1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciInlineKlass.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/resolvedFieldEntry.hpp" 52 #include "runtime/continuation.hpp" 53 #include "runtime/globals.hpp" 54 #include "runtime/icache.hpp" 55 #include "runtime/interfaceSupport.inline.hpp" 56 #include "runtime/javaThread.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/signature_cc.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/globalDefinitions.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 #include "vmreg_aarch64.inline.hpp" 64 #ifdef COMPILER1 65 #include "c1/c1_LIRAssembler.hpp" 66 #endif 67 #ifdef COMPILER2 68 #include "oops/oop.hpp" 69 #include "opto/compile.hpp" 70 #include "opto/node.hpp" 71 #include "opto/output.hpp" 72 #endif 73 74 #include <sys/types.h> 75 76 #ifdef PRODUCT 77 #define BLOCK_COMMENT(str) /* nothing */ 78 #else 79 #define BLOCK_COMMENT(str) block_comment(str) 80 #endif 81 #define STOP(str) stop(str); 82 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 83 84 #ifdef ASSERT 85 extern "C" void disnm(intptr_t p); 86 #endif 87 // Target-dependent relocation processing 88 // 89 // Instruction sequences whose target may need to be retrieved or 90 // patched are distinguished by their leading instruction, sorting 91 // them into three main instruction groups and related subgroups. 92 // 93 // 1) Branch, Exception and System (insn count = 1) 94 // 1a) Unconditional branch (immediate): 95 // b/bl imm19 96 // 1b) Compare & branch (immediate): 97 // cbz/cbnz Rt imm19 98 // 1c) Test & branch (immediate): 99 // tbz/tbnz Rt imm14 100 // 1d) Conditional branch (immediate): 101 // b.cond imm19 102 // 103 // 2) Loads and Stores (insn count = 1) 104 // 2a) Load register literal: 105 // ldr Rt imm19 106 // 107 // 3) Data Processing Immediate (insn count = 2 or 3) 108 // 3a) PC-rel. addressing 109 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 110 // adr/adrp Rx imm21; add Ry Rx #imm12 111 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 112 // adr/adrp Rx imm21 113 // adr/adrp Rx imm21; movk Rx #imm16<<32 114 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 115 // The latter form can only happen when the target is an 116 // ExternalAddress, and (by definition) ExternalAddresses don't 117 // move. Because of that property, there is never any need to 118 // patch the last of the three instructions. However, 119 // MacroAssembler::target_addr_for_insn takes all three 120 // instructions into account and returns the correct address. 121 // 3b) Move wide (immediate) 122 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 123 // 124 // A switch on a subset of the instruction's bits provides an 125 // efficient dispatch to these subcases. 126 // 127 // insn[28:26] -> main group ('x' == don't care) 128 // 00x -> UNALLOCATED 129 // 100 -> Data Processing Immediate 130 // 101 -> Branch, Exception and System 131 // x1x -> Loads and Stores 132 // 133 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 134 // n.b. in some cases extra bits need to be checked to verify the 135 // instruction is as expected 136 // 137 // 1) ... xx101x Branch, Exception and System 138 // 1a) 00___x Unconditional branch (immediate) 139 // 1b) 01___0 Compare & branch (immediate) 140 // 1c) 01___1 Test & branch (immediate) 141 // 1d) 10___0 Conditional branch (immediate) 142 // other Should not happen 143 // 144 // 2) ... xxx1x0 Loads and Stores 145 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 146 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 147 // strictly should be 64 bit non-FP/SIMD i.e. 148 // 0101_000 (i.e. requires insn[31:24] == 01011000) 149 // 150 // 3) ... xx100x Data Processing Immediate 151 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 152 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 153 // strictly should be 64 bit movz #imm16<<0 154 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 155 // 156 class RelocActions { 157 protected: 158 typedef int (*reloc_insn)(address insn_addr, address &target); 159 160 virtual reloc_insn adrpMem() = 0; 161 virtual reloc_insn adrpAdd() = 0; 162 virtual reloc_insn adrpMovk() = 0; 163 164 const address _insn_addr; 165 const uint32_t _insn; 166 167 static uint32_t insn_at(address insn_addr, int n) { 168 return ((uint32_t*)insn_addr)[n]; 169 } 170 uint32_t insn_at(int n) const { 171 return insn_at(_insn_addr, n); 172 } 173 174 public: 175 176 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 177 RelocActions(address insn_addr, uint32_t insn) 178 : _insn_addr(insn_addr), _insn(insn) {} 179 180 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 181 virtual int conditionalBranch(address insn_addr, address &target) = 0; 182 virtual int testAndBranch(address insn_addr, address &target) = 0; 183 virtual int loadStore(address insn_addr, address &target) = 0; 184 virtual int adr(address insn_addr, address &target) = 0; 185 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 186 virtual int immediate(address insn_addr, address &target) = 0; 187 virtual void verify(address insn_addr, address &target) = 0; 188 189 int ALWAYSINLINE run(address insn_addr, address &target) { 190 int instructions = 1; 191 192 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 193 switch(dispatch) { 194 case 0b001010: 195 case 0b001011: { 196 instructions = unconditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b101010: // Conditional branch (immediate) 200 case 0b011010: { // Compare & branch (immediate) 201 instructions = conditionalBranch(insn_addr, target); 202 break; 203 } 204 case 0b011011: { 205 instructions = testAndBranch(insn_addr, target); 206 break; 207 } 208 case 0b001100: 209 case 0b001110: 210 case 0b011100: 211 case 0b011110: 212 case 0b101100: 213 case 0b101110: 214 case 0b111100: 215 case 0b111110: { 216 // load/store 217 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 218 // Load register (literal) 219 instructions = loadStore(insn_addr, target); 220 break; 221 } else { 222 // nothing to do 223 assert(target == nullptr, "did not expect to relocate target for polling page load"); 224 } 225 break; 226 } 227 case 0b001000: 228 case 0b011000: 229 case 0b101000: 230 case 0b111000: { 231 // adr/adrp 232 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 233 int shift = Instruction_aarch64::extract(_insn, 31, 31); 234 if (shift) { 235 uint32_t insn2 = insn_at(1); 236 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 9, 5)) { 239 instructions = adrp(insn_addr, target, adrpMem()); 240 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 241 Instruction_aarch64::extract(_insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 4, 0)) { 243 instructions = adrp(insn_addr, target, adrpAdd()); 244 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 245 Instruction_aarch64::extract(_insn, 4, 0) == 246 Instruction_aarch64::extract(insn2, 4, 0)) { 247 instructions = adrp(insn_addr, target, adrpMovk()); 248 } else { 249 ShouldNotReachHere(); 250 } 251 } else { 252 instructions = adr(insn_addr, target); 253 } 254 break; 255 } 256 case 0b001001: 257 case 0b011001: 258 case 0b101001: 259 case 0b111001: { 260 instructions = immediate(insn_addr, target); 261 break; 262 } 263 default: { 264 ShouldNotReachHere(); 265 } 266 } 267 268 verify(insn_addr, target); 269 return instructions * NativeInstruction::instruction_size; 270 } 271 }; 272 273 class Patcher : public RelocActions { 274 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 275 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 276 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 277 278 public: 279 Patcher(address insn_addr) : RelocActions(insn_addr) {} 280 281 virtual int unconditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 284 return 1; 285 } 286 virtual int conditionalBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 289 return 1; 290 } 291 virtual int testAndBranch(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 294 return 1; 295 } 296 virtual int loadStore(address insn_addr, address &target) { 297 intptr_t offset = (target - insn_addr) >> 2; 298 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 299 return 1; 300 } 301 virtual int adr(address insn_addr, address &target) { 302 #ifdef ASSERT 303 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 304 #endif 305 // PC-rel. addressing 306 ptrdiff_t offset = target - insn_addr; 307 int offset_lo = offset & 3; 308 offset >>= 2; 309 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 310 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 311 return 1; 312 } 313 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 314 int instructions = 1; 315 #ifdef ASSERT 316 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 317 #endif 318 ptrdiff_t offset = target - insn_addr; 319 instructions = 2; 320 precond(inner != nullptr); 321 // Give the inner reloc a chance to modify the target. 322 address adjusted_target = target; 323 instructions = (*inner)(insn_addr, adjusted_target); 324 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 325 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 326 offset = adr_page - pc_page; 327 int offset_lo = offset & 3; 328 offset >>= 2; 329 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 330 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 331 return instructions; 332 } 333 static int adrpMem_impl(address insn_addr, address &target) { 334 uintptr_t dest = (uintptr_t)target; 335 int offset_lo = dest & 0xfff; 336 uint32_t insn2 = insn_at(insn_addr, 1); 337 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 338 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 339 guarantee(((dest >> size) << size) == dest, "misaligned target"); 340 return 2; 341 } 342 static int adrpAdd_impl(address insn_addr, address &target) { 343 uintptr_t dest = (uintptr_t)target; 344 int offset_lo = dest & 0xfff; 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 346 return 2; 347 } 348 static int adrpMovk_impl(address insn_addr, address &target) { 349 uintptr_t dest = uintptr_t(target); 350 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 351 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 352 target = address(dest); 353 return 2; 354 } 355 virtual int immediate(address insn_addr, address &target) { 356 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 357 uint64_t dest = (uint64_t)target; 358 // Move wide constant 359 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 360 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 361 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 362 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 363 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 364 return 3; 365 } 366 virtual void verify(address insn_addr, address &target) { 367 #ifdef ASSERT 368 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 369 if (!(address_is == target)) { 370 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 371 disnm((intptr_t)insn_addr); 372 assert(address_is == target, "should be"); 373 } 374 #endif 375 } 376 }; 377 378 // If insn1 and insn2 use the same register to form an address, either 379 // by an offsetted LDR or a simple ADD, return the offset. If the 380 // second instruction is an LDR, the offset may be scaled. 381 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 382 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 383 Instruction_aarch64::extract(insn1, 4, 0) == 384 Instruction_aarch64::extract(insn2, 9, 5)) { 385 // Load/store register (unsigned immediate) 386 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 387 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 388 byte_offset <<= size; 389 return true; 390 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 391 Instruction_aarch64::extract(insn1, 4, 0) == 392 Instruction_aarch64::extract(insn2, 4, 0)) { 393 // add (immediate) 394 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 395 return true; 396 } 397 return false; 398 } 399 400 class AArch64Decoder : public RelocActions { 401 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 402 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 403 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 404 405 public: 406 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 407 408 virtual int loadStore(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int unconditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 415 target = insn_addr + (offset << 2); 416 return 1; 417 } 418 virtual int conditionalBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int testAndBranch(address insn_addr, address &target) { 424 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 425 target = address(((uint64_t)insn_addr + (offset << 2))); 426 return 1; 427 } 428 virtual int adr(address insn_addr, address &target) { 429 // PC-rel. addressing 430 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 431 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 432 target = address((uint64_t)insn_addr + offset); 433 return 1; 434 } 435 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 436 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 437 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 438 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 439 int shift = 12; 440 offset <<= shift; 441 uint64_t target_page = ((uint64_t)insn_addr) + offset; 442 target_page &= ((uint64_t)-1) << shift; 443 uint32_t insn2 = insn_at(1); 444 target = address(target_page); 445 precond(inner != nullptr); 446 (*inner)(insn_addr, target); 447 return 2; 448 } 449 static int adrpMem_impl(address insn_addr, address &target) { 450 uint32_t insn2 = insn_at(insn_addr, 1); 451 // Load/store register (unsigned immediate) 452 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 453 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 454 byte_offset <<= size; 455 target += byte_offset; 456 return 2; 457 } 458 static int adrpAdd_impl(address insn_addr, address &target) { 459 uint32_t insn2 = insn_at(insn_addr, 1); 460 // add (immediate) 461 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 462 target += byte_offset; 463 return 2; 464 } 465 static int adrpMovk_impl(address insn_addr, address &target) { 466 uint32_t insn2 = insn_at(insn_addr, 1); 467 uint64_t dest = uint64_t(target); 468 dest = (dest & 0xffff0000ffffffff) | 469 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 470 target = address(dest); 471 472 // We know the destination 4k page. Maybe we have a third 473 // instruction. 474 uint32_t insn = insn_at(insn_addr, 0); 475 uint32_t insn3 = insn_at(insn_addr, 2); 476 ptrdiff_t byte_offset; 477 if (offset_for(insn, insn3, byte_offset)) { 478 target += byte_offset; 479 return 3; 480 } else { 481 return 2; 482 } 483 } 484 virtual int immediate(address insn_addr, address &target) { 485 uint32_t *insns = (uint32_t *)insn_addr; 486 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 487 // Move wide constant: movz, movk, movk. See movptr(). 488 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 490 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 491 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 492 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 493 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 494 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 495 return 3; 496 } 497 virtual void verify(address insn_addr, address &target) { 498 } 499 }; 500 501 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 502 AArch64Decoder decoder(insn_addr, insn); 503 address target; 504 decoder.run(insn_addr, target); 505 return target; 506 } 507 508 // Patch any kind of instruction; there may be several instructions. 509 // Return the total length (in bytes) of the instructions. 510 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 511 Patcher patcher(insn_addr); 512 return patcher.run(insn_addr, target); 513 } 514 515 int MacroAssembler::patch_oop(address insn_addr, address o) { 516 int instructions; 517 unsigned insn = *(unsigned*)insn_addr; 518 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 519 520 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 521 // narrow OOPs by setting the upper 16 bits in the first 522 // instruction. 523 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 524 // Move narrow OOP 525 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 526 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 527 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 528 instructions = 2; 529 } else { 530 // Move wide OOP 531 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 532 uintptr_t dest = (uintptr_t)o; 533 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 534 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 535 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 536 instructions = 3; 537 } 538 return instructions * NativeInstruction::instruction_size; 539 } 540 541 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 542 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 543 // We encode narrow ones by setting the upper 16 bits in the first 544 // instruction. 545 NativeInstruction *insn = nativeInstruction_at(insn_addr); 546 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 547 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 548 549 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 550 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 551 return 2 * NativeInstruction::instruction_size; 552 } 553 554 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 555 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 556 return nullptr; 557 } 558 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 559 } 560 561 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 562 if (acquire) { 563 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 564 ldar(tmp, tmp); 565 } else { 566 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 567 } 568 if (at_return) { 569 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 570 // we may safely use the sp instead to perform the stack watermark check. 571 cmp(in_nmethod ? sp : rfp, tmp); 572 br(Assembler::HI, slow_path); 573 } else { 574 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 575 } 576 } 577 578 void MacroAssembler::rt_call(address dest, Register tmp) { 579 CodeBlob *cb = CodeCache::find_blob(dest); 580 if (cb) { 581 far_call(RuntimeAddress(dest)); 582 } else { 583 lea(tmp, RuntimeAddress(dest)); 584 blr(tmp); 585 } 586 } 587 588 void MacroAssembler::push_cont_fastpath(Register java_thread) { 589 if (!Continuations::enabled()) return; 590 Label done; 591 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 592 cmp(sp, rscratch1); 593 br(Assembler::LS, done); 594 mov(rscratch1, sp); // we can't use sp as the source in str 595 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 596 bind(done); 597 } 598 599 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 600 if (!Continuations::enabled()) return; 601 Label done; 602 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 603 cmp(sp, rscratch1); 604 br(Assembler::LO, done); 605 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 606 bind(done); 607 } 608 609 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 610 // we must set sp to zero to clear frame 611 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 612 613 // must clear fp, so that compiled frames are not confused; it is 614 // possible that we need it only for debugging 615 if (clear_fp) { 616 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 617 } 618 619 // Always clear the pc because it could have been set by make_walkable() 620 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 621 } 622 623 // Calls to C land 624 // 625 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 626 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 627 // has to be reset to 0. This is required to allow proper stack traversal. 628 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 629 Register last_java_fp, 630 Register last_java_pc, 631 Register scratch) { 632 633 if (last_java_pc->is_valid()) { 634 str(last_java_pc, Address(rthread, 635 JavaThread::frame_anchor_offset() 636 + JavaFrameAnchor::last_Java_pc_offset())); 637 } 638 639 // determine last_java_sp register 640 if (last_java_sp == sp) { 641 mov(scratch, sp); 642 last_java_sp = scratch; 643 } else if (!last_java_sp->is_valid()) { 644 last_java_sp = esp; 645 } 646 647 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 648 649 // last_java_fp is optional 650 if (last_java_fp->is_valid()) { 651 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 652 } 653 } 654 655 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 656 Register last_java_fp, 657 address last_java_pc, 658 Register scratch) { 659 assert(last_java_pc != nullptr, "must provide a valid PC"); 660 661 adr(scratch, last_java_pc); 662 str(scratch, Address(rthread, 663 JavaThread::frame_anchor_offset() 664 + JavaFrameAnchor::last_Java_pc_offset())); 665 666 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 667 } 668 669 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 670 Register last_java_fp, 671 Label &L, 672 Register scratch) { 673 if (L.is_bound()) { 674 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 675 } else { 676 InstructionMark im(this); 677 L.add_patch_at(code(), locator()); 678 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 679 } 680 } 681 682 static inline bool target_needs_far_branch(address addr) { 683 // codecache size <= 128M 684 if (!MacroAssembler::far_branches()) { 685 return false; 686 } 687 // codecache size > 240M 688 if (MacroAssembler::codestub_branch_needs_far_jump()) { 689 return true; 690 } 691 // codecache size: 128M..240M 692 return !CodeCache::is_non_nmethod(addr); 693 } 694 695 void MacroAssembler::far_call(Address entry, Register tmp) { 696 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 697 assert(CodeCache::find_blob(entry.target()) != nullptr, 698 "destination of far call not found in code cache"); 699 assert(entry.rspec().type() == relocInfo::external_word_type 700 || entry.rspec().type() == relocInfo::runtime_call_type 701 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 702 if (target_needs_far_branch(entry.target())) { 703 uint64_t offset; 704 // We can use ADRP here because we know that the total size of 705 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 706 adrp(tmp, entry, offset); 707 add(tmp, tmp, offset); 708 blr(tmp); 709 } else { 710 bl(entry); 711 } 712 } 713 714 int MacroAssembler::far_jump(Address entry, Register tmp) { 715 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 716 assert(CodeCache::find_blob(entry.target()) != nullptr, 717 "destination of far call not found in code cache"); 718 assert(entry.rspec().type() == relocInfo::external_word_type 719 || entry.rspec().type() == relocInfo::runtime_call_type 720 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 721 address start = pc(); 722 if (target_needs_far_branch(entry.target())) { 723 uint64_t offset; 724 // We can use ADRP here because we know that the total size of 725 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 726 adrp(tmp, entry, offset); 727 add(tmp, tmp, offset); 728 br(tmp); 729 } else { 730 b(entry); 731 } 732 return pc() - start; 733 } 734 735 void MacroAssembler::reserved_stack_check() { 736 // testing if reserved zone needs to be enabled 737 Label no_reserved_zone_enabling; 738 739 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 740 cmp(sp, rscratch1); 741 br(Assembler::LO, no_reserved_zone_enabling); 742 743 enter(); // LR and FP are live. 744 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 745 mov(c_rarg0, rthread); 746 blr(rscratch1); 747 leave(); 748 749 // We have already removed our own frame. 750 // throw_delayed_StackOverflowError will think that it's been 751 // called by our caller. 752 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 753 br(rscratch1); 754 should_not_reach_here(); 755 756 bind(no_reserved_zone_enabling); 757 } 758 759 static void pass_arg0(MacroAssembler* masm, Register arg) { 760 if (c_rarg0 != arg ) { 761 masm->mov(c_rarg0, arg); 762 } 763 } 764 765 static void pass_arg1(MacroAssembler* masm, Register arg) { 766 if (c_rarg1 != arg ) { 767 masm->mov(c_rarg1, arg); 768 } 769 } 770 771 static void pass_arg2(MacroAssembler* masm, Register arg) { 772 if (c_rarg2 != arg ) { 773 masm->mov(c_rarg2, arg); 774 } 775 } 776 777 static void pass_arg3(MacroAssembler* masm, Register arg) { 778 if (c_rarg3 != arg ) { 779 masm->mov(c_rarg3, arg); 780 } 781 } 782 783 static bool is_preemptable(address entry_point) { 784 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 785 } 786 787 void MacroAssembler::call_VM_base(Register oop_result, 788 Register java_thread, 789 Register last_java_sp, 790 address entry_point, 791 int number_of_arguments, 792 bool check_exceptions) { 793 // determine java_thread register 794 if (!java_thread->is_valid()) { 795 java_thread = rthread; 796 } 797 798 // determine last_java_sp register 799 if (!last_java_sp->is_valid()) { 800 last_java_sp = esp; 801 } 802 803 // debugging support 804 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 805 assert(java_thread == rthread, "unexpected register"); 806 #ifdef ASSERT 807 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 808 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 809 #endif // ASSERT 810 811 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 812 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 813 814 // push java thread (becomes first argument of C function) 815 816 mov(c_rarg0, java_thread); 817 818 // set last Java frame before call 819 assert(last_java_sp != rfp, "can't use rfp"); 820 821 Label l; 822 if (is_preemptable(entry_point)) { 823 // skip setting last_pc since we already set it to desired value. 824 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 825 } else { 826 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 827 } 828 829 // do the call, remove parameters 830 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 831 832 // lr could be poisoned with PAC signature during throw_pending_exception 833 // if it was tail-call optimized by compiler, since lr is not callee-saved 834 // reload it with proper value 835 adr(lr, l); 836 837 // reset last Java frame 838 // Only interpreter should have to clear fp 839 reset_last_Java_frame(true); 840 841 // C++ interp handles this in the interpreter 842 check_and_handle_popframe(java_thread); 843 check_and_handle_earlyret(java_thread); 844 845 if (check_exceptions) { 846 // check for pending exceptions (java_thread is set upon return) 847 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 848 Label ok; 849 cbz(rscratch1, ok); 850 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 851 br(rscratch1); 852 bind(ok); 853 } 854 855 // get oop result if there is one and reset the value in the thread 856 if (oop_result->is_valid()) { 857 get_vm_result_oop(oop_result, java_thread); 858 } 859 } 860 861 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 862 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 863 } 864 865 // Check the entry target is always reachable from any branch. 866 static bool is_always_within_branch_range(Address entry) { 867 const address target = entry.target(); 868 869 if (!CodeCache::contains(target)) { 870 // We always use trampolines for callees outside CodeCache. 871 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 872 return false; 873 } 874 875 if (!MacroAssembler::far_branches()) { 876 return true; 877 } 878 879 if (entry.rspec().type() == relocInfo::runtime_call_type) { 880 // Runtime calls are calls of a non-compiled method (stubs, adapters). 881 // Non-compiled methods stay forever in CodeCache. 882 // We check whether the longest possible branch is within the branch range. 883 assert(CodeCache::find_blob(target) != nullptr && 884 !CodeCache::find_blob(target)->is_nmethod(), 885 "runtime call of compiled method"); 886 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 887 const address left_longest_branch_start = CodeCache::low_bound(); 888 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 889 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 890 return is_reachable; 891 } 892 893 return false; 894 } 895 896 // Maybe emit a call via a trampoline. If the code cache is small 897 // trampolines won't be emitted. 898 address MacroAssembler::trampoline_call(Address entry) { 899 assert(entry.rspec().type() == relocInfo::runtime_call_type 900 || entry.rspec().type() == relocInfo::opt_virtual_call_type 901 || entry.rspec().type() == relocInfo::static_call_type 902 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 903 904 address target = entry.target(); 905 906 if (!is_always_within_branch_range(entry)) { 907 if (!in_scratch_emit_size()) { 908 // We don't want to emit a trampoline if C2 is generating dummy 909 // code during its branch shortening phase. 910 if (entry.rspec().type() == relocInfo::runtime_call_type) { 911 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 912 code()->share_trampoline_for(entry.target(), offset()); 913 } else { 914 address stub = emit_trampoline_stub(offset(), target); 915 if (stub == nullptr) { 916 postcond(pc() == badAddress); 917 return nullptr; // CodeCache is full 918 } 919 } 920 } 921 target = pc(); 922 } 923 924 address call_pc = pc(); 925 relocate(entry.rspec()); 926 bl(target); 927 928 postcond(pc() != badAddress); 929 return call_pc; 930 } 931 932 // Emit a trampoline stub for a call to a target which is too far away. 933 // 934 // code sequences: 935 // 936 // call-site: 937 // branch-and-link to <destination> or <trampoline stub> 938 // 939 // Related trampoline stub for this call site in the stub section: 940 // load the call target from the constant pool 941 // branch (LR still points to the call site above) 942 943 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 944 address dest) { 945 // Max stub size: alignment nop, TrampolineStub. 946 address stub = start_a_stub(max_trampoline_stub_size()); 947 if (stub == nullptr) { 948 return nullptr; // CodeBuffer::expand failed 949 } 950 951 // Create a trampoline stub relocation which relates this trampoline stub 952 // with the call instruction at insts_call_instruction_offset in the 953 // instructions code-section. 954 align(wordSize); 955 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 956 + insts_call_instruction_offset)); 957 const int stub_start_offset = offset(); 958 959 // Now, create the trampoline stub's code: 960 // - load the call 961 // - call 962 Label target; 963 ldr(rscratch1, target); 964 br(rscratch1); 965 bind(target); 966 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 967 "should be"); 968 emit_int64((int64_t)dest); 969 970 const address stub_start_addr = addr_at(stub_start_offset); 971 972 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 973 974 end_a_stub(); 975 return stub_start_addr; 976 } 977 978 int MacroAssembler::max_trampoline_stub_size() { 979 // Max stub size: alignment nop, TrampolineStub. 980 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 981 } 982 983 void MacroAssembler::emit_static_call_stub() { 984 // CompiledDirectCall::set_to_interpreted knows the 985 // exact layout of this stub. 986 987 isb(); 988 mov_metadata(rmethod, nullptr); 989 990 // Jump to the entry point of the c2i stub. 991 movptr(rscratch1, 0); 992 br(rscratch1); 993 } 994 995 int MacroAssembler::static_call_stub_size() { 996 // isb; movk; movz; movz; movk; movz; movz; br 997 return 8 * NativeInstruction::instruction_size; 998 } 999 1000 void MacroAssembler::c2bool(Register x) { 1001 // implements x == 0 ? 0 : 1 1002 // note: must only look at least-significant byte of x 1003 // since C-style booleans are stored in one byte 1004 // only! (was bug) 1005 tst(x, 0xff); 1006 cset(x, Assembler::NE); 1007 } 1008 1009 address MacroAssembler::ic_call(address entry, jint method_index) { 1010 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1011 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1012 return trampoline_call(Address(entry, rh)); 1013 } 1014 1015 int MacroAssembler::ic_check_size() { 1016 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1017 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1018 return NativeInstruction::instruction_size * (7 + extra_instructions); 1019 } else { 1020 return NativeInstruction::instruction_size * (5 + extra_instructions); 1021 } 1022 } 1023 1024 int MacroAssembler::ic_check(int end_alignment) { 1025 Register receiver = j_rarg0; 1026 Register data = rscratch2; 1027 Register tmp1 = rscratch1; 1028 Register tmp2 = r10; 1029 1030 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1031 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1032 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1033 // before the inline cache check here, and not after 1034 align(end_alignment, offset() + ic_check_size()); 1035 1036 int uep_offset = offset(); 1037 1038 if (UseCompactObjectHeaders) { 1039 load_narrow_klass_compact(tmp1, receiver); 1040 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1041 cmpw(tmp1, tmp2); 1042 } else if (UseCompressedClassPointers) { 1043 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1044 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1045 cmpw(tmp1, tmp2); 1046 } else { 1047 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1048 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1049 cmp(tmp1, tmp2); 1050 } 1051 1052 Label dont; 1053 br(Assembler::EQ, dont); 1054 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1055 bind(dont); 1056 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1057 1058 return uep_offset; 1059 } 1060 1061 // Implementation of call_VM versions 1062 1063 void MacroAssembler::call_VM(Register oop_result, 1064 address entry_point, 1065 bool check_exceptions) { 1066 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1067 } 1068 1069 void MacroAssembler::call_VM(Register oop_result, 1070 address entry_point, 1071 Register arg_1, 1072 bool check_exceptions) { 1073 pass_arg1(this, arg_1); 1074 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1075 } 1076 1077 void MacroAssembler::call_VM(Register oop_result, 1078 address entry_point, 1079 Register arg_1, 1080 Register arg_2, 1081 bool check_exceptions) { 1082 assert_different_registers(arg_1, c_rarg2); 1083 pass_arg2(this, arg_2); 1084 pass_arg1(this, arg_1); 1085 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1086 } 1087 1088 void MacroAssembler::call_VM(Register oop_result, 1089 address entry_point, 1090 Register arg_1, 1091 Register arg_2, 1092 Register arg_3, 1093 bool check_exceptions) { 1094 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1095 assert_different_registers(arg_2, c_rarg3); 1096 pass_arg3(this, arg_3); 1097 1098 pass_arg2(this, arg_2); 1099 1100 pass_arg1(this, arg_1); 1101 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1102 } 1103 1104 void MacroAssembler::call_VM(Register oop_result, 1105 Register last_java_sp, 1106 address entry_point, 1107 int number_of_arguments, 1108 bool check_exceptions) { 1109 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1110 } 1111 1112 void MacroAssembler::call_VM(Register oop_result, 1113 Register last_java_sp, 1114 address entry_point, 1115 Register arg_1, 1116 bool check_exceptions) { 1117 pass_arg1(this, arg_1); 1118 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1119 } 1120 1121 void MacroAssembler::call_VM(Register oop_result, 1122 Register last_java_sp, 1123 address entry_point, 1124 Register arg_1, 1125 Register arg_2, 1126 bool check_exceptions) { 1127 1128 assert_different_registers(arg_1, c_rarg2); 1129 pass_arg2(this, arg_2); 1130 pass_arg1(this, arg_1); 1131 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1132 } 1133 1134 void MacroAssembler::call_VM(Register oop_result, 1135 Register last_java_sp, 1136 address entry_point, 1137 Register arg_1, 1138 Register arg_2, 1139 Register arg_3, 1140 bool check_exceptions) { 1141 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1142 assert_different_registers(arg_2, c_rarg3); 1143 pass_arg3(this, arg_3); 1144 pass_arg2(this, arg_2); 1145 pass_arg1(this, arg_1); 1146 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1147 } 1148 1149 1150 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1151 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1152 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1153 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1154 } 1155 1156 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1157 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1158 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1159 } 1160 1161 void MacroAssembler::align(int modulus) { 1162 align(modulus, offset()); 1163 } 1164 1165 // Ensure that the code at target bytes offset from the current offset() is aligned 1166 // according to modulus. 1167 void MacroAssembler::align(int modulus, int target) { 1168 int delta = target - offset(); 1169 while ((offset() + delta) % modulus != 0) nop(); 1170 } 1171 1172 void MacroAssembler::post_call_nop() { 1173 if (!Continuations::enabled()) { 1174 return; 1175 } 1176 InstructionMark im(this); 1177 relocate(post_call_nop_Relocation::spec()); 1178 InlineSkippedInstructionsCounter skipCounter(this); 1179 nop(); 1180 movk(zr, 0); 1181 movk(zr, 0); 1182 } 1183 1184 // these are no-ops overridden by InterpreterMacroAssembler 1185 1186 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1187 1188 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1189 1190 // Look up the method for a megamorphic invokeinterface call. 1191 // The target method is determined by <intf_klass, itable_index>. 1192 // The receiver klass is in recv_klass. 1193 // On success, the result will be in method_result, and execution falls through. 1194 // On failure, execution transfers to the given label. 1195 void MacroAssembler::lookup_interface_method(Register recv_klass, 1196 Register intf_klass, 1197 RegisterOrConstant itable_index, 1198 Register method_result, 1199 Register scan_temp, 1200 Label& L_no_such_interface, 1201 bool return_method) { 1202 assert_different_registers(recv_klass, intf_klass, scan_temp); 1203 assert_different_registers(method_result, intf_klass, scan_temp); 1204 assert(recv_klass != method_result || !return_method, 1205 "recv_klass can be destroyed when method isn't needed"); 1206 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1207 "caller must use same register for non-constant itable index as for method"); 1208 1209 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1210 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1211 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1212 int scan_step = itableOffsetEntry::size() * wordSize; 1213 int vte_size = vtableEntry::size_in_bytes(); 1214 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1215 1216 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1217 1218 // Could store the aligned, prescaled offset in the klass. 1219 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1220 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1221 add(scan_temp, scan_temp, vtable_base); 1222 1223 if (return_method) { 1224 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1225 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1226 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1227 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1228 if (itentry_off) 1229 add(recv_klass, recv_klass, itentry_off); 1230 } 1231 1232 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1233 // if (scan->interface() == intf) { 1234 // result = (klass + scan->offset() + itable_index); 1235 // } 1236 // } 1237 Label search, found_method; 1238 1239 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1240 cmp(intf_klass, method_result); 1241 br(Assembler::EQ, found_method); 1242 bind(search); 1243 // Check that the previous entry is non-null. A null entry means that 1244 // the receiver class doesn't implement the interface, and wasn't the 1245 // same as when the caller was compiled. 1246 cbz(method_result, L_no_such_interface); 1247 if (itableOffsetEntry::interface_offset() != 0) { 1248 add(scan_temp, scan_temp, scan_step); 1249 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1250 } else { 1251 ldr(method_result, Address(pre(scan_temp, scan_step))); 1252 } 1253 cmp(intf_klass, method_result); 1254 br(Assembler::NE, search); 1255 1256 bind(found_method); 1257 1258 // Got a hit. 1259 if (return_method) { 1260 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1261 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1262 } 1263 } 1264 1265 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1266 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1267 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1268 // The target method is determined by <holder_klass, itable_index>. 1269 // The receiver klass is in recv_klass. 1270 // On success, the result will be in method_result, and execution falls through. 1271 // On failure, execution transfers to the given label. 1272 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1273 Register holder_klass, 1274 Register resolved_klass, 1275 Register method_result, 1276 Register temp_itbl_klass, 1277 Register scan_temp, 1278 int itable_index, 1279 Label& L_no_such_interface) { 1280 // 'method_result' is only used as output register at the very end of this method. 1281 // Until then we can reuse it as 'holder_offset'. 1282 Register holder_offset = method_result; 1283 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1284 1285 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1286 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1287 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1288 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1289 1290 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1291 1292 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1293 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1294 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1295 // temp_itbl_klass = itable[0]._interface; 1296 int vtblEntrySize = vtableEntry::size_in_bytes(); 1297 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1298 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1299 mov(holder_offset, zr); 1300 // scan_temp = &(itable[0]._interface) 1301 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1302 1303 // Initial checks: 1304 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1305 // - if (itable[0] == holder_klass), shortcut to "holder found" 1306 // - if (itable[0] == 0), no such interface 1307 cmp(resolved_klass, holder_klass); 1308 br(Assembler::NE, L_loop_search_resolved_entry); 1309 cmp(holder_klass, temp_itbl_klass); 1310 br(Assembler::EQ, L_holder_found); 1311 cbz(temp_itbl_klass, L_no_such_interface); 1312 1313 // Loop: Look for holder_klass record in itable 1314 // do { 1315 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1316 // if (temp_itbl_klass == holder_klass) { 1317 // goto L_holder_found; // Found! 1318 // } 1319 // } while (temp_itbl_klass != 0); 1320 // goto L_no_such_interface // Not found. 1321 Label L_search_holder; 1322 bind(L_search_holder); 1323 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1324 cmp(holder_klass, temp_itbl_klass); 1325 br(Assembler::EQ, L_holder_found); 1326 cbnz(temp_itbl_klass, L_search_holder); 1327 1328 b(L_no_such_interface); 1329 1330 // Loop: Look for resolved_class record in itable 1331 // while (true) { 1332 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1333 // if (temp_itbl_klass == 0) { 1334 // goto L_no_such_interface; 1335 // } 1336 // if (temp_itbl_klass == resolved_klass) { 1337 // goto L_resolved_found; // Found! 1338 // } 1339 // if (temp_itbl_klass == holder_klass) { 1340 // holder_offset = scan_temp; 1341 // } 1342 // } 1343 // 1344 Label L_loop_search_resolved; 1345 bind(L_loop_search_resolved); 1346 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1347 bind(L_loop_search_resolved_entry); 1348 cbz(temp_itbl_klass, L_no_such_interface); 1349 cmp(resolved_klass, temp_itbl_klass); 1350 br(Assembler::EQ, L_resolved_found); 1351 cmp(holder_klass, temp_itbl_klass); 1352 br(Assembler::NE, L_loop_search_resolved); 1353 mov(holder_offset, scan_temp); 1354 b(L_loop_search_resolved); 1355 1356 // See if we already have a holder klass. If not, go and scan for it. 1357 bind(L_resolved_found); 1358 cbz(holder_offset, L_search_holder); 1359 mov(scan_temp, holder_offset); 1360 1361 // Finally, scan_temp contains holder_klass vtable offset 1362 bind(L_holder_found); 1363 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1364 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1365 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1366 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1367 } 1368 1369 // virtual method calling 1370 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1371 RegisterOrConstant vtable_index, 1372 Register method_result) { 1373 assert(vtableEntry::size() * wordSize == 8, 1374 "adjust the scaling in the code below"); 1375 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1376 1377 if (vtable_index.is_register()) { 1378 lea(method_result, Address(recv_klass, 1379 vtable_index.as_register(), 1380 Address::lsl(LogBytesPerWord))); 1381 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1382 } else { 1383 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1384 ldr(method_result, 1385 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1386 } 1387 } 1388 1389 void MacroAssembler::check_klass_subtype(Register sub_klass, 1390 Register super_klass, 1391 Register temp_reg, 1392 Label& L_success) { 1393 Label L_failure; 1394 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1395 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1396 bind(L_failure); 1397 } 1398 1399 1400 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1401 Register super_klass, 1402 Register temp_reg, 1403 Label* L_success, 1404 Label* L_failure, 1405 Label* L_slow_path, 1406 Register super_check_offset) { 1407 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1408 bool must_load_sco = ! super_check_offset->is_valid(); 1409 if (must_load_sco) { 1410 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1411 } 1412 1413 Label L_fallthrough; 1414 int label_nulls = 0; 1415 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1416 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1417 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1418 assert(label_nulls <= 1, "at most one null in the batch"); 1419 1420 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1421 Address super_check_offset_addr(super_klass, sco_offset); 1422 1423 // Hacked jmp, which may only be used just before L_fallthrough. 1424 #define final_jmp(label) \ 1425 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1426 else b(label) /*omit semi*/ 1427 1428 // If the pointers are equal, we are done (e.g., String[] elements). 1429 // This self-check enables sharing of secondary supertype arrays among 1430 // non-primary types such as array-of-interface. Otherwise, each such 1431 // type would need its own customized SSA. 1432 // We move this check to the front of the fast path because many 1433 // type checks are in fact trivially successful in this manner, 1434 // so we get a nicely predicted branch right at the start of the check. 1435 cmp(sub_klass, super_klass); 1436 br(Assembler::EQ, *L_success); 1437 1438 // Check the supertype display: 1439 if (must_load_sco) { 1440 ldrw(temp_reg, super_check_offset_addr); 1441 super_check_offset = temp_reg; 1442 } 1443 1444 Address super_check_addr(sub_klass, super_check_offset); 1445 ldr(rscratch1, super_check_addr); 1446 cmp(super_klass, rscratch1); // load displayed supertype 1447 br(Assembler::EQ, *L_success); 1448 1449 // This check has worked decisively for primary supers. 1450 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1451 // (Secondary supers are interfaces and very deeply nested subtypes.) 1452 // This works in the same check above because of a tricky aliasing 1453 // between the super_cache and the primary super display elements. 1454 // (The 'super_check_addr' can address either, as the case requires.) 1455 // Note that the cache is updated below if it does not help us find 1456 // what we need immediately. 1457 // So if it was a primary super, we can just fail immediately. 1458 // Otherwise, it's the slow path for us (no success at this point). 1459 1460 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1461 if (L_failure == &L_fallthrough) { 1462 cbz(rscratch1, *L_slow_path); 1463 } else { 1464 cbnz(rscratch1, *L_failure); 1465 final_jmp(*L_slow_path); 1466 } 1467 1468 bind(L_fallthrough); 1469 1470 #undef final_jmp 1471 } 1472 1473 // These two are taken from x86, but they look generally useful 1474 1475 // scans count pointer sized words at [addr] for occurrence of value, 1476 // generic 1477 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1478 Register scratch) { 1479 Label Lloop, Lexit; 1480 cbz(count, Lexit); 1481 bind(Lloop); 1482 ldr(scratch, post(addr, wordSize)); 1483 cmp(value, scratch); 1484 br(EQ, Lexit); 1485 sub(count, count, 1); 1486 cbnz(count, Lloop); 1487 bind(Lexit); 1488 } 1489 1490 // scans count 4 byte words at [addr] for occurrence of value, 1491 // generic 1492 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1493 Register scratch) { 1494 Label Lloop, Lexit; 1495 cbz(count, Lexit); 1496 bind(Lloop); 1497 ldrw(scratch, post(addr, wordSize)); 1498 cmpw(value, scratch); 1499 br(EQ, Lexit); 1500 sub(count, count, 1); 1501 cbnz(count, Lloop); 1502 bind(Lexit); 1503 } 1504 1505 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1506 Register super_klass, 1507 Register temp_reg, 1508 Register temp2_reg, 1509 Label* L_success, 1510 Label* L_failure, 1511 bool set_cond_codes) { 1512 // NB! Callers may assume that, when temp2_reg is a valid register, 1513 // this code sets it to a nonzero value. 1514 1515 assert_different_registers(sub_klass, super_klass, temp_reg); 1516 if (temp2_reg != noreg) 1517 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1518 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1519 1520 Label L_fallthrough; 1521 int label_nulls = 0; 1522 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1523 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1524 assert(label_nulls <= 1, "at most one null in the batch"); 1525 1526 // a couple of useful fields in sub_klass: 1527 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1528 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1529 Address secondary_supers_addr(sub_klass, ss_offset); 1530 Address super_cache_addr( sub_klass, sc_offset); 1531 1532 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1533 1534 // Do a linear scan of the secondary super-klass chain. 1535 // This code is rarely used, so simplicity is a virtue here. 1536 // The repne_scan instruction uses fixed registers, which we must spill. 1537 // Don't worry too much about pre-existing connections with the input regs. 1538 1539 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1540 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1541 1542 RegSet pushed_registers; 1543 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1544 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1545 1546 if (super_klass != r0) { 1547 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1548 } 1549 1550 push(pushed_registers, sp); 1551 1552 // Get super_klass value into r0 (even if it was in r5 or r2). 1553 if (super_klass != r0) { 1554 mov(r0, super_klass); 1555 } 1556 1557 #ifndef PRODUCT 1558 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1559 #endif //PRODUCT 1560 1561 // We will consult the secondary-super array. 1562 ldr(r5, secondary_supers_addr); 1563 // Load the array length. 1564 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1565 // Skip to start of data. 1566 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1567 1568 cmp(sp, zr); // Clear Z flag; SP is never zero 1569 // Scan R2 words at [R5] for an occurrence of R0. 1570 // Set NZ/Z based on last compare. 1571 repne_scan(r5, r0, r2, rscratch1); 1572 1573 // Unspill the temp. registers: 1574 pop(pushed_registers, sp); 1575 1576 br(Assembler::NE, *L_failure); 1577 1578 // Success. Cache the super we found and proceed in triumph. 1579 1580 if (UseSecondarySupersCache) { 1581 str(super_klass, super_cache_addr); 1582 } 1583 1584 if (L_success != &L_fallthrough) { 1585 b(*L_success); 1586 } 1587 1588 #undef IS_A_TEMP 1589 1590 bind(L_fallthrough); 1591 } 1592 1593 // If Register r is invalid, remove a new register from 1594 // available_regs, and add new register to regs_to_push. 1595 Register MacroAssembler::allocate_if_noreg(Register r, 1596 RegSetIterator<Register> &available_regs, 1597 RegSet ®s_to_push) { 1598 if (!r->is_valid()) { 1599 r = *available_regs++; 1600 regs_to_push += r; 1601 } 1602 return r; 1603 } 1604 1605 // check_klass_subtype_slow_path_table() looks for super_klass in the 1606 // hash table belonging to super_klass, branching to L_success or 1607 // L_failure as appropriate. This is essentially a shim which 1608 // allocates registers as necessary then calls 1609 // lookup_secondary_supers_table() to do the work. Any of the temp 1610 // regs may be noreg, in which case this logic will chooses some 1611 // registers push and pop them from the stack. 1612 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1613 Register super_klass, 1614 Register temp_reg, 1615 Register temp2_reg, 1616 Register temp3_reg, 1617 Register result_reg, 1618 FloatRegister vtemp, 1619 Label* L_success, 1620 Label* L_failure, 1621 bool set_cond_codes) { 1622 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1623 1624 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1625 1626 Label L_fallthrough; 1627 int label_nulls = 0; 1628 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1629 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1630 assert(label_nulls <= 1, "at most one null in the batch"); 1631 1632 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1633 1634 RegSetIterator<Register> available_regs 1635 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1636 1637 RegSet pushed_regs; 1638 1639 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1640 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1641 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1642 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1643 1644 push(pushed_regs, sp); 1645 1646 lookup_secondary_supers_table_var(sub_klass, 1647 super_klass, 1648 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1649 nullptr); 1650 cmp(result_reg, zr); 1651 1652 // Unspill the temp. registers: 1653 pop(pushed_regs, sp); 1654 1655 // NB! Callers may assume that, when set_cond_codes is true, this 1656 // code sets temp2_reg to a nonzero value. 1657 if (set_cond_codes) { 1658 mov(temp2_reg, 1); 1659 } 1660 1661 br(Assembler::NE, *L_failure); 1662 1663 if (L_success != &L_fallthrough) { 1664 b(*L_success); 1665 } 1666 1667 bind(L_fallthrough); 1668 } 1669 1670 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1671 Register super_klass, 1672 Register temp_reg, 1673 Register temp2_reg, 1674 Label* L_success, 1675 Label* L_failure, 1676 bool set_cond_codes) { 1677 if (UseSecondarySupersTable) { 1678 check_klass_subtype_slow_path_table 1679 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1680 /*vtemp*/fnoreg, 1681 L_success, L_failure, set_cond_codes); 1682 } else { 1683 check_klass_subtype_slow_path_linear 1684 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1685 } 1686 } 1687 1688 1689 // Ensure that the inline code and the stub are using the same registers. 1690 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1691 do { \ 1692 assert(r_super_klass == r0 && \ 1693 r_array_base == r1 && \ 1694 r_array_length == r2 && \ 1695 (r_array_index == r3 || r_array_index == noreg) && \ 1696 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1697 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1698 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1699 } while(0) 1700 1701 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1702 Register r_super_klass, 1703 Register temp1, 1704 Register temp2, 1705 Register temp3, 1706 FloatRegister vtemp, 1707 Register result, 1708 u1 super_klass_slot, 1709 bool stub_is_near) { 1710 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1711 1712 Label L_fallthrough; 1713 1714 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1715 1716 const Register 1717 r_array_base = temp1, // r1 1718 r_array_length = temp2, // r2 1719 r_array_index = temp3, // r3 1720 r_bitmap = rscratch2; 1721 1722 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1723 1724 u1 bit = super_klass_slot; 1725 1726 // Make sure that result is nonzero if the TBZ below misses. 1727 mov(result, 1); 1728 1729 // We're going to need the bitmap in a vector reg and in a core reg, 1730 // so load both now. 1731 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1732 if (bit != 0) { 1733 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1734 } 1735 // First check the bitmap to see if super_klass might be present. If 1736 // the bit is zero, we are certain that super_klass is not one of 1737 // the secondary supers. 1738 tbz(r_bitmap, bit, L_fallthrough); 1739 1740 // Get the first array index that can contain super_klass into r_array_index. 1741 if (bit != 0) { 1742 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1743 cnt(vtemp, T8B, vtemp); 1744 addv(vtemp, T8B, vtemp); 1745 fmovd(r_array_index, vtemp); 1746 } else { 1747 mov(r_array_index, (u1)1); 1748 } 1749 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1750 1751 // We will consult the secondary-super array. 1752 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1753 1754 // The value i in r_array_index is >= 1, so even though r_array_base 1755 // points to the length, we don't need to adjust it to point to the 1756 // data. 1757 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1758 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1759 1760 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1761 eor(result, result, r_super_klass); 1762 cbz(result, L_fallthrough); // Found a match 1763 1764 // Is there another entry to check? Consult the bitmap. 1765 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1766 1767 // Linear probe. 1768 if (bit != 0) { 1769 ror(r_bitmap, r_bitmap, bit); 1770 } 1771 1772 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1773 // The next slot to be inspected, by the stub we're about to call, 1774 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1775 // have been checked. 1776 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1777 if (stub_is_near) { 1778 bl(stub); 1779 } else { 1780 address call = trampoline_call(stub); 1781 if (call == nullptr) { 1782 return false; // trampoline allocation failed 1783 } 1784 } 1785 1786 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1787 1788 bind(L_fallthrough); 1789 1790 if (VerifySecondarySupers) { 1791 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1792 temp1, temp2, result); // r1, r2, r5 1793 } 1794 return true; 1795 } 1796 1797 // At runtime, return 0 in result if r_super_klass is a superclass of 1798 // r_sub_klass, otherwise return nonzero. Use this version of 1799 // lookup_secondary_supers_table() if you don't know ahead of time 1800 // which superclass will be searched for. Used by interpreter and 1801 // runtime stubs. It is larger and has somewhat greater latency than 1802 // the version above, which takes a constant super_klass_slot. 1803 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1804 Register r_super_klass, 1805 Register temp1, 1806 Register temp2, 1807 Register temp3, 1808 FloatRegister vtemp, 1809 Register result, 1810 Label *L_success) { 1811 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1812 1813 Label L_fallthrough; 1814 1815 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1816 1817 const Register 1818 r_array_index = temp3, 1819 slot = rscratch1, 1820 r_bitmap = rscratch2; 1821 1822 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1823 1824 // Make sure that result is nonzero if the test below misses. 1825 mov(result, 1); 1826 1827 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1828 1829 // First check the bitmap to see if super_klass might be present. If 1830 // the bit is zero, we are certain that super_klass is not one of 1831 // the secondary supers. 1832 1833 // This next instruction is equivalent to: 1834 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1835 // sub(temp2, tmp_reg, slot); 1836 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1837 lslv(temp2, r_bitmap, temp2); 1838 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1839 1840 bool must_save_v0 = (vtemp == fnoreg); 1841 if (must_save_v0) { 1842 // temp1 and result are free, so use them to preserve vtemp 1843 vtemp = v0; 1844 mov(temp1, vtemp, D, 0); 1845 mov(result, vtemp, D, 1); 1846 } 1847 1848 // Get the first array index that can contain super_klass into r_array_index. 1849 mov(vtemp, D, 0, temp2); 1850 cnt(vtemp, T8B, vtemp); 1851 addv(vtemp, T8B, vtemp); 1852 mov(r_array_index, vtemp, D, 0); 1853 1854 if (must_save_v0) { 1855 mov(vtemp, D, 0, temp1 ); 1856 mov(vtemp, D, 1, result); 1857 } 1858 1859 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1860 1861 const Register 1862 r_array_base = temp1, 1863 r_array_length = temp2; 1864 1865 // The value i in r_array_index is >= 1, so even though r_array_base 1866 // points to the length, we don't need to adjust it to point to the 1867 // data. 1868 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1869 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1870 1871 // We will consult the secondary-super array. 1872 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1873 1874 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1875 eor(result, result, r_super_klass); 1876 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1877 1878 // Is there another entry to check? Consult the bitmap. 1879 rorv(r_bitmap, r_bitmap, slot); 1880 // rol(r_bitmap, r_bitmap, 1); 1881 tbz(r_bitmap, 1, L_fallthrough); 1882 1883 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1884 // The next slot to be inspected, by the logic we're about to call, 1885 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1886 // have been checked. 1887 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1888 r_bitmap, r_array_length, result, /*is_stub*/false); 1889 1890 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1891 1892 bind(L_fallthrough); 1893 1894 if (VerifySecondarySupers) { 1895 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1896 temp1, temp2, result); // r1, r2, r5 1897 } 1898 1899 if (L_success) { 1900 cbz(result, *L_success); 1901 } 1902 } 1903 1904 // Called by code generated by check_klass_subtype_slow_path 1905 // above. This is called when there is a collision in the hashed 1906 // lookup in the secondary supers array. 1907 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1908 Register r_array_base, 1909 Register r_array_index, 1910 Register r_bitmap, 1911 Register temp1, 1912 Register result, 1913 bool is_stub) { 1914 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1915 1916 const Register 1917 r_array_length = temp1, 1918 r_sub_klass = noreg; // unused 1919 1920 if (is_stub) { 1921 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1922 } 1923 1924 Label L_fallthrough, L_huge; 1925 1926 // Load the array length. 1927 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1928 // And adjust the array base to point to the data. 1929 // NB! Effectively increments current slot index by 1. 1930 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1931 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1932 1933 // The bitmap is full to bursting. 1934 // Implicit invariant: BITMAP_FULL implies (length > 0) 1935 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1936 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1937 br(GT, L_huge); 1938 1939 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1940 // current slot (at secondary_supers[r_array_index]) has not yet 1941 // been inspected, and r_array_index may be out of bounds if we 1942 // wrapped around the end of the array. 1943 1944 { // This is conventional linear probing, but instead of terminating 1945 // when a null entry is found in the table, we maintain a bitmap 1946 // in which a 0 indicates missing entries. 1947 // As long as the bitmap is not completely full, 1948 // array_length == popcount(bitmap). The array_length check above 1949 // guarantees there are 0s in the bitmap, so the loop eventually 1950 // terminates. 1951 Label L_loop; 1952 bind(L_loop); 1953 1954 // Check for wraparound. 1955 cmp(r_array_index, r_array_length); 1956 csel(r_array_index, zr, r_array_index, GE); 1957 1958 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1959 eor(result, rscratch1, r_super_klass); 1960 cbz(result, L_fallthrough); 1961 1962 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1963 1964 ror(r_bitmap, r_bitmap, 1); 1965 add(r_array_index, r_array_index, 1); 1966 b(L_loop); 1967 } 1968 1969 { // Degenerate case: more than 64 secondary supers. 1970 // FIXME: We could do something smarter here, maybe a vectorized 1971 // comparison or a binary search, but is that worth any added 1972 // complexity? 1973 bind(L_huge); 1974 cmp(sp, zr); // Clear Z flag; SP is never zero 1975 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1976 cset(result, NE); // result == 0 iff we got a match. 1977 } 1978 1979 bind(L_fallthrough); 1980 } 1981 1982 // Make sure that the hashed lookup and a linear scan agree. 1983 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1984 Register r_super_klass, 1985 Register temp1, 1986 Register temp2, 1987 Register result) { 1988 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1989 1990 const Register 1991 r_array_base = temp1, 1992 r_array_length = temp2, 1993 r_array_index = noreg, // unused 1994 r_bitmap = noreg; // unused 1995 1996 BLOCK_COMMENT("verify_secondary_supers_table {"); 1997 1998 // We will consult the secondary-super array. 1999 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2000 2001 // Load the array length. 2002 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2003 // And adjust the array base to point to the data. 2004 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2005 2006 cmp(sp, zr); // Clear Z flag; SP is never zero 2007 // Scan R2 words at [R5] for an occurrence of R0. 2008 // Set NZ/Z based on last compare. 2009 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2010 // rscratch1 == 0 iff we got a match. 2011 cset(rscratch1, NE); 2012 2013 Label passed; 2014 cmp(result, zr); 2015 cset(result, NE); // normalize result to 0/1 for comparison 2016 2017 cmp(rscratch1, result); 2018 br(EQ, passed); 2019 { 2020 mov(r0, r_super_klass); // r0 <- r0 2021 mov(r1, r_sub_klass); // r1 <- r4 2022 mov(r2, /*expected*/rscratch1); // r2 <- r8 2023 mov(r3, result); // r3 <- r5 2024 mov(r4, (address)("mismatch")); // r4 <- const 2025 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2026 should_not_reach_here(); 2027 } 2028 bind(passed); 2029 2030 BLOCK_COMMENT("} verify_secondary_supers_table"); 2031 } 2032 2033 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2034 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2035 assert_different_registers(klass, rthread, scratch); 2036 2037 Label L_fallthrough, L_tmp; 2038 if (L_fast_path == nullptr) { 2039 L_fast_path = &L_fallthrough; 2040 } else if (L_slow_path == nullptr) { 2041 L_slow_path = &L_fallthrough; 2042 } 2043 // Fast path check: class is fully initialized 2044 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2045 ldarb(scratch, scratch); 2046 cmp(scratch, InstanceKlass::fully_initialized); 2047 br(Assembler::EQ, *L_fast_path); 2048 2049 // Fast path check: current thread is initializer thread 2050 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2051 cmp(rthread, scratch); 2052 2053 if (L_slow_path == &L_fallthrough) { 2054 br(Assembler::EQ, *L_fast_path); 2055 bind(*L_slow_path); 2056 } else if (L_fast_path == &L_fallthrough) { 2057 br(Assembler::NE, *L_slow_path); 2058 bind(*L_fast_path); 2059 } else { 2060 Unimplemented(); 2061 } 2062 } 2063 2064 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2065 if (!VerifyOops || VerifyAdapterSharing) { 2066 // Below address of the code string confuses VerifyAdapterSharing 2067 // because it may differ between otherwise equivalent adapters. 2068 return; 2069 } 2070 2071 // Pass register number to verify_oop_subroutine 2072 const char* b = nullptr; 2073 { 2074 ResourceMark rm; 2075 stringStream ss; 2076 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2077 b = code_string(ss.as_string()); 2078 } 2079 BLOCK_COMMENT("verify_oop {"); 2080 2081 strip_return_address(); // This might happen within a stack frame. 2082 protect_return_address(); 2083 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2084 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2085 2086 mov(r0, reg); 2087 movptr(rscratch1, (uintptr_t)(address)b); 2088 2089 // call indirectly to solve generation ordering problem 2090 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2091 ldr(rscratch2, Address(rscratch2)); 2092 blr(rscratch2); 2093 2094 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2095 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2096 authenticate_return_address(); 2097 2098 BLOCK_COMMENT("} verify_oop"); 2099 } 2100 2101 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2102 if (!VerifyOops || VerifyAdapterSharing) { 2103 // Below address of the code string confuses VerifyAdapterSharing 2104 // because it may differ between otherwise equivalent adapters. 2105 return; 2106 } 2107 2108 const char* b = nullptr; 2109 { 2110 ResourceMark rm; 2111 stringStream ss; 2112 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2113 b = code_string(ss.as_string()); 2114 } 2115 BLOCK_COMMENT("verify_oop_addr {"); 2116 2117 strip_return_address(); // This might happen within a stack frame. 2118 protect_return_address(); 2119 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2120 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2121 2122 // addr may contain sp so we will have to adjust it based on the 2123 // pushes that we just did. 2124 if (addr.uses(sp)) { 2125 lea(r0, addr); 2126 ldr(r0, Address(r0, 4 * wordSize)); 2127 } else { 2128 ldr(r0, addr); 2129 } 2130 movptr(rscratch1, (uintptr_t)(address)b); 2131 2132 // call indirectly to solve generation ordering problem 2133 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2134 ldr(rscratch2, Address(rscratch2)); 2135 blr(rscratch2); 2136 2137 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2138 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2139 authenticate_return_address(); 2140 2141 BLOCK_COMMENT("} verify_oop_addr"); 2142 } 2143 2144 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2145 int extra_slot_offset) { 2146 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2147 int stackElementSize = Interpreter::stackElementSize; 2148 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2149 #ifdef ASSERT 2150 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2151 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2152 #endif 2153 if (arg_slot.is_constant()) { 2154 return Address(esp, arg_slot.as_constant() * stackElementSize 2155 + offset); 2156 } else { 2157 add(rscratch1, esp, arg_slot.as_register(), 2158 ext::uxtx, exact_log2(stackElementSize)); 2159 return Address(rscratch1, offset); 2160 } 2161 } 2162 2163 void MacroAssembler::call_VM_leaf_base(address entry_point, 2164 int number_of_arguments, 2165 Label *retaddr) { 2166 Label E, L; 2167 2168 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2169 2170 mov(rscratch1, entry_point); 2171 blr(rscratch1); 2172 if (retaddr) 2173 bind(*retaddr); 2174 2175 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2176 } 2177 2178 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2179 call_VM_leaf_base(entry_point, number_of_arguments); 2180 } 2181 2182 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2183 pass_arg0(this, arg_0); 2184 call_VM_leaf_base(entry_point, 1); 2185 } 2186 2187 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2188 assert_different_registers(arg_1, c_rarg0); 2189 pass_arg0(this, arg_0); 2190 pass_arg1(this, arg_1); 2191 call_VM_leaf_base(entry_point, 2); 2192 } 2193 2194 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2195 Register arg_1, Register arg_2) { 2196 assert_different_registers(arg_1, c_rarg0); 2197 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2198 pass_arg0(this, arg_0); 2199 pass_arg1(this, arg_1); 2200 pass_arg2(this, arg_2); 2201 call_VM_leaf_base(entry_point, 3); 2202 } 2203 2204 void MacroAssembler::super_call_VM_leaf(address entry_point) { 2205 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2206 } 2207 2208 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2209 pass_arg0(this, arg_0); 2210 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2211 } 2212 2213 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2214 2215 assert_different_registers(arg_0, c_rarg1); 2216 pass_arg1(this, arg_1); 2217 pass_arg0(this, arg_0); 2218 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2219 } 2220 2221 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2222 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2223 assert_different_registers(arg_1, c_rarg2); 2224 pass_arg2(this, arg_2); 2225 pass_arg1(this, arg_1); 2226 pass_arg0(this, arg_0); 2227 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2228 } 2229 2230 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2231 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2232 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2233 assert_different_registers(arg_2, c_rarg3); 2234 pass_arg3(this, arg_3); 2235 pass_arg2(this, arg_2); 2236 pass_arg1(this, arg_1); 2237 pass_arg0(this, arg_0); 2238 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2239 } 2240 2241 void MacroAssembler::null_check(Register reg, int offset) { 2242 if (needs_explicit_null_check(offset)) { 2243 // provoke OS null exception if reg is null by 2244 // accessing M[reg] w/o changing any registers 2245 // NOTE: this is plenty to provoke a segv 2246 ldr(zr, Address(reg)); 2247 } else { 2248 // nothing to do, (later) access of M[reg + offset] 2249 // will provoke OS null exception if reg is null 2250 } 2251 } 2252 2253 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2254 assert_different_registers(markword, rscratch2); 2255 mov(rscratch2, markWord::inline_type_mask_in_place); 2256 andr(markword, markword, rscratch2); 2257 mov(rscratch2, markWord::inline_type_pattern); 2258 cmp(markword, rscratch2); 2259 br(Assembler::EQ, is_inline_type); 2260 } 2261 2262 void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) { 2263 ldrh(temp_reg, Address(klass, Klass::access_flags_offset())); 2264 andr(temp_reg, temp_reg, JVM_ACC_IDENTITY); 2265 cbz(temp_reg, is_inline_type); 2266 } 2267 2268 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) { 2269 assert_different_registers(tmp, rscratch1); 2270 cbz(object, not_inline_type); 2271 const int is_inline_type_mask = markWord::inline_type_pattern; 2272 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2273 mov(rscratch1, is_inline_type_mask); 2274 andr(tmp, tmp, rscratch1); 2275 cmp(tmp, rscratch1); 2276 br(Assembler::NE, not_inline_type); 2277 } 2278 2279 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2280 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2281 tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 2282 } 2283 2284 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2285 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2286 tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 2287 } 2288 2289 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2290 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2291 tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat); 2292 } 2293 2294 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2295 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2296 tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker); 2297 } 2298 2299 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2300 Label test_mark_word; 2301 // load mark word 2302 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2303 // check displaced 2304 tst(temp_reg, markWord::unlocked_value); 2305 br(Assembler::NE, test_mark_word); 2306 // slow path use klass prototype 2307 load_prototype_header(temp_reg, oop); 2308 2309 bind(test_mark_word); 2310 andr(temp_reg, temp_reg, test_bit); 2311 if (jmp_set) { 2312 cbnz(temp_reg, jmp_label); 2313 } else { 2314 cbz(temp_reg, jmp_label); 2315 } 2316 } 2317 2318 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) { 2319 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2320 } 2321 2322 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2323 Label&is_non_flat_array) { 2324 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2325 } 2326 2327 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 2328 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2329 } 2330 2331 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2332 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2333 } 2334 2335 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2336 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2337 br(Assembler::NE, is_flat_array); 2338 } 2339 2340 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2341 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2342 br(Assembler::EQ, is_non_flat_array); 2343 } 2344 2345 // MacroAssembler protected routines needed to implement 2346 // public methods 2347 2348 void MacroAssembler::mov(Register r, Address dest) { 2349 code_section()->relocate(pc(), dest.rspec()); 2350 uint64_t imm64 = (uint64_t)dest.target(); 2351 movptr(r, imm64); 2352 } 2353 2354 // Move a constant pointer into r. In AArch64 mode the virtual 2355 // address space is 48 bits in size, so we only need three 2356 // instructions to create a patchable instruction sequence that can 2357 // reach anywhere. 2358 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2359 #ifndef PRODUCT 2360 { 2361 char buffer[64]; 2362 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2363 block_comment(buffer); 2364 } 2365 #endif 2366 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2367 movz(r, imm64 & 0xffff); 2368 imm64 >>= 16; 2369 movk(r, imm64 & 0xffff, 16); 2370 imm64 >>= 16; 2371 movk(r, imm64 & 0xffff, 32); 2372 } 2373 2374 // Macro to mov replicated immediate to vector register. 2375 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2376 // the upper 56/48/32 bits must be zeros for B/H/S type. 2377 // Vd will get the following values for different arrangements in T 2378 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2379 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2380 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2381 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2382 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2383 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2384 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2385 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2386 // Clobbers rscratch1 2387 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2388 assert(T != T1Q, "unsupported"); 2389 if (T == T1D || T == T2D) { 2390 int imm = operand_valid_for_movi_immediate(imm64, T); 2391 if (-1 != imm) { 2392 movi(Vd, T, imm); 2393 } else { 2394 mov(rscratch1, imm64); 2395 dup(Vd, T, rscratch1); 2396 } 2397 return; 2398 } 2399 2400 #ifdef ASSERT 2401 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2402 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2403 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2404 #endif 2405 int shift = operand_valid_for_movi_immediate(imm64, T); 2406 uint32_t imm32 = imm64 & 0xffffffffULL; 2407 if (shift >= 0) { 2408 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2409 } else { 2410 movw(rscratch1, imm32); 2411 dup(Vd, T, rscratch1); 2412 } 2413 } 2414 2415 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2416 { 2417 #ifndef PRODUCT 2418 { 2419 char buffer[64]; 2420 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2421 block_comment(buffer); 2422 } 2423 #endif 2424 if (operand_valid_for_logical_immediate(false, imm64)) { 2425 orr(dst, zr, imm64); 2426 } else { 2427 // we can use a combination of MOVZ or MOVN with 2428 // MOVK to build up the constant 2429 uint64_t imm_h[4]; 2430 int zero_count = 0; 2431 int neg_count = 0; 2432 int i; 2433 for (i = 0; i < 4; i++) { 2434 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2435 if (imm_h[i] == 0) { 2436 zero_count++; 2437 } else if (imm_h[i] == 0xffffL) { 2438 neg_count++; 2439 } 2440 } 2441 if (zero_count == 4) { 2442 // one MOVZ will do 2443 movz(dst, 0); 2444 } else if (neg_count == 4) { 2445 // one MOVN will do 2446 movn(dst, 0); 2447 } else if (zero_count == 3) { 2448 for (i = 0; i < 4; i++) { 2449 if (imm_h[i] != 0L) { 2450 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2451 break; 2452 } 2453 } 2454 } else if (neg_count == 3) { 2455 // one MOVN will do 2456 for (int i = 0; i < 4; i++) { 2457 if (imm_h[i] != 0xffffL) { 2458 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2459 break; 2460 } 2461 } 2462 } else if (zero_count == 2) { 2463 // one MOVZ and one MOVK will do 2464 for (i = 0; i < 3; i++) { 2465 if (imm_h[i] != 0L) { 2466 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2467 i++; 2468 break; 2469 } 2470 } 2471 for (;i < 4; i++) { 2472 if (imm_h[i] != 0L) { 2473 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2474 } 2475 } 2476 } else if (neg_count == 2) { 2477 // one MOVN and one MOVK will do 2478 for (i = 0; i < 4; i++) { 2479 if (imm_h[i] != 0xffffL) { 2480 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2481 i++; 2482 break; 2483 } 2484 } 2485 for (;i < 4; i++) { 2486 if (imm_h[i] != 0xffffL) { 2487 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2488 } 2489 } 2490 } else if (zero_count == 1) { 2491 // one MOVZ and two MOVKs will do 2492 for (i = 0; i < 4; i++) { 2493 if (imm_h[i] != 0L) { 2494 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2495 i++; 2496 break; 2497 } 2498 } 2499 for (;i < 4; i++) { 2500 if (imm_h[i] != 0x0L) { 2501 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2502 } 2503 } 2504 } else if (neg_count == 1) { 2505 // one MOVN and two MOVKs will do 2506 for (i = 0; i < 4; i++) { 2507 if (imm_h[i] != 0xffffL) { 2508 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2509 i++; 2510 break; 2511 } 2512 } 2513 for (;i < 4; i++) { 2514 if (imm_h[i] != 0xffffL) { 2515 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2516 } 2517 } 2518 } else { 2519 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2520 movz(dst, (uint32_t)imm_h[0], 0); 2521 for (i = 1; i < 4; i++) { 2522 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2523 } 2524 } 2525 } 2526 } 2527 2528 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2529 { 2530 #ifndef PRODUCT 2531 { 2532 char buffer[64]; 2533 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2534 block_comment(buffer); 2535 } 2536 #endif 2537 if (operand_valid_for_logical_immediate(true, imm32)) { 2538 orrw(dst, zr, imm32); 2539 } else { 2540 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2541 // constant 2542 uint32_t imm_h[2]; 2543 imm_h[0] = imm32 & 0xffff; 2544 imm_h[1] = ((imm32 >> 16) & 0xffff); 2545 if (imm_h[0] == 0) { 2546 movzw(dst, imm_h[1], 16); 2547 } else if (imm_h[0] == 0xffff) { 2548 movnw(dst, imm_h[1] ^ 0xffff, 16); 2549 } else if (imm_h[1] == 0) { 2550 movzw(dst, imm_h[0], 0); 2551 } else if (imm_h[1] == 0xffff) { 2552 movnw(dst, imm_h[0] ^ 0xffff, 0); 2553 } else { 2554 // use a MOVZ and MOVK (makes it easier to debug) 2555 movzw(dst, imm_h[0], 0); 2556 movkw(dst, imm_h[1], 16); 2557 } 2558 } 2559 } 2560 2561 // Form an address from base + offset in Rd. Rd may or may 2562 // not actually be used: you must use the Address that is returned. 2563 // It is up to you to ensure that the shift provided matches the size 2564 // of your data. 2565 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2566 if (Address::offset_ok_for_immed(byte_offset, shift)) 2567 // It fits; no need for any heroics 2568 return Address(base, byte_offset); 2569 2570 // Don't do anything clever with negative or misaligned offsets 2571 unsigned mask = (1 << shift) - 1; 2572 if (byte_offset < 0 || byte_offset & mask) { 2573 mov(Rd, byte_offset); 2574 add(Rd, base, Rd); 2575 return Address(Rd); 2576 } 2577 2578 // See if we can do this with two 12-bit offsets 2579 { 2580 uint64_t word_offset = byte_offset >> shift; 2581 uint64_t masked_offset = word_offset & 0xfff000; 2582 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2583 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2584 add(Rd, base, masked_offset << shift); 2585 word_offset -= masked_offset; 2586 return Address(Rd, word_offset << shift); 2587 } 2588 } 2589 2590 // Do it the hard way 2591 mov(Rd, byte_offset); 2592 add(Rd, base, Rd); 2593 return Address(Rd); 2594 } 2595 2596 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2597 bool want_remainder, Register scratch) 2598 { 2599 // Full implementation of Java idiv and irem. The function 2600 // returns the (pc) offset of the div instruction - may be needed 2601 // for implicit exceptions. 2602 // 2603 // constraint : ra/rb =/= scratch 2604 // normal case 2605 // 2606 // input : ra: dividend 2607 // rb: divisor 2608 // 2609 // result: either 2610 // quotient (= ra idiv rb) 2611 // remainder (= ra irem rb) 2612 2613 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2614 2615 int idivl_offset = offset(); 2616 if (! want_remainder) { 2617 sdivw(result, ra, rb); 2618 } else { 2619 sdivw(scratch, ra, rb); 2620 Assembler::msubw(result, scratch, rb, ra); 2621 } 2622 2623 return idivl_offset; 2624 } 2625 2626 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2627 bool want_remainder, Register scratch) 2628 { 2629 // Full implementation of Java ldiv and lrem. The function 2630 // returns the (pc) offset of the div instruction - may be needed 2631 // for implicit exceptions. 2632 // 2633 // constraint : ra/rb =/= scratch 2634 // normal case 2635 // 2636 // input : ra: dividend 2637 // rb: divisor 2638 // 2639 // result: either 2640 // quotient (= ra idiv rb) 2641 // remainder (= ra irem rb) 2642 2643 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2644 2645 int idivq_offset = offset(); 2646 if (! want_remainder) { 2647 sdiv(result, ra, rb); 2648 } else { 2649 sdiv(scratch, ra, rb); 2650 Assembler::msub(result, scratch, rb, ra); 2651 } 2652 2653 return idivq_offset; 2654 } 2655 2656 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2657 address prev = pc() - NativeMembar::instruction_size; 2658 address last = code()->last_insn(); 2659 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2660 NativeMembar *bar = NativeMembar_at(prev); 2661 if (AlwaysMergeDMB) { 2662 bar->set_kind(bar->get_kind() | order_constraint); 2663 BLOCK_COMMENT("merged membar(always)"); 2664 return; 2665 } 2666 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2667 // doing so would introduce a StoreLoad which the caller did not 2668 // intend 2669 if (bar->get_kind() == order_constraint 2670 || bar->get_kind() == AnyAny 2671 || order_constraint == AnyAny) { 2672 // We are merging two memory barrier instructions. On AArch64 we 2673 // can do this simply by ORing them together. 2674 bar->set_kind(bar->get_kind() | order_constraint); 2675 BLOCK_COMMENT("merged membar"); 2676 return; 2677 } else { 2678 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2679 // We need check the last 2 instructions 2680 address prev2 = prev - NativeMembar::instruction_size; 2681 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2682 NativeMembar *bar2 = NativeMembar_at(prev2); 2683 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2684 BLOCK_COMMENT("merged membar(elided)"); 2685 return; 2686 } 2687 } 2688 } 2689 code()->set_last_insn(pc()); 2690 dmb(Assembler::barrier(order_constraint)); 2691 } 2692 2693 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2694 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2695 merge_ldst(rt, adr, size_in_bytes, is_store); 2696 code()->clear_last_insn(); 2697 return true; 2698 } else { 2699 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2700 const uint64_t mask = size_in_bytes - 1; 2701 if (adr.getMode() == Address::base_plus_offset && 2702 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2703 code()->set_last_insn(pc()); 2704 } 2705 return false; 2706 } 2707 } 2708 2709 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2710 // We always try to merge two adjacent loads into one ldp. 2711 if (!try_merge_ldst(Rx, adr, 8, false)) { 2712 Assembler::ldr(Rx, adr); 2713 } 2714 } 2715 2716 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2717 // We always try to merge two adjacent loads into one ldp. 2718 if (!try_merge_ldst(Rw, adr, 4, false)) { 2719 Assembler::ldrw(Rw, adr); 2720 } 2721 } 2722 2723 void MacroAssembler::str(Register Rx, const Address &adr) { 2724 // We always try to merge two adjacent stores into one stp. 2725 if (!try_merge_ldst(Rx, adr, 8, true)) { 2726 Assembler::str(Rx, adr); 2727 } 2728 } 2729 2730 void MacroAssembler::strw(Register Rw, const Address &adr) { 2731 // We always try to merge two adjacent stores into one stp. 2732 if (!try_merge_ldst(Rw, adr, 4, true)) { 2733 Assembler::strw(Rw, adr); 2734 } 2735 } 2736 2737 // MacroAssembler routines found actually to be needed 2738 2739 void MacroAssembler::push(Register src) 2740 { 2741 str(src, Address(pre(esp, -1 * wordSize))); 2742 } 2743 2744 void MacroAssembler::pop(Register dst) 2745 { 2746 ldr(dst, Address(post(esp, 1 * wordSize))); 2747 } 2748 2749 // Note: load_unsigned_short used to be called load_unsigned_word. 2750 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2751 int off = offset(); 2752 ldrh(dst, src); 2753 return off; 2754 } 2755 2756 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2757 int off = offset(); 2758 ldrb(dst, src); 2759 return off; 2760 } 2761 2762 int MacroAssembler::load_signed_short(Register dst, Address src) { 2763 int off = offset(); 2764 ldrsh(dst, src); 2765 return off; 2766 } 2767 2768 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2769 int off = offset(); 2770 ldrsb(dst, src); 2771 return off; 2772 } 2773 2774 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2775 int off = offset(); 2776 ldrshw(dst, src); 2777 return off; 2778 } 2779 2780 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2781 int off = offset(); 2782 ldrsbw(dst, src); 2783 return off; 2784 } 2785 2786 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2787 switch (size_in_bytes) { 2788 case 8: ldr(dst, src); break; 2789 case 4: ldrw(dst, src); break; 2790 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2791 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2792 default: ShouldNotReachHere(); 2793 } 2794 } 2795 2796 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2797 switch (size_in_bytes) { 2798 case 8: str(src, dst); break; 2799 case 4: strw(src, dst); break; 2800 case 2: strh(src, dst); break; 2801 case 1: strb(src, dst); break; 2802 default: ShouldNotReachHere(); 2803 } 2804 } 2805 2806 void MacroAssembler::decrementw(Register reg, int value) 2807 { 2808 if (value < 0) { incrementw(reg, -value); return; } 2809 if (value == 0) { return; } 2810 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2811 /* else */ { 2812 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2813 movw(rscratch2, (unsigned)value); 2814 subw(reg, reg, rscratch2); 2815 } 2816 } 2817 2818 void MacroAssembler::decrement(Register reg, int value) 2819 { 2820 if (value < 0) { increment(reg, -value); return; } 2821 if (value == 0) { return; } 2822 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2823 /* else */ { 2824 assert(reg != rscratch2, "invalid dst for register decrement"); 2825 mov(rscratch2, (uint64_t)value); 2826 sub(reg, reg, rscratch2); 2827 } 2828 } 2829 2830 void MacroAssembler::decrementw(Address dst, int value) 2831 { 2832 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2833 if (dst.getMode() == Address::literal) { 2834 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2835 lea(rscratch2, dst); 2836 dst = Address(rscratch2); 2837 } 2838 ldrw(rscratch1, dst); 2839 decrementw(rscratch1, value); 2840 strw(rscratch1, dst); 2841 } 2842 2843 void MacroAssembler::decrement(Address dst, int value) 2844 { 2845 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2846 if (dst.getMode() == Address::literal) { 2847 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2848 lea(rscratch2, dst); 2849 dst = Address(rscratch2); 2850 } 2851 ldr(rscratch1, dst); 2852 decrement(rscratch1, value); 2853 str(rscratch1, dst); 2854 } 2855 2856 void MacroAssembler::incrementw(Register reg, int value) 2857 { 2858 if (value < 0) { decrementw(reg, -value); return; } 2859 if (value == 0) { return; } 2860 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2861 /* else */ { 2862 assert(reg != rscratch2, "invalid dst for register increment"); 2863 movw(rscratch2, (unsigned)value); 2864 addw(reg, reg, rscratch2); 2865 } 2866 } 2867 2868 void MacroAssembler::increment(Register reg, int value) 2869 { 2870 if (value < 0) { decrement(reg, -value); return; } 2871 if (value == 0) { return; } 2872 if (value < (1 << 12)) { add(reg, reg, value); return; } 2873 /* else */ { 2874 assert(reg != rscratch2, "invalid dst for register increment"); 2875 movw(rscratch2, (unsigned)value); 2876 add(reg, reg, rscratch2); 2877 } 2878 } 2879 2880 void MacroAssembler::incrementw(Address dst, int value) 2881 { 2882 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2883 if (dst.getMode() == Address::literal) { 2884 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2885 lea(rscratch2, dst); 2886 dst = Address(rscratch2); 2887 } 2888 ldrw(rscratch1, dst); 2889 incrementw(rscratch1, value); 2890 strw(rscratch1, dst); 2891 } 2892 2893 void MacroAssembler::increment(Address dst, int value) 2894 { 2895 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2896 if (dst.getMode() == Address::literal) { 2897 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2898 lea(rscratch2, dst); 2899 dst = Address(rscratch2); 2900 } 2901 ldr(rscratch1, dst); 2902 increment(rscratch1, value); 2903 str(rscratch1, dst); 2904 } 2905 2906 // Push lots of registers in the bit set supplied. Don't push sp. 2907 // Return the number of words pushed 2908 int MacroAssembler::push(unsigned int bitset, Register stack) { 2909 int words_pushed = 0; 2910 2911 // Scan bitset to accumulate register pairs 2912 unsigned char regs[32]; 2913 int count = 0; 2914 for (int reg = 0; reg <= 30; reg++) { 2915 if (1 & bitset) 2916 regs[count++] = reg; 2917 bitset >>= 1; 2918 } 2919 regs[count++] = zr->raw_encoding(); 2920 count &= ~1; // Only push an even number of regs 2921 2922 if (count) { 2923 stp(as_Register(regs[0]), as_Register(regs[1]), 2924 Address(pre(stack, -count * wordSize))); 2925 words_pushed += 2; 2926 } 2927 for (int i = 2; i < count; i += 2) { 2928 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2929 Address(stack, i * wordSize)); 2930 words_pushed += 2; 2931 } 2932 2933 assert(words_pushed == count, "oops, pushed != count"); 2934 2935 return count; 2936 } 2937 2938 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2939 int words_pushed = 0; 2940 2941 // Scan bitset to accumulate register pairs 2942 unsigned char regs[32]; 2943 int count = 0; 2944 for (int reg = 0; reg <= 30; reg++) { 2945 if (1 & bitset) 2946 regs[count++] = reg; 2947 bitset >>= 1; 2948 } 2949 regs[count++] = zr->raw_encoding(); 2950 count &= ~1; 2951 2952 for (int i = 2; i < count; i += 2) { 2953 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2954 Address(stack, i * wordSize)); 2955 words_pushed += 2; 2956 } 2957 if (count) { 2958 ldp(as_Register(regs[0]), as_Register(regs[1]), 2959 Address(post(stack, count * wordSize))); 2960 words_pushed += 2; 2961 } 2962 2963 assert(words_pushed == count, "oops, pushed != count"); 2964 2965 return count; 2966 } 2967 2968 // Push lots of registers in the bit set supplied. Don't push sp. 2969 // Return the number of dwords pushed 2970 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2971 int words_pushed = 0; 2972 bool use_sve = false; 2973 int sve_vector_size_in_bytes = 0; 2974 2975 #ifdef COMPILER2 2976 use_sve = Matcher::supports_scalable_vector(); 2977 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2978 #endif 2979 2980 // Scan bitset to accumulate register pairs 2981 unsigned char regs[32]; 2982 int count = 0; 2983 for (int reg = 0; reg <= 31; reg++) { 2984 if (1 & bitset) 2985 regs[count++] = reg; 2986 bitset >>= 1; 2987 } 2988 2989 if (count == 0) { 2990 return 0; 2991 } 2992 2993 if (mode == PushPopFull) { 2994 if (use_sve && sve_vector_size_in_bytes > 16) { 2995 mode = PushPopSVE; 2996 } else { 2997 mode = PushPopNeon; 2998 } 2999 } 3000 3001 #ifndef PRODUCT 3002 { 3003 char buffer[48]; 3004 if (mode == PushPopSVE) { 3005 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 3006 } else if (mode == PushPopNeon) { 3007 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 3008 } else { 3009 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 3010 } 3011 block_comment(buffer); 3012 } 3013 #endif 3014 3015 if (mode == PushPopSVE) { 3016 sub(stack, stack, sve_vector_size_in_bytes * count); 3017 for (int i = 0; i < count; i++) { 3018 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 3019 } 3020 return count * sve_vector_size_in_bytes / 8; 3021 } 3022 3023 if (mode == PushPopNeon) { 3024 if (count == 1) { 3025 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 3026 return 2; 3027 } 3028 3029 bool odd = (count & 1) == 1; 3030 int push_slots = count + (odd ? 1 : 0); 3031 3032 // Always pushing full 128 bit registers. 3033 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 3034 words_pushed += 2; 3035 3036 for (int i = 2; i + 1 < count; i += 2) { 3037 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3038 words_pushed += 2; 3039 } 3040 3041 if (odd) { 3042 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3043 words_pushed++; 3044 } 3045 3046 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3047 return count * 2; 3048 } 3049 3050 if (mode == PushPopFp) { 3051 bool odd = (count & 1) == 1; 3052 int push_slots = count + (odd ? 1 : 0); 3053 3054 if (count == 1) { 3055 // Stack pointer must be 16 bytes aligned 3056 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 3057 return 1; 3058 } 3059 3060 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 3061 words_pushed += 2; 3062 3063 for (int i = 2; i + 1 < count; i += 2) { 3064 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3065 words_pushed += 2; 3066 } 3067 3068 if (odd) { 3069 // Stack pointer must be 16 bytes aligned 3070 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3071 words_pushed++; 3072 } 3073 3074 assert(words_pushed == count, "oops, pushed != count"); 3075 3076 return count; 3077 } 3078 3079 return 0; 3080 } 3081 3082 // Return the number of dwords popped 3083 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3084 int words_pushed = 0; 3085 bool use_sve = false; 3086 int sve_vector_size_in_bytes = 0; 3087 3088 #ifdef COMPILER2 3089 use_sve = Matcher::supports_scalable_vector(); 3090 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3091 #endif 3092 // Scan bitset to accumulate register pairs 3093 unsigned char regs[32]; 3094 int count = 0; 3095 for (int reg = 0; reg <= 31; reg++) { 3096 if (1 & bitset) 3097 regs[count++] = reg; 3098 bitset >>= 1; 3099 } 3100 3101 if (count == 0) { 3102 return 0; 3103 } 3104 3105 if (mode == PushPopFull) { 3106 if (use_sve && sve_vector_size_in_bytes > 16) { 3107 mode = PushPopSVE; 3108 } else { 3109 mode = PushPopNeon; 3110 } 3111 } 3112 3113 #ifndef PRODUCT 3114 { 3115 char buffer[48]; 3116 if (mode == PushPopSVE) { 3117 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3118 } else if (mode == PushPopNeon) { 3119 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3120 } else { 3121 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3122 } 3123 block_comment(buffer); 3124 } 3125 #endif 3126 3127 if (mode == PushPopSVE) { 3128 for (int i = count - 1; i >= 0; i--) { 3129 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3130 } 3131 add(stack, stack, sve_vector_size_in_bytes * count); 3132 return count * sve_vector_size_in_bytes / 8; 3133 } 3134 3135 if (mode == PushPopNeon) { 3136 if (count == 1) { 3137 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3138 return 2; 3139 } 3140 3141 bool odd = (count & 1) == 1; 3142 int push_slots = count + (odd ? 1 : 0); 3143 3144 if (odd) { 3145 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3146 words_pushed++; 3147 } 3148 3149 for (int i = 2; i + 1 < count; i += 2) { 3150 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3151 words_pushed += 2; 3152 } 3153 3154 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3155 words_pushed += 2; 3156 3157 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3158 3159 return count * 2; 3160 } 3161 3162 if (mode == PushPopFp) { 3163 bool odd = (count & 1) == 1; 3164 int push_slots = count + (odd ? 1 : 0); 3165 3166 if (count == 1) { 3167 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3168 return 1; 3169 } 3170 3171 if (odd) { 3172 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3173 words_pushed++; 3174 } 3175 3176 for (int i = 2; i + 1 < count; i += 2) { 3177 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3178 words_pushed += 2; 3179 } 3180 3181 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3182 words_pushed += 2; 3183 3184 assert(words_pushed == count, "oops, pushed != count"); 3185 3186 return count; 3187 } 3188 3189 return 0; 3190 } 3191 3192 // Return the number of dwords pushed 3193 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3194 bool use_sve = false; 3195 int sve_predicate_size_in_slots = 0; 3196 3197 #ifdef COMPILER2 3198 use_sve = Matcher::supports_scalable_vector(); 3199 if (use_sve) { 3200 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3201 } 3202 #endif 3203 3204 if (!use_sve) { 3205 return 0; 3206 } 3207 3208 unsigned char regs[PRegister::number_of_registers]; 3209 int count = 0; 3210 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3211 if (1 & bitset) 3212 regs[count++] = reg; 3213 bitset >>= 1; 3214 } 3215 3216 if (count == 0) { 3217 return 0; 3218 } 3219 3220 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3221 VMRegImpl::stack_slot_size * count, 16); 3222 sub(stack, stack, total_push_bytes); 3223 for (int i = 0; i < count; i++) { 3224 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3225 } 3226 return total_push_bytes / 8; 3227 } 3228 3229 // Return the number of dwords popped 3230 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3231 bool use_sve = false; 3232 int sve_predicate_size_in_slots = 0; 3233 3234 #ifdef COMPILER2 3235 use_sve = Matcher::supports_scalable_vector(); 3236 if (use_sve) { 3237 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3238 } 3239 #endif 3240 3241 if (!use_sve) { 3242 return 0; 3243 } 3244 3245 unsigned char regs[PRegister::number_of_registers]; 3246 int count = 0; 3247 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3248 if (1 & bitset) 3249 regs[count++] = reg; 3250 bitset >>= 1; 3251 } 3252 3253 if (count == 0) { 3254 return 0; 3255 } 3256 3257 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3258 VMRegImpl::stack_slot_size * count, 16); 3259 for (int i = count - 1; i >= 0; i--) { 3260 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3261 } 3262 add(stack, stack, total_pop_bytes); 3263 return total_pop_bytes / 8; 3264 } 3265 3266 #ifdef ASSERT 3267 void MacroAssembler::verify_heapbase(const char* msg) { 3268 #if 0 3269 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3270 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3271 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3272 // rheapbase is allocated as general register 3273 return; 3274 } 3275 if (CheckCompressedOops) { 3276 Label ok; 3277 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3278 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3279 br(Assembler::EQ, ok); 3280 stop(msg); 3281 bind(ok); 3282 pop(1 << rscratch1->encoding(), sp); 3283 } 3284 #endif 3285 } 3286 #endif 3287 3288 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3289 assert_different_registers(value, tmp1, tmp2); 3290 Label done, tagged, weak_tagged; 3291 3292 cbz(value, done); // Use null as-is. 3293 tst(value, JNIHandles::tag_mask); // Test for tag. 3294 br(Assembler::NE, tagged); 3295 3296 // Resolve local handle 3297 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3298 verify_oop(value); 3299 b(done); 3300 3301 bind(tagged); 3302 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3303 tbnz(value, 0, weak_tagged); // Test for weak tag. 3304 3305 // Resolve global handle 3306 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3307 verify_oop(value); 3308 b(done); 3309 3310 bind(weak_tagged); 3311 // Resolve jweak. 3312 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3313 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3314 verify_oop(value); 3315 3316 bind(done); 3317 } 3318 3319 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3320 assert_different_registers(value, tmp1, tmp2); 3321 Label done; 3322 3323 cbz(value, done); // Use null as-is. 3324 3325 #ifdef ASSERT 3326 { 3327 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3328 Label valid_global_tag; 3329 tbnz(value, 1, valid_global_tag); // Test for global tag 3330 stop("non global jobject using resolve_global_jobject"); 3331 bind(valid_global_tag); 3332 } 3333 #endif 3334 3335 // Resolve global handle 3336 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3337 verify_oop(value); 3338 3339 bind(done); 3340 } 3341 3342 void MacroAssembler::stop(const char* msg) { 3343 BLOCK_COMMENT(msg); 3344 dcps1(0xdeae); 3345 emit_int64((uintptr_t)msg); 3346 } 3347 3348 void MacroAssembler::unimplemented(const char* what) { 3349 const char* buf = nullptr; 3350 { 3351 ResourceMark rm; 3352 stringStream ss; 3353 ss.print("unimplemented: %s", what); 3354 buf = code_string(ss.as_string()); 3355 } 3356 stop(buf); 3357 } 3358 3359 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3360 #ifdef ASSERT 3361 Label OK; 3362 br(cc, OK); 3363 stop(msg); 3364 bind(OK); 3365 #endif 3366 } 3367 3368 // If a constant does not fit in an immediate field, generate some 3369 // number of MOV instructions and then perform the operation. 3370 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3371 add_sub_imm_insn insn1, 3372 add_sub_reg_insn insn2, 3373 bool is32) { 3374 assert(Rd != zr, "Rd = zr and not setting flags?"); 3375 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3376 if (fits) { 3377 (this->*insn1)(Rd, Rn, imm); 3378 } else { 3379 if (uabs(imm) < (1 << 24)) { 3380 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3381 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3382 } else { 3383 assert_different_registers(Rd, Rn); 3384 mov(Rd, imm); 3385 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3386 } 3387 } 3388 } 3389 3390 // Separate vsn which sets the flags. Optimisations are more restricted 3391 // because we must set the flags correctly. 3392 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3393 add_sub_imm_insn insn1, 3394 add_sub_reg_insn insn2, 3395 bool is32) { 3396 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3397 if (fits) { 3398 (this->*insn1)(Rd, Rn, imm); 3399 } else { 3400 assert_different_registers(Rd, Rn); 3401 assert(Rd != zr, "overflow in immediate operand"); 3402 mov(Rd, imm); 3403 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3404 } 3405 } 3406 3407 3408 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3409 if (increment.is_register()) { 3410 add(Rd, Rn, increment.as_register()); 3411 } else { 3412 add(Rd, Rn, increment.as_constant()); 3413 } 3414 } 3415 3416 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3417 if (increment.is_register()) { 3418 addw(Rd, Rn, increment.as_register()); 3419 } else { 3420 addw(Rd, Rn, increment.as_constant()); 3421 } 3422 } 3423 3424 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3425 if (decrement.is_register()) { 3426 sub(Rd, Rn, decrement.as_register()); 3427 } else { 3428 sub(Rd, Rn, decrement.as_constant()); 3429 } 3430 } 3431 3432 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3433 if (decrement.is_register()) { 3434 subw(Rd, Rn, decrement.as_register()); 3435 } else { 3436 subw(Rd, Rn, decrement.as_constant()); 3437 } 3438 } 3439 3440 void MacroAssembler::reinit_heapbase() 3441 { 3442 if (UseCompressedOops) { 3443 if (Universe::is_fully_initialized()) { 3444 mov(rheapbase, CompressedOops::base()); 3445 } else { 3446 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3447 ldr(rheapbase, Address(rheapbase)); 3448 } 3449 } 3450 } 3451 3452 // this simulates the behaviour of the x86 cmpxchg instruction using a 3453 // load linked/store conditional pair. we use the acquire/release 3454 // versions of these instructions so that we flush pending writes as 3455 // per Java semantics. 3456 3457 // n.b the x86 version assumes the old value to be compared against is 3458 // in rax and updates rax with the value located in memory if the 3459 // cmpxchg fails. we supply a register for the old value explicitly 3460 3461 // the aarch64 load linked/store conditional instructions do not 3462 // accept an offset. so, unlike x86, we must provide a plain register 3463 // to identify the memory word to be compared/exchanged rather than a 3464 // register+offset Address. 3465 3466 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3467 Label &succeed, Label *fail) { 3468 // oldv holds comparison value 3469 // newv holds value to write in exchange 3470 // addr identifies memory word to compare against/update 3471 if (UseLSE) { 3472 mov(tmp, oldv); 3473 casal(Assembler::xword, oldv, newv, addr); 3474 cmp(tmp, oldv); 3475 br(Assembler::EQ, succeed); 3476 membar(AnyAny); 3477 } else { 3478 Label retry_load, nope; 3479 prfm(Address(addr), PSTL1STRM); 3480 bind(retry_load); 3481 // flush and load exclusive from the memory location 3482 // and fail if it is not what we expect 3483 ldaxr(tmp, addr); 3484 cmp(tmp, oldv); 3485 br(Assembler::NE, nope); 3486 // if we store+flush with no intervening write tmp will be zero 3487 stlxr(tmp, newv, addr); 3488 cbzw(tmp, succeed); 3489 // retry so we only ever return after a load fails to compare 3490 // ensures we don't return a stale value after a failed write. 3491 b(retry_load); 3492 // if the memory word differs we return it in oldv and signal a fail 3493 bind(nope); 3494 membar(AnyAny); 3495 mov(oldv, tmp); 3496 } 3497 if (fail) 3498 b(*fail); 3499 } 3500 3501 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3502 Label &succeed, Label *fail) { 3503 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3504 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3505 } 3506 3507 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3508 Label &succeed, Label *fail) { 3509 // oldv holds comparison value 3510 // newv holds value to write in exchange 3511 // addr identifies memory word to compare against/update 3512 // tmp returns 0/1 for success/failure 3513 if (UseLSE) { 3514 mov(tmp, oldv); 3515 casal(Assembler::word, oldv, newv, addr); 3516 cmp(tmp, oldv); 3517 br(Assembler::EQ, succeed); 3518 membar(AnyAny); 3519 } else { 3520 Label retry_load, nope; 3521 prfm(Address(addr), PSTL1STRM); 3522 bind(retry_load); 3523 // flush and load exclusive from the memory location 3524 // and fail if it is not what we expect 3525 ldaxrw(tmp, addr); 3526 cmp(tmp, oldv); 3527 br(Assembler::NE, nope); 3528 // if we store+flush with no intervening write tmp will be zero 3529 stlxrw(tmp, newv, addr); 3530 cbzw(tmp, succeed); 3531 // retry so we only ever return after a load fails to compare 3532 // ensures we don't return a stale value after a failed write. 3533 b(retry_load); 3534 // if the memory word differs we return it in oldv and signal a fail 3535 bind(nope); 3536 membar(AnyAny); 3537 mov(oldv, tmp); 3538 } 3539 if (fail) 3540 b(*fail); 3541 } 3542 3543 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3544 // doesn't retry and may fail spuriously. If the oldval is wanted, 3545 // Pass a register for the result, otherwise pass noreg. 3546 3547 // Clobbers rscratch1 3548 void MacroAssembler::cmpxchg(Register addr, Register expected, 3549 Register new_val, 3550 enum operand_size size, 3551 bool acquire, bool release, 3552 bool weak, 3553 Register result) { 3554 if (result == noreg) result = rscratch1; 3555 BLOCK_COMMENT("cmpxchg {"); 3556 if (UseLSE) { 3557 mov(result, expected); 3558 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3559 compare_eq(result, expected, size); 3560 #ifdef ASSERT 3561 // Poison rscratch1 which is written on !UseLSE branch 3562 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3563 #endif 3564 } else { 3565 Label retry_load, done; 3566 prfm(Address(addr), PSTL1STRM); 3567 bind(retry_load); 3568 load_exclusive(result, addr, size, acquire); 3569 compare_eq(result, expected, size); 3570 br(Assembler::NE, done); 3571 store_exclusive(rscratch1, new_val, addr, size, release); 3572 if (weak) { 3573 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3574 } else { 3575 cbnzw(rscratch1, retry_load); 3576 } 3577 bind(done); 3578 } 3579 BLOCK_COMMENT("} cmpxchg"); 3580 } 3581 3582 // A generic comparison. Only compares for equality, clobbers rscratch1. 3583 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3584 if (size == xword) { 3585 cmp(rm, rn); 3586 } else if (size == word) { 3587 cmpw(rm, rn); 3588 } else if (size == halfword) { 3589 eorw(rscratch1, rm, rn); 3590 ands(zr, rscratch1, 0xffff); 3591 } else if (size == byte) { 3592 eorw(rscratch1, rm, rn); 3593 ands(zr, rscratch1, 0xff); 3594 } else { 3595 ShouldNotReachHere(); 3596 } 3597 } 3598 3599 3600 static bool different(Register a, RegisterOrConstant b, Register c) { 3601 if (b.is_constant()) 3602 return a != c; 3603 else 3604 return a != b.as_register() && a != c && b.as_register() != c; 3605 } 3606 3607 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3608 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3609 if (UseLSE) { \ 3610 prev = prev->is_valid() ? prev : zr; \ 3611 if (incr.is_register()) { \ 3612 AOP(sz, incr.as_register(), prev, addr); \ 3613 } else { \ 3614 mov(rscratch2, incr.as_constant()); \ 3615 AOP(sz, rscratch2, prev, addr); \ 3616 } \ 3617 return; \ 3618 } \ 3619 Register result = rscratch2; \ 3620 if (prev->is_valid()) \ 3621 result = different(prev, incr, addr) ? prev : rscratch2; \ 3622 \ 3623 Label retry_load; \ 3624 prfm(Address(addr), PSTL1STRM); \ 3625 bind(retry_load); \ 3626 LDXR(result, addr); \ 3627 OP(rscratch1, result, incr); \ 3628 STXR(rscratch2, rscratch1, addr); \ 3629 cbnzw(rscratch2, retry_load); \ 3630 if (prev->is_valid() && prev != result) { \ 3631 IOP(prev, rscratch1, incr); \ 3632 } \ 3633 } 3634 3635 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3636 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3637 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3638 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3639 3640 #undef ATOMIC_OP 3641 3642 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3643 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3644 if (UseLSE) { \ 3645 prev = prev->is_valid() ? prev : zr; \ 3646 AOP(sz, newv, prev, addr); \ 3647 return; \ 3648 } \ 3649 Register result = rscratch2; \ 3650 if (prev->is_valid()) \ 3651 result = different(prev, newv, addr) ? prev : rscratch2; \ 3652 \ 3653 Label retry_load; \ 3654 prfm(Address(addr), PSTL1STRM); \ 3655 bind(retry_load); \ 3656 LDXR(result, addr); \ 3657 STXR(rscratch1, newv, addr); \ 3658 cbnzw(rscratch1, retry_load); \ 3659 if (prev->is_valid() && prev != result) \ 3660 mov(prev, result); \ 3661 } 3662 3663 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3664 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3665 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3666 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3667 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3668 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3669 3670 #undef ATOMIC_XCHG 3671 3672 #ifndef PRODUCT 3673 extern "C" void findpc(intptr_t x); 3674 #endif 3675 3676 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3677 { 3678 // In order to get locks to work, we need to fake a in_VM state 3679 if (ShowMessageBoxOnError ) { 3680 JavaThread* thread = JavaThread::current(); 3681 JavaThreadState saved_state = thread->thread_state(); 3682 thread->set_thread_state(_thread_in_vm); 3683 #ifndef PRODUCT 3684 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3685 ttyLocker ttyl; 3686 BytecodeCounter::print(); 3687 } 3688 #endif 3689 if (os::message_box(msg, "Execution stopped, print registers?")) { 3690 ttyLocker ttyl; 3691 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3692 #ifndef PRODUCT 3693 tty->cr(); 3694 findpc(pc); 3695 tty->cr(); 3696 #endif 3697 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3698 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3699 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3700 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3701 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3702 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3703 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3704 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3705 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3706 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3707 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3708 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3709 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3710 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3711 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3712 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3713 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3714 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3715 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3716 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3717 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3718 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3719 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3720 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3721 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3722 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3723 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3724 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3725 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3726 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3727 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3728 BREAKPOINT; 3729 } 3730 } 3731 fatal("DEBUG MESSAGE: %s", msg); 3732 } 3733 3734 RegSet MacroAssembler::call_clobbered_gp_registers() { 3735 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3736 #ifndef R18_RESERVED 3737 regs += r18_tls; 3738 #endif 3739 return regs; 3740 } 3741 3742 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3743 int step = 4 * wordSize; 3744 push(call_clobbered_gp_registers() - exclude, sp); 3745 sub(sp, sp, step); 3746 mov(rscratch1, -step); 3747 // Push v0-v7, v16-v31. 3748 for (int i = 31; i>= 4; i -= 4) { 3749 if (i <= v7->encoding() || i >= v16->encoding()) 3750 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3751 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3752 } 3753 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3754 as_FloatRegister(3), T1D, Address(sp)); 3755 } 3756 3757 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3758 for (int i = 0; i < 32; i += 4) { 3759 if (i <= v7->encoding() || i >= v16->encoding()) 3760 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3761 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3762 } 3763 3764 reinitialize_ptrue(); 3765 3766 pop(call_clobbered_gp_registers() - exclude, sp); 3767 } 3768 3769 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3770 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3771 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3772 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3773 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3774 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3775 sve_str(as_FloatRegister(i), Address(sp, i)); 3776 } 3777 } else { 3778 int step = (save_vectors ? 8 : 4) * wordSize; 3779 mov(rscratch1, -step); 3780 sub(sp, sp, step); 3781 for (int i = 28; i >= 4; i -= 4) { 3782 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3783 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3784 } 3785 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3786 } 3787 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3788 sub(sp, sp, total_predicate_in_bytes); 3789 for (int i = 0; i < PRegister::number_of_registers; i++) { 3790 sve_str(as_PRegister(i), Address(sp, i)); 3791 } 3792 } 3793 } 3794 3795 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3796 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3797 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3798 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3799 sve_ldr(as_PRegister(i), Address(sp, i)); 3800 } 3801 add(sp, sp, total_predicate_in_bytes); 3802 } 3803 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3804 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3805 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3806 } 3807 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3808 } else { 3809 int step = (restore_vectors ? 8 : 4) * wordSize; 3810 for (int i = 0; i <= 28; i += 4) 3811 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3812 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3813 } 3814 3815 // We may use predicate registers and rely on ptrue with SVE, 3816 // regardless of wide vector (> 8 bytes) used or not. 3817 if (use_sve) { 3818 reinitialize_ptrue(); 3819 } 3820 3821 // integer registers except lr & sp 3822 pop(RegSet::range(r0, r17), sp); 3823 #ifdef R18_RESERVED 3824 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3825 pop(RegSet::range(r20, r29), sp); 3826 #else 3827 pop(RegSet::range(r18_tls, r29), sp); 3828 #endif 3829 } 3830 3831 /** 3832 * Helpers for multiply_to_len(). 3833 */ 3834 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3835 Register src1, Register src2) { 3836 adds(dest_lo, dest_lo, src1); 3837 adc(dest_hi, dest_hi, zr); 3838 adds(dest_lo, dest_lo, src2); 3839 adc(final_dest_hi, dest_hi, zr); 3840 } 3841 3842 // Generate an address from (r + r1 extend offset). "size" is the 3843 // size of the operand. The result may be in rscratch2. 3844 Address MacroAssembler::offsetted_address(Register r, Register r1, 3845 Address::extend ext, int offset, int size) { 3846 if (offset || (ext.shift() % size != 0)) { 3847 lea(rscratch2, Address(r, r1, ext)); 3848 return Address(rscratch2, offset); 3849 } else { 3850 return Address(r, r1, ext); 3851 } 3852 } 3853 3854 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3855 { 3856 assert(offset >= 0, "spill to negative address?"); 3857 // Offset reachable ? 3858 // Not aligned - 9 bits signed offset 3859 // Aligned - 12 bits unsigned offset shifted 3860 Register base = sp; 3861 if ((offset & (size-1)) && offset >= (1<<8)) { 3862 add(tmp, base, offset & ((1<<12)-1)); 3863 base = tmp; 3864 offset &= -1u<<12; 3865 } 3866 3867 if (offset >= (1<<12) * size) { 3868 add(tmp, base, offset & (((1<<12)-1)<<12)); 3869 base = tmp; 3870 offset &= ~(((1<<12)-1)<<12); 3871 } 3872 3873 return Address(base, offset); 3874 } 3875 3876 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3877 assert(offset >= 0, "spill to negative address?"); 3878 3879 Register base = sp; 3880 3881 // An immediate offset in the range 0 to 255 which is multiplied 3882 // by the current vector or predicate register size in bytes. 3883 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3884 return Address(base, offset / sve_reg_size_in_bytes); 3885 } 3886 3887 add(tmp, base, offset); 3888 return Address(tmp); 3889 } 3890 3891 // Checks whether offset is aligned. 3892 // Returns true if it is, else false. 3893 bool MacroAssembler::merge_alignment_check(Register base, 3894 size_t size, 3895 int64_t cur_offset, 3896 int64_t prev_offset) const { 3897 if (AvoidUnalignedAccesses) { 3898 if (base == sp) { 3899 // Checks whether low offset if aligned to pair of registers. 3900 int64_t pair_mask = size * 2 - 1; 3901 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3902 return (offset & pair_mask) == 0; 3903 } else { // If base is not sp, we can't guarantee the access is aligned. 3904 return false; 3905 } 3906 } else { 3907 int64_t mask = size - 1; 3908 // Load/store pair instruction only supports element size aligned offset. 3909 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3910 } 3911 } 3912 3913 // Checks whether current and previous loads/stores can be merged. 3914 // Returns true if it can be merged, else false. 3915 bool MacroAssembler::ldst_can_merge(Register rt, 3916 const Address &adr, 3917 size_t cur_size_in_bytes, 3918 bool is_store) const { 3919 address prev = pc() - NativeInstruction::instruction_size; 3920 address last = code()->last_insn(); 3921 3922 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3923 return false; 3924 } 3925 3926 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3927 return false; 3928 } 3929 3930 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3931 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3932 3933 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3934 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3935 3936 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3937 return false; 3938 } 3939 3940 int64_t max_offset = 63 * prev_size_in_bytes; 3941 int64_t min_offset = -64 * prev_size_in_bytes; 3942 3943 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3944 3945 // Only same base can be merged. 3946 if (adr.base() != prev_ldst->base()) { 3947 return false; 3948 } 3949 3950 int64_t cur_offset = adr.offset(); 3951 int64_t prev_offset = prev_ldst->offset(); 3952 size_t diff = abs(cur_offset - prev_offset); 3953 if (diff != prev_size_in_bytes) { 3954 return false; 3955 } 3956 3957 // Following cases can not be merged: 3958 // ldr x2, [x2, #8] 3959 // ldr x3, [x2, #16] 3960 // or: 3961 // ldr x2, [x3, #8] 3962 // ldr x2, [x3, #16] 3963 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3964 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3965 return false; 3966 } 3967 3968 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3969 // Offset range must be in ldp/stp instruction's range. 3970 if (low_offset > max_offset || low_offset < min_offset) { 3971 return false; 3972 } 3973 3974 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3975 return true; 3976 } 3977 3978 return false; 3979 } 3980 3981 // Merge current load/store with previous load/store into ldp/stp. 3982 void MacroAssembler::merge_ldst(Register rt, 3983 const Address &adr, 3984 size_t cur_size_in_bytes, 3985 bool is_store) { 3986 3987 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3988 3989 Register rt_low, rt_high; 3990 address prev = pc() - NativeInstruction::instruction_size; 3991 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3992 3993 int64_t offset; 3994 3995 if (adr.offset() < prev_ldst->offset()) { 3996 offset = adr.offset(); 3997 rt_low = rt; 3998 rt_high = prev_ldst->target(); 3999 } else { 4000 offset = prev_ldst->offset(); 4001 rt_low = prev_ldst->target(); 4002 rt_high = rt; 4003 } 4004 4005 Address adr_p = Address(prev_ldst->base(), offset); 4006 // Overwrite previous generated binary. 4007 code_section()->set_end(prev); 4008 4009 const size_t sz = prev_ldst->size_in_bytes(); 4010 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 4011 if (!is_store) { 4012 BLOCK_COMMENT("merged ldr pair"); 4013 if (sz == 8) { 4014 ldp(rt_low, rt_high, adr_p); 4015 } else { 4016 ldpw(rt_low, rt_high, adr_p); 4017 } 4018 } else { 4019 BLOCK_COMMENT("merged str pair"); 4020 if (sz == 8) { 4021 stp(rt_low, rt_high, adr_p); 4022 } else { 4023 stpw(rt_low, rt_high, adr_p); 4024 } 4025 } 4026 } 4027 4028 /** 4029 * Multiply 64 bit by 64 bit first loop. 4030 */ 4031 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 4032 Register y, Register y_idx, Register z, 4033 Register carry, Register product, 4034 Register idx, Register kdx) { 4035 // 4036 // jlong carry, x[], y[], z[]; 4037 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4038 // huge_128 product = y[idx] * x[xstart] + carry; 4039 // z[kdx] = (jlong)product; 4040 // carry = (jlong)(product >>> 64); 4041 // } 4042 // z[xstart] = carry; 4043 // 4044 4045 Label L_first_loop, L_first_loop_exit; 4046 Label L_one_x, L_one_y, L_multiply; 4047 4048 subsw(xstart, xstart, 1); 4049 br(Assembler::MI, L_one_x); 4050 4051 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 4052 ldr(x_xstart, Address(rscratch1)); 4053 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 4054 4055 bind(L_first_loop); 4056 subsw(idx, idx, 1); 4057 br(Assembler::MI, L_first_loop_exit); 4058 subsw(idx, idx, 1); 4059 br(Assembler::MI, L_one_y); 4060 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4061 ldr(y_idx, Address(rscratch1)); 4062 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 4063 bind(L_multiply); 4064 4065 // AArch64 has a multiply-accumulate instruction that we can't use 4066 // here because it has no way to process carries, so we have to use 4067 // separate add and adc instructions. Bah. 4068 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 4069 mul(product, x_xstart, y_idx); 4070 adds(product, product, carry); 4071 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 4072 4073 subw(kdx, kdx, 2); 4074 ror(product, product, 32); // back to big-endian 4075 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 4076 4077 b(L_first_loop); 4078 4079 bind(L_one_y); 4080 ldrw(y_idx, Address(y, 0)); 4081 b(L_multiply); 4082 4083 bind(L_one_x); 4084 ldrw(x_xstart, Address(x, 0)); 4085 b(L_first_loop); 4086 4087 bind(L_first_loop_exit); 4088 } 4089 4090 /** 4091 * Multiply 128 bit by 128. Unrolled inner loop. 4092 * 4093 */ 4094 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4095 Register carry, Register carry2, 4096 Register idx, Register jdx, 4097 Register yz_idx1, Register yz_idx2, 4098 Register tmp, Register tmp3, Register tmp4, 4099 Register tmp6, Register product_hi) { 4100 4101 // jlong carry, x[], y[], z[]; 4102 // int kdx = ystart+1; 4103 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4104 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4105 // jlong carry2 = (jlong)(tmp3 >>> 64); 4106 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4107 // carry = (jlong)(tmp4 >>> 64); 4108 // z[kdx+idx+1] = (jlong)tmp3; 4109 // z[kdx+idx] = (jlong)tmp4; 4110 // } 4111 // idx += 2; 4112 // if (idx > 0) { 4113 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4114 // z[kdx+idx] = (jlong)yz_idx1; 4115 // carry = (jlong)(yz_idx1 >>> 64); 4116 // } 4117 // 4118 4119 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4120 4121 lsrw(jdx, idx, 2); 4122 4123 bind(L_third_loop); 4124 4125 subsw(jdx, jdx, 1); 4126 br(Assembler::MI, L_third_loop_exit); 4127 subw(idx, idx, 4); 4128 4129 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4130 4131 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4132 4133 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4134 4135 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4136 ror(yz_idx2, yz_idx2, 32); 4137 4138 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4139 4140 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4141 umulh(tmp4, product_hi, yz_idx1); 4142 4143 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4144 ror(rscratch2, rscratch2, 32); 4145 4146 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4147 umulh(carry2, product_hi, yz_idx2); 4148 4149 // propagate sum of both multiplications into carry:tmp4:tmp3 4150 adds(tmp3, tmp3, carry); 4151 adc(tmp4, tmp4, zr); 4152 adds(tmp3, tmp3, rscratch1); 4153 adcs(tmp4, tmp4, tmp); 4154 adc(carry, carry2, zr); 4155 adds(tmp4, tmp4, rscratch2); 4156 adc(carry, carry, zr); 4157 4158 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4159 ror(tmp4, tmp4, 32); 4160 stp(tmp4, tmp3, Address(tmp6, 0)); 4161 4162 b(L_third_loop); 4163 bind (L_third_loop_exit); 4164 4165 andw (idx, idx, 0x3); 4166 cbz(idx, L_post_third_loop_done); 4167 4168 Label L_check_1; 4169 subsw(idx, idx, 2); 4170 br(Assembler::MI, L_check_1); 4171 4172 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4173 ldr(yz_idx1, Address(rscratch1, 0)); 4174 ror(yz_idx1, yz_idx1, 32); 4175 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4176 umulh(tmp4, product_hi, yz_idx1); 4177 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4178 ldr(yz_idx2, Address(rscratch1, 0)); 4179 ror(yz_idx2, yz_idx2, 32); 4180 4181 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4182 4183 ror(tmp3, tmp3, 32); 4184 str(tmp3, Address(rscratch1, 0)); 4185 4186 bind (L_check_1); 4187 4188 andw (idx, idx, 0x1); 4189 subsw(idx, idx, 1); 4190 br(Assembler::MI, L_post_third_loop_done); 4191 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4192 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4193 umulh(carry2, tmp4, product_hi); 4194 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4195 4196 add2_with_carry(carry2, tmp3, tmp4, carry); 4197 4198 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4199 extr(carry, carry2, tmp3, 32); 4200 4201 bind(L_post_third_loop_done); 4202 } 4203 4204 /** 4205 * Code for BigInteger::multiplyToLen() intrinsic. 4206 * 4207 * r0: x 4208 * r1: xlen 4209 * r2: y 4210 * r3: ylen 4211 * r4: z 4212 * r5: tmp0 4213 * r10: tmp1 4214 * r11: tmp2 4215 * r12: tmp3 4216 * r13: tmp4 4217 * r14: tmp5 4218 * r15: tmp6 4219 * r16: tmp7 4220 * 4221 */ 4222 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4223 Register z, Register tmp0, 4224 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4225 Register tmp5, Register tmp6, Register product_hi) { 4226 4227 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4228 4229 const Register idx = tmp1; 4230 const Register kdx = tmp2; 4231 const Register xstart = tmp3; 4232 4233 const Register y_idx = tmp4; 4234 const Register carry = tmp5; 4235 const Register product = xlen; 4236 const Register x_xstart = tmp0; 4237 4238 // First Loop. 4239 // 4240 // final static long LONG_MASK = 0xffffffffL; 4241 // int xstart = xlen - 1; 4242 // int ystart = ylen - 1; 4243 // long carry = 0; 4244 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4245 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4246 // z[kdx] = (int)product; 4247 // carry = product >>> 32; 4248 // } 4249 // z[xstart] = (int)carry; 4250 // 4251 4252 movw(idx, ylen); // idx = ylen; 4253 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4254 mov(carry, zr); // carry = 0; 4255 4256 Label L_done; 4257 4258 movw(xstart, xlen); 4259 subsw(xstart, xstart, 1); 4260 br(Assembler::MI, L_done); 4261 4262 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4263 4264 Label L_second_loop; 4265 cbzw(kdx, L_second_loop); 4266 4267 Label L_carry; 4268 subw(kdx, kdx, 1); 4269 cbzw(kdx, L_carry); 4270 4271 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4272 lsr(carry, carry, 32); 4273 subw(kdx, kdx, 1); 4274 4275 bind(L_carry); 4276 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4277 4278 // Second and third (nested) loops. 4279 // 4280 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4281 // carry = 0; 4282 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4283 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4284 // (z[k] & LONG_MASK) + carry; 4285 // z[k] = (int)product; 4286 // carry = product >>> 32; 4287 // } 4288 // z[i] = (int)carry; 4289 // } 4290 // 4291 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4292 4293 const Register jdx = tmp1; 4294 4295 bind(L_second_loop); 4296 mov(carry, zr); // carry = 0; 4297 movw(jdx, ylen); // j = ystart+1 4298 4299 subsw(xstart, xstart, 1); // i = xstart-1; 4300 br(Assembler::MI, L_done); 4301 4302 str(z, Address(pre(sp, -4 * wordSize))); 4303 4304 Label L_last_x; 4305 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4306 subsw(xstart, xstart, 1); // i = xstart-1; 4307 br(Assembler::MI, L_last_x); 4308 4309 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4310 ldr(product_hi, Address(rscratch1)); 4311 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4312 4313 Label L_third_loop_prologue; 4314 bind(L_third_loop_prologue); 4315 4316 str(ylen, Address(sp, wordSize)); 4317 stp(x, xstart, Address(sp, 2 * wordSize)); 4318 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4319 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4320 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4321 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4322 4323 addw(tmp3, xlen, 1); 4324 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4325 subsw(tmp3, tmp3, 1); 4326 br(Assembler::MI, L_done); 4327 4328 lsr(carry, carry, 32); 4329 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4330 b(L_second_loop); 4331 4332 // Next infrequent code is moved outside loops. 4333 bind(L_last_x); 4334 ldrw(product_hi, Address(x, 0)); 4335 b(L_third_loop_prologue); 4336 4337 bind(L_done); 4338 } 4339 4340 // Code for BigInteger::mulAdd intrinsic 4341 // out = r0 4342 // in = r1 4343 // offset = r2 (already out.length-offset) 4344 // len = r3 4345 // k = r4 4346 // 4347 // pseudo code from java implementation: 4348 // carry = 0; 4349 // offset = out.length-offset - 1; 4350 // for (int j=len-1; j >= 0; j--) { 4351 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4352 // out[offset--] = (int)product; 4353 // carry = product >>> 32; 4354 // } 4355 // return (int)carry; 4356 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4357 Register len, Register k) { 4358 Label LOOP, END; 4359 // pre-loop 4360 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4361 csel(out, zr, out, Assembler::EQ); 4362 br(Assembler::EQ, END); 4363 add(in, in, len, LSL, 2); // in[j+1] address 4364 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4365 mov(out, zr); // used to keep carry now 4366 BIND(LOOP); 4367 ldrw(rscratch1, Address(pre(in, -4))); 4368 madd(rscratch1, rscratch1, k, out); 4369 ldrw(rscratch2, Address(pre(offset, -4))); 4370 add(rscratch1, rscratch1, rscratch2); 4371 strw(rscratch1, Address(offset)); 4372 lsr(out, rscratch1, 32); 4373 subs(len, len, 1); 4374 br(Assembler::NE, LOOP); 4375 BIND(END); 4376 } 4377 4378 /** 4379 * Emits code to update CRC-32 with a byte value according to constants in table 4380 * 4381 * @param [in,out]crc Register containing the crc. 4382 * @param [in]val Register containing the byte to fold into the CRC. 4383 * @param [in]table Register containing the table of crc constants. 4384 * 4385 * uint32_t crc; 4386 * val = crc_table[(val ^ crc) & 0xFF]; 4387 * crc = val ^ (crc >> 8); 4388 * 4389 */ 4390 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4391 eor(val, val, crc); 4392 andr(val, val, 0xff); 4393 ldrw(val, Address(table, val, Address::lsl(2))); 4394 eor(crc, val, crc, Assembler::LSR, 8); 4395 } 4396 4397 /** 4398 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4399 * 4400 * @param [in,out]crc Register containing the crc. 4401 * @param [in]v Register containing the 32-bit to fold into the CRC. 4402 * @param [in]table0 Register containing table 0 of crc constants. 4403 * @param [in]table1 Register containing table 1 of crc constants. 4404 * @param [in]table2 Register containing table 2 of crc constants. 4405 * @param [in]table3 Register containing table 3 of crc constants. 4406 * 4407 * uint32_t crc; 4408 * v = crc ^ v 4409 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4410 * 4411 */ 4412 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4413 Register table0, Register table1, Register table2, Register table3, 4414 bool upper) { 4415 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4416 uxtb(tmp, v); 4417 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4418 ubfx(tmp, v, 8, 8); 4419 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4420 eor(crc, crc, tmp); 4421 ubfx(tmp, v, 16, 8); 4422 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4423 eor(crc, crc, tmp); 4424 ubfx(tmp, v, 24, 8); 4425 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4426 eor(crc, crc, tmp); 4427 } 4428 4429 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4430 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4431 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4432 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4433 4434 subs(tmp0, len, 384); 4435 mvnw(crc, crc); 4436 br(Assembler::GE, CRC_by128_pre); 4437 BIND(CRC_less128); 4438 subs(len, len, 32); 4439 br(Assembler::GE, CRC_by32_loop); 4440 BIND(CRC_less32); 4441 adds(len, len, 32 - 4); 4442 br(Assembler::GE, CRC_by4_loop); 4443 adds(len, len, 4); 4444 br(Assembler::GT, CRC_by1_loop); 4445 b(L_exit); 4446 4447 BIND(CRC_by32_loop); 4448 ldp(tmp0, tmp1, Address(buf)); 4449 crc32x(crc, crc, tmp0); 4450 ldp(tmp2, tmp3, Address(buf, 16)); 4451 crc32x(crc, crc, tmp1); 4452 add(buf, buf, 32); 4453 crc32x(crc, crc, tmp2); 4454 subs(len, len, 32); 4455 crc32x(crc, crc, tmp3); 4456 br(Assembler::GE, CRC_by32_loop); 4457 cmn(len, (u1)32); 4458 br(Assembler::NE, CRC_less32); 4459 b(L_exit); 4460 4461 BIND(CRC_by4_loop); 4462 ldrw(tmp0, Address(post(buf, 4))); 4463 subs(len, len, 4); 4464 crc32w(crc, crc, tmp0); 4465 br(Assembler::GE, CRC_by4_loop); 4466 adds(len, len, 4); 4467 br(Assembler::LE, L_exit); 4468 BIND(CRC_by1_loop); 4469 ldrb(tmp0, Address(post(buf, 1))); 4470 subs(len, len, 1); 4471 crc32b(crc, crc, tmp0); 4472 br(Assembler::GT, CRC_by1_loop); 4473 b(L_exit); 4474 4475 BIND(CRC_by128_pre); 4476 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4477 4*256*sizeof(juint) + 8*sizeof(juint)); 4478 mov(crc, 0); 4479 crc32x(crc, crc, tmp0); 4480 crc32x(crc, crc, tmp1); 4481 4482 cbnz(len, CRC_less128); 4483 4484 BIND(L_exit); 4485 mvnw(crc, crc); 4486 } 4487 4488 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4489 Register len, Register tmp0, Register tmp1, Register tmp2, 4490 Register tmp3) { 4491 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4492 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4493 4494 mvnw(crc, crc); 4495 4496 subs(len, len, 128); 4497 br(Assembler::GE, CRC_by64_pre); 4498 BIND(CRC_less64); 4499 adds(len, len, 128-32); 4500 br(Assembler::GE, CRC_by32_loop); 4501 BIND(CRC_less32); 4502 adds(len, len, 32-4); 4503 br(Assembler::GE, CRC_by4_loop); 4504 adds(len, len, 4); 4505 br(Assembler::GT, CRC_by1_loop); 4506 b(L_exit); 4507 4508 BIND(CRC_by32_loop); 4509 ldp(tmp0, tmp1, Address(post(buf, 16))); 4510 subs(len, len, 32); 4511 crc32x(crc, crc, tmp0); 4512 ldr(tmp2, Address(post(buf, 8))); 4513 crc32x(crc, crc, tmp1); 4514 ldr(tmp3, Address(post(buf, 8))); 4515 crc32x(crc, crc, tmp2); 4516 crc32x(crc, crc, tmp3); 4517 br(Assembler::GE, CRC_by32_loop); 4518 cmn(len, (u1)32); 4519 br(Assembler::NE, CRC_less32); 4520 b(L_exit); 4521 4522 BIND(CRC_by4_loop); 4523 ldrw(tmp0, Address(post(buf, 4))); 4524 subs(len, len, 4); 4525 crc32w(crc, crc, tmp0); 4526 br(Assembler::GE, CRC_by4_loop); 4527 adds(len, len, 4); 4528 br(Assembler::LE, L_exit); 4529 BIND(CRC_by1_loop); 4530 ldrb(tmp0, Address(post(buf, 1))); 4531 subs(len, len, 1); 4532 crc32b(crc, crc, tmp0); 4533 br(Assembler::GT, CRC_by1_loop); 4534 b(L_exit); 4535 4536 BIND(CRC_by64_pre); 4537 sub(buf, buf, 8); 4538 ldp(tmp0, tmp1, Address(buf, 8)); 4539 crc32x(crc, crc, tmp0); 4540 ldr(tmp2, Address(buf, 24)); 4541 crc32x(crc, crc, tmp1); 4542 ldr(tmp3, Address(buf, 32)); 4543 crc32x(crc, crc, tmp2); 4544 ldr(tmp0, Address(buf, 40)); 4545 crc32x(crc, crc, tmp3); 4546 ldr(tmp1, Address(buf, 48)); 4547 crc32x(crc, crc, tmp0); 4548 ldr(tmp2, Address(buf, 56)); 4549 crc32x(crc, crc, tmp1); 4550 ldr(tmp3, Address(pre(buf, 64))); 4551 4552 b(CRC_by64_loop); 4553 4554 align(CodeEntryAlignment); 4555 BIND(CRC_by64_loop); 4556 subs(len, len, 64); 4557 crc32x(crc, crc, tmp2); 4558 ldr(tmp0, Address(buf, 8)); 4559 crc32x(crc, crc, tmp3); 4560 ldr(tmp1, Address(buf, 16)); 4561 crc32x(crc, crc, tmp0); 4562 ldr(tmp2, Address(buf, 24)); 4563 crc32x(crc, crc, tmp1); 4564 ldr(tmp3, Address(buf, 32)); 4565 crc32x(crc, crc, tmp2); 4566 ldr(tmp0, Address(buf, 40)); 4567 crc32x(crc, crc, tmp3); 4568 ldr(tmp1, Address(buf, 48)); 4569 crc32x(crc, crc, tmp0); 4570 ldr(tmp2, Address(buf, 56)); 4571 crc32x(crc, crc, tmp1); 4572 ldr(tmp3, Address(pre(buf, 64))); 4573 br(Assembler::GE, CRC_by64_loop); 4574 4575 // post-loop 4576 crc32x(crc, crc, tmp2); 4577 crc32x(crc, crc, tmp3); 4578 4579 sub(len, len, 64); 4580 add(buf, buf, 8); 4581 cmn(len, (u1)128); 4582 br(Assembler::NE, CRC_less64); 4583 BIND(L_exit); 4584 mvnw(crc, crc); 4585 } 4586 4587 /** 4588 * @param crc register containing existing CRC (32-bit) 4589 * @param buf register pointing to input byte buffer (byte*) 4590 * @param len register containing number of bytes 4591 * @param table register that will contain address of CRC table 4592 * @param tmp scratch register 4593 */ 4594 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4595 Register table0, Register table1, Register table2, Register table3, 4596 Register tmp, Register tmp2, Register tmp3) { 4597 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4598 4599 if (UseCryptoPmullForCRC32) { 4600 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4601 return; 4602 } 4603 4604 if (UseCRC32) { 4605 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4606 return; 4607 } 4608 4609 mvnw(crc, crc); 4610 4611 { 4612 uint64_t offset; 4613 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4614 add(table0, table0, offset); 4615 } 4616 add(table1, table0, 1*256*sizeof(juint)); 4617 add(table2, table0, 2*256*sizeof(juint)); 4618 add(table3, table0, 3*256*sizeof(juint)); 4619 4620 { // Neon code start 4621 cmp(len, (u1)64); 4622 br(Assembler::LT, L_by16); 4623 eor(v16, T16B, v16, v16); 4624 4625 Label L_fold; 4626 4627 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4628 4629 ld1(v0, v1, T2D, post(buf, 32)); 4630 ld1r(v4, T2D, post(tmp, 8)); 4631 ld1r(v5, T2D, post(tmp, 8)); 4632 ld1r(v6, T2D, post(tmp, 8)); 4633 ld1r(v7, T2D, post(tmp, 8)); 4634 mov(v16, S, 0, crc); 4635 4636 eor(v0, T16B, v0, v16); 4637 sub(len, len, 64); 4638 4639 BIND(L_fold); 4640 pmull(v22, T8H, v0, v5, T8B); 4641 pmull(v20, T8H, v0, v7, T8B); 4642 pmull(v23, T8H, v0, v4, T8B); 4643 pmull(v21, T8H, v0, v6, T8B); 4644 4645 pmull2(v18, T8H, v0, v5, T16B); 4646 pmull2(v16, T8H, v0, v7, T16B); 4647 pmull2(v19, T8H, v0, v4, T16B); 4648 pmull2(v17, T8H, v0, v6, T16B); 4649 4650 uzp1(v24, T8H, v20, v22); 4651 uzp2(v25, T8H, v20, v22); 4652 eor(v20, T16B, v24, v25); 4653 4654 uzp1(v26, T8H, v16, v18); 4655 uzp2(v27, T8H, v16, v18); 4656 eor(v16, T16B, v26, v27); 4657 4658 ushll2(v22, T4S, v20, T8H, 8); 4659 ushll(v20, T4S, v20, T4H, 8); 4660 4661 ushll2(v18, T4S, v16, T8H, 8); 4662 ushll(v16, T4S, v16, T4H, 8); 4663 4664 eor(v22, T16B, v23, v22); 4665 eor(v18, T16B, v19, v18); 4666 eor(v20, T16B, v21, v20); 4667 eor(v16, T16B, v17, v16); 4668 4669 uzp1(v17, T2D, v16, v20); 4670 uzp2(v21, T2D, v16, v20); 4671 eor(v17, T16B, v17, v21); 4672 4673 ushll2(v20, T2D, v17, T4S, 16); 4674 ushll(v16, T2D, v17, T2S, 16); 4675 4676 eor(v20, T16B, v20, v22); 4677 eor(v16, T16B, v16, v18); 4678 4679 uzp1(v17, T2D, v20, v16); 4680 uzp2(v21, T2D, v20, v16); 4681 eor(v28, T16B, v17, v21); 4682 4683 pmull(v22, T8H, v1, v5, T8B); 4684 pmull(v20, T8H, v1, v7, T8B); 4685 pmull(v23, T8H, v1, v4, T8B); 4686 pmull(v21, T8H, v1, v6, T8B); 4687 4688 pmull2(v18, T8H, v1, v5, T16B); 4689 pmull2(v16, T8H, v1, v7, T16B); 4690 pmull2(v19, T8H, v1, v4, T16B); 4691 pmull2(v17, T8H, v1, v6, T16B); 4692 4693 ld1(v0, v1, T2D, post(buf, 32)); 4694 4695 uzp1(v24, T8H, v20, v22); 4696 uzp2(v25, T8H, v20, v22); 4697 eor(v20, T16B, v24, v25); 4698 4699 uzp1(v26, T8H, v16, v18); 4700 uzp2(v27, T8H, v16, v18); 4701 eor(v16, T16B, v26, v27); 4702 4703 ushll2(v22, T4S, v20, T8H, 8); 4704 ushll(v20, T4S, v20, T4H, 8); 4705 4706 ushll2(v18, T4S, v16, T8H, 8); 4707 ushll(v16, T4S, v16, T4H, 8); 4708 4709 eor(v22, T16B, v23, v22); 4710 eor(v18, T16B, v19, v18); 4711 eor(v20, T16B, v21, v20); 4712 eor(v16, T16B, v17, v16); 4713 4714 uzp1(v17, T2D, v16, v20); 4715 uzp2(v21, T2D, v16, v20); 4716 eor(v16, T16B, v17, v21); 4717 4718 ushll2(v20, T2D, v16, T4S, 16); 4719 ushll(v16, T2D, v16, T2S, 16); 4720 4721 eor(v20, T16B, v22, v20); 4722 eor(v16, T16B, v16, v18); 4723 4724 uzp1(v17, T2D, v20, v16); 4725 uzp2(v21, T2D, v20, v16); 4726 eor(v20, T16B, v17, v21); 4727 4728 shl(v16, T2D, v28, 1); 4729 shl(v17, T2D, v20, 1); 4730 4731 eor(v0, T16B, v0, v16); 4732 eor(v1, T16B, v1, v17); 4733 4734 subs(len, len, 32); 4735 br(Assembler::GE, L_fold); 4736 4737 mov(crc, 0); 4738 mov(tmp, v0, D, 0); 4739 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4740 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4741 mov(tmp, v0, D, 1); 4742 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4743 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4744 mov(tmp, v1, D, 0); 4745 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4746 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4747 mov(tmp, v1, D, 1); 4748 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4749 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4750 4751 add(len, len, 32); 4752 } // Neon code end 4753 4754 BIND(L_by16); 4755 subs(len, len, 16); 4756 br(Assembler::GE, L_by16_loop); 4757 adds(len, len, 16-4); 4758 br(Assembler::GE, L_by4_loop); 4759 adds(len, len, 4); 4760 br(Assembler::GT, L_by1_loop); 4761 b(L_exit); 4762 4763 BIND(L_by4_loop); 4764 ldrw(tmp, Address(post(buf, 4))); 4765 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4766 subs(len, len, 4); 4767 br(Assembler::GE, L_by4_loop); 4768 adds(len, len, 4); 4769 br(Assembler::LE, L_exit); 4770 BIND(L_by1_loop); 4771 subs(len, len, 1); 4772 ldrb(tmp, Address(post(buf, 1))); 4773 update_byte_crc32(crc, tmp, table0); 4774 br(Assembler::GT, L_by1_loop); 4775 b(L_exit); 4776 4777 align(CodeEntryAlignment); 4778 BIND(L_by16_loop); 4779 subs(len, len, 16); 4780 ldp(tmp, tmp3, Address(post(buf, 16))); 4781 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4782 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4783 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4784 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4785 br(Assembler::GE, L_by16_loop); 4786 adds(len, len, 16-4); 4787 br(Assembler::GE, L_by4_loop); 4788 adds(len, len, 4); 4789 br(Assembler::GT, L_by1_loop); 4790 BIND(L_exit); 4791 mvnw(crc, crc); 4792 } 4793 4794 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4795 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4796 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4797 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4798 4799 subs(tmp0, len, 384); 4800 br(Assembler::GE, CRC_by128_pre); 4801 BIND(CRC_less128); 4802 subs(len, len, 32); 4803 br(Assembler::GE, CRC_by32_loop); 4804 BIND(CRC_less32); 4805 adds(len, len, 32 - 4); 4806 br(Assembler::GE, CRC_by4_loop); 4807 adds(len, len, 4); 4808 br(Assembler::GT, CRC_by1_loop); 4809 b(L_exit); 4810 4811 BIND(CRC_by32_loop); 4812 ldp(tmp0, tmp1, Address(buf)); 4813 crc32cx(crc, crc, tmp0); 4814 ldr(tmp2, Address(buf, 16)); 4815 crc32cx(crc, crc, tmp1); 4816 ldr(tmp3, Address(buf, 24)); 4817 crc32cx(crc, crc, tmp2); 4818 add(buf, buf, 32); 4819 subs(len, len, 32); 4820 crc32cx(crc, crc, tmp3); 4821 br(Assembler::GE, CRC_by32_loop); 4822 cmn(len, (u1)32); 4823 br(Assembler::NE, CRC_less32); 4824 b(L_exit); 4825 4826 BIND(CRC_by4_loop); 4827 ldrw(tmp0, Address(post(buf, 4))); 4828 subs(len, len, 4); 4829 crc32cw(crc, crc, tmp0); 4830 br(Assembler::GE, CRC_by4_loop); 4831 adds(len, len, 4); 4832 br(Assembler::LE, L_exit); 4833 BIND(CRC_by1_loop); 4834 ldrb(tmp0, Address(post(buf, 1))); 4835 subs(len, len, 1); 4836 crc32cb(crc, crc, tmp0); 4837 br(Assembler::GT, CRC_by1_loop); 4838 b(L_exit); 4839 4840 BIND(CRC_by128_pre); 4841 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4842 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4843 mov(crc, 0); 4844 crc32cx(crc, crc, tmp0); 4845 crc32cx(crc, crc, tmp1); 4846 4847 cbnz(len, CRC_less128); 4848 4849 BIND(L_exit); 4850 } 4851 4852 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4853 Register len, Register tmp0, Register tmp1, Register tmp2, 4854 Register tmp3) { 4855 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4856 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4857 4858 subs(len, len, 128); 4859 br(Assembler::GE, CRC_by64_pre); 4860 BIND(CRC_less64); 4861 adds(len, len, 128-32); 4862 br(Assembler::GE, CRC_by32_loop); 4863 BIND(CRC_less32); 4864 adds(len, len, 32-4); 4865 br(Assembler::GE, CRC_by4_loop); 4866 adds(len, len, 4); 4867 br(Assembler::GT, CRC_by1_loop); 4868 b(L_exit); 4869 4870 BIND(CRC_by32_loop); 4871 ldp(tmp0, tmp1, Address(post(buf, 16))); 4872 subs(len, len, 32); 4873 crc32cx(crc, crc, tmp0); 4874 ldr(tmp2, Address(post(buf, 8))); 4875 crc32cx(crc, crc, tmp1); 4876 ldr(tmp3, Address(post(buf, 8))); 4877 crc32cx(crc, crc, tmp2); 4878 crc32cx(crc, crc, tmp3); 4879 br(Assembler::GE, CRC_by32_loop); 4880 cmn(len, (u1)32); 4881 br(Assembler::NE, CRC_less32); 4882 b(L_exit); 4883 4884 BIND(CRC_by4_loop); 4885 ldrw(tmp0, Address(post(buf, 4))); 4886 subs(len, len, 4); 4887 crc32cw(crc, crc, tmp0); 4888 br(Assembler::GE, CRC_by4_loop); 4889 adds(len, len, 4); 4890 br(Assembler::LE, L_exit); 4891 BIND(CRC_by1_loop); 4892 ldrb(tmp0, Address(post(buf, 1))); 4893 subs(len, len, 1); 4894 crc32cb(crc, crc, tmp0); 4895 br(Assembler::GT, CRC_by1_loop); 4896 b(L_exit); 4897 4898 BIND(CRC_by64_pre); 4899 sub(buf, buf, 8); 4900 ldp(tmp0, tmp1, Address(buf, 8)); 4901 crc32cx(crc, crc, tmp0); 4902 ldr(tmp2, Address(buf, 24)); 4903 crc32cx(crc, crc, tmp1); 4904 ldr(tmp3, Address(buf, 32)); 4905 crc32cx(crc, crc, tmp2); 4906 ldr(tmp0, Address(buf, 40)); 4907 crc32cx(crc, crc, tmp3); 4908 ldr(tmp1, Address(buf, 48)); 4909 crc32cx(crc, crc, tmp0); 4910 ldr(tmp2, Address(buf, 56)); 4911 crc32cx(crc, crc, tmp1); 4912 ldr(tmp3, Address(pre(buf, 64))); 4913 4914 b(CRC_by64_loop); 4915 4916 align(CodeEntryAlignment); 4917 BIND(CRC_by64_loop); 4918 subs(len, len, 64); 4919 crc32cx(crc, crc, tmp2); 4920 ldr(tmp0, Address(buf, 8)); 4921 crc32cx(crc, crc, tmp3); 4922 ldr(tmp1, Address(buf, 16)); 4923 crc32cx(crc, crc, tmp0); 4924 ldr(tmp2, Address(buf, 24)); 4925 crc32cx(crc, crc, tmp1); 4926 ldr(tmp3, Address(buf, 32)); 4927 crc32cx(crc, crc, tmp2); 4928 ldr(tmp0, Address(buf, 40)); 4929 crc32cx(crc, crc, tmp3); 4930 ldr(tmp1, Address(buf, 48)); 4931 crc32cx(crc, crc, tmp0); 4932 ldr(tmp2, Address(buf, 56)); 4933 crc32cx(crc, crc, tmp1); 4934 ldr(tmp3, Address(pre(buf, 64))); 4935 br(Assembler::GE, CRC_by64_loop); 4936 4937 // post-loop 4938 crc32cx(crc, crc, tmp2); 4939 crc32cx(crc, crc, tmp3); 4940 4941 sub(len, len, 64); 4942 add(buf, buf, 8); 4943 cmn(len, (u1)128); 4944 br(Assembler::NE, CRC_less64); 4945 BIND(L_exit); 4946 } 4947 4948 /** 4949 * @param crc register containing existing CRC (32-bit) 4950 * @param buf register pointing to input byte buffer (byte*) 4951 * @param len register containing number of bytes 4952 * @param table register that will contain address of CRC table 4953 * @param tmp scratch register 4954 */ 4955 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4956 Register table0, Register table1, Register table2, Register table3, 4957 Register tmp, Register tmp2, Register tmp3) { 4958 if (UseCryptoPmullForCRC32) { 4959 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4960 } else { 4961 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4962 } 4963 } 4964 4965 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4966 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4967 Label CRC_by128_loop; 4968 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4969 4970 sub(len, len, 256); 4971 Register table = tmp0; 4972 { 4973 uint64_t offset; 4974 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4975 add(table, table, offset); 4976 } 4977 add(table, table, table_offset); 4978 4979 // Registers v0..v7 are used as data registers. 4980 // Registers v16..v31 are used as tmp registers. 4981 sub(buf, buf, 0x10); 4982 ldrq(v0, Address(buf, 0x10)); 4983 ldrq(v1, Address(buf, 0x20)); 4984 ldrq(v2, Address(buf, 0x30)); 4985 ldrq(v3, Address(buf, 0x40)); 4986 ldrq(v4, Address(buf, 0x50)); 4987 ldrq(v5, Address(buf, 0x60)); 4988 ldrq(v6, Address(buf, 0x70)); 4989 ldrq(v7, Address(pre(buf, 0x80))); 4990 4991 movi(v31, T4S, 0); 4992 mov(v31, S, 0, crc); 4993 eor(v0, T16B, v0, v31); 4994 4995 // Register v16 contains constants from the crc table. 4996 ldrq(v16, Address(table)); 4997 b(CRC_by128_loop); 4998 4999 align(OptoLoopAlignment); 5000 BIND(CRC_by128_loop); 5001 pmull (v17, T1Q, v0, v16, T1D); 5002 pmull2(v18, T1Q, v0, v16, T2D); 5003 ldrq(v0, Address(buf, 0x10)); 5004 eor3(v0, T16B, v17, v18, v0); 5005 5006 pmull (v19, T1Q, v1, v16, T1D); 5007 pmull2(v20, T1Q, v1, v16, T2D); 5008 ldrq(v1, Address(buf, 0x20)); 5009 eor3(v1, T16B, v19, v20, v1); 5010 5011 pmull (v21, T1Q, v2, v16, T1D); 5012 pmull2(v22, T1Q, v2, v16, T2D); 5013 ldrq(v2, Address(buf, 0x30)); 5014 eor3(v2, T16B, v21, v22, v2); 5015 5016 pmull (v23, T1Q, v3, v16, T1D); 5017 pmull2(v24, T1Q, v3, v16, T2D); 5018 ldrq(v3, Address(buf, 0x40)); 5019 eor3(v3, T16B, v23, v24, v3); 5020 5021 pmull (v25, T1Q, v4, v16, T1D); 5022 pmull2(v26, T1Q, v4, v16, T2D); 5023 ldrq(v4, Address(buf, 0x50)); 5024 eor3(v4, T16B, v25, v26, v4); 5025 5026 pmull (v27, T1Q, v5, v16, T1D); 5027 pmull2(v28, T1Q, v5, v16, T2D); 5028 ldrq(v5, Address(buf, 0x60)); 5029 eor3(v5, T16B, v27, v28, v5); 5030 5031 pmull (v29, T1Q, v6, v16, T1D); 5032 pmull2(v30, T1Q, v6, v16, T2D); 5033 ldrq(v6, Address(buf, 0x70)); 5034 eor3(v6, T16B, v29, v30, v6); 5035 5036 // Reuse registers v23, v24. 5037 // Using them won't block the first instruction of the next iteration. 5038 pmull (v23, T1Q, v7, v16, T1D); 5039 pmull2(v24, T1Q, v7, v16, T2D); 5040 ldrq(v7, Address(pre(buf, 0x80))); 5041 eor3(v7, T16B, v23, v24, v7); 5042 5043 subs(len, len, 0x80); 5044 br(Assembler::GE, CRC_by128_loop); 5045 5046 // fold into 512 bits 5047 // Use v31 for constants because v16 can be still in use. 5048 ldrq(v31, Address(table, 0x10)); 5049 5050 pmull (v17, T1Q, v0, v31, T1D); 5051 pmull2(v18, T1Q, v0, v31, T2D); 5052 eor3(v0, T16B, v17, v18, v4); 5053 5054 pmull (v19, T1Q, v1, v31, T1D); 5055 pmull2(v20, T1Q, v1, v31, T2D); 5056 eor3(v1, T16B, v19, v20, v5); 5057 5058 pmull (v21, T1Q, v2, v31, T1D); 5059 pmull2(v22, T1Q, v2, v31, T2D); 5060 eor3(v2, T16B, v21, v22, v6); 5061 5062 pmull (v23, T1Q, v3, v31, T1D); 5063 pmull2(v24, T1Q, v3, v31, T2D); 5064 eor3(v3, T16B, v23, v24, v7); 5065 5066 // fold into 128 bits 5067 // Use v17 for constants because v31 can be still in use. 5068 ldrq(v17, Address(table, 0x20)); 5069 pmull (v25, T1Q, v0, v17, T1D); 5070 pmull2(v26, T1Q, v0, v17, T2D); 5071 eor3(v3, T16B, v3, v25, v26); 5072 5073 // Use v18 for constants because v17 can be still in use. 5074 ldrq(v18, Address(table, 0x30)); 5075 pmull (v27, T1Q, v1, v18, T1D); 5076 pmull2(v28, T1Q, v1, v18, T2D); 5077 eor3(v3, T16B, v3, v27, v28); 5078 5079 // Use v19 for constants because v18 can be still in use. 5080 ldrq(v19, Address(table, 0x40)); 5081 pmull (v29, T1Q, v2, v19, T1D); 5082 pmull2(v30, T1Q, v2, v19, T2D); 5083 eor3(v0, T16B, v3, v29, v30); 5084 5085 add(len, len, 0x80); 5086 add(buf, buf, 0x10); 5087 5088 mov(tmp0, v0, D, 0); 5089 mov(tmp1, v0, D, 1); 5090 } 5091 5092 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5093 Address adr; 5094 switch(dst.getMode()) { 5095 case Address::base_plus_offset: 5096 // This is the expected mode, although we allow all the other 5097 // forms below. 5098 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5099 break; 5100 default: 5101 lea(rscratch2, dst); 5102 adr = Address(rscratch2); 5103 break; 5104 } 5105 ldr(rscratch1, adr); 5106 add(rscratch1, rscratch1, src); 5107 str(rscratch1, adr); 5108 } 5109 5110 void MacroAssembler::cmpptr(Register src1, Address src2) { 5111 uint64_t offset; 5112 adrp(rscratch1, src2, offset); 5113 ldr(rscratch1, Address(rscratch1, offset)); 5114 cmp(src1, rscratch1); 5115 } 5116 5117 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5118 cmp(obj1, obj2); 5119 } 5120 5121 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5122 load_method_holder(rresult, rmethod); 5123 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5124 } 5125 5126 void MacroAssembler::load_method_holder(Register holder, Register method) { 5127 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5128 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5129 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5130 } 5131 5132 void MacroAssembler::load_metadata(Register dst, Register src) { 5133 if (UseCompactObjectHeaders) { 5134 load_narrow_klass_compact(dst, src); 5135 } else if (UseCompressedClassPointers) { 5136 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5137 } else { 5138 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5139 } 5140 } 5141 5142 // Loads the obj's Klass* into dst. 5143 // Preserves all registers (incl src, rscratch1 and rscratch2). 5144 // Input: 5145 // src - the oop we want to load the klass from. 5146 // dst - output narrow klass. 5147 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5148 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5149 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5150 lsr(dst, dst, markWord::klass_shift); 5151 } 5152 5153 void MacroAssembler::load_klass(Register dst, Register src) { 5154 if (UseCompactObjectHeaders) { 5155 load_narrow_klass_compact(dst, src); 5156 decode_klass_not_null(dst); 5157 } else if (UseCompressedClassPointers) { 5158 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5159 decode_klass_not_null(dst); 5160 } else { 5161 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5162 } 5163 } 5164 5165 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5166 if (RestoreMXCSROnJNICalls) { 5167 Label OK; 5168 get_fpcr(tmp1); 5169 mov(tmp2, tmp1); 5170 // Set FPCR to the state we need. We do want Round to Nearest. We 5171 // don't want non-IEEE rounding modes or floating-point traps. 5172 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5173 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5174 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5175 eor(tmp2, tmp1, tmp2); 5176 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5177 set_fpcr(tmp1); 5178 bind(OK); 5179 } 5180 } 5181 5182 // ((OopHandle)result).resolve(); 5183 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5184 // OopHandle::resolve is an indirection. 5185 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5186 } 5187 5188 // ((WeakHandle)result).resolve(); 5189 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5190 assert_different_registers(result, tmp1, tmp2); 5191 Label resolved; 5192 5193 // A null weak handle resolves to null. 5194 cbz(result, resolved); 5195 5196 // Only 64 bit platforms support GCs that require a tmp register 5197 // WeakHandle::resolve is an indirection like jweak. 5198 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5199 result, Address(result), tmp1, tmp2); 5200 bind(resolved); 5201 } 5202 5203 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5204 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5205 ldr(dst, Address(rmethod, Method::const_offset())); 5206 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5207 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5208 ldr(dst, Address(dst, mirror_offset)); 5209 resolve_oop_handle(dst, tmp1, tmp2); 5210 } 5211 5212 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5213 assert_different_registers(obj, klass, tmp); 5214 if (UseCompressedClassPointers) { 5215 if (UseCompactObjectHeaders) { 5216 load_narrow_klass_compact(tmp, obj); 5217 } else { 5218 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5219 } 5220 if (CompressedKlassPointers::base() == nullptr) { 5221 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5222 return; 5223 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5224 && CompressedKlassPointers::shift() == 0) { 5225 // Only the bottom 32 bits matter 5226 cmpw(klass, tmp); 5227 return; 5228 } 5229 decode_klass_not_null(tmp); 5230 } else { 5231 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5232 } 5233 cmp(klass, tmp); 5234 } 5235 5236 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5237 if (UseCompactObjectHeaders) { 5238 load_narrow_klass_compact(tmp1, obj1); 5239 load_narrow_klass_compact(tmp2, obj2); 5240 cmpw(tmp1, tmp2); 5241 } else if (UseCompressedClassPointers) { 5242 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5243 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5244 cmpw(tmp1, tmp2); 5245 } else { 5246 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5247 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5248 cmp(tmp1, tmp2); 5249 } 5250 } 5251 5252 void MacroAssembler::load_prototype_header(Register dst, Register src) { 5253 load_klass(dst, src); 5254 ldr(dst, Address(dst, Klass::prototype_header_offset())); 5255 } 5256 5257 void MacroAssembler::store_klass(Register dst, Register src) { 5258 // FIXME: Should this be a store release? concurrent gcs assumes 5259 // klass length is valid if klass field is not null. 5260 assert(!UseCompactObjectHeaders, "not with compact headers"); 5261 if (UseCompressedClassPointers) { 5262 encode_klass_not_null(src); 5263 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5264 } else { 5265 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5266 } 5267 } 5268 5269 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5270 assert(!UseCompactObjectHeaders, "not with compact headers"); 5271 if (UseCompressedClassPointers) { 5272 // Store to klass gap in destination 5273 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5274 } 5275 } 5276 5277 // Algorithm must match CompressedOops::encode. 5278 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5279 #ifdef ASSERT 5280 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5281 #endif 5282 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5283 if (CompressedOops::base() == nullptr) { 5284 if (CompressedOops::shift() != 0) { 5285 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5286 lsr(d, s, LogMinObjAlignmentInBytes); 5287 } else { 5288 mov(d, s); 5289 } 5290 } else { 5291 subs(d, s, rheapbase); 5292 csel(d, d, zr, Assembler::HS); 5293 lsr(d, d, LogMinObjAlignmentInBytes); 5294 5295 /* Old algorithm: is this any worse? 5296 Label nonnull; 5297 cbnz(r, nonnull); 5298 sub(r, r, rheapbase); 5299 bind(nonnull); 5300 lsr(r, r, LogMinObjAlignmentInBytes); 5301 */ 5302 } 5303 } 5304 5305 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5306 #ifdef ASSERT 5307 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5308 if (CheckCompressedOops) { 5309 Label ok; 5310 cbnz(r, ok); 5311 stop("null oop passed to encode_heap_oop_not_null"); 5312 bind(ok); 5313 } 5314 #endif 5315 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5316 if (CompressedOops::base() != nullptr) { 5317 sub(r, r, rheapbase); 5318 } 5319 if (CompressedOops::shift() != 0) { 5320 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5321 lsr(r, r, LogMinObjAlignmentInBytes); 5322 } 5323 } 5324 5325 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5326 #ifdef ASSERT 5327 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5328 if (CheckCompressedOops) { 5329 Label ok; 5330 cbnz(src, ok); 5331 stop("null oop passed to encode_heap_oop_not_null2"); 5332 bind(ok); 5333 } 5334 #endif 5335 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5336 5337 Register data = src; 5338 if (CompressedOops::base() != nullptr) { 5339 sub(dst, src, rheapbase); 5340 data = dst; 5341 } 5342 if (CompressedOops::shift() != 0) { 5343 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5344 lsr(dst, data, LogMinObjAlignmentInBytes); 5345 data = dst; 5346 } 5347 if (data == src) 5348 mov(dst, src); 5349 } 5350 5351 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5352 #ifdef ASSERT 5353 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5354 #endif 5355 if (CompressedOops::base() == nullptr) { 5356 if (CompressedOops::shift() != 0) { 5357 lsl(d, s, CompressedOops::shift()); 5358 } else if (d != s) { 5359 mov(d, s); 5360 } 5361 } else { 5362 Label done; 5363 if (d != s) 5364 mov(d, s); 5365 cbz(s, done); 5366 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5367 bind(done); 5368 } 5369 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5370 } 5371 5372 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5373 assert (UseCompressedOops, "should only be used for compressed headers"); 5374 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5375 // Cannot assert, unverified entry point counts instructions (see .ad file) 5376 // vtableStubs also counts instructions in pd_code_size_limit. 5377 // Also do not verify_oop as this is called by verify_oop. 5378 if (CompressedOops::shift() != 0) { 5379 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5380 if (CompressedOops::base() != nullptr) { 5381 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5382 } else { 5383 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5384 } 5385 } else { 5386 assert (CompressedOops::base() == nullptr, "sanity"); 5387 } 5388 } 5389 5390 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5391 assert (UseCompressedOops, "should only be used for compressed headers"); 5392 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5393 // Cannot assert, unverified entry point counts instructions (see .ad file) 5394 // vtableStubs also counts instructions in pd_code_size_limit. 5395 // Also do not verify_oop as this is called by verify_oop. 5396 if (CompressedOops::shift() != 0) { 5397 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5398 if (CompressedOops::base() != nullptr) { 5399 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5400 } else { 5401 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5402 } 5403 } else { 5404 assert (CompressedOops::base() == nullptr, "sanity"); 5405 if (dst != src) { 5406 mov(dst, src); 5407 } 5408 } 5409 } 5410 5411 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5412 5413 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5414 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5415 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5416 return _klass_decode_mode; 5417 } 5418 5419 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5420 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5421 5422 // KlassDecodeMode shouldn't be set already. 5423 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5424 5425 if (base == nullptr) { 5426 return KlassDecodeZero; 5427 } 5428 5429 if (operand_valid_for_logical_immediate( 5430 /*is32*/false, (uint64_t)base)) { 5431 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5432 if (((uint64_t)base & range_mask) == 0) { 5433 return KlassDecodeXor; 5434 } 5435 } 5436 5437 const uint64_t shifted_base = 5438 (uint64_t)base >> shift; 5439 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5440 return KlassDecodeMovk; 5441 } 5442 5443 // No valid encoding. 5444 return KlassDecodeNone; 5445 } 5446 5447 // Check if one of the above decoding modes will work for given base, shift and range. 5448 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5449 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5450 } 5451 5452 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5453 _klass_decode_mode = klass_decode_mode(base, shift, range); 5454 return _klass_decode_mode != KlassDecodeNone; 5455 } 5456 5457 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5458 switch (klass_decode_mode()) { 5459 case KlassDecodeZero: 5460 if (CompressedKlassPointers::shift() != 0) { 5461 lsr(dst, src, CompressedKlassPointers::shift()); 5462 } else { 5463 if (dst != src) mov(dst, src); 5464 } 5465 break; 5466 5467 case KlassDecodeXor: 5468 if (CompressedKlassPointers::shift() != 0) { 5469 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5470 lsr(dst, dst, CompressedKlassPointers::shift()); 5471 } else { 5472 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5473 } 5474 break; 5475 5476 case KlassDecodeMovk: 5477 if (CompressedKlassPointers::shift() != 0) { 5478 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5479 } else { 5480 movw(dst, src); 5481 } 5482 break; 5483 5484 case KlassDecodeNone: 5485 ShouldNotReachHere(); 5486 break; 5487 } 5488 } 5489 5490 void MacroAssembler::encode_klass_not_null(Register r) { 5491 encode_klass_not_null(r, r); 5492 } 5493 5494 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5495 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5496 5497 switch (klass_decode_mode()) { 5498 case KlassDecodeZero: 5499 if (CompressedKlassPointers::shift() != 0) { 5500 lsl(dst, src, CompressedKlassPointers::shift()); 5501 } else { 5502 if (dst != src) mov(dst, src); 5503 } 5504 break; 5505 5506 case KlassDecodeXor: 5507 if (CompressedKlassPointers::shift() != 0) { 5508 lsl(dst, src, CompressedKlassPointers::shift()); 5509 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5510 } else { 5511 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5512 } 5513 break; 5514 5515 case KlassDecodeMovk: { 5516 const uint64_t shifted_base = 5517 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5518 5519 if (dst != src) movw(dst, src); 5520 movk(dst, shifted_base >> 32, 32); 5521 5522 if (CompressedKlassPointers::shift() != 0) { 5523 lsl(dst, dst, CompressedKlassPointers::shift()); 5524 } 5525 5526 break; 5527 } 5528 5529 case KlassDecodeNone: 5530 ShouldNotReachHere(); 5531 break; 5532 } 5533 } 5534 5535 void MacroAssembler::decode_klass_not_null(Register r) { 5536 decode_klass_not_null(r, r); 5537 } 5538 5539 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5540 #ifdef ASSERT 5541 { 5542 ThreadInVMfromUnknown tiv; 5543 assert (UseCompressedOops, "should only be used for compressed oops"); 5544 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5545 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5546 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5547 } 5548 #endif 5549 int oop_index = oop_recorder()->find_index(obj); 5550 InstructionMark im(this); 5551 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5552 code_section()->relocate(inst_mark(), rspec); 5553 movz(dst, 0xDEAD, 16); 5554 movk(dst, 0xBEEF); 5555 } 5556 5557 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5558 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5559 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5560 int index = oop_recorder()->find_index(k); 5561 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5562 5563 InstructionMark im(this); 5564 RelocationHolder rspec = metadata_Relocation::spec(index); 5565 code_section()->relocate(inst_mark(), rspec); 5566 narrowKlass nk = CompressedKlassPointers::encode(k); 5567 movz(dst, (nk >> 16), 16); 5568 movk(dst, nk & 0xffff); 5569 } 5570 5571 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5572 Register dst, Address src, 5573 Register tmp1, Register tmp2) { 5574 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5575 decorators = AccessInternal::decorator_fixup(decorators, type); 5576 bool as_raw = (decorators & AS_RAW) != 0; 5577 if (as_raw) { 5578 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5579 } else { 5580 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5581 } 5582 } 5583 5584 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5585 Address dst, Register val, 5586 Register tmp1, Register tmp2, Register tmp3) { 5587 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5588 decorators = AccessInternal::decorator_fixup(decorators, type); 5589 bool as_raw = (decorators & AS_RAW) != 0; 5590 if (as_raw) { 5591 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5592 } else { 5593 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5594 } 5595 } 5596 5597 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5598 Register inline_layout_info) { 5599 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5600 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5601 } 5602 5603 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5604 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5605 ldrw(offset, Address(offset, InlineKlass::payload_offset_offset())); 5606 } 5607 5608 void MacroAssembler::payload_address(Register oop, Register data, Register inline_klass) { 5609 // ((address) (void*) o) + vk->payload_offset(); 5610 Register offset = (data == oop) ? rscratch1 : data; 5611 payload_offset(inline_klass, offset); 5612 if (data == oop) { 5613 add(data, data, offset); 5614 } else { 5615 lea(data, Address(oop, offset)); 5616 } 5617 } 5618 5619 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5620 Register index, Register data) { 5621 assert_different_registers(array, array_klass, index); 5622 assert_different_registers(rscratch1, array, index); 5623 5624 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5625 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 5626 5627 // Klass::layout_helper_log2_element_size(lh) 5628 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5629 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 5630 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 5631 lslv(index, index, rscratch1); 5632 5633 add(data, array, index); 5634 add(data, data, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT)); 5635 } 5636 5637 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5638 Register tmp2, DecoratorSet decorators) { 5639 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5640 } 5641 5642 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5643 Register tmp2, DecoratorSet decorators) { 5644 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5645 } 5646 5647 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5648 Register tmp2, Register tmp3, DecoratorSet decorators) { 5649 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5650 } 5651 5652 // Used for storing nulls. 5653 void MacroAssembler::store_heap_oop_null(Address dst) { 5654 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5655 } 5656 5657 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5658 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5659 int index = oop_recorder()->allocate_metadata_index(obj); 5660 RelocationHolder rspec = metadata_Relocation::spec(index); 5661 return Address((address)obj, rspec); 5662 } 5663 5664 // Move an oop into a register. 5665 void MacroAssembler::movoop(Register dst, jobject obj) { 5666 int oop_index; 5667 if (obj == nullptr) { 5668 oop_index = oop_recorder()->allocate_oop_index(obj); 5669 } else { 5670 #ifdef ASSERT 5671 { 5672 ThreadInVMfromUnknown tiv; 5673 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5674 } 5675 #endif 5676 oop_index = oop_recorder()->find_index(obj); 5677 } 5678 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5679 5680 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5681 mov(dst, Address((address)obj, rspec)); 5682 } else { 5683 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5684 ldr(dst, Address(dummy, rspec)); 5685 } 5686 } 5687 5688 // Move a metadata address into a register. 5689 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5690 int oop_index; 5691 if (obj == nullptr) { 5692 oop_index = oop_recorder()->allocate_metadata_index(obj); 5693 } else { 5694 oop_index = oop_recorder()->find_index(obj); 5695 } 5696 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5697 mov(dst, Address((address)obj, rspec)); 5698 } 5699 5700 Address MacroAssembler::constant_oop_address(jobject obj) { 5701 #ifdef ASSERT 5702 { 5703 ThreadInVMfromUnknown tiv; 5704 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5705 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5706 } 5707 #endif 5708 int oop_index = oop_recorder()->find_index(obj); 5709 return Address((address)obj, oop_Relocation::spec(oop_index)); 5710 } 5711 5712 // Object / value buffer allocation... 5713 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 5714 Register t1, Register t2, 5715 bool clear_fields, Label& alloc_failed) 5716 { 5717 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 5718 Register layout_size = t1; 5719 assert(new_obj == r0, "needs to be r0"); 5720 assert_different_registers(klass, new_obj, t1, t2); 5721 5722 // get instance_size in InstanceKlass (scaled to a count of bytes) 5723 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5724 // test to see if it is malformed in some way 5725 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5726 br(Assembler::NE, slow_case_no_pop); 5727 5728 // Allocate the instance: 5729 // If TLAB is enabled: 5730 // Try to allocate in the TLAB. 5731 // If fails, go to the slow path. 5732 // Initialize the allocation. 5733 // Exit. 5734 // 5735 // Go to slow path. 5736 5737 if (UseTLAB) { 5738 push(klass); 5739 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5740 if (ZeroTLAB || (!clear_fields)) { 5741 // the fields have been already cleared 5742 b(initialize_header); 5743 } else { 5744 // initialize both the header and fields 5745 b(initialize_object); 5746 } 5747 5748 if (clear_fields) { 5749 // The object is initialized before the header. If the object size is 5750 // zero, go directly to the header initialization. 5751 bind(initialize_object); 5752 int header_size = oopDesc::header_size() * HeapWordSize; 5753 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 5754 subs(layout_size, layout_size, header_size); 5755 br(Assembler::EQ, initialize_header); 5756 5757 // Initialize topmost object field, divide size by 8, check if odd and 5758 // test if zero. 5759 5760 #ifdef ASSERT 5761 // make sure instance_size was multiple of 8 5762 Label L; 5763 tst(layout_size, 7); 5764 br(Assembler::EQ, L); 5765 stop("object size is not multiple of 8 - adjust this code"); 5766 bind(L); 5767 // must be > 0, no extra check needed here 5768 #endif 5769 5770 lsr(layout_size, layout_size, LogBytesPerLong); 5771 5772 // initialize remaining object fields: instance_size was a multiple of 8 5773 { 5774 Label loop; 5775 Register base = t2; 5776 5777 bind(loop); 5778 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5779 str(zr, Address(rscratch1, header_size - 1*oopSize)); 5780 subs(layout_size, layout_size, 1); 5781 br(Assembler::NE, loop); 5782 } 5783 } // clear_fields 5784 5785 // initialize object header only. 5786 bind(initialize_header); 5787 pop(klass); 5788 Register mark_word = t2; 5789 if (UseCompactObjectHeaders || EnableValhalla) { 5790 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5791 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5792 } else { 5793 mov(mark_word, (intptr_t)markWord::prototype().value()); 5794 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5795 } 5796 if (!UseCompactObjectHeaders) { 5797 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5798 mov(t2, klass); // preserve klass 5799 store_klass(new_obj, t2); // src klass reg is potentially compressed 5800 } 5801 b(done); 5802 } 5803 5804 if (UseTLAB) { 5805 bind(slow_case); 5806 pop(klass); 5807 } 5808 bind(slow_case_no_pop); 5809 b(alloc_failed); 5810 5811 bind(done); 5812 } 5813 5814 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5815 void MacroAssembler::tlab_allocate(Register obj, 5816 Register var_size_in_bytes, 5817 int con_size_in_bytes, 5818 Register t1, 5819 Register t2, 5820 Label& slow_case) { 5821 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5822 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5823 } 5824 5825 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5826 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5827 #ifdef ASSERT 5828 ldr(tmp, dst); 5829 increment(tmp); 5830 str(tmp, dst); 5831 Label ok; 5832 tbz(tmp, 63, ok); 5833 STOP("assert(held monitor count underflow)"); 5834 should_not_reach_here(); 5835 bind(ok); 5836 #else 5837 increment(dst); 5838 #endif 5839 } 5840 5841 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5842 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5843 #ifdef ASSERT 5844 ldr(tmp, dst); 5845 decrement(tmp); 5846 str(tmp, dst); 5847 Label ok; 5848 tbz(tmp, 63, ok); 5849 STOP("assert(held monitor count underflow)"); 5850 should_not_reach_here(); 5851 bind(ok); 5852 #else 5853 decrement(dst); 5854 #endif 5855 } 5856 5857 void MacroAssembler::verify_tlab() { 5858 #ifdef ASSERT 5859 if (UseTLAB && VerifyOops) { 5860 Label next, ok; 5861 5862 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5863 5864 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5865 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5866 cmp(rscratch2, rscratch1); 5867 br(Assembler::HS, next); 5868 STOP("assert(top >= start)"); 5869 should_not_reach_here(); 5870 5871 bind(next); 5872 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5873 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5874 cmp(rscratch2, rscratch1); 5875 br(Assembler::HS, ok); 5876 STOP("assert(top <= end)"); 5877 should_not_reach_here(); 5878 5879 bind(ok); 5880 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5881 } 5882 #endif 5883 } 5884 5885 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 5886 inline_layout_info(holder_klass, index, inline_klass); 5887 ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 5888 } 5889 5890 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 5891 assert_different_registers(holder_klass, index, layout_info); 5892 InlineLayoutInfo array[2]; 5893 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 5894 if (is_power_of_2(size)) { 5895 lsl(index, index, log2i_exact(size)); // Scale index by power of 2 5896 } else { 5897 mov(layout_info, size); 5898 mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size 5899 } 5900 ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 5901 add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes()); 5902 lea(layout_info, Address(layout_info, index)); 5903 } 5904 5905 // Writes to stack successive pages until offset reached to check for 5906 // stack overflow + shadow pages. This clobbers tmp. 5907 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5908 assert_different_registers(tmp, size, rscratch1); 5909 mov(tmp, sp); 5910 // Bang stack for total size given plus shadow page size. 5911 // Bang one page at a time because large size can bang beyond yellow and 5912 // red zones. 5913 Label loop; 5914 mov(rscratch1, (int)os::vm_page_size()); 5915 bind(loop); 5916 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5917 subsw(size, size, rscratch1); 5918 str(size, Address(tmp)); 5919 br(Assembler::GT, loop); 5920 5921 // Bang down shadow pages too. 5922 // At this point, (tmp-0) is the last address touched, so don't 5923 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5924 // was post-decremented.) Skip this address by starting at i=1, and 5925 // touch a few more pages below. N.B. It is important to touch all 5926 // the way down to and including i=StackShadowPages. 5927 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5928 // this could be any sized move but this is can be a debugging crumb 5929 // so the bigger the better. 5930 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5931 str(size, Address(tmp)); 5932 } 5933 } 5934 5935 // Move the address of the polling page into dest. 5936 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5937 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5938 } 5939 5940 // Read the polling page. The address of the polling page must 5941 // already be in r. 5942 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5943 address mark; 5944 { 5945 InstructionMark im(this); 5946 code_section()->relocate(inst_mark(), rtype); 5947 ldrw(zr, Address(r, 0)); 5948 mark = inst_mark(); 5949 } 5950 verify_cross_modify_fence_not_required(); 5951 return mark; 5952 } 5953 5954 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5955 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5956 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5957 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5958 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5959 int64_t offset_low = dest_page - low_page; 5960 int64_t offset_high = dest_page - high_page; 5961 5962 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5963 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5964 5965 InstructionMark im(this); 5966 code_section()->relocate(inst_mark(), dest.rspec()); 5967 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5968 // the code cache so that if it is relocated we know it will still reach 5969 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5970 _adrp(reg1, dest.target()); 5971 } else { 5972 uint64_t target = (uint64_t)dest.target(); 5973 uint64_t adrp_target 5974 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5975 5976 _adrp(reg1, (address)adrp_target); 5977 movk(reg1, target >> 32, 32); 5978 } 5979 byte_offset = (uint64_t)dest.target() & 0xfff; 5980 } 5981 5982 void MacroAssembler::load_byte_map_base(Register reg) { 5983 CardTable::CardValue* byte_map_base = 5984 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5985 5986 // Strictly speaking the byte_map_base isn't an address at all, and it might 5987 // even be negative. It is thus materialised as a constant. 5988 mov(reg, (uint64_t)byte_map_base); 5989 } 5990 5991 void MacroAssembler::build_frame(int framesize) { 5992 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5993 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5994 protect_return_address(); 5995 if (framesize < ((1 << 9) + 2 * wordSize)) { 5996 sub(sp, sp, framesize); 5997 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5998 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5999 } else { 6000 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6001 if (PreserveFramePointer) mov(rfp, sp); 6002 if (framesize < ((1 << 12) + 2 * wordSize)) 6003 sub(sp, sp, framesize - 2 * wordSize); 6004 else { 6005 mov(rscratch1, framesize - 2 * wordSize); 6006 sub(sp, sp, rscratch1); 6007 } 6008 } 6009 verify_cross_modify_fence_not_required(); 6010 } 6011 6012 void MacroAssembler::remove_frame(int framesize) { 6013 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 6014 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6015 if (framesize < ((1 << 9) + 2 * wordSize)) { 6016 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6017 add(sp, sp, framesize); 6018 } else { 6019 if (framesize < ((1 << 12) + 2 * wordSize)) 6020 add(sp, sp, framesize - 2 * wordSize); 6021 else { 6022 mov(rscratch1, framesize - 2 * wordSize); 6023 add(sp, sp, rscratch1); 6024 } 6025 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6026 } 6027 authenticate_return_address(); 6028 } 6029 6030 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6031 if (needs_stack_repair) { 6032 // Remove the extension of the caller's frame used for inline type unpacking 6033 // 6034 // Right now the stack looks like this: 6035 // 6036 // | Arguments from caller | 6037 // |---------------------------| <-- caller's SP 6038 // | Saved LR #1 | 6039 // | Saved FP #1 | 6040 // |---------------------------| 6041 // | Extension space for | 6042 // | inline arg (un)packing | 6043 // |---------------------------| <-- start of this method's frame 6044 // | Saved LR #2 | 6045 // | Saved FP #2 | 6046 // |---------------------------| <-- FP 6047 // | sp_inc | 6048 // | method locals | 6049 // |---------------------------| <-- SP 6050 // 6051 // There are two copies of FP and LR on the stack. They will be identical 6052 // unless the caller has been deoptimized, in which case LR #1 will be patched 6053 // to point at the deopt blob, and LR #2 will still point into the old method. 6054 // 6055 // The sp_inc stack slot holds the total size of the frame including the 6056 // extension space minus two words for the saved FP and LR. 6057 6058 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 6059 6060 ldr(rscratch1, Address(sp, sp_inc_offset)); 6061 add(sp, sp, rscratch1); 6062 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6063 } else { 6064 remove_frame(initial_framesize); 6065 } 6066 } 6067 6068 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 6069 int real_frame_size = frame_size + sp_inc; 6070 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 6071 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 6072 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6073 6074 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 6075 6076 // Subtract two words for the saved FP and LR as these will be popped 6077 // separately. See remove_frame above. 6078 mov(rscratch1, real_frame_size - 2*wordSize); 6079 str(rscratch1, Address(sp, sp_inc_offset)); 6080 } 6081 6082 // This method counts leading positive bytes (highest bit not set) in provided byte array 6083 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 6084 // Simple and most common case of aligned small array which is not at the 6085 // end of memory page is placed here. All other cases are in stub. 6086 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 6087 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6088 assert_different_registers(ary1, len, result); 6089 6090 mov(result, len); 6091 cmpw(len, 0); 6092 br(LE, DONE); 6093 cmpw(len, 4 * wordSize); 6094 br(GE, STUB_LONG); // size > 32 then go to stub 6095 6096 int shift = 64 - exact_log2(os::vm_page_size()); 6097 lsl(rscratch1, ary1, shift); 6098 mov(rscratch2, (size_t)(4 * wordSize) << shift); 6099 adds(rscratch2, rscratch1, rscratch2); // At end of page? 6100 br(CS, STUB); // at the end of page then go to stub 6101 subs(len, len, wordSize); 6102 br(LT, END); 6103 6104 BIND(LOOP); 6105 ldr(rscratch1, Address(post(ary1, wordSize))); 6106 tst(rscratch1, UPPER_BIT_MASK); 6107 br(NE, SET_RESULT); 6108 subs(len, len, wordSize); 6109 br(GE, LOOP); 6110 cmpw(len, -wordSize); 6111 br(EQ, DONE); 6112 6113 BIND(END); 6114 ldr(rscratch1, Address(ary1)); 6115 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 6116 lslv(rscratch1, rscratch1, rscratch2); 6117 tst(rscratch1, UPPER_BIT_MASK); 6118 br(NE, SET_RESULT); 6119 b(DONE); 6120 6121 BIND(STUB); 6122 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 6123 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 6124 address tpc1 = trampoline_call(count_pos); 6125 if (tpc1 == nullptr) { 6126 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 6127 postcond(pc() == badAddress); 6128 return nullptr; 6129 } 6130 b(DONE); 6131 6132 BIND(STUB_LONG); 6133 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 6134 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 6135 address tpc2 = trampoline_call(count_pos_long); 6136 if (tpc2 == nullptr) { 6137 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 6138 postcond(pc() == badAddress); 6139 return nullptr; 6140 } 6141 b(DONE); 6142 6143 BIND(SET_RESULT); 6144 6145 add(len, len, wordSize); 6146 sub(result, result, len); 6147 6148 BIND(DONE); 6149 postcond(pc() != badAddress); 6150 return pc(); 6151 } 6152 6153 // Clobbers: rscratch1, rscratch2, rflags 6154 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 6155 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 6156 Register tmp4, Register tmp5, Register result, 6157 Register cnt1, int elem_size) { 6158 Label DONE, SAME; 6159 Register tmp1 = rscratch1; 6160 Register tmp2 = rscratch2; 6161 int elem_per_word = wordSize/elem_size; 6162 int log_elem_size = exact_log2(elem_size); 6163 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 6164 int length_offset = arrayOopDesc::length_offset_in_bytes(); 6165 int base_offset 6166 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 6167 // When the length offset is not aligned to 8 bytes, 6168 // then we align it down. This is valid because the new 6169 // offset will always be the klass which is the same 6170 // for type arrays. 6171 int start_offset = align_down(length_offset, BytesPerWord); 6172 int extra_length = base_offset - start_offset; 6173 assert(start_offset == length_offset || start_offset == klass_offset, 6174 "start offset must be 8-byte-aligned or be the klass offset"); 6175 assert(base_offset != start_offset, "must include the length field"); 6176 extra_length = extra_length / elem_size; // We count in elements, not bytes. 6177 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 6178 6179 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 6180 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6181 6182 #ifndef PRODUCT 6183 { 6184 const char kind = (elem_size == 2) ? 'U' : 'L'; 6185 char comment[64]; 6186 snprintf(comment, sizeof comment, "array_equals%c{", kind); 6187 BLOCK_COMMENT(comment); 6188 } 6189 #endif 6190 6191 // if (a1 == a2) 6192 // return true; 6193 cmpoop(a1, a2); // May have read barriers for a1 and a2. 6194 br(EQ, SAME); 6195 6196 if (UseSimpleArrayEquals) { 6197 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 6198 // if (a1 == nullptr || a2 == nullptr) 6199 // return false; 6200 // a1 & a2 == 0 means (some-pointer is null) or 6201 // (very-rare-or-even-probably-impossible-pointer-values) 6202 // so, we can save one branch in most cases 6203 tst(a1, a2); 6204 mov(result, false); 6205 br(EQ, A_MIGHT_BE_NULL); 6206 // if (a1.length != a2.length) 6207 // return false; 6208 bind(A_IS_NOT_NULL); 6209 ldrw(cnt1, Address(a1, length_offset)); 6210 // Increase loop counter by diff between base- and actual start-offset. 6211 addw(cnt1, cnt1, extra_length); 6212 lea(a1, Address(a1, start_offset)); 6213 lea(a2, Address(a2, start_offset)); 6214 // Check for short strings, i.e. smaller than wordSize. 6215 subs(cnt1, cnt1, elem_per_word); 6216 br(Assembler::LT, SHORT); 6217 // Main 8 byte comparison loop. 6218 bind(NEXT_WORD); { 6219 ldr(tmp1, Address(post(a1, wordSize))); 6220 ldr(tmp2, Address(post(a2, wordSize))); 6221 subs(cnt1, cnt1, elem_per_word); 6222 eor(tmp5, tmp1, tmp2); 6223 cbnz(tmp5, DONE); 6224 } br(GT, NEXT_WORD); 6225 // Last longword. In the case where length == 4 we compare the 6226 // same longword twice, but that's still faster than another 6227 // conditional branch. 6228 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6229 // length == 4. 6230 if (log_elem_size > 0) 6231 lsl(cnt1, cnt1, log_elem_size); 6232 ldr(tmp3, Address(a1, cnt1)); 6233 ldr(tmp4, Address(a2, cnt1)); 6234 eor(tmp5, tmp3, tmp4); 6235 cbnz(tmp5, DONE); 6236 b(SAME); 6237 bind(A_MIGHT_BE_NULL); 6238 // in case both a1 and a2 are not-null, proceed with loads 6239 cbz(a1, DONE); 6240 cbz(a2, DONE); 6241 b(A_IS_NOT_NULL); 6242 bind(SHORT); 6243 6244 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6245 { 6246 ldrw(tmp1, Address(post(a1, 4))); 6247 ldrw(tmp2, Address(post(a2, 4))); 6248 eorw(tmp5, tmp1, tmp2); 6249 cbnzw(tmp5, DONE); 6250 } 6251 bind(TAIL03); 6252 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6253 { 6254 ldrh(tmp3, Address(post(a1, 2))); 6255 ldrh(tmp4, Address(post(a2, 2))); 6256 eorw(tmp5, tmp3, tmp4); 6257 cbnzw(tmp5, DONE); 6258 } 6259 bind(TAIL01); 6260 if (elem_size == 1) { // Only needed when comparing byte arrays. 6261 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6262 { 6263 ldrb(tmp1, a1); 6264 ldrb(tmp2, a2); 6265 eorw(tmp5, tmp1, tmp2); 6266 cbnzw(tmp5, DONE); 6267 } 6268 } 6269 } else { 6270 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6271 CSET_EQ, LAST_CHECK; 6272 mov(result, false); 6273 cbz(a1, DONE); 6274 ldrw(cnt1, Address(a1, length_offset)); 6275 cbz(a2, DONE); 6276 // Increase loop counter by diff between base- and actual start-offset. 6277 addw(cnt1, cnt1, extra_length); 6278 6279 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6280 // faster to perform another branch before comparing a1 and a2 6281 cmp(cnt1, (u1)elem_per_word); 6282 br(LE, SHORT); // short or same 6283 ldr(tmp3, Address(pre(a1, start_offset))); 6284 subs(zr, cnt1, stubBytesThreshold); 6285 br(GE, STUB); 6286 ldr(tmp4, Address(pre(a2, start_offset))); 6287 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6288 6289 // Main 16 byte comparison loop with 2 exits 6290 bind(NEXT_DWORD); { 6291 ldr(tmp1, Address(pre(a1, wordSize))); 6292 ldr(tmp2, Address(pre(a2, wordSize))); 6293 subs(cnt1, cnt1, 2 * elem_per_word); 6294 br(LE, TAIL); 6295 eor(tmp4, tmp3, tmp4); 6296 cbnz(tmp4, DONE); 6297 ldr(tmp3, Address(pre(a1, wordSize))); 6298 ldr(tmp4, Address(pre(a2, wordSize))); 6299 cmp(cnt1, (u1)elem_per_word); 6300 br(LE, TAIL2); 6301 cmp(tmp1, tmp2); 6302 } br(EQ, NEXT_DWORD); 6303 b(DONE); 6304 6305 bind(TAIL); 6306 eor(tmp4, tmp3, tmp4); 6307 eor(tmp2, tmp1, tmp2); 6308 lslv(tmp2, tmp2, tmp5); 6309 orr(tmp5, tmp4, tmp2); 6310 cmp(tmp5, zr); 6311 b(CSET_EQ); 6312 6313 bind(TAIL2); 6314 eor(tmp2, tmp1, tmp2); 6315 cbnz(tmp2, DONE); 6316 b(LAST_CHECK); 6317 6318 bind(STUB); 6319 ldr(tmp4, Address(pre(a2, start_offset))); 6320 if (elem_size == 2) { // convert to byte counter 6321 lsl(cnt1, cnt1, 1); 6322 } 6323 eor(tmp5, tmp3, tmp4); 6324 cbnz(tmp5, DONE); 6325 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6326 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6327 address tpc = trampoline_call(stub); 6328 if (tpc == nullptr) { 6329 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6330 postcond(pc() == badAddress); 6331 return nullptr; 6332 } 6333 b(DONE); 6334 6335 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6336 // so, if a2 == null => return false(0), else return true, so we can return a2 6337 mov(result, a2); 6338 b(DONE); 6339 bind(SHORT); 6340 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6341 ldr(tmp3, Address(a1, start_offset)); 6342 ldr(tmp4, Address(a2, start_offset)); 6343 bind(LAST_CHECK); 6344 eor(tmp4, tmp3, tmp4); 6345 lslv(tmp5, tmp4, tmp5); 6346 cmp(tmp5, zr); 6347 bind(CSET_EQ); 6348 cset(result, EQ); 6349 b(DONE); 6350 } 6351 6352 bind(SAME); 6353 mov(result, true); 6354 // That's it. 6355 bind(DONE); 6356 6357 BLOCK_COMMENT("} array_equals"); 6358 postcond(pc() != badAddress); 6359 return pc(); 6360 } 6361 6362 // Compare Strings 6363 6364 // For Strings we're passed the address of the first characters in a1 6365 // and a2 and the length in cnt1. 6366 // There are two implementations. For arrays >= 8 bytes, all 6367 // comparisons (including the final one, which may overlap) are 6368 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6369 // halfword, then a short, and then a byte. 6370 6371 void MacroAssembler::string_equals(Register a1, Register a2, 6372 Register result, Register cnt1) 6373 { 6374 Label SAME, DONE, SHORT, NEXT_WORD; 6375 Register tmp1 = rscratch1; 6376 Register tmp2 = rscratch2; 6377 Register cnt2 = tmp2; // cnt2 only used in array length compare 6378 6379 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6380 6381 #ifndef PRODUCT 6382 { 6383 char comment[64]; 6384 snprintf(comment, sizeof comment, "{string_equalsL"); 6385 BLOCK_COMMENT(comment); 6386 } 6387 #endif 6388 6389 mov(result, false); 6390 6391 // Check for short strings, i.e. smaller than wordSize. 6392 subs(cnt1, cnt1, wordSize); 6393 br(Assembler::LT, SHORT); 6394 // Main 8 byte comparison loop. 6395 bind(NEXT_WORD); { 6396 ldr(tmp1, Address(post(a1, wordSize))); 6397 ldr(tmp2, Address(post(a2, wordSize))); 6398 subs(cnt1, cnt1, wordSize); 6399 eor(tmp1, tmp1, tmp2); 6400 cbnz(tmp1, DONE); 6401 } br(GT, NEXT_WORD); 6402 // Last longword. In the case where length == 4 we compare the 6403 // same longword twice, but that's still faster than another 6404 // conditional branch. 6405 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6406 // length == 4. 6407 ldr(tmp1, Address(a1, cnt1)); 6408 ldr(tmp2, Address(a2, cnt1)); 6409 eor(tmp2, tmp1, tmp2); 6410 cbnz(tmp2, DONE); 6411 b(SAME); 6412 6413 bind(SHORT); 6414 Label TAIL03, TAIL01; 6415 6416 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6417 { 6418 ldrw(tmp1, Address(post(a1, 4))); 6419 ldrw(tmp2, Address(post(a2, 4))); 6420 eorw(tmp1, tmp1, tmp2); 6421 cbnzw(tmp1, DONE); 6422 } 6423 bind(TAIL03); 6424 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6425 { 6426 ldrh(tmp1, Address(post(a1, 2))); 6427 ldrh(tmp2, Address(post(a2, 2))); 6428 eorw(tmp1, tmp1, tmp2); 6429 cbnzw(tmp1, DONE); 6430 } 6431 bind(TAIL01); 6432 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6433 { 6434 ldrb(tmp1, a1); 6435 ldrb(tmp2, a2); 6436 eorw(tmp1, tmp1, tmp2); 6437 cbnzw(tmp1, DONE); 6438 } 6439 // Arrays are equal. 6440 bind(SAME); 6441 mov(result, true); 6442 6443 // That's it. 6444 bind(DONE); 6445 BLOCK_COMMENT("} string_equals"); 6446 } 6447 6448 6449 // The size of the blocks erased by the zero_blocks stub. We must 6450 // handle anything smaller than this ourselves in zero_words(). 6451 const int MacroAssembler::zero_words_block_size = 8; 6452 6453 // zero_words() is used by C2 ClearArray patterns and by 6454 // C1_MacroAssembler. It is as small as possible, handling small word 6455 // counts locally and delegating anything larger to the zero_blocks 6456 // stub. It is expanded many times in compiled code, so it is 6457 // important to keep it short. 6458 6459 // ptr: Address of a buffer to be zeroed. 6460 // cnt: Count in HeapWords. 6461 // 6462 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6463 address MacroAssembler::zero_words(Register ptr, Register cnt) 6464 { 6465 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6466 6467 BLOCK_COMMENT("zero_words {"); 6468 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6469 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6470 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6471 6472 subs(rscratch1, cnt, zero_words_block_size); 6473 Label around; 6474 br(LO, around); 6475 { 6476 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6477 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6478 // Make sure this is a C2 compilation. C1 allocates space only for 6479 // trampoline stubs generated by Call LIR ops, and in any case it 6480 // makes sense for a C1 compilation task to proceed as quickly as 6481 // possible. 6482 CompileTask* task; 6483 if (StubRoutines::aarch64::complete() 6484 && Thread::current()->is_Compiler_thread() 6485 && (task = ciEnv::current()->task()) 6486 && is_c2_compile(task->comp_level())) { 6487 address tpc = trampoline_call(zero_blocks); 6488 if (tpc == nullptr) { 6489 DEBUG_ONLY(reset_labels(around)); 6490 return nullptr; 6491 } 6492 } else { 6493 far_call(zero_blocks); 6494 } 6495 } 6496 bind(around); 6497 6498 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6499 // for us. 6500 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6501 Label l; 6502 tbz(cnt, exact_log2(i), l); 6503 for (int j = 0; j < i; j += 2) { 6504 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6505 } 6506 bind(l); 6507 } 6508 { 6509 Label l; 6510 tbz(cnt, 0, l); 6511 str(zr, Address(ptr)); 6512 bind(l); 6513 } 6514 6515 BLOCK_COMMENT("} zero_words"); 6516 return pc(); 6517 } 6518 6519 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6520 // cnt: Immediate count in HeapWords. 6521 // 6522 // r10, r11, rscratch1, and rscratch2 are clobbered. 6523 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6524 { 6525 assert(wordSize <= BlockZeroingLowLimit, 6526 "increase BlockZeroingLowLimit"); 6527 address result = nullptr; 6528 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6529 #ifndef PRODUCT 6530 { 6531 char buf[64]; 6532 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6533 BLOCK_COMMENT(buf); 6534 } 6535 #endif 6536 if (cnt >= 16) { 6537 uint64_t loops = cnt/16; 6538 if (loops > 1) { 6539 mov(rscratch2, loops - 1); 6540 } 6541 { 6542 Label loop; 6543 bind(loop); 6544 for (int i = 0; i < 16; i += 2) { 6545 stp(zr, zr, Address(base, i * BytesPerWord)); 6546 } 6547 add(base, base, 16 * BytesPerWord); 6548 if (loops > 1) { 6549 subs(rscratch2, rscratch2, 1); 6550 br(GE, loop); 6551 } 6552 } 6553 } 6554 cnt %= 16; 6555 int i = cnt & 1; // store any odd word to start 6556 if (i) str(zr, Address(base)); 6557 for (; i < (int)cnt; i += 2) { 6558 stp(zr, zr, Address(base, i * wordSize)); 6559 } 6560 BLOCK_COMMENT("} zero_words"); 6561 result = pc(); 6562 } else { 6563 mov(r10, base); mov(r11, cnt); 6564 result = zero_words(r10, r11); 6565 } 6566 return result; 6567 } 6568 6569 // Zero blocks of memory by using DC ZVA. 6570 // 6571 // Aligns the base address first sufficiently for DC ZVA, then uses 6572 // DC ZVA repeatedly for every full block. cnt is the size to be 6573 // zeroed in HeapWords. Returns the count of words left to be zeroed 6574 // in cnt. 6575 // 6576 // NOTE: This is intended to be used in the zero_blocks() stub. If 6577 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6578 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6579 Register tmp = rscratch1; 6580 Register tmp2 = rscratch2; 6581 int zva_length = VM_Version::zva_length(); 6582 Label initial_table_end, loop_zva; 6583 Label fini; 6584 6585 // Base must be 16 byte aligned. If not just return and let caller handle it 6586 tst(base, 0x0f); 6587 br(Assembler::NE, fini); 6588 // Align base with ZVA length. 6589 neg(tmp, base); 6590 andr(tmp, tmp, zva_length - 1); 6591 6592 // tmp: the number of bytes to be filled to align the base with ZVA length. 6593 add(base, base, tmp); 6594 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6595 adr(tmp2, initial_table_end); 6596 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6597 br(tmp2); 6598 6599 for (int i = -zva_length + 16; i < 0; i += 16) 6600 stp(zr, zr, Address(base, i)); 6601 bind(initial_table_end); 6602 6603 sub(cnt, cnt, zva_length >> 3); 6604 bind(loop_zva); 6605 dc(Assembler::ZVA, base); 6606 subs(cnt, cnt, zva_length >> 3); 6607 add(base, base, zva_length); 6608 br(Assembler::GE, loop_zva); 6609 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6610 bind(fini); 6611 } 6612 6613 // base: Address of a buffer to be filled, 8 bytes aligned. 6614 // cnt: Count in 8-byte unit. 6615 // value: Value to be filled with. 6616 // base will point to the end of the buffer after filling. 6617 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6618 { 6619 // Algorithm: 6620 // 6621 // if (cnt == 0) { 6622 // return; 6623 // } 6624 // if ((p & 8) != 0) { 6625 // *p++ = v; 6626 // } 6627 // 6628 // scratch1 = cnt & 14; 6629 // cnt -= scratch1; 6630 // p += scratch1; 6631 // switch (scratch1 / 2) { 6632 // do { 6633 // cnt -= 16; 6634 // p[-16] = v; 6635 // p[-15] = v; 6636 // case 7: 6637 // p[-14] = v; 6638 // p[-13] = v; 6639 // case 6: 6640 // p[-12] = v; 6641 // p[-11] = v; 6642 // // ... 6643 // case 1: 6644 // p[-2] = v; 6645 // p[-1] = v; 6646 // case 0: 6647 // p += 16; 6648 // } while (cnt); 6649 // } 6650 // if ((cnt & 1) == 1) { 6651 // *p++ = v; 6652 // } 6653 6654 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6655 6656 Label fini, skip, entry, loop; 6657 const int unroll = 8; // Number of stp instructions we'll unroll 6658 6659 cbz(cnt, fini); 6660 tbz(base, 3, skip); 6661 str(value, Address(post(base, 8))); 6662 sub(cnt, cnt, 1); 6663 bind(skip); 6664 6665 andr(rscratch1, cnt, (unroll-1) * 2); 6666 sub(cnt, cnt, rscratch1); 6667 add(base, base, rscratch1, Assembler::LSL, 3); 6668 adr(rscratch2, entry); 6669 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6670 br(rscratch2); 6671 6672 bind(loop); 6673 add(base, base, unroll * 16); 6674 for (int i = -unroll; i < 0; i++) 6675 stp(value, value, Address(base, i * 16)); 6676 bind(entry); 6677 subs(cnt, cnt, unroll * 2); 6678 br(Assembler::GE, loop); 6679 6680 tbz(cnt, 0, fini); 6681 str(value, Address(post(base, 8))); 6682 bind(fini); 6683 } 6684 6685 // Intrinsic for 6686 // 6687 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6688 // return the number of characters copied. 6689 // - java/lang/StringUTF16.compress 6690 // return index of non-latin1 character if copy fails, otherwise 'len'. 6691 // 6692 // This version always returns the number of characters copied, and does not 6693 // clobber the 'len' register. A successful copy will complete with the post- 6694 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6695 // post-condition: 0 <= 'res' < 'len'. 6696 // 6697 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6698 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6699 // beyond the acceptable, even though the footprint would be smaller. 6700 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6701 // avoid additional bloat. 6702 // 6703 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6704 void MacroAssembler::encode_iso_array(Register src, Register dst, 6705 Register len, Register res, bool ascii, 6706 FloatRegister vtmp0, FloatRegister vtmp1, 6707 FloatRegister vtmp2, FloatRegister vtmp3, 6708 FloatRegister vtmp4, FloatRegister vtmp5) 6709 { 6710 Register cnt = res; 6711 Register max = rscratch1; 6712 Register chk = rscratch2; 6713 6714 prfm(Address(src), PLDL1STRM); 6715 movw(cnt, len); 6716 6717 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6718 6719 Label LOOP_32, DONE_32, FAIL_32; 6720 6721 BIND(LOOP_32); 6722 { 6723 cmpw(cnt, 32); 6724 br(LT, DONE_32); 6725 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6726 // Extract lower bytes. 6727 FloatRegister vlo0 = vtmp4; 6728 FloatRegister vlo1 = vtmp5; 6729 uzp1(vlo0, T16B, vtmp0, vtmp1); 6730 uzp1(vlo1, T16B, vtmp2, vtmp3); 6731 // Merge bits... 6732 orr(vtmp0, T16B, vtmp0, vtmp1); 6733 orr(vtmp2, T16B, vtmp2, vtmp3); 6734 // Extract merged upper bytes. 6735 FloatRegister vhix = vtmp0; 6736 uzp2(vhix, T16B, vtmp0, vtmp2); 6737 // ISO-check on hi-parts (all zero). 6738 // ASCII-check on lo-parts (no sign). 6739 FloatRegister vlox = vtmp1; // Merge lower bytes. 6740 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6741 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6742 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6743 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6744 ASCII(orr(chk, chk, max)); 6745 cbnz(chk, FAIL_32); 6746 subw(cnt, cnt, 32); 6747 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6748 b(LOOP_32); 6749 } 6750 BIND(FAIL_32); 6751 sub(src, src, 64); 6752 BIND(DONE_32); 6753 6754 Label LOOP_8, SKIP_8; 6755 6756 BIND(LOOP_8); 6757 { 6758 cmpw(cnt, 8); 6759 br(LT, SKIP_8); 6760 FloatRegister vhi = vtmp0; 6761 FloatRegister vlo = vtmp1; 6762 ld1(vtmp3, T8H, src); 6763 uzp1(vlo, T16B, vtmp3, vtmp3); 6764 uzp2(vhi, T16B, vtmp3, vtmp3); 6765 // ISO-check on hi-parts (all zero). 6766 // ASCII-check on lo-parts (no sign). 6767 ASCII(cm(LT, vtmp2, T16B, vlo)); 6768 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6769 ASCII(umov(max, vtmp2, B, 0)); 6770 ASCII(orr(chk, chk, max)); 6771 cbnz(chk, SKIP_8); 6772 6773 strd(vlo, Address(post(dst, 8))); 6774 subw(cnt, cnt, 8); 6775 add(src, src, 16); 6776 b(LOOP_8); 6777 } 6778 BIND(SKIP_8); 6779 6780 #undef ASCII 6781 6782 Label LOOP, DONE; 6783 6784 cbz(cnt, DONE); 6785 BIND(LOOP); 6786 { 6787 Register chr = rscratch1; 6788 ldrh(chr, Address(post(src, 2))); 6789 tst(chr, ascii ? 0xff80 : 0xff00); 6790 br(NE, DONE); 6791 strb(chr, Address(post(dst, 1))); 6792 subs(cnt, cnt, 1); 6793 br(GT, LOOP); 6794 } 6795 BIND(DONE); 6796 // Return index where we stopped. 6797 subw(res, len, cnt); 6798 } 6799 6800 // Inflate byte[] array to char[]. 6801 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6802 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6803 FloatRegister vtmp1, FloatRegister vtmp2, 6804 FloatRegister vtmp3, Register tmp4) { 6805 Label big, done, after_init, to_stub; 6806 6807 assert_different_registers(src, dst, len, tmp4, rscratch1); 6808 6809 fmovd(vtmp1, 0.0); 6810 lsrw(tmp4, len, 3); 6811 bind(after_init); 6812 cbnzw(tmp4, big); 6813 // Short string: less than 8 bytes. 6814 { 6815 Label loop, tiny; 6816 6817 cmpw(len, 4); 6818 br(LT, tiny); 6819 // Use SIMD to do 4 bytes. 6820 ldrs(vtmp2, post(src, 4)); 6821 zip1(vtmp3, T8B, vtmp2, vtmp1); 6822 subw(len, len, 4); 6823 strd(vtmp3, post(dst, 8)); 6824 6825 cbzw(len, done); 6826 6827 // Do the remaining bytes by steam. 6828 bind(loop); 6829 ldrb(tmp4, post(src, 1)); 6830 strh(tmp4, post(dst, 2)); 6831 subw(len, len, 1); 6832 6833 bind(tiny); 6834 cbnz(len, loop); 6835 6836 b(done); 6837 } 6838 6839 if (SoftwarePrefetchHintDistance >= 0) { 6840 bind(to_stub); 6841 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6842 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6843 address tpc = trampoline_call(stub); 6844 if (tpc == nullptr) { 6845 DEBUG_ONLY(reset_labels(big, done)); 6846 postcond(pc() == badAddress); 6847 return nullptr; 6848 } 6849 b(after_init); 6850 } 6851 6852 // Unpack the bytes 8 at a time. 6853 bind(big); 6854 { 6855 Label loop, around, loop_last, loop_start; 6856 6857 if (SoftwarePrefetchHintDistance >= 0) { 6858 const int large_loop_threshold = (64 + 16)/8; 6859 ldrd(vtmp2, post(src, 8)); 6860 andw(len, len, 7); 6861 cmp(tmp4, (u1)large_loop_threshold); 6862 br(GE, to_stub); 6863 b(loop_start); 6864 6865 bind(loop); 6866 ldrd(vtmp2, post(src, 8)); 6867 bind(loop_start); 6868 subs(tmp4, tmp4, 1); 6869 br(EQ, loop_last); 6870 zip1(vtmp2, T16B, vtmp2, vtmp1); 6871 ldrd(vtmp3, post(src, 8)); 6872 st1(vtmp2, T8H, post(dst, 16)); 6873 subs(tmp4, tmp4, 1); 6874 zip1(vtmp3, T16B, vtmp3, vtmp1); 6875 st1(vtmp3, T8H, post(dst, 16)); 6876 br(NE, loop); 6877 b(around); 6878 bind(loop_last); 6879 zip1(vtmp2, T16B, vtmp2, vtmp1); 6880 st1(vtmp2, T8H, post(dst, 16)); 6881 bind(around); 6882 cbz(len, done); 6883 } else { 6884 andw(len, len, 7); 6885 bind(loop); 6886 ldrd(vtmp2, post(src, 8)); 6887 sub(tmp4, tmp4, 1); 6888 zip1(vtmp3, T16B, vtmp2, vtmp1); 6889 st1(vtmp3, T8H, post(dst, 16)); 6890 cbnz(tmp4, loop); 6891 } 6892 } 6893 6894 // Do the tail of up to 8 bytes. 6895 add(src, src, len); 6896 ldrd(vtmp3, Address(src, -8)); 6897 add(dst, dst, len, ext::uxtw, 1); 6898 zip1(vtmp3, T16B, vtmp3, vtmp1); 6899 strq(vtmp3, Address(dst, -16)); 6900 6901 bind(done); 6902 postcond(pc() != badAddress); 6903 return pc(); 6904 } 6905 6906 // Compress char[] array to byte[]. 6907 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6908 // Return the array length if every element in array can be encoded, 6909 // otherwise, the index of first non-latin1 (> 0xff) character. 6910 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6911 Register res, 6912 FloatRegister tmp0, FloatRegister tmp1, 6913 FloatRegister tmp2, FloatRegister tmp3, 6914 FloatRegister tmp4, FloatRegister tmp5) { 6915 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6916 } 6917 6918 // java.math.round(double a) 6919 // Returns the closest long to the argument, with ties rounding to 6920 // positive infinity. This requires some fiddling for corner 6921 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6922 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6923 FloatRegister ftmp) { 6924 Label DONE; 6925 BLOCK_COMMENT("java_round_double: { "); 6926 fmovd(rscratch1, src); 6927 // Use RoundToNearestTiesAway unless src small and -ve. 6928 fcvtasd(dst, src); 6929 // Test if src >= 0 || abs(src) >= 0x1.0p52 6930 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6931 mov(rscratch2, julong_cast(0x1.0p52)); 6932 cmp(rscratch1, rscratch2); 6933 br(HS, DONE); { 6934 // src < 0 && abs(src) < 0x1.0p52 6935 // src may have a fractional part, so add 0.5 6936 fmovd(ftmp, 0.5); 6937 faddd(ftmp, src, ftmp); 6938 // Convert double to jlong, use RoundTowardsNegative 6939 fcvtmsd(dst, ftmp); 6940 } 6941 bind(DONE); 6942 BLOCK_COMMENT("} java_round_double"); 6943 } 6944 6945 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6946 FloatRegister ftmp) { 6947 Label DONE; 6948 BLOCK_COMMENT("java_round_float: { "); 6949 fmovs(rscratch1, src); 6950 // Use RoundToNearestTiesAway unless src small and -ve. 6951 fcvtassw(dst, src); 6952 // Test if src >= 0 || abs(src) >= 0x1.0p23 6953 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6954 mov(rscratch2, jint_cast(0x1.0p23f)); 6955 cmp(rscratch1, rscratch2); 6956 br(HS, DONE); { 6957 // src < 0 && |src| < 0x1.0p23 6958 // src may have a fractional part, so add 0.5 6959 fmovs(ftmp, 0.5f); 6960 fadds(ftmp, src, ftmp); 6961 // Convert float to jint, use RoundTowardsNegative 6962 fcvtmssw(dst, ftmp); 6963 } 6964 bind(DONE); 6965 BLOCK_COMMENT("} java_round_float"); 6966 } 6967 6968 // get_thread() can be called anywhere inside generated code so we 6969 // need to save whatever non-callee save context might get clobbered 6970 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6971 // the call setup code. 6972 // 6973 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6974 // On other systems, the helper is a usual C function. 6975 // 6976 void MacroAssembler::get_thread(Register dst) { 6977 RegSet saved_regs = 6978 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6979 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6980 6981 protect_return_address(); 6982 push(saved_regs, sp); 6983 6984 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6985 blr(lr); 6986 if (dst != c_rarg0) { 6987 mov(dst, c_rarg0); 6988 } 6989 6990 pop(saved_regs, sp); 6991 authenticate_return_address(); 6992 } 6993 6994 #ifdef COMPILER2 6995 // C2 compiled method's prolog code 6996 // Moved here from aarch64.ad to support Valhalla code belows 6997 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 6998 if (C->clinit_barrier_on_entry()) { 6999 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 7000 7001 Label L_skip_barrier; 7002 7003 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 7004 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 7005 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 7006 bind(L_skip_barrier); 7007 } 7008 7009 if (C->max_vector_size() > 0) { 7010 reinitialize_ptrue(); 7011 } 7012 7013 int bangsize = C->output()->bang_size_in_bytes(); 7014 if (C->output()->need_stack_bang(bangsize)) 7015 generate_stack_overflow_check(bangsize); 7016 7017 // n.b. frame size includes space for return pc and rfp 7018 const long framesize = C->output()->frame_size_in_bytes(); 7019 build_frame(framesize); 7020 7021 if (C->needs_stack_repair()) { 7022 save_stack_increment(sp_inc, framesize); 7023 } 7024 7025 if (VerifyStackAtCalls) { 7026 Unimplemented(); 7027 } 7028 } 7029 #endif // COMPILER2 7030 7031 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 7032 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 7033 // An inline type might be returned. If fields are in registers we 7034 // need to allocate an inline type instance and initialize it with 7035 // the value of the fields. 7036 Label skip; 7037 // We only need a new buffered inline type if a new one is not returned 7038 tbz(r0, 0, skip); 7039 int call_offset = -1; 7040 7041 // Be careful not to clobber r1-7 which hold returned fields 7042 // Also do not use callee-saved registers as these may be live in the interpreter 7043 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 7044 7045 // The following code is similar to allocate_instance but has some slight differences, 7046 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 7047 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 7048 Label slow_case; 7049 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 7050 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 7051 7052 if (vk != nullptr) { 7053 // Called from C1, where the return type is statically known. 7054 movptr(klass, (intptr_t)vk->get_InlineKlass()); 7055 jint lh = vk->layout_helper(); 7056 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 7057 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 7058 tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case); 7059 } else { 7060 b(slow_case); 7061 } 7062 } else { 7063 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 7064 andr(klass, r0, -2); 7065 if (UseTLAB) { 7066 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 7067 tst(tmp2, Klass::_lh_instance_slow_path_bit); 7068 br(Assembler::NE, slow_case); 7069 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 7070 } else { 7071 b(slow_case); 7072 } 7073 } 7074 if (UseTLAB) { 7075 // 2. Initialize buffered inline instance header 7076 Register buffer_obj = r0; 7077 if (UseCompactObjectHeaders) { 7078 ldr(rscratch1, Address(klass, Klass::prototype_header_offset())); 7079 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7080 } else { 7081 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 7082 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7083 store_klass_gap(buffer_obj, zr); 7084 if (vk == nullptr) { 7085 // store_klass corrupts klass, so save it for later use (interpreter case only). 7086 mov(tmp1, klass); 7087 } 7088 store_klass(buffer_obj, klass); 7089 } 7090 // 3. Initialize its fields with an inline class specific handler 7091 if (vk != nullptr) { 7092 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 7093 } else { 7094 // tmp1 holds klass preserved above 7095 ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset())); 7096 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 7097 blr(tmp1); 7098 } 7099 7100 membar(Assembler::StoreStore); 7101 b(skip); 7102 } else { 7103 // Must have already branched to slow_case above. 7104 DEBUG_ONLY(should_not_reach_here()); 7105 } 7106 bind(slow_case); 7107 // We failed to allocate a new inline type, fall back to a runtime 7108 // call. Some oop field may be live in some registers but we can't 7109 // tell. That runtime call will take care of preserving them 7110 // across a GC if there's one. 7111 mov(r0, r0_preserved); 7112 7113 if (from_interpreter) { 7114 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 7115 } else { 7116 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 7117 call_offset = offset(); 7118 } 7119 membar(Assembler::StoreStore); 7120 7121 bind(skip); 7122 return call_offset; 7123 } 7124 7125 // Move a value between registers/stack slots and update the reg_state 7126 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 7127 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 7128 if (reg_state[to->value()] == reg_written) { 7129 return true; // Already written 7130 } 7131 7132 if (from != to && bt != T_VOID) { 7133 if (reg_state[to->value()] == reg_readonly) { 7134 return false; // Not yet writable 7135 } 7136 if (from->is_reg()) { 7137 if (to->is_reg()) { 7138 if (from->is_Register() && to->is_Register()) { 7139 mov(to->as_Register(), from->as_Register()); 7140 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 7141 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 7142 } else { 7143 ShouldNotReachHere(); 7144 } 7145 } else { 7146 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7147 Address to_addr = Address(sp, st_off); 7148 if (from->is_FloatRegister()) { 7149 if (bt == T_DOUBLE) { 7150 strd(from->as_FloatRegister(), to_addr); 7151 } else { 7152 assert(bt == T_FLOAT, "must be float"); 7153 strs(from->as_FloatRegister(), to_addr); 7154 } 7155 } else { 7156 str(from->as_Register(), to_addr); 7157 } 7158 } 7159 } else { 7160 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 7161 if (to->is_reg()) { 7162 if (to->is_FloatRegister()) { 7163 if (bt == T_DOUBLE) { 7164 ldrd(to->as_FloatRegister(), from_addr); 7165 } else { 7166 assert(bt == T_FLOAT, "must be float"); 7167 ldrs(to->as_FloatRegister(), from_addr); 7168 } 7169 } else { 7170 ldr(to->as_Register(), from_addr); 7171 } 7172 } else { 7173 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7174 ldr(rscratch1, from_addr); 7175 str(rscratch1, Address(sp, st_off)); 7176 } 7177 } 7178 } 7179 7180 // Update register states 7181 reg_state[from->value()] = reg_writable; 7182 reg_state[to->value()] = reg_written; 7183 return true; 7184 } 7185 7186 // Calculate the extra stack space required for packing or unpacking inline 7187 // args and adjust the stack pointer 7188 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 7189 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 7190 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 7191 assert(sp_inc > 0, "sanity"); 7192 7193 // Save a copy of the FP and LR here for deoptimization patching and frame walking 7194 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7195 7196 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 7197 if (sp_inc < (1 << 9)) { 7198 sub(sp, sp, sp_inc); // Fits in an immediate 7199 } else { 7200 mov(rscratch1, sp_inc); 7201 sub(sp, sp, rscratch1); 7202 } 7203 7204 return sp_inc + 2 * wordSize; // Account for the FP/LR space 7205 } 7206 7207 // Read all fields from an inline type oop and store the values in registers/stack slots 7208 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 7209 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 7210 RegState reg_state[]) { 7211 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 7212 assert(from->is_valid(), "source must be valid"); 7213 bool progress = false; 7214 #ifdef ASSERT 7215 const int start_offset = offset(); 7216 #endif 7217 7218 Label L_null, L_notNull; 7219 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 7220 Register tmp1 = r10; 7221 Register tmp2 = r11; 7222 Register fromReg = noreg; 7223 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 7224 bool done = true; 7225 bool mark_done = true; 7226 VMReg toReg; 7227 BasicType bt; 7228 // Check if argument requires a null check 7229 bool null_check = false; 7230 VMReg nullCheckReg; 7231 while (stream.next(nullCheckReg, bt)) { 7232 if (sig->at(stream.sig_index())._offset == -1) { 7233 null_check = true; 7234 break; 7235 } 7236 } 7237 stream.reset(sig_index, to_index); 7238 while (stream.next(toReg, bt)) { 7239 assert(toReg->is_valid(), "destination must be valid"); 7240 int idx = (int)toReg->value(); 7241 if (reg_state[idx] == reg_readonly) { 7242 if (idx != from->value()) { 7243 mark_done = false; 7244 } 7245 done = false; 7246 continue; 7247 } else if (reg_state[idx] == reg_written) { 7248 continue; 7249 } 7250 assert(reg_state[idx] == reg_writable, "must be writable"); 7251 reg_state[idx] = reg_written; 7252 progress = true; 7253 7254 if (fromReg == noreg) { 7255 if (from->is_reg()) { 7256 fromReg = from->as_Register(); 7257 } else { 7258 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 7259 ldr(tmp1, Address(sp, st_off)); 7260 fromReg = tmp1; 7261 } 7262 if (null_check) { 7263 // Nullable inline type argument, emit null check 7264 cbz(fromReg, L_null); 7265 } 7266 } 7267 int off = sig->at(stream.sig_index())._offset; 7268 if (off == -1) { 7269 assert(null_check, "Missing null check at"); 7270 if (toReg->is_stack()) { 7271 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7272 mov(tmp2, 1); 7273 str(tmp2, Address(sp, st_off)); 7274 } else { 7275 mov(toReg->as_Register(), 1); 7276 } 7277 continue; 7278 } 7279 assert(off > 0, "offset in object should be positive"); 7280 Address fromAddr = Address(fromReg, off); 7281 if (!toReg->is_FloatRegister()) { 7282 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 7283 if (is_reference_type(bt)) { 7284 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 7285 } else { 7286 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 7287 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 7288 } 7289 if (toReg->is_stack()) { 7290 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7291 str(dst, Address(sp, st_off)); 7292 } 7293 } else if (bt == T_DOUBLE) { 7294 ldrd(toReg->as_FloatRegister(), fromAddr); 7295 } else { 7296 assert(bt == T_FLOAT, "must be float"); 7297 ldrs(toReg->as_FloatRegister(), fromAddr); 7298 } 7299 } 7300 if (progress && null_check) { 7301 if (done) { 7302 b(L_notNull); 7303 bind(L_null); 7304 // Set null marker to zero to signal that the argument is null. 7305 // Also set all oop fields to zero to make the GC happy. 7306 stream.reset(sig_index, to_index); 7307 while (stream.next(toReg, bt)) { 7308 if (sig->at(stream.sig_index())._offset == -1 || 7309 bt == T_OBJECT || bt == T_ARRAY) { 7310 if (toReg->is_stack()) { 7311 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7312 str(zr, Address(sp, st_off)); 7313 } else { 7314 mov(toReg->as_Register(), zr); 7315 } 7316 } 7317 } 7318 bind(L_notNull); 7319 } else { 7320 bind(L_null); 7321 } 7322 } 7323 7324 sig_index = stream.sig_index(); 7325 to_index = stream.regs_index(); 7326 7327 if (mark_done && reg_state[from->value()] != reg_written) { 7328 // This is okay because no one else will write to that slot 7329 reg_state[from->value()] = reg_writable; 7330 } 7331 from_index--; 7332 assert(progress || (start_offset == offset()), "should not emit code"); 7333 return done; 7334 } 7335 7336 // Pack fields back into an inline type oop 7337 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 7338 VMRegPair* from, int from_count, int& from_index, VMReg to, 7339 RegState reg_state[], Register val_array) { 7340 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 7341 assert(to->is_valid(), "destination must be valid"); 7342 7343 if (reg_state[to->value()] == reg_written) { 7344 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7345 return true; // Already written 7346 } 7347 7348 // The GC barrier expanded by store_heap_oop below may call into the 7349 // runtime so use callee-saved registers for any values that need to be 7350 // preserved. The GC barrier assembler should take care of saving the 7351 // Java argument registers. 7352 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 7353 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 7354 Register val_obj_tmp = r21; 7355 Register from_reg_tmp = r22; 7356 Register tmp1 = r14; 7357 Register tmp2 = r13; 7358 Register tmp3 = r12; 7359 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 7360 7361 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 7362 7363 if (reg_state[to->value()] == reg_readonly) { 7364 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 7365 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7366 return false; // Not yet writable 7367 } 7368 val_obj = val_obj_tmp; 7369 } 7370 7371 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 7372 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 7373 7374 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 7375 VMReg fromReg; 7376 BasicType bt; 7377 Label L_null; 7378 while (stream.next(fromReg, bt)) { 7379 assert(fromReg->is_valid(), "source must be valid"); 7380 reg_state[fromReg->value()] = reg_writable; 7381 7382 int off = sig->at(stream.sig_index())._offset; 7383 if (off == -1) { 7384 // Nullable inline type argument, emit null check 7385 Label L_notNull; 7386 if (fromReg->is_stack()) { 7387 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7388 ldrb(tmp2, Address(sp, ld_off)); 7389 cbnz(tmp2, L_notNull); 7390 } else { 7391 cbnz(fromReg->as_Register(), L_notNull); 7392 } 7393 mov(val_obj, 0); 7394 b(L_null); 7395 bind(L_notNull); 7396 continue; 7397 } 7398 7399 assert(off > 0, "offset in object should be positive"); 7400 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 7401 7402 // Pack the scalarized field into the value object. 7403 Address dst(val_obj, off); 7404 7405 if (!fromReg->is_FloatRegister()) { 7406 Register src; 7407 if (fromReg->is_stack()) { 7408 src = from_reg_tmp; 7409 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7410 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 7411 } else { 7412 src = fromReg->as_Register(); 7413 } 7414 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 7415 if (is_reference_type(bt)) { 7416 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 7417 } else { 7418 store_sized_value(dst, src, size_in_bytes); 7419 } 7420 } else if (bt == T_DOUBLE) { 7421 strd(fromReg->as_FloatRegister(), dst); 7422 } else { 7423 assert(bt == T_FLOAT, "must be float"); 7424 strs(fromReg->as_FloatRegister(), dst); 7425 } 7426 } 7427 bind(L_null); 7428 sig_index = stream.sig_index(); 7429 from_index = stream.regs_index(); 7430 7431 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 7432 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 7433 assert(success, "to register must be writeable"); 7434 7435 return true; 7436 } 7437 7438 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 7439 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 7440 } 7441 7442 void MacroAssembler::cache_wb(Address line) { 7443 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 7444 assert(line.index() == noreg, "index should be noreg"); 7445 assert(line.offset() == 0, "offset should be 0"); 7446 // would like to assert this 7447 // assert(line._ext.shift == 0, "shift should be zero"); 7448 if (VM_Version::supports_dcpop()) { 7449 // writeback using clear virtual address to point of persistence 7450 dc(Assembler::CVAP, line.base()); 7451 } else { 7452 // no need to generate anything as Unsafe.writebackMemory should 7453 // never invoke this stub 7454 } 7455 } 7456 7457 void MacroAssembler::cache_wbsync(bool is_pre) { 7458 // we only need a barrier post sync 7459 if (!is_pre) { 7460 membar(Assembler::AnyAny); 7461 } 7462 } 7463 7464 void MacroAssembler::verify_sve_vector_length(Register tmp) { 7465 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 7466 return; 7467 } 7468 // Make sure that native code does not change SVE vector length. 7469 Label verify_ok; 7470 movw(tmp, zr); 7471 sve_inc(tmp, B); 7472 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 7473 br(EQ, verify_ok); 7474 stop("Error: SVE vector length has changed since jvm startup"); 7475 bind(verify_ok); 7476 } 7477 7478 void MacroAssembler::verify_ptrue() { 7479 Label verify_ok; 7480 if (!UseSVE) { 7481 return; 7482 } 7483 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 7484 sve_dec(rscratch1, B); 7485 cbz(rscratch1, verify_ok); 7486 stop("Error: the preserved predicate register (p7) elements are not all true"); 7487 bind(verify_ok); 7488 } 7489 7490 void MacroAssembler::safepoint_isb() { 7491 isb(); 7492 #ifndef PRODUCT 7493 if (VerifyCrossModifyFence) { 7494 // Clear the thread state. 7495 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7496 } 7497 #endif 7498 } 7499 7500 #ifndef PRODUCT 7501 void MacroAssembler::verify_cross_modify_fence_not_required() { 7502 if (VerifyCrossModifyFence) { 7503 // Check if thread needs a cross modify fence. 7504 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7505 Label fence_not_required; 7506 cbz(rscratch1, fence_not_required); 7507 // If it does then fail. 7508 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 7509 mov(c_rarg0, rthread); 7510 blr(rscratch1); 7511 bind(fence_not_required); 7512 } 7513 } 7514 #endif 7515 7516 void MacroAssembler::spin_wait() { 7517 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 7518 switch (VM_Version::spin_wait_desc().inst()) { 7519 case SpinWait::NOP: 7520 nop(); 7521 break; 7522 case SpinWait::ISB: 7523 isb(); 7524 break; 7525 case SpinWait::YIELD: 7526 yield(); 7527 break; 7528 default: 7529 ShouldNotReachHere(); 7530 } 7531 } 7532 } 7533 7534 // Stack frame creation/removal 7535 7536 void MacroAssembler::enter(bool strip_ret_addr) { 7537 if (strip_ret_addr) { 7538 // Addresses can only be signed once. If there are multiple nested frames being created 7539 // in the same function, then the return address needs stripping first. 7540 strip_return_address(); 7541 } 7542 protect_return_address(); 7543 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7544 mov(rfp, sp); 7545 } 7546 7547 void MacroAssembler::leave() { 7548 mov(sp, rfp); 7549 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 7550 authenticate_return_address(); 7551 } 7552 7553 // ROP Protection 7554 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 7555 // destroying stack frames or whenever directly loading/storing the LR to memory. 7556 // If ROP protection is not set then these functions are no-ops. 7557 // For more details on PAC see pauth_aarch64.hpp. 7558 7559 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 7560 // Uses value zero as the modifier. 7561 // 7562 void MacroAssembler::protect_return_address() { 7563 if (VM_Version::use_rop_protection()) { 7564 check_return_address(); 7565 paciaz(); 7566 } 7567 } 7568 7569 // Sign the return value in the given register. Use before updating the LR in the existing stack 7570 // frame for the current function. 7571 // Uses value zero as the modifier. 7572 // 7573 void MacroAssembler::protect_return_address(Register return_reg) { 7574 if (VM_Version::use_rop_protection()) { 7575 check_return_address(return_reg); 7576 paciza(return_reg); 7577 } 7578 } 7579 7580 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 7581 // Uses value zero as the modifier. 7582 // 7583 void MacroAssembler::authenticate_return_address() { 7584 if (VM_Version::use_rop_protection()) { 7585 autiaz(); 7586 check_return_address(); 7587 } 7588 } 7589 7590 // Authenticate the return value in the given register. Use before updating the LR in the existing 7591 // stack frame for the current function. 7592 // Uses value zero as the modifier. 7593 // 7594 void MacroAssembler::authenticate_return_address(Register return_reg) { 7595 if (VM_Version::use_rop_protection()) { 7596 autiza(return_reg); 7597 check_return_address(return_reg); 7598 } 7599 } 7600 7601 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 7602 // there is no guaranteed way of authenticating the LR. 7603 // 7604 void MacroAssembler::strip_return_address() { 7605 if (VM_Version::use_rop_protection()) { 7606 xpaclri(); 7607 } 7608 } 7609 7610 #ifndef PRODUCT 7611 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 7612 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 7613 // it is difficult to debug back to the callee function. 7614 // This function simply loads from the address in the given register. 7615 // Use directly after authentication to catch authentication failures. 7616 // Also use before signing to check that the pointer is valid and hasn't already been signed. 7617 // 7618 void MacroAssembler::check_return_address(Register return_reg) { 7619 if (VM_Version::use_rop_protection()) { 7620 ldr(zr, Address(return_reg)); 7621 } 7622 } 7623 #endif 7624 7625 // The java_calling_convention describes stack locations as ideal slots on 7626 // a frame with no abi restrictions. Since we must observe abi restrictions 7627 // (like the placement of the register window) the slots must be biased by 7628 // the following value. 7629 static int reg2offset_in(VMReg r) { 7630 // Account for saved rfp and lr 7631 // This should really be in_preserve_stack_slots 7632 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 7633 } 7634 7635 static int reg2offset_out(VMReg r) { 7636 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 7637 } 7638 7639 // On 64bit we will store integer like items to the stack as 7640 // 64bits items (AArch64 ABI) even though java would only store 7641 // 32bits for a parameter. On 32bit it will simply be 32bits 7642 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 7643 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 7644 if (src.first()->is_stack()) { 7645 if (dst.first()->is_stack()) { 7646 // stack to stack 7647 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7648 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7649 } else { 7650 // stack to reg 7651 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7652 } 7653 } else if (dst.first()->is_stack()) { 7654 // reg to stack 7655 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7656 } else { 7657 if (dst.first() != src.first()) { 7658 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 7659 } 7660 } 7661 } 7662 7663 // An oop arg. Must pass a handle not the oop itself 7664 void MacroAssembler::object_move( 7665 OopMap* map, 7666 int oop_handle_offset, 7667 int framesize_in_slots, 7668 VMRegPair src, 7669 VMRegPair dst, 7670 bool is_receiver, 7671 int* receiver_offset) { 7672 7673 // must pass a handle. First figure out the location we use as a handle 7674 7675 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7676 7677 // See if oop is null if it is we need no handle 7678 7679 if (src.first()->is_stack()) { 7680 7681 // Oop is already on the stack as an argument 7682 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7683 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7684 if (is_receiver) { 7685 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7686 } 7687 7688 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7689 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7690 // conditionally move a null 7691 cmp(rscratch1, zr); 7692 csel(rHandle, zr, rHandle, Assembler::EQ); 7693 } else { 7694 7695 // Oop is in an a register we must store it to the space we reserve 7696 // on the stack for oop_handles and pass a handle if oop is non-null 7697 7698 const Register rOop = src.first()->as_Register(); 7699 int oop_slot; 7700 if (rOop == j_rarg0) 7701 oop_slot = 0; 7702 else if (rOop == j_rarg1) 7703 oop_slot = 1; 7704 else if (rOop == j_rarg2) 7705 oop_slot = 2; 7706 else if (rOop == j_rarg3) 7707 oop_slot = 3; 7708 else if (rOop == j_rarg4) 7709 oop_slot = 4; 7710 else if (rOop == j_rarg5) 7711 oop_slot = 5; 7712 else if (rOop == j_rarg6) 7713 oop_slot = 6; 7714 else { 7715 assert(rOop == j_rarg7, "wrong register"); 7716 oop_slot = 7; 7717 } 7718 7719 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7720 int offset = oop_slot*VMRegImpl::stack_slot_size; 7721 7722 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7723 // Store oop in handle area, may be null 7724 str(rOop, Address(sp, offset)); 7725 if (is_receiver) { 7726 *receiver_offset = offset; 7727 } 7728 7729 cmp(rOop, zr); 7730 lea(rHandle, Address(sp, offset)); 7731 // conditionally move a null 7732 csel(rHandle, zr, rHandle, Assembler::EQ); 7733 } 7734 7735 // If arg is on the stack then place it otherwise it is already in correct reg. 7736 if (dst.first()->is_stack()) { 7737 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7738 } 7739 } 7740 7741 // A float arg may have to do float reg int reg conversion 7742 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7743 if (src.first()->is_stack()) { 7744 if (dst.first()->is_stack()) { 7745 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7746 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7747 } else { 7748 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7749 } 7750 } else if (src.first() != dst.first()) { 7751 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7752 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7753 else 7754 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7755 } 7756 } 7757 7758 // A long move 7759 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7760 if (src.first()->is_stack()) { 7761 if (dst.first()->is_stack()) { 7762 // stack to stack 7763 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7764 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7765 } else { 7766 // stack to reg 7767 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7768 } 7769 } else if (dst.first()->is_stack()) { 7770 // reg to stack 7771 // Do we really have to sign extend??? 7772 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7773 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7774 } else { 7775 if (dst.first() != src.first()) { 7776 mov(dst.first()->as_Register(), src.first()->as_Register()); 7777 } 7778 } 7779 } 7780 7781 7782 // A double move 7783 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7784 if (src.first()->is_stack()) { 7785 if (dst.first()->is_stack()) { 7786 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7787 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7788 } else { 7789 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7790 } 7791 } else if (src.first() != dst.first()) { 7792 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7793 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7794 else 7795 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7796 } 7797 } 7798 7799 // Implements lightweight-locking. 7800 // 7801 // - obj: the object to be locked 7802 // - t1, t2, t3: temporary registers, will be destroyed 7803 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7804 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7805 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7806 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7807 7808 Label push; 7809 const Register top = t1; 7810 const Register mark = t2; 7811 const Register t = t3; 7812 7813 // Preload the markWord. It is important that this is the first 7814 // instruction emitted as it is part of C1's null check semantics. 7815 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7816 7817 if (UseObjectMonitorTable) { 7818 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7819 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7820 } 7821 7822 if (DiagnoseSyncOnValueBasedClasses != 0) { 7823 load_klass(t1, obj); 7824 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7825 tst(t1, KlassFlags::_misc_is_value_based_class); 7826 br(Assembler::NE, slow); 7827 } 7828 7829 // Check if the lock-stack is full. 7830 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7831 cmpw(top, (unsigned)LockStack::end_offset()); 7832 br(Assembler::GE, slow); 7833 7834 // Check for recursion. 7835 subw(t, top, oopSize); 7836 ldr(t, Address(rthread, t)); 7837 cmp(obj, t); 7838 br(Assembler::EQ, push); 7839 7840 // Check header for monitor (0b10). 7841 tst(mark, markWord::monitor_value); 7842 br(Assembler::NE, slow); 7843 7844 // Try to lock. Transition lock bits 0b01 => 0b00 7845 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7846 orr(mark, mark, markWord::unlocked_value); 7847 if (EnableValhalla) { 7848 // Mask inline_type bit such that we go to the slow path if object is an inline type 7849 andr(mark, mark, ~((int) markWord::inline_type_bit_in_place)); 7850 } 7851 eor(t, mark, markWord::unlocked_value); 7852 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7853 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7854 br(Assembler::NE, slow); 7855 7856 bind(push); 7857 // After successful lock, push object on lock-stack. 7858 str(obj, Address(rthread, top)); 7859 addw(top, top, oopSize); 7860 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7861 } 7862 7863 // Implements lightweight-unlocking. 7864 // 7865 // - obj: the object to be unlocked 7866 // - t1, t2, t3: temporary registers 7867 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7868 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7869 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7870 // cmpxchg clobbers rscratch1. 7871 assert_different_registers(obj, t1, t2, t3, rscratch1); 7872 7873 #ifdef ASSERT 7874 { 7875 // Check for lock-stack underflow. 7876 Label stack_ok; 7877 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7878 cmpw(t1, (unsigned)LockStack::start_offset()); 7879 br(Assembler::GE, stack_ok); 7880 STOP("Lock-stack underflow"); 7881 bind(stack_ok); 7882 } 7883 #endif 7884 7885 Label unlocked, push_and_slow; 7886 const Register top = t1; 7887 const Register mark = t2; 7888 const Register t = t3; 7889 7890 // Check if obj is top of lock-stack. 7891 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7892 subw(top, top, oopSize); 7893 ldr(t, Address(rthread, top)); 7894 cmp(obj, t); 7895 br(Assembler::NE, slow); 7896 7897 // Pop lock-stack. 7898 DEBUG_ONLY(str(zr, Address(rthread, top));) 7899 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7900 7901 // Check if recursive. 7902 subw(t, top, oopSize); 7903 ldr(t, Address(rthread, t)); 7904 cmp(obj, t); 7905 br(Assembler::EQ, unlocked); 7906 7907 // Not recursive. Check header for monitor (0b10). 7908 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7909 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7910 7911 #ifdef ASSERT 7912 // Check header not unlocked (0b01). 7913 Label not_unlocked; 7914 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7915 stop("lightweight_unlock already unlocked"); 7916 bind(not_unlocked); 7917 #endif 7918 7919 // Try to unlock. Transition lock bits 0b00 => 0b01 7920 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7921 orr(t, mark, markWord::unlocked_value); 7922 cmpxchg(obj, mark, t, Assembler::xword, 7923 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7924 br(Assembler::EQ, unlocked); 7925 7926 bind(push_and_slow); 7927 // Restore lock-stack and handle the unlock in runtime. 7928 DEBUG_ONLY(str(obj, Address(rthread, top));) 7929 addw(top, top, oopSize); 7930 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7931 b(slow); 7932 7933 bind(unlocked); 7934 }