1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciInlineKlass.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/resolvedFieldEntry.hpp" 52 #include "runtime/continuation.hpp" 53 #include "runtime/globals.hpp" 54 #include "runtime/icache.hpp" 55 #include "runtime/interfaceSupport.inline.hpp" 56 #include "runtime/javaThread.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/signature_cc.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/globalDefinitions.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 #include "vmreg_aarch64.inline.hpp" 64 #ifdef COMPILER1 65 #include "c1/c1_LIRAssembler.hpp" 66 #endif 67 #ifdef COMPILER2 68 #include "oops/oop.hpp" 69 #include "opto/compile.hpp" 70 #include "opto/node.hpp" 71 #include "opto/output.hpp" 72 #endif 73 74 #include <sys/types.h> 75 76 #ifdef PRODUCT 77 #define BLOCK_COMMENT(str) /* nothing */ 78 #else 79 #define BLOCK_COMMENT(str) block_comment(str) 80 #endif 81 #define STOP(str) stop(str); 82 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 83 84 #ifdef ASSERT 85 extern "C" void disnm(intptr_t p); 86 #endif 87 // Target-dependent relocation processing 88 // 89 // Instruction sequences whose target may need to be retrieved or 90 // patched are distinguished by their leading instruction, sorting 91 // them into three main instruction groups and related subgroups. 92 // 93 // 1) Branch, Exception and System (insn count = 1) 94 // 1a) Unconditional branch (immediate): 95 // b/bl imm19 96 // 1b) Compare & branch (immediate): 97 // cbz/cbnz Rt imm19 98 // 1c) Test & branch (immediate): 99 // tbz/tbnz Rt imm14 100 // 1d) Conditional branch (immediate): 101 // b.cond imm19 102 // 103 // 2) Loads and Stores (insn count = 1) 104 // 2a) Load register literal: 105 // ldr Rt imm19 106 // 107 // 3) Data Processing Immediate (insn count = 2 or 3) 108 // 3a) PC-rel. addressing 109 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 110 // adr/adrp Rx imm21; add Ry Rx #imm12 111 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 112 // adr/adrp Rx imm21 113 // adr/adrp Rx imm21; movk Rx #imm16<<32 114 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 115 // The latter form can only happen when the target is an 116 // ExternalAddress, and (by definition) ExternalAddresses don't 117 // move. Because of that property, there is never any need to 118 // patch the last of the three instructions. However, 119 // MacroAssembler::target_addr_for_insn takes all three 120 // instructions into account and returns the correct address. 121 // 3b) Move wide (immediate) 122 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 123 // 124 // A switch on a subset of the instruction's bits provides an 125 // efficient dispatch to these subcases. 126 // 127 // insn[28:26] -> main group ('x' == don't care) 128 // 00x -> UNALLOCATED 129 // 100 -> Data Processing Immediate 130 // 101 -> Branch, Exception and System 131 // x1x -> Loads and Stores 132 // 133 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 134 // n.b. in some cases extra bits need to be checked to verify the 135 // instruction is as expected 136 // 137 // 1) ... xx101x Branch, Exception and System 138 // 1a) 00___x Unconditional branch (immediate) 139 // 1b) 01___0 Compare & branch (immediate) 140 // 1c) 01___1 Test & branch (immediate) 141 // 1d) 10___0 Conditional branch (immediate) 142 // other Should not happen 143 // 144 // 2) ... xxx1x0 Loads and Stores 145 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 146 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 147 // strictly should be 64 bit non-FP/SIMD i.e. 148 // 0101_000 (i.e. requires insn[31:24] == 01011000) 149 // 150 // 3) ... xx100x Data Processing Immediate 151 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 152 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 153 // strictly should be 64 bit movz #imm16<<0 154 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 155 // 156 157 static uint32_t insn_at(address insn_addr, int n) { 158 return ((uint32_t*)insn_addr)[n]; 159 } 160 161 template<typename T> 162 class RelocActions : public AllStatic { 163 164 public: 165 166 static int ALWAYSINLINE run(address insn_addr, address &target) { 167 int instructions = 1; 168 uint32_t insn = insn_at(insn_addr, 0); 169 170 uint32_t dispatch = Instruction_aarch64::extract(insn, 30, 25); 171 switch(dispatch) { 172 case 0b001010: 173 case 0b001011: { 174 instructions = T::unconditionalBranch(insn_addr, target); 175 break; 176 } 177 case 0b101010: // Conditional branch (immediate) 178 case 0b011010: { // Compare & branch (immediate) 179 instructions = T::conditionalBranch(insn_addr, target); 180 break; 181 } 182 case 0b011011: { 183 instructions = T::testAndBranch(insn_addr, target); 184 break; 185 } 186 case 0b001100: 187 case 0b001110: 188 case 0b011100: 189 case 0b011110: 190 case 0b101100: 191 case 0b101110: 192 case 0b111100: 193 case 0b111110: { 194 // load/store 195 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 196 // Load register (literal) 197 instructions = T::loadStore(insn_addr, target); 198 break; 199 } else { 200 // nothing to do 201 assert(target == nullptr, "did not expect to relocate target for polling page load"); 202 } 203 break; 204 } 205 case 0b001000: 206 case 0b011000: 207 case 0b101000: 208 case 0b111000: { 209 // adr/adrp 210 assert(Instruction_aarch64::extract(insn, 28, 24) == 0b10000, "must be"); 211 int shift = Instruction_aarch64::extract(insn, 31, 31); 212 if (shift) { 213 uint32_t insn2 = insn_at(insn_addr, 1); 214 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 215 Instruction_aarch64::extract(insn, 4, 0) == 216 Instruction_aarch64::extract(insn2, 9, 5)) { 217 instructions = T::adrp(insn_addr, target, T::adrpMem); 218 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 219 Instruction_aarch64::extract(insn, 4, 0) == 220 Instruction_aarch64::extract(insn2, 4, 0)) { 221 instructions = T::adrp(insn_addr, target, T::adrpAdd); 222 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 223 Instruction_aarch64::extract(insn, 4, 0) == 224 Instruction_aarch64::extract(insn2, 4, 0)) { 225 instructions = T::adrp(insn_addr, target, T::adrpMovk); 226 } else { 227 ShouldNotReachHere(); 228 } 229 } else { 230 instructions = T::adr(insn_addr, target); 231 } 232 break; 233 } 234 case 0b001001: 235 case 0b011001: 236 case 0b101001: 237 case 0b111001: { 238 instructions = T::immediate(insn_addr, target); 239 break; 240 } 241 default: { 242 ShouldNotReachHere(); 243 } 244 } 245 246 T::verify(insn_addr, target); 247 return instructions * NativeInstruction::instruction_size; 248 } 249 }; 250 251 class Patcher : public AllStatic { 252 public: 253 static int unconditionalBranch(address insn_addr, address &target) { 254 intptr_t offset = (target - insn_addr) >> 2; 255 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 256 return 1; 257 } 258 static int conditionalBranch(address insn_addr, address &target) { 259 intptr_t offset = (target - insn_addr) >> 2; 260 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 261 return 1; 262 } 263 static int testAndBranch(address insn_addr, address &target) { 264 intptr_t offset = (target - insn_addr) >> 2; 265 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 266 return 1; 267 } 268 static int loadStore(address insn_addr, address &target) { 269 intptr_t offset = (target - insn_addr) >> 2; 270 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 271 return 1; 272 } 273 static int adr(address insn_addr, address &target) { 274 #ifdef ASSERT 275 assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 28, 24) == 0b10000, "must be"); 276 #endif 277 // PC-rel. addressing 278 ptrdiff_t offset = target - insn_addr; 279 int offset_lo = offset & 3; 280 offset >>= 2; 281 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 282 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 283 return 1; 284 } 285 template<typename U> 286 static int adrp(address insn_addr, address &target, U inner) { 287 int instructions = 1; 288 #ifdef ASSERT 289 assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 28, 24) == 0b10000, "must be"); 290 #endif 291 ptrdiff_t offset = target - insn_addr; 292 instructions = 2; 293 precond(inner != nullptr); 294 // Give the inner reloc a chance to modify the target. 295 address adjusted_target = target; 296 instructions = inner(insn_addr, adjusted_target); 297 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 298 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 299 offset = adr_page - pc_page; 300 int offset_lo = offset & 3; 301 offset >>= 2; 302 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 303 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 304 return instructions; 305 } 306 static int adrpMem(address insn_addr, address &target) { 307 uintptr_t dest = (uintptr_t)target; 308 int offset_lo = dest & 0xfff; 309 uint32_t insn2 = insn_at(insn_addr, 1); 310 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 311 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 312 guarantee(((dest >> size) << size) == dest, "misaligned target"); 313 return 2; 314 } 315 static int adrpAdd(address insn_addr, address &target) { 316 uintptr_t dest = (uintptr_t)target; 317 int offset_lo = dest & 0xfff; 318 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 319 return 2; 320 } 321 static int adrpMovk(address insn_addr, address &target) { 322 uintptr_t dest = uintptr_t(target); 323 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 324 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 325 target = address(dest); 326 return 2; 327 } 328 static int immediate(address insn_addr, address &target) { 329 assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 31, 21) == 0b11010010100, "must be"); 330 uint64_t dest = (uint64_t)target; 331 // Move wide constant 332 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 333 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 334 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 335 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 336 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 337 return 3; 338 } 339 static void verify(address insn_addr, address &target) { 340 #ifdef ASSERT 341 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 342 if (!(address_is == target)) { 343 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 344 disnm((intptr_t)insn_addr); 345 assert(address_is == target, "should be"); 346 } 347 #endif 348 } 349 }; 350 351 // If insn1 and insn2 use the same register to form an address, either 352 // by an offsetted LDR or a simple ADD, return the offset. If the 353 // second instruction is an LDR, the offset may be scaled. 354 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 355 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 356 Instruction_aarch64::extract(insn1, 4, 0) == 357 Instruction_aarch64::extract(insn2, 9, 5)) { 358 // Load/store register (unsigned immediate) 359 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 360 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 361 byte_offset <<= size; 362 return true; 363 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 364 Instruction_aarch64::extract(insn1, 4, 0) == 365 Instruction_aarch64::extract(insn2, 4, 0)) { 366 // add (immediate) 367 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 368 return true; 369 } 370 return false; 371 } 372 373 class AArch64Decoder : public AllStatic { 374 public: 375 376 static int loadStore(address insn_addr, address &target) { 377 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 23, 5); 378 target = insn_addr + (offset << 2); 379 return 1; 380 } 381 static int unconditionalBranch(address insn_addr, address &target) { 382 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 25, 0); 383 target = insn_addr + (offset << 2); 384 return 1; 385 } 386 static int conditionalBranch(address insn_addr, address &target) { 387 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 23, 5); 388 target = address(((uint64_t)insn_addr + (offset << 2))); 389 return 1; 390 } 391 static int testAndBranch(address insn_addr, address &target) { 392 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 18, 5); 393 target = address(((uint64_t)insn_addr + (offset << 2))); 394 return 1; 395 } 396 static int adr(address insn_addr, address &target) { 397 // PC-rel. addressing 398 uint32_t insn = insn_at(insn_addr, 0); 399 intptr_t offset = Instruction_aarch64::extract(insn, 30, 29); 400 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 401 target = address((uint64_t)insn_addr + offset); 402 return 1; 403 } 404 template<typename U> 405 static int adrp(address insn_addr, address &target, U inner) { 406 uint32_t insn = insn_at(insn_addr, 0); 407 assert(Instruction_aarch64::extract(insn, 28, 24) == 0b10000, "must be"); 408 intptr_t offset = Instruction_aarch64::extract(insn, 30, 29); 409 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 410 int shift = 12; 411 offset <<= shift; 412 uint64_t target_page = ((uint64_t)insn_addr) + offset; 413 target_page &= ((uint64_t)-1) << shift; 414 uint32_t insn2 = insn_at(insn_addr, 1); 415 target = address(target_page); 416 precond(inner != nullptr); 417 inner(insn_addr, target); 418 return 2; 419 } 420 static int adrpMem(address insn_addr, address &target) { 421 uint32_t insn2 = insn_at(insn_addr, 1); 422 // Load/store register (unsigned immediate) 423 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 424 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 425 byte_offset <<= size; 426 target += byte_offset; 427 return 2; 428 } 429 static int adrpAdd(address insn_addr, address &target) { 430 uint32_t insn2 = insn_at(insn_addr, 1); 431 // add (immediate) 432 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 433 target += byte_offset; 434 return 2; 435 } 436 static int adrpMovk(address insn_addr, address &target) { 437 uint32_t insn2 = insn_at(insn_addr, 1); 438 uint64_t dest = uint64_t(target); 439 dest = (dest & 0xffff0000ffffffff) | 440 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 441 target = address(dest); 442 443 // We know the destination 4k page. Maybe we have a third 444 // instruction. 445 uint32_t insn = insn_at(insn_addr, 0); 446 uint32_t insn3 = insn_at(insn_addr, 2); 447 ptrdiff_t byte_offset; 448 if (offset_for(insn, insn3, byte_offset)) { 449 target += byte_offset; 450 return 3; 451 } else { 452 return 2; 453 } 454 } 455 static int immediate(address insn_addr, address &target) { 456 uint32_t *insns = (uint32_t *)insn_addr; 457 assert(Instruction_aarch64::extract(insns[0], 31, 21) == 0b11010010100, "must be"); 458 // Move wide constant: movz, movk, movk. See movptr(). 459 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 460 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 461 target = address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 462 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 463 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 464 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 465 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 466 return 3; 467 } 468 static void verify(address insn_addr, address &target) { 469 } 470 }; 471 472 address MacroAssembler::target_addr_for_insn(address insn_addr) { 473 address target; 474 RelocActions<AArch64Decoder>::run(insn_addr, target); 475 return target; 476 } 477 478 // Patch any kind of instruction; there may be several instructions. 479 // Return the total length (in bytes) of the instructions. 480 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 481 return RelocActions<Patcher>::run(insn_addr, target); 482 } 483 484 int MacroAssembler::patch_oop(address insn_addr, address o) { 485 int instructions; 486 unsigned insn = *(unsigned*)insn_addr; 487 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 488 489 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 490 // narrow OOPs by setting the upper 16 bits in the first 491 // instruction. 492 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 493 // Move narrow OOP 494 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 495 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 496 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 497 instructions = 2; 498 } else { 499 // Move wide OOP 500 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 501 uintptr_t dest = (uintptr_t)o; 502 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 503 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 504 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 505 instructions = 3; 506 } 507 return instructions * NativeInstruction::instruction_size; 508 } 509 510 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 511 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 512 // We encode narrow ones by setting the upper 16 bits in the first 513 // instruction. 514 NativeInstruction *insn = nativeInstruction_at(insn_addr); 515 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 516 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 517 518 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 519 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 520 return 2 * NativeInstruction::instruction_size; 521 } 522 523 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr) { 524 if (NativeInstruction::is_ldrw_to_zr(insn_addr)) { 525 return nullptr; 526 } 527 return MacroAssembler::target_addr_for_insn(insn_addr); 528 } 529 530 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) { 531 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 532 if (at_return) { 533 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 534 // we may safely use the sp instead to perform the stack watermark check. 535 cmp(in_nmethod ? sp : rfp, tmp); 536 br(Assembler::HI, slow_path); 537 } else { 538 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 539 } 540 } 541 542 void MacroAssembler::rt_call(address dest, Register tmp) { 543 CodeBlob *cb = CodeCache::find_blob(dest); 544 if (cb) { 545 far_call(RuntimeAddress(dest)); 546 } else { 547 lea(tmp, RuntimeAddress(dest)); 548 blr(tmp); 549 } 550 } 551 552 void MacroAssembler::push_cont_fastpath(Register java_thread) { 553 if (!Continuations::enabled()) return; 554 Label done; 555 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 556 cmp(sp, rscratch1); 557 br(Assembler::LS, done); 558 mov(rscratch1, sp); // we can't use sp as the source in str 559 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 560 bind(done); 561 } 562 563 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 564 if (!Continuations::enabled()) return; 565 Label done; 566 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 567 cmp(sp, rscratch1); 568 br(Assembler::LO, done); 569 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 570 bind(done); 571 } 572 573 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 574 // we must set sp to zero to clear frame 575 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 576 577 // must clear fp, so that compiled frames are not confused; it is 578 // possible that we need it only for debugging 579 if (clear_fp) { 580 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 581 } 582 583 // Always clear the pc because it could have been set by make_walkable() 584 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 585 } 586 587 // Calls to C land 588 // 589 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 590 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 591 // has to be reset to 0. This is required to allow proper stack traversal. 592 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 593 Register last_java_fp, 594 Register last_java_pc, 595 Register scratch) { 596 597 if (last_java_pc->is_valid()) { 598 str(last_java_pc, Address(rthread, 599 JavaThread::frame_anchor_offset() 600 + JavaFrameAnchor::last_Java_pc_offset())); 601 } 602 603 // determine last_java_sp register 604 if (last_java_sp == sp) { 605 mov(scratch, sp); 606 last_java_sp = scratch; 607 } else if (!last_java_sp->is_valid()) { 608 last_java_sp = esp; 609 } 610 611 // last_java_fp is optional 612 if (last_java_fp->is_valid()) { 613 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 614 } 615 616 // We must set sp last. 617 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 618 } 619 620 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 621 Register last_java_fp, 622 address last_java_pc, 623 Register scratch) { 624 assert(last_java_pc != nullptr, "must provide a valid PC"); 625 626 adr(scratch, last_java_pc); 627 str(scratch, Address(rthread, 628 JavaThread::frame_anchor_offset() 629 + JavaFrameAnchor::last_Java_pc_offset())); 630 631 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 632 } 633 634 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 635 Register last_java_fp, 636 Label &L, 637 Register scratch) { 638 if (L.is_bound()) { 639 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 640 } else { 641 InstructionMark im(this); 642 L.add_patch_at(code(), locator()); 643 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 644 } 645 } 646 647 static inline bool target_needs_far_branch(address addr) { 648 if (AOTCodeCache::is_on_for_dump()) { 649 return true; 650 } 651 // codecache size <= 128M 652 if (!MacroAssembler::far_branches()) { 653 return false; 654 } 655 // codecache size > 240M 656 if (MacroAssembler::codestub_branch_needs_far_jump()) { 657 return true; 658 } 659 // codecache size: 128M..240M 660 return !CodeCache::is_non_nmethod(addr); 661 } 662 663 void MacroAssembler::far_call(Address entry, Register tmp) { 664 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 665 assert(CodeCache::find_blob(entry.target()) != nullptr, 666 "destination of far call not found in code cache"); 667 assert(entry.rspec().type() == relocInfo::external_word_type 668 || entry.rspec().type() == relocInfo::runtime_call_type 669 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 670 if (target_needs_far_branch(entry.target())) { 671 uint64_t offset; 672 // We can use ADRP here because we know that the total size of 673 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 674 adrp(tmp, entry, offset); 675 add(tmp, tmp, offset); 676 blr(tmp); 677 } else { 678 bl(entry); 679 } 680 } 681 682 int MacroAssembler::far_jump(Address entry, Register tmp) { 683 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 684 assert(CodeCache::find_blob(entry.target()) != nullptr, 685 "destination of far call not found in code cache"); 686 assert(entry.rspec().type() == relocInfo::external_word_type 687 || entry.rspec().type() == relocInfo::runtime_call_type 688 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 689 address start = pc(); 690 if (target_needs_far_branch(entry.target())) { 691 uint64_t offset; 692 // We can use ADRP here because we know that the total size of 693 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 694 adrp(tmp, entry, offset); 695 add(tmp, tmp, offset); 696 br(tmp); 697 } else { 698 b(entry); 699 } 700 return pc() - start; 701 } 702 703 void MacroAssembler::reserved_stack_check() { 704 // testing if reserved zone needs to be enabled 705 Label no_reserved_zone_enabling; 706 707 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 708 cmp(sp, rscratch1); 709 br(Assembler::LO, no_reserved_zone_enabling); 710 711 enter(); // LR and FP are live. 712 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 713 mov(c_rarg0, rthread); 714 blr(rscratch1); 715 leave(); 716 717 // We have already removed our own frame. 718 // throw_delayed_StackOverflowError will think that it's been 719 // called by our caller. 720 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 721 br(rscratch1); 722 should_not_reach_here(); 723 724 bind(no_reserved_zone_enabling); 725 } 726 727 static void pass_arg0(MacroAssembler* masm, Register arg) { 728 if (c_rarg0 != arg ) { 729 masm->mov(c_rarg0, arg); 730 } 731 } 732 733 static void pass_arg1(MacroAssembler* masm, Register arg) { 734 if (c_rarg1 != arg ) { 735 masm->mov(c_rarg1, arg); 736 } 737 } 738 739 static void pass_arg2(MacroAssembler* masm, Register arg) { 740 if (c_rarg2 != arg ) { 741 masm->mov(c_rarg2, arg); 742 } 743 } 744 745 static void pass_arg3(MacroAssembler* masm, Register arg) { 746 if (c_rarg3 != arg ) { 747 masm->mov(c_rarg3, arg); 748 } 749 } 750 751 static bool is_preemptable(address entry_point) { 752 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter); 753 } 754 755 void MacroAssembler::call_VM_base(Register oop_result, 756 Register java_thread, 757 Register last_java_sp, 758 address entry_point, 759 int number_of_arguments, 760 bool check_exceptions) { 761 // determine java_thread register 762 if (!java_thread->is_valid()) { 763 java_thread = rthread; 764 } 765 766 // determine last_java_sp register 767 if (!last_java_sp->is_valid()) { 768 last_java_sp = esp; 769 } 770 771 // debugging support 772 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 773 assert(java_thread == rthread, "unexpected register"); 774 #ifdef ASSERT 775 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 776 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 777 #endif // ASSERT 778 779 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 780 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 781 782 // push java thread (becomes first argument of C function) 783 784 mov(c_rarg0, java_thread); 785 786 // set last Java frame before call 787 assert(last_java_sp != rfp, "can't use rfp"); 788 789 Label l; 790 if (is_preemptable(entry_point)) { 791 // skip setting last_pc since we already set it to desired value. 792 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 793 } else { 794 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 795 } 796 797 // do the call, remove parameters 798 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 799 800 // lr could be poisoned with PAC signature during throw_pending_exception 801 // if it was tail-call optimized by compiler, since lr is not callee-saved 802 // reload it with proper value 803 adr(lr, l); 804 805 // reset last Java frame 806 // Only interpreter should have to clear fp 807 reset_last_Java_frame(true); 808 809 // C++ interp handles this in the interpreter 810 check_and_handle_popframe(java_thread); 811 check_and_handle_earlyret(java_thread); 812 813 if (check_exceptions) { 814 // check for pending exceptions (java_thread is set upon return) 815 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 816 Label ok; 817 cbz(rscratch1, ok); 818 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 819 br(rscratch1); 820 bind(ok); 821 } 822 823 // get oop result if there is one and reset the value in the thread 824 if (oop_result->is_valid()) { 825 get_vm_result_oop(oop_result, java_thread); 826 } 827 } 828 829 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 830 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 831 } 832 833 // Check the entry target is always reachable from any branch. 834 static bool is_always_within_branch_range(Address entry) { 835 if (AOTCodeCache::is_on_for_dump()) { 836 return false; 837 } 838 const address target = entry.target(); 839 840 if (!CodeCache::contains(target)) { 841 // We always use trampolines for callees outside CodeCache. 842 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 843 return false; 844 } 845 846 if (!MacroAssembler::far_branches()) { 847 return true; 848 } 849 850 if (entry.rspec().type() == relocInfo::runtime_call_type) { 851 // Runtime calls are calls of a non-compiled method (stubs, adapters). 852 // Non-compiled methods stay forever in CodeCache. 853 // We check whether the longest possible branch is within the branch range. 854 assert(CodeCache::find_blob(target) != nullptr && 855 !CodeCache::find_blob(target)->is_nmethod(), 856 "runtime call of compiled method"); 857 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 858 const address left_longest_branch_start = CodeCache::low_bound(); 859 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 860 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 861 return is_reachable; 862 } 863 864 return false; 865 } 866 867 // Maybe emit a call via a trampoline. If the code cache is small 868 // trampolines won't be emitted. 869 address MacroAssembler::trampoline_call(Address entry) { 870 assert(entry.rspec().type() == relocInfo::runtime_call_type 871 || entry.rspec().type() == relocInfo::opt_virtual_call_type 872 || entry.rspec().type() == relocInfo::static_call_type 873 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 874 875 address target = entry.target(); 876 877 if (!is_always_within_branch_range(entry)) { 878 if (!in_scratch_emit_size()) { 879 // We don't want to emit a trampoline if C2 is generating dummy 880 // code during its branch shortening phase. 881 if (entry.rspec().type() == relocInfo::runtime_call_type) { 882 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 883 code()->share_trampoline_for(entry.target(), offset()); 884 } else { 885 address stub = emit_trampoline_stub(offset(), target); 886 if (stub == nullptr) { 887 postcond(pc() == badAddress); 888 return nullptr; // CodeCache is full 889 } 890 } 891 } 892 target = pc(); 893 } 894 895 address call_pc = pc(); 896 relocate(entry.rspec()); 897 bl(target); 898 899 postcond(pc() != badAddress); 900 return call_pc; 901 } 902 903 // Emit a trampoline stub for a call to a target which is too far away. 904 // 905 // code sequences: 906 // 907 // call-site: 908 // branch-and-link to <destination> or <trampoline stub> 909 // 910 // Related trampoline stub for this call site in the stub section: 911 // load the call target from the constant pool 912 // branch (LR still points to the call site above) 913 914 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 915 address dest) { 916 // Max stub size: alignment nop, TrampolineStub. 917 address stub = start_a_stub(max_trampoline_stub_size()); 918 if (stub == nullptr) { 919 return nullptr; // CodeBuffer::expand failed 920 } 921 922 // Create a trampoline stub relocation which relates this trampoline stub 923 // with the call instruction at insts_call_instruction_offset in the 924 // instructions code-section. 925 align(wordSize); 926 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 927 + insts_call_instruction_offset)); 928 const int stub_start_offset = offset(); 929 930 // Now, create the trampoline stub's code: 931 // - load the call 932 // - call 933 Label target; 934 ldr(rscratch1, target); 935 br(rscratch1); 936 bind(target); 937 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 938 "should be"); 939 emit_int64((int64_t)dest); 940 941 const address stub_start_addr = addr_at(stub_start_offset); 942 943 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 944 945 end_a_stub(); 946 return stub_start_addr; 947 } 948 949 int MacroAssembler::max_trampoline_stub_size() { 950 // Max stub size: alignment nop, TrampolineStub. 951 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 952 } 953 954 void MacroAssembler::emit_static_call_stub() { 955 // CompiledDirectCall::set_to_interpreted knows the 956 // exact layout of this stub. 957 958 isb(); 959 mov_metadata(rmethod, nullptr); 960 961 // Jump to the entry point of the c2i stub. 962 if (codestub_branch_needs_far_jump()) { 963 movptr(rscratch1, 0); 964 br(rscratch1); 965 } else { 966 b(pc()); 967 } 968 } 969 970 int MacroAssembler::static_call_stub_size() { 971 if (!codestub_branch_needs_far_jump()) { 972 // isb; movk; movz; movz; b 973 return 5 * NativeInstruction::instruction_size; 974 } 975 // isb; movk; movz; movz; movk; movz; movz; br 976 return 8 * NativeInstruction::instruction_size; 977 } 978 979 void MacroAssembler::c2bool(Register x) { 980 // implements x == 0 ? 0 : 1 981 // note: must only look at least-significant byte of x 982 // since C-style booleans are stored in one byte 983 // only! (was bug) 984 tst(x, 0xff); 985 cset(x, Assembler::NE); 986 } 987 988 address MacroAssembler::ic_call(address entry, jint method_index) { 989 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 990 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 991 return trampoline_call(Address(entry, rh)); 992 } 993 994 int MacroAssembler::ic_check_size() { 995 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 996 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 997 return NativeInstruction::instruction_size * (7 + extra_instructions); 998 } else { 999 return NativeInstruction::instruction_size * (5 + extra_instructions); 1000 } 1001 } 1002 1003 int MacroAssembler::ic_check(int end_alignment) { 1004 Register receiver = j_rarg0; 1005 Register data = rscratch2; 1006 Register tmp1 = rscratch1; 1007 Register tmp2 = r10; 1008 1009 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1010 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1011 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1012 // before the inline cache check here, and not after 1013 align(end_alignment, offset() + ic_check_size()); 1014 1015 int uep_offset = offset(); 1016 1017 if (UseCompactObjectHeaders) { 1018 load_narrow_klass_compact(tmp1, receiver); 1019 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1020 cmpw(tmp1, tmp2); 1021 } else if (UseCompressedClassPointers) { 1022 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1023 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1024 cmpw(tmp1, tmp2); 1025 } else { 1026 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1027 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1028 cmp(tmp1, tmp2); 1029 } 1030 1031 Label dont; 1032 br(Assembler::EQ, dont); 1033 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1034 bind(dont); 1035 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1036 1037 return uep_offset; 1038 } 1039 1040 // Implementation of call_VM versions 1041 1042 void MacroAssembler::call_VM(Register oop_result, 1043 address entry_point, 1044 bool check_exceptions) { 1045 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1046 } 1047 1048 void MacroAssembler::call_VM(Register oop_result, 1049 address entry_point, 1050 Register arg_1, 1051 bool check_exceptions) { 1052 pass_arg1(this, arg_1); 1053 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1054 } 1055 1056 void MacroAssembler::call_VM(Register oop_result, 1057 address entry_point, 1058 Register arg_1, 1059 Register arg_2, 1060 bool check_exceptions) { 1061 assert_different_registers(arg_1, c_rarg2); 1062 pass_arg2(this, arg_2); 1063 pass_arg1(this, arg_1); 1064 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1065 } 1066 1067 void MacroAssembler::call_VM(Register oop_result, 1068 address entry_point, 1069 Register arg_1, 1070 Register arg_2, 1071 Register arg_3, 1072 bool check_exceptions) { 1073 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1074 assert_different_registers(arg_2, c_rarg3); 1075 pass_arg3(this, arg_3); 1076 1077 pass_arg2(this, arg_2); 1078 1079 pass_arg1(this, arg_1); 1080 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1081 } 1082 1083 void MacroAssembler::call_VM(Register oop_result, 1084 Register last_java_sp, 1085 address entry_point, 1086 int number_of_arguments, 1087 bool check_exceptions) { 1088 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1089 } 1090 1091 void MacroAssembler::call_VM(Register oop_result, 1092 Register last_java_sp, 1093 address entry_point, 1094 Register arg_1, 1095 bool check_exceptions) { 1096 pass_arg1(this, arg_1); 1097 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1098 } 1099 1100 void MacroAssembler::call_VM(Register oop_result, 1101 Register last_java_sp, 1102 address entry_point, 1103 Register arg_1, 1104 Register arg_2, 1105 bool check_exceptions) { 1106 1107 assert_different_registers(arg_1, c_rarg2); 1108 pass_arg2(this, arg_2); 1109 pass_arg1(this, arg_1); 1110 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1111 } 1112 1113 void MacroAssembler::call_VM(Register oop_result, 1114 Register last_java_sp, 1115 address entry_point, 1116 Register arg_1, 1117 Register arg_2, 1118 Register arg_3, 1119 bool check_exceptions) { 1120 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1121 assert_different_registers(arg_2, c_rarg3); 1122 pass_arg3(this, arg_3); 1123 pass_arg2(this, arg_2); 1124 pass_arg1(this, arg_1); 1125 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1126 } 1127 1128 1129 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1130 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1131 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1132 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1133 } 1134 1135 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1136 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1137 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1138 } 1139 1140 void MacroAssembler::align(int modulus) { 1141 align(modulus, offset()); 1142 } 1143 1144 // Ensure that the code at target bytes offset from the current offset() is aligned 1145 // according to modulus. 1146 void MacroAssembler::align(int modulus, int target) { 1147 int delta = target - offset(); 1148 while ((offset() + delta) % modulus != 0) nop(); 1149 } 1150 1151 void MacroAssembler::post_call_nop() { 1152 if (!Continuations::enabled()) { 1153 return; 1154 } 1155 InstructionMark im(this); 1156 relocate(post_call_nop_Relocation::spec()); 1157 InlineSkippedInstructionsCounter skipCounter(this); 1158 nop(); 1159 movk(zr, 0); 1160 movk(zr, 0); 1161 } 1162 1163 // these are no-ops overridden by InterpreterMacroAssembler 1164 1165 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1166 1167 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1168 1169 // Look up the method for a megamorphic invokeinterface call. 1170 // The target method is determined by <intf_klass, itable_index>. 1171 // The receiver klass is in recv_klass. 1172 // On success, the result will be in method_result, and execution falls through. 1173 // On failure, execution transfers to the given label. 1174 void MacroAssembler::lookup_interface_method(Register recv_klass, 1175 Register intf_klass, 1176 RegisterOrConstant itable_index, 1177 Register method_result, 1178 Register scan_temp, 1179 Label& L_no_such_interface, 1180 bool return_method) { 1181 assert_different_registers(recv_klass, intf_klass, scan_temp); 1182 assert_different_registers(method_result, intf_klass, scan_temp); 1183 assert(recv_klass != method_result || !return_method, 1184 "recv_klass can be destroyed when method isn't needed"); 1185 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1186 "caller must use same register for non-constant itable index as for method"); 1187 1188 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1189 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1190 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1191 int scan_step = itableOffsetEntry::size() * wordSize; 1192 int vte_size = vtableEntry::size_in_bytes(); 1193 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1194 1195 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1196 1197 // Could store the aligned, prescaled offset in the klass. 1198 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1199 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1200 add(scan_temp, scan_temp, vtable_base); 1201 1202 if (return_method) { 1203 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1204 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1205 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1206 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1207 if (itentry_off) 1208 add(recv_klass, recv_klass, itentry_off); 1209 } 1210 1211 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1212 // if (scan->interface() == intf) { 1213 // result = (klass + scan->offset() + itable_index); 1214 // } 1215 // } 1216 Label search, found_method; 1217 1218 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1219 cmp(intf_klass, method_result); 1220 br(Assembler::EQ, found_method); 1221 bind(search); 1222 // Check that the previous entry is non-null. A null entry means that 1223 // the receiver class doesn't implement the interface, and wasn't the 1224 // same as when the caller was compiled. 1225 cbz(method_result, L_no_such_interface); 1226 if (itableOffsetEntry::interface_offset() != 0) { 1227 add(scan_temp, scan_temp, scan_step); 1228 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1229 } else { 1230 ldr(method_result, Address(pre(scan_temp, scan_step))); 1231 } 1232 cmp(intf_klass, method_result); 1233 br(Assembler::NE, search); 1234 1235 bind(found_method); 1236 1237 // Got a hit. 1238 if (return_method) { 1239 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1240 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1241 } 1242 } 1243 1244 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1245 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1246 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1247 // The target method is determined by <holder_klass, itable_index>. 1248 // The receiver klass is in recv_klass. 1249 // On success, the result will be in method_result, and execution falls through. 1250 // On failure, execution transfers to the given label. 1251 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1252 Register holder_klass, 1253 Register resolved_klass, 1254 Register method_result, 1255 Register temp_itbl_klass, 1256 Register scan_temp, 1257 int itable_index, 1258 Label& L_no_such_interface) { 1259 // 'method_result' is only used as output register at the very end of this method. 1260 // Until then we can reuse it as 'holder_offset'. 1261 Register holder_offset = method_result; 1262 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1263 1264 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1265 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1266 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1267 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1268 1269 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1270 1271 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1272 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1273 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1274 // temp_itbl_klass = itable[0]._interface; 1275 int vtblEntrySize = vtableEntry::size_in_bytes(); 1276 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1277 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1278 mov(holder_offset, zr); 1279 // scan_temp = &(itable[0]._interface) 1280 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1281 1282 // Initial checks: 1283 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1284 // - if (itable[0] == holder_klass), shortcut to "holder found" 1285 // - if (itable[0] == 0), no such interface 1286 cmp(resolved_klass, holder_klass); 1287 br(Assembler::NE, L_loop_search_resolved_entry); 1288 cmp(holder_klass, temp_itbl_klass); 1289 br(Assembler::EQ, L_holder_found); 1290 cbz(temp_itbl_klass, L_no_such_interface); 1291 1292 // Loop: Look for holder_klass record in itable 1293 // do { 1294 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1295 // if (temp_itbl_klass == holder_klass) { 1296 // goto L_holder_found; // Found! 1297 // } 1298 // } while (temp_itbl_klass != 0); 1299 // goto L_no_such_interface // Not found. 1300 Label L_search_holder; 1301 bind(L_search_holder); 1302 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1303 cmp(holder_klass, temp_itbl_klass); 1304 br(Assembler::EQ, L_holder_found); 1305 cbnz(temp_itbl_klass, L_search_holder); 1306 1307 b(L_no_such_interface); 1308 1309 // Loop: Look for resolved_class record in itable 1310 // while (true) { 1311 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1312 // if (temp_itbl_klass == 0) { 1313 // goto L_no_such_interface; 1314 // } 1315 // if (temp_itbl_klass == resolved_klass) { 1316 // goto L_resolved_found; // Found! 1317 // } 1318 // if (temp_itbl_klass == holder_klass) { 1319 // holder_offset = scan_temp; 1320 // } 1321 // } 1322 // 1323 Label L_loop_search_resolved; 1324 bind(L_loop_search_resolved); 1325 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1326 bind(L_loop_search_resolved_entry); 1327 cbz(temp_itbl_klass, L_no_such_interface); 1328 cmp(resolved_klass, temp_itbl_klass); 1329 br(Assembler::EQ, L_resolved_found); 1330 cmp(holder_klass, temp_itbl_klass); 1331 br(Assembler::NE, L_loop_search_resolved); 1332 mov(holder_offset, scan_temp); 1333 b(L_loop_search_resolved); 1334 1335 // See if we already have a holder klass. If not, go and scan for it. 1336 bind(L_resolved_found); 1337 cbz(holder_offset, L_search_holder); 1338 mov(scan_temp, holder_offset); 1339 1340 // Finally, scan_temp contains holder_klass vtable offset 1341 bind(L_holder_found); 1342 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1343 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1344 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1345 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1346 } 1347 1348 // virtual method calling 1349 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1350 RegisterOrConstant vtable_index, 1351 Register method_result) { 1352 assert(vtableEntry::size() * wordSize == 8, 1353 "adjust the scaling in the code below"); 1354 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1355 1356 if (vtable_index.is_register()) { 1357 lea(method_result, Address(recv_klass, 1358 vtable_index.as_register(), 1359 Address::lsl(LogBytesPerWord))); 1360 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1361 } else { 1362 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1363 ldr(method_result, 1364 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1365 } 1366 } 1367 1368 void MacroAssembler::check_klass_subtype(Register sub_klass, 1369 Register super_klass, 1370 Register temp_reg, 1371 Label& L_success) { 1372 Label L_failure; 1373 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1374 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1375 bind(L_failure); 1376 } 1377 1378 1379 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1380 Register super_klass, 1381 Register temp_reg, 1382 Label* L_success, 1383 Label* L_failure, 1384 Label* L_slow_path, 1385 Register super_check_offset) { 1386 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1387 bool must_load_sco = ! super_check_offset->is_valid(); 1388 if (must_load_sco) { 1389 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1390 } 1391 1392 Label L_fallthrough; 1393 int label_nulls = 0; 1394 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1395 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1396 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1397 assert(label_nulls <= 1, "at most one null in the batch"); 1398 1399 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1400 Address super_check_offset_addr(super_klass, sco_offset); 1401 1402 // Hacked jmp, which may only be used just before L_fallthrough. 1403 #define final_jmp(label) \ 1404 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1405 else b(label) /*omit semi*/ 1406 1407 // If the pointers are equal, we are done (e.g., String[] elements). 1408 // This self-check enables sharing of secondary supertype arrays among 1409 // non-primary types such as array-of-interface. Otherwise, each such 1410 // type would need its own customized SSA. 1411 // We move this check to the front of the fast path because many 1412 // type checks are in fact trivially successful in this manner, 1413 // so we get a nicely predicted branch right at the start of the check. 1414 cmp(sub_klass, super_klass); 1415 br(Assembler::EQ, *L_success); 1416 1417 // Check the supertype display: 1418 if (must_load_sco) { 1419 ldrw(temp_reg, super_check_offset_addr); 1420 super_check_offset = temp_reg; 1421 } 1422 1423 Address super_check_addr(sub_klass, super_check_offset); 1424 ldr(rscratch1, super_check_addr); 1425 cmp(super_klass, rscratch1); // load displayed supertype 1426 br(Assembler::EQ, *L_success); 1427 1428 // This check has worked decisively for primary supers. 1429 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1430 // (Secondary supers are interfaces and very deeply nested subtypes.) 1431 // This works in the same check above because of a tricky aliasing 1432 // between the super_cache and the primary super display elements. 1433 // (The 'super_check_addr' can address either, as the case requires.) 1434 // Note that the cache is updated below if it does not help us find 1435 // what we need immediately. 1436 // So if it was a primary super, we can just fail immediately. 1437 // Otherwise, it's the slow path for us (no success at this point). 1438 1439 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1440 if (L_failure == &L_fallthrough) { 1441 cbz(rscratch1, *L_slow_path); 1442 } else { 1443 cbnz(rscratch1, *L_failure); 1444 final_jmp(*L_slow_path); 1445 } 1446 1447 bind(L_fallthrough); 1448 1449 #undef final_jmp 1450 } 1451 1452 // These two are taken from x86, but they look generally useful 1453 1454 // scans count pointer sized words at [addr] for occurrence of value, 1455 // generic 1456 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1457 Register scratch) { 1458 Label Lloop, Lexit; 1459 cbz(count, Lexit); 1460 bind(Lloop); 1461 ldr(scratch, post(addr, wordSize)); 1462 cmp(value, scratch); 1463 br(EQ, Lexit); 1464 sub(count, count, 1); 1465 cbnz(count, Lloop); 1466 bind(Lexit); 1467 } 1468 1469 // scans count 4 byte words at [addr] for occurrence of value, 1470 // generic 1471 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1472 Register scratch) { 1473 Label Lloop, Lexit; 1474 cbz(count, Lexit); 1475 bind(Lloop); 1476 ldrw(scratch, post(addr, wordSize)); 1477 cmpw(value, scratch); 1478 br(EQ, Lexit); 1479 sub(count, count, 1); 1480 cbnz(count, Lloop); 1481 bind(Lexit); 1482 } 1483 1484 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1485 Register super_klass, 1486 Register temp_reg, 1487 Register temp2_reg, 1488 Label* L_success, 1489 Label* L_failure, 1490 bool set_cond_codes) { 1491 // NB! Callers may assume that, when temp2_reg is a valid register, 1492 // this code sets it to a nonzero value. 1493 1494 assert_different_registers(sub_klass, super_klass, temp_reg); 1495 if (temp2_reg != noreg) 1496 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1497 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1498 1499 Label L_fallthrough; 1500 int label_nulls = 0; 1501 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1502 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1503 assert(label_nulls <= 1, "at most one null in the batch"); 1504 1505 // a couple of useful fields in sub_klass: 1506 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1507 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1508 Address secondary_supers_addr(sub_klass, ss_offset); 1509 Address super_cache_addr( sub_klass, sc_offset); 1510 1511 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1512 1513 // Do a linear scan of the secondary super-klass chain. 1514 // This code is rarely used, so simplicity is a virtue here. 1515 // The repne_scan instruction uses fixed registers, which we must spill. 1516 // Don't worry too much about pre-existing connections with the input regs. 1517 1518 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1519 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1520 1521 RegSet pushed_registers; 1522 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1523 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1524 1525 if (super_klass != r0) { 1526 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1527 } 1528 1529 push(pushed_registers, sp); 1530 1531 // Get super_klass value into r0 (even if it was in r5 or r2). 1532 if (super_klass != r0) { 1533 mov(r0, super_klass); 1534 } 1535 1536 #ifndef PRODUCT 1537 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1538 #endif //PRODUCT 1539 1540 // We will consult the secondary-super array. 1541 ldr(r5, secondary_supers_addr); 1542 // Load the array length. 1543 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1544 // Skip to start of data. 1545 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1546 1547 cmp(sp, zr); // Clear Z flag; SP is never zero 1548 // Scan R2 words at [R5] for an occurrence of R0. 1549 // Set NZ/Z based on last compare. 1550 repne_scan(r5, r0, r2, rscratch1); 1551 1552 // Unspill the temp. registers: 1553 pop(pushed_registers, sp); 1554 1555 br(Assembler::NE, *L_failure); 1556 1557 // Success. Cache the super we found and proceed in triumph. 1558 1559 if (UseSecondarySupersCache) { 1560 str(super_klass, super_cache_addr); 1561 } 1562 1563 if (L_success != &L_fallthrough) { 1564 b(*L_success); 1565 } 1566 1567 #undef IS_A_TEMP 1568 1569 bind(L_fallthrough); 1570 } 1571 1572 // If Register r is invalid, remove a new register from 1573 // available_regs, and add new register to regs_to_push. 1574 Register MacroAssembler::allocate_if_noreg(Register r, 1575 RegSetIterator<Register> &available_regs, 1576 RegSet ®s_to_push) { 1577 if (!r->is_valid()) { 1578 r = *available_regs++; 1579 regs_to_push += r; 1580 } 1581 return r; 1582 } 1583 1584 // check_klass_subtype_slow_path_table() looks for super_klass in the 1585 // hash table belonging to super_klass, branching to L_success or 1586 // L_failure as appropriate. This is essentially a shim which 1587 // allocates registers as necessary then calls 1588 // lookup_secondary_supers_table() to do the work. Any of the temp 1589 // regs may be noreg, in which case this logic will chooses some 1590 // registers push and pop them from the stack. 1591 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1592 Register super_klass, 1593 Register temp_reg, 1594 Register temp2_reg, 1595 Register temp3_reg, 1596 Register result_reg, 1597 FloatRegister vtemp, 1598 Label* L_success, 1599 Label* L_failure, 1600 bool set_cond_codes) { 1601 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1602 1603 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1604 1605 Label L_fallthrough; 1606 int label_nulls = 0; 1607 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1608 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1609 assert(label_nulls <= 1, "at most one null in the batch"); 1610 1611 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1612 1613 RegSetIterator<Register> available_regs 1614 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1615 1616 RegSet pushed_regs; 1617 1618 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1619 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1620 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1621 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1622 1623 push(pushed_regs, sp); 1624 1625 lookup_secondary_supers_table_var(sub_klass, 1626 super_klass, 1627 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1628 nullptr); 1629 cmp(result_reg, zr); 1630 1631 // Unspill the temp. registers: 1632 pop(pushed_regs, sp); 1633 1634 // NB! Callers may assume that, when set_cond_codes is true, this 1635 // code sets temp2_reg to a nonzero value. 1636 if (set_cond_codes) { 1637 mov(temp2_reg, 1); 1638 } 1639 1640 br(Assembler::NE, *L_failure); 1641 1642 if (L_success != &L_fallthrough) { 1643 b(*L_success); 1644 } 1645 1646 bind(L_fallthrough); 1647 } 1648 1649 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1650 Register super_klass, 1651 Register temp_reg, 1652 Register temp2_reg, 1653 Label* L_success, 1654 Label* L_failure, 1655 bool set_cond_codes) { 1656 if (UseSecondarySupersTable) { 1657 check_klass_subtype_slow_path_table 1658 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1659 /*vtemp*/fnoreg, 1660 L_success, L_failure, set_cond_codes); 1661 } else { 1662 check_klass_subtype_slow_path_linear 1663 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1664 } 1665 } 1666 1667 1668 // Ensure that the inline code and the stub are using the same registers. 1669 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1670 do { \ 1671 assert(r_super_klass == r0 && \ 1672 r_array_base == r1 && \ 1673 r_array_length == r2 && \ 1674 (r_array_index == r3 || r_array_index == noreg) && \ 1675 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1676 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1677 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1678 } while(0) 1679 1680 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1681 Register r_super_klass, 1682 Register temp1, 1683 Register temp2, 1684 Register temp3, 1685 FloatRegister vtemp, 1686 Register result, 1687 u1 super_klass_slot, 1688 bool stub_is_near) { 1689 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1690 1691 Label L_fallthrough; 1692 1693 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1694 1695 const Register 1696 r_array_base = temp1, // r1 1697 r_array_length = temp2, // r2 1698 r_array_index = temp3, // r3 1699 r_bitmap = rscratch2; 1700 1701 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1702 1703 u1 bit = super_klass_slot; 1704 1705 // Make sure that result is nonzero if the TBZ below misses. 1706 mov(result, 1); 1707 1708 // We're going to need the bitmap in a vector reg and in a core reg, 1709 // so load both now. 1710 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1711 if (bit != 0) { 1712 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1713 } 1714 // First check the bitmap to see if super_klass might be present. If 1715 // the bit is zero, we are certain that super_klass is not one of 1716 // the secondary supers. 1717 tbz(r_bitmap, bit, L_fallthrough); 1718 1719 // Get the first array index that can contain super_klass into r_array_index. 1720 if (bit != 0) { 1721 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1722 cnt(vtemp, T8B, vtemp); 1723 addv(vtemp, T8B, vtemp); 1724 fmovd(r_array_index, vtemp); 1725 } else { 1726 mov(r_array_index, (u1)1); 1727 } 1728 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1729 1730 // We will consult the secondary-super array. 1731 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1732 1733 // The value i in r_array_index is >= 1, so even though r_array_base 1734 // points to the length, we don't need to adjust it to point to the 1735 // data. 1736 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1737 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1738 1739 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1740 eor(result, result, r_super_klass); 1741 cbz(result, L_fallthrough); // Found a match 1742 1743 // Is there another entry to check? Consult the bitmap. 1744 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1745 1746 // Linear probe. 1747 if (bit != 0) { 1748 ror(r_bitmap, r_bitmap, bit); 1749 } 1750 1751 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1752 // The next slot to be inspected, by the stub we're about to call, 1753 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1754 // have been checked. 1755 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1756 if (stub_is_near) { 1757 bl(stub); 1758 } else { 1759 address call = trampoline_call(stub); 1760 if (call == nullptr) { 1761 return false; // trampoline allocation failed 1762 } 1763 } 1764 1765 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1766 1767 bind(L_fallthrough); 1768 1769 if (VerifySecondarySupers) { 1770 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1771 temp1, temp2, result); // r1, r2, r5 1772 } 1773 return true; 1774 } 1775 1776 // At runtime, return 0 in result if r_super_klass is a superclass of 1777 // r_sub_klass, otherwise return nonzero. Use this version of 1778 // lookup_secondary_supers_table() if you don't know ahead of time 1779 // which superclass will be searched for. Used by interpreter and 1780 // runtime stubs. It is larger and has somewhat greater latency than 1781 // the version above, which takes a constant super_klass_slot. 1782 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1783 Register r_super_klass, 1784 Register temp1, 1785 Register temp2, 1786 Register temp3, 1787 FloatRegister vtemp, 1788 Register result, 1789 Label *L_success) { 1790 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1791 1792 Label L_fallthrough; 1793 1794 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1795 1796 const Register 1797 r_array_index = temp3, 1798 slot = rscratch1, 1799 r_bitmap = rscratch2; 1800 1801 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1802 1803 // Make sure that result is nonzero if the test below misses. 1804 mov(result, 1); 1805 1806 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1807 1808 // First check the bitmap to see if super_klass might be present. If 1809 // the bit is zero, we are certain that super_klass is not one of 1810 // the secondary supers. 1811 1812 // This next instruction is equivalent to: 1813 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1814 // sub(temp2, tmp_reg, slot); 1815 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1816 lslv(temp2, r_bitmap, temp2); 1817 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1818 1819 bool must_save_v0 = (vtemp == fnoreg); 1820 if (must_save_v0) { 1821 // temp1 and result are free, so use them to preserve vtemp 1822 vtemp = v0; 1823 mov(temp1, vtemp, D, 0); 1824 mov(result, vtemp, D, 1); 1825 } 1826 1827 // Get the first array index that can contain super_klass into r_array_index. 1828 mov(vtemp, D, 0, temp2); 1829 cnt(vtemp, T8B, vtemp); 1830 addv(vtemp, T8B, vtemp); 1831 mov(r_array_index, vtemp, D, 0); 1832 1833 if (must_save_v0) { 1834 mov(vtemp, D, 0, temp1 ); 1835 mov(vtemp, D, 1, result); 1836 } 1837 1838 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1839 1840 const Register 1841 r_array_base = temp1, 1842 r_array_length = temp2; 1843 1844 // The value i in r_array_index is >= 1, so even though r_array_base 1845 // points to the length, we don't need to adjust it to point to the 1846 // data. 1847 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1848 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1849 1850 // We will consult the secondary-super array. 1851 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1852 1853 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1854 eor(result, result, r_super_klass); 1855 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1856 1857 // Is there another entry to check? Consult the bitmap. 1858 rorv(r_bitmap, r_bitmap, slot); 1859 // rol(r_bitmap, r_bitmap, 1); 1860 tbz(r_bitmap, 1, L_fallthrough); 1861 1862 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1863 // The next slot to be inspected, by the logic we're about to call, 1864 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1865 // have been checked. 1866 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1867 r_bitmap, r_array_length, result, /*is_stub*/false); 1868 1869 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1870 1871 bind(L_fallthrough); 1872 1873 if (VerifySecondarySupers) { 1874 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1875 temp1, temp2, result); // r1, r2, r5 1876 } 1877 1878 if (L_success) { 1879 cbz(result, *L_success); 1880 } 1881 } 1882 1883 // Called by code generated by check_klass_subtype_slow_path 1884 // above. This is called when there is a collision in the hashed 1885 // lookup in the secondary supers array. 1886 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1887 Register r_array_base, 1888 Register r_array_index, 1889 Register r_bitmap, 1890 Register temp1, 1891 Register result, 1892 bool is_stub) { 1893 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1894 1895 const Register 1896 r_array_length = temp1, 1897 r_sub_klass = noreg; // unused 1898 1899 if (is_stub) { 1900 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1901 } 1902 1903 Label L_fallthrough, L_huge; 1904 1905 // Load the array length. 1906 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1907 // And adjust the array base to point to the data. 1908 // NB! Effectively increments current slot index by 1. 1909 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1910 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1911 1912 // The bitmap is full to bursting. 1913 // Implicit invariant: BITMAP_FULL implies (length > 0) 1914 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1915 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1916 br(GT, L_huge); 1917 1918 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1919 // current slot (at secondary_supers[r_array_index]) has not yet 1920 // been inspected, and r_array_index may be out of bounds if we 1921 // wrapped around the end of the array. 1922 1923 { // This is conventional linear probing, but instead of terminating 1924 // when a null entry is found in the table, we maintain a bitmap 1925 // in which a 0 indicates missing entries. 1926 // As long as the bitmap is not completely full, 1927 // array_length == popcount(bitmap). The array_length check above 1928 // guarantees there are 0s in the bitmap, so the loop eventually 1929 // terminates. 1930 Label L_loop; 1931 bind(L_loop); 1932 1933 // Check for wraparound. 1934 cmp(r_array_index, r_array_length); 1935 csel(r_array_index, zr, r_array_index, GE); 1936 1937 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1938 eor(result, rscratch1, r_super_klass); 1939 cbz(result, L_fallthrough); 1940 1941 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1942 1943 ror(r_bitmap, r_bitmap, 1); 1944 add(r_array_index, r_array_index, 1); 1945 b(L_loop); 1946 } 1947 1948 { // Degenerate case: more than 64 secondary supers. 1949 // FIXME: We could do something smarter here, maybe a vectorized 1950 // comparison or a binary search, but is that worth any added 1951 // complexity? 1952 bind(L_huge); 1953 cmp(sp, zr); // Clear Z flag; SP is never zero 1954 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1955 cset(result, NE); // result == 0 iff we got a match. 1956 } 1957 1958 bind(L_fallthrough); 1959 } 1960 1961 // Make sure that the hashed lookup and a linear scan agree. 1962 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1963 Register r_super_klass, 1964 Register temp1, 1965 Register temp2, 1966 Register result) { 1967 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1968 1969 const Register 1970 r_array_base = temp1, 1971 r_array_length = temp2, 1972 r_array_index = noreg, // unused 1973 r_bitmap = noreg; // unused 1974 1975 BLOCK_COMMENT("verify_secondary_supers_table {"); 1976 1977 // We will consult the secondary-super array. 1978 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1979 1980 // Load the array length. 1981 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1982 // And adjust the array base to point to the data. 1983 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1984 1985 cmp(sp, zr); // Clear Z flag; SP is never zero 1986 // Scan R2 words at [R5] for an occurrence of R0. 1987 // Set NZ/Z based on last compare. 1988 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 1989 // rscratch1 == 0 iff we got a match. 1990 cset(rscratch1, NE); 1991 1992 Label passed; 1993 cmp(result, zr); 1994 cset(result, NE); // normalize result to 0/1 for comparison 1995 1996 cmp(rscratch1, result); 1997 br(EQ, passed); 1998 { 1999 mov(r0, r_super_klass); // r0 <- r0 2000 mov(r1, r_sub_klass); // r1 <- r4 2001 mov(r2, /*expected*/rscratch1); // r2 <- r8 2002 mov(r3, result); // r3 <- r5 2003 mov(r4, (address)("mismatch")); // r4 <- const 2004 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2005 should_not_reach_here(); 2006 } 2007 bind(passed); 2008 2009 BLOCK_COMMENT("} verify_secondary_supers_table"); 2010 } 2011 2012 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2013 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2014 assert_different_registers(klass, rthread, scratch); 2015 2016 Label L_fallthrough, L_tmp; 2017 if (L_fast_path == nullptr) { 2018 L_fast_path = &L_fallthrough; 2019 } else if (L_slow_path == nullptr) { 2020 L_slow_path = &L_fallthrough; 2021 } 2022 // Fast path check: class is fully initialized 2023 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2024 ldarb(scratch, scratch); 2025 cmp(scratch, InstanceKlass::fully_initialized); 2026 br(Assembler::EQ, *L_fast_path); 2027 2028 // Fast path check: current thread is initializer thread 2029 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2030 cmp(rthread, scratch); 2031 2032 if (L_slow_path == &L_fallthrough) { 2033 br(Assembler::EQ, *L_fast_path); 2034 bind(*L_slow_path); 2035 } else if (L_fast_path == &L_fallthrough) { 2036 br(Assembler::NE, *L_slow_path); 2037 bind(*L_fast_path); 2038 } else { 2039 Unimplemented(); 2040 } 2041 } 2042 2043 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2044 if (!VerifyOops || VerifyAdapterSharing) { 2045 // Below address of the code string confuses VerifyAdapterSharing 2046 // because it may differ between otherwise equivalent adapters. 2047 return; 2048 } 2049 2050 // Pass register number to verify_oop_subroutine 2051 const char* b = nullptr; 2052 { 2053 ResourceMark rm; 2054 stringStream ss; 2055 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2056 b = code_string(ss.as_string()); 2057 } 2058 BLOCK_COMMENT("verify_oop {"); 2059 2060 strip_return_address(); // This might happen within a stack frame. 2061 protect_return_address(); 2062 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2063 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2064 2065 mov(r0, reg); 2066 movptr(rscratch1, (uintptr_t)(address)b); 2067 2068 // call indirectly to solve generation ordering problem 2069 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2070 ldr(rscratch2, Address(rscratch2)); 2071 blr(rscratch2); 2072 2073 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2074 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2075 authenticate_return_address(); 2076 2077 BLOCK_COMMENT("} verify_oop"); 2078 } 2079 2080 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2081 if (!VerifyOops || VerifyAdapterSharing) { 2082 // Below address of the code string confuses VerifyAdapterSharing 2083 // because it may differ between otherwise equivalent adapters. 2084 return; 2085 } 2086 2087 const char* b = nullptr; 2088 { 2089 ResourceMark rm; 2090 stringStream ss; 2091 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2092 b = code_string(ss.as_string()); 2093 } 2094 BLOCK_COMMENT("verify_oop_addr {"); 2095 2096 strip_return_address(); // This might happen within a stack frame. 2097 protect_return_address(); 2098 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2099 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2100 2101 // addr may contain sp so we will have to adjust it based on the 2102 // pushes that we just did. 2103 if (addr.uses(sp)) { 2104 lea(r0, addr); 2105 ldr(r0, Address(r0, 4 * wordSize)); 2106 } else { 2107 ldr(r0, addr); 2108 } 2109 movptr(rscratch1, (uintptr_t)(address)b); 2110 2111 // call indirectly to solve generation ordering problem 2112 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2113 ldr(rscratch2, Address(rscratch2)); 2114 blr(rscratch2); 2115 2116 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2117 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2118 authenticate_return_address(); 2119 2120 BLOCK_COMMENT("} verify_oop_addr"); 2121 } 2122 2123 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2124 int extra_slot_offset) { 2125 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2126 int stackElementSize = Interpreter::stackElementSize; 2127 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2128 #ifdef ASSERT 2129 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2130 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2131 #endif 2132 if (arg_slot.is_constant()) { 2133 return Address(esp, arg_slot.as_constant() * stackElementSize 2134 + offset); 2135 } else { 2136 add(rscratch1, esp, arg_slot.as_register(), 2137 ext::uxtx, exact_log2(stackElementSize)); 2138 return Address(rscratch1, offset); 2139 } 2140 } 2141 2142 void MacroAssembler::call_VM_leaf_base(address entry_point, 2143 int number_of_arguments, 2144 Label *retaddr) { 2145 Label E, L; 2146 2147 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2148 2149 mov(rscratch1, RuntimeAddress(entry_point)); 2150 blr(rscratch1); 2151 if (retaddr) 2152 bind(*retaddr); 2153 2154 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2155 } 2156 2157 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2158 call_VM_leaf_base(entry_point, number_of_arguments); 2159 } 2160 2161 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2162 pass_arg0(this, arg_0); 2163 call_VM_leaf_base(entry_point, 1); 2164 } 2165 2166 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2167 assert_different_registers(arg_1, c_rarg0); 2168 pass_arg0(this, arg_0); 2169 pass_arg1(this, arg_1); 2170 call_VM_leaf_base(entry_point, 2); 2171 } 2172 2173 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2174 Register arg_1, Register arg_2) { 2175 assert_different_registers(arg_1, c_rarg0); 2176 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2177 pass_arg0(this, arg_0); 2178 pass_arg1(this, arg_1); 2179 pass_arg2(this, arg_2); 2180 call_VM_leaf_base(entry_point, 3); 2181 } 2182 2183 void MacroAssembler::super_call_VM_leaf(address entry_point) { 2184 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2185 } 2186 2187 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2188 pass_arg0(this, arg_0); 2189 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2190 } 2191 2192 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2193 2194 assert_different_registers(arg_0, c_rarg1); 2195 pass_arg1(this, arg_1); 2196 pass_arg0(this, arg_0); 2197 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2198 } 2199 2200 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2201 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2202 assert_different_registers(arg_1, c_rarg2); 2203 pass_arg2(this, arg_2); 2204 pass_arg1(this, arg_1); 2205 pass_arg0(this, arg_0); 2206 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2207 } 2208 2209 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2210 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2211 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2212 assert_different_registers(arg_2, c_rarg3); 2213 pass_arg3(this, arg_3); 2214 pass_arg2(this, arg_2); 2215 pass_arg1(this, arg_1); 2216 pass_arg0(this, arg_0); 2217 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2218 } 2219 2220 void MacroAssembler::null_check(Register reg, int offset) { 2221 if (needs_explicit_null_check(offset)) { 2222 // provoke OS null exception if reg is null by 2223 // accessing M[reg] w/o changing any registers 2224 // NOTE: this is plenty to provoke a segv 2225 ldr(zr, Address(reg)); 2226 } else { 2227 // nothing to do, (later) access of M[reg + offset] 2228 // will provoke OS null exception if reg is null 2229 } 2230 } 2231 2232 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2233 assert_different_registers(markword, rscratch2); 2234 mov(rscratch2, markWord::inline_type_mask_in_place); 2235 andr(markword, markword, rscratch2); 2236 mov(rscratch2, markWord::inline_type_pattern); 2237 cmp(markword, rscratch2); 2238 br(Assembler::EQ, is_inline_type); 2239 } 2240 2241 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null) { 2242 assert_different_registers(tmp, rscratch1); 2243 if (can_be_null) { 2244 cbz(object, not_inline_type); 2245 } 2246 const int is_inline_type_mask = markWord::inline_type_pattern; 2247 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2248 mov(rscratch1, is_inline_type_mask); 2249 andr(tmp, tmp, rscratch1); 2250 cmp(tmp, rscratch1); 2251 br(Assembler::NE, not_inline_type); 2252 } 2253 2254 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2255 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2256 tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 2257 } 2258 2259 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2260 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2261 tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 2262 } 2263 2264 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2265 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2266 tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat); 2267 } 2268 2269 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2270 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2271 tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker); 2272 } 2273 2274 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2275 Label test_mark_word; 2276 // load mark word 2277 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2278 // check displaced 2279 tst(temp_reg, markWord::unlocked_value); 2280 br(Assembler::NE, test_mark_word); 2281 // slow path use klass prototype 2282 load_prototype_header(temp_reg, oop); 2283 2284 bind(test_mark_word); 2285 andr(temp_reg, temp_reg, test_bit); 2286 if (jmp_set) { 2287 cbnz(temp_reg, jmp_label); 2288 } else { 2289 cbz(temp_reg, jmp_label); 2290 } 2291 } 2292 2293 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) { 2294 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2295 } 2296 2297 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2298 Label&is_non_flat_array) { 2299 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2300 } 2301 2302 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 2303 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2304 } 2305 2306 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2307 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2308 } 2309 2310 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2311 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2312 br(Assembler::NE, is_flat_array); 2313 } 2314 2315 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2316 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2317 br(Assembler::EQ, is_non_flat_array); 2318 } 2319 2320 // MacroAssembler protected routines needed to implement 2321 // public methods 2322 2323 void MacroAssembler::mov(Register r, Address dest) { 2324 code_section()->relocate(pc(), dest.rspec()); 2325 uint64_t imm64 = (uint64_t)dest.target(); 2326 movptr(r, imm64); 2327 } 2328 2329 // Move a constant pointer into r. In AArch64 mode the virtual 2330 // address space is 48 bits in size, so we only need three 2331 // instructions to create a patchable instruction sequence that can 2332 // reach anywhere. 2333 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2334 #ifndef PRODUCT 2335 { 2336 char buffer[64]; 2337 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2338 block_comment(buffer); 2339 } 2340 #endif 2341 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2342 movz(r, imm64 & 0xffff); 2343 imm64 >>= 16; 2344 movk(r, imm64 & 0xffff, 16); 2345 imm64 >>= 16; 2346 movk(r, imm64 & 0xffff, 32); 2347 } 2348 2349 // Macro to mov replicated immediate to vector register. 2350 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2351 // the upper 56/48/32 bits must be zeros for B/H/S type. 2352 // Vd will get the following values for different arrangements in T 2353 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2354 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2355 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2356 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2357 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2358 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2359 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2360 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2361 // Clobbers rscratch1 2362 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2363 assert(T != T1Q, "unsupported"); 2364 if (T == T1D || T == T2D) { 2365 int imm = operand_valid_for_movi_immediate(imm64, T); 2366 if (-1 != imm) { 2367 movi(Vd, T, imm); 2368 } else { 2369 mov(rscratch1, imm64); 2370 dup(Vd, T, rscratch1); 2371 } 2372 return; 2373 } 2374 2375 #ifdef ASSERT 2376 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2377 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2378 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2379 #endif 2380 int shift = operand_valid_for_movi_immediate(imm64, T); 2381 uint32_t imm32 = imm64 & 0xffffffffULL; 2382 if (shift >= 0) { 2383 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2384 } else { 2385 movw(rscratch1, imm32); 2386 dup(Vd, T, rscratch1); 2387 } 2388 } 2389 2390 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2391 { 2392 #ifndef PRODUCT 2393 { 2394 char buffer[64]; 2395 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2396 block_comment(buffer); 2397 } 2398 #endif 2399 if (operand_valid_for_logical_immediate(false, imm64)) { 2400 orr(dst, zr, imm64); 2401 } else { 2402 // we can use a combination of MOVZ or MOVN with 2403 // MOVK to build up the constant 2404 uint64_t imm_h[4]; 2405 int zero_count = 0; 2406 int neg_count = 0; 2407 int i; 2408 for (i = 0; i < 4; i++) { 2409 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2410 if (imm_h[i] == 0) { 2411 zero_count++; 2412 } else if (imm_h[i] == 0xffffL) { 2413 neg_count++; 2414 } 2415 } 2416 if (zero_count == 4) { 2417 // one MOVZ will do 2418 movz(dst, 0); 2419 } else if (neg_count == 4) { 2420 // one MOVN will do 2421 movn(dst, 0); 2422 } else if (zero_count == 3) { 2423 for (i = 0; i < 4; i++) { 2424 if (imm_h[i] != 0L) { 2425 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2426 break; 2427 } 2428 } 2429 } else if (neg_count == 3) { 2430 // one MOVN will do 2431 for (int i = 0; i < 4; i++) { 2432 if (imm_h[i] != 0xffffL) { 2433 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2434 break; 2435 } 2436 } 2437 } else if (zero_count == 2) { 2438 // one MOVZ and one MOVK will do 2439 for (i = 0; i < 3; i++) { 2440 if (imm_h[i] != 0L) { 2441 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2442 i++; 2443 break; 2444 } 2445 } 2446 for (;i < 4; i++) { 2447 if (imm_h[i] != 0L) { 2448 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2449 } 2450 } 2451 } else if (neg_count == 2) { 2452 // one MOVN and one MOVK will do 2453 for (i = 0; i < 4; i++) { 2454 if (imm_h[i] != 0xffffL) { 2455 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2456 i++; 2457 break; 2458 } 2459 } 2460 for (;i < 4; i++) { 2461 if (imm_h[i] != 0xffffL) { 2462 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2463 } 2464 } 2465 } else if (zero_count == 1) { 2466 // one MOVZ and two MOVKs will do 2467 for (i = 0; i < 4; i++) { 2468 if (imm_h[i] != 0L) { 2469 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2470 i++; 2471 break; 2472 } 2473 } 2474 for (;i < 4; i++) { 2475 if (imm_h[i] != 0x0L) { 2476 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2477 } 2478 } 2479 } else if (neg_count == 1) { 2480 // one MOVN and two MOVKs will do 2481 for (i = 0; i < 4; i++) { 2482 if (imm_h[i] != 0xffffL) { 2483 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2484 i++; 2485 break; 2486 } 2487 } 2488 for (;i < 4; i++) { 2489 if (imm_h[i] != 0xffffL) { 2490 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2491 } 2492 } 2493 } else { 2494 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2495 movz(dst, (uint32_t)imm_h[0], 0); 2496 for (i = 1; i < 4; i++) { 2497 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2498 } 2499 } 2500 } 2501 } 2502 2503 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2504 { 2505 #ifndef PRODUCT 2506 { 2507 char buffer[64]; 2508 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2509 block_comment(buffer); 2510 } 2511 #endif 2512 if (operand_valid_for_logical_immediate(true, imm32)) { 2513 orrw(dst, zr, imm32); 2514 } else { 2515 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2516 // constant 2517 uint32_t imm_h[2]; 2518 imm_h[0] = imm32 & 0xffff; 2519 imm_h[1] = ((imm32 >> 16) & 0xffff); 2520 if (imm_h[0] == 0) { 2521 movzw(dst, imm_h[1], 16); 2522 } else if (imm_h[0] == 0xffff) { 2523 movnw(dst, imm_h[1] ^ 0xffff, 16); 2524 } else if (imm_h[1] == 0) { 2525 movzw(dst, imm_h[0], 0); 2526 } else if (imm_h[1] == 0xffff) { 2527 movnw(dst, imm_h[0] ^ 0xffff, 0); 2528 } else { 2529 // use a MOVZ and MOVK (makes it easier to debug) 2530 movzw(dst, imm_h[0], 0); 2531 movkw(dst, imm_h[1], 16); 2532 } 2533 } 2534 } 2535 2536 // Form an address from base + offset in Rd. Rd may or may 2537 // not actually be used: you must use the Address that is returned. 2538 // It is up to you to ensure that the shift provided matches the size 2539 // of your data. 2540 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2541 if (Address::offset_ok_for_immed(byte_offset, shift)) 2542 // It fits; no need for any heroics 2543 return Address(base, byte_offset); 2544 2545 // Don't do anything clever with negative or misaligned offsets 2546 unsigned mask = (1 << shift) - 1; 2547 if (byte_offset < 0 || byte_offset & mask) { 2548 mov(Rd, byte_offset); 2549 add(Rd, base, Rd); 2550 return Address(Rd); 2551 } 2552 2553 // See if we can do this with two 12-bit offsets 2554 { 2555 uint64_t word_offset = byte_offset >> shift; 2556 uint64_t masked_offset = word_offset & 0xfff000; 2557 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2558 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2559 add(Rd, base, masked_offset << shift); 2560 word_offset -= masked_offset; 2561 return Address(Rd, word_offset << shift); 2562 } 2563 } 2564 2565 // Do it the hard way 2566 mov(Rd, byte_offset); 2567 add(Rd, base, Rd); 2568 return Address(Rd); 2569 } 2570 2571 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2572 bool want_remainder, Register scratch) 2573 { 2574 // Full implementation of Java idiv and irem. The function 2575 // returns the (pc) offset of the div instruction - may be needed 2576 // for implicit exceptions. 2577 // 2578 // constraint : ra/rb =/= scratch 2579 // normal case 2580 // 2581 // input : ra: dividend 2582 // rb: divisor 2583 // 2584 // result: either 2585 // quotient (= ra idiv rb) 2586 // remainder (= ra irem rb) 2587 2588 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2589 2590 int idivl_offset = offset(); 2591 if (! want_remainder) { 2592 sdivw(result, ra, rb); 2593 } else { 2594 sdivw(scratch, ra, rb); 2595 Assembler::msubw(result, scratch, rb, ra); 2596 } 2597 2598 return idivl_offset; 2599 } 2600 2601 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2602 bool want_remainder, Register scratch) 2603 { 2604 // Full implementation of Java ldiv and lrem. The function 2605 // returns the (pc) offset of the div instruction - may be needed 2606 // for implicit exceptions. 2607 // 2608 // constraint : ra/rb =/= scratch 2609 // normal case 2610 // 2611 // input : ra: dividend 2612 // rb: divisor 2613 // 2614 // result: either 2615 // quotient (= ra idiv rb) 2616 // remainder (= ra irem rb) 2617 2618 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2619 2620 int idivq_offset = offset(); 2621 if (! want_remainder) { 2622 sdiv(result, ra, rb); 2623 } else { 2624 sdiv(scratch, ra, rb); 2625 Assembler::msub(result, scratch, rb, ra); 2626 } 2627 2628 return idivq_offset; 2629 } 2630 2631 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2632 address prev = pc() - NativeMembar::instruction_size; 2633 address last = code()->last_insn(); 2634 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2635 NativeMembar *bar = NativeMembar_at(prev); 2636 if (AlwaysMergeDMB) { 2637 bar->set_kind(bar->get_kind() | order_constraint); 2638 BLOCK_COMMENT("merged membar(always)"); 2639 return; 2640 } 2641 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2642 // doing so would introduce a StoreLoad which the caller did not 2643 // intend 2644 if (bar->get_kind() == order_constraint 2645 || bar->get_kind() == AnyAny 2646 || order_constraint == AnyAny) { 2647 // We are merging two memory barrier instructions. On AArch64 we 2648 // can do this simply by ORing them together. 2649 bar->set_kind(bar->get_kind() | order_constraint); 2650 BLOCK_COMMENT("merged membar"); 2651 return; 2652 } else { 2653 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2654 // We need check the last 2 instructions 2655 address prev2 = prev - NativeMembar::instruction_size; 2656 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2657 NativeMembar *bar2 = NativeMembar_at(prev2); 2658 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2659 BLOCK_COMMENT("merged membar(elided)"); 2660 return; 2661 } 2662 } 2663 } 2664 code()->set_last_insn(pc()); 2665 dmb(Assembler::barrier(order_constraint)); 2666 } 2667 2668 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2669 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2670 merge_ldst(rt, adr, size_in_bytes, is_store); 2671 code()->clear_last_insn(); 2672 return true; 2673 } else { 2674 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2675 const uint64_t mask = size_in_bytes - 1; 2676 if (adr.getMode() == Address::base_plus_offset && 2677 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2678 code()->set_last_insn(pc()); 2679 } 2680 return false; 2681 } 2682 } 2683 2684 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2685 // We always try to merge two adjacent loads into one ldp. 2686 if (!try_merge_ldst(Rx, adr, 8, false)) { 2687 Assembler::ldr(Rx, adr); 2688 } 2689 } 2690 2691 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2692 // We always try to merge two adjacent loads into one ldp. 2693 if (!try_merge_ldst(Rw, adr, 4, false)) { 2694 Assembler::ldrw(Rw, adr); 2695 } 2696 } 2697 2698 void MacroAssembler::str(Register Rx, const Address &adr) { 2699 // We always try to merge two adjacent stores into one stp. 2700 if (!try_merge_ldst(Rx, adr, 8, true)) { 2701 Assembler::str(Rx, adr); 2702 } 2703 } 2704 2705 void MacroAssembler::strw(Register Rw, const Address &adr) { 2706 // We always try to merge two adjacent stores into one stp. 2707 if (!try_merge_ldst(Rw, adr, 4, true)) { 2708 Assembler::strw(Rw, adr); 2709 } 2710 } 2711 2712 // MacroAssembler routines found actually to be needed 2713 2714 void MacroAssembler::push(Register src) 2715 { 2716 str(src, Address(pre(esp, -1 * wordSize))); 2717 } 2718 2719 void MacroAssembler::pop(Register dst) 2720 { 2721 ldr(dst, Address(post(esp, 1 * wordSize))); 2722 } 2723 2724 // Note: load_unsigned_short used to be called load_unsigned_word. 2725 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2726 int off = offset(); 2727 ldrh(dst, src); 2728 return off; 2729 } 2730 2731 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2732 int off = offset(); 2733 ldrb(dst, src); 2734 return off; 2735 } 2736 2737 int MacroAssembler::load_signed_short(Register dst, Address src) { 2738 int off = offset(); 2739 ldrsh(dst, src); 2740 return off; 2741 } 2742 2743 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2744 int off = offset(); 2745 ldrsb(dst, src); 2746 return off; 2747 } 2748 2749 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2750 int off = offset(); 2751 ldrshw(dst, src); 2752 return off; 2753 } 2754 2755 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2756 int off = offset(); 2757 ldrsbw(dst, src); 2758 return off; 2759 } 2760 2761 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2762 switch (size_in_bytes) { 2763 case 8: ldr(dst, src); break; 2764 case 4: ldrw(dst, src); break; 2765 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2766 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2767 default: ShouldNotReachHere(); 2768 } 2769 } 2770 2771 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2772 switch (size_in_bytes) { 2773 case 8: str(src, dst); break; 2774 case 4: strw(src, dst); break; 2775 case 2: strh(src, dst); break; 2776 case 1: strb(src, dst); break; 2777 default: ShouldNotReachHere(); 2778 } 2779 } 2780 2781 void MacroAssembler::decrementw(Register reg, int value) 2782 { 2783 if (value < 0) { incrementw(reg, -value); return; } 2784 if (value == 0) { return; } 2785 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2786 /* else */ { 2787 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2788 movw(rscratch2, (unsigned)value); 2789 subw(reg, reg, rscratch2); 2790 } 2791 } 2792 2793 void MacroAssembler::decrement(Register reg, int value) 2794 { 2795 if (value < 0) { increment(reg, -value); return; } 2796 if (value == 0) { return; } 2797 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2798 /* else */ { 2799 assert(reg != rscratch2, "invalid dst for register decrement"); 2800 mov(rscratch2, (uint64_t)value); 2801 sub(reg, reg, rscratch2); 2802 } 2803 } 2804 2805 void MacroAssembler::decrementw(Address dst, int value) 2806 { 2807 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2808 if (dst.getMode() == Address::literal) { 2809 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2810 lea(rscratch2, dst); 2811 dst = Address(rscratch2); 2812 } 2813 ldrw(rscratch1, dst); 2814 decrementw(rscratch1, value); 2815 strw(rscratch1, dst); 2816 } 2817 2818 void MacroAssembler::decrement(Address dst, int value) 2819 { 2820 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2821 if (dst.getMode() == Address::literal) { 2822 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2823 lea(rscratch2, dst); 2824 dst = Address(rscratch2); 2825 } 2826 ldr(rscratch1, dst); 2827 decrement(rscratch1, value); 2828 str(rscratch1, dst); 2829 } 2830 2831 void MacroAssembler::incrementw(Register reg, int value) 2832 { 2833 if (value < 0) { decrementw(reg, -value); return; } 2834 if (value == 0) { return; } 2835 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2836 /* else */ { 2837 assert(reg != rscratch2, "invalid dst for register increment"); 2838 movw(rscratch2, (unsigned)value); 2839 addw(reg, reg, rscratch2); 2840 } 2841 } 2842 2843 void MacroAssembler::increment(Register reg, int value) 2844 { 2845 if (value < 0) { decrement(reg, -value); return; } 2846 if (value == 0) { return; } 2847 if (value < (1 << 12)) { add(reg, reg, value); return; } 2848 /* else */ { 2849 assert(reg != rscratch2, "invalid dst for register increment"); 2850 movw(rscratch2, (unsigned)value); 2851 add(reg, reg, rscratch2); 2852 } 2853 } 2854 2855 void MacroAssembler::incrementw(Address dst, int value) 2856 { 2857 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2858 if (dst.getMode() == Address::literal) { 2859 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2860 lea(rscratch2, dst); 2861 dst = Address(rscratch2); 2862 } 2863 ldrw(rscratch1, dst); 2864 incrementw(rscratch1, value); 2865 strw(rscratch1, dst); 2866 } 2867 2868 void MacroAssembler::increment(Address dst, int value) 2869 { 2870 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2871 if (dst.getMode() == Address::literal) { 2872 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2873 lea(rscratch2, dst); 2874 dst = Address(rscratch2); 2875 } 2876 ldr(rscratch1, dst); 2877 increment(rscratch1, value); 2878 str(rscratch1, dst); 2879 } 2880 2881 // Push lots of registers in the bit set supplied. Don't push sp. 2882 // Return the number of words pushed 2883 int MacroAssembler::push(unsigned int bitset, Register stack) { 2884 int words_pushed = 0; 2885 2886 // Scan bitset to accumulate register pairs 2887 unsigned char regs[32]; 2888 int count = 0; 2889 for (int reg = 0; reg <= 30; reg++) { 2890 if (1 & bitset) 2891 regs[count++] = reg; 2892 bitset >>= 1; 2893 } 2894 regs[count++] = zr->raw_encoding(); 2895 count &= ~1; // Only push an even number of regs 2896 2897 if (count) { 2898 stp(as_Register(regs[0]), as_Register(regs[1]), 2899 Address(pre(stack, -count * wordSize))); 2900 words_pushed += 2; 2901 } 2902 for (int i = 2; i < count; i += 2) { 2903 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2904 Address(stack, i * wordSize)); 2905 words_pushed += 2; 2906 } 2907 2908 assert(words_pushed == count, "oops, pushed != count"); 2909 2910 return count; 2911 } 2912 2913 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2914 int words_pushed = 0; 2915 2916 // Scan bitset to accumulate register pairs 2917 unsigned char regs[32]; 2918 int count = 0; 2919 for (int reg = 0; reg <= 30; reg++) { 2920 if (1 & bitset) 2921 regs[count++] = reg; 2922 bitset >>= 1; 2923 } 2924 regs[count++] = zr->raw_encoding(); 2925 count &= ~1; 2926 2927 for (int i = 2; i < count; i += 2) { 2928 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2929 Address(stack, i * wordSize)); 2930 words_pushed += 2; 2931 } 2932 if (count) { 2933 ldp(as_Register(regs[0]), as_Register(regs[1]), 2934 Address(post(stack, count * wordSize))); 2935 words_pushed += 2; 2936 } 2937 2938 assert(words_pushed == count, "oops, pushed != count"); 2939 2940 return count; 2941 } 2942 2943 // Push lots of registers in the bit set supplied. Don't push sp. 2944 // Return the number of dwords pushed 2945 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2946 int words_pushed = 0; 2947 bool use_sve = false; 2948 int sve_vector_size_in_bytes = 0; 2949 2950 #ifdef COMPILER2 2951 use_sve = Matcher::supports_scalable_vector(); 2952 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2953 #endif 2954 2955 // Scan bitset to accumulate register pairs 2956 unsigned char regs[32]; 2957 int count = 0; 2958 for (int reg = 0; reg <= 31; reg++) { 2959 if (1 & bitset) 2960 regs[count++] = reg; 2961 bitset >>= 1; 2962 } 2963 2964 if (count == 0) { 2965 return 0; 2966 } 2967 2968 if (mode == PushPopFull) { 2969 if (use_sve && sve_vector_size_in_bytes > 16) { 2970 mode = PushPopSVE; 2971 } else { 2972 mode = PushPopNeon; 2973 } 2974 } 2975 2976 #ifndef PRODUCT 2977 { 2978 char buffer[48]; 2979 if (mode == PushPopSVE) { 2980 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2981 } else if (mode == PushPopNeon) { 2982 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2983 } else { 2984 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2985 } 2986 block_comment(buffer); 2987 } 2988 #endif 2989 2990 if (mode == PushPopSVE) { 2991 sub(stack, stack, sve_vector_size_in_bytes * count); 2992 for (int i = 0; i < count; i++) { 2993 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2994 } 2995 return count * sve_vector_size_in_bytes / 8; 2996 } 2997 2998 if (mode == PushPopNeon) { 2999 if (count == 1) { 3000 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 3001 return 2; 3002 } 3003 3004 bool odd = (count & 1) == 1; 3005 int push_slots = count + (odd ? 1 : 0); 3006 3007 // Always pushing full 128 bit registers. 3008 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 3009 words_pushed += 2; 3010 3011 for (int i = 2; i + 1 < count; i += 2) { 3012 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3013 words_pushed += 2; 3014 } 3015 3016 if (odd) { 3017 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3018 words_pushed++; 3019 } 3020 3021 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3022 return count * 2; 3023 } 3024 3025 if (mode == PushPopFp) { 3026 bool odd = (count & 1) == 1; 3027 int push_slots = count + (odd ? 1 : 0); 3028 3029 if (count == 1) { 3030 // Stack pointer must be 16 bytes aligned 3031 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 3032 return 1; 3033 } 3034 3035 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 3036 words_pushed += 2; 3037 3038 for (int i = 2; i + 1 < count; i += 2) { 3039 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3040 words_pushed += 2; 3041 } 3042 3043 if (odd) { 3044 // Stack pointer must be 16 bytes aligned 3045 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3046 words_pushed++; 3047 } 3048 3049 assert(words_pushed == count, "oops, pushed != count"); 3050 3051 return count; 3052 } 3053 3054 return 0; 3055 } 3056 3057 // Return the number of dwords popped 3058 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3059 int words_pushed = 0; 3060 bool use_sve = false; 3061 int sve_vector_size_in_bytes = 0; 3062 3063 #ifdef COMPILER2 3064 use_sve = Matcher::supports_scalable_vector(); 3065 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3066 #endif 3067 // Scan bitset to accumulate register pairs 3068 unsigned char regs[32]; 3069 int count = 0; 3070 for (int reg = 0; reg <= 31; reg++) { 3071 if (1 & bitset) 3072 regs[count++] = reg; 3073 bitset >>= 1; 3074 } 3075 3076 if (count == 0) { 3077 return 0; 3078 } 3079 3080 if (mode == PushPopFull) { 3081 if (use_sve && sve_vector_size_in_bytes > 16) { 3082 mode = PushPopSVE; 3083 } else { 3084 mode = PushPopNeon; 3085 } 3086 } 3087 3088 #ifndef PRODUCT 3089 { 3090 char buffer[48]; 3091 if (mode == PushPopSVE) { 3092 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3093 } else if (mode == PushPopNeon) { 3094 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3095 } else { 3096 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3097 } 3098 block_comment(buffer); 3099 } 3100 #endif 3101 3102 if (mode == PushPopSVE) { 3103 for (int i = count - 1; i >= 0; i--) { 3104 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3105 } 3106 add(stack, stack, sve_vector_size_in_bytes * count); 3107 return count * sve_vector_size_in_bytes / 8; 3108 } 3109 3110 if (mode == PushPopNeon) { 3111 if (count == 1) { 3112 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3113 return 2; 3114 } 3115 3116 bool odd = (count & 1) == 1; 3117 int push_slots = count + (odd ? 1 : 0); 3118 3119 if (odd) { 3120 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3121 words_pushed++; 3122 } 3123 3124 for (int i = 2; i + 1 < count; i += 2) { 3125 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3126 words_pushed += 2; 3127 } 3128 3129 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3130 words_pushed += 2; 3131 3132 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3133 3134 return count * 2; 3135 } 3136 3137 if (mode == PushPopFp) { 3138 bool odd = (count & 1) == 1; 3139 int push_slots = count + (odd ? 1 : 0); 3140 3141 if (count == 1) { 3142 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3143 return 1; 3144 } 3145 3146 if (odd) { 3147 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3148 words_pushed++; 3149 } 3150 3151 for (int i = 2; i + 1 < count; i += 2) { 3152 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3153 words_pushed += 2; 3154 } 3155 3156 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3157 words_pushed += 2; 3158 3159 assert(words_pushed == count, "oops, pushed != count"); 3160 3161 return count; 3162 } 3163 3164 return 0; 3165 } 3166 3167 // Return the number of dwords pushed 3168 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3169 bool use_sve = false; 3170 int sve_predicate_size_in_slots = 0; 3171 3172 #ifdef COMPILER2 3173 use_sve = Matcher::supports_scalable_vector(); 3174 if (use_sve) { 3175 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3176 } 3177 #endif 3178 3179 if (!use_sve) { 3180 return 0; 3181 } 3182 3183 unsigned char regs[PRegister::number_of_registers]; 3184 int count = 0; 3185 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3186 if (1 & bitset) 3187 regs[count++] = reg; 3188 bitset >>= 1; 3189 } 3190 3191 if (count == 0) { 3192 return 0; 3193 } 3194 3195 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3196 VMRegImpl::stack_slot_size * count, 16); 3197 sub(stack, stack, total_push_bytes); 3198 for (int i = 0; i < count; i++) { 3199 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3200 } 3201 return total_push_bytes / 8; 3202 } 3203 3204 // Return the number of dwords popped 3205 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3206 bool use_sve = false; 3207 int sve_predicate_size_in_slots = 0; 3208 3209 #ifdef COMPILER2 3210 use_sve = Matcher::supports_scalable_vector(); 3211 if (use_sve) { 3212 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3213 } 3214 #endif 3215 3216 if (!use_sve) { 3217 return 0; 3218 } 3219 3220 unsigned char regs[PRegister::number_of_registers]; 3221 int count = 0; 3222 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3223 if (1 & bitset) 3224 regs[count++] = reg; 3225 bitset >>= 1; 3226 } 3227 3228 if (count == 0) { 3229 return 0; 3230 } 3231 3232 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3233 VMRegImpl::stack_slot_size * count, 16); 3234 for (int i = count - 1; i >= 0; i--) { 3235 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3236 } 3237 add(stack, stack, total_pop_bytes); 3238 return total_pop_bytes / 8; 3239 } 3240 3241 #ifdef ASSERT 3242 void MacroAssembler::verify_heapbase(const char* msg) { 3243 #if 0 3244 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3245 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3246 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3247 // rheapbase is allocated as general register 3248 return; 3249 } 3250 if (CheckCompressedOops) { 3251 Label ok; 3252 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3253 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3254 br(Assembler::EQ, ok); 3255 stop(msg); 3256 bind(ok); 3257 pop(1 << rscratch1->encoding(), sp); 3258 } 3259 #endif 3260 } 3261 #endif 3262 3263 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3264 assert_different_registers(value, tmp1, tmp2); 3265 Label done, tagged, weak_tagged; 3266 3267 cbz(value, done); // Use null as-is. 3268 tst(value, JNIHandles::tag_mask); // Test for tag. 3269 br(Assembler::NE, tagged); 3270 3271 // Resolve local handle 3272 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3273 verify_oop(value); 3274 b(done); 3275 3276 bind(tagged); 3277 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3278 tbnz(value, 0, weak_tagged); // Test for weak tag. 3279 3280 // Resolve global handle 3281 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3282 verify_oop(value); 3283 b(done); 3284 3285 bind(weak_tagged); 3286 // Resolve jweak. 3287 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3288 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3289 verify_oop(value); 3290 3291 bind(done); 3292 } 3293 3294 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3295 assert_different_registers(value, tmp1, tmp2); 3296 Label done; 3297 3298 cbz(value, done); // Use null as-is. 3299 3300 #ifdef ASSERT 3301 { 3302 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3303 Label valid_global_tag; 3304 tbnz(value, 1, valid_global_tag); // Test for global tag 3305 stop("non global jobject using resolve_global_jobject"); 3306 bind(valid_global_tag); 3307 } 3308 #endif 3309 3310 // Resolve global handle 3311 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3312 verify_oop(value); 3313 3314 bind(done); 3315 } 3316 3317 void MacroAssembler::stop(const char* msg) { 3318 // Skip AOT caching C strings in scratch buffer. 3319 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3320 BLOCK_COMMENT(str); 3321 // load msg into r0 so we can access it from the signal handler 3322 // ExternalAddress enables saving and restoring via the code cache 3323 lea(c_rarg0, ExternalAddress((address) str)); 3324 dcps1(0xdeae); 3325 } 3326 3327 void MacroAssembler::unimplemented(const char* what) { 3328 const char* buf = nullptr; 3329 { 3330 ResourceMark rm; 3331 stringStream ss; 3332 ss.print("unimplemented: %s", what); 3333 buf = code_string(ss.as_string()); 3334 } 3335 stop(buf); 3336 } 3337 3338 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3339 #ifdef ASSERT 3340 Label OK; 3341 br(cc, OK); 3342 stop(msg); 3343 bind(OK); 3344 #endif 3345 } 3346 3347 // If a constant does not fit in an immediate field, generate some 3348 // number of MOV instructions and then perform the operation. 3349 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3350 add_sub_imm_insn insn1, 3351 add_sub_reg_insn insn2, 3352 bool is32) { 3353 assert(Rd != zr, "Rd = zr and not setting flags?"); 3354 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3355 if (fits) { 3356 (this->*insn1)(Rd, Rn, imm); 3357 } else { 3358 if (g_uabs(imm) < (1 << 24)) { 3359 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3360 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3361 } else { 3362 assert_different_registers(Rd, Rn); 3363 mov(Rd, imm); 3364 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3365 } 3366 } 3367 } 3368 3369 // Separate vsn which sets the flags. Optimisations are more restricted 3370 // because we must set the flags correctly. 3371 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3372 add_sub_imm_insn insn1, 3373 add_sub_reg_insn insn2, 3374 bool is32) { 3375 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3376 if (fits) { 3377 (this->*insn1)(Rd, Rn, imm); 3378 } else { 3379 assert_different_registers(Rd, Rn); 3380 assert(Rd != zr, "overflow in immediate operand"); 3381 mov(Rd, imm); 3382 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3383 } 3384 } 3385 3386 3387 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3388 if (increment.is_register()) { 3389 add(Rd, Rn, increment.as_register()); 3390 } else { 3391 add(Rd, Rn, increment.as_constant()); 3392 } 3393 } 3394 3395 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3396 if (increment.is_register()) { 3397 addw(Rd, Rn, increment.as_register()); 3398 } else { 3399 addw(Rd, Rn, increment.as_constant()); 3400 } 3401 } 3402 3403 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3404 if (decrement.is_register()) { 3405 sub(Rd, Rn, decrement.as_register()); 3406 } else { 3407 sub(Rd, Rn, decrement.as_constant()); 3408 } 3409 } 3410 3411 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3412 if (decrement.is_register()) { 3413 subw(Rd, Rn, decrement.as_register()); 3414 } else { 3415 subw(Rd, Rn, decrement.as_constant()); 3416 } 3417 } 3418 3419 void MacroAssembler::reinit_heapbase() 3420 { 3421 if (UseCompressedOops) { 3422 if (Universe::is_fully_initialized()) { 3423 mov(rheapbase, CompressedOops::base()); 3424 } else { 3425 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3426 ldr(rheapbase, Address(rheapbase)); 3427 } 3428 } 3429 } 3430 3431 // this simulates the behaviour of the x86 cmpxchg instruction using a 3432 // load linked/store conditional pair. we use the acquire/release 3433 // versions of these instructions so that we flush pending writes as 3434 // per Java semantics. 3435 3436 // n.b the x86 version assumes the old value to be compared against is 3437 // in rax and updates rax with the value located in memory if the 3438 // cmpxchg fails. we supply a register for the old value explicitly 3439 3440 // the aarch64 load linked/store conditional instructions do not 3441 // accept an offset. so, unlike x86, we must provide a plain register 3442 // to identify the memory word to be compared/exchanged rather than a 3443 // register+offset Address. 3444 3445 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3446 Label &succeed, Label *fail) { 3447 // oldv holds comparison value 3448 // newv holds value to write in exchange 3449 // addr identifies memory word to compare against/update 3450 if (UseLSE) { 3451 mov(tmp, oldv); 3452 casal(Assembler::xword, oldv, newv, addr); 3453 cmp(tmp, oldv); 3454 br(Assembler::EQ, succeed); 3455 membar(AnyAny); 3456 } else { 3457 Label retry_load, nope; 3458 prfm(Address(addr), PSTL1STRM); 3459 bind(retry_load); 3460 // flush and load exclusive from the memory location 3461 // and fail if it is not what we expect 3462 ldaxr(tmp, addr); 3463 cmp(tmp, oldv); 3464 br(Assembler::NE, nope); 3465 // if we store+flush with no intervening write tmp will be zero 3466 stlxr(tmp, newv, addr); 3467 cbzw(tmp, succeed); 3468 // retry so we only ever return after a load fails to compare 3469 // ensures we don't return a stale value after a failed write. 3470 b(retry_load); 3471 // if the memory word differs we return it in oldv and signal a fail 3472 bind(nope); 3473 membar(AnyAny); 3474 mov(oldv, tmp); 3475 } 3476 if (fail) 3477 b(*fail); 3478 } 3479 3480 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3481 Label &succeed, Label *fail) { 3482 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3483 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3484 } 3485 3486 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3487 Label &succeed, Label *fail) { 3488 // oldv holds comparison value 3489 // newv holds value to write in exchange 3490 // addr identifies memory word to compare against/update 3491 // tmp returns 0/1 for success/failure 3492 if (UseLSE) { 3493 mov(tmp, oldv); 3494 casal(Assembler::word, oldv, newv, addr); 3495 cmp(tmp, oldv); 3496 br(Assembler::EQ, succeed); 3497 membar(AnyAny); 3498 } else { 3499 Label retry_load, nope; 3500 prfm(Address(addr), PSTL1STRM); 3501 bind(retry_load); 3502 // flush and load exclusive from the memory location 3503 // and fail if it is not what we expect 3504 ldaxrw(tmp, addr); 3505 cmp(tmp, oldv); 3506 br(Assembler::NE, nope); 3507 // if we store+flush with no intervening write tmp will be zero 3508 stlxrw(tmp, newv, addr); 3509 cbzw(tmp, succeed); 3510 // retry so we only ever return after a load fails to compare 3511 // ensures we don't return a stale value after a failed write. 3512 b(retry_load); 3513 // if the memory word differs we return it in oldv and signal a fail 3514 bind(nope); 3515 membar(AnyAny); 3516 mov(oldv, tmp); 3517 } 3518 if (fail) 3519 b(*fail); 3520 } 3521 3522 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3523 // doesn't retry and may fail spuriously. If the oldval is wanted, 3524 // Pass a register for the result, otherwise pass noreg. 3525 3526 // Clobbers rscratch1 3527 void MacroAssembler::cmpxchg(Register addr, Register expected, 3528 Register new_val, 3529 enum operand_size size, 3530 bool acquire, bool release, 3531 bool weak, 3532 Register result) { 3533 if (result == noreg) result = rscratch1; 3534 BLOCK_COMMENT("cmpxchg {"); 3535 if (UseLSE) { 3536 mov(result, expected); 3537 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3538 compare_eq(result, expected, size); 3539 #ifdef ASSERT 3540 // Poison rscratch1 which is written on !UseLSE branch 3541 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3542 #endif 3543 } else { 3544 Label retry_load, done; 3545 prfm(Address(addr), PSTL1STRM); 3546 bind(retry_load); 3547 load_exclusive(result, addr, size, acquire); 3548 compare_eq(result, expected, size); 3549 br(Assembler::NE, done); 3550 store_exclusive(rscratch1, new_val, addr, size, release); 3551 if (weak) { 3552 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3553 } else { 3554 cbnzw(rscratch1, retry_load); 3555 } 3556 bind(done); 3557 } 3558 BLOCK_COMMENT("} cmpxchg"); 3559 } 3560 3561 // A generic comparison. Only compares for equality, clobbers rscratch1. 3562 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3563 if (size == xword) { 3564 cmp(rm, rn); 3565 } else if (size == word) { 3566 cmpw(rm, rn); 3567 } else if (size == halfword) { 3568 eorw(rscratch1, rm, rn); 3569 ands(zr, rscratch1, 0xffff); 3570 } else if (size == byte) { 3571 eorw(rscratch1, rm, rn); 3572 ands(zr, rscratch1, 0xff); 3573 } else { 3574 ShouldNotReachHere(); 3575 } 3576 } 3577 3578 3579 static bool different(Register a, RegisterOrConstant b, Register c) { 3580 if (b.is_constant()) 3581 return a != c; 3582 else 3583 return a != b.as_register() && a != c && b.as_register() != c; 3584 } 3585 3586 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3587 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3588 if (UseLSE) { \ 3589 prev = prev->is_valid() ? prev : zr; \ 3590 if (incr.is_register()) { \ 3591 AOP(sz, incr.as_register(), prev, addr); \ 3592 } else { \ 3593 mov(rscratch2, incr.as_constant()); \ 3594 AOP(sz, rscratch2, prev, addr); \ 3595 } \ 3596 return; \ 3597 } \ 3598 Register result = rscratch2; \ 3599 if (prev->is_valid()) \ 3600 result = different(prev, incr, addr) ? prev : rscratch2; \ 3601 \ 3602 Label retry_load; \ 3603 prfm(Address(addr), PSTL1STRM); \ 3604 bind(retry_load); \ 3605 LDXR(result, addr); \ 3606 OP(rscratch1, result, incr); \ 3607 STXR(rscratch2, rscratch1, addr); \ 3608 cbnzw(rscratch2, retry_load); \ 3609 if (prev->is_valid() && prev != result) { \ 3610 IOP(prev, rscratch1, incr); \ 3611 } \ 3612 } 3613 3614 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3615 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3616 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3617 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3618 3619 #undef ATOMIC_OP 3620 3621 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3622 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3623 if (UseLSE) { \ 3624 prev = prev->is_valid() ? prev : zr; \ 3625 AOP(sz, newv, prev, addr); \ 3626 return; \ 3627 } \ 3628 Register result = rscratch2; \ 3629 if (prev->is_valid()) \ 3630 result = different(prev, newv, addr) ? prev : rscratch2; \ 3631 \ 3632 Label retry_load; \ 3633 prfm(Address(addr), PSTL1STRM); \ 3634 bind(retry_load); \ 3635 LDXR(result, addr); \ 3636 STXR(rscratch1, newv, addr); \ 3637 cbnzw(rscratch1, retry_load); \ 3638 if (prev->is_valid() && prev != result) \ 3639 mov(prev, result); \ 3640 } 3641 3642 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3643 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3644 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3645 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3646 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3647 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3648 3649 #undef ATOMIC_XCHG 3650 3651 #ifndef PRODUCT 3652 extern "C" void findpc(intptr_t x); 3653 #endif 3654 3655 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3656 { 3657 // In order to get locks to work, we need to fake a in_VM state 3658 if (ShowMessageBoxOnError ) { 3659 JavaThread* thread = JavaThread::current(); 3660 JavaThreadState saved_state = thread->thread_state(); 3661 thread->set_thread_state(_thread_in_vm); 3662 #ifndef PRODUCT 3663 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3664 ttyLocker ttyl; 3665 BytecodeCounter::print(); 3666 } 3667 #endif 3668 if (os::message_box(msg, "Execution stopped, print registers?")) { 3669 ttyLocker ttyl; 3670 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3671 #ifndef PRODUCT 3672 tty->cr(); 3673 findpc(pc); 3674 tty->cr(); 3675 #endif 3676 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3677 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3678 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3679 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3680 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3681 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3682 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3683 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3684 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3685 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3686 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3687 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3688 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3689 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3690 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3691 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3692 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3693 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3694 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3695 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3696 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3697 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3698 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3699 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3700 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3701 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3702 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3703 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3704 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3705 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3706 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3707 BREAKPOINT; 3708 } 3709 } 3710 fatal("DEBUG MESSAGE: %s", msg); 3711 } 3712 3713 RegSet MacroAssembler::call_clobbered_gp_registers() { 3714 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3715 #ifndef R18_RESERVED 3716 regs += r18_tls; 3717 #endif 3718 return regs; 3719 } 3720 3721 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3722 int step = 4 * wordSize; 3723 push(call_clobbered_gp_registers() - exclude, sp); 3724 sub(sp, sp, step); 3725 mov(rscratch1, -step); 3726 // Push v0-v7, v16-v31. 3727 for (int i = 31; i>= 4; i -= 4) { 3728 if (i <= v7->encoding() || i >= v16->encoding()) 3729 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3730 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3731 } 3732 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3733 as_FloatRegister(3), T1D, Address(sp)); 3734 } 3735 3736 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3737 for (int i = 0; i < 32; i += 4) { 3738 if (i <= v7->encoding() || i >= v16->encoding()) 3739 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3740 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3741 } 3742 3743 reinitialize_ptrue(); 3744 3745 pop(call_clobbered_gp_registers() - exclude, sp); 3746 } 3747 3748 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3749 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3750 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3751 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3752 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3753 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3754 sve_str(as_FloatRegister(i), Address(sp, i)); 3755 } 3756 } else { 3757 int step = (save_vectors ? 8 : 4) * wordSize; 3758 mov(rscratch1, -step); 3759 sub(sp, sp, step); 3760 for (int i = 28; i >= 4; i -= 4) { 3761 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3762 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3763 } 3764 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3765 } 3766 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3767 sub(sp, sp, total_predicate_in_bytes); 3768 for (int i = 0; i < PRegister::number_of_registers; i++) { 3769 sve_str(as_PRegister(i), Address(sp, i)); 3770 } 3771 } 3772 } 3773 3774 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3775 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3776 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3777 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3778 sve_ldr(as_PRegister(i), Address(sp, i)); 3779 } 3780 add(sp, sp, total_predicate_in_bytes); 3781 } 3782 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3783 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3784 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3785 } 3786 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3787 } else { 3788 int step = (restore_vectors ? 8 : 4) * wordSize; 3789 for (int i = 0; i <= 28; i += 4) 3790 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3791 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3792 } 3793 3794 // We may use predicate registers and rely on ptrue with SVE, 3795 // regardless of wide vector (> 8 bytes) used or not. 3796 if (use_sve) { 3797 reinitialize_ptrue(); 3798 } 3799 3800 // integer registers except lr & sp 3801 pop(RegSet::range(r0, r17), sp); 3802 #ifdef R18_RESERVED 3803 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3804 pop(RegSet::range(r20, r29), sp); 3805 #else 3806 pop(RegSet::range(r18_tls, r29), sp); 3807 #endif 3808 } 3809 3810 /** 3811 * Helpers for multiply_to_len(). 3812 */ 3813 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3814 Register src1, Register src2) { 3815 adds(dest_lo, dest_lo, src1); 3816 adc(dest_hi, dest_hi, zr); 3817 adds(dest_lo, dest_lo, src2); 3818 adc(final_dest_hi, dest_hi, zr); 3819 } 3820 3821 // Generate an address from (r + r1 extend offset). "size" is the 3822 // size of the operand. The result may be in rscratch2. 3823 Address MacroAssembler::offsetted_address(Register r, Register r1, 3824 Address::extend ext, int offset, int size) { 3825 if (offset || (ext.shift() % size != 0)) { 3826 lea(rscratch2, Address(r, r1, ext)); 3827 return Address(rscratch2, offset); 3828 } else { 3829 return Address(r, r1, ext); 3830 } 3831 } 3832 3833 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3834 { 3835 assert(offset >= 0, "spill to negative address?"); 3836 // Offset reachable ? 3837 // Not aligned - 9 bits signed offset 3838 // Aligned - 12 bits unsigned offset shifted 3839 Register base = sp; 3840 if ((offset & (size-1)) && offset >= (1<<8)) { 3841 add(tmp, base, offset & ((1<<12)-1)); 3842 base = tmp; 3843 offset &= -1u<<12; 3844 } 3845 3846 if (offset >= (1<<12) * size) { 3847 add(tmp, base, offset & (((1<<12)-1)<<12)); 3848 base = tmp; 3849 offset &= ~(((1<<12)-1)<<12); 3850 } 3851 3852 return Address(base, offset); 3853 } 3854 3855 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3856 assert(offset >= 0, "spill to negative address?"); 3857 3858 Register base = sp; 3859 3860 // An immediate offset in the range 0 to 255 which is multiplied 3861 // by the current vector or predicate register size in bytes. 3862 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3863 return Address(base, offset / sve_reg_size_in_bytes); 3864 } 3865 3866 add(tmp, base, offset); 3867 return Address(tmp); 3868 } 3869 3870 // Checks whether offset is aligned. 3871 // Returns true if it is, else false. 3872 bool MacroAssembler::merge_alignment_check(Register base, 3873 size_t size, 3874 int64_t cur_offset, 3875 int64_t prev_offset) const { 3876 if (AvoidUnalignedAccesses) { 3877 if (base == sp) { 3878 // Checks whether low offset if aligned to pair of registers. 3879 int64_t pair_mask = size * 2 - 1; 3880 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3881 return (offset & pair_mask) == 0; 3882 } else { // If base is not sp, we can't guarantee the access is aligned. 3883 return false; 3884 } 3885 } else { 3886 int64_t mask = size - 1; 3887 // Load/store pair instruction only supports element size aligned offset. 3888 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3889 } 3890 } 3891 3892 // Checks whether current and previous loads/stores can be merged. 3893 // Returns true if it can be merged, else false. 3894 bool MacroAssembler::ldst_can_merge(Register rt, 3895 const Address &adr, 3896 size_t cur_size_in_bytes, 3897 bool is_store) const { 3898 address prev = pc() - NativeInstruction::instruction_size; 3899 address last = code()->last_insn(); 3900 3901 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3902 return false; 3903 } 3904 3905 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3906 return false; 3907 } 3908 3909 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3910 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3911 3912 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3913 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3914 3915 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3916 return false; 3917 } 3918 3919 int64_t max_offset = 63 * prev_size_in_bytes; 3920 int64_t min_offset = -64 * prev_size_in_bytes; 3921 3922 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3923 3924 // Only same base can be merged. 3925 if (adr.base() != prev_ldst->base()) { 3926 return false; 3927 } 3928 3929 int64_t cur_offset = adr.offset(); 3930 int64_t prev_offset = prev_ldst->offset(); 3931 size_t diff = abs(cur_offset - prev_offset); 3932 if (diff != prev_size_in_bytes) { 3933 return false; 3934 } 3935 3936 // Following cases can not be merged: 3937 // ldr x2, [x2, #8] 3938 // ldr x3, [x2, #16] 3939 // or: 3940 // ldr x2, [x3, #8] 3941 // ldr x2, [x3, #16] 3942 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3943 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3944 return false; 3945 } 3946 3947 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3948 // Offset range must be in ldp/stp instruction's range. 3949 if (low_offset > max_offset || low_offset < min_offset) { 3950 return false; 3951 } 3952 3953 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3954 return true; 3955 } 3956 3957 return false; 3958 } 3959 3960 // Merge current load/store with previous load/store into ldp/stp. 3961 void MacroAssembler::merge_ldst(Register rt, 3962 const Address &adr, 3963 size_t cur_size_in_bytes, 3964 bool is_store) { 3965 3966 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3967 3968 Register rt_low, rt_high; 3969 address prev = pc() - NativeInstruction::instruction_size; 3970 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3971 3972 int64_t offset; 3973 3974 if (adr.offset() < prev_ldst->offset()) { 3975 offset = adr.offset(); 3976 rt_low = rt; 3977 rt_high = prev_ldst->target(); 3978 } else { 3979 offset = prev_ldst->offset(); 3980 rt_low = prev_ldst->target(); 3981 rt_high = rt; 3982 } 3983 3984 Address adr_p = Address(prev_ldst->base(), offset); 3985 // Overwrite previous generated binary. 3986 code_section()->set_end(prev); 3987 3988 const size_t sz = prev_ldst->size_in_bytes(); 3989 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3990 if (!is_store) { 3991 BLOCK_COMMENT("merged ldr pair"); 3992 if (sz == 8) { 3993 ldp(rt_low, rt_high, adr_p); 3994 } else { 3995 ldpw(rt_low, rt_high, adr_p); 3996 } 3997 } else { 3998 BLOCK_COMMENT("merged str pair"); 3999 if (sz == 8) { 4000 stp(rt_low, rt_high, adr_p); 4001 } else { 4002 stpw(rt_low, rt_high, adr_p); 4003 } 4004 } 4005 } 4006 4007 /** 4008 * Multiply 64 bit by 64 bit first loop. 4009 */ 4010 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 4011 Register y, Register y_idx, Register z, 4012 Register carry, Register product, 4013 Register idx, Register kdx) { 4014 // 4015 // jlong carry, x[], y[], z[]; 4016 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4017 // huge_128 product = y[idx] * x[xstart] + carry; 4018 // z[kdx] = (jlong)product; 4019 // carry = (jlong)(product >>> 64); 4020 // } 4021 // z[xstart] = carry; 4022 // 4023 4024 Label L_first_loop, L_first_loop_exit; 4025 Label L_one_x, L_one_y, L_multiply; 4026 4027 subsw(xstart, xstart, 1); 4028 br(Assembler::MI, L_one_x); 4029 4030 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 4031 ldr(x_xstart, Address(rscratch1)); 4032 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 4033 4034 bind(L_first_loop); 4035 subsw(idx, idx, 1); 4036 br(Assembler::MI, L_first_loop_exit); 4037 subsw(idx, idx, 1); 4038 br(Assembler::MI, L_one_y); 4039 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4040 ldr(y_idx, Address(rscratch1)); 4041 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 4042 bind(L_multiply); 4043 4044 // AArch64 has a multiply-accumulate instruction that we can't use 4045 // here because it has no way to process carries, so we have to use 4046 // separate add and adc instructions. Bah. 4047 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 4048 mul(product, x_xstart, y_idx); 4049 adds(product, product, carry); 4050 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 4051 4052 subw(kdx, kdx, 2); 4053 ror(product, product, 32); // back to big-endian 4054 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 4055 4056 b(L_first_loop); 4057 4058 bind(L_one_y); 4059 ldrw(y_idx, Address(y, 0)); 4060 b(L_multiply); 4061 4062 bind(L_one_x); 4063 ldrw(x_xstart, Address(x, 0)); 4064 b(L_first_loop); 4065 4066 bind(L_first_loop_exit); 4067 } 4068 4069 /** 4070 * Multiply 128 bit by 128. Unrolled inner loop. 4071 * 4072 */ 4073 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4074 Register carry, Register carry2, 4075 Register idx, Register jdx, 4076 Register yz_idx1, Register yz_idx2, 4077 Register tmp, Register tmp3, Register tmp4, 4078 Register tmp6, Register product_hi) { 4079 4080 // jlong carry, x[], y[], z[]; 4081 // int kdx = ystart+1; 4082 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4083 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4084 // jlong carry2 = (jlong)(tmp3 >>> 64); 4085 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4086 // carry = (jlong)(tmp4 >>> 64); 4087 // z[kdx+idx+1] = (jlong)tmp3; 4088 // z[kdx+idx] = (jlong)tmp4; 4089 // } 4090 // idx += 2; 4091 // if (idx > 0) { 4092 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4093 // z[kdx+idx] = (jlong)yz_idx1; 4094 // carry = (jlong)(yz_idx1 >>> 64); 4095 // } 4096 // 4097 4098 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4099 4100 lsrw(jdx, idx, 2); 4101 4102 bind(L_third_loop); 4103 4104 subsw(jdx, jdx, 1); 4105 br(Assembler::MI, L_third_loop_exit); 4106 subw(idx, idx, 4); 4107 4108 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4109 4110 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4111 4112 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4113 4114 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4115 ror(yz_idx2, yz_idx2, 32); 4116 4117 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4118 4119 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4120 umulh(tmp4, product_hi, yz_idx1); 4121 4122 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4123 ror(rscratch2, rscratch2, 32); 4124 4125 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4126 umulh(carry2, product_hi, yz_idx2); 4127 4128 // propagate sum of both multiplications into carry:tmp4:tmp3 4129 adds(tmp3, tmp3, carry); 4130 adc(tmp4, tmp4, zr); 4131 adds(tmp3, tmp3, rscratch1); 4132 adcs(tmp4, tmp4, tmp); 4133 adc(carry, carry2, zr); 4134 adds(tmp4, tmp4, rscratch2); 4135 adc(carry, carry, zr); 4136 4137 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4138 ror(tmp4, tmp4, 32); 4139 stp(tmp4, tmp3, Address(tmp6, 0)); 4140 4141 b(L_third_loop); 4142 bind (L_third_loop_exit); 4143 4144 andw (idx, idx, 0x3); 4145 cbz(idx, L_post_third_loop_done); 4146 4147 Label L_check_1; 4148 subsw(idx, idx, 2); 4149 br(Assembler::MI, L_check_1); 4150 4151 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4152 ldr(yz_idx1, Address(rscratch1, 0)); 4153 ror(yz_idx1, yz_idx1, 32); 4154 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4155 umulh(tmp4, product_hi, yz_idx1); 4156 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4157 ldr(yz_idx2, Address(rscratch1, 0)); 4158 ror(yz_idx2, yz_idx2, 32); 4159 4160 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4161 4162 ror(tmp3, tmp3, 32); 4163 str(tmp3, Address(rscratch1, 0)); 4164 4165 bind (L_check_1); 4166 4167 andw (idx, idx, 0x1); 4168 subsw(idx, idx, 1); 4169 br(Assembler::MI, L_post_third_loop_done); 4170 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4171 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4172 umulh(carry2, tmp4, product_hi); 4173 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4174 4175 add2_with_carry(carry2, tmp3, tmp4, carry); 4176 4177 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4178 extr(carry, carry2, tmp3, 32); 4179 4180 bind(L_post_third_loop_done); 4181 } 4182 4183 /** 4184 * Code for BigInteger::multiplyToLen() intrinsic. 4185 * 4186 * r0: x 4187 * r1: xlen 4188 * r2: y 4189 * r3: ylen 4190 * r4: z 4191 * r5: tmp0 4192 * r10: tmp1 4193 * r11: tmp2 4194 * r12: tmp3 4195 * r13: tmp4 4196 * r14: tmp5 4197 * r15: tmp6 4198 * r16: tmp7 4199 * 4200 */ 4201 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4202 Register z, Register tmp0, 4203 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4204 Register tmp5, Register tmp6, Register product_hi) { 4205 4206 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4207 4208 const Register idx = tmp1; 4209 const Register kdx = tmp2; 4210 const Register xstart = tmp3; 4211 4212 const Register y_idx = tmp4; 4213 const Register carry = tmp5; 4214 const Register product = xlen; 4215 const Register x_xstart = tmp0; 4216 4217 // First Loop. 4218 // 4219 // final static long LONG_MASK = 0xffffffffL; 4220 // int xstart = xlen - 1; 4221 // int ystart = ylen - 1; 4222 // long carry = 0; 4223 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4224 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4225 // z[kdx] = (int)product; 4226 // carry = product >>> 32; 4227 // } 4228 // z[xstart] = (int)carry; 4229 // 4230 4231 movw(idx, ylen); // idx = ylen; 4232 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4233 mov(carry, zr); // carry = 0; 4234 4235 Label L_done; 4236 4237 movw(xstart, xlen); 4238 subsw(xstart, xstart, 1); 4239 br(Assembler::MI, L_done); 4240 4241 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4242 4243 Label L_second_loop; 4244 cbzw(kdx, L_second_loop); 4245 4246 Label L_carry; 4247 subw(kdx, kdx, 1); 4248 cbzw(kdx, L_carry); 4249 4250 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4251 lsr(carry, carry, 32); 4252 subw(kdx, kdx, 1); 4253 4254 bind(L_carry); 4255 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4256 4257 // Second and third (nested) loops. 4258 // 4259 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4260 // carry = 0; 4261 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4262 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4263 // (z[k] & LONG_MASK) + carry; 4264 // z[k] = (int)product; 4265 // carry = product >>> 32; 4266 // } 4267 // z[i] = (int)carry; 4268 // } 4269 // 4270 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4271 4272 const Register jdx = tmp1; 4273 4274 bind(L_second_loop); 4275 mov(carry, zr); // carry = 0; 4276 movw(jdx, ylen); // j = ystart+1 4277 4278 subsw(xstart, xstart, 1); // i = xstart-1; 4279 br(Assembler::MI, L_done); 4280 4281 str(z, Address(pre(sp, -4 * wordSize))); 4282 4283 Label L_last_x; 4284 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4285 subsw(xstart, xstart, 1); // i = xstart-1; 4286 br(Assembler::MI, L_last_x); 4287 4288 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4289 ldr(product_hi, Address(rscratch1)); 4290 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4291 4292 Label L_third_loop_prologue; 4293 bind(L_third_loop_prologue); 4294 4295 str(ylen, Address(sp, wordSize)); 4296 stp(x, xstart, Address(sp, 2 * wordSize)); 4297 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4298 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4299 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4300 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4301 4302 addw(tmp3, xlen, 1); 4303 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4304 subsw(tmp3, tmp3, 1); 4305 br(Assembler::MI, L_done); 4306 4307 lsr(carry, carry, 32); 4308 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4309 b(L_second_loop); 4310 4311 // Next infrequent code is moved outside loops. 4312 bind(L_last_x); 4313 ldrw(product_hi, Address(x, 0)); 4314 b(L_third_loop_prologue); 4315 4316 bind(L_done); 4317 } 4318 4319 // Code for BigInteger::mulAdd intrinsic 4320 // out = r0 4321 // in = r1 4322 // offset = r2 (already out.length-offset) 4323 // len = r3 4324 // k = r4 4325 // 4326 // pseudo code from java implementation: 4327 // carry = 0; 4328 // offset = out.length-offset - 1; 4329 // for (int j=len-1; j >= 0; j--) { 4330 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4331 // out[offset--] = (int)product; 4332 // carry = product >>> 32; 4333 // } 4334 // return (int)carry; 4335 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4336 Register len, Register k) { 4337 Label LOOP, END; 4338 // pre-loop 4339 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4340 csel(out, zr, out, Assembler::EQ); 4341 br(Assembler::EQ, END); 4342 add(in, in, len, LSL, 2); // in[j+1] address 4343 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4344 mov(out, zr); // used to keep carry now 4345 BIND(LOOP); 4346 ldrw(rscratch1, Address(pre(in, -4))); 4347 madd(rscratch1, rscratch1, k, out); 4348 ldrw(rscratch2, Address(pre(offset, -4))); 4349 add(rscratch1, rscratch1, rscratch2); 4350 strw(rscratch1, Address(offset)); 4351 lsr(out, rscratch1, 32); 4352 subs(len, len, 1); 4353 br(Assembler::NE, LOOP); 4354 BIND(END); 4355 } 4356 4357 /** 4358 * Emits code to update CRC-32 with a byte value according to constants in table 4359 * 4360 * @param [in,out]crc Register containing the crc. 4361 * @param [in]val Register containing the byte to fold into the CRC. 4362 * @param [in]table Register containing the table of crc constants. 4363 * 4364 * uint32_t crc; 4365 * val = crc_table[(val ^ crc) & 0xFF]; 4366 * crc = val ^ (crc >> 8); 4367 * 4368 */ 4369 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4370 eor(val, val, crc); 4371 andr(val, val, 0xff); 4372 ldrw(val, Address(table, val, Address::lsl(2))); 4373 eor(crc, val, crc, Assembler::LSR, 8); 4374 } 4375 4376 /** 4377 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4378 * 4379 * @param [in,out]crc Register containing the crc. 4380 * @param [in]v Register containing the 32-bit to fold into the CRC. 4381 * @param [in]table0 Register containing table 0 of crc constants. 4382 * @param [in]table1 Register containing table 1 of crc constants. 4383 * @param [in]table2 Register containing table 2 of crc constants. 4384 * @param [in]table3 Register containing table 3 of crc constants. 4385 * 4386 * uint32_t crc; 4387 * v = crc ^ v 4388 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4389 * 4390 */ 4391 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4392 Register table0, Register table1, Register table2, Register table3, 4393 bool upper) { 4394 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4395 uxtb(tmp, v); 4396 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4397 ubfx(tmp, v, 8, 8); 4398 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4399 eor(crc, crc, tmp); 4400 ubfx(tmp, v, 16, 8); 4401 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4402 eor(crc, crc, tmp); 4403 ubfx(tmp, v, 24, 8); 4404 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4405 eor(crc, crc, tmp); 4406 } 4407 4408 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4409 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4410 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4411 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4412 4413 subs(tmp0, len, 384); 4414 mvnw(crc, crc); 4415 br(Assembler::GE, CRC_by128_pre); 4416 BIND(CRC_less128); 4417 subs(len, len, 32); 4418 br(Assembler::GE, CRC_by32_loop); 4419 BIND(CRC_less32); 4420 adds(len, len, 32 - 4); 4421 br(Assembler::GE, CRC_by4_loop); 4422 adds(len, len, 4); 4423 br(Assembler::GT, CRC_by1_loop); 4424 b(L_exit); 4425 4426 BIND(CRC_by32_loop); 4427 ldp(tmp0, tmp1, Address(buf)); 4428 crc32x(crc, crc, tmp0); 4429 ldp(tmp2, tmp3, Address(buf, 16)); 4430 crc32x(crc, crc, tmp1); 4431 add(buf, buf, 32); 4432 crc32x(crc, crc, tmp2); 4433 subs(len, len, 32); 4434 crc32x(crc, crc, tmp3); 4435 br(Assembler::GE, CRC_by32_loop); 4436 cmn(len, (u1)32); 4437 br(Assembler::NE, CRC_less32); 4438 b(L_exit); 4439 4440 BIND(CRC_by4_loop); 4441 ldrw(tmp0, Address(post(buf, 4))); 4442 subs(len, len, 4); 4443 crc32w(crc, crc, tmp0); 4444 br(Assembler::GE, CRC_by4_loop); 4445 adds(len, len, 4); 4446 br(Assembler::LE, L_exit); 4447 BIND(CRC_by1_loop); 4448 ldrb(tmp0, Address(post(buf, 1))); 4449 subs(len, len, 1); 4450 crc32b(crc, crc, tmp0); 4451 br(Assembler::GT, CRC_by1_loop); 4452 b(L_exit); 4453 4454 BIND(CRC_by128_pre); 4455 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4456 4*256*sizeof(juint) + 8*sizeof(juint)); 4457 mov(crc, 0); 4458 crc32x(crc, crc, tmp0); 4459 crc32x(crc, crc, tmp1); 4460 4461 cbnz(len, CRC_less128); 4462 4463 BIND(L_exit); 4464 mvnw(crc, crc); 4465 } 4466 4467 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4468 Register len, Register tmp0, Register tmp1, Register tmp2, 4469 Register tmp3) { 4470 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4471 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4472 4473 mvnw(crc, crc); 4474 4475 subs(len, len, 128); 4476 br(Assembler::GE, CRC_by64_pre); 4477 BIND(CRC_less64); 4478 adds(len, len, 128-32); 4479 br(Assembler::GE, CRC_by32_loop); 4480 BIND(CRC_less32); 4481 adds(len, len, 32-4); 4482 br(Assembler::GE, CRC_by4_loop); 4483 adds(len, len, 4); 4484 br(Assembler::GT, CRC_by1_loop); 4485 b(L_exit); 4486 4487 BIND(CRC_by32_loop); 4488 ldp(tmp0, tmp1, Address(post(buf, 16))); 4489 subs(len, len, 32); 4490 crc32x(crc, crc, tmp0); 4491 ldr(tmp2, Address(post(buf, 8))); 4492 crc32x(crc, crc, tmp1); 4493 ldr(tmp3, Address(post(buf, 8))); 4494 crc32x(crc, crc, tmp2); 4495 crc32x(crc, crc, tmp3); 4496 br(Assembler::GE, CRC_by32_loop); 4497 cmn(len, (u1)32); 4498 br(Assembler::NE, CRC_less32); 4499 b(L_exit); 4500 4501 BIND(CRC_by4_loop); 4502 ldrw(tmp0, Address(post(buf, 4))); 4503 subs(len, len, 4); 4504 crc32w(crc, crc, tmp0); 4505 br(Assembler::GE, CRC_by4_loop); 4506 adds(len, len, 4); 4507 br(Assembler::LE, L_exit); 4508 BIND(CRC_by1_loop); 4509 ldrb(tmp0, Address(post(buf, 1))); 4510 subs(len, len, 1); 4511 crc32b(crc, crc, tmp0); 4512 br(Assembler::GT, CRC_by1_loop); 4513 b(L_exit); 4514 4515 BIND(CRC_by64_pre); 4516 sub(buf, buf, 8); 4517 ldp(tmp0, tmp1, Address(buf, 8)); 4518 crc32x(crc, crc, tmp0); 4519 ldr(tmp2, Address(buf, 24)); 4520 crc32x(crc, crc, tmp1); 4521 ldr(tmp3, Address(buf, 32)); 4522 crc32x(crc, crc, tmp2); 4523 ldr(tmp0, Address(buf, 40)); 4524 crc32x(crc, crc, tmp3); 4525 ldr(tmp1, Address(buf, 48)); 4526 crc32x(crc, crc, tmp0); 4527 ldr(tmp2, Address(buf, 56)); 4528 crc32x(crc, crc, tmp1); 4529 ldr(tmp3, Address(pre(buf, 64))); 4530 4531 b(CRC_by64_loop); 4532 4533 align(CodeEntryAlignment); 4534 BIND(CRC_by64_loop); 4535 subs(len, len, 64); 4536 crc32x(crc, crc, tmp2); 4537 ldr(tmp0, Address(buf, 8)); 4538 crc32x(crc, crc, tmp3); 4539 ldr(tmp1, Address(buf, 16)); 4540 crc32x(crc, crc, tmp0); 4541 ldr(tmp2, Address(buf, 24)); 4542 crc32x(crc, crc, tmp1); 4543 ldr(tmp3, Address(buf, 32)); 4544 crc32x(crc, crc, tmp2); 4545 ldr(tmp0, Address(buf, 40)); 4546 crc32x(crc, crc, tmp3); 4547 ldr(tmp1, Address(buf, 48)); 4548 crc32x(crc, crc, tmp0); 4549 ldr(tmp2, Address(buf, 56)); 4550 crc32x(crc, crc, tmp1); 4551 ldr(tmp3, Address(pre(buf, 64))); 4552 br(Assembler::GE, CRC_by64_loop); 4553 4554 // post-loop 4555 crc32x(crc, crc, tmp2); 4556 crc32x(crc, crc, tmp3); 4557 4558 sub(len, len, 64); 4559 add(buf, buf, 8); 4560 cmn(len, (u1)128); 4561 br(Assembler::NE, CRC_less64); 4562 BIND(L_exit); 4563 mvnw(crc, crc); 4564 } 4565 4566 /** 4567 * @param crc register containing existing CRC (32-bit) 4568 * @param buf register pointing to input byte buffer (byte*) 4569 * @param len register containing number of bytes 4570 * @param table register that will contain address of CRC table 4571 * @param tmp scratch register 4572 */ 4573 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4574 Register table0, Register table1, Register table2, Register table3, 4575 Register tmp, Register tmp2, Register tmp3) { 4576 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4577 4578 if (UseCryptoPmullForCRC32) { 4579 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4580 return; 4581 } 4582 4583 if (UseCRC32) { 4584 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4585 return; 4586 } 4587 4588 mvnw(crc, crc); 4589 4590 { 4591 uint64_t offset; 4592 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4593 add(table0, table0, offset); 4594 } 4595 add(table1, table0, 1*256*sizeof(juint)); 4596 add(table2, table0, 2*256*sizeof(juint)); 4597 add(table3, table0, 3*256*sizeof(juint)); 4598 4599 { // Neon code start 4600 cmp(len, (u1)64); 4601 br(Assembler::LT, L_by16); 4602 eor(v16, T16B, v16, v16); 4603 4604 Label L_fold; 4605 4606 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4607 4608 ld1(v0, v1, T2D, post(buf, 32)); 4609 ld1r(v4, T2D, post(tmp, 8)); 4610 ld1r(v5, T2D, post(tmp, 8)); 4611 ld1r(v6, T2D, post(tmp, 8)); 4612 ld1r(v7, T2D, post(tmp, 8)); 4613 mov(v16, S, 0, crc); 4614 4615 eor(v0, T16B, v0, v16); 4616 sub(len, len, 64); 4617 4618 BIND(L_fold); 4619 pmull(v22, T8H, v0, v5, T8B); 4620 pmull(v20, T8H, v0, v7, T8B); 4621 pmull(v23, T8H, v0, v4, T8B); 4622 pmull(v21, T8H, v0, v6, T8B); 4623 4624 pmull2(v18, T8H, v0, v5, T16B); 4625 pmull2(v16, T8H, v0, v7, T16B); 4626 pmull2(v19, T8H, v0, v4, T16B); 4627 pmull2(v17, T8H, v0, v6, T16B); 4628 4629 uzp1(v24, T8H, v20, v22); 4630 uzp2(v25, T8H, v20, v22); 4631 eor(v20, T16B, v24, v25); 4632 4633 uzp1(v26, T8H, v16, v18); 4634 uzp2(v27, T8H, v16, v18); 4635 eor(v16, T16B, v26, v27); 4636 4637 ushll2(v22, T4S, v20, T8H, 8); 4638 ushll(v20, T4S, v20, T4H, 8); 4639 4640 ushll2(v18, T4S, v16, T8H, 8); 4641 ushll(v16, T4S, v16, T4H, 8); 4642 4643 eor(v22, T16B, v23, v22); 4644 eor(v18, T16B, v19, v18); 4645 eor(v20, T16B, v21, v20); 4646 eor(v16, T16B, v17, v16); 4647 4648 uzp1(v17, T2D, v16, v20); 4649 uzp2(v21, T2D, v16, v20); 4650 eor(v17, T16B, v17, v21); 4651 4652 ushll2(v20, T2D, v17, T4S, 16); 4653 ushll(v16, T2D, v17, T2S, 16); 4654 4655 eor(v20, T16B, v20, v22); 4656 eor(v16, T16B, v16, v18); 4657 4658 uzp1(v17, T2D, v20, v16); 4659 uzp2(v21, T2D, v20, v16); 4660 eor(v28, T16B, v17, v21); 4661 4662 pmull(v22, T8H, v1, v5, T8B); 4663 pmull(v20, T8H, v1, v7, T8B); 4664 pmull(v23, T8H, v1, v4, T8B); 4665 pmull(v21, T8H, v1, v6, T8B); 4666 4667 pmull2(v18, T8H, v1, v5, T16B); 4668 pmull2(v16, T8H, v1, v7, T16B); 4669 pmull2(v19, T8H, v1, v4, T16B); 4670 pmull2(v17, T8H, v1, v6, T16B); 4671 4672 ld1(v0, v1, T2D, post(buf, 32)); 4673 4674 uzp1(v24, T8H, v20, v22); 4675 uzp2(v25, T8H, v20, v22); 4676 eor(v20, T16B, v24, v25); 4677 4678 uzp1(v26, T8H, v16, v18); 4679 uzp2(v27, T8H, v16, v18); 4680 eor(v16, T16B, v26, v27); 4681 4682 ushll2(v22, T4S, v20, T8H, 8); 4683 ushll(v20, T4S, v20, T4H, 8); 4684 4685 ushll2(v18, T4S, v16, T8H, 8); 4686 ushll(v16, T4S, v16, T4H, 8); 4687 4688 eor(v22, T16B, v23, v22); 4689 eor(v18, T16B, v19, v18); 4690 eor(v20, T16B, v21, v20); 4691 eor(v16, T16B, v17, v16); 4692 4693 uzp1(v17, T2D, v16, v20); 4694 uzp2(v21, T2D, v16, v20); 4695 eor(v16, T16B, v17, v21); 4696 4697 ushll2(v20, T2D, v16, T4S, 16); 4698 ushll(v16, T2D, v16, T2S, 16); 4699 4700 eor(v20, T16B, v22, v20); 4701 eor(v16, T16B, v16, v18); 4702 4703 uzp1(v17, T2D, v20, v16); 4704 uzp2(v21, T2D, v20, v16); 4705 eor(v20, T16B, v17, v21); 4706 4707 shl(v16, T2D, v28, 1); 4708 shl(v17, T2D, v20, 1); 4709 4710 eor(v0, T16B, v0, v16); 4711 eor(v1, T16B, v1, v17); 4712 4713 subs(len, len, 32); 4714 br(Assembler::GE, L_fold); 4715 4716 mov(crc, 0); 4717 mov(tmp, v0, D, 0); 4718 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4719 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4720 mov(tmp, v0, D, 1); 4721 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4722 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4723 mov(tmp, v1, D, 0); 4724 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4725 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4726 mov(tmp, v1, D, 1); 4727 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4728 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4729 4730 add(len, len, 32); 4731 } // Neon code end 4732 4733 BIND(L_by16); 4734 subs(len, len, 16); 4735 br(Assembler::GE, L_by16_loop); 4736 adds(len, len, 16-4); 4737 br(Assembler::GE, L_by4_loop); 4738 adds(len, len, 4); 4739 br(Assembler::GT, L_by1_loop); 4740 b(L_exit); 4741 4742 BIND(L_by4_loop); 4743 ldrw(tmp, Address(post(buf, 4))); 4744 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4745 subs(len, len, 4); 4746 br(Assembler::GE, L_by4_loop); 4747 adds(len, len, 4); 4748 br(Assembler::LE, L_exit); 4749 BIND(L_by1_loop); 4750 subs(len, len, 1); 4751 ldrb(tmp, Address(post(buf, 1))); 4752 update_byte_crc32(crc, tmp, table0); 4753 br(Assembler::GT, L_by1_loop); 4754 b(L_exit); 4755 4756 align(CodeEntryAlignment); 4757 BIND(L_by16_loop); 4758 subs(len, len, 16); 4759 ldp(tmp, tmp3, Address(post(buf, 16))); 4760 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4761 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4762 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4763 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4764 br(Assembler::GE, L_by16_loop); 4765 adds(len, len, 16-4); 4766 br(Assembler::GE, L_by4_loop); 4767 adds(len, len, 4); 4768 br(Assembler::GT, L_by1_loop); 4769 BIND(L_exit); 4770 mvnw(crc, crc); 4771 } 4772 4773 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4774 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4775 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4776 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4777 4778 subs(tmp0, len, 384); 4779 br(Assembler::GE, CRC_by128_pre); 4780 BIND(CRC_less128); 4781 subs(len, len, 32); 4782 br(Assembler::GE, CRC_by32_loop); 4783 BIND(CRC_less32); 4784 adds(len, len, 32 - 4); 4785 br(Assembler::GE, CRC_by4_loop); 4786 adds(len, len, 4); 4787 br(Assembler::GT, CRC_by1_loop); 4788 b(L_exit); 4789 4790 BIND(CRC_by32_loop); 4791 ldp(tmp0, tmp1, Address(buf)); 4792 crc32cx(crc, crc, tmp0); 4793 ldr(tmp2, Address(buf, 16)); 4794 crc32cx(crc, crc, tmp1); 4795 ldr(tmp3, Address(buf, 24)); 4796 crc32cx(crc, crc, tmp2); 4797 add(buf, buf, 32); 4798 subs(len, len, 32); 4799 crc32cx(crc, crc, tmp3); 4800 br(Assembler::GE, CRC_by32_loop); 4801 cmn(len, (u1)32); 4802 br(Assembler::NE, CRC_less32); 4803 b(L_exit); 4804 4805 BIND(CRC_by4_loop); 4806 ldrw(tmp0, Address(post(buf, 4))); 4807 subs(len, len, 4); 4808 crc32cw(crc, crc, tmp0); 4809 br(Assembler::GE, CRC_by4_loop); 4810 adds(len, len, 4); 4811 br(Assembler::LE, L_exit); 4812 BIND(CRC_by1_loop); 4813 ldrb(tmp0, Address(post(buf, 1))); 4814 subs(len, len, 1); 4815 crc32cb(crc, crc, tmp0); 4816 br(Assembler::GT, CRC_by1_loop); 4817 b(L_exit); 4818 4819 BIND(CRC_by128_pre); 4820 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4821 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4822 mov(crc, 0); 4823 crc32cx(crc, crc, tmp0); 4824 crc32cx(crc, crc, tmp1); 4825 4826 cbnz(len, CRC_less128); 4827 4828 BIND(L_exit); 4829 } 4830 4831 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4832 Register len, Register tmp0, Register tmp1, Register tmp2, 4833 Register tmp3) { 4834 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4835 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4836 4837 subs(len, len, 128); 4838 br(Assembler::GE, CRC_by64_pre); 4839 BIND(CRC_less64); 4840 adds(len, len, 128-32); 4841 br(Assembler::GE, CRC_by32_loop); 4842 BIND(CRC_less32); 4843 adds(len, len, 32-4); 4844 br(Assembler::GE, CRC_by4_loop); 4845 adds(len, len, 4); 4846 br(Assembler::GT, CRC_by1_loop); 4847 b(L_exit); 4848 4849 BIND(CRC_by32_loop); 4850 ldp(tmp0, tmp1, Address(post(buf, 16))); 4851 subs(len, len, 32); 4852 crc32cx(crc, crc, tmp0); 4853 ldr(tmp2, Address(post(buf, 8))); 4854 crc32cx(crc, crc, tmp1); 4855 ldr(tmp3, Address(post(buf, 8))); 4856 crc32cx(crc, crc, tmp2); 4857 crc32cx(crc, crc, tmp3); 4858 br(Assembler::GE, CRC_by32_loop); 4859 cmn(len, (u1)32); 4860 br(Assembler::NE, CRC_less32); 4861 b(L_exit); 4862 4863 BIND(CRC_by4_loop); 4864 ldrw(tmp0, Address(post(buf, 4))); 4865 subs(len, len, 4); 4866 crc32cw(crc, crc, tmp0); 4867 br(Assembler::GE, CRC_by4_loop); 4868 adds(len, len, 4); 4869 br(Assembler::LE, L_exit); 4870 BIND(CRC_by1_loop); 4871 ldrb(tmp0, Address(post(buf, 1))); 4872 subs(len, len, 1); 4873 crc32cb(crc, crc, tmp0); 4874 br(Assembler::GT, CRC_by1_loop); 4875 b(L_exit); 4876 4877 BIND(CRC_by64_pre); 4878 sub(buf, buf, 8); 4879 ldp(tmp0, tmp1, Address(buf, 8)); 4880 crc32cx(crc, crc, tmp0); 4881 ldr(tmp2, Address(buf, 24)); 4882 crc32cx(crc, crc, tmp1); 4883 ldr(tmp3, Address(buf, 32)); 4884 crc32cx(crc, crc, tmp2); 4885 ldr(tmp0, Address(buf, 40)); 4886 crc32cx(crc, crc, tmp3); 4887 ldr(tmp1, Address(buf, 48)); 4888 crc32cx(crc, crc, tmp0); 4889 ldr(tmp2, Address(buf, 56)); 4890 crc32cx(crc, crc, tmp1); 4891 ldr(tmp3, Address(pre(buf, 64))); 4892 4893 b(CRC_by64_loop); 4894 4895 align(CodeEntryAlignment); 4896 BIND(CRC_by64_loop); 4897 subs(len, len, 64); 4898 crc32cx(crc, crc, tmp2); 4899 ldr(tmp0, Address(buf, 8)); 4900 crc32cx(crc, crc, tmp3); 4901 ldr(tmp1, Address(buf, 16)); 4902 crc32cx(crc, crc, tmp0); 4903 ldr(tmp2, Address(buf, 24)); 4904 crc32cx(crc, crc, tmp1); 4905 ldr(tmp3, Address(buf, 32)); 4906 crc32cx(crc, crc, tmp2); 4907 ldr(tmp0, Address(buf, 40)); 4908 crc32cx(crc, crc, tmp3); 4909 ldr(tmp1, Address(buf, 48)); 4910 crc32cx(crc, crc, tmp0); 4911 ldr(tmp2, Address(buf, 56)); 4912 crc32cx(crc, crc, tmp1); 4913 ldr(tmp3, Address(pre(buf, 64))); 4914 br(Assembler::GE, CRC_by64_loop); 4915 4916 // post-loop 4917 crc32cx(crc, crc, tmp2); 4918 crc32cx(crc, crc, tmp3); 4919 4920 sub(len, len, 64); 4921 add(buf, buf, 8); 4922 cmn(len, (u1)128); 4923 br(Assembler::NE, CRC_less64); 4924 BIND(L_exit); 4925 } 4926 4927 /** 4928 * @param crc register containing existing CRC (32-bit) 4929 * @param buf register pointing to input byte buffer (byte*) 4930 * @param len register containing number of bytes 4931 * @param table register that will contain address of CRC table 4932 * @param tmp scratch register 4933 */ 4934 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4935 Register table0, Register table1, Register table2, Register table3, 4936 Register tmp, Register tmp2, Register tmp3) { 4937 if (UseCryptoPmullForCRC32) { 4938 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4939 } else { 4940 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4941 } 4942 } 4943 4944 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4945 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4946 Label CRC_by128_loop; 4947 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4948 4949 sub(len, len, 256); 4950 Register table = tmp0; 4951 { 4952 uint64_t offset; 4953 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4954 add(table, table, offset); 4955 } 4956 add(table, table, table_offset); 4957 4958 // Registers v0..v7 are used as data registers. 4959 // Registers v16..v31 are used as tmp registers. 4960 sub(buf, buf, 0x10); 4961 ldrq(v0, Address(buf, 0x10)); 4962 ldrq(v1, Address(buf, 0x20)); 4963 ldrq(v2, Address(buf, 0x30)); 4964 ldrq(v3, Address(buf, 0x40)); 4965 ldrq(v4, Address(buf, 0x50)); 4966 ldrq(v5, Address(buf, 0x60)); 4967 ldrq(v6, Address(buf, 0x70)); 4968 ldrq(v7, Address(pre(buf, 0x80))); 4969 4970 movi(v31, T4S, 0); 4971 mov(v31, S, 0, crc); 4972 eor(v0, T16B, v0, v31); 4973 4974 // Register v16 contains constants from the crc table. 4975 ldrq(v16, Address(table)); 4976 b(CRC_by128_loop); 4977 4978 align(OptoLoopAlignment); 4979 BIND(CRC_by128_loop); 4980 pmull (v17, T1Q, v0, v16, T1D); 4981 pmull2(v18, T1Q, v0, v16, T2D); 4982 ldrq(v0, Address(buf, 0x10)); 4983 eor3(v0, T16B, v17, v18, v0); 4984 4985 pmull (v19, T1Q, v1, v16, T1D); 4986 pmull2(v20, T1Q, v1, v16, T2D); 4987 ldrq(v1, Address(buf, 0x20)); 4988 eor3(v1, T16B, v19, v20, v1); 4989 4990 pmull (v21, T1Q, v2, v16, T1D); 4991 pmull2(v22, T1Q, v2, v16, T2D); 4992 ldrq(v2, Address(buf, 0x30)); 4993 eor3(v2, T16B, v21, v22, v2); 4994 4995 pmull (v23, T1Q, v3, v16, T1D); 4996 pmull2(v24, T1Q, v3, v16, T2D); 4997 ldrq(v3, Address(buf, 0x40)); 4998 eor3(v3, T16B, v23, v24, v3); 4999 5000 pmull (v25, T1Q, v4, v16, T1D); 5001 pmull2(v26, T1Q, v4, v16, T2D); 5002 ldrq(v4, Address(buf, 0x50)); 5003 eor3(v4, T16B, v25, v26, v4); 5004 5005 pmull (v27, T1Q, v5, v16, T1D); 5006 pmull2(v28, T1Q, v5, v16, T2D); 5007 ldrq(v5, Address(buf, 0x60)); 5008 eor3(v5, T16B, v27, v28, v5); 5009 5010 pmull (v29, T1Q, v6, v16, T1D); 5011 pmull2(v30, T1Q, v6, v16, T2D); 5012 ldrq(v6, Address(buf, 0x70)); 5013 eor3(v6, T16B, v29, v30, v6); 5014 5015 // Reuse registers v23, v24. 5016 // Using them won't block the first instruction of the next iteration. 5017 pmull (v23, T1Q, v7, v16, T1D); 5018 pmull2(v24, T1Q, v7, v16, T2D); 5019 ldrq(v7, Address(pre(buf, 0x80))); 5020 eor3(v7, T16B, v23, v24, v7); 5021 5022 subs(len, len, 0x80); 5023 br(Assembler::GE, CRC_by128_loop); 5024 5025 // fold into 512 bits 5026 // Use v31 for constants because v16 can be still in use. 5027 ldrq(v31, Address(table, 0x10)); 5028 5029 pmull (v17, T1Q, v0, v31, T1D); 5030 pmull2(v18, T1Q, v0, v31, T2D); 5031 eor3(v0, T16B, v17, v18, v4); 5032 5033 pmull (v19, T1Q, v1, v31, T1D); 5034 pmull2(v20, T1Q, v1, v31, T2D); 5035 eor3(v1, T16B, v19, v20, v5); 5036 5037 pmull (v21, T1Q, v2, v31, T1D); 5038 pmull2(v22, T1Q, v2, v31, T2D); 5039 eor3(v2, T16B, v21, v22, v6); 5040 5041 pmull (v23, T1Q, v3, v31, T1D); 5042 pmull2(v24, T1Q, v3, v31, T2D); 5043 eor3(v3, T16B, v23, v24, v7); 5044 5045 // fold into 128 bits 5046 // Use v17 for constants because v31 can be still in use. 5047 ldrq(v17, Address(table, 0x20)); 5048 pmull (v25, T1Q, v0, v17, T1D); 5049 pmull2(v26, T1Q, v0, v17, T2D); 5050 eor3(v3, T16B, v3, v25, v26); 5051 5052 // Use v18 for constants because v17 can be still in use. 5053 ldrq(v18, Address(table, 0x30)); 5054 pmull (v27, T1Q, v1, v18, T1D); 5055 pmull2(v28, T1Q, v1, v18, T2D); 5056 eor3(v3, T16B, v3, v27, v28); 5057 5058 // Use v19 for constants because v18 can be still in use. 5059 ldrq(v19, Address(table, 0x40)); 5060 pmull (v29, T1Q, v2, v19, T1D); 5061 pmull2(v30, T1Q, v2, v19, T2D); 5062 eor3(v0, T16B, v3, v29, v30); 5063 5064 add(len, len, 0x80); 5065 add(buf, buf, 0x10); 5066 5067 mov(tmp0, v0, D, 0); 5068 mov(tmp1, v0, D, 1); 5069 } 5070 5071 void MacroAssembler::addptr(const Address &dst, int32_t src) { 5072 Address adr; 5073 switch(dst.getMode()) { 5074 case Address::base_plus_offset: 5075 // This is the expected mode, although we allow all the other 5076 // forms below. 5077 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5078 break; 5079 default: 5080 lea(rscratch2, dst); 5081 adr = Address(rscratch2); 5082 break; 5083 } 5084 ldr(rscratch1, adr); 5085 add(rscratch1, rscratch1, src); 5086 str(rscratch1, adr); 5087 } 5088 5089 void MacroAssembler::cmpptr(Register src1, Address src2) { 5090 uint64_t offset; 5091 adrp(rscratch1, src2, offset); 5092 ldr(rscratch1, Address(rscratch1, offset)); 5093 cmp(src1, rscratch1); 5094 } 5095 5096 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5097 cmp(obj1, obj2); 5098 } 5099 5100 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5101 load_method_holder(rresult, rmethod); 5102 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5103 } 5104 5105 void MacroAssembler::load_method_holder(Register holder, Register method) { 5106 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5107 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5108 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5109 } 5110 5111 void MacroAssembler::load_metadata(Register dst, Register src) { 5112 if (UseCompactObjectHeaders) { 5113 load_narrow_klass_compact(dst, src); 5114 } else if (UseCompressedClassPointers) { 5115 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5116 } else { 5117 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5118 } 5119 } 5120 5121 // Loads the obj's Klass* into dst. 5122 // Preserves all registers (incl src, rscratch1 and rscratch2). 5123 // Input: 5124 // src - the oop we want to load the klass from. 5125 // dst - output narrow klass. 5126 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5127 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5128 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5129 lsr(dst, dst, markWord::klass_shift); 5130 } 5131 5132 void MacroAssembler::load_klass(Register dst, Register src) { 5133 if (UseCompactObjectHeaders) { 5134 load_narrow_klass_compact(dst, src); 5135 decode_klass_not_null(dst); 5136 } else if (UseCompressedClassPointers) { 5137 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5138 decode_klass_not_null(dst); 5139 } else { 5140 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5141 } 5142 } 5143 5144 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5145 if (RestoreMXCSROnJNICalls) { 5146 Label OK; 5147 get_fpcr(tmp1); 5148 mov(tmp2, tmp1); 5149 // Set FPCR to the state we need. We do want Round to Nearest. We 5150 // don't want non-IEEE rounding modes or floating-point traps. 5151 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5152 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5153 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5154 eor(tmp2, tmp1, tmp2); 5155 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5156 set_fpcr(tmp1); 5157 bind(OK); 5158 } 5159 } 5160 5161 // ((OopHandle)result).resolve(); 5162 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5163 // OopHandle::resolve is an indirection. 5164 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5165 } 5166 5167 // ((WeakHandle)result).resolve(); 5168 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5169 assert_different_registers(result, tmp1, tmp2); 5170 Label resolved; 5171 5172 // A null weak handle resolves to null. 5173 cbz(result, resolved); 5174 5175 // Only 64 bit platforms support GCs that require a tmp register 5176 // WeakHandle::resolve is an indirection like jweak. 5177 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5178 result, Address(result), tmp1, tmp2); 5179 bind(resolved); 5180 } 5181 5182 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5183 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5184 ldr(dst, Address(rmethod, Method::const_offset())); 5185 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5186 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5187 ldr(dst, Address(dst, mirror_offset)); 5188 resolve_oop_handle(dst, tmp1, tmp2); 5189 } 5190 5191 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5192 assert_different_registers(obj, klass, tmp); 5193 if (UseCompressedClassPointers) { 5194 if (UseCompactObjectHeaders) { 5195 load_narrow_klass_compact(tmp, obj); 5196 } else { 5197 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5198 } 5199 if (CompressedKlassPointers::base() == nullptr) { 5200 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5201 return; 5202 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5203 && CompressedKlassPointers::shift() == 0) { 5204 // Only the bottom 32 bits matter 5205 cmpw(klass, tmp); 5206 return; 5207 } 5208 decode_klass_not_null(tmp); 5209 } else { 5210 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5211 } 5212 cmp(klass, tmp); 5213 } 5214 5215 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5216 if (UseCompactObjectHeaders) { 5217 load_narrow_klass_compact(tmp1, obj1); 5218 load_narrow_klass_compact(tmp2, obj2); 5219 cmpw(tmp1, tmp2); 5220 } else if (UseCompressedClassPointers) { 5221 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5222 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5223 cmpw(tmp1, tmp2); 5224 } else { 5225 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5226 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5227 cmp(tmp1, tmp2); 5228 } 5229 } 5230 5231 void MacroAssembler::load_prototype_header(Register dst, Register src) { 5232 load_klass(dst, src); 5233 ldr(dst, Address(dst, Klass::prototype_header_offset())); 5234 } 5235 5236 void MacroAssembler::store_klass(Register dst, Register src) { 5237 // FIXME: Should this be a store release? concurrent gcs assumes 5238 // klass length is valid if klass field is not null. 5239 assert(!UseCompactObjectHeaders, "not with compact headers"); 5240 if (UseCompressedClassPointers) { 5241 encode_klass_not_null(src); 5242 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5243 } else { 5244 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5245 } 5246 } 5247 5248 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5249 assert(!UseCompactObjectHeaders, "not with compact headers"); 5250 if (UseCompressedClassPointers) { 5251 // Store to klass gap in destination 5252 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5253 } 5254 } 5255 5256 // Algorithm must match CompressedOops::encode. 5257 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5258 #ifdef ASSERT 5259 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5260 #endif 5261 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5262 if (CompressedOops::base() == nullptr) { 5263 if (CompressedOops::shift() != 0) { 5264 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5265 lsr(d, s, LogMinObjAlignmentInBytes); 5266 } else { 5267 mov(d, s); 5268 } 5269 } else { 5270 subs(d, s, rheapbase); 5271 csel(d, d, zr, Assembler::HS); 5272 lsr(d, d, LogMinObjAlignmentInBytes); 5273 5274 /* Old algorithm: is this any worse? 5275 Label nonnull; 5276 cbnz(r, nonnull); 5277 sub(r, r, rheapbase); 5278 bind(nonnull); 5279 lsr(r, r, LogMinObjAlignmentInBytes); 5280 */ 5281 } 5282 } 5283 5284 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5285 #ifdef ASSERT 5286 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5287 if (CheckCompressedOops) { 5288 Label ok; 5289 cbnz(r, ok); 5290 stop("null oop passed to encode_heap_oop_not_null"); 5291 bind(ok); 5292 } 5293 #endif 5294 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5295 if (CompressedOops::base() != nullptr) { 5296 sub(r, r, rheapbase); 5297 } 5298 if (CompressedOops::shift() != 0) { 5299 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5300 lsr(r, r, LogMinObjAlignmentInBytes); 5301 } 5302 } 5303 5304 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5305 #ifdef ASSERT 5306 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5307 if (CheckCompressedOops) { 5308 Label ok; 5309 cbnz(src, ok); 5310 stop("null oop passed to encode_heap_oop_not_null2"); 5311 bind(ok); 5312 } 5313 #endif 5314 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5315 5316 Register data = src; 5317 if (CompressedOops::base() != nullptr) { 5318 sub(dst, src, rheapbase); 5319 data = dst; 5320 } 5321 if (CompressedOops::shift() != 0) { 5322 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5323 lsr(dst, data, LogMinObjAlignmentInBytes); 5324 data = dst; 5325 } 5326 if (data == src) 5327 mov(dst, src); 5328 } 5329 5330 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5331 #ifdef ASSERT 5332 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5333 #endif 5334 if (CompressedOops::base() == nullptr) { 5335 if (CompressedOops::shift() != 0) { 5336 lsl(d, s, CompressedOops::shift()); 5337 } else if (d != s) { 5338 mov(d, s); 5339 } 5340 } else { 5341 Label done; 5342 if (d != s) 5343 mov(d, s); 5344 cbz(s, done); 5345 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5346 bind(done); 5347 } 5348 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5349 } 5350 5351 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5352 assert (UseCompressedOops, "should only be used for compressed headers"); 5353 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5354 // Cannot assert, unverified entry point counts instructions (see .ad file) 5355 // vtableStubs also counts instructions in pd_code_size_limit. 5356 // Also do not verify_oop as this is called by verify_oop. 5357 if (CompressedOops::shift() != 0) { 5358 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5359 if (CompressedOops::base() != nullptr) { 5360 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5361 } else { 5362 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5363 } 5364 } else { 5365 assert (CompressedOops::base() == nullptr, "sanity"); 5366 } 5367 } 5368 5369 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5370 assert (UseCompressedOops, "should only be used for compressed headers"); 5371 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5372 // Cannot assert, unverified entry point counts instructions (see .ad file) 5373 // vtableStubs also counts instructions in pd_code_size_limit. 5374 // Also do not verify_oop as this is called by verify_oop. 5375 if (CompressedOops::shift() != 0) { 5376 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5377 if (CompressedOops::base() != nullptr) { 5378 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5379 } else { 5380 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5381 } 5382 } else { 5383 assert (CompressedOops::base() == nullptr, "sanity"); 5384 if (dst != src) { 5385 mov(dst, src); 5386 } 5387 } 5388 } 5389 5390 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5391 5392 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5393 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5394 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5395 return _klass_decode_mode; 5396 } 5397 5398 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5399 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5400 5401 // KlassDecodeMode shouldn't be set already. 5402 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5403 5404 if (base == nullptr) { 5405 return KlassDecodeZero; 5406 } 5407 5408 if (operand_valid_for_logical_immediate( 5409 /*is32*/false, (uint64_t)base)) { 5410 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5411 if (((uint64_t)base & range_mask) == 0) { 5412 return KlassDecodeXor; 5413 } 5414 } 5415 5416 const uint64_t shifted_base = 5417 (uint64_t)base >> shift; 5418 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5419 return KlassDecodeMovk; 5420 } 5421 5422 // No valid encoding. 5423 return KlassDecodeNone; 5424 } 5425 5426 // Check if one of the above decoding modes will work for given base, shift and range. 5427 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5428 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5429 } 5430 5431 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5432 _klass_decode_mode = klass_decode_mode(base, shift, range); 5433 return _klass_decode_mode != KlassDecodeNone; 5434 } 5435 5436 static Register pick_different_tmp(Register dst, Register src) { 5437 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst); 5438 return *tmps.begin(); 5439 } 5440 5441 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) { 5442 // we have to load the klass base from the AOT constants area but 5443 // not the shift because it is not allowed to change 5444 int shift = CompressedKlassPointers::shift(); 5445 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5446 if (dst != src) { 5447 // we can load the base into dst, subtract it formthe src and shift down 5448 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5449 ldr(dst, dst); 5450 sub(dst, src, dst); 5451 lsr(dst, dst, shift); 5452 } else { 5453 // we need an extra register in order to load the coop base 5454 Register tmp = pick_different_tmp(dst, src); 5455 RegSet regs = RegSet::of(tmp); 5456 push(regs, sp); 5457 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5458 ldr(tmp, tmp); 5459 sub(dst, src, tmp); 5460 lsr(dst, dst, shift); 5461 pop(regs, sp); 5462 } 5463 } 5464 5465 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5466 if (AOTCodeCache::is_on_for_dump()) { 5467 encode_klass_not_null_for_aot(dst, src); 5468 return; 5469 } 5470 5471 switch (klass_decode_mode()) { 5472 case KlassDecodeZero: 5473 if (CompressedKlassPointers::shift() != 0) { 5474 lsr(dst, src, CompressedKlassPointers::shift()); 5475 } else { 5476 if (dst != src) mov(dst, src); 5477 } 5478 break; 5479 5480 case KlassDecodeXor: 5481 if (CompressedKlassPointers::shift() != 0) { 5482 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5483 lsr(dst, dst, CompressedKlassPointers::shift()); 5484 } else { 5485 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5486 } 5487 break; 5488 5489 case KlassDecodeMovk: 5490 if (CompressedKlassPointers::shift() != 0) { 5491 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5492 } else { 5493 movw(dst, src); 5494 } 5495 break; 5496 5497 case KlassDecodeNone: 5498 ShouldNotReachHere(); 5499 break; 5500 } 5501 } 5502 5503 void MacroAssembler::encode_klass_not_null(Register r) { 5504 encode_klass_not_null(r, r); 5505 } 5506 5507 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) { 5508 // we have to load the klass base from the AOT constants area but 5509 // not the shift because it is not allowed to change 5510 int shift = CompressedKlassPointers::shift(); 5511 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5512 if (dst != src) { 5513 // we can load the base into dst then add the offset with a suitable shift 5514 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5515 ldr(dst, dst); 5516 add(dst, dst, src, LSL, shift); 5517 } else { 5518 // we need an extra register in order to load the coop base 5519 Register tmp = pick_different_tmp(dst, src); 5520 RegSet regs = RegSet::of(tmp); 5521 push(regs, sp); 5522 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5523 ldr(tmp, tmp); 5524 add(dst, tmp, src, LSL, shift); 5525 pop(regs, sp); 5526 } 5527 } 5528 5529 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5530 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5531 5532 if (AOTCodeCache::is_on_for_dump()) { 5533 decode_klass_not_null_for_aot(dst, src); 5534 return; 5535 } 5536 5537 switch (klass_decode_mode()) { 5538 case KlassDecodeZero: 5539 if (CompressedKlassPointers::shift() != 0) { 5540 lsl(dst, src, CompressedKlassPointers::shift()); 5541 } else { 5542 if (dst != src) mov(dst, src); 5543 } 5544 break; 5545 5546 case KlassDecodeXor: 5547 if (CompressedKlassPointers::shift() != 0) { 5548 lsl(dst, src, CompressedKlassPointers::shift()); 5549 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5550 } else { 5551 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5552 } 5553 break; 5554 5555 case KlassDecodeMovk: { 5556 const uint64_t shifted_base = 5557 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5558 5559 if (dst != src) movw(dst, src); 5560 movk(dst, shifted_base >> 32, 32); 5561 5562 if (CompressedKlassPointers::shift() != 0) { 5563 lsl(dst, dst, CompressedKlassPointers::shift()); 5564 } 5565 5566 break; 5567 } 5568 5569 case KlassDecodeNone: 5570 ShouldNotReachHere(); 5571 break; 5572 } 5573 } 5574 5575 void MacroAssembler::decode_klass_not_null(Register r) { 5576 decode_klass_not_null(r, r); 5577 } 5578 5579 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5580 #ifdef ASSERT 5581 { 5582 ThreadInVMfromUnknown tiv; 5583 assert (UseCompressedOops, "should only be used for compressed oops"); 5584 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5585 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5586 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5587 } 5588 #endif 5589 int oop_index = oop_recorder()->find_index(obj); 5590 InstructionMark im(this); 5591 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5592 code_section()->relocate(inst_mark(), rspec); 5593 movz(dst, 0xDEAD, 16); 5594 movk(dst, 0xBEEF); 5595 } 5596 5597 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5598 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5599 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5600 int index = oop_recorder()->find_index(k); 5601 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5602 5603 InstructionMark im(this); 5604 RelocationHolder rspec = metadata_Relocation::spec(index); 5605 code_section()->relocate(inst_mark(), rspec); 5606 narrowKlass nk = CompressedKlassPointers::encode(k); 5607 movz(dst, (nk >> 16), 16); 5608 movk(dst, nk & 0xffff); 5609 } 5610 5611 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5612 Register dst, Address src, 5613 Register tmp1, Register tmp2) { 5614 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5615 decorators = AccessInternal::decorator_fixup(decorators, type); 5616 bool as_raw = (decorators & AS_RAW) != 0; 5617 if (as_raw) { 5618 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5619 } else { 5620 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5621 } 5622 } 5623 5624 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5625 Address dst, Register val, 5626 Register tmp1, Register tmp2, Register tmp3) { 5627 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5628 decorators = AccessInternal::decorator_fixup(decorators, type); 5629 bool as_raw = (decorators & AS_RAW) != 0; 5630 if (as_raw) { 5631 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5632 } else { 5633 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5634 } 5635 } 5636 5637 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5638 Register inline_layout_info) { 5639 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5640 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5641 } 5642 5643 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5644 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5645 ldrw(offset, Address(offset, InlineKlass::payload_offset_offset())); 5646 } 5647 5648 void MacroAssembler::payload_address(Register oop, Register data, Register inline_klass) { 5649 // ((address) (void*) o) + vk->payload_offset(); 5650 Register offset = (data == oop) ? rscratch1 : data; 5651 payload_offset(inline_klass, offset); 5652 if (data == oop) { 5653 add(data, data, offset); 5654 } else { 5655 lea(data, Address(oop, offset)); 5656 } 5657 } 5658 5659 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5660 Register index, Register data) { 5661 assert_different_registers(array, array_klass, index); 5662 assert_different_registers(rscratch1, array, index); 5663 5664 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5665 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 5666 5667 // Klass::layout_helper_log2_element_size(lh) 5668 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5669 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 5670 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 5671 lslv(index, index, rscratch1); 5672 5673 add(data, array, index); 5674 add(data, data, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT)); 5675 } 5676 5677 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5678 Register tmp2, DecoratorSet decorators) { 5679 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5680 } 5681 5682 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5683 Register tmp2, DecoratorSet decorators) { 5684 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5685 } 5686 5687 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5688 Register tmp2, Register tmp3, DecoratorSet decorators) { 5689 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5690 } 5691 5692 // Used for storing nulls. 5693 void MacroAssembler::store_heap_oop_null(Address dst) { 5694 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5695 } 5696 5697 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5698 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5699 int index = oop_recorder()->allocate_metadata_index(obj); 5700 RelocationHolder rspec = metadata_Relocation::spec(index); 5701 return Address((address)obj, rspec); 5702 } 5703 5704 // Move an oop into a register. 5705 void MacroAssembler::movoop(Register dst, jobject obj) { 5706 int oop_index; 5707 if (obj == nullptr) { 5708 oop_index = oop_recorder()->allocate_oop_index(obj); 5709 } else { 5710 #ifdef ASSERT 5711 { 5712 ThreadInVMfromUnknown tiv; 5713 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5714 } 5715 #endif 5716 oop_index = oop_recorder()->find_index(obj); 5717 } 5718 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5719 5720 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5721 mov(dst, Address((address)obj, rspec)); 5722 } else { 5723 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5724 ldr(dst, Address(dummy, rspec)); 5725 } 5726 } 5727 5728 // Move a metadata address into a register. 5729 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5730 int oop_index; 5731 if (obj == nullptr) { 5732 oop_index = oop_recorder()->allocate_metadata_index(obj); 5733 } else { 5734 oop_index = oop_recorder()->find_index(obj); 5735 } 5736 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5737 mov(dst, Address((address)obj, rspec)); 5738 } 5739 5740 Address MacroAssembler::constant_oop_address(jobject obj) { 5741 #ifdef ASSERT 5742 { 5743 ThreadInVMfromUnknown tiv; 5744 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5745 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5746 } 5747 #endif 5748 int oop_index = oop_recorder()->find_index(obj); 5749 return Address((address)obj, oop_Relocation::spec(oop_index)); 5750 } 5751 5752 // Object / value buffer allocation... 5753 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 5754 Register t1, Register t2, 5755 bool clear_fields, Label& alloc_failed) 5756 { 5757 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 5758 Register layout_size = t1; 5759 assert(new_obj == r0, "needs to be r0"); 5760 assert_different_registers(klass, new_obj, t1, t2); 5761 5762 // get instance_size in InstanceKlass (scaled to a count of bytes) 5763 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5764 // test to see if it is malformed in some way 5765 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5766 br(Assembler::NE, slow_case_no_pop); 5767 5768 // Allocate the instance: 5769 // If TLAB is enabled: 5770 // Try to allocate in the TLAB. 5771 // If fails, go to the slow path. 5772 // Initialize the allocation. 5773 // Exit. 5774 // 5775 // Go to slow path. 5776 5777 if (UseTLAB) { 5778 push(klass); 5779 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5780 if (ZeroTLAB || (!clear_fields)) { 5781 // the fields have been already cleared 5782 b(initialize_header); 5783 } else { 5784 // initialize both the header and fields 5785 b(initialize_object); 5786 } 5787 5788 if (clear_fields) { 5789 // The object is initialized before the header. If the object size is 5790 // zero, go directly to the header initialization. 5791 bind(initialize_object); 5792 int header_size = oopDesc::header_size() * HeapWordSize; 5793 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 5794 subs(layout_size, layout_size, header_size); 5795 br(Assembler::EQ, initialize_header); 5796 5797 // Initialize topmost object field, divide size by 8, check if odd and 5798 // test if zero. 5799 5800 #ifdef ASSERT 5801 // make sure instance_size was multiple of 8 5802 Label L; 5803 tst(layout_size, 7); 5804 br(Assembler::EQ, L); 5805 stop("object size is not multiple of 8 - adjust this code"); 5806 bind(L); 5807 // must be > 0, no extra check needed here 5808 #endif 5809 5810 lsr(layout_size, layout_size, LogBytesPerLong); 5811 5812 // initialize remaining object fields: instance_size was a multiple of 8 5813 { 5814 Label loop; 5815 Register base = t2; 5816 5817 bind(loop); 5818 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5819 str(zr, Address(rscratch1, header_size - 1*oopSize)); 5820 subs(layout_size, layout_size, 1); 5821 br(Assembler::NE, loop); 5822 } 5823 } // clear_fields 5824 5825 // initialize object header only. 5826 bind(initialize_header); 5827 pop(klass); 5828 Register mark_word = t2; 5829 if (UseCompactObjectHeaders || EnableValhalla) { 5830 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5831 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5832 } else { 5833 mov(mark_word, (intptr_t)markWord::prototype().value()); 5834 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5835 } 5836 if (!UseCompactObjectHeaders) { 5837 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5838 mov(t2, klass); // preserve klass 5839 store_klass(new_obj, t2); // src klass reg is potentially compressed 5840 } 5841 b(done); 5842 } 5843 5844 if (UseTLAB) { 5845 bind(slow_case); 5846 pop(klass); 5847 } 5848 bind(slow_case_no_pop); 5849 b(alloc_failed); 5850 5851 bind(done); 5852 } 5853 5854 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5855 void MacroAssembler::tlab_allocate(Register obj, 5856 Register var_size_in_bytes, 5857 int con_size_in_bytes, 5858 Register t1, 5859 Register t2, 5860 Label& slow_case) { 5861 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5862 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5863 } 5864 5865 void MacroAssembler::verify_tlab() { 5866 #ifdef ASSERT 5867 if (UseTLAB && VerifyOops) { 5868 Label next, ok; 5869 5870 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5871 5872 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5873 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5874 cmp(rscratch2, rscratch1); 5875 br(Assembler::HS, next); 5876 STOP("assert(top >= start)"); 5877 should_not_reach_here(); 5878 5879 bind(next); 5880 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5881 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5882 cmp(rscratch2, rscratch1); 5883 br(Assembler::HS, ok); 5884 STOP("assert(top <= end)"); 5885 should_not_reach_here(); 5886 5887 bind(ok); 5888 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5889 } 5890 #endif 5891 } 5892 5893 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 5894 inline_layout_info(holder_klass, index, inline_klass); 5895 ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 5896 } 5897 5898 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 5899 assert_different_registers(holder_klass, index, layout_info); 5900 InlineLayoutInfo array[2]; 5901 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 5902 if (is_power_of_2(size)) { 5903 lsl(index, index, log2i_exact(size)); // Scale index by power of 2 5904 } else { 5905 mov(layout_info, size); 5906 mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size 5907 } 5908 ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 5909 add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes()); 5910 lea(layout_info, Address(layout_info, index)); 5911 } 5912 5913 // Writes to stack successive pages until offset reached to check for 5914 // stack overflow + shadow pages. This clobbers tmp. 5915 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5916 assert_different_registers(tmp, size, rscratch1); 5917 mov(tmp, sp); 5918 // Bang stack for total size given plus shadow page size. 5919 // Bang one page at a time because large size can bang beyond yellow and 5920 // red zones. 5921 Label loop; 5922 mov(rscratch1, (int)os::vm_page_size()); 5923 bind(loop); 5924 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5925 subsw(size, size, rscratch1); 5926 str(size, Address(tmp)); 5927 br(Assembler::GT, loop); 5928 5929 // Bang down shadow pages too. 5930 // At this point, (tmp-0) is the last address touched, so don't 5931 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5932 // was post-decremented.) Skip this address by starting at i=1, and 5933 // touch a few more pages below. N.B. It is important to touch all 5934 // the way down to and including i=StackShadowPages. 5935 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5936 // this could be any sized move but this is can be a debugging crumb 5937 // so the bigger the better. 5938 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5939 str(size, Address(tmp)); 5940 } 5941 } 5942 5943 // Move the address of the polling page into dest. 5944 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5945 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5946 } 5947 5948 // Read the polling page. The address of the polling page must 5949 // already be in r. 5950 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5951 address mark; 5952 { 5953 InstructionMark im(this); 5954 code_section()->relocate(inst_mark(), rtype); 5955 ldrw(zr, Address(r, 0)); 5956 mark = inst_mark(); 5957 } 5958 verify_cross_modify_fence_not_required(); 5959 return mark; 5960 } 5961 5962 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5963 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5964 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5965 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5966 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5967 int64_t offset_low = dest_page - low_page; 5968 int64_t offset_high = dest_page - high_page; 5969 5970 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5971 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5972 5973 InstructionMark im(this); 5974 code_section()->relocate(inst_mark(), dest.rspec()); 5975 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5976 // the code cache so that if it is relocated we know it will still reach 5977 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5978 _adrp(reg1, dest.target()); 5979 } else { 5980 uint64_t target = (uint64_t)dest.target(); 5981 uint64_t adrp_target 5982 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5983 5984 _adrp(reg1, (address)adrp_target); 5985 movk(reg1, target >> 32, 32); 5986 } 5987 byte_offset = (uint64_t)dest.target() & 0xfff; 5988 } 5989 5990 void MacroAssembler::load_byte_map_base(Register reg) { 5991 CardTable::CardValue* byte_map_base = 5992 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5993 5994 // Strictly speaking the byte_map_base isn't an address at all, and it might 5995 // even be negative. It is thus materialised as a constant. 5996 mov(reg, (uint64_t)byte_map_base); 5997 } 5998 5999 void MacroAssembler::build_frame(int framesize) { 6000 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 6001 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6002 protect_return_address(); 6003 if (framesize < ((1 << 9) + 2 * wordSize)) { 6004 sub(sp, sp, framesize); 6005 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6006 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 6007 } else { 6008 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6009 if (PreserveFramePointer) mov(rfp, sp); 6010 if (framesize < ((1 << 12) + 2 * wordSize)) 6011 sub(sp, sp, framesize - 2 * wordSize); 6012 else { 6013 mov(rscratch1, framesize - 2 * wordSize); 6014 sub(sp, sp, rscratch1); 6015 } 6016 } 6017 verify_cross_modify_fence_not_required(); 6018 } 6019 6020 void MacroAssembler::remove_frame(int framesize) { 6021 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 6022 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 6023 if (framesize < ((1 << 9) + 2 * wordSize)) { 6024 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 6025 add(sp, sp, framesize); 6026 } else { 6027 if (framesize < ((1 << 12) + 2 * wordSize)) 6028 add(sp, sp, framesize - 2 * wordSize); 6029 else { 6030 mov(rscratch1, framesize - 2 * wordSize); 6031 add(sp, sp, rscratch1); 6032 } 6033 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6034 } 6035 authenticate_return_address(); 6036 } 6037 6038 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 6039 if (needs_stack_repair) { 6040 // Remove the extension of the caller's frame used for inline type unpacking 6041 // 6042 // Right now the stack looks like this: 6043 // 6044 // | Arguments from caller | 6045 // |---------------------------| <-- caller's SP 6046 // | Saved LR #1 | 6047 // | Saved FP #1 | 6048 // |---------------------------| 6049 // | Extension space for | 6050 // | inline arg (un)packing | 6051 // |---------------------------| <-- start of this method's frame 6052 // | Saved LR #2 | 6053 // | Saved FP #2 | 6054 // |---------------------------| <-- FP 6055 // | sp_inc | 6056 // | method locals | 6057 // |---------------------------| <-- SP 6058 // 6059 // There are two copies of FP and LR on the stack. They will be identical at 6060 // first, but that can change. 6061 // If the caller has been deoptimized, LR #1 will be patched to point at the 6062 // deopt blob, and LR #2 will still point into the old method. 6063 // If the saved FP (x29) was not used as the frame pointer, but to store an 6064 // oop, the GC will be aware only of FP #2 as the spilled location of x29 and 6065 // will fix only this one. 6066 // 6067 // When restoring, one must then load FP #2 into x29, and LR #1 into x30, 6068 // while keeping in mind that from the scalarized entry point, there will be 6069 // only one copy of each. 6070 // 6071 // The sp_inc stack slot holds the total size of the frame including the 6072 // extension space minus two words for the saved FP and LR. That is how to 6073 // find LR #1. FP #2 is always located just after sp_inc. 6074 6075 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 6076 6077 ldr(rscratch1, Address(sp, sp_inc_offset)); 6078 ldr(rfp, Address(sp, sp_inc_offset + wordSize)); 6079 add(sp, sp, rscratch1); 6080 ldr(lr, Address(sp, wordSize)); 6081 add(sp, sp, 2 * wordSize); 6082 } else { 6083 remove_frame(initial_framesize); 6084 } 6085 } 6086 6087 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 6088 int real_frame_size = frame_size + sp_inc; 6089 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 6090 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 6091 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 6092 6093 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 6094 6095 // Subtract two words for the saved FP and LR as these will be popped 6096 // separately. See remove_frame above. 6097 mov(rscratch1, real_frame_size - 2*wordSize); 6098 str(rscratch1, Address(sp, sp_inc_offset)); 6099 } 6100 6101 // This method counts leading positive bytes (highest bit not set) in provided byte array 6102 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 6103 // Simple and most common case of aligned small array which is not at the 6104 // end of memory page is placed here. All other cases are in stub. 6105 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 6106 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6107 assert_different_registers(ary1, len, result); 6108 6109 mov(result, len); 6110 cmpw(len, 0); 6111 br(LE, DONE); 6112 cmpw(len, 4 * wordSize); 6113 br(GE, STUB_LONG); // size > 32 then go to stub 6114 6115 int shift = 64 - exact_log2(os::vm_page_size()); 6116 lsl(rscratch1, ary1, shift); 6117 mov(rscratch2, (size_t)(4 * wordSize) << shift); 6118 adds(rscratch2, rscratch1, rscratch2); // At end of page? 6119 br(CS, STUB); // at the end of page then go to stub 6120 subs(len, len, wordSize); 6121 br(LT, END); 6122 6123 BIND(LOOP); 6124 ldr(rscratch1, Address(post(ary1, wordSize))); 6125 tst(rscratch1, UPPER_BIT_MASK); 6126 br(NE, SET_RESULT); 6127 subs(len, len, wordSize); 6128 br(GE, LOOP); 6129 cmpw(len, -wordSize); 6130 br(EQ, DONE); 6131 6132 BIND(END); 6133 ldr(rscratch1, Address(ary1)); 6134 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 6135 lslv(rscratch1, rscratch1, rscratch2); 6136 tst(rscratch1, UPPER_BIT_MASK); 6137 br(NE, SET_RESULT); 6138 b(DONE); 6139 6140 BIND(STUB); 6141 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 6142 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 6143 address tpc1 = trampoline_call(count_pos); 6144 if (tpc1 == nullptr) { 6145 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 6146 postcond(pc() == badAddress); 6147 return nullptr; 6148 } 6149 b(DONE); 6150 6151 BIND(STUB_LONG); 6152 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 6153 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 6154 address tpc2 = trampoline_call(count_pos_long); 6155 if (tpc2 == nullptr) { 6156 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 6157 postcond(pc() == badAddress); 6158 return nullptr; 6159 } 6160 b(DONE); 6161 6162 BIND(SET_RESULT); 6163 6164 add(len, len, wordSize); 6165 sub(result, result, len); 6166 6167 BIND(DONE); 6168 postcond(pc() != badAddress); 6169 return pc(); 6170 } 6171 6172 // Clobbers: rscratch1, rscratch2, rflags 6173 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 6174 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 6175 Register tmp4, Register tmp5, Register result, 6176 Register cnt1, int elem_size) { 6177 Label DONE, SAME; 6178 Register tmp1 = rscratch1; 6179 Register tmp2 = rscratch2; 6180 int elem_per_word = wordSize/elem_size; 6181 int log_elem_size = exact_log2(elem_size); 6182 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 6183 int length_offset = arrayOopDesc::length_offset_in_bytes(); 6184 int base_offset 6185 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 6186 // When the length offset is not aligned to 8 bytes, 6187 // then we align it down. This is valid because the new 6188 // offset will always be the klass which is the same 6189 // for type arrays. 6190 int start_offset = align_down(length_offset, BytesPerWord); 6191 int extra_length = base_offset - start_offset; 6192 assert(start_offset == length_offset || start_offset == klass_offset, 6193 "start offset must be 8-byte-aligned or be the klass offset"); 6194 assert(base_offset != start_offset, "must include the length field"); 6195 extra_length = extra_length / elem_size; // We count in elements, not bytes. 6196 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 6197 6198 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 6199 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6200 6201 #ifndef PRODUCT 6202 { 6203 const char kind = (elem_size == 2) ? 'U' : 'L'; 6204 char comment[64]; 6205 os::snprintf_checked(comment, sizeof comment, "array_equals%c{", kind); 6206 BLOCK_COMMENT(comment); 6207 } 6208 #endif 6209 6210 // if (a1 == a2) 6211 // return true; 6212 cmpoop(a1, a2); // May have read barriers for a1 and a2. 6213 br(EQ, SAME); 6214 6215 if (UseSimpleArrayEquals) { 6216 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 6217 // if (a1 == nullptr || a2 == nullptr) 6218 // return false; 6219 // a1 & a2 == 0 means (some-pointer is null) or 6220 // (very-rare-or-even-probably-impossible-pointer-values) 6221 // so, we can save one branch in most cases 6222 tst(a1, a2); 6223 mov(result, false); 6224 br(EQ, A_MIGHT_BE_NULL); 6225 // if (a1.length != a2.length) 6226 // return false; 6227 bind(A_IS_NOT_NULL); 6228 ldrw(cnt1, Address(a1, length_offset)); 6229 // Increase loop counter by diff between base- and actual start-offset. 6230 addw(cnt1, cnt1, extra_length); 6231 lea(a1, Address(a1, start_offset)); 6232 lea(a2, Address(a2, start_offset)); 6233 // Check for short strings, i.e. smaller than wordSize. 6234 subs(cnt1, cnt1, elem_per_word); 6235 br(Assembler::LT, SHORT); 6236 // Main 8 byte comparison loop. 6237 bind(NEXT_WORD); { 6238 ldr(tmp1, Address(post(a1, wordSize))); 6239 ldr(tmp2, Address(post(a2, wordSize))); 6240 subs(cnt1, cnt1, elem_per_word); 6241 eor(tmp5, tmp1, tmp2); 6242 cbnz(tmp5, DONE); 6243 } br(GT, NEXT_WORD); 6244 // Last longword. In the case where length == 4 we compare the 6245 // same longword twice, but that's still faster than another 6246 // conditional branch. 6247 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6248 // length == 4. 6249 if (log_elem_size > 0) 6250 lsl(cnt1, cnt1, log_elem_size); 6251 ldr(tmp3, Address(a1, cnt1)); 6252 ldr(tmp4, Address(a2, cnt1)); 6253 eor(tmp5, tmp3, tmp4); 6254 cbnz(tmp5, DONE); 6255 b(SAME); 6256 bind(A_MIGHT_BE_NULL); 6257 // in case both a1 and a2 are not-null, proceed with loads 6258 cbz(a1, DONE); 6259 cbz(a2, DONE); 6260 b(A_IS_NOT_NULL); 6261 bind(SHORT); 6262 6263 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6264 { 6265 ldrw(tmp1, Address(post(a1, 4))); 6266 ldrw(tmp2, Address(post(a2, 4))); 6267 eorw(tmp5, tmp1, tmp2); 6268 cbnzw(tmp5, DONE); 6269 } 6270 bind(TAIL03); 6271 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6272 { 6273 ldrh(tmp3, Address(post(a1, 2))); 6274 ldrh(tmp4, Address(post(a2, 2))); 6275 eorw(tmp5, tmp3, tmp4); 6276 cbnzw(tmp5, DONE); 6277 } 6278 bind(TAIL01); 6279 if (elem_size == 1) { // Only needed when comparing byte arrays. 6280 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6281 { 6282 ldrb(tmp1, a1); 6283 ldrb(tmp2, a2); 6284 eorw(tmp5, tmp1, tmp2); 6285 cbnzw(tmp5, DONE); 6286 } 6287 } 6288 } else { 6289 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6290 CSET_EQ, LAST_CHECK; 6291 mov(result, false); 6292 cbz(a1, DONE); 6293 ldrw(cnt1, Address(a1, length_offset)); 6294 cbz(a2, DONE); 6295 // Increase loop counter by diff between base- and actual start-offset. 6296 addw(cnt1, cnt1, extra_length); 6297 6298 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6299 // faster to perform another branch before comparing a1 and a2 6300 cmp(cnt1, (u1)elem_per_word); 6301 br(LE, SHORT); // short or same 6302 ldr(tmp3, Address(pre(a1, start_offset))); 6303 subs(zr, cnt1, stubBytesThreshold); 6304 br(GE, STUB); 6305 ldr(tmp4, Address(pre(a2, start_offset))); 6306 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6307 6308 // Main 16 byte comparison loop with 2 exits 6309 bind(NEXT_DWORD); { 6310 ldr(tmp1, Address(pre(a1, wordSize))); 6311 ldr(tmp2, Address(pre(a2, wordSize))); 6312 subs(cnt1, cnt1, 2 * elem_per_word); 6313 br(LE, TAIL); 6314 eor(tmp4, tmp3, tmp4); 6315 cbnz(tmp4, DONE); 6316 ldr(tmp3, Address(pre(a1, wordSize))); 6317 ldr(tmp4, Address(pre(a2, wordSize))); 6318 cmp(cnt1, (u1)elem_per_word); 6319 br(LE, TAIL2); 6320 cmp(tmp1, tmp2); 6321 } br(EQ, NEXT_DWORD); 6322 b(DONE); 6323 6324 bind(TAIL); 6325 eor(tmp4, tmp3, tmp4); 6326 eor(tmp2, tmp1, tmp2); 6327 lslv(tmp2, tmp2, tmp5); 6328 orr(tmp5, tmp4, tmp2); 6329 cmp(tmp5, zr); 6330 b(CSET_EQ); 6331 6332 bind(TAIL2); 6333 eor(tmp2, tmp1, tmp2); 6334 cbnz(tmp2, DONE); 6335 b(LAST_CHECK); 6336 6337 bind(STUB); 6338 ldr(tmp4, Address(pre(a2, start_offset))); 6339 if (elem_size == 2) { // convert to byte counter 6340 lsl(cnt1, cnt1, 1); 6341 } 6342 eor(tmp5, tmp3, tmp4); 6343 cbnz(tmp5, DONE); 6344 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6345 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6346 address tpc = trampoline_call(stub); 6347 if (tpc == nullptr) { 6348 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6349 postcond(pc() == badAddress); 6350 return nullptr; 6351 } 6352 b(DONE); 6353 6354 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6355 // so, if a2 == null => return false(0), else return true, so we can return a2 6356 mov(result, a2); 6357 b(DONE); 6358 bind(SHORT); 6359 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6360 ldr(tmp3, Address(a1, start_offset)); 6361 ldr(tmp4, Address(a2, start_offset)); 6362 bind(LAST_CHECK); 6363 eor(tmp4, tmp3, tmp4); 6364 lslv(tmp5, tmp4, tmp5); 6365 cmp(tmp5, zr); 6366 bind(CSET_EQ); 6367 cset(result, EQ); 6368 b(DONE); 6369 } 6370 6371 bind(SAME); 6372 mov(result, true); 6373 // That's it. 6374 bind(DONE); 6375 6376 BLOCK_COMMENT("} array_equals"); 6377 postcond(pc() != badAddress); 6378 return pc(); 6379 } 6380 6381 // Compare Strings 6382 6383 // For Strings we're passed the address of the first characters in a1 6384 // and a2 and the length in cnt1. 6385 // There are two implementations. For arrays >= 8 bytes, all 6386 // comparisons (including the final one, which may overlap) are 6387 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6388 // halfword, then a short, and then a byte. 6389 6390 void MacroAssembler::string_equals(Register a1, Register a2, 6391 Register result, Register cnt1) 6392 { 6393 Label SAME, DONE, SHORT, NEXT_WORD; 6394 Register tmp1 = rscratch1; 6395 Register tmp2 = rscratch2; 6396 Register cnt2 = tmp2; // cnt2 only used in array length compare 6397 6398 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6399 6400 #ifndef PRODUCT 6401 { 6402 char comment[64]; 6403 os::snprintf_checked(comment, sizeof comment, "{string_equalsL"); 6404 BLOCK_COMMENT(comment); 6405 } 6406 #endif 6407 6408 mov(result, false); 6409 6410 // Check for short strings, i.e. smaller than wordSize. 6411 subs(cnt1, cnt1, wordSize); 6412 br(Assembler::LT, SHORT); 6413 // Main 8 byte comparison loop. 6414 bind(NEXT_WORD); { 6415 ldr(tmp1, Address(post(a1, wordSize))); 6416 ldr(tmp2, Address(post(a2, wordSize))); 6417 subs(cnt1, cnt1, wordSize); 6418 eor(tmp1, tmp1, tmp2); 6419 cbnz(tmp1, DONE); 6420 } br(GT, NEXT_WORD); 6421 // Last longword. In the case where length == 4 we compare the 6422 // same longword twice, but that's still faster than another 6423 // conditional branch. 6424 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6425 // length == 4. 6426 ldr(tmp1, Address(a1, cnt1)); 6427 ldr(tmp2, Address(a2, cnt1)); 6428 eor(tmp2, tmp1, tmp2); 6429 cbnz(tmp2, DONE); 6430 b(SAME); 6431 6432 bind(SHORT); 6433 Label TAIL03, TAIL01; 6434 6435 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6436 { 6437 ldrw(tmp1, Address(post(a1, 4))); 6438 ldrw(tmp2, Address(post(a2, 4))); 6439 eorw(tmp1, tmp1, tmp2); 6440 cbnzw(tmp1, DONE); 6441 } 6442 bind(TAIL03); 6443 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6444 { 6445 ldrh(tmp1, Address(post(a1, 2))); 6446 ldrh(tmp2, Address(post(a2, 2))); 6447 eorw(tmp1, tmp1, tmp2); 6448 cbnzw(tmp1, DONE); 6449 } 6450 bind(TAIL01); 6451 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6452 { 6453 ldrb(tmp1, a1); 6454 ldrb(tmp2, a2); 6455 eorw(tmp1, tmp1, tmp2); 6456 cbnzw(tmp1, DONE); 6457 } 6458 // Arrays are equal. 6459 bind(SAME); 6460 mov(result, true); 6461 6462 // That's it. 6463 bind(DONE); 6464 BLOCK_COMMENT("} string_equals"); 6465 } 6466 6467 6468 // The size of the blocks erased by the zero_blocks stub. We must 6469 // handle anything smaller than this ourselves in zero_words(). 6470 const int MacroAssembler::zero_words_block_size = 8; 6471 6472 // zero_words() is used by C2 ClearArray patterns and by 6473 // C1_MacroAssembler. It is as small as possible, handling small word 6474 // counts locally and delegating anything larger to the zero_blocks 6475 // stub. It is expanded many times in compiled code, so it is 6476 // important to keep it short. 6477 6478 // ptr: Address of a buffer to be zeroed. 6479 // cnt: Count in HeapWords. 6480 // 6481 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6482 address MacroAssembler::zero_words(Register ptr, Register cnt) 6483 { 6484 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6485 6486 BLOCK_COMMENT("zero_words {"); 6487 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6488 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6489 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6490 6491 subs(rscratch1, cnt, zero_words_block_size); 6492 Label around; 6493 br(LO, around); 6494 { 6495 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6496 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6497 // Make sure this is a C2 compilation. C1 allocates space only for 6498 // trampoline stubs generated by Call LIR ops, and in any case it 6499 // makes sense for a C1 compilation task to proceed as quickly as 6500 // possible. 6501 CompileTask* task; 6502 if (StubRoutines::aarch64::complete() 6503 && Thread::current()->is_Compiler_thread() 6504 && (task = ciEnv::current()->task()) 6505 && is_c2_compile(task->comp_level())) { 6506 address tpc = trampoline_call(zero_blocks); 6507 if (tpc == nullptr) { 6508 DEBUG_ONLY(reset_labels(around)); 6509 return nullptr; 6510 } 6511 } else { 6512 far_call(zero_blocks); 6513 } 6514 } 6515 bind(around); 6516 6517 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6518 // for us. 6519 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6520 Label l; 6521 tbz(cnt, exact_log2(i), l); 6522 for (int j = 0; j < i; j += 2) { 6523 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6524 } 6525 bind(l); 6526 } 6527 { 6528 Label l; 6529 tbz(cnt, 0, l); 6530 str(zr, Address(ptr)); 6531 bind(l); 6532 } 6533 6534 BLOCK_COMMENT("} zero_words"); 6535 return pc(); 6536 } 6537 6538 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6539 // cnt: Immediate count in HeapWords. 6540 // 6541 // r10, r11, rscratch1, and rscratch2 are clobbered. 6542 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6543 { 6544 assert(wordSize <= BlockZeroingLowLimit, 6545 "increase BlockZeroingLowLimit"); 6546 address result = nullptr; 6547 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6548 #ifndef PRODUCT 6549 { 6550 char buf[64]; 6551 os::snprintf_checked(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6552 BLOCK_COMMENT(buf); 6553 } 6554 #endif 6555 if (cnt >= 16) { 6556 uint64_t loops = cnt/16; 6557 if (loops > 1) { 6558 mov(rscratch2, loops - 1); 6559 } 6560 { 6561 Label loop; 6562 bind(loop); 6563 for (int i = 0; i < 16; i += 2) { 6564 stp(zr, zr, Address(base, i * BytesPerWord)); 6565 } 6566 add(base, base, 16 * BytesPerWord); 6567 if (loops > 1) { 6568 subs(rscratch2, rscratch2, 1); 6569 br(GE, loop); 6570 } 6571 } 6572 } 6573 cnt %= 16; 6574 int i = cnt & 1; // store any odd word to start 6575 if (i) str(zr, Address(base)); 6576 for (; i < (int)cnt; i += 2) { 6577 stp(zr, zr, Address(base, i * wordSize)); 6578 } 6579 BLOCK_COMMENT("} zero_words"); 6580 result = pc(); 6581 } else { 6582 mov(r10, base); mov(r11, cnt); 6583 result = zero_words(r10, r11); 6584 } 6585 return result; 6586 } 6587 6588 // Zero blocks of memory by using DC ZVA. 6589 // 6590 // Aligns the base address first sufficiently for DC ZVA, then uses 6591 // DC ZVA repeatedly for every full block. cnt is the size to be 6592 // zeroed in HeapWords. Returns the count of words left to be zeroed 6593 // in cnt. 6594 // 6595 // NOTE: This is intended to be used in the zero_blocks() stub. If 6596 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6597 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6598 Register tmp = rscratch1; 6599 Register tmp2 = rscratch2; 6600 int zva_length = VM_Version::zva_length(); 6601 Label initial_table_end, loop_zva; 6602 Label fini; 6603 6604 // Base must be 16 byte aligned. If not just return and let caller handle it 6605 tst(base, 0x0f); 6606 br(Assembler::NE, fini); 6607 // Align base with ZVA length. 6608 neg(tmp, base); 6609 andr(tmp, tmp, zva_length - 1); 6610 6611 // tmp: the number of bytes to be filled to align the base with ZVA length. 6612 add(base, base, tmp); 6613 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6614 adr(tmp2, initial_table_end); 6615 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6616 br(tmp2); 6617 6618 for (int i = -zva_length + 16; i < 0; i += 16) 6619 stp(zr, zr, Address(base, i)); 6620 bind(initial_table_end); 6621 6622 sub(cnt, cnt, zva_length >> 3); 6623 bind(loop_zva); 6624 dc(Assembler::ZVA, base); 6625 subs(cnt, cnt, zva_length >> 3); 6626 add(base, base, zva_length); 6627 br(Assembler::GE, loop_zva); 6628 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6629 bind(fini); 6630 } 6631 6632 // base: Address of a buffer to be filled, 8 bytes aligned. 6633 // cnt: Count in 8-byte unit. 6634 // value: Value to be filled with. 6635 // base will point to the end of the buffer after filling. 6636 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6637 { 6638 // Algorithm: 6639 // 6640 // if (cnt == 0) { 6641 // return; 6642 // } 6643 // if ((p & 8) != 0) { 6644 // *p++ = v; 6645 // } 6646 // 6647 // scratch1 = cnt & 14; 6648 // cnt -= scratch1; 6649 // p += scratch1; 6650 // switch (scratch1 / 2) { 6651 // do { 6652 // cnt -= 16; 6653 // p[-16] = v; 6654 // p[-15] = v; 6655 // case 7: 6656 // p[-14] = v; 6657 // p[-13] = v; 6658 // case 6: 6659 // p[-12] = v; 6660 // p[-11] = v; 6661 // // ... 6662 // case 1: 6663 // p[-2] = v; 6664 // p[-1] = v; 6665 // case 0: 6666 // p += 16; 6667 // } while (cnt); 6668 // } 6669 // if ((cnt & 1) == 1) { 6670 // *p++ = v; 6671 // } 6672 6673 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6674 6675 Label fini, skip, entry, loop; 6676 const int unroll = 8; // Number of stp instructions we'll unroll 6677 6678 cbz(cnt, fini); 6679 tbz(base, 3, skip); 6680 str(value, Address(post(base, 8))); 6681 sub(cnt, cnt, 1); 6682 bind(skip); 6683 6684 andr(rscratch1, cnt, (unroll-1) * 2); 6685 sub(cnt, cnt, rscratch1); 6686 add(base, base, rscratch1, Assembler::LSL, 3); 6687 adr(rscratch2, entry); 6688 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6689 br(rscratch2); 6690 6691 bind(loop); 6692 add(base, base, unroll * 16); 6693 for (int i = -unroll; i < 0; i++) 6694 stp(value, value, Address(base, i * 16)); 6695 bind(entry); 6696 subs(cnt, cnt, unroll * 2); 6697 br(Assembler::GE, loop); 6698 6699 tbz(cnt, 0, fini); 6700 str(value, Address(post(base, 8))); 6701 bind(fini); 6702 } 6703 6704 // Intrinsic for 6705 // 6706 // - sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6707 // Encodes char[] to byte[] in ISO-8859-1 6708 // 6709 // - java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6710 // Encodes byte[] (containing UTF-16) to byte[] in ISO-8859-1 6711 // 6712 // - java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len) 6713 // Encodes char[] to byte[] in ASCII 6714 // 6715 // This version always returns the number of characters copied, and does not 6716 // clobber the 'len' register. A successful copy will complete with the post- 6717 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6718 // post-condition: 0 <= 'res' < 'len'. 6719 // 6720 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6721 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6722 // beyond the acceptable, even though the footprint would be smaller. 6723 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6724 // avoid additional bloat. 6725 // 6726 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6727 void MacroAssembler::encode_iso_array(Register src, Register dst, 6728 Register len, Register res, bool ascii, 6729 FloatRegister vtmp0, FloatRegister vtmp1, 6730 FloatRegister vtmp2, FloatRegister vtmp3, 6731 FloatRegister vtmp4, FloatRegister vtmp5) 6732 { 6733 Register cnt = res; 6734 Register max = rscratch1; 6735 Register chk = rscratch2; 6736 6737 prfm(Address(src), PLDL1STRM); 6738 movw(cnt, len); 6739 6740 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6741 6742 Label LOOP_32, DONE_32, FAIL_32; 6743 6744 BIND(LOOP_32); 6745 { 6746 cmpw(cnt, 32); 6747 br(LT, DONE_32); 6748 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6749 // Extract lower bytes. 6750 FloatRegister vlo0 = vtmp4; 6751 FloatRegister vlo1 = vtmp5; 6752 uzp1(vlo0, T16B, vtmp0, vtmp1); 6753 uzp1(vlo1, T16B, vtmp2, vtmp3); 6754 // Merge bits... 6755 orr(vtmp0, T16B, vtmp0, vtmp1); 6756 orr(vtmp2, T16B, vtmp2, vtmp3); 6757 // Extract merged upper bytes. 6758 FloatRegister vhix = vtmp0; 6759 uzp2(vhix, T16B, vtmp0, vtmp2); 6760 // ISO-check on hi-parts (all zero). 6761 // ASCII-check on lo-parts (no sign). 6762 FloatRegister vlox = vtmp1; // Merge lower bytes. 6763 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6764 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6765 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6766 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6767 ASCII(orr(chk, chk, max)); 6768 cbnz(chk, FAIL_32); 6769 subw(cnt, cnt, 32); 6770 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6771 b(LOOP_32); 6772 } 6773 BIND(FAIL_32); 6774 sub(src, src, 64); 6775 BIND(DONE_32); 6776 6777 Label LOOP_8, SKIP_8; 6778 6779 BIND(LOOP_8); 6780 { 6781 cmpw(cnt, 8); 6782 br(LT, SKIP_8); 6783 FloatRegister vhi = vtmp0; 6784 FloatRegister vlo = vtmp1; 6785 ld1(vtmp3, T8H, src); 6786 uzp1(vlo, T16B, vtmp3, vtmp3); 6787 uzp2(vhi, T16B, vtmp3, vtmp3); 6788 // ISO-check on hi-parts (all zero). 6789 // ASCII-check on lo-parts (no sign). 6790 ASCII(cm(LT, vtmp2, T16B, vlo)); 6791 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6792 ASCII(umov(max, vtmp2, B, 0)); 6793 ASCII(orr(chk, chk, max)); 6794 cbnz(chk, SKIP_8); 6795 6796 strd(vlo, Address(post(dst, 8))); 6797 subw(cnt, cnt, 8); 6798 add(src, src, 16); 6799 b(LOOP_8); 6800 } 6801 BIND(SKIP_8); 6802 6803 #undef ASCII 6804 6805 Label LOOP, DONE; 6806 6807 cbz(cnt, DONE); 6808 BIND(LOOP); 6809 { 6810 Register chr = rscratch1; 6811 ldrh(chr, Address(post(src, 2))); 6812 tst(chr, ascii ? 0xff80 : 0xff00); 6813 br(NE, DONE); 6814 strb(chr, Address(post(dst, 1))); 6815 subs(cnt, cnt, 1); 6816 br(GT, LOOP); 6817 } 6818 BIND(DONE); 6819 // Return index where we stopped. 6820 subw(res, len, cnt); 6821 } 6822 6823 // Inflate byte[] array to char[]. 6824 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6825 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6826 FloatRegister vtmp1, FloatRegister vtmp2, 6827 FloatRegister vtmp3, Register tmp4) { 6828 Label big, done, after_init, to_stub; 6829 6830 assert_different_registers(src, dst, len, tmp4, rscratch1); 6831 6832 fmovd(vtmp1, 0.0); 6833 lsrw(tmp4, len, 3); 6834 bind(after_init); 6835 cbnzw(tmp4, big); 6836 // Short string: less than 8 bytes. 6837 { 6838 Label loop, tiny; 6839 6840 cmpw(len, 4); 6841 br(LT, tiny); 6842 // Use SIMD to do 4 bytes. 6843 ldrs(vtmp2, post(src, 4)); 6844 zip1(vtmp3, T8B, vtmp2, vtmp1); 6845 subw(len, len, 4); 6846 strd(vtmp3, post(dst, 8)); 6847 6848 cbzw(len, done); 6849 6850 // Do the remaining bytes by steam. 6851 bind(loop); 6852 ldrb(tmp4, post(src, 1)); 6853 strh(tmp4, post(dst, 2)); 6854 subw(len, len, 1); 6855 6856 bind(tiny); 6857 cbnz(len, loop); 6858 6859 b(done); 6860 } 6861 6862 if (SoftwarePrefetchHintDistance >= 0) { 6863 bind(to_stub); 6864 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6865 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6866 address tpc = trampoline_call(stub); 6867 if (tpc == nullptr) { 6868 DEBUG_ONLY(reset_labels(big, done)); 6869 postcond(pc() == badAddress); 6870 return nullptr; 6871 } 6872 b(after_init); 6873 } 6874 6875 // Unpack the bytes 8 at a time. 6876 bind(big); 6877 { 6878 Label loop, around, loop_last, loop_start; 6879 6880 if (SoftwarePrefetchHintDistance >= 0) { 6881 const int large_loop_threshold = (64 + 16)/8; 6882 ldrd(vtmp2, post(src, 8)); 6883 andw(len, len, 7); 6884 cmp(tmp4, (u1)large_loop_threshold); 6885 br(GE, to_stub); 6886 b(loop_start); 6887 6888 bind(loop); 6889 ldrd(vtmp2, post(src, 8)); 6890 bind(loop_start); 6891 subs(tmp4, tmp4, 1); 6892 br(EQ, loop_last); 6893 zip1(vtmp2, T16B, vtmp2, vtmp1); 6894 ldrd(vtmp3, post(src, 8)); 6895 st1(vtmp2, T8H, post(dst, 16)); 6896 subs(tmp4, tmp4, 1); 6897 zip1(vtmp3, T16B, vtmp3, vtmp1); 6898 st1(vtmp3, T8H, post(dst, 16)); 6899 br(NE, loop); 6900 b(around); 6901 bind(loop_last); 6902 zip1(vtmp2, T16B, vtmp2, vtmp1); 6903 st1(vtmp2, T8H, post(dst, 16)); 6904 bind(around); 6905 cbz(len, done); 6906 } else { 6907 andw(len, len, 7); 6908 bind(loop); 6909 ldrd(vtmp2, post(src, 8)); 6910 sub(tmp4, tmp4, 1); 6911 zip1(vtmp3, T16B, vtmp2, vtmp1); 6912 st1(vtmp3, T8H, post(dst, 16)); 6913 cbnz(tmp4, loop); 6914 } 6915 } 6916 6917 // Do the tail of up to 8 bytes. 6918 add(src, src, len); 6919 ldrd(vtmp3, Address(src, -8)); 6920 add(dst, dst, len, ext::uxtw, 1); 6921 zip1(vtmp3, T16B, vtmp3, vtmp1); 6922 strq(vtmp3, Address(dst, -16)); 6923 6924 bind(done); 6925 postcond(pc() != badAddress); 6926 return pc(); 6927 } 6928 6929 // Compress char[] array to byte[]. 6930 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6931 // Return the array length if every element in array can be encoded, 6932 // otherwise, the index of first non-latin1 (> 0xff) character. 6933 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6934 Register res, 6935 FloatRegister tmp0, FloatRegister tmp1, 6936 FloatRegister tmp2, FloatRegister tmp3, 6937 FloatRegister tmp4, FloatRegister tmp5) { 6938 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6939 } 6940 6941 // java.math.round(double a) 6942 // Returns the closest long to the argument, with ties rounding to 6943 // positive infinity. This requires some fiddling for corner 6944 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6945 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6946 FloatRegister ftmp) { 6947 Label DONE; 6948 BLOCK_COMMENT("java_round_double: { "); 6949 fmovd(rscratch1, src); 6950 // Use RoundToNearestTiesAway unless src small and -ve. 6951 fcvtasd(dst, src); 6952 // Test if src >= 0 || abs(src) >= 0x1.0p52 6953 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6954 mov(rscratch2, julong_cast(0x1.0p52)); 6955 cmp(rscratch1, rscratch2); 6956 br(HS, DONE); { 6957 // src < 0 && abs(src) < 0x1.0p52 6958 // src may have a fractional part, so add 0.5 6959 fmovd(ftmp, 0.5); 6960 faddd(ftmp, src, ftmp); 6961 // Convert double to jlong, use RoundTowardsNegative 6962 fcvtmsd(dst, ftmp); 6963 } 6964 bind(DONE); 6965 BLOCK_COMMENT("} java_round_double"); 6966 } 6967 6968 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6969 FloatRegister ftmp) { 6970 Label DONE; 6971 BLOCK_COMMENT("java_round_float: { "); 6972 fmovs(rscratch1, src); 6973 // Use RoundToNearestTiesAway unless src small and -ve. 6974 fcvtassw(dst, src); 6975 // Test if src >= 0 || abs(src) >= 0x1.0p23 6976 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6977 mov(rscratch2, jint_cast(0x1.0p23f)); 6978 cmp(rscratch1, rscratch2); 6979 br(HS, DONE); { 6980 // src < 0 && |src| < 0x1.0p23 6981 // src may have a fractional part, so add 0.5 6982 fmovs(ftmp, 0.5f); 6983 fadds(ftmp, src, ftmp); 6984 // Convert float to jint, use RoundTowardsNegative 6985 fcvtmssw(dst, ftmp); 6986 } 6987 bind(DONE); 6988 BLOCK_COMMENT("} java_round_float"); 6989 } 6990 6991 // get_thread() can be called anywhere inside generated code so we 6992 // need to save whatever non-callee save context might get clobbered 6993 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6994 // the call setup code. 6995 // 6996 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6997 // On other systems, the helper is a usual C function. 6998 // 6999 void MacroAssembler::get_thread(Register dst) { 7000 RegSet saved_regs = 7001 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 7002 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 7003 7004 protect_return_address(); 7005 push(saved_regs, sp); 7006 7007 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper))); 7008 blr(lr); 7009 if (dst != c_rarg0) { 7010 mov(dst, c_rarg0); 7011 } 7012 7013 pop(saved_regs, sp); 7014 authenticate_return_address(); 7015 } 7016 7017 #ifdef COMPILER2 7018 // C2 compiled method's prolog code 7019 // Moved here from aarch64.ad to support Valhalla code belows 7020 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 7021 if (C->clinit_barrier_on_entry()) { 7022 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 7023 7024 Label L_skip_barrier; 7025 7026 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 7027 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 7028 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 7029 bind(L_skip_barrier); 7030 } 7031 7032 if (C->max_vector_size() > 0) { 7033 reinitialize_ptrue(); 7034 } 7035 7036 int bangsize = C->output()->bang_size_in_bytes(); 7037 if (C->output()->need_stack_bang(bangsize)) 7038 generate_stack_overflow_check(bangsize); 7039 7040 // n.b. frame size includes space for return pc and rfp 7041 const long framesize = C->output()->frame_size_in_bytes(); 7042 build_frame(framesize); 7043 7044 if (C->needs_stack_repair()) { 7045 save_stack_increment(sp_inc, framesize); 7046 } 7047 7048 if (VerifyStackAtCalls) { 7049 Unimplemented(); 7050 } 7051 } 7052 #endif // COMPILER2 7053 7054 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 7055 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 7056 // An inline type might be returned. If fields are in registers we 7057 // need to allocate an inline type instance and initialize it with 7058 // the value of the fields. 7059 Label skip; 7060 // We only need a new buffered inline type if a new one is not returned 7061 tbz(r0, 0, skip); 7062 int call_offset = -1; 7063 7064 // Be careful not to clobber r1-7 which hold returned fields 7065 // Also do not use callee-saved registers as these may be live in the interpreter 7066 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 7067 7068 // The following code is similar to allocate_instance but has some slight differences, 7069 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 7070 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 7071 Label slow_case; 7072 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 7073 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 7074 7075 if (vk != nullptr) { 7076 // Called from C1, where the return type is statically known. 7077 movptr(klass, (intptr_t)vk->get_InlineKlass()); 7078 jint lh = vk->layout_helper(); 7079 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 7080 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 7081 tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case); 7082 } else { 7083 b(slow_case); 7084 } 7085 } else { 7086 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 7087 andr(klass, r0, -2); 7088 if (UseTLAB) { 7089 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 7090 tst(tmp2, Klass::_lh_instance_slow_path_bit); 7091 br(Assembler::NE, slow_case); 7092 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 7093 } else { 7094 b(slow_case); 7095 } 7096 } 7097 if (UseTLAB) { 7098 // 2. Initialize buffered inline instance header 7099 Register buffer_obj = r0; 7100 if (UseCompactObjectHeaders) { 7101 ldr(rscratch1, Address(klass, Klass::prototype_header_offset())); 7102 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7103 } else { 7104 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 7105 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7106 store_klass_gap(buffer_obj, zr); 7107 if (vk == nullptr) { 7108 // store_klass corrupts klass, so save it for later use (interpreter case only). 7109 mov(tmp1, klass); 7110 } 7111 store_klass(buffer_obj, klass); 7112 klass = tmp1; 7113 } 7114 // 3. Initialize its fields with an inline class specific handler 7115 if (vk != nullptr) { 7116 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 7117 } else { 7118 ldr(tmp1, Address(klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 7119 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 7120 blr(tmp1); 7121 } 7122 7123 membar(Assembler::StoreStore); 7124 b(skip); 7125 } else { 7126 // Must have already branched to slow_case above. 7127 DEBUG_ONLY(should_not_reach_here()); 7128 } 7129 bind(slow_case); 7130 // We failed to allocate a new inline type, fall back to a runtime 7131 // call. Some oop field may be live in some registers but we can't 7132 // tell. That runtime call will take care of preserving them 7133 // across a GC if there's one. 7134 mov(r0, r0_preserved); 7135 7136 if (from_interpreter) { 7137 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 7138 } else { 7139 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 7140 call_offset = offset(); 7141 } 7142 membar(Assembler::StoreStore); 7143 7144 bind(skip); 7145 return call_offset; 7146 } 7147 7148 // Move a value between registers/stack slots and update the reg_state 7149 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 7150 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 7151 if (reg_state[to->value()] == reg_written) { 7152 return true; // Already written 7153 } 7154 7155 if (from != to && bt != T_VOID) { 7156 if (reg_state[to->value()] == reg_readonly) { 7157 return false; // Not yet writable 7158 } 7159 if (from->is_reg()) { 7160 if (to->is_reg()) { 7161 if (from->is_Register() && to->is_Register()) { 7162 mov(to->as_Register(), from->as_Register()); 7163 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 7164 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 7165 } else { 7166 ShouldNotReachHere(); 7167 } 7168 } else { 7169 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7170 Address to_addr = Address(sp, st_off); 7171 if (from->is_FloatRegister()) { 7172 if (bt == T_DOUBLE) { 7173 strd(from->as_FloatRegister(), to_addr); 7174 } else { 7175 assert(bt == T_FLOAT, "must be float"); 7176 strs(from->as_FloatRegister(), to_addr); 7177 } 7178 } else { 7179 str(from->as_Register(), to_addr); 7180 } 7181 } 7182 } else { 7183 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 7184 if (to->is_reg()) { 7185 if (to->is_FloatRegister()) { 7186 if (bt == T_DOUBLE) { 7187 ldrd(to->as_FloatRegister(), from_addr); 7188 } else { 7189 assert(bt == T_FLOAT, "must be float"); 7190 ldrs(to->as_FloatRegister(), from_addr); 7191 } 7192 } else { 7193 ldr(to->as_Register(), from_addr); 7194 } 7195 } else { 7196 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7197 ldr(rscratch1, from_addr); 7198 str(rscratch1, Address(sp, st_off)); 7199 } 7200 } 7201 } 7202 7203 // Update register states 7204 reg_state[from->value()] = reg_writable; 7205 reg_state[to->value()] = reg_written; 7206 return true; 7207 } 7208 7209 // Calculate the extra stack space required for packing or unpacking inline 7210 // args and adjust the stack pointer 7211 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 7212 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 7213 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 7214 assert(sp_inc > 0, "sanity"); 7215 7216 // Save a copy of the FP and LR here for deoptimization patching and frame walking 7217 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7218 7219 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 7220 if (sp_inc < (1 << 9)) { 7221 sub(sp, sp, sp_inc); // Fits in an immediate 7222 } else { 7223 mov(rscratch1, sp_inc); 7224 sub(sp, sp, rscratch1); 7225 } 7226 7227 return sp_inc + 2 * wordSize; // Account for the FP/LR space 7228 } 7229 7230 // Read all fields from an inline type oop and store the values in registers/stack slots 7231 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 7232 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 7233 RegState reg_state[]) { 7234 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 7235 assert(from->is_valid(), "source must be valid"); 7236 bool progress = false; 7237 #ifdef ASSERT 7238 const int start_offset = offset(); 7239 #endif 7240 7241 Label L_null, L_notNull; 7242 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 7243 // TODO 8366717 We need to make sure that r14 (and potentially other long-life regs) are kept live in slowpath runtime calls in GC barriers 7244 Register tmp1 = r10; 7245 Register tmp2 = r11; 7246 Register fromReg = noreg; 7247 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 7248 bool done = true; 7249 bool mark_done = true; 7250 VMReg toReg; 7251 BasicType bt; 7252 // Check if argument requires a null check 7253 bool null_check = false; 7254 VMReg nullCheckReg; 7255 while (stream.next(nullCheckReg, bt)) { 7256 if (sig->at(stream.sig_index())._offset == -1) { 7257 null_check = true; 7258 break; 7259 } 7260 } 7261 stream.reset(sig_index, to_index); 7262 while (stream.next(toReg, bt)) { 7263 assert(toReg->is_valid(), "destination must be valid"); 7264 int idx = (int)toReg->value(); 7265 if (reg_state[idx] == reg_readonly) { 7266 if (idx != from->value()) { 7267 mark_done = false; 7268 } 7269 done = false; 7270 continue; 7271 } else if (reg_state[idx] == reg_written) { 7272 continue; 7273 } 7274 assert(reg_state[idx] == reg_writable, "must be writable"); 7275 reg_state[idx] = reg_written; 7276 progress = true; 7277 7278 if (fromReg == noreg) { 7279 if (from->is_reg()) { 7280 fromReg = from->as_Register(); 7281 } else { 7282 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 7283 ldr(tmp1, Address(sp, st_off)); 7284 fromReg = tmp1; 7285 } 7286 if (null_check) { 7287 // Nullable inline type argument, emit null check 7288 cbz(fromReg, L_null); 7289 } 7290 } 7291 int off = sig->at(stream.sig_index())._offset; 7292 if (off == -1) { 7293 assert(null_check, "Missing null check at"); 7294 if (toReg->is_stack()) { 7295 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7296 mov(tmp2, 1); 7297 str(tmp2, Address(sp, st_off)); 7298 } else { 7299 mov(toReg->as_Register(), 1); 7300 } 7301 continue; 7302 } 7303 assert(off > 0, "offset in object should be positive"); 7304 Address fromAddr = Address(fromReg, off); 7305 if (!toReg->is_FloatRegister()) { 7306 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 7307 if (is_reference_type(bt)) { 7308 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 7309 } else { 7310 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 7311 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 7312 } 7313 if (toReg->is_stack()) { 7314 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7315 str(dst, Address(sp, st_off)); 7316 } 7317 } else if (bt == T_DOUBLE) { 7318 ldrd(toReg->as_FloatRegister(), fromAddr); 7319 } else { 7320 assert(bt == T_FLOAT, "must be float"); 7321 ldrs(toReg->as_FloatRegister(), fromAddr); 7322 } 7323 } 7324 if (progress && null_check) { 7325 if (done) { 7326 b(L_notNull); 7327 bind(L_null); 7328 // Set null marker to zero to signal that the argument is null. 7329 // Also set all oop fields to zero to make the GC happy. 7330 stream.reset(sig_index, to_index); 7331 while (stream.next(toReg, bt)) { 7332 if (sig->at(stream.sig_index())._offset == -1 || 7333 bt == T_OBJECT || bt == T_ARRAY) { 7334 if (toReg->is_stack()) { 7335 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7336 str(zr, Address(sp, st_off)); 7337 } else { 7338 mov(toReg->as_Register(), zr); 7339 } 7340 } 7341 } 7342 bind(L_notNull); 7343 } else { 7344 bind(L_null); 7345 } 7346 } 7347 7348 // TODO 8366717 This is probably okay but looks fishy because stream is reset in the "Set null marker to zero" case just above. Same on x64. 7349 sig_index = stream.sig_index(); 7350 to_index = stream.regs_index(); 7351 7352 if (mark_done && reg_state[from->value()] != reg_written) { 7353 // This is okay because no one else will write to that slot 7354 reg_state[from->value()] = reg_writable; 7355 } 7356 from_index--; 7357 assert(progress || (start_offset == offset()), "should not emit code"); 7358 return done; 7359 } 7360 7361 // Pack fields back into an inline type oop 7362 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 7363 VMRegPair* from, int from_count, int& from_index, VMReg to, 7364 RegState reg_state[], Register val_array) { 7365 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 7366 assert(to->is_valid(), "destination must be valid"); 7367 7368 if (reg_state[to->value()] == reg_written) { 7369 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7370 return true; // Already written 7371 } 7372 7373 // The GC barrier expanded by store_heap_oop below may call into the 7374 // runtime so use callee-saved registers for any values that need to be 7375 // preserved. The GC barrier assembler should take care of saving the 7376 // Java argument registers. 7377 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 7378 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 7379 Register val_obj_tmp = r21; 7380 Register from_reg_tmp = r22; 7381 Register tmp1 = r14; 7382 Register tmp2 = r13; 7383 Register tmp3 = r12; 7384 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 7385 7386 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 7387 7388 if (reg_state[to->value()] == reg_readonly) { 7389 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 7390 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7391 return false; // Not yet writable 7392 } 7393 val_obj = val_obj_tmp; 7394 } 7395 7396 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 7397 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 7398 7399 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 7400 VMReg fromReg; 7401 BasicType bt; 7402 Label L_null; 7403 while (stream.next(fromReg, bt)) { 7404 assert(fromReg->is_valid(), "source must be valid"); 7405 reg_state[fromReg->value()] = reg_writable; 7406 7407 int off = sig->at(stream.sig_index())._offset; 7408 if (off == -1) { 7409 // Nullable inline type argument, emit null check 7410 Label L_notNull; 7411 if (fromReg->is_stack()) { 7412 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7413 ldrb(tmp2, Address(sp, ld_off)); 7414 cbnz(tmp2, L_notNull); 7415 } else { 7416 cbnz(fromReg->as_Register(), L_notNull); 7417 } 7418 mov(val_obj, 0); 7419 b(L_null); 7420 bind(L_notNull); 7421 continue; 7422 } 7423 7424 assert(off > 0, "offset in object should be positive"); 7425 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 7426 7427 // Pack the scalarized field into the value object. 7428 Address dst(val_obj, off); 7429 if (!fromReg->is_FloatRegister()) { 7430 Register src; 7431 if (fromReg->is_stack()) { 7432 src = from_reg_tmp; 7433 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7434 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 7435 } else { 7436 src = fromReg->as_Register(); 7437 } 7438 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 7439 if (is_reference_type(bt)) { 7440 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 7441 } else { 7442 store_sized_value(dst, src, size_in_bytes); 7443 } 7444 } else if (bt == T_DOUBLE) { 7445 strd(fromReg->as_FloatRegister(), dst); 7446 } else { 7447 assert(bt == T_FLOAT, "must be float"); 7448 strs(fromReg->as_FloatRegister(), dst); 7449 } 7450 } 7451 bind(L_null); 7452 sig_index = stream.sig_index(); 7453 from_index = stream.regs_index(); 7454 7455 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 7456 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 7457 assert(success, "to register must be writeable"); 7458 return true; 7459 } 7460 7461 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 7462 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 7463 } 7464 7465 void MacroAssembler::cache_wb(Address line) { 7466 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 7467 assert(line.index() == noreg, "index should be noreg"); 7468 assert(line.offset() == 0, "offset should be 0"); 7469 // would like to assert this 7470 // assert(line._ext.shift == 0, "shift should be zero"); 7471 if (VM_Version::supports_dcpop()) { 7472 // writeback using clear virtual address to point of persistence 7473 dc(Assembler::CVAP, line.base()); 7474 } else { 7475 // no need to generate anything as Unsafe.writebackMemory should 7476 // never invoke this stub 7477 } 7478 } 7479 7480 void MacroAssembler::cache_wbsync(bool is_pre) { 7481 // we only need a barrier post sync 7482 if (!is_pre) { 7483 membar(Assembler::AnyAny); 7484 } 7485 } 7486 7487 void MacroAssembler::verify_sve_vector_length(Register tmp) { 7488 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 7489 return; 7490 } 7491 // Make sure that native code does not change SVE vector length. 7492 Label verify_ok; 7493 movw(tmp, zr); 7494 sve_inc(tmp, B); 7495 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 7496 br(EQ, verify_ok); 7497 stop("Error: SVE vector length has changed since jvm startup"); 7498 bind(verify_ok); 7499 } 7500 7501 void MacroAssembler::verify_ptrue() { 7502 Label verify_ok; 7503 if (!UseSVE) { 7504 return; 7505 } 7506 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 7507 sve_dec(rscratch1, B); 7508 cbz(rscratch1, verify_ok); 7509 stop("Error: the preserved predicate register (p7) elements are not all true"); 7510 bind(verify_ok); 7511 } 7512 7513 void MacroAssembler::safepoint_isb() { 7514 isb(); 7515 #ifndef PRODUCT 7516 if (VerifyCrossModifyFence) { 7517 // Clear the thread state. 7518 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7519 } 7520 #endif 7521 } 7522 7523 #ifndef PRODUCT 7524 void MacroAssembler::verify_cross_modify_fence_not_required() { 7525 if (VerifyCrossModifyFence) { 7526 // Check if thread needs a cross modify fence. 7527 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7528 Label fence_not_required; 7529 cbz(rscratch1, fence_not_required); 7530 // If it does then fail. 7531 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 7532 mov(c_rarg0, rthread); 7533 blr(rscratch1); 7534 bind(fence_not_required); 7535 } 7536 } 7537 #endif 7538 7539 void MacroAssembler::spin_wait() { 7540 block_comment("spin_wait {"); 7541 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 7542 switch (VM_Version::spin_wait_desc().inst()) { 7543 case SpinWait::NOP: 7544 nop(); 7545 break; 7546 case SpinWait::ISB: 7547 isb(); 7548 break; 7549 case SpinWait::YIELD: 7550 yield(); 7551 break; 7552 case SpinWait::SB: 7553 assert(VM_Version::supports_sb(), "current CPU does not support SB instruction"); 7554 sb(); 7555 break; 7556 default: 7557 ShouldNotReachHere(); 7558 } 7559 } 7560 block_comment("}"); 7561 } 7562 7563 // Stack frame creation/removal 7564 7565 void MacroAssembler::enter(bool strip_ret_addr) { 7566 if (strip_ret_addr) { 7567 // Addresses can only be signed once. If there are multiple nested frames being created 7568 // in the same function, then the return address needs stripping first. 7569 strip_return_address(); 7570 } 7571 protect_return_address(); 7572 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7573 mov(rfp, sp); 7574 } 7575 7576 void MacroAssembler::leave() { 7577 mov(sp, rfp); 7578 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 7579 authenticate_return_address(); 7580 } 7581 7582 // ROP Protection 7583 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 7584 // destroying stack frames or whenever directly loading/storing the LR to memory. 7585 // If ROP protection is not set then these functions are no-ops. 7586 // For more details on PAC see pauth_aarch64.hpp. 7587 7588 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 7589 // Uses value zero as the modifier. 7590 // 7591 void MacroAssembler::protect_return_address() { 7592 if (VM_Version::use_rop_protection()) { 7593 check_return_address(); 7594 paciaz(); 7595 } 7596 } 7597 7598 // Sign the return value in the given register. Use before updating the LR in the existing stack 7599 // frame for the current function. 7600 // Uses value zero as the modifier. 7601 // 7602 void MacroAssembler::protect_return_address(Register return_reg) { 7603 if (VM_Version::use_rop_protection()) { 7604 check_return_address(return_reg); 7605 paciza(return_reg); 7606 } 7607 } 7608 7609 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 7610 // Uses value zero as the modifier. 7611 // 7612 void MacroAssembler::authenticate_return_address() { 7613 if (VM_Version::use_rop_protection()) { 7614 autiaz(); 7615 check_return_address(); 7616 } 7617 } 7618 7619 // Authenticate the return value in the given register. Use before updating the LR in the existing 7620 // stack frame for the current function. 7621 // Uses value zero as the modifier. 7622 // 7623 void MacroAssembler::authenticate_return_address(Register return_reg) { 7624 if (VM_Version::use_rop_protection()) { 7625 autiza(return_reg); 7626 check_return_address(return_reg); 7627 } 7628 } 7629 7630 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 7631 // there is no guaranteed way of authenticating the LR. 7632 // 7633 void MacroAssembler::strip_return_address() { 7634 if (VM_Version::use_rop_protection()) { 7635 xpaclri(); 7636 } 7637 } 7638 7639 #ifndef PRODUCT 7640 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 7641 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 7642 // it is difficult to debug back to the callee function. 7643 // This function simply loads from the address in the given register. 7644 // Use directly after authentication to catch authentication failures. 7645 // Also use before signing to check that the pointer is valid and hasn't already been signed. 7646 // 7647 void MacroAssembler::check_return_address(Register return_reg) { 7648 if (VM_Version::use_rop_protection()) { 7649 ldr(zr, Address(return_reg)); 7650 } 7651 } 7652 #endif 7653 7654 // The java_calling_convention describes stack locations as ideal slots on 7655 // a frame with no abi restrictions. Since we must observe abi restrictions 7656 // (like the placement of the register window) the slots must be biased by 7657 // the following value. 7658 static int reg2offset_in(VMReg r) { 7659 // Account for saved rfp and lr 7660 // This should really be in_preserve_stack_slots 7661 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 7662 } 7663 7664 static int reg2offset_out(VMReg r) { 7665 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 7666 } 7667 7668 // On 64bit we will store integer like items to the stack as 7669 // 64bits items (AArch64 ABI) even though java would only store 7670 // 32bits for a parameter. On 32bit it will simply be 32bits 7671 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 7672 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 7673 if (src.first()->is_stack()) { 7674 if (dst.first()->is_stack()) { 7675 // stack to stack 7676 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7677 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7678 } else { 7679 // stack to reg 7680 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7681 } 7682 } else if (dst.first()->is_stack()) { 7683 // reg to stack 7684 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7685 } else { 7686 if (dst.first() != src.first()) { 7687 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 7688 } 7689 } 7690 } 7691 7692 // An oop arg. Must pass a handle not the oop itself 7693 void MacroAssembler::object_move( 7694 OopMap* map, 7695 int oop_handle_offset, 7696 int framesize_in_slots, 7697 VMRegPair src, 7698 VMRegPair dst, 7699 bool is_receiver, 7700 int* receiver_offset) { 7701 7702 // must pass a handle. First figure out the location we use as a handle 7703 7704 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7705 7706 // See if oop is null if it is we need no handle 7707 7708 if (src.first()->is_stack()) { 7709 7710 // Oop is already on the stack as an argument 7711 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7712 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7713 if (is_receiver) { 7714 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7715 } 7716 7717 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7718 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7719 // conditionally move a null 7720 cmp(rscratch1, zr); 7721 csel(rHandle, zr, rHandle, Assembler::EQ); 7722 } else { 7723 7724 // Oop is in an a register we must store it to the space we reserve 7725 // on the stack for oop_handles and pass a handle if oop is non-null 7726 7727 const Register rOop = src.first()->as_Register(); 7728 int oop_slot; 7729 if (rOop == j_rarg0) 7730 oop_slot = 0; 7731 else if (rOop == j_rarg1) 7732 oop_slot = 1; 7733 else if (rOop == j_rarg2) 7734 oop_slot = 2; 7735 else if (rOop == j_rarg3) 7736 oop_slot = 3; 7737 else if (rOop == j_rarg4) 7738 oop_slot = 4; 7739 else if (rOop == j_rarg5) 7740 oop_slot = 5; 7741 else if (rOop == j_rarg6) 7742 oop_slot = 6; 7743 else { 7744 assert(rOop == j_rarg7, "wrong register"); 7745 oop_slot = 7; 7746 } 7747 7748 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7749 int offset = oop_slot*VMRegImpl::stack_slot_size; 7750 7751 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7752 // Store oop in handle area, may be null 7753 str(rOop, Address(sp, offset)); 7754 if (is_receiver) { 7755 *receiver_offset = offset; 7756 } 7757 7758 cmp(rOop, zr); 7759 lea(rHandle, Address(sp, offset)); 7760 // conditionally move a null 7761 csel(rHandle, zr, rHandle, Assembler::EQ); 7762 } 7763 7764 // If arg is on the stack then place it otherwise it is already in correct reg. 7765 if (dst.first()->is_stack()) { 7766 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7767 } 7768 } 7769 7770 // A float arg may have to do float reg int reg conversion 7771 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7772 if (src.first()->is_stack()) { 7773 if (dst.first()->is_stack()) { 7774 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7775 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7776 } else { 7777 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7778 } 7779 } else if (src.first() != dst.first()) { 7780 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7781 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7782 else 7783 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7784 } 7785 } 7786 7787 // A long move 7788 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7789 if (src.first()->is_stack()) { 7790 if (dst.first()->is_stack()) { 7791 // stack to stack 7792 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7793 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7794 } else { 7795 // stack to reg 7796 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7797 } 7798 } else if (dst.first()->is_stack()) { 7799 // reg to stack 7800 // Do we really have to sign extend??? 7801 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7802 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7803 } else { 7804 if (dst.first() != src.first()) { 7805 mov(dst.first()->as_Register(), src.first()->as_Register()); 7806 } 7807 } 7808 } 7809 7810 7811 // A double move 7812 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7813 if (src.first()->is_stack()) { 7814 if (dst.first()->is_stack()) { 7815 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7816 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7817 } else { 7818 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7819 } 7820 } else if (src.first() != dst.first()) { 7821 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7822 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7823 else 7824 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7825 } 7826 } 7827 7828 // Implements lightweight-locking. 7829 // 7830 // - obj: the object to be locked 7831 // - t1, t2, t3: temporary registers, will be destroyed 7832 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7833 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7834 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7835 7836 Label push; 7837 const Register top = t1; 7838 const Register mark = t2; 7839 const Register t = t3; 7840 7841 // Preload the markWord. It is important that this is the first 7842 // instruction emitted as it is part of C1's null check semantics. 7843 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7844 7845 if (UseObjectMonitorTable) { 7846 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7847 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7848 } 7849 7850 if (DiagnoseSyncOnValueBasedClasses != 0) { 7851 load_klass(t1, obj); 7852 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7853 tst(t1, KlassFlags::_misc_is_value_based_class); 7854 br(Assembler::NE, slow); 7855 } 7856 7857 // Check if the lock-stack is full. 7858 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7859 cmpw(top, (unsigned)LockStack::end_offset()); 7860 br(Assembler::GE, slow); 7861 7862 // Check for recursion. 7863 subw(t, top, oopSize); 7864 ldr(t, Address(rthread, t)); 7865 cmp(obj, t); 7866 br(Assembler::EQ, push); 7867 7868 // Check header for monitor (0b10). 7869 tst(mark, markWord::monitor_value); 7870 br(Assembler::NE, slow); 7871 7872 // Try to lock. Transition lock bits 0b01 => 0b00 7873 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7874 orr(mark, mark, markWord::unlocked_value); 7875 // Mask inline_type bit such that we go to the slow path if object is an inline type 7876 andr(mark, mark, ~((int) markWord::inline_type_bit_in_place)); 7877 7878 eor(t, mark, markWord::unlocked_value); 7879 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7880 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7881 br(Assembler::NE, slow); 7882 7883 bind(push); 7884 // After successful lock, push object on lock-stack. 7885 str(obj, Address(rthread, top)); 7886 addw(top, top, oopSize); 7887 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7888 } 7889 7890 // Implements lightweight-unlocking. 7891 // 7892 // - obj: the object to be unlocked 7893 // - t1, t2, t3: temporary registers 7894 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7895 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7896 // cmpxchg clobbers rscratch1. 7897 assert_different_registers(obj, t1, t2, t3, rscratch1); 7898 7899 #ifdef ASSERT 7900 { 7901 // Check for lock-stack underflow. 7902 Label stack_ok; 7903 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7904 cmpw(t1, (unsigned)LockStack::start_offset()); 7905 br(Assembler::GE, stack_ok); 7906 STOP("Lock-stack underflow"); 7907 bind(stack_ok); 7908 } 7909 #endif 7910 7911 Label unlocked, push_and_slow; 7912 const Register top = t1; 7913 const Register mark = t2; 7914 const Register t = t3; 7915 7916 // Check if obj is top of lock-stack. 7917 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7918 subw(top, top, oopSize); 7919 ldr(t, Address(rthread, top)); 7920 cmp(obj, t); 7921 br(Assembler::NE, slow); 7922 7923 // Pop lock-stack. 7924 DEBUG_ONLY(str(zr, Address(rthread, top));) 7925 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7926 7927 // Check if recursive. 7928 subw(t, top, oopSize); 7929 ldr(t, Address(rthread, t)); 7930 cmp(obj, t); 7931 br(Assembler::EQ, unlocked); 7932 7933 // Not recursive. Check header for monitor (0b10). 7934 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7935 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7936 7937 #ifdef ASSERT 7938 // Check header not unlocked (0b01). 7939 Label not_unlocked; 7940 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7941 stop("lightweight_unlock already unlocked"); 7942 bind(not_unlocked); 7943 #endif 7944 7945 // Try to unlock. Transition lock bits 0b00 => 0b01 7946 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7947 orr(t, mark, markWord::unlocked_value); 7948 cmpxchg(obj, mark, t, Assembler::xword, 7949 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7950 br(Assembler::EQ, unlocked); 7951 7952 bind(push_and_slow); 7953 // Restore lock-stack and handle the unlock in runtime. 7954 DEBUG_ONLY(str(obj, Address(rthread, top));) 7955 addw(top, top, oopSize); 7956 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7957 b(slow); 7958 7959 bind(unlocked); 7960 } --- EOF ---