1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "oops/compressedKlass.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/powerOfTwo.hpp"
  36 
  37 class OopMap;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46 
  47  public:
  48   using Assembler::mov;
  49   using Assembler::movi;
  50 
  51  protected:
  52 
  53   // Support for VM calls
  54   //
  55   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  56   // may customize this version by overriding it for its purposes (e.g., to save/restore
  57   // additional registers when doing a VM call).
  58   virtual void call_VM_leaf_base(
  59     address entry_point,               // the entry point
  60     int     number_of_arguments,        // the number of arguments to pop after the call
  61     Label *retaddr = nullptr
  62   );
  63 
  64   virtual void call_VM_leaf_base(
  65     address entry_point,               // the entry point
  66     int     number_of_arguments,        // the number of arguments to pop after the call
  67     Label &retaddr) {
  68     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  69   }
  70 
  71   // This is the base routine called by the different versions of call_VM. The interpreter
  72   // may customize this version by overriding it for its purposes (e.g., to save/restore
  73   // additional registers when doing a VM call).
  74   //
  75   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  76   // returns the register which contains the thread upon return. If a thread register has been
  77   // specified, the return value will correspond to that register. If no last_java_sp is specified
  78   // (noreg) than rsp will be used instead.
  79   virtual void call_VM_base(           // returns the register containing the thread upon return
  80     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  81     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  82     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  83     address  entry_point,              // the entry point
  84     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  85     bool     check_exceptions          // whether to check for pending exceptions after return
  86   );
  87 
  88   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  89 
  90   enum KlassDecodeMode {
  91     KlassDecodeNone,
  92     KlassDecodeZero,
  93     KlassDecodeXor,
  94     KlassDecodeMovk
  95   };
  96 
  97   KlassDecodeMode klass_decode_mode();
  98 
  99  private:
 100   static KlassDecodeMode _klass_decode_mode;
 101 
 102  public:
 103   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 104 
 105  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 106  // The implementation is only non-empty for the InterpreterMacroAssembler,
 107  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 108  virtual void check_and_handle_popframe(Register java_thread);
 109  virtual void check_and_handle_earlyret(Register java_thread);
 110 
 111   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 112   void rt_call(address dest, Register tmp = rscratch1);
 113 
 114   // Load Effective Address
 115   void lea(Register r, const Address &a) {
 116     InstructionMark im(this);
 117     a.lea(this, r);
 118   }
 119 
 120   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 121      accesses, and these can exceed the offset range. */
 122   Address legitimize_address(const Address &a, int size, Register scratch) {
 123     if (a.getMode() == Address::base_plus_offset) {
 124       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 125         block_comment("legitimize_address {");
 126         lea(scratch, a);
 127         block_comment("} legitimize_address");
 128         return Address(scratch);
 129       }
 130     }
 131     return a;
 132   }
 133 
 134   void addmw(Address a, Register incr, Register scratch) {
 135     ldrw(scratch, a);
 136     addw(scratch, scratch, incr);
 137     strw(scratch, a);
 138   }
 139 
 140   // Add constant to memory word
 141   void addmw(Address a, int imm, Register scratch) {
 142     ldrw(scratch, a);
 143     if (imm > 0)
 144       addw(scratch, scratch, (unsigned)imm);
 145     else
 146       subw(scratch, scratch, (unsigned)-imm);
 147     strw(scratch, a);
 148   }
 149 
 150   void bind(Label& L) {
 151     Assembler::bind(L);
 152     code()->clear_last_insn();
 153   }
 154 
 155   void membar(Membar_mask_bits order_constraint);
 156 
 157   using Assembler::ldr;
 158   using Assembler::str;
 159   using Assembler::ldrw;
 160   using Assembler::strw;
 161 
 162   void ldr(Register Rx, const Address &adr);
 163   void ldrw(Register Rw, const Address &adr);
 164   void str(Register Rx, const Address &adr);
 165   void strw(Register Rx, const Address &adr);
 166 
 167   // Frame creation and destruction shared between JITs.
 168   void build_frame(int framesize);
 169   void remove_frame(int framesize);
 170 
 171   virtual void _call_Unimplemented(address call_site) {
 172     mov(rscratch2, call_site);
 173   }
 174 
 175 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 176 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 177 // https://reviews.llvm.org/D3311
 178 
 179 #ifdef _WIN64
 180 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 181 #else
 182 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 183 #endif
 184 
 185   // aliases defined in AARCH64 spec
 186 
 187   template<class T>
 188   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 189 
 190   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 191   inline void cmp(Register Rd, unsigned imm) = delete;
 192 
 193   template<class T>
 194   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 195 
 196   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 197   inline void cmn(Register Rd, unsigned imm) = delete;
 198 
 199   void cset(Register Rd, Assembler::Condition cond) {
 200     csinc(Rd, zr, zr, ~cond);
 201   }
 202   void csetw(Register Rd, Assembler::Condition cond) {
 203     csincw(Rd, zr, zr, ~cond);
 204   }
 205 
 206   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 207     csneg(Rd, Rn, Rn, ~cond);
 208   }
 209   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 210     csnegw(Rd, Rn, Rn, ~cond);
 211   }
 212 
 213   inline void movw(Register Rd, Register Rn) {
 214     if (Rd == sp || Rn == sp) {
 215       Assembler::addw(Rd, Rn, 0U);
 216     } else {
 217       orrw(Rd, zr, Rn);
 218     }
 219   }
 220   inline void mov(Register Rd, Register Rn) {
 221     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 222     if (Rd == Rn) {
 223     } else if (Rd == sp || Rn == sp) {
 224       Assembler::add(Rd, Rn, 0U);
 225     } else {
 226       orr(Rd, zr, Rn);
 227     }
 228   }
 229 
 230   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 231   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 232 
 233   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 234   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 235 
 236   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 237   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 238 
 239   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 240     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 241   }
 242   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 244   }
 245 
 246   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 247     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 248   }
 249   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     bfm(Rd, Rn, lsb , (lsb + width - 1));
 251   }
 252 
 253   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 254     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 255   }
 256   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 258   }
 259 
 260   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 261     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 262   }
 263   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 264     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 265   }
 266 
 267   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 268     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 269   }
 270   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 271     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 272   }
 273 
 274   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 275     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 276   }
 277   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 278     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 279   }
 280 
 281   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 282     sbfmw(Rd, Rn, imm, 31);
 283   }
 284 
 285   inline void asr(Register Rd, Register Rn, unsigned imm) {
 286     sbfm(Rd, Rn, imm, 63);
 287   }
 288 
 289   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 290     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 291   }
 292 
 293   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 294     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 295   }
 296 
 297   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 298     ubfmw(Rd, Rn, imm, 31);
 299   }
 300 
 301   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 302     ubfm(Rd, Rn, imm, 63);
 303   }
 304 
 305   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 306     extrw(Rd, Rn, Rn, imm);
 307   }
 308 
 309   inline void ror(Register Rd, Register Rn, unsigned imm) {
 310     extr(Rd, Rn, Rn, imm);
 311   }
 312 
 313   inline void sxtbw(Register Rd, Register Rn) {
 314     sbfmw(Rd, Rn, 0, 7);
 315   }
 316   inline void sxthw(Register Rd, Register Rn) {
 317     sbfmw(Rd, Rn, 0, 15);
 318   }
 319   inline void sxtb(Register Rd, Register Rn) {
 320     sbfm(Rd, Rn, 0, 7);
 321   }
 322   inline void sxth(Register Rd, Register Rn) {
 323     sbfm(Rd, Rn, 0, 15);
 324   }
 325   inline void sxtw(Register Rd, Register Rn) {
 326     sbfm(Rd, Rn, 0, 31);
 327   }
 328 
 329   inline void uxtbw(Register Rd, Register Rn) {
 330     ubfmw(Rd, Rn, 0, 7);
 331   }
 332   inline void uxthw(Register Rd, Register Rn) {
 333     ubfmw(Rd, Rn, 0, 15);
 334   }
 335   inline void uxtb(Register Rd, Register Rn) {
 336     ubfm(Rd, Rn, 0, 7);
 337   }
 338   inline void uxth(Register Rd, Register Rn) {
 339     ubfm(Rd, Rn, 0, 15);
 340   }
 341   inline void uxtw(Register Rd, Register Rn) {
 342     ubfm(Rd, Rn, 0, 31);
 343   }
 344 
 345   inline void cmnw(Register Rn, Register Rm) {
 346     addsw(zr, Rn, Rm);
 347   }
 348   inline void cmn(Register Rn, Register Rm) {
 349     adds(zr, Rn, Rm);
 350   }
 351 
 352   inline void cmpw(Register Rn, Register Rm) {
 353     subsw(zr, Rn, Rm);
 354   }
 355   inline void cmp(Register Rn, Register Rm) {
 356     subs(zr, Rn, Rm);
 357   }
 358 
 359   inline void negw(Register Rd, Register Rn) {
 360     subw(Rd, zr, Rn);
 361   }
 362 
 363   inline void neg(Register Rd, Register Rn) {
 364     sub(Rd, zr, Rn);
 365   }
 366 
 367   inline void negsw(Register Rd, Register Rn) {
 368     subsw(Rd, zr, Rn);
 369   }
 370 
 371   inline void negs(Register Rd, Register Rn) {
 372     subs(Rd, zr, Rn);
 373   }
 374 
 375   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 376     addsw(zr, Rn, Rm, kind, shift);
 377   }
 378   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 379     adds(zr, Rn, Rm, kind, shift);
 380   }
 381 
 382   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 383     subsw(zr, Rn, Rm, kind, shift);
 384   }
 385   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 386     subs(zr, Rn, Rm, kind, shift);
 387   }
 388 
 389   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 390     subw(Rd, zr, Rn, kind, shift);
 391   }
 392 
 393   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 394     sub(Rd, zr, Rn, kind, shift);
 395   }
 396 
 397   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 398     subsw(Rd, zr, Rn, kind, shift);
 399   }
 400 
 401   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 402     subs(Rd, zr, Rn, kind, shift);
 403   }
 404 
 405   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 406     msubw(Rd, Rn, Rm, zr);
 407   }
 408   inline void mneg(Register Rd, Register Rn, Register Rm) {
 409     msub(Rd, Rn, Rm, zr);
 410   }
 411 
 412   inline void mulw(Register Rd, Register Rn, Register Rm) {
 413     maddw(Rd, Rn, Rm, zr);
 414   }
 415   inline void mul(Register Rd, Register Rn, Register Rm) {
 416     madd(Rd, Rn, Rm, zr);
 417   }
 418 
 419   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 420     smsubl(Rd, Rn, Rm, zr);
 421   }
 422   inline void smull(Register Rd, Register Rn, Register Rm) {
 423     smaddl(Rd, Rn, Rm, zr);
 424   }
 425 
 426   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 427     umsubl(Rd, Rn, Rm, zr);
 428   }
 429   inline void umull(Register Rd, Register Rn, Register Rm) {
 430     umaddl(Rd, Rn, Rm, zr);
 431   }
 432 
 433 #define WRAP(INSN)                                                            \
 434   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 435     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 436       nop();                                                                  \
 437     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 438   }
 439 
 440   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 441   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 442 #undef WRAP
 443 
 444 
 445   // macro assembly operations needed for aarch64
 446 
 447   // first two private routines for loading 32 bit or 64 bit constants
 448 private:
 449 
 450   void mov_immediate64(Register dst, uint64_t imm64);
 451   void mov_immediate32(Register dst, uint32_t imm32);
 452 
 453   int push(unsigned int bitset, Register stack);
 454   int pop(unsigned int bitset, Register stack);
 455 
 456   int push_fp(unsigned int bitset, Register stack);
 457   int pop_fp(unsigned int bitset, Register stack);
 458 
 459   int push_p(unsigned int bitset, Register stack);
 460   int pop_p(unsigned int bitset, Register stack);
 461 
 462   void mov(Register dst, Address a);
 463 
 464 public:
 465   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 466   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 467 
 468   void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 469   void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 470 
 471   static RegSet call_clobbered_gp_registers();
 472 
 473   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 474   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 475 
 476   // Push and pop everything that might be clobbered by a native
 477   // runtime call except rscratch1 and rscratch2.  (They are always
 478   // scratch, so we don't have to protect them.)  Only save the lower
 479   // 64 bits of each vector register. Additional registers can be excluded
 480   // in a passed RegSet.
 481   void push_call_clobbered_registers_except(RegSet exclude);
 482   void pop_call_clobbered_registers_except(RegSet exclude);
 483 
 484   void push_call_clobbered_registers() {
 485     push_call_clobbered_registers_except(RegSet());
 486   }
 487   void pop_call_clobbered_registers() {
 488     pop_call_clobbered_registers_except(RegSet());
 489   }
 490 
 491 
 492   // now mov instructions for loading absolute addresses and 32 or
 493   // 64 bit integers
 494 
 495   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 496 
 497   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 498   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 499 
 500   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 501 
 502   void mov(Register dst, RegisterOrConstant src) {
 503     if (src.is_register())
 504       mov(dst, src.as_register());
 505     else
 506       mov(dst, src.as_constant());
 507   }
 508 
 509   void movptr(Register r, uintptr_t imm64);
 510 
 511   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 512 
 513   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 514     orr(Vd, T, Vn, Vn);
 515   }
 516 
 517   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 518     fcvtsh(tmp, src);
 519     smov(dst, tmp, H, 0);
 520   }
 521 
 522   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 523     mov(tmp, H, 0, src);
 524     fcvths(dst, tmp);
 525   }
 526 
 527   // Generalized Test Bit And Branch, including a "far" variety which
 528   // spans more than 32KiB.
 529   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 530     assert(cond == EQ || cond == NE, "must be");
 531 
 532     if (isfar)
 533       cond = ~cond;
 534 
 535     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 536     if (cond == Assembler::EQ)
 537       branch = &Assembler::tbz;
 538     else
 539       branch = &Assembler::tbnz;
 540 
 541     if (isfar) {
 542       Label L;
 543       (this->*branch)(Rt, bitpos, L);
 544       b(dest);
 545       bind(L);
 546     } else {
 547       (this->*branch)(Rt, bitpos, dest);
 548     }
 549   }
 550 
 551   // macro instructions for accessing and updating floating point
 552   // status register
 553   //
 554   // FPSR : op1 == 011
 555   //        CRn == 0100
 556   //        CRm == 0100
 557   //        op2 == 001
 558 
 559   inline void get_fpsr(Register reg)
 560   {
 561     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 562   }
 563 
 564   inline void set_fpsr(Register reg)
 565   {
 566     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 567   }
 568 
 569   inline void clear_fpsr()
 570   {
 571     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 572   }
 573 
 574   // FPCR : op1 == 011
 575   //        CRn == 0100
 576   //        CRm == 0100
 577   //        op2 == 000
 578 
 579   inline void get_fpcr(Register reg) {
 580     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 581   }
 582 
 583   inline void set_fpcr(Register reg) {
 584     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 585   }
 586 
 587   // DCZID_EL0: op1 == 011
 588   //            CRn == 0000
 589   //            CRm == 0000
 590   //            op2 == 111
 591   inline void get_dczid_el0(Register reg)
 592   {
 593     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 594   }
 595 
 596   // CTR_EL0:   op1 == 011
 597   //            CRn == 0000
 598   //            CRm == 0000
 599   //            op2 == 001
 600   inline void get_ctr_el0(Register reg)
 601   {
 602     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 603   }
 604 
 605   inline void get_nzcv(Register reg) {
 606     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 607   }
 608 
 609   inline void set_nzcv(Register reg) {
 610     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 611   }
 612 
 613   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 614   int corrected_idivl(Register result, Register ra, Register rb,
 615                       bool want_remainder, Register tmp = rscratch1);
 616   int corrected_idivq(Register result, Register ra, Register rb,
 617                       bool want_remainder, Register tmp = rscratch1);
 618 
 619   // Support for null-checks
 620   //
 621   // Generates code that causes a null OS exception if the content of reg is null.
 622   // If the accessed location is M[reg + offset] and the offset is known, provide the
 623   // offset. No explicit code generation is needed if the offset is within a certain
 624   // range (0 <= offset <= page_size).
 625 
 626   virtual void null_check(Register reg, int offset = -1);
 627   static bool needs_explicit_null_check(intptr_t offset);
 628   static bool uses_implicit_null_check(void* address);
 629 
 630   static address target_addr_for_insn(address insn_addr, unsigned insn);
 631   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 632   static address target_addr_for_insn(address insn_addr) {
 633     unsigned insn = *(unsigned*)insn_addr;
 634     return target_addr_for_insn(insn_addr, insn);
 635   }
 636   static address target_addr_for_insn_or_null(address insn_addr) {
 637     unsigned insn = *(unsigned*)insn_addr;
 638     return target_addr_for_insn_or_null(insn_addr, insn);
 639   }
 640 
 641   // Required platform-specific helpers for Label::patch_instructions.
 642   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 643   static int pd_patch_instruction_size(address branch, address target);
 644   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 645     pd_patch_instruction_size(branch, target);
 646   }
 647   static address pd_call_destination(address branch) {
 648     return target_addr_for_insn(branch);
 649   }
 650 #ifndef PRODUCT
 651   static void pd_print_patched_instruction(address branch);
 652 #endif
 653 
 654   static int patch_oop(address insn_addr, address o);
 655   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 656 
 657   // Return whether code is emitted to a scratch blob.
 658   virtual bool in_scratch_emit_size() {
 659     return false;
 660   }
 661   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 662   static int max_trampoline_stub_size();
 663   void emit_static_call_stub();
 664   static int static_call_stub_size();
 665 
 666   // The following 4 methods return the offset of the appropriate move instruction
 667 
 668   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 669   int load_unsigned_byte(Register dst, Address src);
 670   int load_unsigned_short(Register dst, Address src);
 671 
 672   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 673   int load_signed_byte(Register dst, Address src);
 674   int load_signed_short(Register dst, Address src);
 675 
 676   int load_signed_byte32(Register dst, Address src);
 677   int load_signed_short32(Register dst, Address src);
 678 
 679   // Support for sign-extension (hi:lo = extend_sign(lo))
 680   void extend_sign(Register hi, Register lo);
 681 
 682   // Load and store values by size and signed-ness
 683   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 684   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 685 
 686   // Support for inc/dec with optimal instruction selection depending on value
 687 
 688   // x86_64 aliases an unqualified register/address increment and
 689   // decrement to call incrementq and decrementq but also supports
 690   // explicitly sized calls to incrementq/decrementq or
 691   // incrementl/decrementl
 692 
 693   // for aarch64 the proper convention would be to use
 694   // increment/decrement for 64 bit operations and
 695   // incrementw/decrementw for 32 bit operations. so when porting
 696   // x86_64 code we can leave calls to increment/decrement as is,
 697   // replace incrementq/decrementq with increment/decrement and
 698   // replace incrementl/decrementl with incrementw/decrementw.
 699 
 700   // n.b. increment/decrement calls with an Address destination will
 701   // need to use a scratch register to load the value to be
 702   // incremented. increment/decrement calls which add or subtract a
 703   // constant value greater than 2^12 will need to use a 2nd scratch
 704   // register to hold the constant. so, a register increment/decrement
 705   // may trash rscratch2 and an address increment/decrement trash
 706   // rscratch and rscratch2
 707 
 708   void decrementw(Address dst, int value = 1);
 709   void decrementw(Register reg, int value = 1);
 710 
 711   void decrement(Register reg, int value = 1);
 712   void decrement(Address dst, int value = 1);
 713 
 714   void incrementw(Address dst, int value = 1);
 715   void incrementw(Register reg, int value = 1);
 716 
 717   void increment(Register reg, int value = 1);
 718   void increment(Address dst, int value = 1);
 719 
 720 
 721   // Alignment
 722   void align(int modulus);
 723 
 724   // nop
 725   void post_call_nop();
 726 
 727   // Stack frame creation/removal
 728   void enter(bool strip_ret_addr = false);
 729   void leave();
 730 
 731   // ROP Protection
 732   void protect_return_address();
 733   void protect_return_address(Register return_reg);
 734   void authenticate_return_address();
 735   void authenticate_return_address(Register return_reg);
 736   void strip_return_address();
 737   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 738 
 739   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 740   // The pointer will be loaded into the thread register.
 741   void get_thread(Register thread);
 742 
 743   // support for argument shuffling
 744   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 745   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 746   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 747   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 748   void object_move(
 749                    OopMap* map,
 750                    int oop_handle_offset,
 751                    int framesize_in_slots,
 752                    VMRegPair src,
 753                    VMRegPair dst,
 754                    bool is_receiver,
 755                    int* receiver_offset);
 756 
 757 
 758   // Support for VM calls
 759   //
 760   // It is imperative that all calls into the VM are handled via the call_VM macros.
 761   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 762   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 763 
 764 
 765   void call_VM(Register oop_result,
 766                address entry_point,
 767                bool check_exceptions = true);
 768   void call_VM(Register oop_result,
 769                address entry_point,
 770                Register arg_1,
 771                bool check_exceptions = true);
 772   void call_VM(Register oop_result,
 773                address entry_point,
 774                Register arg_1, Register arg_2,
 775                bool check_exceptions = true);
 776   void call_VM(Register oop_result,
 777                address entry_point,
 778                Register arg_1, Register arg_2, Register arg_3,
 779                bool check_exceptions = true);
 780 
 781   // Overloadings with last_Java_sp
 782   void call_VM(Register oop_result,
 783                Register last_java_sp,
 784                address entry_point,
 785                int number_of_arguments = 0,
 786                bool check_exceptions = true);
 787   void call_VM(Register oop_result,
 788                Register last_java_sp,
 789                address entry_point,
 790                Register arg_1, bool
 791                check_exceptions = true);
 792   void call_VM(Register oop_result,
 793                Register last_java_sp,
 794                address entry_point,
 795                Register arg_1, Register arg_2,
 796                bool check_exceptions = true);
 797   void call_VM(Register oop_result,
 798                Register last_java_sp,
 799                address entry_point,
 800                Register arg_1, Register arg_2, Register arg_3,
 801                bool check_exceptions = true);
 802 
 803   void get_vm_result  (Register oop_result, Register thread);
 804   void get_vm_result_2(Register metadata_result, Register thread);
 805 
 806   // These always tightly bind to MacroAssembler::call_VM_base
 807   // bypassing the virtual implementation
 808   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 809   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 810   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 811   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 812   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 813 
 814   void call_VM_leaf(address entry_point,
 815                     int number_of_arguments = 0);
 816   void call_VM_leaf(address entry_point,
 817                     Register arg_1);
 818   void call_VM_leaf(address entry_point,
 819                     Register arg_1, Register arg_2);
 820   void call_VM_leaf(address entry_point,
 821                     Register arg_1, Register arg_2, Register arg_3);
 822 
 823   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 824   // bypassing the virtual implementation
 825   void super_call_VM_leaf(address entry_point);
 826   void super_call_VM_leaf(address entry_point, Register arg_1);
 827   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 828   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 829   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 830 
 831   // last Java Frame (fills frame anchor)
 832   void set_last_Java_frame(Register last_java_sp,
 833                            Register last_java_fp,
 834                            address last_java_pc,
 835                            Register scratch);
 836 
 837   void set_last_Java_frame(Register last_java_sp,
 838                            Register last_java_fp,
 839                            Label &last_java_pc,
 840                            Register scratch);
 841 
 842   void set_last_Java_frame(Register last_java_sp,
 843                            Register last_java_fp,
 844                            Register last_java_pc,
 845                            Register scratch);
 846 
 847   void reset_last_Java_frame(Register thread);
 848 
 849   // thread in the default location (rthread)
 850   void reset_last_Java_frame(bool clear_fp);
 851 
 852   // Stores
 853   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 854   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 855 
 856   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 857   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 858 
 859   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 860   void c2bool(Register x);
 861 
 862   void load_method_holder_cld(Register rresult, Register rmethod);
 863   void load_method_holder(Register holder, Register method);
 864 
 865   // oop manipulations
 866   void load_klass(Register dst, Register src);
 867   void store_klass(Register dst, Register src);
 868   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 869 
 870   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 871   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 872   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 873 
 874   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 875                       Register tmp1, Register tmp2);
 876 
 877   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 878                        Register tmp1, Register tmp2, Register tmp3);
 879 
 880   void load_heap_oop(Register dst, Address src, Register tmp1,
 881                      Register tmp2, DecoratorSet decorators = 0);
 882 
 883   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 884                               Register tmp2, DecoratorSet decorators = 0);
 885   void store_heap_oop(Address dst, Register val, Register tmp1,
 886                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 887 
 888   // currently unimplemented
 889   // Used for storing null. All other oop constants should be
 890   // stored using routines that take a jobject.
 891   void store_heap_oop_null(Address dst);
 892 
 893   void store_klass_gap(Register dst, Register src);
 894 
 895   // This dummy is to prevent a call to store_heap_oop from
 896   // converting a zero (like null) into a Register by giving
 897   // the compiler two choices it can't resolve
 898 
 899   void store_heap_oop(Address dst, void* dummy);
 900 
 901   void encode_heap_oop(Register d, Register s);
 902   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 903   void decode_heap_oop(Register d, Register s);
 904   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 905   void encode_heap_oop_not_null(Register r);
 906   void decode_heap_oop_not_null(Register r);
 907   void encode_heap_oop_not_null(Register dst, Register src);
 908   void decode_heap_oop_not_null(Register dst, Register src);
 909 
 910   void set_narrow_oop(Register dst, jobject obj);
 911 
 912   void encode_klass_not_null(Register r);
 913   void decode_klass_not_null(Register r);
 914   void encode_klass_not_null(Register dst, Register src);
 915   void decode_klass_not_null(Register dst, Register src);
 916 
 917   void set_narrow_klass(Register dst, Klass* k);
 918 
 919   // if heap base register is used - reinit it with the correct value
 920   void reinit_heapbase();
 921 
 922   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 923 
 924   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 925                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 926   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 927                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 928 
 929   void push_cont_fastpath(Register java_thread);
 930   void pop_cont_fastpath(Register java_thread);
 931 
 932   // Round up to a power of two
 933   void round_to(Register reg, int modulus);
 934 
 935   // java.lang.Math::round intrinsics
 936   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 937   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 938 
 939   // allocation
 940   void tlab_allocate(
 941     Register obj,                      // result: pointer to object after successful allocation
 942     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 943     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 944     Register t1,                       // temp register
 945     Register t2,                       // temp register
 946     Label&   slow_case                 // continuation point if fast allocation fails
 947   );
 948   void verify_tlab();
 949 
 950   // interface method calling
 951   void lookup_interface_method(Register recv_klass,
 952                                Register intf_klass,
 953                                RegisterOrConstant itable_index,
 954                                Register method_result,
 955                                Register scan_temp,
 956                                Label& no_such_interface,
 957                    bool return_method = true);
 958 
 959   void lookup_interface_method_stub(Register recv_klass,
 960                                     Register holder_klass,
 961                                     Register resolved_klass,
 962                                     Register method_result,
 963                                     Register temp_reg,
 964                                     Register temp_reg2,
 965                                     int itable_index,
 966                                     Label& L_no_such_interface);
 967 
 968   // virtual method calling
 969   // n.b. x86 allows RegisterOrConstant for vtable_index
 970   void lookup_virtual_method(Register recv_klass,
 971                              RegisterOrConstant vtable_index,
 972                              Register method_result);
 973 
 974   // Test sub_klass against super_klass, with fast and slow paths.
 975 
 976   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 977   // One of the three labels can be null, meaning take the fall-through.
 978   // If super_check_offset is -1, the value is loaded up from super_klass.
 979   // No registers are killed, except temp_reg.
 980   void check_klass_subtype_fast_path(Register sub_klass,
 981                                      Register super_klass,
 982                                      Register temp_reg,
 983                                      Label* L_success,
 984                                      Label* L_failure,
 985                                      Label* L_slow_path,
 986                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 987 
 988   // The rest of the type check; must be wired to a corresponding fast path.
 989   // It does not repeat the fast path logic, so don't use it standalone.
 990   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 991   // Updates the sub's secondary super cache as necessary.
 992   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 993   void check_klass_subtype_slow_path(Register sub_klass,
 994                                      Register super_klass,
 995                                      Register temp_reg,
 996                                      Register temp2_reg,
 997                                      Label* L_success,
 998                                      Label* L_failure,
 999                                      bool set_cond_codes = false);
1000 
1001   // Simplified, combined version, good for typical uses.
1002   // Falls through on failure.
1003   void check_klass_subtype(Register sub_klass,
1004                            Register super_klass,
1005                            Register temp_reg,
1006                            Label& L_success);
1007 
1008   void clinit_barrier(Register klass,
1009                       Register thread,
1010                       Label* L_fast_path = nullptr,
1011                       Label* L_slow_path = nullptr);
1012 
1013   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1014 
1015   void verify_sve_vector_length(Register tmp = rscratch1);
1016   void reinitialize_ptrue() {
1017     if (UseSVE > 0) {
1018       sve_ptrue(ptrue, B);
1019     }
1020   }
1021   void verify_ptrue();
1022 
1023   // Debugging
1024 
1025   // only if +VerifyOops
1026   void _verify_oop(Register reg, const char* s, const char* file, int line);
1027   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1028 
1029   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1030     if (VerifyOops) {
1031       _verify_oop(reg, s, file, line);
1032     }
1033   }
1034   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1035     if (VerifyOops) {
1036       _verify_oop_addr(reg, s, file, line);
1037     }
1038   }
1039 
1040 // TODO: verify method and klass metadata (compare against vptr?)
1041   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1042   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1043 
1044 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1045 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1046 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1047 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1048 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1049 
1050   // only if +VerifyFPU
1051   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1052 
1053   // prints msg, dumps registers and stops execution
1054   void stop(const char* msg);
1055 
1056   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1057 
1058   void untested()                                { stop("untested"); }
1059 
1060   void unimplemented(const char* what = "");
1061 
1062   void should_not_reach_here()                   { stop("should not reach here"); }
1063 
1064   void _assert_asm(Condition cc, const char* msg);
1065 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1066 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1067 
1068   // Stack overflow checking
1069   void bang_stack_with_offset(int offset) {
1070     // stack grows down, caller passes positive offset
1071     assert(offset > 0, "must bang with negative offset");
1072     sub(rscratch2, sp, offset);
1073     str(zr, Address(rscratch2));
1074   }
1075 
1076   // Writes to stack successive pages until offset reached to check for
1077   // stack overflow + shadow pages.  Also, clobbers tmp
1078   void bang_stack_size(Register size, Register tmp);
1079 
1080   // Check for reserved stack access in method being exited (for JIT)
1081   void reserved_stack_check();
1082 
1083   // Arithmetics
1084 
1085   void addptr(const Address &dst, int32_t src);
1086   void cmpptr(Register src1, Address src2);
1087 
1088   void cmpoop(Register obj1, Register obj2);
1089 
1090   // Various forms of CAS
1091 
1092   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1093                           Label &succeed, Label *fail);
1094   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1095                   Label &succeed, Label *fail);
1096 
1097   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1098                   Label &succeed, Label *fail);
1099 
1100   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1101   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1102   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1103   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1104 
1105   void atomic_xchg(Register prev, Register newv, Register addr);
1106   void atomic_xchgw(Register prev, Register newv, Register addr);
1107   void atomic_xchgl(Register prev, Register newv, Register addr);
1108   void atomic_xchglw(Register prev, Register newv, Register addr);
1109   void atomic_xchgal(Register prev, Register newv, Register addr);
1110   void atomic_xchgalw(Register prev, Register newv, Register addr);
1111 
1112   void orptr(Address adr, RegisterOrConstant src) {
1113     ldr(rscratch1, adr);
1114     if (src.is_register())
1115       orr(rscratch1, rscratch1, src.as_register());
1116     else
1117       orr(rscratch1, rscratch1, src.as_constant());
1118     str(rscratch1, adr);
1119   }
1120 
1121   // A generic CAS; success or failure is in the EQ flag.
1122   // Clobbers rscratch1
1123   void cmpxchg(Register addr, Register expected, Register new_val,
1124                enum operand_size size,
1125                bool acquire, bool release, bool weak,
1126                Register result);
1127 
1128 #ifdef ASSERT
1129   // Template short-hand support to clean-up after a failed call to trampoline
1130   // call generation (see trampoline_call() below),  when a set of Labels must
1131   // be reset (before returning).
1132   template<typename Label, typename... More>
1133   void reset_labels(Label &lbl, More&... more) {
1134     lbl.reset(); reset_labels(more...);
1135   }
1136   template<typename Label>
1137   void reset_labels(Label &lbl) {
1138     lbl.reset();
1139   }
1140 #endif
1141 
1142 private:
1143   void compare_eq(Register rn, Register rm, enum operand_size size);
1144 
1145 public:
1146   // AArch64 OpenJDK uses four different types of calls:
1147   //   - direct call: bl pc_relative_offset
1148   //     This is the shortest and the fastest, but the offset has the range:
1149   //     +/-128MB for the release build, +/-2MB for the debug build.
1150   //
1151   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1152   //     This is longer than a direct call. The offset has
1153   //     the range +/-4GB. As the code cache size is limited to 4GB,
1154   //     far calls can reach anywhere in the code cache. If a jump is
1155   //     needed rather than a call, a far jump 'b reg' can be used instead.
1156   //     All instructions are embedded at a call site.
1157   //
1158   //   - trampoline call:
1159   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1160   //     of a direct call, which is used if the destination of a call is in range,
1161   //     and a register-indirect call. It has the advantages of reaching anywhere in
1162   //     the AArch64 address space and being patchable at runtime when the generated
1163   //     code is being executed by other threads.
1164   //
1165   //     [Main code section]
1166   //       bl trampoline
1167   //     [Stub code section]
1168   //     trampoline:
1169   //       ldr reg, pc + 8
1170   //       br reg
1171   //       <64-bit destination address>
1172   //
1173   //     If the destination is in range when the generated code is moved to the code
1174   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1175   //     is not used.
1176   //     The optimization does not remove the trampoline from the stub section.
1177   //     This is necessary because the trampoline may well be redirected later when
1178   //     code is patched, and the new destination may not be reachable by a simple BR
1179   //     instruction.
1180   //
1181   //   - indirect call: move reg, address; blr reg
1182   //     This too can reach anywhere in the address space, but it cannot be
1183   //     patched while code is running, so it must only be modified at a safepoint.
1184   //     This form of call is most suitable for targets at fixed addresses, which
1185   //     will never be patched.
1186   //
1187   // The patching we do conforms to the "Concurrent modification and
1188   // execution of instructions" section of the Arm Architectural
1189   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1190   // or SVC instructions to be modified while another thread is
1191   // executing them.
1192   //
1193   // To patch a trampoline call when the BL can't reach, we first modify
1194   // the 64-bit destination address in the trampoline, then modify the
1195   // BL to point to the trampoline, then flush the instruction cache to
1196   // broadcast the change to all executing threads. See
1197   // NativeCall::set_destination_mt_safe for the details.
1198   //
1199   // There is a benign race in that the other thread might observe the
1200   // modified BL before it observes the modified 64-bit destination
1201   // address. That does not matter because the destination method has been
1202   // invalidated, so there will be a trap at its start.
1203   // For this to work, the destination address in the trampoline is
1204   // always updated, even if we're not using the trampoline.
1205 
1206   // Emit a direct call if the entry address will always be in range,
1207   // otherwise a trampoline call.
1208   // Supported entry.rspec():
1209   // - relocInfo::runtime_call_type
1210   // - relocInfo::opt_virtual_call_type
1211   // - relocInfo::static_call_type
1212   // - relocInfo::virtual_call_type
1213   //
1214   // Return: the call PC or null if CodeCache is full.
1215   address trampoline_call(Address entry);
1216 
1217   static bool far_branches() {
1218     return ReservedCodeCacheSize > branch_range;
1219   }
1220 
1221   // Check if branches to the non nmethod section require a far jump
1222   static bool codestub_branch_needs_far_jump() {
1223     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1224   }
1225 
1226   // Emit a direct call/jump if the entry address will always be in range,
1227   // otherwise a far call/jump.
1228   // The address must be inside the code cache.
1229   // Supported entry.rspec():
1230   // - relocInfo::external_word_type
1231   // - relocInfo::runtime_call_type
1232   // - relocInfo::none
1233   // In the case of a far call/jump, the entry address is put in the tmp register.
1234   // The tmp register is invalidated.
1235   //
1236   // Far_jump returns the amount of the emitted code.
1237   void far_call(Address entry, Register tmp = rscratch1);
1238   int far_jump(Address entry, Register tmp = rscratch1);
1239 
1240   static int far_codestub_branch_size() {
1241     if (codestub_branch_needs_far_jump()) {
1242       return 3 * 4;  // adrp, add, br
1243     } else {
1244       return 4;
1245     }
1246   }
1247 
1248   // Emit the CompiledIC call idiom
1249   address ic_call(address entry, jint method_index = 0);
1250 
1251 public:
1252 
1253   // Data
1254 
1255   void mov_metadata(Register dst, Metadata* obj);
1256   Address allocate_metadata_address(Metadata* obj);
1257   Address constant_oop_address(jobject obj);
1258 
1259   void movoop(Register dst, jobject obj);
1260 
1261   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1262   void kernel_crc32(Register crc, Register buf, Register len,
1263         Register table0, Register table1, Register table2, Register table3,
1264         Register tmp, Register tmp2, Register tmp3);
1265   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1266   void kernel_crc32c(Register crc, Register buf, Register len,
1267         Register table0, Register table1, Register table2, Register table3,
1268         Register tmp, Register tmp2, Register tmp3);
1269 
1270   // Stack push and pop individual 64 bit registers
1271   void push(Register src);
1272   void pop(Register dst);
1273 
1274   void repne_scan(Register addr, Register value, Register count,
1275                   Register scratch);
1276   void repne_scanw(Register addr, Register value, Register count,
1277                    Register scratch);
1278 
1279   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1280   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1281 
1282   // If a constant does not fit in an immediate field, generate some
1283   // number of MOV instructions and then perform the operation
1284   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1285                              add_sub_imm_insn insn1,
1286                              add_sub_reg_insn insn2, bool is32);
1287   // Separate vsn which sets the flags
1288   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1289                                add_sub_imm_insn insn1,
1290                                add_sub_reg_insn insn2, bool is32);
1291 
1292 #define WRAP(INSN, is32)                                                \
1293   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1294     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1295   }                                                                     \
1296                                                                         \
1297   void INSN(Register Rd, Register Rn, Register Rm,                      \
1298              enum shift_kind kind, unsigned shift = 0) {                \
1299     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1300   }                                                                     \
1301                                                                         \
1302   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1303     Assembler::INSN(Rd, Rn, Rm);                                        \
1304   }                                                                     \
1305                                                                         \
1306   void INSN(Register Rd, Register Rn, Register Rm,                      \
1307            ext::operation option, int amount = 0) {                     \
1308     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1309   }
1310 
1311   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1312 
1313 #undef WRAP
1314 #define WRAP(INSN, is32)                                                \
1315   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1316     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1317   }                                                                     \
1318                                                                         \
1319   void INSN(Register Rd, Register Rn, Register Rm,                      \
1320              enum shift_kind kind, unsigned shift = 0) {                \
1321     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1322   }                                                                     \
1323                                                                         \
1324   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1325     Assembler::INSN(Rd, Rn, Rm);                                        \
1326   }                                                                     \
1327                                                                         \
1328   void INSN(Register Rd, Register Rn, Register Rm,                      \
1329            ext::operation option, int amount = 0) {                     \
1330     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1331   }
1332 
1333   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1334 
1335   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1336   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1337   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1338   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1339 
1340   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1341 
1342   void tableswitch(Register index, jint lowbound, jint highbound,
1343                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1344     adr(rscratch1, jumptable);
1345     subsw(rscratch2, index, lowbound);
1346     subsw(zr, rscratch2, highbound - lowbound);
1347     br(Assembler::HS, jumptable_end);
1348     add(rscratch1, rscratch1, rscratch2,
1349         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1350     br(rscratch1);
1351   }
1352 
1353   // Form an address from base + offset in Rd.  Rd may or may not
1354   // actually be used: you must use the Address that is returned.  It
1355   // is up to you to ensure that the shift provided matches the size
1356   // of your data.
1357   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1358 
1359   // Return true iff an address is within the 48-bit AArch64 address
1360   // space.
1361   bool is_valid_AArch64_address(address a) {
1362     return ((uint64_t)a >> 48) == 0;
1363   }
1364 
1365   // Load the base of the cardtable byte map into reg.
1366   void load_byte_map_base(Register reg);
1367 
1368   // Prolog generator routines to support switch between x86 code and
1369   // generated ARM code
1370 
1371   // routine to generate an x86 prolog for a stub function which
1372   // bootstraps into the generated ARM code which directly follows the
1373   // stub
1374   //
1375 
1376   public:
1377 
1378   void ldr_constant(Register dest, const Address &const_addr) {
1379     if (NearCpool) {
1380       ldr(dest, const_addr);
1381     } else {
1382       uint64_t offset;
1383       adrp(dest, InternalAddress(const_addr.target()), offset);
1384       ldr(dest, Address(dest, offset));
1385     }
1386   }
1387 
1388   address read_polling_page(Register r, relocInfo::relocType rtype);
1389   void get_polling_page(Register dest, relocInfo::relocType rtype);
1390 
1391   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1392   void update_byte_crc32(Register crc, Register val, Register table);
1393   void update_word_crc32(Register crc, Register v, Register tmp,
1394         Register table0, Register table1, Register table2, Register table3,
1395         bool upper = false);
1396 
1397   address count_positives(Register ary1, Register len, Register result);
1398 
1399   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1400                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1401 
1402   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1403                      int elem_size);
1404 
1405   void fill_words(Register base, Register cnt, Register value);
1406   address zero_words(Register base, uint64_t cnt);
1407   address zero_words(Register ptr, Register cnt);
1408   void zero_dcache_blocks(Register base, Register cnt);
1409 
1410   static const int zero_words_block_size;
1411 
1412   address byte_array_inflate(Register src, Register dst, Register len,
1413                              FloatRegister vtmp1, FloatRegister vtmp2,
1414                              FloatRegister vtmp3, Register tmp4);
1415 
1416   void char_array_compress(Register src, Register dst, Register len,
1417                            Register res,
1418                            FloatRegister vtmp0, FloatRegister vtmp1,
1419                            FloatRegister vtmp2, FloatRegister vtmp3,
1420                            FloatRegister vtmp4, FloatRegister vtmp5);
1421 
1422   void encode_iso_array(Register src, Register dst,
1423                         Register len, Register res, bool ascii,
1424                         FloatRegister vtmp0, FloatRegister vtmp1,
1425                         FloatRegister vtmp2, FloatRegister vtmp3,
1426                         FloatRegister vtmp4, FloatRegister vtmp5);
1427 
1428   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1429                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1430                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1431                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1432                 Register tmp3, Register tmp4, Register tmp5);
1433   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1434       address pio2, address dsin_coef, address dcos_coef);
1435  private:
1436   // begin trigonometric functions support block
1437   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1438   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1439   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1440   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1441   // end trigonometric functions support block
1442   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1443                        Register src1, Register src2);
1444   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1445     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1446   }
1447   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1448                              Register y, Register y_idx, Register z,
1449                              Register carry, Register product,
1450                              Register idx, Register kdx);
1451   void multiply_128_x_128_loop(Register y, Register z,
1452                                Register carry, Register carry2,
1453                                Register idx, Register jdx,
1454                                Register yz_idx1, Register yz_idx2,
1455                                Register tmp, Register tmp3, Register tmp4,
1456                                Register tmp7, Register product_hi);
1457   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1458         Register len, Register tmp0, Register tmp1, Register tmp2,
1459         Register tmp3);
1460   void kernel_crc32_using_crc32(Register crc, Register buf,
1461         Register len, Register tmp0, Register tmp1, Register tmp2,
1462         Register tmp3);
1463   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1464         Register len, Register tmp0, Register tmp1, Register tmp2,
1465         Register tmp3);
1466   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1467         Register len, Register tmp0, Register tmp1, Register tmp2,
1468         Register tmp3);
1469   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1470         Register len, Register tmp0, Register tmp1, Register tmp2,
1471         size_t table_offset);
1472 
1473   void ghash_modmul (FloatRegister result,
1474                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1475                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1476                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1477   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1478 public:
1479   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1480                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1481                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1482   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1483   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1484                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1485                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1486   void ghash_multiply_wide(int index,
1487                            FloatRegister result_lo, FloatRegister result_hi,
1488                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1489                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1490   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1491                     FloatRegister p, FloatRegister z, FloatRegister t1);
1492   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1493                     FloatRegister p, FloatRegister z, FloatRegister t1);
1494   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1495                                 Register data, Register blocks, int unrolls);
1496 
1497 
1498   void aesenc_loadkeys(Register key, Register keylen);
1499   void aesecb_encrypt(Register from, Register to, Register keylen,
1500                       FloatRegister data = v0, int unrolls = 1);
1501   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1502   void aes_round(FloatRegister input, FloatRegister subkey);
1503 
1504   // ChaCha20 functions support block
1505   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1506           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1507           FloatRegister tbl);
1508   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1509           FloatRegister dVec, bool colToDiag);
1510 
1511   // Place an ISB after code may have been modified due to a safepoint.
1512   void safepoint_isb();
1513 
1514 private:
1515   // Return the effective address r + (r1 << ext) + offset.
1516   // Uses rscratch2.
1517   Address offsetted_address(Register r, Register r1, Address::extend ext,
1518                             int offset, int size);
1519 
1520 private:
1521   // Returns an address on the stack which is reachable with a ldr/str of size
1522   // Uses rscratch2 if the address is not directly reachable
1523   Address spill_address(int size, int offset, Register tmp=rscratch2);
1524   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1525 
1526   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1527 
1528   // Check whether two loads/stores can be merged into ldp/stp.
1529   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1530 
1531   // Merge current load/store with previous load/store into ldp/stp.
1532   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1533 
1534   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1535   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1536 
1537 public:
1538   void spill(Register Rx, bool is64, int offset) {
1539     if (is64) {
1540       str(Rx, spill_address(8, offset));
1541     } else {
1542       strw(Rx, spill_address(4, offset));
1543     }
1544   }
1545   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1546     str(Vx, T, spill_address(1 << (int)T, offset));
1547   }
1548 
1549   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1550     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1551   }
1552   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1553     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1554   }
1555 
1556   void unspill(Register Rx, bool is64, int offset) {
1557     if (is64) {
1558       ldr(Rx, spill_address(8, offset));
1559     } else {
1560       ldrw(Rx, spill_address(4, offset));
1561     }
1562   }
1563   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1564     ldr(Vx, T, spill_address(1 << (int)T, offset));
1565   }
1566 
1567   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1568     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1569   }
1570   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1571     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1572   }
1573 
1574   void spill_copy128(int src_offset, int dst_offset,
1575                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1576     if (src_offset < 512 && (src_offset & 7) == 0 &&
1577         dst_offset < 512 && (dst_offset & 7) == 0) {
1578       ldp(tmp1, tmp2, Address(sp, src_offset));
1579       stp(tmp1, tmp2, Address(sp, dst_offset));
1580     } else {
1581       unspill(tmp1, true, src_offset);
1582       spill(tmp1, true, dst_offset);
1583       unspill(tmp1, true, src_offset+8);
1584       spill(tmp1, true, dst_offset+8);
1585     }
1586   }
1587   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1588                                             int sve_vec_reg_size_in_bytes) {
1589     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1590     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1591       spill_copy128(src_offset, dst_offset);
1592       src_offset += 16;
1593       dst_offset += 16;
1594     }
1595   }
1596   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1597                                                int sve_predicate_reg_size_in_bytes) {
1598     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1599     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1600     reinitialize_ptrue();
1601   }
1602   void cache_wb(Address line);
1603   void cache_wbsync(bool is_pre);
1604 
1605   // Code for java.lang.Thread::onSpinWait() intrinsic.
1606   void spin_wait();
1607 
1608   void lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow);
1609   void lightweight_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow);
1610 
1611 private:
1612   // Check the current thread doesn't need a cross modify fence.
1613   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1614 
1615 };
1616 
1617 #ifdef ASSERT
1618 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1619 #endif
1620 
1621 /**
1622  * class SkipIfEqual:
1623  *
1624  * Instantiating this class will result in assembly code being output that will
1625  * jump around any code emitted between the creation of the instance and it's
1626  * automatic destruction at the end of a scope block, depending on the value of
1627  * the flag passed to the constructor, which will be checked at run-time.
1628  */
1629 class SkipIfEqual {
1630  private:
1631   MacroAssembler* _masm;
1632   Label _label;
1633 
1634  public:
1635    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1636    ~SkipIfEqual();
1637 };
1638 
1639 struct tableswitch {
1640   Register _reg;
1641   int _insn_index; jint _first_key; jint _last_key;
1642   Label _after;
1643   Label _branches;
1644 };
1645 
1646 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP