, T16B, v26, v27); 4666 4667 ushll2(v22, T4S, v20, T8H, 8); 4668 ushll(v20, T4S, v20, T4H, 8); 4669 4670 ushll2(v18, T4S, v16, T8H, 8); 4671 ushll(v16, T4S, v16, T4H, 8); 4672 4673 eor(v22, T16B, v23, v22); 4674 eor(v18, T16B, v19, v18); 4675 eor(v20, T16B, v21, v20); 4676 eor(v16, T16B, v17, v16); 4677 4678 uzp1(v17, T2D, v16, v20); 4679 uzp2(v21, T2D, v16, v20); 4680 eor(v17, T16B, v17, v21); 4681 4682 ushll2(v20, T2D, v17, T4S, 16); 4683 ushll(v16, T2D, v17, T2S, 16); 4684 4685 eor(v20, T16B, v20, v22); 4686 eor(v16, T16B, v16, v18); 4687 4688 uzp1(v17, T2D, v20, v16); 4689 uzp2(v21, T2D, v20, v16); 4690 eor(v28, T16B, v17, v21); 4691 4692 pmull(v22, T8H, v1, v5, T8B); 4693 pmull(v20, T8H, v1, v7, T8B); 4694 pmull(v23, T8H, v1, v4, T8B); 4695 pmull(v21, T8H, v1, v6, T8B); 4696 4697 pmull2(v18, T8H, v1, v5, T16B); 4698 pmull2(v16, T8H, v1, v7, T16B); 4699 pmull2(v19, T8H, v1, v4, T16B); 4700 pmull2(v17, T8H, v1, v6, T16B); 4701 4702 ld1(v0, v1, T2D, post(buf, 32)); 4703 4704 uzp1(v24, T8H, v20, v22); 4705 uzp2(v25, T8H, v20, v22); 4706 eor(v20, T16B, v24, v25); 4707 4708 uzp1(v26, T8H, v16, v18); 4709 uzp2(v27, T8H, v16, v18); 4710 eor(v16, T16B, v26, v27); 4711 4712 ushll2(v22, T4S, v20, T8H, 8); 4713 ushll(v20, T4S, v20, T4H, 8); 4714 4715 ushll2(v18, T4S, v16, T8H, 8); 4716 ushll(v16, T4S, v16, T4H, 8); 4717 4718 eor(v22, T16B, v23, v22); 4719 eor(v18, T16B, v19, v18); 4720 eor(v20, T16B, v21, v20); 4721 eor(v16, T16B, v17, v16); 4722 4723 uzp1(v17, T2D, v16, v20); 4724 uzp2(v21, T2D, v16, v20); 4725 eor(v16, T16B, v17, v21); 4726 4727 ushll2(v20, T2D, v16, T4S, 16); 4728 ushll(v16, T2D, v16, T2S, 16); 4729 4730 eor(v20, T16B, v22, v20); 4731 eor(v16, T16B, v16, v18); 4732 4733 uzp1(v17, T2D, v20, v16); 4734 uzp2(v21, T2D, v20, v16); 4735 eor(v20, T16B, v17, v21); 4736 4737 shl(v16, T2D, v28, 1); 4738 shl(v17, T2D, v20, 1); 4739 4740 eor(v0, T16B, v0, v16); 4741 eor(v1, T16B, v1, v17); 4742 4743 subs(len, len, 32); 4744 br(Assembler::GE, L_fold); 4745 4746 mov(crc, 0); 4747 mov(tmp, v0, D, 0); 4748 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4749 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4750 mov(tmp, v0, D, 1); 4751 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4752 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4753 mov(tmp, v1, D, 0); 4754 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4755 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4756 mov(tmp, v1, D, 1); 4757 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4758 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4759 4760 add(len, len, 32); 4761 } // Neon code end 4762 4763 BIND(L_by16); 4764 subs(len, len, 16); 4765 br(Assembler::GE, L_by16_loop); 4766 adds(len, len, 16-4); 4767 br(Assembler::GE, L_by4_loop); 4768 adds(len, len, 4); 4769 br(Assembler::GT, L_by1_loop); 4770 b(L_exit); 4771 4772 BIND(L_by4_loop); 4773 ldrw(tmp, Address(post(buf, 4))); 4774 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4775 subs(len, len, 4); 4776 br(Assembler::GE, L_by4_loop); 4777 adds(len, len, 4); 4778 br(Assembler::LE, L_exit); 4779 BIND(L_by1_loop); 4780 subs(len, len, 1); 4781 ldrb(tmp, Address(post(buf, 1))); 4782 update_byte_crc32(crc, tmp, table0); 4783 br(Assembler::GT, L_by1_loop); 4784 b(L_exit); 4785 4786 align(CodeEntryAlignment); 4787 BIND(L_by16_loop); 4788 subs(len, len, 16); 4789 ldp(tmp, tmp3, Address(post(buf, 16))); 4790 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4791 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4792 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4793 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4794 br(Assembler::GE, L_by16_loop); 4795 adds(len, len, 16-4); 4796 br(Assembler::GE, L_by4_loop); 4797 adds(len, len, 4); 4798 br(Assembler::GT, L_by1_loop); 4799 BIND(L_exit); 4800 mvnw(crc, crc); 4801 } 4802 4803 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4804 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4805 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4806 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4807 4808 subs(tmp0, len, 384); 4809 br(Assembler::GE, CRC_by128_pre); 4810 BIND(CRC_less128); 4811 subs(len, len, 32); 4812 br(Assembler::GE, CRC_by32_loop); 4813 BIND(CRC_less32); 4814 adds(len, len, 32 - 4); 4815 br(Assembler::GE, CRC_by4_loop); 4816 adds(len, len, 4); 4817 br(Assembler::GT, CRC_by1_loop); 4818 b(L_exit); 4819 4820 BIND(CRC_by32_loop); 4821 ldp(tmp0, tmp1, Address(buf)); 4822 crc32cx(crc, crc, tmp0); 4823 ldr(tmp2, Address(buf, 16)); 4824 crc32cx(crc, crc, tmp1); 4825 ldr(tmp3, Address(buf, 24)); 4826 crc32cx(crc, crc, tmp2); 4827 add(buf, buf, 32); 4828 subs(len, len, 32); 4829 crc32cx(crc, crc, tmp3); 4830 br(Assembler::GE, CRC_by32_loop); 4831 cmn(len, (u1)32); 4832 br(Assembler::NE, CRC_less32); 4833 b(L_exit); 4834 4835 BIND(CRC_by4_loop); 4836 ldrw(tmp0, Address(post(buf, 4))); 4837 subs(len, len, 4); 4838 crc32cw(crc, crc, tmp0); 4839 br(Assembler::GE, CRC_by4_loop); 4840 adds(len, len, 4); 4841 br(Assembler::LE, L_exit); 4842 BIND(CRC_by1_loop); 4843 ldrb(tmp0, Address(post(buf, 1))); 4844 subs(len, len, 1); 4845 crc32cb(crc, crc, tmp0); 4846 br(Assembler::GT, CRC_by1_loop); 4847 b(L_exit); 4848 4849 BIND(CRC_by128_pre); 4850 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4851 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4852 mov(crc, 0); 4853 crc32cx(crc, crc, tmp0); 4854 crc32cx(crc, crc, tmp1); 4855 4856 cbnz(len, CRC_less128); 4857 4858 BIND(L_exit); 4859 } 4860 4861 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4862 Register len, Register tmp0, Register tmp1, Register tmp2, 4863 Register tmp3) { 4864 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4865 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4866 4867 subs(len, len, 128); 4868 br(Assembler::GE, CRC_by64_pre); 4869 BIND(CRC_less64); 4870 adds(len, len, 128-32); 4871 br(Assembler::GE, CRC_by32_loop); 4872 BIND(CRC_less32); 4873 adds(len, len, 32-4); 4874 br(Assembler::GE, CRC_by4_loop); 4875 adds(len, len, 4); 4876 br(Assembler::GT, CRC_by1_loop); 4877 b(L_exit); 4878 4879 BIND(CRC_by32_loop); 4880 ldp(tmp0, tmp1, Address(post(buf, 16))); 4881 subs(len, len, 32); 4882 crc32cx(crc, crc, tmp0); 4883 ldr(tmp2, Address(post(buf, 8))); 4884 crc32cx(crc, crc, tmp1); 4885 ldr(tmp3, Address(post(buf, 8))); 4886 crc32cx(crc, crc, tmp2); 4887 crc32cx(crc, crc, tmp3); 4888 br(Assembler::GE, CRC_by32_loop); 4889 cmn(len, (u1)32); 4890 br(Assembler::NE, CRC_less32); 4891 b(L_exit); 4892 4893 BIND(CRC_by4_loop); 4894 ldrw(tmp0, Address(post(buf, 4))); 4895 subs(len, len, 4); 4896 crc32cw(crc, crc, tmp0); 4897 br(Assembler::GE, CRC_by4_loop); 4898 adds(len, len, 4); 4899 br(Assembler::LE, L_exit); 4900 BIND(CRC_by1_loop); 4901 ldrb(tmp0, Address(post(buf, 1))); 4902 subs(len, len, 1); 4903 crc32cb(crc, crc, tmp0); 4904 br(Assembler::GT, CRC_by1_loop); 4905 b(L_exit); 4906 4907 BIND(CRC_by64_pre); 4908 sub(buf, buf, 8); 4909 ldp(tmp0, tmp1, Address(buf, 8)); 4910 crc32cx(crc, crc, tmp0); 4911 ldr(tmp2, Address(buf, 24)); 4912 crc32cx(crc, crc, tmp1); 4913 ldr(tmp3, Address(buf, 32)); 4914 crc32cx(crc, crc, tmp2); 4915 ldr(tmp0, Address(buf, 40)); 4916 crc32cx(crc, crc, tmp3); 4917 ldr(tmp1, Address(buf, 48)); 4918 crc32cx(crc, crc, tmp0); 4919 ldr(tmp2, Address(buf, 56)); 4920 crc32cx(crc, crc, tmp1); 4921 ldr(tmp3, Address(pre(buf, 64))); 4922 4923 b(CRC_by64_loop); 4924 4925 align(CodeEntryAlignment); 4926 BIND(CRC_by64_loop); 4927 subs(len, len, 64); 4928 crc32cx(crc, crc, tmp2); 4929 ldr(tmp0, Address(buf, 8)); 4930 crc32cx(crc, crc, tmp3); 4931 ldr(tmp1, Address(buf, 16)); 4932 crc32cx(crc, crc, tmp0); 4933 ldr(tmp2, Address(buf, 24)); 4934 crc32cx(crc, crc, tmp1); 4935 ldr(tmp3, Address(buf, 32)); 4936 crc32cx(crc, crc, tmp2); 4937 ldr(tmp0, Address(buf, 40)); 4938 crc32cx(crc, crc, tmp3); 4939 ldr(tmp1, Address(buf, 48)); 4940 crc32cx(crc, crc, tmp0); 4941 ldr(tmp2, Address(buf, 56)); 4942 crc32cx(crc, crc, tmp1); 4943 ldr(tmp3, Address(pre(buf, 64))); 4944 br(Assembler::GE, CRC_by64_loop); 4945 4946 // post-loop 4947 crc32cx(crc, crc, tmp2); 4948 crc32cx(crc, crc, tmp3); 4949 4950 sub(len, len, 64); 4951 add(buf, buf, 8); 4952 cmn(len, (u1)128); 4953 br(Assembler::NE, CRC_less64); 4954 BIND(L_exit); 4955 } 4956 4957 /** 4958 * @param crc register containing existing CRC (32-bit) 4959 * @param buf register pointing to input byte buffer (byte*) 4960 * @param len register containing number of bytes 4961 * @param table register that will contain address of CRC table 4962 * @param tmp scratch register 4963 */ 4964 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4965 Register table0, Register table1, Register table2, Register table3, 4966 Register tmp, Register tmp2, Register tmp3) { 4967 if (UseCryptoPmullForCRC32) { 4968 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4969 } else { 4970 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4971 } 4972 } 4973 4974 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4975 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4976 Label CRC_by128_loop; 4977 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4978 4979 sub(len, len, 256); 4980 Register table = tmp0; 4981 { 4982 uint64_t offset; 4983 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4984 add(table, table, offset); 4985 } 4986 add(table, table, table_offset); 4987 4988 // Registers v0..v7 are used as data registers. 4989 // Registers v16..v31 are used as tmp registers. 4990 sub(buf, buf, 0x10); 4991 ldrq(v0, Address(buf, 0x10)); 4992 ldrq(v1, Address(buf, 0x20)); 4993 ldrq(v2, Address(buf, 0x30)); 4994 ldrq(v3, Address(buf, 0x40)); 4995 ldrq(v4, Address(buf, 0x50)); 4996 ldrq(v5, Address(buf, 0x60)); 4997 ldrq(v6, Address(buf, 0x70)); 4998 ldrq(v7, Address(pre(buf, 0x80))); 4999 5000 movi(v31, T4S, 0); 5001 mov(v31, S, 0, crc); 5002 eor(v0, T16B, v0, v31); 5003 5004 // Register v16 contains constants from the crc table. 5005 ldrq(v16, Address(table)); 5006 b(CRC_by128_loop); 5007 5008 align(OptoLoopAlignment); 5009 BIND(CRC_by128_loop); 5010 pmull (v17, T1Q, v0, v16, T1D); 5011 pmull2(v18, T1Q, v0, v16, T2D); 5012 ldrq(v0, Address(buf, 0x10)); 5013 eor3(v0, T16B, v17, v18, v0); 5014 5015 pmull (v19, T1Q, v1, v16, T1D); 5016 pmull2(v20, T1Q, v1, v16, T2D); 5017 ldrq(v1, Address(buf, 0x20)); 5018 eor3(v1, T16B, v19, v20, v1); 5019 5020 pmull (v21, T1Q, v2, v16, T1D); 5021 pmull2(v22, T1Q, v2, v16, T2D); 5022 ldrq(v2, Address(buf, 0x30)); 5023 eor3(v2, T16B, v21, v22, v2); 5024 5025 pmull (v23, T1Q, v3, v16, T1D); 5026 pmull2(v24, T1Q, v3, v16, T2D); 5027 ldrq(v3, Address(buf, 0x40)); 5028 eor3(v3, T16B, v23, v24, v3); 5029 5030 pmull (v25, T1Q, v4, v16, T1D); 5031 pmull2(v26, T1Q, v4, v16, T2D); 5032 ldrq(v4, Address(buf, 0x50)); 5033 eor3(v4, T16B, v25, v26, v4); 5034 5035 pmull (v27, T1Q, v5, v16, T1D); 5036 pmull2(v28, T1Q, v5, v16, T2D); 5037 ldrq(v5, Address(buf, 0x60)); 5038 eor3(v5, T16B, v27, v28, v5); 5039 5040 pmull (v29, T1Q, v6, v16, T1D); 5041 pmull2(v30, T1Q, v6, v16, T2D); 5042 ldrq(v6, Address(buf, 0x70)); 5043 eor3(v6, T16B, v29, v30, v6); 5044 5045 // Reuse registers v23, v24. 5046 // Using them won't block the first instruction of the next iteration. 5047 pmull (v23, T1Q, v7, v16, T1D); 5048 pmull2(v24, T1Q, v7, v16, T2D); 5049 ldrq(v7, Address(pre(buf, 0x80))); 5050 eor3(v7, T16B, v23, v24, v7); 5051 5052 subs(len, len, 0x80); 5053 br(Assembler::GE, CRC_by128_loop); 5054 5055 // fold into 512 bits 5056 // Use v31 for constants because v16 can be still in use. 5057 ldrq(v31, Address(table, 0x10)); 5058 5059 pmull (v17, T1Q, v0, v31, T1D); 5060 pmull2(v18, T1Q, v0, v31, T2D); 5061 eor3(v0, T16B, v17, v18, v4); 5062 5063 pmull (v19, T1Q, v1, v31, T1D); 5064 pmull2(v20, T1Q, v1, v31, T2D); 5065 eor3(v1, T16B, v19, v20, v5); 5066 5067 pmull (v21, T1Q, v2, v31, T1D); 5068 pmull2(v22, T1Q, v2, v31, T2D); 5069 eor3(v2, T16B, v21, v22, v6); 5070 5071 pmull (v23, T1Q, v3, v31, T1D); 5072 pmull2(v24, T1Q, v3, v31, T2D); 5073 eor3(v3, T16B, v23, v24, v7); 5074 5075 // fold into 128 bits 5076 // Use v17 for constants because v31 can be still in use. 5077 ldrq(v17, Address(table, 0x20)); 5078 pmull (v25, T1Q, v0, v17, T1D); 5079 pmull2(v26, T1Q, v0, v17, T2D); 5080 eor3(v3, T16B, v3, v25, v26); 5081 5082 // Use v18 for constants because v17 can be still in use. 5083 ldrq(v18, Address(table, 0x30)); 5084 pmull (v27, T1Q, v1, v18, T1D); 5085 pmull2(v28, T1Q, v1, v18, T2D); 5086 eor3(v3, T16B, v3, v27, v28); 5087 5088 // Use v19 for constants because v18 can be still in use. 5089 ldrq(v19, Address(table, 0x40)); 5090 pmull (v29, T1Q, v2, v19, T1D); 5091 pmull2(v30, T1Q, v2, v19, T2D); 5092 eor3(v0, T16B, v3, v29, v30); 5093 5094 add(len, len, 0x80); 5095 add(buf, buf, 0x10); 5096 5097 mov(tmp0, v0, D, 0); 5098 mov(tmp1, v0, D, 1); 5099 } 5100 5101 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5102 Address adr; 5103 switch(dst.getMode()) { 5104 case Address::base_plus_offset: 5105 // This is the expected mode, although we allow all the other 5106 // forms below. 5107 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5108 break; 5109 default: 5110 lea(rscratch2, dst); 5111 adr = Address(rscratch2); 5112 break; 5113 } 5114 ldr(rscratch1, adr); 5115 add(rscratch1, rscratch1, src); 5116 str(rscratch1, adr); 5117 } 5118 5119 void MacroAssembler::cmpptr(Register src1, Address src2) { 5120 uint64_t offset; 5121 adrp(rscratch1, src2, offset); 5122 ldr(rscratch1, Address(rscratch1, offset)); 5123 cmp(src1, rscratch1); 5124 } 5125 5126 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5127 cmp(obj1, obj2); 5128 } 5129 5130 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5131 load_method_holder(rresult, rmethod); 5132 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5133 } 5134 5135 void MacroAssembler::load_method_holder(Register holder, Register method) { 5136 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5137 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5138 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5139 } 5140 5141 void MacroAssembler::load_metadata(Register dst, Register src) { 5142 if (UseCompactObjectHeaders) { 5143 load_narrow_klass_compact(dst, src); 5144 } else if (UseCompressedClassPointers) { 5145 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5146 } else { 5147 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5148 } 5149 } 5150 5151 // Loads the obj's Klass* into dst. 5152 // Preserves all registers (incl src, rscratch1 and rscratch2). 5153 // Input: 5154 // src - the oop we want to load the klass from. 5155 // dst - output narrow klass. 5156 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5157 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5158 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5159 lsr(dst, dst, markWord::klass_shift); 5160 } 5161 5162 void MacroAssembler::load_klass(Register dst, Register src) { 5163 if (UseCompactObjectHeaders) { 5164 load_narrow_klass_compact(dst, src); 5165 decode_klass_not_null(dst); 5166 } else if (UseCompressedClassPointers) { 5167 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5168 decode_klass_not_null(dst); 5169 } else { 5170 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5171 } 5172 } 5173 5174 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5175 if (RestoreMXCSROnJNICalls) { 5176 Label OK; 5177 get_fpcr(tmp1); 5178 mov(tmp2, tmp1); 5179 // Set FPCR to the state we need. We do want Round to Nearest. We 5180 // don't want non-IEEE rounding modes or floating-point traps. 5181 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5182 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5183 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5184 eor(tmp2, tmp1, tmp2); 5185 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5186 set_fpcr(tmp1); 5187 bind(OK); 5188 } 5189 } 5190 5191 // ((OopHandle)result).resolve(); 5192 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5193 // OopHandle::resolve is an indirection. 5194 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5195 } 5196 5197 // ((WeakHandle)result).resolve(); 5198 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5199 assert_different_registers(result, tmp1, tmp2); 5200 Label resolved; 5201 5202 // A null weak handle resolves to null. 5203 cbz(result, resolved); 5204 5205 // Only 64 bit platforms support GCs that require a tmp register 5206 // WeakHandle::resolve is an indirection like jweak. 5207 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5208 result, Address(result), tmp1, tmp2); 5209 bind(resolved); 5210 } 5211 5212 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5213 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5214 ldr(dst, Address(rmethod, Method::const_offset())); 5215 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5216 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5217 ldr(dst, Address(dst, mirror_offset)); 5218 resolve_oop_handle(dst, tmp1, tmp2); 5219 } 5220 5221 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5222 assert_different_registers(obj, klass, tmp); 5223 if (UseCompressedClassPointers) { 5224 if (UseCompactObjectHeaders) { 5225 load_narrow_klass_compact(tmp, obj); 5226 } else { 5227 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5228 } 5229 if (CompressedKlassPointers::base() == nullptr) { 5230 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5231 return; 5232 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5233 && CompressedKlassPointers::shift() == 0) { 5234 // Only the bottom 32 bits matter 5235 cmpw(klass, tmp); 5236 return; 5237 } 5238 decode_klass_not_null(tmp); 5239 } else { 5240 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5241 } 5242 cmp(klass, tmp); 5243 } 5244 5245 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5246 if (UseCompactObjectHeaders) { 5247 load_narrow_klass_compact(tmp1, obj1); 5248 load_narrow_klass_compact(tmp2, obj2); 5249 cmpw(tmp1, tmp2); 5250 } else if (UseCompressedClassPointers) { 5251 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5252 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5253 cmpw(tmp1, tmp2); 5254 } else { 5255 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5256 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5257 cmp(tmp1, tmp2); 5258 } 5259 } 5260 5261 void MacroAssembler::load_prototype_header(Register dst, Register src) { 5262 load_klass(dst, src); 5263 ldr(dst, Address(dst, Klass::prototype_header_offset())); 5264 } 5265 5266 void MacroAssembler::store_klass(Register dst, Register src) { 5267 // FIXME: Should this be a store release? concurrent gcs assumes 5268 // klass length is valid if klass field is not null. 5269 assert(!UseCompactObjectHeaders, "not with compact headers"); 5270 if (UseCompressedClassPointers) { 5271 encode_klass_not_null(src); 5272 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5273 } else { 5274 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5275 } 5276 } 5277 5278 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5279 assert(!UseCompactObjectHeaders, "not with compact headers"); 5280 if (UseCompressedClassPointers) { 5281 // Store to klass gap in destination 5282 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5283 } 5284 } 5285 5286 // Algorithm must match CompressedOops::encode. 5287 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5288 #ifdef ASSERT 5289 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5290 #endif 5291 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5292 if (CompressedOops::base() == nullptr) { 5293 if (CompressedOops::shift() != 0) { 5294 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5295 lsr(d, s, LogMinObjAlignmentInBytes); 5296 } else { 5297 mov(d, s); 5298 } 5299 } else { 5300 subs(d, s, rheapbase); 5301 csel(d, d, zr, Assembler::HS); 5302 lsr(d, d, LogMinObjAlignmentInBytes); 5303 5304 /* Old algorithm: is this any worse? 5305 Label nonnull; 5306 cbnz(r, nonnull); 5307 sub(r, r, rheapbase); 5308 bind(nonnull); 5309 lsr(r, r, LogMinObjAlignmentInBytes); 5310 */ 5311 } 5312 } 5313 5314 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5315 #ifdef ASSERT 5316 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5317 if (CheckCompressedOops) { 5318 Label ok; 5319 cbnz(r, ok); 5320 stop("null oop passed to encode_heap_oop_not_null"); 5321 bind(ok); 5322 } 5323 #endif 5324 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5325 if (CompressedOops::base() != nullptr) { 5326 sub(r, r, rheapbase); 5327 } 5328 if (CompressedOops::shift() != 0) { 5329 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5330 lsr(r, r, LogMinObjAlignmentInBytes); 5331 } 5332 } 5333 5334 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5335 #ifdef ASSERT 5336 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5337 if (CheckCompressedOops) { 5338 Label ok; 5339 cbnz(src, ok); 5340 stop("null oop passed to encode_heap_oop_not_null2"); 5341 bind(ok); 5342 } 5343 #endif 5344 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5345 5346 Register data = src; 5347 if (CompressedOops::base() != nullptr) { 5348 sub(dst, src, rheapbase); 5349 data = dst; 5350 } 5351 if (CompressedOops::shift() != 0) { 5352 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5353 lsr(dst, data, LogMinObjAlignmentInBytes); 5354 data = dst; 5355 } 5356 if (data == src) 5357 mov(dst, src); 5358 } 5359 5360 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5361 #ifdef ASSERT 5362 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5363 #endif 5364 if (CompressedOops::base() == nullptr) { 5365 if (CompressedOops::shift() != 0) { 5366 lsl(d, s, CompressedOops::shift()); 5367 } else if (d != s) { 5368 mov(d, s); 5369 } 5370 } else { 5371 Label done; 5372 if (d != s) 5373 mov(d, s); 5374 cbz(s, done); 5375 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5376 bind(done); 5377 } 5378 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5379 } 5380 5381 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5382 assert (UseCompressedOops, "should only be used for compressed headers"); 5383 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5384 // Cannot assert, unverified entry point counts instructions (see .ad file) 5385 // vtableStubs also counts instructions in pd_code_size_limit. 5386 // Also do not verify_oop as this is called by verify_oop. 5387 if (CompressedOops::shift() != 0) { 5388 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5389 if (CompressedOops::base() != nullptr) { 5390 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5391 } else { 5392 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5393 } 5394 } else { 5395 assert (CompressedOops::base() == nullptr, "sanity"); 5396 } 5397 } 5398 5399 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5400 assert (UseCompressedOops, "should only be used for compressed headers"); 5401 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5402 // Cannot assert, unverified entry point counts instructions (see .ad file) 5403 // vtableStubs also counts instructions in pd_code_size_limit. 5404 // Also do not verify_oop as this is called by verify_oop. 5405 if (CompressedOops::shift() != 0) { 5406 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5407 if (CompressedOops::base() != nullptr) { 5408 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5409 } else { 5410 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5411 } 5412 } else { 5413 assert (CompressedOops::base() == nullptr, "sanity"); 5414 if (dst != src) { 5415 mov(dst, src); 5416 } 5417 } 5418 } 5419 5420 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5421 5422 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5423 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5424 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5425 return _klass_decode_mode; 5426 } 5427 5428 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5429 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5430 5431 // KlassDecodeMode shouldn't be set already. 5432 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5433 5434 if (base == nullptr) { 5435 return KlassDecodeZero; 5436 } 5437 5438 if (operand_valid_for_logical_immediate( 5439 /*is32*/false, (uint64_t)base)) { 5440 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5441 if (((uint64_t)base & range_mask) == 0) { 5442 return KlassDecodeXor; 5443 } 5444 } 5445 5446 const uint64_t shifted_base = 5447 (uint64_t)base >> shift; 5448 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5449 return KlassDecodeMovk; 5450 } 5451 5452 // No valid encoding. 5453 return KlassDecodeNone; 5454 } 5455 5456 // Check if one of the above decoding modes will work for given base, shift and range. 5457 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5458 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5459 } 5460 5461 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5462 _klass_decode_mode = klass_decode_mode(base, shift, range); 5463 return _klass_decode_mode != KlassDecodeNone; 5464 } 5465 5466 static Register pick_different_tmp(Register dst, Register src) { 5467 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst); 5468 return *tmps.begin(); 5469 } 5470 5471 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) { 5472 // we have to load the klass base from the AOT constants area but 5473 // not the shift because it is not allowed to change 5474 int shift = CompressedKlassPointers::shift(); 5475 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5476 if (dst != src) { 5477 // we can load the base into dst, subtract it formthe src and shift down 5478 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5479 ldr(dst, dst); 5480 sub(dst, src, dst); 5481 lsr(dst, dst, shift); 5482 } else { 5483 // we need an extra register in order to load the coop base 5484 Register tmp = pick_different_tmp(dst, src); 5485 RegSet regs = RegSet::of(tmp); 5486 push(regs, sp); 5487 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5488 ldr(tmp, tmp); 5489 sub(dst, src, tmp); 5490 lsr(dst, dst, shift); 5491 pop(regs, sp); 5492 } 5493 } 5494 5495 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5496 if (AOTCodeCache::is_on_for_dump()) { 5497 encode_klass_not_null_for_aot(dst, src); 5498 return; 5499 } 5500 5501 switch (klass_decode_mode()) { 5502 case KlassDecodeZero: 5503 if (CompressedKlassPointers::shift() != 0) { 5504 lsr(dst, src, CompressedKlassPointers::shift()); 5505 } else { 5506 if (dst != src) mov(dst, src); 5507 } 5508 break; 5509 5510 case KlassDecodeXor: 5511 if (CompressedKlassPointers::shift() != 0) { 5512 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5513 lsr(dst, dst, CompressedKlassPointers::shift()); 5514 } else { 5515 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5516 } 5517 break; 5518 5519 case KlassDecodeMovk: 5520 if (CompressedKlassPointers::shift() != 0) { 5521 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5522 } else { 5523 movw(dst, src); 5524 } 5525 break; 5526 5527 case KlassDecodeNone: 5528 ShouldNotReachHere(); 5529 break; 5530 } 5531 } 5532 5533 void MacroAssembler::encode_klass_not_null(Register r) { 5534 encode_klass_not_null(r, r); 5535 } 5536 5537 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) { 5538 // we have to load the klass base from the AOT constants area but 5539 // not the shift because it is not allowed to change 5540 int shift = CompressedKlassPointers::shift(); 5541 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5542 if (dst != src) { 5543 // we can load the base into dst then add the offset with a suitable shift 5544 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5545 ldr(dst, dst); 5546 add(dst, dst, src, LSL, shift); 5547 } else { 5548 // we need an extra register in order to load the coop base 5549 Register tmp = pick_different_tmp(dst, src); 5550 RegSet regs = RegSet::of(tmp); 5551 push(regs, sp); 5552 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5553 ldr(tmp, tmp); 5554 add(dst, tmp, src, LSL, shift); 5555 pop(regs, sp); 5556 } 5557 } 5558 5559 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5560 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5561 5562 if (AOTCodeCache::is_on_for_dump()) { 5563 decode_klass_not_null_for_aot(dst, src); 5564 return; 5565 } 5566 5567 switch (klass_decode_mode()) { 5568 case KlassDecodeZero: 5569 if (CompressedKlassPointers::shift() != 0) { 5570 lsl(dst, src, CompressedKlassPointers::shift()); 5571 } else { 5572 if (dst != src) mov(dst, src); 5573 } 5574 break; 5575 5576 case KlassDecodeXor: 5577 if (CompressedKlassPointers::shift() != 0) { 5578 lsl(dst, src, CompressedKlassPointers::shift()); 5579 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5580 } else { 5581 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5582 } 5583 break; 5584 5585 case KlassDecodeMovk: { 5586 const uint64_t shifted_base = 5587 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5588 5589 if (dst != src) movw(dst, src); 5590 movk(dst, shifted_base >> 32, 32); 5591 5592 if (CompressedKlassPointers::shift() != 0) { 5593 lsl(dst, dst, CompressedKlassPointers::shift()); 5594 } 5595 5596 break; 5597 } 5598 5599 case KlassDecodeNone: 5600 ShouldNotReachHere(); 5601 break; 5602 } 5603 } 5604 5605 void MacroAssembler::decode_klass_not_null(Register r) { 5606 decode_klass_not_null(r, r); 5607 } 5608 5609 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5610 #ifdef ASSERT 5611 { 5612 ThreadInVMfromUnknown tiv; 5613 assert (UseCompressedOops, "should only be used for compressed oops"); 5614 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5615 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5616 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5617 } 5618 #endif 5619 int oop_index = oop_recorder()->find_index(obj); 5620 InstructionMark im(this); 5621 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5622 code_section()->relocate(inst_mark(), rspec); 5623 movz(dst, 0xDEAD, 16); 5624 movk(dst, 0xBEEF); 5625 } 5626 5627 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5628 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5629 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5630 int index = oop_recorder()->find_index(k); 5631 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5632 5633 InstructionMark im(this); 5634 RelocationHolder rspec = metadata_Relocation::spec(index); 5635 code_section()->relocate(inst_mark(), rspec); 5636 narrowKlass nk = CompressedKlassPointers::encode(k); 5637 movz(dst, (nk >> 16), 16); 5638 movk(dst, nk & 0xffff); 5639 } 5640 5641 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5642 Register dst, Address src, 5643 Register tmp1, Register tmp2) { 5644 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5645 decorators = AccessInternal::decorator_fixup(decorators, type); 5646 bool as_raw = (decorators & AS_RAW) != 0; 5647 if (as_raw) { 5648 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5649 } else { 5650 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5651 } 5652 } 5653 5654 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5655 Address dst, Register val, 5656 Register tmp1, Register tmp2, Register tmp3) { 5657 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5658 decorators = AccessInternal::decorator_fixup(decorators, type); 5659 bool as_raw = (decorators & AS_RAW) != 0; 5660 if (as_raw) { 5661 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5662 } else { 5663 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5664 } 5665 } 5666 5667 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5668 Register inline_layout_info) { 5669 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5670 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5671 } 5672 5673 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5674 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5675 ldrw(offset, Address(offset, InlineKlass::payload_offset_offset())); 5676 } 5677 5678 void MacroAssembler::payload_address(Register oop, Register data, Register inline_klass) { 5679 // ((address) (void*) o) + vk->payload_offset(); 5680 Register offset = (data == oop) ? rscratch1 : data; 5681 payload_offset(inline_klass, offset); 5682 if (data == oop) { 5683 add(data, data, offset); 5684 } else { 5685 lea(data, Address(oop, offset)); 5686 } 5687 } 5688 5689 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5690 Register index, Register data) { 5691 assert_different_registers(array, array_klass, index); 5692 assert_different_registers(rscratch1, array, index); 5693 5694 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5695 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 5696 5697 // Klass::layout_helper_log2_element_size(lh) 5698 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5699 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 5700 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 5701 lslv(index, index, rscratch1); 5702 5703 add(data, array, index); 5704 add(data, data, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT)); 5705 } 5706 5707 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5708 Register tmp2, DecoratorSet decorators) { 5709 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5710 } 5711 5712 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5713 Register tmp2, DecoratorSet decorators) { 5714 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5715 } 5716 5717 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5718 Register tmp2, Register tmp3, DecoratorSet decorators) { 5719 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5720 } 5721 5722 // Used for storing nulls. 5723 void MacroAssembler::store_heap_oop_null(Address dst) { 5724 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5725 } 5726 5727 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5728 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5729 int index = oop_recorder()->allocate_metadata_index(obj); 5730 RelocationHolder rspec = metadata_Relocation::spec(index); 5731 return Address((address)obj, rspec); 5732 } 5733 5734 // Move an oop into a register. 5735 void MacroAssembler::movoop(Register dst, jobject obj) { 5736 int oop_index; 5737 if (obj == nullptr) { 5738 oop_index = oop_recorder()->allocate_oop_index(obj); 5739 } else { 5740 #ifdef ASSERT 5741 { 5742 ThreadInVMfromUnknown tiv; 5743 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5744 } 5745 #endif 5746 oop_index = oop_recorder()->find_index(obj); 5747 } 5748 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5749 5750 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5751 mov(dst, Address((address)obj, rspec)); 5752 } else { 5753 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5754 ldr(dst, Address(dummy, rspec)); 5755 } 5756 } 5757 5758 // Move a metadata address into a register. 5759 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5760 int oop_index; 5761 if (obj == nullptr) { 5762 oop_index = oop_recorder()->allocate_metadata_index(obj); 5763 } else { 5764 oop_index = oop_recorder()->find_index(obj); 5765 } 5766 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5767 mov(dst, Address((address)obj, rspec)); 5768 } 5769 5770 Address MacroAssembler::constant_oop_address(jobject obj) { 5771 #ifdef ASSERT 5772 { 5773 ThreadInVMfromUnknown tiv; 5774 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5775 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5776 } 5777 #endif 5778 int oop_index = oop_recorder()->find_index(obj); 5779 return Address((address)obj, oop_Relocation::spec(oop_index)); 5780 } 5781 5782 // Object / value buffer allocation... 5783 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 5784 Register t1, Register t2, 5785 bool clear_fields, Label& alloc_failed) 5786 { 5787 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 5788 Register layout_size = t1; 5789 assert(new_obj == r0, "needs to be r0"); 5790 assert_different_registers(klass, new_obj, t1, t2); 5791 5792 // get instance_size in InstanceKlass (scaled to a count of bytes) 5793 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5794 // test to see if it is malformed in some way 5795 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5796 br(Assembler::NE, slow_case_no_pop); 5797 5798 // Allocate the instance: 5799 // If TLAB is enabled: 5800 // Try to allocate in the TLAB. 5801 // If fails, go to the slow path. 5802 // Initialize the allocation. 5803 // Exit. 5804 // 5805 // Go to slow path. 5806 5807 if (UseTLAB) { 5808 push(klass); 5809 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5810 if (ZeroTLAB || (!clear_fields)) { 5811 // the fields have been already cleared 5812 b(initialize_header); 5813 } else { 5814 // initialize both the header and fields 5815 b(initialize_object); 5816 } 5817 5818 if (clear_fields) { 5819 // The object is initialized before the header. If the object size is 5820 // zero, go directly to the header initialization. 5821 bind(initialize_object); 5822 int header_size = oopDesc::header_size() * HeapWordSize; 5823 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 5824 subs(layout_size, layout_size, header_size); 5825 br(Assembler::EQ, initialize_header); 5826 5827 // Initialize topmost object field, divide size by 8, check if odd and 5828 // test if zero. 5829 5830 #ifdef ASSERT 5831 // make sure instance_size was multiple of 8 5832 Label L; 5833 tst(layout_size, 7); 5834 br(Assembler::EQ, L); 5835 stop("object size is not multiple of 8 - adjust this code"); 5836 bind(L); 5837 // must be > 0, no extra check needed here 5838 #endif 5839 5840 lsr(layout_size, layout_size, LogBytesPerLong); 5841 5842 // initialize remaining object fields: instance_size was a multiple of 8 5843 { 5844 Label loop; 5845 Register base = t2; 5846 5847 bind(loop); 5848 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5849 str(zr, Address(rscratch1, header_size - 1*oopSize)); 5850 subs(layout_size, layout_size, 1); 5851 br(Assembler::NE, loop); 5852 } 5853 } // clear_fields 5854 5855 // initialize object header only. 5856 bind(initialize_header); 5857 pop(klass); 5858 Register mark_word = t2; 5859 if (UseCompactObjectHeaders || EnableValhalla) { 5860 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5861 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5862 } else { 5863 mov(mark_word, (intptr_t)markWord::prototype().value()); 5864 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5865 } 5866 if (!UseCompactObjectHeaders) { 5867 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5868 mov(t2, klass); // preserve klass 5869 store_klass(new_obj, t2); // src klass reg is potentially compressed 5870 } 5871 b(done); 5872 } 5873 5874 if (UseTLAB) { 5875 bind(slow_case); 5876 pop(klass); 5877 } 5878 bind(slow_case_no_pop); 5879 b(alloc_failed); 5880 5881 bind(done); 5882 } 5883 5884 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5885 void MacroAssembler::tlab_allocate(Register obj, 5886 Register var_size_in_bytes, 5887 int con_size_in_bytes, 5888 Register t1, 5889 Register t2, 5890 Label& slow_case) { 5891 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5892 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5893 } 5894 5895 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5896 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5897 #ifdef ASSERT 5898 ldr(tmp, dst); 5899 increment(tmp); 5900 str(tmp, dst); 5901 Label ok; 5902 tbz(tmp, 63, ok); 5903 STOP("assert(held monitor count underflow)"); 5904 should_not_reach_here(); 5905 bind(ok); 5906 #else 5907 increment(dst); 5908 #endif 5909 } 5910 5911 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5912 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5913 #ifdef ASSERT 5914 ldr(tmp, dst); 5915 decrement(tmp); 5916 str(tmp, dst); 5917 Label ok; 5918 tbz(tmp, 63, ok); 5919 STOP("assert(held monitor count underflow)"); 5920 should_not_reach_here(); 5921 bind(ok); 5922 #else 5923 decrement(dst); 5924 #endif 5925 } 5926 5927 void MacroAssembler::verify_tlab() { 5928 #ifdef ASSERT 5929 if (UseTLAB && VerifyOops) { 5930 Label next, ok; 5931 5932 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5933 5934 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5935 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5936 cmp(rscratch2, rscratch1); 5937 br(Assembler::HS, next); 5938 STOP("assert(top >= start)"); 5939 should_not_reach_here(); 5940 5941 bind(next); 5942 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5943 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5944 cmp(rscratch2, rscratch1); 5945 br(Assembler::HS, ok); 5946 STOP("assert(top <= end)"); 5947 should_not_reach_here(); 5948 5949 bind(ok); 5950 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5951 } 5952 #endif 5953 } 5954 5955 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 5956 inline_layout_info(holder_klass, index, inline_klass); 5957 ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 5958 } 5959 5960 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 5961 assert_different_registers(holder_klass, index, layout_info); 5962 InlineLayoutInfo array[2]; 5963 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 5964 if (is_power_of_2(size)) { 5965 lsl(index, index, log2i_exact(size)); // Scale index by power of 2 5966 } else { 5967 mov(layout_info, size); 5968 mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size 5969 } 5970 ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 5971 add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes()); 5972 lea(layout_info, Address(layout_info, index)); 5973 } 5974 5975 // Writes to stack successive pages until offset reached to check for 5976 // stack overflow + shadow pages. This clobbers tmp. 5977 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5978 assert_different_registers(tmp, size, rscratch1); 5979 mov(tmp, sp); 5980 // Bang stack for total size given plus shadow page size. 5981 // Bang one page at a time because large size can bang beyond yellow and 5982 // red zones. 5983 Label loop; 5984 mov(rscratch1, (int)os::vm_page_size()); 5985 bind(loop); 5986 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5987 subsw(size, size, rscratch1); 5988 str(size, Address(tmp)); 5989 br(Assembler::GT, loop); 5990 5991 // Bang down shadow pages too. 5992 // At this point, (tmp-0) is the last address touched, so don't 5993 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5994 // was post-decremented.) Skip this address by starting at i=1, and 5995 // touch a few more pages below. N.B. It is important to touch all 5996 // the way down to and including i=StackShadowPages. 5997 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5998 // this could be any sized move but this is can be a debugging crumb 5999 // so the bigger the better. 6000 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 6001 str(size, Address(tmp)); 6002 } 6003 } 6004 6005 // Move the address of the polling page into dest. 6006 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 6007 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 6008 } 6009 6010 // Read the polling page. The address of the polling page must 6011 // already be in r. 6012 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 6013 address mark; 6014 { 6015 InstructionMark im(this); 6016 code_section()->relocate(inst_mark(), rtype); 6017 ldrw(zr, Address(r, 0)); 6018 mark = inst_mark(); 6019 } 6020 verify_cross_modify_fence_not_required(); 6021 return mark; 6022 } 6023 6024 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 6025 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 6026 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 6027 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 6028 uint64_t dest_page = (uint64_t)dest.target() >> 12; 6029 int64_t offset_low = dest_page - low_page; 6030 int64_t offset_high = dest_page - high_page; 6031 6032 assert(is_valid_AArch64_address(dest.target()), "bad address"); 6033 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 6034 6035 InstructionMark im(this); 6036 code_section()->relocate(inst_mark(), dest.rspec()); 6037 // 8143067: Ensure that the adrp can reach the dest from anywhere within 6038 // the code cache so that if it is relocated we know it will still reach 6039 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 6040 _adrp(reg1, dest.target()); 6041 } else { 6042 uint64_t target = (uint64_t)dest.target(); 6043 uint64_t adrp_target 6044 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 6045 6046 _adrp(reg1, (address)adrp_target); 6047 movk(reg1, target >> 32, 32); 6048 } 6049 byte_offset = (uint64_t)dest.target() & 0xfff; 6050 } 6051 6052 void MacroAssembler::load_byte_map_base(Register reg) { 6053 CardTable::CardValue* byte_map_base = 6054 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 6055 6056 // Strictly speaking the byte_map_base isn't an address at all, and it might 6057 // even be negative. It is thus materialised as a constant. 6058 mov(reg, (uint64_t)byte_map_base); 6059 } 6060 6061 void MacroAssembler::build_frame(int framesize) { 6062 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 6063 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6064 protect_return_address(); 6065 if (framesize < ((1 << 9) + 2 * wordSize)) { 6066 sub(sp, sp, framesize); 6067 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6068 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 6069 } else { 6070 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6071 if (PreserveFramePointer) mov(rfp, sp); 6072 if (framesize < ((1 << 12) + 2 * wordSize)) 6073 sub(sp, sp, framesize - 2 * wordSize); 6074 else { 6075 mov(rscratch1, framesize - 2 * wordSize); 6076 sub(sp, sp, rscratch1); 6077 } 6078 } 6079 verify_cross_modify_fence_not_required(); 6080 } 6081 6082 void MacroAssembler::remove_frame(int framesize) { 6083 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 6084 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6085 if (framesize < ((1 << 9) + 2 * wordSize)) { 6086 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6087 add(sp, sp, framesize); 6088 } else { 6089 if (framesize < ((1 << 12) + 2 * wordSize)) 6090 add(sp, sp, framesize - 2 * wordSize); 6091 else { 6092 mov(rscratch1, framesize - 2 * wordSize); 6093 add(sp, sp, rscratch1); 6094 } 6095 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6096 } 6097 authenticate_return_address(); 6098 } 6099 6100 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6101 if (needs_stack_repair) { 6102 // Remove the extension of the caller's frame used for inline type unpacking 6103 // 6104 // Right now the stack looks like this: 6105 // 6106 // | Arguments from caller | 6107 // |---------------------------| <-- caller's SP 6108 // | Saved LR #1 | 6109 // | Saved FP #1 | 6110 // |---------------------------| 6111 // | Extension space for | 6112 // | inline arg (un)packing | 6113 // |---------------------------| <-- start of this method's frame 6114 // | Saved LR #2 | 6115 // | Saved FP #2 | 6116 // |---------------------------| <-- FP 6117 // | sp_inc | 6118 // | method locals | 6119 // |---------------------------| <-- SP 6120 // 6121 // There are two copies of FP and LR on the stack. They will be identical at 6122 // first, but that can change. 6123 // If the caller has been deoptimized, LR #1 will be patched to point at the 6124 // deopt blob, and LR #2 will still point into the old method. 6125 // If the saved FP (x29) was not used as the frame pointer, but to store an 6126 // oop, the GC will be aware only of FP #2 as the spilled location of x29 and 6127 // will fix only this one. 6128 // 6129 // When restoring, one must then load FP #2 into x29, and LR #1 into x30, 6130 // while keeping in mind that from the scalarized entry point, there will be 6131 // only one copy of each. 6132 // 6133 // The sp_inc stack slot holds the total size of the frame including the 6134 // extension space minus two words for the saved FP and LR. That is how to 6135 // find LR #1. FP #2 is always located just after sp_inc. 6136 6137 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 6138 6139 ldp(rscratch1, rfp, Address(sp, sp_inc_offset)); 6140 add(sp, sp, rscratch1); 6141 ldr(lr, Address(sp, wordSize)); 6142 add(sp, sp, 2 * wordSize); 6143 } else { 6144 remove_frame(initial_framesize); 6145 } 6146 } 6147 6148 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 6149 int real_frame_size = frame_size + sp_inc; 6150 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 6151 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 6152 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6153 6154 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 6155 6156 // Subtract two words for the saved FP and LR as these will be popped 6157 // separately. See remove_frame above. 6158 mov(rscratch1, real_frame_size - 2*wordSize); 6159 str(rscratch1, Address(sp, sp_inc_offset)); 6160 } 6161 6162 // This method counts leading positive bytes (highest bit not set) in provided byte array 6163 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 6164 // Simple and most common case of aligned small array which is not at the 6165 // end of memory page is placed here. All other cases are in stub. 6166 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 6167 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6168 assert_different_registers(ary1, len, result); 6169 6170 mov(result, len); 6171 cmpw(len, 0); 6172 br(LE, DONE); 6173 cmpw(len, 4 * wordSize); 6174 br(GE, STUB_LONG); // size > 32 then go to stub 6175 6176 int shift = 64 - exact_log2(os::vm_page_size()); 6177 lsl(rscratch1, ary1, shift); 6178 mov(rscratch2, (size_t)(4 * wordSize) << shift); 6179 adds(rscratch2, rscratch1, rscratch2); // At end of page? 6180 br(CS, STUB); // at the end of page then go to stub 6181 subs(len, len, wordSize); 6182 br(LT, END); 6183 6184 BIND(LOOP); 6185 ldr(rscratch1, Address(post(ary1, wordSize))); 6186 tst(rscratch1, UPPER_BIT_MASK); 6187 br(NE, SET_RESULT); 6188 subs(len, len, wordSize); 6189 br(GE, LOOP); 6190 cmpw(len, -wordSize); 6191 br(EQ, DONE); 6192 6193 BIND(END); 6194 ldr(rscratch1, Address(ary1)); 6195 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 6196 lslv(rscratch1, rscratch1, rscratch2); 6197 tst(rscratch1, UPPER_BIT_MASK); 6198 br(NE, SET_RESULT); 6199 b(DONE); 6200 6201 BIND(STUB); 6202 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 6203 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 6204 address tpc1 = trampoline_call(count_pos); 6205 if (tpc1 == nullptr) { 6206 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 6207 postcond(pc() == badAddress); 6208 return nullptr; 6209 } 6210 b(DONE); 6211 6212 BIND(STUB_LONG); 6213 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 6214 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 6215 address tpc2 = trampoline_call(count_pos_long); 6216 if (tpc2 == nullptr) { 6217 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 6218 postcond(pc() == badAddress); 6219 return nullptr; 6220 } 6221 b(DONE); 6222 6223 BIND(SET_RESULT); 6224 6225 add(len, len, wordSize); 6226 sub(result, result, len); 6227 6228 BIND(DONE); 6229 postcond(pc() != badAddress); 6230 return pc(); 6231 } 6232 6233 // Clobbers: rscratch1, rscratch2, rflags 6234 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 6235 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 6236 Register tmp4, Register tmp5, Register result, 6237 Register cnt1, int elem_size) { 6238 Label DONE, SAME; 6239 Register tmp1 = rscratch1; 6240 Register tmp2 = rscratch2; 6241 int elem_per_word = wordSize/elem_size; 6242 int log_elem_size = exact_log2(elem_size); 6243 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 6244 int length_offset = arrayOopDesc::length_offset_in_bytes(); 6245 int base_offset 6246 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 6247 // When the length offset is not aligned to 8 bytes, 6248 // then we align it down. This is valid because the new 6249 // offset will always be the klass which is the same 6250 // for type arrays. 6251 int start_offset = align_down(length_offset, BytesPerWord); 6252 int extra_length = base_offset - start_offset; 6253 assert(start_offset == length_offset || start_offset == klass_offset, 6254 "start offset must be 8-byte-aligned or be the klass offset"); 6255 assert(base_offset != start_offset, "must include the length field"); 6256 extra_length = extra_length / elem_size; // We count in elements, not bytes. 6257 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 6258 6259 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 6260 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6261 6262 #ifndef PRODUCT 6263 { 6264 const char kind = (elem_size == 2) ? 'U' : 'L'; 6265 char comment[64]; 6266 snprintf(comment, sizeof comment, "array_equals%c{", kind); 6267 BLOCK_COMMENT(comment); 6268 } 6269 #endif 6270 6271 // if (a1 == a2) 6272 // return true; 6273 cmpoop(a1, a2); // May have read barriers for a1 and a2. 6274 br(EQ, SAME); 6275 6276 if (UseSimpleArrayEquals) { 6277 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 6278 // if (a1 == nullptr || a2 == nullptr) 6279 // return false; 6280 // a1 & a2 == 0 means (some-pointer is null) or 6281 // (very-rare-or-even-probably-impossible-pointer-values) 6282 // so, we can save one branch in most cases 6283 tst(a1, a2); 6284 mov(result, false); 6285 br(EQ, A_MIGHT_BE_NULL); 6286 // if (a1.length != a2.length) 6287 // return false; 6288 bind(A_IS_NOT_NULL); 6289 ldrw(cnt1, Address(a1, length_offset)); 6290 // Increase loop counter by diff between base- and actual start-offset. 6291 addw(cnt1, cnt1, extra_length); 6292 lea(a1, Address(a1, start_offset)); 6293 lea(a2, Address(a2, start_offset)); 6294 // Check for short strings, i.e. smaller than wordSize. 6295 subs(cnt1, cnt1, elem_per_word); 6296 br(Assembler::LT, SHORT); 6297 // Main 8 byte comparison loop. 6298 bind(NEXT_WORD); { 6299 ldr(tmp1, Address(post(a1, wordSize))); 6300 ldr(tmp2, Address(post(a2, wordSize))); 6301 subs(cnt1, cnt1, elem_per_word); 6302 eor(tmp5, tmp1, tmp2); 6303 cbnz(tmp5, DONE); 6304 } br(GT, NEXT_WORD); 6305 // Last longword. In the case where length == 4 we compare the 6306 // same longword twice, but that's still faster than another 6307 // conditional branch. 6308 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6309 // length == 4. 6310 if (log_elem_size > 0) 6311 lsl(cnt1, cnt1, log_elem_size); 6312 ldr(tmp3, Address(a1, cnt1)); 6313 ldr(tmp4, Address(a2, cnt1)); 6314 eor(tmp5, tmp3, tmp4); 6315 cbnz(tmp5, DONE); 6316 b(SAME); 6317 bind(A_MIGHT_BE_NULL); 6318 // in case both a1 and a2 are not-null, proceed with loads 6319 cbz(a1, DONE); 6320 cbz(a2, DONE); 6321 b(A_IS_NOT_NULL); 6322 bind(SHORT); 6323 6324 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6325 { 6326 ldrw(tmp1, Address(post(a1, 4))); 6327 ldrw(tmp2, Address(post(a2, 4))); 6328 eorw(tmp5, tmp1, tmp2); 6329 cbnzw(tmp5, DONE); 6330 } 6331 bind(TAIL03); 6332 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6333 { 6334 ldrh(tmp3, Address(post(a1, 2))); 6335 ldrh(tmp4, Address(post(a2, 2))); 6336 eorw(tmp5, tmp3, tmp4); 6337 cbnzw(tmp5, DONE); 6338 } 6339 bind(TAIL01); 6340 if (elem_size == 1) { // Only needed when comparing byte arrays. 6341 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6342 { 6343 ldrb(tmp1, a1); 6344 ldrb(tmp2, a2); 6345 eorw(tmp5, tmp1, tmp2); 6346 cbnzw(tmp5, DONE); 6347 } 6348 } 6349 } else { 6350 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6351 CSET_EQ, LAST_CHECK; 6352 mov(result, false); 6353 cbz(a1, DONE); 6354 ldrw(cnt1, Address(a1, length_offset)); 6355 cbz(a2, DONE); 6356 // Increase loop counter by diff between base- and actual start-offset. 6357 addw(cnt1, cnt1, extra_length); 6358 6359 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6360 // faster to perform another branch before comparing a1 and a2 6361 cmp(cnt1, (u1)elem_per_word); 6362 br(LE, SHORT); // short or same 6363 ldr(tmp3, Address(pre(a1, start_offset))); 6364 subs(zr, cnt1, stubBytesThreshold); 6365 br(GE, STUB); 6366 ldr(tmp4, Address(pre(a2, start_offset))); 6367 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6368 6369 // Main 16 byte comparison loop with 2 exits 6370 bind(NEXT_DWORD); { 6371 ldr(tmp1, Address(pre(a1, wordSize))); 6372 ldr(tmp2, Address(pre(a2, wordSize))); 6373 subs(cnt1, cnt1, 2 * elem_per_word); 6374 br(LE, TAIL); 6375 eor(tmp4, tmp3, tmp4); 6376 cbnz(tmp4, DONE); 6377 ldr(tmp3, Address(pre(a1, wordSize))); 6378 ldr(tmp4, Address(pre(a2, wordSize))); 6379 cmp(cnt1, (u1)elem_per_word); 6380 br(LE, TAIL2); 6381 cmp(tmp1, tmp2); 6382 } br(EQ, NEXT_DWORD); 6383 b(DONE); 6384 6385 bind(TAIL); 6386 eor(tmp4, tmp3, tmp4); 6387 eor(tmp2, tmp1, tmp2); 6388 lslv(tmp2, tmp2, tmp5); 6389 orr(tmp5, tmp4, tmp2); 6390 cmp(tmp5, zr); 6391 b(CSET_EQ); 6392 6393 bind(TAIL2); 6394 eor(tmp2, tmp1, tmp2); 6395 cbnz(tmp2, DONE); 6396 b(LAST_CHECK); 6397 6398 bind(STUB); 6399 ldr(tmp4, Address(pre(a2, start_offset))); 6400 if (elem_size == 2) { // convert to byte counter 6401 lsl(cnt1, cnt1, 1); 6402 } 6403 eor(tmp5, tmp3, tmp4); 6404 cbnz(tmp5, DONE); 6405 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6406 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6407 address tpc = trampoline_call(stub); 6408 if (tpc == nullptr) { 6409 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6410 postcond(pc() == badAddress); 6411 return nullptr; 6412 } 6413 b(DONE); 6414 6415 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6416 // so, if a2 == null => return false(0), else return true, so we can return a2 6417 mov(result, a2); 6418 b(DONE); 6419 bind(SHORT); 6420 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6421 ldr(tmp3, Address(a1, start_offset)); 6422 ldr(tmp4, Address(a2, start_offset)); 6423 bind(LAST_CHECK); 6424 eor(tmp4, tmp3, tmp4); 6425 lslv(tmp5, tmp4, tmp5); 6426 cmp(tmp5, zr); 6427 bind(CSET_EQ); 6428 cset(result, EQ); 6429 b(DONE); 6430 } 6431 6432 bind(SAME); 6433 mov(result, true); 6434 // That's it. 6435 bind(DONE); 6436 6437 BLOCK_COMMENT("} array_equals"); 6438 postcond(pc() != badAddress); 6439 return pc(); 6440 } 6441 6442 // Compare Strings 6443 6444 // For Strings we're passed the address of the first characters in a1 6445 // and a2 and the length in cnt1. 6446 // There are two implementations. For arrays >= 8 bytes, all 6447 // comparisons (including the final one, which may overlap) are 6448 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6449 // halfword, then a short, and then a byte. 6450 6451 void MacroAssembler::string_equals(Register a1, Register a2, 6452 Register result, Register cnt1) 6453 { 6454 Label SAME, DONE, SHORT, NEXT_WORD; 6455 Register tmp1 = rscratch1; 6456 Register tmp2 = rscratch2; 6457 Register cnt2 = tmp2; // cnt2 only used in array length compare 6458 6459 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6460 6461 #ifndef PRODUCT 6462 { 6463 char comment[64]; 6464 snprintf(comment, sizeof comment, "{string_equalsL"); 6465 BLOCK_COMMENT(comment); 6466 } 6467 #endif 6468 6469 mov(result, false); 6470 6471 // Check for short strings, i.e. smaller than wordSize. 6472 subs(cnt1, cnt1, wordSize); 6473 br(Assembler::LT, SHORT); 6474 // Main 8 byte comparison loop. 6475 bind(NEXT_WORD); { 6476 ldr(tmp1, Address(post(a1, wordSize))); 6477 ldr(tmp2, Address(post(a2, wordSize))); 6478 subs(cnt1, cnt1, wordSize); 6479 eor(tmp1, tmp1, tmp2); 6480 cbnz(tmp1, DONE); 6481 } br(GT, NEXT_WORD); 6482 // Last longword. In the case where length == 4 we compare the 6483 // same longword twice, but that's still faster than another 6484 // conditional branch. 6485 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6486 // length == 4. 6487 ldr(tmp1, Address(a1, cnt1)); 6488 ldr(tmp2, Address(a2, cnt1)); 6489 eor(tmp2, tmp1, tmp2); 6490 cbnz(tmp2, DONE); 6491 b(SAME); 6492 6493 bind(SHORT); 6494 Label TAIL03, TAIL01; 6495 6496 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6497 { 6498 ldrw(tmp1, Address(post(a1, 4))); 6499 ldrw(tmp2, Address(post(a2, 4))); 6500 eorw(tmp1, tmp1, tmp2); 6501 cbnzw(tmp1, DONE); 6502 } 6503 bind(TAIL03); 6504 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6505 { 6506 ldrh(tmp1, Address(post(a1, 2))); 6507 ldrh(tmp2, Address(post(a2, 2))); 6508 eorw(tmp1, tmp1, tmp2); 6509 cbnzw(tmp1, DONE); 6510 } 6511 bind(TAIL01); 6512 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6513 { 6514 ldrb(tmp1, a1); 6515 ldrb(tmp2, a2); 6516 eorw(tmp1, tmp1, tmp2); 6517 cbnzw(tmp1, DONE); 6518 } 6519 // Arrays are equal. 6520 bind(SAME); 6521 mov(result, true); 6522 6523 // That's it. 6524 bind(DONE); 6525 BLOCK_COMMENT("} string_equals"); 6526 } 6527 6528 6529 // The size of the blocks erased by the zero_blocks stub. We must 6530 // handle anything smaller than this ourselves in zero_words(). 6531 const int MacroAssembler::zero_words_block_size = 8; 6532 6533 // zero_words() is used by C2 ClearArray patterns and by 6534 // C1_MacroAssembler. It is as small as possible, handling small word 6535 // counts locally and delegating anything larger to the zero_blocks 6536 // stub. It is expanded many times in compiled code, so it is 6537 // important to keep it short. 6538 6539 // ptr: Address of a buffer to be zeroed. 6540 // cnt: Count in HeapWords. 6541 // 6542 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6543 address MacroAssembler::zero_words(Register ptr, Register cnt) 6544 { 6545 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6546 6547 BLOCK_COMMENT("zero_words {"); 6548 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6549 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6550 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6551 6552 subs(rscratch1, cnt, zero_words_block_size); 6553 Label around; 6554 br(LO, around); 6555 { 6556 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6557 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6558 // Make sure this is a C2 compilation. C1 allocates space only for 6559 // trampoline stubs generated by Call LIR ops, and in any case it 6560 // makes sense for a C1 compilation task to proceed as quickly as 6561 // possible. 6562 CompileTask* task; 6563 if (StubRoutines::aarch64::complete() 6564 && Thread::current()->is_Compiler_thread() 6565 && (task = ciEnv::current()->task()) 6566 && is_c2_compile(task->comp_level())) { 6567 address tpc = trampoline_call(zero_blocks); 6568 if (tpc == nullptr) { 6569 DEBUG_ONLY(reset_labels(around)); 6570 return nullptr; 6571 } 6572 } else { 6573 far_call(zero_blocks); 6574 } 6575 } 6576 bind(around); 6577 6578 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6579 // for us. 6580 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6581 Label l; 6582 tbz(cnt, exact_log2(i), l); 6583 for (int j = 0; j < i; j += 2) { 6584 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6585 } 6586 bind(l); 6587 } 6588 { 6589 Label l; 6590 tbz(cnt, 0, l); 6591 str(zr, Address(ptr)); 6592 bind(l); 6593 } 6594 6595 BLOCK_COMMENT("} zero_words"); 6596 return pc(); 6597 } 6598 6599 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6600 // cnt: Immediate count in HeapWords. 6601 // 6602 // r10, r11, rscratch1, and rscratch2 are clobbered. 6603 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6604 { 6605 assert(wordSize <= BlockZeroingLowLimit, 6606 "increase BlockZeroingLowLimit"); 6607 address result = nullptr; 6608 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6609 #ifndef PRODUCT 6610 { 6611 char buf[64]; 6612 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6613 BLOCK_COMMENT(buf); 6614 } 6615 #endif 6616 if (cnt >= 16) { 6617 uint64_t loops = cnt/16; 6618 if (loops > 1) { 6619 mov(rscratch2, loops - 1); 6620 } 6621 { 6622 Label loop; 6623 bind(loop); 6624 for (int i = 0; i < 16; i += 2) { 6625 stp(zr, zr, Address(base, i * BytesPerWord)); 6626 } 6627 add(base, base, 16 * BytesPerWord); 6628 if (loops > 1) { 6629 subs(rscratch2, rscratch2, 1); 6630 br(GE, loop); 6631 } 6632 } 6633 } 6634 cnt %= 16; 6635 int i = cnt & 1; // store any odd word to start 6636 if (i) str(zr, Address(base)); 6637 for (; i < (int)cnt; i += 2) { 6638 stp(zr, zr, Address(base, i * wordSize)); 6639 } 6640 BLOCK_COMMENT("} zero_words"); 6641 result = pc(); 6642 } else { 6643 mov(r10, base); mov(r11, cnt); 6644 result = zero_words(r10, r11); 6645 } 6646 return result; 6647 } 6648 6649 // Zero blocks of memory by using DC ZVA. 6650 // 6651 // Aligns the base address first sufficiently for DC ZVA, then uses 6652 // DC ZVA repeatedly for every full block. cnt is the size to be 6653 // zeroed in HeapWords. Returns the count of words left to be zeroed 6654 // in cnt. 6655 // 6656 // NOTE: This is intended to be used in the zero_blocks() stub. If 6657 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6658 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6659 Register tmp = rscratch1; 6660 Register tmp2 = rscratch2; 6661 int zva_length = VM_Version::zva_length(); 6662 Label initial_table_end, loop_zva; 6663 Label fini; 6664 6665 // Base must be 16 byte aligned. If not just return and let caller handle it 6666 tst(base, 0x0f); 6667 br(Assembler::NE, fini); 6668 // Align base with ZVA length. 6669 neg(tmp, base); 6670 andr(tmp, tmp, zva_length - 1); 6671 6672 // tmp: the number of bytes to be filled to align the base with ZVA length. 6673 add(base, base, tmp); 6674 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6675 adr(tmp2, initial_table_end); 6676 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6677 br(tmp2); 6678 6679 for (int i = -zva_length + 16; i < 0; i += 16) 6680 stp(zr, zr, Address(base, i)); 6681 bind(initial_table_end); 6682 6683 sub(cnt, cnt, zva_length >> 3); 6684 bind(loop_zva); 6685 dc(Assembler::ZVA, base); 6686 subs(cnt, cnt, zva_length >> 3); 6687 add(base, base, zva_length); 6688 br(Assembler::GE, loop_zva); 6689 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6690 bind(fini); 6691 } 6692 6693 // base: Address of a buffer to be filled, 8 bytes aligned. 6694 // cnt: Count in 8-byte unit. 6695 // value: Value to be filled with. 6696 // base will point to the end of the buffer after filling. 6697 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6698 { 6699 // Algorithm: 6700 // 6701 // if (cnt == 0) { 6702 // return; 6703 // } 6704 // if ((p & 8) != 0) { 6705 // *p++ = v; 6706 // } 6707 // 6708 // scratch1 = cnt & 14; 6709 // cnt -= scratch1; 6710 // p += scratch1; 6711 // switch (scratch1 / 2) { 6712 // do { 6713 // cnt -= 16; 6714 // p[-16] = v; 6715 // p[-15] = v; 6716 // case 7: 6717 // p[-14] = v; 6718 // p[-13] = v; 6719 // case 6: 6720 // p[-12] = v; 6721 // p[-11] = v; 6722 // // ... 6723 // case 1: 6724 // p[-2] = v; 6725 // p[-1] = v; 6726 // case 0: 6727 // p += 16; 6728 // } while (cnt); 6729 // } 6730 // if ((cnt & 1) == 1) { 6731 // *p++ = v; 6732 // } 6733 6734 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6735 6736 Label fini, skip, entry, loop; 6737 const int unroll = 8; // Number of stp instructions we'll unroll 6738 6739 cbz(cnt, fini); 6740 tbz(base, 3, skip); 6741 str(value, Address(post(base, 8))); 6742 sub(cnt, cnt, 1); 6743 bind(skip); 6744 6745 andr(rscratch1, cnt, (unroll-1) * 2); 6746 sub(cnt, cnt, rscratch1); 6747 add(base, base, rscratch1, Assembler::LSL, 3); 6748 adr(rscratch2, entry); 6749 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6750 br(rscratch2); 6751 6752 bind(loop); 6753 add(base, base, unroll * 16); 6754 for (int i = -unroll; i < 0; i++) 6755 stp(value, value, Address(base, i * 16)); 6756 bind(entry); 6757 subs(cnt, cnt, unroll * 2); 6758 br(Assembler::GE, loop); 6759 6760 tbz(cnt, 0, fini); 6761 str(value, Address(post(base, 8))); 6762 bind(fini); 6763 } 6764 6765 // Intrinsic for 6766 // 6767 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6768 // return the number of characters copied. 6769 // - java/lang/StringUTF16.compress 6770 // return index of non-latin1 character if copy fails, otherwise 'len'. 6771 // 6772 // This version always returns the number of characters copied, and does not 6773 // clobber the 'len' register. A successful copy will complete with the post- 6774 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6775 // post-condition: 0 <= 'res' < 'len'. 6776 // 6777 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6778 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6779 // beyond the acceptable, even though the footprint would be smaller. 6780 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6781 // avoid additional bloat. 6782 // 6783 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6784 void MacroAssembler::encode_iso_array(Register src, Register dst, 6785 Register len, Register res, bool ascii, 6786 FloatRegister vtmp0, FloatRegister vtmp1, 6787 FloatRegister vtmp2, FloatRegister vtmp3, 6788 FloatRegister vtmp4, FloatRegister vtmp5) 6789 { 6790 Register cnt = res; 6791 Register max = rscratch1; 6792 Register chk = rscratch2; 6793 6794 prfm(Address(src), PLDL1STRM); 6795 movw(cnt, len); 6796 6797 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6798 6799 Label LOOP_32, DONE_32, FAIL_32; 6800 6801 BIND(LOOP_32); 6802 { 6803 cmpw(cnt, 32); 6804 br(LT, DONE_32); 6805 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6806 // Extract lower bytes. 6807 FloatRegister vlo0 = vtmp4; 6808 FloatRegister vlo1 = vtmp5; 6809 uzp1(vlo0, T16B, vtmp0, vtmp1); 6810 uzp1(vlo1, T16B, vtmp2, vtmp3); 6811 // Merge bits... 6812 orr(vtmp0, T16B, vtmp0, vtmp1); 6813 orr(vtmp2, T16B, vtmp2, vtmp3); 6814 // Extract merged upper bytes. 6815 FloatRegister vhix = vtmp0; 6816 uzp2(vhix, T16B, vtmp0, vtmp2); 6817 // ISO-check on hi-parts (all zero). 6818 // ASCII-check on lo-parts (no sign). 6819 FloatRegister vlox = vtmp1; // Merge lower bytes. 6820 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6821 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6822 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6823 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6824 ASCII(orr(chk, chk, max)); 6825 cbnz(chk, FAIL_32); 6826 subw(cnt, cnt, 32); 6827 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6828 b(LOOP_32); 6829 } 6830 BIND(FAIL_32); 6831 sub(src, src, 64); 6832 BIND(DONE_32); 6833 6834 Label LOOP_8, SKIP_8; 6835 6836 BIND(LOOP_8); 6837 { 6838 cmpw(cnt, 8); 6839 br(LT, SKIP_8); 6840 FloatRegister vhi = vtmp0; 6841 FloatRegister vlo = vtmp1; 6842 ld1(vtmp3, T8H, src); 6843 uzp1(vlo, T16B, vtmp3, vtmp3); 6844 uzp2(vhi, T16B, vtmp3, vtmp3); 6845 // ISO-check on hi-parts (all zero). 6846 // ASCII-check on lo-parts (no sign). 6847 ASCII(cm(LT, vtmp2, T16B, vlo)); 6848 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6849 ASCII(umov(max, vtmp2, B, 0)); 6850 ASCII(orr(chk, chk, max)); 6851 cbnz(chk, SKIP_8); 6852 6853 strd(vlo, Address(post(dst, 8))); 6854 subw(cnt, cnt, 8); 6855 add(src, src, 16); 6856 b(LOOP_8); 6857 } 6858 BIND(SKIP_8); 6859 6860 #undef ASCII 6861 6862 Label LOOP, DONE; 6863 6864 cbz(cnt, DONE); 6865 BIND(LOOP); 6866 { 6867 Register chr = rscratch1; 6868 ldrh(chr, Address(post(src, 2))); 6869 tst(chr, ascii ? 0xff80 : 0xff00); 6870 br(NE, DONE); 6871 strb(chr, Address(post(dst, 1))); 6872 subs(cnt, cnt, 1); 6873 br(GT, LOOP); 6874 } 6875 BIND(DONE); 6876 // Return index where we stopped. 6877 subw(res, len, cnt); 6878 } 6879 6880 // Inflate byte[] array to char[]. 6881 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6882 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6883 FloatRegister vtmp1, FloatRegister vtmp2, 6884 FloatRegister vtmp3, Register tmp4) { 6885 Label big, done, after_init, to_stub; 6886 6887 assert_different_registers(src, dst, len, tmp4, rscratch1); 6888 6889 fmovd(vtmp1, 0.0); 6890 lsrw(tmp4, len, 3); 6891 bind(after_init); 6892 cbnzw(tmp4, big); 6893 // Short string: less than 8 bytes. 6894 { 6895 Label loop, tiny; 6896 6897 cmpw(len, 4); 6898 br(LT, tiny); 6899 // Use SIMD to do 4 bytes. 6900 ldrs(vtmp2, post(src, 4)); 6901 zip1(vtmp3, T8B, vtmp2, vtmp1); 6902 subw(len, len, 4); 6903 strd(vtmp3, post(dst, 8)); 6904 6905 cbzw(len, done); 6906 6907 // Do the remaining bytes by steam. 6908 bind(loop); 6909 ldrb(tmp4, post(src, 1)); 6910 strh(tmp4, post(dst, 2)); 6911 subw(len, len, 1); 6912 6913 bind(tiny); 6914 cbnz(len, loop); 6915 6916 b(done); 6917 } 6918 6919 if (SoftwarePrefetchHintDistance >= 0) { 6920 bind(to_stub); 6921 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6922 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6923 address tpc = trampoline_call(stub); 6924 if (tpc == nullptr) { 6925 DEBUG_ONLY(reset_labels(big, done)); 6926 postcond(pc() == badAddress); 6927 return nullptr; 6928 } 6929 b(after_init); 6930 } 6931 6932 // Unpack the bytes 8 at a time. 6933 bind(big); 6934 { 6935 Label loop, around, loop_last, loop_start; 6936 6937 if (SoftwarePrefetchHintDistance >= 0) { 6938 const int large_loop_threshold = (64 + 16)/8; 6939 ldrd(vtmp2, post(src, 8)); 6940 andw(len, len, 7); 6941 cmp(tmp4, (u1)large_loop_threshold); 6942 br(GE, to_stub); 6943 b(loop_start); 6944 6945 bind(loop); 6946 ldrd(vtmp2, post(src, 8)); 6947 bind(loop_start); 6948 subs(tmp4, tmp4, 1); 6949 br(EQ, loop_last); 6950 zip1(vtmp2, T16B, vtmp2, vtmp1); 6951 ldrd(vtmp3, post(src, 8)); 6952 st1(vtmp2, T8H, post(dst, 16)); 6953 subs(tmp4, tmp4, 1); 6954 zip1(vtmp3, T16B, vtmp3, vtmp1); 6955 st1(vtmp3, T8H, post(dst, 16)); 6956 br(NE, loop); 6957 b(around); 6958 bind(loop_last); 6959 zip1(vtmp2, T16B, vtmp2, vtmp1); 6960 st1(vtmp2, T8H, post(dst, 16)); 6961 bind(around); 6962 cbz(len, done); 6963 } else { 6964 andw(len, len, 7); 6965 bind(loop); 6966 ldrd(vtmp2, post(src, 8)); 6967 sub(tmp4, tmp4, 1); 6968 zip1(vtmp3, T16B, vtmp2, vtmp1); 6969 st1(vtmp3, T8H, post(dst, 16)); 6970 cbnz(tmp4, loop); 6971 } 6972 } 6973 6974 // Do the tail of up to 8 bytes. 6975 add(src, src, len); 6976 ldrd(vtmp3, Address(src, -8)); 6977 add(dst, dst, len, ext::uxtw, 1); 6978 zip1(vtmp3, T16B, vtmp3, vtmp1); 6979 strq(vtmp3, Address(dst, -16)); 6980 6981 bind(done); 6982 postcond(pc() != badAddress); 6983 return pc(); 6984 } 6985 6986 // Compress char[] array to byte[]. 6987 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6988 // Return the array length if every element in array can be encoded, 6989 // otherwise, the index of first non-latin1 (> 0xff) character. 6990 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6991 Register res, 6992 FloatRegister tmp0, FloatRegister tmp1, 6993 FloatRegister tmp2, FloatRegister tmp3, 6994 FloatRegister tmp4, FloatRegister tmp5) { 6995 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6996 } 6997 6998 // java.math.round(double a) 6999 // Returns the closest long to the argument, with ties rounding to 7000 // positive infinity. This requires some fiddling for corner 7001 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 7002 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 7003 FloatRegister ftmp) { 7004 Label DONE; 7005 BLOCK_COMMENT("java_round_double: { "); 7006 fmovd(rscratch1, src); 7007 // Use RoundToNearestTiesAway unless src small and -ve. 7008 fcvtasd(dst, src); 7009 // Test if src >= 0 || abs(src) >= 0x1.0p52 7010 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 7011 mov(rscratch2, julong_cast(0x1.0p52)); 7012 cmp(rscratch1, rscratch2); 7013 br(HS, DONE); { 7014 // src < 0 && abs(src) < 0x1.0p52 7015 // src may have a fractional part, so add 0.5 7016 fmovd(ftmp, 0.5); 7017 faddd(ftmp, src, ftmp); 7018 // Convert double to jlong, use RoundTowardsNegative 7019 fcvtmsd(dst, ftmp); 7020 } 7021 bind(DONE); 7022 BLOCK_COMMENT("} java_round_double"); 7023 } 7024 7025 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 7026 FloatRegister ftmp) { 7027 Label DONE; 7028 BLOCK_COMMENT("java_round_float: { "); 7029 fmovs(rscratch1, src); 7030 // Use RoundToNearestTiesAway unless src small and -ve. 7031 fcvtassw(dst, src); 7032 // Test if src >= 0 || abs(src) >= 0x1.0p23 7033 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 7034 mov(rscratch2, jint_cast(0x1.0p23f)); 7035 cmp(rscratch1, rscratch2); 7036 br(HS, DONE); { 7037 // src < 0 && |src| < 0x1.0p23 7038 // src may have a fractional part, so add 0.5 7039 fmovs(ftmp, 0.5f); 7040 fadds(ftmp, src, ftmp); 7041 // Convert float to jint, use RoundTowardsNegative 7042 fcvtmssw(dst, ftmp); 7043 } 7044 bind(DONE); 7045 BLOCK_COMMENT("} java_round_float"); 7046 } 7047 7048 // get_thread() can be called anywhere inside generated code so we 7049 // need to save whatever non-callee save context might get clobbered 7050 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 7051 // the call setup code. 7052 // 7053 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 7054 // On other systems, the helper is a usual C function. 7055 // 7056 void MacroAssembler::get_thread(Register dst) { 7057 RegSet saved_regs = 7058 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 7059 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 7060 7061 protect_return_address(); 7062 push(saved_regs, sp); 7063 7064 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper))); 7065 blr(lr); 7066 if (dst != c_rarg0) { 7067 mov(dst, c_rarg0); 7068 } 7069 7070 pop(saved_regs, sp); 7071 authenticate_return_address(); 7072 } 7073 7074 #ifdef COMPILER2 7075 // C2 compiled method's prolog code 7076 // Moved here from aarch64.ad to support Valhalla code belows 7077 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 7078 if (C->clinit_barrier_on_entry()) { 7079 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 7080 7081 Label L_skip_barrier; 7082 7083 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 7084 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 7085 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 7086 bind(L_skip_barrier); 7087 } 7088 7089 if (C->max_vector_size() > 0) { 7090 reinitialize_ptrue(); 7091 } 7092 7093 int bangsize = C->output()->bang_size_in_bytes(); 7094 if (C->output()->need_stack_bang(bangsize)) 7095 generate_stack_overflow_check(bangsize); 7096 7097 // n.b. frame size includes space for return pc and rfp 7098 const long framesize = C->output()->frame_size_in_bytes(); 7099 build_frame(framesize); 7100 7101 if (C->needs_stack_repair()) { 7102 save_stack_increment(sp_inc, framesize); 7103 } 7104 7105 if (VerifyStackAtCalls) { 7106 Unimplemented(); 7107 } 7108 } 7109 #endif // COMPILER2 7110 7111 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 7112 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 7113 // An inline type might be returned. If fields are in registers we 7114 // need to allocate an inline type instance and initialize it with 7115 // the value of the fields. 7116 Label skip; 7117 // We only need a new buffered inline type if a new one is not returned 7118 tbz(r0, 0, skip); 7119 int call_offset = -1; 7120 7121 // Be careful not to clobber r1-7 which hold returned fields 7122 // Also do not use callee-saved registers as these may be live in the interpreter 7123 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 7124 7125 // The following code is similar to allocate_instance but has some slight differences, 7126 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 7127 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 7128 Label slow_case; 7129 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 7130 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 7131 7132 if (vk != nullptr) { 7133 // Called from C1, where the return type is statically known. 7134 movptr(klass, (intptr_t)vk->get_InlineKlass()); 7135 jint lh = vk->layout_helper(); 7136 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 7137 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 7138 tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case); 7139 } else { 7140 b(slow_case); 7141 } 7142 } else { 7143 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 7144 andr(klass, r0, -2); 7145 if (UseTLAB) { 7146 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 7147 tst(tmp2, Klass::_lh_instance_slow_path_bit); 7148 br(Assembler::NE, slow_case); 7149 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 7150 } else { 7151 b(slow_case); 7152 } 7153 } 7154 if (UseTLAB) { 7155 // 2. Initialize buffered inline instance header 7156 Register buffer_obj = r0; 7157 if (UseCompactObjectHeaders) { 7158 ldr(rscratch1, Address(klass, Klass::prototype_header_offset())); 7159 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7160 } else { 7161 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 7162 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7163 store_klass_gap(buffer_obj, zr); 7164 if (vk == nullptr) { 7165 // store_klass corrupts klass, so save it for later use (interpreter case only). 7166 mov(tmp1, klass); 7167 } 7168 store_klass(buffer_obj, klass); 7169 } 7170 // 3. Initialize its fields with an inline class specific handler 7171 if (vk != nullptr) { 7172 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 7173 } else { 7174 // tmp1 holds klass preserved above 7175 ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 7176 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 7177 blr(tmp1); 7178 } 7179 7180 membar(Assembler::StoreStore); 7181 b(skip); 7182 } else { 7183 // Must have already branched to slow_case above. 7184 DEBUG_ONLY(should_not_reach_here()); 7185 } 7186 bind(slow_case); 7187 // We failed to allocate a new inline type, fall back to a runtime 7188 // call. Some oop field may be live in some registers but we can't 7189 // tell. That runtime call will take care of preserving them 7190 // across a GC if there's one. 7191 mov(r0, r0_preserved); 7192 7193 if (from_interpreter) { 7194 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 7195 } else { 7196 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 7197 call_offset = offset(); 7198 } 7199 membar(Assembler::StoreStore); 7200 7201 bind(skip); 7202 return call_offset; 7203 } 7204 7205 // Move a value between registers/stack slots and update the reg_state 7206 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 7207 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 7208 if (reg_state[to->value()] == reg_written) { 7209 return true; // Already written 7210 } 7211 7212 if (from != to && bt != T_VOID) { 7213 if (reg_state[to->value()] == reg_readonly) { 7214 return false; // Not yet writable 7215 } 7216 if (from->is_reg()) { 7217 if (to->is_reg()) { 7218 if (from->is_Register() && to->is_Register()) { 7219 mov(to->as_Register(), from->as_Register()); 7220 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 7221 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 7222 } else { 7223 ShouldNotReachHere(); 7224 } 7225 } else { 7226 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7227 Address to_addr = Address(sp, st_off); 7228 if (from->is_FloatRegister()) { 7229 if (bt == T_DOUBLE) { 7230 strd(from->as_FloatRegister(), to_addr); 7231 } else { 7232 assert(bt == T_FLOAT, "must be float"); 7233 strs(from->as_FloatRegister(), to_addr); 7234 } 7235 } else { 7236 str(from->as_Register(), to_addr); 7237 } 7238 } 7239 } else { 7240 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 7241 if (to->is_reg()) { 7242 if (to->is_FloatRegister()) { 7243 if (bt == T_DOUBLE) { 7244 ldrd(to->as_FloatRegister(), from_addr); 7245 } else { 7246 assert(bt == T_FLOAT, "must be float"); 7247 ldrs(to->as_FloatRegister(), from_addr); 7248 } 7249 } else { 7250 ldr(to->as_Register(), from_addr); 7251 } 7252 } else { 7253 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7254 ldr(rscratch1, from_addr); 7255 str(rscratch1, Address(sp, st_off)); 7256 } 7257 } 7258 } 7259 7260 // Update register states 7261 reg_state[from->value()] = reg_writable; 7262 reg_state[to->value()] = reg_written; 7263 return true; 7264 } 7265 7266 // Calculate the extra stack space required for packing or unpacking inline 7267 // args and adjust the stack pointer 7268 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 7269 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 7270 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 7271 assert(sp_inc > 0, "sanity"); 7272 7273 // Save a copy of the FP and LR here for deoptimization patching and frame walking 7274 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7275 7276 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 7277 if (sp_inc < (1 << 9)) { 7278 sub(sp, sp, sp_inc); // Fits in an immediate 7279 } else { 7280 mov(rscratch1, sp_inc); 7281 sub(sp, sp, rscratch1); 7282 } 7283 7284 return sp_inc + 2 * wordSize; // Account for the FP/LR space 7285 } 7286 7287 // Read all fields from an inline type oop and store the values in registers/stack slots 7288 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 7289 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 7290 RegState reg_state[]) { 7291 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 7292 assert(from->is_valid(), "source must be valid"); 7293 bool progress = false; 7294 #ifdef ASSERT 7295 const int start_offset = offset(); 7296 #endif 7297 7298 Label L_null, L_notNull; 7299 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 7300 // TODO 8366717 We need to make sure that r14 (and potentially other long-life regs) are kept live in slowpath runtime calls in GC barriers 7301 Register tmp1 = r10; 7302 Register tmp2 = r11; 7303 Register fromReg = noreg; 7304 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 7305 bool done = true; 7306 bool mark_done = true; 7307 VMReg toReg; 7308 BasicType bt; 7309 // Check if argument requires a null check 7310 bool null_check = false; 7311 VMReg nullCheckReg; 7312 while (stream.next(nullCheckReg, bt)) { 7313 if (sig->at(stream.sig_index())._offset == -1) { 7314 null_check = true; 7315 break; 7316 } 7317 } 7318 stream.reset(sig_index, to_index); 7319 while (stream.next(toReg, bt)) { 7320 assert(toReg->is_valid(), "destination must be valid"); 7321 int idx = (int)toReg->value(); 7322 if (reg_state[idx] == reg_readonly) { 7323 if (idx != from->value()) { 7324 mark_done = false; 7325 } 7326 done = false; 7327 continue; 7328 } else if (reg_state[idx] == reg_written) { 7329 continue; 7330 } 7331 assert(reg_state[idx] == reg_writable, "must be writable"); 7332 reg_state[idx] = reg_written; 7333 progress = true; 7334 7335 if (fromReg == noreg) { 7336 if (from->is_reg()) { 7337 fromReg = from->as_Register(); 7338 } else { 7339 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 7340 ldr(tmp1, Address(sp, st_off)); 7341 fromReg = tmp1; 7342 } 7343 if (null_check) { 7344 // Nullable inline type argument, emit null check 7345 cbz(fromReg, L_null); 7346 } 7347 } 7348 int off = sig->at(stream.sig_index())._offset; 7349 if (off == -1) { 7350 assert(null_check, "Missing null check at"); 7351 if (toReg->is_stack()) { 7352 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7353 mov(tmp2, 1); 7354 str(tmp2, Address(sp, st_off)); 7355 } else { 7356 mov(toReg->as_Register(), 1); 7357 } 7358 continue; 7359 } 7360 assert(off > 0, "offset in object should be positive"); 7361 Address fromAddr = Address(fromReg, off); 7362 if (!toReg->is_FloatRegister()) { 7363 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 7364 if (is_reference_type(bt)) { 7365 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 7366 } else { 7367 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 7368 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 7369 } 7370 if (toReg->is_stack()) { 7371 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7372 str(dst, Address(sp, st_off)); 7373 } 7374 } else if (bt == T_DOUBLE) { 7375 ldrd(toReg->as_FloatRegister(), fromAddr); 7376 } else { 7377 assert(bt == T_FLOAT, "must be float"); 7378 ldrs(toReg->as_FloatRegister(), fromAddr); 7379 } 7380 } 7381 if (progress && null_check) { 7382 if (done) { 7383 b(L_notNull); 7384 bind(L_null); 7385 // Set null marker to zero to signal that the argument is null. 7386 // Also set all oop fields to zero to make the GC happy. 7387 stream.reset(sig_index, to_index); 7388 while (stream.next(toReg, bt)) { 7389 if (sig->at(stream.sig_index())._offset == -1 || 7390 bt == T_OBJECT || bt == T_ARRAY) { 7391 if (toReg->is_stack()) { 7392 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7393 str(zr, Address(sp, st_off)); 7394 } else { 7395 mov(toReg->as_Register(), zr); 7396 } 7397 } 7398 } 7399 bind(L_notNull); 7400 } else { 7401 bind(L_null); 7402 } 7403 } 7404 7405 // TODO 8366717 This is probably okay but looks fishy because stream is reset in the "Set null marker to zero" case just above. Same on x64. 7406 sig_index = stream.sig_index(); 7407 to_index = stream.regs_index(); 7408 7409 if (mark_done && reg_state[from->value()] != reg_written) { 7410 // This is okay because no one else will write to that slot 7411 reg_state[from->value()] = reg_writable; 7412 } 7413 from_index--; 7414 assert(progress || (start_offset == offset()), "should not emit code"); 7415 return done; 7416 } 7417 7418 // Pack fields back into an inline type oop 7419 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 7420 VMRegPair* from, int from_count, int& from_index, VMReg to, 7421 RegState reg_state[], Register val_array) { 7422 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 7423 assert(to->is_valid(), "destination must be valid"); 7424 7425 if (reg_state[to->value()] == reg_written) { 7426 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7427 return true; // Already written 7428 } 7429 7430 // The GC barrier expanded by store_heap_oop below may call into the 7431 // runtime so use callee-saved registers for any values that need to be 7432 // preserved. The GC barrier assembler should take care of saving the 7433 // Java argument registers. 7434 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 7435 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 7436 Register val_obj_tmp = r21; 7437 Register from_reg_tmp = r22; 7438 Register tmp1 = r14; 7439 Register tmp2 = r13; 7440 Register tmp3 = r12; 7441 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 7442 7443 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 7444 7445 if (reg_state[to->value()] == reg_readonly) { 7446 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 7447 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7448 return false; // Not yet writable 7449 } 7450 val_obj = val_obj_tmp; 7451 } 7452 7453 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 7454 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 7455 7456 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 7457 VMReg fromReg; 7458 BasicType bt; 7459 Label L_null; 7460 while (stream.next(fromReg, bt)) { 7461 assert(fromReg->is_valid(), "source must be valid"); 7462 reg_state[fromReg->value()] = reg_writable; 7463 7464 int off = sig->at(stream.sig_index())._offset; 7465 if (off == -1) { 7466 // Nullable inline type argument, emit null check 7467 Label L_notNull; 7468 if (fromReg->is_stack()) { 7469 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7470 ldrb(tmp2, Address(sp, ld_off)); 7471 cbnz(tmp2, L_notNull); 7472 } else { 7473 cbnz(fromReg->as_Register(), L_notNull); 7474 } 7475 mov(val_obj, 0); 7476 b(L_null); 7477 bind(L_notNull); 7478 continue; 7479 } 7480 7481 assert(off > 0, "offset in object should be positive"); 7482 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 7483 7484 // Pack the scalarized field into the value object. 7485 Address dst(val_obj, off); 7486 if (!fromReg->is_FloatRegister()) { 7487 Register src; 7488 if (fromReg->is_stack()) { 7489 src = from_reg_tmp; 7490 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7491 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 7492 } else { 7493 src = fromReg->as_Register(); 7494 } 7495 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 7496 if (is_reference_type(bt)) { 7497 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 7498 } else { 7499 store_sized_value(dst, src, size_in_bytes); 7500 } 7501 } else if (bt == T_DOUBLE) { 7502 strd(fromReg->as_FloatRegister(), dst); 7503 } else { 7504 assert(bt == T_FLOAT, "must be float"); 7505 strs(fromReg->as_FloatRegister(), dst); 7506 } 7507 } 7508 bind(L_null); 7509 sig_index = stream.sig_index(); 7510 from_index = stream.regs_index(); 7511 7512 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 7513 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 7514 assert(success, "to register must be writeable"); 7515 return true; 7516 } 7517 7518 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 7519 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 7520 } 7521 7522 void MacroAssembler::cache_wb(Address line) { 7523 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 7524 assert(line.index() == noreg, "index should be noreg"); 7525 assert(line.offset() == 0, "offset should be 0"); 7526 // would like to assert this 7527 // assert(line._ext.shift == 0, "shift should be zero"); 7528 if (VM_Version::supports_dcpop()) { 7529 // writeback using clear virtual address to point of persistence 7530 dc(Assembler::CVAP, line.base()); 7531 } else { 7532 // no need to generate anything as Unsafe.writebackMemory should 7533 // never invoke this stub 7534 } 7535 } 7536 7537 void MacroAssembler::cache_wbsync(bool is_pre) { 7538 // we only need a barrier post sync 7539 if (!is_pre) { 7540 membar(Assembler::AnyAny); 7541 } 7542 } 7543 7544 void MacroAssembler::verify_sve_vector_length(Register tmp) { 7545 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 7546 return; 7547 } 7548 // Make sure that native code does not change SVE vector length. 7549 Label verify_ok; 7550 movw(tmp, zr); 7551 sve_inc(tmp, B); 7552 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 7553 br(EQ, verify_ok); 7554 stop("Error: SVE vector length has changed since jvm startup"); 7555 bind(verify_ok); 7556 } 7557 7558 void MacroAssembler::verify_ptrue() { 7559 Label verify_ok; 7560 if (!UseSVE) { 7561 return; 7562 } 7563 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 7564 sve_dec(rscratch1, B); 7565 cbz(rscratch1, verify_ok); 7566 stop("Error: the preserved predicate register (p7) elements are not all true"); 7567 bind(verify_ok); 7568 } 7569 7570 void MacroAssembler::safepoint_isb() { 7571 isb(); 7572 #ifndef PRODUCT 7573 if (VerifyCrossModifyFence) { 7574 // Clear the thread state. 7575 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7576 } 7577 #endif 7578 } 7579 7580 #ifndef PRODUCT 7581 void MacroAssembler::verify_cross_modify_fence_not_required() { 7582 if (VerifyCrossModifyFence) { 7583 // Check if thread needs a cross modify fence. 7584 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7585 Label fence_not_required; 7586 cbz(rscratch1, fence_not_required); 7587 // If it does then fail. 7588 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 7589 mov(c_rarg0, rthread); 7590 blr(rscratch1); 7591 bind(fence_not_required); 7592 } 7593 } 7594 #endif 7595 7596 void MacroAssembler::spin_wait() { 7597 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 7598 switch (VM_Version::spin_wait_desc().inst()) { 7599 case SpinWait::NOP: 7600 nop(); 7601 break; 7602 case SpinWait::ISB: 7603 isb(); 7604 break; 7605 case SpinWait::YIELD: 7606 yield(); 7607 break; 7608 case SpinWait::SB: 7609 sb(); 7610 break; 7611 default: 7612 ShouldNotReachHere(); 7613 } 7614 } 7615 } 7616 7617 // Stack frame creation/removal 7618 7619 void MacroAssembler::enter(bool strip_ret_addr) { 7620 if (strip_ret_addr) { 7621 // Addresses can only be signed once. If there are multiple nested frames being created 7622 // in the same function, then the return address needs stripping first. 7623 strip_return_address(); 7624 } 7625 protect_return_address(); 7626 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7627 mov(rfp, sp); 7628 } 7629 7630 void MacroAssembler::leave() { 7631 mov(sp, rfp); 7632 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 7633 authenticate_return_address(); 7634 } 7635 7636 // ROP Protection 7637 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 7638 // destroying stack frames or whenever directly loading/storing the LR to memory. 7639 // If ROP protection is not set then these functions are no-ops. 7640 // For more details on PAC see pauth_aarch64.hpp. 7641 7642 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 7643 // Uses value zero as the modifier. 7644 // 7645 void MacroAssembler::protect_return_address() { 7646 if (VM_Version::use_rop_protection()) { 7647 check_return_address(); 7648 paciaz(); 7649 } 7650 } 7651 7652 // Sign the return value in the given register. Use before updating the LR in the existing stack 7653 // frame for the current function. 7654 // Uses value zero as the modifier. 7655 // 7656 void MacroAssembler::protect_return_address(Register return_reg) { 7657 if (VM_Version::use_rop_protection()) { 7658 check_return_address(return_reg); 7659 paciza(return_reg); 7660 } 7661 } 7662 7663 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 7664 // Uses value zero as the modifier. 7665 // 7666 void MacroAssembler::authenticate_return_address() { 7667 if (VM_Version::use_rop_protection()) { 7668 autiaz(); 7669 check_return_address(); 7670 } 7671 } 7672 7673 // Authenticate the return value in the given register. Use before updating the LR in the existing 7674 // stack frame for the current function. 7675 // Uses value zero as the modifier. 7676 // 7677 void MacroAssembler::authenticate_return_address(Register return_reg) { 7678 if (VM_Version::use_rop_protection()) { 7679 autiza(return_reg); 7680 check_return_address(return_reg); 7681 } 7682 } 7683 7684 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 7685 // there is no guaranteed way of authenticating the LR. 7686 // 7687 void MacroAssembler::strip_return_address() { 7688 if (VM_Version::use_rop_protection()) { 7689 xpaclri(); 7690 } 7691 } 7692 7693 #ifndef PRODUCT 7694 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 7695 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 7696 // it is difficult to debug back to the callee function. 7697 // This function simply loads from the address in the given register. 7698 // Use directly after authentication to catch authentication failures. 7699 // Also use before signing to check that the pointer is valid and hasn't already been signed. 7700 // 7701 void MacroAssembler::check_return_address(Register return_reg) { 7702 if (VM_Version::use_rop_protection()) { 7703 ldr(zr, Address(return_reg)); 7704 } 7705 } 7706 #endif 7707 7708 // The java_calling_convention describes stack locations as ideal slots on 7709 // a frame with no abi restrictions. Since we must observe abi restrictions 7710 // (like the placement of the register window) the slots must be biased by 7711 // the following value. 7712 static int reg2offset_in(VMReg r) { 7713 // Account for saved rfp and lr 7714 // This should really be in_preserve_stack_slots 7715 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 7716 } 7717 7718 static int reg2offset_out(VMReg r) { 7719 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 7720 } 7721 7722 // On 64bit we will store integer like items to the stack as 7723 // 64bits items (AArch64 ABI) even though java would only store 7724 // 32bits for a parameter. On 32bit it will simply be 32bits 7725 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 7726 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 7727 if (src.first()->is_stack()) { 7728 if (dst.first()->is_stack()) { 7729 // stack to stack 7730 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7731 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7732 } else { 7733 // stack to reg 7734 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7735 } 7736 } else if (dst.first()->is_stack()) { 7737 // reg to stack 7738 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7739 } else { 7740 if (dst.first() != src.first()) { 7741 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 7742 } 7743 } 7744 } 7745 7746 // An oop arg. Must pass a handle not the oop itself 7747 void MacroAssembler::object_move( 7748 OopMap* map, 7749 int oop_handle_offset, 7750 int framesize_in_slots, 7751 VMRegPair src, 7752 VMRegPair dst, 7753 bool is_receiver, 7754 int* receiver_offset) { 7755 7756 // must pass a handle. First figure out the location we use as a handle 7757 7758 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7759 7760 // See if oop is null if it is we need no handle 7761 7762 if (src.first()->is_stack()) { 7763 7764 // Oop is already on the stack as an argument 7765 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7766 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7767 if (is_receiver) { 7768 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7769 } 7770 7771 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7772 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7773 // conditionally move a null 7774 cmp(rscratch1, zr); 7775 csel(rHandle, zr, rHandle, Assembler::EQ); 7776 } else { 7777 7778 // Oop is in an a register we must store it to the space we reserve 7779 // on the stack for oop_handles and pass a handle if oop is non-null 7780 7781 const Register rOop = src.first()->as_Register(); 7782 int oop_slot; 7783 if (rOop == j_rarg0) 7784 oop_slot = 0; 7785 else if (rOop == j_rarg1) 7786 oop_slot = 1; 7787 else if (rOop == j_rarg2) 7788 oop_slot = 2; 7789 else if (rOop == j_rarg3) 7790 oop_slot = 3; 7791 else if (rOop == j_rarg4) 7792 oop_slot = 4; 7793 else if (rOop == j_rarg5) 7794 oop_slot = 5; 7795 else if (rOop == j_rarg6) 7796 oop_slot = 6; 7797 else { 7798 assert(rOop == j_rarg7, "wrong register"); 7799 oop_slot = 7; 7800 } 7801 7802 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7803 int offset = oop_slot*VMRegImpl::stack_slot_size; 7804 7805 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7806 // Store oop in handle area, may be null 7807 str(rOop, Address(sp, offset)); 7808 if (is_receiver) { 7809 *receiver_offset = offset; 7810 } 7811 7812 cmp(rOop, zr); 7813 lea(rHandle, Address(sp, offset)); 7814 // conditionally move a null 7815 csel(rHandle, zr, rHandle, Assembler::EQ); 7816 } 7817 7818 // If arg is on the stack then place it otherwise it is already in correct reg. 7819 if (dst.first()->is_stack()) { 7820 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7821 } 7822 } 7823 7824 // A float arg may have to do float reg int reg conversion 7825 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7826 if (src.first()->is_stack()) { 7827 if (dst.first()->is_stack()) { 7828 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7829 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7830 } else { 7831 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7832 } 7833 } else if (src.first() != dst.first()) { 7834 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7835 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7836 else 7837 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7838 } 7839 } 7840 7841 // A long move 7842 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7843 if (src.first()->is_stack()) { 7844 if (dst.first()->is_stack()) { 7845 // stack to stack 7846 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7847 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7848 } else { 7849 // stack to reg 7850 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7851 } 7852 } else if (dst.first()->is_stack()) { 7853 // reg to stack 7854 // Do we really have to sign extend??? 7855 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7856 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7857 } else { 7858 if (dst.first() != src.first()) { 7859 mov(dst.first()->as_Register(), src.first()->as_Register()); 7860 } 7861 } 7862 } 7863 7864 7865 // A double move 7866 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7867 if (src.first()->is_stack()) { 7868 if (dst.first()->is_stack()) { 7869 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7870 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7871 } else { 7872 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7873 } 7874 } else if (src.first() != dst.first()) { 7875 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7876 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7877 else 7878 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7879 } 7880 } 7881 7882 // Implements lightweight-locking. 7883 // 7884 // - obj: the object to be locked 7885 // - t1, t2, t3: temporary registers, will be destroyed 7886 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7887 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7888 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7889 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7890 7891 Label push; 7892 const Register top = t1; 7893 const Register mark = t2; 7894 const Register t = t3; 7895 7896 // Preload the markWord. It is important that this is the first 7897 // instruction emitted as it is part of C1's null check semantics. 7898 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7899 7900 if (UseObjectMonitorTable) { 7901 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7902 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7903 } 7904 7905 if (DiagnoseSyncOnValueBasedClasses != 0) { 7906 load_klass(t1, obj); 7907 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7908 tst(t1, KlassFlags::_misc_is_value_based_class); 7909 br(Assembler::NE, slow); 7910 } 7911 7912 // Check if the lock-stack is full. 7913 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7914 cmpw(top, (unsigned)LockStack::end_offset()); 7915 br(Assembler::GE, slow); 7916 7917 // Check for recursion. 7918 subw(t, top, oopSize); 7919 ldr(t, Address(rthread, t)); 7920 cmp(obj, t); 7921 br(Assembler::EQ, push); 7922 7923 // Check header for monitor (0b10). 7924 tst(mark, markWord::monitor_value); 7925 br(Assembler::NE, slow); 7926 7927 // Try to lock. Transition lock bits 0b01 => 0b00 7928 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7929 orr(mark, mark, markWord::unlocked_value); 7930 if (EnableValhalla) { 7931 // Mask inline_type bit such that we go to the slow path if object is an inline type 7932 andr(mark, mark, ~((int) markWord::inline_type_bit_in_place)); 7933 } 7934 eor(t, mark, markWord::unlocked_value); 7935 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7936 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7937 br(Assembler::NE, slow); 7938 7939 bind(push); 7940 // After successful lock, push object on lock-stack. 7941 str(obj, Address(rthread, top)); 7942 addw(top, top, oopSize); 7943 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7944 } 7945 7946 // Implements lightweight-unlocking. 7947 // 7948 // - obj: the object to be unlocked 7949 // - t1, t2, t3: temporary registers 7950 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7951 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7952 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7953 // cmpxchg clobbers rscratch1. 7954 assert_different_registers(obj, t1, t2, t3, rscratch1); 7955 7956 #ifdef ASSERT 7957 { 7958 // Check for lock-stack underflow. 7959 Label stack_ok; 7960 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7961 cmpw(t1, (unsigned)LockStack::start_offset()); 7962 br(Assembler::GE, stack_ok); 7963 STOP("Lock-stack underflow"); 7964 bind(stack_ok); 7965 } 7966 #endif 7967 7968 Label unlocked, push_and_slow; 7969 const Register top = t1; 7970 const Register mark = t2; 7971 const Register t = t3; 7972 7973 // Check if obj is top of lock-stack. 7974 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7975 subw(top, top, oopSize); 7976 ldr(t, Address(rthread, top)); 7977 cmp(obj, t); 7978 br(Assembler::NE, slow); 7979 7980 // Pop lock-stack. 7981 DEBUG_ONLY(str(zr, Address(rthread, top));) 7982 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7983 7984 // Check if recursive. 7985 subw(t, top, oopSize); 7986 ldr(t, Address(rthread, t)); 7987 cmp(obj, t); 7988 br(Assembler::EQ, unlocked); 7989 7990 // Not recursive. Check header for monitor (0b10). 7991 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7992 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7993 7994 #ifdef ASSERT 7995 // Check header not unlocked (0b01). 7996 Label not_unlocked; 7997 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7998 stop("lightweight_unlock already unlocked"); 7999 bind(not_unlocked); 8000 #endif 8001 8002 // Try to unlock. Transition lock bits 0b00 => 0b01 8003 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 8004 orr(t, mark, markWord::unlocked_value); 8005 cmpxchg(obj, mark, t, Assembler::xword, 8006 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 8007 br(Assembler::EQ, unlocked); 8008 8009 bind(push_and_slow); 8010 // Restore lock-stack and handle the unlock in runtime. 8011 DEBUG_ONLY(str(obj, Address(rthread, top));) 8012 addw(top, top, oopSize); 8013 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 8014 b(slow); 8015 8016 bind(unlocked); 8017 }