1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "ci/ciInlineKlass.hpp" 30 #include "code/compiledIC.hpp" 31 #include "compiler/compileTask.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "gc/shared/cardTableBarrierSet.hpp" 37 #include "gc/shared/cardTable.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 #include "interpreter/bytecodeHistogram.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/interpreterRuntime.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedKlass.inline.hpp" 49 #include "oops/compressedOops.inline.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/resolvedFieldEntry.hpp" 52 #include "runtime/continuation.hpp" 53 #include "runtime/globals.hpp" 54 #include "runtime/icache.hpp" 55 #include "runtime/interfaceSupport.inline.hpp" 56 #include "runtime/javaThread.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/signature_cc.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/globalDefinitions.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 #include "vmreg_aarch64.inline.hpp" 64 #ifdef COMPILER1 65 #include "c1/c1_LIRAssembler.hpp" 66 #endif 67 #ifdef COMPILER2 68 #include "oops/oop.hpp" 69 #include "opto/compile.hpp" 70 #include "opto/node.hpp" 71 #include "opto/output.hpp" 72 #endif 73 74 #include <sys/types.h> 75 76 #ifdef PRODUCT 77 #define BLOCK_COMMENT(str) /* nothing */ 78 #else 79 #define BLOCK_COMMENT(str) block_comment(str) 80 #endif 81 #define STOP(str) stop(str); 82 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 83 84 #ifdef ASSERT 85 extern "C" void disnm(intptr_t p); 86 #endif 87 // Target-dependent relocation processing 88 // 89 // Instruction sequences whose target may need to be retrieved or 90 // patched are distinguished by their leading instruction, sorting 91 // them into three main instruction groups and related subgroups. 92 // 93 // 1) Branch, Exception and System (insn count = 1) 94 // 1a) Unconditional branch (immediate): 95 // b/bl imm19 96 // 1b) Compare & branch (immediate): 97 // cbz/cbnz Rt imm19 98 // 1c) Test & branch (immediate): 99 // tbz/tbnz Rt imm14 100 // 1d) Conditional branch (immediate): 101 // b.cond imm19 102 // 103 // 2) Loads and Stores (insn count = 1) 104 // 2a) Load register literal: 105 // ldr Rt imm19 106 // 107 // 3) Data Processing Immediate (insn count = 2 or 3) 108 // 3a) PC-rel. addressing 109 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 110 // adr/adrp Rx imm21; add Ry Rx #imm12 111 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 112 // adr/adrp Rx imm21 113 // adr/adrp Rx imm21; movk Rx #imm16<<32 114 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 115 // The latter form can only happen when the target is an 116 // ExternalAddress, and (by definition) ExternalAddresses don't 117 // move. Because of that property, there is never any need to 118 // patch the last of the three instructions. However, 119 // MacroAssembler::target_addr_for_insn takes all three 120 // instructions into account and returns the correct address. 121 // 3b) Move wide (immediate) 122 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 123 // 124 // A switch on a subset of the instruction's bits provides an 125 // efficient dispatch to these subcases. 126 // 127 // insn[28:26] -> main group ('x' == don't care) 128 // 00x -> UNALLOCATED 129 // 100 -> Data Processing Immediate 130 // 101 -> Branch, Exception and System 131 // x1x -> Loads and Stores 132 // 133 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 134 // n.b. in some cases extra bits need to be checked to verify the 135 // instruction is as expected 136 // 137 // 1) ... xx101x Branch, Exception and System 138 // 1a) 00___x Unconditional branch (immediate) 139 // 1b) 01___0 Compare & branch (immediate) 140 // 1c) 01___1 Test & branch (immediate) 141 // 1d) 10___0 Conditional branch (immediate) 142 // other Should not happen 143 // 144 // 2) ... xxx1x0 Loads and Stores 145 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 146 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 147 // strictly should be 64 bit non-FP/SIMD i.e. 148 // 0101_000 (i.e. requires insn[31:24] == 01011000) 149 // 150 // 3) ... xx100x Data Processing Immediate 151 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 152 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 153 // strictly should be 64 bit movz #imm16<<0 154 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 155 // 156 157 static uint32_t insn_at(address insn_addr, int n) { 158 return ((uint32_t*)insn_addr)[n]; 159 } 160 161 template<typename T> 162 class RelocActions : public AllStatic { 163 164 public: 165 166 static int ALWAYSINLINE run(address insn_addr, address &target) { 167 int instructions = 1; 168 uint32_t insn = insn_at(insn_addr, 0); 169 170 uint32_t dispatch = Instruction_aarch64::extract(insn, 30, 25); 171 switch(dispatch) { 172 case 0b001010: 173 case 0b001011: { 174 instructions = T::unconditionalBranch(insn_addr, target); 175 break; 176 } 177 case 0b101010: // Conditional branch (immediate) 178 case 0b011010: { // Compare & branch (immediate) 179 instructions = T::conditionalBranch(insn_addr, target); 180 break; 181 } 182 case 0b011011: { 183 instructions = T::testAndBranch(insn_addr, target); 184 break; 185 } 186 case 0b001100: 187 case 0b001110: 188 case 0b011100: 189 case 0b011110: 190 case 0b101100: 191 case 0b101110: 192 case 0b111100: 193 case 0b111110: { 194 // load/store 195 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 196 // Load register (literal) 197 instructions = T::loadStore(insn_addr, target); 198 break; 199 } else { 200 // nothing to do 201 assert(target == nullptr, "did not expect to relocate target for polling page load"); 202 } 203 break; 204 } 205 case 0b001000: 206 case 0b011000: 207 case 0b101000: 208 case 0b111000: { 209 // adr/adrp 210 assert(Instruction_aarch64::extract(insn, 28, 24) == 0b10000, "must be"); 211 int shift = Instruction_aarch64::extract(insn, 31, 31); 212 if (shift) { 213 uint32_t insn2 = insn_at(insn_addr, 1); 214 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 215 Instruction_aarch64::extract(insn, 4, 0) == 216 Instruction_aarch64::extract(insn2, 9, 5)) { 217 instructions = T::adrp(insn_addr, target, T::adrpMem); 218 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 219 Instruction_aarch64::extract(insn, 4, 0) == 220 Instruction_aarch64::extract(insn2, 4, 0)) { 221 instructions = T::adrp(insn_addr, target, T::adrpAdd); 222 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 223 Instruction_aarch64::extract(insn, 4, 0) == 224 Instruction_aarch64::extract(insn2, 4, 0)) { 225 instructions = T::adrp(insn_addr, target, T::adrpMovk); 226 } else { 227 ShouldNotReachHere(); 228 } 229 } else { 230 instructions = T::adr(insn_addr, target); 231 } 232 break; 233 } 234 case 0b001001: 235 case 0b011001: 236 case 0b101001: 237 case 0b111001: { 238 instructions = T::immediate(insn_addr, target); 239 break; 240 } 241 default: { 242 ShouldNotReachHere(); 243 } 244 } 245 246 T::verify(insn_addr, target); 247 return instructions * NativeInstruction::instruction_size; 248 } 249 }; 250 251 class Patcher : public AllStatic { 252 public: 253 static int unconditionalBranch(address insn_addr, address &target) { 254 intptr_t offset = (target - insn_addr) >> 2; 255 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 256 return 1; 257 } 258 static int conditionalBranch(address insn_addr, address &target) { 259 intptr_t offset = (target - insn_addr) >> 2; 260 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 261 return 1; 262 } 263 static int testAndBranch(address insn_addr, address &target) { 264 intptr_t offset = (target - insn_addr) >> 2; 265 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 266 return 1; 267 } 268 static int loadStore(address insn_addr, address &target) { 269 intptr_t offset = (target - insn_addr) >> 2; 270 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 271 return 1; 272 } 273 static int adr(address insn_addr, address &target) { 274 #ifdef ASSERT 275 assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 28, 24) == 0b10000, "must be"); 276 #endif 277 // PC-rel. addressing 278 ptrdiff_t offset = target - insn_addr; 279 int offset_lo = offset & 3; 280 offset >>= 2; 281 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 282 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 283 return 1; 284 } 285 template<typename U> 286 static int adrp(address insn_addr, address &target, U inner) { 287 int instructions = 1; 288 #ifdef ASSERT 289 assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 28, 24) == 0b10000, "must be"); 290 #endif 291 ptrdiff_t offset = target - insn_addr; 292 instructions = 2; 293 precond(inner != nullptr); 294 // Give the inner reloc a chance to modify the target. 295 address adjusted_target = target; 296 instructions = inner(insn_addr, adjusted_target); 297 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 298 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 299 offset = adr_page - pc_page; 300 int offset_lo = offset & 3; 301 offset >>= 2; 302 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 303 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 304 return instructions; 305 } 306 static int adrpMem(address insn_addr, address &target) { 307 uintptr_t dest = (uintptr_t)target; 308 int offset_lo = dest & 0xfff; 309 uint32_t insn2 = insn_at(insn_addr, 1); 310 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 311 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 312 guarantee(((dest >> size) << size) == dest, "misaligned target"); 313 return 2; 314 } 315 static int adrpAdd(address insn_addr, address &target) { 316 uintptr_t dest = (uintptr_t)target; 317 int offset_lo = dest & 0xfff; 318 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 319 return 2; 320 } 321 static int adrpMovk(address insn_addr, address &target) { 322 uintptr_t dest = uintptr_t(target); 323 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 324 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 325 target = address(dest); 326 return 2; 327 } 328 static int immediate(address insn_addr, address &target) { 329 assert(Instruction_aarch64::extract(insn_at(insn_addr, 0), 31, 21) == 0b11010010100, "must be"); 330 uint64_t dest = (uint64_t)target; 331 // Move wide constant 332 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 333 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 334 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 335 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 336 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 337 return 3; 338 } 339 static void verify(address insn_addr, address &target) { 340 #ifdef ASSERT 341 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 342 if (!(address_is == target)) { 343 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 344 disnm((intptr_t)insn_addr); 345 assert(address_is == target, "should be"); 346 } 347 #endif 348 } 349 }; 350 351 // If insn1 and insn2 use the same register to form an address, either 352 // by an offsetted LDR or a simple ADD, return the offset. If the 353 // second instruction is an LDR, the offset may be scaled. 354 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 355 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 356 Instruction_aarch64::extract(insn1, 4, 0) == 357 Instruction_aarch64::extract(insn2, 9, 5)) { 358 // Load/store register (unsigned immediate) 359 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 360 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 361 byte_offset <<= size; 362 return true; 363 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 364 Instruction_aarch64::extract(insn1, 4, 0) == 365 Instruction_aarch64::extract(insn2, 4, 0)) { 366 // add (immediate) 367 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 368 return true; 369 } 370 return false; 371 } 372 373 class AArch64Decoder : public AllStatic { 374 public: 375 376 static int loadStore(address insn_addr, address &target) { 377 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 23, 5); 378 target = insn_addr + (offset << 2); 379 return 1; 380 } 381 static int unconditionalBranch(address insn_addr, address &target) { 382 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 25, 0); 383 target = insn_addr + (offset << 2); 384 return 1; 385 } 386 static int conditionalBranch(address insn_addr, address &target) { 387 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 23, 5); 388 target = address(((uint64_t)insn_addr + (offset << 2))); 389 return 1; 390 } 391 static int testAndBranch(address insn_addr, address &target) { 392 intptr_t offset = Instruction_aarch64::sextract(insn_at(insn_addr, 0), 18, 5); 393 target = address(((uint64_t)insn_addr + (offset << 2))); 394 return 1; 395 } 396 static int adr(address insn_addr, address &target) { 397 // PC-rel. addressing 398 uint32_t insn = insn_at(insn_addr, 0); 399 intptr_t offset = Instruction_aarch64::extract(insn, 30, 29); 400 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 401 target = address((uint64_t)insn_addr + offset); 402 return 1; 403 } 404 template<typename U> 405 static int adrp(address insn_addr, address &target, U inner) { 406 uint32_t insn = insn_at(insn_addr, 0); 407 assert(Instruction_aarch64::extract(insn, 28, 24) == 0b10000, "must be"); 408 intptr_t offset = Instruction_aarch64::extract(insn, 30, 29); 409 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 410 int shift = 12; 411 offset <<= shift; 412 uint64_t target_page = ((uint64_t)insn_addr) + offset; 413 target_page &= ((uint64_t)-1) << shift; 414 uint32_t insn2 = insn_at(insn_addr, 1); 415 target = address(target_page); 416 precond(inner != nullptr); 417 inner(insn_addr, target); 418 return 2; 419 } 420 static int adrpMem(address insn_addr, address &target) { 421 uint32_t insn2 = insn_at(insn_addr, 1); 422 // Load/store register (unsigned immediate) 423 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 424 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 425 byte_offset <<= size; 426 target += byte_offset; 427 return 2; 428 } 429 static int adrpAdd(address insn_addr, address &target) { 430 uint32_t insn2 = insn_at(insn_addr, 1); 431 // add (immediate) 432 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 433 target += byte_offset; 434 return 2; 435 } 436 static int adrpMovk(address insn_addr, address &target) { 437 uint32_t insn2 = insn_at(insn_addr, 1); 438 uint64_t dest = uint64_t(target); 439 dest = (dest & 0xffff0000ffffffff) | 440 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 441 target = address(dest); 442 443 // We know the destination 4k page. Maybe we have a third 444 // instruction. 445 uint32_t insn = insn_at(insn_addr, 0); 446 uint32_t insn3 = insn_at(insn_addr, 2); 447 ptrdiff_t byte_offset; 448 if (offset_for(insn, insn3, byte_offset)) { 449 target += byte_offset; 450 return 3; 451 } else { 452 return 2; 453 } 454 } 455 static int immediate(address insn_addr, address &target) { 456 uint32_t *insns = (uint32_t *)insn_addr; 457 assert(Instruction_aarch64::extract(insns[0], 31, 21) == 0b11010010100, "must be"); 458 // Move wide constant: movz, movk, movk. See movptr(). 459 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 460 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 461 target = address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 462 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 463 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 464 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 465 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 466 return 3; 467 } 468 static void verify(address insn_addr, address &target) { 469 } 470 }; 471 472 address MacroAssembler::target_addr_for_insn(address insn_addr) { 473 address target; 474 RelocActions<AArch64Decoder>::run(insn_addr, target); 475 return target; 476 } 477 478 // Patch any kind of instruction; there may be several instructions. 479 // Return the total length (in bytes) of the instructions. 480 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 481 return RelocActions<Patcher>::run(insn_addr, target); 482 } 483 484 int MacroAssembler::patch_oop(address insn_addr, address o) { 485 int instructions; 486 unsigned insn = *(unsigned*)insn_addr; 487 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 488 489 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 490 // narrow OOPs by setting the upper 16 bits in the first 491 // instruction. 492 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 493 // Move narrow OOP 494 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 495 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 496 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 497 instructions = 2; 498 } else { 499 // Move wide OOP 500 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 501 uintptr_t dest = (uintptr_t)o; 502 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 503 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 504 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 505 instructions = 3; 506 } 507 return instructions * NativeInstruction::instruction_size; 508 } 509 510 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 511 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 512 // We encode narrow ones by setting the upper 16 bits in the first 513 // instruction. 514 NativeInstruction *insn = nativeInstruction_at(insn_addr); 515 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 516 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 517 518 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 519 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 520 return 2 * NativeInstruction::instruction_size; 521 } 522 523 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr) { 524 if (NativeInstruction::is_ldrw_to_zr(insn_addr)) { 525 return nullptr; 526 } 527 return MacroAssembler::target_addr_for_insn(insn_addr); 528 } 529 530 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) { 531 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 532 if (at_return) { 533 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 534 // we may safely use the sp instead to perform the stack watermark check. 535 cmp(in_nmethod ? sp : rfp, tmp); 536 br(Assembler::HI, slow_path); 537 } else { 538 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 539 } 540 } 541 542 void MacroAssembler::rt_call(address dest, Register tmp) { 543 CodeBlob *cb = CodeCache::find_blob(dest); 544 if (cb) { 545 far_call(RuntimeAddress(dest)); 546 } else { 547 lea(tmp, RuntimeAddress(dest)); 548 blr(tmp); 549 } 550 } 551 552 void MacroAssembler::push_cont_fastpath(Register java_thread) { 553 if (!Continuations::enabled()) return; 554 Label done; 555 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 556 cmp(sp, rscratch1); 557 br(Assembler::LS, done); 558 mov(rscratch1, sp); // we can't use sp as the source in str 559 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 560 bind(done); 561 } 562 563 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 564 if (!Continuations::enabled()) return; 565 Label done; 566 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 567 cmp(sp, rscratch1); 568 br(Assembler::LO, done); 569 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 570 bind(done); 571 } 572 573 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 574 // we must set sp to zero to clear frame 575 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 576 577 // must clear fp, so that compiled frames are not confused; it is 578 // possible that we need it only for debugging 579 if (clear_fp) { 580 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 581 } 582 583 // Always clear the pc because it could have been set by make_walkable() 584 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 585 } 586 587 // Calls to C land 588 // 589 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 590 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 591 // has to be reset to 0. This is required to allow proper stack traversal. 592 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 593 Register last_java_fp, 594 Register last_java_pc, 595 Register scratch) { 596 597 if (last_java_pc->is_valid()) { 598 str(last_java_pc, Address(rthread, 599 JavaThread::frame_anchor_offset() 600 + JavaFrameAnchor::last_Java_pc_offset())); 601 } 602 603 // determine last_java_sp register 604 if (last_java_sp == sp) { 605 mov(scratch, sp); 606 last_java_sp = scratch; 607 } else if (!last_java_sp->is_valid()) { 608 last_java_sp = esp; 609 } 610 611 // last_java_fp is optional 612 if (last_java_fp->is_valid()) { 613 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 614 } 615 616 // We must set sp last. 617 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 618 } 619 620 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 621 Register last_java_fp, 622 address last_java_pc, 623 Register scratch) { 624 assert(last_java_pc != nullptr, "must provide a valid PC"); 625 626 adr(scratch, last_java_pc); 627 str(scratch, Address(rthread, 628 JavaThread::frame_anchor_offset() 629 + JavaFrameAnchor::last_Java_pc_offset())); 630 631 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 632 } 633 634 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 635 Register last_java_fp, 636 Label &L, 637 Register scratch) { 638 if (L.is_bound()) { 639 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 640 } else { 641 InstructionMark im(this); 642 L.add_patch_at(code(), locator()); 643 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 644 } 645 } 646 647 static inline bool target_needs_far_branch(address addr) { 648 if (AOTCodeCache::is_on_for_dump()) { 649 return true; 650 } 651 // codecache size <= 128M 652 if (!MacroAssembler::far_branches()) { 653 return false; 654 } 655 // codecache size > 240M 656 if (MacroAssembler::codestub_branch_needs_far_jump()) { 657 return true; 658 } 659 // codecache size: 128M..240M 660 return !CodeCache::is_non_nmethod(addr); 661 } 662 663 void MacroAssembler::far_call(Address entry, Register tmp) { 664 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 665 assert(CodeCache::find_blob(entry.target()) != nullptr, 666 "destination of far call not found in code cache"); 667 assert(entry.rspec().type() == relocInfo::external_word_type 668 || entry.rspec().type() == relocInfo::runtime_call_type 669 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 670 if (target_needs_far_branch(entry.target())) { 671 uint64_t offset; 672 // We can use ADRP here because we know that the total size of 673 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 674 adrp(tmp, entry, offset); 675 add(tmp, tmp, offset); 676 blr(tmp); 677 } else { 678 bl(entry); 679 } 680 } 681 682 int MacroAssembler::far_jump(Address entry, Register tmp) { 683 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 684 assert(CodeCache::find_blob(entry.target()) != nullptr, 685 "destination of far call not found in code cache"); 686 assert(entry.rspec().type() == relocInfo::external_word_type 687 || entry.rspec().type() == relocInfo::runtime_call_type 688 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 689 address start = pc(); 690 if (target_needs_far_branch(entry.target())) { 691 uint64_t offset; 692 // We can use ADRP here because we know that the total size of 693 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 694 adrp(tmp, entry, offset); 695 add(tmp, tmp, offset); 696 br(tmp); 697 } else { 698 b(entry); 699 } 700 return pc() - start; 701 } 702 703 void MacroAssembler::reserved_stack_check() { 704 // testing if reserved zone needs to be enabled 705 Label no_reserved_zone_enabling; 706 707 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 708 cmp(sp, rscratch1); 709 br(Assembler::LO, no_reserved_zone_enabling); 710 711 enter(); // LR and FP are live. 712 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 713 mov(c_rarg0, rthread); 714 blr(rscratch1); 715 leave(); 716 717 // We have already removed our own frame. 718 // throw_delayed_StackOverflowError will think that it's been 719 // called by our caller. 720 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 721 br(rscratch1); 722 should_not_reach_here(); 723 724 bind(no_reserved_zone_enabling); 725 } 726 727 static void pass_arg0(MacroAssembler* masm, Register arg) { 728 if (c_rarg0 != arg ) { 729 masm->mov(c_rarg0, arg); 730 } 731 } 732 733 static void pass_arg1(MacroAssembler* masm, Register arg) { 734 if (c_rarg1 != arg ) { 735 masm->mov(c_rarg1, arg); 736 } 737 } 738 739 static void pass_arg2(MacroAssembler* masm, Register arg) { 740 if (c_rarg2 != arg ) { 741 masm->mov(c_rarg2, arg); 742 } 743 } 744 745 static void pass_arg3(MacroAssembler* masm, Register arg) { 746 if (c_rarg3 != arg ) { 747 masm->mov(c_rarg3, arg); 748 } 749 } 750 751 void MacroAssembler::call_VM_base(Register oop_result, 752 Register java_thread, 753 Register last_java_sp, 754 Label* return_pc, 755 address entry_point, 756 int number_of_arguments, 757 bool check_exceptions) { 758 // determine java_thread register 759 if (!java_thread->is_valid()) { 760 java_thread = rthread; 761 } 762 763 // determine last_java_sp register 764 if (!last_java_sp->is_valid()) { 765 last_java_sp = esp; 766 } 767 768 // debugging support 769 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 770 assert(java_thread == rthread, "unexpected register"); 771 #ifdef ASSERT 772 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 773 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 774 #endif // ASSERT 775 776 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 777 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 778 779 // push java thread (becomes first argument of C function) 780 781 mov(c_rarg0, java_thread); 782 783 // set last Java frame before call 784 assert(last_java_sp != rfp, "can't use rfp"); 785 786 Label l; 787 set_last_Java_frame(last_java_sp, rfp, return_pc != nullptr ? *return_pc : l, rscratch1); 788 789 // do the call, remove parameters 790 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 791 792 // lr could be poisoned with PAC signature during throw_pending_exception 793 // if it was tail-call optimized by compiler, since lr is not callee-saved 794 // reload it with proper value 795 adr(lr, l); 796 797 // reset last Java frame 798 // Only interpreter should have to clear fp 799 reset_last_Java_frame(true); 800 801 // C++ interp handles this in the interpreter 802 check_and_handle_popframe(java_thread); 803 check_and_handle_earlyret(java_thread); 804 805 if (check_exceptions) { 806 // check for pending exceptions (java_thread is set upon return) 807 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 808 Label ok; 809 cbz(rscratch1, ok); 810 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 811 br(rscratch1); 812 bind(ok); 813 } 814 815 // get oop result if there is one and reset the value in the thread 816 if (oop_result->is_valid()) { 817 get_vm_result_oop(oop_result, java_thread); 818 } 819 } 820 821 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 822 call_VM_base(oop_result, noreg, noreg, nullptr, entry_point, number_of_arguments, check_exceptions); 823 } 824 825 // Check the entry target is always reachable from any branch. 826 static bool is_always_within_branch_range(Address entry) { 827 if (AOTCodeCache::is_on_for_dump()) { 828 return false; 829 } 830 const address target = entry.target(); 831 832 if (!CodeCache::contains(target)) { 833 // We always use trampolines for callees outside CodeCache. 834 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 835 return false; 836 } 837 838 if (!MacroAssembler::far_branches()) { 839 return true; 840 } 841 842 if (entry.rspec().type() == relocInfo::runtime_call_type) { 843 // Runtime calls are calls of a non-compiled method (stubs, adapters). 844 // Non-compiled methods stay forever in CodeCache. 845 // We check whether the longest possible branch is within the branch range. 846 assert(CodeCache::find_blob(target) != nullptr && 847 !CodeCache::find_blob(target)->is_nmethod(), 848 "runtime call of compiled method"); 849 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 850 const address left_longest_branch_start = CodeCache::low_bound(); 851 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 852 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 853 return is_reachable; 854 } 855 856 return false; 857 } 858 859 // Maybe emit a call via a trampoline. If the code cache is small 860 // trampolines won't be emitted. 861 address MacroAssembler::trampoline_call(Address entry) { 862 assert(entry.rspec().type() == relocInfo::runtime_call_type 863 || entry.rspec().type() == relocInfo::opt_virtual_call_type 864 || entry.rspec().type() == relocInfo::static_call_type 865 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 866 867 address target = entry.target(); 868 869 if (!is_always_within_branch_range(entry)) { 870 if (!in_scratch_emit_size()) { 871 // We don't want to emit a trampoline if C2 is generating dummy 872 // code during its branch shortening phase. 873 if (entry.rspec().type() == relocInfo::runtime_call_type) { 874 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 875 code()->share_trampoline_for(entry.target(), offset()); 876 } else { 877 address stub = emit_trampoline_stub(offset(), target); 878 if (stub == nullptr) { 879 postcond(pc() == badAddress); 880 return nullptr; // CodeCache is full 881 } 882 } 883 } 884 target = pc(); 885 } 886 887 address call_pc = pc(); 888 relocate(entry.rspec()); 889 bl(target); 890 891 postcond(pc() != badAddress); 892 return call_pc; 893 } 894 895 // Emit a trampoline stub for a call to a target which is too far away. 896 // 897 // code sequences: 898 // 899 // call-site: 900 // branch-and-link to <destination> or <trampoline stub> 901 // 902 // Related trampoline stub for this call site in the stub section: 903 // load the call target from the constant pool 904 // branch (LR still points to the call site above) 905 906 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 907 address dest) { 908 // Max stub size: alignment nop, TrampolineStub. 909 address stub = start_a_stub(max_trampoline_stub_size()); 910 if (stub == nullptr) { 911 return nullptr; // CodeBuffer::expand failed 912 } 913 914 // Create a trampoline stub relocation which relates this trampoline stub 915 // with the call instruction at insts_call_instruction_offset in the 916 // instructions code-section. 917 align(wordSize); 918 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 919 + insts_call_instruction_offset)); 920 const int stub_start_offset = offset(); 921 922 // Now, create the trampoline stub's code: 923 // - load the call 924 // - call 925 Label target; 926 ldr(rscratch1, target); 927 br(rscratch1); 928 bind(target); 929 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 930 "should be"); 931 emit_int64((int64_t)dest); 932 933 const address stub_start_addr = addr_at(stub_start_offset); 934 935 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 936 937 end_a_stub(); 938 return stub_start_addr; 939 } 940 941 int MacroAssembler::max_trampoline_stub_size() { 942 // Max stub size: alignment nop, TrampolineStub. 943 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 944 } 945 946 void MacroAssembler::emit_static_call_stub() { 947 // CompiledDirectCall::set_to_interpreted knows the 948 // exact layout of this stub. 949 950 isb(); 951 mov_metadata(rmethod, nullptr); 952 953 // Jump to the entry point of the c2i stub. 954 if (codestub_branch_needs_far_jump()) { 955 movptr(rscratch1, 0); 956 br(rscratch1); 957 } else { 958 b(pc()); 959 } 960 } 961 962 int MacroAssembler::static_call_stub_size() { 963 if (!codestub_branch_needs_far_jump()) { 964 // isb; movk; movz; movz; b 965 return 5 * NativeInstruction::instruction_size; 966 } 967 // isb; movk; movz; movz; movk; movz; movz; br 968 return 8 * NativeInstruction::instruction_size; 969 } 970 971 void MacroAssembler::c2bool(Register x) { 972 // implements x == 0 ? 0 : 1 973 // note: must only look at least-significant byte of x 974 // since C-style booleans are stored in one byte 975 // only! (was bug) 976 tst(x, 0xff); 977 cset(x, Assembler::NE); 978 } 979 980 address MacroAssembler::ic_call(address entry, jint method_index) { 981 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 982 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 983 return trampoline_call(Address(entry, rh)); 984 } 985 986 int MacroAssembler::ic_check_size() { 987 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 988 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 989 return NativeInstruction::instruction_size * (7 + extra_instructions); 990 } else { 991 return NativeInstruction::instruction_size * (5 + extra_instructions); 992 } 993 } 994 995 int MacroAssembler::ic_check(int end_alignment) { 996 Register receiver = j_rarg0; 997 Register data = rscratch2; 998 Register tmp1 = rscratch1; 999 Register tmp2 = r10; 1000 1001 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1002 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1003 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1004 // before the inline cache check here, and not after 1005 align(end_alignment, offset() + ic_check_size()); 1006 1007 int uep_offset = offset(); 1008 1009 if (UseCompactObjectHeaders) { 1010 load_narrow_klass_compact(tmp1, receiver); 1011 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1012 cmpw(tmp1, tmp2); 1013 } else if (UseCompressedClassPointers) { 1014 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1015 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1016 cmpw(tmp1, tmp2); 1017 } else { 1018 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1019 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1020 cmp(tmp1, tmp2); 1021 } 1022 1023 Label dont; 1024 br(Assembler::EQ, dont); 1025 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1026 bind(dont); 1027 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1028 1029 return uep_offset; 1030 } 1031 1032 // Implementation of call_VM versions 1033 1034 void MacroAssembler::call_VM(Register oop_result, 1035 address entry_point, 1036 bool check_exceptions) { 1037 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1038 } 1039 1040 void MacroAssembler::call_VM(Register oop_result, 1041 address entry_point, 1042 Register arg_1, 1043 bool check_exceptions) { 1044 pass_arg1(this, arg_1); 1045 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1046 } 1047 1048 void MacroAssembler::call_VM(Register oop_result, 1049 address entry_point, 1050 Register arg_1, 1051 Register arg_2, 1052 bool check_exceptions) { 1053 assert_different_registers(arg_1, c_rarg2); 1054 pass_arg2(this, arg_2); 1055 pass_arg1(this, arg_1); 1056 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1057 } 1058 1059 void MacroAssembler::call_VM(Register oop_result, 1060 address entry_point, 1061 Register arg_1, 1062 Register arg_2, 1063 Register arg_3, 1064 bool check_exceptions) { 1065 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1066 assert_different_registers(arg_2, c_rarg3); 1067 pass_arg3(this, arg_3); 1068 1069 pass_arg2(this, arg_2); 1070 1071 pass_arg1(this, arg_1); 1072 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1073 } 1074 1075 void MacroAssembler::call_VM(Register oop_result, 1076 Register last_java_sp, 1077 address entry_point, 1078 int number_of_arguments, 1079 bool check_exceptions) { 1080 call_VM_base(oop_result, rthread, last_java_sp, nullptr, entry_point, number_of_arguments, check_exceptions); 1081 } 1082 1083 void MacroAssembler::call_VM(Register oop_result, 1084 Register last_java_sp, 1085 address entry_point, 1086 Register arg_1, 1087 bool check_exceptions) { 1088 pass_arg1(this, arg_1); 1089 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1090 } 1091 1092 void MacroAssembler::call_VM(Register oop_result, 1093 Register last_java_sp, 1094 address entry_point, 1095 Register arg_1, 1096 Register arg_2, 1097 bool check_exceptions) { 1098 1099 assert_different_registers(arg_1, c_rarg2); 1100 pass_arg2(this, arg_2); 1101 pass_arg1(this, arg_1); 1102 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1103 } 1104 1105 void MacroAssembler::call_VM(Register oop_result, 1106 Register last_java_sp, 1107 address entry_point, 1108 Register arg_1, 1109 Register arg_2, 1110 Register arg_3, 1111 bool check_exceptions) { 1112 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1113 assert_different_registers(arg_2, c_rarg3); 1114 pass_arg3(this, arg_3); 1115 pass_arg2(this, arg_2); 1116 pass_arg1(this, arg_1); 1117 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1118 } 1119 1120 1121 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1122 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1123 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1124 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1125 } 1126 1127 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1128 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1129 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1130 } 1131 1132 void MacroAssembler::align(int modulus) { 1133 align(modulus, offset()); 1134 } 1135 1136 // Ensure that the code at target bytes offset from the current offset() is aligned 1137 // according to modulus. 1138 void MacroAssembler::align(int modulus, int target) { 1139 int delta = target - offset(); 1140 while ((offset() + delta) % modulus != 0) nop(); 1141 } 1142 1143 void MacroAssembler::post_call_nop() { 1144 if (!Continuations::enabled()) { 1145 return; 1146 } 1147 InstructionMark im(this); 1148 relocate(post_call_nop_Relocation::spec()); 1149 InlineSkippedInstructionsCounter skipCounter(this); 1150 nop(); 1151 movk(zr, 0); 1152 movk(zr, 0); 1153 } 1154 1155 // these are no-ops overridden by InterpreterMacroAssembler 1156 1157 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1158 1159 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1160 1161 // Look up the method for a megamorphic invokeinterface call. 1162 // The target method is determined by <intf_klass, itable_index>. 1163 // The receiver klass is in recv_klass. 1164 // On success, the result will be in method_result, and execution falls through. 1165 // On failure, execution transfers to the given label. 1166 void MacroAssembler::lookup_interface_method(Register recv_klass, 1167 Register intf_klass, 1168 RegisterOrConstant itable_index, 1169 Register method_result, 1170 Register scan_temp, 1171 Label& L_no_such_interface, 1172 bool return_method) { 1173 assert_different_registers(recv_klass, intf_klass, scan_temp); 1174 assert_different_registers(method_result, intf_klass, scan_temp); 1175 assert(recv_klass != method_result || !return_method, 1176 "recv_klass can be destroyed when method isn't needed"); 1177 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1178 "caller must use same register for non-constant itable index as for method"); 1179 1180 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1181 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1182 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1183 int scan_step = itableOffsetEntry::size() * wordSize; 1184 int vte_size = vtableEntry::size_in_bytes(); 1185 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1186 1187 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1188 1189 // Could store the aligned, prescaled offset in the klass. 1190 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1191 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1192 add(scan_temp, scan_temp, vtable_base); 1193 1194 if (return_method) { 1195 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1196 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1197 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1198 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1199 if (itentry_off) 1200 add(recv_klass, recv_klass, itentry_off); 1201 } 1202 1203 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1204 // if (scan->interface() == intf) { 1205 // result = (klass + scan->offset() + itable_index); 1206 // } 1207 // } 1208 Label search, found_method; 1209 1210 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1211 cmp(intf_klass, method_result); 1212 br(Assembler::EQ, found_method); 1213 bind(search); 1214 // Check that the previous entry is non-null. A null entry means that 1215 // the receiver class doesn't implement the interface, and wasn't the 1216 // same as when the caller was compiled. 1217 cbz(method_result, L_no_such_interface); 1218 if (itableOffsetEntry::interface_offset() != 0) { 1219 add(scan_temp, scan_temp, scan_step); 1220 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1221 } else { 1222 ldr(method_result, Address(pre(scan_temp, scan_step))); 1223 } 1224 cmp(intf_klass, method_result); 1225 br(Assembler::NE, search); 1226 1227 bind(found_method); 1228 1229 // Got a hit. 1230 if (return_method) { 1231 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1232 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1233 } 1234 } 1235 1236 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1237 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1238 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1239 // The target method is determined by <holder_klass, itable_index>. 1240 // The receiver klass is in recv_klass. 1241 // On success, the result will be in method_result, and execution falls through. 1242 // On failure, execution transfers to the given label. 1243 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1244 Register holder_klass, 1245 Register resolved_klass, 1246 Register method_result, 1247 Register temp_itbl_klass, 1248 Register scan_temp, 1249 int itable_index, 1250 Label& L_no_such_interface) { 1251 // 'method_result' is only used as output register at the very end of this method. 1252 // Until then we can reuse it as 'holder_offset'. 1253 Register holder_offset = method_result; 1254 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1255 1256 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1257 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1258 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1259 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1260 1261 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1262 1263 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1264 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1265 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1266 // temp_itbl_klass = itable[0]._interface; 1267 int vtblEntrySize = vtableEntry::size_in_bytes(); 1268 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1269 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1270 mov(holder_offset, zr); 1271 // scan_temp = &(itable[0]._interface) 1272 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1273 1274 // Initial checks: 1275 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1276 // - if (itable[0] == holder_klass), shortcut to "holder found" 1277 // - if (itable[0] == 0), no such interface 1278 cmp(resolved_klass, holder_klass); 1279 br(Assembler::NE, L_loop_search_resolved_entry); 1280 cmp(holder_klass, temp_itbl_klass); 1281 br(Assembler::EQ, L_holder_found); 1282 cbz(temp_itbl_klass, L_no_such_interface); 1283 1284 // Loop: Look for holder_klass record in itable 1285 // do { 1286 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1287 // if (temp_itbl_klass == holder_klass) { 1288 // goto L_holder_found; // Found! 1289 // } 1290 // } while (temp_itbl_klass != 0); 1291 // goto L_no_such_interface // Not found. 1292 Label L_search_holder; 1293 bind(L_search_holder); 1294 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1295 cmp(holder_klass, temp_itbl_klass); 1296 br(Assembler::EQ, L_holder_found); 1297 cbnz(temp_itbl_klass, L_search_holder); 1298 1299 b(L_no_such_interface); 1300 1301 // Loop: Look for resolved_class record in itable 1302 // while (true) { 1303 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1304 // if (temp_itbl_klass == 0) { 1305 // goto L_no_such_interface; 1306 // } 1307 // if (temp_itbl_klass == resolved_klass) { 1308 // goto L_resolved_found; // Found! 1309 // } 1310 // if (temp_itbl_klass == holder_klass) { 1311 // holder_offset = scan_temp; 1312 // } 1313 // } 1314 // 1315 Label L_loop_search_resolved; 1316 bind(L_loop_search_resolved); 1317 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1318 bind(L_loop_search_resolved_entry); 1319 cbz(temp_itbl_klass, L_no_such_interface); 1320 cmp(resolved_klass, temp_itbl_klass); 1321 br(Assembler::EQ, L_resolved_found); 1322 cmp(holder_klass, temp_itbl_klass); 1323 br(Assembler::NE, L_loop_search_resolved); 1324 mov(holder_offset, scan_temp); 1325 b(L_loop_search_resolved); 1326 1327 // See if we already have a holder klass. If not, go and scan for it. 1328 bind(L_resolved_found); 1329 cbz(holder_offset, L_search_holder); 1330 mov(scan_temp, holder_offset); 1331 1332 // Finally, scan_temp contains holder_klass vtable offset 1333 bind(L_holder_found); 1334 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1335 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1336 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1337 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1338 } 1339 1340 // virtual method calling 1341 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1342 RegisterOrConstant vtable_index, 1343 Register method_result) { 1344 assert(vtableEntry::size() * wordSize == 8, 1345 "adjust the scaling in the code below"); 1346 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1347 1348 if (vtable_index.is_register()) { 1349 lea(method_result, Address(recv_klass, 1350 vtable_index.as_register(), 1351 Address::lsl(LogBytesPerWord))); 1352 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1353 } else { 1354 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1355 ldr(method_result, 1356 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1357 } 1358 } 1359 1360 void MacroAssembler::check_klass_subtype(Register sub_klass, 1361 Register super_klass, 1362 Register temp_reg, 1363 Label& L_success) { 1364 Label L_failure; 1365 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1366 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1367 bind(L_failure); 1368 } 1369 1370 1371 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1372 Register super_klass, 1373 Register temp_reg, 1374 Label* L_success, 1375 Label* L_failure, 1376 Label* L_slow_path, 1377 Register super_check_offset) { 1378 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1379 bool must_load_sco = ! super_check_offset->is_valid(); 1380 if (must_load_sco) { 1381 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1382 } 1383 1384 Label L_fallthrough; 1385 int label_nulls = 0; 1386 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1387 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1388 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1389 assert(label_nulls <= 1, "at most one null in the batch"); 1390 1391 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1392 Address super_check_offset_addr(super_klass, sco_offset); 1393 1394 // Hacked jmp, which may only be used just before L_fallthrough. 1395 #define final_jmp(label) \ 1396 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1397 else b(label) /*omit semi*/ 1398 1399 // If the pointers are equal, we are done (e.g., String[] elements). 1400 // This self-check enables sharing of secondary supertype arrays among 1401 // non-primary types such as array-of-interface. Otherwise, each such 1402 // type would need its own customized SSA. 1403 // We move this check to the front of the fast path because many 1404 // type checks are in fact trivially successful in this manner, 1405 // so we get a nicely predicted branch right at the start of the check. 1406 cmp(sub_klass, super_klass); 1407 br(Assembler::EQ, *L_success); 1408 1409 // Check the supertype display: 1410 if (must_load_sco) { 1411 ldrw(temp_reg, super_check_offset_addr); 1412 super_check_offset = temp_reg; 1413 } 1414 1415 Address super_check_addr(sub_klass, super_check_offset); 1416 ldr(rscratch1, super_check_addr); 1417 cmp(super_klass, rscratch1); // load displayed supertype 1418 br(Assembler::EQ, *L_success); 1419 1420 // This check has worked decisively for primary supers. 1421 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1422 // (Secondary supers are interfaces and very deeply nested subtypes.) 1423 // This works in the same check above because of a tricky aliasing 1424 // between the super_cache and the primary super display elements. 1425 // (The 'super_check_addr' can address either, as the case requires.) 1426 // Note that the cache is updated below if it does not help us find 1427 // what we need immediately. 1428 // So if it was a primary super, we can just fail immediately. 1429 // Otherwise, it's the slow path for us (no success at this point). 1430 1431 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1432 if (L_failure == &L_fallthrough) { 1433 cbz(rscratch1, *L_slow_path); 1434 } else { 1435 cbnz(rscratch1, *L_failure); 1436 final_jmp(*L_slow_path); 1437 } 1438 1439 bind(L_fallthrough); 1440 1441 #undef final_jmp 1442 } 1443 1444 // These two are taken from x86, but they look generally useful 1445 1446 // scans count pointer sized words at [addr] for occurrence of value, 1447 // generic 1448 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1449 Register scratch) { 1450 Label Lloop, Lexit; 1451 cbz(count, Lexit); 1452 bind(Lloop); 1453 ldr(scratch, post(addr, wordSize)); 1454 cmp(value, scratch); 1455 br(EQ, Lexit); 1456 sub(count, count, 1); 1457 cbnz(count, Lloop); 1458 bind(Lexit); 1459 } 1460 1461 // scans count 4 byte words at [addr] for occurrence of value, 1462 // generic 1463 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1464 Register scratch) { 1465 Label Lloop, Lexit; 1466 cbz(count, Lexit); 1467 bind(Lloop); 1468 ldrw(scratch, post(addr, wordSize)); 1469 cmpw(value, scratch); 1470 br(EQ, Lexit); 1471 sub(count, count, 1); 1472 cbnz(count, Lloop); 1473 bind(Lexit); 1474 } 1475 1476 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1477 Register super_klass, 1478 Register temp_reg, 1479 Register temp2_reg, 1480 Label* L_success, 1481 Label* L_failure, 1482 bool set_cond_codes) { 1483 // NB! Callers may assume that, when temp2_reg is a valid register, 1484 // this code sets it to a nonzero value. 1485 1486 assert_different_registers(sub_klass, super_klass, temp_reg); 1487 if (temp2_reg != noreg) 1488 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1489 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1490 1491 Label L_fallthrough; 1492 int label_nulls = 0; 1493 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1494 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1495 assert(label_nulls <= 1, "at most one null in the batch"); 1496 1497 // a couple of useful fields in sub_klass: 1498 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1499 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1500 Address secondary_supers_addr(sub_klass, ss_offset); 1501 Address super_cache_addr( sub_klass, sc_offset); 1502 1503 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1504 1505 // Do a linear scan of the secondary super-klass chain. 1506 // This code is rarely used, so simplicity is a virtue here. 1507 // The repne_scan instruction uses fixed registers, which we must spill. 1508 // Don't worry too much about pre-existing connections with the input regs. 1509 1510 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1511 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1512 1513 RegSet pushed_registers; 1514 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1515 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1516 1517 if (super_klass != r0) { 1518 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1519 } 1520 1521 push(pushed_registers, sp); 1522 1523 // Get super_klass value into r0 (even if it was in r5 or r2). 1524 if (super_klass != r0) { 1525 mov(r0, super_klass); 1526 } 1527 1528 #ifndef PRODUCT 1529 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1530 #endif //PRODUCT 1531 1532 // We will consult the secondary-super array. 1533 ldr(r5, secondary_supers_addr); 1534 // Load the array length. 1535 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1536 // Skip to start of data. 1537 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1538 1539 cmp(sp, zr); // Clear Z flag; SP is never zero 1540 // Scan R2 words at [R5] for an occurrence of R0. 1541 // Set NZ/Z based on last compare. 1542 repne_scan(r5, r0, r2, rscratch1); 1543 1544 // Unspill the temp. registers: 1545 pop(pushed_registers, sp); 1546 1547 br(Assembler::NE, *L_failure); 1548 1549 // Success. Cache the super we found and proceed in triumph. 1550 1551 if (UseSecondarySupersCache) { 1552 str(super_klass, super_cache_addr); 1553 } 1554 1555 if (L_success != &L_fallthrough) { 1556 b(*L_success); 1557 } 1558 1559 #undef IS_A_TEMP 1560 1561 bind(L_fallthrough); 1562 } 1563 1564 // If Register r is invalid, remove a new register from 1565 // available_regs, and add new register to regs_to_push. 1566 Register MacroAssembler::allocate_if_noreg(Register r, 1567 RegSetIterator<Register> &available_regs, 1568 RegSet ®s_to_push) { 1569 if (!r->is_valid()) { 1570 r = *available_regs++; 1571 regs_to_push += r; 1572 } 1573 return r; 1574 } 1575 1576 // check_klass_subtype_slow_path_table() looks for super_klass in the 1577 // hash table belonging to super_klass, branching to L_success or 1578 // L_failure as appropriate. This is essentially a shim which 1579 // allocates registers as necessary then calls 1580 // lookup_secondary_supers_table() to do the work. Any of the temp 1581 // regs may be noreg, in which case this logic will chooses some 1582 // registers push and pop them from the stack. 1583 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1584 Register super_klass, 1585 Register temp_reg, 1586 Register temp2_reg, 1587 Register temp3_reg, 1588 Register result_reg, 1589 FloatRegister vtemp, 1590 Label* L_success, 1591 Label* L_failure, 1592 bool set_cond_codes) { 1593 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1594 1595 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1596 1597 Label L_fallthrough; 1598 int label_nulls = 0; 1599 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1600 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1601 assert(label_nulls <= 1, "at most one null in the batch"); 1602 1603 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1604 1605 RegSetIterator<Register> available_regs 1606 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1607 1608 RegSet pushed_regs; 1609 1610 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1611 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1612 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1613 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1614 1615 push(pushed_regs, sp); 1616 1617 lookup_secondary_supers_table_var(sub_klass, 1618 super_klass, 1619 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1620 nullptr); 1621 cmp(result_reg, zr); 1622 1623 // Unspill the temp. registers: 1624 pop(pushed_regs, sp); 1625 1626 // NB! Callers may assume that, when set_cond_codes is true, this 1627 // code sets temp2_reg to a nonzero value. 1628 if (set_cond_codes) { 1629 mov(temp2_reg, 1); 1630 } 1631 1632 br(Assembler::NE, *L_failure); 1633 1634 if (L_success != &L_fallthrough) { 1635 b(*L_success); 1636 } 1637 1638 bind(L_fallthrough); 1639 } 1640 1641 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1642 Register super_klass, 1643 Register temp_reg, 1644 Register temp2_reg, 1645 Label* L_success, 1646 Label* L_failure, 1647 bool set_cond_codes) { 1648 if (UseSecondarySupersTable) { 1649 check_klass_subtype_slow_path_table 1650 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1651 /*vtemp*/fnoreg, 1652 L_success, L_failure, set_cond_codes); 1653 } else { 1654 check_klass_subtype_slow_path_linear 1655 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1656 } 1657 } 1658 1659 1660 // Ensure that the inline code and the stub are using the same registers. 1661 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1662 do { \ 1663 assert(r_super_klass == r0 && \ 1664 r_array_base == r1 && \ 1665 r_array_length == r2 && \ 1666 (r_array_index == r3 || r_array_index == noreg) && \ 1667 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1668 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1669 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1670 } while(0) 1671 1672 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1673 Register r_super_klass, 1674 Register temp1, 1675 Register temp2, 1676 Register temp3, 1677 FloatRegister vtemp, 1678 Register result, 1679 u1 super_klass_slot, 1680 bool stub_is_near) { 1681 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1682 1683 Label L_fallthrough; 1684 1685 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1686 1687 const Register 1688 r_array_base = temp1, // r1 1689 r_array_length = temp2, // r2 1690 r_array_index = temp3, // r3 1691 r_bitmap = rscratch2; 1692 1693 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1694 1695 u1 bit = super_klass_slot; 1696 1697 // Make sure that result is nonzero if the TBZ below misses. 1698 mov(result, 1); 1699 1700 // We're going to need the bitmap in a vector reg and in a core reg, 1701 // so load both now. 1702 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1703 if (bit != 0) { 1704 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1705 } 1706 // First check the bitmap to see if super_klass might be present. If 1707 // the bit is zero, we are certain that super_klass is not one of 1708 // the secondary supers. 1709 tbz(r_bitmap, bit, L_fallthrough); 1710 1711 // Get the first array index that can contain super_klass into r_array_index. 1712 if (bit != 0) { 1713 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1714 cnt(vtemp, T8B, vtemp); 1715 addv(vtemp, T8B, vtemp); 1716 fmovd(r_array_index, vtemp); 1717 } else { 1718 mov(r_array_index, (u1)1); 1719 } 1720 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1721 1722 // We will consult the secondary-super array. 1723 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1724 1725 // The value i in r_array_index is >= 1, so even though r_array_base 1726 // points to the length, we don't need to adjust it to point to the 1727 // data. 1728 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1729 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1730 1731 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1732 eor(result, result, r_super_klass); 1733 cbz(result, L_fallthrough); // Found a match 1734 1735 // Is there another entry to check? Consult the bitmap. 1736 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1737 1738 // Linear probe. 1739 if (bit != 0) { 1740 ror(r_bitmap, r_bitmap, bit); 1741 } 1742 1743 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1744 // The next slot to be inspected, by the stub we're about to call, 1745 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1746 // have been checked. 1747 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1748 if (stub_is_near) { 1749 bl(stub); 1750 } else { 1751 address call = trampoline_call(stub); 1752 if (call == nullptr) { 1753 return false; // trampoline allocation failed 1754 } 1755 } 1756 1757 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1758 1759 bind(L_fallthrough); 1760 1761 if (VerifySecondarySupers) { 1762 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1763 temp1, temp2, result); // r1, r2, r5 1764 } 1765 return true; 1766 } 1767 1768 // At runtime, return 0 in result if r_super_klass is a superclass of 1769 // r_sub_klass, otherwise return nonzero. Use this version of 1770 // lookup_secondary_supers_table() if you don't know ahead of time 1771 // which superclass will be searched for. Used by interpreter and 1772 // runtime stubs. It is larger and has somewhat greater latency than 1773 // the version above, which takes a constant super_klass_slot. 1774 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1775 Register r_super_klass, 1776 Register temp1, 1777 Register temp2, 1778 Register temp3, 1779 FloatRegister vtemp, 1780 Register result, 1781 Label *L_success) { 1782 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1783 1784 Label L_fallthrough; 1785 1786 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1787 1788 const Register 1789 r_array_index = temp3, 1790 slot = rscratch1, 1791 r_bitmap = rscratch2; 1792 1793 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1794 1795 // Make sure that result is nonzero if the test below misses. 1796 mov(result, 1); 1797 1798 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1799 1800 // First check the bitmap to see if super_klass might be present. If 1801 // the bit is zero, we are certain that super_klass is not one of 1802 // the secondary supers. 1803 1804 // This next instruction is equivalent to: 1805 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1806 // sub(temp2, tmp_reg, slot); 1807 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1808 lslv(temp2, r_bitmap, temp2); 1809 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1810 1811 bool must_save_v0 = (vtemp == fnoreg); 1812 if (must_save_v0) { 1813 // temp1 and result are free, so use them to preserve vtemp 1814 vtemp = v0; 1815 mov(temp1, vtemp, D, 0); 1816 mov(result, vtemp, D, 1); 1817 } 1818 1819 // Get the first array index that can contain super_klass into r_array_index. 1820 mov(vtemp, D, 0, temp2); 1821 cnt(vtemp, T8B, vtemp); 1822 addv(vtemp, T8B, vtemp); 1823 mov(r_array_index, vtemp, D, 0); 1824 1825 if (must_save_v0) { 1826 mov(vtemp, D, 0, temp1 ); 1827 mov(vtemp, D, 1, result); 1828 } 1829 1830 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1831 1832 const Register 1833 r_array_base = temp1, 1834 r_array_length = temp2; 1835 1836 // The value i in r_array_index is >= 1, so even though r_array_base 1837 // points to the length, we don't need to adjust it to point to the 1838 // data. 1839 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1840 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1841 1842 // We will consult the secondary-super array. 1843 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1844 1845 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1846 eor(result, result, r_super_klass); 1847 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1848 1849 // Is there another entry to check? Consult the bitmap. 1850 rorv(r_bitmap, r_bitmap, slot); 1851 // rol(r_bitmap, r_bitmap, 1); 1852 tbz(r_bitmap, 1, L_fallthrough); 1853 1854 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1855 // The next slot to be inspected, by the logic we're about to call, 1856 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1857 // have been checked. 1858 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1859 r_bitmap, r_array_length, result, /*is_stub*/false); 1860 1861 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1862 1863 bind(L_fallthrough); 1864 1865 if (VerifySecondarySupers) { 1866 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1867 temp1, temp2, result); // r1, r2, r5 1868 } 1869 1870 if (L_success) { 1871 cbz(result, *L_success); 1872 } 1873 } 1874 1875 // Called by code generated by check_klass_subtype_slow_path 1876 // above. This is called when there is a collision in the hashed 1877 // lookup in the secondary supers array. 1878 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1879 Register r_array_base, 1880 Register r_array_index, 1881 Register r_bitmap, 1882 Register temp1, 1883 Register result, 1884 bool is_stub) { 1885 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1886 1887 const Register 1888 r_array_length = temp1, 1889 r_sub_klass = noreg; // unused 1890 1891 if (is_stub) { 1892 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1893 } 1894 1895 Label L_fallthrough, L_huge; 1896 1897 // Load the array length. 1898 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1899 // And adjust the array base to point to the data. 1900 // NB! Effectively increments current slot index by 1. 1901 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1902 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1903 1904 // The bitmap is full to bursting. 1905 // Implicit invariant: BITMAP_FULL implies (length > 0) 1906 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1907 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1908 br(GT, L_huge); 1909 1910 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1911 // current slot (at secondary_supers[r_array_index]) has not yet 1912 // been inspected, and r_array_index may be out of bounds if we 1913 // wrapped around the end of the array. 1914 1915 { // This is conventional linear probing, but instead of terminating 1916 // when a null entry is found in the table, we maintain a bitmap 1917 // in which a 0 indicates missing entries. 1918 // As long as the bitmap is not completely full, 1919 // array_length == popcount(bitmap). The array_length check above 1920 // guarantees there are 0s in the bitmap, so the loop eventually 1921 // terminates. 1922 Label L_loop; 1923 bind(L_loop); 1924 1925 // Check for wraparound. 1926 cmp(r_array_index, r_array_length); 1927 csel(r_array_index, zr, r_array_index, GE); 1928 1929 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1930 eor(result, rscratch1, r_super_klass); 1931 cbz(result, L_fallthrough); 1932 1933 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1934 1935 ror(r_bitmap, r_bitmap, 1); 1936 add(r_array_index, r_array_index, 1); 1937 b(L_loop); 1938 } 1939 1940 { // Degenerate case: more than 64 secondary supers. 1941 // FIXME: We could do something smarter here, maybe a vectorized 1942 // comparison or a binary search, but is that worth any added 1943 // complexity? 1944 bind(L_huge); 1945 cmp(sp, zr); // Clear Z flag; SP is never zero 1946 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1947 cset(result, NE); // result == 0 iff we got a match. 1948 } 1949 1950 bind(L_fallthrough); 1951 } 1952 1953 // Make sure that the hashed lookup and a linear scan agree. 1954 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1955 Register r_super_klass, 1956 Register temp1, 1957 Register temp2, 1958 Register result) { 1959 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1960 1961 const Register 1962 r_array_base = temp1, 1963 r_array_length = temp2, 1964 r_array_index = noreg, // unused 1965 r_bitmap = noreg; // unused 1966 1967 BLOCK_COMMENT("verify_secondary_supers_table {"); 1968 1969 // We will consult the secondary-super array. 1970 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1971 1972 // Load the array length. 1973 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1974 // And adjust the array base to point to the data. 1975 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1976 1977 cmp(sp, zr); // Clear Z flag; SP is never zero 1978 // Scan R2 words at [R5] for an occurrence of R0. 1979 // Set NZ/Z based on last compare. 1980 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 1981 // rscratch1 == 0 iff we got a match. 1982 cset(rscratch1, NE); 1983 1984 Label passed; 1985 cmp(result, zr); 1986 cset(result, NE); // normalize result to 0/1 for comparison 1987 1988 cmp(rscratch1, result); 1989 br(EQ, passed); 1990 { 1991 mov(r0, r_super_klass); // r0 <- r0 1992 mov(r1, r_sub_klass); // r1 <- r4 1993 mov(r2, /*expected*/rscratch1); // r2 <- r8 1994 mov(r3, result); // r3 <- r5 1995 mov(r4, (address)("mismatch")); // r4 <- const 1996 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 1997 should_not_reach_here(); 1998 } 1999 bind(passed); 2000 2001 BLOCK_COMMENT("} verify_secondary_supers_table"); 2002 } 2003 2004 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2005 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2006 assert_different_registers(klass, rthread, scratch); 2007 2008 Label L_fallthrough, L_tmp; 2009 if (L_fast_path == nullptr) { 2010 L_fast_path = &L_fallthrough; 2011 } else if (L_slow_path == nullptr) { 2012 L_slow_path = &L_fallthrough; 2013 } 2014 // Fast path check: class is fully initialized 2015 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2016 ldarb(scratch, scratch); 2017 cmp(scratch, InstanceKlass::fully_initialized); 2018 br(Assembler::EQ, *L_fast_path); 2019 2020 // Fast path check: current thread is initializer thread 2021 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2022 cmp(rthread, scratch); 2023 2024 if (L_slow_path == &L_fallthrough) { 2025 br(Assembler::EQ, *L_fast_path); 2026 bind(*L_slow_path); 2027 } else if (L_fast_path == &L_fallthrough) { 2028 br(Assembler::NE, *L_slow_path); 2029 bind(*L_fast_path); 2030 } else { 2031 Unimplemented(); 2032 } 2033 } 2034 2035 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2036 if (!VerifyOops || VerifyAdapterSharing) { 2037 // Below address of the code string confuses VerifyAdapterSharing 2038 // because it may differ between otherwise equivalent adapters. 2039 return; 2040 } 2041 2042 // Pass register number to verify_oop_subroutine 2043 const char* b = nullptr; 2044 { 2045 ResourceMark rm; 2046 stringStream ss; 2047 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2048 b = code_string(ss.as_string()); 2049 } 2050 BLOCK_COMMENT("verify_oop {"); 2051 2052 strip_return_address(); // This might happen within a stack frame. 2053 protect_return_address(); 2054 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2055 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2056 2057 mov(r0, reg); 2058 movptr(rscratch1, (uintptr_t)(address)b); 2059 2060 // call indirectly to solve generation ordering problem 2061 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2062 ldr(rscratch2, Address(rscratch2)); 2063 blr(rscratch2); 2064 2065 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2066 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2067 authenticate_return_address(); 2068 2069 BLOCK_COMMENT("} verify_oop"); 2070 } 2071 2072 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2073 if (!VerifyOops || VerifyAdapterSharing) { 2074 // Below address of the code string confuses VerifyAdapterSharing 2075 // because it may differ between otherwise equivalent adapters. 2076 return; 2077 } 2078 2079 const char* b = nullptr; 2080 { 2081 ResourceMark rm; 2082 stringStream ss; 2083 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2084 b = code_string(ss.as_string()); 2085 } 2086 BLOCK_COMMENT("verify_oop_addr {"); 2087 2088 strip_return_address(); // This might happen within a stack frame. 2089 protect_return_address(); 2090 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2091 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2092 2093 // addr may contain sp so we will have to adjust it based on the 2094 // pushes that we just did. 2095 if (addr.uses(sp)) { 2096 lea(r0, addr); 2097 ldr(r0, Address(r0, 4 * wordSize)); 2098 } else { 2099 ldr(r0, addr); 2100 } 2101 movptr(rscratch1, (uintptr_t)(address)b); 2102 2103 // call indirectly to solve generation ordering problem 2104 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2105 ldr(rscratch2, Address(rscratch2)); 2106 blr(rscratch2); 2107 2108 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2109 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2110 authenticate_return_address(); 2111 2112 BLOCK_COMMENT("} verify_oop_addr"); 2113 } 2114 2115 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2116 int extra_slot_offset) { 2117 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2118 int stackElementSize = Interpreter::stackElementSize; 2119 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2120 #ifdef ASSERT 2121 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2122 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2123 #endif 2124 if (arg_slot.is_constant()) { 2125 return Address(esp, arg_slot.as_constant() * stackElementSize 2126 + offset); 2127 } else { 2128 add(rscratch1, esp, arg_slot.as_register(), 2129 ext::uxtx, exact_log2(stackElementSize)); 2130 return Address(rscratch1, offset); 2131 } 2132 } 2133 2134 void MacroAssembler::call_VM_leaf_base(address entry_point, 2135 int number_of_arguments, 2136 Label *retaddr) { 2137 Label E, L; 2138 2139 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2140 2141 mov(rscratch1, RuntimeAddress(entry_point)); 2142 blr(rscratch1); 2143 if (retaddr) 2144 bind(*retaddr); 2145 2146 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2147 } 2148 2149 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2150 call_VM_leaf_base(entry_point, number_of_arguments); 2151 } 2152 2153 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2154 pass_arg0(this, arg_0); 2155 call_VM_leaf_base(entry_point, 1); 2156 } 2157 2158 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2159 assert_different_registers(arg_1, c_rarg0); 2160 pass_arg0(this, arg_0); 2161 pass_arg1(this, arg_1); 2162 call_VM_leaf_base(entry_point, 2); 2163 } 2164 2165 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2166 Register arg_1, Register arg_2) { 2167 assert_different_registers(arg_1, c_rarg0); 2168 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2169 pass_arg0(this, arg_0); 2170 pass_arg1(this, arg_1); 2171 pass_arg2(this, arg_2); 2172 call_VM_leaf_base(entry_point, 3); 2173 } 2174 2175 void MacroAssembler::super_call_VM_leaf(address entry_point) { 2176 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2177 } 2178 2179 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2180 pass_arg0(this, arg_0); 2181 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2182 } 2183 2184 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2185 2186 assert_different_registers(arg_0, c_rarg1); 2187 pass_arg1(this, arg_1); 2188 pass_arg0(this, arg_0); 2189 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2190 } 2191 2192 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2193 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2194 assert_different_registers(arg_1, c_rarg2); 2195 pass_arg2(this, arg_2); 2196 pass_arg1(this, arg_1); 2197 pass_arg0(this, arg_0); 2198 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2199 } 2200 2201 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2202 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2203 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2204 assert_different_registers(arg_2, c_rarg3); 2205 pass_arg3(this, arg_3); 2206 pass_arg2(this, arg_2); 2207 pass_arg1(this, arg_1); 2208 pass_arg0(this, arg_0); 2209 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2210 } 2211 2212 void MacroAssembler::null_check(Register reg, int offset) { 2213 if (needs_explicit_null_check(offset)) { 2214 // provoke OS null exception if reg is null by 2215 // accessing M[reg] w/o changing any registers 2216 // NOTE: this is plenty to provoke a segv 2217 ldr(zr, Address(reg)); 2218 } else { 2219 // nothing to do, (later) access of M[reg + offset] 2220 // will provoke OS null exception if reg is null 2221 } 2222 } 2223 2224 void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) { 2225 assert_different_registers(markword, rscratch2); 2226 mov(rscratch2, markWord::inline_type_mask_in_place); 2227 andr(markword, markword, rscratch2); 2228 mov(rscratch2, markWord::inline_type_pattern); 2229 cmp(markword, rscratch2); 2230 br(Assembler::EQ, is_inline_type); 2231 } 2232 2233 void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null) { 2234 assert_different_registers(tmp, rscratch1); 2235 if (can_be_null) { 2236 cbz(object, not_inline_type); 2237 } 2238 const int is_inline_type_mask = markWord::inline_type_pattern; 2239 ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes())); 2240 mov(rscratch1, is_inline_type_mask); 2241 andr(tmp, tmp, rscratch1); 2242 cmp(tmp, rscratch1); 2243 br(Assembler::NE, not_inline_type); 2244 } 2245 2246 void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) { 2247 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2248 tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type); 2249 } 2250 2251 void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) { 2252 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2253 tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type); 2254 } 2255 2256 void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) { 2257 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2258 tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat); 2259 } 2260 2261 void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) { 2262 assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86 2263 tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker); 2264 } 2265 2266 void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) { 2267 Label test_mark_word; 2268 // load mark word 2269 ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes())); 2270 // check displaced 2271 tst(temp_reg, markWord::unlocked_value); 2272 br(Assembler::NE, test_mark_word); 2273 // slow path use klass prototype 2274 load_prototype_header(temp_reg, oop); 2275 2276 bind(test_mark_word); 2277 andr(temp_reg, temp_reg, test_bit); 2278 if (jmp_set) { 2279 cbnz(temp_reg, jmp_label); 2280 } else { 2281 cbz(temp_reg, jmp_label); 2282 } 2283 } 2284 2285 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) { 2286 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array); 2287 } 2288 2289 void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg, 2290 Label&is_non_flat_array) { 2291 test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array); 2292 } 2293 2294 void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) { 2295 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array); 2296 } 2297 2298 void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) { 2299 test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array); 2300 } 2301 2302 void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) { 2303 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2304 br(Assembler::NE, is_flat_array); 2305 } 2306 2307 void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) { 2308 tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace); 2309 br(Assembler::EQ, is_non_flat_array); 2310 } 2311 2312 // MacroAssembler protected routines needed to implement 2313 // public methods 2314 2315 void MacroAssembler::mov(Register r, Address dest) { 2316 code_section()->relocate(pc(), dest.rspec()); 2317 uint64_t imm64 = (uint64_t)dest.target(); 2318 movptr(r, imm64); 2319 } 2320 2321 // Move a constant pointer into r. In AArch64 mode the virtual 2322 // address space is 48 bits in size, so we only need three 2323 // instructions to create a patchable instruction sequence that can 2324 // reach anywhere. 2325 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2326 #ifndef PRODUCT 2327 { 2328 char buffer[64]; 2329 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2330 block_comment(buffer); 2331 } 2332 #endif 2333 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2334 movz(r, imm64 & 0xffff); 2335 imm64 >>= 16; 2336 movk(r, imm64 & 0xffff, 16); 2337 imm64 >>= 16; 2338 movk(r, imm64 & 0xffff, 32); 2339 } 2340 2341 // Macro to mov replicated immediate to vector register. 2342 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2343 // the upper 56/48/32 bits must be zeros for B/H/S type. 2344 // Vd will get the following values for different arrangements in T 2345 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2346 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2347 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2348 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2349 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2350 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2351 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2352 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2353 // Clobbers rscratch1 2354 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2355 assert(T != T1Q, "unsupported"); 2356 if (T == T1D || T == T2D) { 2357 int imm = operand_valid_for_movi_immediate(imm64, T); 2358 if (-1 != imm) { 2359 movi(Vd, T, imm); 2360 } else { 2361 mov(rscratch1, imm64); 2362 dup(Vd, T, rscratch1); 2363 } 2364 return; 2365 } 2366 2367 #ifdef ASSERT 2368 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2369 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2370 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2371 #endif 2372 int shift = operand_valid_for_movi_immediate(imm64, T); 2373 uint32_t imm32 = imm64 & 0xffffffffULL; 2374 if (shift >= 0) { 2375 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2376 } else { 2377 movw(rscratch1, imm32); 2378 dup(Vd, T, rscratch1); 2379 } 2380 } 2381 2382 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2383 { 2384 #ifndef PRODUCT 2385 { 2386 char buffer[64]; 2387 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2388 block_comment(buffer); 2389 } 2390 #endif 2391 if (operand_valid_for_logical_immediate(false, imm64)) { 2392 orr(dst, zr, imm64); 2393 } else { 2394 // we can use a combination of MOVZ or MOVN with 2395 // MOVK to build up the constant 2396 uint64_t imm_h[4]; 2397 int zero_count = 0; 2398 int neg_count = 0; 2399 int i; 2400 for (i = 0; i < 4; i++) { 2401 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2402 if (imm_h[i] == 0) { 2403 zero_count++; 2404 } else if (imm_h[i] == 0xffffL) { 2405 neg_count++; 2406 } 2407 } 2408 if (zero_count == 4) { 2409 // one MOVZ will do 2410 movz(dst, 0); 2411 } else if (neg_count == 4) { 2412 // one MOVN will do 2413 movn(dst, 0); 2414 } else if (zero_count == 3) { 2415 for (i = 0; i < 4; i++) { 2416 if (imm_h[i] != 0L) { 2417 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2418 break; 2419 } 2420 } 2421 } else if (neg_count == 3) { 2422 // one MOVN will do 2423 for (int i = 0; i < 4; i++) { 2424 if (imm_h[i] != 0xffffL) { 2425 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2426 break; 2427 } 2428 } 2429 } else if (zero_count == 2) { 2430 // one MOVZ and one MOVK will do 2431 for (i = 0; i < 3; i++) { 2432 if (imm_h[i] != 0L) { 2433 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2434 i++; 2435 break; 2436 } 2437 } 2438 for (;i < 4; i++) { 2439 if (imm_h[i] != 0L) { 2440 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2441 } 2442 } 2443 } else if (neg_count == 2) { 2444 // one MOVN and one MOVK will do 2445 for (i = 0; i < 4; i++) { 2446 if (imm_h[i] != 0xffffL) { 2447 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2448 i++; 2449 break; 2450 } 2451 } 2452 for (;i < 4; i++) { 2453 if (imm_h[i] != 0xffffL) { 2454 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2455 } 2456 } 2457 } else if (zero_count == 1) { 2458 // one MOVZ and two MOVKs will do 2459 for (i = 0; i < 4; i++) { 2460 if (imm_h[i] != 0L) { 2461 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2462 i++; 2463 break; 2464 } 2465 } 2466 for (;i < 4; i++) { 2467 if (imm_h[i] != 0x0L) { 2468 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2469 } 2470 } 2471 } else if (neg_count == 1) { 2472 // one MOVN and two MOVKs will do 2473 for (i = 0; i < 4; i++) { 2474 if (imm_h[i] != 0xffffL) { 2475 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2476 i++; 2477 break; 2478 } 2479 } 2480 for (;i < 4; i++) { 2481 if (imm_h[i] != 0xffffL) { 2482 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2483 } 2484 } 2485 } else { 2486 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2487 movz(dst, (uint32_t)imm_h[0], 0); 2488 for (i = 1; i < 4; i++) { 2489 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2490 } 2491 } 2492 } 2493 } 2494 2495 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2496 { 2497 #ifndef PRODUCT 2498 { 2499 char buffer[64]; 2500 os::snprintf_checked(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2501 block_comment(buffer); 2502 } 2503 #endif 2504 if (operand_valid_for_logical_immediate(true, imm32)) { 2505 orrw(dst, zr, imm32); 2506 } else { 2507 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2508 // constant 2509 uint32_t imm_h[2]; 2510 imm_h[0] = imm32 & 0xffff; 2511 imm_h[1] = ((imm32 >> 16) & 0xffff); 2512 if (imm_h[0] == 0) { 2513 movzw(dst, imm_h[1], 16); 2514 } else if (imm_h[0] == 0xffff) { 2515 movnw(dst, imm_h[1] ^ 0xffff, 16); 2516 } else if (imm_h[1] == 0) { 2517 movzw(dst, imm_h[0], 0); 2518 } else if (imm_h[1] == 0xffff) { 2519 movnw(dst, imm_h[0] ^ 0xffff, 0); 2520 } else { 2521 // use a MOVZ and MOVK (makes it easier to debug) 2522 movzw(dst, imm_h[0], 0); 2523 movkw(dst, imm_h[1], 16); 2524 } 2525 } 2526 } 2527 2528 // Form an address from base + offset in Rd. Rd may or may 2529 // not actually be used: you must use the Address that is returned. 2530 // It is up to you to ensure that the shift provided matches the size 2531 // of your data. 2532 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2533 if (Address::offset_ok_for_immed(byte_offset, shift)) 2534 // It fits; no need for any heroics 2535 return Address(base, byte_offset); 2536 2537 // Don't do anything clever with negative or misaligned offsets 2538 unsigned mask = (1 << shift) - 1; 2539 if (byte_offset < 0 || byte_offset & mask) { 2540 mov(Rd, byte_offset); 2541 add(Rd, base, Rd); 2542 return Address(Rd); 2543 } 2544 2545 // See if we can do this with two 12-bit offsets 2546 { 2547 uint64_t word_offset = byte_offset >> shift; 2548 uint64_t masked_offset = word_offset & 0xfff000; 2549 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2550 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2551 add(Rd, base, masked_offset << shift); 2552 word_offset -= masked_offset; 2553 return Address(Rd, word_offset << shift); 2554 } 2555 } 2556 2557 // Do it the hard way 2558 mov(Rd, byte_offset); 2559 add(Rd, base, Rd); 2560 return Address(Rd); 2561 } 2562 2563 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2564 bool want_remainder, Register scratch) 2565 { 2566 // Full implementation of Java idiv and irem. The function 2567 // returns the (pc) offset of the div instruction - may be needed 2568 // for implicit exceptions. 2569 // 2570 // constraint : ra/rb =/= scratch 2571 // normal case 2572 // 2573 // input : ra: dividend 2574 // rb: divisor 2575 // 2576 // result: either 2577 // quotient (= ra idiv rb) 2578 // remainder (= ra irem rb) 2579 2580 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2581 2582 int idivl_offset = offset(); 2583 if (! want_remainder) { 2584 sdivw(result, ra, rb); 2585 } else { 2586 sdivw(scratch, ra, rb); 2587 Assembler::msubw(result, scratch, rb, ra); 2588 } 2589 2590 return idivl_offset; 2591 } 2592 2593 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2594 bool want_remainder, Register scratch) 2595 { 2596 // Full implementation of Java ldiv and lrem. The function 2597 // returns the (pc) offset of the div instruction - may be needed 2598 // for implicit exceptions. 2599 // 2600 // constraint : ra/rb =/= scratch 2601 // normal case 2602 // 2603 // input : ra: dividend 2604 // rb: divisor 2605 // 2606 // result: either 2607 // quotient (= ra idiv rb) 2608 // remainder (= ra irem rb) 2609 2610 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2611 2612 int idivq_offset = offset(); 2613 if (! want_remainder) { 2614 sdiv(result, ra, rb); 2615 } else { 2616 sdiv(scratch, ra, rb); 2617 Assembler::msub(result, scratch, rb, ra); 2618 } 2619 2620 return idivq_offset; 2621 } 2622 2623 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2624 address prev = pc() - NativeMembar::instruction_size; 2625 address last = code()->last_insn(); 2626 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2627 NativeMembar *bar = NativeMembar_at(prev); 2628 if (AlwaysMergeDMB) { 2629 bar->set_kind(bar->get_kind() | order_constraint); 2630 BLOCK_COMMENT("merged membar(always)"); 2631 return; 2632 } 2633 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2634 // doing so would introduce a StoreLoad which the caller did not 2635 // intend 2636 if (bar->get_kind() == order_constraint 2637 || bar->get_kind() == AnyAny 2638 || order_constraint == AnyAny) { 2639 // We are merging two memory barrier instructions. On AArch64 we 2640 // can do this simply by ORing them together. 2641 bar->set_kind(bar->get_kind() | order_constraint); 2642 BLOCK_COMMENT("merged membar"); 2643 return; 2644 } else { 2645 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2646 // We need check the last 2 instructions 2647 address prev2 = prev - NativeMembar::instruction_size; 2648 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2649 NativeMembar *bar2 = NativeMembar_at(prev2); 2650 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2651 BLOCK_COMMENT("merged membar(elided)"); 2652 return; 2653 } 2654 } 2655 } 2656 code()->set_last_insn(pc()); 2657 dmb(Assembler::barrier(order_constraint)); 2658 } 2659 2660 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2661 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2662 merge_ldst(rt, adr, size_in_bytes, is_store); 2663 code()->clear_last_insn(); 2664 return true; 2665 } else { 2666 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2667 const uint64_t mask = size_in_bytes - 1; 2668 if (adr.getMode() == Address::base_plus_offset && 2669 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2670 code()->set_last_insn(pc()); 2671 } 2672 return false; 2673 } 2674 } 2675 2676 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2677 // We always try to merge two adjacent loads into one ldp. 2678 if (!try_merge_ldst(Rx, adr, 8, false)) { 2679 Assembler::ldr(Rx, adr); 2680 } 2681 } 2682 2683 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2684 // We always try to merge two adjacent loads into one ldp. 2685 if (!try_merge_ldst(Rw, adr, 4, false)) { 2686 Assembler::ldrw(Rw, adr); 2687 } 2688 } 2689 2690 void MacroAssembler::str(Register Rx, const Address &adr) { 2691 // We always try to merge two adjacent stores into one stp. 2692 if (!try_merge_ldst(Rx, adr, 8, true)) { 2693 Assembler::str(Rx, adr); 2694 } 2695 } 2696 2697 void MacroAssembler::strw(Register Rw, const Address &adr) { 2698 // We always try to merge two adjacent stores into one stp. 2699 if (!try_merge_ldst(Rw, adr, 4, true)) { 2700 Assembler::strw(Rw, adr); 2701 } 2702 } 2703 2704 // MacroAssembler routines found actually to be needed 2705 2706 void MacroAssembler::push(Register src) 2707 { 2708 str(src, Address(pre(esp, -1 * wordSize))); 2709 } 2710 2711 void MacroAssembler::pop(Register dst) 2712 { 2713 ldr(dst, Address(post(esp, 1 * wordSize))); 2714 } 2715 2716 // Note: load_unsigned_short used to be called load_unsigned_word. 2717 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2718 int off = offset(); 2719 ldrh(dst, src); 2720 return off; 2721 } 2722 2723 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2724 int off = offset(); 2725 ldrb(dst, src); 2726 return off; 2727 } 2728 2729 int MacroAssembler::load_signed_short(Register dst, Address src) { 2730 int off = offset(); 2731 ldrsh(dst, src); 2732 return off; 2733 } 2734 2735 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2736 int off = offset(); 2737 ldrsb(dst, src); 2738 return off; 2739 } 2740 2741 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2742 int off = offset(); 2743 ldrshw(dst, src); 2744 return off; 2745 } 2746 2747 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2748 int off = offset(); 2749 ldrsbw(dst, src); 2750 return off; 2751 } 2752 2753 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2754 switch (size_in_bytes) { 2755 case 8: ldr(dst, src); break; 2756 case 4: ldrw(dst, src); break; 2757 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2758 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2759 default: ShouldNotReachHere(); 2760 } 2761 } 2762 2763 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2764 switch (size_in_bytes) { 2765 case 8: str(src, dst); break; 2766 case 4: strw(src, dst); break; 2767 case 2: strh(src, dst); break; 2768 case 1: strb(src, dst); break; 2769 default: ShouldNotReachHere(); 2770 } 2771 } 2772 2773 void MacroAssembler::decrementw(Register reg, int value) 2774 { 2775 if (value < 0) { incrementw(reg, -value); return; } 2776 if (value == 0) { return; } 2777 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2778 /* else */ { 2779 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2780 movw(rscratch2, (unsigned)value); 2781 subw(reg, reg, rscratch2); 2782 } 2783 } 2784 2785 void MacroAssembler::decrement(Register reg, int value) 2786 { 2787 if (value < 0) { increment(reg, -value); return; } 2788 if (value == 0) { return; } 2789 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2790 /* else */ { 2791 assert(reg != rscratch2, "invalid dst for register decrement"); 2792 mov(rscratch2, (uint64_t)value); 2793 sub(reg, reg, rscratch2); 2794 } 2795 } 2796 2797 void MacroAssembler::decrementw(Address dst, int value) 2798 { 2799 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2800 if (dst.getMode() == Address::literal) { 2801 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2802 lea(rscratch2, dst); 2803 dst = Address(rscratch2); 2804 } 2805 ldrw(rscratch1, dst); 2806 decrementw(rscratch1, value); 2807 strw(rscratch1, dst); 2808 } 2809 2810 void MacroAssembler::decrement(Address dst, int value) 2811 { 2812 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2813 if (dst.getMode() == Address::literal) { 2814 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2815 lea(rscratch2, dst); 2816 dst = Address(rscratch2); 2817 } 2818 ldr(rscratch1, dst); 2819 decrement(rscratch1, value); 2820 str(rscratch1, dst); 2821 } 2822 2823 void MacroAssembler::incrementw(Register reg, int value) 2824 { 2825 if (value < 0) { decrementw(reg, -value); return; } 2826 if (value == 0) { return; } 2827 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2828 /* else */ { 2829 assert(reg != rscratch2, "invalid dst for register increment"); 2830 movw(rscratch2, (unsigned)value); 2831 addw(reg, reg, rscratch2); 2832 } 2833 } 2834 2835 void MacroAssembler::increment(Register reg, int value) 2836 { 2837 if (value < 0) { decrement(reg, -value); return; } 2838 if (value == 0) { return; } 2839 if (value < (1 << 12)) { add(reg, reg, value); return; } 2840 /* else */ { 2841 assert(reg != rscratch2, "invalid dst for register increment"); 2842 movw(rscratch2, (unsigned)value); 2843 add(reg, reg, rscratch2); 2844 } 2845 } 2846 2847 void MacroAssembler::incrementw(Address dst, int value) 2848 { 2849 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2850 if (dst.getMode() == Address::literal) { 2851 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2852 lea(rscratch2, dst); 2853 dst = Address(rscratch2); 2854 } 2855 ldrw(rscratch1, dst); 2856 incrementw(rscratch1, value); 2857 strw(rscratch1, dst); 2858 } 2859 2860 void MacroAssembler::increment(Address dst, int value) 2861 { 2862 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2863 if (dst.getMode() == Address::literal) { 2864 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2865 lea(rscratch2, dst); 2866 dst = Address(rscratch2); 2867 } 2868 ldr(rscratch1, dst); 2869 increment(rscratch1, value); 2870 str(rscratch1, dst); 2871 } 2872 2873 // Push lots of registers in the bit set supplied. Don't push sp. 2874 // Return the number of words pushed 2875 int MacroAssembler::push(unsigned int bitset, Register stack) { 2876 int words_pushed = 0; 2877 2878 // Scan bitset to accumulate register pairs 2879 unsigned char regs[32]; 2880 int count = 0; 2881 for (int reg = 0; reg <= 30; reg++) { 2882 if (1 & bitset) 2883 regs[count++] = reg; 2884 bitset >>= 1; 2885 } 2886 regs[count++] = zr->raw_encoding(); 2887 count &= ~1; // Only push an even number of regs 2888 2889 if (count) { 2890 stp(as_Register(regs[0]), as_Register(regs[1]), 2891 Address(pre(stack, -count * wordSize))); 2892 words_pushed += 2; 2893 } 2894 for (int i = 2; i < count; i += 2) { 2895 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2896 Address(stack, i * wordSize)); 2897 words_pushed += 2; 2898 } 2899 2900 assert(words_pushed == count, "oops, pushed != count"); 2901 2902 return count; 2903 } 2904 2905 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2906 int words_pushed = 0; 2907 2908 // Scan bitset to accumulate register pairs 2909 unsigned char regs[32]; 2910 int count = 0; 2911 for (int reg = 0; reg <= 30; reg++) { 2912 if (1 & bitset) 2913 regs[count++] = reg; 2914 bitset >>= 1; 2915 } 2916 regs[count++] = zr->raw_encoding(); 2917 count &= ~1; 2918 2919 for (int i = 2; i < count; i += 2) { 2920 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2921 Address(stack, i * wordSize)); 2922 words_pushed += 2; 2923 } 2924 if (count) { 2925 ldp(as_Register(regs[0]), as_Register(regs[1]), 2926 Address(post(stack, count * wordSize))); 2927 words_pushed += 2; 2928 } 2929 2930 assert(words_pushed == count, "oops, pushed != count"); 2931 2932 return count; 2933 } 2934 2935 // Push lots of registers in the bit set supplied. Don't push sp. 2936 // Return the number of dwords pushed 2937 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2938 int words_pushed = 0; 2939 bool use_sve = false; 2940 int sve_vector_size_in_bytes = 0; 2941 2942 #ifdef COMPILER2 2943 use_sve = Matcher::supports_scalable_vector(); 2944 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2945 #endif 2946 2947 // Scan bitset to accumulate register pairs 2948 unsigned char regs[32]; 2949 int count = 0; 2950 for (int reg = 0; reg <= 31; reg++) { 2951 if (1 & bitset) 2952 regs[count++] = reg; 2953 bitset >>= 1; 2954 } 2955 2956 if (count == 0) { 2957 return 0; 2958 } 2959 2960 if (mode == PushPopFull) { 2961 if (use_sve && sve_vector_size_in_bytes > 16) { 2962 mode = PushPopSVE; 2963 } else { 2964 mode = PushPopNeon; 2965 } 2966 } 2967 2968 #ifndef PRODUCT 2969 { 2970 char buffer[48]; 2971 if (mode == PushPopSVE) { 2972 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2973 } else if (mode == PushPopNeon) { 2974 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2975 } else { 2976 os::snprintf_checked(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2977 } 2978 block_comment(buffer); 2979 } 2980 #endif 2981 2982 if (mode == PushPopSVE) { 2983 sub(stack, stack, sve_vector_size_in_bytes * count); 2984 for (int i = 0; i < count; i++) { 2985 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2986 } 2987 return count * sve_vector_size_in_bytes / 8; 2988 } 2989 2990 if (mode == PushPopNeon) { 2991 if (count == 1) { 2992 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2993 return 2; 2994 } 2995 2996 bool odd = (count & 1) == 1; 2997 int push_slots = count + (odd ? 1 : 0); 2998 2999 // Always pushing full 128 bit registers. 3000 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 3001 words_pushed += 2; 3002 3003 for (int i = 2; i + 1 < count; i += 2) { 3004 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3005 words_pushed += 2; 3006 } 3007 3008 if (odd) { 3009 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3010 words_pushed++; 3011 } 3012 3013 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3014 return count * 2; 3015 } 3016 3017 if (mode == PushPopFp) { 3018 bool odd = (count & 1) == 1; 3019 int push_slots = count + (odd ? 1 : 0); 3020 3021 if (count == 1) { 3022 // Stack pointer must be 16 bytes aligned 3023 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 3024 return 1; 3025 } 3026 3027 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 3028 words_pushed += 2; 3029 3030 for (int i = 2; i + 1 < count; i += 2) { 3031 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3032 words_pushed += 2; 3033 } 3034 3035 if (odd) { 3036 // Stack pointer must be 16 bytes aligned 3037 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3038 words_pushed++; 3039 } 3040 3041 assert(words_pushed == count, "oops, pushed != count"); 3042 3043 return count; 3044 } 3045 3046 return 0; 3047 } 3048 3049 // Return the number of dwords popped 3050 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 3051 int words_pushed = 0; 3052 bool use_sve = false; 3053 int sve_vector_size_in_bytes = 0; 3054 3055 #ifdef COMPILER2 3056 use_sve = Matcher::supports_scalable_vector(); 3057 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 3058 #endif 3059 // Scan bitset to accumulate register pairs 3060 unsigned char regs[32]; 3061 int count = 0; 3062 for (int reg = 0; reg <= 31; reg++) { 3063 if (1 & bitset) 3064 regs[count++] = reg; 3065 bitset >>= 1; 3066 } 3067 3068 if (count == 0) { 3069 return 0; 3070 } 3071 3072 if (mode == PushPopFull) { 3073 if (use_sve && sve_vector_size_in_bytes > 16) { 3074 mode = PushPopSVE; 3075 } else { 3076 mode = PushPopNeon; 3077 } 3078 } 3079 3080 #ifndef PRODUCT 3081 { 3082 char buffer[48]; 3083 if (mode == PushPopSVE) { 3084 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3085 } else if (mode == PushPopNeon) { 3086 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3087 } else { 3088 os::snprintf_checked(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3089 } 3090 block_comment(buffer); 3091 } 3092 #endif 3093 3094 if (mode == PushPopSVE) { 3095 for (int i = count - 1; i >= 0; i--) { 3096 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3097 } 3098 add(stack, stack, sve_vector_size_in_bytes * count); 3099 return count * sve_vector_size_in_bytes / 8; 3100 } 3101 3102 if (mode == PushPopNeon) { 3103 if (count == 1) { 3104 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3105 return 2; 3106 } 3107 3108 bool odd = (count & 1) == 1; 3109 int push_slots = count + (odd ? 1 : 0); 3110 3111 if (odd) { 3112 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3113 words_pushed++; 3114 } 3115 3116 for (int i = 2; i + 1 < count; i += 2) { 3117 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3118 words_pushed += 2; 3119 } 3120 3121 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3122 words_pushed += 2; 3123 3124 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3125 3126 return count * 2; 3127 } 3128 3129 if (mode == PushPopFp) { 3130 bool odd = (count & 1) == 1; 3131 int push_slots = count + (odd ? 1 : 0); 3132 3133 if (count == 1) { 3134 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3135 return 1; 3136 } 3137 3138 if (odd) { 3139 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3140 words_pushed++; 3141 } 3142 3143 for (int i = 2; i + 1 < count; i += 2) { 3144 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3145 words_pushed += 2; 3146 } 3147 3148 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3149 words_pushed += 2; 3150 3151 assert(words_pushed == count, "oops, pushed != count"); 3152 3153 return count; 3154 } 3155 3156 return 0; 3157 } 3158 3159 // Return the number of dwords pushed 3160 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3161 bool use_sve = false; 3162 int sve_predicate_size_in_slots = 0; 3163 3164 #ifdef COMPILER2 3165 use_sve = Matcher::supports_scalable_vector(); 3166 if (use_sve) { 3167 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3168 } 3169 #endif 3170 3171 if (!use_sve) { 3172 return 0; 3173 } 3174 3175 unsigned char regs[PRegister::number_of_registers]; 3176 int count = 0; 3177 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3178 if (1 & bitset) 3179 regs[count++] = reg; 3180 bitset >>= 1; 3181 } 3182 3183 if (count == 0) { 3184 return 0; 3185 } 3186 3187 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3188 VMRegImpl::stack_slot_size * count, 16); 3189 sub(stack, stack, total_push_bytes); 3190 for (int i = 0; i < count; i++) { 3191 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3192 } 3193 return total_push_bytes / 8; 3194 } 3195 3196 // Return the number of dwords popped 3197 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3198 bool use_sve = false; 3199 int sve_predicate_size_in_slots = 0; 3200 3201 #ifdef COMPILER2 3202 use_sve = Matcher::supports_scalable_vector(); 3203 if (use_sve) { 3204 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3205 } 3206 #endif 3207 3208 if (!use_sve) { 3209 return 0; 3210 } 3211 3212 unsigned char regs[PRegister::number_of_registers]; 3213 int count = 0; 3214 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3215 if (1 & bitset) 3216 regs[count++] = reg; 3217 bitset >>= 1; 3218 } 3219 3220 if (count == 0) { 3221 return 0; 3222 } 3223 3224 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3225 VMRegImpl::stack_slot_size * count, 16); 3226 for (int i = count - 1; i >= 0; i--) { 3227 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3228 } 3229 add(stack, stack, total_pop_bytes); 3230 return total_pop_bytes / 8; 3231 } 3232 3233 #ifdef ASSERT 3234 void MacroAssembler::verify_heapbase(const char* msg) { 3235 #if 0 3236 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3237 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3238 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3239 // rheapbase is allocated as general register 3240 return; 3241 } 3242 if (CheckCompressedOops) { 3243 Label ok; 3244 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3245 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3246 br(Assembler::EQ, ok); 3247 stop(msg); 3248 bind(ok); 3249 pop(1 << rscratch1->encoding(), sp); 3250 } 3251 #endif 3252 } 3253 #endif 3254 3255 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3256 assert_different_registers(value, tmp1, tmp2); 3257 Label done, tagged, weak_tagged; 3258 3259 cbz(value, done); // Use null as-is. 3260 tst(value, JNIHandles::tag_mask); // Test for tag. 3261 br(Assembler::NE, tagged); 3262 3263 // Resolve local handle 3264 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3265 verify_oop(value); 3266 b(done); 3267 3268 bind(tagged); 3269 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3270 tbnz(value, 0, weak_tagged); // Test for weak tag. 3271 3272 // Resolve global handle 3273 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3274 verify_oop(value); 3275 b(done); 3276 3277 bind(weak_tagged); 3278 // Resolve jweak. 3279 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3280 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3281 verify_oop(value); 3282 3283 bind(done); 3284 } 3285 3286 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3287 assert_different_registers(value, tmp1, tmp2); 3288 Label done; 3289 3290 cbz(value, done); // Use null as-is. 3291 3292 #ifdef ASSERT 3293 { 3294 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3295 Label valid_global_tag; 3296 tbnz(value, 1, valid_global_tag); // Test for global tag 3297 stop("non global jobject using resolve_global_jobject"); 3298 bind(valid_global_tag); 3299 } 3300 #endif 3301 3302 // Resolve global handle 3303 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3304 verify_oop(value); 3305 3306 bind(done); 3307 } 3308 3309 void MacroAssembler::stop(const char* msg) { 3310 // Skip AOT caching C strings in scratch buffer. 3311 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3312 BLOCK_COMMENT(str); 3313 // load msg into r0 so we can access it from the signal handler 3314 // ExternalAddress enables saving and restoring via the code cache 3315 lea(c_rarg0, ExternalAddress((address) str)); 3316 dcps1(0xdeae); 3317 } 3318 3319 void MacroAssembler::unimplemented(const char* what) { 3320 const char* buf = nullptr; 3321 { 3322 ResourceMark rm; 3323 stringStream ss; 3324 ss.print("unimplemented: %s", what); 3325 buf = code_string(ss.as_string()); 3326 } 3327 stop(buf); 3328 } 3329 3330 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3331 #ifdef ASSERT 3332 Label OK; 3333 br(cc, OK); 3334 stop(msg); 3335 bind(OK); 3336 #endif 3337 } 3338 3339 // If a constant does not fit in an immediate field, generate some 3340 // number of MOV instructions and then perform the operation. 3341 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3342 add_sub_imm_insn insn1, 3343 add_sub_reg_insn insn2, 3344 bool is32) { 3345 assert(Rd != zr, "Rd = zr and not setting flags?"); 3346 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3347 if (fits) { 3348 (this->*insn1)(Rd, Rn, imm); 3349 } else { 3350 if (g_uabs(imm) < (1 << 24)) { 3351 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3352 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3353 } else { 3354 assert_different_registers(Rd, Rn); 3355 mov(Rd, imm); 3356 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3357 } 3358 } 3359 } 3360 3361 // Separate vsn which sets the flags. Optimisations are more restricted 3362 // because we must set the flags correctly. 3363 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3364 add_sub_imm_insn insn1, 3365 add_sub_reg_insn insn2, 3366 bool is32) { 3367 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3368 if (fits) { 3369 (this->*insn1)(Rd, Rn, imm); 3370 } else { 3371 assert_different_registers(Rd, Rn); 3372 assert(Rd != zr, "overflow in immediate operand"); 3373 mov(Rd, imm); 3374 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3375 } 3376 } 3377 3378 3379 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3380 if (increment.is_register()) { 3381 add(Rd, Rn, increment.as_register()); 3382 } else { 3383 add(Rd, Rn, increment.as_constant()); 3384 } 3385 } 3386 3387 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3388 if (increment.is_register()) { 3389 addw(Rd, Rn, increment.as_register()); 3390 } else { 3391 addw(Rd, Rn, increment.as_constant()); 3392 } 3393 } 3394 3395 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3396 if (decrement.is_register()) { 3397 sub(Rd, Rn, decrement.as_register()); 3398 } else { 3399 sub(Rd, Rn, decrement.as_constant()); 3400 } 3401 } 3402 3403 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3404 if (decrement.is_register()) { 3405 subw(Rd, Rn, decrement.as_register()); 3406 } else { 3407 subw(Rd, Rn, decrement.as_constant()); 3408 } 3409 } 3410 3411 void MacroAssembler::reinit_heapbase() 3412 { 3413 if (UseCompressedOops) { 3414 if (Universe::is_fully_initialized()) { 3415 mov(rheapbase, CompressedOops::base()); 3416 } else { 3417 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3418 ldr(rheapbase, Address(rheapbase)); 3419 } 3420 } 3421 } 3422 3423 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3424 // doesn't retry and may fail spuriously. If the oldval is wanted, 3425 // Pass a register for the result, otherwise pass noreg. 3426 3427 // Clobbers rscratch1 3428 void MacroAssembler::cmpxchg(Register addr, Register expected, 3429 Register new_val, 3430 enum operand_size size, 3431 bool acquire, bool release, 3432 bool weak, 3433 Register result) { 3434 if (result == noreg) result = rscratch1; 3435 BLOCK_COMMENT("cmpxchg {"); 3436 if (UseLSE) { 3437 mov(result, expected); 3438 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3439 compare_eq(result, expected, size); 3440 #ifdef ASSERT 3441 // Poison rscratch1 which is written on !UseLSE branch 3442 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3443 #endif 3444 } else { 3445 Label retry_load, done; 3446 prfm(Address(addr), PSTL1STRM); 3447 bind(retry_load); 3448 load_exclusive(result, addr, size, acquire); 3449 compare_eq(result, expected, size); 3450 br(Assembler::NE, done); 3451 store_exclusive(rscratch1, new_val, addr, size, release); 3452 if (weak) { 3453 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3454 } else { 3455 cbnzw(rscratch1, retry_load); 3456 } 3457 bind(done); 3458 } 3459 BLOCK_COMMENT("} cmpxchg"); 3460 } 3461 3462 // A generic comparison. Only compares for equality, clobbers rscratch1. 3463 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3464 if (size == xword) { 3465 cmp(rm, rn); 3466 } else if (size == word) { 3467 cmpw(rm, rn); 3468 } else if (size == halfword) { 3469 eorw(rscratch1, rm, rn); 3470 ands(zr, rscratch1, 0xffff); 3471 } else if (size == byte) { 3472 eorw(rscratch1, rm, rn); 3473 ands(zr, rscratch1, 0xff); 3474 } else { 3475 ShouldNotReachHere(); 3476 } 3477 } 3478 3479 3480 static bool different(Register a, RegisterOrConstant b, Register c) { 3481 if (b.is_constant()) 3482 return a != c; 3483 else 3484 return a != b.as_register() && a != c && b.as_register() != c; 3485 } 3486 3487 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3488 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3489 if (UseLSE) { \ 3490 prev = prev->is_valid() ? prev : zr; \ 3491 if (incr.is_register()) { \ 3492 AOP(sz, incr.as_register(), prev, addr); \ 3493 } else { \ 3494 mov(rscratch2, incr.as_constant()); \ 3495 AOP(sz, rscratch2, prev, addr); \ 3496 } \ 3497 return; \ 3498 } \ 3499 Register result = rscratch2; \ 3500 if (prev->is_valid()) \ 3501 result = different(prev, incr, addr) ? prev : rscratch2; \ 3502 \ 3503 Label retry_load; \ 3504 prfm(Address(addr), PSTL1STRM); \ 3505 bind(retry_load); \ 3506 LDXR(result, addr); \ 3507 OP(rscratch1, result, incr); \ 3508 STXR(rscratch2, rscratch1, addr); \ 3509 cbnzw(rscratch2, retry_load); \ 3510 if (prev->is_valid() && prev != result) { \ 3511 IOP(prev, rscratch1, incr); \ 3512 } \ 3513 } 3514 3515 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3516 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3517 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3518 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3519 3520 #undef ATOMIC_OP 3521 3522 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3523 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3524 if (UseLSE) { \ 3525 prev = prev->is_valid() ? prev : zr; \ 3526 AOP(sz, newv, prev, addr); \ 3527 return; \ 3528 } \ 3529 Register result = rscratch2; \ 3530 if (prev->is_valid()) \ 3531 result = different(prev, newv, addr) ? prev : rscratch2; \ 3532 \ 3533 Label retry_load; \ 3534 prfm(Address(addr), PSTL1STRM); \ 3535 bind(retry_load); \ 3536 LDXR(result, addr); \ 3537 STXR(rscratch1, newv, addr); \ 3538 cbnzw(rscratch1, retry_load); \ 3539 if (prev->is_valid() && prev != result) \ 3540 mov(prev, result); \ 3541 } 3542 3543 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3544 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3545 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3546 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3547 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3548 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3549 3550 #undef ATOMIC_XCHG 3551 3552 #ifndef PRODUCT 3553 extern "C" void findpc(intptr_t x); 3554 #endif 3555 3556 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3557 { 3558 // In order to get locks to work, we need to fake a in_VM state 3559 if (ShowMessageBoxOnError ) { 3560 JavaThread* thread = JavaThread::current(); 3561 JavaThreadState saved_state = thread->thread_state(); 3562 thread->set_thread_state(_thread_in_vm); 3563 #ifndef PRODUCT 3564 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3565 ttyLocker ttyl; 3566 BytecodeCounter::print(); 3567 } 3568 #endif 3569 if (os::message_box(msg, "Execution stopped, print registers?")) { 3570 ttyLocker ttyl; 3571 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3572 #ifndef PRODUCT 3573 tty->cr(); 3574 findpc(pc); 3575 tty->cr(); 3576 #endif 3577 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3578 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3579 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3580 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3581 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3582 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3583 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3584 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3585 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3586 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3587 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3588 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3589 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3590 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3591 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3592 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3593 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3594 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3595 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3596 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3597 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3598 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3599 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3600 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3601 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3602 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3603 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3604 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3605 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3606 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3607 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3608 BREAKPOINT; 3609 } 3610 } 3611 fatal("DEBUG MESSAGE: %s", msg); 3612 } 3613 3614 RegSet MacroAssembler::call_clobbered_gp_registers() { 3615 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3616 #ifndef R18_RESERVED 3617 regs += r18_tls; 3618 #endif 3619 return regs; 3620 } 3621 3622 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3623 int step = 4 * wordSize; 3624 push(call_clobbered_gp_registers() - exclude, sp); 3625 sub(sp, sp, step); 3626 mov(rscratch1, -step); 3627 // Push v0-v7, v16-v31. 3628 for (int i = 31; i>= 4; i -= 4) { 3629 if (i <= v7->encoding() || i >= v16->encoding()) 3630 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3631 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3632 } 3633 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3634 as_FloatRegister(3), T1D, Address(sp)); 3635 } 3636 3637 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3638 for (int i = 0; i < 32; i += 4) { 3639 if (i <= v7->encoding() || i >= v16->encoding()) 3640 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3641 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3642 } 3643 3644 reinitialize_ptrue(); 3645 3646 pop(call_clobbered_gp_registers() - exclude, sp); 3647 } 3648 3649 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3650 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3651 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3652 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3653 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3654 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3655 sve_str(as_FloatRegister(i), Address(sp, i)); 3656 } 3657 } else { 3658 int step = (save_vectors ? 8 : 4) * wordSize; 3659 mov(rscratch1, -step); 3660 sub(sp, sp, step); 3661 for (int i = 28; i >= 4; i -= 4) { 3662 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3663 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3664 } 3665 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3666 } 3667 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3668 sub(sp, sp, total_predicate_in_bytes); 3669 for (int i = 0; i < PRegister::number_of_registers; i++) { 3670 sve_str(as_PRegister(i), Address(sp, i)); 3671 } 3672 } 3673 } 3674 3675 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3676 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3677 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3678 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3679 sve_ldr(as_PRegister(i), Address(sp, i)); 3680 } 3681 add(sp, sp, total_predicate_in_bytes); 3682 } 3683 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3684 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3685 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3686 } 3687 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3688 } else { 3689 int step = (restore_vectors ? 8 : 4) * wordSize; 3690 for (int i = 0; i <= 28; i += 4) 3691 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3692 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3693 } 3694 3695 // We may use predicate registers and rely on ptrue with SVE, 3696 // regardless of wide vector (> 8 bytes) used or not. 3697 if (use_sve) { 3698 reinitialize_ptrue(); 3699 } 3700 3701 // integer registers except lr & sp 3702 pop(RegSet::range(r0, r17), sp); 3703 #ifdef R18_RESERVED 3704 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3705 pop(RegSet::range(r20, r29), sp); 3706 #else 3707 pop(RegSet::range(r18_tls, r29), sp); 3708 #endif 3709 } 3710 3711 /** 3712 * Helpers for multiply_to_len(). 3713 */ 3714 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3715 Register src1, Register src2) { 3716 adds(dest_lo, dest_lo, src1); 3717 adc(dest_hi, dest_hi, zr); 3718 adds(dest_lo, dest_lo, src2); 3719 adc(final_dest_hi, dest_hi, zr); 3720 } 3721 3722 // Generate an address from (r + r1 extend offset). "size" is the 3723 // size of the operand. The result may be in rscratch2. 3724 Address MacroAssembler::offsetted_address(Register r, Register r1, 3725 Address::extend ext, int offset, int size) { 3726 if (offset || (ext.shift() % size != 0)) { 3727 lea(rscratch2, Address(r, r1, ext)); 3728 return Address(rscratch2, offset); 3729 } else { 3730 return Address(r, r1, ext); 3731 } 3732 } 3733 3734 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3735 { 3736 assert(offset >= 0, "spill to negative address?"); 3737 // Offset reachable ? 3738 // Not aligned - 9 bits signed offset 3739 // Aligned - 12 bits unsigned offset shifted 3740 Register base = sp; 3741 if ((offset & (size-1)) && offset >= (1<<8)) { 3742 add(tmp, base, offset & ((1<<12)-1)); 3743 base = tmp; 3744 offset &= -1u<<12; 3745 } 3746 3747 if (offset >= (1<<12) * size) { 3748 add(tmp, base, offset & (((1<<12)-1)<<12)); 3749 base = tmp; 3750 offset &= ~(((1<<12)-1)<<12); 3751 } 3752 3753 return Address(base, offset); 3754 } 3755 3756 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3757 assert(offset >= 0, "spill to negative address?"); 3758 3759 Register base = sp; 3760 3761 // An immediate offset in the range 0 to 255 which is multiplied 3762 // by the current vector or predicate register size in bytes. 3763 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3764 return Address(base, offset / sve_reg_size_in_bytes); 3765 } 3766 3767 add(tmp, base, offset); 3768 return Address(tmp); 3769 } 3770 3771 // Checks whether offset is aligned. 3772 // Returns true if it is, else false. 3773 bool MacroAssembler::merge_alignment_check(Register base, 3774 size_t size, 3775 int64_t cur_offset, 3776 int64_t prev_offset) const { 3777 if (AvoidUnalignedAccesses) { 3778 if (base == sp) { 3779 // Checks whether low offset if aligned to pair of registers. 3780 int64_t pair_mask = size * 2 - 1; 3781 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3782 return (offset & pair_mask) == 0; 3783 } else { // If base is not sp, we can't guarantee the access is aligned. 3784 return false; 3785 } 3786 } else { 3787 int64_t mask = size - 1; 3788 // Load/store pair instruction only supports element size aligned offset. 3789 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3790 } 3791 } 3792 3793 // Checks whether current and previous loads/stores can be merged. 3794 // Returns true if it can be merged, else false. 3795 bool MacroAssembler::ldst_can_merge(Register rt, 3796 const Address &adr, 3797 size_t cur_size_in_bytes, 3798 bool is_store) const { 3799 address prev = pc() - NativeInstruction::instruction_size; 3800 address last = code()->last_insn(); 3801 3802 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3803 return false; 3804 } 3805 3806 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3807 return false; 3808 } 3809 3810 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3811 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3812 3813 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3814 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3815 3816 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3817 return false; 3818 } 3819 3820 int64_t max_offset = 63 * prev_size_in_bytes; 3821 int64_t min_offset = -64 * prev_size_in_bytes; 3822 3823 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3824 3825 // Only same base can be merged. 3826 if (adr.base() != prev_ldst->base()) { 3827 return false; 3828 } 3829 3830 int64_t cur_offset = adr.offset(); 3831 int64_t prev_offset = prev_ldst->offset(); 3832 size_t diff = abs(cur_offset - prev_offset); 3833 if (diff != prev_size_in_bytes) { 3834 return false; 3835 } 3836 3837 // Following cases can not be merged: 3838 // ldr x2, [x2, #8] 3839 // ldr x3, [x2, #16] 3840 // or: 3841 // ldr x2, [x3, #8] 3842 // ldr x2, [x3, #16] 3843 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3844 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3845 return false; 3846 } 3847 3848 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3849 // Offset range must be in ldp/stp instruction's range. 3850 if (low_offset > max_offset || low_offset < min_offset) { 3851 return false; 3852 } 3853 3854 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3855 return true; 3856 } 3857 3858 return false; 3859 } 3860 3861 // Merge current load/store with previous load/store into ldp/stp. 3862 void MacroAssembler::merge_ldst(Register rt, 3863 const Address &adr, 3864 size_t cur_size_in_bytes, 3865 bool is_store) { 3866 3867 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3868 3869 Register rt_low, rt_high; 3870 address prev = pc() - NativeInstruction::instruction_size; 3871 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3872 3873 int64_t offset; 3874 3875 if (adr.offset() < prev_ldst->offset()) { 3876 offset = adr.offset(); 3877 rt_low = rt; 3878 rt_high = prev_ldst->target(); 3879 } else { 3880 offset = prev_ldst->offset(); 3881 rt_low = prev_ldst->target(); 3882 rt_high = rt; 3883 } 3884 3885 Address adr_p = Address(prev_ldst->base(), offset); 3886 // Overwrite previous generated binary. 3887 code_section()->set_end(prev); 3888 3889 const size_t sz = prev_ldst->size_in_bytes(); 3890 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3891 if (!is_store) { 3892 BLOCK_COMMENT("merged ldr pair"); 3893 if (sz == 8) { 3894 ldp(rt_low, rt_high, adr_p); 3895 } else { 3896 ldpw(rt_low, rt_high, adr_p); 3897 } 3898 } else { 3899 BLOCK_COMMENT("merged str pair"); 3900 if (sz == 8) { 3901 stp(rt_low, rt_high, adr_p); 3902 } else { 3903 stpw(rt_low, rt_high, adr_p); 3904 } 3905 } 3906 } 3907 3908 /** 3909 * Multiply 64 bit by 64 bit first loop. 3910 */ 3911 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3912 Register y, Register y_idx, Register z, 3913 Register carry, Register product, 3914 Register idx, Register kdx) { 3915 // 3916 // jlong carry, x[], y[], z[]; 3917 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3918 // huge_128 product = y[idx] * x[xstart] + carry; 3919 // z[kdx] = (jlong)product; 3920 // carry = (jlong)(product >>> 64); 3921 // } 3922 // z[xstart] = carry; 3923 // 3924 3925 Label L_first_loop, L_first_loop_exit; 3926 Label L_one_x, L_one_y, L_multiply; 3927 3928 subsw(xstart, xstart, 1); 3929 br(Assembler::MI, L_one_x); 3930 3931 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3932 ldr(x_xstart, Address(rscratch1)); 3933 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3934 3935 bind(L_first_loop); 3936 subsw(idx, idx, 1); 3937 br(Assembler::MI, L_first_loop_exit); 3938 subsw(idx, idx, 1); 3939 br(Assembler::MI, L_one_y); 3940 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3941 ldr(y_idx, Address(rscratch1)); 3942 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3943 bind(L_multiply); 3944 3945 // AArch64 has a multiply-accumulate instruction that we can't use 3946 // here because it has no way to process carries, so we have to use 3947 // separate add and adc instructions. Bah. 3948 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3949 mul(product, x_xstart, y_idx); 3950 adds(product, product, carry); 3951 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3952 3953 subw(kdx, kdx, 2); 3954 ror(product, product, 32); // back to big-endian 3955 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3956 3957 b(L_first_loop); 3958 3959 bind(L_one_y); 3960 ldrw(y_idx, Address(y, 0)); 3961 b(L_multiply); 3962 3963 bind(L_one_x); 3964 ldrw(x_xstart, Address(x, 0)); 3965 b(L_first_loop); 3966 3967 bind(L_first_loop_exit); 3968 } 3969 3970 /** 3971 * Multiply 128 bit by 128. Unrolled inner loop. 3972 * 3973 */ 3974 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3975 Register carry, Register carry2, 3976 Register idx, Register jdx, 3977 Register yz_idx1, Register yz_idx2, 3978 Register tmp, Register tmp3, Register tmp4, 3979 Register tmp6, Register product_hi) { 3980 3981 // jlong carry, x[], y[], z[]; 3982 // int kdx = ystart+1; 3983 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3984 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3985 // jlong carry2 = (jlong)(tmp3 >>> 64); 3986 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3987 // carry = (jlong)(tmp4 >>> 64); 3988 // z[kdx+idx+1] = (jlong)tmp3; 3989 // z[kdx+idx] = (jlong)tmp4; 3990 // } 3991 // idx += 2; 3992 // if (idx > 0) { 3993 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3994 // z[kdx+idx] = (jlong)yz_idx1; 3995 // carry = (jlong)(yz_idx1 >>> 64); 3996 // } 3997 // 3998 3999 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4000 4001 lsrw(jdx, idx, 2); 4002 4003 bind(L_third_loop); 4004 4005 subsw(jdx, jdx, 1); 4006 br(Assembler::MI, L_third_loop_exit); 4007 subw(idx, idx, 4); 4008 4009 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4010 4011 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4012 4013 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4014 4015 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4016 ror(yz_idx2, yz_idx2, 32); 4017 4018 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4019 4020 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4021 umulh(tmp4, product_hi, yz_idx1); 4022 4023 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4024 ror(rscratch2, rscratch2, 32); 4025 4026 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4027 umulh(carry2, product_hi, yz_idx2); 4028 4029 // propagate sum of both multiplications into carry:tmp4:tmp3 4030 adds(tmp3, tmp3, carry); 4031 adc(tmp4, tmp4, zr); 4032 adds(tmp3, tmp3, rscratch1); 4033 adcs(tmp4, tmp4, tmp); 4034 adc(carry, carry2, zr); 4035 adds(tmp4, tmp4, rscratch2); 4036 adc(carry, carry, zr); 4037 4038 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4039 ror(tmp4, tmp4, 32); 4040 stp(tmp4, tmp3, Address(tmp6, 0)); 4041 4042 b(L_third_loop); 4043 bind (L_third_loop_exit); 4044 4045 andw (idx, idx, 0x3); 4046 cbz(idx, L_post_third_loop_done); 4047 4048 Label L_check_1; 4049 subsw(idx, idx, 2); 4050 br(Assembler::MI, L_check_1); 4051 4052 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4053 ldr(yz_idx1, Address(rscratch1, 0)); 4054 ror(yz_idx1, yz_idx1, 32); 4055 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4056 umulh(tmp4, product_hi, yz_idx1); 4057 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4058 ldr(yz_idx2, Address(rscratch1, 0)); 4059 ror(yz_idx2, yz_idx2, 32); 4060 4061 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4062 4063 ror(tmp3, tmp3, 32); 4064 str(tmp3, Address(rscratch1, 0)); 4065 4066 bind (L_check_1); 4067 4068 andw (idx, idx, 0x1); 4069 subsw(idx, idx, 1); 4070 br(Assembler::MI, L_post_third_loop_done); 4071 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4072 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4073 umulh(carry2, tmp4, product_hi); 4074 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4075 4076 add2_with_carry(carry2, tmp3, tmp4, carry); 4077 4078 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4079 extr(carry, carry2, tmp3, 32); 4080 4081 bind(L_post_third_loop_done); 4082 } 4083 4084 /** 4085 * Code for BigInteger::multiplyToLen() intrinsic. 4086 * 4087 * r0: x 4088 * r1: xlen 4089 * r2: y 4090 * r3: ylen 4091 * r4: z 4092 * r5: tmp0 4093 * r10: tmp1 4094 * r11: tmp2 4095 * r12: tmp3 4096 * r13: tmp4 4097 * r14: tmp5 4098 * r15: tmp6 4099 * r16: tmp7 4100 * 4101 */ 4102 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4103 Register z, Register tmp0, 4104 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4105 Register tmp5, Register tmp6, Register product_hi) { 4106 4107 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4108 4109 const Register idx = tmp1; 4110 const Register kdx = tmp2; 4111 const Register xstart = tmp3; 4112 4113 const Register y_idx = tmp4; 4114 const Register carry = tmp5; 4115 const Register product = xlen; 4116 const Register x_xstart = tmp0; 4117 4118 // First Loop. 4119 // 4120 // final static long LONG_MASK = 0xffffffffL; 4121 // int xstart = xlen - 1; 4122 // int ystart = ylen - 1; 4123 // long carry = 0; 4124 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4125 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4126 // z[kdx] = (int)product; 4127 // carry = product >>> 32; 4128 // } 4129 // z[xstart] = (int)carry; 4130 // 4131 4132 movw(idx, ylen); // idx = ylen; 4133 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4134 mov(carry, zr); // carry = 0; 4135 4136 Label L_done; 4137 4138 movw(xstart, xlen); 4139 subsw(xstart, xstart, 1); 4140 br(Assembler::MI, L_done); 4141 4142 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4143 4144 Label L_second_loop; 4145 cbzw(kdx, L_second_loop); 4146 4147 Label L_carry; 4148 subw(kdx, kdx, 1); 4149 cbzw(kdx, L_carry); 4150 4151 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4152 lsr(carry, carry, 32); 4153 subw(kdx, kdx, 1); 4154 4155 bind(L_carry); 4156 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4157 4158 // Second and third (nested) loops. 4159 // 4160 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4161 // carry = 0; 4162 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4163 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4164 // (z[k] & LONG_MASK) + carry; 4165 // z[k] = (int)product; 4166 // carry = product >>> 32; 4167 // } 4168 // z[i] = (int)carry; 4169 // } 4170 // 4171 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4172 4173 const Register jdx = tmp1; 4174 4175 bind(L_second_loop); 4176 mov(carry, zr); // carry = 0; 4177 movw(jdx, ylen); // j = ystart+1 4178 4179 subsw(xstart, xstart, 1); // i = xstart-1; 4180 br(Assembler::MI, L_done); 4181 4182 str(z, Address(pre(sp, -4 * wordSize))); 4183 4184 Label L_last_x; 4185 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4186 subsw(xstart, xstart, 1); // i = xstart-1; 4187 br(Assembler::MI, L_last_x); 4188 4189 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4190 ldr(product_hi, Address(rscratch1)); 4191 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4192 4193 Label L_third_loop_prologue; 4194 bind(L_third_loop_prologue); 4195 4196 str(ylen, Address(sp, wordSize)); 4197 stp(x, xstart, Address(sp, 2 * wordSize)); 4198 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4199 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4200 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4201 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4202 4203 addw(tmp3, xlen, 1); 4204 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4205 subsw(tmp3, tmp3, 1); 4206 br(Assembler::MI, L_done); 4207 4208 lsr(carry, carry, 32); 4209 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4210 b(L_second_loop); 4211 4212 // Next infrequent code is moved outside loops. 4213 bind(L_last_x); 4214 ldrw(product_hi, Address(x, 0)); 4215 b(L_third_loop_prologue); 4216 4217 bind(L_done); 4218 } 4219 4220 // Code for BigInteger::mulAdd intrinsic 4221 // out = r0 4222 // in = r1 4223 // offset = r2 (already out.length-offset) 4224 // len = r3 4225 // k = r4 4226 // 4227 // pseudo code from java implementation: 4228 // carry = 0; 4229 // offset = out.length-offset - 1; 4230 // for (int j=len-1; j >= 0; j--) { 4231 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4232 // out[offset--] = (int)product; 4233 // carry = product >>> 32; 4234 // } 4235 // return (int)carry; 4236 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4237 Register len, Register k) { 4238 Label LOOP, END; 4239 // pre-loop 4240 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4241 csel(out, zr, out, Assembler::EQ); 4242 br(Assembler::EQ, END); 4243 add(in, in, len, LSL, 2); // in[j+1] address 4244 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4245 mov(out, zr); // used to keep carry now 4246 BIND(LOOP); 4247 ldrw(rscratch1, Address(pre(in, -4))); 4248 madd(rscratch1, rscratch1, k, out); 4249 ldrw(rscratch2, Address(pre(offset, -4))); 4250 add(rscratch1, rscratch1, rscratch2); 4251 strw(rscratch1, Address(offset)); 4252 lsr(out, rscratch1, 32); 4253 subs(len, len, 1); 4254 br(Assembler::NE, LOOP); 4255 BIND(END); 4256 } 4257 4258 /** 4259 * Emits code to update CRC-32 with a byte value according to constants in table 4260 * 4261 * @param [in,out]crc Register containing the crc. 4262 * @param [in]val Register containing the byte to fold into the CRC. 4263 * @param [in]table Register containing the table of crc constants. 4264 * 4265 * uint32_t crc; 4266 * val = crc_table[(val ^ crc) & 0xFF]; 4267 * crc = val ^ (crc >> 8); 4268 * 4269 */ 4270 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4271 eor(val, val, crc); 4272 andr(val, val, 0xff); 4273 ldrw(val, Address(table, val, Address::lsl(2))); 4274 eor(crc, val, crc, Assembler::LSR, 8); 4275 } 4276 4277 /** 4278 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4279 * 4280 * @param [in,out]crc Register containing the crc. 4281 * @param [in]v Register containing the 32-bit to fold into the CRC. 4282 * @param [in]table0 Register containing table 0 of crc constants. 4283 * @param [in]table1 Register containing table 1 of crc constants. 4284 * @param [in]table2 Register containing table 2 of crc constants. 4285 * @param [in]table3 Register containing table 3 of crc constants. 4286 * 4287 * uint32_t crc; 4288 * v = crc ^ v 4289 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4290 * 4291 */ 4292 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4293 Register table0, Register table1, Register table2, Register table3, 4294 bool upper) { 4295 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4296 uxtb(tmp, v); 4297 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4298 ubfx(tmp, v, 8, 8); 4299 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4300 eor(crc, crc, tmp); 4301 ubfx(tmp, v, 16, 8); 4302 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4303 eor(crc, crc, tmp); 4304 ubfx(tmp, v, 24, 8); 4305 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4306 eor(crc, crc, tmp); 4307 } 4308 4309 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4310 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4311 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4312 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4313 4314 subs(tmp0, len, 384); 4315 mvnw(crc, crc); 4316 br(Assembler::GE, CRC_by128_pre); 4317 BIND(CRC_less128); 4318 subs(len, len, 32); 4319 br(Assembler::GE, CRC_by32_loop); 4320 BIND(CRC_less32); 4321 adds(len, len, 32 - 4); 4322 br(Assembler::GE, CRC_by4_loop); 4323 adds(len, len, 4); 4324 br(Assembler::GT, CRC_by1_loop); 4325 b(L_exit); 4326 4327 BIND(CRC_by32_loop); 4328 ldp(tmp0, tmp1, Address(buf)); 4329 crc32x(crc, crc, tmp0); 4330 ldp(tmp2, tmp3, Address(buf, 16)); 4331 crc32x(crc, crc, tmp1); 4332 add(buf, buf, 32); 4333 crc32x(crc, crc, tmp2); 4334 subs(len, len, 32); 4335 crc32x(crc, crc, tmp3); 4336 br(Assembler::GE, CRC_by32_loop); 4337 cmn(len, (u1)32); 4338 br(Assembler::NE, CRC_less32); 4339 b(L_exit); 4340 4341 BIND(CRC_by4_loop); 4342 ldrw(tmp0, Address(post(buf, 4))); 4343 subs(len, len, 4); 4344 crc32w(crc, crc, tmp0); 4345 br(Assembler::GE, CRC_by4_loop); 4346 adds(len, len, 4); 4347 br(Assembler::LE, L_exit); 4348 BIND(CRC_by1_loop); 4349 ldrb(tmp0, Address(post(buf, 1))); 4350 subs(len, len, 1); 4351 crc32b(crc, crc, tmp0); 4352 br(Assembler::GT, CRC_by1_loop); 4353 b(L_exit); 4354 4355 BIND(CRC_by128_pre); 4356 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4357 4*256*sizeof(juint) + 8*sizeof(juint)); 4358 mov(crc, 0); 4359 crc32x(crc, crc, tmp0); 4360 crc32x(crc, crc, tmp1); 4361 4362 cbnz(len, CRC_less128); 4363 4364 BIND(L_exit); 4365 mvnw(crc, crc); 4366 } 4367 4368 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4369 Register len, Register tmp0, Register tmp1, Register tmp2, 4370 Register tmp3) { 4371 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4372 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4373 4374 mvnw(crc, crc); 4375 4376 subs(len, len, 128); 4377 br(Assembler::GE, CRC_by64_pre); 4378 BIND(CRC_less64); 4379 adds(len, len, 128-32); 4380 br(Assembler::GE, CRC_by32_loop); 4381 BIND(CRC_less32); 4382 adds(len, len, 32-4); 4383 br(Assembler::GE, CRC_by4_loop); 4384 adds(len, len, 4); 4385 br(Assembler::GT, CRC_by1_loop); 4386 b(L_exit); 4387 4388 BIND(CRC_by32_loop); 4389 ldp(tmp0, tmp1, Address(post(buf, 16))); 4390 subs(len, len, 32); 4391 crc32x(crc, crc, tmp0); 4392 ldr(tmp2, Address(post(buf, 8))); 4393 crc32x(crc, crc, tmp1); 4394 ldr(tmp3, Address(post(buf, 8))); 4395 crc32x(crc, crc, tmp2); 4396 crc32x(crc, crc, tmp3); 4397 br(Assembler::GE, CRC_by32_loop); 4398 cmn(len, (u1)32); 4399 br(Assembler::NE, CRC_less32); 4400 b(L_exit); 4401 4402 BIND(CRC_by4_loop); 4403 ldrw(tmp0, Address(post(buf, 4))); 4404 subs(len, len, 4); 4405 crc32w(crc, crc, tmp0); 4406 br(Assembler::GE, CRC_by4_loop); 4407 adds(len, len, 4); 4408 br(Assembler::LE, L_exit); 4409 BIND(CRC_by1_loop); 4410 ldrb(tmp0, Address(post(buf, 1))); 4411 subs(len, len, 1); 4412 crc32b(crc, crc, tmp0); 4413 br(Assembler::GT, CRC_by1_loop); 4414 b(L_exit); 4415 4416 BIND(CRC_by64_pre); 4417 sub(buf, buf, 8); 4418 ldp(tmp0, tmp1, Address(buf, 8)); 4419 crc32x(crc, crc, tmp0); 4420 ldr(tmp2, Address(buf, 24)); 4421 crc32x(crc, crc, tmp1); 4422 ldr(tmp3, Address(buf, 32)); 4423 crc32x(crc, crc, tmp2); 4424 ldr(tmp0, Address(buf, 40)); 4425 crc32x(crc, crc, tmp3); 4426 ldr(tmp1, Address(buf, 48)); 4427 crc32x(crc, crc, tmp0); 4428 ldr(tmp2, Address(buf, 56)); 4429 crc32x(crc, crc, tmp1); 4430 ldr(tmp3, Address(pre(buf, 64))); 4431 4432 b(CRC_by64_loop); 4433 4434 align(CodeEntryAlignment); 4435 BIND(CRC_by64_loop); 4436 subs(len, len, 64); 4437 crc32x(crc, crc, tmp2); 4438 ldr(tmp0, Address(buf, 8)); 4439 crc32x(crc, crc, tmp3); 4440 ldr(tmp1, Address(buf, 16)); 4441 crc32x(crc, crc, tmp0); 4442 ldr(tmp2, Address(buf, 24)); 4443 crc32x(crc, crc, tmp1); 4444 ldr(tmp3, Address(buf, 32)); 4445 crc32x(crc, crc, tmp2); 4446 ldr(tmp0, Address(buf, 40)); 4447 crc32x(crc, crc, tmp3); 4448 ldr(tmp1, Address(buf, 48)); 4449 crc32x(crc, crc, tmp0); 4450 ldr(tmp2, Address(buf, 56)); 4451 crc32x(crc, crc, tmp1); 4452 ldr(tmp3, Address(pre(buf, 64))); 4453 br(Assembler::GE, CRC_by64_loop); 4454 4455 // post-loop 4456 crc32x(crc, crc, tmp2); 4457 crc32x(crc, crc, tmp3); 4458 4459 sub(len, len, 64); 4460 add(buf, buf, 8); 4461 cmn(len, (u1)128); 4462 br(Assembler::NE, CRC_less64); 4463 BIND(L_exit); 4464 mvnw(crc, crc); 4465 } 4466 4467 /** 4468 * @param crc register containing existing CRC (32-bit) 4469 * @param buf register pointing to input byte buffer (byte*) 4470 * @param len register containing number of bytes 4471 * @param table register that will contain address of CRC table 4472 * @param tmp scratch register 4473 */ 4474 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4475 Register table0, Register table1, Register table2, Register table3, 4476 Register tmp, Register tmp2, Register tmp3) { 4477 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4478 4479 if (UseCryptoPmullForCRC32) { 4480 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4481 return; 4482 } 4483 4484 if (UseCRC32) { 4485 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4486 return; 4487 } 4488 4489 mvnw(crc, crc); 4490 4491 { 4492 uint64_t offset; 4493 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4494 add(table0, table0, offset); 4495 } 4496 add(table1, table0, 1*256*sizeof(juint)); 4497 add(table2, table0, 2*256*sizeof(juint)); 4498 add(table3, table0, 3*256*sizeof(juint)); 4499 4500 { // Neon code start 4501 cmp(len, (u1)64); 4502 br(Assembler::LT, L_by16); 4503 eor(v16, T16B, v16, v16); 4504 4505 Label L_fold; 4506 4507 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4508 4509 ld1(v0, v1, T2D, post(buf, 32)); 4510 ld1r(v4, T2D, post(tmp, 8)); 4511 ld1r(v5, T2D, post(tmp, 8)); 4512 ld1r(v6, T2D, post(tmp, 8)); 4513 ld1r(v7, T2D, post(tmp, 8)); 4514 mov(v16, S, 0, crc); 4515 4516 eor(v0, T16B, v0, v16); 4517 sub(len, len, 64); 4518 4519 BIND(L_fold); 4520 pmull(v22, T8H, v0, v5, T8B); 4521 pmull(v20, T8H, v0, v7, T8B); 4522 pmull(v23, T8H, v0, v4, T8B); 4523 pmull(v21, T8H, v0, v6, T8B); 4524 4525 pmull2(v18, T8H, v0, v5, T16B); 4526 pmull2(v16, T8H, v0, v7, T16B); 4527 pmull2(v19, T8H, v0, v4, T16B); 4528 pmull2(v17, T8H, v0, v6, T16B); 4529 4530 uzp1(v24, T8H, v20, v22); 4531 uzp2(v25, T8H, v20, v22); 4532 eor(v20, T16B, v24, v25); 4533 4534 uzp1(v26, T8H, v16, v18); 4535 uzp2(v27, T8H, v16, v18); 4536 eor(v16, T16B, v26, v27); 4537 4538 ushll2(v22, T4S, v20, T8H, 8); 4539 ushll(v20, T4S, v20, T4H, 8); 4540 4541 ushll2(v18, T4S, v16, T8H, 8); 4542 ushll(v16, T4S, v16, T4H, 8); 4543 4544 eor(v22, T16B, v23, v22); 4545 eor(v18, T16B, v19, v18); 4546 eor(v20, T16B, v21, v20); 4547 eor(v16, T16B, v17, v16); 4548 4549 uzp1(v17, T2D, v16, v20); 4550 uzp2(v21, T2D, v16, v20); 4551 eor(v17, T16B, v17, v21); 4552 4553 ushll2(v20, T2D, v17, T4S, 16); 4554 ushll(v16, T2D, v17, T2S, 16); 4555 4556 eor(v20, T16B, v20, v22); 4557 eor(v16, T16B, v16, v18); 4558 4559 uzp1(v17, T2D, v20, v16); 4560 uzp2(v21, T2D, v20, v16); 4561 eor(v28, T16B, v17, v21); 4562 4563 pmull(v22, T8H, v1, v5, T8B); 4564 pmull(v20, T8H, v1, v7, T8B); 4565 pmull(v23, T8H, v1, v4, T8B); 4566 pmull(v21, T8H, v1, v6, T8B); 4567 4568 pmull2(v18, T8H, v1, v5, T16B); 4569 pmull2(v16, T8H, v1, v7, T16B); 4570 pmull2(v19, T8H, v1, v4, T16B); 4571 pmull2(v17, T8H, v1, v6, T16B); 4572 4573 ld1(v0, v1, T2D, post(buf, 32)); 4574 4575 uzp1(v24, T8H, v20, v22); 4576 uzp2(v25, T8H, v20, v22); 4577 eor(v20, T16B, v24, v25); 4578 4579 uzp1(v26, T8H, v16, v18); 4580 uzp2(v27, T8H, v16, v18); 4581 eor(v16, T16B, v26, v27); 4582 4583 ushll2(v22, T4S, v20, T8H, 8); 4584 ushll(v20, T4S, v20, T4H, 8); 4585 4586 ushll2(v18, T4S, v16, T8H, 8); 4587 ushll(v16, T4S, v16, T4H, 8); 4588 4589 eor(v22, T16B, v23, v22); 4590 eor(v18, T16B, v19, v18); 4591 eor(v20, T16B, v21, v20); 4592 eor(v16, T16B, v17, v16); 4593 4594 uzp1(v17, T2D, v16, v20); 4595 uzp2(v21, T2D, v16, v20); 4596 eor(v16, T16B, v17, v21); 4597 4598 ushll2(v20, T2D, v16, T4S, 16); 4599 ushll(v16, T2D, v16, T2S, 16); 4600 4601 eor(v20, T16B, v22, v20); 4602 eor(v16, T16B, v16, v18); 4603 4604 uzp1(v17, T2D, v20, v16); 4605 uzp2(v21, T2D, v20, v16); 4606 eor(v20, T16B, v17, v21); 4607 4608 shl(v16, T2D, v28, 1); 4609 shl(v17, T2D, v20, 1); 4610 4611 eor(v0, T16B, v0, v16); 4612 eor(v1, T16B, v1, v17); 4613 4614 subs(len, len, 32); 4615 br(Assembler::GE, L_fold); 4616 4617 mov(crc, 0); 4618 mov(tmp, v0, D, 0); 4619 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4620 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4621 mov(tmp, v0, D, 1); 4622 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4623 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4624 mov(tmp, v1, D, 0); 4625 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4626 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4627 mov(tmp, v1, D, 1); 4628 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4629 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4630 4631 add(len, len, 32); 4632 } // Neon code end 4633 4634 BIND(L_by16); 4635 subs(len, len, 16); 4636 br(Assembler::GE, L_by16_loop); 4637 adds(len, len, 16-4); 4638 br(Assembler::GE, L_by4_loop); 4639 adds(len, len, 4); 4640 br(Assembler::GT, L_by1_loop); 4641 b(L_exit); 4642 4643 BIND(L_by4_loop); 4644 ldrw(tmp, Address(post(buf, 4))); 4645 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4646 subs(len, len, 4); 4647 br(Assembler::GE, L_by4_loop); 4648 adds(len, len, 4); 4649 br(Assembler::LE, L_exit); 4650 BIND(L_by1_loop); 4651 subs(len, len, 1); 4652 ldrb(tmp, Address(post(buf, 1))); 4653 update_byte_crc32(crc, tmp, table0); 4654 br(Assembler::GT, L_by1_loop); 4655 b(L_exit); 4656 4657 align(CodeEntryAlignment); 4658 BIND(L_by16_loop); 4659 subs(len, len, 16); 4660 ldp(tmp, tmp3, Address(post(buf, 16))); 4661 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4662 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4663 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4664 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4665 br(Assembler::GE, L_by16_loop); 4666 adds(len, len, 16-4); 4667 br(Assembler::GE, L_by4_loop); 4668 adds(len, len, 4); 4669 br(Assembler::GT, L_by1_loop); 4670 BIND(L_exit); 4671 mvnw(crc, crc); 4672 } 4673 4674 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4675 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4676 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4677 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4678 4679 subs(tmp0, len, 384); 4680 br(Assembler::GE, CRC_by128_pre); 4681 BIND(CRC_less128); 4682 subs(len, len, 32); 4683 br(Assembler::GE, CRC_by32_loop); 4684 BIND(CRC_less32); 4685 adds(len, len, 32 - 4); 4686 br(Assembler::GE, CRC_by4_loop); 4687 adds(len, len, 4); 4688 br(Assembler::GT, CRC_by1_loop); 4689 b(L_exit); 4690 4691 BIND(CRC_by32_loop); 4692 ldp(tmp0, tmp1, Address(buf)); 4693 crc32cx(crc, crc, tmp0); 4694 ldr(tmp2, Address(buf, 16)); 4695 crc32cx(crc, crc, tmp1); 4696 ldr(tmp3, Address(buf, 24)); 4697 crc32cx(crc, crc, tmp2); 4698 add(buf, buf, 32); 4699 subs(len, len, 32); 4700 crc32cx(crc, crc, tmp3); 4701 br(Assembler::GE, CRC_by32_loop); 4702 cmn(len, (u1)32); 4703 br(Assembler::NE, CRC_less32); 4704 b(L_exit); 4705 4706 BIND(CRC_by4_loop); 4707 ldrw(tmp0, Address(post(buf, 4))); 4708 subs(len, len, 4); 4709 crc32cw(crc, crc, tmp0); 4710 br(Assembler::GE, CRC_by4_loop); 4711 adds(len, len, 4); 4712 br(Assembler::LE, L_exit); 4713 BIND(CRC_by1_loop); 4714 ldrb(tmp0, Address(post(buf, 1))); 4715 subs(len, len, 1); 4716 crc32cb(crc, crc, tmp0); 4717 br(Assembler::GT, CRC_by1_loop); 4718 b(L_exit); 4719 4720 BIND(CRC_by128_pre); 4721 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4722 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4723 mov(crc, 0); 4724 crc32cx(crc, crc, tmp0); 4725 crc32cx(crc, crc, tmp1); 4726 4727 cbnz(len, CRC_less128); 4728 4729 BIND(L_exit); 4730 } 4731 4732 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4733 Register len, Register tmp0, Register tmp1, Register tmp2, 4734 Register tmp3) { 4735 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4736 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4737 4738 subs(len, len, 128); 4739 br(Assembler::GE, CRC_by64_pre); 4740 BIND(CRC_less64); 4741 adds(len, len, 128-32); 4742 br(Assembler::GE, CRC_by32_loop); 4743 BIND(CRC_less32); 4744 adds(len, len, 32-4); 4745 br(Assembler::GE, CRC_by4_loop); 4746 adds(len, len, 4); 4747 br(Assembler::GT, CRC_by1_loop); 4748 b(L_exit); 4749 4750 BIND(CRC_by32_loop); 4751 ldp(tmp0, tmp1, Address(post(buf, 16))); 4752 subs(len, len, 32); 4753 crc32cx(crc, crc, tmp0); 4754 ldr(tmp2, Address(post(buf, 8))); 4755 crc32cx(crc, crc, tmp1); 4756 ldr(tmp3, Address(post(buf, 8))); 4757 crc32cx(crc, crc, tmp2); 4758 crc32cx(crc, crc, tmp3); 4759 br(Assembler::GE, CRC_by32_loop); 4760 cmn(len, (u1)32); 4761 br(Assembler::NE, CRC_less32); 4762 b(L_exit); 4763 4764 BIND(CRC_by4_loop); 4765 ldrw(tmp0, Address(post(buf, 4))); 4766 subs(len, len, 4); 4767 crc32cw(crc, crc, tmp0); 4768 br(Assembler::GE, CRC_by4_loop); 4769 adds(len, len, 4); 4770 br(Assembler::LE, L_exit); 4771 BIND(CRC_by1_loop); 4772 ldrb(tmp0, Address(post(buf, 1))); 4773 subs(len, len, 1); 4774 crc32cb(crc, crc, tmp0); 4775 br(Assembler::GT, CRC_by1_loop); 4776 b(L_exit); 4777 4778 BIND(CRC_by64_pre); 4779 sub(buf, buf, 8); 4780 ldp(tmp0, tmp1, Address(buf, 8)); 4781 crc32cx(crc, crc, tmp0); 4782 ldr(tmp2, Address(buf, 24)); 4783 crc32cx(crc, crc, tmp1); 4784 ldr(tmp3, Address(buf, 32)); 4785 crc32cx(crc, crc, tmp2); 4786 ldr(tmp0, Address(buf, 40)); 4787 crc32cx(crc, crc, tmp3); 4788 ldr(tmp1, Address(buf, 48)); 4789 crc32cx(crc, crc, tmp0); 4790 ldr(tmp2, Address(buf, 56)); 4791 crc32cx(crc, crc, tmp1); 4792 ldr(tmp3, Address(pre(buf, 64))); 4793 4794 b(CRC_by64_loop); 4795 4796 align(CodeEntryAlignment); 4797 BIND(CRC_by64_loop); 4798 subs(len, len, 64); 4799 crc32cx(crc, crc, tmp2); 4800 ldr(tmp0, Address(buf, 8)); 4801 crc32cx(crc, crc, tmp3); 4802 ldr(tmp1, Address(buf, 16)); 4803 crc32cx(crc, crc, tmp0); 4804 ldr(tmp2, Address(buf, 24)); 4805 crc32cx(crc, crc, tmp1); 4806 ldr(tmp3, Address(buf, 32)); 4807 crc32cx(crc, crc, tmp2); 4808 ldr(tmp0, Address(buf, 40)); 4809 crc32cx(crc, crc, tmp3); 4810 ldr(tmp1, Address(buf, 48)); 4811 crc32cx(crc, crc, tmp0); 4812 ldr(tmp2, Address(buf, 56)); 4813 crc32cx(crc, crc, tmp1); 4814 ldr(tmp3, Address(pre(buf, 64))); 4815 br(Assembler::GE, CRC_by64_loop); 4816 4817 // post-loop 4818 crc32cx(crc, crc, tmp2); 4819 crc32cx(crc, crc, tmp3); 4820 4821 sub(len, len, 64); 4822 add(buf, buf, 8); 4823 cmn(len, (u1)128); 4824 br(Assembler::NE, CRC_less64); 4825 BIND(L_exit); 4826 } 4827 4828 /** 4829 * @param crc register containing existing CRC (32-bit) 4830 * @param buf register pointing to input byte buffer (byte*) 4831 * @param len register containing number of bytes 4832 * @param table register that will contain address of CRC table 4833 * @param tmp scratch register 4834 */ 4835 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4836 Register table0, Register table1, Register table2, Register table3, 4837 Register tmp, Register tmp2, Register tmp3) { 4838 if (UseCryptoPmullForCRC32) { 4839 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4840 } else { 4841 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4842 } 4843 } 4844 4845 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4846 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4847 Label CRC_by128_loop; 4848 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4849 4850 sub(len, len, 256); 4851 Register table = tmp0; 4852 { 4853 uint64_t offset; 4854 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4855 add(table, table, offset); 4856 } 4857 add(table, table, table_offset); 4858 4859 // Registers v0..v7 are used as data registers. 4860 // Registers v16..v31 are used as tmp registers. 4861 sub(buf, buf, 0x10); 4862 ldrq(v0, Address(buf, 0x10)); 4863 ldrq(v1, Address(buf, 0x20)); 4864 ldrq(v2, Address(buf, 0x30)); 4865 ldrq(v3, Address(buf, 0x40)); 4866 ldrq(v4, Address(buf, 0x50)); 4867 ldrq(v5, Address(buf, 0x60)); 4868 ldrq(v6, Address(buf, 0x70)); 4869 ldrq(v7, Address(pre(buf, 0x80))); 4870 4871 movi(v31, T4S, 0); 4872 mov(v31, S, 0, crc); 4873 eor(v0, T16B, v0, v31); 4874 4875 // Register v16 contains constants from the crc table. 4876 ldrq(v16, Address(table)); 4877 b(CRC_by128_loop); 4878 4879 align(OptoLoopAlignment); 4880 BIND(CRC_by128_loop); 4881 pmull (v17, T1Q, v0, v16, T1D); 4882 pmull2(v18, T1Q, v0, v16, T2D); 4883 ldrq(v0, Address(buf, 0x10)); 4884 eor3(v0, T16B, v17, v18, v0); 4885 4886 pmull (v19, T1Q, v1, v16, T1D); 4887 pmull2(v20, T1Q, v1, v16, T2D); 4888 ldrq(v1, Address(buf, 0x20)); 4889 eor3(v1, T16B, v19, v20, v1); 4890 4891 pmull (v21, T1Q, v2, v16, T1D); 4892 pmull2(v22, T1Q, v2, v16, T2D); 4893 ldrq(v2, Address(buf, 0x30)); 4894 eor3(v2, T16B, v21, v22, v2); 4895 4896 pmull (v23, T1Q, v3, v16, T1D); 4897 pmull2(v24, T1Q, v3, v16, T2D); 4898 ldrq(v3, Address(buf, 0x40)); 4899 eor3(v3, T16B, v23, v24, v3); 4900 4901 pmull (v25, T1Q, v4, v16, T1D); 4902 pmull2(v26, T1Q, v4, v16, T2D); 4903 ldrq(v4, Address(buf, 0x50)); 4904 eor3(v4, T16B, v25, v26, v4); 4905 4906 pmull (v27, T1Q, v5, v16, T1D); 4907 pmull2(v28, T1Q, v5, v16, T2D); 4908 ldrq(v5, Address(buf, 0x60)); 4909 eor3(v5, T16B, v27, v28, v5); 4910 4911 pmull (v29, T1Q, v6, v16, T1D); 4912 pmull2(v30, T1Q, v6, v16, T2D); 4913 ldrq(v6, Address(buf, 0x70)); 4914 eor3(v6, T16B, v29, v30, v6); 4915 4916 // Reuse registers v23, v24. 4917 // Using them won't block the first instruction of the next iteration. 4918 pmull (v23, T1Q, v7, v16, T1D); 4919 pmull2(v24, T1Q, v7, v16, T2D); 4920 ldrq(v7, Address(pre(buf, 0x80))); 4921 eor3(v7, T16B, v23, v24, v7); 4922 4923 subs(len, len, 0x80); 4924 br(Assembler::GE, CRC_by128_loop); 4925 4926 // fold into 512 bits 4927 // Use v31 for constants because v16 can be still in use. 4928 ldrq(v31, Address(table, 0x10)); 4929 4930 pmull (v17, T1Q, v0, v31, T1D); 4931 pmull2(v18, T1Q, v0, v31, T2D); 4932 eor3(v0, T16B, v17, v18, v4); 4933 4934 pmull (v19, T1Q, v1, v31, T1D); 4935 pmull2(v20, T1Q, v1, v31, T2D); 4936 eor3(v1, T16B, v19, v20, v5); 4937 4938 pmull (v21, T1Q, v2, v31, T1D); 4939 pmull2(v22, T1Q, v2, v31, T2D); 4940 eor3(v2, T16B, v21, v22, v6); 4941 4942 pmull (v23, T1Q, v3, v31, T1D); 4943 pmull2(v24, T1Q, v3, v31, T2D); 4944 eor3(v3, T16B, v23, v24, v7); 4945 4946 // fold into 128 bits 4947 // Use v17 for constants because v31 can be still in use. 4948 ldrq(v17, Address(table, 0x20)); 4949 pmull (v25, T1Q, v0, v17, T1D); 4950 pmull2(v26, T1Q, v0, v17, T2D); 4951 eor3(v3, T16B, v3, v25, v26); 4952 4953 // Use v18 for constants because v17 can be still in use. 4954 ldrq(v18, Address(table, 0x30)); 4955 pmull (v27, T1Q, v1, v18, T1D); 4956 pmull2(v28, T1Q, v1, v18, T2D); 4957 eor3(v3, T16B, v3, v27, v28); 4958 4959 // Use v19 for constants because v18 can be still in use. 4960 ldrq(v19, Address(table, 0x40)); 4961 pmull (v29, T1Q, v2, v19, T1D); 4962 pmull2(v30, T1Q, v2, v19, T2D); 4963 eor3(v0, T16B, v3, v29, v30); 4964 4965 add(len, len, 0x80); 4966 add(buf, buf, 0x10); 4967 4968 mov(tmp0, v0, D, 0); 4969 mov(tmp1, v0, D, 1); 4970 } 4971 4972 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4973 Address adr; 4974 switch(dst.getMode()) { 4975 case Address::base_plus_offset: 4976 // This is the expected mode, although we allow all the other 4977 // forms below. 4978 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4979 break; 4980 default: 4981 lea(rscratch2, dst); 4982 adr = Address(rscratch2); 4983 break; 4984 } 4985 ldr(rscratch1, adr); 4986 add(rscratch1, rscratch1, src); 4987 str(rscratch1, adr); 4988 } 4989 4990 void MacroAssembler::cmpptr(Register src1, Address src2) { 4991 uint64_t offset; 4992 adrp(rscratch1, src2, offset); 4993 ldr(rscratch1, Address(rscratch1, offset)); 4994 cmp(src1, rscratch1); 4995 } 4996 4997 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4998 cmp(obj1, obj2); 4999 } 5000 5001 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5002 load_method_holder(rresult, rmethod); 5003 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5004 } 5005 5006 void MacroAssembler::load_method_holder(Register holder, Register method) { 5007 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5008 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5009 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5010 } 5011 5012 void MacroAssembler::load_metadata(Register dst, Register src) { 5013 if (UseCompactObjectHeaders) { 5014 load_narrow_klass_compact(dst, src); 5015 } else if (UseCompressedClassPointers) { 5016 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5017 } else { 5018 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5019 } 5020 } 5021 5022 // Loads the obj's Klass* into dst. 5023 // Preserves all registers (incl src, rscratch1 and rscratch2). 5024 // Input: 5025 // src - the oop we want to load the klass from. 5026 // dst - output narrow klass. 5027 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5028 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5029 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5030 lsr(dst, dst, markWord::klass_shift); 5031 } 5032 5033 void MacroAssembler::load_klass(Register dst, Register src) { 5034 if (UseCompactObjectHeaders) { 5035 load_narrow_klass_compact(dst, src); 5036 decode_klass_not_null(dst); 5037 } else if (UseCompressedClassPointers) { 5038 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5039 decode_klass_not_null(dst); 5040 } else { 5041 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5042 } 5043 } 5044 5045 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5046 if (RestoreMXCSROnJNICalls) { 5047 Label OK; 5048 get_fpcr(tmp1); 5049 mov(tmp2, tmp1); 5050 // Set FPCR to the state we need. We do want Round to Nearest. We 5051 // don't want non-IEEE rounding modes or floating-point traps. 5052 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5053 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5054 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5055 eor(tmp2, tmp1, tmp2); 5056 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5057 set_fpcr(tmp1); 5058 bind(OK); 5059 } 5060 } 5061 5062 // ((OopHandle)result).resolve(); 5063 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5064 // OopHandle::resolve is an indirection. 5065 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5066 } 5067 5068 // ((WeakHandle)result).resolve(); 5069 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5070 assert_different_registers(result, tmp1, tmp2); 5071 Label resolved; 5072 5073 // A null weak handle resolves to null. 5074 cbz(result, resolved); 5075 5076 // Only 64 bit platforms support GCs that require a tmp register 5077 // WeakHandle::resolve is an indirection like jweak. 5078 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5079 result, Address(result), tmp1, tmp2); 5080 bind(resolved); 5081 } 5082 5083 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5084 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5085 ldr(dst, Address(rmethod, Method::const_offset())); 5086 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5087 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5088 ldr(dst, Address(dst, mirror_offset)); 5089 resolve_oop_handle(dst, tmp1, tmp2); 5090 } 5091 5092 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5093 assert_different_registers(obj, klass, tmp); 5094 if (UseCompressedClassPointers) { 5095 if (UseCompactObjectHeaders) { 5096 load_narrow_klass_compact(tmp, obj); 5097 } else { 5098 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5099 } 5100 if (CompressedKlassPointers::base() == nullptr) { 5101 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5102 return; 5103 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5104 && CompressedKlassPointers::shift() == 0) { 5105 // Only the bottom 32 bits matter 5106 cmpw(klass, tmp); 5107 return; 5108 } 5109 decode_klass_not_null(tmp); 5110 } else { 5111 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5112 } 5113 cmp(klass, tmp); 5114 } 5115 5116 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5117 if (UseCompactObjectHeaders) { 5118 load_narrow_klass_compact(tmp1, obj1); 5119 load_narrow_klass_compact(tmp2, obj2); 5120 cmpw(tmp1, tmp2); 5121 } else if (UseCompressedClassPointers) { 5122 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5123 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5124 cmpw(tmp1, tmp2); 5125 } else { 5126 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5127 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5128 cmp(tmp1, tmp2); 5129 } 5130 } 5131 5132 void MacroAssembler::load_prototype_header(Register dst, Register src) { 5133 load_klass(dst, src); 5134 ldr(dst, Address(dst, Klass::prototype_header_offset())); 5135 } 5136 5137 void MacroAssembler::store_klass(Register dst, Register src) { 5138 // FIXME: Should this be a store release? concurrent gcs assumes 5139 // klass length is valid if klass field is not null. 5140 assert(!UseCompactObjectHeaders, "not with compact headers"); 5141 if (UseCompressedClassPointers) { 5142 encode_klass_not_null(src); 5143 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5144 } else { 5145 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5146 } 5147 } 5148 5149 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5150 assert(!UseCompactObjectHeaders, "not with compact headers"); 5151 if (UseCompressedClassPointers) { 5152 // Store to klass gap in destination 5153 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5154 } 5155 } 5156 5157 // Algorithm must match CompressedOops::encode. 5158 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5159 #ifdef ASSERT 5160 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5161 #endif 5162 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5163 if (CompressedOops::base() == nullptr) { 5164 if (CompressedOops::shift() != 0) { 5165 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5166 lsr(d, s, LogMinObjAlignmentInBytes); 5167 } else { 5168 mov(d, s); 5169 } 5170 } else { 5171 subs(d, s, rheapbase); 5172 csel(d, d, zr, Assembler::HS); 5173 lsr(d, d, LogMinObjAlignmentInBytes); 5174 5175 /* Old algorithm: is this any worse? 5176 Label nonnull; 5177 cbnz(r, nonnull); 5178 sub(r, r, rheapbase); 5179 bind(nonnull); 5180 lsr(r, r, LogMinObjAlignmentInBytes); 5181 */ 5182 } 5183 } 5184 5185 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5186 #ifdef ASSERT 5187 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5188 if (CheckCompressedOops) { 5189 Label ok; 5190 cbnz(r, ok); 5191 stop("null oop passed to encode_heap_oop_not_null"); 5192 bind(ok); 5193 } 5194 #endif 5195 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5196 if (CompressedOops::base() != nullptr) { 5197 sub(r, r, rheapbase); 5198 } 5199 if (CompressedOops::shift() != 0) { 5200 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5201 lsr(r, r, LogMinObjAlignmentInBytes); 5202 } 5203 } 5204 5205 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5206 #ifdef ASSERT 5207 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5208 if (CheckCompressedOops) { 5209 Label ok; 5210 cbnz(src, ok); 5211 stop("null oop passed to encode_heap_oop_not_null2"); 5212 bind(ok); 5213 } 5214 #endif 5215 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5216 5217 Register data = src; 5218 if (CompressedOops::base() != nullptr) { 5219 sub(dst, src, rheapbase); 5220 data = dst; 5221 } 5222 if (CompressedOops::shift() != 0) { 5223 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5224 lsr(dst, data, LogMinObjAlignmentInBytes); 5225 data = dst; 5226 } 5227 if (data == src) 5228 mov(dst, src); 5229 } 5230 5231 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5232 #ifdef ASSERT 5233 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5234 #endif 5235 if (CompressedOops::base() == nullptr) { 5236 if (CompressedOops::shift() != 0) { 5237 lsl(d, s, CompressedOops::shift()); 5238 } else if (d != s) { 5239 mov(d, s); 5240 } 5241 } else { 5242 Label done; 5243 if (d != s) 5244 mov(d, s); 5245 cbz(s, done); 5246 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5247 bind(done); 5248 } 5249 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5250 } 5251 5252 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5253 assert (UseCompressedOops, "should only be used for compressed headers"); 5254 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5255 // Cannot assert, unverified entry point counts instructions (see .ad file) 5256 // vtableStubs also counts instructions in pd_code_size_limit. 5257 // Also do not verify_oop as this is called by verify_oop. 5258 if (CompressedOops::shift() != 0) { 5259 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5260 if (CompressedOops::base() != nullptr) { 5261 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5262 } else { 5263 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5264 } 5265 } else { 5266 assert (CompressedOops::base() == nullptr, "sanity"); 5267 } 5268 } 5269 5270 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5271 assert (UseCompressedOops, "should only be used for compressed headers"); 5272 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5273 // Cannot assert, unverified entry point counts instructions (see .ad file) 5274 // vtableStubs also counts instructions in pd_code_size_limit. 5275 // Also do not verify_oop as this is called by verify_oop. 5276 if (CompressedOops::shift() != 0) { 5277 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5278 if (CompressedOops::base() != nullptr) { 5279 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5280 } else { 5281 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5282 } 5283 } else { 5284 assert (CompressedOops::base() == nullptr, "sanity"); 5285 if (dst != src) { 5286 mov(dst, src); 5287 } 5288 } 5289 } 5290 5291 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5292 5293 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5294 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5295 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5296 return _klass_decode_mode; 5297 } 5298 5299 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5300 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5301 5302 // KlassDecodeMode shouldn't be set already. 5303 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5304 5305 if (base == nullptr) { 5306 return KlassDecodeZero; 5307 } 5308 5309 if (operand_valid_for_logical_immediate( 5310 /*is32*/false, (uint64_t)base)) { 5311 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5312 if (((uint64_t)base & range_mask) == 0) { 5313 return KlassDecodeXor; 5314 } 5315 } 5316 5317 const uint64_t shifted_base = 5318 (uint64_t)base >> shift; 5319 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5320 return KlassDecodeMovk; 5321 } 5322 5323 // No valid encoding. 5324 return KlassDecodeNone; 5325 } 5326 5327 // Check if one of the above decoding modes will work for given base, shift and range. 5328 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5329 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5330 } 5331 5332 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5333 _klass_decode_mode = klass_decode_mode(base, shift, range); 5334 return _klass_decode_mode != KlassDecodeNone; 5335 } 5336 5337 static Register pick_different_tmp(Register dst, Register src) { 5338 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst); 5339 return *tmps.begin(); 5340 } 5341 5342 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) { 5343 // we have to load the klass base from the AOT constants area but 5344 // not the shift because it is not allowed to change 5345 int shift = CompressedKlassPointers::shift(); 5346 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5347 if (dst != src) { 5348 // we can load the base into dst, subtract it formthe src and shift down 5349 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5350 ldr(dst, dst); 5351 sub(dst, src, dst); 5352 lsr(dst, dst, shift); 5353 } else { 5354 // we need an extra register in order to load the coop base 5355 Register tmp = pick_different_tmp(dst, src); 5356 RegSet regs = RegSet::of(tmp); 5357 push(regs, sp); 5358 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5359 ldr(tmp, tmp); 5360 sub(dst, src, tmp); 5361 lsr(dst, dst, shift); 5362 pop(regs, sp); 5363 } 5364 } 5365 5366 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5367 if (AOTCodeCache::is_on_for_dump()) { 5368 encode_klass_not_null_for_aot(dst, src); 5369 return; 5370 } 5371 5372 switch (klass_decode_mode()) { 5373 case KlassDecodeZero: 5374 if (CompressedKlassPointers::shift() != 0) { 5375 lsr(dst, src, CompressedKlassPointers::shift()); 5376 } else { 5377 if (dst != src) mov(dst, src); 5378 } 5379 break; 5380 5381 case KlassDecodeXor: 5382 if (CompressedKlassPointers::shift() != 0) { 5383 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5384 lsr(dst, dst, CompressedKlassPointers::shift()); 5385 } else { 5386 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5387 } 5388 break; 5389 5390 case KlassDecodeMovk: 5391 if (CompressedKlassPointers::shift() != 0) { 5392 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5393 } else { 5394 movw(dst, src); 5395 } 5396 break; 5397 5398 case KlassDecodeNone: 5399 ShouldNotReachHere(); 5400 break; 5401 } 5402 } 5403 5404 void MacroAssembler::encode_klass_not_null(Register r) { 5405 encode_klass_not_null(r, r); 5406 } 5407 5408 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) { 5409 // we have to load the klass base from the AOT constants area but 5410 // not the shift because it is not allowed to change 5411 int shift = CompressedKlassPointers::shift(); 5412 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5413 if (dst != src) { 5414 // we can load the base into dst then add the offset with a suitable shift 5415 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5416 ldr(dst, dst); 5417 add(dst, dst, src, LSL, shift); 5418 } else { 5419 // we need an extra register in order to load the coop base 5420 Register tmp = pick_different_tmp(dst, src); 5421 RegSet regs = RegSet::of(tmp); 5422 push(regs, sp); 5423 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5424 ldr(tmp, tmp); 5425 add(dst, tmp, src, LSL, shift); 5426 pop(regs, sp); 5427 } 5428 } 5429 5430 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5431 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5432 5433 if (AOTCodeCache::is_on_for_dump()) { 5434 decode_klass_not_null_for_aot(dst, src); 5435 return; 5436 } 5437 5438 switch (klass_decode_mode()) { 5439 case KlassDecodeZero: 5440 if (CompressedKlassPointers::shift() != 0) { 5441 lsl(dst, src, CompressedKlassPointers::shift()); 5442 } else { 5443 if (dst != src) mov(dst, src); 5444 } 5445 break; 5446 5447 case KlassDecodeXor: 5448 if (CompressedKlassPointers::shift() != 0) { 5449 lsl(dst, src, CompressedKlassPointers::shift()); 5450 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5451 } else { 5452 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5453 } 5454 break; 5455 5456 case KlassDecodeMovk: { 5457 const uint64_t shifted_base = 5458 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5459 5460 if (dst != src) movw(dst, src); 5461 movk(dst, shifted_base >> 32, 32); 5462 5463 if (CompressedKlassPointers::shift() != 0) { 5464 lsl(dst, dst, CompressedKlassPointers::shift()); 5465 } 5466 5467 break; 5468 } 5469 5470 case KlassDecodeNone: 5471 ShouldNotReachHere(); 5472 break; 5473 } 5474 } 5475 5476 void MacroAssembler::decode_klass_not_null(Register r) { 5477 decode_klass_not_null(r, r); 5478 } 5479 5480 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5481 #ifdef ASSERT 5482 { 5483 ThreadInVMfromUnknown tiv; 5484 assert (UseCompressedOops, "should only be used for compressed oops"); 5485 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5486 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5487 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5488 } 5489 #endif 5490 int oop_index = oop_recorder()->find_index(obj); 5491 InstructionMark im(this); 5492 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5493 code_section()->relocate(inst_mark(), rspec); 5494 movz(dst, 0xDEAD, 16); 5495 movk(dst, 0xBEEF); 5496 } 5497 5498 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5499 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5500 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5501 int index = oop_recorder()->find_index(k); 5502 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5503 5504 InstructionMark im(this); 5505 RelocationHolder rspec = metadata_Relocation::spec(index); 5506 code_section()->relocate(inst_mark(), rspec); 5507 narrowKlass nk = CompressedKlassPointers::encode(k); 5508 movz(dst, (nk >> 16), 16); 5509 movk(dst, nk & 0xffff); 5510 } 5511 5512 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5513 Register dst, Address src, 5514 Register tmp1, Register tmp2) { 5515 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5516 decorators = AccessInternal::decorator_fixup(decorators, type); 5517 bool as_raw = (decorators & AS_RAW) != 0; 5518 if (as_raw) { 5519 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5520 } else { 5521 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5522 } 5523 } 5524 5525 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5526 Address dst, Register val, 5527 Register tmp1, Register tmp2, Register tmp3) { 5528 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5529 decorators = AccessInternal::decorator_fixup(decorators, type); 5530 bool as_raw = (decorators & AS_RAW) != 0; 5531 if (as_raw) { 5532 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5533 } else { 5534 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5535 } 5536 } 5537 5538 void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst, 5539 Register inline_layout_info) { 5540 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5541 bs->flat_field_copy(this, decorators, src, dst, inline_layout_info); 5542 } 5543 5544 void MacroAssembler::payload_offset(Register inline_klass, Register offset) { 5545 ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 5546 ldrw(offset, Address(offset, InlineKlass::payload_offset_offset())); 5547 } 5548 5549 void MacroAssembler::payload_address(Register oop, Register data, Register inline_klass) { 5550 // ((address) (void*) o) + vk->payload_offset(); 5551 Register offset = (data == oop) ? rscratch1 : data; 5552 payload_offset(inline_klass, offset); 5553 if (data == oop) { 5554 add(data, data, offset); 5555 } else { 5556 lea(data, Address(oop, offset)); 5557 } 5558 } 5559 5560 void MacroAssembler::data_for_value_array_index(Register array, Register array_klass, 5561 Register index, Register data) { 5562 assert_different_registers(array, array_klass, index); 5563 assert_different_registers(rscratch1, array, index); 5564 5565 // array->base() + (index << Klass::layout_helper_log2_element_size(lh)); 5566 ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset())); 5567 5568 // Klass::layout_helper_log2_element_size(lh) 5569 // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; 5570 lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift); 5571 andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask); 5572 lslv(index, index, rscratch1); 5573 5574 add(data, array, index); 5575 add(data, data, arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT)); 5576 } 5577 5578 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5579 Register tmp2, DecoratorSet decorators) { 5580 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5581 } 5582 5583 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5584 Register tmp2, DecoratorSet decorators) { 5585 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5586 } 5587 5588 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5589 Register tmp2, Register tmp3, DecoratorSet decorators) { 5590 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5591 } 5592 5593 // Used for storing nulls. 5594 void MacroAssembler::store_heap_oop_null(Address dst) { 5595 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5596 } 5597 5598 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5599 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5600 int index = oop_recorder()->allocate_metadata_index(obj); 5601 RelocationHolder rspec = metadata_Relocation::spec(index); 5602 return Address((address)obj, rspec); 5603 } 5604 5605 // Move an oop into a register. 5606 void MacroAssembler::movoop(Register dst, jobject obj) { 5607 int oop_index; 5608 if (obj == nullptr) { 5609 oop_index = oop_recorder()->allocate_oop_index(obj); 5610 } else { 5611 #ifdef ASSERT 5612 { 5613 ThreadInVMfromUnknown tiv; 5614 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5615 } 5616 #endif 5617 oop_index = oop_recorder()->find_index(obj); 5618 } 5619 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5620 5621 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5622 mov(dst, Address((address)obj, rspec)); 5623 } else { 5624 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5625 ldr(dst, Address(dummy, rspec)); 5626 } 5627 } 5628 5629 // Move a metadata address into a register. 5630 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5631 int oop_index; 5632 if (obj == nullptr) { 5633 oop_index = oop_recorder()->allocate_metadata_index(obj); 5634 } else { 5635 oop_index = oop_recorder()->find_index(obj); 5636 } 5637 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5638 mov(dst, Address((address)obj, rspec)); 5639 } 5640 5641 Address MacroAssembler::constant_oop_address(jobject obj) { 5642 #ifdef ASSERT 5643 { 5644 ThreadInVMfromUnknown tiv; 5645 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5646 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5647 } 5648 #endif 5649 int oop_index = oop_recorder()->find_index(obj); 5650 return Address((address)obj, oop_Relocation::spec(oop_index)); 5651 } 5652 5653 // Object / value buffer allocation... 5654 void MacroAssembler::allocate_instance(Register klass, Register new_obj, 5655 Register t1, Register t2, 5656 bool clear_fields, Label& alloc_failed) 5657 { 5658 Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop; 5659 Register layout_size = t1; 5660 assert(new_obj == r0, "needs to be r0"); 5661 assert_different_registers(klass, new_obj, t1, t2); 5662 5663 // get instance_size in InstanceKlass (scaled to a count of bytes) 5664 ldrw(layout_size, Address(klass, Klass::layout_helper_offset())); 5665 // test to see if it is malformed in some way 5666 tst(layout_size, Klass::_lh_instance_slow_path_bit); 5667 br(Assembler::NE, slow_case_no_pop); 5668 5669 // Allocate the instance: 5670 // If TLAB is enabled: 5671 // Try to allocate in the TLAB. 5672 // If fails, go to the slow path. 5673 // Initialize the allocation. 5674 // Exit. 5675 // 5676 // Go to slow path. 5677 5678 if (UseTLAB) { 5679 push(klass); 5680 tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case); 5681 if (ZeroTLAB || (!clear_fields)) { 5682 // the fields have been already cleared 5683 b(initialize_header); 5684 } else { 5685 // initialize both the header and fields 5686 b(initialize_object); 5687 } 5688 5689 if (clear_fields) { 5690 // The object is initialized before the header. If the object size is 5691 // zero, go directly to the header initialization. 5692 bind(initialize_object); 5693 int header_size = oopDesc::header_size() * HeapWordSize; 5694 assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned"); 5695 subs(layout_size, layout_size, header_size); 5696 br(Assembler::EQ, initialize_header); 5697 5698 // Initialize topmost object field, divide size by 8, check if odd and 5699 // test if zero. 5700 5701 #ifdef ASSERT 5702 // make sure instance_size was multiple of 8 5703 Label L; 5704 tst(layout_size, 7); 5705 br(Assembler::EQ, L); 5706 stop("object size is not multiple of 8 - adjust this code"); 5707 bind(L); 5708 // must be > 0, no extra check needed here 5709 #endif 5710 5711 lsr(layout_size, layout_size, LogBytesPerLong); 5712 5713 // initialize remaining object fields: instance_size was a multiple of 8 5714 { 5715 Label loop; 5716 Register base = t2; 5717 5718 bind(loop); 5719 add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong); 5720 str(zr, Address(rscratch1, header_size - 1*oopSize)); 5721 subs(layout_size, layout_size, 1); 5722 br(Assembler::NE, loop); 5723 } 5724 } // clear_fields 5725 5726 // initialize object header only. 5727 bind(initialize_header); 5728 pop(klass); 5729 Register mark_word = t2; 5730 if (UseCompactObjectHeaders || EnableValhalla) { 5731 ldr(mark_word, Address(klass, Klass::prototype_header_offset())); 5732 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5733 } else { 5734 mov(mark_word, (intptr_t)markWord::prototype().value()); 5735 str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes())); 5736 } 5737 if (!UseCompactObjectHeaders) { 5738 store_klass_gap(new_obj, zr); // zero klass gap for compressed oops 5739 mov(t2, klass); // preserve klass 5740 store_klass(new_obj, t2); // src klass reg is potentially compressed 5741 } 5742 b(done); 5743 } 5744 5745 if (UseTLAB) { 5746 bind(slow_case); 5747 pop(klass); 5748 } 5749 bind(slow_case_no_pop); 5750 b(alloc_failed); 5751 5752 bind(done); 5753 } 5754 5755 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5756 void MacroAssembler::tlab_allocate(Register obj, 5757 Register var_size_in_bytes, 5758 int con_size_in_bytes, 5759 Register t1, 5760 Register t2, 5761 Label& slow_case) { 5762 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5763 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5764 } 5765 5766 void MacroAssembler::verify_tlab() { 5767 #ifdef ASSERT 5768 if (UseTLAB && VerifyOops) { 5769 Label next, ok; 5770 5771 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5772 5773 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5774 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5775 cmp(rscratch2, rscratch1); 5776 br(Assembler::HS, next); 5777 STOP("assert(top >= start)"); 5778 should_not_reach_here(); 5779 5780 bind(next); 5781 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5782 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5783 cmp(rscratch2, rscratch1); 5784 br(Assembler::HS, ok); 5785 STOP("assert(top <= end)"); 5786 should_not_reach_here(); 5787 5788 bind(ok); 5789 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5790 } 5791 #endif 5792 } 5793 5794 void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) { 5795 inline_layout_info(holder_klass, index, inline_klass); 5796 ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset())); 5797 } 5798 5799 void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) { 5800 assert_different_registers(holder_klass, index, layout_info); 5801 InlineLayoutInfo array[2]; 5802 int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements 5803 if (is_power_of_2(size)) { 5804 lsl(index, index, log2i_exact(size)); // Scale index by power of 2 5805 } else { 5806 mov(layout_info, size); 5807 mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size 5808 } 5809 ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset())); 5810 add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes()); 5811 lea(layout_info, Address(layout_info, index)); 5812 } 5813 5814 // Writes to stack successive pages until offset reached to check for 5815 // stack overflow + shadow pages. This clobbers tmp. 5816 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5817 assert_different_registers(tmp, size, rscratch1); 5818 mov(tmp, sp); 5819 // Bang stack for total size given plus shadow page size. 5820 // Bang one page at a time because large size can bang beyond yellow and 5821 // red zones. 5822 Label loop; 5823 mov(rscratch1, (int)os::vm_page_size()); 5824 bind(loop); 5825 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5826 subsw(size, size, rscratch1); 5827 str(size, Address(tmp)); 5828 br(Assembler::GT, loop); 5829 5830 // Bang down shadow pages too. 5831 // At this point, (tmp-0) is the last address touched, so don't 5832 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5833 // was post-decremented.) Skip this address by starting at i=1, and 5834 // touch a few more pages below. N.B. It is important to touch all 5835 // the way down to and including i=StackShadowPages. 5836 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5837 // this could be any sized move but this is can be a debugging crumb 5838 // so the bigger the better. 5839 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5840 str(size, Address(tmp)); 5841 } 5842 } 5843 5844 // Move the address of the polling page into dest. 5845 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5846 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5847 } 5848 5849 // Read the polling page. The address of the polling page must 5850 // already be in r. 5851 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5852 address mark; 5853 { 5854 InstructionMark im(this); 5855 code_section()->relocate(inst_mark(), rtype); 5856 ldrw(zr, Address(r, 0)); 5857 mark = inst_mark(); 5858 } 5859 verify_cross_modify_fence_not_required(); 5860 return mark; 5861 } 5862 5863 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5864 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5865 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5866 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5867 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5868 int64_t offset_low = dest_page - low_page; 5869 int64_t offset_high = dest_page - high_page; 5870 5871 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5872 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5873 5874 InstructionMark im(this); 5875 code_section()->relocate(inst_mark(), dest.rspec()); 5876 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5877 // the code cache so that if it is relocated we know it will still reach 5878 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5879 _adrp(reg1, dest.target()); 5880 } else { 5881 uint64_t target = (uint64_t)dest.target(); 5882 uint64_t adrp_target 5883 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5884 5885 _adrp(reg1, (address)adrp_target); 5886 movk(reg1, target >> 32, 32); 5887 } 5888 byte_offset = (uint64_t)dest.target() & 0xfff; 5889 } 5890 5891 void MacroAssembler::load_byte_map_base(Register reg) { 5892 CardTable::CardValue* byte_map_base = 5893 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5894 5895 // Strictly speaking the byte_map_base isn't an address at all, and it might 5896 // even be negative. It is thus materialised as a constant. 5897 mov(reg, (uint64_t)byte_map_base); 5898 } 5899 5900 void MacroAssembler::build_frame(int framesize) { 5901 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5902 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5903 protect_return_address(); 5904 if (framesize < ((1 << 9) + 2 * wordSize)) { 5905 sub(sp, sp, framesize); 5906 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5907 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5908 } else { 5909 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5910 if (PreserveFramePointer) mov(rfp, sp); 5911 if (framesize < ((1 << 12) + 2 * wordSize)) 5912 sub(sp, sp, framesize - 2 * wordSize); 5913 else { 5914 mov(rscratch1, framesize - 2 * wordSize); 5915 sub(sp, sp, rscratch1); 5916 } 5917 } 5918 verify_cross_modify_fence_not_required(); 5919 } 5920 5921 void MacroAssembler::remove_frame(int framesize) { 5922 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5923 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5924 if (framesize < ((1 << 9) + 2 * wordSize)) { 5925 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5926 add(sp, sp, framesize); 5927 } else { 5928 if (framesize < ((1 << 12) + 2 * wordSize)) 5929 add(sp, sp, framesize - 2 * wordSize); 5930 else { 5931 mov(rscratch1, framesize - 2 * wordSize); 5932 add(sp, sp, rscratch1); 5933 } 5934 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5935 } 5936 authenticate_return_address(); 5937 } 5938 5939 void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) { 5940 if (needs_stack_repair) { 5941 // Remove the extension of the caller's frame used for inline type unpacking 5942 // 5943 // Right now the stack looks like this: 5944 // 5945 // | Arguments from caller | 5946 // |---------------------------| <-- caller's SP 5947 // | Saved LR #1 | 5948 // | Saved FP #1 | 5949 // |---------------------------| 5950 // | Extension space for | 5951 // | inline arg (un)packing | 5952 // |---------------------------| <-- start of this method's frame 5953 // | Saved LR #2 | 5954 // | Saved FP #2 | 5955 // |---------------------------| <-- FP 5956 // | sp_inc | 5957 // | method locals | 5958 // |---------------------------| <-- SP 5959 // 5960 // There are two copies of FP and LR on the stack. They will be identical at 5961 // first, but that can change. 5962 // If the caller has been deoptimized, LR #1 will be patched to point at the 5963 // deopt blob, and LR #2 will still point into the old method. 5964 // If the saved FP (x29) was not used as the frame pointer, but to store an 5965 // oop, the GC will be aware only of FP #2 as the spilled location of x29 and 5966 // will fix only this one. 5967 // 5968 // When restoring, one must then load FP #2 into x29, and LR #1 into x30, 5969 // while keeping in mind that from the scalarized entry point, there will be 5970 // only one copy of each. 5971 // 5972 // The sp_inc stack slot holds the total size of the frame including the 5973 // extension space minus two words for the saved FP and LR. That is how to 5974 // find LR #1. FP #2 is always located just after sp_inc. 5975 5976 int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP 5977 5978 ldr(rscratch1, Address(sp, sp_inc_offset)); 5979 ldr(rfp, Address(sp, sp_inc_offset + wordSize)); 5980 add(sp, sp, rscratch1); 5981 ldr(lr, Address(sp, wordSize)); 5982 add(sp, sp, 2 * wordSize); 5983 } else { 5984 remove_frame(initial_framesize); 5985 } 5986 } 5987 5988 void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) { 5989 int real_frame_size = frame_size + sp_inc; 5990 assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value"); 5991 assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space"); 5992 assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); 5993 5994 int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP 5995 5996 // Subtract two words for the saved FP and LR as these will be popped 5997 // separately. See remove_frame above. 5998 mov(rscratch1, real_frame_size - 2*wordSize); 5999 str(rscratch1, Address(sp, sp_inc_offset)); 6000 } 6001 6002 // This method counts leading positive bytes (highest bit not set) in provided byte array 6003 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 6004 // Simple and most common case of aligned small array which is not at the 6005 // end of memory page is placed here. All other cases are in stub. 6006 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 6007 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 6008 assert_different_registers(ary1, len, result); 6009 6010 mov(result, len); 6011 cmpw(len, 0); 6012 br(LE, DONE); 6013 cmpw(len, 4 * wordSize); 6014 br(GE, STUB_LONG); // size > 32 then go to stub 6015 6016 int shift = 64 - exact_log2(os::vm_page_size()); 6017 lsl(rscratch1, ary1, shift); 6018 mov(rscratch2, (size_t)(4 * wordSize) << shift); 6019 adds(rscratch2, rscratch1, rscratch2); // At end of page? 6020 br(CS, STUB); // at the end of page then go to stub 6021 subs(len, len, wordSize); 6022 br(LT, END); 6023 6024 BIND(LOOP); 6025 ldr(rscratch1, Address(post(ary1, wordSize))); 6026 tst(rscratch1, UPPER_BIT_MASK); 6027 br(NE, SET_RESULT); 6028 subs(len, len, wordSize); 6029 br(GE, LOOP); 6030 cmpw(len, -wordSize); 6031 br(EQ, DONE); 6032 6033 BIND(END); 6034 ldr(rscratch1, Address(ary1)); 6035 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 6036 lslv(rscratch1, rscratch1, rscratch2); 6037 tst(rscratch1, UPPER_BIT_MASK); 6038 br(NE, SET_RESULT); 6039 b(DONE); 6040 6041 BIND(STUB); 6042 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 6043 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 6044 address tpc1 = trampoline_call(count_pos); 6045 if (tpc1 == nullptr) { 6046 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 6047 postcond(pc() == badAddress); 6048 return nullptr; 6049 } 6050 b(DONE); 6051 6052 BIND(STUB_LONG); 6053 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 6054 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 6055 address tpc2 = trampoline_call(count_pos_long); 6056 if (tpc2 == nullptr) { 6057 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 6058 postcond(pc() == badAddress); 6059 return nullptr; 6060 } 6061 b(DONE); 6062 6063 BIND(SET_RESULT); 6064 6065 add(len, len, wordSize); 6066 sub(result, result, len); 6067 6068 BIND(DONE); 6069 postcond(pc() != badAddress); 6070 return pc(); 6071 } 6072 6073 // Clobbers: rscratch1, rscratch2, rflags 6074 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 6075 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 6076 Register tmp4, Register tmp5, Register result, 6077 Register cnt1, int elem_size) { 6078 Label DONE, SAME; 6079 Register tmp1 = rscratch1; 6080 Register tmp2 = rscratch2; 6081 int elem_per_word = wordSize/elem_size; 6082 int log_elem_size = exact_log2(elem_size); 6083 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 6084 int length_offset = arrayOopDesc::length_offset_in_bytes(); 6085 int base_offset 6086 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 6087 // When the length offset is not aligned to 8 bytes, 6088 // then we align it down. This is valid because the new 6089 // offset will always be the klass which is the same 6090 // for type arrays. 6091 int start_offset = align_down(length_offset, BytesPerWord); 6092 int extra_length = base_offset - start_offset; 6093 assert(start_offset == length_offset || start_offset == klass_offset, 6094 "start offset must be 8-byte-aligned or be the klass offset"); 6095 assert(base_offset != start_offset, "must include the length field"); 6096 extra_length = extra_length / elem_size; // We count in elements, not bytes. 6097 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 6098 6099 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 6100 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6101 6102 #ifndef PRODUCT 6103 { 6104 const char kind = (elem_size == 2) ? 'U' : 'L'; 6105 char comment[64]; 6106 os::snprintf_checked(comment, sizeof comment, "array_equals%c{", kind); 6107 BLOCK_COMMENT(comment); 6108 } 6109 #endif 6110 6111 // if (a1 == a2) 6112 // return true; 6113 cmpoop(a1, a2); // May have read barriers for a1 and a2. 6114 br(EQ, SAME); 6115 6116 if (UseSimpleArrayEquals) { 6117 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 6118 // if (a1 == nullptr || a2 == nullptr) 6119 // return false; 6120 // a1 & a2 == 0 means (some-pointer is null) or 6121 // (very-rare-or-even-probably-impossible-pointer-values) 6122 // so, we can save one branch in most cases 6123 tst(a1, a2); 6124 mov(result, false); 6125 br(EQ, A_MIGHT_BE_NULL); 6126 // if (a1.length != a2.length) 6127 // return false; 6128 bind(A_IS_NOT_NULL); 6129 ldrw(cnt1, Address(a1, length_offset)); 6130 // Increase loop counter by diff between base- and actual start-offset. 6131 addw(cnt1, cnt1, extra_length); 6132 lea(a1, Address(a1, start_offset)); 6133 lea(a2, Address(a2, start_offset)); 6134 // Check for short strings, i.e. smaller than wordSize. 6135 subs(cnt1, cnt1, elem_per_word); 6136 br(Assembler::LT, SHORT); 6137 // Main 8 byte comparison loop. 6138 bind(NEXT_WORD); { 6139 ldr(tmp1, Address(post(a1, wordSize))); 6140 ldr(tmp2, Address(post(a2, wordSize))); 6141 subs(cnt1, cnt1, elem_per_word); 6142 eor(tmp5, tmp1, tmp2); 6143 cbnz(tmp5, DONE); 6144 } br(GT, NEXT_WORD); 6145 // Last longword. In the case where length == 4 we compare the 6146 // same longword twice, but that's still faster than another 6147 // conditional branch. 6148 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6149 // length == 4. 6150 if (log_elem_size > 0) 6151 lsl(cnt1, cnt1, log_elem_size); 6152 ldr(tmp3, Address(a1, cnt1)); 6153 ldr(tmp4, Address(a2, cnt1)); 6154 eor(tmp5, tmp3, tmp4); 6155 cbnz(tmp5, DONE); 6156 b(SAME); 6157 bind(A_MIGHT_BE_NULL); 6158 // in case both a1 and a2 are not-null, proceed with loads 6159 cbz(a1, DONE); 6160 cbz(a2, DONE); 6161 b(A_IS_NOT_NULL); 6162 bind(SHORT); 6163 6164 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 6165 { 6166 ldrw(tmp1, Address(post(a1, 4))); 6167 ldrw(tmp2, Address(post(a2, 4))); 6168 eorw(tmp5, tmp1, tmp2); 6169 cbnzw(tmp5, DONE); 6170 } 6171 bind(TAIL03); 6172 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 6173 { 6174 ldrh(tmp3, Address(post(a1, 2))); 6175 ldrh(tmp4, Address(post(a2, 2))); 6176 eorw(tmp5, tmp3, tmp4); 6177 cbnzw(tmp5, DONE); 6178 } 6179 bind(TAIL01); 6180 if (elem_size == 1) { // Only needed when comparing byte arrays. 6181 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6182 { 6183 ldrb(tmp1, a1); 6184 ldrb(tmp2, a2); 6185 eorw(tmp5, tmp1, tmp2); 6186 cbnzw(tmp5, DONE); 6187 } 6188 } 6189 } else { 6190 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6191 CSET_EQ, LAST_CHECK; 6192 mov(result, false); 6193 cbz(a1, DONE); 6194 ldrw(cnt1, Address(a1, length_offset)); 6195 cbz(a2, DONE); 6196 // Increase loop counter by diff between base- and actual start-offset. 6197 addw(cnt1, cnt1, extra_length); 6198 6199 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6200 // faster to perform another branch before comparing a1 and a2 6201 cmp(cnt1, (u1)elem_per_word); 6202 br(LE, SHORT); // short or same 6203 ldr(tmp3, Address(pre(a1, start_offset))); 6204 subs(zr, cnt1, stubBytesThreshold); 6205 br(GE, STUB); 6206 ldr(tmp4, Address(pre(a2, start_offset))); 6207 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6208 6209 // Main 16 byte comparison loop with 2 exits 6210 bind(NEXT_DWORD); { 6211 ldr(tmp1, Address(pre(a1, wordSize))); 6212 ldr(tmp2, Address(pre(a2, wordSize))); 6213 subs(cnt1, cnt1, 2 * elem_per_word); 6214 br(LE, TAIL); 6215 eor(tmp4, tmp3, tmp4); 6216 cbnz(tmp4, DONE); 6217 ldr(tmp3, Address(pre(a1, wordSize))); 6218 ldr(tmp4, Address(pre(a2, wordSize))); 6219 cmp(cnt1, (u1)elem_per_word); 6220 br(LE, TAIL2); 6221 cmp(tmp1, tmp2); 6222 } br(EQ, NEXT_DWORD); 6223 b(DONE); 6224 6225 bind(TAIL); 6226 eor(tmp4, tmp3, tmp4); 6227 eor(tmp2, tmp1, tmp2); 6228 lslv(tmp2, tmp2, tmp5); 6229 orr(tmp5, tmp4, tmp2); 6230 cmp(tmp5, zr); 6231 b(CSET_EQ); 6232 6233 bind(TAIL2); 6234 eor(tmp2, tmp1, tmp2); 6235 cbnz(tmp2, DONE); 6236 b(LAST_CHECK); 6237 6238 bind(STUB); 6239 ldr(tmp4, Address(pre(a2, start_offset))); 6240 if (elem_size == 2) { // convert to byte counter 6241 lsl(cnt1, cnt1, 1); 6242 } 6243 eor(tmp5, tmp3, tmp4); 6244 cbnz(tmp5, DONE); 6245 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6246 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6247 address tpc = trampoline_call(stub); 6248 if (tpc == nullptr) { 6249 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6250 postcond(pc() == badAddress); 6251 return nullptr; 6252 } 6253 b(DONE); 6254 6255 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6256 // so, if a2 == null => return false(0), else return true, so we can return a2 6257 mov(result, a2); 6258 b(DONE); 6259 bind(SHORT); 6260 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6261 ldr(tmp3, Address(a1, start_offset)); 6262 ldr(tmp4, Address(a2, start_offset)); 6263 bind(LAST_CHECK); 6264 eor(tmp4, tmp3, tmp4); 6265 lslv(tmp5, tmp4, tmp5); 6266 cmp(tmp5, zr); 6267 bind(CSET_EQ); 6268 cset(result, EQ); 6269 b(DONE); 6270 } 6271 6272 bind(SAME); 6273 mov(result, true); 6274 // That's it. 6275 bind(DONE); 6276 6277 BLOCK_COMMENT("} array_equals"); 6278 postcond(pc() != badAddress); 6279 return pc(); 6280 } 6281 6282 // Compare Strings 6283 6284 // For Strings we're passed the address of the first characters in a1 6285 // and a2 and the length in cnt1. 6286 // There are two implementations. For arrays >= 8 bytes, all 6287 // comparisons (including the final one, which may overlap) are 6288 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6289 // halfword, then a short, and then a byte. 6290 6291 void MacroAssembler::string_equals(Register a1, Register a2, 6292 Register result, Register cnt1) 6293 { 6294 Label SAME, DONE, SHORT, NEXT_WORD; 6295 Register tmp1 = rscratch1; 6296 Register tmp2 = rscratch2; 6297 Register cnt2 = tmp2; // cnt2 only used in array length compare 6298 6299 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6300 6301 #ifndef PRODUCT 6302 { 6303 char comment[64]; 6304 os::snprintf_checked(comment, sizeof comment, "{string_equalsL"); 6305 BLOCK_COMMENT(comment); 6306 } 6307 #endif 6308 6309 mov(result, false); 6310 6311 // Check for short strings, i.e. smaller than wordSize. 6312 subs(cnt1, cnt1, wordSize); 6313 br(Assembler::LT, SHORT); 6314 // Main 8 byte comparison loop. 6315 bind(NEXT_WORD); { 6316 ldr(tmp1, Address(post(a1, wordSize))); 6317 ldr(tmp2, Address(post(a2, wordSize))); 6318 subs(cnt1, cnt1, wordSize); 6319 eor(tmp1, tmp1, tmp2); 6320 cbnz(tmp1, DONE); 6321 } br(GT, NEXT_WORD); 6322 // Last longword. In the case where length == 4 we compare the 6323 // same longword twice, but that's still faster than another 6324 // conditional branch. 6325 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6326 // length == 4. 6327 ldr(tmp1, Address(a1, cnt1)); 6328 ldr(tmp2, Address(a2, cnt1)); 6329 eor(tmp2, tmp1, tmp2); 6330 cbnz(tmp2, DONE); 6331 b(SAME); 6332 6333 bind(SHORT); 6334 Label TAIL03, TAIL01; 6335 6336 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6337 { 6338 ldrw(tmp1, Address(post(a1, 4))); 6339 ldrw(tmp2, Address(post(a2, 4))); 6340 eorw(tmp1, tmp1, tmp2); 6341 cbnzw(tmp1, DONE); 6342 } 6343 bind(TAIL03); 6344 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6345 { 6346 ldrh(tmp1, Address(post(a1, 2))); 6347 ldrh(tmp2, Address(post(a2, 2))); 6348 eorw(tmp1, tmp1, tmp2); 6349 cbnzw(tmp1, DONE); 6350 } 6351 bind(TAIL01); 6352 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6353 { 6354 ldrb(tmp1, a1); 6355 ldrb(tmp2, a2); 6356 eorw(tmp1, tmp1, tmp2); 6357 cbnzw(tmp1, DONE); 6358 } 6359 // Arrays are equal. 6360 bind(SAME); 6361 mov(result, true); 6362 6363 // That's it. 6364 bind(DONE); 6365 BLOCK_COMMENT("} string_equals"); 6366 } 6367 6368 6369 // The size of the blocks erased by the zero_blocks stub. We must 6370 // handle anything smaller than this ourselves in zero_words(). 6371 const int MacroAssembler::zero_words_block_size = 8; 6372 6373 // zero_words() is used by C2 ClearArray patterns and by 6374 // C1_MacroAssembler. It is as small as possible, handling small word 6375 // counts locally and delegating anything larger to the zero_blocks 6376 // stub. It is expanded many times in compiled code, so it is 6377 // important to keep it short. 6378 6379 // ptr: Address of a buffer to be zeroed. 6380 // cnt: Count in HeapWords. 6381 // 6382 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6383 address MacroAssembler::zero_words(Register ptr, Register cnt) 6384 { 6385 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6386 6387 BLOCK_COMMENT("zero_words {"); 6388 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6389 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6390 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6391 6392 subs(rscratch1, cnt, zero_words_block_size); 6393 Label around; 6394 br(LO, around); 6395 { 6396 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6397 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6398 // Make sure this is a C2 compilation. C1 allocates space only for 6399 // trampoline stubs generated by Call LIR ops, and in any case it 6400 // makes sense for a C1 compilation task to proceed as quickly as 6401 // possible. 6402 CompileTask* task; 6403 if (StubRoutines::aarch64::complete() 6404 && Thread::current()->is_Compiler_thread() 6405 && (task = ciEnv::current()->task()) 6406 && is_c2_compile(task->comp_level())) { 6407 address tpc = trampoline_call(zero_blocks); 6408 if (tpc == nullptr) { 6409 DEBUG_ONLY(reset_labels(around)); 6410 return nullptr; 6411 } 6412 } else { 6413 far_call(zero_blocks); 6414 } 6415 } 6416 bind(around); 6417 6418 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6419 // for us. 6420 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6421 Label l; 6422 tbz(cnt, exact_log2(i), l); 6423 for (int j = 0; j < i; j += 2) { 6424 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6425 } 6426 bind(l); 6427 } 6428 { 6429 Label l; 6430 tbz(cnt, 0, l); 6431 str(zr, Address(ptr)); 6432 bind(l); 6433 } 6434 6435 BLOCK_COMMENT("} zero_words"); 6436 return pc(); 6437 } 6438 6439 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6440 // cnt: Immediate count in HeapWords. 6441 // 6442 // r10, r11, rscratch1, and rscratch2 are clobbered. 6443 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6444 { 6445 assert(wordSize <= BlockZeroingLowLimit, 6446 "increase BlockZeroingLowLimit"); 6447 address result = nullptr; 6448 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6449 #ifndef PRODUCT 6450 { 6451 char buf[64]; 6452 os::snprintf_checked(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6453 BLOCK_COMMENT(buf); 6454 } 6455 #endif 6456 if (cnt >= 16) { 6457 uint64_t loops = cnt/16; 6458 if (loops > 1) { 6459 mov(rscratch2, loops - 1); 6460 } 6461 { 6462 Label loop; 6463 bind(loop); 6464 for (int i = 0; i < 16; i += 2) { 6465 stp(zr, zr, Address(base, i * BytesPerWord)); 6466 } 6467 add(base, base, 16 * BytesPerWord); 6468 if (loops > 1) { 6469 subs(rscratch2, rscratch2, 1); 6470 br(GE, loop); 6471 } 6472 } 6473 } 6474 cnt %= 16; 6475 int i = cnt & 1; // store any odd word to start 6476 if (i) str(zr, Address(base)); 6477 for (; i < (int)cnt; i += 2) { 6478 stp(zr, zr, Address(base, i * wordSize)); 6479 } 6480 BLOCK_COMMENT("} zero_words"); 6481 result = pc(); 6482 } else { 6483 mov(r10, base); mov(r11, cnt); 6484 result = zero_words(r10, r11); 6485 } 6486 return result; 6487 } 6488 6489 // Zero blocks of memory by using DC ZVA. 6490 // 6491 // Aligns the base address first sufficiently for DC ZVA, then uses 6492 // DC ZVA repeatedly for every full block. cnt is the size to be 6493 // zeroed in HeapWords. Returns the count of words left to be zeroed 6494 // in cnt. 6495 // 6496 // NOTE: This is intended to be used in the zero_blocks() stub. If 6497 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6498 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6499 Register tmp = rscratch1; 6500 Register tmp2 = rscratch2; 6501 int zva_length = VM_Version::zva_length(); 6502 Label initial_table_end, loop_zva; 6503 Label fini; 6504 6505 // Base must be 16 byte aligned. If not just return and let caller handle it 6506 tst(base, 0x0f); 6507 br(Assembler::NE, fini); 6508 // Align base with ZVA length. 6509 neg(tmp, base); 6510 andr(tmp, tmp, zva_length - 1); 6511 6512 // tmp: the number of bytes to be filled to align the base with ZVA length. 6513 add(base, base, tmp); 6514 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6515 adr(tmp2, initial_table_end); 6516 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6517 br(tmp2); 6518 6519 for (int i = -zva_length + 16; i < 0; i += 16) 6520 stp(zr, zr, Address(base, i)); 6521 bind(initial_table_end); 6522 6523 sub(cnt, cnt, zva_length >> 3); 6524 bind(loop_zva); 6525 dc(Assembler::ZVA, base); 6526 subs(cnt, cnt, zva_length >> 3); 6527 add(base, base, zva_length); 6528 br(Assembler::GE, loop_zva); 6529 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6530 bind(fini); 6531 } 6532 6533 // base: Address of a buffer to be filled, 8 bytes aligned. 6534 // cnt: Count in 8-byte unit. 6535 // value: Value to be filled with. 6536 // base will point to the end of the buffer after filling. 6537 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6538 { 6539 // Algorithm: 6540 // 6541 // if (cnt == 0) { 6542 // return; 6543 // } 6544 // if ((p & 8) != 0) { 6545 // *p++ = v; 6546 // } 6547 // 6548 // scratch1 = cnt & 14; 6549 // cnt -= scratch1; 6550 // p += scratch1; 6551 // switch (scratch1 / 2) { 6552 // do { 6553 // cnt -= 16; 6554 // p[-16] = v; 6555 // p[-15] = v; 6556 // case 7: 6557 // p[-14] = v; 6558 // p[-13] = v; 6559 // case 6: 6560 // p[-12] = v; 6561 // p[-11] = v; 6562 // // ... 6563 // case 1: 6564 // p[-2] = v; 6565 // p[-1] = v; 6566 // case 0: 6567 // p += 16; 6568 // } while (cnt); 6569 // } 6570 // if ((cnt & 1) == 1) { 6571 // *p++ = v; 6572 // } 6573 6574 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6575 6576 Label fini, skip, entry, loop; 6577 const int unroll = 8; // Number of stp instructions we'll unroll 6578 6579 cbz(cnt, fini); 6580 tbz(base, 3, skip); 6581 str(value, Address(post(base, 8))); 6582 sub(cnt, cnt, 1); 6583 bind(skip); 6584 6585 andr(rscratch1, cnt, (unroll-1) * 2); 6586 sub(cnt, cnt, rscratch1); 6587 add(base, base, rscratch1, Assembler::LSL, 3); 6588 adr(rscratch2, entry); 6589 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6590 br(rscratch2); 6591 6592 bind(loop); 6593 add(base, base, unroll * 16); 6594 for (int i = -unroll; i < 0; i++) 6595 stp(value, value, Address(base, i * 16)); 6596 bind(entry); 6597 subs(cnt, cnt, unroll * 2); 6598 br(Assembler::GE, loop); 6599 6600 tbz(cnt, 0, fini); 6601 str(value, Address(post(base, 8))); 6602 bind(fini); 6603 } 6604 6605 // Intrinsic for 6606 // 6607 // - sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6608 // Encodes char[] to byte[] in ISO-8859-1 6609 // 6610 // - java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len) 6611 // Encodes byte[] (containing UTF-16) to byte[] in ISO-8859-1 6612 // 6613 // - java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len) 6614 // Encodes char[] to byte[] in ASCII 6615 // 6616 // This version always returns the number of characters copied, and does not 6617 // clobber the 'len' register. A successful copy will complete with the post- 6618 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6619 // post-condition: 0 <= 'res' < 'len'. 6620 // 6621 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6622 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6623 // beyond the acceptable, even though the footprint would be smaller. 6624 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6625 // avoid additional bloat. 6626 // 6627 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6628 void MacroAssembler::encode_iso_array(Register src, Register dst, 6629 Register len, Register res, bool ascii, 6630 FloatRegister vtmp0, FloatRegister vtmp1, 6631 FloatRegister vtmp2, FloatRegister vtmp3, 6632 FloatRegister vtmp4, FloatRegister vtmp5) 6633 { 6634 Register cnt = res; 6635 Register max = rscratch1; 6636 Register chk = rscratch2; 6637 6638 prfm(Address(src), PLDL1STRM); 6639 movw(cnt, len); 6640 6641 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6642 6643 Label LOOP_32, DONE_32, FAIL_32; 6644 6645 BIND(LOOP_32); 6646 { 6647 cmpw(cnt, 32); 6648 br(LT, DONE_32); 6649 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6650 // Extract lower bytes. 6651 FloatRegister vlo0 = vtmp4; 6652 FloatRegister vlo1 = vtmp5; 6653 uzp1(vlo0, T16B, vtmp0, vtmp1); 6654 uzp1(vlo1, T16B, vtmp2, vtmp3); 6655 // Merge bits... 6656 orr(vtmp0, T16B, vtmp0, vtmp1); 6657 orr(vtmp2, T16B, vtmp2, vtmp3); 6658 // Extract merged upper bytes. 6659 FloatRegister vhix = vtmp0; 6660 uzp2(vhix, T16B, vtmp0, vtmp2); 6661 // ISO-check on hi-parts (all zero). 6662 // ASCII-check on lo-parts (no sign). 6663 FloatRegister vlox = vtmp1; // Merge lower bytes. 6664 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6665 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6666 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6667 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6668 ASCII(orr(chk, chk, max)); 6669 cbnz(chk, FAIL_32); 6670 subw(cnt, cnt, 32); 6671 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6672 b(LOOP_32); 6673 } 6674 BIND(FAIL_32); 6675 sub(src, src, 64); 6676 BIND(DONE_32); 6677 6678 Label LOOP_8, SKIP_8; 6679 6680 BIND(LOOP_8); 6681 { 6682 cmpw(cnt, 8); 6683 br(LT, SKIP_8); 6684 FloatRegister vhi = vtmp0; 6685 FloatRegister vlo = vtmp1; 6686 ld1(vtmp3, T8H, src); 6687 uzp1(vlo, T16B, vtmp3, vtmp3); 6688 uzp2(vhi, T16B, vtmp3, vtmp3); 6689 // ISO-check on hi-parts (all zero). 6690 // ASCII-check on lo-parts (no sign). 6691 ASCII(cm(LT, vtmp2, T16B, vlo)); 6692 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6693 ASCII(umov(max, vtmp2, B, 0)); 6694 ASCII(orr(chk, chk, max)); 6695 cbnz(chk, SKIP_8); 6696 6697 strd(vlo, Address(post(dst, 8))); 6698 subw(cnt, cnt, 8); 6699 add(src, src, 16); 6700 b(LOOP_8); 6701 } 6702 BIND(SKIP_8); 6703 6704 #undef ASCII 6705 6706 Label LOOP, DONE; 6707 6708 cbz(cnt, DONE); 6709 BIND(LOOP); 6710 { 6711 Register chr = rscratch1; 6712 ldrh(chr, Address(post(src, 2))); 6713 tst(chr, ascii ? 0xff80 : 0xff00); 6714 br(NE, DONE); 6715 strb(chr, Address(post(dst, 1))); 6716 subs(cnt, cnt, 1); 6717 br(GT, LOOP); 6718 } 6719 BIND(DONE); 6720 // Return index where we stopped. 6721 subw(res, len, cnt); 6722 } 6723 6724 // Inflate byte[] array to char[]. 6725 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6726 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6727 FloatRegister vtmp1, FloatRegister vtmp2, 6728 FloatRegister vtmp3, Register tmp4) { 6729 Label big, done, after_init, to_stub; 6730 6731 assert_different_registers(src, dst, len, tmp4, rscratch1); 6732 6733 fmovd(vtmp1, 0.0); 6734 lsrw(tmp4, len, 3); 6735 bind(after_init); 6736 cbnzw(tmp4, big); 6737 // Short string: less than 8 bytes. 6738 { 6739 Label loop, tiny; 6740 6741 cmpw(len, 4); 6742 br(LT, tiny); 6743 // Use SIMD to do 4 bytes. 6744 ldrs(vtmp2, post(src, 4)); 6745 zip1(vtmp3, T8B, vtmp2, vtmp1); 6746 subw(len, len, 4); 6747 strd(vtmp3, post(dst, 8)); 6748 6749 cbzw(len, done); 6750 6751 // Do the remaining bytes by steam. 6752 bind(loop); 6753 ldrb(tmp4, post(src, 1)); 6754 strh(tmp4, post(dst, 2)); 6755 subw(len, len, 1); 6756 6757 bind(tiny); 6758 cbnz(len, loop); 6759 6760 b(done); 6761 } 6762 6763 if (SoftwarePrefetchHintDistance >= 0) { 6764 bind(to_stub); 6765 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6766 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6767 address tpc = trampoline_call(stub); 6768 if (tpc == nullptr) { 6769 DEBUG_ONLY(reset_labels(big, done)); 6770 postcond(pc() == badAddress); 6771 return nullptr; 6772 } 6773 b(after_init); 6774 } 6775 6776 // Unpack the bytes 8 at a time. 6777 bind(big); 6778 { 6779 Label loop, around, loop_last, loop_start; 6780 6781 if (SoftwarePrefetchHintDistance >= 0) { 6782 const int large_loop_threshold = (64 + 16)/8; 6783 ldrd(vtmp2, post(src, 8)); 6784 andw(len, len, 7); 6785 cmp(tmp4, (u1)large_loop_threshold); 6786 br(GE, to_stub); 6787 b(loop_start); 6788 6789 bind(loop); 6790 ldrd(vtmp2, post(src, 8)); 6791 bind(loop_start); 6792 subs(tmp4, tmp4, 1); 6793 br(EQ, loop_last); 6794 zip1(vtmp2, T16B, vtmp2, vtmp1); 6795 ldrd(vtmp3, post(src, 8)); 6796 st1(vtmp2, T8H, post(dst, 16)); 6797 subs(tmp4, tmp4, 1); 6798 zip1(vtmp3, T16B, vtmp3, vtmp1); 6799 st1(vtmp3, T8H, post(dst, 16)); 6800 br(NE, loop); 6801 b(around); 6802 bind(loop_last); 6803 zip1(vtmp2, T16B, vtmp2, vtmp1); 6804 st1(vtmp2, T8H, post(dst, 16)); 6805 bind(around); 6806 cbz(len, done); 6807 } else { 6808 andw(len, len, 7); 6809 bind(loop); 6810 ldrd(vtmp2, post(src, 8)); 6811 sub(tmp4, tmp4, 1); 6812 zip1(vtmp3, T16B, vtmp2, vtmp1); 6813 st1(vtmp3, T8H, post(dst, 16)); 6814 cbnz(tmp4, loop); 6815 } 6816 } 6817 6818 // Do the tail of up to 8 bytes. 6819 add(src, src, len); 6820 ldrd(vtmp3, Address(src, -8)); 6821 add(dst, dst, len, ext::uxtw, 1); 6822 zip1(vtmp3, T16B, vtmp3, vtmp1); 6823 strq(vtmp3, Address(dst, -16)); 6824 6825 bind(done); 6826 postcond(pc() != badAddress); 6827 return pc(); 6828 } 6829 6830 // Compress char[] array to byte[]. 6831 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6832 // Return the array length if every element in array can be encoded, 6833 // otherwise, the index of first non-latin1 (> 0xff) character. 6834 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6835 Register res, 6836 FloatRegister tmp0, FloatRegister tmp1, 6837 FloatRegister tmp2, FloatRegister tmp3, 6838 FloatRegister tmp4, FloatRegister tmp5) { 6839 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6840 } 6841 6842 // java.math.round(double a) 6843 // Returns the closest long to the argument, with ties rounding to 6844 // positive infinity. This requires some fiddling for corner 6845 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6846 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6847 FloatRegister ftmp) { 6848 Label DONE; 6849 BLOCK_COMMENT("java_round_double: { "); 6850 fmovd(rscratch1, src); 6851 // Use RoundToNearestTiesAway unless src small and -ve. 6852 fcvtasd(dst, src); 6853 // Test if src >= 0 || abs(src) >= 0x1.0p52 6854 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6855 mov(rscratch2, julong_cast(0x1.0p52)); 6856 cmp(rscratch1, rscratch2); 6857 br(HS, DONE); { 6858 // src < 0 && abs(src) < 0x1.0p52 6859 // src may have a fractional part, so add 0.5 6860 fmovd(ftmp, 0.5); 6861 faddd(ftmp, src, ftmp); 6862 // Convert double to jlong, use RoundTowardsNegative 6863 fcvtmsd(dst, ftmp); 6864 } 6865 bind(DONE); 6866 BLOCK_COMMENT("} java_round_double"); 6867 } 6868 6869 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6870 FloatRegister ftmp) { 6871 Label DONE; 6872 BLOCK_COMMENT("java_round_float: { "); 6873 fmovs(rscratch1, src); 6874 // Use RoundToNearestTiesAway unless src small and -ve. 6875 fcvtassw(dst, src); 6876 // Test if src >= 0 || abs(src) >= 0x1.0p23 6877 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6878 mov(rscratch2, jint_cast(0x1.0p23f)); 6879 cmp(rscratch1, rscratch2); 6880 br(HS, DONE); { 6881 // src < 0 && |src| < 0x1.0p23 6882 // src may have a fractional part, so add 0.5 6883 fmovs(ftmp, 0.5f); 6884 fadds(ftmp, src, ftmp); 6885 // Convert float to jint, use RoundTowardsNegative 6886 fcvtmssw(dst, ftmp); 6887 } 6888 bind(DONE); 6889 BLOCK_COMMENT("} java_round_float"); 6890 } 6891 6892 // get_thread() can be called anywhere inside generated code so we 6893 // need to save whatever non-callee save context might get clobbered 6894 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6895 // the call setup code. 6896 // 6897 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6898 // On other systems, the helper is a usual C function. 6899 // 6900 void MacroAssembler::get_thread(Register dst) { 6901 RegSet saved_regs = 6902 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6903 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6904 6905 protect_return_address(); 6906 push(saved_regs, sp); 6907 6908 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper))); 6909 blr(lr); 6910 if (dst != c_rarg0) { 6911 mov(dst, c_rarg0); 6912 } 6913 6914 pop(saved_regs, sp); 6915 authenticate_return_address(); 6916 } 6917 6918 #ifdef COMPILER2 6919 // C2 compiled method's prolog code 6920 // Moved here from aarch64.ad to support Valhalla code belows 6921 void MacroAssembler::verified_entry(Compile* C, int sp_inc) { 6922 if (C->clinit_barrier_on_entry()) { 6923 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 6924 6925 Label L_skip_barrier; 6926 6927 mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 6928 clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 6929 far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 6930 bind(L_skip_barrier); 6931 } 6932 6933 if (C->max_vector_size() > 0) { 6934 reinitialize_ptrue(); 6935 } 6936 6937 int bangsize = C->output()->bang_size_in_bytes(); 6938 if (C->output()->need_stack_bang(bangsize)) 6939 generate_stack_overflow_check(bangsize); 6940 6941 // n.b. frame size includes space for return pc and rfp 6942 const long framesize = C->output()->frame_size_in_bytes(); 6943 build_frame(framesize); 6944 6945 if (C->needs_stack_repair()) { 6946 save_stack_increment(sp_inc, framesize); 6947 } 6948 6949 if (VerifyStackAtCalls) { 6950 Unimplemented(); 6951 } 6952 } 6953 #endif // COMPILER2 6954 6955 int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) { 6956 assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields"); 6957 // An inline type might be returned. If fields are in registers we 6958 // need to allocate an inline type instance and initialize it with 6959 // the value of the fields. 6960 Label skip; 6961 // We only need a new buffered inline type if a new one is not returned 6962 tbz(r0, 0, skip); 6963 int call_offset = -1; 6964 6965 // Be careful not to clobber r1-7 which hold returned fields 6966 // Also do not use callee-saved registers as these may be live in the interpreter 6967 Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12; 6968 6969 // The following code is similar to allocate_instance but has some slight differences, 6970 // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after 6971 // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these. 6972 Label slow_case; 6973 // 1. Try to allocate a new buffered inline instance either from TLAB or eden space 6974 mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed 6975 6976 if (vk != nullptr) { 6977 // Called from C1, where the return type is statically known. 6978 movptr(klass, (intptr_t)vk->get_InlineKlass()); 6979 jint lh = vk->layout_helper(); 6980 assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved"); 6981 if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) { 6982 tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case); 6983 } else { 6984 b(slow_case); 6985 } 6986 } else { 6987 // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01) 6988 andr(klass, r0, -2); 6989 if (UseTLAB) { 6990 ldrw(tmp2, Address(klass, Klass::layout_helper_offset())); 6991 tst(tmp2, Klass::_lh_instance_slow_path_bit); 6992 br(Assembler::NE, slow_case); 6993 tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case); 6994 } else { 6995 b(slow_case); 6996 } 6997 } 6998 if (UseTLAB) { 6999 // 2. Initialize buffered inline instance header 7000 Register buffer_obj = r0; 7001 if (UseCompactObjectHeaders) { 7002 ldr(rscratch1, Address(klass, Klass::prototype_header_offset())); 7003 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7004 } else { 7005 mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value()); 7006 str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes())); 7007 store_klass_gap(buffer_obj, zr); 7008 if (vk == nullptr) { 7009 // store_klass corrupts klass, so save it for later use (interpreter case only). 7010 mov(tmp1, klass); 7011 } 7012 store_klass(buffer_obj, klass); 7013 klass = tmp1; 7014 } 7015 // 3. Initialize its fields with an inline class specific handler 7016 if (vk != nullptr) { 7017 far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint. 7018 } else { 7019 ldr(tmp1, Address(klass, InstanceKlass::adr_inlineklass_fixed_block_offset())); 7020 ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset())); 7021 blr(tmp1); 7022 } 7023 7024 membar(Assembler::StoreStore); 7025 b(skip); 7026 } else { 7027 // Must have already branched to slow_case above. 7028 DEBUG_ONLY(should_not_reach_here()); 7029 } 7030 bind(slow_case); 7031 // We failed to allocate a new inline type, fall back to a runtime 7032 // call. Some oop field may be live in some registers but we can't 7033 // tell. That runtime call will take care of preserving them 7034 // across a GC if there's one. 7035 mov(r0, r0_preserved); 7036 7037 if (from_interpreter) { 7038 super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf()); 7039 } else { 7040 far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf())); 7041 call_offset = offset(); 7042 } 7043 membar(Assembler::StoreStore); 7044 7045 bind(skip); 7046 return call_offset; 7047 } 7048 7049 // Move a value between registers/stack slots and update the reg_state 7050 bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) { 7051 assert(from->is_valid() && to->is_valid(), "source and destination must be valid"); 7052 if (reg_state[to->value()] == reg_written) { 7053 return true; // Already written 7054 } 7055 7056 if (from != to && bt != T_VOID) { 7057 if (reg_state[to->value()] == reg_readonly) { 7058 return false; // Not yet writable 7059 } 7060 if (from->is_reg()) { 7061 if (to->is_reg()) { 7062 if (from->is_Register() && to->is_Register()) { 7063 mov(to->as_Register(), from->as_Register()); 7064 } else if (from->is_FloatRegister() && to->is_FloatRegister()) { 7065 fmovd(to->as_FloatRegister(), from->as_FloatRegister()); 7066 } else { 7067 ShouldNotReachHere(); 7068 } 7069 } else { 7070 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7071 Address to_addr = Address(sp, st_off); 7072 if (from->is_FloatRegister()) { 7073 if (bt == T_DOUBLE) { 7074 strd(from->as_FloatRegister(), to_addr); 7075 } else { 7076 assert(bt == T_FLOAT, "must be float"); 7077 strs(from->as_FloatRegister(), to_addr); 7078 } 7079 } else { 7080 str(from->as_Register(), to_addr); 7081 } 7082 } 7083 } else { 7084 Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size); 7085 if (to->is_reg()) { 7086 if (to->is_FloatRegister()) { 7087 if (bt == T_DOUBLE) { 7088 ldrd(to->as_FloatRegister(), from_addr); 7089 } else { 7090 assert(bt == T_FLOAT, "must be float"); 7091 ldrs(to->as_FloatRegister(), from_addr); 7092 } 7093 } else { 7094 ldr(to->as_Register(), from_addr); 7095 } 7096 } else { 7097 int st_off = to->reg2stack() * VMRegImpl::stack_slot_size; 7098 ldr(rscratch1, from_addr); 7099 str(rscratch1, Address(sp, st_off)); 7100 } 7101 } 7102 } 7103 7104 // Update register states 7105 reg_state[from->value()] = reg_writable; 7106 reg_state[to->value()] = reg_written; 7107 return true; 7108 } 7109 7110 // Calculate the extra stack space required for packing or unpacking inline 7111 // args and adjust the stack pointer 7112 int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) { 7113 int sp_inc = args_on_stack * VMRegImpl::stack_slot_size; 7114 sp_inc = align_up(sp_inc, StackAlignmentInBytes); 7115 assert(sp_inc > 0, "sanity"); 7116 7117 // Save a copy of the FP and LR here for deoptimization patching and frame walking 7118 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7119 7120 // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame 7121 if (sp_inc < (1 << 9)) { 7122 sub(sp, sp, sp_inc); // Fits in an immediate 7123 } else { 7124 mov(rscratch1, sp_inc); 7125 sub(sp, sp, rscratch1); 7126 } 7127 7128 return sp_inc + 2 * wordSize; // Account for the FP/LR space 7129 } 7130 7131 // Read all fields from an inline type oop and store the values in registers/stack slots 7132 bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 7133 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 7134 RegState reg_state[]) { 7135 assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter"); 7136 assert(from->is_valid(), "source must be valid"); 7137 bool progress = false; 7138 #ifdef ASSERT 7139 const int start_offset = offset(); 7140 #endif 7141 7142 Label L_null, L_notNull; 7143 // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for) 7144 // TODO 8366717 We need to make sure that r14 (and potentially other long-life regs) are kept live in slowpath runtime calls in GC barriers 7145 Register tmp1 = r10; 7146 Register tmp2 = r11; 7147 Register fromReg = noreg; 7148 ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1); 7149 bool done = true; 7150 bool mark_done = true; 7151 VMReg toReg; 7152 BasicType bt; 7153 // Check if argument requires a null check 7154 bool null_check = false; 7155 VMReg nullCheckReg; 7156 while (stream.next(nullCheckReg, bt)) { 7157 if (sig->at(stream.sig_index())._offset == -1) { 7158 null_check = true; 7159 break; 7160 } 7161 } 7162 stream.reset(sig_index, to_index); 7163 while (stream.next(toReg, bt)) { 7164 assert(toReg->is_valid(), "destination must be valid"); 7165 int idx = (int)toReg->value(); 7166 if (reg_state[idx] == reg_readonly) { 7167 if (idx != from->value()) { 7168 mark_done = false; 7169 } 7170 done = false; 7171 continue; 7172 } else if (reg_state[idx] == reg_written) { 7173 continue; 7174 } 7175 assert(reg_state[idx] == reg_writable, "must be writable"); 7176 reg_state[idx] = reg_written; 7177 progress = true; 7178 7179 if (fromReg == noreg) { 7180 if (from->is_reg()) { 7181 fromReg = from->as_Register(); 7182 } else { 7183 int st_off = from->reg2stack() * VMRegImpl::stack_slot_size; 7184 ldr(tmp1, Address(sp, st_off)); 7185 fromReg = tmp1; 7186 } 7187 if (null_check) { 7188 // Nullable inline type argument, emit null check 7189 cbz(fromReg, L_null); 7190 } 7191 } 7192 int off = sig->at(stream.sig_index())._offset; 7193 if (off == -1) { 7194 assert(null_check, "Missing null check at"); 7195 if (toReg->is_stack()) { 7196 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7197 mov(tmp2, 1); 7198 str(tmp2, Address(sp, st_off)); 7199 } else { 7200 mov(toReg->as_Register(), 1); 7201 } 7202 continue; 7203 } 7204 assert(off > 0, "offset in object should be positive"); 7205 Address fromAddr = Address(fromReg, off); 7206 if (!toReg->is_FloatRegister()) { 7207 Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register(); 7208 if (is_reference_type(bt)) { 7209 load_heap_oop(dst, fromAddr, rscratch1, rscratch2); 7210 } else { 7211 bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN); 7212 load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed); 7213 } 7214 if (toReg->is_stack()) { 7215 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7216 str(dst, Address(sp, st_off)); 7217 } 7218 } else if (bt == T_DOUBLE) { 7219 ldrd(toReg->as_FloatRegister(), fromAddr); 7220 } else { 7221 assert(bt == T_FLOAT, "must be float"); 7222 ldrs(toReg->as_FloatRegister(), fromAddr); 7223 } 7224 } 7225 if (progress && null_check) { 7226 if (done) { 7227 b(L_notNull); 7228 bind(L_null); 7229 // Set null marker to zero to signal that the argument is null. 7230 // Also set all oop fields to zero to make the GC happy. 7231 stream.reset(sig_index, to_index); 7232 while (stream.next(toReg, bt)) { 7233 if (sig->at(stream.sig_index())._offset == -1 || 7234 bt == T_OBJECT || bt == T_ARRAY) { 7235 if (toReg->is_stack()) { 7236 int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size; 7237 str(zr, Address(sp, st_off)); 7238 } else { 7239 mov(toReg->as_Register(), zr); 7240 } 7241 } 7242 } 7243 bind(L_notNull); 7244 } else { 7245 bind(L_null); 7246 } 7247 } 7248 7249 // TODO 8366717 This is probably okay but looks fishy because stream is reset in the "Set null marker to zero" case just above. Same on x64. 7250 sig_index = stream.sig_index(); 7251 to_index = stream.regs_index(); 7252 7253 if (mark_done && reg_state[from->value()] != reg_written) { 7254 // This is okay because no one else will write to that slot 7255 reg_state[from->value()] = reg_writable; 7256 } 7257 from_index--; 7258 assert(progress || (start_offset == offset()), "should not emit code"); 7259 return done; 7260 } 7261 7262 // Pack fields back into an inline type oop 7263 bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 7264 VMRegPair* from, int from_count, int& from_index, VMReg to, 7265 RegState reg_state[], Register val_array) { 7266 assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter"); 7267 assert(to->is_valid(), "destination must be valid"); 7268 7269 if (reg_state[to->value()] == reg_written) { 7270 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7271 return true; // Already written 7272 } 7273 7274 // The GC barrier expanded by store_heap_oop below may call into the 7275 // runtime so use callee-saved registers for any values that need to be 7276 // preserved. The GC barrier assembler should take care of saving the 7277 // Java argument registers. 7278 // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value? 7279 // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for). 7280 Register val_obj_tmp = r21; 7281 Register from_reg_tmp = r22; 7282 Register tmp1 = r14; 7283 Register tmp2 = r13; 7284 Register tmp3 = r12; 7285 Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register(); 7286 7287 assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array); 7288 7289 if (reg_state[to->value()] == reg_readonly) { 7290 if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) { 7291 skip_unpacked_fields(sig, sig_index, from, from_count, from_index); 7292 return false; // Not yet writable 7293 } 7294 val_obj = val_obj_tmp; 7295 } 7296 7297 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT); 7298 load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2); 7299 7300 ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index); 7301 VMReg fromReg; 7302 BasicType bt; 7303 Label L_null; 7304 while (stream.next(fromReg, bt)) { 7305 assert(fromReg->is_valid(), "source must be valid"); 7306 reg_state[fromReg->value()] = reg_writable; 7307 7308 int off = sig->at(stream.sig_index())._offset; 7309 if (off == -1) { 7310 // Nullable inline type argument, emit null check 7311 Label L_notNull; 7312 if (fromReg->is_stack()) { 7313 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7314 ldrb(tmp2, Address(sp, ld_off)); 7315 cbnz(tmp2, L_notNull); 7316 } else { 7317 cbnz(fromReg->as_Register(), L_notNull); 7318 } 7319 mov(val_obj, 0); 7320 b(L_null); 7321 bind(L_notNull); 7322 continue; 7323 } 7324 7325 assert(off > 0, "offset in object should be positive"); 7326 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 7327 7328 // Pack the scalarized field into the value object. 7329 Address dst(val_obj, off); 7330 if (!fromReg->is_FloatRegister()) { 7331 Register src; 7332 if (fromReg->is_stack()) { 7333 src = from_reg_tmp; 7334 int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size; 7335 load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 7336 } else { 7337 src = fromReg->as_Register(); 7338 } 7339 assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array); 7340 if (is_reference_type(bt)) { 7341 store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 7342 } else { 7343 store_sized_value(dst, src, size_in_bytes); 7344 } 7345 } else if (bt == T_DOUBLE) { 7346 strd(fromReg->as_FloatRegister(), dst); 7347 } else { 7348 assert(bt == T_FLOAT, "must be float"); 7349 strs(fromReg->as_FloatRegister(), dst); 7350 } 7351 } 7352 bind(L_null); 7353 sig_index = stream.sig_index(); 7354 from_index = stream.regs_index(); 7355 7356 assert(reg_state[to->value()] == reg_writable, "must have already been read"); 7357 bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state); 7358 assert(success, "to register must be writeable"); 7359 return true; 7360 } 7361 7362 VMReg MacroAssembler::spill_reg_for(VMReg reg) { 7363 return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg(); 7364 } 7365 7366 void MacroAssembler::cache_wb(Address line) { 7367 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 7368 assert(line.index() == noreg, "index should be noreg"); 7369 assert(line.offset() == 0, "offset should be 0"); 7370 // would like to assert this 7371 // assert(line._ext.shift == 0, "shift should be zero"); 7372 if (VM_Version::supports_dcpop()) { 7373 // writeback using clear virtual address to point of persistence 7374 dc(Assembler::CVAP, line.base()); 7375 } else { 7376 // no need to generate anything as Unsafe.writebackMemory should 7377 // never invoke this stub 7378 } 7379 } 7380 7381 void MacroAssembler::cache_wbsync(bool is_pre) { 7382 // we only need a barrier post sync 7383 if (!is_pre) { 7384 membar(Assembler::AnyAny); 7385 } 7386 } 7387 7388 void MacroAssembler::verify_sve_vector_length(Register tmp) { 7389 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 7390 return; 7391 } 7392 // Make sure that native code does not change SVE vector length. 7393 Label verify_ok; 7394 movw(tmp, zr); 7395 sve_inc(tmp, B); 7396 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 7397 br(EQ, verify_ok); 7398 stop("Error: SVE vector length has changed since jvm startup"); 7399 bind(verify_ok); 7400 } 7401 7402 void MacroAssembler::verify_ptrue() { 7403 Label verify_ok; 7404 if (!UseSVE) { 7405 return; 7406 } 7407 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 7408 sve_dec(rscratch1, B); 7409 cbz(rscratch1, verify_ok); 7410 stop("Error: the preserved predicate register (p7) elements are not all true"); 7411 bind(verify_ok); 7412 } 7413 7414 void MacroAssembler::safepoint_isb() { 7415 isb(); 7416 #ifndef PRODUCT 7417 if (VerifyCrossModifyFence) { 7418 // Clear the thread state. 7419 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7420 } 7421 #endif 7422 } 7423 7424 #ifndef PRODUCT 7425 void MacroAssembler::verify_cross_modify_fence_not_required() { 7426 if (VerifyCrossModifyFence) { 7427 // Check if thread needs a cross modify fence. 7428 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 7429 Label fence_not_required; 7430 cbz(rscratch1, fence_not_required); 7431 // If it does then fail. 7432 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 7433 mov(c_rarg0, rthread); 7434 blr(rscratch1); 7435 bind(fence_not_required); 7436 } 7437 } 7438 #endif 7439 7440 void MacroAssembler::spin_wait() { 7441 block_comment("spin_wait {"); 7442 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 7443 switch (VM_Version::spin_wait_desc().inst()) { 7444 case SpinWait::NOP: 7445 nop(); 7446 break; 7447 case SpinWait::ISB: 7448 isb(); 7449 break; 7450 case SpinWait::YIELD: 7451 yield(); 7452 break; 7453 case SpinWait::SB: 7454 assert(VM_Version::supports_sb(), "current CPU does not support SB instruction"); 7455 sb(); 7456 break; 7457 default: 7458 ShouldNotReachHere(); 7459 } 7460 } 7461 block_comment("}"); 7462 } 7463 7464 // Stack frame creation/removal 7465 7466 void MacroAssembler::enter(bool strip_ret_addr) { 7467 if (strip_ret_addr) { 7468 // Addresses can only be signed once. If there are multiple nested frames being created 7469 // in the same function, then the return address needs stripping first. 7470 strip_return_address(); 7471 } 7472 protect_return_address(); 7473 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 7474 mov(rfp, sp); 7475 } 7476 7477 void MacroAssembler::leave() { 7478 mov(sp, rfp); 7479 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 7480 authenticate_return_address(); 7481 } 7482 7483 // ROP Protection 7484 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 7485 // destroying stack frames or whenever directly loading/storing the LR to memory. 7486 // If ROP protection is not set then these functions are no-ops. 7487 // For more details on PAC see pauth_aarch64.hpp. 7488 7489 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 7490 // Uses value zero as the modifier. 7491 // 7492 void MacroAssembler::protect_return_address() { 7493 if (VM_Version::use_rop_protection()) { 7494 check_return_address(); 7495 paciaz(); 7496 } 7497 } 7498 7499 // Sign the return value in the given register. Use before updating the LR in the existing stack 7500 // frame for the current function. 7501 // Uses value zero as the modifier. 7502 // 7503 void MacroAssembler::protect_return_address(Register return_reg) { 7504 if (VM_Version::use_rop_protection()) { 7505 check_return_address(return_reg); 7506 paciza(return_reg); 7507 } 7508 } 7509 7510 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 7511 // Uses value zero as the modifier. 7512 // 7513 void MacroAssembler::authenticate_return_address() { 7514 if (VM_Version::use_rop_protection()) { 7515 autiaz(); 7516 check_return_address(); 7517 } 7518 } 7519 7520 // Authenticate the return value in the given register. Use before updating the LR in the existing 7521 // stack frame for the current function. 7522 // Uses value zero as the modifier. 7523 // 7524 void MacroAssembler::authenticate_return_address(Register return_reg) { 7525 if (VM_Version::use_rop_protection()) { 7526 autiza(return_reg); 7527 check_return_address(return_reg); 7528 } 7529 } 7530 7531 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 7532 // there is no guaranteed way of authenticating the LR. 7533 // 7534 void MacroAssembler::strip_return_address() { 7535 if (VM_Version::use_rop_protection()) { 7536 xpaclri(); 7537 } 7538 } 7539 7540 #ifndef PRODUCT 7541 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 7542 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 7543 // it is difficult to debug back to the callee function. 7544 // This function simply loads from the address in the given register. 7545 // Use directly after authentication to catch authentication failures. 7546 // Also use before signing to check that the pointer is valid and hasn't already been signed. 7547 // 7548 void MacroAssembler::check_return_address(Register return_reg) { 7549 if (VM_Version::use_rop_protection()) { 7550 ldr(zr, Address(return_reg)); 7551 } 7552 } 7553 #endif 7554 7555 // The java_calling_convention describes stack locations as ideal slots on 7556 // a frame with no abi restrictions. Since we must observe abi restrictions 7557 // (like the placement of the register window) the slots must be biased by 7558 // the following value. 7559 static int reg2offset_in(VMReg r) { 7560 // Account for saved rfp and lr 7561 // This should really be in_preserve_stack_slots 7562 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 7563 } 7564 7565 static int reg2offset_out(VMReg r) { 7566 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 7567 } 7568 7569 // On 64bit we will store integer like items to the stack as 7570 // 64bits items (AArch64 ABI) even though java would only store 7571 // 32bits for a parameter. On 32bit it will simply be 32bits 7572 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 7573 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 7574 if (src.first()->is_stack()) { 7575 if (dst.first()->is_stack()) { 7576 // stack to stack 7577 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7578 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7579 } else { 7580 // stack to reg 7581 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7582 } 7583 } else if (dst.first()->is_stack()) { 7584 // reg to stack 7585 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7586 } else { 7587 if (dst.first() != src.first()) { 7588 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 7589 } 7590 } 7591 } 7592 7593 // An oop arg. Must pass a handle not the oop itself 7594 void MacroAssembler::object_move( 7595 OopMap* map, 7596 int oop_handle_offset, 7597 int framesize_in_slots, 7598 VMRegPair src, 7599 VMRegPair dst, 7600 bool is_receiver, 7601 int* receiver_offset) { 7602 7603 // must pass a handle. First figure out the location we use as a handle 7604 7605 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 7606 7607 // See if oop is null if it is we need no handle 7608 7609 if (src.first()->is_stack()) { 7610 7611 // Oop is already on the stack as an argument 7612 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 7613 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 7614 if (is_receiver) { 7615 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 7616 } 7617 7618 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 7619 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 7620 // conditionally move a null 7621 cmp(rscratch1, zr); 7622 csel(rHandle, zr, rHandle, Assembler::EQ); 7623 } else { 7624 7625 // Oop is in an a register we must store it to the space we reserve 7626 // on the stack for oop_handles and pass a handle if oop is non-null 7627 7628 const Register rOop = src.first()->as_Register(); 7629 int oop_slot; 7630 if (rOop == j_rarg0) 7631 oop_slot = 0; 7632 else if (rOop == j_rarg1) 7633 oop_slot = 1; 7634 else if (rOop == j_rarg2) 7635 oop_slot = 2; 7636 else if (rOop == j_rarg3) 7637 oop_slot = 3; 7638 else if (rOop == j_rarg4) 7639 oop_slot = 4; 7640 else if (rOop == j_rarg5) 7641 oop_slot = 5; 7642 else if (rOop == j_rarg6) 7643 oop_slot = 6; 7644 else { 7645 assert(rOop == j_rarg7, "wrong register"); 7646 oop_slot = 7; 7647 } 7648 7649 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7650 int offset = oop_slot*VMRegImpl::stack_slot_size; 7651 7652 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7653 // Store oop in handle area, may be null 7654 str(rOop, Address(sp, offset)); 7655 if (is_receiver) { 7656 *receiver_offset = offset; 7657 } 7658 7659 cmp(rOop, zr); 7660 lea(rHandle, Address(sp, offset)); 7661 // conditionally move a null 7662 csel(rHandle, zr, rHandle, Assembler::EQ); 7663 } 7664 7665 // If arg is on the stack then place it otherwise it is already in correct reg. 7666 if (dst.first()->is_stack()) { 7667 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7668 } 7669 } 7670 7671 // A float arg may have to do float reg int reg conversion 7672 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7673 if (src.first()->is_stack()) { 7674 if (dst.first()->is_stack()) { 7675 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7676 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7677 } else { 7678 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7679 } 7680 } else if (src.first() != dst.first()) { 7681 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7682 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7683 else 7684 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7685 } 7686 } 7687 7688 // A long move 7689 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7690 if (src.first()->is_stack()) { 7691 if (dst.first()->is_stack()) { 7692 // stack to stack 7693 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7694 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7695 } else { 7696 // stack to reg 7697 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7698 } 7699 } else if (dst.first()->is_stack()) { 7700 // reg to stack 7701 // Do we really have to sign extend??? 7702 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7703 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7704 } else { 7705 if (dst.first() != src.first()) { 7706 mov(dst.first()->as_Register(), src.first()->as_Register()); 7707 } 7708 } 7709 } 7710 7711 7712 // A double move 7713 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7714 if (src.first()->is_stack()) { 7715 if (dst.first()->is_stack()) { 7716 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7717 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7718 } else { 7719 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7720 } 7721 } else if (src.first() != dst.first()) { 7722 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7723 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7724 else 7725 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7726 } 7727 } 7728 7729 // Implements lightweight-locking. 7730 // 7731 // - obj: the object to be locked 7732 // - t1, t2, t3: temporary registers, will be destroyed 7733 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7734 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7735 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7736 7737 Label push; 7738 const Register top = t1; 7739 const Register mark = t2; 7740 const Register t = t3; 7741 7742 // Preload the markWord. It is important that this is the first 7743 // instruction emitted as it is part of C1's null check semantics. 7744 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7745 7746 if (UseObjectMonitorTable) { 7747 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7748 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7749 } 7750 7751 if (DiagnoseSyncOnValueBasedClasses != 0) { 7752 load_klass(t1, obj); 7753 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7754 tst(t1, KlassFlags::_misc_is_value_based_class); 7755 br(Assembler::NE, slow); 7756 } 7757 7758 // Check if the lock-stack is full. 7759 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7760 cmpw(top, (unsigned)LockStack::end_offset()); 7761 br(Assembler::GE, slow); 7762 7763 // Check for recursion. 7764 subw(t, top, oopSize); 7765 ldr(t, Address(rthread, t)); 7766 cmp(obj, t); 7767 br(Assembler::EQ, push); 7768 7769 // Check header for monitor (0b10). 7770 tst(mark, markWord::monitor_value); 7771 br(Assembler::NE, slow); 7772 7773 // Try to lock. Transition lock bits 0b01 => 0b00 7774 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7775 orr(mark, mark, markWord::unlocked_value); 7776 // Mask inline_type bit such that we go to the slow path if object is an inline type 7777 andr(mark, mark, ~((int) markWord::inline_type_bit_in_place)); 7778 7779 eor(t, mark, markWord::unlocked_value); 7780 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7781 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7782 br(Assembler::NE, slow); 7783 7784 bind(push); 7785 // After successful lock, push object on lock-stack. 7786 str(obj, Address(rthread, top)); 7787 addw(top, top, oopSize); 7788 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7789 } 7790 7791 // Implements lightweight-unlocking. 7792 // 7793 // - obj: the object to be unlocked 7794 // - t1, t2, t3: temporary registers 7795 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7796 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7797 // cmpxchg clobbers rscratch1. 7798 assert_different_registers(obj, t1, t2, t3, rscratch1); 7799 7800 #ifdef ASSERT 7801 { 7802 // Check for lock-stack underflow. 7803 Label stack_ok; 7804 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7805 cmpw(t1, (unsigned)LockStack::start_offset()); 7806 br(Assembler::GE, stack_ok); 7807 STOP("Lock-stack underflow"); 7808 bind(stack_ok); 7809 } 7810 #endif 7811 7812 Label unlocked, push_and_slow; 7813 const Register top = t1; 7814 const Register mark = t2; 7815 const Register t = t3; 7816 7817 // Check if obj is top of lock-stack. 7818 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7819 subw(top, top, oopSize); 7820 ldr(t, Address(rthread, top)); 7821 cmp(obj, t); 7822 br(Assembler::NE, slow); 7823 7824 // Pop lock-stack. 7825 DEBUG_ONLY(str(zr, Address(rthread, top));) 7826 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7827 7828 // Check if recursive. 7829 subw(t, top, oopSize); 7830 ldr(t, Address(rthread, t)); 7831 cmp(obj, t); 7832 br(Assembler::EQ, unlocked); 7833 7834 // Not recursive. Check header for monitor (0b10). 7835 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7836 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7837 7838 #ifdef ASSERT 7839 // Check header not unlocked (0b01). 7840 Label not_unlocked; 7841 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7842 stop("lightweight_unlock already unlocked"); 7843 bind(not_unlocked); 7844 #endif 7845 7846 // Try to unlock. Transition lock bits 0b00 => 0b01 7847 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7848 orr(t, mark, markWord::unlocked_value); 7849 cmpxchg(obj, mark, t, Assembler::xword, 7850 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7851 br(Assembler::EQ, unlocked); 7852 7853 bind(push_and_slow); 7854 // Restore lock-stack and handle the unlock in runtime. 7855 DEBUG_ONLY(str(obj, Address(rthread, top));) 7856 addw(top, top, oopSize); 7857 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7858 b(slow); 7859 7860 bind(unlocked); 7861 } --- EOF ---