< prev index next > src/hotspot/cpu/aarch64/macroAssembler_aarch64.cpp
Print this page
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "ci/ciEnv.hpp"
+ #include "ci/ciInlineKlass.hpp"
#include "code/compiledIC.hpp"
#include "compiler/compileTask.hpp"
#include "compiler/disassembler.hpp"
#include "compiler/oopMap.hpp"
#include "gc/shared/barrierSet.hpp"
#include "nativeInst_aarch64.hpp"
#include "oops/accessDecorators.hpp"
#include "oops/compressedKlass.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.inline.hpp"
+ #include "oops/resolvedFieldEntry.hpp"
#include "runtime/continuation.hpp"
#include "runtime/icache.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
+ #include "runtime/signature_cc.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/powerOfTwo.hpp"
+ #include "vmreg_aarch64.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_LIRAssembler.hpp"
#endif
#ifdef COMPILER2
#include "oops/oop.hpp"
void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
+ void MacroAssembler::get_default_value_oop(Register inline_klass, Register temp_reg, Register obj) {
+ assert_different_registers(inline_klass, temp_reg, obj, rscratch2);
+ #ifdef ASSERT
+ {
+ Label done_check;
+ test_klass_is_inline_type(inline_klass, temp_reg, done_check);
+ stop("get_default_value_oop from non inline type klass");
+ bind(done_check);
+ }
+ #endif
+ Register offset = temp_reg;
+ // Getting the offset of the pre-allocated default value
+ ldr(offset, Address(inline_klass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset())));
+ load_sized_value(offset, Address(offset, in_bytes(InlineKlass::default_value_offset_offset())), sizeof(int), true /*is_signed*/);
+
+ // Getting the mirror
+ ldr(obj, Address(inline_klass, in_bytes(Klass::java_mirror_offset())));
+ resolve_oop_handle(obj, inline_klass, rscratch2);
+
+ // Getting the pre-allocated default value from the mirror
+ Address field(obj, offset);
+ load_heap_oop(obj, field, inline_klass, rscratch2);
+ }
+
+ void MacroAssembler::get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj) {
+ #ifdef ASSERT
+ {
+ Label done_check;
+ test_klass_is_empty_inline_type(inline_klass, temp_reg, done_check);
+ stop("get_empty_value from non-empty inline klass");
+ bind(done_check);
+ }
+ #endif
+ get_default_value_oop(inline_klass, temp_reg, obj);
+ }
+
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
Unimplemented();
}
}
void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
- if (!VerifyOops) return;
+ if (!VerifyOops || VerifyAdapterSharing) {
+ // Below address of the code string confuses VerifyAdapterSharing
+ // because it may differ between otherwise equivalent adapters.
+ return;
+ }
// Pass register number to verify_oop_subroutine
const char* b = nullptr;
{
ResourceMark rm;
BLOCK_COMMENT("} verify_oop");
}
void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
- if (!VerifyOops) return;
+ if (!VerifyOops || VerifyAdapterSharing) {
+ // Below address of the code string confuses VerifyAdapterSharing
+ // because it may differ between otherwise equivalent adapters.
+ return;
+ }
const char* b = nullptr;
{
ResourceMark rm;
stringStream ss;
pass_arg1(this, arg_1);
pass_arg2(this, arg_2);
call_VM_leaf_base(entry_point, 3);
}
+ void MacroAssembler::super_call_VM_leaf(address entry_point) {
+ MacroAssembler::call_VM_leaf_base(entry_point, 1);
+ }
+
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 1);
}
// nothing to do, (later) access of M[reg + offset]
// will provoke OS null exception if reg is null
}
}
+ void MacroAssembler::test_markword_is_inline_type(Register markword, Label& is_inline_type) {
+ assert_different_registers(markword, rscratch2);
+ andr(markword, markword, markWord::inline_type_mask_in_place);
+ mov(rscratch2, markWord::inline_type_pattern);
+ cmp(markword, rscratch2);
+ br(Assembler::EQ, is_inline_type);
+ }
+
+ void MacroAssembler::test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type) {
+ ldrw(temp_reg, Address(klass, Klass::access_flags_offset()));
+ andr(temp_reg, temp_reg, JVM_ACC_IDENTITY);
+ cbz(temp_reg, is_inline_type);
+ }
+
+ void MacroAssembler::test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type) {
+ assert_different_registers(tmp, rscratch1);
+ cbz(object, not_inline_type);
+ const int is_inline_type_mask = markWord::inline_type_pattern;
+ ldr(tmp, Address(object, oopDesc::mark_offset_in_bytes()));
+ mov(rscratch1, is_inline_type_mask);
+ andr(tmp, tmp, rscratch1);
+ cmp(tmp, rscratch1);
+ br(Assembler::NE, not_inline_type);
+ }
+
+ void MacroAssembler::test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type) {
+ #ifdef ASSERT
+ {
+ Label done_check;
+ test_klass_is_inline_type(klass, temp_reg, done_check);
+ stop("test_klass_is_empty_inline_type with non inline type klass");
+ bind(done_check);
+ }
+ #endif
+ ldrw(temp_reg, Address(klass, InstanceKlass::misc_flags_offset()));
+ andr(temp_reg, temp_reg, InstanceKlassFlags::is_empty_inline_type_value());
+ cbnz(temp_reg, is_empty_inline_type);
+ }
+
+ void MacroAssembler::test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free_inline_type) {
+ assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
+ tbnz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, is_null_free_inline_type);
+ }
+
+ void MacroAssembler::test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free_inline_type) {
+ assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
+ tbz(flags, ResolvedFieldEntry::is_null_free_inline_type_shift, not_null_free_inline_type);
+ }
+
+ void MacroAssembler::test_field_is_flat(Register flags, Register temp_reg, Label& is_flat) {
+ assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
+ tbnz(flags, ResolvedFieldEntry::is_flat_shift, is_flat);
+ }
+
+ void MacroAssembler::test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker) {
+ assert(temp_reg == noreg, "not needed"); // keep signature uniform with x86
+ tbnz(flags, ResolvedFieldEntry::has_null_marker_shift, has_null_marker);
+ }
+
+ void MacroAssembler::test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label) {
+ Label test_mark_word;
+ // load mark word
+ ldr(temp_reg, Address(oop, oopDesc::mark_offset_in_bytes()));
+ // check displaced
+ tst(temp_reg, markWord::unlocked_value);
+ br(Assembler::NE, test_mark_word);
+ // slow path use klass prototype
+ load_prototype_header(temp_reg, oop);
+
+ bind(test_mark_word);
+ andr(temp_reg, temp_reg, test_bit);
+ if (jmp_set) {
+ cbnz(temp_reg, jmp_label);
+ } else {
+ cbz(temp_reg, jmp_label);
+ }
+ }
+
+ void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array) {
+ test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, true, is_flat_array);
+ }
+
+ void MacroAssembler::test_non_flat_array_oop(Register oop, Register temp_reg,
+ Label&is_non_flat_array) {
+ test_oop_prototype_bit(oop, temp_reg, markWord::flat_array_bit_in_place, false, is_non_flat_array);
+ }
+
+ void MacroAssembler::test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array) {
+ test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, true, is_null_free_array);
+ }
+
+ void MacroAssembler::test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array) {
+ test_oop_prototype_bit(oop, temp_reg, markWord::null_free_array_bit_in_place, false, is_non_null_free_array);
+ }
+
+ void MacroAssembler::test_flat_array_layout(Register lh, Label& is_flat_array) {
+ tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
+ br(Assembler::NE, is_flat_array);
+ }
+
+ void MacroAssembler::test_non_flat_array_layout(Register lh, Label& is_non_flat_array) {
+ tst(lh, Klass::_lh_array_tag_flat_value_bit_inplace);
+ br(Assembler::EQ, is_non_flat_array);
+ }
+
// MacroAssembler protected routines needed to implement
// public methods
void MacroAssembler::mov(Register r, Address dest) {
code_section()->relocate(pc(), dest.rspec());
ldr(holder, Address(method, Method::const_offset())); // ConstMethod*
ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass*
}
+ void MacroAssembler::load_metadata(Register dst, Register src) {
+ if (UseCompressedClassPointers) {
+ ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+ } else {
+ ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+ }
+ }
+
void MacroAssembler::load_klass(Register dst, Register src) {
if (UseCompressedClassPointers) {
ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
decode_klass_not_null(dst);
} else {
ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
}
cmp(trial_klass, tmp);
}
+ void MacroAssembler::load_prototype_header(Register dst, Register src) {
+ load_klass(dst, src);
+ ldr(dst, Address(dst, Klass::prototype_header_offset()));
+ }
+
void MacroAssembler::store_klass(Register dst, Register src) {
// FIXME: Should this be a store release? concurrent gcs assumes
// klass length is valid if klass field is not null.
if (UseCompressedClassPointers) {
encode_klass_not_null(src);
} else {
bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
}
}
+ void MacroAssembler::access_value_copy(DecoratorSet decorators, Register src, Register dst,
+ Register inline_klass) {
+ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
+ bs->value_copy(this, decorators, src, dst, inline_klass);
+ }
+
+ void MacroAssembler::flat_field_copy(DecoratorSet decorators, Register src, Register dst,
+ Register inline_layout_info) {
+ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
+ bs->flat_field_copy(this, decorators, src, dst, inline_layout_info);
+ }
+
+ void MacroAssembler::first_field_offset(Register inline_klass, Register offset) {
+ ldr(offset, Address(inline_klass, InstanceKlass::adr_inlineklass_fixed_block_offset()));
+ ldrw(offset, Address(offset, InlineKlass::first_field_offset_offset()));
+ }
+
+ void MacroAssembler::data_for_oop(Register oop, Register data, Register inline_klass) {
+ // ((address) (void*) o) + vk->first_field_offset();
+ Register offset = (data == oop) ? rscratch1 : data;
+ first_field_offset(inline_klass, offset);
+ if (data == oop) {
+ add(data, data, offset);
+ } else {
+ lea(data, Address(oop, offset));
+ }
+ }
+
+ void MacroAssembler::data_for_value_array_index(Register array, Register array_klass,
+ Register index, Register data) {
+ assert_different_registers(array, array_klass, index);
+ assert_different_registers(rscratch1, array, index);
+
+ // array->base() + (index << Klass::layout_helper_log2_element_size(lh));
+ ldrw(rscratch1, Address(array_klass, Klass::layout_helper_offset()));
+
+ // Klass::layout_helper_log2_element_size(lh)
+ // (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
+ lsr(rscratch1, rscratch1, Klass::_lh_log2_element_size_shift);
+ andr(rscratch1, rscratch1, Klass::_lh_log2_element_size_mask);
+ lslv(index, index, rscratch1);
+
+ add(data, array, index);
+ add(data, data, arrayOopDesc::base_offset_in_bytes(T_PRIMITIVE_OBJECT));
+ }
+
void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
Register tmp2, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
}
#endif
int oop_index = oop_recorder()->find_index(obj);
return Address((address)obj, oop_Relocation::spec(oop_index));
}
+ // Object / value buffer allocation...
+ void MacroAssembler::allocate_instance(Register klass, Register new_obj,
+ Register t1, Register t2,
+ bool clear_fields, Label& alloc_failed)
+ {
+ Label done, initialize_header, initialize_object, slow_case, slow_case_no_pop;
+ Register layout_size = t1;
+ assert(new_obj == r0, "needs to be r0");
+ assert_different_registers(klass, new_obj, t1, t2);
+
+ // get instance_size in InstanceKlass (scaled to a count of bytes)
+ ldrw(layout_size, Address(klass, Klass::layout_helper_offset()));
+ // test to see if it is malformed in some way
+ tst(layout_size, Klass::_lh_instance_slow_path_bit);
+ br(Assembler::NE, slow_case_no_pop);
+
+ // Allocate the instance:
+ // If TLAB is enabled:
+ // Try to allocate in the TLAB.
+ // If fails, go to the slow path.
+ // Initialize the allocation.
+ // Exit.
+ //
+ // Go to slow path.
+
+ if (UseTLAB) {
+ push(klass);
+ tlab_allocate(new_obj, layout_size, 0, klass, t2, slow_case);
+ if (ZeroTLAB || (!clear_fields)) {
+ // the fields have been already cleared
+ b(initialize_header);
+ } else {
+ // initialize both the header and fields
+ b(initialize_object);
+ }
+
+ if (clear_fields) {
+ // The object is initialized before the header. If the object size is
+ // zero, go directly to the header initialization.
+ bind(initialize_object);
+ subs(layout_size, layout_size, sizeof(oopDesc));
+ br(Assembler::EQ, initialize_header);
+
+ // Initialize topmost object field, divide size by 8, check if odd and
+ // test if zero.
+
+ #ifdef ASSERT
+ // make sure instance_size was multiple of 8
+ Label L;
+ tst(layout_size, 7);
+ br(Assembler::EQ, L);
+ stop("object size is not multiple of 8 - adjust this code");
+ bind(L);
+ // must be > 0, no extra check needed here
+ #endif
+
+ lsr(layout_size, layout_size, LogBytesPerLong);
+
+ // initialize remaining object fields: instance_size was a multiple of 8
+ {
+ Label loop;
+ Register base = t2;
+
+ bind(loop);
+ add(rscratch1, new_obj, layout_size, Assembler::LSL, LogBytesPerLong);
+ str(zr, Address(rscratch1, sizeof(oopDesc) - 1*oopSize));
+ subs(layout_size, layout_size, 1);
+ br(Assembler::NE, loop);
+ }
+ } // clear_fields
+
+ // initialize object header only.
+ bind(initialize_header);
+ pop(klass);
+ Register mark_word = t2;
+ ldr(mark_word, Address(klass, Klass::prototype_header_offset()));
+ str(mark_word, Address(new_obj, oopDesc::mark_offset_in_bytes ()));
+ store_klass_gap(new_obj, zr); // zero klass gap for compressed oops
+ mov(t2, klass); // preserve klass
+ store_klass(new_obj, t2); // src klass reg is potentially compressed
+
+ // TODO: Valhalla removed SharedRuntime::dtrace_object_alloc from here ?
+
+ b(done);
+ }
+
+ if (UseTLAB) {
+ bind(slow_case);
+ pop(klass);
+ }
+ bind(slow_case_no_pop);
+ b(alloc_failed);
+
+ bind(done);
+ }
+
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
ldp(rscratch2, rscratch1, Address(post(sp, 16)));
}
#endif
}
+ void MacroAssembler::get_inline_type_field_klass(Register holder_klass, Register index, Register inline_klass) {
+ inline_layout_info(holder_klass, index, inline_klass);
+ ldr(inline_klass, Address(inline_klass, InlineLayoutInfo::klass_offset()));
+ }
+
+ void MacroAssembler::inline_layout_info(Register holder_klass, Register index, Register layout_info) {
+ assert_different_registers(holder_klass, index, layout_info);
+ InlineLayoutInfo array[2];
+ int size = (char*)&array[1] - (char*)&array[0]; // computing size of array elements
+ if (is_power_of_2(size)) {
+ lsl(index, index, log2i_exact(size)); // Scale index by power of 2
+ } else {
+ mov(layout_info, size);
+ mul(index, index, layout_info); // Scale the index to be the entry index * array_element_size
+ }
+ ldr(layout_info, Address(holder_klass, InstanceKlass::inline_layout_info_array_offset()));
+ add(layout_info, layout_info, Array<InlineLayoutInfo>::base_offset_in_bytes());
+ lea(layout_info, Address(layout_info, index));
+ }
+
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
assert_different_registers(tmp, size, rscratch1);
mov(tmp, sp);
ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
}
authenticate_return_address();
}
+ void MacroAssembler::remove_frame(int initial_framesize, bool needs_stack_repair) {
+ if (needs_stack_repair) {
+ // Remove the extension of the caller's frame used for inline type unpacking
+ //
+ // Right now the stack looks like this:
+ //
+ // | Arguments from caller |
+ // |---------------------------| <-- caller's SP
+ // | Saved LR #1 |
+ // | Saved FP #1 |
+ // |---------------------------|
+ // | Extension space for |
+ // | inline arg (un)packing |
+ // |---------------------------| <-- start of this method's frame
+ // | Saved LR #2 |
+ // | Saved FP #2 |
+ // |---------------------------| <-- FP
+ // | sp_inc |
+ // | method locals |
+ // |---------------------------| <-- SP
+ //
+ // There are two copies of FP and LR on the stack. They will be identical
+ // unless the caller has been deoptimized, in which case LR #1 will be patched
+ // to point at the deopt blob, and LR #2 will still point into the old method.
+ //
+ // The sp_inc stack slot holds the total size of the frame including the
+ // extension space minus two words for the saved FP and LR.
+
+ int sp_inc_offset = initial_framesize - 3 * wordSize; // Immediately below saved LR and FP
+
+ ldr(rscratch1, Address(sp, sp_inc_offset));
+ add(sp, sp, rscratch1);
+ ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
+ } else {
+ remove_frame(initial_framesize);
+ }
+ }
+
+ void MacroAssembler::save_stack_increment(int sp_inc, int frame_size) {
+ int real_frame_size = frame_size + sp_inc;
+ assert(sp_inc == 0 || sp_inc > 2*wordSize, "invalid sp_inc value");
+ assert(real_frame_size >= 2*wordSize, "frame size must include FP/LR space");
+ assert((real_frame_size & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+
+ int sp_inc_offset = frame_size - 3 * wordSize; // Immediately below saved LR and FP
+
+ // Subtract two words for the saved FP and LR as these will be popped
+ // separately. See remove_frame above.
+ mov(rscratch1, real_frame_size - 2*wordSize);
+ str(rscratch1, Address(sp, sp_inc_offset));
+ }
// This method counts leading positive bytes (highest bit not set) in provided byte array
address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
// Simple and most common case of aligned small array which is not at the
// end of memory page is placed here. All other cases are in stub.
pop(saved_regs, sp);
authenticate_return_address();
}
+ #ifdef COMPILER2
+ // C2 compiled method's prolog code
+ // Moved here from aarch64.ad to support Valhalla code belows
+ void MacroAssembler::verified_entry(Compile* C, int sp_inc) {
+ if (C->clinit_barrier_on_entry()) {
+ assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
+
+ Label L_skip_barrier;
+
+ mov_metadata(rscratch2, C->method()->holder()->constant_encoding());
+ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
+ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
+ bind(L_skip_barrier);
+ }
+
+ if (C->max_vector_size() > 0) {
+ reinitialize_ptrue();
+ }
+
+ int bangsize = C->output()->bang_size_in_bytes();
+ if (C->output()->need_stack_bang(bangsize))
+ generate_stack_overflow_check(bangsize);
+
+ // n.b. frame size includes space for return pc and rfp
+ const long framesize = C->output()->frame_size_in_bytes();
+ build_frame(framesize);
+
+ if (C->needs_stack_repair()) {
+ save_stack_increment(sp_inc, framesize);
+ }
+
+ if (VerifyStackAtCalls) {
+ Unimplemented();
+ }
+ }
+ #endif // COMPILER2
+
+ int MacroAssembler::store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter) {
+ assert(InlineTypeReturnedAsFields, "Inline types should never be returned as fields");
+ // An inline type might be returned. If fields are in registers we
+ // need to allocate an inline type instance and initialize it with
+ // the value of the fields.
+ Label skip;
+ // We only need a new buffered inline type if a new one is not returned
+ tbz(r0, 0, skip);
+ int call_offset = -1;
+
+ // Be careful not to clobber r1-7 which hold returned fields
+ // Also do not use callee-saved registers as these may be live in the interpreter
+ Register tmp1 = r13, tmp2 = r14, klass = r15, r0_preserved = r12;
+
+ // The following code is similar to allocate_instance but has some slight differences,
+ // e.g. object size is always not zero, sometimes it's constant; storing klass ptr after
+ // allocating is not necessary if vk != nullptr, etc. allocate_instance is not aware of these.
+ Label slow_case;
+ // 1. Try to allocate a new buffered inline instance either from TLAB or eden space
+ mov(r0_preserved, r0); // save r0 for slow_case since *_allocate may corrupt it when allocation failed
+
+ if (vk != nullptr) {
+ // Called from C1, where the return type is statically known.
+ movptr(klass, (intptr_t)vk->get_InlineKlass());
+ jint lh = vk->layout_helper();
+ assert(lh != Klass::_lh_neutral_value, "inline class in return type must have been resolved");
+ if (UseTLAB && !Klass::layout_helper_needs_slow_path(lh)) {
+ tlab_allocate(r0, noreg, lh, tmp1, tmp2, slow_case);
+ } else {
+ b(slow_case);
+ }
+ } else {
+ // Call from interpreter. R0 contains ((the InlineKlass* of the return type) | 0x01)
+ andr(klass, r0, -2);
+ if (UseTLAB) {
+ ldrw(tmp2, Address(klass, Klass::layout_helper_offset()));
+ tst(tmp2, Klass::_lh_instance_slow_path_bit);
+ br(Assembler::NE, slow_case);
+ tlab_allocate(r0, tmp2, 0, tmp1, tmp2, slow_case);
+ } else {
+ b(slow_case);
+ }
+ }
+ if (UseTLAB) {
+ // 2. Initialize buffered inline instance header
+ Register buffer_obj = r0;
+ mov(rscratch1, (intptr_t)markWord::inline_type_prototype().value());
+ str(rscratch1, Address(buffer_obj, oopDesc::mark_offset_in_bytes()));
+ store_klass_gap(buffer_obj, zr);
+ if (vk == nullptr) {
+ // store_klass corrupts klass, so save it for later use (interpreter case only).
+ mov(tmp1, klass);
+ }
+ store_klass(buffer_obj, klass);
+ // 3. Initialize its fields with an inline class specific handler
+ if (vk != nullptr) {
+ far_call(RuntimeAddress(vk->pack_handler())); // no need for call info as this will not safepoint.
+ } else {
+ // tmp1 holds klass preserved above
+ ldr(tmp1, Address(tmp1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
+ ldr(tmp1, Address(tmp1, InlineKlass::pack_handler_offset()));
+ blr(tmp1);
+ }
+
+ membar(Assembler::StoreStore);
+ b(skip);
+ } else {
+ // Must have already branched to slow_case above.
+ DEBUG_ONLY(should_not_reach_here());
+ }
+ bind(slow_case);
+ // We failed to allocate a new inline type, fall back to a runtime
+ // call. Some oop field may be live in some registers but we can't
+ // tell. That runtime call will take care of preserving them
+ // across a GC if there's one.
+ mov(r0, r0_preserved);
+
+ if (from_interpreter) {
+ super_call_VM_leaf(StubRoutines::store_inline_type_fields_to_buf());
+ } else {
+ far_call(RuntimeAddress(StubRoutines::store_inline_type_fields_to_buf()));
+ call_offset = offset();
+ }
+ membar(Assembler::StoreStore);
+
+ bind(skip);
+ return call_offset;
+ }
+
+ // Move a value between registers/stack slots and update the reg_state
+ bool MacroAssembler::move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]) {
+ assert(from->is_valid() && to->is_valid(), "source and destination must be valid");
+ if (reg_state[to->value()] == reg_written) {
+ return true; // Already written
+ }
+
+ if (from != to && bt != T_VOID) {
+ if (reg_state[to->value()] == reg_readonly) {
+ return false; // Not yet writable
+ }
+ if (from->is_reg()) {
+ if (to->is_reg()) {
+ if (from->is_Register() && to->is_Register()) {
+ mov(to->as_Register(), from->as_Register());
+ } else if (from->is_FloatRegister() && to->is_FloatRegister()) {
+ fmovd(to->as_FloatRegister(), from->as_FloatRegister());
+ } else {
+ ShouldNotReachHere();
+ }
+ } else {
+ int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
+ Address to_addr = Address(sp, st_off);
+ if (from->is_FloatRegister()) {
+ if (bt == T_DOUBLE) {
+ strd(from->as_FloatRegister(), to_addr);
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ strs(from->as_FloatRegister(), to_addr);
+ }
+ } else {
+ str(from->as_Register(), to_addr);
+ }
+ }
+ } else {
+ Address from_addr = Address(sp, from->reg2stack() * VMRegImpl::stack_slot_size);
+ if (to->is_reg()) {
+ if (to->is_FloatRegister()) {
+ if (bt == T_DOUBLE) {
+ ldrd(to->as_FloatRegister(), from_addr);
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ ldrs(to->as_FloatRegister(), from_addr);
+ }
+ } else {
+ ldr(to->as_Register(), from_addr);
+ }
+ } else {
+ int st_off = to->reg2stack() * VMRegImpl::stack_slot_size;
+ ldr(rscratch1, from_addr);
+ str(rscratch1, Address(sp, st_off));
+ }
+ }
+ }
+
+ // Update register states
+ reg_state[from->value()] = reg_writable;
+ reg_state[to->value()] = reg_written;
+ return true;
+ }
+
+ // Calculate the extra stack space required for packing or unpacking inline
+ // args and adjust the stack pointer
+ int MacroAssembler::extend_stack_for_inline_args(int args_on_stack) {
+ int sp_inc = args_on_stack * VMRegImpl::stack_slot_size;
+ sp_inc = align_up(sp_inc, StackAlignmentInBytes);
+ assert(sp_inc > 0, "sanity");
+
+ // Save a copy of the FP and LR here for deoptimization patching and frame walking
+ stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
+
+ // Adjust the stack pointer. This will be repaired on return by MacroAssembler::remove_frame
+ if (sp_inc < (1 << 9)) {
+ sub(sp, sp, sp_inc); // Fits in an immediate
+ } else {
+ mov(rscratch1, sp_inc);
+ sub(sp, sp, rscratch1);
+ }
+
+ return sp_inc + 2 * wordSize; // Account for the FP/LR space
+ }
+
+ // Read all fields from an inline type oop and store the values in registers/stack slots
+ bool MacroAssembler::unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
+ VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
+ RegState reg_state[]) {
+ assert(sig->at(sig_index)._bt == T_VOID, "should be at end delimiter");
+ assert(from->is_valid(), "source must be valid");
+ bool progress = false;
+ #ifdef ASSERT
+ const int start_offset = offset();
+ #endif
+
+ Label L_null, L_notNull;
+ // Don't use r14 as tmp because it's used for spilling (see MacroAssembler::spill_reg_for)
+ Register tmp1 = r10;
+ Register tmp2 = r11;
+ Register fromReg = noreg;
+ ScalarizedInlineArgsStream stream(sig, sig_index, to, to_count, to_index, -1);
+ bool done = true;
+ bool mark_done = true;
+ VMReg toReg;
+ BasicType bt;
+ // Check if argument requires a null check
+ bool null_check = false;
+ VMReg nullCheckReg;
+ while (stream.next(nullCheckReg, bt)) {
+ if (sig->at(stream.sig_index())._offset == -1) {
+ null_check = true;
+ break;
+ }
+ }
+ stream.reset(sig_index, to_index);
+ while (stream.next(toReg, bt)) {
+ assert(toReg->is_valid(), "destination must be valid");
+ int idx = (int)toReg->value();
+ if (reg_state[idx] == reg_readonly) {
+ if (idx != from->value()) {
+ mark_done = false;
+ }
+ done = false;
+ continue;
+ } else if (reg_state[idx] == reg_written) {
+ continue;
+ }
+ assert(reg_state[idx] == reg_writable, "must be writable");
+ reg_state[idx] = reg_written;
+ progress = true;
+
+ if (fromReg == noreg) {
+ if (from->is_reg()) {
+ fromReg = from->as_Register();
+ } else {
+ int st_off = from->reg2stack() * VMRegImpl::stack_slot_size;
+ ldr(tmp1, Address(sp, st_off));
+ fromReg = tmp1;
+ }
+ if (null_check) {
+ // Nullable inline type argument, emit null check
+ cbz(fromReg, L_null);
+ }
+ }
+ int off = sig->at(stream.sig_index())._offset;
+ if (off == -1) {
+ assert(null_check, "Missing null check at");
+ if (toReg->is_stack()) {
+ int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
+ mov(tmp2, 1);
+ str(tmp2, Address(sp, st_off));
+ } else {
+ mov(toReg->as_Register(), 1);
+ }
+ continue;
+ }
+ assert(off > 0, "offset in object should be positive");
+ Address fromAddr = Address(fromReg, off);
+ if (!toReg->is_FloatRegister()) {
+ Register dst = toReg->is_stack() ? tmp2 : toReg->as_Register();
+ if (is_reference_type(bt)) {
+ load_heap_oop(dst, fromAddr, rscratch1, rscratch2);
+ } else {
+ bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
+ load_sized_value(dst, fromAddr, type2aelembytes(bt), is_signed);
+ }
+ if (toReg->is_stack()) {
+ int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
+ str(dst, Address(sp, st_off));
+ }
+ } else if (bt == T_DOUBLE) {
+ ldrd(toReg->as_FloatRegister(), fromAddr);
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ ldrs(toReg->as_FloatRegister(), fromAddr);
+ }
+ }
+ if (progress && null_check) {
+ if (done) {
+ b(L_notNull);
+ bind(L_null);
+ // Set IsInit field to zero to signal that the argument is null.
+ // Also set all oop fields to zero to make the GC happy.
+ stream.reset(sig_index, to_index);
+ while (stream.next(toReg, bt)) {
+ if (sig->at(stream.sig_index())._offset == -1 ||
+ bt == T_OBJECT || bt == T_ARRAY) {
+ if (toReg->is_stack()) {
+ int st_off = toReg->reg2stack() * VMRegImpl::stack_slot_size;
+ str(zr, Address(sp, st_off));
+ } else {
+ mov(toReg->as_Register(), zr);
+ }
+ }
+ }
+ bind(L_notNull);
+ } else {
+ bind(L_null);
+ }
+ }
+
+ sig_index = stream.sig_index();
+ to_index = stream.regs_index();
+
+ if (mark_done && reg_state[from->value()] != reg_written) {
+ // This is okay because no one else will write to that slot
+ reg_state[from->value()] = reg_writable;
+ }
+ from_index--;
+ assert(progress || (start_offset == offset()), "should not emit code");
+ return done;
+ }
+
+ // Pack fields back into an inline type oop
+ bool MacroAssembler::pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
+ VMRegPair* from, int from_count, int& from_index, VMReg to,
+ RegState reg_state[], Register val_array) {
+ assert(sig->at(sig_index)._bt == T_METADATA, "should be at delimiter");
+ assert(to->is_valid(), "destination must be valid");
+
+ if (reg_state[to->value()] == reg_written) {
+ skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
+ return true; // Already written
+ }
+
+ // The GC barrier expanded by store_heap_oop below may call into the
+ // runtime so use callee-saved registers for any values that need to be
+ // preserved. The GC barrier assembler should take care of saving the
+ // Java argument registers.
+ // TODO 8284443 Isn't it an issue if below code uses r14 as tmp when it contains a spilled value?
+ // Be careful with r14 because it's used for spilling (see MacroAssembler::spill_reg_for).
+ Register val_obj_tmp = r21;
+ Register from_reg_tmp = r22;
+ Register tmp1 = r14;
+ Register tmp2 = r13;
+ Register tmp3 = r12;
+ Register val_obj = to->is_stack() ? val_obj_tmp : to->as_Register();
+
+ assert_different_registers(val_obj_tmp, from_reg_tmp, tmp1, tmp2, tmp3, val_array);
+
+ if (reg_state[to->value()] == reg_readonly) {
+ if (!is_reg_in_unpacked_fields(sig, sig_index, to, from, from_count, from_index)) {
+ skip_unpacked_fields(sig, sig_index, from, from_count, from_index);
+ return false; // Not yet writable
+ }
+ val_obj = val_obj_tmp;
+ }
+
+ int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + vtarg_index * type2aelembytes(T_OBJECT);
+ load_heap_oop(val_obj, Address(val_array, index), tmp1, tmp2);
+
+ ScalarizedInlineArgsStream stream(sig, sig_index, from, from_count, from_index);
+ VMReg fromReg;
+ BasicType bt;
+ Label L_null;
+ while (stream.next(fromReg, bt)) {
+ assert(fromReg->is_valid(), "source must be valid");
+ reg_state[fromReg->value()] = reg_writable;
+
+ int off = sig->at(stream.sig_index())._offset;
+ if (off == -1) {
+ // Nullable inline type argument, emit null check
+ Label L_notNull;
+ if (fromReg->is_stack()) {
+ int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
+ ldrb(tmp2, Address(sp, ld_off));
+ cbnz(tmp2, L_notNull);
+ } else {
+ cbnz(fromReg->as_Register(), L_notNull);
+ }
+ mov(val_obj, 0);
+ b(L_null);
+ bind(L_notNull);
+ continue;
+ }
+
+ assert(off > 0, "offset in object should be positive");
+ size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
+
+ // Pack the scalarized field into the value object.
+ Address dst(val_obj, off);
+
+ if (!fromReg->is_FloatRegister()) {
+ Register src;
+ if (fromReg->is_stack()) {
+ src = from_reg_tmp;
+ int ld_off = fromReg->reg2stack() * VMRegImpl::stack_slot_size;
+ load_sized_value(src, Address(sp, ld_off), size_in_bytes, /* is_signed */ false);
+ } else {
+ src = fromReg->as_Register();
+ }
+ assert_different_registers(dst.base(), src, tmp1, tmp2, tmp3, val_array);
+ if (is_reference_type(bt)) {
+ store_heap_oop(dst, src, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
+ } else {
+ store_sized_value(dst, src, size_in_bytes);
+ }
+ } else if (bt == T_DOUBLE) {
+ strd(fromReg->as_FloatRegister(), dst);
+ } else {
+ assert(bt == T_FLOAT, "must be float");
+ strs(fromReg->as_FloatRegister(), dst);
+ }
+ }
+ bind(L_null);
+ sig_index = stream.sig_index();
+ from_index = stream.regs_index();
+
+ assert(reg_state[to->value()] == reg_writable, "must have already been read");
+ bool success = move_helper(val_obj->as_VMReg(), to, T_OBJECT, reg_state);
+ assert(success, "to register must be writeable");
+
+ return true;
+ }
+
+ VMReg MacroAssembler::spill_reg_for(VMReg reg) {
+ return (reg->is_FloatRegister()) ? v8->as_VMReg() : r14->as_VMReg();
+ }
+
void MacroAssembler::cache_wb(Address line) {
assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
assert(line.index() == noreg, "index should be noreg");
assert(line.offset() == 0, "offset should be 0");
// would like to assert this
br(Assembler::NE, slow);
// Try to lock. Transition lock bits 0b01 => 0b00
assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
orr(mark, mark, markWord::unlocked_value);
+ if (EnableValhalla) {
+ // Mask inline_type bit such that we go to the slow path if object is an inline type
+ andr(mark, mark, ~((int) markWord::inline_type_bit_in_place));
+ }
eor(t, mark, markWord::unlocked_value);
cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
/*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
br(Assembler::NE, slow);
< prev index next >