1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/assembler.hpp" 28 #include "asm/assembler.inline.hpp" 29 #include "ci/ciEnv.hpp" 30 #include "ci/ciInlineKlass.hpp" 31 #include "code/compiledIC.hpp" 32 #include "compiler/compileTask.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "gc/shared/cardTableBarrierSet.hpp" 38 #include "gc/shared/cardTable.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/tlab_globals.hpp" 41 #include "interpreter/bytecodeHistogram.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/resolvedFieldEntry.hpp" 52 #include "runtime/continuation.hpp" 53 #include "runtime/icache.hpp" 54 #include "runtime/interfaceSupport.inline.hpp" 55 #include "runtime/javaThread.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/signature_cc.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/globalDefinitions.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 #include "vmreg_aarch64.inline.hpp" 63 #ifdef COMPILER1 64 #include "c1/c1_LIRAssembler.hpp" 65 #endif 66 #ifdef COMPILER2 67 #include "oops/oop.hpp" 68 #include "opto/compile.hpp" 69 #include "opto/node.hpp" 70 #include "opto/output.hpp" 71 #endif 72 73 #include <sys/types.h> 74 75 #ifdef PRODUCT 76 #define BLOCK_COMMENT(str) /* nothing */ 77 #else 78 #define BLOCK_COMMENT(str) block_comment(str) 79 #endif 80 #define STOP(str) stop(str); 81 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 82 83 #ifdef ASSERT 84 extern "C" void disnm(intptr_t p); 85 #endif 86 // Target-dependent relocation processing 87 // 88 // Instruction sequences whose target may need to be retrieved or 89 // patched are distinguished by their leading instruction, sorting 90 // them into three main instruction groups and related subgroups. 91 // 92 // 1) Branch, Exception and System (insn count = 1) 93 // 1a) Unconditional branch (immediate): 94 // b/bl imm19 95 // 1b) Compare & branch (immediate): 96 // cbz/cbnz Rt imm19 97 // 1c) Test & branch (immediate): 98 // tbz/tbnz Rt imm14 99 // 1d) Conditional branch (immediate): 100 // b.cond imm19 101 // 102 // 2) Loads and Stores (insn count = 1) 103 // 2a) Load register literal: 104 // ldr Rt imm19 105 // 106 // 3) Data Processing Immediate (insn count = 2 or 3) 107 // 3a) PC-rel. addressing 108 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 109 // adr/adrp Rx imm21; add Ry Rx #imm12 110 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 111 // adr/adrp Rx imm21 112 // adr/adrp Rx imm21; movk Rx #imm16<<32 113 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 114 // The latter form can only happen when the target is an 115 // ExternalAddress, and (by definition) ExternalAddresses don't 116 // move. Because of that property, there is never any need to 117 // patch the last of the three instructions. However, 118 // MacroAssembler::target_addr_for_insn takes all three 119 // instructions into account and returns the correct address. 120 // 3b) Move wide (immediate) 121 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 122 // 123 // A switch on a subset of the instruction's bits provides an 124 // efficient dispatch to these subcases. 125 // 126 // insn[28:26] -> main group ('x' == don't care) 127 // 00x -> UNALLOCATED 128 // 100 -> Data Processing Immediate 129 // 101 -> Branch, Exception and System 130 // x1x -> Loads and Stores 131 // 132 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 133 // n.b. in some cases extra bits need to be checked to verify the 134 // instruction is as expected 135 // 136 // 1) ... xx101x Branch, Exception and System 137 // 1a) 00___x Unconditional branch (immediate) 138 // 1b) 01___0 Compare & branch (immediate) 139 // 1c) 01___1 Test & branch (immediate) 140 // 1d) 10___0 Conditional branch (immediate) 141 // other Should not happen 142 // 143 // 2) ... xxx1x0 Loads and Stores 144 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 145 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 146 // strictly should be 64 bit non-FP/SIMD i.e. 147 // 0101_000 (i.e. requires insn[31:24] == 01011000) 148 // 149 // 3) ... xx100x Data Processing Immediate 150 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 151 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 152 // strictly should be 64 bit movz #imm16<<0 153 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 154 // 155 class RelocActions { 156 protected: 157 typedef int (*reloc_insn)(address insn_addr, address &target); 158 159 virtual reloc_insn adrpMem() = 0; 160 virtual reloc_insn adrpAdd() = 0; 161 virtual reloc_insn adrpMovk() = 0; 162 163 const address _insn_addr; 164 const uint32_t _insn; 165 166 static uint32_t insn_at(address insn_addr, int n) { 167 return ((uint32_t*)insn_addr)[n]; 168 } 169 uint32_t insn_at(int n) const { 170 return insn_at(_insn_addr, n); 171 } 172 173 public: 174 175 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 176 RelocActions(address insn_addr, uint32_t insn) 177 : _insn_addr(insn_addr), _insn(insn) {} 178 179 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 180 virtual int conditionalBranch(address insn_addr, address &target) = 0; 181 virtual int testAndBranch(address insn_addr, address &target) = 0; 182 virtual int loadStore(address insn_addr, address &target) = 0; 183 virtual int adr(address insn_addr, address &target) = 0; 184 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 185 virtual int immediate(address insn_addr, address &target) = 0; 186 virtual void verify(address insn_addr, address &target) = 0; 187 188 int ALWAYSINLINE run(address insn_addr, address &target) { 189 int instructions = 1; 190 191 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 192 switch(dispatch) { 193 case 0b001010: 194 case 0b001011: { 195 instructions = unconditionalBranch(insn_addr, target); 196 break; 197 } 198 case 0b101010: // Conditional branch (immediate) 199 case 0b011010: { // Compare & branch (immediate) 200 instructions = conditionalBranch(insn_addr, target); 201 break; 202 } 203 case 0b011011: { 204 instructions = testAndBranch(insn_addr, target); 205 break; 206 } 207 case 0b001100: 208 case 0b001110: 209 case 0b011100: 210 case 0b011110: 211 case 0b101100: 212 case 0b101110: 213 case 0b111100: 214 case 0b111110: { 215 // load/store 216 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 217 // Load register (literal) 218 instructions = loadStore(insn_addr, target); 219 break; 220 } else { 221 // nothing to do 222 assert(target == nullptr, "did not expect to relocate target for polling page load"); 223 } 224 break; 225 } 226 case 0b001000: 227 case 0b011000: 228 case 0b101000: 229 case 0b111000: { 230 // adr/adrp 231 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 232 int shift = Instruction_aarch64::extract(_insn, 31, 31); 233 if (shift) { 234 uint32_t insn2 = insn_at(1); 235 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 9, 5)) { 238 instructions = adrp(insn_addr, target, adrpMem()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpAdd()); 243 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 244 Instruction_aarch64::extract(_insn, 4, 0) == 245 Instruction_aarch64::extract(insn2, 4, 0)) { 246 instructions = adrp(insn_addr, target, adrpMovk()); 247 } else { 248 ShouldNotReachHere(); 249 } 250 } else { 251 instructions = adr(insn_addr, target); 252 } 253 break; 254 } 255 case 0b001001: 256 case 0b011001: 257 case 0b101001: 258 case 0b111001: { 259 instructions = immediate(insn_addr, target); 260 break; 261 } 262 default: { 263 ShouldNotReachHere(); 264 } 265 } 266 267 verify(insn_addr, target); 268 return instructions * NativeInstruction::instruction_size; 269 } 270 }; 271 272 class Patcher : public RelocActions { 273 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 274 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 275 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 276 277 public: 278 Patcher(address insn_addr) : RelocActions(insn_addr) {} 279 280 virtual int unconditionalBranch(address insn_addr, address &target) { 281 intptr_t offset = (target - insn_addr) >> 2; 282 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 283 return 1; 284 } 285 virtual int conditionalBranch(address insn_addr, address &target) { 286 intptr_t offset = (target - insn_addr) >> 2; 287 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 288 return 1; 289 } 290 virtual int testAndBranch(address insn_addr, address &target) { 291 intptr_t offset = (target - insn_addr) >> 2; 292 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 293 return 1; 294 } 295 virtual int loadStore(address insn_addr, address &target) { 296 intptr_t offset = (target - insn_addr) >> 2; 297 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 298 return 1; 299 } 300 virtual int adr(address insn_addr, address &target) { 301 #ifdef ASSERT 302 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 303 #endif 304 // PC-rel. addressing 305 ptrdiff_t offset = target - insn_addr; 306 int offset_lo = offset & 3; 307 offset >>= 2; 308 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 309 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 310 return 1; 311 } 312 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 313 int instructions = 1; 314 #ifdef ASSERT 315 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 316 #endif 317 ptrdiff_t offset = target - insn_addr; 318 instructions = 2; 319 precond(inner != nullptr); 320 // Give the inner reloc a chance to modify the target. 321 address adjusted_target = target; 322 instructions = (*inner)(insn_addr, adjusted_target); 323 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 324 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 325 offset = adr_page - pc_page; 326 int offset_lo = offset & 3; 327 offset >>= 2; 328 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 329 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 330 return instructions; 331 } 332 static int adrpMem_impl(address insn_addr, address &target) { 333 uintptr_t dest = (uintptr_t)target; 334 int offset_lo = dest & 0xfff; 335 uint32_t insn2 = insn_at(insn_addr, 1); 336 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 337 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 338 guarantee(((dest >> size) << size) == dest, "misaligned target"); 339 return 2; 340 } 341 static int adrpAdd_impl(address insn_addr, address &target) { 342 uintptr_t dest = (uintptr_t)target; 343 int offset_lo = dest & 0xfff; 344 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 345 return 2; 346 } 347 static int adrpMovk_impl(address insn_addr, address &target) { 348 uintptr_t dest = uintptr_t(target); 349 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 350 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 351 target = address(dest); 352 return 2; 353 } 354 virtual int immediate(address insn_addr, address &target) { 355 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 356 uint64_t dest = (uint64_t)target; 357 // Move wide constant 358 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 359 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 360 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 361 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 362 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 363 return 3; 364 } 365 virtual void verify(address insn_addr, address &target) { 366 #ifdef ASSERT 367 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 368 if (!(address_is == target)) { 369 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 370 disnm((intptr_t)insn_addr); 371 assert(address_is == target, "should be"); 372 } 373 #endif 374 } 375 }; 376 377 // If insn1 and insn2 use the same register to form an address, either 378 // by an offsetted LDR or a simple ADD, return the offset. If the 379 // second instruction is an LDR, the offset may be scaled. 380 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 381 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 382 Instruction_aarch64::extract(insn1, 4, 0) == 383 Instruction_aarch64::extract(insn2, 9, 5)) { 384 // Load/store register (unsigned immediate) 385 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 386 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 387 byte_offset <<= size; 388 return true; 389 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 390 Instruction_aarch64::extract(insn1, 4, 0) == 391 Instruction_aarch64::extract(insn2, 4, 0)) { 392 // add (immediate) 393 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 394 return true; 395 } 396 return false; 397 } 398 399 class AArch64Decoder : public RelocActions { 400 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 401 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 402 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 403 404 public: 405 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 406 407 virtual int loadStore(address insn_addr, address &target) { 408 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 409 target = insn_addr + (offset << 2); 410 return 1; 411 } 412 virtual int unconditionalBranch(address insn_addr, address &target) { 413 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 414 target = insn_addr + (offset << 2); 415 return 1; 416 } 417 virtual int conditionalBranch(address insn_addr, address &target) { 418 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 419 target = address(((uint64_t)insn_addr + (offset << 2))); 420 return 1; 421 } 422 virtual int testAndBranch(address insn_addr, address &target) { 423 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 424 target = address(((uint64_t)insn_addr + (offset << 2))); 425 return 1; 426 } 427 virtual int adr(address insn_addr, address &target) { 428 // PC-rel. addressing 429 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 430 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 431 target = address((uint64_t)insn_addr + offset); 432 return 1; 433 } 434 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 435 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 436 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 437 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 438 int shift = 12; 439 offset <<= shift; 440 uint64_t target_page = ((uint64_t)insn_addr) + offset; 441 target_page &= ((uint64_t)-1) << shift; 442 uint32_t insn2 = insn_at(1); 443 target = address(target_page); 444 precond(inner != nullptr); 445 (*inner)(insn_addr, target); 446 return 2; 447 } 448 static int adrpMem_impl(address insn_addr, address &target) { 449 uint32_t insn2 = insn_at(insn_addr, 1); 450 // Load/store register (unsigned immediate) 451 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 452 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 453 byte_offset <<= size; 454 target += byte_offset; 455 return 2; 456 } 457 static int adrpAdd_impl(address insn_addr, address &target) { 458 uint32_t insn2 = insn_at(insn_addr, 1); 459 // add (immediate) 460 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 461 target += byte_offset; 462 return 2; 463 } 464 static int adrpMovk_impl(address insn_addr, address &target) { 465 uint32_t insn2 = insn_at(insn_addr, 1); 466 uint64_t dest = uint64_t(target); 467 dest = (dest & 0xffff0000ffffffff) | 468 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 469 target = address(dest); 470 471 // We know the destination 4k page. Maybe we have a third 472 // instruction. 473 uint32_t insn = insn_at(insn_addr, 0); 474 uint32_t insn3 = insn_at(insn_addr, 2); 475 ptrdiff_t byte_offset; 476 if (offset_for(insn, insn3, byte_offset)) { 477 target += byte_offset; 478 return 3; 479 } else { 480 return 2; 481 } 482 } 483 virtual int immediate(address insn_addr, address &target) { 484 uint32_t *insns = (uint32_t *)insn_addr; 485 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 486 // Move wide constant: movz, movk, movk. See movptr(). 487 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 488 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 489 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 490 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 491 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 492 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 493 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 494 return 3; 495 } 496 virtual void verify(address insn_addr, address &target) { 497 } 498 }; 499 500 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 501 AArch64Decoder decoder(insn_addr, insn); 502 address target; 503 decoder.run(insn_addr, target); 504 return target; 505 } 506 507 // Patch any kind of instruction; there may be several instructions. 508 // Return the total length (in bytes) of the instructions. 509 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 510 Patcher patcher(insn_addr); 511 return patcher.run(insn_addr, target); 512 } 513 514 int MacroAssembler::patch_oop(address insn_addr, address o) { 515 int instructions; 516 unsigned insn = *(unsigned*)insn_addr; 517 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 518 519 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 520 // narrow OOPs by setting the upper 16 bits in the first 521 // instruction. 522 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 523 // Move narrow OOP 524 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 525 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 526 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 527 instructions = 2; 528 } else { 529 // Move wide OOP 530 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 531 uintptr_t dest = (uintptr_t)o; 532 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 533 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 534 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 535 instructions = 3; 536 } 537 return instructions * NativeInstruction::instruction_size; 538 } 539 540 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 541 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 542 // We encode narrow ones by setting the upper 16 bits in the first 543 // instruction. 544 NativeInstruction *insn = nativeInstruction_at(insn_addr); 545 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 546 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 547 548 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 549 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 550 return 2 * NativeInstruction::instruction_size; 551 } 552 553 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 554 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 555 return nullptr; 556 } 557 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 558 } 559 560 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 561 if (acquire) { 562 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 563 ldar(tmp, tmp); 564 } else { 565 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 566 } 567 if (at_return) { 568 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 569 // we may safely use the sp instead to perform the stack watermark check. 570 cmp(in_nmethod ? sp : rfp, tmp); 571 br(Assembler::HI, slow_path); 572 } else { 573 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 574 } 575 } 576 577 void MacroAssembler::rt_call(address dest, Register tmp) { 578 CodeBlob *cb = CodeCache::find_blob(dest); 579 if (cb) { 580 far_call(RuntimeAddress(dest)); 581 } else { 582 lea(tmp, RuntimeAddress(dest)); 583 blr(tmp); 584 } 585 } 586 587 void MacroAssembler::push_cont_fastpath(Register java_thread) { 588 if (!Continuations::enabled()) return; 589 Label done; 590 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 cmp(sp, rscratch1); 592 br(Assembler::LS, done); 593 mov(rscratch1, sp); // we can't use sp as the source in str 594 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 595 bind(done); 596 } 597 598 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 599 if (!Continuations::enabled()) return; 600 Label done; 601 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 602 cmp(sp, rscratch1); 603 br(Assembler::LO, done); 604 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 605 bind(done); 606 } 607 608 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 609 // we must set sp to zero to clear frame 610 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 611 612 // must clear fp, so that compiled frames are not confused; it is 613 // possible that we need it only for debugging 614 if (clear_fp) { 615 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 616 } 617 618 // Always clear the pc because it could have been set by make_walkable() 619 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 620 } 621 622 // Calls to C land 623 // 624 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 625 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 626 // has to be reset to 0. This is required to allow proper stack traversal. 627 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 628 Register last_java_fp, 629 Register last_java_pc, 630 Register scratch) { 631 632 if (last_java_pc->is_valid()) { 633 str(last_java_pc, Address(rthread, 634 JavaThread::frame_anchor_offset() 635 + JavaFrameAnchor::last_Java_pc_offset())); 636 } 637 638 // determine last_java_sp register 639 if (last_java_sp == sp) { 640 mov(scratch, sp); 641 last_java_sp = scratch; 642 } else if (!last_java_sp->is_valid()) { 643 last_java_sp = esp; 644 } 645 646 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 647 648 // last_java_fp is optional 649 if (last_java_fp->is_valid()) { 650 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 651 } 652 } 653 654 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 655 Register last_java_fp, 656 address last_java_pc, 657 Register scratch) { 658 assert(last_java_pc != nullptr, "must provide a valid PC"); 659 660 adr(scratch, last_java_pc); 661 str(scratch, Address(rthread, 662 JavaThread::frame_anchor_offset() 663 + JavaFrameAnchor::last_Java_pc_offset())); 664 665 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 666 } 667 668 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 669 Register last_java_fp, 670 Label &L, 671 Register scratch) { 672 if (L.is_bound()) { 673 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 674 } else { 675 InstructionMark im(this); 676 L.add_patch_at(code(), locator()); 677 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 678 } 679 } 680 681 static inline bool target_needs_far_branch(address addr) { 682 // codecache size <= 128M 683 if (!MacroAssembler::far_branches()) { 684 return false; 685 } 686 // codecache size > 240M 687 if (MacroAssembler::codestub_branch_needs_far_jump()) { 688 return true; 689 } 690 // codecache size: 128M..240M 691 return !CodeCache::is_non_nmethod(addr); 692 } 693 694 void MacroAssembler::far_call(Address entry, Register tmp) { 695 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 696 assert(CodeCache::find_blob(entry.target()) != nullptr, 697 "destination of far call not found in code cache"); 698 assert(entry.rspec().type() == relocInfo::external_word_type 699 || entry.rspec().type() == relocInfo::runtime_call_type 700 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 701 if (target_needs_far_branch(entry.target())) { 702 uint64_t offset; 703 // We can use ADRP here because we know that the total size of 704 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 705 adrp(tmp, entry, offset); 706 add(tmp, tmp, offset); 707 blr(tmp); 708 } else { 709 bl(entry); 710 } 711 } 712 713 int MacroAssembler::far_jump(Address entry, Register tmp) { 714 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 715 assert(CodeCache::find_blob(entry.target()) != nullptr, 716 "destination of far call not found in code cache"); 717 assert(entry.rspec().type() == relocInfo::external_word_type 718 || entry.rspec().type() == relocInfo::runtime_call_type 719 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 720 address start = pc(); 721 if (target_needs_far_branch(entry.target())) { 722 uint64_t offset; 723 // We can use ADRP here because we know that the total size of 724 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 725 adrp(tmp, entry, offset); 726 add(tmp, tmp, offset); 727 br(tmp); 728 } else { 729 b(entry); 730 } 731 return pc() - start; 732 } 733 734 void MacroAssembler::reserved_stack_check() { 735 // testing if reserved zone needs to be enabled 736 Label no_reserved_zone_enabling; 737 738 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 739 cmp(sp, rscratch1); 740 br(Assembler::LO, no_reserved_zone_enabling); 741 742 enter(); // LR and FP are live. 743 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 744 mov(c_rarg0, rthread); 745 blr(rscratch1); 746 leave(); 747 748 // We have already removed our own frame. 749 // throw_delayed_StackOverflowError will think that it's been 750 // called by our caller. 751 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 752 br(rscratch1); 753 should_not_reach_here(); 754 755 bind(no_reserved_zone_enabling); 756 } 757 758 static void pass_arg0(MacroAssembler* masm, Register arg) { 759 if (c_rarg0 != arg ) { 760 masm->mov(c_rarg0, arg); 761 } 762 } 763 764 static void pass_arg1(MacroAssembler* masm, Register arg) { 765 if (c_rarg1 != arg ) { 766 masm->mov(c_rarg1, arg); 767 } 768 } 769 770 static void pass_arg2(MacroAssembler* masm, Register arg) { 771 if (c_rarg2 != arg ) { 772 masm->mov(c_rarg2, arg); 773 } 774 } 775 776 static void pass_arg3(MacroAssembler* masm, Register arg) { 777 if (c_rarg3 != arg ) { 778 masm->mov(c_rarg3, arg); 779 } 780 } 781 782 void MacroAssembler::call_VM_base(Register oop_result, 783 Register java_thread, 784 Register last_java_sp, 785 address entry_point, 786 int number_of_arguments, 787 bool check_exceptions) { 788 // determine java_thread register 789 if (!java_thread->is_valid()) { 790 java_thread = rthread; 791 } 792 793 // determine last_java_sp register 794 if (!last_java_sp->is_valid()) { 795 last_java_sp = esp; 796 } 797 798 // debugging support 799 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 800 assert(java_thread == rthread, "unexpected register"); 801 #ifdef ASSERT 802 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 803 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 804 #endif // ASSERT 805 806 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 807 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 808 809 // push java thread (becomes first argument of C function) 810 811 mov(c_rarg0, java_thread); 812 813 // set last Java frame before call 814 assert(last_java_sp != rfp, "can't use rfp"); 815 816 Label l; 817 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 818 819 // do the call, remove parameters 820 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 821 822 // lr could be poisoned with PAC signature during throw_pending_exception 823 // if it was tail-call optimized by compiler, since lr is not callee-saved 824 // reload it with proper value 825 adr(lr, l); 826 827 // reset last Java frame 828 // Only interpreter should have to clear fp 829 reset_last_Java_frame(true); 830 831 // C++ interp handles this in the interpreter 832 check_and_handle_popframe(java_thread); 833 check_and_handle_earlyret(java_thread); 834 835 if (check_exceptions) { 836 // check for pending exceptions (java_thread is set upon return) 837 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 838 Label ok; 839 cbz(rscratch1, ok); 840 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 841 br(rscratch1); 842 bind(ok); 843 } 844 845 // get oop result if there is one and reset the value in the thread 846 if (oop_result->is_valid()) { 847 get_vm_result(oop_result, java_thread); 848 } 849 } 850 851 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 852 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 853 } 854 855 // Check the entry target is always reachable from any branch. 856 static bool is_always_within_branch_range(Address entry) { 857 const address target = entry.target(); 858 859 if (!CodeCache::contains(target)) { 860 // We always use trampolines for callees outside CodeCache. 861 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 862 return false; 863 } 864 865 if (!MacroAssembler::far_branches()) { 866 return true; 867 } 868 869 if (entry.rspec().type() == relocInfo::runtime_call_type) { 870 // Runtime calls are calls of a non-compiled method (stubs, adapters). 871 // Non-compiled methods stay forever in CodeCache. 872 // We check whether the longest possible branch is within the branch range. 873 assert(CodeCache::find_blob(target) != nullptr && 874 !CodeCache::find_blob(target)->is_nmethod(), 875 "runtime call of compiled method"); 876 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 877 const address left_longest_branch_start = CodeCache::low_bound(); 878 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 879 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 880 return is_reachable; 881 } 882 883 return false; 884 } 885 886 // Maybe emit a call via a trampoline. If the code cache is small 887 // trampolines won't be emitted. 888 address MacroAssembler::trampoline_call(Address entry) { 889 assert(entry.rspec().type() == relocInfo::runtime_call_type 890 || entry.rspec().type() == relocInfo::opt_virtual_call_type 891 || entry.rspec().type() == relocInfo::static_call_type 892 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 893 894 address target = entry.target(); 895 896 if (!is_always_within_branch_range(entry)) { 897 if (!in_scratch_emit_size()) { 898 // We don't want to emit a trampoline if C2 is generating dummy 899 // code during its branch shortening phase. 900 if (entry.rspec().type() == relocInfo::runtime_call_type) { 901 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 902 code()->share_trampoline_for(entry.target(), offset()); 903 } else { 904 address stub = emit_trampoline_stub(offset(), target); 905 if (stub == nullptr) { 906 postcond(pc() == badAddress); 907 return nullptr; // CodeCache is full 908 } 909 } 910 } 911 target = pc(); 912 } 913 914 address call_pc = pc(); 915 relocate(entry.rspec()); 916 bl(target); 917 918 postcond(pc() != badAddress); 919 return call_pc; 920 } 921 922 // Emit a trampoline stub for a call to a target which is too far away. 923 // 924 // code sequences: 925 // 926 // call-site: 927 // branch-and-link to <destination> or <trampoline stub> 928 // 929 // Related trampoline stub for this call site in the stub section: 930 // load the call target from the constant pool 931 // branch (LR still points to the call site above) 932 933 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 934 address dest) { 935 // Max stub size: alignment nop, TrampolineStub. 936 address stub = start_a_stub(max_trampoline_stub_size()); 937 if (stub == nullptr) { 938 return nullptr; // CodeBuffer::expand failed 939 } 940 941 // Create a trampoline stub relocation which relates this trampoline stub 942 // with the call instruction at insts_call_instruction_offset in the 943 // instructions code-section. 944 align(wordSize); 945 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 946 + insts_call_instruction_offset)); 947 const int stub_start_offset = offset(); 948 949 // Now, create the trampoline stub's code: 950 // - load the call 951 // - call 952 Label target; 953 ldr(rscratch1, target); 954 br(rscratch1); 955 bind(target); 956 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 957 "should be"); 958 emit_int64((int64_t)dest); 959 960 const address stub_start_addr = addr_at(stub_start_offset); 961 962 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 963 964 end_a_stub(); 965 return stub_start_addr; 966 } 967 968 int MacroAssembler::max_trampoline_stub_size() { 969 // Max stub size: alignment nop, TrampolineStub. 970 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 971 } 972 973 void MacroAssembler::emit_static_call_stub() { 974 // CompiledDirectCall::set_to_interpreted knows the 975 // exact layout of this stub. 976 977 isb(); 978 mov_metadata(rmethod, nullptr); 979 980 // Jump to the entry point of the c2i stub. 981 movptr(rscratch1, 0); 982 br(rscratch1); 983 } 984 985 int MacroAssembler::static_call_stub_size() { 986 // isb; movk; movz; movz; movk; movz; movz; br 987 return 8 * NativeInstruction::instruction_size; 988 } 989 990 void MacroAssembler::c2bool(Register x) { 991 // implements x == 0 ? 0 : 1 992 // note: must only look at least-significant byte of x 993 // since C-style booleans are stored in one byte 994 // only! (was bug) 995 tst(x, 0xff); 996 cset(x, Assembler::NE); 997 } 998 999 address MacroAssembler::ic_call(address entry, jint method_index) { 1000 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1001 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 1002 // uintptr_t offset; 1003 // ldr_constant(rscratch2, const_ptr); 1004 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1005 return trampoline_call(Address(entry, rh)); 1006 } 1007 1008 int MacroAssembler::ic_check_size() { 1009 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1010 return NativeInstruction::instruction_size * 7; 1011 } else { 1012 return NativeInstruction::instruction_size * 5; 1013 } 1014 } 1015 1016 int MacroAssembler::ic_check(int end_alignment) { 1017 Register receiver = j_rarg0; 1018 Register data = rscratch2; 1019 Register tmp1 = rscratch1; 1020 Register tmp2 = r10; 1021 1022 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1023 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1024 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1025 // before the inline cache check here, and not after 1026 align(end_alignment, offset() + ic_check_size()); 1027 1028 int uep_offset = offset(); 1029 1030 if (UseCompressedClassPointers) { 1031 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1032 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1033 cmpw(tmp1, tmp2); 1034 } else { 1035 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1036 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1037 cmp(tmp1, tmp2); 1038 } 1039 1040 Label dont; 1041 br(Assembler::EQ, dont); 1042 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1043 bind(dont); 1044 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1045 1046 return uep_offset; 1047 } 1048 1049 // Implementation of call_VM versions 1050 1051 void MacroAssembler::call_VM(Register oop_result, 1052 address entry_point, 1053 bool check_exceptions) { 1054 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1055 } 1056 1057 void MacroAssembler::call_VM(Register oop_result, 1058 address entry_point, 1059 Register arg_1, 1060 bool check_exceptions) { 1061 pass_arg1(this, arg_1); 1062 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1063 } 1064 1065 void MacroAssembler::call_VM(Register oop_result, 1066 address entry_point, 1067 Register arg_1, 1068 Register arg_2, 1069 bool check_exceptions) { 1070 assert_different_registers(arg_1, c_rarg2); 1071 pass_arg2(this, arg_2); 1072 pass_arg1(this, arg_1); 1073 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1074 } 1075 1076 void MacroAssembler::call_VM(Register oop_result, 1077 address entry_point, 1078 Register arg_1, 1079 Register arg_2, 1080 Register arg_3, 1081 bool check_exceptions) { 1082 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1083 assert_different_registers(arg_2, c_rarg3); 1084 pass_arg3(this, arg_3); 1085 1086 pass_arg2(this, arg_2); 1087 1088 pass_arg1(this, arg_1); 1089 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1090 } 1091 1092 void MacroAssembler::call_VM(Register oop_result, 1093 Register last_java_sp, 1094 address entry_point, 1095 int number_of_arguments, 1096 bool check_exceptions) { 1097 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1098 } 1099 1100 void MacroAssembler::call_VM(Register oop_result, 1101 Register last_java_sp, 1102 address entry_point, 1103 Register arg_1, 1104 bool check_exceptions) { 1105 pass_arg1(this, arg_1); 1106 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1107 } 1108 1109 void MacroAssembler::call_VM(Register oop_result, 1110 Register last_java_sp, 1111 address entry_point, 1112 Register arg_1, 1113 Register arg_2, 1114 bool check_exceptions) { 1115 1116 assert_different_registers(arg_1, c_rarg2); 1117 pass_arg2(this, arg_2); 1118 pass_arg1(this, arg_1); 1119 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1120 } 1121 1122 void MacroAssembler::call_VM(Register oop_result, 1123 Register last_java_sp, 1124 address entry_point, 1125 Register arg_1, 1126 Register arg_2, 1127 Register arg_3, 1128 bool check_exceptions) { 1129 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1130 assert_different_registers(arg_2, c_rarg3); 1131 pass_arg3(this, arg_3); 1132 pass_arg2(this, arg_2); 1133 pass_arg1(this, arg_1); 1134 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1135 } 1136 1137 1138 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1139 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1140 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1141 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1142 } 1143 1144 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1145 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1146 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1147 } 1148 1149 void MacroAssembler::align(int modulus) { 1150 align(modulus, offset()); 1151 } 1152 1153 // Ensure that the code at target bytes offset from the current offset() is aligned 1154 // according to modulus. 1155 void MacroAssembler::align(int modulus, int target) { 1156 int delta = target - offset(); 1157 while ((offset() + delta) % modulus != 0) nop(); 1158 } 1159 1160 void MacroAssembler::post_call_nop() { 1161 if (!Continuations::enabled()) { 1162 return; 1163 } 1164 InstructionMark im(this); 1165 relocate(post_call_nop_Relocation::spec()); 1166 InlineSkippedInstructionsCounter skipCounter(this); 1167 nop(); 1168 movk(zr, 0); 1169 movk(zr, 0); 1170 } 1171 1172 // these are no-ops overridden by InterpreterMacroAssembler 1173 1174 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1175 1176 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1177 1178 void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) { 1179 assert_different_registers(inline_klass, temp_reg, obj, rscratch2); 1180 #ifdef ASSERT 1181 { 1182 Label done_check; 1183 test_klass_is_inline_type(inline_klass, temp_reg, done_check); 1184 stop("get_default_value_oop from non inline type klass"); 1185 bind(done_check); 1186 } 1187 #endif 1188 Register offset = temp_reg; 1189 // Getting the offset of the pre-allocated default value 1190 ldr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()))); 1191 load_sized_value(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())), sizeof(int), true /*is_signed*/); 1192 1193 // Getting the mirror 1194 ldr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset()))); 1195 resolve_oop_handle(obj, inline_klass, rscratch2); 1196 1197 // Getting the pre-allocated default value from the mirror 1198 Address field(obj, offset); 1199 load_heap_oop(obj, field, inline_klass, rscratch2); 1200 } 1201 1202 void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) { 1203 #ifdef ASSERT 1204 { 1205 Label done_check; 1206 test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check); 1207 stop("get_empty_value from non-empty inline klass"); 1208 bind(done_check); 1209 } 1210 #endif 1211 get_default_value_oop(inline_klass, temp_reg, obj); 1212 } 1213 1214 // Look up the method for a megamorphic invokeinterface call. 1215 // The target method is determined by <intf_klass, itable_index>. 1216 // The receiver klass is in recv_klass. 1217 // On success, the result will be in method_result, and execution falls through. 1218 // On failure, execution transfers to the given label. 1219 void MacroAssembler::lookup_interface_method(Register recv_klass, 1220 Register intf_klass, 1221 RegisterOrConstant itable_index, 1222 Register method_result, 1223 Register scan_temp, 1224 Label& L_no_such_interface, 1225 bool return_method) { 1226 assert_different_registers(recv_klass, intf_klass, scan_temp); 1227 assert_different_registers(method_result, intf_klass, scan_temp); 1228 assert(recv_klass != method_result || !return_method, 1229 "recv_klass can be destroyed when method isn't needed"); 1230 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1231 "caller must use same register for non-constant itable index as for method"); 1232 1233 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1234 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1235 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1236 int scan_step = itableOffsetEntry::size() * wordSize; 1237 int vte_size = vtableEntry::size_in_bytes(); 1238 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1239 1240 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1241 1242 // Could store the aligned, prescaled offset in the klass. 1243 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1244 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1245 add(scan_temp, scan_temp, vtable_base); 1246 1247 if (return_method) { 1248 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1249 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1250 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1251 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1252 if (itentry_off) 1253 add(recv_klass, recv_klass, itentry_off); 1254 } 1255 1256 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1257 // if (scan->interface() == intf) { 1258 // result = (klass + scan->offset() + itable_index); 1259 // } 1260 // } 1261 Label search, found_method; 1262 1263 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1264 cmp(intf_klass, method_result); 1265 br(Assembler::EQ, found_method); 1266 bind(search); 1267 // Check that the previous entry is non-null. A null entry means that 1268 // the receiver class doesn't implement the interface, and wasn't the 1269 // same as when the caller was compiled. 1270 cbz(method_result, L_no_such_interface); 1271 if (itableOffsetEntry::interface_offset() != 0) { 1272 add(scan_temp, scan_temp, scan_step); 1273 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1274 } else { 1275 ldr(method_result, Address(pre(scan_temp, scan_step))); 1276 } 1277 cmp(intf_klass, method_result); 1278 br(Assembler::NE, search); 1279 1280 bind(found_method); 1281 1282 // Got a hit. 1283 if (return_method) { 1284 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1285 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1286 } 1287 } 1288 1289 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1290 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1291 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1292 // The target method is determined by <holder_klass, itable_index>. 1293 // The receiver klass is in recv_klass. 1294 // On success, the result will be in method_result, and execution falls through. 1295 // On failure, execution transfers to the given label. 1296 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1297 Register holder_klass, 1298 Register resolved_klass, 1299 Register method_result, 1300 Register temp_itbl_klass, 1301 Register scan_temp, 1302 int itable_index, 1303 Label& L_no_such_interface) { 1304 // 'method_result' is only used as output register at the very end of this method. 1305 // Until then we can reuse it as 'holder_offset'. 1306 Register holder_offset = method_result; 1307 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1308 1309 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1310 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1311 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1312 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1313 1314 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1315 1316 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1317 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1318 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1319 // temp_itbl_klass = itable[0]._interface; 1320 int vtblEntrySize = vtableEntry::size_in_bytes(); 1321 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1322 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1323 mov(holder_offset, zr); 1324 // scan_temp = &(itable[0]._interface) 1325 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1326 1327 // Initial checks: 1328 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1329 // - if (itable[0] == holder_klass), shortcut to "holder found" 1330 // - if (itable[0] == 0), no such interface 1331 cmp(resolved_klass, holder_klass); 1332 br(Assembler::NE, L_loop_search_resolved_entry); 1333 cmp(holder_klass, temp_itbl_klass); 1334 br(Assembler::EQ, L_holder_found); 1335 cbz(temp_itbl_klass, L_no_such_interface); 1336 1337 // Loop: Look for holder_klass record in itable 1338 // do { 1339 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1340 // if (temp_itbl_klass == holder_klass) { 1341 // goto L_holder_found; // Found! 1342 // } 1343 // } while (temp_itbl_klass != 0); 1344 // goto L_no_such_interface // Not found. 1345 Label L_search_holder; 1346 bind(L_search_holder); 1347 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1348 cmp(holder_klass, temp_itbl_klass); 1349 br(Assembler::EQ, L_holder_found); 1350 cbnz(temp_itbl_klass, L_search_holder); 1351 1352 b(L_no_such_interface); 1353 1354 // Loop: Look for resolved_class record in itable 1355 // while (true) { 1356 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1357 // if (temp_itbl_klass == 0) { 1358 // goto L_no_such_interface; 1359 // } 1360 // if (temp_itbl_klass == resolved_klass) { 1361 // goto L_resolved_found; // Found! 1362 // } 1363 // if (temp_itbl_klass == holder_klass) { 1364 // holder_offset = scan_temp; 1365 // } 1366 // } 1367 // 1368 Label L_loop_search_resolved; 1369 bind(L_loop_search_resolved); 1370 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1371 bind(L_loop_search_resolved_entry); 1372 cbz(temp_itbl_klass, L_no_such_interface); 1373 cmp(resolved_klass, temp_itbl_klass); 1374 br(Assembler::EQ, L_resolved_found); 1375 cmp(holder_klass, temp_itbl_klass); 1376 br(Assembler::NE, L_loop_search_resolved); 1377 mov(holder_offset, scan_temp); 1378 b(L_loop_search_resolved); 1379 1380 // See if we already have a holder klass. If not, go and scan for it. 1381 bind(L_resolved_found); 1382 cbz(holder_offset, L_search_holder); 1383 mov(scan_temp, holder_offset); 1384 1385 // Finally, scan_temp contains holder_klass vtable offset 1386 bind(L_holder_found); 1387 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1388 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1389 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1390 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1391 } 1392 1393 // virtual method calling 1394 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1395 RegisterOrConstant vtable_index, 1396 Register method_result) { 1397 assert(vtableEntry::size() * wordSize == 8, 1398 "adjust the scaling in the code below"); 1399 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1400 1401 if (vtable_index.is_register()) { 1402 lea(method_result, Address(recv_klass, 1403 vtable_index.as_register(), 1404 Address::lsl(LogBytesPerWord))); 1405 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1406 } else { 1407 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1408 ldr(method_result, 1409 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1410 } 1411 } 1412 1413 void MacroAssembler::check_klass_subtype(Register sub_klass, 1414 Register super_klass, 1415 Register temp_reg, 1416 Label& L_success) { 1417 Label L_failure; 1418 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1419 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1420 bind(L_failure); 1421 } 1422 1423 1424 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1425 Register super_klass, 1426 Register temp_reg, 1427 Label* L_success, 1428 Label* L_failure, 1429 Label* L_slow_path, 1430 Register super_check_offset) { 1431 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1432 bool must_load_sco = ! super_check_offset->is_valid(); 1433 if (must_load_sco) { 1434 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1435 } 1436 1437 Label L_fallthrough; 1438 int label_nulls = 0; 1439 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1440 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1441 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1442 assert(label_nulls <= 1, "at most one null in the batch"); 1443 1444 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1445 Address super_check_offset_addr(super_klass, sco_offset); 1446 1447 // Hacked jmp, which may only be used just before L_fallthrough. 1448 #define final_jmp(label) \ 1449 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1450 else b(label) /*omit semi*/ 1451 1452 // If the pointers are equal, we are done (e.g., String[] elements). 1453 // This self-check enables sharing of secondary supertype arrays among 1454 // non-primary types such as array-of-interface. Otherwise, each such 1455 // type would need its own customized SSA. 1456 // We move this check to the front of the fast path because many 1457 // type checks are in fact trivially successful in this manner, 1458 // so we get a nicely predicted branch right at the start of the check. 1459 cmp(sub_klass, super_klass); 1460 br(Assembler::EQ, *L_success); 1461 1462 // Check the supertype display: 1463 if (must_load_sco) { 1464 ldrw(temp_reg, super_check_offset_addr); 1465 super_check_offset = temp_reg; 1466 } 1467 1468 Address super_check_addr(sub_klass, super_check_offset); 1469 ldr(rscratch1, super_check_addr); 1470 cmp(super_klass, rscratch1); // load displayed supertype 1471 br(Assembler::EQ, *L_success); 1472 1473 // This check has worked decisively for primary supers. 1474 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1475 // (Secondary supers are interfaces and very deeply nested subtypes.) 1476 // This works in the same check above because of a tricky aliasing 1477 // between the super_cache and the primary super display elements. 1478 // (The 'super_check_addr' can address either, as the case requires.) 1479 // Note that the cache is updated below if it does not help us find 1480 // what we need immediately. 1481 // So if it was a primary super, we can just fail immediately. 1482 // Otherwise, it's the slow path for us (no success at this point). 1483 1484 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1485 if (L_failure == &L_fallthrough) { 1486 cbz(rscratch1, *L_slow_path); 1487 } else { 1488 cbnz(rscratch1, *L_failure); 1489 final_jmp(*L_slow_path); 1490 } 1491 1492 bind(L_fallthrough); 1493 1494 #undef final_jmp 1495 } 1496 1497 // These two are taken from x86, but they look generally useful 1498 1499 // scans count pointer sized words at [addr] for occurrence of value, 1500 // generic 1501 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1502 Register scratch) { 1503 Label Lloop, Lexit; 1504 cbz(count, Lexit); 1505 bind(Lloop); 1506 ldr(scratch, post(addr, wordSize)); 1507 cmp(value, scratch); 1508 br(EQ, Lexit); 1509 sub(count, count, 1); 1510 cbnz(count, Lloop); 1511 bind(Lexit); 1512 } 1513 1514 // scans count 4 byte words at [addr] for occurrence of value, 1515 // generic 1516 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1517 Register scratch) { 1518 Label Lloop, Lexit; 1519 cbz(count, Lexit); 1520 bind(Lloop); 1521 ldrw(scratch, post(addr, wordSize)); 1522 cmpw(value, scratch); 1523 br(EQ, Lexit); 1524 sub(count, count, 1); 1525 cbnz(count, Lloop); 1526 bind(Lexit); 1527 } 1528 1529 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1530 Register super_klass, 1531 Register temp_reg, 1532 Register temp2_reg, 1533 Label* L_success, 1534 Label* L_failure, 1535 bool set_cond_codes) { 1536 // NB! Callers may assume that, when temp2_reg is a valid register, 1537 // this code sets it to a nonzero value. 1538 1539 assert_different_registers(sub_klass, super_klass, temp_reg); 1540 if (temp2_reg != noreg) 1541 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1542 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1543 1544 Label L_fallthrough; 1545 int label_nulls = 0; 1546 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1547 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1548 assert(label_nulls <= 1, "at most one null in the batch"); 1549 1550 // a couple of useful fields in sub_klass: 1551 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1552 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1553 Address secondary_supers_addr(sub_klass, ss_offset); 1554 Address super_cache_addr( sub_klass, sc_offset); 1555 1556 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1557 1558 // Do a linear scan of the secondary super-klass chain. 1559 // This code is rarely used, so simplicity is a virtue here. 1560 // The repne_scan instruction uses fixed registers, which we must spill. 1561 // Don't worry too much about pre-existing connections with the input regs. 1562 1563 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1564 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1565 1566 RegSet pushed_registers; 1567 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1568 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1569 1570 if (super_klass != r0) { 1571 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1572 } 1573 1574 push(pushed_registers, sp); 1575 1576 // Get super_klass value into r0 (even if it was in r5 or r2). 1577 if (super_klass != r0) { 1578 mov(r0, super_klass); 1579 } 1580 1581 #ifndef PRODUCT 1582 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1583 #endif //PRODUCT 1584 1585 // We will consult the secondary-super array. 1586 ldr(r5, secondary_supers_addr); 1587 // Load the array length. 1588 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1589 // Skip to start of data. 1590 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1591 1592 cmp(sp, zr); // Clear Z flag; SP is never zero 1593 // Scan R2 words at [R5] for an occurrence of R0. 1594 // Set NZ/Z based on last compare. 1595 repne_scan(r5, r0, r2, rscratch1); 1596 1597 // Unspill the temp. registers: 1598 pop(pushed_registers, sp); 1599 1600 br(Assembler::NE, *L_failure); 1601 1602 // Success. Cache the super we found and proceed in triumph. 1603 1604 if (UseSecondarySupersCache) { 1605 str(super_klass, super_cache_addr); 1606 } 1607 1608 if (L_success != &L_fallthrough) { 1609 b(*L_success); 1610 } 1611 1612 #undef IS_A_TEMP 1613 1614 bind(L_fallthrough); 1615 } 1616 1617 // If Register r is invalid, remove a new register from 1618 // available_regs, and add new register to regs_to_push. 1619 Register MacroAssembler::allocate_if_noreg(Register r, 1620 RegSetIterator<Register> &available_regs, 1621 RegSet ®s_to_push) { 1622 if (!r->is_valid()) { 1623 r = *available_regs++; 1624 regs_to_push += r; 1625 } 1626 return r; 1627 } 1628 1629 // check_klass_subtype_slow_path_table() looks for super_klass in the 1630 // hash table belonging to super_klass, branching to L_success or 1631 // L_failure as appropriate. This is essentially a shim which 1632 // allocates registers as necessary then calls 1633 // lookup_secondary_supers_table() to do the work. Any of the temp 1634 // regs may be noreg, in which case this logic will chooses some 1635 // registers push and pop them from the stack. 1636 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1637 Register super_klass, 1638 Register temp_reg, 1639 Register temp2_reg, 1640 Register temp3_reg, 1641 Register result_reg, 1642 FloatRegister vtemp, 1643 Label* L_success, 1644 Label* L_failure, 1645 bool set_cond_codes) { 1646 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1647 1648 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1649 1650 Label L_fallthrough; 1651 int label_nulls = 0; 1652 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1653 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1654 assert(label_nulls <= 1, "at most one null in the batch"); 1655 1656 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1657 1658 RegSetIterator<Register> available_regs 1659 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1660 1661 RegSet pushed_regs; 1662 1663 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1664 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1665 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1666 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1667 1668 push(pushed_regs, sp); 1669 1670 lookup_secondary_supers_table_var(sub_klass, 1671 super_klass, 1672 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1673 nullptr); 1674 cmp(result_reg, zr); 1675 1676 // Unspill the temp. registers: 1677 pop(pushed_regs, sp); 1678 1679 // NB! Callers may assume that, when set_cond_codes is true, this 1680 // code sets temp2_reg to a nonzero value. 1681 if (set_cond_codes) { 1682 mov(temp2_reg, 1); 1683 } 1684 1685 br(Assembler::NE, *L_failure); 1686 1687 if (L_success != &L_fallthrough) { 1688 b(*L_success); 1689 } 1690 1691 bind(L_fallthrough); 1692 } 1693 1694 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1695 Register super_klass, 1696 Register temp_reg, 1697 Register temp2_reg, 1698 Label* L_success, 1699 Label* L_failure, 1700 bool set_cond_codes) { 1701 if (UseSecondarySupersTable) { 1702 check_klass_subtype_slow_path_table 1703 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1704 /*vtemp*/fnoreg, 1705 L_success, L_failure, set_cond_codes); 1706 } else { 1707 check_klass_subtype_slow_path_linear 1708 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1709 } 1710 } 1711 1712 1713 // Ensure that the inline code and the stub are using the same registers. 1714 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1715 do { \ 1716 assert(r_super_klass == r0 && \ 1717 r_array_base == r1 && \ 1718 r_array_length == r2 && \ 1719 (r_array_index == r3 || r_array_index == noreg) && \ 1720 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1721 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1722 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1723 } while(0) 1724 1725 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1726 Register r_super_klass, 1727 Register temp1, 1728 Register temp2, 1729 Register temp3, 1730 FloatRegister vtemp, 1731 Register result, 1732 u1 super_klass_slot, 1733 bool stub_is_near) { 1734 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1735 1736 Label L_fallthrough; 1737 1738 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1739 1740 const Register 1741 r_array_base = temp1, // r1 1742 r_array_length = temp2, // r2 1743 r_array_index = temp3, // r3 1744 r_bitmap = rscratch2; 1745 1746 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1747 1748 u1 bit = super_klass_slot; 1749 1750 // Make sure that result is nonzero if the TBZ below misses. 1751 mov(result, 1); 1752 1753 // We're going to need the bitmap in a vector reg and in a core reg, 1754 // so load both now. 1755 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1756 if (bit != 0) { 1757 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1758 } 1759 // First check the bitmap to see if super_klass might be present. If 1760 // the bit is zero, we are certain that super_klass is not one of 1761 // the secondary supers. 1762 tbz(r_bitmap, bit, L_fallthrough); 1763 1764 // Get the first array index that can contain super_klass into r_array_index. 1765 if (bit != 0) { 1766 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1767 cnt(vtemp, T8B, vtemp); 1768 addv(vtemp, T8B, vtemp); 1769 fmovd(r_array_index, vtemp); 1770 } else { 1771 mov(r_array_index, (u1)1); 1772 } 1773 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1774 1775 // We will consult the secondary-super array. 1776 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1777 1778 // The value i in r_array_index is >= 1, so even though r_array_base 1779 // points to the length, we don't need to adjust it to point to the 1780 // data. 1781 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1782 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1783 1784 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1785 eor(result, result, r_super_klass); 1786 cbz(result, L_fallthrough); // Found a match 1787 1788 // Is there another entry to check? Consult the bitmap. 1789 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1790 1791 // Linear probe. 1792 if (bit != 0) { 1793 ror(r_bitmap, r_bitmap, bit); 1794 } 1795 1796 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1797 // The next slot to be inspected, by the stub we're about to call, 1798 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1799 // have been checked. 1800 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1801 if (stub_is_near) { 1802 bl(stub); 1803 } else { 1804 address call = trampoline_call(stub); 1805 if (call == nullptr) { 1806 return false; // trampoline allocation failed 1807 } 1808 } 1809 1810 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1811 1812 bind(L_fallthrough); 1813 1814 if (VerifySecondarySupers) { 1815 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1816 temp1, temp2, result); // r1, r2, r5 1817 } 1818 return true; 1819 } 1820 1821 // At runtime, return 0 in result if r_super_klass is a superclass of 1822 // r_sub_klass, otherwise return nonzero. Use this version of 1823 // lookup_secondary_supers_table() if you don't know ahead of time 1824 // which superclass will be searched for. Used by interpreter and 1825 // runtime stubs. It is larger and has somewhat greater latency than 1826 // the version above, which takes a constant super_klass_slot. 1827 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1828 Register r_super_klass, 1829 Register temp1, 1830 Register temp2, 1831 Register temp3, 1832 FloatRegister vtemp, 1833 Register result, 1834 Label *L_success) { 1835 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1836 1837 Label L_fallthrough; 1838 1839 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1840 1841 const Register 1842 r_array_index = temp3, 1843 slot = rscratch1, 1844 r_bitmap = rscratch2; 1845 1846 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1847 1848 // Make sure that result is nonzero if the test below misses. 1849 mov(result, 1); 1850 1851 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1852 1853 // First check the bitmap to see if super_klass might be present. If 1854 // the bit is zero, we are certain that super_klass is not one of 1855 // the secondary supers. 1856 1857 // This next instruction is equivalent to: 1858 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1859 // sub(temp2, tmp_reg, slot); 1860 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1861 lslv(temp2, r_bitmap, temp2); 1862 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1863 1864 bool must_save_v0 = (vtemp == fnoreg); 1865 if (must_save_v0) { 1866 // temp1 and result are free, so use them to preserve vtemp 1867 vtemp = v0; 1868 mov(temp1, vtemp, D, 0); 1869 mov(result, vtemp, D, 1); 1870 } 1871 1872 // Get the first array index that can contain super_klass into r_array_index. 1873 mov(vtemp, D, 0, temp2); 1874 cnt(vtemp, T8B, vtemp); 1875 addv(vtemp, T8B, vtemp); 1876 mov(r_array_index, vtemp, D, 0); 1877 1878 if (must_save_v0) { 1879 mov(vtemp, D, 0, temp1 ); 1880 mov(vtemp, D, 1, result); 1881 } 1882 1883 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1884 1885 const Register 1886 r_array_base = temp1, 1887 r_array_length = temp2; 1888 1889 // The value i in r_array_index is >= 1, so even though r_array_base 1890 // points to the length, we don't need to adjust it to point to the 1891 // data. 1892 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1893 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1894 1895 // We will consult the secondary-super array. 1896 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1897 1898 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1899 eor(result, result, r_super_klass); 1900 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1901 1902 // Is there another entry to check? Consult the bitmap. 1903 rorv(r_bitmap, r_bitmap, slot); 1904 // rol(r_bitmap, r_bitmap, 1); 1905 tbz(r_bitmap, 1, L_fallthrough); 1906 1907 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1908 // The next slot to be inspected, by the logic we're about to call, 1909 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1910 // have been checked. 1911 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1912 r_bitmap, r_array_length, result, /*is_stub*/false); 1913 1914 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1915 1916 bind(L_fallthrough); 1917 1918 if (VerifySecondarySupers) { 1919 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1920 temp1, temp2, result); // r1, r2, r5 1921 } 1922 1923 if (L_success) { 1924 cbz(result, *L_success); 1925 } 1926 } 1927 1928 // Called by code generated by check_klass_subtype_slow_path 1929 // above. This is called when there is a collision in the hashed 1930 // lookup in the secondary supers array. 1931 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1932 Register r_array_base, 1933 Register r_array_index, 1934 Register r_bitmap, 1935 Register temp1, 1936 Register result, 1937 bool is_stub) { 1938 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1939 1940 const Register 1941 r_array_length = temp1, 1942 r_sub_klass = noreg; // unused 1943 1944 if (is_stub) { 1945 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1946 } 1947 1948 Label L_fallthrough, L_huge; 1949 1950 // Load the array length. 1951 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1952 // And adjust the array base to point to the data. 1953 // NB! Effectively increments current slot index by 1. 1954 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1955 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1956 1957 // The bitmap is full to bursting. 1958 // Implicit invariant: BITMAP_FULL implies (length > 0) 1959 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1960 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1961 br(GT, L_huge); 1962 1963 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1964 // current slot (at secondary_supers[r_array_index]) has not yet 1965 // been inspected, and r_array_index may be out of bounds if we 1966 // wrapped around the end of the array. 1967 1968 { // This is conventional linear probing, but instead of terminating 1969 // when a null entry is found in the table, we maintain a bitmap 1970 // in which a 0 indicates missing entries. 1971 // As long as the bitmap is not completely full, 1972 // array_length == popcount(bitmap). The array_length check above 1973 // guarantees there are 0s in the bitmap, so the loop eventually 1974 // terminates. 1975 Label L_loop; 1976 bind(L_loop); 1977 1978 // Check for wraparound. 1979 cmp(r_array_index, r_array_length); 1980 csel(r_array_index, zr, r_array_index, GE); 1981 1982 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1983 eor(result, rscratch1, r_super_klass); 1984 cbz(result, L_fallthrough); 1985 1986 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1987 1988 ror(r_bitmap, r_bitmap, 1); 1989 add(r_array_index, r_array_index, 1); 1990 b(L_loop); 1991 } 1992 1993 { // Degenerate case: more than 64 secondary supers. 1994 // FIXME: We could do something smarter here, maybe a vectorized 1995 // comparison or a binary search, but is that worth any added 1996 // complexity? 1997 bind(L_huge); 1998 cmp(sp, zr); // Clear Z flag; SP is never zero 1999 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 2000 cset(result, NE); // result == 0 iff we got a match. 2001 } 2002 2003 bind(L_fallthrough); 2004 } 2005 2006 // Make sure that the hashed lookup and a linear scan agree. 2007 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 2008 Register r_super_klass, 2009 Register temp1, 2010 Register temp2, 2011 Register result) { 2012 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 2013 2014 const Register 2015 r_array_base = temp1, 2016 r_array_length = temp2, 2017 r_array_index = noreg, // unused 2018 r_bitmap = noreg; // unused 2019 2020 BLOCK_COMMENT("verify_secondary_supers_table {"); 2021 2022 // We will consult the secondary-super array. 2023 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2024 2025 // Load the array length. 2026 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2027 // And adjust the array base to point to the data. 2028 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2029 2030 cmp(sp, zr); // Clear Z flag; SP is never zero 2031 // Scan R2 words at [R5] for an occurrence of R0. 2032 // Set NZ/Z based on last compare. 2033 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2034 // rscratch1 == 0 iff we got a match. 2035 cset(rscratch1, NE); 2036 2037 Label passed; 2038 cmp(result, zr); 2039 cset(result, NE); // normalize result to 0/1 for comparison 2040 2041 cmp(rscratch1, result); 2042 br(EQ, passed); 2043 { 2044 mov(r0, r_super_klass); // r0 <- r0 2045 mov(r1, r_sub_klass); // r1 <- r4 2046 mov(r2, /*expected*/rscratch1); // r2 <- r8 2047 mov(r3, result); // r3 <- r5 2048 mov(r4, (address)("mismatch")); // r4 <- const 2049 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2050 should_not_reach_here(); 2051 } 2052 bind(passed); 2053 2054 BLOCK_COMMENT("} verify_secondary_supers_table"); 2055 } 2056 2057 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2058 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2059 assert_different_registers(klass, rthread, scratch); 2060 2061 Label L_fallthrough, L_tmp; 2062 if (L_fast_path == nullptr) { 2063 L_fast_path = &L_fallthrough; 2064 } else if (L_slow_path == nullptr) { 2065 L_slow_path = &L_fallthrough; 2066 } 2067 // Fast path check: class is fully initialized 2068 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2069 ldarb(scratch, scratch); 2070 subs(zr, scratch, InstanceKlass::fully_initialized); 2071 br(Assembler::EQ, *L_fast_path); 2072 2073 // Fast path check: current thread is initializer thread 2074 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2075 cmp(rthread, scratch); 2076 2077 if (L_slow_path == &L_fallthrough) { 2078 br(Assembler::EQ, *L_fast_path); 2079 bind(*L_slow_path); 2080 } else if (L_fast_path == &L_fallthrough) { 2081 br(Assembler::NE, *L_slow_path); 2082 bind(*L_fast_path); 2083 } else { 2084 Unimplemented(); 2085 } 2086 } 2087 2088 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2089 if (!VerifyOops || VerifyAdapterSharing) { 2090 // Below address of the code string confuses VerifyAdapterSharing 2091 // because it may differ between otherwise equivalent adapters. 2092 return; 2093 } 2094 2095 // Pass register number to verify_oop_subroutine 2096 const char* b = nullptr; 2097 { 2098 ResourceMark rm; 2099 stringStream ss; 2100 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2101 b = code_string(ss.as_string()); 2102 } 2103 BLOCK_COMMENT("verify_oop {"); 2104 2105 strip_return_address(); // This might happen within a stack frame. 2106 protect_return_address(); 2107 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2108 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2109 2110 mov(r0, reg); 2111 movptr(rscratch1, (uintptr_t)(address)b); 2112 2113 // call indirectly to solve generation ordering problem 2114 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2115 ldr(rscratch2, Address(rscratch2)); 2116 blr(rscratch2); 2117 2118 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2119 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2120 authenticate_return_address(); 2121 2122 BLOCK_COMMENT("} verify_oop"); 2123 } 2124 2125 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2126 if (!VerifyOops || VerifyAdapterSharing) { 2127 // Below address of the code string confuses VerifyAdapterSharing 2128 // because it may differ between otherwise equivalent adapters. 2129 return; 2130 } 2131 2132 const char* b = nullptr; 2133 { 2134 ResourceMark rm; 2135 stringStream ss; 2136 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2137 b = code_string(ss.as_string()); 2138 } 2139 BLOCK_COMMENT("verify_oop_addr {"); 2140 2141 strip_return_address(); // This might happen within a stack frame. 2142 protect_return_address(); 2143 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2144 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2145 2146 // addr may contain sp so we will have to adjust it based on the 2147 // pushes that we just did. 2148 if (addr.uses(sp)) { 2149 lea(r0, addr); 2150 ldr(r0, Address(r0, 4 * wordSize)); 2151 } else { 2152 ldr(r0, addr); 2153 } 2154 movptr(rscratch1, (uintptr_t)(address)b); 2155 2156 // call indirectly to solve generation ordering problem 2157 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2158 ldr(rscratch2, Address(rscratch2)); 2159 blr(rscratch2); 2160 2161 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2162 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2163 authenticate_return_address(); 2164 2165 BLOCK_COMMENT("} verify_oop_addr"); 2166 } 2167 2168 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2169 int extra_slot_offset) { 2170 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2171 int stackElementSize = Interpreter::stackElementSize; 2172 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2173 #ifdef ASSERT 2174 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2175 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2176 #endif 2177 if (arg_slot.is_constant()) { 2178 return Address(esp, arg_slot.as_constant() * stackElementSize 2179 + offset); 2180 } else { 2181 add(rscratch1, esp, arg_slot.as_register(), 2182 ext::uxtx, exact_log2(stackElementSize)); 2183 return Address(rscratch1, offset); 2184 } 2185 } 2186 2187 void MacroAssembler::call_VM_leaf_base(address entry_point, 2188 int number_of_arguments, 2189 Label *retaddr) { 2190 Label E, L; 2191 2192 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2193 2194 mov(rscratch1, entry_point); 2195 blr(rscratch1); 2196 if (retaddr) 2197 bind(*retaddr); 2198 2199 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2200 } 2201 2202 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2203 call_VM_leaf_base(entry_point, number_of_arguments); 2204 } 2205 2206 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2207 pass_arg0(this, arg_0); 2208 call_VM_leaf_base(entry_point, 1); 2209 } 2210 2211 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2212 assert_different_registers(arg_1, c_rarg0); 2213 pass_arg0(this, arg_0); 2214 pass_arg1(this, arg_1); 2215 call_VM_leaf_base(entry_point, 2); 2216 } 2217 2218 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2219 Register arg_1, Register arg_2) { 2220 assert_different_registers(arg_1, c_rarg0); 2221 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2222 pass_arg0(this, arg_0); 2223 pass_arg1(this, arg_1); 2224 pass_arg2(this, arg_2); 2225 call_VM_leaf_base(entry_point, 3); 2226 } 2227 2228 void MacroAssembler::super_call_VM_leaf(address entry_point) { 2229 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2230 } 2231 2232 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2233 pass_arg0(this, arg_0); 2234 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2235 } 2236 2237 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2238 2239 assert_different_registers(arg_0, c_rarg1); 2240 pass_arg1(this, arg_1); 2241 pass_arg0(this, arg_0); 2242 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2243 } 2244 2245 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2246 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2247 assert_different_registers(arg_1, c_rarg2); 2248 pass_arg2(this, arg_2); 2249 pass_arg1(this, arg_1); 2250 pass_arg0(this, arg_0); 2251 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2252 } 2253 2254 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2255 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2256 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2257 assert_different_registers(arg_2, c_rarg3); 2258 pass_arg3(this, arg_3); 2259 pass_arg2(this, arg_2); 2260 pass_arg1(this, arg_1); 2261 pass_arg0(this, arg_0); 2262 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2263 } 2264 2265 void MacroAssembler::null_check(Register reg, int offset) { 2266 if (needs_explicit_null_check(offset)) { 2267 // provoke OS null exception if reg is null by 2268 // accessing M[reg] w/o changing any registers 2269 // NOTE: this is plenty to provoke a segv 2270 ldr(zr, Address(reg)); 2271 } else { 2272 // nothing to do, (later) access of M[reg + offset] 2273 // will provoke OS null exception if reg is null 2274 } 2275 } 2276 2277 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2278 assert_different_registers(markword, rscratch2); 2279 andr(markword, markword, markWord::inline_type_mask_in_place); 2280 mov(rscratch2, markWord::inline_type_pattern); 2281 cmp(markword, rscratch2); 2282 br(Assembler::EQ, is_inline_type); 2283 } 2284 2285 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) { 2286 ldrw(temp_reg, Address(klass, Klass::access_flags_offset())); 2287 andr(temp_reg, temp_reg, JVM_ACC_IDENTITY); 2288 cbz(temp_reg, is_inline_type); 2289 } 2290 2291 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) { 2292 assert_different_registers(tmp, rscratch1); 2293 cbz(object, not_inline_type); 2294 const int is_inline_type_mask = markWord::inline_type_pattern; 2295 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2296 mov(rscratch1, is_inline_type_mask); 2297 andr(tmp, tmp, rscratch1); 2298 cmp(tmp, rscratch1); 2299 br(Assembler::NE, not_inline_type); 2300 } 2301 2302 void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) { 2303 #ifdef ASSERT 2304 { 2305 Label done_check; 2306 test_klass_is_inline_type(klass, temp_reg, done_check); 2307 stop("test_klass_is_empty_inline_type with non inline type klass"); 2308 bind(done_check); 2309 } 2310 #endif 2311 ldrw(temp_reg, Address(klass, InstanceKlass::misc_flags_offset())); 2312 andr(temp_reg, temp_reg, InstanceKlassFlags::is_empty_inline_type_value()); 2313 cbnz(temp_reg, is_empty_inline_type); 2314 } 2315 2316 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2317 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2318 tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 2319 } 2320 2321 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2322 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2323 tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 2324 } 2325 2326 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2327 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2328 tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat); 2329 } 2330 2331 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2332 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2333 tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker); 2334 } 2335 2336 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2337 Label test_mark_word; 2338 // load mark word 2339 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2340 // check displaced 2341 tst(temp_reg, markWord::unlocked_value); 2342 br(Assembler::NE, test_mark_word); 2343 // slow path use klass prototype 2344 load_prototype_header(temp_reg, oop); 2345 2346 bind(test_mark_word); 2347 andr(temp_reg, temp_reg, test_bit); 2348 if (jmp_set) { 2349 cbnz(temp_reg, jmp_label); 2350 } else { 2351 cbz(temp_reg, jmp_label); 2352 } 2353 } 2354 2355 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) { 2356 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2357 } 2358 2359 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2360 Label&is_non_flat_array) { 2361 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2362 } 2363 2364 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 2365 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2366 } 2367 2368 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2369 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2370 } 2371 2372 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2373 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2374 br(Assembler::NE, is_flat_array); 2375 } 2376 2377 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2378 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2379 br(Assembler::EQ, is_non_flat_array); 2380 } 2381 2382 // MacroAssembler protected routines needed to implement 2383 // public methods 2384 2385 void MacroAssembler::mov(Register r, Address dest) { 2386 code_section()->relocate(pc(), dest.rspec()); 2387 uint64_t imm64 = (uint64_t)dest.target(); 2388 movptr(r, imm64); 2389 } 2390 2391 // Move a constant pointer into r. In AArch64 mode the virtual 2392 // address space is 48 bits in size, so we only need three 2393 // instructions to create a patchable instruction sequence that can 2394 // reach anywhere. 2395 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2396 #ifndef PRODUCT 2397 { 2398 char buffer[64]; 2399 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2400 block_comment(buffer); 2401 } 2402 #endif 2403 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2404 movz(r, imm64 & 0xffff); 2405 imm64 >>= 16; 2406 movk(r, imm64 & 0xffff, 16); 2407 imm64 >>= 16; 2408 movk(r, imm64 & 0xffff, 32); 2409 } 2410 2411 // Macro to mov replicated immediate to vector register. 2412 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2413 // the upper 56/48/32 bits must be zeros for B/H/S type. 2414 // Vd will get the following values for different arrangements in T 2415 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2416 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2417 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2418 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2419 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2420 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2421 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2422 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2423 // Clobbers rscratch1 2424 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2425 assert(T != T1Q, "unsupported"); 2426 if (T == T1D || T == T2D) { 2427 int imm = operand_valid_for_movi_immediate(imm64, T); 2428 if (-1 != imm) { 2429 movi(Vd, T, imm); 2430 } else { 2431 mov(rscratch1, imm64); 2432 dup(Vd, T, rscratch1); 2433 } 2434 return; 2435 } 2436 2437 #ifdef ASSERT 2438 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2439 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2440 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2441 #endif 2442 int shift = operand_valid_for_movi_immediate(imm64, T); 2443 uint32_t imm32 = imm64 & 0xffffffffULL; 2444 if (shift >= 0) { 2445 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2446 } else { 2447 movw(rscratch1, imm32); 2448 dup(Vd, T, rscratch1); 2449 } 2450 } 2451 2452 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2453 { 2454 #ifndef PRODUCT 2455 { 2456 char buffer[64]; 2457 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2458 block_comment(buffer); 2459 } 2460 #endif 2461 if (operand_valid_for_logical_immediate(false, imm64)) { 2462 orr(dst, zr, imm64); 2463 } else { 2464 // we can use a combination of MOVZ or MOVN with 2465 // MOVK to build up the constant 2466 uint64_t imm_h[4]; 2467 int zero_count = 0; 2468 int neg_count = 0; 2469 int i; 2470 for (i = 0; i < 4; i++) { 2471 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2472 if (imm_h[i] == 0) { 2473 zero_count++; 2474 } else if (imm_h[i] == 0xffffL) { 2475 neg_count++; 2476 } 2477 } 2478 if (zero_count == 4) { 2479 // one MOVZ will do 2480 movz(dst, 0); 2481 } else if (neg_count == 4) { 2482 // one MOVN will do 2483 movn(dst, 0); 2484 } else if (zero_count == 3) { 2485 for (i = 0; i < 4; i++) { 2486 if (imm_h[i] != 0L) { 2487 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2488 break; 2489 } 2490 } 2491 } else if (neg_count == 3) { 2492 // one MOVN will do 2493 for (int i = 0; i < 4; i++) { 2494 if (imm_h[i] != 0xffffL) { 2495 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2496 break; 2497 } 2498 } 2499 } else if (zero_count == 2) { 2500 // one MOVZ and one MOVK will do 2501 for (i = 0; i < 3; i++) { 2502 if (imm_h[i] != 0L) { 2503 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2504 i++; 2505 break; 2506 } 2507 } 2508 for (;i < 4; i++) { 2509 if (imm_h[i] != 0L) { 2510 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2511 } 2512 } 2513 } else if (neg_count == 2) { 2514 // one MOVN and one MOVK will do 2515 for (i = 0; i < 4; i++) { 2516 if (imm_h[i] != 0xffffL) { 2517 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2518 i++; 2519 break; 2520 } 2521 } 2522 for (;i < 4; i++) { 2523 if (imm_h[i] != 0xffffL) { 2524 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2525 } 2526 } 2527 } else if (zero_count == 1) { 2528 // one MOVZ and two MOVKs will do 2529 for (i = 0; i < 4; i++) { 2530 if (imm_h[i] != 0L) { 2531 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2532 i++; 2533 break; 2534 } 2535 } 2536 for (;i < 4; i++) { 2537 if (imm_h[i] != 0x0L) { 2538 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2539 } 2540 } 2541 } else if (neg_count == 1) { 2542 // one MOVN and two MOVKs will do 2543 for (i = 0; i < 4; i++) { 2544 if (imm_h[i] != 0xffffL) { 2545 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2546 i++; 2547 break; 2548 } 2549 } 2550 for (;i < 4; i++) { 2551 if (imm_h[i] != 0xffffL) { 2552 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2553 } 2554 } 2555 } else { 2556 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2557 movz(dst, (uint32_t)imm_h[0], 0); 2558 for (i = 1; i < 4; i++) { 2559 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2560 } 2561 } 2562 } 2563 } 2564 2565 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2566 { 2567 #ifndef PRODUCT 2568 { 2569 char buffer[64]; 2570 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2571 block_comment(buffer); 2572 } 2573 #endif 2574 if (operand_valid_for_logical_immediate(true, imm32)) { 2575 orrw(dst, zr, imm32); 2576 } else { 2577 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2578 // constant 2579 uint32_t imm_h[2]; 2580 imm_h[0] = imm32 & 0xffff; 2581 imm_h[1] = ((imm32 >> 16) & 0xffff); 2582 if (imm_h[0] == 0) { 2583 movzw(dst, imm_h[1], 16); 2584 } else if (imm_h[0] == 0xffff) { 2585 movnw(dst, imm_h[1] ^ 0xffff, 16); 2586 } else if (imm_h[1] == 0) { 2587 movzw(dst, imm_h[0], 0); 2588 } else if (imm_h[1] == 0xffff) { 2589 movnw(dst, imm_h[0] ^ 0xffff, 0); 2590 } else { 2591 // use a MOVZ and MOVK (makes it easier to debug) 2592 movzw(dst, imm_h[0], 0); 2593 movkw(dst, imm_h[1], 16); 2594 } 2595 } 2596 } 2597 2598 // Form an address from base + offset in Rd. Rd may or may 2599 // not actually be used: you must use the Address that is returned. 2600 // It is up to you to ensure that the shift provided matches the size 2601 // of your data. 2602 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2603 if (Address::offset_ok_for_immed(byte_offset, shift)) 2604 // It fits; no need for any heroics 2605 return Address(base, byte_offset); 2606 2607 // Don't do anything clever with negative or misaligned offsets 2608 unsigned mask = (1 << shift) - 1; 2609 if (byte_offset < 0 || byte_offset & mask) { 2610 mov(Rd, byte_offset); 2611 add(Rd, base, Rd); 2612 return Address(Rd); 2613 } 2614 2615 // See if we can do this with two 12-bit offsets 2616 { 2617 uint64_t word_offset = byte_offset >> shift; 2618 uint64_t masked_offset = word_offset & 0xfff000; 2619 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2620 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2621 add(Rd, base, masked_offset << shift); 2622 word_offset -= masked_offset; 2623 return Address(Rd, word_offset << shift); 2624 } 2625 } 2626 2627 // Do it the hard way 2628 mov(Rd, byte_offset); 2629 add(Rd, base, Rd); 2630 return Address(Rd); 2631 } 2632 2633 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2634 bool want_remainder, Register scratch) 2635 { 2636 // Full implementation of Java idiv and irem. The function 2637 // returns the (pc) offset of the div instruction - may be needed 2638 // for implicit exceptions. 2639 // 2640 // constraint : ra/rb =/= scratch 2641 // normal case 2642 // 2643 // input : ra: dividend 2644 // rb: divisor 2645 // 2646 // result: either 2647 // quotient (= ra idiv rb) 2648 // remainder (= ra irem rb) 2649 2650 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2651 2652 int idivl_offset = offset(); 2653 if (! want_remainder) { 2654 sdivw(result, ra, rb); 2655 } else { 2656 sdivw(scratch, ra, rb); 2657 Assembler::msubw(result, scratch, rb, ra); 2658 } 2659 2660 return idivl_offset; 2661 } 2662 2663 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2664 bool want_remainder, Register scratch) 2665 { 2666 // Full implementation of Java ldiv and lrem. The function 2667 // returns the (pc) offset of the div instruction - may be needed 2668 // for implicit exceptions. 2669 // 2670 // constraint : ra/rb =/= scratch 2671 // normal case 2672 // 2673 // input : ra: dividend 2674 // rb: divisor 2675 // 2676 // result: either 2677 // quotient (= ra idiv rb) 2678 // remainder (= ra irem rb) 2679 2680 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2681 2682 int idivq_offset = offset(); 2683 if (! want_remainder) { 2684 sdiv(result, ra, rb); 2685 } else { 2686 sdiv(scratch, ra, rb); 2687 Assembler::msub(result, scratch, rb, ra); 2688 } 2689 2690 return idivq_offset; 2691 } 2692 2693 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2694 address prev = pc() - NativeMembar::instruction_size; 2695 address last = code()->last_insn(); 2696 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2697 NativeMembar *bar = NativeMembar_at(prev); 2698 if (AlwaysMergeDMB) { 2699 bar->set_kind(bar->get_kind() | order_constraint); 2700 BLOCK_COMMENT("merged membar(always)"); 2701 return; 2702 } 2703 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2704 // doing so would introduce a StoreLoad which the caller did not 2705 // intend 2706 if (bar->get_kind() == order_constraint 2707 || bar->get_kind() == AnyAny 2708 || order_constraint == AnyAny) { 2709 // We are merging two memory barrier instructions. On AArch64 we 2710 // can do this simply by ORing them together. 2711 bar->set_kind(bar->get_kind() | order_constraint); 2712 BLOCK_COMMENT("merged membar"); 2713 return; 2714 } else { 2715 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2716 // We need check the last 2 instructions 2717 address prev2 = prev - NativeMembar::instruction_size; 2718 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2719 NativeMembar *bar2 = NativeMembar_at(prev2); 2720 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2721 BLOCK_COMMENT("merged membar(elided)"); 2722 return; 2723 } 2724 } 2725 } 2726 code()->set_last_insn(pc()); 2727 dmb(Assembler::barrier(order_constraint)); 2728 } 2729 2730 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2731 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2732 merge_ldst(rt, adr, size_in_bytes, is_store); 2733 code()->clear_last_insn(); 2734 return true; 2735 } else { 2736 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2737 const uint64_t mask = size_in_bytes - 1; 2738 if (adr.getMode() == Address::base_plus_offset && 2739 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2740 code()->set_last_insn(pc()); 2741 } 2742 return false; 2743 } 2744 } 2745 2746 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2747 // We always try to merge two adjacent loads into one ldp. 2748 if (!try_merge_ldst(Rx, adr, 8, false)) { 2749 Assembler::ldr(Rx, adr); 2750 } 2751 } 2752 2753 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2754 // We always try to merge two adjacent loads into one ldp. 2755 if (!try_merge_ldst(Rw, adr, 4, false)) { 2756 Assembler::ldrw(Rw, adr); 2757 } 2758 } 2759 2760 void MacroAssembler::str(Register Rx, const Address &adr) { 2761 // We always try to merge two adjacent stores into one stp. 2762 if (!try_merge_ldst(Rx, adr, 8, true)) { 2763 Assembler::str(Rx, adr); 2764 } 2765 } 2766 2767 void MacroAssembler::strw(Register Rw, const Address &adr) { 2768 // We always try to merge two adjacent stores into one stp. 2769 if (!try_merge_ldst(Rw, adr, 4, true)) { 2770 Assembler::strw(Rw, adr); 2771 } 2772 } 2773 2774 // MacroAssembler routines found actually to be needed 2775 2776 void MacroAssembler::push(Register src) 2777 { 2778 str(src, Address(pre(esp, -1 * wordSize))); 2779 } 2780 2781 void MacroAssembler::pop(Register dst) 2782 { 2783 ldr(dst, Address(post(esp, 1 * wordSize))); 2784 } 2785 2786 // Note: load_unsigned_short used to be called load_unsigned_word. 2787 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2788 int off = offset(); 2789 ldrh(dst, src); 2790 return off; 2791 } 2792 2793 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2794 int off = offset(); 2795 ldrb(dst, src); 2796 return off; 2797 } 2798 2799 int MacroAssembler::load_signed_short(Register dst, Address src) { 2800 int off = offset(); 2801 ldrsh(dst, src); 2802 return off; 2803 } 2804 2805 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2806 int off = offset(); 2807 ldrsb(dst, src); 2808 return off; 2809 } 2810 2811 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2812 int off = offset(); 2813 ldrshw(dst, src); 2814 return off; 2815 } 2816 2817 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2818 int off = offset(); 2819 ldrsbw(dst, src); 2820 return off; 2821 } 2822 2823 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2824 switch (size_in_bytes) { 2825 case 8: ldr(dst, src); break; 2826 case 4: ldrw(dst, src); break; 2827 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2828 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2829 default: ShouldNotReachHere(); 2830 } 2831 } 2832 2833 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2834 switch (size_in_bytes) { 2835 case 8: str(src, dst); break; 2836 case 4: strw(src, dst); break; 2837 case 2: strh(src, dst); break; 2838 case 1: strb(src, dst); break; 2839 default: ShouldNotReachHere(); 2840 } 2841 } 2842 2843 void MacroAssembler::decrementw(Register reg, int value) 2844 { 2845 if (value < 0) { incrementw(reg, -value); return; } 2846 if (value == 0) { return; } 2847 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2848 /* else */ { 2849 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2850 movw(rscratch2, (unsigned)value); 2851 subw(reg, reg, rscratch2); 2852 } 2853 } 2854 2855 void MacroAssembler::decrement(Register reg, int value) 2856 { 2857 if (value < 0) { increment(reg, -value); return; } 2858 if (value == 0) { return; } 2859 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2860 /* else */ { 2861 assert(reg != rscratch2, "invalid dst for register decrement"); 2862 mov(rscratch2, (uint64_t)value); 2863 sub(reg, reg, rscratch2); 2864 } 2865 } 2866 2867 void MacroAssembler::decrementw(Address dst, int value) 2868 { 2869 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2870 if (dst.getMode() == Address::literal) { 2871 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2872 lea(rscratch2, dst); 2873 dst = Address(rscratch2); 2874 } 2875 ldrw(rscratch1, dst); 2876 decrementw(rscratch1, value); 2877 strw(rscratch1, dst); 2878 } 2879 2880 void MacroAssembler::decrement(Address dst, int value) 2881 { 2882 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2883 if (dst.getMode() == Address::literal) { 2884 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2885 lea(rscratch2, dst); 2886 dst = Address(rscratch2); 2887 } 2888 ldr(rscratch1, dst); 2889 decrement(rscratch1, value); 2890 str(rscratch1, dst); 2891 } 2892 2893 void MacroAssembler::incrementw(Register reg, int value) 2894 { 2895 if (value < 0) { decrementw(reg, -value); return; } 2896 if (value == 0) { return; } 2897 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2898 /* else */ { 2899 assert(reg != rscratch2, "invalid dst for register increment"); 2900 movw(rscratch2, (unsigned)value); 2901 addw(reg, reg, rscratch2); 2902 } 2903 } 2904 2905 void MacroAssembler::increment(Register reg, int value) 2906 { 2907 if (value < 0) { decrement(reg, -value); return; } 2908 if (value == 0) { return; } 2909 if (value < (1 << 12)) { add(reg, reg, value); return; } 2910 /* else */ { 2911 assert(reg != rscratch2, "invalid dst for register increment"); 2912 movw(rscratch2, (unsigned)value); 2913 add(reg, reg, rscratch2); 2914 } 2915 } 2916 2917 void MacroAssembler::incrementw(Address dst, int value) 2918 { 2919 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2920 if (dst.getMode() == Address::literal) { 2921 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2922 lea(rscratch2, dst); 2923 dst = Address(rscratch2); 2924 } 2925 ldrw(rscratch1, dst); 2926 incrementw(rscratch1, value); 2927 strw(rscratch1, dst); 2928 } 2929 2930 void MacroAssembler::increment(Address dst, int value) 2931 { 2932 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2933 if (dst.getMode() == Address::literal) { 2934 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2935 lea(rscratch2, dst); 2936 dst = Address(rscratch2); 2937 } 2938 ldr(rscratch1, dst); 2939 increment(rscratch1, value); 2940 str(rscratch1, dst); 2941 } 2942 2943 // Push lots of registers in the bit set supplied. Don't push sp. 2944 // Return the number of words pushed 2945 int MacroAssembler::push(unsigned int bitset, Register stack) { 2946 int words_pushed = 0; 2947 2948 // Scan bitset to accumulate register pairs 2949 unsigned char regs[32]; 2950 int count = 0; 2951 for (int reg = 0; reg <= 30; reg++) { 2952 if (1 & bitset) 2953 regs[count++] = reg; 2954 bitset >>= 1; 2955 } 2956 regs[count++] = zr->raw_encoding(); 2957 count &= ~1; // Only push an even number of regs 2958 2959 if (count) { 2960 stp(as_Register(regs[0]), as_Register(regs[1]), 2961 Address(pre(stack, -count * wordSize))); 2962 words_pushed += 2; 2963 } 2964 for (int i = 2; i < count; i += 2) { 2965 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2966 Address(stack, i * wordSize)); 2967 words_pushed += 2; 2968 } 2969 2970 assert(words_pushed == count, "oops, pushed != count"); 2971 2972 return count; 2973 } 2974 2975 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2976 int words_pushed = 0; 2977 2978 // Scan bitset to accumulate register pairs 2979 unsigned char regs[32]; 2980 int count = 0; 2981 for (int reg = 0; reg <= 30; reg++) { 2982 if (1 & bitset) 2983 regs[count++] = reg; 2984 bitset >>= 1; 2985 } 2986 regs[count++] = zr->raw_encoding(); 2987 count &= ~1; 2988 2989 for (int i = 2; i < count; i += 2) { 2990 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2991 Address(stack, i * wordSize)); 2992 words_pushed += 2; 2993 } 2994 if (count) { 2995 ldp(as_Register(regs[0]), as_Register(regs[1]), 2996 Address(post(stack, count * wordSize))); 2997 words_pushed += 2; 2998 } 2999 3000 assert(words_pushed == count, "oops, pushed != count"); 3001 3002 return count; 3003 } 3004 3005 // Push lots of registers in the bit set supplied. Don't push sp. 3006 // Return the number of dwords pushed 3007 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3008 int words_pushed = 0; 3009 bool use_sve = false; 3010 int sve_vector_size_in_bytes = 0; 3011 3012 #ifdef COMPILER2 3013 use_sve = Matcher::supports_scalable_vector(); 3014 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3015 #endif 3016 3017 // Scan bitset to accumulate register pairs 3018 unsigned char regs[32]; 3019 int count = 0; 3020 for (int reg = 0; reg <= 31; reg++) { 3021 if (1 & bitset) 3022 regs[count++] = reg; 3023 bitset >>= 1; 3024 } 3025 3026 if (count == 0) { 3027 return 0; 3028 } 3029 3030 if (mode == PushPopFull) { 3031 if (use_sve && sve_vector_size_in_bytes > 16) { 3032 mode = PushPopSVE; 3033 } else { 3034 mode = PushPopNeon; 3035 } 3036 } 3037 3038 #ifndef PRODUCT 3039 { 3040 char buffer[48]; 3041 if (mode == PushPopSVE) { 3042 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 3043 } else if (mode == PushPopNeon) { 3044 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 3045 } else { 3046 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 3047 } 3048 block_comment(buffer); 3049 } 3050 #endif 3051 3052 if (mode == PushPopSVE) { 3053 sub(stack, stack, sve_vector_size_in_bytes * count); 3054 for (int i = 0; i < count; i++) { 3055 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 3056 } 3057 return count * sve_vector_size_in_bytes / 8; 3058 } 3059 3060 if (mode == PushPopNeon) { 3061 if (count == 1) { 3062 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 3063 return 2; 3064 } 3065 3066 bool odd = (count & 1) == 1; 3067 int push_slots = count + (odd ? 1 : 0); 3068 3069 // Always pushing full 128 bit registers. 3070 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 3071 words_pushed += 2; 3072 3073 for (int i = 2; i + 1 < count; i += 2) { 3074 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3075 words_pushed += 2; 3076 } 3077 3078 if (odd) { 3079 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3080 words_pushed++; 3081 } 3082 3083 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3084 return count * 2; 3085 } 3086 3087 if (mode == PushPopFp) { 3088 bool odd = (count & 1) == 1; 3089 int push_slots = count + (odd ? 1 : 0); 3090 3091 if (count == 1) { 3092 // Stack pointer must be 16 bytes aligned 3093 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 3094 return 1; 3095 } 3096 3097 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 3098 words_pushed += 2; 3099 3100 for (int i = 2; i + 1 < count; i += 2) { 3101 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3102 words_pushed += 2; 3103 } 3104 3105 if (odd) { 3106 // Stack pointer must be 16 bytes aligned 3107 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3108 words_pushed++; 3109 } 3110 3111 assert(words_pushed == count, "oops, pushed != count"); 3112 3113 return count; 3114 } 3115 3116 return 0; 3117 } 3118 3119 // Return the number of dwords popped 3120 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3121 int words_pushed = 0; 3122 bool use_sve = false; 3123 int sve_vector_size_in_bytes = 0; 3124 3125 #ifdef COMPILER2 3126 use_sve = Matcher::supports_scalable_vector(); 3127 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3128 #endif 3129 // Scan bitset to accumulate register pairs 3130 unsigned char regs[32]; 3131 int count = 0; 3132 for (int reg = 0; reg <= 31; reg++) { 3133 if (1 & bitset) 3134 regs[count++] = reg; 3135 bitset >>= 1; 3136 } 3137 3138 if (count == 0) { 3139 return 0; 3140 } 3141 3142 if (mode == PushPopFull) { 3143 if (use_sve && sve_vector_size_in_bytes > 16) { 3144 mode = PushPopSVE; 3145 } else { 3146 mode = PushPopNeon; 3147 } 3148 } 3149 3150 #ifndef PRODUCT 3151 { 3152 char buffer[48]; 3153 if (mode == PushPopSVE) { 3154 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3155 } else if (mode == PushPopNeon) { 3156 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3157 } else { 3158 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3159 } 3160 block_comment(buffer); 3161 } 3162 #endif 3163 3164 if (mode == PushPopSVE) { 3165 for (int i = count - 1; i >= 0; i--) { 3166 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3167 } 3168 add(stack, stack, sve_vector_size_in_bytes * count); 3169 return count * sve_vector_size_in_bytes / 8; 3170 } 3171 3172 if (mode == PushPopNeon) { 3173 if (count == 1) { 3174 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3175 return 2; 3176 } 3177 3178 bool odd = (count & 1) == 1; 3179 int push_slots = count + (odd ? 1 : 0); 3180 3181 if (odd) { 3182 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3183 words_pushed++; 3184 } 3185 3186 for (int i = 2; i + 1 < count; i += 2) { 3187 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3188 words_pushed += 2; 3189 } 3190 3191 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3192 words_pushed += 2; 3193 3194 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3195 3196 return count * 2; 3197 } 3198 3199 if (mode == PushPopFp) { 3200 bool odd = (count & 1) == 1; 3201 int push_slots = count + (odd ? 1 : 0); 3202 3203 if (count == 1) { 3204 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3205 return 1; 3206 } 3207 3208 if (odd) { 3209 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3210 words_pushed++; 3211 } 3212 3213 for (int i = 2; i + 1 < count; i += 2) { 3214 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3215 words_pushed += 2; 3216 } 3217 3218 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3219 words_pushed += 2; 3220 3221 assert(words_pushed == count, "oops, pushed != count"); 3222 3223 return count; 3224 } 3225 3226 return 0; 3227 } 3228 3229 // Return the number of dwords pushed 3230 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3231 bool use_sve = false; 3232 int sve_predicate_size_in_slots = 0; 3233 3234 #ifdef COMPILER2 3235 use_sve = Matcher::supports_scalable_vector(); 3236 if (use_sve) { 3237 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3238 } 3239 #endif 3240 3241 if (!use_sve) { 3242 return 0; 3243 } 3244 3245 unsigned char regs[PRegister::number_of_registers]; 3246 int count = 0; 3247 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3248 if (1 & bitset) 3249 regs[count++] = reg; 3250 bitset >>= 1; 3251 } 3252 3253 if (count == 0) { 3254 return 0; 3255 } 3256 3257 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3258 VMRegImpl::stack_slot_size * count, 16); 3259 sub(stack, stack, total_push_bytes); 3260 for (int i = 0; i < count; i++) { 3261 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3262 } 3263 return total_push_bytes / 8; 3264 } 3265 3266 // Return the number of dwords popped 3267 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3268 bool use_sve = false; 3269 int sve_predicate_size_in_slots = 0; 3270 3271 #ifdef COMPILER2 3272 use_sve = Matcher::supports_scalable_vector(); 3273 if (use_sve) { 3274 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3275 } 3276 #endif 3277 3278 if (!use_sve) { 3279 return 0; 3280 } 3281 3282 unsigned char regs[PRegister::number_of_registers]; 3283 int count = 0; 3284 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3285 if (1 & bitset) 3286 regs[count++] = reg; 3287 bitset >>= 1; 3288 } 3289 3290 if (count == 0) { 3291 return 0; 3292 } 3293 3294 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3295 VMRegImpl::stack_slot_size * count, 16); 3296 for (int i = count - 1; i >= 0; i--) { 3297 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3298 } 3299 add(stack, stack, total_pop_bytes); 3300 return total_pop_bytes / 8; 3301 } 3302 3303 #ifdef ASSERT 3304 void MacroAssembler::verify_heapbase(const char* msg) { 3305 #if 0 3306 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3307 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3308 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3309 // rheapbase is allocated as general register 3310 return; 3311 } 3312 if (CheckCompressedOops) { 3313 Label ok; 3314 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3315 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3316 br(Assembler::EQ, ok); 3317 stop(msg); 3318 bind(ok); 3319 pop(1 << rscratch1->encoding(), sp); 3320 } 3321 #endif 3322 } 3323 #endif 3324 3325 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3326 assert_different_registers(value, tmp1, tmp2); 3327 Label done, tagged, weak_tagged; 3328 3329 cbz(value, done); // Use null as-is. 3330 tst(value, JNIHandles::tag_mask); // Test for tag. 3331 br(Assembler::NE, tagged); 3332 3333 // Resolve local handle 3334 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3335 verify_oop(value); 3336 b(done); 3337 3338 bind(tagged); 3339 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3340 tbnz(value, 0, weak_tagged); // Test for weak tag. 3341 3342 // Resolve global handle 3343 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3344 verify_oop(value); 3345 b(done); 3346 3347 bind(weak_tagged); 3348 // Resolve jweak. 3349 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3350 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3351 verify_oop(value); 3352 3353 bind(done); 3354 } 3355 3356 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3357 assert_different_registers(value, tmp1, tmp2); 3358 Label done; 3359 3360 cbz(value, done); // Use null as-is. 3361 3362 #ifdef ASSERT 3363 { 3364 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3365 Label valid_global_tag; 3366 tbnz(value, 1, valid_global_tag); // Test for global tag 3367 stop("non global jobject using resolve_global_jobject"); 3368 bind(valid_global_tag); 3369 } 3370 #endif 3371 3372 // Resolve global handle 3373 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3374 verify_oop(value); 3375 3376 bind(done); 3377 } 3378 3379 void MacroAssembler::stop(const char* msg) { 3380 BLOCK_COMMENT(msg); 3381 dcps1(0xdeae); 3382 emit_int64((uintptr_t)msg); 3383 } 3384 3385 void MacroAssembler::unimplemented(const char* what) { 3386 const char* buf = nullptr; 3387 { 3388 ResourceMark rm; 3389 stringStream ss; 3390 ss.print("unimplemented: %s", what); 3391 buf = code_string(ss.as_string()); 3392 } 3393 stop(buf); 3394 } 3395 3396 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3397 #ifdef ASSERT 3398 Label OK; 3399 br(cc, OK); 3400 stop(msg); 3401 bind(OK); 3402 #endif 3403 } 3404 3405 // If a constant does not fit in an immediate field, generate some 3406 // number of MOV instructions and then perform the operation. 3407 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3408 add_sub_imm_insn insn1, 3409 add_sub_reg_insn insn2, 3410 bool is32) { 3411 assert(Rd != zr, "Rd = zr and not setting flags?"); 3412 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3413 if (fits) { 3414 (this->*insn1)(Rd, Rn, imm); 3415 } else { 3416 if (uabs(imm) < (1 << 24)) { 3417 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3418 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3419 } else { 3420 assert_different_registers(Rd, Rn); 3421 mov(Rd, imm); 3422 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3423 } 3424 } 3425 } 3426 3427 // Separate vsn which sets the flags. Optimisations are more restricted 3428 // because we must set the flags correctly. 3429 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3430 add_sub_imm_insn insn1, 3431 add_sub_reg_insn insn2, 3432 bool is32) { 3433 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3434 if (fits) { 3435 (this->*insn1)(Rd, Rn, imm); 3436 } else { 3437 assert_different_registers(Rd, Rn); 3438 assert(Rd != zr, "overflow in immediate operand"); 3439 mov(Rd, imm); 3440 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3441 } 3442 } 3443 3444 3445 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3446 if (increment.is_register()) { 3447 add(Rd, Rn, increment.as_register()); 3448 } else { 3449 add(Rd, Rn, increment.as_constant()); 3450 } 3451 } 3452 3453 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3454 if (increment.is_register()) { 3455 addw(Rd, Rn, increment.as_register()); 3456 } else { 3457 addw(Rd, Rn, increment.as_constant()); 3458 } 3459 } 3460 3461 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3462 if (decrement.is_register()) { 3463 sub(Rd, Rn, decrement.as_register()); 3464 } else { 3465 sub(Rd, Rn, decrement.as_constant()); 3466 } 3467 } 3468 3469 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3470 if (decrement.is_register()) { 3471 subw(Rd, Rn, decrement.as_register()); 3472 } else { 3473 subw(Rd, Rn, decrement.as_constant()); 3474 } 3475 } 3476 3477 void MacroAssembler::reinit_heapbase() 3478 { 3479 if (UseCompressedOops) { 3480 if (Universe::is_fully_initialized()) { 3481 mov(rheapbase, CompressedOops::base()); 3482 } else { 3483 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3484 ldr(rheapbase, Address(rheapbase)); 3485 } 3486 } 3487 } 3488 3489 // this simulates the behaviour of the x86 cmpxchg instruction using a 3490 // load linked/store conditional pair. we use the acquire/release 3491 // versions of these instructions so that we flush pending writes as 3492 // per Java semantics. 3493 3494 // n.b the x86 version assumes the old value to be compared against is 3495 // in rax and updates rax with the value located in memory if the 3496 // cmpxchg fails. we supply a register for the old value explicitly 3497 3498 // the aarch64 load linked/store conditional instructions do not 3499 // accept an offset. so, unlike x86, we must provide a plain register 3500 // to identify the memory word to be compared/exchanged rather than a 3501 // register+offset Address. 3502 3503 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3504 Label &succeed, Label *fail) { 3505 // oldv holds comparison value 3506 // newv holds value to write in exchange 3507 // addr identifies memory word to compare against/update 3508 if (UseLSE) { 3509 mov(tmp, oldv); 3510 casal(Assembler::xword, oldv, newv, addr); 3511 cmp(tmp, oldv); 3512 br(Assembler::EQ, succeed); 3513 membar(AnyAny); 3514 } else { 3515 Label retry_load, nope; 3516 prfm(Address(addr), PSTL1STRM); 3517 bind(retry_load); 3518 // flush and load exclusive from the memory location 3519 // and fail if it is not what we expect 3520 ldaxr(tmp, addr); 3521 cmp(tmp, oldv); 3522 br(Assembler::NE, nope); 3523 // if we store+flush with no intervening write tmp will be zero 3524 stlxr(tmp, newv, addr); 3525 cbzw(tmp, succeed); 3526 // retry so we only ever return after a load fails to compare 3527 // ensures we don't return a stale value after a failed write. 3528 b(retry_load); 3529 // if the memory word differs we return it in oldv and signal a fail 3530 bind(nope); 3531 membar(AnyAny); 3532 mov(oldv, tmp); 3533 } 3534 if (fail) 3535 b(*fail); 3536 } 3537 3538 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3539 Label &succeed, Label *fail) { 3540 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3541 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3542 } 3543 3544 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3545 Label &succeed, Label *fail) { 3546 // oldv holds comparison value 3547 // newv holds value to write in exchange 3548 // addr identifies memory word to compare against/update 3549 // tmp returns 0/1 for success/failure 3550 if (UseLSE) { 3551 mov(tmp, oldv); 3552 casal(Assembler::word, oldv, newv, addr); 3553 cmp(tmp, oldv); 3554 br(Assembler::EQ, succeed); 3555 membar(AnyAny); 3556 } else { 3557 Label retry_load, nope; 3558 prfm(Address(addr), PSTL1STRM); 3559 bind(retry_load); 3560 // flush and load exclusive from the memory location 3561 // and fail if it is not what we expect 3562 ldaxrw(tmp, addr); 3563 cmp(tmp, oldv); 3564 br(Assembler::NE, nope); 3565 // if we store+flush with no intervening write tmp will be zero 3566 stlxrw(tmp, newv, addr); 3567 cbzw(tmp, succeed); 3568 // retry so we only ever return after a load fails to compare 3569 // ensures we don't return a stale value after a failed write. 3570 b(retry_load); 3571 // if the memory word differs we return it in oldv and signal a fail 3572 bind(nope); 3573 membar(AnyAny); 3574 mov(oldv, tmp); 3575 } 3576 if (fail) 3577 b(*fail); 3578 } 3579 3580 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3581 // doesn't retry and may fail spuriously. If the oldval is wanted, 3582 // Pass a register for the result, otherwise pass noreg. 3583 3584 // Clobbers rscratch1 3585 void MacroAssembler::cmpxchg(Register addr, Register expected, 3586 Register new_val, 3587 enum operand_size size, 3588 bool acquire, bool release, 3589 bool weak, 3590 Register result) { 3591 if (result == noreg) result = rscratch1; 3592 BLOCK_COMMENT("cmpxchg {"); 3593 if (UseLSE) { 3594 mov(result, expected); 3595 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3596 compare_eq(result, expected, size); 3597 #ifdef ASSERT 3598 // Poison rscratch1 which is written on !UseLSE branch 3599 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3600 #endif 3601 } else { 3602 Label retry_load, done; 3603 prfm(Address(addr), PSTL1STRM); 3604 bind(retry_load); 3605 load_exclusive(result, addr, size, acquire); 3606 compare_eq(result, expected, size); 3607 br(Assembler::NE, done); 3608 store_exclusive(rscratch1, new_val, addr, size, release); 3609 if (weak) { 3610 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3611 } else { 3612 cbnzw(rscratch1, retry_load); 3613 } 3614 bind(done); 3615 } 3616 BLOCK_COMMENT("} cmpxchg"); 3617 } 3618 3619 // A generic comparison. Only compares for equality, clobbers rscratch1. 3620 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3621 if (size == xword) { 3622 cmp(rm, rn); 3623 } else if (size == word) { 3624 cmpw(rm, rn); 3625 } else if (size == halfword) { 3626 eorw(rscratch1, rm, rn); 3627 ands(zr, rscratch1, 0xffff); 3628 } else if (size == byte) { 3629 eorw(rscratch1, rm, rn); 3630 ands(zr, rscratch1, 0xff); 3631 } else { 3632 ShouldNotReachHere(); 3633 } 3634 } 3635 3636 3637 static bool different(Register a, RegisterOrConstant b, Register c) { 3638 if (b.is_constant()) 3639 return a != c; 3640 else 3641 return a != b.as_register() && a != c && b.as_register() != c; 3642 } 3643 3644 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3645 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3646 if (UseLSE) { \ 3647 prev = prev->is_valid() ? prev : zr; \ 3648 if (incr.is_register()) { \ 3649 AOP(sz, incr.as_register(), prev, addr); \ 3650 } else { \ 3651 mov(rscratch2, incr.as_constant()); \ 3652 AOP(sz, rscratch2, prev, addr); \ 3653 } \ 3654 return; \ 3655 } \ 3656 Register result = rscratch2; \ 3657 if (prev->is_valid()) \ 3658 result = different(prev, incr, addr) ? prev : rscratch2; \ 3659 \ 3660 Label retry_load; \ 3661 prfm(Address(addr), PSTL1STRM); \ 3662 bind(retry_load); \ 3663 LDXR(result, addr); \ 3664 OP(rscratch1, result, incr); \ 3665 STXR(rscratch2, rscratch1, addr); \ 3666 cbnzw(rscratch2, retry_load); \ 3667 if (prev->is_valid() && prev != result) { \ 3668 IOP(prev, rscratch1, incr); \ 3669 } \ 3670 } 3671 3672 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3673 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3674 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3675 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3676 3677 #undef ATOMIC_OP 3678 3679 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3680 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3681 if (UseLSE) { \ 3682 prev = prev->is_valid() ? prev : zr; \ 3683 AOP(sz, newv, prev, addr); \ 3684 return; \ 3685 } \ 3686 Register result = rscratch2; \ 3687 if (prev->is_valid()) \ 3688 result = different(prev, newv, addr) ? prev : rscratch2; \ 3689 \ 3690 Label retry_load; \ 3691 prfm(Address(addr), PSTL1STRM); \ 3692 bind(retry_load); \ 3693 LDXR(result, addr); \ 3694 STXR(rscratch1, newv, addr); \ 3695 cbnzw(rscratch1, retry_load); \ 3696 if (prev->is_valid() && prev != result) \ 3697 mov(prev, result); \ 3698 } 3699 3700 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3701 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3702 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3703 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3704 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3705 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3706 3707 #undef ATOMIC_XCHG 3708 3709 #ifndef PRODUCT 3710 extern "C" void findpc(intptr_t x); 3711 #endif 3712 3713 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3714 { 3715 // In order to get locks to work, we need to fake a in_VM state 3716 if (ShowMessageBoxOnError ) { 3717 JavaThread* thread = JavaThread::current(); 3718 JavaThreadState saved_state = thread->thread_state(); 3719 thread->set_thread_state(_thread_in_vm); 3720 #ifndef PRODUCT 3721 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3722 ttyLocker ttyl; 3723 BytecodeCounter::print(); 3724 } 3725 #endif 3726 if (os::message_box(msg, "Execution stopped, print registers?")) { 3727 ttyLocker ttyl; 3728 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3729 #ifndef PRODUCT 3730 tty->cr(); 3731 findpc(pc); 3732 tty->cr(); 3733 #endif 3734 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3735 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3736 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3737 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3738 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3739 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3740 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3741 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3742 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3743 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3744 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3745 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3746 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3747 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3748 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3749 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3750 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3751 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3752 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3753 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3754 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3755 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3756 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3757 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3758 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3759 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3760 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3761 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3762 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3763 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3764 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3765 BREAKPOINT; 3766 } 3767 } 3768 fatal("DEBUG MESSAGE: %s", msg); 3769 } 3770 3771 RegSet MacroAssembler::call_clobbered_gp_registers() { 3772 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3773 #ifndef R18_RESERVED 3774 regs += r18_tls; 3775 #endif 3776 return regs; 3777 } 3778 3779 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3780 int step = 4 * wordSize; 3781 push(call_clobbered_gp_registers() - exclude, sp); 3782 sub(sp, sp, step); 3783 mov(rscratch1, -step); 3784 // Push v0-v7, v16-v31. 3785 for (int i = 31; i>= 4; i -= 4) { 3786 if (i <= v7->encoding() || i >= v16->encoding()) 3787 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3788 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3789 } 3790 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3791 as_FloatRegister(3), T1D, Address(sp)); 3792 } 3793 3794 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3795 for (int i = 0; i < 32; i += 4) { 3796 if (i <= v7->encoding() || i >= v16->encoding()) 3797 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3798 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3799 } 3800 3801 reinitialize_ptrue(); 3802 3803 pop(call_clobbered_gp_registers() - exclude, sp); 3804 } 3805 3806 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3807 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3808 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3809 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3810 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3811 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3812 sve_str(as_FloatRegister(i), Address(sp, i)); 3813 } 3814 } else { 3815 int step = (save_vectors ? 8 : 4) * wordSize; 3816 mov(rscratch1, -step); 3817 sub(sp, sp, step); 3818 for (int i = 28; i >= 4; i -= 4) { 3819 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3820 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3821 } 3822 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3823 } 3824 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3825 sub(sp, sp, total_predicate_in_bytes); 3826 for (int i = 0; i < PRegister::number_of_registers; i++) { 3827 sve_str(as_PRegister(i), Address(sp, i)); 3828 } 3829 } 3830 } 3831 3832 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3833 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3834 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3835 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3836 sve_ldr(as_PRegister(i), Address(sp, i)); 3837 } 3838 add(sp, sp, total_predicate_in_bytes); 3839 } 3840 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3841 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3842 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3843 } 3844 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3845 } else { 3846 int step = (restore_vectors ? 8 : 4) * wordSize; 3847 for (int i = 0; i <= 28; i += 4) 3848 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3849 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3850 } 3851 3852 // We may use predicate registers and rely on ptrue with SVE, 3853 // regardless of wide vector (> 8 bytes) used or not. 3854 if (use_sve) { 3855 reinitialize_ptrue(); 3856 } 3857 3858 // integer registers except lr & sp 3859 pop(RegSet::range(r0, r17), sp); 3860 #ifdef R18_RESERVED 3861 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3862 pop(RegSet::range(r20, r29), sp); 3863 #else 3864 pop(RegSet::range(r18_tls, r29), sp); 3865 #endif 3866 } 3867 3868 /** 3869 * Helpers for multiply_to_len(). 3870 */ 3871 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3872 Register src1, Register src2) { 3873 adds(dest_lo, dest_lo, src1); 3874 adc(dest_hi, dest_hi, zr); 3875 adds(dest_lo, dest_lo, src2); 3876 adc(final_dest_hi, dest_hi, zr); 3877 } 3878 3879 // Generate an address from (r + r1 extend offset). "size" is the 3880 // size of the operand. The result may be in rscratch2. 3881 Address MacroAssembler::offsetted_address(Register r, Register r1, 3882 Address::extend ext, int offset, int size) { 3883 if (offset || (ext.shift() % size != 0)) { 3884 lea(rscratch2, Address(r, r1, ext)); 3885 return Address(rscratch2, offset); 3886 } else { 3887 return Address(r, r1, ext); 3888 } 3889 } 3890 3891 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3892 { 3893 assert(offset >= 0, "spill to negative address?"); 3894 // Offset reachable ? 3895 // Not aligned - 9 bits signed offset 3896 // Aligned - 12 bits unsigned offset shifted 3897 Register base = sp; 3898 if ((offset & (size-1)) && offset >= (1<<8)) { 3899 add(tmp, base, offset & ((1<<12)-1)); 3900 base = tmp; 3901 offset &= -1u<<12; 3902 } 3903 3904 if (offset >= (1<<12) * size) { 3905 add(tmp, base, offset & (((1<<12)-1)<<12)); 3906 base = tmp; 3907 offset &= ~(((1<<12)-1)<<12); 3908 } 3909 3910 return Address(base, offset); 3911 } 3912 3913 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3914 assert(offset >= 0, "spill to negative address?"); 3915 3916 Register base = sp; 3917 3918 // An immediate offset in the range 0 to 255 which is multiplied 3919 // by the current vector or predicate register size in bytes. 3920 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3921 return Address(base, offset / sve_reg_size_in_bytes); 3922 } 3923 3924 add(tmp, base, offset); 3925 return Address(tmp); 3926 } 3927 3928 // Checks whether offset is aligned. 3929 // Returns true if it is, else false. 3930 bool MacroAssembler::merge_alignment_check(Register base, 3931 size_t size, 3932 int64_t cur_offset, 3933 int64_t prev_offset) const { 3934 if (AvoidUnalignedAccesses) { 3935 if (base == sp) { 3936 // Checks whether low offset if aligned to pair of registers. 3937 int64_t pair_mask = size * 2 - 1; 3938 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3939 return (offset & pair_mask) == 0; 3940 } else { // If base is not sp, we can't guarantee the access is aligned. 3941 return false; 3942 } 3943 } else { 3944 int64_t mask = size - 1; 3945 // Load/store pair instruction only supports element size aligned offset. 3946 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3947 } 3948 } 3949 3950 // Checks whether current and previous loads/stores can be merged. 3951 // Returns true if it can be merged, else false. 3952 bool MacroAssembler::ldst_can_merge(Register rt, 3953 const Address &adr, 3954 size_t cur_size_in_bytes, 3955 bool is_store) const { 3956 address prev = pc() - NativeInstruction::instruction_size; 3957 address last = code()->last_insn(); 3958 3959 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3960 return false; 3961 } 3962 3963 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3964 return false; 3965 } 3966 3967 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3968 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3969 3970 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3971 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3972 3973 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3974 return false; 3975 } 3976 3977 int64_t max_offset = 63 * prev_size_in_bytes; 3978 int64_t min_offset = -64 * prev_size_in_bytes; 3979 3980 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3981 3982 // Only same base can be merged. 3983 if (adr.base() != prev_ldst->base()) { 3984 return false; 3985 } 3986 3987 int64_t cur_offset = adr.offset(); 3988 int64_t prev_offset = prev_ldst->offset(); 3989 size_t diff = abs(cur_offset - prev_offset); 3990 if (diff != prev_size_in_bytes) { 3991 return false; 3992 } 3993 3994 // Following cases can not be merged: 3995 // ldr x2, [x2, #8] 3996 // ldr x3, [x2, #16] 3997 // or: 3998 // ldr x2, [x3, #8] 3999 // ldr x2, [x3, #16] 4000 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 4001 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 4002 return false; 4003 } 4004 4005 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 4006 // Offset range must be in ldp/stp instruction's range. 4007 if (low_offset > max_offset || low_offset < min_offset) { 4008 return false; 4009 } 4010 4011 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 4012 return true; 4013 } 4014 4015 return false; 4016 } 4017 4018 // Merge current load/store with previous load/store into ldp/stp. 4019 void MacroAssembler::merge_ldst(Register rt, 4020 const Address &adr, 4021 size_t cur_size_in_bytes, 4022 bool is_store) { 4023 4024 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 4025 4026 Register rt_low, rt_high; 4027 address prev = pc() - NativeInstruction::instruction_size; 4028 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 4029 4030 int64_t offset; 4031 4032 if (adr.offset() < prev_ldst->offset()) { 4033 offset = adr.offset(); 4034 rt_low = rt; 4035 rt_high = prev_ldst->target(); 4036 } else { 4037 offset = prev_ldst->offset(); 4038 rt_low = prev_ldst->target(); 4039 rt_high = rt; 4040 } 4041 4042 Address adr_p = Address(prev_ldst->base(), offset); 4043 // Overwrite previous generated binary. 4044 code_section()->set_end(prev); 4045 4046 const size_t sz = prev_ldst->size_in_bytes(); 4047 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 4048 if (!is_store) { 4049 BLOCK_COMMENT("merged ldr pair"); 4050 if (sz == 8) { 4051 ldp(rt_low, rt_high, adr_p); 4052 } else { 4053 ldpw(rt_low, rt_high, adr_p); 4054 } 4055 } else { 4056 BLOCK_COMMENT("merged str pair"); 4057 if (sz == 8) { 4058 stp(rt_low, rt_high, adr_p); 4059 } else { 4060 stpw(rt_low, rt_high, adr_p); 4061 } 4062 } 4063 } 4064 4065 /** 4066 * Multiply 64 bit by 64 bit first loop. 4067 */ 4068 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 4069 Register y, Register y_idx, Register z, 4070 Register carry, Register product, 4071 Register idx, Register kdx) { 4072 // 4073 // jlong carry, x[], y[], z[]; 4074 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4075 // huge_128 product = y[idx] * x[xstart] + carry; 4076 // z[kdx] = (jlong)product; 4077 // carry = (jlong)(product >>> 64); 4078 // } 4079 // z[xstart] = carry; 4080 // 4081 4082 Label L_first_loop, L_first_loop_exit; 4083 Label L_one_x, L_one_y, L_multiply; 4084 4085 subsw(xstart, xstart, 1); 4086 br(Assembler::MI, L_one_x); 4087 4088 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 4089 ldr(x_xstart, Address(rscratch1)); 4090 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 4091 4092 bind(L_first_loop); 4093 subsw(idx, idx, 1); 4094 br(Assembler::MI, L_first_loop_exit); 4095 subsw(idx, idx, 1); 4096 br(Assembler::MI, L_one_y); 4097 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4098 ldr(y_idx, Address(rscratch1)); 4099 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 4100 bind(L_multiply); 4101 4102 // AArch64 has a multiply-accumulate instruction that we can't use 4103 // here because it has no way to process carries, so we have to use 4104 // separate add and adc instructions. Bah. 4105 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 4106 mul(product, x_xstart, y_idx); 4107 adds(product, product, carry); 4108 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 4109 4110 subw(kdx, kdx, 2); 4111 ror(product, product, 32); // back to big-endian 4112 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 4113 4114 b(L_first_loop); 4115 4116 bind(L_one_y); 4117 ldrw(y_idx, Address(y, 0)); 4118 b(L_multiply); 4119 4120 bind(L_one_x); 4121 ldrw(x_xstart, Address(x, 0)); 4122 b(L_first_loop); 4123 4124 bind(L_first_loop_exit); 4125 } 4126 4127 /** 4128 * Multiply 128 bit by 128. Unrolled inner loop. 4129 * 4130 */ 4131 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4132 Register carry, Register carry2, 4133 Register idx, Register jdx, 4134 Register yz_idx1, Register yz_idx2, 4135 Register tmp, Register tmp3, Register tmp4, 4136 Register tmp6, Register product_hi) { 4137 4138 // jlong carry, x[], y[], z[]; 4139 // int kdx = ystart+1; 4140 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4141 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4142 // jlong carry2 = (jlong)(tmp3 >>> 64); 4143 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4144 // carry = (jlong)(tmp4 >>> 64); 4145 // z[kdx+idx+1] = (jlong)tmp3; 4146 // z[kdx+idx] = (jlong)tmp4; 4147 // } 4148 // idx += 2; 4149 // if (idx > 0) { 4150 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4151 // z[kdx+idx] = (jlong)yz_idx1; 4152 // carry = (jlong)(yz_idx1 >>> 64); 4153 // } 4154 // 4155 4156 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4157 4158 lsrw(jdx, idx, 2); 4159 4160 bind(L_third_loop); 4161 4162 subsw(jdx, jdx, 1); 4163 br(Assembler::MI, L_third_loop_exit); 4164 subw(idx, idx, 4); 4165 4166 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4167 4168 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4169 4170 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4171 4172 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4173 ror(yz_idx2, yz_idx2, 32); 4174 4175 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4176 4177 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4178 umulh(tmp4, product_hi, yz_idx1); 4179 4180 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4181 ror(rscratch2, rscratch2, 32); 4182 4183 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4184 umulh(carry2, product_hi, yz_idx2); 4185 4186 // propagate sum of both multiplications into carry:tmp4:tmp3 4187 adds(tmp3, tmp3, carry); 4188 adc(tmp4, tmp4, zr); 4189 adds(tmp3, tmp3, rscratch1); 4190 adcs(tmp4, tmp4, tmp); 4191 adc(carry, carry2, zr); 4192 adds(tmp4, tmp4, rscratch2); 4193 adc(carry, carry, zr); 4194 4195 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4196 ror(tmp4, tmp4, 32); 4197 stp(tmp4, tmp3, Address(tmp6, 0)); 4198 4199 b(L_third_loop); 4200 bind (L_third_loop_exit); 4201 4202 andw (idx, idx, 0x3); 4203 cbz(idx, L_post_third_loop_done); 4204 4205 Label L_check_1; 4206 subsw(idx, idx, 2); 4207 br(Assembler::MI, L_check_1); 4208 4209 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4210 ldr(yz_idx1, Address(rscratch1, 0)); 4211 ror(yz_idx1, yz_idx1, 32); 4212 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4213 umulh(tmp4, product_hi, yz_idx1); 4214 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4215 ldr(yz_idx2, Address(rscratch1, 0)); 4216 ror(yz_idx2, yz_idx2, 32); 4217 4218 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4219 4220 ror(tmp3, tmp3, 32); 4221 str(tmp3, Address(rscratch1, 0)); 4222 4223 bind (L_check_1); 4224 4225 andw (idx, idx, 0x1); 4226 subsw(idx, idx, 1); 4227 br(Assembler::MI, L_post_third_loop_done); 4228 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4229 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4230 umulh(carry2, tmp4, product_hi); 4231 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4232 4233 add2_with_carry(carry2, tmp3, tmp4, carry); 4234 4235 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4236 extr(carry, carry2, tmp3, 32); 4237 4238 bind(L_post_third_loop_done); 4239 } 4240 4241 /** 4242 * Code for BigInteger::multiplyToLen() intrinsic. 4243 * 4244 * r0: x 4245 * r1: xlen 4246 * r2: y 4247 * r3: ylen 4248 * r4: z 4249 * r5: tmp0 4250 * r10: tmp1 4251 * r11: tmp2 4252 * r12: tmp3 4253 * r13: tmp4 4254 * r14: tmp5 4255 * r15: tmp6 4256 * r16: tmp7 4257 * 4258 */ 4259 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4260 Register z, Register tmp0, 4261 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4262 Register tmp5, Register tmp6, Register product_hi) { 4263 4264 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4265 4266 const Register idx = tmp1; 4267 const Register kdx = tmp2; 4268 const Register xstart = tmp3; 4269 4270 const Register y_idx = tmp4; 4271 const Register carry = tmp5; 4272 const Register product = xlen; 4273 const Register x_xstart = tmp0; 4274 4275 // First Loop. 4276 // 4277 // final static long LONG_MASK = 0xffffffffL; 4278 // int xstart = xlen - 1; 4279 // int ystart = ylen - 1; 4280 // long carry = 0; 4281 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4282 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4283 // z[kdx] = (int)product; 4284 // carry = product >>> 32; 4285 // } 4286 // z[xstart] = (int)carry; 4287 // 4288 4289 movw(idx, ylen); // idx = ylen; 4290 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4291 mov(carry, zr); // carry = 0; 4292 4293 Label L_done; 4294 4295 movw(xstart, xlen); 4296 subsw(xstart, xstart, 1); 4297 br(Assembler::MI, L_done); 4298 4299 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4300 4301 Label L_second_loop; 4302 cbzw(kdx, L_second_loop); 4303 4304 Label L_carry; 4305 subw(kdx, kdx, 1); 4306 cbzw(kdx, L_carry); 4307 4308 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4309 lsr(carry, carry, 32); 4310 subw(kdx, kdx, 1); 4311 4312 bind(L_carry); 4313 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4314 4315 // Second and third (nested) loops. 4316 // 4317 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4318 // carry = 0; 4319 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4320 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4321 // (z[k] & LONG_MASK) + carry; 4322 // z[k] = (int)product; 4323 // carry = product >>> 32; 4324 // } 4325 // z[i] = (int)carry; 4326 // } 4327 // 4328 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4329 4330 const Register jdx = tmp1; 4331 4332 bind(L_second_loop); 4333 mov(carry, zr); // carry = 0; 4334 movw(jdx, ylen); // j = ystart+1 4335 4336 subsw(xstart, xstart, 1); // i = xstart-1; 4337 br(Assembler::MI, L_done); 4338 4339 str(z, Address(pre(sp, -4 * wordSize))); 4340 4341 Label L_last_x; 4342 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4343 subsw(xstart, xstart, 1); // i = xstart-1; 4344 br(Assembler::MI, L_last_x); 4345 4346 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4347 ldr(product_hi, Address(rscratch1)); 4348 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4349 4350 Label L_third_loop_prologue; 4351 bind(L_third_loop_prologue); 4352 4353 str(ylen, Address(sp, wordSize)); 4354 stp(x, xstart, Address(sp, 2 * wordSize)); 4355 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4356 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4357 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4358 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4359 4360 addw(tmp3, xlen, 1); 4361 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4362 subsw(tmp3, tmp3, 1); 4363 br(Assembler::MI, L_done); 4364 4365 lsr(carry, carry, 32); 4366 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4367 b(L_second_loop); 4368 4369 // Next infrequent code is moved outside loops. 4370 bind(L_last_x); 4371 ldrw(product_hi, Address(x, 0)); 4372 b(L_third_loop_prologue); 4373 4374 bind(L_done); 4375 } 4376 4377 // Code for BigInteger::mulAdd intrinsic 4378 // out = r0 4379 // in = r1 4380 // offset = r2 (already out.length-offset) 4381 // len = r3 4382 // k = r4 4383 // 4384 // pseudo code from java implementation: 4385 // carry = 0; 4386 // offset = out.length-offset - 1; 4387 // for (int j=len-1; j >= 0; j--) { 4388 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4389 // out[offset--] = (int)product; 4390 // carry = product >>> 32; 4391 // } 4392 // return (int)carry; 4393 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4394 Register len, Register k) { 4395 Label LOOP, END; 4396 // pre-loop 4397 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4398 csel(out, zr, out, Assembler::EQ); 4399 br(Assembler::EQ, END); 4400 add(in, in, len, LSL, 2); // in[j+1] address 4401 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4402 mov(out, zr); // used to keep carry now 4403 BIND(LOOP); 4404 ldrw(rscratch1, Address(pre(in, -4))); 4405 madd(rscratch1, rscratch1, k, out); 4406 ldrw(rscratch2, Address(pre(offset, -4))); 4407 add(rscratch1, rscratch1, rscratch2); 4408 strw(rscratch1, Address(offset)); 4409 lsr(out, rscratch1, 32); 4410 subs(len, len, 1); 4411 br(Assembler::NE, LOOP); 4412 BIND(END); 4413 } 4414 4415 /** 4416 * Emits code to update CRC-32 with a byte value according to constants in table 4417 * 4418 * @param [in,out]crc Register containing the crc. 4419 * @param [in]val Register containing the byte to fold into the CRC. 4420 * @param [in]table Register containing the table of crc constants. 4421 * 4422 * uint32_t crc; 4423 * val = crc_table[(val ^ crc) & 0xFF]; 4424 * crc = val ^ (crc >> 8); 4425 * 4426 */ 4427 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4428 eor(val, val, crc); 4429 andr(val, val, 0xff); 4430 ldrw(val, Address(table, val, Address::lsl(2))); 4431 eor(crc, val, crc, Assembler::LSR, 8); 4432 } 4433 4434 /** 4435 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4436 * 4437 * @param [in,out]crc Register containing the crc. 4438 * @param [in]v Register containing the 32-bit to fold into the CRC. 4439 * @param [in]table0 Register containing table 0 of crc constants. 4440 * @param [in]table1 Register containing table 1 of crc constants. 4441 * @param [in]table2 Register containing table 2 of crc constants. 4442 * @param [in]table3 Register containing table 3 of crc constants. 4443 * 4444 * uint32_t crc; 4445 * v = crc ^ v 4446 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4447 * 4448 */ 4449 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4450 Register table0, Register table1, Register table2, Register table3, 4451 bool upper) { 4452 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4453 uxtb(tmp, v); 4454 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4455 ubfx(tmp, v, 8, 8); 4456 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4457 eor(crc, crc, tmp); 4458 ubfx(tmp, v, 16, 8); 4459 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4460 eor(crc, crc, tmp); 4461 ubfx(tmp, v, 24, 8); 4462 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4463 eor(crc, crc, tmp); 4464 } 4465 4466 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4467 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4468 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4469 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4470 4471 subs(tmp0, len, 384); 4472 mvnw(crc, crc); 4473 br(Assembler::GE, CRC_by128_pre); 4474 BIND(CRC_less128); 4475 subs(len, len, 32); 4476 br(Assembler::GE, CRC_by32_loop); 4477 BIND(CRC_less32); 4478 adds(len, len, 32 - 4); 4479 br(Assembler::GE, CRC_by4_loop); 4480 adds(len, len, 4); 4481 br(Assembler::GT, CRC_by1_loop); 4482 b(L_exit); 4483 4484 BIND(CRC_by32_loop); 4485 ldp(tmp0, tmp1, Address(buf)); 4486 crc32x(crc, crc, tmp0); 4487 ldp(tmp2, tmp3, Address(buf, 16)); 4488 crc32x(crc, crc, tmp1); 4489 add(buf, buf, 32); 4490 crc32x(crc, crc, tmp2); 4491 subs(len, len, 32); 4492 crc32x(crc, crc, tmp3); 4493 br(Assembler::GE, CRC_by32_loop); 4494 cmn(len, (u1)32); 4495 br(Assembler::NE, CRC_less32); 4496 b(L_exit); 4497 4498 BIND(CRC_by4_loop); 4499 ldrw(tmp0, Address(post(buf, 4))); 4500 subs(len, len, 4); 4501 crc32w(crc, crc, tmp0); 4502 br(Assembler::GE, CRC_by4_loop); 4503 adds(len, len, 4); 4504 br(Assembler::LE, L_exit); 4505 BIND(CRC_by1_loop); 4506 ldrb(tmp0, Address(post(buf, 1))); 4507 subs(len, len, 1); 4508 crc32b(crc, crc, tmp0); 4509 br(Assembler::GT, CRC_by1_loop); 4510 b(L_exit); 4511 4512 BIND(CRC_by128_pre); 4513 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4514 4*256*sizeof(juint) + 8*sizeof(juint)); 4515 mov(crc, 0); 4516 crc32x(crc, crc, tmp0); 4517 crc32x(crc, crc, tmp1); 4518 4519 cbnz(len, CRC_less128); 4520 4521 BIND(L_exit); 4522 mvnw(crc, crc); 4523 } 4524 4525 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4526 Register len, Register tmp0, Register tmp1, Register tmp2, 4527 Register tmp3) { 4528 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4529 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4530 4531 mvnw(crc, crc); 4532 4533 subs(len, len, 128); 4534 br(Assembler::GE, CRC_by64_pre); 4535 BIND(CRC_less64); 4536 adds(len, len, 128-32); 4537 br(Assembler::GE, CRC_by32_loop); 4538 BIND(CRC_less32); 4539 adds(len, len, 32-4); 4540 br(Assembler::GE, CRC_by4_loop); 4541 adds(len, len, 4); 4542 br(Assembler::GT, CRC_by1_loop); 4543 b(L_exit); 4544 4545 BIND(CRC_by32_loop); 4546 ldp(tmp0, tmp1, Address(post(buf, 16))); 4547 subs(len, len, 32); 4548 crc32x(crc, crc, tmp0); 4549 ldr(tmp2, Address(post(buf, 8))); 4550 crc32x(crc, crc, tmp1); 4551 ldr(tmp3, Address(post(buf, 8))); 4552 crc32x(crc, crc, tmp2); 4553 crc32x(crc, crc, tmp3); 4554 br(Assembler::GE, CRC_by32_loop); 4555 cmn(len, (u1)32); 4556 br(Assembler::NE, CRC_less32); 4557 b(L_exit); 4558 4559 BIND(CRC_by4_loop); 4560 ldrw(tmp0, Address(post(buf, 4))); 4561 subs(len, len, 4); 4562 crc32w(crc, crc, tmp0); 4563 br(Assembler::GE, CRC_by4_loop); 4564 adds(len, len, 4); 4565 br(Assembler::LE, L_exit); 4566 BIND(CRC_by1_loop); 4567 ldrb(tmp0, Address(post(buf, 1))); 4568 subs(len, len, 1); 4569 crc32b(crc, crc, tmp0); 4570 br(Assembler::GT, CRC_by1_loop); 4571 b(L_exit); 4572 4573 BIND(CRC_by64_pre); 4574 sub(buf, buf, 8); 4575 ldp(tmp0, tmp1, Address(buf, 8)); 4576 crc32x(crc, crc, tmp0); 4577 ldr(tmp2, Address(buf, 24)); 4578 crc32x(crc, crc, tmp1); 4579 ldr(tmp3, Address(buf, 32)); 4580 crc32x(crc, crc, tmp2); 4581 ldr(tmp0, Address(buf, 40)); 4582 crc32x(crc, crc, tmp3); 4583 ldr(tmp1, Address(buf, 48)); 4584 crc32x(crc, crc, tmp0); 4585 ldr(tmp2, Address(buf, 56)); 4586 crc32x(crc, crc, tmp1); 4587 ldr(tmp3, Address(pre(buf, 64))); 4588 4589 b(CRC_by64_loop); 4590 4591 align(CodeEntryAlignment); 4592 BIND(CRC_by64_loop); 4593 subs(len, len, 64); 4594 crc32x(crc, crc, tmp2); 4595 ldr(tmp0, Address(buf, 8)); 4596 crc32x(crc, crc, tmp3); 4597 ldr(tmp1, Address(buf, 16)); 4598 crc32x(crc, crc, tmp0); 4599 ldr(tmp2, Address(buf, 24)); 4600 crc32x(crc, crc, tmp1); 4601 ldr(tmp3, Address(buf, 32)); 4602 crc32x(crc, crc, tmp2); 4603 ldr(tmp0, Address(buf, 40)); 4604 crc32x(crc, crc, tmp3); 4605 ldr(tmp1, Address(buf, 48)); 4606 crc32x(crc, crc, tmp0); 4607 ldr(tmp2, Address(buf, 56)); 4608 crc32x(crc, crc, tmp1); 4609 ldr(tmp3, Address(pre(buf, 64))); 4610 br(Assembler::GE, CRC_by64_loop); 4611 4612 // post-loop 4613 crc32x(crc, crc, tmp2); 4614 crc32x(crc, crc, tmp3); 4615 4616 sub(len, len, 64); 4617 add(buf, buf, 8); 4618 cmn(len, (u1)128); 4619 br(Assembler::NE, CRC_less64); 4620 BIND(L_exit); 4621 mvnw(crc, crc); 4622 } 4623 4624 /** 4625 * @param crc register containing existing CRC (32-bit) 4626 * @param buf register pointing to input byte buffer (byte*) 4627 * @param len register containing number of bytes 4628 * @param table register that will contain address of CRC table 4629 * @param tmp scratch register 4630 */ 4631 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4632 Register table0, Register table1, Register table2, Register table3, 4633 Register tmp, Register tmp2, Register tmp3) { 4634 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4635 4636 if (UseCryptoPmullForCRC32) { 4637 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4638 return; 4639 } 4640 4641 if (UseCRC32) { 4642 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4643 return; 4644 } 4645 4646 mvnw(crc, crc); 4647 4648 { 4649 uint64_t offset; 4650 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4651 add(table0, table0, offset); 4652 } 4653 add(table1, table0, 1*256*sizeof(juint)); 4654 add(table2, table0, 2*256*sizeof(juint)); 4655 add(table3, table0, 3*256*sizeof(juint)); 4656 4657 { // Neon code start 4658 cmp(len, (u1)64); 4659 br(Assembler::LT, L_by16); 4660 eor(v16, T16B, v16, v16); 4661 4662 Label L_fold; 4663 4664 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4665 4666 ld1(v0, v1, T2D, post(buf, 32)); 4667 ld1r(v4, T2D, post(tmp, 8)); 4668 ld1r(v5, T2D, post(tmp, 8)); 4669 ld1r(v6, T2D, post(tmp, 8)); 4670 ld1r(v7, T2D, post(tmp, 8)); 4671 mov(v16, S, 0, crc); 4672 4673 eor(v0, T16B, v0, v16); 4674 sub(len, len, 64); 4675 4676 BIND(L_fold); 4677 pmull(v22, T8H, v0, v5, T8B); 4678 pmull(v20, T8H, v0, v7, T8B); 4679 pmull(v23, T8H, v0, v4, T8B); 4680 pmull(v21, T8H, v0, v6, T8B); 4681 4682 pmull2(v18, T8H, v0, v5, T16B); 4683 pmull2(v16, T8H, v0, v7, T16B); 4684 pmull2(v19, T8H, v0, v4, T16B); 4685 pmull2(v17, T8H, v0, v6, T16B); 4686 4687 uzp1(v24, T8H, v20, v22); 4688 uzp2(v25, T8H, v20, v22); 4689 eor(v20, T16B, v24, v25); 4690 4691 uzp1(v26, T8H, v16, v18); 4692 uzp2(v27, T8H, v16, v18); 4693 eor(v16, T16B, v26, v27); 4694 4695 ushll2(v22, T4S, v20, T8H, 8); 4696 ushll(v20, T4S, v20, T4H, 8); 4697 4698 ushll2(v18, T4S, v16, T8H, 8); 4699 ushll(v16, T4S, v16, T4H, 8); 4700 4701 eor(v22, T16B, v23, v22); 4702 eor(v18, T16B, v19, v18); 4703 eor(v20, T16B, v21, v20); 4704 eor(v16, T16B, v17, v16); 4705 4706 uzp1(v17, T2D, v16, v20); 4707 uzp2(v21, T2D, v16, v20); 4708 eor(v17, T16B, v17, v21); 4709 4710 ushll2(v20, T2D, v17, T4S, 16); 4711 ushll(v16, T2D, v17, T2S, 16); 4712 4713 eor(v20, T16B, v20, v22); 4714 eor(v16, T16B, v16, v18); 4715 4716 uzp1(v17, T2D, v20, v16); 4717 uzp2(v21, T2D, v20, v16); 4718 eor(v28, T16B, v17, v21); 4719 4720 pmull(v22, T8H, v1, v5, T8B); 4721 pmull(v20, T8H, v1, v7, T8B); 4722 pmull(v23, T8H, v1, v4, T8B); 4723 pmull(v21, T8H, v1, v6, T8B); 4724 4725 pmull2(v18, T8H, v1, v5, T16B); 4726 pmull2(v16, T8H, v1, v7, T16B); 4727 pmull2(v19, T8H, v1, v4, T16B); 4728 pmull2(v17, T8H, v1, v6, T16B); 4729 4730 ld1(v0, v1, T2D, post(buf, 32)); 4731 4732 uzp1(v24, T8H, v20, v22); 4733 uzp2(v25, T8H, v20, v22); 4734 eor(v20, T16B, v24, v25); 4735 4736 uzp1(v26, T8H, v16, v18); 4737 uzp2(v27, T8H, v16, v18); 4738 eor(v16, T16B, v26, v27); 4739 4740 ushll2(v22, T4S, v20, T8H, 8); 4741 ushll(v20, T4S, v20, T4H, 8); 4742 4743 ushll2(v18, T4S, v16, T8H, 8); 4744 ushll(v16, T4S, v16, T4H, 8); 4745 4746 eor(v22, T16B, v23, v22); 4747 eor(v18, T16B, v19, v18); 4748 eor(v20, T16B, v21, v20); 4749 eor(v16, T16B, v17, v16); 4750 4751 uzp1(v17, T2D, v16, v20); 4752 uzp2(v21, T2D, v16, v20); 4753 eor(v16, T16B, v17, v21); 4754 4755 ushll2(v20, T2D, v16, T4S, 16); 4756 ushll(v16, T2D, v16, T2S, 16); 4757 4758 eor(v20, T16B, v22, v20); 4759 eor(v16, T16B, v16, v18); 4760 4761 uzp1(v17, T2D, v20, v16); 4762 uzp2(v21, T2D, v20, v16); 4763 eor(v20, T16B, v17, v21); 4764 4765 shl(v16, T2D, v28, 1); 4766 shl(v17, T2D, v20, 1); 4767 4768 eor(v0, T16B, v0, v16); 4769 eor(v1, T16B, v1, v17); 4770 4771 subs(len, len, 32); 4772 br(Assembler::GE, L_fold); 4773 4774 mov(crc, 0); 4775 mov(tmp, v0, D, 0); 4776 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4777 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4778 mov(tmp, v0, D, 1); 4779 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4780 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4781 mov(tmp, v1, D, 0); 4782 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4783 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4784 mov(tmp, v1, D, 1); 4785 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4786 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4787 4788 add(len, len, 32); 4789 } // Neon code end 4790 4791 BIND(L_by16); 4792 subs(len, len, 16); 4793 br(Assembler::GE, L_by16_loop); 4794 adds(len, len, 16-4); 4795 br(Assembler::GE, L_by4_loop); 4796 adds(len, len, 4); 4797 br(Assembler::GT, L_by1_loop); 4798 b(L_exit); 4799 4800 BIND(L_by4_loop); 4801 ldrw(tmp, Address(post(buf, 4))); 4802 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4803 subs(len, len, 4); 4804 br(Assembler::GE, L_by4_loop); 4805 adds(len, len, 4); 4806 br(Assembler::LE, L_exit); 4807 BIND(L_by1_loop); 4808 subs(len, len, 1); 4809 ldrb(tmp, Address(post(buf, 1))); 4810 update_byte_crc32(crc, tmp, table0); 4811 br(Assembler::GT, L_by1_loop); 4812 b(L_exit); 4813 4814 align(CodeEntryAlignment); 4815 BIND(L_by16_loop); 4816 subs(len, len, 16); 4817 ldp(tmp, tmp3, Address(post(buf, 16))); 4818 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4819 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4820 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4821 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4822 br(Assembler::GE, L_by16_loop); 4823 adds(len, len, 16-4); 4824 br(Assembler::GE, L_by4_loop); 4825 adds(len, len, 4); 4826 br(Assembler::GT, L_by1_loop); 4827 BIND(L_exit); 4828 mvnw(crc, crc); 4829 } 4830 4831 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4832 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4833 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4834 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4835 4836 subs(tmp0, len, 384); 4837 br(Assembler::GE, CRC_by128_pre); 4838 BIND(CRC_less128); 4839 subs(len, len, 32); 4840 br(Assembler::GE, CRC_by32_loop); 4841 BIND(CRC_less32); 4842 adds(len, len, 32 - 4); 4843 br(Assembler::GE, CRC_by4_loop); 4844 adds(len, len, 4); 4845 br(Assembler::GT, CRC_by1_loop); 4846 b(L_exit); 4847 4848 BIND(CRC_by32_loop); 4849 ldp(tmp0, tmp1, Address(buf)); 4850 crc32cx(crc, crc, tmp0); 4851 ldr(tmp2, Address(buf, 16)); 4852 crc32cx(crc, crc, tmp1); 4853 ldr(tmp3, Address(buf, 24)); 4854 crc32cx(crc, crc, tmp2); 4855 add(buf, buf, 32); 4856 subs(len, len, 32); 4857 crc32cx(crc, crc, tmp3); 4858 br(Assembler::GE, CRC_by32_loop); 4859 cmn(len, (u1)32); 4860 br(Assembler::NE, CRC_less32); 4861 b(L_exit); 4862 4863 BIND(CRC_by4_loop); 4864 ldrw(tmp0, Address(post(buf, 4))); 4865 subs(len, len, 4); 4866 crc32cw(crc, crc, tmp0); 4867 br(Assembler::GE, CRC_by4_loop); 4868 adds(len, len, 4); 4869 br(Assembler::LE, L_exit); 4870 BIND(CRC_by1_loop); 4871 ldrb(tmp0, Address(post(buf, 1))); 4872 subs(len, len, 1); 4873 crc32cb(crc, crc, tmp0); 4874 br(Assembler::GT, CRC_by1_loop); 4875 b(L_exit); 4876 4877 BIND(CRC_by128_pre); 4878 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4879 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4880 mov(crc, 0); 4881 crc32cx(crc, crc, tmp0); 4882 crc32cx(crc, crc, tmp1); 4883 4884 cbnz(len, CRC_less128); 4885 4886 BIND(L_exit); 4887 } 4888 4889 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4890 Register len, Register tmp0, Register tmp1, Register tmp2, 4891 Register tmp3) { 4892 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4893 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4894 4895 subs(len, len, 128); 4896 br(Assembler::GE, CRC_by64_pre); 4897 BIND(CRC_less64); 4898 adds(len, len, 128-32); 4899 br(Assembler::GE, CRC_by32_loop); 4900 BIND(CRC_less32); 4901 adds(len, len, 32-4); 4902 br(Assembler::GE, CRC_by4_loop); 4903 adds(len, len, 4); 4904 br(Assembler::GT, CRC_by1_loop); 4905 b(L_exit); 4906 4907 BIND(CRC_by32_loop); 4908 ldp(tmp0, tmp1, Address(post(buf, 16))); 4909 subs(len, len, 32); 4910 crc32cx(crc, crc, tmp0); 4911 ldr(tmp2, Address(post(buf, 8))); 4912 crc32cx(crc, crc, tmp1); 4913 ldr(tmp3, Address(post(buf, 8))); 4914 crc32cx(crc, crc, tmp2); 4915 crc32cx(crc, crc, tmp3); 4916 br(Assembler::GE, CRC_by32_loop); 4917 cmn(len, (u1)32); 4918 br(Assembler::NE, CRC_less32); 4919 b(L_exit); 4920 4921 BIND(CRC_by4_loop); 4922 ldrw(tmp0, Address(post(buf, 4))); 4923 subs(len, len, 4); 4924 crc32cw(crc, crc, tmp0); 4925 br(Assembler::GE, CRC_by4_loop); 4926 adds(len, len, 4); 4927 br(Assembler::LE, L_exit); 4928 BIND(CRC_by1_loop); 4929 ldrb(tmp0, Address(post(buf, 1))); 4930 subs(len, len, 1); 4931 crc32cb(crc, crc, tmp0); 4932 br(Assembler::GT, CRC_by1_loop); 4933 b(L_exit); 4934 4935 BIND(CRC_by64_pre); 4936 sub(buf, buf, 8); 4937 ldp(tmp0, tmp1, Address(buf, 8)); 4938 crc32cx(crc, crc, tmp0); 4939 ldr(tmp2, Address(buf, 24)); 4940 crc32cx(crc, crc, tmp1); 4941 ldr(tmp3, Address(buf, 32)); 4942 crc32cx(crc, crc, tmp2); 4943 ldr(tmp0, Address(buf, 40)); 4944 crc32cx(crc, crc, tmp3); 4945 ldr(tmp1, Address(buf, 48)); 4946 crc32cx(crc, crc, tmp0); 4947 ldr(tmp2, Address(buf, 56)); 4948 crc32cx(crc, crc, tmp1); 4949 ldr(tmp3, Address(pre(buf, 64))); 4950 4951 b(CRC_by64_loop); 4952 4953 align(CodeEntryAlignment); 4954 BIND(CRC_by64_loop); 4955 subs(len, len, 64); 4956 crc32cx(crc, crc, tmp2); 4957 ldr(tmp0, Address(buf, 8)); 4958 crc32cx(crc, crc, tmp3); 4959 ldr(tmp1, Address(buf, 16)); 4960 crc32cx(crc, crc, tmp0); 4961 ldr(tmp2, Address(buf, 24)); 4962 crc32cx(crc, crc, tmp1); 4963 ldr(tmp3, Address(buf, 32)); 4964 crc32cx(crc, crc, tmp2); 4965 ldr(tmp0, Address(buf, 40)); 4966 crc32cx(crc, crc, tmp3); 4967 ldr(tmp1, Address(buf, 48)); 4968 crc32cx(crc, crc, tmp0); 4969 ldr(tmp2, Address(buf, 56)); 4970 crc32cx(crc, crc, tmp1); 4971 ldr(tmp3, Address(pre(buf, 64))); 4972 br(Assembler::GE, CRC_by64_loop); 4973 4974 // post-loop 4975 crc32cx(crc, crc, tmp2); 4976 crc32cx(crc, crc, tmp3); 4977 4978 sub(len, len, 64); 4979 add(buf, buf, 8); 4980 cmn(len, (u1)128); 4981 br(Assembler::NE, CRC_less64); 4982 BIND(L_exit); 4983 } 4984 4985 /** 4986 * @param crc register containing existing CRC (32-bit) 4987 * @param buf register pointing to input byte buffer (byte*) 4988 * @param len register containing number of bytes 4989 * @param table register that will contain address of CRC table 4990 * @param tmp scratch register 4991 */ 4992 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4993 Register table0, Register table1, Register table2, Register table3, 4994 Register tmp, Register tmp2, Register tmp3) { 4995 if (UseCryptoPmullForCRC32) { 4996 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4997 } else { 4998 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4999 } 5000 } 5001 5002 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 5003 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 5004 Label CRC_by128_loop; 5005 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 5006 5007 sub(len, len, 256); 5008 Register table = tmp0; 5009 { 5010 uint64_t offset; 5011 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 5012 add(table, table, offset); 5013 } 5014 add(table, table, table_offset); 5015 5016 // Registers v0..v7 are used as data registers. 5017 // Registers v16..v31 are used as tmp registers. 5018 sub(buf, buf, 0x10); 5019 ldrq(v0, Address(buf, 0x10)); 5020 ldrq(v1, Address(buf, 0x20)); 5021 ldrq(v2, Address(buf, 0x30)); 5022 ldrq(v3, Address(buf, 0x40)); 5023 ldrq(v4, Address(buf, 0x50)); 5024 ldrq(v5, Address(buf, 0x60)); 5025 ldrq(v6, Address(buf, 0x70)); 5026 ldrq(v7, Address(pre(buf, 0x80))); 5027 5028 movi(v31, T4S, 0); 5029 mov(v31, S, 0, crc); 5030 eor(v0, T16B, v0, v31); 5031 5032 // Register v16 contains constants from the crc table. 5033 ldrq(v16, Address(table)); 5034 b(CRC_by128_loop); 5035 5036 align(OptoLoopAlignment); 5037 BIND(CRC_by128_loop); 5038 pmull (v17, T1Q, v0, v16, T1D); 5039 pmull2(v18, T1Q, v0, v16, T2D); 5040 ldrq(v0, Address(buf, 0x10)); 5041 eor3(v0, T16B, v17, v18, v0); 5042 5043 pmull (v19, T1Q, v1, v16, T1D); 5044 pmull2(v20, T1Q, v1, v16, T2D); 5045 ldrq(v1, Address(buf, 0x20)); 5046 eor3(v1, T16B, v19, v20, v1); 5047 5048 pmull (v21, T1Q, v2, v16, T1D); 5049 pmull2(v22, T1Q, v2, v16, T2D); 5050 ldrq(v2, Address(buf, 0x30)); 5051 eor3(v2, T16B, v21, v22, v2); 5052 5053 pmull (v23, T1Q, v3, v16, T1D); 5054 pmull2(v24, T1Q, v3, v16, T2D); 5055 ldrq(v3, Address(buf, 0x40)); 5056 eor3(v3, T16B, v23, v24, v3); 5057 5058 pmull (v25, T1Q, v4, v16, T1D); 5059 pmull2(v26, T1Q, v4, v16, T2D); 5060 ldrq(v4, Address(buf, 0x50)); 5061 eor3(v4, T16B, v25, v26, v4); 5062 5063 pmull (v27, T1Q, v5, v16, T1D); 5064 pmull2(v28, T1Q, v5, v16, T2D); 5065 ldrq(v5, Address(buf, 0x60)); 5066 eor3(v5, T16B, v27, v28, v5); 5067 5068 pmull (v29, T1Q, v6, v16, T1D); 5069 pmull2(v30, T1Q, v6, v16, T2D); 5070 ldrq(v6, Address(buf, 0x70)); 5071 eor3(v6, T16B, v29, v30, v6); 5072 5073 // Reuse registers v23, v24. 5074 // Using them won't block the first instruction of the next iteration. 5075 pmull (v23, T1Q, v7, v16, T1D); 5076 pmull2(v24, T1Q, v7, v16, T2D); 5077 ldrq(v7, Address(pre(buf, 0x80))); 5078 eor3(v7, T16B, v23, v24, v7); 5079 5080 subs(len, len, 0x80); 5081 br(Assembler::GE, CRC_by128_loop); 5082 5083 // fold into 512 bits 5084 // Use v31 for constants because v16 can be still in use. 5085 ldrq(v31, Address(table, 0x10)); 5086 5087 pmull (v17, T1Q, v0, v31, T1D); 5088 pmull2(v18, T1Q, v0, v31, T2D); 5089 eor3(v0, T16B, v17, v18, v4); 5090 5091 pmull (v19, T1Q, v1, v31, T1D); 5092 pmull2(v20, T1Q, v1, v31, T2D); 5093 eor3(v1, T16B, v19, v20, v5); 5094 5095 pmull (v21, T1Q, v2, v31, T1D); 5096 pmull2(v22, T1Q, v2, v31, T2D); 5097 eor3(v2, T16B, v21, v22, v6); 5098 5099 pmull (v23, T1Q, v3, v31, T1D); 5100 pmull2(v24, T1Q, v3, v31, T2D); 5101 eor3(v3, T16B, v23, v24, v7); 5102 5103 // fold into 128 bits 5104 // Use v17 for constants because v31 can be still in use. 5105 ldrq(v17, Address(table, 0x20)); 5106 pmull (v25, T1Q, v0, v17, T1D); 5107 pmull2(v26, T1Q, v0, v17, T2D); 5108 eor3(v3, T16B, v3, v25, v26); 5109 5110 // Use v18 for constants because v17 can be still in use. 5111 ldrq(v18, Address(table, 0x30)); 5112 pmull (v27, T1Q, v1, v18, T1D); 5113 pmull2(v28, T1Q, v1, v18, T2D); 5114 eor3(v3, T16B, v3, v27, v28); 5115 5116 // Use v19 for constants because v18 can be still in use. 5117 ldrq(v19, Address(table, 0x40)); 5118 pmull (v29, T1Q, v2, v19, T1D); 5119 pmull2(v30, T1Q, v2, v19, T2D); 5120 eor3(v0, T16B, v3, v29, v30); 5121 5122 add(len, len, 0x80); 5123 add(buf, buf, 0x10); 5124 5125 mov(tmp0, v0, D, 0); 5126 mov(tmp1, v0, D, 1); 5127 } 5128 5129 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5130 Address adr; 5131 switch(dst.getMode()) { 5132 case Address::base_plus_offset: 5133 // This is the expected mode, although we allow all the other 5134 // forms below. 5135 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5136 break; 5137 default: 5138 lea(rscratch2, dst); 5139 adr = Address(rscratch2); 5140 break; 5141 } 5142 ldr(rscratch1, adr); 5143 add(rscratch1, rscratch1, src); 5144 str(rscratch1, adr); 5145 } 5146 5147 void MacroAssembler::cmpptr(Register src1, Address src2) { 5148 uint64_t offset; 5149 adrp(rscratch1, src2, offset); 5150 ldr(rscratch1, Address(rscratch1, offset)); 5151 cmp(src1, rscratch1); 5152 } 5153 5154 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5155 cmp(obj1, obj2); 5156 } 5157 5158 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5159 load_method_holder(rresult, rmethod); 5160 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5161 } 5162 5163 void MacroAssembler::load_method_holder(Register holder, Register method) { 5164 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5165 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5166 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5167 } 5168 5169 void MacroAssembler::load_metadata(Register dst, Register src) { 5170 if (UseCompressedClassPointers) { 5171 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5172 } else { 5173 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5174 } 5175 } 5176 5177 void MacroAssembler::load_klass(Register dst, Register src) { 5178 if (UseCompressedClassPointers) { 5179 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5180 decode_klass_not_null(dst); 5181 } else { 5182 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5183 } 5184 } 5185 5186 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5187 if (RestoreMXCSROnJNICalls) { 5188 Label OK; 5189 get_fpcr(tmp1); 5190 mov(tmp2, tmp1); 5191 // Set FPCR to the state we need. We do want Round to Nearest. We 5192 // don't want non-IEEE rounding modes or floating-point traps. 5193 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5194 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5195 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5196 eor(tmp2, tmp1, tmp2); 5197 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5198 set_fpcr(tmp1); 5199 bind(OK); 5200 } 5201 } 5202 5203 // ((OopHandle)result).resolve(); 5204 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5205 // OopHandle::resolve is an indirection. 5206 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5207 } 5208 5209 // ((WeakHandle)result).resolve(); 5210 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5211 assert_different_registers(result, tmp1, tmp2); 5212 Label resolved; 5213 5214 // A null weak handle resolves to null. 5215 cbz(result, resolved); 5216 5217 // Only 64 bit platforms support GCs that require a tmp register 5218 // WeakHandle::resolve is an indirection like jweak. 5219 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5220 result, Address(result), tmp1, tmp2); 5221 bind(resolved); 5222 } 5223 5224 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5225 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5226 ldr(dst, Address(rmethod, Method::const_offset())); 5227 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5228 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5229 ldr(dst, Address(dst, mirror_offset)); 5230 resolve_oop_handle(dst, tmp1, tmp2); 5231 } 5232 5233 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 5234 if (UseCompressedClassPointers) { 5235 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 5236 if (CompressedKlassPointers::base() == nullptr) { 5237 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 5238 return; 5239 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5240 && CompressedKlassPointers::shift() == 0) { 5241 // Only the bottom 32 bits matter 5242 cmpw(trial_klass, tmp); 5243 return; 5244 } 5245 decode_klass_not_null(tmp); 5246 } else { 5247 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 5248 } 5249 cmp(trial_klass, tmp); 5250 } 5251 5252 void MacroAssembler::load_prototype_header(Register dst, Register src) { 5253 load_klass(dst, src); 5254 ldr(dst, Address(dst, Klass::prototype_header_offset())); 5255 } 5256 5257 void MacroAssembler::store_klass(Register dst, Register src) { 5258 // FIXME: Should this be a store release? concurrent gcs assumes 5259 // klass length is valid if klass field is not null. 5260 if (UseCompressedClassPointers) { 5261 encode_klass_not_null(src); 5262 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5263 } else { 5264 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5265 } 5266 } 5267 5268 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5269 if (UseCompressedClassPointers) { 5270 // Store to klass gap in destination 5271 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5272 } 5273 } 5274 5275 // Algorithm must match CompressedOops::encode. 5276 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5277 #ifdef ASSERT 5278 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5279 #endif 5280 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5281 if (CompressedOops::base() == nullptr) { 5282 if (CompressedOops::shift() != 0) { 5283 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5284 lsr(d, s, LogMinObjAlignmentInBytes); 5285 } else { 5286 mov(d, s); 5287 } 5288 } else { 5289 subs(d, s, rheapbase); 5290 csel(d, d, zr, Assembler::HS); 5291 lsr(d, d, LogMinObjAlignmentInBytes); 5292 5293 /* Old algorithm: is this any worse? 5294 Label nonnull; 5295 cbnz(r, nonnull); 5296 sub(r, r, rheapbase); 5297 bind(nonnull); 5298 lsr(r, r, LogMinObjAlignmentInBytes); 5299 */ 5300 } 5301 } 5302 5303 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5304 #ifdef ASSERT 5305 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5306 if (CheckCompressedOops) { 5307 Label ok; 5308 cbnz(r, ok); 5309 stop("null oop passed to encode_heap_oop_not_null"); 5310 bind(ok); 5311 } 5312 #endif 5313 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5314 if (CompressedOops::base() != nullptr) { 5315 sub(r, r, rheapbase); 5316 } 5317 if (CompressedOops::shift() != 0) { 5318 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5319 lsr(r, r, LogMinObjAlignmentInBytes); 5320 } 5321 } 5322 5323 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5324 #ifdef ASSERT 5325 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5326 if (CheckCompressedOops) { 5327 Label ok; 5328 cbnz(src, ok); 5329 stop("null oop passed to encode_heap_oop_not_null2"); 5330 bind(ok); 5331 } 5332 #endif 5333 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5334 5335 Register data = src; 5336 if (CompressedOops::base() != nullptr) { 5337 sub(dst, src, rheapbase); 5338 data = dst; 5339 } 5340 if (CompressedOops::shift() != 0) { 5341 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5342 lsr(dst, data, LogMinObjAlignmentInBytes); 5343 data = dst; 5344 } 5345 if (data == src) 5346 mov(dst, src); 5347 } 5348 5349 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5350 #ifdef ASSERT 5351 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5352 #endif 5353 if (CompressedOops::base() == nullptr) { 5354 if (CompressedOops::shift() != 0) { 5355 lsl(d, s, CompressedOops::shift()); 5356 } else if (d != s) { 5357 mov(d, s); 5358 } 5359 } else { 5360 Label done; 5361 if (d != s) 5362 mov(d, s); 5363 cbz(s, done); 5364 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5365 bind(done); 5366 } 5367 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5368 } 5369 5370 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5371 assert (UseCompressedOops, "should only be used for compressed headers"); 5372 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5373 // Cannot assert, unverified entry point counts instructions (see .ad file) 5374 // vtableStubs also counts instructions in pd_code_size_limit. 5375 // Also do not verify_oop as this is called by verify_oop. 5376 if (CompressedOops::shift() != 0) { 5377 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5378 if (CompressedOops::base() != nullptr) { 5379 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5380 } else { 5381 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5382 } 5383 } else { 5384 assert (CompressedOops::base() == nullptr, "sanity"); 5385 } 5386 } 5387 5388 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5389 assert (UseCompressedOops, "should only be used for compressed headers"); 5390 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5391 // Cannot assert, unverified entry point counts instructions (see .ad file) 5392 // vtableStubs also counts instructions in pd_code_size_limit. 5393 // Also do not verify_oop as this is called by verify_oop. 5394 if (CompressedOops::shift() != 0) { 5395 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5396 if (CompressedOops::base() != nullptr) { 5397 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5398 } else { 5399 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5400 } 5401 } else { 5402 assert (CompressedOops::base() == nullptr, "sanity"); 5403 if (dst != src) { 5404 mov(dst, src); 5405 } 5406 } 5407 } 5408 5409 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5410 5411 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5412 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5413 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5414 5415 if (_klass_decode_mode != KlassDecodeNone) { 5416 return _klass_decode_mode; 5417 } 5418 5419 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 5420 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 5421 5422 if (CompressedKlassPointers::base() == nullptr) { 5423 return (_klass_decode_mode = KlassDecodeZero); 5424 } 5425 5426 if (operand_valid_for_logical_immediate( 5427 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 5428 const size_t range = CompressedKlassPointers::klass_range_end() - CompressedKlassPointers::base(); 5429 const uint64_t range_mask = (1ULL << log2i(range)) - 1; 5430 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 5431 return (_klass_decode_mode = KlassDecodeXor); 5432 } 5433 } 5434 5435 const uint64_t shifted_base = 5436 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5437 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 5438 "compressed class base bad alignment"); 5439 5440 return (_klass_decode_mode = KlassDecodeMovk); 5441 } 5442 5443 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5444 switch (klass_decode_mode()) { 5445 case KlassDecodeZero: 5446 if (CompressedKlassPointers::shift() != 0) { 5447 lsr(dst, src, LogKlassAlignmentInBytes); 5448 } else { 5449 if (dst != src) mov(dst, src); 5450 } 5451 break; 5452 5453 case KlassDecodeXor: 5454 if (CompressedKlassPointers::shift() != 0) { 5455 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5456 lsr(dst, dst, LogKlassAlignmentInBytes); 5457 } else { 5458 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5459 } 5460 break; 5461 5462 case KlassDecodeMovk: 5463 if (CompressedKlassPointers::shift() != 0) { 5464 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 5465 } else { 5466 movw(dst, src); 5467 } 5468 break; 5469 5470 case KlassDecodeNone: 5471 ShouldNotReachHere(); 5472 break; 5473 } 5474 } 5475 5476 void MacroAssembler::encode_klass_not_null(Register r) { 5477 encode_klass_not_null(r, r); 5478 } 5479 5480 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5481 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5482 5483 switch (klass_decode_mode()) { 5484 case KlassDecodeZero: 5485 if (CompressedKlassPointers::shift() != 0) { 5486 lsl(dst, src, LogKlassAlignmentInBytes); 5487 } else { 5488 if (dst != src) mov(dst, src); 5489 } 5490 break; 5491 5492 case KlassDecodeXor: 5493 if (CompressedKlassPointers::shift() != 0) { 5494 lsl(dst, src, LogKlassAlignmentInBytes); 5495 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5496 } else { 5497 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5498 } 5499 break; 5500 5501 case KlassDecodeMovk: { 5502 const uint64_t shifted_base = 5503 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5504 5505 if (dst != src) movw(dst, src); 5506 movk(dst, shifted_base >> 32, 32); 5507 5508 if (CompressedKlassPointers::shift() != 0) { 5509 lsl(dst, dst, LogKlassAlignmentInBytes); 5510 } 5511 5512 break; 5513 } 5514 5515 case KlassDecodeNone: 5516 ShouldNotReachHere(); 5517 break; 5518 } 5519 } 5520 5521 void MacroAssembler::decode_klass_not_null(Register r) { 5522 decode_klass_not_null(r, r); 5523 } 5524 5525 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5526 #ifdef ASSERT 5527 { 5528 ThreadInVMfromUnknown tiv; 5529 assert (UseCompressedOops, "should only be used for compressed oops"); 5530 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5531 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5532 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5533 } 5534 #endif 5535 int oop_index = oop_recorder()->find_index(obj); 5536 InstructionMark im(this); 5537 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5538 code_section()->relocate(inst_mark(), rspec); 5539 movz(dst, 0xDEAD, 16); 5540 movk(dst, 0xBEEF); 5541 } 5542 5543 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5544 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5545 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5546 int index = oop_recorder()->find_index(k); 5547 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5548 5549 InstructionMark im(this); 5550 RelocationHolder rspec = metadata_Relocation::spec(index); 5551 code_section()->relocate(inst_mark(), rspec); 5552 narrowKlass nk = CompressedKlassPointers::encode(k); 5553 movz(dst, (nk >> 16), 16); 5554 movk(dst, nk & 0xffff); 5555 } 5556 5557 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5558 Register dst, Address src, 5559 Register tmp1, Register tmp2) { 5560 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5561 decorators = AccessInternal::decorator_fixup(decorators, type); 5562 bool as_raw = (decorators & AS_RAW) != 0; 5563 if (as_raw) { 5564 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5565 } else { 5566 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5567 } 5568 } 5569 5570 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5571 Address dst, Register val, 5572 Register tmp1, Register tmp2, Register tmp3) { 5573 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5574 decorators = AccessInternal::decorator_fixup(decorators, type); 5575 bool as_raw = (decorators & AS_RAW) != 0; 5576 if (as_raw) { 5577 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5578 } else { 5579 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5580 } 5581 } 5582 5583 void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst, 5584 Register inline_klass) { 5585 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5586 bs->value_copy(this, decorators, src, dst, inline_klass); 5587 } 5588 5589 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5590 Register inline_layout_info) { 5591 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5592 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5593 } 5594 5595 void MacroAssembler::first_field_offset(Register inline_klass, Register offset) { 5596 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5597 ldrw(offset, Address(offset, InlineKlass::first_field_offset_offset())); 5598 } 5599 5600 void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) { 5601 // ((address) (void*) o) + vk->first_field_offset(); 5602 Register offset = (data == oop) ? rscratch1 : data; 5603 first_field_offset(inline_klass, offset); 5604 if (data == oop) { 5605 add(data, data, offset); 5606 } else { 5607 lea(data, Address(oop, offset)); 5608 } 5609 } 5610 5611 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5612 Register index, Register data) { 5613 assert_different_registers(array, array_klass, index); 5614 assert_different_registers(rscratch1, array, index); 5615 5616 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5617 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 5618 5619 // Klass::layout_helper_log2_element_size(lh) 5620 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5621 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 5622 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 5623 lslv(index, index, rscratch1); 5624 5625 add(data, array, index); 5626 add(data, data, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT)); 5627 } 5628 5629 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5630 Register tmp2, DecoratorSet decorators) { 5631 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5632 } 5633 5634 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5635 Register tmp2, DecoratorSet decorators) { 5636 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5637 } 5638 5639 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5640 Register tmp2, Register tmp3, DecoratorSet decorators) { 5641 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5642 } 5643 5644 // Used for storing nulls. 5645 void MacroAssembler::store_heap_oop_null(Address dst) { 5646 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5647 } 5648 5649 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5650 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5651 int index = oop_recorder()->allocate_metadata_index(obj); 5652 RelocationHolder rspec = metadata_Relocation::spec(index); 5653 return Address((address)obj, rspec); 5654 } 5655 5656 // Move an oop into a register. 5657 void MacroAssembler::movoop(Register dst, jobject obj) { 5658 int oop_index; 5659 if (obj == nullptr) { 5660 oop_index = oop_recorder()->allocate_oop_index(obj); 5661 } else { 5662 #ifdef ASSERT 5663 { 5664 ThreadInVMfromUnknown tiv; 5665 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5666 } 5667 #endif 5668 oop_index = oop_recorder()->find_index(obj); 5669 } 5670 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5671 5672 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5673 mov(dst, Address((address)obj, rspec)); 5674 } else { 5675 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5676 ldr_constant(dst, Address(dummy, rspec)); 5677 } 5678 5679 } 5680 5681 // Move a metadata address into a register. 5682 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5683 int oop_index; 5684 if (obj == nullptr) { 5685 oop_index = oop_recorder()->allocate_metadata_index(obj); 5686 } else { 5687 oop_index = oop_recorder()->find_index(obj); 5688 } 5689 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5690 mov(dst, Address((address)obj, rspec)); 5691 } 5692 5693 Address MacroAssembler::constant_oop_address(jobject obj) { 5694 #ifdef ASSERT 5695 { 5696 ThreadInVMfromUnknown tiv; 5697 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5698 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5699 } 5700 #endif 5701 int oop_index = oop_recorder()->find_index(obj); 5702 return Address((address)obj, oop_Relocation::spec(oop_index)); 5703 } 5704 5705 // Object / value buffer allocation... 5706 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 5707 Register t1, Register t2, 5708 bool clear_fields, Label& alloc_failed) 5709 { 5710 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 5711 Register layout_size = t1; 5712 assert(new_obj == r0, "needs to be r0"); 5713 assert_different_registers(klass, new_obj, t1, t2); 5714 5715 // get instance_size in InstanceKlass (scaled to a count of bytes) 5716 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5717 // test to see if it is malformed in some way 5718 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5719 br(Assembler::NE, slow_case_no_pop); 5720 5721 // Allocate the instance: 5722 // If TLAB is enabled: 5723 // Try to allocate in the TLAB. 5724 // If fails, go to the slow path. 5725 // Initialize the allocation. 5726 // Exit. 5727 // 5728 // Go to slow path. 5729 5730 if (UseTLAB) { 5731 push(klass); 5732 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5733 if (ZeroTLAB || (!clear_fields)) { 5734 // the fields have been already cleared 5735 b(initialize_header); 5736 } else { 5737 // initialize both the header and fields 5738 b(initialize_object); 5739 } 5740 5741 if (clear_fields) { 5742 // The object is initialized before the header. If the object size is 5743 // zero, go directly to the header initialization. 5744 bind(initialize_object); 5745 subs(layout_size, layout_size, sizeof(oopDesc)); 5746 br(Assembler::EQ, initialize_header); 5747 5748 // Initialize topmost object field, divide size by 8, check if odd and 5749 // test if zero. 5750 5751 #ifdef ASSERT 5752 // make sure instance_size was multiple of 8 5753 Label L; 5754 tst(layout_size, 7); 5755 br(Assembler::EQ, L); 5756 stop("object size is not multiple of 8 - adjust this code"); 5757 bind(L); 5758 // must be > 0, no extra check needed here 5759 #endif 5760 5761 lsr(layout_size, layout_size, LogBytesPerLong); 5762 5763 // initialize remaining object fields: instance_size was a multiple of 8 5764 { 5765 Label loop; 5766 Register base = t2; 5767 5768 bind(loop); 5769 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5770 str(zr, Address(rscratch1, sizeof(oopDesc) - 1*oopSize)); 5771 subs(layout_size, layout_size, 1); 5772 br(Assembler::NE, loop); 5773 } 5774 } // clear_fields 5775 5776 // initialize object header only. 5777 bind(initialize_header); 5778 pop(klass); 5779 Register mark_word = t2; 5780 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5781 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes ())); 5782 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5783 mov(t2, klass); // preserve klass 5784 store_klass(new_obj, t2); // src klass reg is potentially compressed 5785 5786 // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ? 5787 5788 b(done); 5789 } 5790 5791 if (UseTLAB) { 5792 bind(slow_case); 5793 pop(klass); 5794 } 5795 bind(slow_case_no_pop); 5796 b(alloc_failed); 5797 5798 bind(done); 5799 } 5800 5801 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5802 void MacroAssembler::tlab_allocate(Register obj, 5803 Register var_size_in_bytes, 5804 int con_size_in_bytes, 5805 Register t1, 5806 Register t2, 5807 Label& slow_case) { 5808 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5809 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5810 } 5811 5812 void MacroAssembler::verify_tlab() { 5813 #ifdef ASSERT 5814 if (UseTLAB && VerifyOops) { 5815 Label next, ok; 5816 5817 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5818 5819 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5820 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5821 cmp(rscratch2, rscratch1); 5822 br(Assembler::HS, next); 5823 STOP("assert(top >= start)"); 5824 should_not_reach_here(); 5825 5826 bind(next); 5827 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5828 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5829 cmp(rscratch2, rscratch1); 5830 br(Assembler::HS, ok); 5831 STOP("assert(top <= end)"); 5832 should_not_reach_here(); 5833 5834 bind(ok); 5835 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5836 } 5837 #endif 5838 } 5839 5840 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 5841 inline_layout_info(holder_klass, index, inline_klass); 5842 ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 5843 } 5844 5845 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 5846 assert_different_registers(holder_klass, index, layout_info); 5847 InlineLayoutInfo array[2]; 5848 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 5849 if (is_power_of_2(size)) { 5850 lsl(index, index, log2i_exact(size)); // Scale index by power of 2 5851 } else { 5852 mov(layout_info, size); 5853 mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size 5854 } 5855 ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 5856 add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes()); 5857 lea(layout_info, Address(layout_info, index)); 5858 } 5859 5860 // Writes to stack successive pages until offset reached to check for 5861 // stack overflow + shadow pages. This clobbers tmp. 5862 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5863 assert_different_registers(tmp, size, rscratch1); 5864 mov(tmp, sp); 5865 // Bang stack for total size given plus shadow page size. 5866 // Bang one page at a time because large size can bang beyond yellow and 5867 // red zones. 5868 Label loop; 5869 mov(rscratch1, (int)os::vm_page_size()); 5870 bind(loop); 5871 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5872 subsw(size, size, rscratch1); 5873 str(size, Address(tmp)); 5874 br(Assembler::GT, loop); 5875 5876 // Bang down shadow pages too. 5877 // At this point, (tmp-0) is the last address touched, so don't 5878 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5879 // was post-decremented.) Skip this address by starting at i=1, and 5880 // touch a few more pages below. N.B. It is important to touch all 5881 // the way down to and including i=StackShadowPages. 5882 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5883 // this could be any sized move but this is can be a debugging crumb 5884 // so the bigger the better. 5885 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5886 str(size, Address(tmp)); 5887 } 5888 } 5889 5890 // Move the address of the polling page into dest. 5891 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5892 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5893 } 5894 5895 // Read the polling page. The address of the polling page must 5896 // already be in r. 5897 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5898 address mark; 5899 { 5900 InstructionMark im(this); 5901 code_section()->relocate(inst_mark(), rtype); 5902 ldrw(zr, Address(r, 0)); 5903 mark = inst_mark(); 5904 } 5905 verify_cross_modify_fence_not_required(); 5906 return mark; 5907 } 5908 5909 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5910 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5911 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5912 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5913 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5914 int64_t offset_low = dest_page - low_page; 5915 int64_t offset_high = dest_page - high_page; 5916 5917 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5918 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5919 5920 InstructionMark im(this); 5921 code_section()->relocate(inst_mark(), dest.rspec()); 5922 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5923 // the code cache so that if it is relocated we know it will still reach 5924 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5925 _adrp(reg1, dest.target()); 5926 } else { 5927 uint64_t target = (uint64_t)dest.target(); 5928 uint64_t adrp_target 5929 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5930 5931 _adrp(reg1, (address)adrp_target); 5932 movk(reg1, target >> 32, 32); 5933 } 5934 byte_offset = (uint64_t)dest.target() & 0xfff; 5935 } 5936 5937 void MacroAssembler::load_byte_map_base(Register reg) { 5938 CardTable::CardValue* byte_map_base = 5939 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5940 5941 // Strictly speaking the byte_map_base isn't an address at all, and it might 5942 // even be negative. It is thus materialised as a constant. 5943 mov(reg, (uint64_t)byte_map_base); 5944 } 5945 5946 void MacroAssembler::build_frame(int framesize) { 5947 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5948 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5949 protect_return_address(); 5950 if (framesize < ((1 << 9) + 2 * wordSize)) { 5951 sub(sp, sp, framesize); 5952 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5953 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5954 } else { 5955 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5956 if (PreserveFramePointer) mov(rfp, sp); 5957 if (framesize < ((1 << 12) + 2 * wordSize)) 5958 sub(sp, sp, framesize - 2 * wordSize); 5959 else { 5960 mov(rscratch1, framesize - 2 * wordSize); 5961 sub(sp, sp, rscratch1); 5962 } 5963 } 5964 verify_cross_modify_fence_not_required(); 5965 } 5966 5967 void MacroAssembler::remove_frame(int framesize) { 5968 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5969 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5970 if (framesize < ((1 << 9) + 2 * wordSize)) { 5971 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5972 add(sp, sp, framesize); 5973 } else { 5974 if (framesize < ((1 << 12) + 2 * wordSize)) 5975 add(sp, sp, framesize - 2 * wordSize); 5976 else { 5977 mov(rscratch1, framesize - 2 * wordSize); 5978 add(sp, sp, rscratch1); 5979 } 5980 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5981 } 5982 authenticate_return_address(); 5983 } 5984 5985 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 5986 if (needs_stack_repair) { 5987 // Remove the extension of the caller's frame used for inline type unpacking 5988 // 5989 // Right now the stack looks like this: 5990 // 5991 // | Arguments from caller | 5992 // |---------------------------| <-- caller's SP 5993 // | Saved LR #1 | 5994 // | Saved FP #1 | 5995 // |---------------------------| 5996 // | Extension space for | 5997 // | inline arg (un)packing | 5998 // |---------------------------| <-- start of this method's frame 5999 // | Saved LR #2 | 6000 // | Saved FP #2 | 6001 // |---------------------------| <-- FP 6002 // | sp_inc | 6003 // | method locals | 6004 // |---------------------------| <-- SP 6005 // 6006 // There are two copies of FP and LR on the stack. They will be identical 6007 // unless the caller has been deoptimized, in which case LR #1 will be patched 6008 // to point at the deopt blob, and LR #2 will still point into the old method. 6009 // 6010 // The sp_inc stack slot holds the total size of the frame including the 6011 // extension space minus two words for the saved FP and LR. 6012 6013 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 6014 6015 ldr(rscratch1, Address(sp, sp_inc_offset)); 6016 add(sp, sp, rscratch1); 6017 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6018 } else { 6019 remove_frame(initial_framesize); 6020 } 6021 } 6022 6023 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 6024 int real_frame_size = frame_size + sp_inc; 6025 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 6026 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 6027 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6028 6029 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 6030 6031 // Subtract two words for the saved FP and LR as these will be popped 6032 // separately. See remove_frame above. 6033 mov(rscratch1, real_frame_size - 2*wordSize); 6034 str(rscratch1, Address(sp, sp_inc_offset)); 6035 } 6036 6037 // This method counts leading positive bytes (highest bit not set) in provided byte array 6038 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 6039 // Simple and most common case of aligned small array which is not at the 6040 // end of memory page is placed here. All other cases are in stub. 6041 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 6042 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6043 assert_different_registers(ary1, len, result); 6044 6045 mov(result, len); 6046 cmpw(len, 0); 6047 br(LE, DONE); 6048 cmpw(len, 4 * wordSize); 6049 br(GE, STUB_LONG); // size > 32 then go to stub 6050 6051 int shift = 64 - exact_log2(os::vm_page_size()); 6052 lsl(rscratch1, ary1, shift); 6053 mov(rscratch2, (size_t)(4 * wordSize) << shift); 6054 adds(rscratch2, rscratch1, rscratch2); // At end of page? 6055 br(CS, STUB); // at the end of page then go to stub 6056 subs(len, len, wordSize); 6057 br(LT, END); 6058 6059 BIND(LOOP); 6060 ldr(rscratch1, Address(post(ary1, wordSize))); 6061 tst(rscratch1, UPPER_BIT_MASK); 6062 br(NE, SET_RESULT); 6063 subs(len, len, wordSize); 6064 br(GE, LOOP); 6065 cmpw(len, -wordSize); 6066 br(EQ, DONE); 6067 6068 BIND(END); 6069 ldr(rscratch1, Address(ary1)); 6070 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 6071 lslv(rscratch1, rscratch1, rscratch2); 6072 tst(rscratch1, UPPER_BIT_MASK); 6073 br(NE, SET_RESULT); 6074 b(DONE); 6075 6076 BIND(STUB); 6077 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 6078 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 6079 address tpc1 = trampoline_call(count_pos); 6080 if (tpc1 == nullptr) { 6081 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 6082 postcond(pc() == badAddress); 6083 return nullptr; 6084 } 6085 b(DONE); 6086 6087 BIND(STUB_LONG); 6088 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 6089 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 6090 address tpc2 = trampoline_call(count_pos_long); 6091 if (tpc2 == nullptr) { 6092 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 6093 postcond(pc() == badAddress); 6094 return nullptr; 6095 } 6096 b(DONE); 6097 6098 BIND(SET_RESULT); 6099 6100 add(len, len, wordSize); 6101 sub(result, result, len); 6102 6103 BIND(DONE); 6104 postcond(pc() != badAddress); 6105 return pc(); 6106 } 6107 6108 // Clobbers: rscratch1, rscratch2, rflags 6109 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 6110 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 6111 Register tmp4, Register tmp5, Register result, 6112 Register cnt1, int elem_size) { 6113 Label DONE, SAME; 6114 Register tmp1 = rscratch1; 6115 Register tmp2 = rscratch2; 6116 int elem_per_word = wordSize/elem_size; 6117 int log_elem_size = exact_log2(elem_size); 6118 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 6119 int length_offset = arrayOopDesc::length_offset_in_bytes(); 6120 int base_offset 6121 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 6122 // When the length offset is not aligned to 8 bytes, 6123 // then we align it down. This is valid because the new 6124 // offset will always be the klass which is the same 6125 // for type arrays. 6126 int start_offset = align_down(length_offset, BytesPerWord); 6127 int extra_length = base_offset - start_offset; 6128 assert(start_offset == length_offset || start_offset == klass_offset, 6129 "start offset must be 8-byte-aligned or be the klass offset"); 6130 assert(base_offset != start_offset, "must include the length field"); 6131 extra_length = extra_length / elem_size; // We count in elements, not bytes. 6132 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 6133 6134 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 6135 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6136 6137 #ifndef PRODUCT 6138 { 6139 const char kind = (elem_size == 2) ? 'U' : 'L'; 6140 char comment[64]; 6141 snprintf(comment, sizeof comment, "array_equals%c{", kind); 6142 BLOCK_COMMENT(comment); 6143 } 6144 #endif 6145 6146 // if (a1 == a2) 6147 // return true; 6148 cmpoop(a1, a2); // May have read barriers for a1 and a2. 6149 br(EQ, SAME); 6150 6151 if (UseSimpleArrayEquals) { 6152 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 6153 // if (a1 == nullptr || a2 == nullptr) 6154 // return false; 6155 // a1 & a2 == 0 means (some-pointer is null) or 6156 // (very-rare-or-even-probably-impossible-pointer-values) 6157 // so, we can save one branch in most cases 6158 tst(a1, a2); 6159 mov(result, false); 6160 br(EQ, A_MIGHT_BE_NULL); 6161 // if (a1.length != a2.length) 6162 // return false; 6163 bind(A_IS_NOT_NULL); 6164 ldrw(cnt1, Address(a1, length_offset)); 6165 // Increase loop counter by diff between base- and actual start-offset. 6166 addw(cnt1, cnt1, extra_length); 6167 lea(a1, Address(a1, start_offset)); 6168 lea(a2, Address(a2, start_offset)); 6169 // Check for short strings, i.e. smaller than wordSize. 6170 subs(cnt1, cnt1, elem_per_word); 6171 br(Assembler::LT, SHORT); 6172 // Main 8 byte comparison loop. 6173 bind(NEXT_WORD); { 6174 ldr(tmp1, Address(post(a1, wordSize))); 6175 ldr(tmp2, Address(post(a2, wordSize))); 6176 subs(cnt1, cnt1, elem_per_word); 6177 eor(tmp5, tmp1, tmp2); 6178 cbnz(tmp5, DONE); 6179 } br(GT, NEXT_WORD); 6180 // Last longword. In the case where length == 4 we compare the 6181 // same longword twice, but that's still faster than another 6182 // conditional branch. 6183 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6184 // length == 4. 6185 if (log_elem_size > 0) 6186 lsl(cnt1, cnt1, log_elem_size); 6187 ldr(tmp3, Address(a1, cnt1)); 6188 ldr(tmp4, Address(a2, cnt1)); 6189 eor(tmp5, tmp3, tmp4); 6190 cbnz(tmp5, DONE); 6191 b(SAME); 6192 bind(A_MIGHT_BE_NULL); 6193 // in case both a1 and a2 are not-null, proceed with loads 6194 cbz(a1, DONE); 6195 cbz(a2, DONE); 6196 b(A_IS_NOT_NULL); 6197 bind(SHORT); 6198 6199 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6200 { 6201 ldrw(tmp1, Address(post(a1, 4))); 6202 ldrw(tmp2, Address(post(a2, 4))); 6203 eorw(tmp5, tmp1, tmp2); 6204 cbnzw(tmp5, DONE); 6205 } 6206 bind(TAIL03); 6207 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6208 { 6209 ldrh(tmp3, Address(post(a1, 2))); 6210 ldrh(tmp4, Address(post(a2, 2))); 6211 eorw(tmp5, tmp3, tmp4); 6212 cbnzw(tmp5, DONE); 6213 } 6214 bind(TAIL01); 6215 if (elem_size == 1) { // Only needed when comparing byte arrays. 6216 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6217 { 6218 ldrb(tmp1, a1); 6219 ldrb(tmp2, a2); 6220 eorw(tmp5, tmp1, tmp2); 6221 cbnzw(tmp5, DONE); 6222 } 6223 } 6224 } else { 6225 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6226 CSET_EQ, LAST_CHECK; 6227 mov(result, false); 6228 cbz(a1, DONE); 6229 ldrw(cnt1, Address(a1, length_offset)); 6230 cbz(a2, DONE); 6231 // Increase loop counter by diff between base- and actual start-offset. 6232 addw(cnt1, cnt1, extra_length); 6233 6234 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6235 // faster to perform another branch before comparing a1 and a2 6236 cmp(cnt1, (u1)elem_per_word); 6237 br(LE, SHORT); // short or same 6238 ldr(tmp3, Address(pre(a1, start_offset))); 6239 subs(zr, cnt1, stubBytesThreshold); 6240 br(GE, STUB); 6241 ldr(tmp4, Address(pre(a2, start_offset))); 6242 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6243 6244 // Main 16 byte comparison loop with 2 exits 6245 bind(NEXT_DWORD); { 6246 ldr(tmp1, Address(pre(a1, wordSize))); 6247 ldr(tmp2, Address(pre(a2, wordSize))); 6248 subs(cnt1, cnt1, 2 * elem_per_word); 6249 br(LE, TAIL); 6250 eor(tmp4, tmp3, tmp4); 6251 cbnz(tmp4, DONE); 6252 ldr(tmp3, Address(pre(a1, wordSize))); 6253 ldr(tmp4, Address(pre(a2, wordSize))); 6254 cmp(cnt1, (u1)elem_per_word); 6255 br(LE, TAIL2); 6256 cmp(tmp1, tmp2); 6257 } br(EQ, NEXT_DWORD); 6258 b(DONE); 6259 6260 bind(TAIL); 6261 eor(tmp4, tmp3, tmp4); 6262 eor(tmp2, tmp1, tmp2); 6263 lslv(tmp2, tmp2, tmp5); 6264 orr(tmp5, tmp4, tmp2); 6265 cmp(tmp5, zr); 6266 b(CSET_EQ); 6267 6268 bind(TAIL2); 6269 eor(tmp2, tmp1, tmp2); 6270 cbnz(tmp2, DONE); 6271 b(LAST_CHECK); 6272 6273 bind(STUB); 6274 ldr(tmp4, Address(pre(a2, start_offset))); 6275 if (elem_size == 2) { // convert to byte counter 6276 lsl(cnt1, cnt1, 1); 6277 } 6278 eor(tmp5, tmp3, tmp4); 6279 cbnz(tmp5, DONE); 6280 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6281 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6282 address tpc = trampoline_call(stub); 6283 if (tpc == nullptr) { 6284 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6285 postcond(pc() == badAddress); 6286 return nullptr; 6287 } 6288 b(DONE); 6289 6290 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6291 // so, if a2 == null => return false(0), else return true, so we can return a2 6292 mov(result, a2); 6293 b(DONE); 6294 bind(SHORT); 6295 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6296 ldr(tmp3, Address(a1, start_offset)); 6297 ldr(tmp4, Address(a2, start_offset)); 6298 bind(LAST_CHECK); 6299 eor(tmp4, tmp3, tmp4); 6300 lslv(tmp5, tmp4, tmp5); 6301 cmp(tmp5, zr); 6302 bind(CSET_EQ); 6303 cset(result, EQ); 6304 b(DONE); 6305 } 6306 6307 bind(SAME); 6308 mov(result, true); 6309 // That's it. 6310 bind(DONE); 6311 6312 BLOCK_COMMENT("} array_equals"); 6313 postcond(pc() != badAddress); 6314 return pc(); 6315 } 6316 6317 // Compare Strings 6318 6319 // For Strings we're passed the address of the first characters in a1 6320 // and a2 and the length in cnt1. 6321 // There are two implementations. For arrays >= 8 bytes, all 6322 // comparisons (including the final one, which may overlap) are 6323 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6324 // halfword, then a short, and then a byte. 6325 6326 void MacroAssembler::string_equals(Register a1, Register a2, 6327 Register result, Register cnt1) 6328 { 6329 Label SAME, DONE, SHORT, NEXT_WORD; 6330 Register tmp1 = rscratch1; 6331 Register tmp2 = rscratch2; 6332 Register cnt2 = tmp2; // cnt2 only used in array length compare 6333 6334 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6335 6336 #ifndef PRODUCT 6337 { 6338 char comment[64]; 6339 snprintf(comment, sizeof comment, "{string_equalsL"); 6340 BLOCK_COMMENT(comment); 6341 } 6342 #endif 6343 6344 mov(result, false); 6345 6346 // Check for short strings, i.e. smaller than wordSize. 6347 subs(cnt1, cnt1, wordSize); 6348 br(Assembler::LT, SHORT); 6349 // Main 8 byte comparison loop. 6350 bind(NEXT_WORD); { 6351 ldr(tmp1, Address(post(a1, wordSize))); 6352 ldr(tmp2, Address(post(a2, wordSize))); 6353 subs(cnt1, cnt1, wordSize); 6354 eor(tmp1, tmp1, tmp2); 6355 cbnz(tmp1, DONE); 6356 } br(GT, NEXT_WORD); 6357 // Last longword. In the case where length == 4 we compare the 6358 // same longword twice, but that's still faster than another 6359 // conditional branch. 6360 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6361 // length == 4. 6362 ldr(tmp1, Address(a1, cnt1)); 6363 ldr(tmp2, Address(a2, cnt1)); 6364 eor(tmp2, tmp1, tmp2); 6365 cbnz(tmp2, DONE); 6366 b(SAME); 6367 6368 bind(SHORT); 6369 Label TAIL03, TAIL01; 6370 6371 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6372 { 6373 ldrw(tmp1, Address(post(a1, 4))); 6374 ldrw(tmp2, Address(post(a2, 4))); 6375 eorw(tmp1, tmp1, tmp2); 6376 cbnzw(tmp1, DONE); 6377 } 6378 bind(TAIL03); 6379 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6380 { 6381 ldrh(tmp1, Address(post(a1, 2))); 6382 ldrh(tmp2, Address(post(a2, 2))); 6383 eorw(tmp1, tmp1, tmp2); 6384 cbnzw(tmp1, DONE); 6385 } 6386 bind(TAIL01); 6387 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6388 { 6389 ldrb(tmp1, a1); 6390 ldrb(tmp2, a2); 6391 eorw(tmp1, tmp1, tmp2); 6392 cbnzw(tmp1, DONE); 6393 } 6394 // Arrays are equal. 6395 bind(SAME); 6396 mov(result, true); 6397 6398 // That's it. 6399 bind(DONE); 6400 BLOCK_COMMENT("} string_equals"); 6401 } 6402 6403 6404 // The size of the blocks erased by the zero_blocks stub. We must 6405 // handle anything smaller than this ourselves in zero_words(). 6406 const int MacroAssembler::zero_words_block_size = 8; 6407 6408 // zero_words() is used by C2 ClearArray patterns and by 6409 // C1_MacroAssembler. It is as small as possible, handling small word 6410 // counts locally and delegating anything larger to the zero_blocks 6411 // stub. It is expanded many times in compiled code, so it is 6412 // important to keep it short. 6413 6414 // ptr: Address of a buffer to be zeroed. 6415 // cnt: Count in HeapWords. 6416 // 6417 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6418 address MacroAssembler::zero_words(Register ptr, Register cnt) 6419 { 6420 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6421 6422 BLOCK_COMMENT("zero_words {"); 6423 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6424 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6425 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6426 6427 subs(rscratch1, cnt, zero_words_block_size); 6428 Label around; 6429 br(LO, around); 6430 { 6431 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6432 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6433 // Make sure this is a C2 compilation. C1 allocates space only for 6434 // trampoline stubs generated by Call LIR ops, and in any case it 6435 // makes sense for a C1 compilation task to proceed as quickly as 6436 // possible. 6437 CompileTask* task; 6438 if (StubRoutines::aarch64::complete() 6439 && Thread::current()->is_Compiler_thread() 6440 && (task = ciEnv::current()->task()) 6441 && is_c2_compile(task->comp_level())) { 6442 address tpc = trampoline_call(zero_blocks); 6443 if (tpc == nullptr) { 6444 DEBUG_ONLY(reset_labels(around)); 6445 return nullptr; 6446 } 6447 } else { 6448 far_call(zero_blocks); 6449 } 6450 } 6451 bind(around); 6452 6453 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6454 // for us. 6455 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6456 Label l; 6457 tbz(cnt, exact_log2(i), l); 6458 for (int j = 0; j < i; j += 2) { 6459 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6460 } 6461 bind(l); 6462 } 6463 { 6464 Label l; 6465 tbz(cnt, 0, l); 6466 str(zr, Address(ptr)); 6467 bind(l); 6468 } 6469 6470 BLOCK_COMMENT("} zero_words"); 6471 return pc(); 6472 } 6473 6474 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6475 // cnt: Immediate count in HeapWords. 6476 // 6477 // r10, r11, rscratch1, and rscratch2 are clobbered. 6478 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6479 { 6480 assert(wordSize <= BlockZeroingLowLimit, 6481 "increase BlockZeroingLowLimit"); 6482 address result = nullptr; 6483 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6484 #ifndef PRODUCT 6485 { 6486 char buf[64]; 6487 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6488 BLOCK_COMMENT(buf); 6489 } 6490 #endif 6491 if (cnt >= 16) { 6492 uint64_t loops = cnt/16; 6493 if (loops > 1) { 6494 mov(rscratch2, loops - 1); 6495 } 6496 { 6497 Label loop; 6498 bind(loop); 6499 for (int i = 0; i < 16; i += 2) { 6500 stp(zr, zr, Address(base, i * BytesPerWord)); 6501 } 6502 add(base, base, 16 * BytesPerWord); 6503 if (loops > 1) { 6504 subs(rscratch2, rscratch2, 1); 6505 br(GE, loop); 6506 } 6507 } 6508 } 6509 cnt %= 16; 6510 int i = cnt & 1; // store any odd word to start 6511 if (i) str(zr, Address(base)); 6512 for (; i < (int)cnt; i += 2) { 6513 stp(zr, zr, Address(base, i * wordSize)); 6514 } 6515 BLOCK_COMMENT("} zero_words"); 6516 result = pc(); 6517 } else { 6518 mov(r10, base); mov(r11, cnt); 6519 result = zero_words(r10, r11); 6520 } 6521 return result; 6522 } 6523 6524 // Zero blocks of memory by using DC ZVA. 6525 // 6526 // Aligns the base address first sufficiently for DC ZVA, then uses 6527 // DC ZVA repeatedly for every full block. cnt is the size to be 6528 // zeroed in HeapWords. Returns the count of words left to be zeroed 6529 // in cnt. 6530 // 6531 // NOTE: This is intended to be used in the zero_blocks() stub. If 6532 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6533 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6534 Register tmp = rscratch1; 6535 Register tmp2 = rscratch2; 6536 int zva_length = VM_Version::zva_length(); 6537 Label initial_table_end, loop_zva; 6538 Label fini; 6539 6540 // Base must be 16 byte aligned. If not just return and let caller handle it 6541 tst(base, 0x0f); 6542 br(Assembler::NE, fini); 6543 // Align base with ZVA length. 6544 neg(tmp, base); 6545 andr(tmp, tmp, zva_length - 1); 6546 6547 // tmp: the number of bytes to be filled to align the base with ZVA length. 6548 add(base, base, tmp); 6549 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6550 adr(tmp2, initial_table_end); 6551 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6552 br(tmp2); 6553 6554 for (int i = -zva_length + 16; i < 0; i += 16) 6555 stp(zr, zr, Address(base, i)); 6556 bind(initial_table_end); 6557 6558 sub(cnt, cnt, zva_length >> 3); 6559 bind(loop_zva); 6560 dc(Assembler::ZVA, base); 6561 subs(cnt, cnt, zva_length >> 3); 6562 add(base, base, zva_length); 6563 br(Assembler::GE, loop_zva); 6564 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6565 bind(fini); 6566 } 6567 6568 // base: Address of a buffer to be filled, 8 bytes aligned. 6569 // cnt: Count in 8-byte unit. 6570 // value: Value to be filled with. 6571 // base will point to the end of the buffer after filling. 6572 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6573 { 6574 // Algorithm: 6575 // 6576 // if (cnt == 0) { 6577 // return; 6578 // } 6579 // if ((p & 8) != 0) { 6580 // *p++ = v; 6581 // } 6582 // 6583 // scratch1 = cnt & 14; 6584 // cnt -= scratch1; 6585 // p += scratch1; 6586 // switch (scratch1 / 2) { 6587 // do { 6588 // cnt -= 16; 6589 // p[-16] = v; 6590 // p[-15] = v; 6591 // case 7: 6592 // p[-14] = v; 6593 // p[-13] = v; 6594 // case 6: 6595 // p[-12] = v; 6596 // p[-11] = v; 6597 // // ... 6598 // case 1: 6599 // p[-2] = v; 6600 // p[-1] = v; 6601 // case 0: 6602 // p += 16; 6603 // } while (cnt); 6604 // } 6605 // if ((cnt & 1) == 1) { 6606 // *p++ = v; 6607 // } 6608 6609 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6610 6611 Label fini, skip, entry, loop; 6612 const int unroll = 8; // Number of stp instructions we'll unroll 6613 6614 cbz(cnt, fini); 6615 tbz(base, 3, skip); 6616 str(value, Address(post(base, 8))); 6617 sub(cnt, cnt, 1); 6618 bind(skip); 6619 6620 andr(rscratch1, cnt, (unroll-1) * 2); 6621 sub(cnt, cnt, rscratch1); 6622 add(base, base, rscratch1, Assembler::LSL, 3); 6623 adr(rscratch2, entry); 6624 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6625 br(rscratch2); 6626 6627 bind(loop); 6628 add(base, base, unroll * 16); 6629 for (int i = -unroll; i < 0; i++) 6630 stp(value, value, Address(base, i * 16)); 6631 bind(entry); 6632 subs(cnt, cnt, unroll * 2); 6633 br(Assembler::GE, loop); 6634 6635 tbz(cnt, 0, fini); 6636 str(value, Address(post(base, 8))); 6637 bind(fini); 6638 } 6639 6640 // Intrinsic for 6641 // 6642 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6643 // return the number of characters copied. 6644 // - java/lang/StringUTF16.compress 6645 // return index of non-latin1 character if copy fails, otherwise 'len'. 6646 // 6647 // This version always returns the number of characters copied, and does not 6648 // clobber the 'len' register. A successful copy will complete with the post- 6649 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6650 // post-condition: 0 <= 'res' < 'len'. 6651 // 6652 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6653 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6654 // beyond the acceptable, even though the footprint would be smaller. 6655 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6656 // avoid additional bloat. 6657 // 6658 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6659 void MacroAssembler::encode_iso_array(Register src, Register dst, 6660 Register len, Register res, bool ascii, 6661 FloatRegister vtmp0, FloatRegister vtmp1, 6662 FloatRegister vtmp2, FloatRegister vtmp3, 6663 FloatRegister vtmp4, FloatRegister vtmp5) 6664 { 6665 Register cnt = res; 6666 Register max = rscratch1; 6667 Register chk = rscratch2; 6668 6669 prfm(Address(src), PLDL1STRM); 6670 movw(cnt, len); 6671 6672 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6673 6674 Label LOOP_32, DONE_32, FAIL_32; 6675 6676 BIND(LOOP_32); 6677 { 6678 cmpw(cnt, 32); 6679 br(LT, DONE_32); 6680 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6681 // Extract lower bytes. 6682 FloatRegister vlo0 = vtmp4; 6683 FloatRegister vlo1 = vtmp5; 6684 uzp1(vlo0, T16B, vtmp0, vtmp1); 6685 uzp1(vlo1, T16B, vtmp2, vtmp3); 6686 // Merge bits... 6687 orr(vtmp0, T16B, vtmp0, vtmp1); 6688 orr(vtmp2, T16B, vtmp2, vtmp3); 6689 // Extract merged upper bytes. 6690 FloatRegister vhix = vtmp0; 6691 uzp2(vhix, T16B, vtmp0, vtmp2); 6692 // ISO-check on hi-parts (all zero). 6693 // ASCII-check on lo-parts (no sign). 6694 FloatRegister vlox = vtmp1; // Merge lower bytes. 6695 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6696 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6697 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6698 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6699 ASCII(orr(chk, chk, max)); 6700 cbnz(chk, FAIL_32); 6701 subw(cnt, cnt, 32); 6702 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6703 b(LOOP_32); 6704 } 6705 BIND(FAIL_32); 6706 sub(src, src, 64); 6707 BIND(DONE_32); 6708 6709 Label LOOP_8, SKIP_8; 6710 6711 BIND(LOOP_8); 6712 { 6713 cmpw(cnt, 8); 6714 br(LT, SKIP_8); 6715 FloatRegister vhi = vtmp0; 6716 FloatRegister vlo = vtmp1; 6717 ld1(vtmp3, T8H, src); 6718 uzp1(vlo, T16B, vtmp3, vtmp3); 6719 uzp2(vhi, T16B, vtmp3, vtmp3); 6720 // ISO-check on hi-parts (all zero). 6721 // ASCII-check on lo-parts (no sign). 6722 ASCII(cm(LT, vtmp2, T16B, vlo)); 6723 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6724 ASCII(umov(max, vtmp2, B, 0)); 6725 ASCII(orr(chk, chk, max)); 6726 cbnz(chk, SKIP_8); 6727 6728 strd(vlo, Address(post(dst, 8))); 6729 subw(cnt, cnt, 8); 6730 add(src, src, 16); 6731 b(LOOP_8); 6732 } 6733 BIND(SKIP_8); 6734 6735 #undef ASCII 6736 6737 Label LOOP, DONE; 6738 6739 cbz(cnt, DONE); 6740 BIND(LOOP); 6741 { 6742 Register chr = rscratch1; 6743 ldrh(chr, Address(post(src, 2))); 6744 tst(chr, ascii ? 0xff80 : 0xff00); 6745 br(NE, DONE); 6746 strb(chr, Address(post(dst, 1))); 6747 subs(cnt, cnt, 1); 6748 br(GT, LOOP); 6749 } 6750 BIND(DONE); 6751 // Return index where we stopped. 6752 subw(res, len, cnt); 6753 } 6754 6755 // Inflate byte[] array to char[]. 6756 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6757 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6758 FloatRegister vtmp1, FloatRegister vtmp2, 6759 FloatRegister vtmp3, Register tmp4) { 6760 Label big, done, after_init, to_stub; 6761 6762 assert_different_registers(src, dst, len, tmp4, rscratch1); 6763 6764 fmovd(vtmp1, 0.0); 6765 lsrw(tmp4, len, 3); 6766 bind(after_init); 6767 cbnzw(tmp4, big); 6768 // Short string: less than 8 bytes. 6769 { 6770 Label loop, tiny; 6771 6772 cmpw(len, 4); 6773 br(LT, tiny); 6774 // Use SIMD to do 4 bytes. 6775 ldrs(vtmp2, post(src, 4)); 6776 zip1(vtmp3, T8B, vtmp2, vtmp1); 6777 subw(len, len, 4); 6778 strd(vtmp3, post(dst, 8)); 6779 6780 cbzw(len, done); 6781 6782 // Do the remaining bytes by steam. 6783 bind(loop); 6784 ldrb(tmp4, post(src, 1)); 6785 strh(tmp4, post(dst, 2)); 6786 subw(len, len, 1); 6787 6788 bind(tiny); 6789 cbnz(len, loop); 6790 6791 b(done); 6792 } 6793 6794 if (SoftwarePrefetchHintDistance >= 0) { 6795 bind(to_stub); 6796 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6797 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6798 address tpc = trampoline_call(stub); 6799 if (tpc == nullptr) { 6800 DEBUG_ONLY(reset_labels(big, done)); 6801 postcond(pc() == badAddress); 6802 return nullptr; 6803 } 6804 b(after_init); 6805 } 6806 6807 // Unpack the bytes 8 at a time. 6808 bind(big); 6809 { 6810 Label loop, around, loop_last, loop_start; 6811 6812 if (SoftwarePrefetchHintDistance >= 0) { 6813 const int large_loop_threshold = (64 + 16)/8; 6814 ldrd(vtmp2, post(src, 8)); 6815 andw(len, len, 7); 6816 cmp(tmp4, (u1)large_loop_threshold); 6817 br(GE, to_stub); 6818 b(loop_start); 6819 6820 bind(loop); 6821 ldrd(vtmp2, post(src, 8)); 6822 bind(loop_start); 6823 subs(tmp4, tmp4, 1); 6824 br(EQ, loop_last); 6825 zip1(vtmp2, T16B, vtmp2, vtmp1); 6826 ldrd(vtmp3, post(src, 8)); 6827 st1(vtmp2, T8H, post(dst, 16)); 6828 subs(tmp4, tmp4, 1); 6829 zip1(vtmp3, T16B, vtmp3, vtmp1); 6830 st1(vtmp3, T8H, post(dst, 16)); 6831 br(NE, loop); 6832 b(around); 6833 bind(loop_last); 6834 zip1(vtmp2, T16B, vtmp2, vtmp1); 6835 st1(vtmp2, T8H, post(dst, 16)); 6836 bind(around); 6837 cbz(len, done); 6838 } else { 6839 andw(len, len, 7); 6840 bind(loop); 6841 ldrd(vtmp2, post(src, 8)); 6842 sub(tmp4, tmp4, 1); 6843 zip1(vtmp3, T16B, vtmp2, vtmp1); 6844 st1(vtmp3, T8H, post(dst, 16)); 6845 cbnz(tmp4, loop); 6846 } 6847 } 6848 6849 // Do the tail of up to 8 bytes. 6850 add(src, src, len); 6851 ldrd(vtmp3, Address(src, -8)); 6852 add(dst, dst, len, ext::uxtw, 1); 6853 zip1(vtmp3, T16B, vtmp3, vtmp1); 6854 strq(vtmp3, Address(dst, -16)); 6855 6856 bind(done); 6857 postcond(pc() != badAddress); 6858 return pc(); 6859 } 6860 6861 // Compress char[] array to byte[]. 6862 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6863 // Return the array length if every element in array can be encoded, 6864 // otherwise, the index of first non-latin1 (> 0xff) character. 6865 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6866 Register res, 6867 FloatRegister tmp0, FloatRegister tmp1, 6868 FloatRegister tmp2, FloatRegister tmp3, 6869 FloatRegister tmp4, FloatRegister tmp5) { 6870 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6871 } 6872 6873 // java.math.round(double a) 6874 // Returns the closest long to the argument, with ties rounding to 6875 // positive infinity. This requires some fiddling for corner 6876 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6877 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6878 FloatRegister ftmp) { 6879 Label DONE; 6880 BLOCK_COMMENT("java_round_double: { "); 6881 fmovd(rscratch1, src); 6882 // Use RoundToNearestTiesAway unless src small and -ve. 6883 fcvtasd(dst, src); 6884 // Test if src >= 0 || abs(src) >= 0x1.0p52 6885 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6886 mov(rscratch2, julong_cast(0x1.0p52)); 6887 cmp(rscratch1, rscratch2); 6888 br(HS, DONE); { 6889 // src < 0 && abs(src) < 0x1.0p52 6890 // src may have a fractional part, so add 0.5 6891 fmovd(ftmp, 0.5); 6892 faddd(ftmp, src, ftmp); 6893 // Convert double to jlong, use RoundTowardsNegative 6894 fcvtmsd(dst, ftmp); 6895 } 6896 bind(DONE); 6897 BLOCK_COMMENT("} java_round_double"); 6898 } 6899 6900 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6901 FloatRegister ftmp) { 6902 Label DONE; 6903 BLOCK_COMMENT("java_round_float: { "); 6904 fmovs(rscratch1, src); 6905 // Use RoundToNearestTiesAway unless src small and -ve. 6906 fcvtassw(dst, src); 6907 // Test if src >= 0 || abs(src) >= 0x1.0p23 6908 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6909 mov(rscratch2, jint_cast(0x1.0p23f)); 6910 cmp(rscratch1, rscratch2); 6911 br(HS, DONE); { 6912 // src < 0 && |src| < 0x1.0p23 6913 // src may have a fractional part, so add 0.5 6914 fmovs(ftmp, 0.5f); 6915 fadds(ftmp, src, ftmp); 6916 // Convert float to jint, use RoundTowardsNegative 6917 fcvtmssw(dst, ftmp); 6918 } 6919 bind(DONE); 6920 BLOCK_COMMENT("} java_round_float"); 6921 } 6922 6923 // get_thread() can be called anywhere inside generated code so we 6924 // need to save whatever non-callee save context might get clobbered 6925 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6926 // the call setup code. 6927 // 6928 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6929 // On other systems, the helper is a usual C function. 6930 // 6931 void MacroAssembler::get_thread(Register dst) { 6932 RegSet saved_regs = 6933 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6934 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6935 6936 protect_return_address(); 6937 push(saved_regs, sp); 6938 6939 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6940 blr(lr); 6941 if (dst != c_rarg0) { 6942 mov(dst, c_rarg0); 6943 } 6944 6945 pop(saved_regs, sp); 6946 authenticate_return_address(); 6947 } 6948 6949 #ifdef COMPILER2 6950 // C2 compiled method's prolog code 6951 // Moved here from aarch64.ad to support Valhalla code belows 6952 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 6953 if (C->clinit_barrier_on_entry()) { 6954 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 6955 6956 Label L_skip_barrier; 6957 6958 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 6959 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 6960 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 6961 bind(L_skip_barrier); 6962 } 6963 6964 if (C->max_vector_size() > 0) { 6965 reinitialize_ptrue(); 6966 } 6967 6968 int bangsize = C->output()->bang_size_in_bytes(); 6969 if (C->output()->need_stack_bang(bangsize)) 6970 generate_stack_overflow_check(bangsize); 6971 6972 // n.b. frame size includes space for return pc and rfp 6973 const long framesize = C->output()->frame_size_in_bytes(); 6974 build_frame(framesize); 6975 6976 if (C->needs_stack_repair()) { 6977 save_stack_increment(sp_inc, framesize); 6978 } 6979 6980 if (VerifyStackAtCalls) { 6981 Unimplemented(); 6982 } 6983 } 6984 #endif // COMPILER2 6985 6986 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 6987 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 6988 // An inline type might be returned. If fields are in registers we 6989 // need to allocate an inline type instance and initialize it with 6990 // the value of the fields. 6991 Label skip; 6992 // We only need a new buffered inline type if a new one is not returned 6993 tbz(r0, 0, skip); 6994 int call_offset = -1; 6995 6996 // Be careful not to clobber r1-7 which hold returned fields 6997 // Also do not use callee-saved registers as these may be live in the interpreter 6998 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 6999 7000 // The following code is similar to allocate_instance but has some slight differences, 7001 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 7002 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 7003 Label slow_case; 7004 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 7005 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 7006 7007 if (vk != nullptr) { 7008 // Called from C1, where the return type is statically known. 7009 movptr(klass, (intptr_t)vk->get_InlineKlass()); 7010 jint lh = vk->layout_helper(); 7011 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 7012 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 7013 tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case); 7014 } else { 7015 b(slow_case); 7016 } 7017 } else { 7018 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 7019 andr(klass, r0, -2); 7020 if (UseTLAB) { 7021 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 7022 tst(tmp2, Klass::_lh_instance_slow_path_bit); 7023 br(Assembler::NE, slow_case); 7024 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 7025 } else { 7026 b(slow_case); 7027 } 7028 } 7029 if (UseTLAB) { 7030 // 2. Initialize buffered inline instance header 7031 Register buffer_obj = r0; 7032 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 7033 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7034 store_klass_gap(buffer_obj, zr); 7035 if (vk == nullptr) { 7036 // store_klass corrupts klass, so save it for later use (interpreter case only). 7037 mov(tmp1, klass); 7038 } 7039 store_klass(buffer_obj, klass); 7040 // 3. Initialize its fields with an inline class specific handler 7041 if (vk != nullptr) { 7042 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 7043 } else { 7044 // tmp1 holds klass preserved above 7045 ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 7046 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 7047 blr(tmp1); 7048 } 7049 7050 membar(Assembler::StoreStore); 7051 b(skip); 7052 } else { 7053 // Must have already branched to slow_case above. 7054 DEBUG_ONLY(should_not_reach_here()); 7055 } 7056 bind(slow_case); 7057 // We failed to allocate a new inline type, fall back to a runtime 7058 // call. Some oop field may be live in some registers but we can't 7059 // tell. That runtime call will take care of preserving them 7060 // across a GC if there's one. 7061 mov(r0, r0_preserved); 7062 7063 if (from_interpreter) { 7064 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 7065 } else { 7066 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 7067 call_offset = offset(); 7068 } 7069 membar(Assembler::StoreStore); 7070 7071 bind(skip); 7072 return call_offset; 7073 } 7074 7075 // Move a value between registers/stack slots and update the reg_state 7076 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 7077 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 7078 if (reg_state[to->value()] == reg_written) { 7079 return true; // Already written 7080 } 7081 7082 if (from != to && bt != T_VOID) { 7083 if (reg_state[to->value()] == reg_readonly) { 7084 return false; // Not yet writable 7085 } 7086 if (from->is_reg()) { 7087 if (to->is_reg()) { 7088 if (from->is_Register() && to->is_Register()) { 7089 mov(to->as_Register(), from->as_Register()); 7090 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 7091 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 7092 } else { 7093 ShouldNotReachHere(); 7094 } 7095 } else { 7096 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7097 Address to_addr = Address(sp, st_off); 7098 if (from->is_FloatRegister()) { 7099 if (bt == T_DOUBLE) { 7100 strd(from->as_FloatRegister(), to_addr); 7101 } else { 7102 assert(bt == T_FLOAT, "must be float"); 7103 strs(from->as_FloatRegister(), to_addr); 7104 } 7105 } else { 7106 str(from->as_Register(), to_addr); 7107 } 7108 } 7109 } else { 7110 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 7111 if (to->is_reg()) { 7112 if (to->is_FloatRegister()) { 7113 if (bt == T_DOUBLE) { 7114 ldrd(to->as_FloatRegister(), from_addr); 7115 } else { 7116 assert(bt == T_FLOAT, "must be float"); 7117 ldrs(to->as_FloatRegister(), from_addr); 7118 } 7119 } else { 7120 ldr(to->as_Register(), from_addr); 7121 } 7122 } else { 7123 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7124 ldr(rscratch1, from_addr); 7125 str(rscratch1, Address(sp, st_off)); 7126 } 7127 } 7128 } 7129 7130 // Update register states 7131 reg_state[from->value()] = reg_writable; 7132 reg_state[to->value()] = reg_written; 7133 return true; 7134 } 7135 7136 // Calculate the extra stack space required for packing or unpacking inline 7137 // args and adjust the stack pointer 7138 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 7139 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 7140 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 7141 assert(sp_inc > 0, "sanity"); 7142 7143 // Save a copy of the FP and LR here for deoptimization patching and frame walking 7144 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7145 7146 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 7147 if (sp_inc < (1 << 9)) { 7148 sub(sp, sp, sp_inc); // Fits in an immediate 7149 } else { 7150 mov(rscratch1, sp_inc); 7151 sub(sp, sp, rscratch1); 7152 } 7153 7154 return sp_inc + 2 * wordSize; // Account for the FP/LR space 7155 } 7156 7157 // Read all fields from an inline type oop and store the values in registers/stack slots 7158 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 7159 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 7160 RegState reg_state[]) { 7161 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 7162 assert(from->is_valid(), "source must be valid"); 7163 bool progress = false; 7164 #ifdef ASSERT 7165 const int start_offset = offset(); 7166 #endif 7167 7168 Label L_null, L_notNull; 7169 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 7170 Register tmp1 = r10; 7171 Register tmp2 = r11; 7172 Register fromReg = noreg; 7173 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 7174 bool done = true; 7175 bool mark_done = true; 7176 VMReg toReg; 7177 BasicType bt; 7178 // Check if argument requires a null check 7179 bool null_check = false; 7180 VMReg nullCheckReg; 7181 while (stream.next(nullCheckReg, bt)) { 7182 if (sig->at(stream.sig_index())._offset == -1) { 7183 null_check = true; 7184 break; 7185 } 7186 } 7187 stream.reset(sig_index, to_index); 7188 while (stream.next(toReg, bt)) { 7189 assert(toReg->is_valid(), "destination must be valid"); 7190 int idx = (int)toReg->value(); 7191 if (reg_state[idx] == reg_readonly) { 7192 if (idx != from->value()) { 7193 mark_done = false; 7194 } 7195 done = false; 7196 continue; 7197 } else if (reg_state[idx] == reg_written) { 7198 continue; 7199 } 7200 assert(reg_state[idx] == reg_writable, "must be writable"); 7201 reg_state[idx] = reg_written; 7202 progress = true; 7203 7204 if (fromReg == noreg) { 7205 if (from->is_reg()) { 7206 fromReg = from->as_Register(); 7207 } else { 7208 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 7209 ldr(tmp1, Address(sp, st_off)); 7210 fromReg = tmp1; 7211 } 7212 if (null_check) { 7213 // Nullable inline type argument, emit null check 7214 cbz(fromReg, L_null); 7215 } 7216 } 7217 int off = sig->at(stream.sig_index())._offset; 7218 if (off == -1) { 7219 assert(null_check, "Missing null check at"); 7220 if (toReg->is_stack()) { 7221 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7222 mov(tmp2, 1); 7223 str(tmp2, Address(sp, st_off)); 7224 } else { 7225 mov(toReg->as_Register(), 1); 7226 } 7227 continue; 7228 } 7229 assert(off > 0, "offset in object should be positive"); 7230 Address fromAddr = Address(fromReg, off); 7231 if (!toReg->is_FloatRegister()) { 7232 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 7233 if (is_reference_type(bt)) { 7234 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 7235 } else { 7236 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 7237 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 7238 } 7239 if (toReg->is_stack()) { 7240 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7241 str(dst, Address(sp, st_off)); 7242 } 7243 } else if (bt == T_DOUBLE) { 7244 ldrd(toReg->as_FloatRegister(), fromAddr); 7245 } else { 7246 assert(bt == T_FLOAT, "must be float"); 7247 ldrs(toReg->as_FloatRegister(), fromAddr); 7248 } 7249 } 7250 if (progress && null_check) { 7251 if (done) { 7252 b(L_notNull); 7253 bind(L_null); 7254 // Set IsInit field to zero to signal that the argument is null. 7255 // Also set all oop fields to zero to make the GC happy. 7256 stream.reset(sig_index, to_index); 7257 while (stream.next(toReg, bt)) { 7258 if (sig->at(stream.sig_index())._offset == -1 || 7259 bt == T_OBJECT || bt == T_ARRAY) { 7260 if (toReg->is_stack()) { 7261 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7262 str(zr, Address(sp, st_off)); 7263 } else { 7264 mov(toReg->as_Register(), zr); 7265 } 7266 } 7267 } 7268 bind(L_notNull); 7269 } else { 7270 bind(L_null); 7271 } 7272 } 7273 7274 sig_index = stream.sig_index(); 7275 to_index = stream.regs_index(); 7276 7277 if (mark_done && reg_state[from->value()] != reg_written) { 7278 // This is okay because no one else will write to that slot 7279 reg_state[from->value()] = reg_writable; 7280 } 7281 from_index--; 7282 assert(progress || (start_offset == offset()), "should not emit code"); 7283 return done; 7284 } 7285 7286 // Pack fields back into an inline type oop 7287 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 7288 VMRegPair* from, int from_count, int& from_index, VMReg to, 7289 RegState reg_state[], Register val_array) { 7290 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 7291 assert(to->is_valid(), "destination must be valid"); 7292 7293 if (reg_state[to->value()] == reg_written) { 7294 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7295 return true; // Already written 7296 } 7297 7298 // The GC barrier expanded by store_heap_oop below may call into the 7299 // runtime so use callee-saved registers for any values that need to be 7300 // preserved. The GC barrier assembler should take care of saving the 7301 // Java argument registers. 7302 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 7303 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 7304 Register val_obj_tmp = r21; 7305 Register from_reg_tmp = r22; 7306 Register tmp1 = r14; 7307 Register tmp2 = r13; 7308 Register tmp3 = r12; 7309 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 7310 7311 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 7312 7313 if (reg_state[to->value()] == reg_readonly) { 7314 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 7315 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7316 return false; // Not yet writable 7317 } 7318 val_obj = val_obj_tmp; 7319 } 7320 7321 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 7322 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 7323 7324 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 7325 VMReg fromReg; 7326 BasicType bt; 7327 Label L_null; 7328 while (stream.next(fromReg, bt)) { 7329 assert(fromReg->is_valid(), "source must be valid"); 7330 reg_state[fromReg->value()] = reg_writable; 7331 7332 int off = sig->at(stream.sig_index())._offset; 7333 if (off == -1) { 7334 // Nullable inline type argument, emit null check 7335 Label L_notNull; 7336 if (fromReg->is_stack()) { 7337 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7338 ldrb(tmp2, Address(sp, ld_off)); 7339 cbnz(tmp2, L_notNull); 7340 } else { 7341 cbnz(fromReg->as_Register(), L_notNull); 7342 } 7343 mov(val_obj, 0); 7344 b(L_null); 7345 bind(L_notNull); 7346 continue; 7347 } 7348 7349 assert(off > 0, "offset in object should be positive"); 7350 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 7351 7352 // Pack the scalarized field into the value object. 7353 Address dst(val_obj, off); 7354 7355 if (!fromReg->is_FloatRegister()) { 7356 Register src; 7357 if (fromReg->is_stack()) { 7358 src = from_reg_tmp; 7359 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7360 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 7361 } else { 7362 src = fromReg->as_Register(); 7363 } 7364 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 7365 if (is_reference_type(bt)) { 7366 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 7367 } else { 7368 store_sized_value(dst, src, size_in_bytes); 7369 } 7370 } else if (bt == T_DOUBLE) { 7371 strd(fromReg->as_FloatRegister(), dst); 7372 } else { 7373 assert(bt == T_FLOAT, "must be float"); 7374 strs(fromReg->as_FloatRegister(), dst); 7375 } 7376 } 7377 bind(L_null); 7378 sig_index = stream.sig_index(); 7379 from_index = stream.regs_index(); 7380 7381 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 7382 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 7383 assert(success, "to register must be writeable"); 7384 7385 return true; 7386 } 7387 7388 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 7389 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 7390 } 7391 7392 void MacroAssembler::cache_wb(Address line) { 7393 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 7394 assert(line.index() == noreg, "index should be noreg"); 7395 assert(line.offset() == 0, "offset should be 0"); 7396 // would like to assert this 7397 // assert(line._ext.shift == 0, "shift should be zero"); 7398 if (VM_Version::supports_dcpop()) { 7399 // writeback using clear virtual address to point of persistence 7400 dc(Assembler::CVAP, line.base()); 7401 } else { 7402 // no need to generate anything as Unsafe.writebackMemory should 7403 // never invoke this stub 7404 } 7405 } 7406 7407 void MacroAssembler::cache_wbsync(bool is_pre) { 7408 // we only need a barrier post sync 7409 if (!is_pre) { 7410 membar(Assembler::AnyAny); 7411 } 7412 } 7413 7414 void MacroAssembler::verify_sve_vector_length(Register tmp) { 7415 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 7416 return; 7417 } 7418 // Make sure that native code does not change SVE vector length. 7419 Label verify_ok; 7420 movw(tmp, zr); 7421 sve_inc(tmp, B); 7422 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 7423 br(EQ, verify_ok); 7424 stop("Error: SVE vector length has changed since jvm startup"); 7425 bind(verify_ok); 7426 } 7427 7428 void MacroAssembler::verify_ptrue() { 7429 Label verify_ok; 7430 if (!UseSVE) { 7431 return; 7432 } 7433 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 7434 sve_dec(rscratch1, B); 7435 cbz(rscratch1, verify_ok); 7436 stop("Error: the preserved predicate register (p7) elements are not all true"); 7437 bind(verify_ok); 7438 } 7439 7440 void MacroAssembler::safepoint_isb() { 7441 isb(); 7442 #ifndef PRODUCT 7443 if (VerifyCrossModifyFence) { 7444 // Clear the thread state. 7445 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7446 } 7447 #endif 7448 } 7449 7450 #ifndef PRODUCT 7451 void MacroAssembler::verify_cross_modify_fence_not_required() { 7452 if (VerifyCrossModifyFence) { 7453 // Check if thread needs a cross modify fence. 7454 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7455 Label fence_not_required; 7456 cbz(rscratch1, fence_not_required); 7457 // If it does then fail. 7458 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 7459 mov(c_rarg0, rthread); 7460 blr(rscratch1); 7461 bind(fence_not_required); 7462 } 7463 } 7464 #endif 7465 7466 void MacroAssembler::spin_wait() { 7467 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 7468 switch (VM_Version::spin_wait_desc().inst()) { 7469 case SpinWait::NOP: 7470 nop(); 7471 break; 7472 case SpinWait::ISB: 7473 isb(); 7474 break; 7475 case SpinWait::YIELD: 7476 yield(); 7477 break; 7478 default: 7479 ShouldNotReachHere(); 7480 } 7481 } 7482 } 7483 7484 // Stack frame creation/removal 7485 7486 void MacroAssembler::enter(bool strip_ret_addr) { 7487 if (strip_ret_addr) { 7488 // Addresses can only be signed once. If there are multiple nested frames being created 7489 // in the same function, then the return address needs stripping first. 7490 strip_return_address(); 7491 } 7492 protect_return_address(); 7493 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7494 mov(rfp, sp); 7495 } 7496 7497 void MacroAssembler::leave() { 7498 mov(sp, rfp); 7499 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 7500 authenticate_return_address(); 7501 } 7502 7503 // ROP Protection 7504 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 7505 // destroying stack frames or whenever directly loading/storing the LR to memory. 7506 // If ROP protection is not set then these functions are no-ops. 7507 // For more details on PAC see pauth_aarch64.hpp. 7508 7509 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 7510 // Uses value zero as the modifier. 7511 // 7512 void MacroAssembler::protect_return_address() { 7513 if (VM_Version::use_rop_protection()) { 7514 check_return_address(); 7515 paciaz(); 7516 } 7517 } 7518 7519 // Sign the return value in the given register. Use before updating the LR in the existing stack 7520 // frame for the current function. 7521 // Uses value zero as the modifier. 7522 // 7523 void MacroAssembler::protect_return_address(Register return_reg) { 7524 if (VM_Version::use_rop_protection()) { 7525 check_return_address(return_reg); 7526 paciza(return_reg); 7527 } 7528 } 7529 7530 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 7531 // Uses value zero as the modifier. 7532 // 7533 void MacroAssembler::authenticate_return_address() { 7534 if (VM_Version::use_rop_protection()) { 7535 autiaz(); 7536 check_return_address(); 7537 } 7538 } 7539 7540 // Authenticate the return value in the given register. Use before updating the LR in the existing 7541 // stack frame for the current function. 7542 // Uses value zero as the modifier. 7543 // 7544 void MacroAssembler::authenticate_return_address(Register return_reg) { 7545 if (VM_Version::use_rop_protection()) { 7546 autiza(return_reg); 7547 check_return_address(return_reg); 7548 } 7549 } 7550 7551 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 7552 // there is no guaranteed way of authenticating the LR. 7553 // 7554 void MacroAssembler::strip_return_address() { 7555 if (VM_Version::use_rop_protection()) { 7556 xpaclri(); 7557 } 7558 } 7559 7560 #ifndef PRODUCT 7561 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 7562 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 7563 // it is difficult to debug back to the callee function. 7564 // This function simply loads from the address in the given register. 7565 // Use directly after authentication to catch authentication failures. 7566 // Also use before signing to check that the pointer is valid and hasn't already been signed. 7567 // 7568 void MacroAssembler::check_return_address(Register return_reg) { 7569 if (VM_Version::use_rop_protection()) { 7570 ldr(zr, Address(return_reg)); 7571 } 7572 } 7573 #endif 7574 7575 // The java_calling_convention describes stack locations as ideal slots on 7576 // a frame with no abi restrictions. Since we must observe abi restrictions 7577 // (like the placement of the register window) the slots must be biased by 7578 // the following value. 7579 static int reg2offset_in(VMReg r) { 7580 // Account for saved rfp and lr 7581 // This should really be in_preserve_stack_slots 7582 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 7583 } 7584 7585 static int reg2offset_out(VMReg r) { 7586 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 7587 } 7588 7589 // On 64bit we will store integer like items to the stack as 7590 // 64bits items (AArch64 ABI) even though java would only store 7591 // 32bits for a parameter. On 32bit it will simply be 32bits 7592 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 7593 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 7594 if (src.first()->is_stack()) { 7595 if (dst.first()->is_stack()) { 7596 // stack to stack 7597 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7598 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7599 } else { 7600 // stack to reg 7601 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7602 } 7603 } else if (dst.first()->is_stack()) { 7604 // reg to stack 7605 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7606 } else { 7607 if (dst.first() != src.first()) { 7608 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 7609 } 7610 } 7611 } 7612 7613 // An oop arg. Must pass a handle not the oop itself 7614 void MacroAssembler::object_move( 7615 OopMap* map, 7616 int oop_handle_offset, 7617 int framesize_in_slots, 7618 VMRegPair src, 7619 VMRegPair dst, 7620 bool is_receiver, 7621 int* receiver_offset) { 7622 7623 // must pass a handle. First figure out the location we use as a handle 7624 7625 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7626 7627 // See if oop is null if it is we need no handle 7628 7629 if (src.first()->is_stack()) { 7630 7631 // Oop is already on the stack as an argument 7632 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7633 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7634 if (is_receiver) { 7635 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7636 } 7637 7638 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7639 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7640 // conditionally move a null 7641 cmp(rscratch1, zr); 7642 csel(rHandle, zr, rHandle, Assembler::EQ); 7643 } else { 7644 7645 // Oop is in an a register we must store it to the space we reserve 7646 // on the stack for oop_handles and pass a handle if oop is non-null 7647 7648 const Register rOop = src.first()->as_Register(); 7649 int oop_slot; 7650 if (rOop == j_rarg0) 7651 oop_slot = 0; 7652 else if (rOop == j_rarg1) 7653 oop_slot = 1; 7654 else if (rOop == j_rarg2) 7655 oop_slot = 2; 7656 else if (rOop == j_rarg3) 7657 oop_slot = 3; 7658 else if (rOop == j_rarg4) 7659 oop_slot = 4; 7660 else if (rOop == j_rarg5) 7661 oop_slot = 5; 7662 else if (rOop == j_rarg6) 7663 oop_slot = 6; 7664 else { 7665 assert(rOop == j_rarg7, "wrong register"); 7666 oop_slot = 7; 7667 } 7668 7669 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7670 int offset = oop_slot*VMRegImpl::stack_slot_size; 7671 7672 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7673 // Store oop in handle area, may be null 7674 str(rOop, Address(sp, offset)); 7675 if (is_receiver) { 7676 *receiver_offset = offset; 7677 } 7678 7679 cmp(rOop, zr); 7680 lea(rHandle, Address(sp, offset)); 7681 // conditionally move a null 7682 csel(rHandle, zr, rHandle, Assembler::EQ); 7683 } 7684 7685 // If arg is on the stack then place it otherwise it is already in correct reg. 7686 if (dst.first()->is_stack()) { 7687 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7688 } 7689 } 7690 7691 // A float arg may have to do float reg int reg conversion 7692 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7693 if (src.first()->is_stack()) { 7694 if (dst.first()->is_stack()) { 7695 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7696 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7697 } else { 7698 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7699 } 7700 } else if (src.first() != dst.first()) { 7701 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7702 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7703 else 7704 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7705 } 7706 } 7707 7708 // A long move 7709 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7710 if (src.first()->is_stack()) { 7711 if (dst.first()->is_stack()) { 7712 // stack to stack 7713 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7714 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7715 } else { 7716 // stack to reg 7717 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7718 } 7719 } else if (dst.first()->is_stack()) { 7720 // reg to stack 7721 // Do we really have to sign extend??? 7722 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7723 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7724 } else { 7725 if (dst.first() != src.first()) { 7726 mov(dst.first()->as_Register(), src.first()->as_Register()); 7727 } 7728 } 7729 } 7730 7731 7732 // A double move 7733 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7734 if (src.first()->is_stack()) { 7735 if (dst.first()->is_stack()) { 7736 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7737 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7738 } else { 7739 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7740 } 7741 } else if (src.first() != dst.first()) { 7742 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7743 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7744 else 7745 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7746 } 7747 } 7748 7749 // Implements lightweight-locking. 7750 // 7751 // - obj: the object to be locked 7752 // - t1, t2, t3: temporary registers, will be destroyed 7753 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7754 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7755 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7756 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7757 7758 Label push; 7759 const Register top = t1; 7760 const Register mark = t2; 7761 const Register t = t3; 7762 7763 // Preload the markWord. It is important that this is the first 7764 // instruction emitted as it is part of C1's null check semantics. 7765 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7766 7767 if (UseObjectMonitorTable) { 7768 // Clear cache in case fast locking succeeds. 7769 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7770 } 7771 7772 // Check if the lock-stack is full. 7773 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7774 cmpw(top, (unsigned)LockStack::end_offset()); 7775 br(Assembler::GE, slow); 7776 7777 // Check for recursion. 7778 subw(t, top, oopSize); 7779 ldr(t, Address(rthread, t)); 7780 cmp(obj, t); 7781 br(Assembler::EQ, push); 7782 7783 // Check header for monitor (0b10). 7784 tst(mark, markWord::monitor_value); 7785 br(Assembler::NE, slow); 7786 7787 // Try to lock. Transition lock bits 0b01 => 0b00 7788 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7789 orr(mark, mark, markWord::unlocked_value); 7790 if (EnableValhalla) { 7791 // Mask inline_type bit such that we go to the slow path if object is an inline type 7792 andr(mark, mark, ~((int) markWord::inline_type_bit_in_place)); 7793 } 7794 eor(t, mark, markWord::unlocked_value); 7795 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7796 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7797 br(Assembler::NE, slow); 7798 7799 bind(push); 7800 // After successful lock, push object on lock-stack. 7801 str(obj, Address(rthread, top)); 7802 addw(top, top, oopSize); 7803 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7804 } 7805 7806 // Implements lightweight-unlocking. 7807 // 7808 // - obj: the object to be unlocked 7809 // - t1, t2, t3: temporary registers 7810 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7811 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7812 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7813 // cmpxchg clobbers rscratch1. 7814 assert_different_registers(obj, t1, t2, t3, rscratch1); 7815 7816 #ifdef ASSERT 7817 { 7818 // Check for lock-stack underflow. 7819 Label stack_ok; 7820 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7821 cmpw(t1, (unsigned)LockStack::start_offset()); 7822 br(Assembler::GE, stack_ok); 7823 STOP("Lock-stack underflow"); 7824 bind(stack_ok); 7825 } 7826 #endif 7827 7828 Label unlocked, push_and_slow; 7829 const Register top = t1; 7830 const Register mark = t2; 7831 const Register t = t3; 7832 7833 // Check if obj is top of lock-stack. 7834 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7835 subw(top, top, oopSize); 7836 ldr(t, Address(rthread, top)); 7837 cmp(obj, t); 7838 br(Assembler::NE, slow); 7839 7840 // Pop lock-stack. 7841 DEBUG_ONLY(str(zr, Address(rthread, top));) 7842 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7843 7844 // Check if recursive. 7845 subw(t, top, oopSize); 7846 ldr(t, Address(rthread, t)); 7847 cmp(obj, t); 7848 br(Assembler::EQ, unlocked); 7849 7850 // Not recursive. Check header for monitor (0b10). 7851 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7852 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7853 7854 #ifdef ASSERT 7855 // Check header not unlocked (0b01). 7856 Label not_unlocked; 7857 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7858 stop("lightweight_unlock already unlocked"); 7859 bind(not_unlocked); 7860 #endif 7861 7862 // Try to unlock. Transition lock bits 0b00 => 0b01 7863 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7864 orr(t, mark, markWord::unlocked_value); 7865 cmpxchg(obj, mark, t, Assembler::xword, 7866 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7867 br(Assembler::EQ, unlocked); 7868 7869 bind(push_and_slow); 7870 // Restore lock-stack and handle the unlock in runtime. 7871 DEBUG_ONLY(str(obj, Address(rthread, top));) 7872 addw(top, top, oopSize); 7873 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7874 b(slow); 7875 7876 bind(unlocked); 7877 }