1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "asm/assembler.hpp" 30 #include "asm/assembler.inline.hpp" 31 #include "ci/ciEnv.hpp" 32 #include "ci/ciInlineKlass.hpp" 33 #include "compiler/compileTask.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/barrierSetAssembler.hpp" 38 #include "gc/shared/cardTableBarrierSet.hpp" 39 #include "gc/shared/cardTable.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/tlab_globals.hpp" 42 #include "interpreter/bytecodeHistogram.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "jvm.h" 45 #include "memory/resourceArea.hpp" 46 #include "memory/universe.hpp" 47 #include "nativeInst_aarch64.hpp" 48 #include "oops/accessDecorators.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "runtime/continuation.hpp" 52 #include "runtime/icache.hpp" 53 #include "runtime/interfaceSupport.inline.hpp" 54 #include "runtime/javaThread.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/signature_cc.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/powerOfTwo.hpp" 60 #include "vmreg_aarch64.inline.hpp" 61 #ifdef COMPILER1 62 #include "c1/c1_LIRAssembler.hpp" 63 #endif 64 #ifdef COMPILER2 65 #include "oops/oop.hpp" 66 #include "opto/compile.hpp" 67 #include "opto/node.hpp" 68 #include "opto/output.hpp" 69 #endif 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == 0, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &Decoder::adrpMovk_impl; } 399 400 public: 401 Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != NULL, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 // codecache size <= 128M 679 if (!MacroAssembler::far_branches()) { 680 return false; 681 } 682 // codecache size > 240M 683 if (MacroAssembler::codestub_branch_needs_far_jump()) { 684 return true; 685 } 686 // codecache size: 128M..240M 687 return !CodeCache::is_non_nmethod(addr); 688 } 689 690 void MacroAssembler::far_call(Address entry, Register tmp) { 691 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 692 assert(CodeCache::find_blob(entry.target()) != NULL, 693 "destination of far call not found in code cache"); 694 assert(entry.rspec().type() == relocInfo::external_word_type 695 || entry.rspec().type() == relocInfo::runtime_call_type 696 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 697 if (target_needs_far_branch(entry.target())) { 698 uint64_t offset; 699 // We can use ADRP here because we know that the total size of 700 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 701 adrp(tmp, entry, offset); 702 add(tmp, tmp, offset); 703 blr(tmp); 704 } else { 705 bl(entry); 706 } 707 } 708 709 int MacroAssembler::far_jump(Address entry, Register tmp) { 710 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 711 assert(CodeCache::find_blob(entry.target()) != NULL, 712 "destination of far call not found in code cache"); 713 assert(entry.rspec().type() == relocInfo::external_word_type 714 || entry.rspec().type() == relocInfo::runtime_call_type 715 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 716 address start = pc(); 717 if (target_needs_far_branch(entry.target())) { 718 uint64_t offset; 719 // We can use ADRP here because we know that the total size of 720 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 721 adrp(tmp, entry, offset); 722 add(tmp, tmp, offset); 723 br(tmp); 724 } else { 725 b(entry); 726 } 727 return pc() - start; 728 } 729 730 void MacroAssembler::reserved_stack_check() { 731 // testing if reserved zone needs to be enabled 732 Label no_reserved_zone_enabling; 733 734 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 735 cmp(sp, rscratch1); 736 br(Assembler::LO, no_reserved_zone_enabling); 737 738 enter(); // LR and FP are live. 739 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 740 mov(c_rarg0, rthread); 741 blr(rscratch1); 742 leave(); 743 744 // We have already removed our own frame. 745 // throw_delayed_StackOverflowError will think that it's been 746 // called by our caller. 747 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 748 br(rscratch1); 749 should_not_reach_here(); 750 751 bind(no_reserved_zone_enabling); 752 } 753 754 static void pass_arg0(MacroAssembler* masm, Register arg) { 755 if (c_rarg0 != arg ) { 756 masm->mov(c_rarg0, arg); 757 } 758 } 759 760 static void pass_arg1(MacroAssembler* masm, Register arg) { 761 if (c_rarg1 != arg ) { 762 masm->mov(c_rarg1, arg); 763 } 764 } 765 766 static void pass_arg2(MacroAssembler* masm, Register arg) { 767 if (c_rarg2 != arg ) { 768 masm->mov(c_rarg2, arg); 769 } 770 } 771 772 static void pass_arg3(MacroAssembler* masm, Register arg) { 773 if (c_rarg3 != arg ) { 774 masm->mov(c_rarg3, arg); 775 } 776 } 777 778 void MacroAssembler::call_VM_base(Register oop_result, 779 Register java_thread, 780 Register last_java_sp, 781 address entry_point, 782 int number_of_arguments, 783 bool check_exceptions) { 784 // determine java_thread register 785 if (!java_thread->is_valid()) { 786 java_thread = rthread; 787 } 788 789 // determine last_java_sp register 790 if (!last_java_sp->is_valid()) { 791 last_java_sp = esp; 792 } 793 794 // debugging support 795 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 796 assert(java_thread == rthread, "unexpected register"); 797 #ifdef ASSERT 798 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 799 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 800 #endif // ASSERT 801 802 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 803 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 804 805 // push java thread (becomes first argument of C function) 806 807 mov(c_rarg0, java_thread); 808 809 // set last Java frame before call 810 assert(last_java_sp != rfp, "can't use rfp"); 811 812 Label l; 813 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 814 815 // do the call, remove parameters 816 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 817 818 // lr could be poisoned with PAC signature during throw_pending_exception 819 // if it was tail-call optimized by compiler, since lr is not callee-saved 820 // reload it with proper value 821 adr(lr, l); 822 823 // reset last Java frame 824 // Only interpreter should have to clear fp 825 reset_last_Java_frame(true); 826 827 // C++ interp handles this in the interpreter 828 check_and_handle_popframe(java_thread); 829 check_and_handle_earlyret(java_thread); 830 831 if (check_exceptions) { 832 // check for pending exceptions (java_thread is set upon return) 833 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 834 Label ok; 835 cbz(rscratch1, ok); 836 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 837 br(rscratch1); 838 bind(ok); 839 } 840 841 // get oop result if there is one and reset the value in the thread 842 if (oop_result->is_valid()) { 843 get_vm_result(oop_result, java_thread); 844 } 845 } 846 847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 848 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 849 } 850 851 // Check the entry target is always reachable from any branch. 852 static bool is_always_within_branch_range(Address entry) { 853 const address target = entry.target(); 854 855 if (!CodeCache::contains(target)) { 856 // We always use trampolines for callees outside CodeCache. 857 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 858 return false; 859 } 860 861 if (!MacroAssembler::far_branches()) { 862 return true; 863 } 864 865 if (entry.rspec().type() == relocInfo::runtime_call_type) { 866 // Runtime calls are calls of a non-compiled method (stubs, adapters). 867 // Non-compiled methods stay forever in CodeCache. 868 // We check whether the longest possible branch is within the branch range. 869 assert(CodeCache::find_blob(target) != NULL && 870 !CodeCache::find_blob(target)->is_compiled(), 871 "runtime call of compiled method"); 872 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 873 const address left_longest_branch_start = CodeCache::low_bound(); 874 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 875 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 876 return is_reachable; 877 } 878 879 return false; 880 } 881 882 // Maybe emit a call via a trampoline. If the code cache is small 883 // trampolines won't be emitted. 884 address MacroAssembler::trampoline_call(Address entry) { 885 assert(entry.rspec().type() == relocInfo::runtime_call_type 886 || entry.rspec().type() == relocInfo::opt_virtual_call_type 887 || entry.rspec().type() == relocInfo::static_call_type 888 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 889 890 address target = entry.target(); 891 892 if (!is_always_within_branch_range(entry)) { 893 if (!in_scratch_emit_size()) { 894 // We don't want to emit a trampoline if C2 is generating dummy 895 // code during its branch shortening phase. 896 if (entry.rspec().type() == relocInfo::runtime_call_type) { 897 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 898 code()->share_trampoline_for(entry.target(), offset()); 899 } else { 900 address stub = emit_trampoline_stub(offset(), target); 901 if (stub == NULL) { 902 postcond(pc() == badAddress); 903 return NULL; // CodeCache is full 904 } 905 } 906 } 907 target = pc(); 908 } 909 910 address call_pc = pc(); 911 relocate(entry.rspec()); 912 bl(target); 913 914 postcond(pc() != badAddress); 915 return call_pc; 916 } 917 918 // Emit a trampoline stub for a call to a target which is too far away. 919 // 920 // code sequences: 921 // 922 // call-site: 923 // branch-and-link to <destination> or <trampoline stub> 924 // 925 // Related trampoline stub for this call site in the stub section: 926 // load the call target from the constant pool 927 // branch (LR still points to the call site above) 928 929 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 930 address dest) { 931 // Max stub size: alignment nop, TrampolineStub. 932 address stub = start_a_stub(max_trampoline_stub_size()); 933 if (stub == NULL) { 934 return NULL; // CodeBuffer::expand failed 935 } 936 937 // Create a trampoline stub relocation which relates this trampoline stub 938 // with the call instruction at insts_call_instruction_offset in the 939 // instructions code-section. 940 align(wordSize); 941 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 942 + insts_call_instruction_offset)); 943 const int stub_start_offset = offset(); 944 945 // Now, create the trampoline stub's code: 946 // - load the call 947 // - call 948 Label target; 949 ldr(rscratch1, target); 950 br(rscratch1); 951 bind(target); 952 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 953 "should be"); 954 emit_int64((int64_t)dest); 955 956 const address stub_start_addr = addr_at(stub_start_offset); 957 958 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 959 960 end_a_stub(); 961 return stub_start_addr; 962 } 963 964 int MacroAssembler::max_trampoline_stub_size() { 965 // Max stub size: alignment nop, TrampolineStub. 966 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 967 } 968 969 void MacroAssembler::emit_static_call_stub() { 970 // CompiledDirectStaticCall::set_to_interpreted knows the 971 // exact layout of this stub. 972 973 isb(); 974 mov_metadata(rmethod, (Metadata*)NULL); 975 976 // Jump to the entry point of the c2i stub. 977 movptr(rscratch1, 0); 978 br(rscratch1); 979 } 980 981 int MacroAssembler::static_call_stub_size() { 982 // isb; movk; movz; movz; movk; movz; movz; br 983 return 8 * NativeInstruction::instruction_size; 984 } 985 986 void MacroAssembler::c2bool(Register x) { 987 // implements x == 0 ? 0 : 1 988 // note: must only look at least-significant byte of x 989 // since C-style booleans are stored in one byte 990 // only! (was bug) 991 tst(x, 0xff); 992 cset(x, Assembler::NE); 993 } 994 995 address MacroAssembler::ic_call(address entry, jint method_index) { 996 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 997 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 998 // uintptr_t offset; 999 // ldr_constant(rscratch2, const_ptr); 1000 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 1001 return trampoline_call(Address(entry, rh)); 1002 } 1003 1004 // Implementation of call_VM versions 1005 1006 void MacroAssembler::call_VM(Register oop_result, 1007 address entry_point, 1008 bool check_exceptions) { 1009 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1010 } 1011 1012 void MacroAssembler::call_VM(Register oop_result, 1013 address entry_point, 1014 Register arg_1, 1015 bool check_exceptions) { 1016 pass_arg1(this, arg_1); 1017 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1018 } 1019 1020 void MacroAssembler::call_VM(Register oop_result, 1021 address entry_point, 1022 Register arg_1, 1023 Register arg_2, 1024 bool check_exceptions) { 1025 assert(arg_1 != c_rarg2, "smashed arg"); 1026 pass_arg2(this, arg_2); 1027 pass_arg1(this, arg_1); 1028 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1029 } 1030 1031 void MacroAssembler::call_VM(Register oop_result, 1032 address entry_point, 1033 Register arg_1, 1034 Register arg_2, 1035 Register arg_3, 1036 bool check_exceptions) { 1037 assert(arg_1 != c_rarg3, "smashed arg"); 1038 assert(arg_2 != c_rarg3, "smashed arg"); 1039 pass_arg3(this, arg_3); 1040 1041 assert(arg_1 != c_rarg2, "smashed arg"); 1042 pass_arg2(this, arg_2); 1043 1044 pass_arg1(this, arg_1); 1045 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1046 } 1047 1048 void MacroAssembler::call_VM(Register oop_result, 1049 Register last_java_sp, 1050 address entry_point, 1051 int number_of_arguments, 1052 bool check_exceptions) { 1053 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1054 } 1055 1056 void MacroAssembler::call_VM(Register oop_result, 1057 Register last_java_sp, 1058 address entry_point, 1059 Register arg_1, 1060 bool check_exceptions) { 1061 pass_arg1(this, arg_1); 1062 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1063 } 1064 1065 void MacroAssembler::call_VM(Register oop_result, 1066 Register last_java_sp, 1067 address entry_point, 1068 Register arg_1, 1069 Register arg_2, 1070 bool check_exceptions) { 1071 1072 assert(arg_1 != c_rarg2, "smashed arg"); 1073 pass_arg2(this, arg_2); 1074 pass_arg1(this, arg_1); 1075 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1076 } 1077 1078 void MacroAssembler::call_VM(Register oop_result, 1079 Register last_java_sp, 1080 address entry_point, 1081 Register arg_1, 1082 Register arg_2, 1083 Register arg_3, 1084 bool check_exceptions) { 1085 assert(arg_1 != c_rarg3, "smashed arg"); 1086 assert(arg_2 != c_rarg3, "smashed arg"); 1087 pass_arg3(this, arg_3); 1088 assert(arg_1 != c_rarg2, "smashed arg"); 1089 pass_arg2(this, arg_2); 1090 pass_arg1(this, arg_1); 1091 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1092 } 1093 1094 1095 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1096 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1097 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1098 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1099 } 1100 1101 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1102 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1103 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1104 } 1105 1106 void MacroAssembler::align(int modulus) { 1107 while (offset() % modulus != 0) nop(); 1108 } 1109 1110 void MacroAssembler::post_call_nop() { 1111 if (!Continuations::enabled()) { 1112 return; 1113 } 1114 InstructionMark im(this); 1115 relocate(post_call_nop_Relocation::spec()); 1116 InlineSkippedInstructionsCounter skipCounter(this); 1117 nop(); 1118 movk(zr, 0); 1119 movk(zr, 0); 1120 } 1121 1122 // these are no-ops overridden by InterpreterMacroAssembler 1123 1124 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1125 1126 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1127 1128 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) { 1129 #ifdef ASSERT 1130 { 1131 Label done_check; 1132 test_klass_is_inline_type(inline_klass, temp_reg, done_check); 1133 stop("get_default_value_oop from non inline type klass"); 1134 bind(done_check); 1135 } 1136 #endif 1137 Register offset = temp_reg; 1138 // Getting the offset of the pre-allocated default value 1139 ldr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()))); 1140 ldr(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset()))); 1141 1142 // Getting the mirror 1143 ldr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset()))); 1144 resolve_oop_handle(obj, inline_klass, temp_reg); 1145 1146 // Getting the pre-allocated default value from the mirror 1147 Address field(obj, offset); 1148 load_heap_oop(obj, field, temp_reg, rscratch2); 1149 } 1150 1151 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) { 1152 #ifdef ASSERT 1153 { 1154 Label done_check; 1155 test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check); 1156 stop("get_empty_value from non-empty inline klass"); 1157 bind(done_check); 1158 } 1159 #endif 1160 get_default_value_oop(inline_klass, temp_reg, obj); 1161 } 1162 1163 // Look up the method for a megamorphic invokeinterface call. 1164 // The target method is determined by <intf_klass, itable_index>. 1165 // The receiver klass is in recv_klass. 1166 // On success, the result will be in method_result, and execution falls through. 1167 // On failure, execution transfers to the given label. 1168 void MacroAssembler::lookup_interface_method(Register recv_klass, 1169 Register intf_klass, 1170 RegisterOrConstant itable_index, 1171 Register method_result, 1172 Register scan_temp, 1173 Label& L_no_such_interface, 1174 bool return_method) { 1175 assert_different_registers(recv_klass, intf_klass, scan_temp); 1176 assert_different_registers(method_result, intf_klass, scan_temp); 1177 assert(recv_klass != method_result || !return_method, 1178 "recv_klass can be destroyed when method isn't needed"); 1179 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1180 "caller must use same register for non-constant itable index as for method"); 1181 1182 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1183 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1184 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 1185 int scan_step = itableOffsetEntry::size() * wordSize; 1186 int vte_size = vtableEntry::size_in_bytes(); 1187 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1188 1189 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1190 1191 // %%% Could store the aligned, prescaled offset in the klassoop. 1192 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1193 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1194 add(scan_temp, scan_temp, vtable_base); 1195 1196 if (return_method) { 1197 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1198 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1199 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1200 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1201 if (itentry_off) 1202 add(recv_klass, recv_klass, itentry_off); 1203 } 1204 1205 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 1206 // if (scan->interface() == intf) { 1207 // result = (klass + scan->offset() + itable_index); 1208 // } 1209 // } 1210 Label search, found_method; 1211 1212 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1213 cmp(intf_klass, method_result); 1214 br(Assembler::EQ, found_method); 1215 bind(search); 1216 // Check that the previous entry is non-null. A null entry means that 1217 // the receiver class doesn't implement the interface, and wasn't the 1218 // same as when the caller was compiled. 1219 cbz(method_result, L_no_such_interface); 1220 if (itableOffsetEntry::interface_offset_in_bytes() != 0) { 1221 add(scan_temp, scan_temp, scan_step); 1222 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1223 } else { 1224 ldr(method_result, Address(pre(scan_temp, scan_step))); 1225 } 1226 cmp(intf_klass, method_result); 1227 br(Assembler::NE, search); 1228 1229 bind(found_method); 1230 1231 // Got a hit. 1232 if (return_method) { 1233 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1234 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1235 } 1236 } 1237 1238 // virtual method calling 1239 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1240 RegisterOrConstant vtable_index, 1241 Register method_result) { 1242 const int base = in_bytes(Klass::vtable_start_offset()); 1243 assert(vtableEntry::size() * wordSize == 8, 1244 "adjust the scaling in the code below"); 1245 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1246 1247 if (vtable_index.is_register()) { 1248 lea(method_result, Address(recv_klass, 1249 vtable_index.as_register(), 1250 Address::lsl(LogBytesPerWord))); 1251 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1252 } else { 1253 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1254 ldr(method_result, 1255 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1256 } 1257 } 1258 1259 void MacroAssembler::check_klass_subtype(Register sub_klass, 1260 Register super_klass, 1261 Register temp_reg, 1262 Label& L_success) { 1263 Label L_failure; 1264 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1265 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1266 bind(L_failure); 1267 } 1268 1269 1270 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1271 Register super_klass, 1272 Register temp_reg, 1273 Label* L_success, 1274 Label* L_failure, 1275 Label* L_slow_path, 1276 RegisterOrConstant super_check_offset) { 1277 assert_different_registers(sub_klass, super_klass, temp_reg); 1278 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1279 if (super_check_offset.is_register()) { 1280 assert_different_registers(sub_klass, super_klass, 1281 super_check_offset.as_register()); 1282 } else if (must_load_sco) { 1283 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1284 } 1285 1286 Label L_fallthrough; 1287 int label_nulls = 0; 1288 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1289 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1290 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1291 assert(label_nulls <= 1, "at most one NULL in the batch"); 1292 1293 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1294 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1295 Address super_check_offset_addr(super_klass, sco_offset); 1296 1297 // Hacked jmp, which may only be used just before L_fallthrough. 1298 #define final_jmp(label) \ 1299 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1300 else b(label) /*omit semi*/ 1301 1302 // If the pointers are equal, we are done (e.g., String[] elements). 1303 // This self-check enables sharing of secondary supertype arrays among 1304 // non-primary types such as array-of-interface. Otherwise, each such 1305 // type would need its own customized SSA. 1306 // We move this check to the front of the fast path because many 1307 // type checks are in fact trivially successful in this manner, 1308 // so we get a nicely predicted branch right at the start of the check. 1309 cmp(sub_klass, super_klass); 1310 br(Assembler::EQ, *L_success); 1311 1312 // Check the supertype display: 1313 if (must_load_sco) { 1314 ldrw(temp_reg, super_check_offset_addr); 1315 super_check_offset = RegisterOrConstant(temp_reg); 1316 } 1317 Address super_check_addr(sub_klass, super_check_offset); 1318 ldr(rscratch1, super_check_addr); 1319 cmp(super_klass, rscratch1); // load displayed supertype 1320 1321 // This check has worked decisively for primary supers. 1322 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1323 // (Secondary supers are interfaces and very deeply nested subtypes.) 1324 // This works in the same check above because of a tricky aliasing 1325 // between the super_cache and the primary super display elements. 1326 // (The 'super_check_addr' can address either, as the case requires.) 1327 // Note that the cache is updated below if it does not help us find 1328 // what we need immediately. 1329 // So if it was a primary super, we can just fail immediately. 1330 // Otherwise, it's the slow path for us (no success at this point). 1331 1332 if (super_check_offset.is_register()) { 1333 br(Assembler::EQ, *L_success); 1334 subs(zr, super_check_offset.as_register(), sc_offset); 1335 if (L_failure == &L_fallthrough) { 1336 br(Assembler::EQ, *L_slow_path); 1337 } else { 1338 br(Assembler::NE, *L_failure); 1339 final_jmp(*L_slow_path); 1340 } 1341 } else if (super_check_offset.as_constant() == sc_offset) { 1342 // Need a slow path; fast failure is impossible. 1343 if (L_slow_path == &L_fallthrough) { 1344 br(Assembler::EQ, *L_success); 1345 } else { 1346 br(Assembler::NE, *L_slow_path); 1347 final_jmp(*L_success); 1348 } 1349 } else { 1350 // No slow path; it's a fast decision. 1351 if (L_failure == &L_fallthrough) { 1352 br(Assembler::EQ, *L_success); 1353 } else { 1354 br(Assembler::NE, *L_failure); 1355 final_jmp(*L_success); 1356 } 1357 } 1358 1359 bind(L_fallthrough); 1360 1361 #undef final_jmp 1362 } 1363 1364 // These two are taken from x86, but they look generally useful 1365 1366 // scans count pointer sized words at [addr] for occurrence of value, 1367 // generic 1368 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1369 Register scratch) { 1370 Label Lloop, Lexit; 1371 cbz(count, Lexit); 1372 bind(Lloop); 1373 ldr(scratch, post(addr, wordSize)); 1374 cmp(value, scratch); 1375 br(EQ, Lexit); 1376 sub(count, count, 1); 1377 cbnz(count, Lloop); 1378 bind(Lexit); 1379 } 1380 1381 // scans count 4 byte words at [addr] for occurrence of value, 1382 // generic 1383 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1384 Register scratch) { 1385 Label Lloop, Lexit; 1386 cbz(count, Lexit); 1387 bind(Lloop); 1388 ldrw(scratch, post(addr, wordSize)); 1389 cmpw(value, scratch); 1390 br(EQ, Lexit); 1391 sub(count, count, 1); 1392 cbnz(count, Lloop); 1393 bind(Lexit); 1394 } 1395 1396 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1397 Register super_klass, 1398 Register temp_reg, 1399 Register temp2_reg, 1400 Label* L_success, 1401 Label* L_failure, 1402 bool set_cond_codes) { 1403 assert_different_registers(sub_klass, super_klass, temp_reg); 1404 if (temp2_reg != noreg) 1405 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1406 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1407 1408 Label L_fallthrough; 1409 int label_nulls = 0; 1410 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1411 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1412 assert(label_nulls <= 1, "at most one NULL in the batch"); 1413 1414 // a couple of useful fields in sub_klass: 1415 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1416 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1417 Address secondary_supers_addr(sub_klass, ss_offset); 1418 Address super_cache_addr( sub_klass, sc_offset); 1419 1420 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1421 1422 // Do a linear scan of the secondary super-klass chain. 1423 // This code is rarely used, so simplicity is a virtue here. 1424 // The repne_scan instruction uses fixed registers, which we must spill. 1425 // Don't worry too much about pre-existing connections with the input regs. 1426 1427 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1428 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1429 1430 RegSet pushed_registers; 1431 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1432 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1433 1434 if (super_klass != r0) { 1435 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1436 } 1437 1438 push(pushed_registers, sp); 1439 1440 // Get super_klass value into r0 (even if it was in r5 or r2). 1441 if (super_klass != r0) { 1442 mov(r0, super_klass); 1443 } 1444 1445 #ifndef PRODUCT 1446 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1447 Address pst_counter_addr(rscratch2); 1448 ldr(rscratch1, pst_counter_addr); 1449 add(rscratch1, rscratch1, 1); 1450 str(rscratch1, pst_counter_addr); 1451 #endif //PRODUCT 1452 1453 // We will consult the secondary-super array. 1454 ldr(r5, secondary_supers_addr); 1455 // Load the array length. 1456 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1457 // Skip to start of data. 1458 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1459 1460 cmp(sp, zr); // Clear Z flag; SP is never zero 1461 // Scan R2 words at [R5] for an occurrence of R0. 1462 // Set NZ/Z based on last compare. 1463 repne_scan(r5, r0, r2, rscratch1); 1464 1465 // Unspill the temp. registers: 1466 pop(pushed_registers, sp); 1467 1468 br(Assembler::NE, *L_failure); 1469 1470 // Success. Cache the super we found and proceed in triumph. 1471 str(super_klass, super_cache_addr); 1472 1473 if (L_success != &L_fallthrough) { 1474 b(*L_success); 1475 } 1476 1477 #undef IS_A_TEMP 1478 1479 bind(L_fallthrough); 1480 } 1481 1482 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1483 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 1484 assert_different_registers(klass, rthread, scratch); 1485 1486 Label L_fallthrough, L_tmp; 1487 if (L_fast_path == NULL) { 1488 L_fast_path = &L_fallthrough; 1489 } else if (L_slow_path == NULL) { 1490 L_slow_path = &L_fallthrough; 1491 } 1492 // Fast path check: class is fully initialized 1493 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1494 subs(zr, scratch, InstanceKlass::fully_initialized); 1495 br(Assembler::EQ, *L_fast_path); 1496 1497 // Fast path check: current thread is initializer thread 1498 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1499 cmp(rthread, scratch); 1500 1501 if (L_slow_path == &L_fallthrough) { 1502 br(Assembler::EQ, *L_fast_path); 1503 bind(*L_slow_path); 1504 } else if (L_fast_path == &L_fallthrough) { 1505 br(Assembler::NE, *L_slow_path); 1506 bind(*L_fast_path); 1507 } else { 1508 Unimplemented(); 1509 } 1510 } 1511 1512 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 1513 if (!VerifyOops || VerifyAdapterSharing) { 1514 // Below address of the code string confuses VerifyAdapterSharing 1515 // because it may differ between otherwise equivalent adapters. 1516 return; 1517 } 1518 1519 // Pass register number to verify_oop_subroutine 1520 const char* b = NULL; 1521 { 1522 ResourceMark rm; 1523 stringStream ss; 1524 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 1525 b = code_string(ss.as_string()); 1526 } 1527 BLOCK_COMMENT("verify_oop {"); 1528 1529 strip_return_address(); // This might happen within a stack frame. 1530 protect_return_address(); 1531 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1532 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1533 1534 mov(r0, reg); 1535 movptr(rscratch1, (uintptr_t)(address)b); 1536 1537 // call indirectly to solve generation ordering problem 1538 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1539 ldr(rscratch2, Address(rscratch2)); 1540 blr(rscratch2); 1541 1542 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1543 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1544 authenticate_return_address(); 1545 1546 BLOCK_COMMENT("} verify_oop"); 1547 } 1548 1549 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 1550 if (!VerifyOops || VerifyAdapterSharing) { 1551 // Below address of the code string confuses VerifyAdapterSharing 1552 // because it may differ between otherwise equivalent adapters. 1553 return; 1554 } 1555 1556 const char* b = NULL; 1557 { 1558 ResourceMark rm; 1559 stringStream ss; 1560 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 1561 b = code_string(ss.as_string()); 1562 } 1563 BLOCK_COMMENT("verify_oop_addr {"); 1564 1565 strip_return_address(); // This might happen within a stack frame. 1566 protect_return_address(); 1567 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1568 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1569 1570 // addr may contain sp so we will have to adjust it based on the 1571 // pushes that we just did. 1572 if (addr.uses(sp)) { 1573 lea(r0, addr); 1574 ldr(r0, Address(r0, 4 * wordSize)); 1575 } else { 1576 ldr(r0, addr); 1577 } 1578 movptr(rscratch1, (uintptr_t)(address)b); 1579 1580 // call indirectly to solve generation ordering problem 1581 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1582 ldr(rscratch2, Address(rscratch2)); 1583 blr(rscratch2); 1584 1585 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1586 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1587 authenticate_return_address(); 1588 1589 BLOCK_COMMENT("} verify_oop_addr"); 1590 } 1591 1592 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1593 int extra_slot_offset) { 1594 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1595 int stackElementSize = Interpreter::stackElementSize; 1596 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1597 #ifdef ASSERT 1598 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1599 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1600 #endif 1601 if (arg_slot.is_constant()) { 1602 return Address(esp, arg_slot.as_constant() * stackElementSize 1603 + offset); 1604 } else { 1605 add(rscratch1, esp, arg_slot.as_register(), 1606 ext::uxtx, exact_log2(stackElementSize)); 1607 return Address(rscratch1, offset); 1608 } 1609 } 1610 1611 void MacroAssembler::call_VM_leaf_base(address entry_point, 1612 int number_of_arguments, 1613 Label *retaddr) { 1614 Label E, L; 1615 1616 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1617 1618 mov(rscratch1, entry_point); 1619 blr(rscratch1); 1620 if (retaddr) 1621 bind(*retaddr); 1622 1623 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1624 } 1625 1626 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1627 call_VM_leaf_base(entry_point, number_of_arguments); 1628 } 1629 1630 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1631 pass_arg0(this, arg_0); 1632 call_VM_leaf_base(entry_point, 1); 1633 } 1634 1635 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1636 assert_different_registers(arg_1, c_rarg0); 1637 pass_arg0(this, arg_0); 1638 pass_arg1(this, arg_1); 1639 call_VM_leaf_base(entry_point, 2); 1640 } 1641 1642 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1643 Register arg_1, Register arg_2) { 1644 assert_different_registers(arg_1, c_rarg0); 1645 assert_different_registers(arg_2, c_rarg0, c_rarg1); 1646 pass_arg0(this, arg_0); 1647 pass_arg1(this, arg_1); 1648 pass_arg2(this, arg_2); 1649 call_VM_leaf_base(entry_point, 3); 1650 } 1651 1652 void MacroAssembler::super_call_VM_leaf(address entry_point) { 1653 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1654 } 1655 1656 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1657 pass_arg0(this, arg_0); 1658 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1659 } 1660 1661 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1662 1663 assert(arg_0 != c_rarg1, "smashed arg"); 1664 pass_arg1(this, arg_1); 1665 pass_arg0(this, arg_0); 1666 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1667 } 1668 1669 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1670 assert(arg_0 != c_rarg2, "smashed arg"); 1671 assert(arg_1 != c_rarg2, "smashed arg"); 1672 pass_arg2(this, arg_2); 1673 assert(arg_0 != c_rarg1, "smashed arg"); 1674 pass_arg1(this, arg_1); 1675 pass_arg0(this, arg_0); 1676 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1677 } 1678 1679 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1680 assert(arg_0 != c_rarg3, "smashed arg"); 1681 assert(arg_1 != c_rarg3, "smashed arg"); 1682 assert(arg_2 != c_rarg3, "smashed arg"); 1683 pass_arg3(this, arg_3); 1684 assert(arg_0 != c_rarg2, "smashed arg"); 1685 assert(arg_1 != c_rarg2, "smashed arg"); 1686 pass_arg2(this, arg_2); 1687 assert(arg_0 != c_rarg1, "smashed arg"); 1688 pass_arg1(this, arg_1); 1689 pass_arg0(this, arg_0); 1690 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1691 } 1692 1693 void MacroAssembler::null_check(Register reg, int offset) { 1694 if (needs_explicit_null_check(offset)) { 1695 // provoke OS NULL exception if reg = NULL by 1696 // accessing M[reg] w/o changing any registers 1697 // NOTE: this is plenty to provoke a segv 1698 ldr(zr, Address(reg)); 1699 } else { 1700 // nothing to do, (later) access of M[reg + offset] 1701 // will provoke OS NULL exception if reg = NULL 1702 } 1703 } 1704 1705 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 1706 assert_different_registers(markword, rscratch2); 1707 andr(markword, markword, markWord::inline_type_mask_in_place); 1708 mov(rscratch2, markWord::inline_type_pattern); 1709 cmp(markword, rscratch2); 1710 br(Assembler::EQ, is_inline_type); 1711 } 1712 1713 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) { 1714 ldrw(temp_reg, Address(klass, Klass::access_flags_offset())); 1715 andr(temp_reg, temp_reg, JVM_ACC_VALUE); 1716 cbnz(temp_reg, is_inline_type); 1717 } 1718 1719 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) { 1720 assert_different_registers(tmp, rscratch1); 1721 cbz(object, not_inline_type); 1722 const int is_inline_type_mask = markWord::inline_type_pattern; 1723 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 1724 mov(rscratch1, is_inline_type_mask); 1725 andr(tmp, tmp, rscratch1); 1726 cmp(tmp, rscratch1); 1727 br(Assembler::NE, not_inline_type); 1728 } 1729 1730 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) { 1731 #ifdef ASSERT 1732 { 1733 Label done_check; 1734 test_klass_is_inline_type(klass, temp_reg, done_check); 1735 stop("test_klass_is_empty_inline_type with non inline type klass"); 1736 bind(done_check); 1737 } 1738 #endif 1739 ldrw(temp_reg, Address(klass, InstanceKlass::misc_flags_offset())); 1740 andr(temp_reg, temp_reg, InstanceKlassFlags::is_empty_inline_type_value()); 1741 cbnz(temp_reg, is_empty_inline_type); 1742 } 1743 1744 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 1745 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 1746 tbnz(flags, ConstantPoolCacheEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 1747 } 1748 1749 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 1750 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 1751 tbz(flags, ConstantPoolCacheEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 1752 } 1753 1754 void MacroAssembler::test_field_is_inlined(Register flags, Register temp_reg, Label& is_flattened) { 1755 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 1756 tbnz(flags, ConstantPoolCacheEntry::is_inlined_shift, is_flattened); 1757 } 1758 1759 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 1760 Label test_mark_word; 1761 // load mark word 1762 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 1763 // check displaced 1764 tst(temp_reg, markWord::unlocked_value); 1765 br(Assembler::NE, test_mark_word); 1766 // slow path use klass prototype 1767 load_prototype_header(temp_reg, oop); 1768 1769 bind(test_mark_word); 1770 andr(temp_reg, temp_reg, test_bit); 1771 if (jmp_set) { 1772 cbnz(temp_reg, jmp_label); 1773 } else { 1774 cbz(temp_reg, jmp_label); 1775 } 1776 } 1777 1778 void MacroAssembler::test_flattened_array_oop(Register oop, Register temp_reg, Label& is_flattened_array) { 1779 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flattened_array); 1780 } 1781 1782 void MacroAssembler::test_non_flattened_array_oop(Register oop, Register temp_reg, 1783 Label&is_non_flattened_array) { 1784 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flattened_array); 1785 } 1786 1787 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 1788 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 1789 } 1790 1791 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 1792 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 1793 } 1794 1795 void MacroAssembler::test_flattened_array_layout(Register lh, Label& is_flattened_array) { 1796 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 1797 br(Assembler::NE, is_flattened_array); 1798 } 1799 1800 void MacroAssembler::test_non_flattened_array_layout(Register lh, Label& is_non_flattened_array) { 1801 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 1802 br(Assembler::EQ, is_non_flattened_array); 1803 } 1804 1805 void MacroAssembler::test_null_free_array_layout(Register lh, Label& is_null_free_array) { 1806 tst(lh, Klass::_lh_null_free_array_bit_inplace); 1807 br(Assembler::NE, is_null_free_array); 1808 } 1809 1810 void MacroAssembler::test_non_null_free_array_layout(Register lh, Label& is_non_null_free_array) { 1811 tst(lh, Klass::_lh_null_free_array_bit_inplace); 1812 br(Assembler::EQ, is_non_null_free_array); 1813 } 1814 1815 // MacroAssembler protected routines needed to implement 1816 // public methods 1817 1818 void MacroAssembler::mov(Register r, Address dest) { 1819 code_section()->relocate(pc(), dest.rspec()); 1820 uint64_t imm64 = (uint64_t)dest.target(); 1821 movptr(r, imm64); 1822 } 1823 1824 // Move a constant pointer into r. In AArch64 mode the virtual 1825 // address space is 48 bits in size, so we only need three 1826 // instructions to create a patchable instruction sequence that can 1827 // reach anywhere. 1828 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1829 #ifndef PRODUCT 1830 { 1831 char buffer[64]; 1832 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1833 block_comment(buffer); 1834 } 1835 #endif 1836 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1837 movz(r, imm64 & 0xffff); 1838 imm64 >>= 16; 1839 movk(r, imm64 & 0xffff, 16); 1840 imm64 >>= 16; 1841 movk(r, imm64 & 0xffff, 32); 1842 } 1843 1844 // Macro to mov replicated immediate to vector register. 1845 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1846 // the upper 56/48/32 bits must be zeros for B/H/S type. 1847 // Vd will get the following values for different arrangements in T 1848 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1849 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1850 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1851 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1852 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1853 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1854 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1855 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1856 // Clobbers rscratch1 1857 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1858 assert(T != T1Q, "unsupported"); 1859 if (T == T1D || T == T2D) { 1860 int imm = operand_valid_for_movi_immediate(imm64, T); 1861 if (-1 != imm) { 1862 movi(Vd, T, imm); 1863 } else { 1864 mov(rscratch1, imm64); 1865 dup(Vd, T, rscratch1); 1866 } 1867 return; 1868 } 1869 1870 #ifdef ASSERT 1871 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1872 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1873 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1874 #endif 1875 int shift = operand_valid_for_movi_immediate(imm64, T); 1876 uint32_t imm32 = imm64 & 0xffffffffULL; 1877 if (shift >= 0) { 1878 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1879 } else { 1880 movw(rscratch1, imm32); 1881 dup(Vd, T, rscratch1); 1882 } 1883 } 1884 1885 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1886 { 1887 #ifndef PRODUCT 1888 { 1889 char buffer[64]; 1890 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1891 block_comment(buffer); 1892 } 1893 #endif 1894 if (operand_valid_for_logical_immediate(false, imm64)) { 1895 orr(dst, zr, imm64); 1896 } else { 1897 // we can use a combination of MOVZ or MOVN with 1898 // MOVK to build up the constant 1899 uint64_t imm_h[4]; 1900 int zero_count = 0; 1901 int neg_count = 0; 1902 int i; 1903 for (i = 0; i < 4; i++) { 1904 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1905 if (imm_h[i] == 0) { 1906 zero_count++; 1907 } else if (imm_h[i] == 0xffffL) { 1908 neg_count++; 1909 } 1910 } 1911 if (zero_count == 4) { 1912 // one MOVZ will do 1913 movz(dst, 0); 1914 } else if (neg_count == 4) { 1915 // one MOVN will do 1916 movn(dst, 0); 1917 } else if (zero_count == 3) { 1918 for (i = 0; i < 4; i++) { 1919 if (imm_h[i] != 0L) { 1920 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1921 break; 1922 } 1923 } 1924 } else if (neg_count == 3) { 1925 // one MOVN will do 1926 for (int i = 0; i < 4; i++) { 1927 if (imm_h[i] != 0xffffL) { 1928 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1929 break; 1930 } 1931 } 1932 } else if (zero_count == 2) { 1933 // one MOVZ and one MOVK will do 1934 for (i = 0; i < 3; i++) { 1935 if (imm_h[i] != 0L) { 1936 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1937 i++; 1938 break; 1939 } 1940 } 1941 for (;i < 4; i++) { 1942 if (imm_h[i] != 0L) { 1943 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1944 } 1945 } 1946 } else if (neg_count == 2) { 1947 // one MOVN and one MOVK will do 1948 for (i = 0; i < 4; i++) { 1949 if (imm_h[i] != 0xffffL) { 1950 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1951 i++; 1952 break; 1953 } 1954 } 1955 for (;i < 4; i++) { 1956 if (imm_h[i] != 0xffffL) { 1957 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1958 } 1959 } 1960 } else if (zero_count == 1) { 1961 // one MOVZ and two MOVKs will do 1962 for (i = 0; i < 4; i++) { 1963 if (imm_h[i] != 0L) { 1964 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1965 i++; 1966 break; 1967 } 1968 } 1969 for (;i < 4; i++) { 1970 if (imm_h[i] != 0x0L) { 1971 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1972 } 1973 } 1974 } else if (neg_count == 1) { 1975 // one MOVN and two MOVKs will do 1976 for (i = 0; i < 4; i++) { 1977 if (imm_h[i] != 0xffffL) { 1978 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1979 i++; 1980 break; 1981 } 1982 } 1983 for (;i < 4; i++) { 1984 if (imm_h[i] != 0xffffL) { 1985 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1986 } 1987 } 1988 } else { 1989 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1990 movz(dst, (uint32_t)imm_h[0], 0); 1991 for (i = 1; i < 4; i++) { 1992 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1993 } 1994 } 1995 } 1996 } 1997 1998 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1999 { 2000 #ifndef PRODUCT 2001 { 2002 char buffer[64]; 2003 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2004 block_comment(buffer); 2005 } 2006 #endif 2007 if (operand_valid_for_logical_immediate(true, imm32)) { 2008 orrw(dst, zr, imm32); 2009 } else { 2010 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2011 // constant 2012 uint32_t imm_h[2]; 2013 imm_h[0] = imm32 & 0xffff; 2014 imm_h[1] = ((imm32 >> 16) & 0xffff); 2015 if (imm_h[0] == 0) { 2016 movzw(dst, imm_h[1], 16); 2017 } else if (imm_h[0] == 0xffff) { 2018 movnw(dst, imm_h[1] ^ 0xffff, 16); 2019 } else if (imm_h[1] == 0) { 2020 movzw(dst, imm_h[0], 0); 2021 } else if (imm_h[1] == 0xffff) { 2022 movnw(dst, imm_h[0] ^ 0xffff, 0); 2023 } else { 2024 // use a MOVZ and MOVK (makes it easier to debug) 2025 movzw(dst, imm_h[0], 0); 2026 movkw(dst, imm_h[1], 16); 2027 } 2028 } 2029 } 2030 2031 // Form an address from base + offset in Rd. Rd may or may 2032 // not actually be used: you must use the Address that is returned. 2033 // It is up to you to ensure that the shift provided matches the size 2034 // of your data. 2035 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2036 if (Address::offset_ok_for_immed(byte_offset, shift)) 2037 // It fits; no need for any heroics 2038 return Address(base, byte_offset); 2039 2040 // Don't do anything clever with negative or misaligned offsets 2041 unsigned mask = (1 << shift) - 1; 2042 if (byte_offset < 0 || byte_offset & mask) { 2043 mov(Rd, byte_offset); 2044 add(Rd, base, Rd); 2045 return Address(Rd); 2046 } 2047 2048 // See if we can do this with two 12-bit offsets 2049 { 2050 uint64_t word_offset = byte_offset >> shift; 2051 uint64_t masked_offset = word_offset & 0xfff000; 2052 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2053 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2054 add(Rd, base, masked_offset << shift); 2055 word_offset -= masked_offset; 2056 return Address(Rd, word_offset << shift); 2057 } 2058 } 2059 2060 // Do it the hard way 2061 mov(Rd, byte_offset); 2062 add(Rd, base, Rd); 2063 return Address(Rd); 2064 } 2065 2066 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2067 bool want_remainder, Register scratch) 2068 { 2069 // Full implementation of Java idiv and irem. The function 2070 // returns the (pc) offset of the div instruction - may be needed 2071 // for implicit exceptions. 2072 // 2073 // constraint : ra/rb =/= scratch 2074 // normal case 2075 // 2076 // input : ra: dividend 2077 // rb: divisor 2078 // 2079 // result: either 2080 // quotient (= ra idiv rb) 2081 // remainder (= ra irem rb) 2082 2083 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2084 2085 int idivl_offset = offset(); 2086 if (! want_remainder) { 2087 sdivw(result, ra, rb); 2088 } else { 2089 sdivw(scratch, ra, rb); 2090 Assembler::msubw(result, scratch, rb, ra); 2091 } 2092 2093 return idivl_offset; 2094 } 2095 2096 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2097 bool want_remainder, Register scratch) 2098 { 2099 // Full implementation of Java ldiv and lrem. The function 2100 // returns the (pc) offset of the div instruction - may be needed 2101 // for implicit exceptions. 2102 // 2103 // constraint : ra/rb =/= scratch 2104 // normal case 2105 // 2106 // input : ra: dividend 2107 // rb: divisor 2108 // 2109 // result: either 2110 // quotient (= ra idiv rb) 2111 // remainder (= ra irem rb) 2112 2113 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2114 2115 int idivq_offset = offset(); 2116 if (! want_remainder) { 2117 sdiv(result, ra, rb); 2118 } else { 2119 sdiv(scratch, ra, rb); 2120 Assembler::msub(result, scratch, rb, ra); 2121 } 2122 2123 return idivq_offset; 2124 } 2125 2126 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2127 address prev = pc() - NativeMembar::instruction_size; 2128 address last = code()->last_insn(); 2129 if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { 2130 NativeMembar *bar = NativeMembar_at(prev); 2131 // We are merging two memory barrier instructions. On AArch64 we 2132 // can do this simply by ORing them together. 2133 bar->set_kind(bar->get_kind() | order_constraint); 2134 BLOCK_COMMENT("merged membar"); 2135 } else { 2136 code()->set_last_insn(pc()); 2137 dmb(Assembler::barrier(order_constraint)); 2138 } 2139 } 2140 2141 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2142 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2143 merge_ldst(rt, adr, size_in_bytes, is_store); 2144 code()->clear_last_insn(); 2145 return true; 2146 } else { 2147 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2148 const uint64_t mask = size_in_bytes - 1; 2149 if (adr.getMode() == Address::base_plus_offset && 2150 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2151 code()->set_last_insn(pc()); 2152 } 2153 return false; 2154 } 2155 } 2156 2157 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2158 // We always try to merge two adjacent loads into one ldp. 2159 if (!try_merge_ldst(Rx, adr, 8, false)) { 2160 Assembler::ldr(Rx, adr); 2161 } 2162 } 2163 2164 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2165 // We always try to merge two adjacent loads into one ldp. 2166 if (!try_merge_ldst(Rw, adr, 4, false)) { 2167 Assembler::ldrw(Rw, adr); 2168 } 2169 } 2170 2171 void MacroAssembler::str(Register Rx, const Address &adr) { 2172 // We always try to merge two adjacent stores into one stp. 2173 if (!try_merge_ldst(Rx, adr, 8, true)) { 2174 Assembler::str(Rx, adr); 2175 } 2176 } 2177 2178 void MacroAssembler::strw(Register Rw, const Address &adr) { 2179 // We always try to merge two adjacent stores into one stp. 2180 if (!try_merge_ldst(Rw, adr, 4, true)) { 2181 Assembler::strw(Rw, adr); 2182 } 2183 } 2184 2185 // MacroAssembler routines found actually to be needed 2186 2187 void MacroAssembler::push(Register src) 2188 { 2189 str(src, Address(pre(esp, -1 * wordSize))); 2190 } 2191 2192 void MacroAssembler::pop(Register dst) 2193 { 2194 ldr(dst, Address(post(esp, 1 * wordSize))); 2195 } 2196 2197 // Note: load_unsigned_short used to be called load_unsigned_word. 2198 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2199 int off = offset(); 2200 ldrh(dst, src); 2201 return off; 2202 } 2203 2204 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2205 int off = offset(); 2206 ldrb(dst, src); 2207 return off; 2208 } 2209 2210 int MacroAssembler::load_signed_short(Register dst, Address src) { 2211 int off = offset(); 2212 ldrsh(dst, src); 2213 return off; 2214 } 2215 2216 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2217 int off = offset(); 2218 ldrsb(dst, src); 2219 return off; 2220 } 2221 2222 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2223 int off = offset(); 2224 ldrshw(dst, src); 2225 return off; 2226 } 2227 2228 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2229 int off = offset(); 2230 ldrsbw(dst, src); 2231 return off; 2232 } 2233 2234 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2235 switch (size_in_bytes) { 2236 case 8: ldr(dst, src); break; 2237 case 4: ldrw(dst, src); break; 2238 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2239 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2240 default: ShouldNotReachHere(); 2241 } 2242 } 2243 2244 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2245 switch (size_in_bytes) { 2246 case 8: str(src, dst); break; 2247 case 4: strw(src, dst); break; 2248 case 2: strh(src, dst); break; 2249 case 1: strb(src, dst); break; 2250 default: ShouldNotReachHere(); 2251 } 2252 } 2253 2254 void MacroAssembler::decrementw(Register reg, int value) 2255 { 2256 if (value < 0) { incrementw(reg, -value); return; } 2257 if (value == 0) { return; } 2258 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2259 /* else */ { 2260 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2261 movw(rscratch2, (unsigned)value); 2262 subw(reg, reg, rscratch2); 2263 } 2264 } 2265 2266 void MacroAssembler::decrement(Register reg, int value) 2267 { 2268 if (value < 0) { increment(reg, -value); return; } 2269 if (value == 0) { return; } 2270 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2271 /* else */ { 2272 assert(reg != rscratch2, "invalid dst for register decrement"); 2273 mov(rscratch2, (uint64_t)value); 2274 sub(reg, reg, rscratch2); 2275 } 2276 } 2277 2278 void MacroAssembler::decrementw(Address dst, int value) 2279 { 2280 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2281 if (dst.getMode() == Address::literal) { 2282 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2283 lea(rscratch2, dst); 2284 dst = Address(rscratch2); 2285 } 2286 ldrw(rscratch1, dst); 2287 decrementw(rscratch1, value); 2288 strw(rscratch1, dst); 2289 } 2290 2291 void MacroAssembler::decrement(Address dst, int value) 2292 { 2293 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2294 if (dst.getMode() == Address::literal) { 2295 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2296 lea(rscratch2, dst); 2297 dst = Address(rscratch2); 2298 } 2299 ldr(rscratch1, dst); 2300 decrement(rscratch1, value); 2301 str(rscratch1, dst); 2302 } 2303 2304 void MacroAssembler::incrementw(Register reg, int value) 2305 { 2306 if (value < 0) { decrementw(reg, -value); return; } 2307 if (value == 0) { return; } 2308 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2309 /* else */ { 2310 assert(reg != rscratch2, "invalid dst for register increment"); 2311 movw(rscratch2, (unsigned)value); 2312 addw(reg, reg, rscratch2); 2313 } 2314 } 2315 2316 void MacroAssembler::increment(Register reg, int value) 2317 { 2318 if (value < 0) { decrement(reg, -value); return; } 2319 if (value == 0) { return; } 2320 if (value < (1 << 12)) { add(reg, reg, value); return; } 2321 /* else */ { 2322 assert(reg != rscratch2, "invalid dst for register increment"); 2323 movw(rscratch2, (unsigned)value); 2324 add(reg, reg, rscratch2); 2325 } 2326 } 2327 2328 void MacroAssembler::incrementw(Address dst, int value) 2329 { 2330 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2331 if (dst.getMode() == Address::literal) { 2332 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2333 lea(rscratch2, dst); 2334 dst = Address(rscratch2); 2335 } 2336 ldrw(rscratch1, dst); 2337 incrementw(rscratch1, value); 2338 strw(rscratch1, dst); 2339 } 2340 2341 void MacroAssembler::increment(Address dst, int value) 2342 { 2343 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2344 if (dst.getMode() == Address::literal) { 2345 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2346 lea(rscratch2, dst); 2347 dst = Address(rscratch2); 2348 } 2349 ldr(rscratch1, dst); 2350 increment(rscratch1, value); 2351 str(rscratch1, dst); 2352 } 2353 2354 // Push lots of registers in the bit set supplied. Don't push sp. 2355 // Return the number of words pushed 2356 int MacroAssembler::push(unsigned int bitset, Register stack) { 2357 int words_pushed = 0; 2358 2359 // Scan bitset to accumulate register pairs 2360 unsigned char regs[32]; 2361 int count = 0; 2362 for (int reg = 0; reg <= 30; reg++) { 2363 if (1 & bitset) 2364 regs[count++] = reg; 2365 bitset >>= 1; 2366 } 2367 regs[count++] = zr->raw_encoding(); 2368 count &= ~1; // Only push an even number of regs 2369 2370 if (count) { 2371 stp(as_Register(regs[0]), as_Register(regs[1]), 2372 Address(pre(stack, -count * wordSize))); 2373 words_pushed += 2; 2374 } 2375 for (int i = 2; i < count; i += 2) { 2376 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2377 Address(stack, i * wordSize)); 2378 words_pushed += 2; 2379 } 2380 2381 assert(words_pushed == count, "oops, pushed != count"); 2382 2383 return count; 2384 } 2385 2386 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2387 int words_pushed = 0; 2388 2389 // Scan bitset to accumulate register pairs 2390 unsigned char regs[32]; 2391 int count = 0; 2392 for (int reg = 0; reg <= 30; reg++) { 2393 if (1 & bitset) 2394 regs[count++] = reg; 2395 bitset >>= 1; 2396 } 2397 regs[count++] = zr->raw_encoding(); 2398 count &= ~1; 2399 2400 for (int i = 2; i < count; i += 2) { 2401 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2402 Address(stack, i * wordSize)); 2403 words_pushed += 2; 2404 } 2405 if (count) { 2406 ldp(as_Register(regs[0]), as_Register(regs[1]), 2407 Address(post(stack, count * wordSize))); 2408 words_pushed += 2; 2409 } 2410 2411 assert(words_pushed == count, "oops, pushed != count"); 2412 2413 return count; 2414 } 2415 2416 // Push lots of registers in the bit set supplied. Don't push sp. 2417 // Return the number of dwords pushed 2418 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2419 int words_pushed = 0; 2420 bool use_sve = false; 2421 int sve_vector_size_in_bytes = 0; 2422 2423 #ifdef COMPILER2 2424 use_sve = Matcher::supports_scalable_vector(); 2425 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2426 #endif 2427 2428 // Scan bitset to accumulate register pairs 2429 unsigned char regs[32]; 2430 int count = 0; 2431 for (int reg = 0; reg <= 31; reg++) { 2432 if (1 & bitset) 2433 regs[count++] = reg; 2434 bitset >>= 1; 2435 } 2436 2437 if (count == 0) { 2438 return 0; 2439 } 2440 2441 // SVE 2442 if (use_sve && sve_vector_size_in_bytes > 16) { 2443 sub(stack, stack, sve_vector_size_in_bytes * count); 2444 for (int i = 0; i < count; i++) { 2445 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2446 } 2447 return count * sve_vector_size_in_bytes / 8; 2448 } 2449 2450 // NEON 2451 if (count == 1) { 2452 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2453 return 2; 2454 } 2455 2456 bool odd = (count & 1) == 1; 2457 int push_slots = count + (odd ? 1 : 0); 2458 2459 // Always pushing full 128 bit registers. 2460 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2461 words_pushed += 2; 2462 2463 for (int i = 2; i + 1 < count; i += 2) { 2464 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2465 words_pushed += 2; 2466 } 2467 2468 if (odd) { 2469 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2470 words_pushed++; 2471 } 2472 2473 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2474 return count * 2; 2475 } 2476 2477 // Return the number of dwords popped 2478 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2479 int words_pushed = 0; 2480 bool use_sve = false; 2481 int sve_vector_size_in_bytes = 0; 2482 2483 #ifdef COMPILER2 2484 use_sve = Matcher::supports_scalable_vector(); 2485 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2486 #endif 2487 // Scan bitset to accumulate register pairs 2488 unsigned char regs[32]; 2489 int count = 0; 2490 for (int reg = 0; reg <= 31; reg++) { 2491 if (1 & bitset) 2492 regs[count++] = reg; 2493 bitset >>= 1; 2494 } 2495 2496 if (count == 0) { 2497 return 0; 2498 } 2499 2500 // SVE 2501 if (use_sve && sve_vector_size_in_bytes > 16) { 2502 for (int i = count - 1; i >= 0; i--) { 2503 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2504 } 2505 add(stack, stack, sve_vector_size_in_bytes * count); 2506 return count * sve_vector_size_in_bytes / 8; 2507 } 2508 2509 // NEON 2510 if (count == 1) { 2511 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2512 return 2; 2513 } 2514 2515 bool odd = (count & 1) == 1; 2516 int push_slots = count + (odd ? 1 : 0); 2517 2518 if (odd) { 2519 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2520 words_pushed++; 2521 } 2522 2523 for (int i = 2; i + 1 < count; i += 2) { 2524 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2525 words_pushed += 2; 2526 } 2527 2528 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2529 words_pushed += 2; 2530 2531 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2532 2533 return count * 2; 2534 } 2535 2536 // Return the number of dwords pushed 2537 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 2538 bool use_sve = false; 2539 int sve_predicate_size_in_slots = 0; 2540 2541 #ifdef COMPILER2 2542 use_sve = Matcher::supports_scalable_vector(); 2543 if (use_sve) { 2544 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2545 } 2546 #endif 2547 2548 if (!use_sve) { 2549 return 0; 2550 } 2551 2552 unsigned char regs[PRegister::number_of_registers]; 2553 int count = 0; 2554 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2555 if (1 & bitset) 2556 regs[count++] = reg; 2557 bitset >>= 1; 2558 } 2559 2560 if (count == 0) { 2561 return 0; 2562 } 2563 2564 int total_push_bytes = align_up(sve_predicate_size_in_slots * 2565 VMRegImpl::stack_slot_size * count, 16); 2566 sub(stack, stack, total_push_bytes); 2567 for (int i = 0; i < count; i++) { 2568 sve_str(as_PRegister(regs[i]), Address(stack, i)); 2569 } 2570 return total_push_bytes / 8; 2571 } 2572 2573 // Return the number of dwords popped 2574 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 2575 bool use_sve = false; 2576 int sve_predicate_size_in_slots = 0; 2577 2578 #ifdef COMPILER2 2579 use_sve = Matcher::supports_scalable_vector(); 2580 if (use_sve) { 2581 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2582 } 2583 #endif 2584 2585 if (!use_sve) { 2586 return 0; 2587 } 2588 2589 unsigned char regs[PRegister::number_of_registers]; 2590 int count = 0; 2591 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2592 if (1 & bitset) 2593 regs[count++] = reg; 2594 bitset >>= 1; 2595 } 2596 2597 if (count == 0) { 2598 return 0; 2599 } 2600 2601 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 2602 VMRegImpl::stack_slot_size * count, 16); 2603 for (int i = count - 1; i >= 0; i--) { 2604 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 2605 } 2606 add(stack, stack, total_pop_bytes); 2607 return total_pop_bytes / 8; 2608 } 2609 2610 #ifdef ASSERT 2611 void MacroAssembler::verify_heapbase(const char* msg) { 2612 #if 0 2613 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2614 assert (Universe::heap() != NULL, "java heap should be initialized"); 2615 if (!UseCompressedOops || Universe::ptr_base() == NULL) { 2616 // rheapbase is allocated as general register 2617 return; 2618 } 2619 if (CheckCompressedOops) { 2620 Label ok; 2621 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2622 cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2623 br(Assembler::EQ, ok); 2624 stop(msg); 2625 bind(ok); 2626 pop(1 << rscratch1->encoding(), sp); 2627 } 2628 #endif 2629 } 2630 #endif 2631 2632 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 2633 assert_different_registers(value, tmp1, tmp2); 2634 Label done, tagged, weak_tagged; 2635 2636 cbz(value, done); // Use NULL as-is. 2637 tst(value, JNIHandles::tag_mask); // Test for tag. 2638 br(Assembler::NE, tagged); 2639 2640 // Resolve local handle 2641 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 2642 verify_oop(value); 2643 b(done); 2644 2645 bind(tagged); 2646 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 2647 tbnz(value, 0, weak_tagged); // Test for weak tag. 2648 2649 // Resolve global handle 2650 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2651 verify_oop(value); 2652 b(done); 2653 2654 bind(weak_tagged); 2655 // Resolve jweak. 2656 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 2657 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 2658 verify_oop(value); 2659 2660 bind(done); 2661 } 2662 2663 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 2664 assert_different_registers(value, tmp1, tmp2); 2665 Label done; 2666 2667 cbz(value, done); // Use NULL as-is. 2668 2669 #ifdef ASSERT 2670 { 2671 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 2672 Label valid_global_tag; 2673 tbnz(value, 1, valid_global_tag); // Test for global tag 2674 stop("non global jobject using resolve_global_jobject"); 2675 bind(valid_global_tag); 2676 } 2677 #endif 2678 2679 // Resolve global handle 2680 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2681 verify_oop(value); 2682 2683 bind(done); 2684 } 2685 2686 void MacroAssembler::stop(const char* msg) { 2687 BLOCK_COMMENT(msg); 2688 dcps1(0xdeae); 2689 emit_int64((uintptr_t)msg); 2690 } 2691 2692 void MacroAssembler::unimplemented(const char* what) { 2693 const char* buf = NULL; 2694 { 2695 ResourceMark rm; 2696 stringStream ss; 2697 ss.print("unimplemented: %s", what); 2698 buf = code_string(ss.as_string()); 2699 } 2700 stop(buf); 2701 } 2702 2703 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 2704 #ifdef ASSERT 2705 Label OK; 2706 br(cc, OK); 2707 stop(msg); 2708 bind(OK); 2709 #endif 2710 } 2711 2712 // If a constant does not fit in an immediate field, generate some 2713 // number of MOV instructions and then perform the operation. 2714 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2715 add_sub_imm_insn insn1, 2716 add_sub_reg_insn insn2, 2717 bool is32) { 2718 assert(Rd != zr, "Rd = zr and not setting flags?"); 2719 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2720 if (fits) { 2721 (this->*insn1)(Rd, Rn, imm); 2722 } else { 2723 if (uabs(imm) < (1 << 24)) { 2724 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2725 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2726 } else { 2727 assert_different_registers(Rd, Rn); 2728 mov(Rd, imm); 2729 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2730 } 2731 } 2732 } 2733 2734 // Separate vsn which sets the flags. Optimisations are more restricted 2735 // because we must set the flags correctly. 2736 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2737 add_sub_imm_insn insn1, 2738 add_sub_reg_insn insn2, 2739 bool is32) { 2740 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2741 if (fits) { 2742 (this->*insn1)(Rd, Rn, imm); 2743 } else { 2744 assert_different_registers(Rd, Rn); 2745 assert(Rd != zr, "overflow in immediate operand"); 2746 mov(Rd, imm); 2747 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2748 } 2749 } 2750 2751 2752 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2753 if (increment.is_register()) { 2754 add(Rd, Rn, increment.as_register()); 2755 } else { 2756 add(Rd, Rn, increment.as_constant()); 2757 } 2758 } 2759 2760 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2761 if (increment.is_register()) { 2762 addw(Rd, Rn, increment.as_register()); 2763 } else { 2764 addw(Rd, Rn, increment.as_constant()); 2765 } 2766 } 2767 2768 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2769 if (decrement.is_register()) { 2770 sub(Rd, Rn, decrement.as_register()); 2771 } else { 2772 sub(Rd, Rn, decrement.as_constant()); 2773 } 2774 } 2775 2776 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2777 if (decrement.is_register()) { 2778 subw(Rd, Rn, decrement.as_register()); 2779 } else { 2780 subw(Rd, Rn, decrement.as_constant()); 2781 } 2782 } 2783 2784 void MacroAssembler::reinit_heapbase() 2785 { 2786 if (UseCompressedOops) { 2787 if (Universe::is_fully_initialized()) { 2788 mov(rheapbase, CompressedOops::ptrs_base()); 2789 } else { 2790 lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2791 ldr(rheapbase, Address(rheapbase)); 2792 } 2793 } 2794 } 2795 2796 // this simulates the behaviour of the x86 cmpxchg instruction using a 2797 // load linked/store conditional pair. we use the acquire/release 2798 // versions of these instructions so that we flush pending writes as 2799 // per Java semantics. 2800 2801 // n.b the x86 version assumes the old value to be compared against is 2802 // in rax and updates rax with the value located in memory if the 2803 // cmpxchg fails. we supply a register for the old value explicitly 2804 2805 // the aarch64 load linked/store conditional instructions do not 2806 // accept an offset. so, unlike x86, we must provide a plain register 2807 // to identify the memory word to be compared/exchanged rather than a 2808 // register+offset Address. 2809 2810 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2811 Label &succeed, Label *fail) { 2812 // oldv holds comparison value 2813 // newv holds value to write in exchange 2814 // addr identifies memory word to compare against/update 2815 if (UseLSE) { 2816 mov(tmp, oldv); 2817 casal(Assembler::xword, oldv, newv, addr); 2818 cmp(tmp, oldv); 2819 br(Assembler::EQ, succeed); 2820 membar(AnyAny); 2821 } else { 2822 Label retry_load, nope; 2823 prfm(Address(addr), PSTL1STRM); 2824 bind(retry_load); 2825 // flush and load exclusive from the memory location 2826 // and fail if it is not what we expect 2827 ldaxr(tmp, addr); 2828 cmp(tmp, oldv); 2829 br(Assembler::NE, nope); 2830 // if we store+flush with no intervening write tmp will be zero 2831 stlxr(tmp, newv, addr); 2832 cbzw(tmp, succeed); 2833 // retry so we only ever return after a load fails to compare 2834 // ensures we don't return a stale value after a failed write. 2835 b(retry_load); 2836 // if the memory word differs we return it in oldv and signal a fail 2837 bind(nope); 2838 membar(AnyAny); 2839 mov(oldv, tmp); 2840 } 2841 if (fail) 2842 b(*fail); 2843 } 2844 2845 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2846 Label &succeed, Label *fail) { 2847 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2848 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2849 } 2850 2851 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2852 Label &succeed, Label *fail) { 2853 // oldv holds comparison value 2854 // newv holds value to write in exchange 2855 // addr identifies memory word to compare against/update 2856 // tmp returns 0/1 for success/failure 2857 if (UseLSE) { 2858 mov(tmp, oldv); 2859 casal(Assembler::word, oldv, newv, addr); 2860 cmp(tmp, oldv); 2861 br(Assembler::EQ, succeed); 2862 membar(AnyAny); 2863 } else { 2864 Label retry_load, nope; 2865 prfm(Address(addr), PSTL1STRM); 2866 bind(retry_load); 2867 // flush and load exclusive from the memory location 2868 // and fail if it is not what we expect 2869 ldaxrw(tmp, addr); 2870 cmp(tmp, oldv); 2871 br(Assembler::NE, nope); 2872 // if we store+flush with no intervening write tmp will be zero 2873 stlxrw(tmp, newv, addr); 2874 cbzw(tmp, succeed); 2875 // retry so we only ever return after a load fails to compare 2876 // ensures we don't return a stale value after a failed write. 2877 b(retry_load); 2878 // if the memory word differs we return it in oldv and signal a fail 2879 bind(nope); 2880 membar(AnyAny); 2881 mov(oldv, tmp); 2882 } 2883 if (fail) 2884 b(*fail); 2885 } 2886 2887 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2888 // doesn't retry and may fail spuriously. If the oldval is wanted, 2889 // Pass a register for the result, otherwise pass noreg. 2890 2891 // Clobbers rscratch1 2892 void MacroAssembler::cmpxchg(Register addr, Register expected, 2893 Register new_val, 2894 enum operand_size size, 2895 bool acquire, bool release, 2896 bool weak, 2897 Register result) { 2898 if (result == noreg) result = rscratch1; 2899 BLOCK_COMMENT("cmpxchg {"); 2900 if (UseLSE) { 2901 mov(result, expected); 2902 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2903 compare_eq(result, expected, size); 2904 } else { 2905 Label retry_load, done; 2906 prfm(Address(addr), PSTL1STRM); 2907 bind(retry_load); 2908 load_exclusive(result, addr, size, acquire); 2909 compare_eq(result, expected, size); 2910 br(Assembler::NE, done); 2911 store_exclusive(rscratch1, new_val, addr, size, release); 2912 if (weak) { 2913 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2914 } else { 2915 cbnzw(rscratch1, retry_load); 2916 } 2917 bind(done); 2918 } 2919 BLOCK_COMMENT("} cmpxchg"); 2920 } 2921 2922 // A generic comparison. Only compares for equality, clobbers rscratch1. 2923 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2924 if (size == xword) { 2925 cmp(rm, rn); 2926 } else if (size == word) { 2927 cmpw(rm, rn); 2928 } else if (size == halfword) { 2929 eorw(rscratch1, rm, rn); 2930 ands(zr, rscratch1, 0xffff); 2931 } else if (size == byte) { 2932 eorw(rscratch1, rm, rn); 2933 ands(zr, rscratch1, 0xff); 2934 } else { 2935 ShouldNotReachHere(); 2936 } 2937 } 2938 2939 2940 static bool different(Register a, RegisterOrConstant b, Register c) { 2941 if (b.is_constant()) 2942 return a != c; 2943 else 2944 return a != b.as_register() && a != c && b.as_register() != c; 2945 } 2946 2947 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2948 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2949 if (UseLSE) { \ 2950 prev = prev->is_valid() ? prev : zr; \ 2951 if (incr.is_register()) { \ 2952 AOP(sz, incr.as_register(), prev, addr); \ 2953 } else { \ 2954 mov(rscratch2, incr.as_constant()); \ 2955 AOP(sz, rscratch2, prev, addr); \ 2956 } \ 2957 return; \ 2958 } \ 2959 Register result = rscratch2; \ 2960 if (prev->is_valid()) \ 2961 result = different(prev, incr, addr) ? prev : rscratch2; \ 2962 \ 2963 Label retry_load; \ 2964 prfm(Address(addr), PSTL1STRM); \ 2965 bind(retry_load); \ 2966 LDXR(result, addr); \ 2967 OP(rscratch1, result, incr); \ 2968 STXR(rscratch2, rscratch1, addr); \ 2969 cbnzw(rscratch2, retry_load); \ 2970 if (prev->is_valid() && prev != result) { \ 2971 IOP(prev, rscratch1, incr); \ 2972 } \ 2973 } 2974 2975 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2976 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2977 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2978 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2979 2980 #undef ATOMIC_OP 2981 2982 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2983 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2984 if (UseLSE) { \ 2985 prev = prev->is_valid() ? prev : zr; \ 2986 AOP(sz, newv, prev, addr); \ 2987 return; \ 2988 } \ 2989 Register result = rscratch2; \ 2990 if (prev->is_valid()) \ 2991 result = different(prev, newv, addr) ? prev : rscratch2; \ 2992 \ 2993 Label retry_load; \ 2994 prfm(Address(addr), PSTL1STRM); \ 2995 bind(retry_load); \ 2996 LDXR(result, addr); \ 2997 STXR(rscratch1, newv, addr); \ 2998 cbnzw(rscratch1, retry_load); \ 2999 if (prev->is_valid() && prev != result) \ 3000 mov(prev, result); \ 3001 } 3002 3003 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3004 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3005 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3006 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3007 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3008 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3009 3010 #undef ATOMIC_XCHG 3011 3012 #ifndef PRODUCT 3013 extern "C" void findpc(intptr_t x); 3014 #endif 3015 3016 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3017 { 3018 // In order to get locks to work, we need to fake a in_VM state 3019 if (ShowMessageBoxOnError ) { 3020 JavaThread* thread = JavaThread::current(); 3021 JavaThreadState saved_state = thread->thread_state(); 3022 thread->set_thread_state(_thread_in_vm); 3023 #ifndef PRODUCT 3024 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3025 ttyLocker ttyl; 3026 BytecodeCounter::print(); 3027 } 3028 #endif 3029 if (os::message_box(msg, "Execution stopped, print registers?")) { 3030 ttyLocker ttyl; 3031 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3032 #ifndef PRODUCT 3033 tty->cr(); 3034 findpc(pc); 3035 tty->cr(); 3036 #endif 3037 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3038 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3039 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3040 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3041 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3042 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3043 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3044 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3045 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3046 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3047 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3048 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3049 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3050 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3051 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3052 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3053 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3054 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3055 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3056 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3057 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3058 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3059 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3060 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3061 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3062 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3063 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3064 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3065 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3066 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3067 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3068 BREAKPOINT; 3069 } 3070 } 3071 fatal("DEBUG MESSAGE: %s", msg); 3072 } 3073 3074 RegSet MacroAssembler::call_clobbered_gp_registers() { 3075 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3076 #ifndef R18_RESERVED 3077 regs += r18_tls; 3078 #endif 3079 return regs; 3080 } 3081 3082 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3083 int step = 4 * wordSize; 3084 push(call_clobbered_gp_registers() - exclude, sp); 3085 sub(sp, sp, step); 3086 mov(rscratch1, -step); 3087 // Push v0-v7, v16-v31. 3088 for (int i = 31; i>= 4; i -= 4) { 3089 if (i <= v7->encoding() || i >= v16->encoding()) 3090 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3091 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3092 } 3093 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3094 as_FloatRegister(3), T1D, Address(sp)); 3095 } 3096 3097 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3098 for (int i = 0; i < 32; i += 4) { 3099 if (i <= v7->encoding() || i >= v16->encoding()) 3100 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3101 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3102 } 3103 3104 reinitialize_ptrue(); 3105 3106 pop(call_clobbered_gp_registers() - exclude, sp); 3107 } 3108 3109 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3110 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3111 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3112 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3113 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3114 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3115 sve_str(as_FloatRegister(i), Address(sp, i)); 3116 } 3117 } else { 3118 int step = (save_vectors ? 8 : 4) * wordSize; 3119 mov(rscratch1, -step); 3120 sub(sp, sp, step); 3121 for (int i = 28; i >= 4; i -= 4) { 3122 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3123 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3124 } 3125 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3126 } 3127 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3128 sub(sp, sp, total_predicate_in_bytes); 3129 for (int i = 0; i < PRegister::number_of_registers; i++) { 3130 sve_str(as_PRegister(i), Address(sp, i)); 3131 } 3132 } 3133 } 3134 3135 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3136 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3137 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3138 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3139 sve_ldr(as_PRegister(i), Address(sp, i)); 3140 } 3141 add(sp, sp, total_predicate_in_bytes); 3142 } 3143 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3144 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3145 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3146 } 3147 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3148 } else { 3149 int step = (restore_vectors ? 8 : 4) * wordSize; 3150 for (int i = 0; i <= 28; i += 4) 3151 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3152 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3153 } 3154 3155 // We may use predicate registers and rely on ptrue with SVE, 3156 // regardless of wide vector (> 8 bytes) used or not. 3157 if (use_sve) { 3158 reinitialize_ptrue(); 3159 } 3160 3161 // integer registers except lr & sp 3162 pop(RegSet::range(r0, r17), sp); 3163 #ifdef R18_RESERVED 3164 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3165 pop(RegSet::range(r20, r29), sp); 3166 #else 3167 pop(RegSet::range(r18_tls, r29), sp); 3168 #endif 3169 } 3170 3171 /** 3172 * Helpers for multiply_to_len(). 3173 */ 3174 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3175 Register src1, Register src2) { 3176 adds(dest_lo, dest_lo, src1); 3177 adc(dest_hi, dest_hi, zr); 3178 adds(dest_lo, dest_lo, src2); 3179 adc(final_dest_hi, dest_hi, zr); 3180 } 3181 3182 // Generate an address from (r + r1 extend offset). "size" is the 3183 // size of the operand. The result may be in rscratch2. 3184 Address MacroAssembler::offsetted_address(Register r, Register r1, 3185 Address::extend ext, int offset, int size) { 3186 if (offset || (ext.shift() % size != 0)) { 3187 lea(rscratch2, Address(r, r1, ext)); 3188 return Address(rscratch2, offset); 3189 } else { 3190 return Address(r, r1, ext); 3191 } 3192 } 3193 3194 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3195 { 3196 assert(offset >= 0, "spill to negative address?"); 3197 // Offset reachable ? 3198 // Not aligned - 9 bits signed offset 3199 // Aligned - 12 bits unsigned offset shifted 3200 Register base = sp; 3201 if ((offset & (size-1)) && offset >= (1<<8)) { 3202 add(tmp, base, offset & ((1<<12)-1)); 3203 base = tmp; 3204 offset &= -1u<<12; 3205 } 3206 3207 if (offset >= (1<<12) * size) { 3208 add(tmp, base, offset & (((1<<12)-1)<<12)); 3209 base = tmp; 3210 offset &= ~(((1<<12)-1)<<12); 3211 } 3212 3213 return Address(base, offset); 3214 } 3215 3216 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3217 assert(offset >= 0, "spill to negative address?"); 3218 3219 Register base = sp; 3220 3221 // An immediate offset in the range 0 to 255 which is multiplied 3222 // by the current vector or predicate register size in bytes. 3223 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3224 return Address(base, offset / sve_reg_size_in_bytes); 3225 } 3226 3227 add(tmp, base, offset); 3228 return Address(tmp); 3229 } 3230 3231 // Checks whether offset is aligned. 3232 // Returns true if it is, else false. 3233 bool MacroAssembler::merge_alignment_check(Register base, 3234 size_t size, 3235 int64_t cur_offset, 3236 int64_t prev_offset) const { 3237 if (AvoidUnalignedAccesses) { 3238 if (base == sp) { 3239 // Checks whether low offset if aligned to pair of registers. 3240 int64_t pair_mask = size * 2 - 1; 3241 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3242 return (offset & pair_mask) == 0; 3243 } else { // If base is not sp, we can't guarantee the access is aligned. 3244 return false; 3245 } 3246 } else { 3247 int64_t mask = size - 1; 3248 // Load/store pair instruction only supports element size aligned offset. 3249 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3250 } 3251 } 3252 3253 // Checks whether current and previous loads/stores can be merged. 3254 // Returns true if it can be merged, else false. 3255 bool MacroAssembler::ldst_can_merge(Register rt, 3256 const Address &adr, 3257 size_t cur_size_in_bytes, 3258 bool is_store) const { 3259 address prev = pc() - NativeInstruction::instruction_size; 3260 address last = code()->last_insn(); 3261 3262 if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3263 return false; 3264 } 3265 3266 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3267 return false; 3268 } 3269 3270 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3271 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3272 3273 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3274 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3275 3276 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3277 return false; 3278 } 3279 3280 int64_t max_offset = 63 * prev_size_in_bytes; 3281 int64_t min_offset = -64 * prev_size_in_bytes; 3282 3283 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3284 3285 // Only same base can be merged. 3286 if (adr.base() != prev_ldst->base()) { 3287 return false; 3288 } 3289 3290 int64_t cur_offset = adr.offset(); 3291 int64_t prev_offset = prev_ldst->offset(); 3292 size_t diff = abs(cur_offset - prev_offset); 3293 if (diff != prev_size_in_bytes) { 3294 return false; 3295 } 3296 3297 // Following cases can not be merged: 3298 // ldr x2, [x2, #8] 3299 // ldr x3, [x2, #16] 3300 // or: 3301 // ldr x2, [x3, #8] 3302 // ldr x2, [x3, #16] 3303 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3304 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3305 return false; 3306 } 3307 3308 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3309 // Offset range must be in ldp/stp instruction's range. 3310 if (low_offset > max_offset || low_offset < min_offset) { 3311 return false; 3312 } 3313 3314 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3315 return true; 3316 } 3317 3318 return false; 3319 } 3320 3321 // Merge current load/store with previous load/store into ldp/stp. 3322 void MacroAssembler::merge_ldst(Register rt, 3323 const Address &adr, 3324 size_t cur_size_in_bytes, 3325 bool is_store) { 3326 3327 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3328 3329 Register rt_low, rt_high; 3330 address prev = pc() - NativeInstruction::instruction_size; 3331 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3332 3333 int64_t offset; 3334 3335 if (adr.offset() < prev_ldst->offset()) { 3336 offset = adr.offset(); 3337 rt_low = rt; 3338 rt_high = prev_ldst->target(); 3339 } else { 3340 offset = prev_ldst->offset(); 3341 rt_low = prev_ldst->target(); 3342 rt_high = rt; 3343 } 3344 3345 Address adr_p = Address(prev_ldst->base(), offset); 3346 // Overwrite previous generated binary. 3347 code_section()->set_end(prev); 3348 3349 const size_t sz = prev_ldst->size_in_bytes(); 3350 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3351 if (!is_store) { 3352 BLOCK_COMMENT("merged ldr pair"); 3353 if (sz == 8) { 3354 ldp(rt_low, rt_high, adr_p); 3355 } else { 3356 ldpw(rt_low, rt_high, adr_p); 3357 } 3358 } else { 3359 BLOCK_COMMENT("merged str pair"); 3360 if (sz == 8) { 3361 stp(rt_low, rt_high, adr_p); 3362 } else { 3363 stpw(rt_low, rt_high, adr_p); 3364 } 3365 } 3366 } 3367 3368 /** 3369 * Multiply 64 bit by 64 bit first loop. 3370 */ 3371 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3372 Register y, Register y_idx, Register z, 3373 Register carry, Register product, 3374 Register idx, Register kdx) { 3375 // 3376 // jlong carry, x[], y[], z[]; 3377 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3378 // huge_128 product = y[idx] * x[xstart] + carry; 3379 // z[kdx] = (jlong)product; 3380 // carry = (jlong)(product >>> 64); 3381 // } 3382 // z[xstart] = carry; 3383 // 3384 3385 Label L_first_loop, L_first_loop_exit; 3386 Label L_one_x, L_one_y, L_multiply; 3387 3388 subsw(xstart, xstart, 1); 3389 br(Assembler::MI, L_one_x); 3390 3391 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3392 ldr(x_xstart, Address(rscratch1)); 3393 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3394 3395 bind(L_first_loop); 3396 subsw(idx, idx, 1); 3397 br(Assembler::MI, L_first_loop_exit); 3398 subsw(idx, idx, 1); 3399 br(Assembler::MI, L_one_y); 3400 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3401 ldr(y_idx, Address(rscratch1)); 3402 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3403 bind(L_multiply); 3404 3405 // AArch64 has a multiply-accumulate instruction that we can't use 3406 // here because it has no way to process carries, so we have to use 3407 // separate add and adc instructions. Bah. 3408 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3409 mul(product, x_xstart, y_idx); 3410 adds(product, product, carry); 3411 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3412 3413 subw(kdx, kdx, 2); 3414 ror(product, product, 32); // back to big-endian 3415 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3416 3417 b(L_first_loop); 3418 3419 bind(L_one_y); 3420 ldrw(y_idx, Address(y, 0)); 3421 b(L_multiply); 3422 3423 bind(L_one_x); 3424 ldrw(x_xstart, Address(x, 0)); 3425 b(L_first_loop); 3426 3427 bind(L_first_loop_exit); 3428 } 3429 3430 /** 3431 * Multiply 128 bit by 128. Unrolled inner loop. 3432 * 3433 */ 3434 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3435 Register carry, Register carry2, 3436 Register idx, Register jdx, 3437 Register yz_idx1, Register yz_idx2, 3438 Register tmp, Register tmp3, Register tmp4, 3439 Register tmp6, Register product_hi) { 3440 3441 // jlong carry, x[], y[], z[]; 3442 // int kdx = ystart+1; 3443 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3444 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3445 // jlong carry2 = (jlong)(tmp3 >>> 64); 3446 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3447 // carry = (jlong)(tmp4 >>> 64); 3448 // z[kdx+idx+1] = (jlong)tmp3; 3449 // z[kdx+idx] = (jlong)tmp4; 3450 // } 3451 // idx += 2; 3452 // if (idx > 0) { 3453 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3454 // z[kdx+idx] = (jlong)yz_idx1; 3455 // carry = (jlong)(yz_idx1 >>> 64); 3456 // } 3457 // 3458 3459 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3460 3461 lsrw(jdx, idx, 2); 3462 3463 bind(L_third_loop); 3464 3465 subsw(jdx, jdx, 1); 3466 br(Assembler::MI, L_third_loop_exit); 3467 subw(idx, idx, 4); 3468 3469 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3470 3471 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3472 3473 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3474 3475 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3476 ror(yz_idx2, yz_idx2, 32); 3477 3478 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3479 3480 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3481 umulh(tmp4, product_hi, yz_idx1); 3482 3483 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3484 ror(rscratch2, rscratch2, 32); 3485 3486 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3487 umulh(carry2, product_hi, yz_idx2); 3488 3489 // propagate sum of both multiplications into carry:tmp4:tmp3 3490 adds(tmp3, tmp3, carry); 3491 adc(tmp4, tmp4, zr); 3492 adds(tmp3, tmp3, rscratch1); 3493 adcs(tmp4, tmp4, tmp); 3494 adc(carry, carry2, zr); 3495 adds(tmp4, tmp4, rscratch2); 3496 adc(carry, carry, zr); 3497 3498 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3499 ror(tmp4, tmp4, 32); 3500 stp(tmp4, tmp3, Address(tmp6, 0)); 3501 3502 b(L_third_loop); 3503 bind (L_third_loop_exit); 3504 3505 andw (idx, idx, 0x3); 3506 cbz(idx, L_post_third_loop_done); 3507 3508 Label L_check_1; 3509 subsw(idx, idx, 2); 3510 br(Assembler::MI, L_check_1); 3511 3512 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3513 ldr(yz_idx1, Address(rscratch1, 0)); 3514 ror(yz_idx1, yz_idx1, 32); 3515 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3516 umulh(tmp4, product_hi, yz_idx1); 3517 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3518 ldr(yz_idx2, Address(rscratch1, 0)); 3519 ror(yz_idx2, yz_idx2, 32); 3520 3521 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3522 3523 ror(tmp3, tmp3, 32); 3524 str(tmp3, Address(rscratch1, 0)); 3525 3526 bind (L_check_1); 3527 3528 andw (idx, idx, 0x1); 3529 subsw(idx, idx, 1); 3530 br(Assembler::MI, L_post_third_loop_done); 3531 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3532 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3533 umulh(carry2, tmp4, product_hi); 3534 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3535 3536 add2_with_carry(carry2, tmp3, tmp4, carry); 3537 3538 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3539 extr(carry, carry2, tmp3, 32); 3540 3541 bind(L_post_third_loop_done); 3542 } 3543 3544 /** 3545 * Code for BigInteger::multiplyToLen() intrinsic. 3546 * 3547 * r0: x 3548 * r1: xlen 3549 * r2: y 3550 * r3: ylen 3551 * r4: z 3552 * r5: zlen 3553 * r10: tmp1 3554 * r11: tmp2 3555 * r12: tmp3 3556 * r13: tmp4 3557 * r14: tmp5 3558 * r15: tmp6 3559 * r16: tmp7 3560 * 3561 */ 3562 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3563 Register z, Register zlen, 3564 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3565 Register tmp5, Register tmp6, Register product_hi) { 3566 3567 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3568 3569 const Register idx = tmp1; 3570 const Register kdx = tmp2; 3571 const Register xstart = tmp3; 3572 3573 const Register y_idx = tmp4; 3574 const Register carry = tmp5; 3575 const Register product = xlen; 3576 const Register x_xstart = zlen; // reuse register 3577 3578 // First Loop. 3579 // 3580 // final static long LONG_MASK = 0xffffffffL; 3581 // int xstart = xlen - 1; 3582 // int ystart = ylen - 1; 3583 // long carry = 0; 3584 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3585 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3586 // z[kdx] = (int)product; 3587 // carry = product >>> 32; 3588 // } 3589 // z[xstart] = (int)carry; 3590 // 3591 3592 movw(idx, ylen); // idx = ylen; 3593 movw(kdx, zlen); // kdx = xlen+ylen; 3594 mov(carry, zr); // carry = 0; 3595 3596 Label L_done; 3597 3598 movw(xstart, xlen); 3599 subsw(xstart, xstart, 1); 3600 br(Assembler::MI, L_done); 3601 3602 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3603 3604 Label L_second_loop; 3605 cbzw(kdx, L_second_loop); 3606 3607 Label L_carry; 3608 subw(kdx, kdx, 1); 3609 cbzw(kdx, L_carry); 3610 3611 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3612 lsr(carry, carry, 32); 3613 subw(kdx, kdx, 1); 3614 3615 bind(L_carry); 3616 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3617 3618 // Second and third (nested) loops. 3619 // 3620 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3621 // carry = 0; 3622 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3623 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3624 // (z[k] & LONG_MASK) + carry; 3625 // z[k] = (int)product; 3626 // carry = product >>> 32; 3627 // } 3628 // z[i] = (int)carry; 3629 // } 3630 // 3631 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3632 3633 const Register jdx = tmp1; 3634 3635 bind(L_second_loop); 3636 mov(carry, zr); // carry = 0; 3637 movw(jdx, ylen); // j = ystart+1 3638 3639 subsw(xstart, xstart, 1); // i = xstart-1; 3640 br(Assembler::MI, L_done); 3641 3642 str(z, Address(pre(sp, -4 * wordSize))); 3643 3644 Label L_last_x; 3645 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3646 subsw(xstart, xstart, 1); // i = xstart-1; 3647 br(Assembler::MI, L_last_x); 3648 3649 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3650 ldr(product_hi, Address(rscratch1)); 3651 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3652 3653 Label L_third_loop_prologue; 3654 bind(L_third_loop_prologue); 3655 3656 str(ylen, Address(sp, wordSize)); 3657 stp(x, xstart, Address(sp, 2 * wordSize)); 3658 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3659 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3660 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3661 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3662 3663 addw(tmp3, xlen, 1); 3664 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3665 subsw(tmp3, tmp3, 1); 3666 br(Assembler::MI, L_done); 3667 3668 lsr(carry, carry, 32); 3669 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3670 b(L_second_loop); 3671 3672 // Next infrequent code is moved outside loops. 3673 bind(L_last_x); 3674 ldrw(product_hi, Address(x, 0)); 3675 b(L_third_loop_prologue); 3676 3677 bind(L_done); 3678 } 3679 3680 // Code for BigInteger::mulAdd intrinsic 3681 // out = r0 3682 // in = r1 3683 // offset = r2 (already out.length-offset) 3684 // len = r3 3685 // k = r4 3686 // 3687 // pseudo code from java implementation: 3688 // carry = 0; 3689 // offset = out.length-offset - 1; 3690 // for (int j=len-1; j >= 0; j--) { 3691 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3692 // out[offset--] = (int)product; 3693 // carry = product >>> 32; 3694 // } 3695 // return (int)carry; 3696 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3697 Register len, Register k) { 3698 Label LOOP, END; 3699 // pre-loop 3700 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3701 csel(out, zr, out, Assembler::EQ); 3702 br(Assembler::EQ, END); 3703 add(in, in, len, LSL, 2); // in[j+1] address 3704 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3705 mov(out, zr); // used to keep carry now 3706 BIND(LOOP); 3707 ldrw(rscratch1, Address(pre(in, -4))); 3708 madd(rscratch1, rscratch1, k, out); 3709 ldrw(rscratch2, Address(pre(offset, -4))); 3710 add(rscratch1, rscratch1, rscratch2); 3711 strw(rscratch1, Address(offset)); 3712 lsr(out, rscratch1, 32); 3713 subs(len, len, 1); 3714 br(Assembler::NE, LOOP); 3715 BIND(END); 3716 } 3717 3718 /** 3719 * Emits code to update CRC-32 with a byte value according to constants in table 3720 * 3721 * @param [in,out]crc Register containing the crc. 3722 * @param [in]val Register containing the byte to fold into the CRC. 3723 * @param [in]table Register containing the table of crc constants. 3724 * 3725 * uint32_t crc; 3726 * val = crc_table[(val ^ crc) & 0xFF]; 3727 * crc = val ^ (crc >> 8); 3728 * 3729 */ 3730 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3731 eor(val, val, crc); 3732 andr(val, val, 0xff); 3733 ldrw(val, Address(table, val, Address::lsl(2))); 3734 eor(crc, val, crc, Assembler::LSR, 8); 3735 } 3736 3737 /** 3738 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3739 * 3740 * @param [in,out]crc Register containing the crc. 3741 * @param [in]v Register containing the 32-bit to fold into the CRC. 3742 * @param [in]table0 Register containing table 0 of crc constants. 3743 * @param [in]table1 Register containing table 1 of crc constants. 3744 * @param [in]table2 Register containing table 2 of crc constants. 3745 * @param [in]table3 Register containing table 3 of crc constants. 3746 * 3747 * uint32_t crc; 3748 * v = crc ^ v 3749 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3750 * 3751 */ 3752 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3753 Register table0, Register table1, Register table2, Register table3, 3754 bool upper) { 3755 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3756 uxtb(tmp, v); 3757 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3758 ubfx(tmp, v, 8, 8); 3759 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3760 eor(crc, crc, tmp); 3761 ubfx(tmp, v, 16, 8); 3762 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3763 eor(crc, crc, tmp); 3764 ubfx(tmp, v, 24, 8); 3765 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3766 eor(crc, crc, tmp); 3767 } 3768 3769 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 3770 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 3771 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 3772 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 3773 3774 subs(tmp0, len, 384); 3775 mvnw(crc, crc); 3776 br(Assembler::GE, CRC_by128_pre); 3777 BIND(CRC_less128); 3778 subs(len, len, 32); 3779 br(Assembler::GE, CRC_by32_loop); 3780 BIND(CRC_less32); 3781 adds(len, len, 32 - 4); 3782 br(Assembler::GE, CRC_by4_loop); 3783 adds(len, len, 4); 3784 br(Assembler::GT, CRC_by1_loop); 3785 b(L_exit); 3786 3787 BIND(CRC_by32_loop); 3788 ldp(tmp0, tmp1, Address(buf)); 3789 crc32x(crc, crc, tmp0); 3790 ldp(tmp2, tmp3, Address(buf, 16)); 3791 crc32x(crc, crc, tmp1); 3792 add(buf, buf, 32); 3793 crc32x(crc, crc, tmp2); 3794 subs(len, len, 32); 3795 crc32x(crc, crc, tmp3); 3796 br(Assembler::GE, CRC_by32_loop); 3797 cmn(len, (u1)32); 3798 br(Assembler::NE, CRC_less32); 3799 b(L_exit); 3800 3801 BIND(CRC_by4_loop); 3802 ldrw(tmp0, Address(post(buf, 4))); 3803 subs(len, len, 4); 3804 crc32w(crc, crc, tmp0); 3805 br(Assembler::GE, CRC_by4_loop); 3806 adds(len, len, 4); 3807 br(Assembler::LE, L_exit); 3808 BIND(CRC_by1_loop); 3809 ldrb(tmp0, Address(post(buf, 1))); 3810 subs(len, len, 1); 3811 crc32b(crc, crc, tmp0); 3812 br(Assembler::GT, CRC_by1_loop); 3813 b(L_exit); 3814 3815 BIND(CRC_by128_pre); 3816 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 3817 4*256*sizeof(juint) + 8*sizeof(juint)); 3818 mov(crc, 0); 3819 crc32x(crc, crc, tmp0); 3820 crc32x(crc, crc, tmp1); 3821 3822 cbnz(len, CRC_less128); 3823 3824 BIND(L_exit); 3825 mvnw(crc, crc); 3826 } 3827 3828 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3829 Register len, Register tmp0, Register tmp1, Register tmp2, 3830 Register tmp3) { 3831 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3832 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3833 3834 mvnw(crc, crc); 3835 3836 subs(len, len, 128); 3837 br(Assembler::GE, CRC_by64_pre); 3838 BIND(CRC_less64); 3839 adds(len, len, 128-32); 3840 br(Assembler::GE, CRC_by32_loop); 3841 BIND(CRC_less32); 3842 adds(len, len, 32-4); 3843 br(Assembler::GE, CRC_by4_loop); 3844 adds(len, len, 4); 3845 br(Assembler::GT, CRC_by1_loop); 3846 b(L_exit); 3847 3848 BIND(CRC_by32_loop); 3849 ldp(tmp0, tmp1, Address(post(buf, 16))); 3850 subs(len, len, 32); 3851 crc32x(crc, crc, tmp0); 3852 ldr(tmp2, Address(post(buf, 8))); 3853 crc32x(crc, crc, tmp1); 3854 ldr(tmp3, Address(post(buf, 8))); 3855 crc32x(crc, crc, tmp2); 3856 crc32x(crc, crc, tmp3); 3857 br(Assembler::GE, CRC_by32_loop); 3858 cmn(len, (u1)32); 3859 br(Assembler::NE, CRC_less32); 3860 b(L_exit); 3861 3862 BIND(CRC_by4_loop); 3863 ldrw(tmp0, Address(post(buf, 4))); 3864 subs(len, len, 4); 3865 crc32w(crc, crc, tmp0); 3866 br(Assembler::GE, CRC_by4_loop); 3867 adds(len, len, 4); 3868 br(Assembler::LE, L_exit); 3869 BIND(CRC_by1_loop); 3870 ldrb(tmp0, Address(post(buf, 1))); 3871 subs(len, len, 1); 3872 crc32b(crc, crc, tmp0); 3873 br(Assembler::GT, CRC_by1_loop); 3874 b(L_exit); 3875 3876 BIND(CRC_by64_pre); 3877 sub(buf, buf, 8); 3878 ldp(tmp0, tmp1, Address(buf, 8)); 3879 crc32x(crc, crc, tmp0); 3880 ldr(tmp2, Address(buf, 24)); 3881 crc32x(crc, crc, tmp1); 3882 ldr(tmp3, Address(buf, 32)); 3883 crc32x(crc, crc, tmp2); 3884 ldr(tmp0, Address(buf, 40)); 3885 crc32x(crc, crc, tmp3); 3886 ldr(tmp1, Address(buf, 48)); 3887 crc32x(crc, crc, tmp0); 3888 ldr(tmp2, Address(buf, 56)); 3889 crc32x(crc, crc, tmp1); 3890 ldr(tmp3, Address(pre(buf, 64))); 3891 3892 b(CRC_by64_loop); 3893 3894 align(CodeEntryAlignment); 3895 BIND(CRC_by64_loop); 3896 subs(len, len, 64); 3897 crc32x(crc, crc, tmp2); 3898 ldr(tmp0, Address(buf, 8)); 3899 crc32x(crc, crc, tmp3); 3900 ldr(tmp1, Address(buf, 16)); 3901 crc32x(crc, crc, tmp0); 3902 ldr(tmp2, Address(buf, 24)); 3903 crc32x(crc, crc, tmp1); 3904 ldr(tmp3, Address(buf, 32)); 3905 crc32x(crc, crc, tmp2); 3906 ldr(tmp0, Address(buf, 40)); 3907 crc32x(crc, crc, tmp3); 3908 ldr(tmp1, Address(buf, 48)); 3909 crc32x(crc, crc, tmp0); 3910 ldr(tmp2, Address(buf, 56)); 3911 crc32x(crc, crc, tmp1); 3912 ldr(tmp3, Address(pre(buf, 64))); 3913 br(Assembler::GE, CRC_by64_loop); 3914 3915 // post-loop 3916 crc32x(crc, crc, tmp2); 3917 crc32x(crc, crc, tmp3); 3918 3919 sub(len, len, 64); 3920 add(buf, buf, 8); 3921 cmn(len, (u1)128); 3922 br(Assembler::NE, CRC_less64); 3923 BIND(L_exit); 3924 mvnw(crc, crc); 3925 } 3926 3927 /** 3928 * @param crc register containing existing CRC (32-bit) 3929 * @param buf register pointing to input byte buffer (byte*) 3930 * @param len register containing number of bytes 3931 * @param table register that will contain address of CRC table 3932 * @param tmp scratch register 3933 */ 3934 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3935 Register table0, Register table1, Register table2, Register table3, 3936 Register tmp, Register tmp2, Register tmp3) { 3937 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3938 3939 if (UseCryptoPmullForCRC32) { 3940 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 3941 return; 3942 } 3943 3944 if (UseCRC32) { 3945 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3946 return; 3947 } 3948 3949 mvnw(crc, crc); 3950 3951 { 3952 uint64_t offset; 3953 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3954 add(table0, table0, offset); 3955 } 3956 add(table1, table0, 1*256*sizeof(juint)); 3957 add(table2, table0, 2*256*sizeof(juint)); 3958 add(table3, table0, 3*256*sizeof(juint)); 3959 3960 if (UseNeon) { 3961 cmp(len, (u1)64); 3962 br(Assembler::LT, L_by16); 3963 eor(v16, T16B, v16, v16); 3964 3965 Label L_fold; 3966 3967 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3968 3969 ld1(v0, v1, T2D, post(buf, 32)); 3970 ld1r(v4, T2D, post(tmp, 8)); 3971 ld1r(v5, T2D, post(tmp, 8)); 3972 ld1r(v6, T2D, post(tmp, 8)); 3973 ld1r(v7, T2D, post(tmp, 8)); 3974 mov(v16, S, 0, crc); 3975 3976 eor(v0, T16B, v0, v16); 3977 sub(len, len, 64); 3978 3979 BIND(L_fold); 3980 pmull(v22, T8H, v0, v5, T8B); 3981 pmull(v20, T8H, v0, v7, T8B); 3982 pmull(v23, T8H, v0, v4, T8B); 3983 pmull(v21, T8H, v0, v6, T8B); 3984 3985 pmull2(v18, T8H, v0, v5, T16B); 3986 pmull2(v16, T8H, v0, v7, T16B); 3987 pmull2(v19, T8H, v0, v4, T16B); 3988 pmull2(v17, T8H, v0, v6, T16B); 3989 3990 uzp1(v24, T8H, v20, v22); 3991 uzp2(v25, T8H, v20, v22); 3992 eor(v20, T16B, v24, v25); 3993 3994 uzp1(v26, T8H, v16, v18); 3995 uzp2(v27, T8H, v16, v18); 3996 eor(v16, T16B, v26, v27); 3997 3998 ushll2(v22, T4S, v20, T8H, 8); 3999 ushll(v20, T4S, v20, T4H, 8); 4000 4001 ushll2(v18, T4S, v16, T8H, 8); 4002 ushll(v16, T4S, v16, T4H, 8); 4003 4004 eor(v22, T16B, v23, v22); 4005 eor(v18, T16B, v19, v18); 4006 eor(v20, T16B, v21, v20); 4007 eor(v16, T16B, v17, v16); 4008 4009 uzp1(v17, T2D, v16, v20); 4010 uzp2(v21, T2D, v16, v20); 4011 eor(v17, T16B, v17, v21); 4012 4013 ushll2(v20, T2D, v17, T4S, 16); 4014 ushll(v16, T2D, v17, T2S, 16); 4015 4016 eor(v20, T16B, v20, v22); 4017 eor(v16, T16B, v16, v18); 4018 4019 uzp1(v17, T2D, v20, v16); 4020 uzp2(v21, T2D, v20, v16); 4021 eor(v28, T16B, v17, v21); 4022 4023 pmull(v22, T8H, v1, v5, T8B); 4024 pmull(v20, T8H, v1, v7, T8B); 4025 pmull(v23, T8H, v1, v4, T8B); 4026 pmull(v21, T8H, v1, v6, T8B); 4027 4028 pmull2(v18, T8H, v1, v5, T16B); 4029 pmull2(v16, T8H, v1, v7, T16B); 4030 pmull2(v19, T8H, v1, v4, T16B); 4031 pmull2(v17, T8H, v1, v6, T16B); 4032 4033 ld1(v0, v1, T2D, post(buf, 32)); 4034 4035 uzp1(v24, T8H, v20, v22); 4036 uzp2(v25, T8H, v20, v22); 4037 eor(v20, T16B, v24, v25); 4038 4039 uzp1(v26, T8H, v16, v18); 4040 uzp2(v27, T8H, v16, v18); 4041 eor(v16, T16B, v26, v27); 4042 4043 ushll2(v22, T4S, v20, T8H, 8); 4044 ushll(v20, T4S, v20, T4H, 8); 4045 4046 ushll2(v18, T4S, v16, T8H, 8); 4047 ushll(v16, T4S, v16, T4H, 8); 4048 4049 eor(v22, T16B, v23, v22); 4050 eor(v18, T16B, v19, v18); 4051 eor(v20, T16B, v21, v20); 4052 eor(v16, T16B, v17, v16); 4053 4054 uzp1(v17, T2D, v16, v20); 4055 uzp2(v21, T2D, v16, v20); 4056 eor(v16, T16B, v17, v21); 4057 4058 ushll2(v20, T2D, v16, T4S, 16); 4059 ushll(v16, T2D, v16, T2S, 16); 4060 4061 eor(v20, T16B, v22, v20); 4062 eor(v16, T16B, v16, v18); 4063 4064 uzp1(v17, T2D, v20, v16); 4065 uzp2(v21, T2D, v20, v16); 4066 eor(v20, T16B, v17, v21); 4067 4068 shl(v16, T2D, v28, 1); 4069 shl(v17, T2D, v20, 1); 4070 4071 eor(v0, T16B, v0, v16); 4072 eor(v1, T16B, v1, v17); 4073 4074 subs(len, len, 32); 4075 br(Assembler::GE, L_fold); 4076 4077 mov(crc, 0); 4078 mov(tmp, v0, D, 0); 4079 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4080 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4081 mov(tmp, v0, D, 1); 4082 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4083 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4084 mov(tmp, v1, D, 0); 4085 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4086 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4087 mov(tmp, v1, D, 1); 4088 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4089 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4090 4091 add(len, len, 32); 4092 } 4093 4094 BIND(L_by16); 4095 subs(len, len, 16); 4096 br(Assembler::GE, L_by16_loop); 4097 adds(len, len, 16-4); 4098 br(Assembler::GE, L_by4_loop); 4099 adds(len, len, 4); 4100 br(Assembler::GT, L_by1_loop); 4101 b(L_exit); 4102 4103 BIND(L_by4_loop); 4104 ldrw(tmp, Address(post(buf, 4))); 4105 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4106 subs(len, len, 4); 4107 br(Assembler::GE, L_by4_loop); 4108 adds(len, len, 4); 4109 br(Assembler::LE, L_exit); 4110 BIND(L_by1_loop); 4111 subs(len, len, 1); 4112 ldrb(tmp, Address(post(buf, 1))); 4113 update_byte_crc32(crc, tmp, table0); 4114 br(Assembler::GT, L_by1_loop); 4115 b(L_exit); 4116 4117 align(CodeEntryAlignment); 4118 BIND(L_by16_loop); 4119 subs(len, len, 16); 4120 ldp(tmp, tmp3, Address(post(buf, 16))); 4121 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4122 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4123 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4124 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4125 br(Assembler::GE, L_by16_loop); 4126 adds(len, len, 16-4); 4127 br(Assembler::GE, L_by4_loop); 4128 adds(len, len, 4); 4129 br(Assembler::GT, L_by1_loop); 4130 BIND(L_exit); 4131 mvnw(crc, crc); 4132 } 4133 4134 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4135 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4136 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4137 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4138 4139 subs(tmp0, len, 384); 4140 br(Assembler::GE, CRC_by128_pre); 4141 BIND(CRC_less128); 4142 subs(len, len, 32); 4143 br(Assembler::GE, CRC_by32_loop); 4144 BIND(CRC_less32); 4145 adds(len, len, 32 - 4); 4146 br(Assembler::GE, CRC_by4_loop); 4147 adds(len, len, 4); 4148 br(Assembler::GT, CRC_by1_loop); 4149 b(L_exit); 4150 4151 BIND(CRC_by32_loop); 4152 ldp(tmp0, tmp1, Address(buf)); 4153 crc32cx(crc, crc, tmp0); 4154 ldr(tmp2, Address(buf, 16)); 4155 crc32cx(crc, crc, tmp1); 4156 ldr(tmp3, Address(buf, 24)); 4157 crc32cx(crc, crc, tmp2); 4158 add(buf, buf, 32); 4159 subs(len, len, 32); 4160 crc32cx(crc, crc, tmp3); 4161 br(Assembler::GE, CRC_by32_loop); 4162 cmn(len, (u1)32); 4163 br(Assembler::NE, CRC_less32); 4164 b(L_exit); 4165 4166 BIND(CRC_by4_loop); 4167 ldrw(tmp0, Address(post(buf, 4))); 4168 subs(len, len, 4); 4169 crc32cw(crc, crc, tmp0); 4170 br(Assembler::GE, CRC_by4_loop); 4171 adds(len, len, 4); 4172 br(Assembler::LE, L_exit); 4173 BIND(CRC_by1_loop); 4174 ldrb(tmp0, Address(post(buf, 1))); 4175 subs(len, len, 1); 4176 crc32cb(crc, crc, tmp0); 4177 br(Assembler::GT, CRC_by1_loop); 4178 b(L_exit); 4179 4180 BIND(CRC_by128_pre); 4181 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4182 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4183 mov(crc, 0); 4184 crc32cx(crc, crc, tmp0); 4185 crc32cx(crc, crc, tmp1); 4186 4187 cbnz(len, CRC_less128); 4188 4189 BIND(L_exit); 4190 } 4191 4192 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4193 Register len, Register tmp0, Register tmp1, Register tmp2, 4194 Register tmp3) { 4195 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4196 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4197 4198 subs(len, len, 128); 4199 br(Assembler::GE, CRC_by64_pre); 4200 BIND(CRC_less64); 4201 adds(len, len, 128-32); 4202 br(Assembler::GE, CRC_by32_loop); 4203 BIND(CRC_less32); 4204 adds(len, len, 32-4); 4205 br(Assembler::GE, CRC_by4_loop); 4206 adds(len, len, 4); 4207 br(Assembler::GT, CRC_by1_loop); 4208 b(L_exit); 4209 4210 BIND(CRC_by32_loop); 4211 ldp(tmp0, tmp1, Address(post(buf, 16))); 4212 subs(len, len, 32); 4213 crc32cx(crc, crc, tmp0); 4214 ldr(tmp2, Address(post(buf, 8))); 4215 crc32cx(crc, crc, tmp1); 4216 ldr(tmp3, Address(post(buf, 8))); 4217 crc32cx(crc, crc, tmp2); 4218 crc32cx(crc, crc, tmp3); 4219 br(Assembler::GE, CRC_by32_loop); 4220 cmn(len, (u1)32); 4221 br(Assembler::NE, CRC_less32); 4222 b(L_exit); 4223 4224 BIND(CRC_by4_loop); 4225 ldrw(tmp0, Address(post(buf, 4))); 4226 subs(len, len, 4); 4227 crc32cw(crc, crc, tmp0); 4228 br(Assembler::GE, CRC_by4_loop); 4229 adds(len, len, 4); 4230 br(Assembler::LE, L_exit); 4231 BIND(CRC_by1_loop); 4232 ldrb(tmp0, Address(post(buf, 1))); 4233 subs(len, len, 1); 4234 crc32cb(crc, crc, tmp0); 4235 br(Assembler::GT, CRC_by1_loop); 4236 b(L_exit); 4237 4238 BIND(CRC_by64_pre); 4239 sub(buf, buf, 8); 4240 ldp(tmp0, tmp1, Address(buf, 8)); 4241 crc32cx(crc, crc, tmp0); 4242 ldr(tmp2, Address(buf, 24)); 4243 crc32cx(crc, crc, tmp1); 4244 ldr(tmp3, Address(buf, 32)); 4245 crc32cx(crc, crc, tmp2); 4246 ldr(tmp0, Address(buf, 40)); 4247 crc32cx(crc, crc, tmp3); 4248 ldr(tmp1, Address(buf, 48)); 4249 crc32cx(crc, crc, tmp0); 4250 ldr(tmp2, Address(buf, 56)); 4251 crc32cx(crc, crc, tmp1); 4252 ldr(tmp3, Address(pre(buf, 64))); 4253 4254 b(CRC_by64_loop); 4255 4256 align(CodeEntryAlignment); 4257 BIND(CRC_by64_loop); 4258 subs(len, len, 64); 4259 crc32cx(crc, crc, tmp2); 4260 ldr(tmp0, Address(buf, 8)); 4261 crc32cx(crc, crc, tmp3); 4262 ldr(tmp1, Address(buf, 16)); 4263 crc32cx(crc, crc, tmp0); 4264 ldr(tmp2, Address(buf, 24)); 4265 crc32cx(crc, crc, tmp1); 4266 ldr(tmp3, Address(buf, 32)); 4267 crc32cx(crc, crc, tmp2); 4268 ldr(tmp0, Address(buf, 40)); 4269 crc32cx(crc, crc, tmp3); 4270 ldr(tmp1, Address(buf, 48)); 4271 crc32cx(crc, crc, tmp0); 4272 ldr(tmp2, Address(buf, 56)); 4273 crc32cx(crc, crc, tmp1); 4274 ldr(tmp3, Address(pre(buf, 64))); 4275 br(Assembler::GE, CRC_by64_loop); 4276 4277 // post-loop 4278 crc32cx(crc, crc, tmp2); 4279 crc32cx(crc, crc, tmp3); 4280 4281 sub(len, len, 64); 4282 add(buf, buf, 8); 4283 cmn(len, (u1)128); 4284 br(Assembler::NE, CRC_less64); 4285 BIND(L_exit); 4286 } 4287 4288 /** 4289 * @param crc register containing existing CRC (32-bit) 4290 * @param buf register pointing to input byte buffer (byte*) 4291 * @param len register containing number of bytes 4292 * @param table register that will contain address of CRC table 4293 * @param tmp scratch register 4294 */ 4295 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4296 Register table0, Register table1, Register table2, Register table3, 4297 Register tmp, Register tmp2, Register tmp3) { 4298 if (UseCryptoPmullForCRC32) { 4299 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4300 } else { 4301 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4302 } 4303 } 4304 4305 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4306 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4307 Label CRC_by128_loop; 4308 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4309 4310 sub(len, len, 256); 4311 Register table = tmp0; 4312 { 4313 uint64_t offset; 4314 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4315 add(table, table, offset); 4316 } 4317 add(table, table, table_offset); 4318 4319 sub(buf, buf, 0x10); 4320 ldrq(v1, Address(buf, 0x10)); 4321 ldrq(v2, Address(buf, 0x20)); 4322 ldrq(v3, Address(buf, 0x30)); 4323 ldrq(v4, Address(buf, 0x40)); 4324 ldrq(v5, Address(buf, 0x50)); 4325 ldrq(v6, Address(buf, 0x60)); 4326 ldrq(v7, Address(buf, 0x70)); 4327 ldrq(v8, Address(pre(buf, 0x80))); 4328 4329 movi(v25, T4S, 0); 4330 mov(v25, S, 0, crc); 4331 eor(v1, T16B, v1, v25); 4332 4333 ldrq(v0, Address(table)); 4334 b(CRC_by128_loop); 4335 4336 align(OptoLoopAlignment); 4337 BIND(CRC_by128_loop); 4338 pmull (v9, T1Q, v1, v0, T1D); 4339 pmull2(v10, T1Q, v1, v0, T2D); 4340 ldrq(v1, Address(buf, 0x10)); 4341 eor3(v1, T16B, v9, v10, v1); 4342 4343 pmull (v11, T1Q, v2, v0, T1D); 4344 pmull2(v12, T1Q, v2, v0, T2D); 4345 ldrq(v2, Address(buf, 0x20)); 4346 eor3(v2, T16B, v11, v12, v2); 4347 4348 pmull (v13, T1Q, v3, v0, T1D); 4349 pmull2(v14, T1Q, v3, v0, T2D); 4350 ldrq(v3, Address(buf, 0x30)); 4351 eor3(v3, T16B, v13, v14, v3); 4352 4353 pmull (v15, T1Q, v4, v0, T1D); 4354 pmull2(v16, T1Q, v4, v0, T2D); 4355 ldrq(v4, Address(buf, 0x40)); 4356 eor3(v4, T16B, v15, v16, v4); 4357 4358 pmull (v17, T1Q, v5, v0, T1D); 4359 pmull2(v18, T1Q, v5, v0, T2D); 4360 ldrq(v5, Address(buf, 0x50)); 4361 eor3(v5, T16B, v17, v18, v5); 4362 4363 pmull (v19, T1Q, v6, v0, T1D); 4364 pmull2(v20, T1Q, v6, v0, T2D); 4365 ldrq(v6, Address(buf, 0x60)); 4366 eor3(v6, T16B, v19, v20, v6); 4367 4368 pmull (v21, T1Q, v7, v0, T1D); 4369 pmull2(v22, T1Q, v7, v0, T2D); 4370 ldrq(v7, Address(buf, 0x70)); 4371 eor3(v7, T16B, v21, v22, v7); 4372 4373 pmull (v23, T1Q, v8, v0, T1D); 4374 pmull2(v24, T1Q, v8, v0, T2D); 4375 ldrq(v8, Address(pre(buf, 0x80))); 4376 eor3(v8, T16B, v23, v24, v8); 4377 4378 subs(len, len, 0x80); 4379 br(Assembler::GE, CRC_by128_loop); 4380 4381 // fold into 512 bits 4382 ldrq(v0, Address(table, 0x10)); 4383 4384 pmull (v10, T1Q, v1, v0, T1D); 4385 pmull2(v11, T1Q, v1, v0, T2D); 4386 eor3(v1, T16B, v10, v11, v5); 4387 4388 pmull (v12, T1Q, v2, v0, T1D); 4389 pmull2(v13, T1Q, v2, v0, T2D); 4390 eor3(v2, T16B, v12, v13, v6); 4391 4392 pmull (v14, T1Q, v3, v0, T1D); 4393 pmull2(v15, T1Q, v3, v0, T2D); 4394 eor3(v3, T16B, v14, v15, v7); 4395 4396 pmull (v16, T1Q, v4, v0, T1D); 4397 pmull2(v17, T1Q, v4, v0, T2D); 4398 eor3(v4, T16B, v16, v17, v8); 4399 4400 // fold into 128 bits 4401 ldrq(v5, Address(table, 0x20)); 4402 pmull (v10, T1Q, v1, v5, T1D); 4403 pmull2(v11, T1Q, v1, v5, T2D); 4404 eor3(v4, T16B, v4, v10, v11); 4405 4406 ldrq(v6, Address(table, 0x30)); 4407 pmull (v12, T1Q, v2, v6, T1D); 4408 pmull2(v13, T1Q, v2, v6, T2D); 4409 eor3(v4, T16B, v4, v12, v13); 4410 4411 ldrq(v7, Address(table, 0x40)); 4412 pmull (v14, T1Q, v3, v7, T1D); 4413 pmull2(v15, T1Q, v3, v7, T2D); 4414 eor3(v1, T16B, v4, v14, v15); 4415 4416 add(len, len, 0x80); 4417 add(buf, buf, 0x10); 4418 4419 mov(tmp0, v1, D, 0); 4420 mov(tmp1, v1, D, 1); 4421 } 4422 4423 SkipIfEqual::SkipIfEqual( 4424 MacroAssembler* masm, const bool* flag_addr, bool value) { 4425 _masm = masm; 4426 uint64_t offset; 4427 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 4428 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 4429 if (value) { 4430 _masm->cbnzw(rscratch1, _label); 4431 } else { 4432 _masm->cbzw(rscratch1, _label); 4433 } 4434 } 4435 4436 SkipIfEqual::~SkipIfEqual() { 4437 _masm->bind(_label); 4438 } 4439 4440 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4441 Address adr; 4442 switch(dst.getMode()) { 4443 case Address::base_plus_offset: 4444 // This is the expected mode, although we allow all the other 4445 // forms below. 4446 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4447 break; 4448 default: 4449 lea(rscratch2, dst); 4450 adr = Address(rscratch2); 4451 break; 4452 } 4453 ldr(rscratch1, adr); 4454 add(rscratch1, rscratch1, src); 4455 str(rscratch1, adr); 4456 } 4457 4458 void MacroAssembler::cmpptr(Register src1, Address src2) { 4459 uint64_t offset; 4460 adrp(rscratch1, src2, offset); 4461 ldr(rscratch1, Address(rscratch1, offset)); 4462 cmp(src1, rscratch1); 4463 } 4464 4465 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4466 cmp(obj1, obj2); 4467 } 4468 4469 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 4470 load_method_holder(rresult, rmethod); 4471 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 4472 } 4473 4474 void MacroAssembler::load_method_holder(Register holder, Register method) { 4475 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 4476 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 4477 ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 4478 } 4479 4480 void MacroAssembler::load_metadata(Register dst, Register src) { 4481 if (UseCompressedClassPointers) { 4482 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4483 } else { 4484 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4485 } 4486 } 4487 4488 void MacroAssembler::load_klass(Register dst, Register src) { 4489 if (UseCompressedClassPointers) { 4490 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4491 decode_klass_not_null(dst); 4492 } else { 4493 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4494 } 4495 } 4496 4497 // ((OopHandle)result).resolve(); 4498 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 4499 // OopHandle::resolve is an indirection. 4500 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 4501 } 4502 4503 // ((WeakHandle)result).resolve(); 4504 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 4505 assert_different_registers(result, tmp1, tmp2); 4506 Label resolved; 4507 4508 // A null weak handle resolves to null. 4509 cbz(result, resolved); 4510 4511 // Only 64 bit platforms support GCs that require a tmp register 4512 // WeakHandle::resolve is an indirection like jweak. 4513 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4514 result, Address(result), tmp1, tmp2); 4515 bind(resolved); 4516 } 4517 4518 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 4519 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 4520 ldr(dst, Address(rmethod, Method::const_offset())); 4521 ldr(dst, Address(dst, ConstMethod::constants_offset())); 4522 ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 4523 ldr(dst, Address(dst, mirror_offset)); 4524 resolve_oop_handle(dst, tmp1, tmp2); 4525 } 4526 4527 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 4528 if (UseCompressedClassPointers) { 4529 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4530 if (CompressedKlassPointers::base() == NULL) { 4531 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 4532 return; 4533 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 4534 && CompressedKlassPointers::shift() == 0) { 4535 // Only the bottom 32 bits matter 4536 cmpw(trial_klass, tmp); 4537 return; 4538 } 4539 decode_klass_not_null(tmp); 4540 } else { 4541 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4542 } 4543 cmp(trial_klass, tmp); 4544 } 4545 4546 void MacroAssembler::load_prototype_header(Register dst, Register src) { 4547 load_klass(dst, src); 4548 ldr(dst, Address(dst, Klass::prototype_header_offset())); 4549 } 4550 4551 void MacroAssembler::store_klass(Register dst, Register src) { 4552 // FIXME: Should this be a store release? concurrent gcs assumes 4553 // klass length is valid if klass field is not null. 4554 if (UseCompressedClassPointers) { 4555 encode_klass_not_null(src); 4556 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4557 } else { 4558 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4559 } 4560 } 4561 4562 void MacroAssembler::store_klass_gap(Register dst, Register src) { 4563 if (UseCompressedClassPointers) { 4564 // Store to klass gap in destination 4565 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 4566 } 4567 } 4568 4569 // Algorithm must match CompressedOops::encode. 4570 void MacroAssembler::encode_heap_oop(Register d, Register s) { 4571 #ifdef ASSERT 4572 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 4573 #endif 4574 verify_oop_msg(s, "broken oop in encode_heap_oop"); 4575 if (CompressedOops::base() == NULL) { 4576 if (CompressedOops::shift() != 0) { 4577 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4578 lsr(d, s, LogMinObjAlignmentInBytes); 4579 } else { 4580 mov(d, s); 4581 } 4582 } else { 4583 subs(d, s, rheapbase); 4584 csel(d, d, zr, Assembler::HS); 4585 lsr(d, d, LogMinObjAlignmentInBytes); 4586 4587 /* Old algorithm: is this any worse? 4588 Label nonnull; 4589 cbnz(r, nonnull); 4590 sub(r, r, rheapbase); 4591 bind(nonnull); 4592 lsr(r, r, LogMinObjAlignmentInBytes); 4593 */ 4594 } 4595 } 4596 4597 void MacroAssembler::encode_heap_oop_not_null(Register r) { 4598 #ifdef ASSERT 4599 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 4600 if (CheckCompressedOops) { 4601 Label ok; 4602 cbnz(r, ok); 4603 stop("null oop passed to encode_heap_oop_not_null"); 4604 bind(ok); 4605 } 4606 #endif 4607 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 4608 if (CompressedOops::base() != NULL) { 4609 sub(r, r, rheapbase); 4610 } 4611 if (CompressedOops::shift() != 0) { 4612 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4613 lsr(r, r, LogMinObjAlignmentInBytes); 4614 } 4615 } 4616 4617 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 4618 #ifdef ASSERT 4619 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 4620 if (CheckCompressedOops) { 4621 Label ok; 4622 cbnz(src, ok); 4623 stop("null oop passed to encode_heap_oop_not_null2"); 4624 bind(ok); 4625 } 4626 #endif 4627 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 4628 4629 Register data = src; 4630 if (CompressedOops::base() != NULL) { 4631 sub(dst, src, rheapbase); 4632 data = dst; 4633 } 4634 if (CompressedOops::shift() != 0) { 4635 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4636 lsr(dst, data, LogMinObjAlignmentInBytes); 4637 data = dst; 4638 } 4639 if (data == src) 4640 mov(dst, src); 4641 } 4642 4643 void MacroAssembler::decode_heap_oop(Register d, Register s) { 4644 #ifdef ASSERT 4645 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 4646 #endif 4647 if (CompressedOops::base() == NULL) { 4648 if (CompressedOops::shift() != 0 || d != s) { 4649 lsl(d, s, CompressedOops::shift()); 4650 } 4651 } else { 4652 Label done; 4653 if (d != s) 4654 mov(d, s); 4655 cbz(s, done); 4656 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 4657 bind(done); 4658 } 4659 verify_oop_msg(d, "broken oop in decode_heap_oop"); 4660 } 4661 4662 void MacroAssembler::decode_heap_oop_not_null(Register r) { 4663 assert (UseCompressedOops, "should only be used for compressed headers"); 4664 assert (Universe::heap() != NULL, "java heap should be initialized"); 4665 // Cannot assert, unverified entry point counts instructions (see .ad file) 4666 // vtableStubs also counts instructions in pd_code_size_limit. 4667 // Also do not verify_oop as this is called by verify_oop. 4668 if (CompressedOops::shift() != 0) { 4669 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4670 if (CompressedOops::base() != NULL) { 4671 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4672 } else { 4673 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4674 } 4675 } else { 4676 assert (CompressedOops::base() == NULL, "sanity"); 4677 } 4678 } 4679 4680 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4681 assert (UseCompressedOops, "should only be used for compressed headers"); 4682 assert (Universe::heap() != NULL, "java heap should be initialized"); 4683 // Cannot assert, unverified entry point counts instructions (see .ad file) 4684 // vtableStubs also counts instructions in pd_code_size_limit. 4685 // Also do not verify_oop as this is called by verify_oop. 4686 if (CompressedOops::shift() != 0) { 4687 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4688 if (CompressedOops::base() != NULL) { 4689 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4690 } else { 4691 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4692 } 4693 } else { 4694 assert (CompressedOops::base() == NULL, "sanity"); 4695 if (dst != src) { 4696 mov(dst, src); 4697 } 4698 } 4699 } 4700 4701 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4702 4703 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4704 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4705 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4706 4707 if (_klass_decode_mode != KlassDecodeNone) { 4708 return _klass_decode_mode; 4709 } 4710 4711 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4712 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4713 4714 if (CompressedKlassPointers::base() == NULL) { 4715 return (_klass_decode_mode = KlassDecodeZero); 4716 } 4717 4718 if (operand_valid_for_logical_immediate( 4719 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4720 const uint64_t range_mask = 4721 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4722 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4723 return (_klass_decode_mode = KlassDecodeXor); 4724 } 4725 } 4726 4727 const uint64_t shifted_base = 4728 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4729 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4730 "compressed class base bad alignment"); 4731 4732 return (_klass_decode_mode = KlassDecodeMovk); 4733 } 4734 4735 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4736 switch (klass_decode_mode()) { 4737 case KlassDecodeZero: 4738 if (CompressedKlassPointers::shift() != 0) { 4739 lsr(dst, src, LogKlassAlignmentInBytes); 4740 } else { 4741 if (dst != src) mov(dst, src); 4742 } 4743 break; 4744 4745 case KlassDecodeXor: 4746 if (CompressedKlassPointers::shift() != 0) { 4747 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4748 lsr(dst, dst, LogKlassAlignmentInBytes); 4749 } else { 4750 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4751 } 4752 break; 4753 4754 case KlassDecodeMovk: 4755 if (CompressedKlassPointers::shift() != 0) { 4756 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4757 } else { 4758 movw(dst, src); 4759 } 4760 break; 4761 4762 case KlassDecodeNone: 4763 ShouldNotReachHere(); 4764 break; 4765 } 4766 } 4767 4768 void MacroAssembler::encode_klass_not_null(Register r) { 4769 encode_klass_not_null(r, r); 4770 } 4771 4772 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4773 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4774 4775 switch (klass_decode_mode()) { 4776 case KlassDecodeZero: 4777 if (CompressedKlassPointers::shift() != 0) { 4778 lsl(dst, src, LogKlassAlignmentInBytes); 4779 } else { 4780 if (dst != src) mov(dst, src); 4781 } 4782 break; 4783 4784 case KlassDecodeXor: 4785 if (CompressedKlassPointers::shift() != 0) { 4786 lsl(dst, src, LogKlassAlignmentInBytes); 4787 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4788 } else { 4789 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4790 } 4791 break; 4792 4793 case KlassDecodeMovk: { 4794 const uint64_t shifted_base = 4795 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4796 4797 if (dst != src) movw(dst, src); 4798 movk(dst, shifted_base >> 32, 32); 4799 4800 if (CompressedKlassPointers::shift() != 0) { 4801 lsl(dst, dst, LogKlassAlignmentInBytes); 4802 } 4803 4804 break; 4805 } 4806 4807 case KlassDecodeNone: 4808 ShouldNotReachHere(); 4809 break; 4810 } 4811 } 4812 4813 void MacroAssembler::decode_klass_not_null(Register r) { 4814 decode_klass_not_null(r, r); 4815 } 4816 4817 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4818 #ifdef ASSERT 4819 { 4820 ThreadInVMfromUnknown tiv; 4821 assert (UseCompressedOops, "should only be used for compressed oops"); 4822 assert (Universe::heap() != NULL, "java heap should be initialized"); 4823 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4824 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4825 } 4826 #endif 4827 int oop_index = oop_recorder()->find_index(obj); 4828 InstructionMark im(this); 4829 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4830 code_section()->relocate(inst_mark(), rspec); 4831 movz(dst, 0xDEAD, 16); 4832 movk(dst, 0xBEEF); 4833 } 4834 4835 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4836 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4837 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4838 int index = oop_recorder()->find_index(k); 4839 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4840 4841 InstructionMark im(this); 4842 RelocationHolder rspec = metadata_Relocation::spec(index); 4843 code_section()->relocate(inst_mark(), rspec); 4844 narrowKlass nk = CompressedKlassPointers::encode(k); 4845 movz(dst, (nk >> 16), 16); 4846 movk(dst, nk & 0xffff); 4847 } 4848 4849 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4850 Register dst, Address src, 4851 Register tmp1, Register tmp2) { 4852 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4853 decorators = AccessInternal::decorator_fixup(decorators, type); 4854 bool as_raw = (decorators & AS_RAW) != 0; 4855 if (as_raw) { 4856 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 4857 } else { 4858 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 4859 } 4860 } 4861 4862 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4863 Address dst, Register val, 4864 Register tmp1, Register tmp2, Register tmp3) { 4865 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4866 decorators = AccessInternal::decorator_fixup(decorators, type); 4867 bool as_raw = (decorators & AS_RAW) != 0; 4868 if (as_raw) { 4869 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4870 } else { 4871 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4872 } 4873 } 4874 4875 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst, 4876 Register inline_klass) { 4877 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4878 bs->value_copy(this, decorators, src, dst, inline_klass); 4879 } 4880 4881 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) { 4882 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 4883 ldrw(offset, Address(offset, InlineKlass::first_field_offset_offset())); 4884 } 4885 4886 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) { 4887 // ((address) (void*) o) + vk->first_field_offset(); 4888 Register offset = (data == oop) ? rscratch1 : data; 4889 first_field_offset(inline_klass, offset); 4890 if (data == oop) { 4891 add(data, data, offset); 4892 } else { 4893 lea(data, Address(oop, offset)); 4894 } 4895 } 4896 4897 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 4898 Register index, Register data) { 4899 assert_different_registers(array, array_klass, index); 4900 assert_different_registers(rscratch1, array, index); 4901 4902 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 4903 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 4904 4905 // Klass::layout_helper_log2_element_size(lh) 4906 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 4907 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 4908 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 4909 lslv(index, index, rscratch1); 4910 4911 add(data, array, index); 4912 add(data, data, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT)); 4913 } 4914 4915 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4916 Register tmp2, DecoratorSet decorators) { 4917 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 4918 } 4919 4920 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4921 Register tmp2, DecoratorSet decorators) { 4922 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 4923 } 4924 4925 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 4926 Register tmp2, Register tmp3, DecoratorSet decorators) { 4927 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 4928 } 4929 4930 // Used for storing NULLs. 4931 void MacroAssembler::store_heap_oop_null(Address dst) { 4932 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 4933 } 4934 4935 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4936 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 4937 int index = oop_recorder()->allocate_metadata_index(obj); 4938 RelocationHolder rspec = metadata_Relocation::spec(index); 4939 return Address((address)obj, rspec); 4940 } 4941 4942 // Move an oop into a register. 4943 void MacroAssembler::movoop(Register dst, jobject obj) { 4944 int oop_index; 4945 if (obj == NULL) { 4946 oop_index = oop_recorder()->allocate_oop_index(obj); 4947 } else { 4948 #ifdef ASSERT 4949 { 4950 ThreadInVMfromUnknown tiv; 4951 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4952 } 4953 #endif 4954 oop_index = oop_recorder()->find_index(obj); 4955 } 4956 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4957 4958 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 4959 mov(dst, Address((address)obj, rspec)); 4960 } else { 4961 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4962 ldr_constant(dst, Address(dummy, rspec)); 4963 } 4964 4965 } 4966 4967 // Move a metadata address into a register. 4968 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4969 int oop_index; 4970 if (obj == NULL) { 4971 oop_index = oop_recorder()->allocate_metadata_index(obj); 4972 } else { 4973 oop_index = oop_recorder()->find_index(obj); 4974 } 4975 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4976 mov(dst, Address((address)obj, rspec)); 4977 } 4978 4979 Address MacroAssembler::constant_oop_address(jobject obj) { 4980 #ifdef ASSERT 4981 { 4982 ThreadInVMfromUnknown tiv; 4983 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4984 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4985 } 4986 #endif 4987 int oop_index = oop_recorder()->find_index(obj); 4988 return Address((address)obj, oop_Relocation::spec(oop_index)); 4989 } 4990 4991 // Object / value buffer allocation... 4992 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 4993 Register t1, Register t2, 4994 bool clear_fields, Label& alloc_failed) 4995 { 4996 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 4997 Register layout_size = t1; 4998 assert(new_obj == r0, "needs to be r0"); 4999 assert_different_registers(klass, new_obj, t1, t2); 5000 5001 // get instance_size in InstanceKlass (scaled to a count of bytes) 5002 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5003 // test to see if it has a finalizer or is malformed in some way 5004 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5005 br(Assembler::NE, slow_case_no_pop); 5006 5007 // Allocate the instance: 5008 // If TLAB is enabled: 5009 // Try to allocate in the TLAB. 5010 // If fails, go to the slow path. 5011 // Initialize the allocation. 5012 // Exit. 5013 // 5014 // Go to slow path. 5015 5016 if (UseTLAB) { 5017 push(klass); 5018 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5019 if (ZeroTLAB || (!clear_fields)) { 5020 // the fields have been already cleared 5021 b(initialize_header); 5022 } else { 5023 // initialize both the header and fields 5024 b(initialize_object); 5025 } 5026 5027 if (clear_fields) { 5028 // The object is initialized before the header. If the object size is 5029 // zero, go directly to the header initialization. 5030 bind(initialize_object); 5031 subs(layout_size, layout_size, sizeof(oopDesc)); 5032 br(Assembler::EQ, initialize_header); 5033 5034 // Initialize topmost object field, divide size by 8, check if odd and 5035 // test if zero. 5036 5037 #ifdef ASSERT 5038 // make sure instance_size was multiple of 8 5039 Label L; 5040 tst(layout_size, 7); 5041 br(Assembler::EQ, L); 5042 stop("object size is not multiple of 8 - adjust this code"); 5043 bind(L); 5044 // must be > 0, no extra check needed here 5045 #endif 5046 5047 lsr(layout_size, layout_size, LogBytesPerLong); 5048 5049 // initialize remaining object fields: instance_size was a multiple of 8 5050 { 5051 Label loop; 5052 Register base = t2; 5053 5054 bind(loop); 5055 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5056 str(zr, Address(rscratch1, sizeof(oopDesc) - 1*oopSize)); 5057 subs(layout_size, layout_size, 1); 5058 br(Assembler::NE, loop); 5059 } 5060 } // clear_fields 5061 5062 // initialize object header only. 5063 bind(initialize_header); 5064 pop(klass); 5065 Register mark_word = t2; 5066 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5067 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes ())); 5068 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5069 mov(t2, klass); // preserve klass 5070 store_klass(new_obj, t2); // src klass reg is potentially compressed 5071 5072 // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ? 5073 5074 b(done); 5075 } 5076 5077 if (UseTLAB) { 5078 bind(slow_case); 5079 pop(klass); 5080 } 5081 bind(slow_case_no_pop); 5082 b(alloc_failed); 5083 5084 bind(done); 5085 } 5086 5087 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5088 void MacroAssembler::tlab_allocate(Register obj, 5089 Register var_size_in_bytes, 5090 int con_size_in_bytes, 5091 Register t1, 5092 Register t2, 5093 Label& slow_case) { 5094 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5095 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5096 } 5097 5098 void MacroAssembler::verify_tlab() { 5099 #ifdef ASSERT 5100 if (UseTLAB && VerifyOops) { 5101 Label next, ok; 5102 5103 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5104 5105 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5106 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5107 cmp(rscratch2, rscratch1); 5108 br(Assembler::HS, next); 5109 STOP("assert(top >= start)"); 5110 should_not_reach_here(); 5111 5112 bind(next); 5113 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5114 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5115 cmp(rscratch2, rscratch1); 5116 br(Assembler::HS, ok); 5117 STOP("assert(top <= end)"); 5118 should_not_reach_here(); 5119 5120 bind(ok); 5121 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5122 } 5123 #endif 5124 } 5125 5126 void MacroAssembler::get_inline_type_field_klass(Register klass, Register index, Register inline_klass) { 5127 ldr(inline_klass, Address(klass, InstanceKlass::inline_type_field_klasses_offset())); 5128 #ifdef ASSERT 5129 { 5130 Label done; 5131 cbnz(inline_klass, done); 5132 stop("get_inline_type_field_klass contains no inline klass"); 5133 bind(done); 5134 } 5135 #endif 5136 ldr(inline_klass, Address(inline_klass, index, Address::lsl(3))); 5137 } 5138 5139 // Writes to stack successive pages until offset reached to check for 5140 // stack overflow + shadow pages. This clobbers tmp. 5141 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5142 assert_different_registers(tmp, size, rscratch1); 5143 mov(tmp, sp); 5144 // Bang stack for total size given plus shadow page size. 5145 // Bang one page at a time because large size can bang beyond yellow and 5146 // red zones. 5147 Label loop; 5148 mov(rscratch1, (int)os::vm_page_size()); 5149 bind(loop); 5150 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5151 subsw(size, size, rscratch1); 5152 str(size, Address(tmp)); 5153 br(Assembler::GT, loop); 5154 5155 // Bang down shadow pages too. 5156 // At this point, (tmp-0) is the last address touched, so don't 5157 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5158 // was post-decremented.) Skip this address by starting at i=1, and 5159 // touch a few more pages below. N.B. It is important to touch all 5160 // the way down to and including i=StackShadowPages. 5161 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5162 // this could be any sized move but this is can be a debugging crumb 5163 // so the bigger the better. 5164 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5165 str(size, Address(tmp)); 5166 } 5167 } 5168 5169 // Move the address of the polling page into dest. 5170 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5171 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5172 } 5173 5174 // Read the polling page. The address of the polling page must 5175 // already be in r. 5176 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5177 address mark; 5178 { 5179 InstructionMark im(this); 5180 code_section()->relocate(inst_mark(), rtype); 5181 ldrw(zr, Address(r, 0)); 5182 mark = inst_mark(); 5183 } 5184 verify_cross_modify_fence_not_required(); 5185 return mark; 5186 } 5187 5188 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5189 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5190 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5191 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5192 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5193 int64_t offset_low = dest_page - low_page; 5194 int64_t offset_high = dest_page - high_page; 5195 5196 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5197 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5198 5199 InstructionMark im(this); 5200 code_section()->relocate(inst_mark(), dest.rspec()); 5201 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5202 // the code cache so that if it is relocated we know it will still reach 5203 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5204 _adrp(reg1, dest.target()); 5205 } else { 5206 uint64_t target = (uint64_t)dest.target(); 5207 uint64_t adrp_target 5208 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5209 5210 _adrp(reg1, (address)adrp_target); 5211 movk(reg1, target >> 32, 32); 5212 } 5213 byte_offset = (uint64_t)dest.target() & 0xfff; 5214 } 5215 5216 void MacroAssembler::load_byte_map_base(Register reg) { 5217 CardTable::CardValue* byte_map_base = 5218 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5219 5220 // Strictly speaking the byte_map_base isn't an address at all, and it might 5221 // even be negative. It is thus materialised as a constant. 5222 mov(reg, (uint64_t)byte_map_base); 5223 } 5224 5225 void MacroAssembler::build_frame(int framesize) { 5226 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5227 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5228 protect_return_address(); 5229 if (framesize < ((1 << 9) + 2 * wordSize)) { 5230 sub(sp, sp, framesize); 5231 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5232 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5233 } else { 5234 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5235 if (PreserveFramePointer) mov(rfp, sp); 5236 if (framesize < ((1 << 12) + 2 * wordSize)) 5237 sub(sp, sp, framesize - 2 * wordSize); 5238 else { 5239 mov(rscratch1, framesize - 2 * wordSize); 5240 sub(sp, sp, rscratch1); 5241 } 5242 } 5243 verify_cross_modify_fence_not_required(); 5244 } 5245 5246 void MacroAssembler::remove_frame(int framesize) { 5247 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5248 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5249 if (framesize < ((1 << 9) + 2 * wordSize)) { 5250 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5251 add(sp, sp, framesize); 5252 } else { 5253 if (framesize < ((1 << 12) + 2 * wordSize)) 5254 add(sp, sp, framesize - 2 * wordSize); 5255 else { 5256 mov(rscratch1, framesize - 2 * wordSize); 5257 add(sp, sp, rscratch1); 5258 } 5259 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5260 } 5261 authenticate_return_address(); 5262 } 5263 5264 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 5265 if (needs_stack_repair) { 5266 // Remove the extension of the caller's frame used for inline type unpacking 5267 // 5268 // Right now the stack looks like this: 5269 // 5270 // | Arguments from caller | 5271 // |---------------------------| <-- caller's SP 5272 // | Saved LR #1 | 5273 // | Saved FP #1 | 5274 // |---------------------------| 5275 // | Extension space for | 5276 // | inline arg (un)packing | 5277 // |---------------------------| <-- start of this method's frame 5278 // | Saved LR #2 | 5279 // | Saved FP #2 | 5280 // |---------------------------| <-- FP 5281 // | sp_inc | 5282 // | method locals | 5283 // |---------------------------| <-- SP 5284 // 5285 // There are two copies of FP and LR on the stack. They will be identical 5286 // unless the caller has been deoptimized, in which case LR #1 will be patched 5287 // to point at the deopt blob, and LR #2 will still point into the old method. 5288 // 5289 // The sp_inc stack slot holds the total size of the frame including the 5290 // extension space minus two words for the saved FP and LR. 5291 5292 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 5293 5294 ldr(rscratch1, Address(sp, sp_inc_offset)); 5295 add(sp, sp, rscratch1); 5296 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5297 } else { 5298 remove_frame(initial_framesize); 5299 } 5300 } 5301 5302 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 5303 int real_frame_size = frame_size + sp_inc; 5304 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 5305 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 5306 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 5307 5308 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 5309 5310 // Subtract two words for the saved FP and LR as these will be popped 5311 // separately. See remove_frame above. 5312 mov(rscratch1, real_frame_size - 2*wordSize); 5313 str(rscratch1, Address(sp, sp_inc_offset)); 5314 } 5315 5316 // This method counts leading positive bytes (highest bit not set) in provided byte array 5317 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5318 // Simple and most common case of aligned small array which is not at the 5319 // end of memory page is placed here. All other cases are in stub. 5320 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5321 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5322 assert_different_registers(ary1, len, result); 5323 5324 mov(result, len); 5325 cmpw(len, 0); 5326 br(LE, DONE); 5327 cmpw(len, 4 * wordSize); 5328 br(GE, STUB_LONG); // size > 32 then go to stub 5329 5330 int shift = 64 - exact_log2(os::vm_page_size()); 5331 lsl(rscratch1, ary1, shift); 5332 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5333 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5334 br(CS, STUB); // at the end of page then go to stub 5335 subs(len, len, wordSize); 5336 br(LT, END); 5337 5338 BIND(LOOP); 5339 ldr(rscratch1, Address(post(ary1, wordSize))); 5340 tst(rscratch1, UPPER_BIT_MASK); 5341 br(NE, SET_RESULT); 5342 subs(len, len, wordSize); 5343 br(GE, LOOP); 5344 cmpw(len, -wordSize); 5345 br(EQ, DONE); 5346 5347 BIND(END); 5348 ldr(rscratch1, Address(ary1)); 5349 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5350 lslv(rscratch1, rscratch1, rscratch2); 5351 tst(rscratch1, UPPER_BIT_MASK); 5352 br(NE, SET_RESULT); 5353 b(DONE); 5354 5355 BIND(STUB); 5356 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5357 assert(count_pos.target() != NULL, "count_positives stub has not been generated"); 5358 address tpc1 = trampoline_call(count_pos); 5359 if (tpc1 == NULL) { 5360 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5361 postcond(pc() == badAddress); 5362 return NULL; 5363 } 5364 b(DONE); 5365 5366 BIND(STUB_LONG); 5367 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5368 assert(count_pos_long.target() != NULL, "count_positives_long stub has not been generated"); 5369 address tpc2 = trampoline_call(count_pos_long); 5370 if (tpc2 == NULL) { 5371 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5372 postcond(pc() == badAddress); 5373 return NULL; 5374 } 5375 b(DONE); 5376 5377 BIND(SET_RESULT); 5378 5379 add(len, len, wordSize); 5380 sub(result, result, len); 5381 5382 BIND(DONE); 5383 postcond(pc() != badAddress); 5384 return pc(); 5385 } 5386 5387 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5388 Register tmp4, Register tmp5, Register result, 5389 Register cnt1, int elem_size) { 5390 Label DONE, SAME; 5391 Register tmp1 = rscratch1; 5392 Register tmp2 = rscratch2; 5393 Register cnt2 = tmp2; // cnt2 only used in array length compare 5394 int elem_per_word = wordSize/elem_size; 5395 int log_elem_size = exact_log2(elem_size); 5396 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5397 int base_offset 5398 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5399 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5400 5401 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5402 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5403 5404 #ifndef PRODUCT 5405 { 5406 const char kind = (elem_size == 2) ? 'U' : 'L'; 5407 char comment[64]; 5408 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5409 BLOCK_COMMENT(comment); 5410 } 5411 #endif 5412 5413 // if (a1 == a2) 5414 // return true; 5415 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5416 br(EQ, SAME); 5417 5418 if (UseSimpleArrayEquals) { 5419 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5420 // if (a1 == null || a2 == null) 5421 // return false; 5422 // a1 & a2 == 0 means (some-pointer is null) or 5423 // (very-rare-or-even-probably-impossible-pointer-values) 5424 // so, we can save one branch in most cases 5425 tst(a1, a2); 5426 mov(result, false); 5427 br(EQ, A_MIGHT_BE_NULL); 5428 // if (a1.length != a2.length) 5429 // return false; 5430 bind(A_IS_NOT_NULL); 5431 ldrw(cnt1, Address(a1, length_offset)); 5432 ldrw(cnt2, Address(a2, length_offset)); 5433 eorw(tmp5, cnt1, cnt2); 5434 cbnzw(tmp5, DONE); 5435 lea(a1, Address(a1, base_offset)); 5436 lea(a2, Address(a2, base_offset)); 5437 // Check for short strings, i.e. smaller than wordSize. 5438 subs(cnt1, cnt1, elem_per_word); 5439 br(Assembler::LT, SHORT); 5440 // Main 8 byte comparison loop. 5441 bind(NEXT_WORD); { 5442 ldr(tmp1, Address(post(a1, wordSize))); 5443 ldr(tmp2, Address(post(a2, wordSize))); 5444 subs(cnt1, cnt1, elem_per_word); 5445 eor(tmp5, tmp1, tmp2); 5446 cbnz(tmp5, DONE); 5447 } br(GT, NEXT_WORD); 5448 // Last longword. In the case where length == 4 we compare the 5449 // same longword twice, but that's still faster than another 5450 // conditional branch. 5451 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5452 // length == 4. 5453 if (log_elem_size > 0) 5454 lsl(cnt1, cnt1, log_elem_size); 5455 ldr(tmp3, Address(a1, cnt1)); 5456 ldr(tmp4, Address(a2, cnt1)); 5457 eor(tmp5, tmp3, tmp4); 5458 cbnz(tmp5, DONE); 5459 b(SAME); 5460 bind(A_MIGHT_BE_NULL); 5461 // in case both a1 and a2 are not-null, proceed with loads 5462 cbz(a1, DONE); 5463 cbz(a2, DONE); 5464 b(A_IS_NOT_NULL); 5465 bind(SHORT); 5466 5467 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5468 { 5469 ldrw(tmp1, Address(post(a1, 4))); 5470 ldrw(tmp2, Address(post(a2, 4))); 5471 eorw(tmp5, tmp1, tmp2); 5472 cbnzw(tmp5, DONE); 5473 } 5474 bind(TAIL03); 5475 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5476 { 5477 ldrh(tmp3, Address(post(a1, 2))); 5478 ldrh(tmp4, Address(post(a2, 2))); 5479 eorw(tmp5, tmp3, tmp4); 5480 cbnzw(tmp5, DONE); 5481 } 5482 bind(TAIL01); 5483 if (elem_size == 1) { // Only needed when comparing byte arrays. 5484 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5485 { 5486 ldrb(tmp1, a1); 5487 ldrb(tmp2, a2); 5488 eorw(tmp5, tmp1, tmp2); 5489 cbnzw(tmp5, DONE); 5490 } 5491 } 5492 } else { 5493 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5494 CSET_EQ, LAST_CHECK; 5495 mov(result, false); 5496 cbz(a1, DONE); 5497 ldrw(cnt1, Address(a1, length_offset)); 5498 cbz(a2, DONE); 5499 ldrw(cnt2, Address(a2, length_offset)); 5500 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5501 // faster to perform another branch before comparing a1 and a2 5502 cmp(cnt1, (u1)elem_per_word); 5503 br(LE, SHORT); // short or same 5504 ldr(tmp3, Address(pre(a1, base_offset))); 5505 subs(zr, cnt1, stubBytesThreshold); 5506 br(GE, STUB); 5507 ldr(tmp4, Address(pre(a2, base_offset))); 5508 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5509 cmp(cnt2, cnt1); 5510 br(NE, DONE); 5511 5512 // Main 16 byte comparison loop with 2 exits 5513 bind(NEXT_DWORD); { 5514 ldr(tmp1, Address(pre(a1, wordSize))); 5515 ldr(tmp2, Address(pre(a2, wordSize))); 5516 subs(cnt1, cnt1, 2 * elem_per_word); 5517 br(LE, TAIL); 5518 eor(tmp4, tmp3, tmp4); 5519 cbnz(tmp4, DONE); 5520 ldr(tmp3, Address(pre(a1, wordSize))); 5521 ldr(tmp4, Address(pre(a2, wordSize))); 5522 cmp(cnt1, (u1)elem_per_word); 5523 br(LE, TAIL2); 5524 cmp(tmp1, tmp2); 5525 } br(EQ, NEXT_DWORD); 5526 b(DONE); 5527 5528 bind(TAIL); 5529 eor(tmp4, tmp3, tmp4); 5530 eor(tmp2, tmp1, tmp2); 5531 lslv(tmp2, tmp2, tmp5); 5532 orr(tmp5, tmp4, tmp2); 5533 cmp(tmp5, zr); 5534 b(CSET_EQ); 5535 5536 bind(TAIL2); 5537 eor(tmp2, tmp1, tmp2); 5538 cbnz(tmp2, DONE); 5539 b(LAST_CHECK); 5540 5541 bind(STUB); 5542 ldr(tmp4, Address(pre(a2, base_offset))); 5543 cmp(cnt2, cnt1); 5544 br(NE, DONE); 5545 if (elem_size == 2) { // convert to byte counter 5546 lsl(cnt1, cnt1, 1); 5547 } 5548 eor(tmp5, tmp3, tmp4); 5549 cbnz(tmp5, DONE); 5550 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5551 assert(stub.target() != NULL, "array_equals_long stub has not been generated"); 5552 address tpc = trampoline_call(stub); 5553 if (tpc == NULL) { 5554 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5555 postcond(pc() == badAddress); 5556 return NULL; 5557 } 5558 b(DONE); 5559 5560 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5561 // so, if a2 == null => return false(0), else return true, so we can return a2 5562 mov(result, a2); 5563 b(DONE); 5564 bind(SHORT); 5565 cmp(cnt2, cnt1); 5566 br(NE, DONE); 5567 cbz(cnt1, SAME); 5568 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5569 ldr(tmp3, Address(a1, base_offset)); 5570 ldr(tmp4, Address(a2, base_offset)); 5571 bind(LAST_CHECK); 5572 eor(tmp4, tmp3, tmp4); 5573 lslv(tmp5, tmp4, tmp5); 5574 cmp(tmp5, zr); 5575 bind(CSET_EQ); 5576 cset(result, EQ); 5577 b(DONE); 5578 } 5579 5580 bind(SAME); 5581 mov(result, true); 5582 // That's it. 5583 bind(DONE); 5584 5585 BLOCK_COMMENT("} array_equals"); 5586 postcond(pc() != badAddress); 5587 return pc(); 5588 } 5589 5590 // Compare Strings 5591 5592 // For Strings we're passed the address of the first characters in a1 5593 // and a2 and the length in cnt1. 5594 // elem_size is the element size in bytes: either 1 or 2. 5595 // There are two implementations. For arrays >= 8 bytes, all 5596 // comparisons (including the final one, which may overlap) are 5597 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 5598 // halfword, then a short, and then a byte. 5599 5600 void MacroAssembler::string_equals(Register a1, Register a2, 5601 Register result, Register cnt1, int elem_size) 5602 { 5603 Label SAME, DONE, SHORT, NEXT_WORD; 5604 Register tmp1 = rscratch1; 5605 Register tmp2 = rscratch2; 5606 Register cnt2 = tmp2; // cnt2 only used in array length compare 5607 5608 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 5609 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5610 5611 #ifndef PRODUCT 5612 { 5613 const char kind = (elem_size == 2) ? 'U' : 'L'; 5614 char comment[64]; 5615 snprintf(comment, sizeof comment, "{string_equals%c", kind); 5616 BLOCK_COMMENT(comment); 5617 } 5618 #endif 5619 5620 mov(result, false); 5621 5622 // Check for short strings, i.e. smaller than wordSize. 5623 subs(cnt1, cnt1, wordSize); 5624 br(Assembler::LT, SHORT); 5625 // Main 8 byte comparison loop. 5626 bind(NEXT_WORD); { 5627 ldr(tmp1, Address(post(a1, wordSize))); 5628 ldr(tmp2, Address(post(a2, wordSize))); 5629 subs(cnt1, cnt1, wordSize); 5630 eor(tmp1, tmp1, tmp2); 5631 cbnz(tmp1, DONE); 5632 } br(GT, NEXT_WORD); 5633 // Last longword. In the case where length == 4 we compare the 5634 // same longword twice, but that's still faster than another 5635 // conditional branch. 5636 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5637 // length == 4. 5638 ldr(tmp1, Address(a1, cnt1)); 5639 ldr(tmp2, Address(a2, cnt1)); 5640 eor(tmp2, tmp1, tmp2); 5641 cbnz(tmp2, DONE); 5642 b(SAME); 5643 5644 bind(SHORT); 5645 Label TAIL03, TAIL01; 5646 5647 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 5648 { 5649 ldrw(tmp1, Address(post(a1, 4))); 5650 ldrw(tmp2, Address(post(a2, 4))); 5651 eorw(tmp1, tmp1, tmp2); 5652 cbnzw(tmp1, DONE); 5653 } 5654 bind(TAIL03); 5655 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 5656 { 5657 ldrh(tmp1, Address(post(a1, 2))); 5658 ldrh(tmp2, Address(post(a2, 2))); 5659 eorw(tmp1, tmp1, tmp2); 5660 cbnzw(tmp1, DONE); 5661 } 5662 bind(TAIL01); 5663 if (elem_size == 1) { // Only needed when comparing 1-byte elements 5664 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5665 { 5666 ldrb(tmp1, a1); 5667 ldrb(tmp2, a2); 5668 eorw(tmp1, tmp1, tmp2); 5669 cbnzw(tmp1, DONE); 5670 } 5671 } 5672 // Arrays are equal. 5673 bind(SAME); 5674 mov(result, true); 5675 5676 // That's it. 5677 bind(DONE); 5678 BLOCK_COMMENT("} string_equals"); 5679 } 5680 5681 5682 // The size of the blocks erased by the zero_blocks stub. We must 5683 // handle anything smaller than this ourselves in zero_words(). 5684 const int MacroAssembler::zero_words_block_size = 8; 5685 5686 // zero_words() is used by C2 ClearArray patterns and by 5687 // C1_MacroAssembler. It is as small as possible, handling small word 5688 // counts locally and delegating anything larger to the zero_blocks 5689 // stub. It is expanded many times in compiled code, so it is 5690 // important to keep it short. 5691 5692 // ptr: Address of a buffer to be zeroed. 5693 // cnt: Count in HeapWords. 5694 // 5695 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 5696 address MacroAssembler::zero_words(Register ptr, Register cnt) 5697 { 5698 assert(is_power_of_2(zero_words_block_size), "adjust this"); 5699 5700 BLOCK_COMMENT("zero_words {"); 5701 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 5702 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5703 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 5704 5705 subs(rscratch1, cnt, zero_words_block_size); 5706 Label around; 5707 br(LO, around); 5708 { 5709 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5710 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 5711 // Make sure this is a C2 compilation. C1 allocates space only for 5712 // trampoline stubs generated by Call LIR ops, and in any case it 5713 // makes sense for a C1 compilation task to proceed as quickly as 5714 // possible. 5715 CompileTask* task; 5716 if (StubRoutines::aarch64::complete() 5717 && Thread::current()->is_Compiler_thread() 5718 && (task = ciEnv::current()->task()) 5719 && is_c2_compile(task->comp_level())) { 5720 address tpc = trampoline_call(zero_blocks); 5721 if (tpc == NULL) { 5722 DEBUG_ONLY(reset_labels(around)); 5723 return NULL; 5724 } 5725 } else { 5726 far_call(zero_blocks); 5727 } 5728 } 5729 bind(around); 5730 5731 // We have a few words left to do. zero_blocks has adjusted r10 and r11 5732 // for us. 5733 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 5734 Label l; 5735 tbz(cnt, exact_log2(i), l); 5736 for (int j = 0; j < i; j += 2) { 5737 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 5738 } 5739 bind(l); 5740 } 5741 { 5742 Label l; 5743 tbz(cnt, 0, l); 5744 str(zr, Address(ptr)); 5745 bind(l); 5746 } 5747 5748 BLOCK_COMMENT("} zero_words"); 5749 return pc(); 5750 } 5751 5752 // base: Address of a buffer to be zeroed, 8 bytes aligned. 5753 // cnt: Immediate count in HeapWords. 5754 // 5755 // r10, r11, rscratch1, and rscratch2 are clobbered. 5756 address MacroAssembler::zero_words(Register base, uint64_t cnt) 5757 { 5758 assert(wordSize <= BlockZeroingLowLimit, 5759 "increase BlockZeroingLowLimit"); 5760 address result = nullptr; 5761 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 5762 #ifndef PRODUCT 5763 { 5764 char buf[64]; 5765 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 5766 BLOCK_COMMENT(buf); 5767 } 5768 #endif 5769 if (cnt >= 16) { 5770 uint64_t loops = cnt/16; 5771 if (loops > 1) { 5772 mov(rscratch2, loops - 1); 5773 } 5774 { 5775 Label loop; 5776 bind(loop); 5777 for (int i = 0; i < 16; i += 2) { 5778 stp(zr, zr, Address(base, i * BytesPerWord)); 5779 } 5780 add(base, base, 16 * BytesPerWord); 5781 if (loops > 1) { 5782 subs(rscratch2, rscratch2, 1); 5783 br(GE, loop); 5784 } 5785 } 5786 } 5787 cnt %= 16; 5788 int i = cnt & 1; // store any odd word to start 5789 if (i) str(zr, Address(base)); 5790 for (; i < (int)cnt; i += 2) { 5791 stp(zr, zr, Address(base, i * wordSize)); 5792 } 5793 BLOCK_COMMENT("} zero_words"); 5794 result = pc(); 5795 } else { 5796 mov(r10, base); mov(r11, cnt); 5797 result = zero_words(r10, r11); 5798 } 5799 return result; 5800 } 5801 5802 // Zero blocks of memory by using DC ZVA. 5803 // 5804 // Aligns the base address first sufficiently for DC ZVA, then uses 5805 // DC ZVA repeatedly for every full block. cnt is the size to be 5806 // zeroed in HeapWords. Returns the count of words left to be zeroed 5807 // in cnt. 5808 // 5809 // NOTE: This is intended to be used in the zero_blocks() stub. If 5810 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 5811 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 5812 Register tmp = rscratch1; 5813 Register tmp2 = rscratch2; 5814 int zva_length = VM_Version::zva_length(); 5815 Label initial_table_end, loop_zva; 5816 Label fini; 5817 5818 // Base must be 16 byte aligned. If not just return and let caller handle it 5819 tst(base, 0x0f); 5820 br(Assembler::NE, fini); 5821 // Align base with ZVA length. 5822 neg(tmp, base); 5823 andr(tmp, tmp, zva_length - 1); 5824 5825 // tmp: the number of bytes to be filled to align the base with ZVA length. 5826 add(base, base, tmp); 5827 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5828 adr(tmp2, initial_table_end); 5829 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5830 br(tmp2); 5831 5832 for (int i = -zva_length + 16; i < 0; i += 16) 5833 stp(zr, zr, Address(base, i)); 5834 bind(initial_table_end); 5835 5836 sub(cnt, cnt, zva_length >> 3); 5837 bind(loop_zva); 5838 dc(Assembler::ZVA, base); 5839 subs(cnt, cnt, zva_length >> 3); 5840 add(base, base, zva_length); 5841 br(Assembler::GE, loop_zva); 5842 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 5843 bind(fini); 5844 } 5845 5846 // base: Address of a buffer to be filled, 8 bytes aligned. 5847 // cnt: Count in 8-byte unit. 5848 // value: Value to be filled with. 5849 // base will point to the end of the buffer after filling. 5850 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 5851 { 5852 // Algorithm: 5853 // 5854 // if (cnt == 0) { 5855 // return; 5856 // } 5857 // if ((p & 8) != 0) { 5858 // *p++ = v; 5859 // } 5860 // 5861 // scratch1 = cnt & 14; 5862 // cnt -= scratch1; 5863 // p += scratch1; 5864 // switch (scratch1 / 2) { 5865 // do { 5866 // cnt -= 16; 5867 // p[-16] = v; 5868 // p[-15] = v; 5869 // case 7: 5870 // p[-14] = v; 5871 // p[-13] = v; 5872 // case 6: 5873 // p[-12] = v; 5874 // p[-11] = v; 5875 // // ... 5876 // case 1: 5877 // p[-2] = v; 5878 // p[-1] = v; 5879 // case 0: 5880 // p += 16; 5881 // } while (cnt); 5882 // } 5883 // if ((cnt & 1) == 1) { 5884 // *p++ = v; 5885 // } 5886 5887 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5888 5889 Label fini, skip, entry, loop; 5890 const int unroll = 8; // Number of stp instructions we'll unroll 5891 5892 cbz(cnt, fini); 5893 tbz(base, 3, skip); 5894 str(value, Address(post(base, 8))); 5895 sub(cnt, cnt, 1); 5896 bind(skip); 5897 5898 andr(rscratch1, cnt, (unroll-1) * 2); 5899 sub(cnt, cnt, rscratch1); 5900 add(base, base, rscratch1, Assembler::LSL, 3); 5901 adr(rscratch2, entry); 5902 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5903 br(rscratch2); 5904 5905 bind(loop); 5906 add(base, base, unroll * 16); 5907 for (int i = -unroll; i < 0; i++) 5908 stp(value, value, Address(base, i * 16)); 5909 bind(entry); 5910 subs(cnt, cnt, unroll * 2); 5911 br(Assembler::GE, loop); 5912 5913 tbz(cnt, 0, fini); 5914 str(value, Address(post(base, 8))); 5915 bind(fini); 5916 } 5917 5918 // Intrinsic for 5919 // 5920 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 5921 // return the number of characters copied. 5922 // - java/lang/StringUTF16.compress 5923 // return zero (0) if copy fails, otherwise 'len'. 5924 // 5925 // This version always returns the number of characters copied, and does not 5926 // clobber the 'len' register. A successful copy will complete with the post- 5927 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 5928 // post-condition: 0 <= 'res' < 'len'. 5929 // 5930 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 5931 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 5932 // beyond the acceptable, even though the footprint would be smaller. 5933 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 5934 // avoid additional bloat. 5935 // 5936 void MacroAssembler::encode_iso_array(Register src, Register dst, 5937 Register len, Register res, bool ascii, 5938 FloatRegister vtmp0, FloatRegister vtmp1, 5939 FloatRegister vtmp2, FloatRegister vtmp3) 5940 { 5941 Register cnt = res; 5942 Register max = rscratch1; 5943 Register chk = rscratch2; 5944 5945 prfm(Address(src), PLDL1STRM); 5946 movw(cnt, len); 5947 5948 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5949 5950 Label LOOP_32, DONE_32, FAIL_32; 5951 5952 BIND(LOOP_32); 5953 { 5954 cmpw(cnt, 32); 5955 br(LT, DONE_32); 5956 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5957 // Extract lower bytes. 5958 FloatRegister vlo0 = v4; 5959 FloatRegister vlo1 = v5; 5960 uzp1(vlo0, T16B, vtmp0, vtmp1); 5961 uzp1(vlo1, T16B, vtmp2, vtmp3); 5962 // Merge bits... 5963 orr(vtmp0, T16B, vtmp0, vtmp1); 5964 orr(vtmp2, T16B, vtmp2, vtmp3); 5965 // Extract merged upper bytes. 5966 FloatRegister vhix = vtmp0; 5967 uzp2(vhix, T16B, vtmp0, vtmp2); 5968 // ISO-check on hi-parts (all zero). 5969 // ASCII-check on lo-parts (no sign). 5970 FloatRegister vlox = vtmp1; // Merge lower bytes. 5971 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5972 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 5973 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5974 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5975 ASCII(orr(chk, chk, max)); 5976 cbnz(chk, FAIL_32); 5977 subw(cnt, cnt, 32); 5978 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5979 b(LOOP_32); 5980 } 5981 BIND(FAIL_32); 5982 sub(src, src, 64); 5983 BIND(DONE_32); 5984 5985 Label LOOP_8, SKIP_8; 5986 5987 BIND(LOOP_8); 5988 { 5989 cmpw(cnt, 8); 5990 br(LT, SKIP_8); 5991 FloatRegister vhi = vtmp0; 5992 FloatRegister vlo = vtmp1; 5993 ld1(vtmp3, T8H, src); 5994 uzp1(vlo, T16B, vtmp3, vtmp3); 5995 uzp2(vhi, T16B, vtmp3, vtmp3); 5996 // ISO-check on hi-parts (all zero). 5997 // ASCII-check on lo-parts (no sign). 5998 ASCII(cm(LT, vtmp2, T16B, vlo)); 5999 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6000 ASCII(umov(max, vtmp2, B, 0)); 6001 ASCII(orr(chk, chk, max)); 6002 cbnz(chk, SKIP_8); 6003 6004 strd(vlo, Address(post(dst, 8))); 6005 subw(cnt, cnt, 8); 6006 add(src, src, 16); 6007 b(LOOP_8); 6008 } 6009 BIND(SKIP_8); 6010 6011 #undef ASCII 6012 6013 Label LOOP, DONE; 6014 6015 cbz(cnt, DONE); 6016 BIND(LOOP); 6017 { 6018 Register chr = rscratch1; 6019 ldrh(chr, Address(post(src, 2))); 6020 tst(chr, ascii ? 0xff80 : 0xff00); 6021 br(NE, DONE); 6022 strb(chr, Address(post(dst, 1))); 6023 subs(cnt, cnt, 1); 6024 br(GT, LOOP); 6025 } 6026 BIND(DONE); 6027 // Return index where we stopped. 6028 subw(res, len, cnt); 6029 } 6030 6031 // Inflate byte[] array to char[]. 6032 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6033 FloatRegister vtmp1, FloatRegister vtmp2, 6034 FloatRegister vtmp3, Register tmp4) { 6035 Label big, done, after_init, to_stub; 6036 6037 assert_different_registers(src, dst, len, tmp4, rscratch1); 6038 6039 fmovd(vtmp1, 0.0); 6040 lsrw(tmp4, len, 3); 6041 bind(after_init); 6042 cbnzw(tmp4, big); 6043 // Short string: less than 8 bytes. 6044 { 6045 Label loop, tiny; 6046 6047 cmpw(len, 4); 6048 br(LT, tiny); 6049 // Use SIMD to do 4 bytes. 6050 ldrs(vtmp2, post(src, 4)); 6051 zip1(vtmp3, T8B, vtmp2, vtmp1); 6052 subw(len, len, 4); 6053 strd(vtmp3, post(dst, 8)); 6054 6055 cbzw(len, done); 6056 6057 // Do the remaining bytes by steam. 6058 bind(loop); 6059 ldrb(tmp4, post(src, 1)); 6060 strh(tmp4, post(dst, 2)); 6061 subw(len, len, 1); 6062 6063 bind(tiny); 6064 cbnz(len, loop); 6065 6066 b(done); 6067 } 6068 6069 if (SoftwarePrefetchHintDistance >= 0) { 6070 bind(to_stub); 6071 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6072 assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); 6073 address tpc = trampoline_call(stub); 6074 if (tpc == NULL) { 6075 DEBUG_ONLY(reset_labels(big, done)); 6076 postcond(pc() == badAddress); 6077 return NULL; 6078 } 6079 b(after_init); 6080 } 6081 6082 // Unpack the bytes 8 at a time. 6083 bind(big); 6084 { 6085 Label loop, around, loop_last, loop_start; 6086 6087 if (SoftwarePrefetchHintDistance >= 0) { 6088 const int large_loop_threshold = (64 + 16)/8; 6089 ldrd(vtmp2, post(src, 8)); 6090 andw(len, len, 7); 6091 cmp(tmp4, (u1)large_loop_threshold); 6092 br(GE, to_stub); 6093 b(loop_start); 6094 6095 bind(loop); 6096 ldrd(vtmp2, post(src, 8)); 6097 bind(loop_start); 6098 subs(tmp4, tmp4, 1); 6099 br(EQ, loop_last); 6100 zip1(vtmp2, T16B, vtmp2, vtmp1); 6101 ldrd(vtmp3, post(src, 8)); 6102 st1(vtmp2, T8H, post(dst, 16)); 6103 subs(tmp4, tmp4, 1); 6104 zip1(vtmp3, T16B, vtmp3, vtmp1); 6105 st1(vtmp3, T8H, post(dst, 16)); 6106 br(NE, loop); 6107 b(around); 6108 bind(loop_last); 6109 zip1(vtmp2, T16B, vtmp2, vtmp1); 6110 st1(vtmp2, T8H, post(dst, 16)); 6111 bind(around); 6112 cbz(len, done); 6113 } else { 6114 andw(len, len, 7); 6115 bind(loop); 6116 ldrd(vtmp2, post(src, 8)); 6117 sub(tmp4, tmp4, 1); 6118 zip1(vtmp3, T16B, vtmp2, vtmp1); 6119 st1(vtmp3, T8H, post(dst, 16)); 6120 cbnz(tmp4, loop); 6121 } 6122 } 6123 6124 // Do the tail of up to 8 bytes. 6125 add(src, src, len); 6126 ldrd(vtmp3, Address(src, -8)); 6127 add(dst, dst, len, ext::uxtw, 1); 6128 zip1(vtmp3, T16B, vtmp3, vtmp1); 6129 strq(vtmp3, Address(dst, -16)); 6130 6131 bind(done); 6132 postcond(pc() != badAddress); 6133 return pc(); 6134 } 6135 6136 // Compress char[] array to byte[]. 6137 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6138 Register res, 6139 FloatRegister tmp0, FloatRegister tmp1, 6140 FloatRegister tmp2, FloatRegister tmp3) { 6141 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3); 6142 // Adjust result: res == len ? len : 0 6143 cmp(len, res); 6144 csel(res, res, zr, EQ); 6145 } 6146 6147 // java.math.round(double a) 6148 // Returns the closest long to the argument, with ties rounding to 6149 // positive infinity. This requires some fiddling for corner 6150 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6151 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6152 FloatRegister ftmp) { 6153 Label DONE; 6154 BLOCK_COMMENT("java_round_double: { "); 6155 fmovd(rscratch1, src); 6156 // Use RoundToNearestTiesAway unless src small and -ve. 6157 fcvtasd(dst, src); 6158 // Test if src >= 0 || abs(src) >= 0x1.0p52 6159 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6160 mov(rscratch2, julong_cast(0x1.0p52)); 6161 cmp(rscratch1, rscratch2); 6162 br(HS, DONE); { 6163 // src < 0 && abs(src) < 0x1.0p52 6164 // src may have a fractional part, so add 0.5 6165 fmovd(ftmp, 0.5); 6166 faddd(ftmp, src, ftmp); 6167 // Convert double to jlong, use RoundTowardsNegative 6168 fcvtmsd(dst, ftmp); 6169 } 6170 bind(DONE); 6171 BLOCK_COMMENT("} java_round_double"); 6172 } 6173 6174 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6175 FloatRegister ftmp) { 6176 Label DONE; 6177 BLOCK_COMMENT("java_round_float: { "); 6178 fmovs(rscratch1, src); 6179 // Use RoundToNearestTiesAway unless src small and -ve. 6180 fcvtassw(dst, src); 6181 // Test if src >= 0 || abs(src) >= 0x1.0p23 6182 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6183 mov(rscratch2, jint_cast(0x1.0p23f)); 6184 cmp(rscratch1, rscratch2); 6185 br(HS, DONE); { 6186 // src < 0 && |src| < 0x1.0p23 6187 // src may have a fractional part, so add 0.5 6188 fmovs(ftmp, 0.5f); 6189 fadds(ftmp, src, ftmp); 6190 // Convert float to jint, use RoundTowardsNegative 6191 fcvtmssw(dst, ftmp); 6192 } 6193 bind(DONE); 6194 BLOCK_COMMENT("} java_round_float"); 6195 } 6196 6197 // get_thread() can be called anywhere inside generated code so we 6198 // need to save whatever non-callee save context might get clobbered 6199 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6200 // the call setup code. 6201 // 6202 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6203 // On other systems, the helper is a usual C function. 6204 // 6205 void MacroAssembler::get_thread(Register dst) { 6206 RegSet saved_regs = 6207 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6208 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6209 6210 protect_return_address(); 6211 push(saved_regs, sp); 6212 6213 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6214 blr(lr); 6215 if (dst != c_rarg0) { 6216 mov(dst, c_rarg0); 6217 } 6218 6219 pop(saved_regs, sp); 6220 authenticate_return_address(); 6221 } 6222 6223 #ifdef COMPILER2 6224 // C2 compiled method's prolog code 6225 // Moved here from aarch64.ad to support Valhalla code belows 6226 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 6227 if (C->clinit_barrier_on_entry()) { 6228 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 6229 6230 Label L_skip_barrier; 6231 6232 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 6233 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 6234 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 6235 bind(L_skip_barrier); 6236 } 6237 6238 if (C->max_vector_size() > 0) { 6239 reinitialize_ptrue(); 6240 } 6241 6242 int bangsize = C->output()->bang_size_in_bytes(); 6243 if (C->output()->need_stack_bang(bangsize)) 6244 generate_stack_overflow_check(bangsize); 6245 6246 // n.b. frame size includes space for return pc and rfp 6247 const long framesize = C->output()->frame_size_in_bytes(); 6248 build_frame(framesize); 6249 6250 if (C->needs_stack_repair()) { 6251 save_stack_increment(sp_inc, framesize); 6252 } 6253 6254 if (VerifyStackAtCalls) { 6255 Unimplemented(); 6256 } 6257 } 6258 #endif // COMPILER2 6259 6260 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 6261 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 6262 // An inline type might be returned. If fields are in registers we 6263 // need to allocate an inline type instance and initialize it with 6264 // the value of the fields. 6265 Label skip; 6266 // We only need a new buffered inline type if a new one is not returned 6267 tbz(r0, 0, skip); 6268 int call_offset = -1; 6269 6270 // Be careful not to clobber r1-7 which hold returned fields 6271 // Also do not use callee-saved registers as these may be live in the interpreter 6272 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 6273 6274 // The following code is similar to allocate_instance but has some slight differences, 6275 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 6276 // allocating is not necessary if vk != NULL, etc. allocate_instance is not aware of these. 6277 Label slow_case; 6278 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 6279 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 6280 6281 if (vk != NULL) { 6282 // Called from C1, where the return type is statically known. 6283 movptr(klass, (intptr_t)vk->get_InlineKlass()); 6284 jint obj_size = vk->layout_helper(); 6285 assert(obj_size != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 6286 if (UseTLAB) { 6287 tlab_allocate(r0, noreg, obj_size, tmp1, tmp2, slow_case); 6288 } else { 6289 b(slow_case); 6290 } 6291 } else { 6292 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 6293 andr(klass, r0, -2); 6294 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 6295 if (UseTLAB) { 6296 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 6297 } else { 6298 b(slow_case); 6299 } 6300 } 6301 if (UseTLAB) { 6302 // 2. Initialize buffered inline instance header 6303 Register buffer_obj = r0; 6304 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 6305 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 6306 store_klass_gap(buffer_obj, zr); 6307 if (vk == NULL) { 6308 // store_klass corrupts klass, so save it for later use (interpreter case only). 6309 mov(tmp1, klass); 6310 } 6311 store_klass(buffer_obj, klass); 6312 // 3. Initialize its fields with an inline class specific handler 6313 if (vk != NULL) { 6314 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 6315 } else { 6316 // tmp1 holds klass preserved above 6317 ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 6318 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 6319 blr(tmp1); 6320 } 6321 6322 membar(Assembler::StoreStore); 6323 b(skip); 6324 } else { 6325 // Must have already branched to slow_case above. 6326 DEBUG_ONLY(should_not_reach_here()); 6327 } 6328 bind(slow_case); 6329 // We failed to allocate a new inline type, fall back to a runtime 6330 // call. Some oop field may be live in some registers but we can't 6331 // tell. That runtime call will take care of preserving them 6332 // across a GC if there's one. 6333 mov(r0, r0_preserved); 6334 6335 if (from_interpreter) { 6336 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 6337 } else { 6338 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 6339 call_offset = offset(); 6340 } 6341 membar(Assembler::StoreStore); 6342 6343 bind(skip); 6344 return call_offset; 6345 } 6346 6347 // Move a value between registers/stack slots and update the reg_state 6348 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 6349 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 6350 if (reg_state[to->value()] == reg_written) { 6351 return true; // Already written 6352 } 6353 6354 if (from != to && bt != T_VOID) { 6355 if (reg_state[to->value()] == reg_readonly) { 6356 return false; // Not yet writable 6357 } 6358 if (from->is_reg()) { 6359 if (to->is_reg()) { 6360 if (from->is_Register() && to->is_Register()) { 6361 mov(to->as_Register(), from->as_Register()); 6362 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 6363 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 6364 } else { 6365 ShouldNotReachHere(); 6366 } 6367 } else { 6368 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 6369 Address to_addr = Address(sp, st_off); 6370 if (from->is_FloatRegister()) { 6371 if (bt == T_DOUBLE) { 6372 strd(from->as_FloatRegister(), to_addr); 6373 } else { 6374 assert(bt == T_FLOAT, "must be float"); 6375 strs(from->as_FloatRegister(), to_addr); 6376 } 6377 } else { 6378 str(from->as_Register(), to_addr); 6379 } 6380 } 6381 } else { 6382 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 6383 if (to->is_reg()) { 6384 if (to->is_FloatRegister()) { 6385 if (bt == T_DOUBLE) { 6386 ldrd(to->as_FloatRegister(), from_addr); 6387 } else { 6388 assert(bt == T_FLOAT, "must be float"); 6389 ldrs(to->as_FloatRegister(), from_addr); 6390 } 6391 } else { 6392 ldr(to->as_Register(), from_addr); 6393 } 6394 } else { 6395 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 6396 ldr(rscratch1, from_addr); 6397 str(rscratch1, Address(sp, st_off)); 6398 } 6399 } 6400 } 6401 6402 // Update register states 6403 reg_state[from->value()] = reg_writable; 6404 reg_state[to->value()] = reg_written; 6405 return true; 6406 } 6407 6408 // Calculate the extra stack space required for packing or unpacking inline 6409 // args and adjust the stack pointer 6410 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 6411 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 6412 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 6413 assert(sp_inc > 0, "sanity"); 6414 6415 // Save a copy of the FP and LR here for deoptimization patching and frame walking 6416 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6417 6418 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 6419 if (sp_inc < (1 << 9)) { 6420 sub(sp, sp, sp_inc); // Fits in an immediate 6421 } else { 6422 mov(rscratch1, sp_inc); 6423 sub(sp, sp, rscratch1); 6424 } 6425 6426 return sp_inc + 2 * wordSize; // Account for the FP/LR space 6427 } 6428 6429 // Read all fields from an inline type oop and store the values in registers/stack slots 6430 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 6431 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 6432 RegState reg_state[]) { 6433 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 6434 assert(from->is_valid(), "source must be valid"); 6435 bool progress = false; 6436 #ifdef ASSERT 6437 const int start_offset = offset(); 6438 #endif 6439 6440 Label L_null, L_notNull; 6441 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 6442 Register tmp1 = r10; 6443 Register tmp2 = r11; 6444 Register fromReg = noreg; 6445 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 6446 bool done = true; 6447 bool mark_done = true; 6448 VMReg toReg; 6449 BasicType bt; 6450 // Check if argument requires a null check 6451 bool null_check = false; 6452 VMReg nullCheckReg; 6453 while (stream.next(nullCheckReg, bt)) { 6454 if (sig->at(stream.sig_index())._offset == -1) { 6455 null_check = true; 6456 break; 6457 } 6458 } 6459 stream.reset(sig_index, to_index); 6460 while (stream.next(toReg, bt)) { 6461 assert(toReg->is_valid(), "destination must be valid"); 6462 int idx = (int)toReg->value(); 6463 if (reg_state[idx] == reg_readonly) { 6464 if (idx != from->value()) { 6465 mark_done = false; 6466 } 6467 done = false; 6468 continue; 6469 } else if (reg_state[idx] == reg_written) { 6470 continue; 6471 } 6472 assert(reg_state[idx] == reg_writable, "must be writable"); 6473 reg_state[idx] = reg_written; 6474 progress = true; 6475 6476 if (fromReg == noreg) { 6477 if (from->is_reg()) { 6478 fromReg = from->as_Register(); 6479 } else { 6480 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 6481 ldr(tmp1, Address(sp, st_off)); 6482 fromReg = tmp1; 6483 } 6484 if (null_check) { 6485 // Nullable inline type argument, emit null check 6486 cbz(fromReg, L_null); 6487 } 6488 } 6489 int off = sig->at(stream.sig_index())._offset; 6490 if (off == -1) { 6491 assert(null_check, "Missing null check at"); 6492 if (toReg->is_stack()) { 6493 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 6494 mov(tmp2, 1); 6495 str(tmp2, Address(sp, st_off)); 6496 } else { 6497 mov(toReg->as_Register(), 1); 6498 } 6499 continue; 6500 } 6501 assert(off > 0, "offset in object should be positive"); 6502 Address fromAddr = Address(fromReg, off); 6503 if (!toReg->is_FloatRegister()) { 6504 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 6505 if (is_reference_type(bt)) { 6506 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 6507 } else { 6508 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 6509 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 6510 } 6511 if (toReg->is_stack()) { 6512 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 6513 str(dst, Address(sp, st_off)); 6514 } 6515 } else if (bt == T_DOUBLE) { 6516 ldrd(toReg->as_FloatRegister(), fromAddr); 6517 } else { 6518 assert(bt == T_FLOAT, "must be float"); 6519 ldrs(toReg->as_FloatRegister(), fromAddr); 6520 } 6521 } 6522 if (progress && null_check) { 6523 if (done) { 6524 b(L_notNull); 6525 bind(L_null); 6526 // Set IsInit field to zero to signal that the argument is null. 6527 // Also set all oop fields to zero to make the GC happy. 6528 stream.reset(sig_index, to_index); 6529 while (stream.next(toReg, bt)) { 6530 if (sig->at(stream.sig_index())._offset == -1 || 6531 bt == T_OBJECT || bt == T_ARRAY) { 6532 if (toReg->is_stack()) { 6533 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 6534 str(zr, Address(sp, st_off)); 6535 } else { 6536 mov(toReg->as_Register(), zr); 6537 } 6538 } 6539 } 6540 bind(L_notNull); 6541 } else { 6542 bind(L_null); 6543 } 6544 } 6545 6546 sig_index = stream.sig_index(); 6547 to_index = stream.regs_index(); 6548 6549 if (mark_done && reg_state[from->value()] != reg_written) { 6550 // This is okay because no one else will write to that slot 6551 reg_state[from->value()] = reg_writable; 6552 } 6553 from_index--; 6554 assert(progress || (start_offset == offset()), "should not emit code"); 6555 return done; 6556 } 6557 6558 // Pack fields back into an inline type oop 6559 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 6560 VMRegPair* from, int from_count, int& from_index, VMReg to, 6561 RegState reg_state[], Register val_array) { 6562 assert(sig->at(sig_index)._bt == T_PRIMITIVE_OBJECT, "should be at end delimiter"); 6563 assert(to->is_valid(), "destination must be valid"); 6564 6565 if (reg_state[to->value()] == reg_written) { 6566 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6567 return true; // Already written 6568 } 6569 6570 // The GC barrier expanded by store_heap_oop below may call into the 6571 // runtime so use callee-saved registers for any values that need to be 6572 // preserved. The GC barrier assembler should take care of saving the 6573 // Java argument registers. 6574 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 6575 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 6576 Register val_obj_tmp = r21; 6577 Register from_reg_tmp = r22; 6578 Register tmp1 = r14; 6579 Register tmp2 = r13; 6580 Register tmp3 = r12; 6581 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 6582 6583 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 6584 6585 if (reg_state[to->value()] == reg_readonly) { 6586 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 6587 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 6588 return false; // Not yet writable 6589 } 6590 val_obj = val_obj_tmp; 6591 } 6592 6593 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_PRIMITIVE_OBJECT); 6594 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 6595 6596 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 6597 VMReg fromReg; 6598 BasicType bt; 6599 Label L_null; 6600 while (stream.next(fromReg, bt)) { 6601 assert(fromReg->is_valid(), "source must be valid"); 6602 reg_state[fromReg->value()] = reg_writable; 6603 6604 int off = sig->at(stream.sig_index())._offset; 6605 if (off == -1) { 6606 // Nullable inline type argument, emit null check 6607 Label L_notNull; 6608 if (fromReg->is_stack()) { 6609 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 6610 ldrb(tmp2, Address(sp, ld_off)); 6611 cbnz(tmp2, L_notNull); 6612 } else { 6613 cbnz(fromReg->as_Register(), L_notNull); 6614 } 6615 mov(val_obj, 0); 6616 b(L_null); 6617 bind(L_notNull); 6618 continue; 6619 } 6620 6621 assert(off > 0, "offset in object should be positive"); 6622 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 6623 6624 // Pack the scalarized field into the value object. 6625 Address dst(val_obj, off); 6626 6627 if (!fromReg->is_FloatRegister()) { 6628 Register src; 6629 if (fromReg->is_stack()) { 6630 src = from_reg_tmp; 6631 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 6632 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 6633 } else { 6634 src = fromReg->as_Register(); 6635 } 6636 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 6637 if (is_reference_type(bt)) { 6638 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 6639 } else { 6640 store_sized_value(dst, src, size_in_bytes); 6641 } 6642 } else if (bt == T_DOUBLE) { 6643 strd(fromReg->as_FloatRegister(), dst); 6644 } else { 6645 assert(bt == T_FLOAT, "must be float"); 6646 strs(fromReg->as_FloatRegister(), dst); 6647 } 6648 } 6649 bind(L_null); 6650 sig_index = stream.sig_index(); 6651 from_index = stream.regs_index(); 6652 6653 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 6654 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 6655 assert(success, "to register must be writeable"); 6656 6657 return true; 6658 } 6659 6660 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 6661 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 6662 } 6663 6664 void MacroAssembler::cache_wb(Address line) { 6665 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6666 assert(line.index() == noreg, "index should be noreg"); 6667 assert(line.offset() == 0, "offset should be 0"); 6668 // would like to assert this 6669 // assert(line._ext.shift == 0, "shift should be zero"); 6670 if (VM_Version::supports_dcpop()) { 6671 // writeback using clear virtual address to point of persistence 6672 dc(Assembler::CVAP, line.base()); 6673 } else { 6674 // no need to generate anything as Unsafe.writebackMemory should 6675 // never invoke this stub 6676 } 6677 } 6678 6679 void MacroAssembler::cache_wbsync(bool is_pre) { 6680 // we only need a barrier post sync 6681 if (!is_pre) { 6682 membar(Assembler::AnyAny); 6683 } 6684 } 6685 6686 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6687 // Make sure that native code does not change SVE vector length. 6688 if (!UseSVE) return; 6689 Label verify_ok; 6690 movw(tmp, zr); 6691 sve_inc(tmp, B); 6692 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6693 br(EQ, verify_ok); 6694 stop("Error: SVE vector length has changed since jvm startup"); 6695 bind(verify_ok); 6696 } 6697 6698 void MacroAssembler::verify_ptrue() { 6699 Label verify_ok; 6700 if (!UseSVE) { 6701 return; 6702 } 6703 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6704 sve_dec(rscratch1, B); 6705 cbz(rscratch1, verify_ok); 6706 stop("Error: the preserved predicate register (p7) elements are not all true"); 6707 bind(verify_ok); 6708 } 6709 6710 void MacroAssembler::safepoint_isb() { 6711 isb(); 6712 #ifndef PRODUCT 6713 if (VerifyCrossModifyFence) { 6714 // Clear the thread state. 6715 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6716 } 6717 #endif 6718 } 6719 6720 #ifndef PRODUCT 6721 void MacroAssembler::verify_cross_modify_fence_not_required() { 6722 if (VerifyCrossModifyFence) { 6723 // Check if thread needs a cross modify fence. 6724 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6725 Label fence_not_required; 6726 cbz(rscratch1, fence_not_required); 6727 // If it does then fail. 6728 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 6729 mov(c_rarg0, rthread); 6730 blr(rscratch1); 6731 bind(fence_not_required); 6732 } 6733 } 6734 #endif 6735 6736 void MacroAssembler::spin_wait() { 6737 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6738 switch (VM_Version::spin_wait_desc().inst()) { 6739 case SpinWait::NOP: 6740 nop(); 6741 break; 6742 case SpinWait::ISB: 6743 isb(); 6744 break; 6745 case SpinWait::YIELD: 6746 yield(); 6747 break; 6748 default: 6749 ShouldNotReachHere(); 6750 } 6751 } 6752 } 6753 6754 // Stack frame creation/removal 6755 6756 void MacroAssembler::enter(bool strip_ret_addr) { 6757 if (strip_ret_addr) { 6758 // Addresses can only be signed once. If there are multiple nested frames being created 6759 // in the same function, then the return address needs stripping first. 6760 strip_return_address(); 6761 } 6762 protect_return_address(); 6763 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6764 mov(rfp, sp); 6765 } 6766 6767 void MacroAssembler::leave() { 6768 mov(sp, rfp); 6769 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6770 authenticate_return_address(); 6771 } 6772 6773 // ROP Protection 6774 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6775 // destroying stack frames or whenever directly loading/storing the LR to memory. 6776 // If ROP protection is not set then these functions are no-ops. 6777 // For more details on PAC see pauth_aarch64.hpp. 6778 6779 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6780 // Uses the FP as the modifier. 6781 // 6782 void MacroAssembler::protect_return_address() { 6783 if (VM_Version::use_rop_protection()) { 6784 check_return_address(); 6785 // The standard convention for C code is to use paciasp, which uses SP as the modifier. This 6786 // works because in C code, FP and SP match on function entry. In the JDK, SP and FP may not 6787 // match, so instead explicitly use the FP. 6788 pacia(lr, rfp); 6789 } 6790 } 6791 6792 // Sign the return value in the given register. Use before updating the LR in the existing stack 6793 // frame for the current function. 6794 // Uses the FP from the start of the function as the modifier - which is stored at the address of 6795 // the current FP. 6796 // 6797 void MacroAssembler::protect_return_address(Register return_reg, Register temp_reg) { 6798 if (VM_Version::use_rop_protection()) { 6799 assert(PreserveFramePointer, "PreserveFramePointer must be set for ROP protection"); 6800 check_return_address(return_reg); 6801 ldr(temp_reg, Address(rfp)); 6802 pacia(return_reg, temp_reg); 6803 } 6804 } 6805 6806 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6807 // 6808 void MacroAssembler::authenticate_return_address(Register return_reg) { 6809 if (VM_Version::use_rop_protection()) { 6810 autia(return_reg, rfp); 6811 check_return_address(return_reg); 6812 } 6813 } 6814 6815 // Authenticate the return value in the given register. Use before updating the LR in the existing 6816 // stack frame for the current function. 6817 // Uses the FP from the start of the function as the modifier - which is stored at the address of 6818 // the current FP. 6819 // 6820 void MacroAssembler::authenticate_return_address(Register return_reg, Register temp_reg) { 6821 if (VM_Version::use_rop_protection()) { 6822 assert(PreserveFramePointer, "PreserveFramePointer must be set for ROP protection"); 6823 ldr(temp_reg, Address(rfp)); 6824 autia(return_reg, temp_reg); 6825 check_return_address(return_reg); 6826 } 6827 } 6828 6829 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6830 // there is no guaranteed way of authenticating the LR. 6831 // 6832 void MacroAssembler::strip_return_address() { 6833 if (VM_Version::use_rop_protection()) { 6834 xpaclri(); 6835 } 6836 } 6837 6838 #ifndef PRODUCT 6839 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6840 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6841 // it is difficult to debug back to the callee function. 6842 // This function simply loads from the address in the given register. 6843 // Use directly after authentication to catch authentication failures. 6844 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6845 // 6846 void MacroAssembler::check_return_address(Register return_reg) { 6847 if (VM_Version::use_rop_protection()) { 6848 ldr(zr, Address(return_reg)); 6849 } 6850 } 6851 #endif 6852 6853 // The java_calling_convention describes stack locations as ideal slots on 6854 // a frame with no abi restrictions. Since we must observe abi restrictions 6855 // (like the placement of the register window) the slots must be biased by 6856 // the following value. 6857 static int reg2offset_in(VMReg r) { 6858 // Account for saved rfp and lr 6859 // This should really be in_preserve_stack_slots 6860 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6861 } 6862 6863 static int reg2offset_out(VMReg r) { 6864 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6865 } 6866 6867 // On 64bit we will store integer like items to the stack as 6868 // 64bits items (AArch64 ABI) even though java would only store 6869 // 32bits for a parameter. On 32bit it will simply be 32bits 6870 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6871 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6872 if (src.first()->is_stack()) { 6873 if (dst.first()->is_stack()) { 6874 // stack to stack 6875 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6876 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6877 } else { 6878 // stack to reg 6879 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6880 } 6881 } else if (dst.first()->is_stack()) { 6882 // reg to stack 6883 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6884 } else { 6885 if (dst.first() != src.first()) { 6886 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6887 } 6888 } 6889 } 6890 6891 // An oop arg. Must pass a handle not the oop itself 6892 void MacroAssembler::object_move( 6893 OopMap* map, 6894 int oop_handle_offset, 6895 int framesize_in_slots, 6896 VMRegPair src, 6897 VMRegPair dst, 6898 bool is_receiver, 6899 int* receiver_offset) { 6900 6901 // must pass a handle. First figure out the location we use as a handle 6902 6903 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6904 6905 // See if oop is NULL if it is we need no handle 6906 6907 if (src.first()->is_stack()) { 6908 6909 // Oop is already on the stack as an argument 6910 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6911 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6912 if (is_receiver) { 6913 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6914 } 6915 6916 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6917 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6918 // conditionally move a NULL 6919 cmp(rscratch1, zr); 6920 csel(rHandle, zr, rHandle, Assembler::EQ); 6921 } else { 6922 6923 // Oop is in an a register we must store it to the space we reserve 6924 // on the stack for oop_handles and pass a handle if oop is non-NULL 6925 6926 const Register rOop = src.first()->as_Register(); 6927 int oop_slot; 6928 if (rOop == j_rarg0) 6929 oop_slot = 0; 6930 else if (rOop == j_rarg1) 6931 oop_slot = 1; 6932 else if (rOop == j_rarg2) 6933 oop_slot = 2; 6934 else if (rOop == j_rarg3) 6935 oop_slot = 3; 6936 else if (rOop == j_rarg4) 6937 oop_slot = 4; 6938 else if (rOop == j_rarg5) 6939 oop_slot = 5; 6940 else if (rOop == j_rarg6) 6941 oop_slot = 6; 6942 else { 6943 assert(rOop == j_rarg7, "wrong register"); 6944 oop_slot = 7; 6945 } 6946 6947 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6948 int offset = oop_slot*VMRegImpl::stack_slot_size; 6949 6950 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6951 // Store oop in handle area, may be NULL 6952 str(rOop, Address(sp, offset)); 6953 if (is_receiver) { 6954 *receiver_offset = offset; 6955 } 6956 6957 cmp(rOop, zr); 6958 lea(rHandle, Address(sp, offset)); 6959 // conditionally move a NULL 6960 csel(rHandle, zr, rHandle, Assembler::EQ); 6961 } 6962 6963 // If arg is on the stack then place it otherwise it is already in correct reg. 6964 if (dst.first()->is_stack()) { 6965 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6966 } 6967 } 6968 6969 // A float arg may have to do float reg int reg conversion 6970 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6971 if (src.first()->is_stack()) { 6972 if (dst.first()->is_stack()) { 6973 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6974 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6975 } else { 6976 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6977 } 6978 } else if (src.first() != dst.first()) { 6979 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6980 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6981 else 6982 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6983 } 6984 } 6985 6986 // A long move 6987 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6988 if (src.first()->is_stack()) { 6989 if (dst.first()->is_stack()) { 6990 // stack to stack 6991 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6992 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6993 } else { 6994 // stack to reg 6995 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6996 } 6997 } else if (dst.first()->is_stack()) { 6998 // reg to stack 6999 // Do we really have to sign extend??? 7000 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7001 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7002 } else { 7003 if (dst.first() != src.first()) { 7004 mov(dst.first()->as_Register(), src.first()->as_Register()); 7005 } 7006 } 7007 } 7008 7009 7010 // A double move 7011 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7012 if (src.first()->is_stack()) { 7013 if (dst.first()->is_stack()) { 7014 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7015 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7016 } else { 7017 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7018 } 7019 } else if (src.first() != dst.first()) { 7020 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7021 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7022 else 7023 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7024 } 7025 }