1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciInlineKlass.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/resolvedFieldEntry.hpp" 52 #include "runtime/continuation.hpp" 53 #include "runtime/globals.hpp" 54 #include "runtime/icache.hpp" 55 #include "runtime/interfaceSupport.inline.hpp" 56 #include "runtime/javaThread.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/signature_cc.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/globalDefinitions.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 #include "vmreg_aarch64.inline.hpp" 64 #ifdef COMPILER1 65 #include "c1/c1_LIRAssembler.hpp" 66 #endif 67 #ifdef COMPILER2 68 #include "oops/oop.hpp" 69 #include "opto/compile.hpp" 70 #include "opto/node.hpp" 71 #include "opto/output.hpp" 72 #endif 73 74 #include <sys/types.h> 75 76 #ifdef PRODUCT 77 #define BLOCK_COMMENT(str) /* nothing */ 78 #else 79 #define BLOCK_COMMENT(str) block_comment(str) 80 #endif 81 #define STOP(str) stop(str); 82 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 83 84 #ifdef ASSERT 85 extern "C" void disnm(intptr_t p); 86 #endif 87 // Target-dependent relocation processing 88 // 89 // Instruction sequences whose target may need to be retrieved or 90 // patched are distinguished by their leading instruction, sorting 91 // them into three main instruction groups and related subgroups. 92 // 93 // 1) Branch, Exception and System (insn count = 1) 94 // 1a) Unconditional branch (immediate): 95 // b/bl imm19 96 // 1b) Compare & branch (immediate): 97 // cbz/cbnz Rt imm19 98 // 1c) Test & branch (immediate): 99 // tbz/tbnz Rt imm14 100 // 1d) Conditional branch (immediate): 101 // b.cond imm19 102 // 103 // 2) Loads and Stores (insn count = 1) 104 // 2a) Load register literal: 105 // ldr Rt imm19 106 // 107 // 3) Data Processing Immediate (insn count = 2 or 3) 108 // 3a) PC-rel. addressing 109 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 110 // adr/adrp Rx imm21; add Ry Rx #imm12 111 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 112 // adr/adrp Rx imm21 113 // adr/adrp Rx imm21; movk Rx #imm16<<32 114 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 115 // The latter form can only happen when the target is an 116 // ExternalAddress, and (by definition) ExternalAddresses don't 117 // move. Because of that property, there is never any need to 118 // patch the last of the three instructions. However, 119 // MacroAssembler::target_addr_for_insn takes all three 120 // instructions into account and returns the correct address. 121 // 3b) Move wide (immediate) 122 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 123 // 124 // A switch on a subset of the instruction's bits provides an 125 // efficient dispatch to these subcases. 126 // 127 // insn[28:26] -> main group ('x' == don't care) 128 // 00x -> UNALLOCATED 129 // 100 -> Data Processing Immediate 130 // 101 -> Branch, Exception and System 131 // x1x -> Loads and Stores 132 // 133 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 134 // n.b. in some cases extra bits need to be checked to verify the 135 // instruction is as expected 136 // 137 // 1) ... xx101x Branch, Exception and System 138 // 1a) 00___x Unconditional branch (immediate) 139 // 1b) 01___0 Compare & branch (immediate) 140 // 1c) 01___1 Test & branch (immediate) 141 // 1d) 10___0 Conditional branch (immediate) 142 // other Should not happen 143 // 144 // 2) ... xxx1x0 Loads and Stores 145 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 146 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 147 // strictly should be 64 bit non-FP/SIMD i.e. 148 // 0101_000 (i.e. requires insn[31:24] == 01011000) 149 // 150 // 3) ... xx100x Data Processing Immediate 151 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 152 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 153 // strictly should be 64 bit movz #imm16<<0 154 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 155 // 156 class RelocActions { 157 protected: 158 typedef int (*reloc_insn)(address insn_addr, address &target); 159 160 virtual reloc_insn adrpMem() = 0; 161 virtual reloc_insn adrpAdd() = 0; 162 virtual reloc_insn adrpMovk() = 0; 163 164 const address _insn_addr; 165 const uint32_t _insn; 166 167 static uint32_t insn_at(address insn_addr, int n) { 168 return ((uint32_t*)insn_addr)[n]; 169 } 170 uint32_t insn_at(int n) const { 171 return insn_at(_insn_addr, n); 172 } 173 174 public: 175 176 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 177 RelocActions(address insn_addr, uint32_t insn) 178 : _insn_addr(insn_addr), _insn(insn) {} 179 180 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 181 virtual int conditionalBranch(address insn_addr, address &target) = 0; 182 virtual int testAndBranch(address insn_addr, address &target) = 0; 183 virtual int loadStore(address insn_addr, address &target) = 0; 184 virtual int adr(address insn_addr, address &target) = 0; 185 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 186 virtual int immediate(address insn_addr, address &target) = 0; 187 virtual void verify(address insn_addr, address &target) = 0; 188 189 int ALWAYSINLINE run(address insn_addr, address &target) { 190 int instructions = 1; 191 192 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 193 switch(dispatch) { 194 case 0b001010: 195 case 0b001011: { 196 instructions = unconditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b101010: // Conditional branch (immediate) 200 case 0b011010: { // Compare & branch (immediate) 201 instructions = conditionalBranch(insn_addr, target); 202 break; 203 } 204 case 0b011011: { 205 instructions = testAndBranch(insn_addr, target); 206 break; 207 } 208 case 0b001100: 209 case 0b001110: 210 case 0b011100: 211 case 0b011110: 212 case 0b101100: 213 case 0b101110: 214 case 0b111100: 215 case 0b111110: { 216 // load/store 217 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 218 // Load register (literal) 219 instructions = loadStore(insn_addr, target); 220 break; 221 } else { 222 // nothing to do 223 assert(target == nullptr, "did not expect to relocate target for polling page load"); 224 } 225 break; 226 } 227 case 0b001000: 228 case 0b011000: 229 case 0b101000: 230 case 0b111000: { 231 // adr/adrp 232 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 233 int shift = Instruction_aarch64::extract(_insn, 31, 31); 234 if (shift) { 235 uint32_t insn2 = insn_at(1); 236 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 9, 5)) { 239 instructions = adrp(insn_addr, target, adrpMem()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpAdd()); 244 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 245 Instruction_aarch64::extract(_insn, 4, 0) == 246 Instruction_aarch64::extract(insn2, 4, 0)) { 247 instructions = adrp(insn_addr, target, adrpMovk()); 248 } else { 249 ShouldNotReachHere(); 250 } 251 } else { 252 instructions = adr(insn_addr, target); 253 } 254 break; 255 } 256 case 0b001001: 257 case 0b011001: 258 case 0b101001: 259 case 0b111001: { 260 instructions = immediate(insn_addr, target); 261 break; 262 } 263 default: { 264 ShouldNotReachHere(); 265 } 266 } 267 268 verify(insn_addr, target); 269 return instructions * NativeInstruction::instruction_size; 270 } 271 }; 272 273 class Patcher : public RelocActions { 274 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 275 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 276 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 277 278 public: 279 Patcher(address insn_addr) : RelocActions(insn_addr) {} 280 281 virtual int unconditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 284 return 1; 285 } 286 virtual int conditionalBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 289 return 1; 290 } 291 virtual int testAndBranch(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 294 return 1; 295 } 296 virtual int loadStore(address insn_addr, address &target) { 297 intptr_t offset = (target - insn_addr) >> 2; 298 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 299 return 1; 300 } 301 virtual int adr(address insn_addr, address &target) { 302 #ifdef ASSERT 303 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 304 #endif 305 // PC-rel. addressing 306 ptrdiff_t offset = target - insn_addr; 307 int offset_lo = offset & 3; 308 offset >>= 2; 309 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 310 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 311 return 1; 312 } 313 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 314 int instructions = 1; 315 #ifdef ASSERT 316 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 317 #endif 318 ptrdiff_t offset = target - insn_addr; 319 instructions = 2; 320 precond(inner != nullptr); 321 // Give the inner reloc a chance to modify the target. 322 address adjusted_target = target; 323 instructions = (*inner)(insn_addr, adjusted_target); 324 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 325 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 326 offset = adr_page - pc_page; 327 int offset_lo = offset & 3; 328 offset >>= 2; 329 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 330 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 331 return instructions; 332 } 333 static int adrpMem_impl(address insn_addr, address &target) { 334 uintptr_t dest = (uintptr_t)target; 335 int offset_lo = dest & 0xfff; 336 uint32_t insn2 = insn_at(insn_addr, 1); 337 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 338 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 339 guarantee(((dest >> size) << size) == dest, "misaligned target"); 340 return 2; 341 } 342 static int adrpAdd_impl(address insn_addr, address &target) { 343 uintptr_t dest = (uintptr_t)target; 344 int offset_lo = dest & 0xfff; 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 346 return 2; 347 } 348 static int adrpMovk_impl(address insn_addr, address &target) { 349 uintptr_t dest = uintptr_t(target); 350 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 351 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 352 target = address(dest); 353 return 2; 354 } 355 virtual int immediate(address insn_addr, address &target) { 356 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 357 uint64_t dest = (uint64_t)target; 358 // Move wide constant 359 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 360 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 361 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 362 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 363 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 364 return 3; 365 } 366 virtual void verify(address insn_addr, address &target) { 367 #ifdef ASSERT 368 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 369 if (!(address_is == target)) { 370 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 371 disnm((intptr_t)insn_addr); 372 assert(address_is == target, "should be"); 373 } 374 #endif 375 } 376 }; 377 378 // If insn1 and insn2 use the same register to form an address, either 379 // by an offsetted LDR or a simple ADD, return the offset. If the 380 // second instruction is an LDR, the offset may be scaled. 381 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 382 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 383 Instruction_aarch64::extract(insn1, 4, 0) == 384 Instruction_aarch64::extract(insn2, 9, 5)) { 385 // Load/store register (unsigned immediate) 386 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 387 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 388 byte_offset <<= size; 389 return true; 390 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 391 Instruction_aarch64::extract(insn1, 4, 0) == 392 Instruction_aarch64::extract(insn2, 4, 0)) { 393 // add (immediate) 394 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 395 return true; 396 } 397 return false; 398 } 399 400 class AArch64Decoder : public RelocActions { 401 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 402 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 403 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 404 405 public: 406 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 407 408 virtual int loadStore(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int unconditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 415 target = insn_addr + (offset << 2); 416 return 1; 417 } 418 virtual int conditionalBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int testAndBranch(address insn_addr, address &target) { 424 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 425 target = address(((uint64_t)insn_addr + (offset << 2))); 426 return 1; 427 } 428 virtual int adr(address insn_addr, address &target) { 429 // PC-rel. addressing 430 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 431 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 432 target = address((uint64_t)insn_addr + offset); 433 return 1; 434 } 435 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 436 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 437 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 438 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 439 int shift = 12; 440 offset <<= shift; 441 uint64_t target_page = ((uint64_t)insn_addr) + offset; 442 target_page &= ((uint64_t)-1) << shift; 443 uint32_t insn2 = insn_at(1); 444 target = address(target_page); 445 precond(inner != nullptr); 446 (*inner)(insn_addr, target); 447 return 2; 448 } 449 static int adrpMem_impl(address insn_addr, address &target) { 450 uint32_t insn2 = insn_at(insn_addr, 1); 451 // Load/store register (unsigned immediate) 452 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 453 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 454 byte_offset <<= size; 455 target += byte_offset; 456 return 2; 457 } 458 static int adrpAdd_impl(address insn_addr, address &target) { 459 uint32_t insn2 = insn_at(insn_addr, 1); 460 // add (immediate) 461 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 462 target += byte_offset; 463 return 2; 464 } 465 static int adrpMovk_impl(address insn_addr, address &target) { 466 uint32_t insn2 = insn_at(insn_addr, 1); 467 uint64_t dest = uint64_t(target); 468 dest = (dest & 0xffff0000ffffffff) | 469 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 470 target = address(dest); 471 472 // We know the destination 4k page. Maybe we have a third 473 // instruction. 474 uint32_t insn = insn_at(insn_addr, 0); 475 uint32_t insn3 = insn_at(insn_addr, 2); 476 ptrdiff_t byte_offset; 477 if (offset_for(insn, insn3, byte_offset)) { 478 target += byte_offset; 479 return 3; 480 } else { 481 return 2; 482 } 483 } 484 virtual int immediate(address insn_addr, address &target) { 485 uint32_t *insns = (uint32_t *)insn_addr; 486 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 487 // Move wide constant: movz, movk, movk. See movptr(). 488 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 490 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 491 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 492 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 493 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 494 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 495 return 3; 496 } 497 virtual void verify(address insn_addr, address &target) { 498 } 499 }; 500 501 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 502 AArch64Decoder decoder(insn_addr, insn); 503 address target; 504 decoder.run(insn_addr, target); 505 return target; 506 } 507 508 // Patch any kind of instruction; there may be several instructions. 509 // Return the total length (in bytes) of the instructions. 510 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 511 Patcher patcher(insn_addr); 512 return patcher.run(insn_addr, target); 513 } 514 515 int MacroAssembler::patch_oop(address insn_addr, address o) { 516 int instructions; 517 unsigned insn = *(unsigned*)insn_addr; 518 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 519 520 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 521 // narrow OOPs by setting the upper 16 bits in the first 522 // instruction. 523 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 524 // Move narrow OOP 525 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 526 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 527 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 528 instructions = 2; 529 } else { 530 // Move wide OOP 531 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 532 uintptr_t dest = (uintptr_t)o; 533 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 534 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 535 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 536 instructions = 3; 537 } 538 return instructions * NativeInstruction::instruction_size; 539 } 540 541 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 542 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 543 // We encode narrow ones by setting the upper 16 bits in the first 544 // instruction. 545 NativeInstruction *insn = nativeInstruction_at(insn_addr); 546 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 547 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 548 549 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 550 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 551 return 2 * NativeInstruction::instruction_size; 552 } 553 554 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 555 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 556 return nullptr; 557 } 558 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 559 } 560 561 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 562 if (acquire) { 563 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 564 ldar(tmp, tmp); 565 } else { 566 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 567 } 568 if (at_return) { 569 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 570 // we may safely use the sp instead to perform the stack watermark check. 571 cmp(in_nmethod ? sp : rfp, tmp); 572 br(Assembler::HI, slow_path); 573 } else { 574 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 575 } 576 } 577 578 void MacroAssembler::rt_call(address dest, Register tmp) { 579 CodeBlob *cb = CodeCache::find_blob(dest); 580 if (cb) { 581 far_call(RuntimeAddress(dest)); 582 } else { 583 lea(tmp, RuntimeAddress(dest)); 584 blr(tmp); 585 } 586 } 587 588 void MacroAssembler::push_cont_fastpath(Register java_thread) { 589 if (!Continuations::enabled()) return; 590 Label done; 591 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 592 cmp(sp, rscratch1); 593 br(Assembler::LS, done); 594 mov(rscratch1, sp); // we can't use sp as the source in str 595 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 596 bind(done); 597 } 598 599 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 600 if (!Continuations::enabled()) return; 601 Label done; 602 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 603 cmp(sp, rscratch1); 604 br(Assembler::LO, done); 605 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 606 bind(done); 607 } 608 609 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 610 // we must set sp to zero to clear frame 611 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 612 613 // must clear fp, so that compiled frames are not confused; it is 614 // possible that we need it only for debugging 615 if (clear_fp) { 616 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 617 } 618 619 // Always clear the pc because it could have been set by make_walkable() 620 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 621 } 622 623 // Calls to C land 624 // 625 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 626 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 627 // has to be reset to 0. This is required to allow proper stack traversal. 628 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 629 Register last_java_fp, 630 Register last_java_pc, 631 Register scratch) { 632 633 if (last_java_pc->is_valid()) { 634 str(last_java_pc, Address(rthread, 635 JavaThread::frame_anchor_offset() 636 + JavaFrameAnchor::last_Java_pc_offset())); 637 } 638 639 // determine last_java_sp register 640 if (last_java_sp == sp) { 641 mov(scratch, sp); 642 last_java_sp = scratch; 643 } else if (!last_java_sp->is_valid()) { 644 last_java_sp = esp; 645 } 646 647 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 648 649 // last_java_fp is optional 650 if (last_java_fp->is_valid()) { 651 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 652 } 653 } 654 655 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 656 Register last_java_fp, 657 address last_java_pc, 658 Register scratch) { 659 assert(last_java_pc != nullptr, "must provide a valid PC"); 660 661 adr(scratch, last_java_pc); 662 str(scratch, Address(rthread, 663 JavaThread::frame_anchor_offset() 664 + JavaFrameAnchor::last_Java_pc_offset())); 665 666 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 667 } 668 669 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 670 Register last_java_fp, 671 Label &L, 672 Register scratch) { 673 if (L.is_bound()) { 674 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 675 } else { 676 InstructionMark im(this); 677 L.add_patch_at(code(), locator()); 678 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 679 } 680 } 681 682 static inline bool target_needs_far_branch(address addr) { 683 // codecache size <= 128M 684 if (!MacroAssembler::far_branches()) { 685 return false; 686 } 687 // codecache size > 240M 688 if (MacroAssembler::codestub_branch_needs_far_jump()) { 689 return true; 690 } 691 // codecache size: 128M..240M 692 return !CodeCache::is_non_nmethod(addr); 693 } 694 695 void MacroAssembler::far_call(Address entry, Register tmp) { 696 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 697 assert(CodeCache::find_blob(entry.target()) != nullptr, 698 "destination of far call not found in code cache"); 699 assert(entry.rspec().type() == relocInfo::external_word_type 700 || entry.rspec().type() == relocInfo::runtime_call_type 701 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 702 if (target_needs_far_branch(entry.target())) { 703 uint64_t offset; 704 // We can use ADRP here because we know that the total size of 705 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 706 adrp(tmp, entry, offset); 707 add(tmp, tmp, offset); 708 blr(tmp); 709 } else { 710 bl(entry); 711 } 712 } 713 714 int MacroAssembler::far_jump(Address entry, Register tmp) { 715 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 716 assert(CodeCache::find_blob(entry.target()) != nullptr, 717 "destination of far call not found in code cache"); 718 assert(entry.rspec().type() == relocInfo::external_word_type 719 || entry.rspec().type() == relocInfo::runtime_call_type 720 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 721 address start = pc(); 722 if (target_needs_far_branch(entry.target())) { 723 uint64_t offset; 724 // We can use ADRP here because we know that the total size of 725 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 726 adrp(tmp, entry, offset); 727 add(tmp, tmp, offset); 728 br(tmp); 729 } else { 730 b(entry); 731 } 732 return pc() - start; 733 } 734 735 void MacroAssembler::reserved_stack_check() { 736 // testing if reserved zone needs to be enabled 737 Label no_reserved_zone_enabling; 738 739 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 740 cmp(sp, rscratch1); 741 br(Assembler::LO, no_reserved_zone_enabling); 742 743 enter(); // LR and FP are live. 744 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 745 mov(c_rarg0, rthread); 746 blr(rscratch1); 747 leave(); 748 749 // We have already removed our own frame. 750 // throw_delayed_StackOverflowError will think that it's been 751 // called by our caller. 752 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 753 br(rscratch1); 754 should_not_reach_here(); 755 756 bind(no_reserved_zone_enabling); 757 } 758 759 static void pass_arg0(MacroAssembler* masm, Register arg) { 760 if (c_rarg0 != arg ) { 761 masm->mov(c_rarg0, arg); 762 } 763 } 764 765 static void pass_arg1(MacroAssembler* masm, Register arg) { 766 if (c_rarg1 != arg ) { 767 masm->mov(c_rarg1, arg); 768 } 769 } 770 771 static void pass_arg2(MacroAssembler* masm, Register arg) { 772 if (c_rarg2 != arg ) { 773 masm->mov(c_rarg2, arg); 774 } 775 } 776 777 static void pass_arg3(MacroAssembler* masm, Register arg) { 778 if (c_rarg3 != arg ) { 779 masm->mov(c_rarg3, arg); 780 } 781 } 782 783 static bool is_preemptable(address entry_point) { 784 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 785 } 786 787 void MacroAssembler::call_VM_base(Register oop_result, 788 Register java_thread, 789 Register last_java_sp, 790 address entry_point, 791 int number_of_arguments, 792 bool check_exceptions) { 793 // determine java_thread register 794 if (!java_thread->is_valid()) { 795 java_thread = rthread; 796 } 797 798 // determine last_java_sp register 799 if (!last_java_sp->is_valid()) { 800 last_java_sp = esp; 801 } 802 803 // debugging support 804 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 805 assert(java_thread == rthread, "unexpected register"); 806 #ifdef ASSERT 807 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 808 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 809 #endif // ASSERT 810 811 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 812 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 813 814 // push java thread (becomes first argument of C function) 815 816 mov(c_rarg0, java_thread); 817 818 // set last Java frame before call 819 assert(last_java_sp != rfp, "can't use rfp"); 820 821 Label l; 822 if (is_preemptable(entry_point)) { 823 // skip setting last_pc since we already set it to desired value. 824 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 825 } else { 826 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 827 } 828 829 // do the call, remove parameters 830 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 831 832 // lr could be poisoned with PAC signature during throw_pending_exception 833 // if it was tail-call optimized by compiler, since lr is not callee-saved 834 // reload it with proper value 835 adr(lr, l); 836 837 // reset last Java frame 838 // Only interpreter should have to clear fp 839 reset_last_Java_frame(true); 840 841 // C++ interp handles this in the interpreter 842 check_and_handle_popframe(java_thread); 843 check_and_handle_earlyret(java_thread); 844 845 if (check_exceptions) { 846 // check for pending exceptions (java_thread is set upon return) 847 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 848 Label ok; 849 cbz(rscratch1, ok); 850 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 851 br(rscratch1); 852 bind(ok); 853 } 854 855 // get oop result if there is one and reset the value in the thread 856 if (oop_result->is_valid()) { 857 get_vm_result(oop_result, java_thread); 858 } 859 } 860 861 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 862 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 863 } 864 865 // Check the entry target is always reachable from any branch. 866 static bool is_always_within_branch_range(Address entry) { 867 const address target = entry.target(); 868 869 if (!CodeCache::contains(target)) { 870 // We always use trampolines for callees outside CodeCache. 871 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 872 return false; 873 } 874 875 if (!MacroAssembler::far_branches()) { 876 return true; 877 } 878 879 if (entry.rspec().type() == relocInfo::runtime_call_type) { 880 // Runtime calls are calls of a non-compiled method (stubs, adapters). 881 // Non-compiled methods stay forever in CodeCache. 882 // We check whether the longest possible branch is within the branch range. 883 assert(CodeCache::find_blob(target) != nullptr && 884 !CodeCache::find_blob(target)->is_nmethod(), 885 "runtime call of compiled method"); 886 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 887 const address left_longest_branch_start = CodeCache::low_bound(); 888 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 889 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 890 return is_reachable; 891 } 892 893 return false; 894 } 895 896 // Maybe emit a call via a trampoline. If the code cache is small 897 // trampolines won't be emitted. 898 address MacroAssembler::trampoline_call(Address entry) { 899 assert(entry.rspec().type() == relocInfo::runtime_call_type 900 || entry.rspec().type() == relocInfo::opt_virtual_call_type 901 || entry.rspec().type() == relocInfo::static_call_type 902 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 903 904 address target = entry.target(); 905 906 if (!is_always_within_branch_range(entry)) { 907 if (!in_scratch_emit_size()) { 908 // We don't want to emit a trampoline if C2 is generating dummy 909 // code during its branch shortening phase. 910 if (entry.rspec().type() == relocInfo::runtime_call_type) { 911 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 912 code()->share_trampoline_for(entry.target(), offset()); 913 } else { 914 address stub = emit_trampoline_stub(offset(), target); 915 if (stub == nullptr) { 916 postcond(pc() == badAddress); 917 return nullptr; // CodeCache is full 918 } 919 } 920 } 921 target = pc(); 922 } 923 924 address call_pc = pc(); 925 relocate(entry.rspec()); 926 bl(target); 927 928 postcond(pc() != badAddress); 929 return call_pc; 930 } 931 932 // Emit a trampoline stub for a call to a target which is too far away. 933 // 934 // code sequences: 935 // 936 // call-site: 937 // branch-and-link to <destination> or <trampoline stub> 938 // 939 // Related trampoline stub for this call site in the stub section: 940 // load the call target from the constant pool 941 // branch (LR still points to the call site above) 942 943 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 944 address dest) { 945 // Max stub size: alignment nop, TrampolineStub. 946 address stub = start_a_stub(max_trampoline_stub_size()); 947 if (stub == nullptr) { 948 return nullptr; // CodeBuffer::expand failed 949 } 950 951 // Create a trampoline stub relocation which relates this trampoline stub 952 // with the call instruction at insts_call_instruction_offset in the 953 // instructions code-section. 954 align(wordSize); 955 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 956 + insts_call_instruction_offset)); 957 const int stub_start_offset = offset(); 958 959 // Now, create the trampoline stub's code: 960 // - load the call 961 // - call 962 Label target; 963 ldr(rscratch1, target); 964 br(rscratch1); 965 bind(target); 966 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 967 "should be"); 968 emit_int64((int64_t)dest); 969 970 const address stub_start_addr = addr_at(stub_start_offset); 971 972 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 973 974 end_a_stub(); 975 return stub_start_addr; 976 } 977 978 int MacroAssembler::max_trampoline_stub_size() { 979 // Max stub size: alignment nop, TrampolineStub. 980 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 981 } 982 983 void MacroAssembler::emit_static_call_stub() { 984 // CompiledDirectCall::set_to_interpreted knows the 985 // exact layout of this stub. 986 987 isb(); 988 mov_metadata(rmethod, nullptr); 989 990 // Jump to the entry point of the c2i stub. 991 movptr(rscratch1, 0); 992 br(rscratch1); 993 } 994 995 int MacroAssembler::static_call_stub_size() { 996 // isb; movk; movz; movz; movk; movz; movz; br 997 return 8 * NativeInstruction::instruction_size; 998 } 999 1000 void MacroAssembler::c2bool(Register x) { 1001 // implements x == 0 ? 0 : 1 1002 // note: must only look at least-significant byte of x 1003 // since C-style booleans are stored in one byte 1004 // only! (was bug) 1005 tst(x, 0xff); 1006 cset(x, Assembler::NE); 1007 } 1008 1009 address MacroAssembler::ic_call(address entry, jint method_index) { 1010 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1011 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 1012 // uintptr_t offset; 1013 // ldr_constant(rscratch2, const_ptr); 1014 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1015 return trampoline_call(Address(entry, rh)); 1016 } 1017 1018 int MacroAssembler::ic_check_size() { 1019 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1020 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1021 return NativeInstruction::instruction_size * (7 + extra_instructions); 1022 } else { 1023 return NativeInstruction::instruction_size * (5 + extra_instructions); 1024 } 1025 } 1026 1027 int MacroAssembler::ic_check(int end_alignment) { 1028 Register receiver = j_rarg0; 1029 Register data = rscratch2; 1030 Register tmp1 = rscratch1; 1031 Register tmp2 = r10; 1032 1033 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1034 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1035 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1036 // before the inline cache check here, and not after 1037 align(end_alignment, offset() + ic_check_size()); 1038 1039 int uep_offset = offset(); 1040 1041 if (UseCompactObjectHeaders) { 1042 load_narrow_klass_compact(tmp1, receiver); 1043 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1044 cmpw(tmp1, tmp2); 1045 } else if (UseCompressedClassPointers) { 1046 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1047 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1048 cmpw(tmp1, tmp2); 1049 } else { 1050 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1051 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1052 cmp(tmp1, tmp2); 1053 } 1054 1055 Label dont; 1056 br(Assembler::EQ, dont); 1057 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1058 bind(dont); 1059 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1060 1061 return uep_offset; 1062 } 1063 1064 // Implementation of call_VM versions 1065 1066 void MacroAssembler::call_VM(Register oop_result, 1067 address entry_point, 1068 bool check_exceptions) { 1069 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1070 } 1071 1072 void MacroAssembler::call_VM(Register oop_result, 1073 address entry_point, 1074 Register arg_1, 1075 bool check_exceptions) { 1076 pass_arg1(this, arg_1); 1077 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1078 } 1079 1080 void MacroAssembler::call_VM(Register oop_result, 1081 address entry_point, 1082 Register arg_1, 1083 Register arg_2, 1084 bool check_exceptions) { 1085 assert_different_registers(arg_1, c_rarg2); 1086 pass_arg2(this, arg_2); 1087 pass_arg1(this, arg_1); 1088 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1089 } 1090 1091 void MacroAssembler::call_VM(Register oop_result, 1092 address entry_point, 1093 Register arg_1, 1094 Register arg_2, 1095 Register arg_3, 1096 bool check_exceptions) { 1097 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1098 assert_different_registers(arg_2, c_rarg3); 1099 pass_arg3(this, arg_3); 1100 1101 pass_arg2(this, arg_2); 1102 1103 pass_arg1(this, arg_1); 1104 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1105 } 1106 1107 void MacroAssembler::call_VM(Register oop_result, 1108 Register last_java_sp, 1109 address entry_point, 1110 int number_of_arguments, 1111 bool check_exceptions) { 1112 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1113 } 1114 1115 void MacroAssembler::call_VM(Register oop_result, 1116 Register last_java_sp, 1117 address entry_point, 1118 Register arg_1, 1119 bool check_exceptions) { 1120 pass_arg1(this, arg_1); 1121 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1122 } 1123 1124 void MacroAssembler::call_VM(Register oop_result, 1125 Register last_java_sp, 1126 address entry_point, 1127 Register arg_1, 1128 Register arg_2, 1129 bool check_exceptions) { 1130 1131 assert_different_registers(arg_1, c_rarg2); 1132 pass_arg2(this, arg_2); 1133 pass_arg1(this, arg_1); 1134 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1135 } 1136 1137 void MacroAssembler::call_VM(Register oop_result, 1138 Register last_java_sp, 1139 address entry_point, 1140 Register arg_1, 1141 Register arg_2, 1142 Register arg_3, 1143 bool check_exceptions) { 1144 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1145 assert_different_registers(arg_2, c_rarg3); 1146 pass_arg3(this, arg_3); 1147 pass_arg2(this, arg_2); 1148 pass_arg1(this, arg_1); 1149 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1150 } 1151 1152 1153 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1154 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1155 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1156 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1157 } 1158 1159 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1160 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1161 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1162 } 1163 1164 void MacroAssembler::align(int modulus) { 1165 align(modulus, offset()); 1166 } 1167 1168 // Ensure that the code at target bytes offset from the current offset() is aligned 1169 // according to modulus. 1170 void MacroAssembler::align(int modulus, int target) { 1171 int delta = target - offset(); 1172 while ((offset() + delta) % modulus != 0) nop(); 1173 } 1174 1175 void MacroAssembler::post_call_nop() { 1176 if (!Continuations::enabled()) { 1177 return; 1178 } 1179 InstructionMark im(this); 1180 relocate(post_call_nop_Relocation::spec()); 1181 InlineSkippedInstructionsCounter skipCounter(this); 1182 nop(); 1183 movk(zr, 0); 1184 movk(zr, 0); 1185 } 1186 1187 // these are no-ops overridden by InterpreterMacroAssembler 1188 1189 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1190 1191 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1192 1193 // Look up the method for a megamorphic invokeinterface call. 1194 // The target method is determined by <intf_klass, itable_index>. 1195 // The receiver klass is in recv_klass. 1196 // On success, the result will be in method_result, and execution falls through. 1197 // On failure, execution transfers to the given label. 1198 void MacroAssembler::lookup_interface_method(Register recv_klass, 1199 Register intf_klass, 1200 RegisterOrConstant itable_index, 1201 Register method_result, 1202 Register scan_temp, 1203 Label& L_no_such_interface, 1204 bool return_method) { 1205 assert_different_registers(recv_klass, intf_klass, scan_temp); 1206 assert_different_registers(method_result, intf_klass, scan_temp); 1207 assert(recv_klass != method_result || !return_method, 1208 "recv_klass can be destroyed when method isn't needed"); 1209 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1210 "caller must use same register for non-constant itable index as for method"); 1211 1212 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1213 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1214 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1215 int scan_step = itableOffsetEntry::size() * wordSize; 1216 int vte_size = vtableEntry::size_in_bytes(); 1217 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1218 1219 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1220 1221 // Could store the aligned, prescaled offset in the klass. 1222 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1223 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1224 add(scan_temp, scan_temp, vtable_base); 1225 1226 if (return_method) { 1227 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1228 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1229 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1230 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1231 if (itentry_off) 1232 add(recv_klass, recv_klass, itentry_off); 1233 } 1234 1235 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1236 // if (scan->interface() == intf) { 1237 // result = (klass + scan->offset() + itable_index); 1238 // } 1239 // } 1240 Label search, found_method; 1241 1242 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1243 cmp(intf_klass, method_result); 1244 br(Assembler::EQ, found_method); 1245 bind(search); 1246 // Check that the previous entry is non-null. A null entry means that 1247 // the receiver class doesn't implement the interface, and wasn't the 1248 // same as when the caller was compiled. 1249 cbz(method_result, L_no_such_interface); 1250 if (itableOffsetEntry::interface_offset() != 0) { 1251 add(scan_temp, scan_temp, scan_step); 1252 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1253 } else { 1254 ldr(method_result, Address(pre(scan_temp, scan_step))); 1255 } 1256 cmp(intf_klass, method_result); 1257 br(Assembler::NE, search); 1258 1259 bind(found_method); 1260 1261 // Got a hit. 1262 if (return_method) { 1263 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1264 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1265 } 1266 } 1267 1268 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1269 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1270 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1271 // The target method is determined by <holder_klass, itable_index>. 1272 // The receiver klass is in recv_klass. 1273 // On success, the result will be in method_result, and execution falls through. 1274 // On failure, execution transfers to the given label. 1275 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1276 Register holder_klass, 1277 Register resolved_klass, 1278 Register method_result, 1279 Register temp_itbl_klass, 1280 Register scan_temp, 1281 int itable_index, 1282 Label& L_no_such_interface) { 1283 // 'method_result' is only used as output register at the very end of this method. 1284 // Until then we can reuse it as 'holder_offset'. 1285 Register holder_offset = method_result; 1286 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1287 1288 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1289 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1290 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1291 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1292 1293 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1294 1295 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1296 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1297 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1298 // temp_itbl_klass = itable[0]._interface; 1299 int vtblEntrySize = vtableEntry::size_in_bytes(); 1300 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1301 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1302 mov(holder_offset, zr); 1303 // scan_temp = &(itable[0]._interface) 1304 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1305 1306 // Initial checks: 1307 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1308 // - if (itable[0] == holder_klass), shortcut to "holder found" 1309 // - if (itable[0] == 0), no such interface 1310 cmp(resolved_klass, holder_klass); 1311 br(Assembler::NE, L_loop_search_resolved_entry); 1312 cmp(holder_klass, temp_itbl_klass); 1313 br(Assembler::EQ, L_holder_found); 1314 cbz(temp_itbl_klass, L_no_such_interface); 1315 1316 // Loop: Look for holder_klass record in itable 1317 // do { 1318 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1319 // if (temp_itbl_klass == holder_klass) { 1320 // goto L_holder_found; // Found! 1321 // } 1322 // } while (temp_itbl_klass != 0); 1323 // goto L_no_such_interface // Not found. 1324 Label L_search_holder; 1325 bind(L_search_holder); 1326 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1327 cmp(holder_klass, temp_itbl_klass); 1328 br(Assembler::EQ, L_holder_found); 1329 cbnz(temp_itbl_klass, L_search_holder); 1330 1331 b(L_no_such_interface); 1332 1333 // Loop: Look for resolved_class record in itable 1334 // while (true) { 1335 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1336 // if (temp_itbl_klass == 0) { 1337 // goto L_no_such_interface; 1338 // } 1339 // if (temp_itbl_klass == resolved_klass) { 1340 // goto L_resolved_found; // Found! 1341 // } 1342 // if (temp_itbl_klass == holder_klass) { 1343 // holder_offset = scan_temp; 1344 // } 1345 // } 1346 // 1347 Label L_loop_search_resolved; 1348 bind(L_loop_search_resolved); 1349 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1350 bind(L_loop_search_resolved_entry); 1351 cbz(temp_itbl_klass, L_no_such_interface); 1352 cmp(resolved_klass, temp_itbl_klass); 1353 br(Assembler::EQ, L_resolved_found); 1354 cmp(holder_klass, temp_itbl_klass); 1355 br(Assembler::NE, L_loop_search_resolved); 1356 mov(holder_offset, scan_temp); 1357 b(L_loop_search_resolved); 1358 1359 // See if we already have a holder klass. If not, go and scan for it. 1360 bind(L_resolved_found); 1361 cbz(holder_offset, L_search_holder); 1362 mov(scan_temp, holder_offset); 1363 1364 // Finally, scan_temp contains holder_klass vtable offset 1365 bind(L_holder_found); 1366 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1367 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1368 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1369 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1370 } 1371 1372 // virtual method calling 1373 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1374 RegisterOrConstant vtable_index, 1375 Register method_result) { 1376 assert(vtableEntry::size() * wordSize == 8, 1377 "adjust the scaling in the code below"); 1378 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1379 1380 if (vtable_index.is_register()) { 1381 lea(method_result, Address(recv_klass, 1382 vtable_index.as_register(), 1383 Address::lsl(LogBytesPerWord))); 1384 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1385 } else { 1386 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1387 ldr(method_result, 1388 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1389 } 1390 } 1391 1392 void MacroAssembler::check_klass_subtype(Register sub_klass, 1393 Register super_klass, 1394 Register temp_reg, 1395 Label& L_success) { 1396 Label L_failure; 1397 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1398 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1399 bind(L_failure); 1400 } 1401 1402 1403 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1404 Register super_klass, 1405 Register temp_reg, 1406 Label* L_success, 1407 Label* L_failure, 1408 Label* L_slow_path, 1409 Register super_check_offset) { 1410 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1411 bool must_load_sco = ! super_check_offset->is_valid(); 1412 if (must_load_sco) { 1413 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1414 } 1415 1416 Label L_fallthrough; 1417 int label_nulls = 0; 1418 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1419 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1420 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1421 assert(label_nulls <= 1, "at most one null in the batch"); 1422 1423 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1424 Address super_check_offset_addr(super_klass, sco_offset); 1425 1426 // Hacked jmp, which may only be used just before L_fallthrough. 1427 #define final_jmp(label) \ 1428 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1429 else b(label) /*omit semi*/ 1430 1431 // If the pointers are equal, we are done (e.g., String[] elements). 1432 // This self-check enables sharing of secondary supertype arrays among 1433 // non-primary types such as array-of-interface. Otherwise, each such 1434 // type would need its own customized SSA. 1435 // We move this check to the front of the fast path because many 1436 // type checks are in fact trivially successful in this manner, 1437 // so we get a nicely predicted branch right at the start of the check. 1438 cmp(sub_klass, super_klass); 1439 br(Assembler::EQ, *L_success); 1440 1441 // Check the supertype display: 1442 if (must_load_sco) { 1443 ldrw(temp_reg, super_check_offset_addr); 1444 super_check_offset = temp_reg; 1445 } 1446 1447 Address super_check_addr(sub_klass, super_check_offset); 1448 ldr(rscratch1, super_check_addr); 1449 cmp(super_klass, rscratch1); // load displayed supertype 1450 br(Assembler::EQ, *L_success); 1451 1452 // This check has worked decisively for primary supers. 1453 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1454 // (Secondary supers are interfaces and very deeply nested subtypes.) 1455 // This works in the same check above because of a tricky aliasing 1456 // between the super_cache and the primary super display elements. 1457 // (The 'super_check_addr' can address either, as the case requires.) 1458 // Note that the cache is updated below if it does not help us find 1459 // what we need immediately. 1460 // So if it was a primary super, we can just fail immediately. 1461 // Otherwise, it's the slow path for us (no success at this point). 1462 1463 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1464 if (L_failure == &L_fallthrough) { 1465 cbz(rscratch1, *L_slow_path); 1466 } else { 1467 cbnz(rscratch1, *L_failure); 1468 final_jmp(*L_slow_path); 1469 } 1470 1471 bind(L_fallthrough); 1472 1473 #undef final_jmp 1474 } 1475 1476 // These two are taken from x86, but they look generally useful 1477 1478 // scans count pointer sized words at [addr] for occurrence of value, 1479 // generic 1480 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1481 Register scratch) { 1482 Label Lloop, Lexit; 1483 cbz(count, Lexit); 1484 bind(Lloop); 1485 ldr(scratch, post(addr, wordSize)); 1486 cmp(value, scratch); 1487 br(EQ, Lexit); 1488 sub(count, count, 1); 1489 cbnz(count, Lloop); 1490 bind(Lexit); 1491 } 1492 1493 // scans count 4 byte words at [addr] for occurrence of value, 1494 // generic 1495 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1496 Register scratch) { 1497 Label Lloop, Lexit; 1498 cbz(count, Lexit); 1499 bind(Lloop); 1500 ldrw(scratch, post(addr, wordSize)); 1501 cmpw(value, scratch); 1502 br(EQ, Lexit); 1503 sub(count, count, 1); 1504 cbnz(count, Lloop); 1505 bind(Lexit); 1506 } 1507 1508 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1509 Register super_klass, 1510 Register temp_reg, 1511 Register temp2_reg, 1512 Label* L_success, 1513 Label* L_failure, 1514 bool set_cond_codes) { 1515 // NB! Callers may assume that, when temp2_reg is a valid register, 1516 // this code sets it to a nonzero value. 1517 1518 assert_different_registers(sub_klass, super_klass, temp_reg); 1519 if (temp2_reg != noreg) 1520 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1521 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1522 1523 Label L_fallthrough; 1524 int label_nulls = 0; 1525 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1526 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1527 assert(label_nulls <= 1, "at most one null in the batch"); 1528 1529 // a couple of useful fields in sub_klass: 1530 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1531 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1532 Address secondary_supers_addr(sub_klass, ss_offset); 1533 Address super_cache_addr( sub_klass, sc_offset); 1534 1535 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1536 1537 // Do a linear scan of the secondary super-klass chain. 1538 // This code is rarely used, so simplicity is a virtue here. 1539 // The repne_scan instruction uses fixed registers, which we must spill. 1540 // Don't worry too much about pre-existing connections with the input regs. 1541 1542 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1543 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1544 1545 RegSet pushed_registers; 1546 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1547 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1548 1549 if (super_klass != r0) { 1550 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1551 } 1552 1553 push(pushed_registers, sp); 1554 1555 // Get super_klass value into r0 (even if it was in r5 or r2). 1556 if (super_klass != r0) { 1557 mov(r0, super_klass); 1558 } 1559 1560 #ifndef PRODUCT 1561 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1562 #endif //PRODUCT 1563 1564 // We will consult the secondary-super array. 1565 ldr(r5, secondary_supers_addr); 1566 // Load the array length. 1567 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1568 // Skip to start of data. 1569 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1570 1571 cmp(sp, zr); // Clear Z flag; SP is never zero 1572 // Scan R2 words at [R5] for an occurrence of R0. 1573 // Set NZ/Z based on last compare. 1574 repne_scan(r5, r0, r2, rscratch1); 1575 1576 // Unspill the temp. registers: 1577 pop(pushed_registers, sp); 1578 1579 br(Assembler::NE, *L_failure); 1580 1581 // Success. Cache the super we found and proceed in triumph. 1582 1583 if (UseSecondarySupersCache) { 1584 str(super_klass, super_cache_addr); 1585 } 1586 1587 if (L_success != &L_fallthrough) { 1588 b(*L_success); 1589 } 1590 1591 #undef IS_A_TEMP 1592 1593 bind(L_fallthrough); 1594 } 1595 1596 // If Register r is invalid, remove a new register from 1597 // available_regs, and add new register to regs_to_push. 1598 Register MacroAssembler::allocate_if_noreg(Register r, 1599 RegSetIterator<Register> &available_regs, 1600 RegSet ®s_to_push) { 1601 if (!r->is_valid()) { 1602 r = *available_regs++; 1603 regs_to_push += r; 1604 } 1605 return r; 1606 } 1607 1608 // check_klass_subtype_slow_path_table() looks for super_klass in the 1609 // hash table belonging to super_klass, branching to L_success or 1610 // L_failure as appropriate. This is essentially a shim which 1611 // allocates registers as necessary then calls 1612 // lookup_secondary_supers_table() to do the work. Any of the temp 1613 // regs may be noreg, in which case this logic will chooses some 1614 // registers push and pop them from the stack. 1615 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1616 Register super_klass, 1617 Register temp_reg, 1618 Register temp2_reg, 1619 Register temp3_reg, 1620 Register result_reg, 1621 FloatRegister vtemp, 1622 Label* L_success, 1623 Label* L_failure, 1624 bool set_cond_codes) { 1625 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1626 1627 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1628 1629 Label L_fallthrough; 1630 int label_nulls = 0; 1631 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1632 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1633 assert(label_nulls <= 1, "at most one null in the batch"); 1634 1635 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1636 1637 RegSetIterator<Register> available_regs 1638 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1639 1640 RegSet pushed_regs; 1641 1642 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1643 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1644 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1645 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1646 1647 push(pushed_regs, sp); 1648 1649 lookup_secondary_supers_table_var(sub_klass, 1650 super_klass, 1651 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1652 nullptr); 1653 cmp(result_reg, zr); 1654 1655 // Unspill the temp. registers: 1656 pop(pushed_regs, sp); 1657 1658 // NB! Callers may assume that, when set_cond_codes is true, this 1659 // code sets temp2_reg to a nonzero value. 1660 if (set_cond_codes) { 1661 mov(temp2_reg, 1); 1662 } 1663 1664 br(Assembler::NE, *L_failure); 1665 1666 if (L_success != &L_fallthrough) { 1667 b(*L_success); 1668 } 1669 1670 bind(L_fallthrough); 1671 } 1672 1673 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1674 Register super_klass, 1675 Register temp_reg, 1676 Register temp2_reg, 1677 Label* L_success, 1678 Label* L_failure, 1679 bool set_cond_codes) { 1680 if (UseSecondarySupersTable) { 1681 check_klass_subtype_slow_path_table 1682 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1683 /*vtemp*/fnoreg, 1684 L_success, L_failure, set_cond_codes); 1685 } else { 1686 check_klass_subtype_slow_path_linear 1687 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1688 } 1689 } 1690 1691 1692 // Ensure that the inline code and the stub are using the same registers. 1693 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1694 do { \ 1695 assert(r_super_klass == r0 && \ 1696 r_array_base == r1 && \ 1697 r_array_length == r2 && \ 1698 (r_array_index == r3 || r_array_index == noreg) && \ 1699 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1700 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1701 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1702 } while(0) 1703 1704 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1705 Register r_super_klass, 1706 Register temp1, 1707 Register temp2, 1708 Register temp3, 1709 FloatRegister vtemp, 1710 Register result, 1711 u1 super_klass_slot, 1712 bool stub_is_near) { 1713 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1714 1715 Label L_fallthrough; 1716 1717 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1718 1719 const Register 1720 r_array_base = temp1, // r1 1721 r_array_length = temp2, // r2 1722 r_array_index = temp3, // r3 1723 r_bitmap = rscratch2; 1724 1725 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1726 1727 u1 bit = super_klass_slot; 1728 1729 // Make sure that result is nonzero if the TBZ below misses. 1730 mov(result, 1); 1731 1732 // We're going to need the bitmap in a vector reg and in a core reg, 1733 // so load both now. 1734 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1735 if (bit != 0) { 1736 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1737 } 1738 // First check the bitmap to see if super_klass might be present. If 1739 // the bit is zero, we are certain that super_klass is not one of 1740 // the secondary supers. 1741 tbz(r_bitmap, bit, L_fallthrough); 1742 1743 // Get the first array index that can contain super_klass into r_array_index. 1744 if (bit != 0) { 1745 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1746 cnt(vtemp, T8B, vtemp); 1747 addv(vtemp, T8B, vtemp); 1748 fmovd(r_array_index, vtemp); 1749 } else { 1750 mov(r_array_index, (u1)1); 1751 } 1752 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1753 1754 // We will consult the secondary-super array. 1755 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1756 1757 // The value i in r_array_index is >= 1, so even though r_array_base 1758 // points to the length, we don't need to adjust it to point to the 1759 // data. 1760 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1761 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1762 1763 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1764 eor(result, result, r_super_klass); 1765 cbz(result, L_fallthrough); // Found a match 1766 1767 // Is there another entry to check? Consult the bitmap. 1768 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1769 1770 // Linear probe. 1771 if (bit != 0) { 1772 ror(r_bitmap, r_bitmap, bit); 1773 } 1774 1775 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1776 // The next slot to be inspected, by the stub we're about to call, 1777 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1778 // have been checked. 1779 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1780 if (stub_is_near) { 1781 bl(stub); 1782 } else { 1783 address call = trampoline_call(stub); 1784 if (call == nullptr) { 1785 return false; // trampoline allocation failed 1786 } 1787 } 1788 1789 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1790 1791 bind(L_fallthrough); 1792 1793 if (VerifySecondarySupers) { 1794 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1795 temp1, temp2, result); // r1, r2, r5 1796 } 1797 return true; 1798 } 1799 1800 // At runtime, return 0 in result if r_super_klass is a superclass of 1801 // r_sub_klass, otherwise return nonzero. Use this version of 1802 // lookup_secondary_supers_table() if you don't know ahead of time 1803 // which superclass will be searched for. Used by interpreter and 1804 // runtime stubs. It is larger and has somewhat greater latency than 1805 // the version above, which takes a constant super_klass_slot. 1806 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1807 Register r_super_klass, 1808 Register temp1, 1809 Register temp2, 1810 Register temp3, 1811 FloatRegister vtemp, 1812 Register result, 1813 Label *L_success) { 1814 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1815 1816 Label L_fallthrough; 1817 1818 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1819 1820 const Register 1821 r_array_index = temp3, 1822 slot = rscratch1, 1823 r_bitmap = rscratch2; 1824 1825 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1826 1827 // Make sure that result is nonzero if the test below misses. 1828 mov(result, 1); 1829 1830 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1831 1832 // First check the bitmap to see if super_klass might be present. If 1833 // the bit is zero, we are certain that super_klass is not one of 1834 // the secondary supers. 1835 1836 // This next instruction is equivalent to: 1837 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1838 // sub(temp2, tmp_reg, slot); 1839 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1840 lslv(temp2, r_bitmap, temp2); 1841 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1842 1843 bool must_save_v0 = (vtemp == fnoreg); 1844 if (must_save_v0) { 1845 // temp1 and result are free, so use them to preserve vtemp 1846 vtemp = v0; 1847 mov(temp1, vtemp, D, 0); 1848 mov(result, vtemp, D, 1); 1849 } 1850 1851 // Get the first array index that can contain super_klass into r_array_index. 1852 mov(vtemp, D, 0, temp2); 1853 cnt(vtemp, T8B, vtemp); 1854 addv(vtemp, T8B, vtemp); 1855 mov(r_array_index, vtemp, D, 0); 1856 1857 if (must_save_v0) { 1858 mov(vtemp, D, 0, temp1 ); 1859 mov(vtemp, D, 1, result); 1860 } 1861 1862 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1863 1864 const Register 1865 r_array_base = temp1, 1866 r_array_length = temp2; 1867 1868 // The value i in r_array_index is >= 1, so even though r_array_base 1869 // points to the length, we don't need to adjust it to point to the 1870 // data. 1871 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1872 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1873 1874 // We will consult the secondary-super array. 1875 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1876 1877 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1878 eor(result, result, r_super_klass); 1879 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1880 1881 // Is there another entry to check? Consult the bitmap. 1882 rorv(r_bitmap, r_bitmap, slot); 1883 // rol(r_bitmap, r_bitmap, 1); 1884 tbz(r_bitmap, 1, L_fallthrough); 1885 1886 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1887 // The next slot to be inspected, by the logic we're about to call, 1888 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1889 // have been checked. 1890 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1891 r_bitmap, r_array_length, result, /*is_stub*/false); 1892 1893 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1894 1895 bind(L_fallthrough); 1896 1897 if (VerifySecondarySupers) { 1898 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1899 temp1, temp2, result); // r1, r2, r5 1900 } 1901 1902 if (L_success) { 1903 cbz(result, *L_success); 1904 } 1905 } 1906 1907 // Called by code generated by check_klass_subtype_slow_path 1908 // above. This is called when there is a collision in the hashed 1909 // lookup in the secondary supers array. 1910 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1911 Register r_array_base, 1912 Register r_array_index, 1913 Register r_bitmap, 1914 Register temp1, 1915 Register result, 1916 bool is_stub) { 1917 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1918 1919 const Register 1920 r_array_length = temp1, 1921 r_sub_klass = noreg; // unused 1922 1923 if (is_stub) { 1924 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1925 } 1926 1927 Label L_fallthrough, L_huge; 1928 1929 // Load the array length. 1930 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1931 // And adjust the array base to point to the data. 1932 // NB! Effectively increments current slot index by 1. 1933 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1934 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1935 1936 // The bitmap is full to bursting. 1937 // Implicit invariant: BITMAP_FULL implies (length > 0) 1938 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1939 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1940 br(GT, L_huge); 1941 1942 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1943 // current slot (at secondary_supers[r_array_index]) has not yet 1944 // been inspected, and r_array_index may be out of bounds if we 1945 // wrapped around the end of the array. 1946 1947 { // This is conventional linear probing, but instead of terminating 1948 // when a null entry is found in the table, we maintain a bitmap 1949 // in which a 0 indicates missing entries. 1950 // As long as the bitmap is not completely full, 1951 // array_length == popcount(bitmap). The array_length check above 1952 // guarantees there are 0s in the bitmap, so the loop eventually 1953 // terminates. 1954 Label L_loop; 1955 bind(L_loop); 1956 1957 // Check for wraparound. 1958 cmp(r_array_index, r_array_length); 1959 csel(r_array_index, zr, r_array_index, GE); 1960 1961 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1962 eor(result, rscratch1, r_super_klass); 1963 cbz(result, L_fallthrough); 1964 1965 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1966 1967 ror(r_bitmap, r_bitmap, 1); 1968 add(r_array_index, r_array_index, 1); 1969 b(L_loop); 1970 } 1971 1972 { // Degenerate case: more than 64 secondary supers. 1973 // FIXME: We could do something smarter here, maybe a vectorized 1974 // comparison or a binary search, but is that worth any added 1975 // complexity? 1976 bind(L_huge); 1977 cmp(sp, zr); // Clear Z flag; SP is never zero 1978 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1979 cset(result, NE); // result == 0 iff we got a match. 1980 } 1981 1982 bind(L_fallthrough); 1983 } 1984 1985 // Make sure that the hashed lookup and a linear scan agree. 1986 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1987 Register r_super_klass, 1988 Register temp1, 1989 Register temp2, 1990 Register result) { 1991 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1992 1993 const Register 1994 r_array_base = temp1, 1995 r_array_length = temp2, 1996 r_array_index = noreg, // unused 1997 r_bitmap = noreg; // unused 1998 1999 BLOCK_COMMENT("verify_secondary_supers_table {"); 2000 2001 // We will consult the secondary-super array. 2002 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2003 2004 // Load the array length. 2005 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2006 // And adjust the array base to point to the data. 2007 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2008 2009 cmp(sp, zr); // Clear Z flag; SP is never zero 2010 // Scan R2 words at [R5] for an occurrence of R0. 2011 // Set NZ/Z based on last compare. 2012 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2013 // rscratch1 == 0 iff we got a match. 2014 cset(rscratch1, NE); 2015 2016 Label passed; 2017 cmp(result, zr); 2018 cset(result, NE); // normalize result to 0/1 for comparison 2019 2020 cmp(rscratch1, result); 2021 br(EQ, passed); 2022 { 2023 mov(r0, r_super_klass); // r0 <- r0 2024 mov(r1, r_sub_klass); // r1 <- r4 2025 mov(r2, /*expected*/rscratch1); // r2 <- r8 2026 mov(r3, result); // r3 <- r5 2027 mov(r4, (address)("mismatch")); // r4 <- const 2028 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2029 should_not_reach_here(); 2030 } 2031 bind(passed); 2032 2033 BLOCK_COMMENT("} verify_secondary_supers_table"); 2034 } 2035 2036 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2037 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2038 assert_different_registers(klass, rthread, scratch); 2039 2040 Label L_fallthrough, L_tmp; 2041 if (L_fast_path == nullptr) { 2042 L_fast_path = &L_fallthrough; 2043 } else if (L_slow_path == nullptr) { 2044 L_slow_path = &L_fallthrough; 2045 } 2046 // Fast path check: class is fully initialized 2047 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2048 ldarb(scratch, scratch); 2049 subs(zr, scratch, InstanceKlass::fully_initialized); 2050 br(Assembler::EQ, *L_fast_path); 2051 2052 // Fast path check: current thread is initializer thread 2053 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2054 cmp(rthread, scratch); 2055 2056 if (L_slow_path == &L_fallthrough) { 2057 br(Assembler::EQ, *L_fast_path); 2058 bind(*L_slow_path); 2059 } else if (L_fast_path == &L_fallthrough) { 2060 br(Assembler::NE, *L_slow_path); 2061 bind(*L_fast_path); 2062 } else { 2063 Unimplemented(); 2064 } 2065 } 2066 2067 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2068 if (!VerifyOops || VerifyAdapterSharing) { 2069 // Below address of the code string confuses VerifyAdapterSharing 2070 // because it may differ between otherwise equivalent adapters. 2071 return; 2072 } 2073 2074 // Pass register number to verify_oop_subroutine 2075 const char* b = nullptr; 2076 { 2077 ResourceMark rm; 2078 stringStream ss; 2079 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2080 b = code_string(ss.as_string()); 2081 } 2082 BLOCK_COMMENT("verify_oop {"); 2083 2084 strip_return_address(); // This might happen within a stack frame. 2085 protect_return_address(); 2086 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2087 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2088 2089 mov(r0, reg); 2090 movptr(rscratch1, (uintptr_t)(address)b); 2091 2092 // call indirectly to solve generation ordering problem 2093 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2094 ldr(rscratch2, Address(rscratch2)); 2095 blr(rscratch2); 2096 2097 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2098 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2099 authenticate_return_address(); 2100 2101 BLOCK_COMMENT("} verify_oop"); 2102 } 2103 2104 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2105 if (!VerifyOops || VerifyAdapterSharing) { 2106 // Below address of the code string confuses VerifyAdapterSharing 2107 // because it may differ between otherwise equivalent adapters. 2108 return; 2109 } 2110 2111 const char* b = nullptr; 2112 { 2113 ResourceMark rm; 2114 stringStream ss; 2115 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2116 b = code_string(ss.as_string()); 2117 } 2118 BLOCK_COMMENT("verify_oop_addr {"); 2119 2120 strip_return_address(); // This might happen within a stack frame. 2121 protect_return_address(); 2122 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2123 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2124 2125 // addr may contain sp so we will have to adjust it based on the 2126 // pushes that we just did. 2127 if (addr.uses(sp)) { 2128 lea(r0, addr); 2129 ldr(r0, Address(r0, 4 * wordSize)); 2130 } else { 2131 ldr(r0, addr); 2132 } 2133 movptr(rscratch1, (uintptr_t)(address)b); 2134 2135 // call indirectly to solve generation ordering problem 2136 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2137 ldr(rscratch2, Address(rscratch2)); 2138 blr(rscratch2); 2139 2140 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2141 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2142 authenticate_return_address(); 2143 2144 BLOCK_COMMENT("} verify_oop_addr"); 2145 } 2146 2147 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2148 int extra_slot_offset) { 2149 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2150 int stackElementSize = Interpreter::stackElementSize; 2151 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2152 #ifdef ASSERT 2153 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2154 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2155 #endif 2156 if (arg_slot.is_constant()) { 2157 return Address(esp, arg_slot.as_constant() * stackElementSize 2158 + offset); 2159 } else { 2160 add(rscratch1, esp, arg_slot.as_register(), 2161 ext::uxtx, exact_log2(stackElementSize)); 2162 return Address(rscratch1, offset); 2163 } 2164 } 2165 2166 void MacroAssembler::call_VM_leaf_base(address entry_point, 2167 int number_of_arguments, 2168 Label *retaddr) { 2169 Label E, L; 2170 2171 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2172 2173 mov(rscratch1, entry_point); 2174 blr(rscratch1); 2175 if (retaddr) 2176 bind(*retaddr); 2177 2178 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2179 } 2180 2181 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2182 call_VM_leaf_base(entry_point, number_of_arguments); 2183 } 2184 2185 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2186 pass_arg0(this, arg_0); 2187 call_VM_leaf_base(entry_point, 1); 2188 } 2189 2190 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2191 assert_different_registers(arg_1, c_rarg0); 2192 pass_arg0(this, arg_0); 2193 pass_arg1(this, arg_1); 2194 call_VM_leaf_base(entry_point, 2); 2195 } 2196 2197 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2198 Register arg_1, Register arg_2) { 2199 assert_different_registers(arg_1, c_rarg0); 2200 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2201 pass_arg0(this, arg_0); 2202 pass_arg1(this, arg_1); 2203 pass_arg2(this, arg_2); 2204 call_VM_leaf_base(entry_point, 3); 2205 } 2206 2207 void MacroAssembler::super_call_VM_leaf(address entry_point) { 2208 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2209 } 2210 2211 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2212 pass_arg0(this, arg_0); 2213 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2214 } 2215 2216 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2217 2218 assert_different_registers(arg_0, c_rarg1); 2219 pass_arg1(this, arg_1); 2220 pass_arg0(this, arg_0); 2221 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2222 } 2223 2224 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2225 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2226 assert_different_registers(arg_1, c_rarg2); 2227 pass_arg2(this, arg_2); 2228 pass_arg1(this, arg_1); 2229 pass_arg0(this, arg_0); 2230 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2231 } 2232 2233 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2234 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2235 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2236 assert_different_registers(arg_2, c_rarg3); 2237 pass_arg3(this, arg_3); 2238 pass_arg2(this, arg_2); 2239 pass_arg1(this, arg_1); 2240 pass_arg0(this, arg_0); 2241 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2242 } 2243 2244 void MacroAssembler::null_check(Register reg, int offset) { 2245 if (needs_explicit_null_check(offset)) { 2246 // provoke OS null exception if reg is null by 2247 // accessing M[reg] w/o changing any registers 2248 // NOTE: this is plenty to provoke a segv 2249 ldr(zr, Address(reg)); 2250 } else { 2251 // nothing to do, (later) access of M[reg + offset] 2252 // will provoke OS null exception if reg is null 2253 } 2254 } 2255 2256 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2257 assert_different_registers(markword, rscratch2); 2258 mov(rscratch2, markWord::inline_type_mask_in_place); 2259 andr(markword, markword, rscratch2); 2260 mov(rscratch2, markWord::inline_type_pattern); 2261 cmp(markword, rscratch2); 2262 br(Assembler::EQ, is_inline_type); 2263 } 2264 2265 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) { 2266 ldrh(temp_reg, Address(klass, Klass::access_flags_offset())); 2267 andr(temp_reg, temp_reg, JVM_ACC_IDENTITY); 2268 cbz(temp_reg, is_inline_type); 2269 } 2270 2271 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) { 2272 assert_different_registers(tmp, rscratch1); 2273 cbz(object, not_inline_type); 2274 const int is_inline_type_mask = markWord::inline_type_pattern; 2275 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2276 mov(rscratch1, is_inline_type_mask); 2277 andr(tmp, tmp, rscratch1); 2278 cmp(tmp, rscratch1); 2279 br(Assembler::NE, not_inline_type); 2280 } 2281 2282 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2283 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2284 tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 2285 } 2286 2287 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2288 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2289 tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 2290 } 2291 2292 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2293 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2294 tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat); 2295 } 2296 2297 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2298 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2299 tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker); 2300 } 2301 2302 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2303 Label test_mark_word; 2304 // load mark word 2305 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2306 // check displaced 2307 tst(temp_reg, markWord::unlocked_value); 2308 br(Assembler::NE, test_mark_word); 2309 // slow path use klass prototype 2310 load_prototype_header(temp_reg, oop); 2311 2312 bind(test_mark_word); 2313 andr(temp_reg, temp_reg, test_bit); 2314 if (jmp_set) { 2315 cbnz(temp_reg, jmp_label); 2316 } else { 2317 cbz(temp_reg, jmp_label); 2318 } 2319 } 2320 2321 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) { 2322 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2323 } 2324 2325 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2326 Label&is_non_flat_array) { 2327 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2328 } 2329 2330 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 2331 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2332 } 2333 2334 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2335 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2336 } 2337 2338 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2339 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2340 br(Assembler::NE, is_flat_array); 2341 } 2342 2343 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2344 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2345 br(Assembler::EQ, is_non_flat_array); 2346 } 2347 2348 // MacroAssembler protected routines needed to implement 2349 // public methods 2350 2351 void MacroAssembler::mov(Register r, Address dest) { 2352 code_section()->relocate(pc(), dest.rspec()); 2353 uint64_t imm64 = (uint64_t)dest.target(); 2354 movptr(r, imm64); 2355 } 2356 2357 // Move a constant pointer into r. In AArch64 mode the virtual 2358 // address space is 48 bits in size, so we only need three 2359 // instructions to create a patchable instruction sequence that can 2360 // reach anywhere. 2361 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2362 #ifndef PRODUCT 2363 { 2364 char buffer[64]; 2365 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2366 block_comment(buffer); 2367 } 2368 #endif 2369 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2370 movz(r, imm64 & 0xffff); 2371 imm64 >>= 16; 2372 movk(r, imm64 & 0xffff, 16); 2373 imm64 >>= 16; 2374 movk(r, imm64 & 0xffff, 32); 2375 } 2376 2377 // Macro to mov replicated immediate to vector register. 2378 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2379 // the upper 56/48/32 bits must be zeros for B/H/S type. 2380 // Vd will get the following values for different arrangements in T 2381 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2382 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2383 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2384 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2385 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2386 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2387 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2388 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2389 // Clobbers rscratch1 2390 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2391 assert(T != T1Q, "unsupported"); 2392 if (T == T1D || T == T2D) { 2393 int imm = operand_valid_for_movi_immediate(imm64, T); 2394 if (-1 != imm) { 2395 movi(Vd, T, imm); 2396 } else { 2397 mov(rscratch1, imm64); 2398 dup(Vd, T, rscratch1); 2399 } 2400 return; 2401 } 2402 2403 #ifdef ASSERT 2404 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2405 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2406 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2407 #endif 2408 int shift = operand_valid_for_movi_immediate(imm64, T); 2409 uint32_t imm32 = imm64 & 0xffffffffULL; 2410 if (shift >= 0) { 2411 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2412 } else { 2413 movw(rscratch1, imm32); 2414 dup(Vd, T, rscratch1); 2415 } 2416 } 2417 2418 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2419 { 2420 #ifndef PRODUCT 2421 { 2422 char buffer[64]; 2423 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2424 block_comment(buffer); 2425 } 2426 #endif 2427 if (operand_valid_for_logical_immediate(false, imm64)) { 2428 orr(dst, zr, imm64); 2429 } else { 2430 // we can use a combination of MOVZ or MOVN with 2431 // MOVK to build up the constant 2432 uint64_t imm_h[4]; 2433 int zero_count = 0; 2434 int neg_count = 0; 2435 int i; 2436 for (i = 0; i < 4; i++) { 2437 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2438 if (imm_h[i] == 0) { 2439 zero_count++; 2440 } else if (imm_h[i] == 0xffffL) { 2441 neg_count++; 2442 } 2443 } 2444 if (zero_count == 4) { 2445 // one MOVZ will do 2446 movz(dst, 0); 2447 } else if (neg_count == 4) { 2448 // one MOVN will do 2449 movn(dst, 0); 2450 } else if (zero_count == 3) { 2451 for (i = 0; i < 4; i++) { 2452 if (imm_h[i] != 0L) { 2453 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2454 break; 2455 } 2456 } 2457 } else if (neg_count == 3) { 2458 // one MOVN will do 2459 for (int i = 0; i < 4; i++) { 2460 if (imm_h[i] != 0xffffL) { 2461 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2462 break; 2463 } 2464 } 2465 } else if (zero_count == 2) { 2466 // one MOVZ and one MOVK will do 2467 for (i = 0; i < 3; i++) { 2468 if (imm_h[i] != 0L) { 2469 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2470 i++; 2471 break; 2472 } 2473 } 2474 for (;i < 4; i++) { 2475 if (imm_h[i] != 0L) { 2476 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2477 } 2478 } 2479 } else if (neg_count == 2) { 2480 // one MOVN and one MOVK will do 2481 for (i = 0; i < 4; i++) { 2482 if (imm_h[i] != 0xffffL) { 2483 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2484 i++; 2485 break; 2486 } 2487 } 2488 for (;i < 4; i++) { 2489 if (imm_h[i] != 0xffffL) { 2490 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2491 } 2492 } 2493 } else if (zero_count == 1) { 2494 // one MOVZ and two MOVKs will do 2495 for (i = 0; i < 4; i++) { 2496 if (imm_h[i] != 0L) { 2497 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2498 i++; 2499 break; 2500 } 2501 } 2502 for (;i < 4; i++) { 2503 if (imm_h[i] != 0x0L) { 2504 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2505 } 2506 } 2507 } else if (neg_count == 1) { 2508 // one MOVN and two MOVKs will do 2509 for (i = 0; i < 4; i++) { 2510 if (imm_h[i] != 0xffffL) { 2511 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2512 i++; 2513 break; 2514 } 2515 } 2516 for (;i < 4; i++) { 2517 if (imm_h[i] != 0xffffL) { 2518 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2519 } 2520 } 2521 } else { 2522 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2523 movz(dst, (uint32_t)imm_h[0], 0); 2524 for (i = 1; i < 4; i++) { 2525 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2526 } 2527 } 2528 } 2529 } 2530 2531 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2532 { 2533 #ifndef PRODUCT 2534 { 2535 char buffer[64]; 2536 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2537 block_comment(buffer); 2538 } 2539 #endif 2540 if (operand_valid_for_logical_immediate(true, imm32)) { 2541 orrw(dst, zr, imm32); 2542 } else { 2543 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2544 // constant 2545 uint32_t imm_h[2]; 2546 imm_h[0] = imm32 & 0xffff; 2547 imm_h[1] = ((imm32 >> 16) & 0xffff); 2548 if (imm_h[0] == 0) { 2549 movzw(dst, imm_h[1], 16); 2550 } else if (imm_h[0] == 0xffff) { 2551 movnw(dst, imm_h[1] ^ 0xffff, 16); 2552 } else if (imm_h[1] == 0) { 2553 movzw(dst, imm_h[0], 0); 2554 } else if (imm_h[1] == 0xffff) { 2555 movnw(dst, imm_h[0] ^ 0xffff, 0); 2556 } else { 2557 // use a MOVZ and MOVK (makes it easier to debug) 2558 movzw(dst, imm_h[0], 0); 2559 movkw(dst, imm_h[1], 16); 2560 } 2561 } 2562 } 2563 2564 // Form an address from base + offset in Rd. Rd may or may 2565 // not actually be used: you must use the Address that is returned. 2566 // It is up to you to ensure that the shift provided matches the size 2567 // of your data. 2568 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2569 if (Address::offset_ok_for_immed(byte_offset, shift)) 2570 // It fits; no need for any heroics 2571 return Address(base, byte_offset); 2572 2573 // Don't do anything clever with negative or misaligned offsets 2574 unsigned mask = (1 << shift) - 1; 2575 if (byte_offset < 0 || byte_offset & mask) { 2576 mov(Rd, byte_offset); 2577 add(Rd, base, Rd); 2578 return Address(Rd); 2579 } 2580 2581 // See if we can do this with two 12-bit offsets 2582 { 2583 uint64_t word_offset = byte_offset >> shift; 2584 uint64_t masked_offset = word_offset & 0xfff000; 2585 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2586 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2587 add(Rd, base, masked_offset << shift); 2588 word_offset -= masked_offset; 2589 return Address(Rd, word_offset << shift); 2590 } 2591 } 2592 2593 // Do it the hard way 2594 mov(Rd, byte_offset); 2595 add(Rd, base, Rd); 2596 return Address(Rd); 2597 } 2598 2599 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2600 bool want_remainder, Register scratch) 2601 { 2602 // Full implementation of Java idiv and irem. The function 2603 // returns the (pc) offset of the div instruction - may be needed 2604 // for implicit exceptions. 2605 // 2606 // constraint : ra/rb =/= scratch 2607 // normal case 2608 // 2609 // input : ra: dividend 2610 // rb: divisor 2611 // 2612 // result: either 2613 // quotient (= ra idiv rb) 2614 // remainder (= ra irem rb) 2615 2616 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2617 2618 int idivl_offset = offset(); 2619 if (! want_remainder) { 2620 sdivw(result, ra, rb); 2621 } else { 2622 sdivw(scratch, ra, rb); 2623 Assembler::msubw(result, scratch, rb, ra); 2624 } 2625 2626 return idivl_offset; 2627 } 2628 2629 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2630 bool want_remainder, Register scratch) 2631 { 2632 // Full implementation of Java ldiv and lrem. The function 2633 // returns the (pc) offset of the div instruction - may be needed 2634 // for implicit exceptions. 2635 // 2636 // constraint : ra/rb =/= scratch 2637 // normal case 2638 // 2639 // input : ra: dividend 2640 // rb: divisor 2641 // 2642 // result: either 2643 // quotient (= ra idiv rb) 2644 // remainder (= ra irem rb) 2645 2646 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2647 2648 int idivq_offset = offset(); 2649 if (! want_remainder) { 2650 sdiv(result, ra, rb); 2651 } else { 2652 sdiv(scratch, ra, rb); 2653 Assembler::msub(result, scratch, rb, ra); 2654 } 2655 2656 return idivq_offset; 2657 } 2658 2659 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2660 address prev = pc() - NativeMembar::instruction_size; 2661 address last = code()->last_insn(); 2662 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2663 NativeMembar *bar = NativeMembar_at(prev); 2664 if (AlwaysMergeDMB) { 2665 bar->set_kind(bar->get_kind() | order_constraint); 2666 BLOCK_COMMENT("merged membar(always)"); 2667 return; 2668 } 2669 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2670 // doing so would introduce a StoreLoad which the caller did not 2671 // intend 2672 if (bar->get_kind() == order_constraint 2673 || bar->get_kind() == AnyAny 2674 || order_constraint == AnyAny) { 2675 // We are merging two memory barrier instructions. On AArch64 we 2676 // can do this simply by ORing them together. 2677 bar->set_kind(bar->get_kind() | order_constraint); 2678 BLOCK_COMMENT("merged membar"); 2679 return; 2680 } else { 2681 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2682 // We need check the last 2 instructions 2683 address prev2 = prev - NativeMembar::instruction_size; 2684 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2685 NativeMembar *bar2 = NativeMembar_at(prev2); 2686 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2687 BLOCK_COMMENT("merged membar(elided)"); 2688 return; 2689 } 2690 } 2691 } 2692 code()->set_last_insn(pc()); 2693 dmb(Assembler::barrier(order_constraint)); 2694 } 2695 2696 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2697 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2698 merge_ldst(rt, adr, size_in_bytes, is_store); 2699 code()->clear_last_insn(); 2700 return true; 2701 } else { 2702 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2703 const uint64_t mask = size_in_bytes - 1; 2704 if (adr.getMode() == Address::base_plus_offset && 2705 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2706 code()->set_last_insn(pc()); 2707 } 2708 return false; 2709 } 2710 } 2711 2712 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2713 // We always try to merge two adjacent loads into one ldp. 2714 if (!try_merge_ldst(Rx, adr, 8, false)) { 2715 Assembler::ldr(Rx, adr); 2716 } 2717 } 2718 2719 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2720 // We always try to merge two adjacent loads into one ldp. 2721 if (!try_merge_ldst(Rw, adr, 4, false)) { 2722 Assembler::ldrw(Rw, adr); 2723 } 2724 } 2725 2726 void MacroAssembler::str(Register Rx, const Address &adr) { 2727 // We always try to merge two adjacent stores into one stp. 2728 if (!try_merge_ldst(Rx, adr, 8, true)) { 2729 Assembler::str(Rx, adr); 2730 } 2731 } 2732 2733 void MacroAssembler::strw(Register Rw, const Address &adr) { 2734 // We always try to merge two adjacent stores into one stp. 2735 if (!try_merge_ldst(Rw, adr, 4, true)) { 2736 Assembler::strw(Rw, adr); 2737 } 2738 } 2739 2740 // MacroAssembler routines found actually to be needed 2741 2742 void MacroAssembler::push(Register src) 2743 { 2744 str(src, Address(pre(esp, -1 * wordSize))); 2745 } 2746 2747 void MacroAssembler::pop(Register dst) 2748 { 2749 ldr(dst, Address(post(esp, 1 * wordSize))); 2750 } 2751 2752 // Note: load_unsigned_short used to be called load_unsigned_word. 2753 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2754 int off = offset(); 2755 ldrh(dst, src); 2756 return off; 2757 } 2758 2759 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2760 int off = offset(); 2761 ldrb(dst, src); 2762 return off; 2763 } 2764 2765 int MacroAssembler::load_signed_short(Register dst, Address src) { 2766 int off = offset(); 2767 ldrsh(dst, src); 2768 return off; 2769 } 2770 2771 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2772 int off = offset(); 2773 ldrsb(dst, src); 2774 return off; 2775 } 2776 2777 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2778 int off = offset(); 2779 ldrshw(dst, src); 2780 return off; 2781 } 2782 2783 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2784 int off = offset(); 2785 ldrsbw(dst, src); 2786 return off; 2787 } 2788 2789 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2790 switch (size_in_bytes) { 2791 case 8: ldr(dst, src); break; 2792 case 4: ldrw(dst, src); break; 2793 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2794 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2795 default: ShouldNotReachHere(); 2796 } 2797 } 2798 2799 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2800 switch (size_in_bytes) { 2801 case 8: str(src, dst); break; 2802 case 4: strw(src, dst); break; 2803 case 2: strh(src, dst); break; 2804 case 1: strb(src, dst); break; 2805 default: ShouldNotReachHere(); 2806 } 2807 } 2808 2809 void MacroAssembler::decrementw(Register reg, int value) 2810 { 2811 if (value < 0) { incrementw(reg, -value); return; } 2812 if (value == 0) { return; } 2813 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2814 /* else */ { 2815 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2816 movw(rscratch2, (unsigned)value); 2817 subw(reg, reg, rscratch2); 2818 } 2819 } 2820 2821 void MacroAssembler::decrement(Register reg, int value) 2822 { 2823 if (value < 0) { increment(reg, -value); return; } 2824 if (value == 0) { return; } 2825 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2826 /* else */ { 2827 assert(reg != rscratch2, "invalid dst for register decrement"); 2828 mov(rscratch2, (uint64_t)value); 2829 sub(reg, reg, rscratch2); 2830 } 2831 } 2832 2833 void MacroAssembler::decrementw(Address dst, int value) 2834 { 2835 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2836 if (dst.getMode() == Address::literal) { 2837 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2838 lea(rscratch2, dst); 2839 dst = Address(rscratch2); 2840 } 2841 ldrw(rscratch1, dst); 2842 decrementw(rscratch1, value); 2843 strw(rscratch1, dst); 2844 } 2845 2846 void MacroAssembler::decrement(Address dst, int value) 2847 { 2848 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2849 if (dst.getMode() == Address::literal) { 2850 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2851 lea(rscratch2, dst); 2852 dst = Address(rscratch2); 2853 } 2854 ldr(rscratch1, dst); 2855 decrement(rscratch1, value); 2856 str(rscratch1, dst); 2857 } 2858 2859 void MacroAssembler::incrementw(Register reg, int value) 2860 { 2861 if (value < 0) { decrementw(reg, -value); return; } 2862 if (value == 0) { return; } 2863 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2864 /* else */ { 2865 assert(reg != rscratch2, "invalid dst for register increment"); 2866 movw(rscratch2, (unsigned)value); 2867 addw(reg, reg, rscratch2); 2868 } 2869 } 2870 2871 void MacroAssembler::increment(Register reg, int value) 2872 { 2873 if (value < 0) { decrement(reg, -value); return; } 2874 if (value == 0) { return; } 2875 if (value < (1 << 12)) { add(reg, reg, value); return; } 2876 /* else */ { 2877 assert(reg != rscratch2, "invalid dst for register increment"); 2878 movw(rscratch2, (unsigned)value); 2879 add(reg, reg, rscratch2); 2880 } 2881 } 2882 2883 void MacroAssembler::incrementw(Address dst, int value) 2884 { 2885 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2886 if (dst.getMode() == Address::literal) { 2887 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2888 lea(rscratch2, dst); 2889 dst = Address(rscratch2); 2890 } 2891 ldrw(rscratch1, dst); 2892 incrementw(rscratch1, value); 2893 strw(rscratch1, dst); 2894 } 2895 2896 void MacroAssembler::increment(Address dst, int value) 2897 { 2898 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2899 if (dst.getMode() == Address::literal) { 2900 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2901 lea(rscratch2, dst); 2902 dst = Address(rscratch2); 2903 } 2904 ldr(rscratch1, dst); 2905 increment(rscratch1, value); 2906 str(rscratch1, dst); 2907 } 2908 2909 // Push lots of registers in the bit set supplied. Don't push sp. 2910 // Return the number of words pushed 2911 int MacroAssembler::push(unsigned int bitset, Register stack) { 2912 int words_pushed = 0; 2913 2914 // Scan bitset to accumulate register pairs 2915 unsigned char regs[32]; 2916 int count = 0; 2917 for (int reg = 0; reg <= 30; reg++) { 2918 if (1 & bitset) 2919 regs[count++] = reg; 2920 bitset >>= 1; 2921 } 2922 regs[count++] = zr->raw_encoding(); 2923 count &= ~1; // Only push an even number of regs 2924 2925 if (count) { 2926 stp(as_Register(regs[0]), as_Register(regs[1]), 2927 Address(pre(stack, -count * wordSize))); 2928 words_pushed += 2; 2929 } 2930 for (int i = 2; i < count; i += 2) { 2931 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2932 Address(stack, i * wordSize)); 2933 words_pushed += 2; 2934 } 2935 2936 assert(words_pushed == count, "oops, pushed != count"); 2937 2938 return count; 2939 } 2940 2941 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2942 int words_pushed = 0; 2943 2944 // Scan bitset to accumulate register pairs 2945 unsigned char regs[32]; 2946 int count = 0; 2947 for (int reg = 0; reg <= 30; reg++) { 2948 if (1 & bitset) 2949 regs[count++] = reg; 2950 bitset >>= 1; 2951 } 2952 regs[count++] = zr->raw_encoding(); 2953 count &= ~1; 2954 2955 for (int i = 2; i < count; i += 2) { 2956 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2957 Address(stack, i * wordSize)); 2958 words_pushed += 2; 2959 } 2960 if (count) { 2961 ldp(as_Register(regs[0]), as_Register(regs[1]), 2962 Address(post(stack, count * wordSize))); 2963 words_pushed += 2; 2964 } 2965 2966 assert(words_pushed == count, "oops, pushed != count"); 2967 2968 return count; 2969 } 2970 2971 // Push lots of registers in the bit set supplied. Don't push sp. 2972 // Return the number of dwords pushed 2973 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2974 int words_pushed = 0; 2975 bool use_sve = false; 2976 int sve_vector_size_in_bytes = 0; 2977 2978 #ifdef COMPILER2 2979 use_sve = Matcher::supports_scalable_vector(); 2980 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2981 #endif 2982 2983 // Scan bitset to accumulate register pairs 2984 unsigned char regs[32]; 2985 int count = 0; 2986 for (int reg = 0; reg <= 31; reg++) { 2987 if (1 & bitset) 2988 regs[count++] = reg; 2989 bitset >>= 1; 2990 } 2991 2992 if (count == 0) { 2993 return 0; 2994 } 2995 2996 if (mode == PushPopFull) { 2997 if (use_sve && sve_vector_size_in_bytes > 16) { 2998 mode = PushPopSVE; 2999 } else { 3000 mode = PushPopNeon; 3001 } 3002 } 3003 3004 #ifndef PRODUCT 3005 { 3006 char buffer[48]; 3007 if (mode == PushPopSVE) { 3008 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 3009 } else if (mode == PushPopNeon) { 3010 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 3011 } else { 3012 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 3013 } 3014 block_comment(buffer); 3015 } 3016 #endif 3017 3018 if (mode == PushPopSVE) { 3019 sub(stack, stack, sve_vector_size_in_bytes * count); 3020 for (int i = 0; i < count; i++) { 3021 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 3022 } 3023 return count * sve_vector_size_in_bytes / 8; 3024 } 3025 3026 if (mode == PushPopNeon) { 3027 if (count == 1) { 3028 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 3029 return 2; 3030 } 3031 3032 bool odd = (count & 1) == 1; 3033 int push_slots = count + (odd ? 1 : 0); 3034 3035 // Always pushing full 128 bit registers. 3036 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 3037 words_pushed += 2; 3038 3039 for (int i = 2; i + 1 < count; i += 2) { 3040 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3041 words_pushed += 2; 3042 } 3043 3044 if (odd) { 3045 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3046 words_pushed++; 3047 } 3048 3049 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3050 return count * 2; 3051 } 3052 3053 if (mode == PushPopFp) { 3054 bool odd = (count & 1) == 1; 3055 int push_slots = count + (odd ? 1 : 0); 3056 3057 if (count == 1) { 3058 // Stack pointer must be 16 bytes aligned 3059 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 3060 return 1; 3061 } 3062 3063 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 3064 words_pushed += 2; 3065 3066 for (int i = 2; i + 1 < count; i += 2) { 3067 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3068 words_pushed += 2; 3069 } 3070 3071 if (odd) { 3072 // Stack pointer must be 16 bytes aligned 3073 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3074 words_pushed++; 3075 } 3076 3077 assert(words_pushed == count, "oops, pushed != count"); 3078 3079 return count; 3080 } 3081 3082 return 0; 3083 } 3084 3085 // Return the number of dwords popped 3086 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3087 int words_pushed = 0; 3088 bool use_sve = false; 3089 int sve_vector_size_in_bytes = 0; 3090 3091 #ifdef COMPILER2 3092 use_sve = Matcher::supports_scalable_vector(); 3093 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3094 #endif 3095 // Scan bitset to accumulate register pairs 3096 unsigned char regs[32]; 3097 int count = 0; 3098 for (int reg = 0; reg <= 31; reg++) { 3099 if (1 & bitset) 3100 regs[count++] = reg; 3101 bitset >>= 1; 3102 } 3103 3104 if (count == 0) { 3105 return 0; 3106 } 3107 3108 if (mode == PushPopFull) { 3109 if (use_sve && sve_vector_size_in_bytes > 16) { 3110 mode = PushPopSVE; 3111 } else { 3112 mode = PushPopNeon; 3113 } 3114 } 3115 3116 #ifndef PRODUCT 3117 { 3118 char buffer[48]; 3119 if (mode == PushPopSVE) { 3120 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3121 } else if (mode == PushPopNeon) { 3122 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3123 } else { 3124 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3125 } 3126 block_comment(buffer); 3127 } 3128 #endif 3129 3130 if (mode == PushPopSVE) { 3131 for (int i = count - 1; i >= 0; i--) { 3132 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3133 } 3134 add(stack, stack, sve_vector_size_in_bytes * count); 3135 return count * sve_vector_size_in_bytes / 8; 3136 } 3137 3138 if (mode == PushPopNeon) { 3139 if (count == 1) { 3140 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3141 return 2; 3142 } 3143 3144 bool odd = (count & 1) == 1; 3145 int push_slots = count + (odd ? 1 : 0); 3146 3147 if (odd) { 3148 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3149 words_pushed++; 3150 } 3151 3152 for (int i = 2; i + 1 < count; i += 2) { 3153 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3154 words_pushed += 2; 3155 } 3156 3157 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3158 words_pushed += 2; 3159 3160 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3161 3162 return count * 2; 3163 } 3164 3165 if (mode == PushPopFp) { 3166 bool odd = (count & 1) == 1; 3167 int push_slots = count + (odd ? 1 : 0); 3168 3169 if (count == 1) { 3170 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3171 return 1; 3172 } 3173 3174 if (odd) { 3175 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3176 words_pushed++; 3177 } 3178 3179 for (int i = 2; i + 1 < count; i += 2) { 3180 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3181 words_pushed += 2; 3182 } 3183 3184 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3185 words_pushed += 2; 3186 3187 assert(words_pushed == count, "oops, pushed != count"); 3188 3189 return count; 3190 } 3191 3192 return 0; 3193 } 3194 3195 // Return the number of dwords pushed 3196 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3197 bool use_sve = false; 3198 int sve_predicate_size_in_slots = 0; 3199 3200 #ifdef COMPILER2 3201 use_sve = Matcher::supports_scalable_vector(); 3202 if (use_sve) { 3203 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3204 } 3205 #endif 3206 3207 if (!use_sve) { 3208 return 0; 3209 } 3210 3211 unsigned char regs[PRegister::number_of_registers]; 3212 int count = 0; 3213 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3214 if (1 & bitset) 3215 regs[count++] = reg; 3216 bitset >>= 1; 3217 } 3218 3219 if (count == 0) { 3220 return 0; 3221 } 3222 3223 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3224 VMRegImpl::stack_slot_size * count, 16); 3225 sub(stack, stack, total_push_bytes); 3226 for (int i = 0; i < count; i++) { 3227 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3228 } 3229 return total_push_bytes / 8; 3230 } 3231 3232 // Return the number of dwords popped 3233 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3234 bool use_sve = false; 3235 int sve_predicate_size_in_slots = 0; 3236 3237 #ifdef COMPILER2 3238 use_sve = Matcher::supports_scalable_vector(); 3239 if (use_sve) { 3240 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3241 } 3242 #endif 3243 3244 if (!use_sve) { 3245 return 0; 3246 } 3247 3248 unsigned char regs[PRegister::number_of_registers]; 3249 int count = 0; 3250 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3251 if (1 & bitset) 3252 regs[count++] = reg; 3253 bitset >>= 1; 3254 } 3255 3256 if (count == 0) { 3257 return 0; 3258 } 3259 3260 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3261 VMRegImpl::stack_slot_size * count, 16); 3262 for (int i = count - 1; i >= 0; i--) { 3263 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3264 } 3265 add(stack, stack, total_pop_bytes); 3266 return total_pop_bytes / 8; 3267 } 3268 3269 #ifdef ASSERT 3270 void MacroAssembler::verify_heapbase(const char* msg) { 3271 #if 0 3272 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3273 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3274 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3275 // rheapbase is allocated as general register 3276 return; 3277 } 3278 if (CheckCompressedOops) { 3279 Label ok; 3280 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3281 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3282 br(Assembler::EQ, ok); 3283 stop(msg); 3284 bind(ok); 3285 pop(1 << rscratch1->encoding(), sp); 3286 } 3287 #endif 3288 } 3289 #endif 3290 3291 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3292 assert_different_registers(value, tmp1, tmp2); 3293 Label done, tagged, weak_tagged; 3294 3295 cbz(value, done); // Use null as-is. 3296 tst(value, JNIHandles::tag_mask); // Test for tag. 3297 br(Assembler::NE, tagged); 3298 3299 // Resolve local handle 3300 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3301 verify_oop(value); 3302 b(done); 3303 3304 bind(tagged); 3305 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3306 tbnz(value, 0, weak_tagged); // Test for weak tag. 3307 3308 // Resolve global handle 3309 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3310 verify_oop(value); 3311 b(done); 3312 3313 bind(weak_tagged); 3314 // Resolve jweak. 3315 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3316 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3317 verify_oop(value); 3318 3319 bind(done); 3320 } 3321 3322 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3323 assert_different_registers(value, tmp1, tmp2); 3324 Label done; 3325 3326 cbz(value, done); // Use null as-is. 3327 3328 #ifdef ASSERT 3329 { 3330 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3331 Label valid_global_tag; 3332 tbnz(value, 1, valid_global_tag); // Test for global tag 3333 stop("non global jobject using resolve_global_jobject"); 3334 bind(valid_global_tag); 3335 } 3336 #endif 3337 3338 // Resolve global handle 3339 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3340 verify_oop(value); 3341 3342 bind(done); 3343 } 3344 3345 void MacroAssembler::stop(const char* msg) { 3346 BLOCK_COMMENT(msg); 3347 dcps1(0xdeae); 3348 emit_int64((uintptr_t)msg); 3349 } 3350 3351 void MacroAssembler::unimplemented(const char* what) { 3352 const char* buf = nullptr; 3353 { 3354 ResourceMark rm; 3355 stringStream ss; 3356 ss.print("unimplemented: %s", what); 3357 buf = code_string(ss.as_string()); 3358 } 3359 stop(buf); 3360 } 3361 3362 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3363 #ifdef ASSERT 3364 Label OK; 3365 br(cc, OK); 3366 stop(msg); 3367 bind(OK); 3368 #endif 3369 } 3370 3371 // If a constant does not fit in an immediate field, generate some 3372 // number of MOV instructions and then perform the operation. 3373 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3374 add_sub_imm_insn insn1, 3375 add_sub_reg_insn insn2, 3376 bool is32) { 3377 assert(Rd != zr, "Rd = zr and not setting flags?"); 3378 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3379 if (fits) { 3380 (this->*insn1)(Rd, Rn, imm); 3381 } else { 3382 if (uabs(imm) < (1 << 24)) { 3383 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3384 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3385 } else { 3386 assert_different_registers(Rd, Rn); 3387 mov(Rd, imm); 3388 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3389 } 3390 } 3391 } 3392 3393 // Separate vsn which sets the flags. Optimisations are more restricted 3394 // because we must set the flags correctly. 3395 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3396 add_sub_imm_insn insn1, 3397 add_sub_reg_insn insn2, 3398 bool is32) { 3399 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3400 if (fits) { 3401 (this->*insn1)(Rd, Rn, imm); 3402 } else { 3403 assert_different_registers(Rd, Rn); 3404 assert(Rd != zr, "overflow in immediate operand"); 3405 mov(Rd, imm); 3406 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3407 } 3408 } 3409 3410 3411 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3412 if (increment.is_register()) { 3413 add(Rd, Rn, increment.as_register()); 3414 } else { 3415 add(Rd, Rn, increment.as_constant()); 3416 } 3417 } 3418 3419 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3420 if (increment.is_register()) { 3421 addw(Rd, Rn, increment.as_register()); 3422 } else { 3423 addw(Rd, Rn, increment.as_constant()); 3424 } 3425 } 3426 3427 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3428 if (decrement.is_register()) { 3429 sub(Rd, Rn, decrement.as_register()); 3430 } else { 3431 sub(Rd, Rn, decrement.as_constant()); 3432 } 3433 } 3434 3435 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3436 if (decrement.is_register()) { 3437 subw(Rd, Rn, decrement.as_register()); 3438 } else { 3439 subw(Rd, Rn, decrement.as_constant()); 3440 } 3441 } 3442 3443 void MacroAssembler::reinit_heapbase() 3444 { 3445 if (UseCompressedOops) { 3446 if (Universe::is_fully_initialized()) { 3447 mov(rheapbase, CompressedOops::base()); 3448 } else { 3449 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3450 ldr(rheapbase, Address(rheapbase)); 3451 } 3452 } 3453 } 3454 3455 // this simulates the behaviour of the x86 cmpxchg instruction using a 3456 // load linked/store conditional pair. we use the acquire/release 3457 // versions of these instructions so that we flush pending writes as 3458 // per Java semantics. 3459 3460 // n.b the x86 version assumes the old value to be compared against is 3461 // in rax and updates rax with the value located in memory if the 3462 // cmpxchg fails. we supply a register for the old value explicitly 3463 3464 // the aarch64 load linked/store conditional instructions do not 3465 // accept an offset. so, unlike x86, we must provide a plain register 3466 // to identify the memory word to be compared/exchanged rather than a 3467 // register+offset Address. 3468 3469 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3470 Label &succeed, Label *fail) { 3471 // oldv holds comparison value 3472 // newv holds value to write in exchange 3473 // addr identifies memory word to compare against/update 3474 if (UseLSE) { 3475 mov(tmp, oldv); 3476 casal(Assembler::xword, oldv, newv, addr); 3477 cmp(tmp, oldv); 3478 br(Assembler::EQ, succeed); 3479 membar(AnyAny); 3480 } else { 3481 Label retry_load, nope; 3482 prfm(Address(addr), PSTL1STRM); 3483 bind(retry_load); 3484 // flush and load exclusive from the memory location 3485 // and fail if it is not what we expect 3486 ldaxr(tmp, addr); 3487 cmp(tmp, oldv); 3488 br(Assembler::NE, nope); 3489 // if we store+flush with no intervening write tmp will be zero 3490 stlxr(tmp, newv, addr); 3491 cbzw(tmp, succeed); 3492 // retry so we only ever return after a load fails to compare 3493 // ensures we don't return a stale value after a failed write. 3494 b(retry_load); 3495 // if the memory word differs we return it in oldv and signal a fail 3496 bind(nope); 3497 membar(AnyAny); 3498 mov(oldv, tmp); 3499 } 3500 if (fail) 3501 b(*fail); 3502 } 3503 3504 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3505 Label &succeed, Label *fail) { 3506 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3507 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3508 } 3509 3510 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3511 Label &succeed, Label *fail) { 3512 // oldv holds comparison value 3513 // newv holds value to write in exchange 3514 // addr identifies memory word to compare against/update 3515 // tmp returns 0/1 for success/failure 3516 if (UseLSE) { 3517 mov(tmp, oldv); 3518 casal(Assembler::word, oldv, newv, addr); 3519 cmp(tmp, oldv); 3520 br(Assembler::EQ, succeed); 3521 membar(AnyAny); 3522 } else { 3523 Label retry_load, nope; 3524 prfm(Address(addr), PSTL1STRM); 3525 bind(retry_load); 3526 // flush and load exclusive from the memory location 3527 // and fail if it is not what we expect 3528 ldaxrw(tmp, addr); 3529 cmp(tmp, oldv); 3530 br(Assembler::NE, nope); 3531 // if we store+flush with no intervening write tmp will be zero 3532 stlxrw(tmp, newv, addr); 3533 cbzw(tmp, succeed); 3534 // retry so we only ever return after a load fails to compare 3535 // ensures we don't return a stale value after a failed write. 3536 b(retry_load); 3537 // if the memory word differs we return it in oldv and signal a fail 3538 bind(nope); 3539 membar(AnyAny); 3540 mov(oldv, tmp); 3541 } 3542 if (fail) 3543 b(*fail); 3544 } 3545 3546 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3547 // doesn't retry and may fail spuriously. If the oldval is wanted, 3548 // Pass a register for the result, otherwise pass noreg. 3549 3550 // Clobbers rscratch1 3551 void MacroAssembler::cmpxchg(Register addr, Register expected, 3552 Register new_val, 3553 enum operand_size size, 3554 bool acquire, bool release, 3555 bool weak, 3556 Register result) { 3557 if (result == noreg) result = rscratch1; 3558 BLOCK_COMMENT("cmpxchg {"); 3559 if (UseLSE) { 3560 mov(result, expected); 3561 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3562 compare_eq(result, expected, size); 3563 #ifdef ASSERT 3564 // Poison rscratch1 which is written on !UseLSE branch 3565 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3566 #endif 3567 } else { 3568 Label retry_load, done; 3569 prfm(Address(addr), PSTL1STRM); 3570 bind(retry_load); 3571 load_exclusive(result, addr, size, acquire); 3572 compare_eq(result, expected, size); 3573 br(Assembler::NE, done); 3574 store_exclusive(rscratch1, new_val, addr, size, release); 3575 if (weak) { 3576 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3577 } else { 3578 cbnzw(rscratch1, retry_load); 3579 } 3580 bind(done); 3581 } 3582 BLOCK_COMMENT("} cmpxchg"); 3583 } 3584 3585 // A generic comparison. Only compares for equality, clobbers rscratch1. 3586 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3587 if (size == xword) { 3588 cmp(rm, rn); 3589 } else if (size == word) { 3590 cmpw(rm, rn); 3591 } else if (size == halfword) { 3592 eorw(rscratch1, rm, rn); 3593 ands(zr, rscratch1, 0xffff); 3594 } else if (size == byte) { 3595 eorw(rscratch1, rm, rn); 3596 ands(zr, rscratch1, 0xff); 3597 } else { 3598 ShouldNotReachHere(); 3599 } 3600 } 3601 3602 3603 static bool different(Register a, RegisterOrConstant b, Register c) { 3604 if (b.is_constant()) 3605 return a != c; 3606 else 3607 return a != b.as_register() && a != c && b.as_register() != c; 3608 } 3609 3610 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3611 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3612 if (UseLSE) { \ 3613 prev = prev->is_valid() ? prev : zr; \ 3614 if (incr.is_register()) { \ 3615 AOP(sz, incr.as_register(), prev, addr); \ 3616 } else { \ 3617 mov(rscratch2, incr.as_constant()); \ 3618 AOP(sz, rscratch2, prev, addr); \ 3619 } \ 3620 return; \ 3621 } \ 3622 Register result = rscratch2; \ 3623 if (prev->is_valid()) \ 3624 result = different(prev, incr, addr) ? prev : rscratch2; \ 3625 \ 3626 Label retry_load; \ 3627 prfm(Address(addr), PSTL1STRM); \ 3628 bind(retry_load); \ 3629 LDXR(result, addr); \ 3630 OP(rscratch1, result, incr); \ 3631 STXR(rscratch2, rscratch1, addr); \ 3632 cbnzw(rscratch2, retry_load); \ 3633 if (prev->is_valid() && prev != result) { \ 3634 IOP(prev, rscratch1, incr); \ 3635 } \ 3636 } 3637 3638 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3639 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3640 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3641 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3642 3643 #undef ATOMIC_OP 3644 3645 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3646 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3647 if (UseLSE) { \ 3648 prev = prev->is_valid() ? prev : zr; \ 3649 AOP(sz, newv, prev, addr); \ 3650 return; \ 3651 } \ 3652 Register result = rscratch2; \ 3653 if (prev->is_valid()) \ 3654 result = different(prev, newv, addr) ? prev : rscratch2; \ 3655 \ 3656 Label retry_load; \ 3657 prfm(Address(addr), PSTL1STRM); \ 3658 bind(retry_load); \ 3659 LDXR(result, addr); \ 3660 STXR(rscratch1, newv, addr); \ 3661 cbnzw(rscratch1, retry_load); \ 3662 if (prev->is_valid() && prev != result) \ 3663 mov(prev, result); \ 3664 } 3665 3666 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3667 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3668 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3669 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3670 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3671 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3672 3673 #undef ATOMIC_XCHG 3674 3675 #ifndef PRODUCT 3676 extern "C" void findpc(intptr_t x); 3677 #endif 3678 3679 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3680 { 3681 // In order to get locks to work, we need to fake a in_VM state 3682 if (ShowMessageBoxOnError ) { 3683 JavaThread* thread = JavaThread::current(); 3684 JavaThreadState saved_state = thread->thread_state(); 3685 thread->set_thread_state(_thread_in_vm); 3686 #ifndef PRODUCT 3687 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3688 ttyLocker ttyl; 3689 BytecodeCounter::print(); 3690 } 3691 #endif 3692 if (os::message_box(msg, "Execution stopped, print registers?")) { 3693 ttyLocker ttyl; 3694 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3695 #ifndef PRODUCT 3696 tty->cr(); 3697 findpc(pc); 3698 tty->cr(); 3699 #endif 3700 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3701 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3702 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3703 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3704 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3705 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3706 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3707 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3708 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3709 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3710 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3711 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3712 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3713 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3714 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3715 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3716 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3717 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3718 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3719 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3720 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3721 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3722 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3723 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3724 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3725 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3726 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3727 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3728 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3729 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3730 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3731 BREAKPOINT; 3732 } 3733 } 3734 fatal("DEBUG MESSAGE: %s", msg); 3735 } 3736 3737 RegSet MacroAssembler::call_clobbered_gp_registers() { 3738 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3739 #ifndef R18_RESERVED 3740 regs += r18_tls; 3741 #endif 3742 return regs; 3743 } 3744 3745 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3746 int step = 4 * wordSize; 3747 push(call_clobbered_gp_registers() - exclude, sp); 3748 sub(sp, sp, step); 3749 mov(rscratch1, -step); 3750 // Push v0-v7, v16-v31. 3751 for (int i = 31; i>= 4; i -= 4) { 3752 if (i <= v7->encoding() || i >= v16->encoding()) 3753 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3754 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3755 } 3756 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3757 as_FloatRegister(3), T1D, Address(sp)); 3758 } 3759 3760 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3761 for (int i = 0; i < 32; i += 4) { 3762 if (i <= v7->encoding() || i >= v16->encoding()) 3763 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3764 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3765 } 3766 3767 reinitialize_ptrue(); 3768 3769 pop(call_clobbered_gp_registers() - exclude, sp); 3770 } 3771 3772 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3773 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3774 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3775 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3776 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3777 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3778 sve_str(as_FloatRegister(i), Address(sp, i)); 3779 } 3780 } else { 3781 int step = (save_vectors ? 8 : 4) * wordSize; 3782 mov(rscratch1, -step); 3783 sub(sp, sp, step); 3784 for (int i = 28; i >= 4; i -= 4) { 3785 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3786 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3787 } 3788 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3789 } 3790 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3791 sub(sp, sp, total_predicate_in_bytes); 3792 for (int i = 0; i < PRegister::number_of_registers; i++) { 3793 sve_str(as_PRegister(i), Address(sp, i)); 3794 } 3795 } 3796 } 3797 3798 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3799 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3800 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3801 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3802 sve_ldr(as_PRegister(i), Address(sp, i)); 3803 } 3804 add(sp, sp, total_predicate_in_bytes); 3805 } 3806 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3807 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3808 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3809 } 3810 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3811 } else { 3812 int step = (restore_vectors ? 8 : 4) * wordSize; 3813 for (int i = 0; i <= 28; i += 4) 3814 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3815 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3816 } 3817 3818 // We may use predicate registers and rely on ptrue with SVE, 3819 // regardless of wide vector (> 8 bytes) used or not. 3820 if (use_sve) { 3821 reinitialize_ptrue(); 3822 } 3823 3824 // integer registers except lr & sp 3825 pop(RegSet::range(r0, r17), sp); 3826 #ifdef R18_RESERVED 3827 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3828 pop(RegSet::range(r20, r29), sp); 3829 #else 3830 pop(RegSet::range(r18_tls, r29), sp); 3831 #endif 3832 } 3833 3834 /** 3835 * Helpers for multiply_to_len(). 3836 */ 3837 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3838 Register src1, Register src2) { 3839 adds(dest_lo, dest_lo, src1); 3840 adc(dest_hi, dest_hi, zr); 3841 adds(dest_lo, dest_lo, src2); 3842 adc(final_dest_hi, dest_hi, zr); 3843 } 3844 3845 // Generate an address from (r + r1 extend offset). "size" is the 3846 // size of the operand. The result may be in rscratch2. 3847 Address MacroAssembler::offsetted_address(Register r, Register r1, 3848 Address::extend ext, int offset, int size) { 3849 if (offset || (ext.shift() % size != 0)) { 3850 lea(rscratch2, Address(r, r1, ext)); 3851 return Address(rscratch2, offset); 3852 } else { 3853 return Address(r, r1, ext); 3854 } 3855 } 3856 3857 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3858 { 3859 assert(offset >= 0, "spill to negative address?"); 3860 // Offset reachable ? 3861 // Not aligned - 9 bits signed offset 3862 // Aligned - 12 bits unsigned offset shifted 3863 Register base = sp; 3864 if ((offset & (size-1)) && offset >= (1<<8)) { 3865 add(tmp, base, offset & ((1<<12)-1)); 3866 base = tmp; 3867 offset &= -1u<<12; 3868 } 3869 3870 if (offset >= (1<<12) * size) { 3871 add(tmp, base, offset & (((1<<12)-1)<<12)); 3872 base = tmp; 3873 offset &= ~(((1<<12)-1)<<12); 3874 } 3875 3876 return Address(base, offset); 3877 } 3878 3879 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3880 assert(offset >= 0, "spill to negative address?"); 3881 3882 Register base = sp; 3883 3884 // An immediate offset in the range 0 to 255 which is multiplied 3885 // by the current vector or predicate register size in bytes. 3886 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3887 return Address(base, offset / sve_reg_size_in_bytes); 3888 } 3889 3890 add(tmp, base, offset); 3891 return Address(tmp); 3892 } 3893 3894 // Checks whether offset is aligned. 3895 // Returns true if it is, else false. 3896 bool MacroAssembler::merge_alignment_check(Register base, 3897 size_t size, 3898 int64_t cur_offset, 3899 int64_t prev_offset) const { 3900 if (AvoidUnalignedAccesses) { 3901 if (base == sp) { 3902 // Checks whether low offset if aligned to pair of registers. 3903 int64_t pair_mask = size * 2 - 1; 3904 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3905 return (offset & pair_mask) == 0; 3906 } else { // If base is not sp, we can't guarantee the access is aligned. 3907 return false; 3908 } 3909 } else { 3910 int64_t mask = size - 1; 3911 // Load/store pair instruction only supports element size aligned offset. 3912 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3913 } 3914 } 3915 3916 // Checks whether current and previous loads/stores can be merged. 3917 // Returns true if it can be merged, else false. 3918 bool MacroAssembler::ldst_can_merge(Register rt, 3919 const Address &adr, 3920 size_t cur_size_in_bytes, 3921 bool is_store) const { 3922 address prev = pc() - NativeInstruction::instruction_size; 3923 address last = code()->last_insn(); 3924 3925 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3926 return false; 3927 } 3928 3929 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3930 return false; 3931 } 3932 3933 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3934 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3935 3936 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3937 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3938 3939 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3940 return false; 3941 } 3942 3943 int64_t max_offset = 63 * prev_size_in_bytes; 3944 int64_t min_offset = -64 * prev_size_in_bytes; 3945 3946 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3947 3948 // Only same base can be merged. 3949 if (adr.base() != prev_ldst->base()) { 3950 return false; 3951 } 3952 3953 int64_t cur_offset = adr.offset(); 3954 int64_t prev_offset = prev_ldst->offset(); 3955 size_t diff = abs(cur_offset - prev_offset); 3956 if (diff != prev_size_in_bytes) { 3957 return false; 3958 } 3959 3960 // Following cases can not be merged: 3961 // ldr x2, [x2, #8] 3962 // ldr x3, [x2, #16] 3963 // or: 3964 // ldr x2, [x3, #8] 3965 // ldr x2, [x3, #16] 3966 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3967 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3968 return false; 3969 } 3970 3971 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3972 // Offset range must be in ldp/stp instruction's range. 3973 if (low_offset > max_offset || low_offset < min_offset) { 3974 return false; 3975 } 3976 3977 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3978 return true; 3979 } 3980 3981 return false; 3982 } 3983 3984 // Merge current load/store with previous load/store into ldp/stp. 3985 void MacroAssembler::merge_ldst(Register rt, 3986 const Address &adr, 3987 size_t cur_size_in_bytes, 3988 bool is_store) { 3989 3990 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3991 3992 Register rt_low, rt_high; 3993 address prev = pc() - NativeInstruction::instruction_size; 3994 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3995 3996 int64_t offset; 3997 3998 if (adr.offset() < prev_ldst->offset()) { 3999 offset = adr.offset(); 4000 rt_low = rt; 4001 rt_high = prev_ldst->target(); 4002 } else { 4003 offset = prev_ldst->offset(); 4004 rt_low = prev_ldst->target(); 4005 rt_high = rt; 4006 } 4007 4008 Address adr_p = Address(prev_ldst->base(), offset); 4009 // Overwrite previous generated binary. 4010 code_section()->set_end(prev); 4011 4012 const size_t sz = prev_ldst->size_in_bytes(); 4013 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 4014 if (!is_store) { 4015 BLOCK_COMMENT("merged ldr pair"); 4016 if (sz == 8) { 4017 ldp(rt_low, rt_high, adr_p); 4018 } else { 4019 ldpw(rt_low, rt_high, adr_p); 4020 } 4021 } else { 4022 BLOCK_COMMENT("merged str pair"); 4023 if (sz == 8) { 4024 stp(rt_low, rt_high, adr_p); 4025 } else { 4026 stpw(rt_low, rt_high, adr_p); 4027 } 4028 } 4029 } 4030 4031 /** 4032 * Multiply 64 bit by 64 bit first loop. 4033 */ 4034 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 4035 Register y, Register y_idx, Register z, 4036 Register carry, Register product, 4037 Register idx, Register kdx) { 4038 // 4039 // jlong carry, x[], y[], z[]; 4040 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4041 // huge_128 product = y[idx] * x[xstart] + carry; 4042 // z[kdx] = (jlong)product; 4043 // carry = (jlong)(product >>> 64); 4044 // } 4045 // z[xstart] = carry; 4046 // 4047 4048 Label L_first_loop, L_first_loop_exit; 4049 Label L_one_x, L_one_y, L_multiply; 4050 4051 subsw(xstart, xstart, 1); 4052 br(Assembler::MI, L_one_x); 4053 4054 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 4055 ldr(x_xstart, Address(rscratch1)); 4056 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 4057 4058 bind(L_first_loop); 4059 subsw(idx, idx, 1); 4060 br(Assembler::MI, L_first_loop_exit); 4061 subsw(idx, idx, 1); 4062 br(Assembler::MI, L_one_y); 4063 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4064 ldr(y_idx, Address(rscratch1)); 4065 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 4066 bind(L_multiply); 4067 4068 // AArch64 has a multiply-accumulate instruction that we can't use 4069 // here because it has no way to process carries, so we have to use 4070 // separate add and adc instructions. Bah. 4071 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 4072 mul(product, x_xstart, y_idx); 4073 adds(product, product, carry); 4074 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 4075 4076 subw(kdx, kdx, 2); 4077 ror(product, product, 32); // back to big-endian 4078 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 4079 4080 b(L_first_loop); 4081 4082 bind(L_one_y); 4083 ldrw(y_idx, Address(y, 0)); 4084 b(L_multiply); 4085 4086 bind(L_one_x); 4087 ldrw(x_xstart, Address(x, 0)); 4088 b(L_first_loop); 4089 4090 bind(L_first_loop_exit); 4091 } 4092 4093 /** 4094 * Multiply 128 bit by 128. Unrolled inner loop. 4095 * 4096 */ 4097 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4098 Register carry, Register carry2, 4099 Register idx, Register jdx, 4100 Register yz_idx1, Register yz_idx2, 4101 Register tmp, Register tmp3, Register tmp4, 4102 Register tmp6, Register product_hi) { 4103 4104 // jlong carry, x[], y[], z[]; 4105 // int kdx = ystart+1; 4106 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4107 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4108 // jlong carry2 = (jlong)(tmp3 >>> 64); 4109 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4110 // carry = (jlong)(tmp4 >>> 64); 4111 // z[kdx+idx+1] = (jlong)tmp3; 4112 // z[kdx+idx] = (jlong)tmp4; 4113 // } 4114 // idx += 2; 4115 // if (idx > 0) { 4116 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4117 // z[kdx+idx] = (jlong)yz_idx1; 4118 // carry = (jlong)(yz_idx1 >>> 64); 4119 // } 4120 // 4121 4122 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4123 4124 lsrw(jdx, idx, 2); 4125 4126 bind(L_third_loop); 4127 4128 subsw(jdx, jdx, 1); 4129 br(Assembler::MI, L_third_loop_exit); 4130 subw(idx, idx, 4); 4131 4132 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4133 4134 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4135 4136 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4137 4138 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4139 ror(yz_idx2, yz_idx2, 32); 4140 4141 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4142 4143 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4144 umulh(tmp4, product_hi, yz_idx1); 4145 4146 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4147 ror(rscratch2, rscratch2, 32); 4148 4149 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4150 umulh(carry2, product_hi, yz_idx2); 4151 4152 // propagate sum of both multiplications into carry:tmp4:tmp3 4153 adds(tmp3, tmp3, carry); 4154 adc(tmp4, tmp4, zr); 4155 adds(tmp3, tmp3, rscratch1); 4156 adcs(tmp4, tmp4, tmp); 4157 adc(carry, carry2, zr); 4158 adds(tmp4, tmp4, rscratch2); 4159 adc(carry, carry, zr); 4160 4161 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4162 ror(tmp4, tmp4, 32); 4163 stp(tmp4, tmp3, Address(tmp6, 0)); 4164 4165 b(L_third_loop); 4166 bind (L_third_loop_exit); 4167 4168 andw (idx, idx, 0x3); 4169 cbz(idx, L_post_third_loop_done); 4170 4171 Label L_check_1; 4172 subsw(idx, idx, 2); 4173 br(Assembler::MI, L_check_1); 4174 4175 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4176 ldr(yz_idx1, Address(rscratch1, 0)); 4177 ror(yz_idx1, yz_idx1, 32); 4178 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4179 umulh(tmp4, product_hi, yz_idx1); 4180 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4181 ldr(yz_idx2, Address(rscratch1, 0)); 4182 ror(yz_idx2, yz_idx2, 32); 4183 4184 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4185 4186 ror(tmp3, tmp3, 32); 4187 str(tmp3, Address(rscratch1, 0)); 4188 4189 bind (L_check_1); 4190 4191 andw (idx, idx, 0x1); 4192 subsw(idx, idx, 1); 4193 br(Assembler::MI, L_post_third_loop_done); 4194 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4195 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4196 umulh(carry2, tmp4, product_hi); 4197 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4198 4199 add2_with_carry(carry2, tmp3, tmp4, carry); 4200 4201 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4202 extr(carry, carry2, tmp3, 32); 4203 4204 bind(L_post_third_loop_done); 4205 } 4206 4207 /** 4208 * Code for BigInteger::multiplyToLen() intrinsic. 4209 * 4210 * r0: x 4211 * r1: xlen 4212 * r2: y 4213 * r3: ylen 4214 * r4: z 4215 * r5: tmp0 4216 * r10: tmp1 4217 * r11: tmp2 4218 * r12: tmp3 4219 * r13: tmp4 4220 * r14: tmp5 4221 * r15: tmp6 4222 * r16: tmp7 4223 * 4224 */ 4225 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4226 Register z, Register tmp0, 4227 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4228 Register tmp5, Register tmp6, Register product_hi) { 4229 4230 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4231 4232 const Register idx = tmp1; 4233 const Register kdx = tmp2; 4234 const Register xstart = tmp3; 4235 4236 const Register y_idx = tmp4; 4237 const Register carry = tmp5; 4238 const Register product = xlen; 4239 const Register x_xstart = tmp0; 4240 4241 // First Loop. 4242 // 4243 // final static long LONG_MASK = 0xffffffffL; 4244 // int xstart = xlen - 1; 4245 // int ystart = ylen - 1; 4246 // long carry = 0; 4247 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4248 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4249 // z[kdx] = (int)product; 4250 // carry = product >>> 32; 4251 // } 4252 // z[xstart] = (int)carry; 4253 // 4254 4255 movw(idx, ylen); // idx = ylen; 4256 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4257 mov(carry, zr); // carry = 0; 4258 4259 Label L_done; 4260 4261 movw(xstart, xlen); 4262 subsw(xstart, xstart, 1); 4263 br(Assembler::MI, L_done); 4264 4265 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4266 4267 Label L_second_loop; 4268 cbzw(kdx, L_second_loop); 4269 4270 Label L_carry; 4271 subw(kdx, kdx, 1); 4272 cbzw(kdx, L_carry); 4273 4274 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4275 lsr(carry, carry, 32); 4276 subw(kdx, kdx, 1); 4277 4278 bind(L_carry); 4279 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4280 4281 // Second and third (nested) loops. 4282 // 4283 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4284 // carry = 0; 4285 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4286 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4287 // (z[k] & LONG_MASK) + carry; 4288 // z[k] = (int)product; 4289 // carry = product >>> 32; 4290 // } 4291 // z[i] = (int)carry; 4292 // } 4293 // 4294 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4295 4296 const Register jdx = tmp1; 4297 4298 bind(L_second_loop); 4299 mov(carry, zr); // carry = 0; 4300 movw(jdx, ylen); // j = ystart+1 4301 4302 subsw(xstart, xstart, 1); // i = xstart-1; 4303 br(Assembler::MI, L_done); 4304 4305 str(z, Address(pre(sp, -4 * wordSize))); 4306 4307 Label L_last_x; 4308 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4309 subsw(xstart, xstart, 1); // i = xstart-1; 4310 br(Assembler::MI, L_last_x); 4311 4312 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4313 ldr(product_hi, Address(rscratch1)); 4314 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4315 4316 Label L_third_loop_prologue; 4317 bind(L_third_loop_prologue); 4318 4319 str(ylen, Address(sp, wordSize)); 4320 stp(x, xstart, Address(sp, 2 * wordSize)); 4321 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4322 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4323 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4324 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4325 4326 addw(tmp3, xlen, 1); 4327 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4328 subsw(tmp3, tmp3, 1); 4329 br(Assembler::MI, L_done); 4330 4331 lsr(carry, carry, 32); 4332 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4333 b(L_second_loop); 4334 4335 // Next infrequent code is moved outside loops. 4336 bind(L_last_x); 4337 ldrw(product_hi, Address(x, 0)); 4338 b(L_third_loop_prologue); 4339 4340 bind(L_done); 4341 } 4342 4343 // Code for BigInteger::mulAdd intrinsic 4344 // out = r0 4345 // in = r1 4346 // offset = r2 (already out.length-offset) 4347 // len = r3 4348 // k = r4 4349 // 4350 // pseudo code from java implementation: 4351 // carry = 0; 4352 // offset = out.length-offset - 1; 4353 // for (int j=len-1; j >= 0; j--) { 4354 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4355 // out[offset--] = (int)product; 4356 // carry = product >>> 32; 4357 // } 4358 // return (int)carry; 4359 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4360 Register len, Register k) { 4361 Label LOOP, END; 4362 // pre-loop 4363 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4364 csel(out, zr, out, Assembler::EQ); 4365 br(Assembler::EQ, END); 4366 add(in, in, len, LSL, 2); // in[j+1] address 4367 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4368 mov(out, zr); // used to keep carry now 4369 BIND(LOOP); 4370 ldrw(rscratch1, Address(pre(in, -4))); 4371 madd(rscratch1, rscratch1, k, out); 4372 ldrw(rscratch2, Address(pre(offset, -4))); 4373 add(rscratch1, rscratch1, rscratch2); 4374 strw(rscratch1, Address(offset)); 4375 lsr(out, rscratch1, 32); 4376 subs(len, len, 1); 4377 br(Assembler::NE, LOOP); 4378 BIND(END); 4379 } 4380 4381 /** 4382 * Emits code to update CRC-32 with a byte value according to constants in table 4383 * 4384 * @param [in,out]crc Register containing the crc. 4385 * @param [in]val Register containing the byte to fold into the CRC. 4386 * @param [in]table Register containing the table of crc constants. 4387 * 4388 * uint32_t crc; 4389 * val = crc_table[(val ^ crc) & 0xFF]; 4390 * crc = val ^ (crc >> 8); 4391 * 4392 */ 4393 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4394 eor(val, val, crc); 4395 andr(val, val, 0xff); 4396 ldrw(val, Address(table, val, Address::lsl(2))); 4397 eor(crc, val, crc, Assembler::LSR, 8); 4398 } 4399 4400 /** 4401 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4402 * 4403 * @param [in,out]crc Register containing the crc. 4404 * @param [in]v Register containing the 32-bit to fold into the CRC. 4405 * @param [in]table0 Register containing table 0 of crc constants. 4406 * @param [in]table1 Register containing table 1 of crc constants. 4407 * @param [in]table2 Register containing table 2 of crc constants. 4408 * @param [in]table3 Register containing table 3 of crc constants. 4409 * 4410 * uint32_t crc; 4411 * v = crc ^ v 4412 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4413 * 4414 */ 4415 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4416 Register table0, Register table1, Register table2, Register table3, 4417 bool upper) { 4418 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4419 uxtb(tmp, v); 4420 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4421 ubfx(tmp, v, 8, 8); 4422 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4423 eor(crc, crc, tmp); 4424 ubfx(tmp, v, 16, 8); 4425 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4426 eor(crc, crc, tmp); 4427 ubfx(tmp, v, 24, 8); 4428 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4429 eor(crc, crc, tmp); 4430 } 4431 4432 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4433 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4434 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4435 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4436 4437 subs(tmp0, len, 384); 4438 mvnw(crc, crc); 4439 br(Assembler::GE, CRC_by128_pre); 4440 BIND(CRC_less128); 4441 subs(len, len, 32); 4442 br(Assembler::GE, CRC_by32_loop); 4443 BIND(CRC_less32); 4444 adds(len, len, 32 - 4); 4445 br(Assembler::GE, CRC_by4_loop); 4446 adds(len, len, 4); 4447 br(Assembler::GT, CRC_by1_loop); 4448 b(L_exit); 4449 4450 BIND(CRC_by32_loop); 4451 ldp(tmp0, tmp1, Address(buf)); 4452 crc32x(crc, crc, tmp0); 4453 ldp(tmp2, tmp3, Address(buf, 16)); 4454 crc32x(crc, crc, tmp1); 4455 add(buf, buf, 32); 4456 crc32x(crc, crc, tmp2); 4457 subs(len, len, 32); 4458 crc32x(crc, crc, tmp3); 4459 br(Assembler::GE, CRC_by32_loop); 4460 cmn(len, (u1)32); 4461 br(Assembler::NE, CRC_less32); 4462 b(L_exit); 4463 4464 BIND(CRC_by4_loop); 4465 ldrw(tmp0, Address(post(buf, 4))); 4466 subs(len, len, 4); 4467 crc32w(crc, crc, tmp0); 4468 br(Assembler::GE, CRC_by4_loop); 4469 adds(len, len, 4); 4470 br(Assembler::LE, L_exit); 4471 BIND(CRC_by1_loop); 4472 ldrb(tmp0, Address(post(buf, 1))); 4473 subs(len, len, 1); 4474 crc32b(crc, crc, tmp0); 4475 br(Assembler::GT, CRC_by1_loop); 4476 b(L_exit); 4477 4478 BIND(CRC_by128_pre); 4479 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4480 4*256*sizeof(juint) + 8*sizeof(juint)); 4481 mov(crc, 0); 4482 crc32x(crc, crc, tmp0); 4483 crc32x(crc, crc, tmp1); 4484 4485 cbnz(len, CRC_less128); 4486 4487 BIND(L_exit); 4488 mvnw(crc, crc); 4489 } 4490 4491 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4492 Register len, Register tmp0, Register tmp1, Register tmp2, 4493 Register tmp3) { 4494 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4495 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4496 4497 mvnw(crc, crc); 4498 4499 subs(len, len, 128); 4500 br(Assembler::GE, CRC_by64_pre); 4501 BIND(CRC_less64); 4502 adds(len, len, 128-32); 4503 br(Assembler::GE, CRC_by32_loop); 4504 BIND(CRC_less32); 4505 adds(len, len, 32-4); 4506 br(Assembler::GE, CRC_by4_loop); 4507 adds(len, len, 4); 4508 br(Assembler::GT, CRC_by1_loop); 4509 b(L_exit); 4510 4511 BIND(CRC_by32_loop); 4512 ldp(tmp0, tmp1, Address(post(buf, 16))); 4513 subs(len, len, 32); 4514 crc32x(crc, crc, tmp0); 4515 ldr(tmp2, Address(post(buf, 8))); 4516 crc32x(crc, crc, tmp1); 4517 ldr(tmp3, Address(post(buf, 8))); 4518 crc32x(crc, crc, tmp2); 4519 crc32x(crc, crc, tmp3); 4520 br(Assembler::GE, CRC_by32_loop); 4521 cmn(len, (u1)32); 4522 br(Assembler::NE, CRC_less32); 4523 b(L_exit); 4524 4525 BIND(CRC_by4_loop); 4526 ldrw(tmp0, Address(post(buf, 4))); 4527 subs(len, len, 4); 4528 crc32w(crc, crc, tmp0); 4529 br(Assembler::GE, CRC_by4_loop); 4530 adds(len, len, 4); 4531 br(Assembler::LE, L_exit); 4532 BIND(CRC_by1_loop); 4533 ldrb(tmp0, Address(post(buf, 1))); 4534 subs(len, len, 1); 4535 crc32b(crc, crc, tmp0); 4536 br(Assembler::GT, CRC_by1_loop); 4537 b(L_exit); 4538 4539 BIND(CRC_by64_pre); 4540 sub(buf, buf, 8); 4541 ldp(tmp0, tmp1, Address(buf, 8)); 4542 crc32x(crc, crc, tmp0); 4543 ldr(tmp2, Address(buf, 24)); 4544 crc32x(crc, crc, tmp1); 4545 ldr(tmp3, Address(buf, 32)); 4546 crc32x(crc, crc, tmp2); 4547 ldr(tmp0, Address(buf, 40)); 4548 crc32x(crc, crc, tmp3); 4549 ldr(tmp1, Address(buf, 48)); 4550 crc32x(crc, crc, tmp0); 4551 ldr(tmp2, Address(buf, 56)); 4552 crc32x(crc, crc, tmp1); 4553 ldr(tmp3, Address(pre(buf, 64))); 4554 4555 b(CRC_by64_loop); 4556 4557 align(CodeEntryAlignment); 4558 BIND(CRC_by64_loop); 4559 subs(len, len, 64); 4560 crc32x(crc, crc, tmp2); 4561 ldr(tmp0, Address(buf, 8)); 4562 crc32x(crc, crc, tmp3); 4563 ldr(tmp1, Address(buf, 16)); 4564 crc32x(crc, crc, tmp0); 4565 ldr(tmp2, Address(buf, 24)); 4566 crc32x(crc, crc, tmp1); 4567 ldr(tmp3, Address(buf, 32)); 4568 crc32x(crc, crc, tmp2); 4569 ldr(tmp0, Address(buf, 40)); 4570 crc32x(crc, crc, tmp3); 4571 ldr(tmp1, Address(buf, 48)); 4572 crc32x(crc, crc, tmp0); 4573 ldr(tmp2, Address(buf, 56)); 4574 crc32x(crc, crc, tmp1); 4575 ldr(tmp3, Address(pre(buf, 64))); 4576 br(Assembler::GE, CRC_by64_loop); 4577 4578 // post-loop 4579 crc32x(crc, crc, tmp2); 4580 crc32x(crc, crc, tmp3); 4581 4582 sub(len, len, 64); 4583 add(buf, buf, 8); 4584 cmn(len, (u1)128); 4585 br(Assembler::NE, CRC_less64); 4586 BIND(L_exit); 4587 mvnw(crc, crc); 4588 } 4589 4590 /** 4591 * @param crc register containing existing CRC (32-bit) 4592 * @param buf register pointing to input byte buffer (byte*) 4593 * @param len register containing number of bytes 4594 * @param table register that will contain address of CRC table 4595 * @param tmp scratch register 4596 */ 4597 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4598 Register table0, Register table1, Register table2, Register table3, 4599 Register tmp, Register tmp2, Register tmp3) { 4600 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4601 4602 if (UseCryptoPmullForCRC32) { 4603 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4604 return; 4605 } 4606 4607 if (UseCRC32) { 4608 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4609 return; 4610 } 4611 4612 mvnw(crc, crc); 4613 4614 { 4615 uint64_t offset; 4616 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4617 add(table0, table0, offset); 4618 } 4619 add(table1, table0, 1*256*sizeof(juint)); 4620 add(table2, table0, 2*256*sizeof(juint)); 4621 add(table3, table0, 3*256*sizeof(juint)); 4622 4623 { // Neon code start 4624 cmp(len, (u1)64); 4625 br(Assembler::LT, L_by16); 4626 eor(v16, T16B, v16, v16); 4627 4628 Label L_fold; 4629 4630 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4631 4632 ld1(v0, v1, T2D, post(buf, 32)); 4633 ld1r(v4, T2D, post(tmp, 8)); 4634 ld1r(v5, T2D, post(tmp, 8)); 4635 ld1r(v6, T2D, post(tmp, 8)); 4636 ld1r(v7, T2D, post(tmp, 8)); 4637 mov(v16, S, 0, crc); 4638 4639 eor(v0, T16B, v0, v16); 4640 sub(len, len, 64); 4641 4642 BIND(L_fold); 4643 pmull(v22, T8H, v0, v5, T8B); 4644 pmull(v20, T8H, v0, v7, T8B); 4645 pmull(v23, T8H, v0, v4, T8B); 4646 pmull(v21, T8H, v0, v6, T8B); 4647 4648 pmull2(v18, T8H, v0, v5, T16B); 4649 pmull2(v16, T8H, v0, v7, T16B); 4650 pmull2(v19, T8H, v0, v4, T16B); 4651 pmull2(v17, T8H, v0, v6, T16B); 4652 4653 uzp1(v24, T8H, v20, v22); 4654 uzp2(v25, T8H, v20, v22); 4655 eor(v20, T16B, v24, v25); 4656 4657 uzp1(v26, T8H, v16, v18); 4658 uzp2(v27, T8H, v16, v18); 4659 eor(v16, T16B, v26, v27); 4660 4661 ushll2(v22, T4S, v20, T8H, 8); 4662 ushll(v20, T4S, v20, T4H, 8); 4663 4664 ushll2(v18, T4S, v16, T8H, 8); 4665 ushll(v16, T4S, v16, T4H, 8); 4666 4667 eor(v22, T16B, v23, v22); 4668 eor(v18, T16B, v19, v18); 4669 eor(v20, T16B, v21, v20); 4670 eor(v16, T16B, v17, v16); 4671 4672 uzp1(v17, T2D, v16, v20); 4673 uzp2(v21, T2D, v16, v20); 4674 eor(v17, T16B, v17, v21); 4675 4676 ushll2(v20, T2D, v17, T4S, 16); 4677 ushll(v16, T2D, v17, T2S, 16); 4678 4679 eor(v20, T16B, v20, v22); 4680 eor(v16, T16B, v16, v18); 4681 4682 uzp1(v17, T2D, v20, v16); 4683 uzp2(v21, T2D, v20, v16); 4684 eor(v28, T16B, v17, v21); 4685 4686 pmull(v22, T8H, v1, v5, T8B); 4687 pmull(v20, T8H, v1, v7, T8B); 4688 pmull(v23, T8H, v1, v4, T8B); 4689 pmull(v21, T8H, v1, v6, T8B); 4690 4691 pmull2(v18, T8H, v1, v5, T16B); 4692 pmull2(v16, T8H, v1, v7, T16B); 4693 pmull2(v19, T8H, v1, v4, T16B); 4694 pmull2(v17, T8H, v1, v6, T16B); 4695 4696 ld1(v0, v1, T2D, post(buf, 32)); 4697 4698 uzp1(v24, T8H, v20, v22); 4699 uzp2(v25, T8H, v20, v22); 4700 eor(v20, T16B, v24, v25); 4701 4702 uzp1(v26, T8H, v16, v18); 4703 uzp2(v27, T8H, v16, v18); 4704 eor(v16, T16B, v26, v27); 4705 4706 ushll2(v22, T4S, v20, T8H, 8); 4707 ushll(v20, T4S, v20, T4H, 8); 4708 4709 ushll2(v18, T4S, v16, T8H, 8); 4710 ushll(v16, T4S, v16, T4H, 8); 4711 4712 eor(v22, T16B, v23, v22); 4713 eor(v18, T16B, v19, v18); 4714 eor(v20, T16B, v21, v20); 4715 eor(v16, T16B, v17, v16); 4716 4717 uzp1(v17, T2D, v16, v20); 4718 uzp2(v21, T2D, v16, v20); 4719 eor(v16, T16B, v17, v21); 4720 4721 ushll2(v20, T2D, v16, T4S, 16); 4722 ushll(v16, T2D, v16, T2S, 16); 4723 4724 eor(v20, T16B, v22, v20); 4725 eor(v16, T16B, v16, v18); 4726 4727 uzp1(v17, T2D, v20, v16); 4728 uzp2(v21, T2D, v20, v16); 4729 eor(v20, T16B, v17, v21); 4730 4731 shl(v16, T2D, v28, 1); 4732 shl(v17, T2D, v20, 1); 4733 4734 eor(v0, T16B, v0, v16); 4735 eor(v1, T16B, v1, v17); 4736 4737 subs(len, len, 32); 4738 br(Assembler::GE, L_fold); 4739 4740 mov(crc, 0); 4741 mov(tmp, v0, D, 0); 4742 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4743 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4744 mov(tmp, v0, D, 1); 4745 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4746 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4747 mov(tmp, v1, D, 0); 4748 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4749 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4750 mov(tmp, v1, D, 1); 4751 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4752 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4753 4754 add(len, len, 32); 4755 } // Neon code end 4756 4757 BIND(L_by16); 4758 subs(len, len, 16); 4759 br(Assembler::GE, L_by16_loop); 4760 adds(len, len, 16-4); 4761 br(Assembler::GE, L_by4_loop); 4762 adds(len, len, 4); 4763 br(Assembler::GT, L_by1_loop); 4764 b(L_exit); 4765 4766 BIND(L_by4_loop); 4767 ldrw(tmp, Address(post(buf, 4))); 4768 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4769 subs(len, len, 4); 4770 br(Assembler::GE, L_by4_loop); 4771 adds(len, len, 4); 4772 br(Assembler::LE, L_exit); 4773 BIND(L_by1_loop); 4774 subs(len, len, 1); 4775 ldrb(tmp, Address(post(buf, 1))); 4776 update_byte_crc32(crc, tmp, table0); 4777 br(Assembler::GT, L_by1_loop); 4778 b(L_exit); 4779 4780 align(CodeEntryAlignment); 4781 BIND(L_by16_loop); 4782 subs(len, len, 16); 4783 ldp(tmp, tmp3, Address(post(buf, 16))); 4784 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4785 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4786 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4787 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4788 br(Assembler::GE, L_by16_loop); 4789 adds(len, len, 16-4); 4790 br(Assembler::GE, L_by4_loop); 4791 adds(len, len, 4); 4792 br(Assembler::GT, L_by1_loop); 4793 BIND(L_exit); 4794 mvnw(crc, crc); 4795 } 4796 4797 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4798 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4799 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4800 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4801 4802 subs(tmp0, len, 384); 4803 br(Assembler::GE, CRC_by128_pre); 4804 BIND(CRC_less128); 4805 subs(len, len, 32); 4806 br(Assembler::GE, CRC_by32_loop); 4807 BIND(CRC_less32); 4808 adds(len, len, 32 - 4); 4809 br(Assembler::GE, CRC_by4_loop); 4810 adds(len, len, 4); 4811 br(Assembler::GT, CRC_by1_loop); 4812 b(L_exit); 4813 4814 BIND(CRC_by32_loop); 4815 ldp(tmp0, tmp1, Address(buf)); 4816 crc32cx(crc, crc, tmp0); 4817 ldr(tmp2, Address(buf, 16)); 4818 crc32cx(crc, crc, tmp1); 4819 ldr(tmp3, Address(buf, 24)); 4820 crc32cx(crc, crc, tmp2); 4821 add(buf, buf, 32); 4822 subs(len, len, 32); 4823 crc32cx(crc, crc, tmp3); 4824 br(Assembler::GE, CRC_by32_loop); 4825 cmn(len, (u1)32); 4826 br(Assembler::NE, CRC_less32); 4827 b(L_exit); 4828 4829 BIND(CRC_by4_loop); 4830 ldrw(tmp0, Address(post(buf, 4))); 4831 subs(len, len, 4); 4832 crc32cw(crc, crc, tmp0); 4833 br(Assembler::GE, CRC_by4_loop); 4834 adds(len, len, 4); 4835 br(Assembler::LE, L_exit); 4836 BIND(CRC_by1_loop); 4837 ldrb(tmp0, Address(post(buf, 1))); 4838 subs(len, len, 1); 4839 crc32cb(crc, crc, tmp0); 4840 br(Assembler::GT, CRC_by1_loop); 4841 b(L_exit); 4842 4843 BIND(CRC_by128_pre); 4844 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4845 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4846 mov(crc, 0); 4847 crc32cx(crc, crc, tmp0); 4848 crc32cx(crc, crc, tmp1); 4849 4850 cbnz(len, CRC_less128); 4851 4852 BIND(L_exit); 4853 } 4854 4855 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4856 Register len, Register tmp0, Register tmp1, Register tmp2, 4857 Register tmp3) { 4858 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4859 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4860 4861 subs(len, len, 128); 4862 br(Assembler::GE, CRC_by64_pre); 4863 BIND(CRC_less64); 4864 adds(len, len, 128-32); 4865 br(Assembler::GE, CRC_by32_loop); 4866 BIND(CRC_less32); 4867 adds(len, len, 32-4); 4868 br(Assembler::GE, CRC_by4_loop); 4869 adds(len, len, 4); 4870 br(Assembler::GT, CRC_by1_loop); 4871 b(L_exit); 4872 4873 BIND(CRC_by32_loop); 4874 ldp(tmp0, tmp1, Address(post(buf, 16))); 4875 subs(len, len, 32); 4876 crc32cx(crc, crc, tmp0); 4877 ldr(tmp2, Address(post(buf, 8))); 4878 crc32cx(crc, crc, tmp1); 4879 ldr(tmp3, Address(post(buf, 8))); 4880 crc32cx(crc, crc, tmp2); 4881 crc32cx(crc, crc, tmp3); 4882 br(Assembler::GE, CRC_by32_loop); 4883 cmn(len, (u1)32); 4884 br(Assembler::NE, CRC_less32); 4885 b(L_exit); 4886 4887 BIND(CRC_by4_loop); 4888 ldrw(tmp0, Address(post(buf, 4))); 4889 subs(len, len, 4); 4890 crc32cw(crc, crc, tmp0); 4891 br(Assembler::GE, CRC_by4_loop); 4892 adds(len, len, 4); 4893 br(Assembler::LE, L_exit); 4894 BIND(CRC_by1_loop); 4895 ldrb(tmp0, Address(post(buf, 1))); 4896 subs(len, len, 1); 4897 crc32cb(crc, crc, tmp0); 4898 br(Assembler::GT, CRC_by1_loop); 4899 b(L_exit); 4900 4901 BIND(CRC_by64_pre); 4902 sub(buf, buf, 8); 4903 ldp(tmp0, tmp1, Address(buf, 8)); 4904 crc32cx(crc, crc, tmp0); 4905 ldr(tmp2, Address(buf, 24)); 4906 crc32cx(crc, crc, tmp1); 4907 ldr(tmp3, Address(buf, 32)); 4908 crc32cx(crc, crc, tmp2); 4909 ldr(tmp0, Address(buf, 40)); 4910 crc32cx(crc, crc, tmp3); 4911 ldr(tmp1, Address(buf, 48)); 4912 crc32cx(crc, crc, tmp0); 4913 ldr(tmp2, Address(buf, 56)); 4914 crc32cx(crc, crc, tmp1); 4915 ldr(tmp3, Address(pre(buf, 64))); 4916 4917 b(CRC_by64_loop); 4918 4919 align(CodeEntryAlignment); 4920 BIND(CRC_by64_loop); 4921 subs(len, len, 64); 4922 crc32cx(crc, crc, tmp2); 4923 ldr(tmp0, Address(buf, 8)); 4924 crc32cx(crc, crc, tmp3); 4925 ldr(tmp1, Address(buf, 16)); 4926 crc32cx(crc, crc, tmp0); 4927 ldr(tmp2, Address(buf, 24)); 4928 crc32cx(crc, crc, tmp1); 4929 ldr(tmp3, Address(buf, 32)); 4930 crc32cx(crc, crc, tmp2); 4931 ldr(tmp0, Address(buf, 40)); 4932 crc32cx(crc, crc, tmp3); 4933 ldr(tmp1, Address(buf, 48)); 4934 crc32cx(crc, crc, tmp0); 4935 ldr(tmp2, Address(buf, 56)); 4936 crc32cx(crc, crc, tmp1); 4937 ldr(tmp3, Address(pre(buf, 64))); 4938 br(Assembler::GE, CRC_by64_loop); 4939 4940 // post-loop 4941 crc32cx(crc, crc, tmp2); 4942 crc32cx(crc, crc, tmp3); 4943 4944 sub(len, len, 64); 4945 add(buf, buf, 8); 4946 cmn(len, (u1)128); 4947 br(Assembler::NE, CRC_less64); 4948 BIND(L_exit); 4949 } 4950 4951 /** 4952 * @param crc register containing existing CRC (32-bit) 4953 * @param buf register pointing to input byte buffer (byte*) 4954 * @param len register containing number of bytes 4955 * @param table register that will contain address of CRC table 4956 * @param tmp scratch register 4957 */ 4958 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4959 Register table0, Register table1, Register table2, Register table3, 4960 Register tmp, Register tmp2, Register tmp3) { 4961 if (UseCryptoPmullForCRC32) { 4962 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4963 } else { 4964 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4965 } 4966 } 4967 4968 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4969 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4970 Label CRC_by128_loop; 4971 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4972 4973 sub(len, len, 256); 4974 Register table = tmp0; 4975 { 4976 uint64_t offset; 4977 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4978 add(table, table, offset); 4979 } 4980 add(table, table, table_offset); 4981 4982 // Registers v0..v7 are used as data registers. 4983 // Registers v16..v31 are used as tmp registers. 4984 sub(buf, buf, 0x10); 4985 ldrq(v0, Address(buf, 0x10)); 4986 ldrq(v1, Address(buf, 0x20)); 4987 ldrq(v2, Address(buf, 0x30)); 4988 ldrq(v3, Address(buf, 0x40)); 4989 ldrq(v4, Address(buf, 0x50)); 4990 ldrq(v5, Address(buf, 0x60)); 4991 ldrq(v6, Address(buf, 0x70)); 4992 ldrq(v7, Address(pre(buf, 0x80))); 4993 4994 movi(v31, T4S, 0); 4995 mov(v31, S, 0, crc); 4996 eor(v0, T16B, v0, v31); 4997 4998 // Register v16 contains constants from the crc table. 4999 ldrq(v16, Address(table)); 5000 b(CRC_by128_loop); 5001 5002 align(OptoLoopAlignment); 5003 BIND(CRC_by128_loop); 5004 pmull (v17, T1Q, v0, v16, T1D); 5005 pmull2(v18, T1Q, v0, v16, T2D); 5006 ldrq(v0, Address(buf, 0x10)); 5007 eor3(v0, T16B, v17, v18, v0); 5008 5009 pmull (v19, T1Q, v1, v16, T1D); 5010 pmull2(v20, T1Q, v1, v16, T2D); 5011 ldrq(v1, Address(buf, 0x20)); 5012 eor3(v1, T16B, v19, v20, v1); 5013 5014 pmull (v21, T1Q, v2, v16, T1D); 5015 pmull2(v22, T1Q, v2, v16, T2D); 5016 ldrq(v2, Address(buf, 0x30)); 5017 eor3(v2, T16B, v21, v22, v2); 5018 5019 pmull (v23, T1Q, v3, v16, T1D); 5020 pmull2(v24, T1Q, v3, v16, T2D); 5021 ldrq(v3, Address(buf, 0x40)); 5022 eor3(v3, T16B, v23, v24, v3); 5023 5024 pmull (v25, T1Q, v4, v16, T1D); 5025 pmull2(v26, T1Q, v4, v16, T2D); 5026 ldrq(v4, Address(buf, 0x50)); 5027 eor3(v4, T16B, v25, v26, v4); 5028 5029 pmull (v27, T1Q, v5, v16, T1D); 5030 pmull2(v28, T1Q, v5, v16, T2D); 5031 ldrq(v5, Address(buf, 0x60)); 5032 eor3(v5, T16B, v27, v28, v5); 5033 5034 pmull (v29, T1Q, v6, v16, T1D); 5035 pmull2(v30, T1Q, v6, v16, T2D); 5036 ldrq(v6, Address(buf, 0x70)); 5037 eor3(v6, T16B, v29, v30, v6); 5038 5039 // Reuse registers v23, v24. 5040 // Using them won't block the first instruction of the next iteration. 5041 pmull (v23, T1Q, v7, v16, T1D); 5042 pmull2(v24, T1Q, v7, v16, T2D); 5043 ldrq(v7, Address(pre(buf, 0x80))); 5044 eor3(v7, T16B, v23, v24, v7); 5045 5046 subs(len, len, 0x80); 5047 br(Assembler::GE, CRC_by128_loop); 5048 5049 // fold into 512 bits 5050 // Use v31 for constants because v16 can be still in use. 5051 ldrq(v31, Address(table, 0x10)); 5052 5053 pmull (v17, T1Q, v0, v31, T1D); 5054 pmull2(v18, T1Q, v0, v31, T2D); 5055 eor3(v0, T16B, v17, v18, v4); 5056 5057 pmull (v19, T1Q, v1, v31, T1D); 5058 pmull2(v20, T1Q, v1, v31, T2D); 5059 eor3(v1, T16B, v19, v20, v5); 5060 5061 pmull (v21, T1Q, v2, v31, T1D); 5062 pmull2(v22, T1Q, v2, v31, T2D); 5063 eor3(v2, T16B, v21, v22, v6); 5064 5065 pmull (v23, T1Q, v3, v31, T1D); 5066 pmull2(v24, T1Q, v3, v31, T2D); 5067 eor3(v3, T16B, v23, v24, v7); 5068 5069 // fold into 128 bits 5070 // Use v17 for constants because v31 can be still in use. 5071 ldrq(v17, Address(table, 0x20)); 5072 pmull (v25, T1Q, v0, v17, T1D); 5073 pmull2(v26, T1Q, v0, v17, T2D); 5074 eor3(v3, T16B, v3, v25, v26); 5075 5076 // Use v18 for constants because v17 can be still in use. 5077 ldrq(v18, Address(table, 0x30)); 5078 pmull (v27, T1Q, v1, v18, T1D); 5079 pmull2(v28, T1Q, v1, v18, T2D); 5080 eor3(v3, T16B, v3, v27, v28); 5081 5082 // Use v19 for constants because v18 can be still in use. 5083 ldrq(v19, Address(table, 0x40)); 5084 pmull (v29, T1Q, v2, v19, T1D); 5085 pmull2(v30, T1Q, v2, v19, T2D); 5086 eor3(v0, T16B, v3, v29, v30); 5087 5088 add(len, len, 0x80); 5089 add(buf, buf, 0x10); 5090 5091 mov(tmp0, v0, D, 0); 5092 mov(tmp1, v0, D, 1); 5093 } 5094 5095 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5096 Address adr; 5097 switch(dst.getMode()) { 5098 case Address::base_plus_offset: 5099 // This is the expected mode, although we allow all the other 5100 // forms below. 5101 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5102 break; 5103 default: 5104 lea(rscratch2, dst); 5105 adr = Address(rscratch2); 5106 break; 5107 } 5108 ldr(rscratch1, adr); 5109 add(rscratch1, rscratch1, src); 5110 str(rscratch1, adr); 5111 } 5112 5113 void MacroAssembler::cmpptr(Register src1, Address src2) { 5114 uint64_t offset; 5115 adrp(rscratch1, src2, offset); 5116 ldr(rscratch1, Address(rscratch1, offset)); 5117 cmp(src1, rscratch1); 5118 } 5119 5120 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5121 cmp(obj1, obj2); 5122 } 5123 5124 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5125 load_method_holder(rresult, rmethod); 5126 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5127 } 5128 5129 void MacroAssembler::load_method_holder(Register holder, Register method) { 5130 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5131 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5132 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5133 } 5134 5135 void MacroAssembler::load_metadata(Register dst, Register src) { 5136 if (UseCompactObjectHeaders) { 5137 load_narrow_klass_compact(dst, src); 5138 } else if (UseCompressedClassPointers) { 5139 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5140 } else { 5141 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5142 } 5143 } 5144 5145 // Loads the obj's Klass* into dst. 5146 // Preserves all registers (incl src, rscratch1 and rscratch2). 5147 // Input: 5148 // src - the oop we want to load the klass from. 5149 // dst - output narrow klass. 5150 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5151 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5152 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5153 lsr(dst, dst, markWord::klass_shift); 5154 } 5155 5156 void MacroAssembler::load_klass(Register dst, Register src) { 5157 if (UseCompactObjectHeaders) { 5158 load_narrow_klass_compact(dst, src); 5159 decode_klass_not_null(dst); 5160 } else if (UseCompressedClassPointers) { 5161 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5162 decode_klass_not_null(dst); 5163 } else { 5164 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5165 } 5166 } 5167 5168 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5169 if (RestoreMXCSROnJNICalls) { 5170 Label OK; 5171 get_fpcr(tmp1); 5172 mov(tmp2, tmp1); 5173 // Set FPCR to the state we need. We do want Round to Nearest. We 5174 // don't want non-IEEE rounding modes or floating-point traps. 5175 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5176 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5177 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5178 eor(tmp2, tmp1, tmp2); 5179 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5180 set_fpcr(tmp1); 5181 bind(OK); 5182 } 5183 } 5184 5185 // ((OopHandle)result).resolve(); 5186 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5187 // OopHandle::resolve is an indirection. 5188 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5189 } 5190 5191 // ((WeakHandle)result).resolve(); 5192 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5193 assert_different_registers(result, tmp1, tmp2); 5194 Label resolved; 5195 5196 // A null weak handle resolves to null. 5197 cbz(result, resolved); 5198 5199 // Only 64 bit platforms support GCs that require a tmp register 5200 // WeakHandle::resolve is an indirection like jweak. 5201 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5202 result, Address(result), tmp1, tmp2); 5203 bind(resolved); 5204 } 5205 5206 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5207 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5208 ldr(dst, Address(rmethod, Method::const_offset())); 5209 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5210 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5211 ldr(dst, Address(dst, mirror_offset)); 5212 resolve_oop_handle(dst, tmp1, tmp2); 5213 } 5214 5215 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5216 assert_different_registers(obj, klass, tmp); 5217 if (UseCompressedClassPointers) { 5218 if (UseCompactObjectHeaders) { 5219 load_narrow_klass_compact(tmp, obj); 5220 } else { 5221 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5222 } 5223 if (CompressedKlassPointers::base() == nullptr) { 5224 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5225 return; 5226 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5227 && CompressedKlassPointers::shift() == 0) { 5228 // Only the bottom 32 bits matter 5229 cmpw(klass, tmp); 5230 return; 5231 } 5232 decode_klass_not_null(tmp); 5233 } else { 5234 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5235 } 5236 cmp(klass, tmp); 5237 } 5238 5239 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5240 if (UseCompactObjectHeaders) { 5241 load_narrow_klass_compact(tmp1, obj1); 5242 load_narrow_klass_compact(tmp2, obj2); 5243 cmpw(tmp1, tmp2); 5244 } else if (UseCompressedClassPointers) { 5245 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5246 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5247 cmpw(tmp1, tmp2); 5248 } else { 5249 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5250 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5251 cmp(tmp1, tmp2); 5252 } 5253 } 5254 5255 void MacroAssembler::load_prototype_header(Register dst, Register src) { 5256 load_klass(dst, src); 5257 ldr(dst, Address(dst, Klass::prototype_header_offset())); 5258 } 5259 5260 void MacroAssembler::store_klass(Register dst, Register src) { 5261 // FIXME: Should this be a store release? concurrent gcs assumes 5262 // klass length is valid if klass field is not null. 5263 assert(!UseCompactObjectHeaders, "not with compact headers"); 5264 if (UseCompressedClassPointers) { 5265 encode_klass_not_null(src); 5266 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5267 } else { 5268 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5269 } 5270 } 5271 5272 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5273 assert(!UseCompactObjectHeaders, "not with compact headers"); 5274 if (UseCompressedClassPointers) { 5275 // Store to klass gap in destination 5276 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5277 } 5278 } 5279 5280 // Algorithm must match CompressedOops::encode. 5281 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5282 #ifdef ASSERT 5283 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5284 #endif 5285 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5286 if (CompressedOops::base() == nullptr) { 5287 if (CompressedOops::shift() != 0) { 5288 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5289 lsr(d, s, LogMinObjAlignmentInBytes); 5290 } else { 5291 mov(d, s); 5292 } 5293 } else { 5294 subs(d, s, rheapbase); 5295 csel(d, d, zr, Assembler::HS); 5296 lsr(d, d, LogMinObjAlignmentInBytes); 5297 5298 /* Old algorithm: is this any worse? 5299 Label nonnull; 5300 cbnz(r, nonnull); 5301 sub(r, r, rheapbase); 5302 bind(nonnull); 5303 lsr(r, r, LogMinObjAlignmentInBytes); 5304 */ 5305 } 5306 } 5307 5308 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5309 #ifdef ASSERT 5310 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5311 if (CheckCompressedOops) { 5312 Label ok; 5313 cbnz(r, ok); 5314 stop("null oop passed to encode_heap_oop_not_null"); 5315 bind(ok); 5316 } 5317 #endif 5318 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5319 if (CompressedOops::base() != nullptr) { 5320 sub(r, r, rheapbase); 5321 } 5322 if (CompressedOops::shift() != 0) { 5323 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5324 lsr(r, r, LogMinObjAlignmentInBytes); 5325 } 5326 } 5327 5328 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5329 #ifdef ASSERT 5330 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5331 if (CheckCompressedOops) { 5332 Label ok; 5333 cbnz(src, ok); 5334 stop("null oop passed to encode_heap_oop_not_null2"); 5335 bind(ok); 5336 } 5337 #endif 5338 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5339 5340 Register data = src; 5341 if (CompressedOops::base() != nullptr) { 5342 sub(dst, src, rheapbase); 5343 data = dst; 5344 } 5345 if (CompressedOops::shift() != 0) { 5346 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5347 lsr(dst, data, LogMinObjAlignmentInBytes); 5348 data = dst; 5349 } 5350 if (data == src) 5351 mov(dst, src); 5352 } 5353 5354 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5355 #ifdef ASSERT 5356 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5357 #endif 5358 if (CompressedOops::base() == nullptr) { 5359 if (CompressedOops::shift() != 0) { 5360 lsl(d, s, CompressedOops::shift()); 5361 } else if (d != s) { 5362 mov(d, s); 5363 } 5364 } else { 5365 Label done; 5366 if (d != s) 5367 mov(d, s); 5368 cbz(s, done); 5369 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5370 bind(done); 5371 } 5372 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5373 } 5374 5375 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5376 assert (UseCompressedOops, "should only be used for compressed headers"); 5377 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5378 // Cannot assert, unverified entry point counts instructions (see .ad file) 5379 // vtableStubs also counts instructions in pd_code_size_limit. 5380 // Also do not verify_oop as this is called by verify_oop. 5381 if (CompressedOops::shift() != 0) { 5382 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5383 if (CompressedOops::base() != nullptr) { 5384 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5385 } else { 5386 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5387 } 5388 } else { 5389 assert (CompressedOops::base() == nullptr, "sanity"); 5390 } 5391 } 5392 5393 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5394 assert (UseCompressedOops, "should only be used for compressed headers"); 5395 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5396 // Cannot assert, unverified entry point counts instructions (see .ad file) 5397 // vtableStubs also counts instructions in pd_code_size_limit. 5398 // Also do not verify_oop as this is called by verify_oop. 5399 if (CompressedOops::shift() != 0) { 5400 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5401 if (CompressedOops::base() != nullptr) { 5402 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5403 } else { 5404 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5405 } 5406 } else { 5407 assert (CompressedOops::base() == nullptr, "sanity"); 5408 if (dst != src) { 5409 mov(dst, src); 5410 } 5411 } 5412 } 5413 5414 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5415 5416 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5417 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5418 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5419 return _klass_decode_mode; 5420 } 5421 5422 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5423 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5424 5425 // KlassDecodeMode shouldn't be set already. 5426 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5427 5428 if (base == nullptr) { 5429 return KlassDecodeZero; 5430 } 5431 5432 if (operand_valid_for_logical_immediate( 5433 /*is32*/false, (uint64_t)base)) { 5434 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5435 if (((uint64_t)base & range_mask) == 0) { 5436 return KlassDecodeXor; 5437 } 5438 } 5439 5440 const uint64_t shifted_base = 5441 (uint64_t)base >> shift; 5442 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5443 return KlassDecodeMovk; 5444 } 5445 5446 // No valid encoding. 5447 return KlassDecodeNone; 5448 } 5449 5450 // Check if one of the above decoding modes will work for given base, shift and range. 5451 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5452 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5453 } 5454 5455 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5456 _klass_decode_mode = klass_decode_mode(base, shift, range); 5457 return _klass_decode_mode != KlassDecodeNone; 5458 } 5459 5460 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5461 switch (klass_decode_mode()) { 5462 case KlassDecodeZero: 5463 if (CompressedKlassPointers::shift() != 0) { 5464 lsr(dst, src, CompressedKlassPointers::shift()); 5465 } else { 5466 if (dst != src) mov(dst, src); 5467 } 5468 break; 5469 5470 case KlassDecodeXor: 5471 if (CompressedKlassPointers::shift() != 0) { 5472 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5473 lsr(dst, dst, CompressedKlassPointers::shift()); 5474 } else { 5475 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5476 } 5477 break; 5478 5479 case KlassDecodeMovk: 5480 if (CompressedKlassPointers::shift() != 0) { 5481 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5482 } else { 5483 movw(dst, src); 5484 } 5485 break; 5486 5487 case KlassDecodeNone: 5488 ShouldNotReachHere(); 5489 break; 5490 } 5491 } 5492 5493 void MacroAssembler::encode_klass_not_null(Register r) { 5494 encode_klass_not_null(r, r); 5495 } 5496 5497 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5498 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5499 5500 switch (klass_decode_mode()) { 5501 case KlassDecodeZero: 5502 if (CompressedKlassPointers::shift() != 0) { 5503 lsl(dst, src, CompressedKlassPointers::shift()); 5504 } else { 5505 if (dst != src) mov(dst, src); 5506 } 5507 break; 5508 5509 case KlassDecodeXor: 5510 if (CompressedKlassPointers::shift() != 0) { 5511 lsl(dst, src, CompressedKlassPointers::shift()); 5512 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5513 } else { 5514 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5515 } 5516 break; 5517 5518 case KlassDecodeMovk: { 5519 const uint64_t shifted_base = 5520 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5521 5522 if (dst != src) movw(dst, src); 5523 movk(dst, shifted_base >> 32, 32); 5524 5525 if (CompressedKlassPointers::shift() != 0) { 5526 lsl(dst, dst, CompressedKlassPointers::shift()); 5527 } 5528 5529 break; 5530 } 5531 5532 case KlassDecodeNone: 5533 ShouldNotReachHere(); 5534 break; 5535 } 5536 } 5537 5538 void MacroAssembler::decode_klass_not_null(Register r) { 5539 decode_klass_not_null(r, r); 5540 } 5541 5542 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5543 #ifdef ASSERT 5544 { 5545 ThreadInVMfromUnknown tiv; 5546 assert (UseCompressedOops, "should only be used for compressed oops"); 5547 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5548 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5549 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5550 } 5551 #endif 5552 int oop_index = oop_recorder()->find_index(obj); 5553 InstructionMark im(this); 5554 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5555 code_section()->relocate(inst_mark(), rspec); 5556 movz(dst, 0xDEAD, 16); 5557 movk(dst, 0xBEEF); 5558 } 5559 5560 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5561 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5562 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5563 int index = oop_recorder()->find_index(k); 5564 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5565 5566 InstructionMark im(this); 5567 RelocationHolder rspec = metadata_Relocation::spec(index); 5568 code_section()->relocate(inst_mark(), rspec); 5569 narrowKlass nk = CompressedKlassPointers::encode(k); 5570 movz(dst, (nk >> 16), 16); 5571 movk(dst, nk & 0xffff); 5572 } 5573 5574 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5575 Register dst, Address src, 5576 Register tmp1, Register tmp2) { 5577 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5578 decorators = AccessInternal::decorator_fixup(decorators, type); 5579 bool as_raw = (decorators & AS_RAW) != 0; 5580 if (as_raw) { 5581 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5582 } else { 5583 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5584 } 5585 } 5586 5587 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5588 Address dst, Register val, 5589 Register tmp1, Register tmp2, Register tmp3) { 5590 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5591 decorators = AccessInternal::decorator_fixup(decorators, type); 5592 bool as_raw = (decorators & AS_RAW) != 0; 5593 if (as_raw) { 5594 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5595 } else { 5596 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5597 } 5598 } 5599 5600 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5601 Register inline_layout_info) { 5602 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5603 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5604 } 5605 5606 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5607 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5608 ldrw(offset, Address(offset, InlineKlass::payload_offset_offset())); 5609 } 5610 5611 void MacroAssembler::payload_address(Register oop, Register data, Register inline_klass) { 5612 // ((address) (void*) o) + vk->payload_offset(); 5613 Register offset = (data == oop) ? rscratch1 : data; 5614 payload_offset(inline_klass, offset); 5615 if (data == oop) { 5616 add(data, data, offset); 5617 } else { 5618 lea(data, Address(oop, offset)); 5619 } 5620 } 5621 5622 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5623 Register index, Register data) { 5624 assert_different_registers(array, array_klass, index); 5625 assert_different_registers(rscratch1, array, index); 5626 5627 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5628 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 5629 5630 // Klass::layout_helper_log2_element_size(lh) 5631 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5632 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 5633 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 5634 lslv(index, index, rscratch1); 5635 5636 add(data, array, index); 5637 add(data, data, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT)); 5638 } 5639 5640 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5641 Register tmp2, DecoratorSet decorators) { 5642 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5643 } 5644 5645 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5646 Register tmp2, DecoratorSet decorators) { 5647 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5648 } 5649 5650 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5651 Register tmp2, Register tmp3, DecoratorSet decorators) { 5652 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5653 } 5654 5655 // Used for storing nulls. 5656 void MacroAssembler::store_heap_oop_null(Address dst) { 5657 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5658 } 5659 5660 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5661 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5662 int index = oop_recorder()->allocate_metadata_index(obj); 5663 RelocationHolder rspec = metadata_Relocation::spec(index); 5664 return Address((address)obj, rspec); 5665 } 5666 5667 // Move an oop into a register. 5668 void MacroAssembler::movoop(Register dst, jobject obj) { 5669 int oop_index; 5670 if (obj == nullptr) { 5671 oop_index = oop_recorder()->allocate_oop_index(obj); 5672 } else { 5673 #ifdef ASSERT 5674 { 5675 ThreadInVMfromUnknown tiv; 5676 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5677 } 5678 #endif 5679 oop_index = oop_recorder()->find_index(obj); 5680 } 5681 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5682 5683 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5684 mov(dst, Address((address)obj, rspec)); 5685 } else { 5686 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5687 ldr_constant(dst, Address(dummy, rspec)); 5688 } 5689 5690 } 5691 5692 // Move a metadata address into a register. 5693 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5694 int oop_index; 5695 if (obj == nullptr) { 5696 oop_index = oop_recorder()->allocate_metadata_index(obj); 5697 } else { 5698 oop_index = oop_recorder()->find_index(obj); 5699 } 5700 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5701 mov(dst, Address((address)obj, rspec)); 5702 } 5703 5704 Address MacroAssembler::constant_oop_address(jobject obj) { 5705 #ifdef ASSERT 5706 { 5707 ThreadInVMfromUnknown tiv; 5708 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5709 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5710 } 5711 #endif 5712 int oop_index = oop_recorder()->find_index(obj); 5713 return Address((address)obj, oop_Relocation::spec(oop_index)); 5714 } 5715 5716 // Object / value buffer allocation... 5717 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 5718 Register t1, Register t2, 5719 bool clear_fields, Label& alloc_failed) 5720 { 5721 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 5722 Register layout_size = t1; 5723 assert(new_obj == r0, "needs to be r0"); 5724 assert_different_registers(klass, new_obj, t1, t2); 5725 5726 // get instance_size in InstanceKlass (scaled to a count of bytes) 5727 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5728 // test to see if it is malformed in some way 5729 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5730 br(Assembler::NE, slow_case_no_pop); 5731 5732 // Allocate the instance: 5733 // If TLAB is enabled: 5734 // Try to allocate in the TLAB. 5735 // If fails, go to the slow path. 5736 // Initialize the allocation. 5737 // Exit. 5738 // 5739 // Go to slow path. 5740 5741 if (UseTLAB) { 5742 push(klass); 5743 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5744 if (ZeroTLAB || (!clear_fields)) { 5745 // the fields have been already cleared 5746 b(initialize_header); 5747 } else { 5748 // initialize both the header and fields 5749 b(initialize_object); 5750 } 5751 5752 if (clear_fields) { 5753 // The object is initialized before the header. If the object size is 5754 // zero, go directly to the header initialization. 5755 bind(initialize_object); 5756 int header_size = oopDesc::header_size() * HeapWordSize; 5757 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 5758 subs(layout_size, layout_size, header_size); 5759 br(Assembler::EQ, initialize_header); 5760 5761 // Initialize topmost object field, divide size by 8, check if odd and 5762 // test if zero. 5763 5764 #ifdef ASSERT 5765 // make sure instance_size was multiple of 8 5766 Label L; 5767 tst(layout_size, 7); 5768 br(Assembler::EQ, L); 5769 stop("object size is not multiple of 8 - adjust this code"); 5770 bind(L); 5771 // must be > 0, no extra check needed here 5772 #endif 5773 5774 lsr(layout_size, layout_size, LogBytesPerLong); 5775 5776 // initialize remaining object fields: instance_size was a multiple of 8 5777 { 5778 Label loop; 5779 Register base = t2; 5780 5781 bind(loop); 5782 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5783 str(zr, Address(rscratch1, header_size - 1*oopSize)); 5784 subs(layout_size, layout_size, 1); 5785 br(Assembler::NE, loop); 5786 } 5787 } // clear_fields 5788 5789 // initialize object header only. 5790 bind(initialize_header); 5791 pop(klass); 5792 Register mark_word = t2; 5793 if (UseCompactObjectHeaders || EnableValhalla) { 5794 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5795 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5796 } else { 5797 mov(mark_word, (intptr_t)markWord::prototype().value()); 5798 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5799 } 5800 if (!UseCompactObjectHeaders) { 5801 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5802 mov(t2, klass); // preserve klass 5803 store_klass(new_obj, t2); // src klass reg is potentially compressed 5804 } 5805 // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ? 5806 5807 b(done); 5808 } 5809 5810 if (UseTLAB) { 5811 bind(slow_case); 5812 pop(klass); 5813 } 5814 bind(slow_case_no_pop); 5815 b(alloc_failed); 5816 5817 bind(done); 5818 } 5819 5820 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5821 void MacroAssembler::tlab_allocate(Register obj, 5822 Register var_size_in_bytes, 5823 int con_size_in_bytes, 5824 Register t1, 5825 Register t2, 5826 Label& slow_case) { 5827 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5828 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5829 } 5830 5831 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5832 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5833 #ifdef ASSERT 5834 ldr(tmp, dst); 5835 increment(tmp); 5836 str(tmp, dst); 5837 Label ok; 5838 tbz(tmp, 63, ok); 5839 STOP("assert(held monitor count underflow)"); 5840 should_not_reach_here(); 5841 bind(ok); 5842 #else 5843 increment(dst); 5844 #endif 5845 } 5846 5847 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5848 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5849 #ifdef ASSERT 5850 ldr(tmp, dst); 5851 decrement(tmp); 5852 str(tmp, dst); 5853 Label ok; 5854 tbz(tmp, 63, ok); 5855 STOP("assert(held monitor count underflow)"); 5856 should_not_reach_here(); 5857 bind(ok); 5858 #else 5859 decrement(dst); 5860 #endif 5861 } 5862 5863 void MacroAssembler::verify_tlab() { 5864 #ifdef ASSERT 5865 if (UseTLAB && VerifyOops) { 5866 Label next, ok; 5867 5868 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5869 5870 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5871 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5872 cmp(rscratch2, rscratch1); 5873 br(Assembler::HS, next); 5874 STOP("assert(top >= start)"); 5875 should_not_reach_here(); 5876 5877 bind(next); 5878 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5879 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5880 cmp(rscratch2, rscratch1); 5881 br(Assembler::HS, ok); 5882 STOP("assert(top <= end)"); 5883 should_not_reach_here(); 5884 5885 bind(ok); 5886 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5887 } 5888 #endif 5889 } 5890 5891 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 5892 inline_layout_info(holder_klass, index, inline_klass); 5893 ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 5894 } 5895 5896 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 5897 assert_different_registers(holder_klass, index, layout_info); 5898 InlineLayoutInfo array[2]; 5899 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 5900 if (is_power_of_2(size)) { 5901 lsl(index, index, log2i_exact(size)); // Scale index by power of 2 5902 } else { 5903 mov(layout_info, size); 5904 mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size 5905 } 5906 ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 5907 add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes()); 5908 lea(layout_info, Address(layout_info, index)); 5909 } 5910 5911 // Writes to stack successive pages until offset reached to check for 5912 // stack overflow + shadow pages. This clobbers tmp. 5913 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5914 assert_different_registers(tmp, size, rscratch1); 5915 mov(tmp, sp); 5916 // Bang stack for total size given plus shadow page size. 5917 // Bang one page at a time because large size can bang beyond yellow and 5918 // red zones. 5919 Label loop; 5920 mov(rscratch1, (int)os::vm_page_size()); 5921 bind(loop); 5922 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5923 subsw(size, size, rscratch1); 5924 str(size, Address(tmp)); 5925 br(Assembler::GT, loop); 5926 5927 // Bang down shadow pages too. 5928 // At this point, (tmp-0) is the last address touched, so don't 5929 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5930 // was post-decremented.) Skip this address by starting at i=1, and 5931 // touch a few more pages below. N.B. It is important to touch all 5932 // the way down to and including i=StackShadowPages. 5933 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5934 // this could be any sized move but this is can be a debugging crumb 5935 // so the bigger the better. 5936 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5937 str(size, Address(tmp)); 5938 } 5939 } 5940 5941 // Move the address of the polling page into dest. 5942 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5943 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5944 } 5945 5946 // Read the polling page. The address of the polling page must 5947 // already be in r. 5948 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5949 address mark; 5950 { 5951 InstructionMark im(this); 5952 code_section()->relocate(inst_mark(), rtype); 5953 ldrw(zr, Address(r, 0)); 5954 mark = inst_mark(); 5955 } 5956 verify_cross_modify_fence_not_required(); 5957 return mark; 5958 } 5959 5960 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5961 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5962 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5963 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5964 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5965 int64_t offset_low = dest_page - low_page; 5966 int64_t offset_high = dest_page - high_page; 5967 5968 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5969 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5970 5971 InstructionMark im(this); 5972 code_section()->relocate(inst_mark(), dest.rspec()); 5973 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5974 // the code cache so that if it is relocated we know it will still reach 5975 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5976 _adrp(reg1, dest.target()); 5977 } else { 5978 uint64_t target = (uint64_t)dest.target(); 5979 uint64_t adrp_target 5980 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5981 5982 _adrp(reg1, (address)adrp_target); 5983 movk(reg1, target >> 32, 32); 5984 } 5985 byte_offset = (uint64_t)dest.target() & 0xfff; 5986 } 5987 5988 void MacroAssembler::load_byte_map_base(Register reg) { 5989 CardTable::CardValue* byte_map_base = 5990 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5991 5992 // Strictly speaking the byte_map_base isn't an address at all, and it might 5993 // even be negative. It is thus materialised as a constant. 5994 mov(reg, (uint64_t)byte_map_base); 5995 } 5996 5997 void MacroAssembler::build_frame(int framesize) { 5998 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5999 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6000 protect_return_address(); 6001 if (framesize < ((1 << 9) + 2 * wordSize)) { 6002 sub(sp, sp, framesize); 6003 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6004 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 6005 } else { 6006 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6007 if (PreserveFramePointer) mov(rfp, sp); 6008 if (framesize < ((1 << 12) + 2 * wordSize)) 6009 sub(sp, sp, framesize - 2 * wordSize); 6010 else { 6011 mov(rscratch1, framesize - 2 * wordSize); 6012 sub(sp, sp, rscratch1); 6013 } 6014 } 6015 verify_cross_modify_fence_not_required(); 6016 } 6017 6018 void MacroAssembler::remove_frame(int framesize) { 6019 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 6020 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6021 if (framesize < ((1 << 9) + 2 * wordSize)) { 6022 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6023 add(sp, sp, framesize); 6024 } else { 6025 if (framesize < ((1 << 12) + 2 * wordSize)) 6026 add(sp, sp, framesize - 2 * wordSize); 6027 else { 6028 mov(rscratch1, framesize - 2 * wordSize); 6029 add(sp, sp, rscratch1); 6030 } 6031 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6032 } 6033 authenticate_return_address(); 6034 } 6035 6036 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6037 if (needs_stack_repair) { 6038 // Remove the extension of the caller's frame used for inline type unpacking 6039 // 6040 // Right now the stack looks like this: 6041 // 6042 // | Arguments from caller | 6043 // |---------------------------| <-- caller's SP 6044 // | Saved LR #1 | 6045 // | Saved FP #1 | 6046 // |---------------------------| 6047 // | Extension space for | 6048 // | inline arg (un)packing | 6049 // |---------------------------| <-- start of this method's frame 6050 // | Saved LR #2 | 6051 // | Saved FP #2 | 6052 // |---------------------------| <-- FP 6053 // | sp_inc | 6054 // | method locals | 6055 // |---------------------------| <-- SP 6056 // 6057 // There are two copies of FP and LR on the stack. They will be identical 6058 // unless the caller has been deoptimized, in which case LR #1 will be patched 6059 // to point at the deopt blob, and LR #2 will still point into the old method. 6060 // 6061 // The sp_inc stack slot holds the total size of the frame including the 6062 // extension space minus two words for the saved FP and LR. 6063 6064 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 6065 6066 ldr(rscratch1, Address(sp, sp_inc_offset)); 6067 add(sp, sp, rscratch1); 6068 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6069 } else { 6070 remove_frame(initial_framesize); 6071 } 6072 } 6073 6074 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 6075 int real_frame_size = frame_size + sp_inc; 6076 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 6077 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 6078 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6079 6080 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 6081 6082 // Subtract two words for the saved FP and LR as these will be popped 6083 // separately. See remove_frame above. 6084 mov(rscratch1, real_frame_size - 2*wordSize); 6085 str(rscratch1, Address(sp, sp_inc_offset)); 6086 } 6087 6088 // This method counts leading positive bytes (highest bit not set) in provided byte array 6089 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 6090 // Simple and most common case of aligned small array which is not at the 6091 // end of memory page is placed here. All other cases are in stub. 6092 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 6093 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6094 assert_different_registers(ary1, len, result); 6095 6096 mov(result, len); 6097 cmpw(len, 0); 6098 br(LE, DONE); 6099 cmpw(len, 4 * wordSize); 6100 br(GE, STUB_LONG); // size > 32 then go to stub 6101 6102 int shift = 64 - exact_log2(os::vm_page_size()); 6103 lsl(rscratch1, ary1, shift); 6104 mov(rscratch2, (size_t)(4 * wordSize) << shift); 6105 adds(rscratch2, rscratch1, rscratch2); // At end of page? 6106 br(CS, STUB); // at the end of page then go to stub 6107 subs(len, len, wordSize); 6108 br(LT, END); 6109 6110 BIND(LOOP); 6111 ldr(rscratch1, Address(post(ary1, wordSize))); 6112 tst(rscratch1, UPPER_BIT_MASK); 6113 br(NE, SET_RESULT); 6114 subs(len, len, wordSize); 6115 br(GE, LOOP); 6116 cmpw(len, -wordSize); 6117 br(EQ, DONE); 6118 6119 BIND(END); 6120 ldr(rscratch1, Address(ary1)); 6121 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 6122 lslv(rscratch1, rscratch1, rscratch2); 6123 tst(rscratch1, UPPER_BIT_MASK); 6124 br(NE, SET_RESULT); 6125 b(DONE); 6126 6127 BIND(STUB); 6128 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 6129 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 6130 address tpc1 = trampoline_call(count_pos); 6131 if (tpc1 == nullptr) { 6132 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 6133 postcond(pc() == badAddress); 6134 return nullptr; 6135 } 6136 b(DONE); 6137 6138 BIND(STUB_LONG); 6139 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 6140 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 6141 address tpc2 = trampoline_call(count_pos_long); 6142 if (tpc2 == nullptr) { 6143 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 6144 postcond(pc() == badAddress); 6145 return nullptr; 6146 } 6147 b(DONE); 6148 6149 BIND(SET_RESULT); 6150 6151 add(len, len, wordSize); 6152 sub(result, result, len); 6153 6154 BIND(DONE); 6155 postcond(pc() != badAddress); 6156 return pc(); 6157 } 6158 6159 // Clobbers: rscratch1, rscratch2, rflags 6160 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 6161 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 6162 Register tmp4, Register tmp5, Register result, 6163 Register cnt1, int elem_size) { 6164 Label DONE, SAME; 6165 Register tmp1 = rscratch1; 6166 Register tmp2 = rscratch2; 6167 int elem_per_word = wordSize/elem_size; 6168 int log_elem_size = exact_log2(elem_size); 6169 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 6170 int length_offset = arrayOopDesc::length_offset_in_bytes(); 6171 int base_offset 6172 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 6173 // When the length offset is not aligned to 8 bytes, 6174 // then we align it down. This is valid because the new 6175 // offset will always be the klass which is the same 6176 // for type arrays. 6177 int start_offset = align_down(length_offset, BytesPerWord); 6178 int extra_length = base_offset - start_offset; 6179 assert(start_offset == length_offset || start_offset == klass_offset, 6180 "start offset must be 8-byte-aligned or be the klass offset"); 6181 assert(base_offset != start_offset, "must include the length field"); 6182 extra_length = extra_length / elem_size; // We count in elements, not bytes. 6183 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 6184 6185 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 6186 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6187 6188 #ifndef PRODUCT 6189 { 6190 const char kind = (elem_size == 2) ? 'U' : 'L'; 6191 char comment[64]; 6192 snprintf(comment, sizeof comment, "array_equals%c{", kind); 6193 BLOCK_COMMENT(comment); 6194 } 6195 #endif 6196 6197 // if (a1 == a2) 6198 // return true; 6199 cmpoop(a1, a2); // May have read barriers for a1 and a2. 6200 br(EQ, SAME); 6201 6202 if (UseSimpleArrayEquals) { 6203 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 6204 // if (a1 == nullptr || a2 == nullptr) 6205 // return false; 6206 // a1 & a2 == 0 means (some-pointer is null) or 6207 // (very-rare-or-even-probably-impossible-pointer-values) 6208 // so, we can save one branch in most cases 6209 tst(a1, a2); 6210 mov(result, false); 6211 br(EQ, A_MIGHT_BE_NULL); 6212 // if (a1.length != a2.length) 6213 // return false; 6214 bind(A_IS_NOT_NULL); 6215 ldrw(cnt1, Address(a1, length_offset)); 6216 // Increase loop counter by diff between base- and actual start-offset. 6217 addw(cnt1, cnt1, extra_length); 6218 lea(a1, Address(a1, start_offset)); 6219 lea(a2, Address(a2, start_offset)); 6220 // Check for short strings, i.e. smaller than wordSize. 6221 subs(cnt1, cnt1, elem_per_word); 6222 br(Assembler::LT, SHORT); 6223 // Main 8 byte comparison loop. 6224 bind(NEXT_WORD); { 6225 ldr(tmp1, Address(post(a1, wordSize))); 6226 ldr(tmp2, Address(post(a2, wordSize))); 6227 subs(cnt1, cnt1, elem_per_word); 6228 eor(tmp5, tmp1, tmp2); 6229 cbnz(tmp5, DONE); 6230 } br(GT, NEXT_WORD); 6231 // Last longword. In the case where length == 4 we compare the 6232 // same longword twice, but that's still faster than another 6233 // conditional branch. 6234 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6235 // length == 4. 6236 if (log_elem_size > 0) 6237 lsl(cnt1, cnt1, log_elem_size); 6238 ldr(tmp3, Address(a1, cnt1)); 6239 ldr(tmp4, Address(a2, cnt1)); 6240 eor(tmp5, tmp3, tmp4); 6241 cbnz(tmp5, DONE); 6242 b(SAME); 6243 bind(A_MIGHT_BE_NULL); 6244 // in case both a1 and a2 are not-null, proceed with loads 6245 cbz(a1, DONE); 6246 cbz(a2, DONE); 6247 b(A_IS_NOT_NULL); 6248 bind(SHORT); 6249 6250 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6251 { 6252 ldrw(tmp1, Address(post(a1, 4))); 6253 ldrw(tmp2, Address(post(a2, 4))); 6254 eorw(tmp5, tmp1, tmp2); 6255 cbnzw(tmp5, DONE); 6256 } 6257 bind(TAIL03); 6258 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6259 { 6260 ldrh(tmp3, Address(post(a1, 2))); 6261 ldrh(tmp4, Address(post(a2, 2))); 6262 eorw(tmp5, tmp3, tmp4); 6263 cbnzw(tmp5, DONE); 6264 } 6265 bind(TAIL01); 6266 if (elem_size == 1) { // Only needed when comparing byte arrays. 6267 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6268 { 6269 ldrb(tmp1, a1); 6270 ldrb(tmp2, a2); 6271 eorw(tmp5, tmp1, tmp2); 6272 cbnzw(tmp5, DONE); 6273 } 6274 } 6275 } else { 6276 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6277 CSET_EQ, LAST_CHECK; 6278 mov(result, false); 6279 cbz(a1, DONE); 6280 ldrw(cnt1, Address(a1, length_offset)); 6281 cbz(a2, DONE); 6282 // Increase loop counter by diff between base- and actual start-offset. 6283 addw(cnt1, cnt1, extra_length); 6284 6285 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6286 // faster to perform another branch before comparing a1 and a2 6287 cmp(cnt1, (u1)elem_per_word); 6288 br(LE, SHORT); // short or same 6289 ldr(tmp3, Address(pre(a1, start_offset))); 6290 subs(zr, cnt1, stubBytesThreshold); 6291 br(GE, STUB); 6292 ldr(tmp4, Address(pre(a2, start_offset))); 6293 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6294 6295 // Main 16 byte comparison loop with 2 exits 6296 bind(NEXT_DWORD); { 6297 ldr(tmp1, Address(pre(a1, wordSize))); 6298 ldr(tmp2, Address(pre(a2, wordSize))); 6299 subs(cnt1, cnt1, 2 * elem_per_word); 6300 br(LE, TAIL); 6301 eor(tmp4, tmp3, tmp4); 6302 cbnz(tmp4, DONE); 6303 ldr(tmp3, Address(pre(a1, wordSize))); 6304 ldr(tmp4, Address(pre(a2, wordSize))); 6305 cmp(cnt1, (u1)elem_per_word); 6306 br(LE, TAIL2); 6307 cmp(tmp1, tmp2); 6308 } br(EQ, NEXT_DWORD); 6309 b(DONE); 6310 6311 bind(TAIL); 6312 eor(tmp4, tmp3, tmp4); 6313 eor(tmp2, tmp1, tmp2); 6314 lslv(tmp2, tmp2, tmp5); 6315 orr(tmp5, tmp4, tmp2); 6316 cmp(tmp5, zr); 6317 b(CSET_EQ); 6318 6319 bind(TAIL2); 6320 eor(tmp2, tmp1, tmp2); 6321 cbnz(tmp2, DONE); 6322 b(LAST_CHECK); 6323 6324 bind(STUB); 6325 ldr(tmp4, Address(pre(a2, start_offset))); 6326 if (elem_size == 2) { // convert to byte counter 6327 lsl(cnt1, cnt1, 1); 6328 } 6329 eor(tmp5, tmp3, tmp4); 6330 cbnz(tmp5, DONE); 6331 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6332 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6333 address tpc = trampoline_call(stub); 6334 if (tpc == nullptr) { 6335 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6336 postcond(pc() == badAddress); 6337 return nullptr; 6338 } 6339 b(DONE); 6340 6341 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6342 // so, if a2 == null => return false(0), else return true, so we can return a2 6343 mov(result, a2); 6344 b(DONE); 6345 bind(SHORT); 6346 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6347 ldr(tmp3, Address(a1, start_offset)); 6348 ldr(tmp4, Address(a2, start_offset)); 6349 bind(LAST_CHECK); 6350 eor(tmp4, tmp3, tmp4); 6351 lslv(tmp5, tmp4, tmp5); 6352 cmp(tmp5, zr); 6353 bind(CSET_EQ); 6354 cset(result, EQ); 6355 b(DONE); 6356 } 6357 6358 bind(SAME); 6359 mov(result, true); 6360 // That's it. 6361 bind(DONE); 6362 6363 BLOCK_COMMENT("} array_equals"); 6364 postcond(pc() != badAddress); 6365 return pc(); 6366 } 6367 6368 // Compare Strings 6369 6370 // For Strings we're passed the address of the first characters in a1 6371 // and a2 and the length in cnt1. 6372 // There are two implementations. For arrays >= 8 bytes, all 6373 // comparisons (including the final one, which may overlap) are 6374 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6375 // halfword, then a short, and then a byte. 6376 6377 void MacroAssembler::string_equals(Register a1, Register a2, 6378 Register result, Register cnt1) 6379 { 6380 Label SAME, DONE, SHORT, NEXT_WORD; 6381 Register tmp1 = rscratch1; 6382 Register tmp2 = rscratch2; 6383 Register cnt2 = tmp2; // cnt2 only used in array length compare 6384 6385 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6386 6387 #ifndef PRODUCT 6388 { 6389 char comment[64]; 6390 snprintf(comment, sizeof comment, "{string_equalsL"); 6391 BLOCK_COMMENT(comment); 6392 } 6393 #endif 6394 6395 mov(result, false); 6396 6397 // Check for short strings, i.e. smaller than wordSize. 6398 subs(cnt1, cnt1, wordSize); 6399 br(Assembler::LT, SHORT); 6400 // Main 8 byte comparison loop. 6401 bind(NEXT_WORD); { 6402 ldr(tmp1, Address(post(a1, wordSize))); 6403 ldr(tmp2, Address(post(a2, wordSize))); 6404 subs(cnt1, cnt1, wordSize); 6405 eor(tmp1, tmp1, tmp2); 6406 cbnz(tmp1, DONE); 6407 } br(GT, NEXT_WORD); 6408 // Last longword. In the case where length == 4 we compare the 6409 // same longword twice, but that's still faster than another 6410 // conditional branch. 6411 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6412 // length == 4. 6413 ldr(tmp1, Address(a1, cnt1)); 6414 ldr(tmp2, Address(a2, cnt1)); 6415 eor(tmp2, tmp1, tmp2); 6416 cbnz(tmp2, DONE); 6417 b(SAME); 6418 6419 bind(SHORT); 6420 Label TAIL03, TAIL01; 6421 6422 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6423 { 6424 ldrw(tmp1, Address(post(a1, 4))); 6425 ldrw(tmp2, Address(post(a2, 4))); 6426 eorw(tmp1, tmp1, tmp2); 6427 cbnzw(tmp1, DONE); 6428 } 6429 bind(TAIL03); 6430 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6431 { 6432 ldrh(tmp1, Address(post(a1, 2))); 6433 ldrh(tmp2, Address(post(a2, 2))); 6434 eorw(tmp1, tmp1, tmp2); 6435 cbnzw(tmp1, DONE); 6436 } 6437 bind(TAIL01); 6438 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6439 { 6440 ldrb(tmp1, a1); 6441 ldrb(tmp2, a2); 6442 eorw(tmp1, tmp1, tmp2); 6443 cbnzw(tmp1, DONE); 6444 } 6445 // Arrays are equal. 6446 bind(SAME); 6447 mov(result, true); 6448 6449 // That's it. 6450 bind(DONE); 6451 BLOCK_COMMENT("} string_equals"); 6452 } 6453 6454 6455 // The size of the blocks erased by the zero_blocks stub. We must 6456 // handle anything smaller than this ourselves in zero_words(). 6457 const int MacroAssembler::zero_words_block_size = 8; 6458 6459 // zero_words() is used by C2 ClearArray patterns and by 6460 // C1_MacroAssembler. It is as small as possible, handling small word 6461 // counts locally and delegating anything larger to the zero_blocks 6462 // stub. It is expanded many times in compiled code, so it is 6463 // important to keep it short. 6464 6465 // ptr: Address of a buffer to be zeroed. 6466 // cnt: Count in HeapWords. 6467 // 6468 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6469 address MacroAssembler::zero_words(Register ptr, Register cnt) 6470 { 6471 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6472 6473 BLOCK_COMMENT("zero_words {"); 6474 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6475 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6476 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6477 6478 subs(rscratch1, cnt, zero_words_block_size); 6479 Label around; 6480 br(LO, around); 6481 { 6482 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6483 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6484 // Make sure this is a C2 compilation. C1 allocates space only for 6485 // trampoline stubs generated by Call LIR ops, and in any case it 6486 // makes sense for a C1 compilation task to proceed as quickly as 6487 // possible. 6488 CompileTask* task; 6489 if (StubRoutines::aarch64::complete() 6490 && Thread::current()->is_Compiler_thread() 6491 && (task = ciEnv::current()->task()) 6492 && is_c2_compile(task->comp_level())) { 6493 address tpc = trampoline_call(zero_blocks); 6494 if (tpc == nullptr) { 6495 DEBUG_ONLY(reset_labels(around)); 6496 return nullptr; 6497 } 6498 } else { 6499 far_call(zero_blocks); 6500 } 6501 } 6502 bind(around); 6503 6504 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6505 // for us. 6506 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6507 Label l; 6508 tbz(cnt, exact_log2(i), l); 6509 for (int j = 0; j < i; j += 2) { 6510 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6511 } 6512 bind(l); 6513 } 6514 { 6515 Label l; 6516 tbz(cnt, 0, l); 6517 str(zr, Address(ptr)); 6518 bind(l); 6519 } 6520 6521 BLOCK_COMMENT("} zero_words"); 6522 return pc(); 6523 } 6524 6525 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6526 // cnt: Immediate count in HeapWords. 6527 // 6528 // r10, r11, rscratch1, and rscratch2 are clobbered. 6529 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6530 { 6531 assert(wordSize <= BlockZeroingLowLimit, 6532 "increase BlockZeroingLowLimit"); 6533 address result = nullptr; 6534 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6535 #ifndef PRODUCT 6536 { 6537 char buf[64]; 6538 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6539 BLOCK_COMMENT(buf); 6540 } 6541 #endif 6542 if (cnt >= 16) { 6543 uint64_t loops = cnt/16; 6544 if (loops > 1) { 6545 mov(rscratch2, loops - 1); 6546 } 6547 { 6548 Label loop; 6549 bind(loop); 6550 for (int i = 0; i < 16; i += 2) { 6551 stp(zr, zr, Address(base, i * BytesPerWord)); 6552 } 6553 add(base, base, 16 * BytesPerWord); 6554 if (loops > 1) { 6555 subs(rscratch2, rscratch2, 1); 6556 br(GE, loop); 6557 } 6558 } 6559 } 6560 cnt %= 16; 6561 int i = cnt & 1; // store any odd word to start 6562 if (i) str(zr, Address(base)); 6563 for (; i < (int)cnt; i += 2) { 6564 stp(zr, zr, Address(base, i * wordSize)); 6565 } 6566 BLOCK_COMMENT("} zero_words"); 6567 result = pc(); 6568 } else { 6569 mov(r10, base); mov(r11, cnt); 6570 result = zero_words(r10, r11); 6571 } 6572 return result; 6573 } 6574 6575 // Zero blocks of memory by using DC ZVA. 6576 // 6577 // Aligns the base address first sufficiently for DC ZVA, then uses 6578 // DC ZVA repeatedly for every full block. cnt is the size to be 6579 // zeroed in HeapWords. Returns the count of words left to be zeroed 6580 // in cnt. 6581 // 6582 // NOTE: This is intended to be used in the zero_blocks() stub. If 6583 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6584 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6585 Register tmp = rscratch1; 6586 Register tmp2 = rscratch2; 6587 int zva_length = VM_Version::zva_length(); 6588 Label initial_table_end, loop_zva; 6589 Label fini; 6590 6591 // Base must be 16 byte aligned. If not just return and let caller handle it 6592 tst(base, 0x0f); 6593 br(Assembler::NE, fini); 6594 // Align base with ZVA length. 6595 neg(tmp, base); 6596 andr(tmp, tmp, zva_length - 1); 6597 6598 // tmp: the number of bytes to be filled to align the base with ZVA length. 6599 add(base, base, tmp); 6600 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6601 adr(tmp2, initial_table_end); 6602 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6603 br(tmp2); 6604 6605 for (int i = -zva_length + 16; i < 0; i += 16) 6606 stp(zr, zr, Address(base, i)); 6607 bind(initial_table_end); 6608 6609 sub(cnt, cnt, zva_length >> 3); 6610 bind(loop_zva); 6611 dc(Assembler::ZVA, base); 6612 subs(cnt, cnt, zva_length >> 3); 6613 add(base, base, zva_length); 6614 br(Assembler::GE, loop_zva); 6615 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6616 bind(fini); 6617 } 6618 6619 // base: Address of a buffer to be filled, 8 bytes aligned. 6620 // cnt: Count in 8-byte unit. 6621 // value: Value to be filled with. 6622 // base will point to the end of the buffer after filling. 6623 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6624 { 6625 // Algorithm: 6626 // 6627 // if (cnt == 0) { 6628 // return; 6629 // } 6630 // if ((p & 8) != 0) { 6631 // *p++ = v; 6632 // } 6633 // 6634 // scratch1 = cnt & 14; 6635 // cnt -= scratch1; 6636 // p += scratch1; 6637 // switch (scratch1 / 2) { 6638 // do { 6639 // cnt -= 16; 6640 // p[-16] = v; 6641 // p[-15] = v; 6642 // case 7: 6643 // p[-14] = v; 6644 // p[-13] = v; 6645 // case 6: 6646 // p[-12] = v; 6647 // p[-11] = v; 6648 // // ... 6649 // case 1: 6650 // p[-2] = v; 6651 // p[-1] = v; 6652 // case 0: 6653 // p += 16; 6654 // } while (cnt); 6655 // } 6656 // if ((cnt & 1) == 1) { 6657 // *p++ = v; 6658 // } 6659 6660 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6661 6662 Label fini, skip, entry, loop; 6663 const int unroll = 8; // Number of stp instructions we'll unroll 6664 6665 cbz(cnt, fini); 6666 tbz(base, 3, skip); 6667 str(value, Address(post(base, 8))); 6668 sub(cnt, cnt, 1); 6669 bind(skip); 6670 6671 andr(rscratch1, cnt, (unroll-1) * 2); 6672 sub(cnt, cnt, rscratch1); 6673 add(base, base, rscratch1, Assembler::LSL, 3); 6674 adr(rscratch2, entry); 6675 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6676 br(rscratch2); 6677 6678 bind(loop); 6679 add(base, base, unroll * 16); 6680 for (int i = -unroll; i < 0; i++) 6681 stp(value, value, Address(base, i * 16)); 6682 bind(entry); 6683 subs(cnt, cnt, unroll * 2); 6684 br(Assembler::GE, loop); 6685 6686 tbz(cnt, 0, fini); 6687 str(value, Address(post(base, 8))); 6688 bind(fini); 6689 } 6690 6691 // Intrinsic for 6692 // 6693 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6694 // return the number of characters copied. 6695 // - java/lang/StringUTF16.compress 6696 // return index of non-latin1 character if copy fails, otherwise 'len'. 6697 // 6698 // This version always returns the number of characters copied, and does not 6699 // clobber the 'len' register. A successful copy will complete with the post- 6700 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6701 // post-condition: 0 <= 'res' < 'len'. 6702 // 6703 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6704 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6705 // beyond the acceptable, even though the footprint would be smaller. 6706 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6707 // avoid additional bloat. 6708 // 6709 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6710 void MacroAssembler::encode_iso_array(Register src, Register dst, 6711 Register len, Register res, bool ascii, 6712 FloatRegister vtmp0, FloatRegister vtmp1, 6713 FloatRegister vtmp2, FloatRegister vtmp3, 6714 FloatRegister vtmp4, FloatRegister vtmp5) 6715 { 6716 Register cnt = res; 6717 Register max = rscratch1; 6718 Register chk = rscratch2; 6719 6720 prfm(Address(src), PLDL1STRM); 6721 movw(cnt, len); 6722 6723 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6724 6725 Label LOOP_32, DONE_32, FAIL_32; 6726 6727 BIND(LOOP_32); 6728 { 6729 cmpw(cnt, 32); 6730 br(LT, DONE_32); 6731 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6732 // Extract lower bytes. 6733 FloatRegister vlo0 = vtmp4; 6734 FloatRegister vlo1 = vtmp5; 6735 uzp1(vlo0, T16B, vtmp0, vtmp1); 6736 uzp1(vlo1, T16B, vtmp2, vtmp3); 6737 // Merge bits... 6738 orr(vtmp0, T16B, vtmp0, vtmp1); 6739 orr(vtmp2, T16B, vtmp2, vtmp3); 6740 // Extract merged upper bytes. 6741 FloatRegister vhix = vtmp0; 6742 uzp2(vhix, T16B, vtmp0, vtmp2); 6743 // ISO-check on hi-parts (all zero). 6744 // ASCII-check on lo-parts (no sign). 6745 FloatRegister vlox = vtmp1; // Merge lower bytes. 6746 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6747 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6748 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6749 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6750 ASCII(orr(chk, chk, max)); 6751 cbnz(chk, FAIL_32); 6752 subw(cnt, cnt, 32); 6753 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6754 b(LOOP_32); 6755 } 6756 BIND(FAIL_32); 6757 sub(src, src, 64); 6758 BIND(DONE_32); 6759 6760 Label LOOP_8, SKIP_8; 6761 6762 BIND(LOOP_8); 6763 { 6764 cmpw(cnt, 8); 6765 br(LT, SKIP_8); 6766 FloatRegister vhi = vtmp0; 6767 FloatRegister vlo = vtmp1; 6768 ld1(vtmp3, T8H, src); 6769 uzp1(vlo, T16B, vtmp3, vtmp3); 6770 uzp2(vhi, T16B, vtmp3, vtmp3); 6771 // ISO-check on hi-parts (all zero). 6772 // ASCII-check on lo-parts (no sign). 6773 ASCII(cm(LT, vtmp2, T16B, vlo)); 6774 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6775 ASCII(umov(max, vtmp2, B, 0)); 6776 ASCII(orr(chk, chk, max)); 6777 cbnz(chk, SKIP_8); 6778 6779 strd(vlo, Address(post(dst, 8))); 6780 subw(cnt, cnt, 8); 6781 add(src, src, 16); 6782 b(LOOP_8); 6783 } 6784 BIND(SKIP_8); 6785 6786 #undef ASCII 6787 6788 Label LOOP, DONE; 6789 6790 cbz(cnt, DONE); 6791 BIND(LOOP); 6792 { 6793 Register chr = rscratch1; 6794 ldrh(chr, Address(post(src, 2))); 6795 tst(chr, ascii ? 0xff80 : 0xff00); 6796 br(NE, DONE); 6797 strb(chr, Address(post(dst, 1))); 6798 subs(cnt, cnt, 1); 6799 br(GT, LOOP); 6800 } 6801 BIND(DONE); 6802 // Return index where we stopped. 6803 subw(res, len, cnt); 6804 } 6805 6806 // Inflate byte[] array to char[]. 6807 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6808 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6809 FloatRegister vtmp1, FloatRegister vtmp2, 6810 FloatRegister vtmp3, Register tmp4) { 6811 Label big, done, after_init, to_stub; 6812 6813 assert_different_registers(src, dst, len, tmp4, rscratch1); 6814 6815 fmovd(vtmp1, 0.0); 6816 lsrw(tmp4, len, 3); 6817 bind(after_init); 6818 cbnzw(tmp4, big); 6819 // Short string: less than 8 bytes. 6820 { 6821 Label loop, tiny; 6822 6823 cmpw(len, 4); 6824 br(LT, tiny); 6825 // Use SIMD to do 4 bytes. 6826 ldrs(vtmp2, post(src, 4)); 6827 zip1(vtmp3, T8B, vtmp2, vtmp1); 6828 subw(len, len, 4); 6829 strd(vtmp3, post(dst, 8)); 6830 6831 cbzw(len, done); 6832 6833 // Do the remaining bytes by steam. 6834 bind(loop); 6835 ldrb(tmp4, post(src, 1)); 6836 strh(tmp4, post(dst, 2)); 6837 subw(len, len, 1); 6838 6839 bind(tiny); 6840 cbnz(len, loop); 6841 6842 b(done); 6843 } 6844 6845 if (SoftwarePrefetchHintDistance >= 0) { 6846 bind(to_stub); 6847 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6848 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6849 address tpc = trampoline_call(stub); 6850 if (tpc == nullptr) { 6851 DEBUG_ONLY(reset_labels(big, done)); 6852 postcond(pc() == badAddress); 6853 return nullptr; 6854 } 6855 b(after_init); 6856 } 6857 6858 // Unpack the bytes 8 at a time. 6859 bind(big); 6860 { 6861 Label loop, around, loop_last, loop_start; 6862 6863 if (SoftwarePrefetchHintDistance >= 0) { 6864 const int large_loop_threshold = (64 + 16)/8; 6865 ldrd(vtmp2, post(src, 8)); 6866 andw(len, len, 7); 6867 cmp(tmp4, (u1)large_loop_threshold); 6868 br(GE, to_stub); 6869 b(loop_start); 6870 6871 bind(loop); 6872 ldrd(vtmp2, post(src, 8)); 6873 bind(loop_start); 6874 subs(tmp4, tmp4, 1); 6875 br(EQ, loop_last); 6876 zip1(vtmp2, T16B, vtmp2, vtmp1); 6877 ldrd(vtmp3, post(src, 8)); 6878 st1(vtmp2, T8H, post(dst, 16)); 6879 subs(tmp4, tmp4, 1); 6880 zip1(vtmp3, T16B, vtmp3, vtmp1); 6881 st1(vtmp3, T8H, post(dst, 16)); 6882 br(NE, loop); 6883 b(around); 6884 bind(loop_last); 6885 zip1(vtmp2, T16B, vtmp2, vtmp1); 6886 st1(vtmp2, T8H, post(dst, 16)); 6887 bind(around); 6888 cbz(len, done); 6889 } else { 6890 andw(len, len, 7); 6891 bind(loop); 6892 ldrd(vtmp2, post(src, 8)); 6893 sub(tmp4, tmp4, 1); 6894 zip1(vtmp3, T16B, vtmp2, vtmp1); 6895 st1(vtmp3, T8H, post(dst, 16)); 6896 cbnz(tmp4, loop); 6897 } 6898 } 6899 6900 // Do the tail of up to 8 bytes. 6901 add(src, src, len); 6902 ldrd(vtmp3, Address(src, -8)); 6903 add(dst, dst, len, ext::uxtw, 1); 6904 zip1(vtmp3, T16B, vtmp3, vtmp1); 6905 strq(vtmp3, Address(dst, -16)); 6906 6907 bind(done); 6908 postcond(pc() != badAddress); 6909 return pc(); 6910 } 6911 6912 // Compress char[] array to byte[]. 6913 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6914 // Return the array length if every element in array can be encoded, 6915 // otherwise, the index of first non-latin1 (> 0xff) character. 6916 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6917 Register res, 6918 FloatRegister tmp0, FloatRegister tmp1, 6919 FloatRegister tmp2, FloatRegister tmp3, 6920 FloatRegister tmp4, FloatRegister tmp5) { 6921 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6922 } 6923 6924 // java.math.round(double a) 6925 // Returns the closest long to the argument, with ties rounding to 6926 // positive infinity. This requires some fiddling for corner 6927 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6928 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6929 FloatRegister ftmp) { 6930 Label DONE; 6931 BLOCK_COMMENT("java_round_double: { "); 6932 fmovd(rscratch1, src); 6933 // Use RoundToNearestTiesAway unless src small and -ve. 6934 fcvtasd(dst, src); 6935 // Test if src >= 0 || abs(src) >= 0x1.0p52 6936 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6937 mov(rscratch2, julong_cast(0x1.0p52)); 6938 cmp(rscratch1, rscratch2); 6939 br(HS, DONE); { 6940 // src < 0 && abs(src) < 0x1.0p52 6941 // src may have a fractional part, so add 0.5 6942 fmovd(ftmp, 0.5); 6943 faddd(ftmp, src, ftmp); 6944 // Convert double to jlong, use RoundTowardsNegative 6945 fcvtmsd(dst, ftmp); 6946 } 6947 bind(DONE); 6948 BLOCK_COMMENT("} java_round_double"); 6949 } 6950 6951 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6952 FloatRegister ftmp) { 6953 Label DONE; 6954 BLOCK_COMMENT("java_round_float: { "); 6955 fmovs(rscratch1, src); 6956 // Use RoundToNearestTiesAway unless src small and -ve. 6957 fcvtassw(dst, src); 6958 // Test if src >= 0 || abs(src) >= 0x1.0p23 6959 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6960 mov(rscratch2, jint_cast(0x1.0p23f)); 6961 cmp(rscratch1, rscratch2); 6962 br(HS, DONE); { 6963 // src < 0 && |src| < 0x1.0p23 6964 // src may have a fractional part, so add 0.5 6965 fmovs(ftmp, 0.5f); 6966 fadds(ftmp, src, ftmp); 6967 // Convert float to jint, use RoundTowardsNegative 6968 fcvtmssw(dst, ftmp); 6969 } 6970 bind(DONE); 6971 BLOCK_COMMENT("} java_round_float"); 6972 } 6973 6974 // get_thread() can be called anywhere inside generated code so we 6975 // need to save whatever non-callee save context might get clobbered 6976 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6977 // the call setup code. 6978 // 6979 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6980 // On other systems, the helper is a usual C function. 6981 // 6982 void MacroAssembler::get_thread(Register dst) { 6983 RegSet saved_regs = 6984 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6985 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6986 6987 protect_return_address(); 6988 push(saved_regs, sp); 6989 6990 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6991 blr(lr); 6992 if (dst != c_rarg0) { 6993 mov(dst, c_rarg0); 6994 } 6995 6996 pop(saved_regs, sp); 6997 authenticate_return_address(); 6998 } 6999 7000 #ifdef COMPILER2 7001 // C2 compiled method's prolog code 7002 // Moved here from aarch64.ad to support Valhalla code belows 7003 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 7004 if (C->clinit_barrier_on_entry()) { 7005 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 7006 7007 Label L_skip_barrier; 7008 7009 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 7010 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 7011 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 7012 bind(L_skip_barrier); 7013 } 7014 7015 if (C->max_vector_size() > 0) { 7016 reinitialize_ptrue(); 7017 } 7018 7019 int bangsize = C->output()->bang_size_in_bytes(); 7020 if (C->output()->need_stack_bang(bangsize)) 7021 generate_stack_overflow_check(bangsize); 7022 7023 // n.b. frame size includes space for return pc and rfp 7024 const long framesize = C->output()->frame_size_in_bytes(); 7025 build_frame(framesize); 7026 7027 if (C->needs_stack_repair()) { 7028 save_stack_increment(sp_inc, framesize); 7029 } 7030 7031 if (VerifyStackAtCalls) { 7032 Unimplemented(); 7033 } 7034 } 7035 #endif // COMPILER2 7036 7037 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 7038 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 7039 // An inline type might be returned. If fields are in registers we 7040 // need to allocate an inline type instance and initialize it with 7041 // the value of the fields. 7042 Label skip; 7043 // We only need a new buffered inline type if a new one is not returned 7044 tbz(r0, 0, skip); 7045 int call_offset = -1; 7046 7047 // Be careful not to clobber r1-7 which hold returned fields 7048 // Also do not use callee-saved registers as these may be live in the interpreter 7049 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 7050 7051 // The following code is similar to allocate_instance but has some slight differences, 7052 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 7053 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 7054 Label slow_case; 7055 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 7056 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 7057 7058 if (vk != nullptr) { 7059 // Called from C1, where the return type is statically known. 7060 movptr(klass, (intptr_t)vk->get_InlineKlass()); 7061 jint lh = vk->layout_helper(); 7062 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 7063 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 7064 tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case); 7065 } else { 7066 b(slow_case); 7067 } 7068 } else { 7069 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 7070 andr(klass, r0, -2); 7071 if (UseTLAB) { 7072 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 7073 tst(tmp2, Klass::_lh_instance_slow_path_bit); 7074 br(Assembler::NE, slow_case); 7075 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 7076 } else { 7077 b(slow_case); 7078 } 7079 } 7080 if (UseTLAB) { 7081 // 2. Initialize buffered inline instance header 7082 Register buffer_obj = r0; 7083 if (UseCompactObjectHeaders) { 7084 ldr(rscratch1, Address(klass, Klass::prototype_header_offset())); 7085 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7086 } else { 7087 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 7088 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7089 store_klass_gap(buffer_obj, zr); 7090 if (vk == nullptr) { 7091 // store_klass corrupts klass, so save it for later use (interpreter case only). 7092 mov(tmp1, klass); 7093 } 7094 store_klass(buffer_obj, klass); 7095 } 7096 // 3. Initialize its fields with an inline class specific handler 7097 if (vk != nullptr) { 7098 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 7099 } else { 7100 // tmp1 holds klass preserved above 7101 ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 7102 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 7103 blr(tmp1); 7104 } 7105 7106 membar(Assembler::StoreStore); 7107 b(skip); 7108 } else { 7109 // Must have already branched to slow_case above. 7110 DEBUG_ONLY(should_not_reach_here()); 7111 } 7112 bind(slow_case); 7113 // We failed to allocate a new inline type, fall back to a runtime 7114 // call. Some oop field may be live in some registers but we can't 7115 // tell. That runtime call will take care of preserving them 7116 // across a GC if there's one. 7117 mov(r0, r0_preserved); 7118 7119 if (from_interpreter) { 7120 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 7121 } else { 7122 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 7123 call_offset = offset(); 7124 } 7125 membar(Assembler::StoreStore); 7126 7127 bind(skip); 7128 return call_offset; 7129 } 7130 7131 // Move a value between registers/stack slots and update the reg_state 7132 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 7133 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 7134 if (reg_state[to->value()] == reg_written) { 7135 return true; // Already written 7136 } 7137 7138 if (from != to && bt != T_VOID) { 7139 if (reg_state[to->value()] == reg_readonly) { 7140 return false; // Not yet writable 7141 } 7142 if (from->is_reg()) { 7143 if (to->is_reg()) { 7144 if (from->is_Register() && to->is_Register()) { 7145 mov(to->as_Register(), from->as_Register()); 7146 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 7147 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 7148 } else { 7149 ShouldNotReachHere(); 7150 } 7151 } else { 7152 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7153 Address to_addr = Address(sp, st_off); 7154 if (from->is_FloatRegister()) { 7155 if (bt == T_DOUBLE) { 7156 strd(from->as_FloatRegister(), to_addr); 7157 } else { 7158 assert(bt == T_FLOAT, "must be float"); 7159 strs(from->as_FloatRegister(), to_addr); 7160 } 7161 } else { 7162 str(from->as_Register(), to_addr); 7163 } 7164 } 7165 } else { 7166 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 7167 if (to->is_reg()) { 7168 if (to->is_FloatRegister()) { 7169 if (bt == T_DOUBLE) { 7170 ldrd(to->as_FloatRegister(), from_addr); 7171 } else { 7172 assert(bt == T_FLOAT, "must be float"); 7173 ldrs(to->as_FloatRegister(), from_addr); 7174 } 7175 } else { 7176 ldr(to->as_Register(), from_addr); 7177 } 7178 } else { 7179 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7180 ldr(rscratch1, from_addr); 7181 str(rscratch1, Address(sp, st_off)); 7182 } 7183 } 7184 } 7185 7186 // Update register states 7187 reg_state[from->value()] = reg_writable; 7188 reg_state[to->value()] = reg_written; 7189 return true; 7190 } 7191 7192 // Calculate the extra stack space required for packing or unpacking inline 7193 // args and adjust the stack pointer 7194 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 7195 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 7196 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 7197 assert(sp_inc > 0, "sanity"); 7198 7199 // Save a copy of the FP and LR here for deoptimization patching and frame walking 7200 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7201 7202 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 7203 if (sp_inc < (1 << 9)) { 7204 sub(sp, sp, sp_inc); // Fits in an immediate 7205 } else { 7206 mov(rscratch1, sp_inc); 7207 sub(sp, sp, rscratch1); 7208 } 7209 7210 return sp_inc + 2 * wordSize; // Account for the FP/LR space 7211 } 7212 7213 // Read all fields from an inline type oop and store the values in registers/stack slots 7214 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 7215 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 7216 RegState reg_state[]) { 7217 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 7218 assert(from->is_valid(), "source must be valid"); 7219 bool progress = false; 7220 #ifdef ASSERT 7221 const int start_offset = offset(); 7222 #endif 7223 7224 Label L_null, L_notNull; 7225 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 7226 Register tmp1 = r10; 7227 Register tmp2 = r11; 7228 Register fromReg = noreg; 7229 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 7230 bool done = true; 7231 bool mark_done = true; 7232 VMReg toReg; 7233 BasicType bt; 7234 // Check if argument requires a null check 7235 bool null_check = false; 7236 VMReg nullCheckReg; 7237 while (stream.next(nullCheckReg, bt)) { 7238 if (sig->at(stream.sig_index())._offset == -1) { 7239 null_check = true; 7240 break; 7241 } 7242 } 7243 stream.reset(sig_index, to_index); 7244 while (stream.next(toReg, bt)) { 7245 assert(toReg->is_valid(), "destination must be valid"); 7246 int idx = (int)toReg->value(); 7247 if (reg_state[idx] == reg_readonly) { 7248 if (idx != from->value()) { 7249 mark_done = false; 7250 } 7251 done = false; 7252 continue; 7253 } else if (reg_state[idx] == reg_written) { 7254 continue; 7255 } 7256 assert(reg_state[idx] == reg_writable, "must be writable"); 7257 reg_state[idx] = reg_written; 7258 progress = true; 7259 7260 if (fromReg == noreg) { 7261 if (from->is_reg()) { 7262 fromReg = from->as_Register(); 7263 } else { 7264 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 7265 ldr(tmp1, Address(sp, st_off)); 7266 fromReg = tmp1; 7267 } 7268 if (null_check) { 7269 // Nullable inline type argument, emit null check 7270 cbz(fromReg, L_null); 7271 } 7272 } 7273 int off = sig->at(stream.sig_index())._offset; 7274 if (off == -1) { 7275 assert(null_check, "Missing null check at"); 7276 if (toReg->is_stack()) { 7277 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7278 mov(tmp2, 1); 7279 str(tmp2, Address(sp, st_off)); 7280 } else { 7281 mov(toReg->as_Register(), 1); 7282 } 7283 continue; 7284 } 7285 assert(off > 0, "offset in object should be positive"); 7286 Address fromAddr = Address(fromReg, off); 7287 if (!toReg->is_FloatRegister()) { 7288 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 7289 if (is_reference_type(bt)) { 7290 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 7291 } else { 7292 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 7293 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 7294 } 7295 if (toReg->is_stack()) { 7296 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7297 str(dst, Address(sp, st_off)); 7298 } 7299 } else if (bt == T_DOUBLE) { 7300 ldrd(toReg->as_FloatRegister(), fromAddr); 7301 } else { 7302 assert(bt == T_FLOAT, "must be float"); 7303 ldrs(toReg->as_FloatRegister(), fromAddr); 7304 } 7305 } 7306 if (progress && null_check) { 7307 if (done) { 7308 b(L_notNull); 7309 bind(L_null); 7310 // Set IsInit field to zero to signal that the argument is null. 7311 // Also set all oop fields to zero to make the GC happy. 7312 stream.reset(sig_index, to_index); 7313 while (stream.next(toReg, bt)) { 7314 if (sig->at(stream.sig_index())._offset == -1 || 7315 bt == T_OBJECT || bt == T_ARRAY) { 7316 if (toReg->is_stack()) { 7317 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7318 str(zr, Address(sp, st_off)); 7319 } else { 7320 mov(toReg->as_Register(), zr); 7321 } 7322 } 7323 } 7324 bind(L_notNull); 7325 } else { 7326 bind(L_null); 7327 } 7328 } 7329 7330 sig_index = stream.sig_index(); 7331 to_index = stream.regs_index(); 7332 7333 if (mark_done && reg_state[from->value()] != reg_written) { 7334 // This is okay because no one else will write to that slot 7335 reg_state[from->value()] = reg_writable; 7336 } 7337 from_index--; 7338 assert(progress || (start_offset == offset()), "should not emit code"); 7339 return done; 7340 } 7341 7342 // Pack fields back into an inline type oop 7343 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 7344 VMRegPair* from, int from_count, int& from_index, VMReg to, 7345 RegState reg_state[], Register val_array) { 7346 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 7347 assert(to->is_valid(), "destination must be valid"); 7348 7349 if (reg_state[to->value()] == reg_written) { 7350 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7351 return true; // Already written 7352 } 7353 7354 // The GC barrier expanded by store_heap_oop below may call into the 7355 // runtime so use callee-saved registers for any values that need to be 7356 // preserved. The GC barrier assembler should take care of saving the 7357 // Java argument registers. 7358 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 7359 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 7360 Register val_obj_tmp = r21; 7361 Register from_reg_tmp = r22; 7362 Register tmp1 = r14; 7363 Register tmp2 = r13; 7364 Register tmp3 = r12; 7365 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 7366 7367 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 7368 7369 if (reg_state[to->value()] == reg_readonly) { 7370 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 7371 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7372 return false; // Not yet writable 7373 } 7374 val_obj = val_obj_tmp; 7375 } 7376 7377 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 7378 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 7379 7380 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 7381 VMReg fromReg; 7382 BasicType bt; 7383 Label L_null; 7384 while (stream.next(fromReg, bt)) { 7385 assert(fromReg->is_valid(), "source must be valid"); 7386 reg_state[fromReg->value()] = reg_writable; 7387 7388 int off = sig->at(stream.sig_index())._offset; 7389 if (off == -1) { 7390 // Nullable inline type argument, emit null check 7391 Label L_notNull; 7392 if (fromReg->is_stack()) { 7393 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7394 ldrb(tmp2, Address(sp, ld_off)); 7395 cbnz(tmp2, L_notNull); 7396 } else { 7397 cbnz(fromReg->as_Register(), L_notNull); 7398 } 7399 mov(val_obj, 0); 7400 b(L_null); 7401 bind(L_notNull); 7402 continue; 7403 } 7404 7405 assert(off > 0, "offset in object should be positive"); 7406 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 7407 7408 // Pack the scalarized field into the value object. 7409 Address dst(val_obj, off); 7410 7411 if (!fromReg->is_FloatRegister()) { 7412 Register src; 7413 if (fromReg->is_stack()) { 7414 src = from_reg_tmp; 7415 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7416 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 7417 } else { 7418 src = fromReg->as_Register(); 7419 } 7420 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 7421 if (is_reference_type(bt)) { 7422 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 7423 } else { 7424 store_sized_value(dst, src, size_in_bytes); 7425 } 7426 } else if (bt == T_DOUBLE) { 7427 strd(fromReg->as_FloatRegister(), dst); 7428 } else { 7429 assert(bt == T_FLOAT, "must be float"); 7430 strs(fromReg->as_FloatRegister(), dst); 7431 } 7432 } 7433 bind(L_null); 7434 sig_index = stream.sig_index(); 7435 from_index = stream.regs_index(); 7436 7437 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 7438 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 7439 assert(success, "to register must be writeable"); 7440 7441 return true; 7442 } 7443 7444 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 7445 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 7446 } 7447 7448 void MacroAssembler::cache_wb(Address line) { 7449 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 7450 assert(line.index() == noreg, "index should be noreg"); 7451 assert(line.offset() == 0, "offset should be 0"); 7452 // would like to assert this 7453 // assert(line._ext.shift == 0, "shift should be zero"); 7454 if (VM_Version::supports_dcpop()) { 7455 // writeback using clear virtual address to point of persistence 7456 dc(Assembler::CVAP, line.base()); 7457 } else { 7458 // no need to generate anything as Unsafe.writebackMemory should 7459 // never invoke this stub 7460 } 7461 } 7462 7463 void MacroAssembler::cache_wbsync(bool is_pre) { 7464 // we only need a barrier post sync 7465 if (!is_pre) { 7466 membar(Assembler::AnyAny); 7467 } 7468 } 7469 7470 void MacroAssembler::verify_sve_vector_length(Register tmp) { 7471 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 7472 return; 7473 } 7474 // Make sure that native code does not change SVE vector length. 7475 Label verify_ok; 7476 movw(tmp, zr); 7477 sve_inc(tmp, B); 7478 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 7479 br(EQ, verify_ok); 7480 stop("Error: SVE vector length has changed since jvm startup"); 7481 bind(verify_ok); 7482 } 7483 7484 void MacroAssembler::verify_ptrue() { 7485 Label verify_ok; 7486 if (!UseSVE) { 7487 return; 7488 } 7489 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 7490 sve_dec(rscratch1, B); 7491 cbz(rscratch1, verify_ok); 7492 stop("Error: the preserved predicate register (p7) elements are not all true"); 7493 bind(verify_ok); 7494 } 7495 7496 void MacroAssembler::safepoint_isb() { 7497 isb(); 7498 #ifndef PRODUCT 7499 if (VerifyCrossModifyFence) { 7500 // Clear the thread state. 7501 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7502 } 7503 #endif 7504 } 7505 7506 #ifndef PRODUCT 7507 void MacroAssembler::verify_cross_modify_fence_not_required() { 7508 if (VerifyCrossModifyFence) { 7509 // Check if thread needs a cross modify fence. 7510 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7511 Label fence_not_required; 7512 cbz(rscratch1, fence_not_required); 7513 // If it does then fail. 7514 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 7515 mov(c_rarg0, rthread); 7516 blr(rscratch1); 7517 bind(fence_not_required); 7518 } 7519 } 7520 #endif 7521 7522 void MacroAssembler::spin_wait() { 7523 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 7524 switch (VM_Version::spin_wait_desc().inst()) { 7525 case SpinWait::NOP: 7526 nop(); 7527 break; 7528 case SpinWait::ISB: 7529 isb(); 7530 break; 7531 case SpinWait::YIELD: 7532 yield(); 7533 break; 7534 default: 7535 ShouldNotReachHere(); 7536 } 7537 } 7538 } 7539 7540 // Stack frame creation/removal 7541 7542 void MacroAssembler::enter(bool strip_ret_addr) { 7543 if (strip_ret_addr) { 7544 // Addresses can only be signed once. If there are multiple nested frames being created 7545 // in the same function, then the return address needs stripping first. 7546 strip_return_address(); 7547 } 7548 protect_return_address(); 7549 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7550 mov(rfp, sp); 7551 } 7552 7553 void MacroAssembler::leave() { 7554 mov(sp, rfp); 7555 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 7556 authenticate_return_address(); 7557 } 7558 7559 // ROP Protection 7560 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 7561 // destroying stack frames or whenever directly loading/storing the LR to memory. 7562 // If ROP protection is not set then these functions are no-ops. 7563 // For more details on PAC see pauth_aarch64.hpp. 7564 7565 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 7566 // Uses value zero as the modifier. 7567 // 7568 void MacroAssembler::protect_return_address() { 7569 if (VM_Version::use_rop_protection()) { 7570 check_return_address(); 7571 paciaz(); 7572 } 7573 } 7574 7575 // Sign the return value in the given register. Use before updating the LR in the existing stack 7576 // frame for the current function. 7577 // Uses value zero as the modifier. 7578 // 7579 void MacroAssembler::protect_return_address(Register return_reg) { 7580 if (VM_Version::use_rop_protection()) { 7581 check_return_address(return_reg); 7582 paciza(return_reg); 7583 } 7584 } 7585 7586 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 7587 // Uses value zero as the modifier. 7588 // 7589 void MacroAssembler::authenticate_return_address() { 7590 if (VM_Version::use_rop_protection()) { 7591 autiaz(); 7592 check_return_address(); 7593 } 7594 } 7595 7596 // Authenticate the return value in the given register. Use before updating the LR in the existing 7597 // stack frame for the current function. 7598 // Uses value zero as the modifier. 7599 // 7600 void MacroAssembler::authenticate_return_address(Register return_reg) { 7601 if (VM_Version::use_rop_protection()) { 7602 autiza(return_reg); 7603 check_return_address(return_reg); 7604 } 7605 } 7606 7607 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 7608 // there is no guaranteed way of authenticating the LR. 7609 // 7610 void MacroAssembler::strip_return_address() { 7611 if (VM_Version::use_rop_protection()) { 7612 xpaclri(); 7613 } 7614 } 7615 7616 #ifndef PRODUCT 7617 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 7618 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 7619 // it is difficult to debug back to the callee function. 7620 // This function simply loads from the address in the given register. 7621 // Use directly after authentication to catch authentication failures. 7622 // Also use before signing to check that the pointer is valid and hasn't already been signed. 7623 // 7624 void MacroAssembler::check_return_address(Register return_reg) { 7625 if (VM_Version::use_rop_protection()) { 7626 ldr(zr, Address(return_reg)); 7627 } 7628 } 7629 #endif 7630 7631 // The java_calling_convention describes stack locations as ideal slots on 7632 // a frame with no abi restrictions. Since we must observe abi restrictions 7633 // (like the placement of the register window) the slots must be biased by 7634 // the following value. 7635 static int reg2offset_in(VMReg r) { 7636 // Account for saved rfp and lr 7637 // This should really be in_preserve_stack_slots 7638 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 7639 } 7640 7641 static int reg2offset_out(VMReg r) { 7642 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 7643 } 7644 7645 // On 64bit we will store integer like items to the stack as 7646 // 64bits items (AArch64 ABI) even though java would only store 7647 // 32bits for a parameter. On 32bit it will simply be 32bits 7648 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 7649 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 7650 if (src.first()->is_stack()) { 7651 if (dst.first()->is_stack()) { 7652 // stack to stack 7653 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7654 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7655 } else { 7656 // stack to reg 7657 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7658 } 7659 } else if (dst.first()->is_stack()) { 7660 // reg to stack 7661 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7662 } else { 7663 if (dst.first() != src.first()) { 7664 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 7665 } 7666 } 7667 } 7668 7669 // An oop arg. Must pass a handle not the oop itself 7670 void MacroAssembler::object_move( 7671 OopMap* map, 7672 int oop_handle_offset, 7673 int framesize_in_slots, 7674 VMRegPair src, 7675 VMRegPair dst, 7676 bool is_receiver, 7677 int* receiver_offset) { 7678 7679 // must pass a handle. First figure out the location we use as a handle 7680 7681 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7682 7683 // See if oop is null if it is we need no handle 7684 7685 if (src.first()->is_stack()) { 7686 7687 // Oop is already on the stack as an argument 7688 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7689 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7690 if (is_receiver) { 7691 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7692 } 7693 7694 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7695 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7696 // conditionally move a null 7697 cmp(rscratch1, zr); 7698 csel(rHandle, zr, rHandle, Assembler::EQ); 7699 } else { 7700 7701 // Oop is in an a register we must store it to the space we reserve 7702 // on the stack for oop_handles and pass a handle if oop is non-null 7703 7704 const Register rOop = src.first()->as_Register(); 7705 int oop_slot; 7706 if (rOop == j_rarg0) 7707 oop_slot = 0; 7708 else if (rOop == j_rarg1) 7709 oop_slot = 1; 7710 else if (rOop == j_rarg2) 7711 oop_slot = 2; 7712 else if (rOop == j_rarg3) 7713 oop_slot = 3; 7714 else if (rOop == j_rarg4) 7715 oop_slot = 4; 7716 else if (rOop == j_rarg5) 7717 oop_slot = 5; 7718 else if (rOop == j_rarg6) 7719 oop_slot = 6; 7720 else { 7721 assert(rOop == j_rarg7, "wrong register"); 7722 oop_slot = 7; 7723 } 7724 7725 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7726 int offset = oop_slot*VMRegImpl::stack_slot_size; 7727 7728 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7729 // Store oop in handle area, may be null 7730 str(rOop, Address(sp, offset)); 7731 if (is_receiver) { 7732 *receiver_offset = offset; 7733 } 7734 7735 cmp(rOop, zr); 7736 lea(rHandle, Address(sp, offset)); 7737 // conditionally move a null 7738 csel(rHandle, zr, rHandle, Assembler::EQ); 7739 } 7740 7741 // If arg is on the stack then place it otherwise it is already in correct reg. 7742 if (dst.first()->is_stack()) { 7743 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7744 } 7745 } 7746 7747 // A float arg may have to do float reg int reg conversion 7748 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7749 if (src.first()->is_stack()) { 7750 if (dst.first()->is_stack()) { 7751 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7752 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7753 } else { 7754 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7755 } 7756 } else if (src.first() != dst.first()) { 7757 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7758 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7759 else 7760 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7761 } 7762 } 7763 7764 // A long move 7765 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7766 if (src.first()->is_stack()) { 7767 if (dst.first()->is_stack()) { 7768 // stack to stack 7769 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7770 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7771 } else { 7772 // stack to reg 7773 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7774 } 7775 } else if (dst.first()->is_stack()) { 7776 // reg to stack 7777 // Do we really have to sign extend??? 7778 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7779 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7780 } else { 7781 if (dst.first() != src.first()) { 7782 mov(dst.first()->as_Register(), src.first()->as_Register()); 7783 } 7784 } 7785 } 7786 7787 7788 // A double move 7789 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7790 if (src.first()->is_stack()) { 7791 if (dst.first()->is_stack()) { 7792 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7793 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7794 } else { 7795 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7796 } 7797 } else if (src.first() != dst.first()) { 7798 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7799 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7800 else 7801 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7802 } 7803 } 7804 7805 // Implements lightweight-locking. 7806 // 7807 // - obj: the object to be locked 7808 // - t1, t2, t3: temporary registers, will be destroyed 7809 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7810 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7811 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7812 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7813 7814 Label push; 7815 const Register top = t1; 7816 const Register mark = t2; 7817 const Register t = t3; 7818 7819 // Preload the markWord. It is important that this is the first 7820 // instruction emitted as it is part of C1's null check semantics. 7821 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7822 7823 if (UseObjectMonitorTable) { 7824 // Clear cache in case fast locking succeeds. 7825 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7826 } 7827 7828 // Check if the lock-stack is full. 7829 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7830 cmpw(top, (unsigned)LockStack::end_offset()); 7831 br(Assembler::GE, slow); 7832 7833 // Check for recursion. 7834 subw(t, top, oopSize); 7835 ldr(t, Address(rthread, t)); 7836 cmp(obj, t); 7837 br(Assembler::EQ, push); 7838 7839 // Check header for monitor (0b10). 7840 tst(mark, markWord::monitor_value); 7841 br(Assembler::NE, slow); 7842 7843 // Try to lock. Transition lock bits 0b01 => 0b00 7844 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7845 orr(mark, mark, markWord::unlocked_value); 7846 if (EnableValhalla) { 7847 // Mask inline_type bit such that we go to the slow path if object is an inline type 7848 andr(mark, mark, ~((int) markWord::inline_type_bit_in_place)); 7849 } 7850 eor(t, mark, markWord::unlocked_value); 7851 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7852 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7853 br(Assembler::NE, slow); 7854 7855 bind(push); 7856 // After successful lock, push object on lock-stack. 7857 str(obj, Address(rthread, top)); 7858 addw(top, top, oopSize); 7859 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7860 } 7861 7862 // Implements lightweight-unlocking. 7863 // 7864 // - obj: the object to be unlocked 7865 // - t1, t2, t3: temporary registers 7866 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7867 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7868 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7869 // cmpxchg clobbers rscratch1. 7870 assert_different_registers(obj, t1, t2, t3, rscratch1); 7871 7872 #ifdef ASSERT 7873 { 7874 // Check for lock-stack underflow. 7875 Label stack_ok; 7876 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7877 cmpw(t1, (unsigned)LockStack::start_offset()); 7878 br(Assembler::GE, stack_ok); 7879 STOP("Lock-stack underflow"); 7880 bind(stack_ok); 7881 } 7882 #endif 7883 7884 Label unlocked, push_and_slow; 7885 const Register top = t1; 7886 const Register mark = t2; 7887 const Register t = t3; 7888 7889 // Check if obj is top of lock-stack. 7890 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7891 subw(top, top, oopSize); 7892 ldr(t, Address(rthread, top)); 7893 cmp(obj, t); 7894 br(Assembler::NE, slow); 7895 7896 // Pop lock-stack. 7897 DEBUG_ONLY(str(zr, Address(rthread, top));) 7898 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7899 7900 // Check if recursive. 7901 subw(t, top, oopSize); 7902 ldr(t, Address(rthread, t)); 7903 cmp(obj, t); 7904 br(Assembler::EQ, unlocked); 7905 7906 // Not recursive. Check header for monitor (0b10). 7907 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7908 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7909 7910 #ifdef ASSERT 7911 // Check header not unlocked (0b01). 7912 Label not_unlocked; 7913 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7914 stop("lightweight_unlock already unlocked"); 7915 bind(not_unlocked); 7916 #endif 7917 7918 // Try to unlock. Transition lock bits 0b00 => 0b01 7919 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7920 orr(t, mark, markWord::unlocked_value); 7921 cmpxchg(obj, mark, t, Assembler::xword, 7922 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7923 br(Assembler::EQ, unlocked); 7924 7925 bind(push_and_slow); 7926 // Restore lock-stack and handle the unlock in runtime. 7927 DEBUG_ONLY(str(obj, Address(rthread, top));) 7928 addw(top, top, oopSize); 7929 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7930 b(slow); 7931 7932 bind(unlocked); 7933 }