1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/aotCodeCache.hpp"
  31 #include "code/vmreg.hpp"
  32 #include "metaprogramming/enableIf.hpp"
  33 #include "oops/compressedOops.hpp"
  34 #include "oops/compressedKlass.hpp"
  35 #include "runtime/vm_version.hpp"
  36 #include "utilities/macros.hpp"
  37 #include "utilities/powerOfTwo.hpp"
  38 #include "runtime/signature.hpp"
  39 
  40 
  41 class ciInlineKlass;
  42 
  43 class OopMap;
  44 
  45 // MacroAssembler extends Assembler by frequently used macros.
  46 //
  47 // Instructions for which a 'better' code sequence exists depending
  48 // on arguments should also go in here.
  49 
  50 class MacroAssembler: public Assembler {
  51   friend class LIR_Assembler;
  52 
  53  public:
  54   using Assembler::mov;
  55   using Assembler::movi;
  56 
  57  protected:
  58 
  59   // Support for VM calls
  60   //
  61   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  62   // may customize this version by overriding it for its purposes (e.g., to save/restore
  63   // additional registers when doing a VM call).
  64   virtual void call_VM_leaf_base(
  65     address entry_point,               // the entry point
  66     int     number_of_arguments,        // the number of arguments to pop after the call
  67     Label *retaddr = nullptr
  68   );
  69 
  70   virtual void call_VM_leaf_base(
  71     address entry_point,               // the entry point
  72     int     number_of_arguments,        // the number of arguments to pop after the call
  73     Label &retaddr) {
  74     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  75   }
  76 
  77   // This is the base routine called by the different versions of call_VM. The interpreter
  78   // may customize this version by overriding it for its purposes (e.g., to save/restore
  79   // additional registers when doing a VM call).
  80   //
  81   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  82   // returns the register which contains the thread upon return. If a thread register has been
  83   // specified, the return value will correspond to that register. If no last_java_sp is specified
  84   // (noreg) than rsp will be used instead.
  85   virtual void call_VM_base(           // returns the register containing the thread upon return
  86     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  87     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  88     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  89     address  entry_point,              // the entry point
  90     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  91     bool     check_exceptions          // whether to check for pending exceptions after return
  92   );
  93 
  94   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  95 
  96   enum KlassDecodeMode {
  97     KlassDecodeNone,
  98     KlassDecodeZero,
  99     KlassDecodeXor,
 100     KlassDecodeMovk
 101   };
 102 
 103   // Calculate decoding mode based on given parameters, used for checking then ultimately setting.
 104   static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range);
 105 
 106  private:
 107   static KlassDecodeMode _klass_decode_mode;
 108 
 109   // Returns above setting with asserts
 110   static KlassDecodeMode klass_decode_mode();
 111 
 112  public:
 113   // Checks the decode mode and returns false if not compatible with preferred decoding mode.
 114   static bool check_klass_decode_mode(address base, int shift, const size_t range);
 115 
 116   // Sets the decode mode and returns false if cannot be set.
 117   static bool set_klass_decode_mode(address base, int shift, const size_t range);
 118 
 119  public:
 120   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 121 
 122  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 123  // The implementation is only non-empty for the InterpreterMacroAssembler,
 124  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 125  virtual void check_and_handle_popframe(Register java_thread);
 126  virtual void check_and_handle_earlyret(Register java_thread);
 127 
 128   void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp = rscratch1);
 129   void rt_call(address dest, Register tmp = rscratch1);
 130 
 131   // Load Effective Address
 132   void lea(Register r, const Address &a) {
 133     InstructionMark im(this);
 134     a.lea(this, r);
 135   }
 136 
 137   // Whether materializing the given address for a LDR/STR requires an
 138   // additional lea instruction.
 139   static bool legitimize_address_requires_lea(const Address &a, int size) {
 140     return a.getMode() == Address::base_plus_offset &&
 141            !Address::offset_ok_for_immed(a.offset(), exact_log2(size));
 142   }
 143 
 144   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 145      accesses, and these can exceed the offset range. */
 146   Address legitimize_address(const Address &a, int size, Register scratch) {
 147     if (legitimize_address_requires_lea(a, size)) {
 148       block_comment("legitimize_address {");
 149       lea(scratch, a);
 150       block_comment("} legitimize_address");
 151       return Address(scratch);
 152     }
 153     return a;
 154   }
 155 
 156   void addmw(Address a, Register incr, Register scratch) {
 157     ldrw(scratch, a);
 158     addw(scratch, scratch, incr);
 159     strw(scratch, a);
 160   }
 161 
 162   // Add constant to memory word
 163   void addmw(Address a, int imm, Register scratch) {
 164     ldrw(scratch, a);
 165     if (imm > 0)
 166       addw(scratch, scratch, (unsigned)imm);
 167     else
 168       subw(scratch, scratch, (unsigned)-imm);
 169     strw(scratch, a);
 170   }
 171 
 172   void bind(Label& L) {
 173     Assembler::bind(L);
 174     code()->clear_last_insn();
 175     code()->set_last_label(pc());
 176   }
 177 
 178   void membar(Membar_mask_bits order_constraint);
 179 
 180   using Assembler::ldr;
 181   using Assembler::str;
 182   using Assembler::ldrw;
 183   using Assembler::strw;
 184 
 185   void ldr(Register Rx, const Address &adr);
 186   void ldrw(Register Rw, const Address &adr);
 187   void str(Register Rx, const Address &adr);
 188   void strw(Register Rx, const Address &adr);
 189 
 190   // Frame creation and destruction shared between JITs.
 191   void build_frame(int framesize);
 192   void remove_frame(int framesize);
 193 
 194   virtual void _call_Unimplemented(address call_site) {
 195     mov(rscratch2, call_site);
 196   }
 197 
 198 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 199 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 200 // https://reviews.llvm.org/D3311
 201 
 202 #ifdef _WIN64
 203 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 204 #else
 205 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 206 #endif
 207 
 208   // aliases defined in AARCH64 spec
 209 
 210   template<class T>
 211   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 212 
 213   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 214   inline void cmp(Register Rd, unsigned imm) = delete;
 215 
 216   template<class T>
 217   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 218 
 219   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 220   inline void cmn(Register Rd, unsigned imm) = delete;
 221 
 222   void cset(Register Rd, Assembler::Condition cond) {
 223     csinc(Rd, zr, zr, ~cond);
 224   }
 225   void csetw(Register Rd, Assembler::Condition cond) {
 226     csincw(Rd, zr, zr, ~cond);
 227   }
 228 
 229   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 230     csneg(Rd, Rn, Rn, ~cond);
 231   }
 232   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 233     csnegw(Rd, Rn, Rn, ~cond);
 234   }
 235 
 236   inline void movw(Register Rd, Register Rn) {
 237     if (Rd == sp || Rn == sp) {
 238       Assembler::addw(Rd, Rn, 0U);
 239     } else {
 240       orrw(Rd, zr, Rn);
 241     }
 242   }
 243   inline void mov(Register Rd, Register Rn) {
 244     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 245     if (Rd == Rn) {
 246     } else if (Rd == sp || Rn == sp) {
 247       Assembler::add(Rd, Rn, 0U);
 248     } else {
 249       orr(Rd, zr, Rn);
 250     }
 251   }
 252 
 253   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 254   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 255 
 256   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 257   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 258 
 259   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 260   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 261 
 262   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 264   }
 265   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 267   }
 268 
 269   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 271   }
 272   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     bfm(Rd, Rn, lsb , (lsb + width - 1));
 274   }
 275 
 276   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 278   }
 279   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 281   }
 282 
 283   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 284     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 285   }
 286   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 287     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 288   }
 289 
 290   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 291     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 292   }
 293   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 294     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 295   }
 296 
 297   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 298     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 299   }
 300   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 301     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 302   }
 303 
 304   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 305     sbfmw(Rd, Rn, imm, 31);
 306   }
 307 
 308   inline void asr(Register Rd, Register Rn, unsigned imm) {
 309     sbfm(Rd, Rn, imm, 63);
 310   }
 311 
 312   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 313     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 314   }
 315 
 316   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 317     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 318   }
 319 
 320   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 321     ubfmw(Rd, Rn, imm, 31);
 322   }
 323 
 324   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 325     ubfm(Rd, Rn, imm, 63);
 326   }
 327 
 328   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 329     extrw(Rd, Rn, Rn, imm);
 330   }
 331 
 332   inline void ror(Register Rd, Register Rn, unsigned imm) {
 333     extr(Rd, Rn, Rn, imm);
 334   }
 335 
 336   inline void rolw(Register Rd, Register Rn, unsigned imm) {
 337     extrw(Rd, Rn, Rn, (32 - imm));
 338   }
 339 
 340   inline void rol(Register Rd, Register Rn, unsigned imm) {
 341     extr(Rd, Rn, Rn, (64 - imm));
 342   }
 343 
 344   using Assembler::rax1;
 345   using Assembler::eor3;
 346 
 347   inline void rax1(Register Rd, Register Rn, Register Rm) {
 348     eor(Rd, Rn, Rm, ROR, 63); // Rd = Rn ^ rol(Rm, 1)
 349   }
 350 
 351   inline void eor3(Register Rd, Register Rn, Register Rm, Register Rk) {
 352     assert(Rd != Rn, "Use tmp register");
 353     eor(Rd, Rm, Rk);
 354     eor(Rd, Rd, Rn);
 355   }
 356 
 357   inline void sxtbw(Register Rd, Register Rn) {
 358     sbfmw(Rd, Rn, 0, 7);
 359   }
 360   inline void sxthw(Register Rd, Register Rn) {
 361     sbfmw(Rd, Rn, 0, 15);
 362   }
 363   inline void sxtb(Register Rd, Register Rn) {
 364     sbfm(Rd, Rn, 0, 7);
 365   }
 366   inline void sxth(Register Rd, Register Rn) {
 367     sbfm(Rd, Rn, 0, 15);
 368   }
 369   inline void sxtw(Register Rd, Register Rn) {
 370     sbfm(Rd, Rn, 0, 31);
 371   }
 372 
 373   inline void uxtbw(Register Rd, Register Rn) {
 374     ubfmw(Rd, Rn, 0, 7);
 375   }
 376   inline void uxthw(Register Rd, Register Rn) {
 377     ubfmw(Rd, Rn, 0, 15);
 378   }
 379   inline void uxtb(Register Rd, Register Rn) {
 380     ubfm(Rd, Rn, 0, 7);
 381   }
 382   inline void uxth(Register Rd, Register Rn) {
 383     ubfm(Rd, Rn, 0, 15);
 384   }
 385   inline void uxtw(Register Rd, Register Rn) {
 386     ubfm(Rd, Rn, 0, 31);
 387   }
 388 
 389   inline void cmnw(Register Rn, Register Rm) {
 390     addsw(zr, Rn, Rm);
 391   }
 392   inline void cmn(Register Rn, Register Rm) {
 393     adds(zr, Rn, Rm);
 394   }
 395 
 396   inline void cmpw(Register Rn, Register Rm) {
 397     subsw(zr, Rn, Rm);
 398   }
 399   inline void cmp(Register Rn, Register Rm) {
 400     subs(zr, Rn, Rm);
 401   }
 402 
 403   inline void negw(Register Rd, Register Rn) {
 404     subw(Rd, zr, Rn);
 405   }
 406 
 407   inline void neg(Register Rd, Register Rn) {
 408     sub(Rd, zr, Rn);
 409   }
 410 
 411   inline void negsw(Register Rd, Register Rn) {
 412     subsw(Rd, zr, Rn);
 413   }
 414 
 415   inline void negs(Register Rd, Register Rn) {
 416     subs(Rd, zr, Rn);
 417   }
 418 
 419   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 420     addsw(zr, Rn, Rm, kind, shift);
 421   }
 422   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 423     adds(zr, Rn, Rm, kind, shift);
 424   }
 425 
 426   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 427     subsw(zr, Rn, Rm, kind, shift);
 428   }
 429   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 430     subs(zr, Rn, Rm, kind, shift);
 431   }
 432 
 433   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 434     subw(Rd, zr, Rn, kind, shift);
 435   }
 436 
 437   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 438     sub(Rd, zr, Rn, kind, shift);
 439   }
 440 
 441   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 442     subsw(Rd, zr, Rn, kind, shift);
 443   }
 444 
 445   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 446     subs(Rd, zr, Rn, kind, shift);
 447   }
 448 
 449   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 450     msubw(Rd, Rn, Rm, zr);
 451   }
 452   inline void mneg(Register Rd, Register Rn, Register Rm) {
 453     msub(Rd, Rn, Rm, zr);
 454   }
 455 
 456   inline void mulw(Register Rd, Register Rn, Register Rm) {
 457     maddw(Rd, Rn, Rm, zr);
 458   }
 459   inline void mul(Register Rd, Register Rn, Register Rm) {
 460     madd(Rd, Rn, Rm, zr);
 461   }
 462 
 463   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 464     smsubl(Rd, Rn, Rm, zr);
 465   }
 466   inline void smull(Register Rd, Register Rn, Register Rm) {
 467     smaddl(Rd, Rn, Rm, zr);
 468   }
 469 
 470   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 471     umsubl(Rd, Rn, Rm, zr);
 472   }
 473   inline void umull(Register Rd, Register Rn, Register Rm) {
 474     umaddl(Rd, Rn, Rm, zr);
 475   }
 476 
 477 #define WRAP(INSN)                                                            \
 478   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 479     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 480       nop();                                                                  \
 481     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 482   }
 483 
 484   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 485   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 486 #undef WRAP
 487 
 488 
 489   // macro assembly operations needed for aarch64
 490 
 491 public:
 492 
 493   enum FpPushPopMode {
 494     PushPopFull,
 495     PushPopSVE,
 496     PushPopNeon,
 497     PushPopFp
 498   };
 499 
 500   // first two private routines for loading 32 bit or 64 bit constants
 501 private:
 502 
 503   void mov_immediate64(Register dst, uint64_t imm64);
 504   void mov_immediate32(Register dst, uint32_t imm32);
 505 
 506   int push(unsigned int bitset, Register stack);
 507   int pop(unsigned int bitset, Register stack);
 508 
 509   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 510   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 511 
 512   int push_p(unsigned int bitset, Register stack);
 513   int pop_p(unsigned int bitset, Register stack);
 514 
 515   void mov(Register dst, Address a);
 516 
 517 public:
 518 
 519   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 520   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 521 
 522   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 523   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 524 
 525   static RegSet call_clobbered_gp_registers();
 526 
 527   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 528   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 529 
 530   // Push and pop everything that might be clobbered by a native
 531   // runtime call except rscratch1 and rscratch2.  (They are always
 532   // scratch, so we don't have to protect them.)  Only save the lower
 533   // 64 bits of each vector register. Additional registers can be excluded
 534   // in a passed RegSet.
 535   void push_call_clobbered_registers_except(RegSet exclude);
 536   void pop_call_clobbered_registers_except(RegSet exclude);
 537 
 538   void push_call_clobbered_registers() {
 539     push_call_clobbered_registers_except(RegSet());
 540   }
 541   void pop_call_clobbered_registers() {
 542     pop_call_clobbered_registers_except(RegSet());
 543   }
 544 
 545 
 546   // now mov instructions for loading absolute addresses and 32 or
 547   // 64 bit integers
 548 
 549   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 550 
 551   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 552   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 553 
 554   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 555 
 556   void mov(Register dst, RegisterOrConstant src) {
 557     if (src.is_register())
 558       mov(dst, src.as_register());
 559     else
 560       mov(dst, src.as_constant());
 561   }
 562 
 563   void movptr(Register r, uintptr_t imm64);
 564 
 565   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 566 
 567   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 568     orr(Vd, T, Vn, Vn);
 569   }
 570 
 571   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 572     fcvtsh(tmp, src);
 573     smov(dst, tmp, H, 0);
 574   }
 575 
 576   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 577     mov(tmp, H, 0, src);
 578     fcvths(dst, tmp);
 579   }
 580 
 581   // Generalized Test Bit And Branch, including a "far" variety which
 582   // spans more than 32KiB.
 583   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 584     assert(cond == EQ || cond == NE, "must be");
 585 
 586     if (isfar)
 587       cond = ~cond;
 588 
 589     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 590     if (cond == Assembler::EQ)
 591       branch = &Assembler::tbz;
 592     else
 593       branch = &Assembler::tbnz;
 594 
 595     if (isfar) {
 596       Label L;
 597       (this->*branch)(Rt, bitpos, L);
 598       b(dest);
 599       bind(L);
 600     } else {
 601       (this->*branch)(Rt, bitpos, dest);
 602     }
 603   }
 604 
 605   // macro instructions for accessing and updating floating point
 606   // status register
 607   //
 608   // FPSR : op1 == 011
 609   //        CRn == 0100
 610   //        CRm == 0100
 611   //        op2 == 001
 612 
 613   inline void get_fpsr(Register reg)
 614   {
 615     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 616   }
 617 
 618   inline void set_fpsr(Register reg)
 619   {
 620     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 621   }
 622 
 623   inline void clear_fpsr()
 624   {
 625     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 626   }
 627 
 628   // FPCR : op1 == 011
 629   //        CRn == 0100
 630   //        CRm == 0100
 631   //        op2 == 000
 632 
 633   inline void get_fpcr(Register reg) {
 634     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 635   }
 636 
 637   inline void set_fpcr(Register reg) {
 638     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 639   }
 640 
 641   // DCZID_EL0: op1 == 011
 642   //            CRn == 0000
 643   //            CRm == 0000
 644   //            op2 == 111
 645   inline void get_dczid_el0(Register reg)
 646   {
 647     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 648   }
 649 
 650   // CTR_EL0:   op1 == 011
 651   //            CRn == 0000
 652   //            CRm == 0000
 653   //            op2 == 001
 654   inline void get_ctr_el0(Register reg)
 655   {
 656     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 657   }
 658 
 659   inline void get_nzcv(Register reg) {
 660     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 661   }
 662 
 663   inline void set_nzcv(Register reg) {
 664     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 665   }
 666 
 667   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 668   int corrected_idivl(Register result, Register ra, Register rb,
 669                       bool want_remainder, Register tmp = rscratch1);
 670   int corrected_idivq(Register result, Register ra, Register rb,
 671                       bool want_remainder, Register tmp = rscratch1);
 672 
 673   // Support for null-checks
 674   //
 675   // Generates code that causes a null OS exception if the content of reg is null.
 676   // If the accessed location is M[reg + offset] and the offset is known, provide the
 677   // offset. No explicit code generation is needed if the offset is within a certain
 678   // range (0 <= offset <= page_size).
 679 
 680   virtual void null_check(Register reg, int offset = -1);
 681   static bool needs_explicit_null_check(intptr_t offset);
 682   static bool uses_implicit_null_check(void* address);
 683 
 684   // markWord tests, kills markWord reg
 685   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 686 
 687   // inlineKlass queries, kills temp_reg
 688   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null = true);
 689 
 690   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 691   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 692   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 693   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 694 
 695   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 696   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 697   void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array);
 698   void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array);
 699   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 700   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 701 
 702   // Check array klass layout helper for flat or null-free arrays...
 703   void test_flat_array_layout(Register lh, Label& is_flat_array);
 704   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 705 
 706   static address target_addr_for_insn(address insn_addr, unsigned insn);
 707   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 708   static address target_addr_for_insn(address insn_addr) {
 709     unsigned insn = *(unsigned*)insn_addr;
 710     return target_addr_for_insn(insn_addr, insn);
 711   }
 712   static address target_addr_for_insn_or_null(address insn_addr) {
 713     unsigned insn = *(unsigned*)insn_addr;
 714     return target_addr_for_insn_or_null(insn_addr, insn);
 715   }
 716 
 717   // Required platform-specific helpers for Label::patch_instructions.
 718   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 719   static int pd_patch_instruction_size(address branch, address target);
 720   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 721     pd_patch_instruction_size(branch, target);
 722   }
 723   static address pd_call_destination(address branch) {
 724     return target_addr_for_insn(branch);
 725   }
 726 #ifndef PRODUCT
 727   static void pd_print_patched_instruction(address branch);
 728 #endif
 729 
 730   static int patch_oop(address insn_addr, address o);
 731   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 732 
 733   // Return whether code is emitted to a scratch blob.
 734   virtual bool in_scratch_emit_size() {
 735     return false;
 736   }
 737   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 738   static int max_trampoline_stub_size();
 739   void emit_static_call_stub();
 740   static int static_call_stub_size();
 741 
 742   // The following 4 methods return the offset of the appropriate move instruction
 743 
 744   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 745   int load_unsigned_byte(Register dst, Address src);
 746   int load_unsigned_short(Register dst, Address src);
 747 
 748   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 749   int load_signed_byte(Register dst, Address src);
 750   int load_signed_short(Register dst, Address src);
 751 
 752   int load_signed_byte32(Register dst, Address src);
 753   int load_signed_short32(Register dst, Address src);
 754 
 755   // Support for sign-extension (hi:lo = extend_sign(lo))
 756   void extend_sign(Register hi, Register lo);
 757 
 758   // Load and store values by size and signed-ness
 759   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 760   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 761 
 762   // Support for inc/dec with optimal instruction selection depending on value
 763 
 764   // x86_64 aliases an unqualified register/address increment and
 765   // decrement to call incrementq and decrementq but also supports
 766   // explicitly sized calls to incrementq/decrementq or
 767   // incrementl/decrementl
 768 
 769   // for aarch64 the proper convention would be to use
 770   // increment/decrement for 64 bit operations and
 771   // incrementw/decrementw for 32 bit operations. so when porting
 772   // x86_64 code we can leave calls to increment/decrement as is,
 773   // replace incrementq/decrementq with increment/decrement and
 774   // replace incrementl/decrementl with incrementw/decrementw.
 775 
 776   // n.b. increment/decrement calls with an Address destination will
 777   // need to use a scratch register to load the value to be
 778   // incremented. increment/decrement calls which add or subtract a
 779   // constant value greater than 2^12 will need to use a 2nd scratch
 780   // register to hold the constant. so, a register increment/decrement
 781   // may trash rscratch2 and an address increment/decrement trash
 782   // rscratch and rscratch2
 783 
 784   void decrementw(Address dst, int value = 1);
 785   void decrementw(Register reg, int value = 1);
 786 
 787   void decrement(Register reg, int value = 1);
 788   void decrement(Address dst, int value = 1);
 789 
 790   void incrementw(Address dst, int value = 1);
 791   void incrementw(Register reg, int value = 1);
 792 
 793   void increment(Register reg, int value = 1);
 794   void increment(Address dst, int value = 1);
 795 
 796 
 797   // Alignment
 798   void align(int modulus);
 799   void align(int modulus, int target);
 800 
 801   // nop
 802   void post_call_nop();
 803 
 804   // Stack frame creation/removal
 805   void enter(bool strip_ret_addr = false);
 806   void leave();
 807 
 808   // ROP Protection
 809   void protect_return_address();
 810   void protect_return_address(Register return_reg);
 811   void authenticate_return_address();
 812   void authenticate_return_address(Register return_reg);
 813   void strip_return_address();
 814   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 815 
 816   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 817   // The pointer will be loaded into the thread register.
 818   void get_thread(Register thread);
 819 
 820   // support for argument shuffling
 821   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 822   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 823   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 824   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 825   void object_move(
 826                    OopMap* map,
 827                    int oop_handle_offset,
 828                    int framesize_in_slots,
 829                    VMRegPair src,
 830                    VMRegPair dst,
 831                    bool is_receiver,
 832                    int* receiver_offset);
 833 
 834 
 835   // Support for VM calls
 836   //
 837   // It is imperative that all calls into the VM are handled via the call_VM macros.
 838   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 839   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 840 
 841 
 842   void call_VM(Register oop_result,
 843                address entry_point,
 844                bool check_exceptions = true);
 845   void call_VM(Register oop_result,
 846                address entry_point,
 847                Register arg_1,
 848                bool check_exceptions = true);
 849   void call_VM(Register oop_result,
 850                address entry_point,
 851                Register arg_1, Register arg_2,
 852                bool check_exceptions = true);
 853   void call_VM(Register oop_result,
 854                address entry_point,
 855                Register arg_1, Register arg_2, Register arg_3,
 856                bool check_exceptions = true);
 857 
 858   // Overloadings with last_Java_sp
 859   void call_VM(Register oop_result,
 860                Register last_java_sp,
 861                address entry_point,
 862                int number_of_arguments = 0,
 863                bool check_exceptions = true);
 864   void call_VM(Register oop_result,
 865                Register last_java_sp,
 866                address entry_point,
 867                Register arg_1, bool
 868                check_exceptions = true);
 869   void call_VM(Register oop_result,
 870                Register last_java_sp,
 871                address entry_point,
 872                Register arg_1, Register arg_2,
 873                bool check_exceptions = true);
 874   void call_VM(Register oop_result,
 875                Register last_java_sp,
 876                address entry_point,
 877                Register arg_1, Register arg_2, Register arg_3,
 878                bool check_exceptions = true);
 879 
 880   void get_vm_result_oop(Register oop_result, Register thread);
 881   void get_vm_result_metadata(Register metadata_result, Register thread);
 882 
 883   // These always tightly bind to MacroAssembler::call_VM_base
 884   // bypassing the virtual implementation
 885   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 886   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 887   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 888   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 889   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 890 
 891   void call_VM_leaf(address entry_point,
 892                     int number_of_arguments = 0);
 893   void call_VM_leaf(address entry_point,
 894                     Register arg_1);
 895   void call_VM_leaf(address entry_point,
 896                     Register arg_1, Register arg_2);
 897   void call_VM_leaf(address entry_point,
 898                     Register arg_1, Register arg_2, Register arg_3);
 899 
 900   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 901   // bypassing the virtual implementation
 902   void super_call_VM_leaf(address entry_point);
 903   void super_call_VM_leaf(address entry_point, Register arg_1);
 904   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 905   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 906   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 907 
 908   // last Java Frame (fills frame anchor)
 909   void set_last_Java_frame(Register last_java_sp,
 910                            Register last_java_fp,
 911                            address last_java_pc,
 912                            Register scratch);
 913 
 914   void set_last_Java_frame(Register last_java_sp,
 915                            Register last_java_fp,
 916                            Label &last_java_pc,
 917                            Register scratch);
 918 
 919   void set_last_Java_frame(Register last_java_sp,
 920                            Register last_java_fp,
 921                            Register last_java_pc,
 922                            Register scratch);
 923 
 924   void reset_last_Java_frame(Register thread);
 925 
 926   // thread in the default location (rthread)
 927   void reset_last_Java_frame(bool clear_fp);
 928 
 929   // Stores
 930   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 931   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 932 
 933   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 934   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 935 
 936   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 937   void c2bool(Register x);
 938 
 939   void load_method_holder_cld(Register rresult, Register rmethod);
 940   void load_method_holder(Register holder, Register method);
 941 
 942   // oop manipulations
 943   void load_metadata(Register dst, Register src);
 944 
 945   void load_narrow_klass_compact(Register dst, Register src);
 946   void load_klass(Register dst, Register src);
 947   void store_klass(Register dst, Register src);
 948   void cmp_klass(Register obj, Register klass, Register tmp);
 949   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 950 
 951   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 952   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 953   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 954 
 955   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 956                       Register tmp1, Register tmp2);
 957 
 958   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 959                        Register tmp1, Register tmp2, Register tmp3);
 960 
 961   void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info);
 962 
 963   // inline type data payload offsets...
 964   void payload_offset(Register inline_klass, Register offset);
 965   void payload_address(Register oop, Register data, Register inline_klass);
 966   // get data payload ptr a flat value array at index, kills rcx and index
 967   void data_for_value_array_index(Register array, Register array_klass,
 968                                   Register index, Register data);
 969 
 970   void load_heap_oop(Register dst, Address src, Register tmp1,
 971                      Register tmp2, DecoratorSet decorators = 0);
 972 
 973   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 974                               Register tmp2, DecoratorSet decorators = 0);
 975   void store_heap_oop(Address dst, Register val, Register tmp1,
 976                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 977 
 978   // currently unimplemented
 979   // Used for storing null. All other oop constants should be
 980   // stored using routines that take a jobject.
 981   void store_heap_oop_null(Address dst);
 982 
 983   void load_prototype_header(Register dst, Register src);
 984 
 985   void store_klass_gap(Register dst, Register src);
 986 
 987   // This dummy is to prevent a call to store_heap_oop from
 988   // converting a zero (like null) into a Register by giving
 989   // the compiler two choices it can't resolve
 990 
 991   void store_heap_oop(Address dst, void* dummy);
 992 
 993   void encode_heap_oop(Register d, Register s);
 994   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 995   void decode_heap_oop(Register d, Register s);
 996   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 997   void encode_heap_oop_not_null(Register r);
 998   void decode_heap_oop_not_null(Register r);
 999   void encode_heap_oop_not_null(Register dst, Register src);
1000   void decode_heap_oop_not_null(Register dst, Register src);
1001 
1002   void set_narrow_oop(Register dst, jobject obj);
1003 
1004   void decode_klass_not_null_for_aot(Register dst, Register src);
1005   void encode_klass_not_null_for_aot(Register dst, Register src);
1006   void encode_klass_not_null(Register r);
1007   void decode_klass_not_null(Register r);
1008   void encode_klass_not_null(Register dst, Register src);
1009   void decode_klass_not_null(Register dst, Register src);
1010 
1011   void set_narrow_klass(Register dst, Klass* k);
1012 
1013   // if heap base register is used - reinit it with the correct value
1014   void reinit_heapbase();
1015 
1016   DEBUG_ONLY(void verify_heapbase(const char* msg);)
1017 
1018   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
1019                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
1020   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
1021                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
1022 
1023   void push_cont_fastpath(Register java_thread = rthread);
1024   void pop_cont_fastpath(Register java_thread = rthread);
1025 
1026   void inc_held_monitor_count(Register tmp);
1027   void dec_held_monitor_count(Register tmp);
1028 
1029   // Round up to a power of two
1030   void round_to(Register reg, int modulus);
1031 
1032   // java.lang.Math::round intrinsics
1033   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
1034   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
1035 
1036   // allocation
1037 
1038   // Object / value buffer allocation...
1039   // Allocate instance of klass, assumes klass initialized by caller
1040   // new_obj prefers to be rax
1041   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
1042   void allocate_instance(Register klass, Register new_obj,
1043                          Register t1, Register t2,
1044                          bool clear_fields, Label& alloc_failed);
1045 
1046   void tlab_allocate(
1047     Register obj,                      // result: pointer to object after successful allocation
1048     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1049     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1050     Register t1,                       // temp register
1051     Register t2,                       // temp register
1052     Label&   slow_case                 // continuation point if fast allocation fails
1053   );
1054   void verify_tlab();
1055 
1056   // For field "index" within "klass", return inline_klass ...
1057   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
1058   void inline_layout_info(Register holder_klass, Register index, Register layout_info);
1059 
1060 
1061   // interface method calling
1062   void lookup_interface_method(Register recv_klass,
1063                                Register intf_klass,
1064                                RegisterOrConstant itable_index,
1065                                Register method_result,
1066                                Register scan_temp,
1067                                Label& no_such_interface,
1068                    bool return_method = true);
1069 
1070   void lookup_interface_method_stub(Register recv_klass,
1071                                     Register holder_klass,
1072                                     Register resolved_klass,
1073                                     Register method_result,
1074                                     Register temp_reg,
1075                                     Register temp_reg2,
1076                                     int itable_index,
1077                                     Label& L_no_such_interface);
1078 
1079   // virtual method calling
1080   // n.b. x86 allows RegisterOrConstant for vtable_index
1081   void lookup_virtual_method(Register recv_klass,
1082                              RegisterOrConstant vtable_index,
1083                              Register method_result);
1084 
1085   // Test sub_klass against super_klass, with fast and slow paths.
1086 
1087   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1088   // One of the three labels can be null, meaning take the fall-through.
1089   // If super_check_offset is -1, the value is loaded up from super_klass.
1090   // No registers are killed, except temp_reg.
1091   void check_klass_subtype_fast_path(Register sub_klass,
1092                                      Register super_klass,
1093                                      Register temp_reg,
1094                                      Label* L_success,
1095                                      Label* L_failure,
1096                                      Label* L_slow_path,
1097                                      Register super_check_offset = noreg);
1098 
1099   // The rest of the type check; must be wired to a corresponding fast path.
1100   // It does not repeat the fast path logic, so don't use it standalone.
1101   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1102   // Updates the sub's secondary super cache as necessary.
1103   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1104   void check_klass_subtype_slow_path(Register sub_klass,
1105                                      Register super_klass,
1106                                      Register temp_reg,
1107                                      Register temp2_reg,
1108                                      Label* L_success,
1109                                      Label* L_failure,
1110                                      bool set_cond_codes = false);
1111 
1112   void check_klass_subtype_slow_path_linear(Register sub_klass,
1113                                             Register super_klass,
1114                                             Register temp_reg,
1115                                             Register temp2_reg,
1116                                             Label* L_success,
1117                                             Label* L_failure,
1118                                             bool set_cond_codes = false);
1119 
1120   void check_klass_subtype_slow_path_table(Register sub_klass,
1121                                            Register super_klass,
1122                                            Register temp_reg,
1123                                            Register temp2_reg,
1124                                            Register temp3_reg,
1125                                            Register result_reg,
1126                                            FloatRegister vtemp_reg,
1127                                            Label* L_success,
1128                                            Label* L_failure,
1129                                            bool set_cond_codes = false);
1130 
1131   // If r is valid, return r.
1132   // If r is invalid, remove a register r2 from available_regs, add r2
1133   // to regs_to_push, then return r2.
1134   Register allocate_if_noreg(const Register r,
1135                              RegSetIterator<Register> &available_regs,
1136                              RegSet &regs_to_push);
1137 
1138   // Secondary subtype checking
1139   void lookup_secondary_supers_table_var(Register sub_klass,
1140                                          Register r_super_klass,
1141                                          Register temp1,
1142                                          Register temp2,
1143                                          Register temp3,
1144                                          FloatRegister vtemp,
1145                                          Register result,
1146                                          Label *L_success);
1147 
1148 
1149   // As above, but with a constant super_klass.
1150   // The result is in Register result, not the condition codes.
1151   bool lookup_secondary_supers_table_const(Register r_sub_klass,
1152                                            Register r_super_klass,
1153                                            Register temp1,
1154                                            Register temp2,
1155                                            Register temp3,
1156                                            FloatRegister vtemp,
1157                                            Register result,
1158                                            u1 super_klass_slot,
1159                                            bool stub_is_near = false);
1160 
1161   void verify_secondary_supers_table(Register r_sub_klass,
1162                                      Register r_super_klass,
1163                                      Register temp1,
1164                                      Register temp2,
1165                                      Register result);
1166 
1167   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1168                                                Register r_array_base,
1169                                                Register r_array_index,
1170                                                Register r_bitmap,
1171                                                Register temp1,
1172                                                Register result,
1173                                                bool is_stub = true);
1174 
1175   // Simplified, combined version, good for typical uses.
1176   // Falls through on failure.
1177   void check_klass_subtype(Register sub_klass,
1178                            Register super_klass,
1179                            Register temp_reg,
1180                            Label& L_success);
1181 
1182   void clinit_barrier(Register klass,
1183                       Register thread,
1184                       Label* L_fast_path = nullptr,
1185                       Label* L_slow_path = nullptr);
1186 
1187   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1188 
1189   void verify_sve_vector_length(Register tmp = rscratch1);
1190   void reinitialize_ptrue() {
1191     if (UseSVE > 0) {
1192       sve_ptrue(ptrue, B);
1193     }
1194   }
1195   void verify_ptrue();
1196 
1197   // Debugging
1198 
1199   // only if +VerifyOops
1200   void _verify_oop(Register reg, const char* s, const char* file, int line);
1201   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1202 
1203   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1204     if (VerifyOops) {
1205       _verify_oop(reg, s, file, line);
1206     }
1207   }
1208   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1209     if (VerifyOops) {
1210       _verify_oop_addr(reg, s, file, line);
1211     }
1212   }
1213 
1214 // TODO: verify method and klass metadata (compare against vptr?)
1215   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1216   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1217 
1218 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1219 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1220 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1221 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1222 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1223 
1224   // Restore cpu control state after JNI call
1225   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1226 
1227   // prints msg, dumps registers and stops execution
1228   void stop(const char* msg);
1229 
1230   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1231 
1232   void untested()                                { stop("untested"); }
1233 
1234   void unimplemented(const char* what = "");
1235 
1236   void should_not_reach_here()                   { stop("should not reach here"); }
1237 
1238   void _assert_asm(Condition cc, const char* msg);
1239 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1240 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1241 
1242   // Stack overflow checking
1243   void bang_stack_with_offset(int offset) {
1244     // stack grows down, caller passes positive offset
1245     assert(offset > 0, "must bang with negative offset");
1246     sub(rscratch2, sp, offset);
1247     str(zr, Address(rscratch2));
1248   }
1249 
1250   // Writes to stack successive pages until offset reached to check for
1251   // stack overflow + shadow pages.  Also, clobbers tmp
1252   void bang_stack_size(Register size, Register tmp);
1253 
1254   // Check for reserved stack access in method being exited (for JIT)
1255   void reserved_stack_check();
1256 
1257   // Arithmetics
1258 
1259   // Clobber: rscratch1, rscratch2
1260   void addptr(const Address &dst, int32_t src);
1261 
1262   // Clobber: rscratch1
1263   void cmpptr(Register src1, Address src2);
1264 
1265   void cmpoop(Register obj1, Register obj2);
1266 
1267   // Various forms of CAS
1268 
1269   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1270                           Label &succeed, Label *fail);
1271   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1272                   Label &succeed, Label *fail);
1273 
1274   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1275                   Label &succeed, Label *fail);
1276 
1277   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1278   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1279   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1280   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1281 
1282   void atomic_xchg(Register prev, Register newv, Register addr);
1283   void atomic_xchgw(Register prev, Register newv, Register addr);
1284   void atomic_xchgl(Register prev, Register newv, Register addr);
1285   void atomic_xchglw(Register prev, Register newv, Register addr);
1286   void atomic_xchgal(Register prev, Register newv, Register addr);
1287   void atomic_xchgalw(Register prev, Register newv, Register addr);
1288 
1289   void orptr(Address adr, RegisterOrConstant src) {
1290     ldr(rscratch1, adr);
1291     if (src.is_register())
1292       orr(rscratch1, rscratch1, src.as_register());
1293     else
1294       orr(rscratch1, rscratch1, src.as_constant());
1295     str(rscratch1, adr);
1296   }
1297 
1298   // A generic CAS; success or failure is in the EQ flag.
1299   // Clobbers rscratch1
1300   void cmpxchg(Register addr, Register expected, Register new_val,
1301                enum operand_size size,
1302                bool acquire, bool release, bool weak,
1303                Register result);
1304 
1305 #ifdef ASSERT
1306   // Template short-hand support to clean-up after a failed call to trampoline
1307   // call generation (see trampoline_call() below),  when a set of Labels must
1308   // be reset (before returning).
1309   template<typename Label, typename... More>
1310   void reset_labels(Label &lbl, More&... more) {
1311     lbl.reset(); reset_labels(more...);
1312   }
1313   template<typename Label>
1314   void reset_labels(Label &lbl) {
1315     lbl.reset();
1316   }
1317 #endif
1318 
1319 private:
1320   void compare_eq(Register rn, Register rm, enum operand_size size);
1321 
1322 public:
1323   // AArch64 OpenJDK uses four different types of calls:
1324   //   - direct call: bl pc_relative_offset
1325   //     This is the shortest and the fastest, but the offset has the range:
1326   //     +/-128MB for the release build, +/-2MB for the debug build.
1327   //
1328   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1329   //     This is longer than a direct call. The offset has
1330   //     the range +/-4GB. As the code cache size is limited to 4GB,
1331   //     far calls can reach anywhere in the code cache. If a jump is
1332   //     needed rather than a call, a far jump 'b reg' can be used instead.
1333   //     All instructions are embedded at a call site.
1334   //
1335   //   - trampoline call:
1336   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1337   //     of a direct call, which is used if the destination of a call is in range,
1338   //     and a register-indirect call. It has the advantages of reaching anywhere in
1339   //     the AArch64 address space and being patchable at runtime when the generated
1340   //     code is being executed by other threads.
1341   //
1342   //     [Main code section]
1343   //       bl trampoline
1344   //     [Stub code section]
1345   //     trampoline:
1346   //       ldr reg, pc + 8
1347   //       br reg
1348   //       <64-bit destination address>
1349   //
1350   //     If the destination is in range when the generated code is moved to the code
1351   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1352   //     is not used.
1353   //     The optimization does not remove the trampoline from the stub section.
1354   //     This is necessary because the trampoline may well be redirected later when
1355   //     code is patched, and the new destination may not be reachable by a simple BR
1356   //     instruction.
1357   //
1358   //   - indirect call: move reg, address; blr reg
1359   //     This too can reach anywhere in the address space, but it cannot be
1360   //     patched while code is running, so it must only be modified at a safepoint.
1361   //     This form of call is most suitable for targets at fixed addresses, which
1362   //     will never be patched.
1363   //
1364   // The patching we do conforms to the "Concurrent modification and
1365   // execution of instructions" section of the Arm Architectural
1366   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1367   // or SVC instructions to be modified while another thread is
1368   // executing them.
1369   //
1370   // To patch a trampoline call when the BL can't reach, we first modify
1371   // the 64-bit destination address in the trampoline, then modify the
1372   // BL to point to the trampoline, then flush the instruction cache to
1373   // broadcast the change to all executing threads. See
1374   // NativeCall::set_destination_mt_safe for the details.
1375   //
1376   // There is a benign race in that the other thread might observe the
1377   // modified BL before it observes the modified 64-bit destination
1378   // address. That does not matter because the destination method has been
1379   // invalidated, so there will be a trap at its start.
1380   // For this to work, the destination address in the trampoline is
1381   // always updated, even if we're not using the trampoline.
1382 
1383   // Emit a direct call if the entry address will always be in range,
1384   // otherwise a trampoline call.
1385   // Supported entry.rspec():
1386   // - relocInfo::runtime_call_type
1387   // - relocInfo::opt_virtual_call_type
1388   // - relocInfo::static_call_type
1389   // - relocInfo::virtual_call_type
1390   //
1391   // Return: the call PC or null if CodeCache is full.
1392   // Clobbers: rscratch1
1393   address trampoline_call(Address entry);
1394 
1395   static bool far_branches() {
1396     return ReservedCodeCacheSize > branch_range;
1397   }
1398 
1399   // Check if branches to the non nmethod section require a far jump
1400   static bool codestub_branch_needs_far_jump() {
1401     if (AOTCodeCache::is_on_for_dump()) {
1402       // To calculate far_codestub_branch_size correctly.
1403       return true;
1404     }
1405     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1406   }
1407 
1408   // Emit a direct call/jump if the entry address will always be in range,
1409   // otherwise a far call/jump.
1410   // The address must be inside the code cache.
1411   // Supported entry.rspec():
1412   // - relocInfo::external_word_type
1413   // - relocInfo::runtime_call_type
1414   // - relocInfo::none
1415   // In the case of a far call/jump, the entry address is put in the tmp register.
1416   // The tmp register is invalidated.
1417   //
1418   // Far_jump returns the amount of the emitted code.
1419   void far_call(Address entry, Register tmp = rscratch1);
1420   int far_jump(Address entry, Register tmp = rscratch1);
1421 
1422   static int far_codestub_branch_size() {
1423     if (codestub_branch_needs_far_jump()) {
1424       return 3 * 4;  // adrp, add, br
1425     } else {
1426       return 4;
1427     }
1428   }
1429 
1430   // Emit the CompiledIC call idiom
1431   address ic_call(address entry, jint method_index = 0);
1432   static int ic_check_size();
1433   int ic_check(int end_alignment);
1434 
1435 public:
1436 
1437   // Data
1438 
1439   void mov_metadata(Register dst, Metadata* obj);
1440   Address allocate_metadata_address(Metadata* obj);
1441   Address constant_oop_address(jobject obj);
1442 
1443   void movoop(Register dst, jobject obj);
1444 
1445   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1446   void kernel_crc32(Register crc, Register buf, Register len,
1447         Register table0, Register table1, Register table2, Register table3,
1448         Register tmp, Register tmp2, Register tmp3);
1449   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1450   void kernel_crc32c(Register crc, Register buf, Register len,
1451         Register table0, Register table1, Register table2, Register table3,
1452         Register tmp, Register tmp2, Register tmp3);
1453 
1454   // Stack push and pop individual 64 bit registers
1455   void push(Register src);
1456   void pop(Register dst);
1457 
1458   void repne_scan(Register addr, Register value, Register count,
1459                   Register scratch);
1460   void repne_scanw(Register addr, Register value, Register count,
1461                    Register scratch);
1462 
1463   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1464   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1465 
1466   // If a constant does not fit in an immediate field, generate some
1467   // number of MOV instructions and then perform the operation
1468   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1469                              add_sub_imm_insn insn1,
1470                              add_sub_reg_insn insn2, bool is32);
1471   // Separate vsn which sets the flags
1472   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1473                                add_sub_imm_insn insn1,
1474                                add_sub_reg_insn insn2, bool is32);
1475 
1476 #define WRAP(INSN, is32)                                                \
1477   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1478     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1479   }                                                                     \
1480                                                                         \
1481   void INSN(Register Rd, Register Rn, Register Rm,                      \
1482              enum shift_kind kind, unsigned shift = 0) {                \
1483     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1484   }                                                                     \
1485                                                                         \
1486   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1487     Assembler::INSN(Rd, Rn, Rm);                                        \
1488   }                                                                     \
1489                                                                         \
1490   void INSN(Register Rd, Register Rn, Register Rm,                      \
1491            ext::operation option, int amount = 0) {                     \
1492     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1493   }
1494 
1495   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1496 
1497 #undef WRAP
1498 #define WRAP(INSN, is32)                                                \
1499   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1500     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1501   }                                                                     \
1502                                                                         \
1503   void INSN(Register Rd, Register Rn, Register Rm,                      \
1504              enum shift_kind kind, unsigned shift = 0) {                \
1505     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1506   }                                                                     \
1507                                                                         \
1508   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1509     Assembler::INSN(Rd, Rn, Rm);                                        \
1510   }                                                                     \
1511                                                                         \
1512   void INSN(Register Rd, Register Rn, Register Rm,                      \
1513            ext::operation option, int amount = 0) {                     \
1514     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1515   }
1516 
1517   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1518 
1519   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1520   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1521   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1522   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1523 
1524   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1525 
1526   void verified_entry(Compile* C, int sp_inc);
1527 
1528   // Inline type specific methods
1529   #include "asm/macroAssembler_common.hpp"
1530 
1531   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
1532   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
1533   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
1534                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
1535                             RegState reg_state[]);
1536   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1537                           VMRegPair* from, int from_count, int& from_index, VMReg to,
1538                           RegState reg_state[], Register val_array);
1539   int extend_stack_for_inline_args(int args_on_stack);
1540   void remove_frame(int initial_framesize, bool needs_stack_repair);
1541   VMReg spill_reg_for(VMReg reg);
1542   void save_stack_increment(int sp_inc, int frame_size);
1543 
1544   void tableswitch(Register index, jint lowbound, jint highbound,
1545                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1546     adr(rscratch1, jumptable);
1547     subsw(rscratch2, index, lowbound);
1548     subsw(zr, rscratch2, highbound - lowbound);
1549     br(Assembler::HS, jumptable_end);
1550     add(rscratch1, rscratch1, rscratch2,
1551         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1552     br(rscratch1);
1553   }
1554 
1555   // Form an address from base + offset in Rd.  Rd may or may not
1556   // actually be used: you must use the Address that is returned.  It
1557   // is up to you to ensure that the shift provided matches the size
1558   // of your data.
1559   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1560 
1561   // Return true iff an address is within the 48-bit AArch64 address
1562   // space.
1563   bool is_valid_AArch64_address(address a) {
1564     return ((uint64_t)a >> 48) == 0;
1565   }
1566 
1567   // Load the base of the cardtable byte map into reg.
1568   void load_byte_map_base(Register reg);
1569 
1570   // Prolog generator routines to support switch between x86 code and
1571   // generated ARM code
1572 
1573   // routine to generate an x86 prolog for a stub function which
1574   // bootstraps into the generated ARM code which directly follows the
1575   // stub
1576   //
1577 
1578   public:
1579 
1580   address read_polling_page(Register r, relocInfo::relocType rtype);
1581   void get_polling_page(Register dest, relocInfo::relocType rtype);
1582 
1583   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1584   void update_byte_crc32(Register crc, Register val, Register table);
1585   void update_word_crc32(Register crc, Register v, Register tmp,
1586         Register table0, Register table1, Register table2, Register table3,
1587         bool upper = false);
1588 
1589   address count_positives(Register ary1, Register len, Register result);
1590 
1591   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1592                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1593 
1594 // Ensure that the inline code and the stub use the same registers.
1595 #define ARRAYS_HASHCODE_REGISTERS \
1596   do {                      \
1597     assert(result == r0  && \
1598            ary    == r1  && \
1599            cnt    == r2  && \
1600            vdata0 == v3  && \
1601            vdata1 == v2  && \
1602            vdata2 == v1  && \
1603            vdata3 == v0  && \
1604            vmul0  == v4  && \
1605            vmul1  == v5  && \
1606            vmul2  == v6  && \
1607            vmul3  == v7  && \
1608            vpow   == v12 && \
1609            vpowm  == v13, "registers must match aarch64.ad"); \
1610   } while (0)
1611 
1612   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1613 
1614   void fill_words(Register base, Register cnt, Register value);
1615   void fill_words(Register base, uint64_t cnt, Register value);
1616 
1617   address zero_words(Register base, uint64_t cnt);
1618   address zero_words(Register ptr, Register cnt);
1619   void zero_dcache_blocks(Register base, Register cnt);
1620 
1621   static const int zero_words_block_size;
1622 
1623   address byte_array_inflate(Register src, Register dst, Register len,
1624                              FloatRegister vtmp1, FloatRegister vtmp2,
1625                              FloatRegister vtmp3, Register tmp4);
1626 
1627   void char_array_compress(Register src, Register dst, Register len,
1628                            Register res,
1629                            FloatRegister vtmp0, FloatRegister vtmp1,
1630                            FloatRegister vtmp2, FloatRegister vtmp3,
1631                            FloatRegister vtmp4, FloatRegister vtmp5);
1632 
1633   void encode_iso_array(Register src, Register dst,
1634                         Register len, Register res, bool ascii,
1635                         FloatRegister vtmp0, FloatRegister vtmp1,
1636                         FloatRegister vtmp2, FloatRegister vtmp3,
1637                         FloatRegister vtmp4, FloatRegister vtmp5);
1638 
1639   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1640       address pio2, address dsin_coef, address dcos_coef);
1641  private:
1642   // begin trigonometric functions support block
1643   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1644   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1645   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1646   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1647   // end trigonometric functions support block
1648   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1649                        Register src1, Register src2);
1650   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1651     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1652   }
1653   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1654                              Register y, Register y_idx, Register z,
1655                              Register carry, Register product,
1656                              Register idx, Register kdx);
1657   void multiply_128_x_128_loop(Register y, Register z,
1658                                Register carry, Register carry2,
1659                                Register idx, Register jdx,
1660                                Register yz_idx1, Register yz_idx2,
1661                                Register tmp, Register tmp3, Register tmp4,
1662                                Register tmp7, Register product_hi);
1663   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1664         Register len, Register tmp0, Register tmp1, Register tmp2,
1665         Register tmp3);
1666   void kernel_crc32_using_crc32(Register crc, Register buf,
1667         Register len, Register tmp0, Register tmp1, Register tmp2,
1668         Register tmp3);
1669   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1670         Register len, Register tmp0, Register tmp1, Register tmp2,
1671         Register tmp3);
1672   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1673         Register len, Register tmp0, Register tmp1, Register tmp2,
1674         Register tmp3);
1675   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1676         Register len, Register tmp0, Register tmp1, Register tmp2,
1677         size_t table_offset);
1678 
1679   void ghash_modmul (FloatRegister result,
1680                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1681                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1682                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1683   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1684 public:
1685   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1686                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1687                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1688   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1689   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1690                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1691                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1692   void ghash_multiply_wide(int index,
1693                            FloatRegister result_lo, FloatRegister result_hi,
1694                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1695                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1696   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1697                     FloatRegister p, FloatRegister z, FloatRegister t1);
1698   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1699                     FloatRegister p, FloatRegister z, FloatRegister t1);
1700   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1701                                 Register data, Register blocks, int unrolls);
1702 
1703 
1704   void aesenc_loadkeys(Register key, Register keylen);
1705   void aesecb_encrypt(Register from, Register to, Register keylen,
1706                       FloatRegister data = v0, int unrolls = 1);
1707   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1708   void aes_round(FloatRegister input, FloatRegister subkey);
1709 
1710   // ChaCha20 functions support block
1711   void cc20_qr_add4(FloatRegister (&addFirst)[4],
1712           FloatRegister (&addSecond)[4]);
1713   void cc20_qr_xor4(FloatRegister (&firstElem)[4],
1714           FloatRegister (&secondElem)[4], FloatRegister (&result)[4]);
1715   void cc20_qr_lrot4(FloatRegister (&sourceReg)[4],
1716           FloatRegister (&destReg)[4], int bits, FloatRegister table);
1717   void cc20_set_qr_registers(FloatRegister (&vectorSet)[4],
1718           const FloatRegister (&stateVectors)[16], int idx1, int idx2,
1719           int idx3, int idx4);
1720 
1721   // Place an ISB after code may have been modified due to a safepoint.
1722   void safepoint_isb();
1723 
1724 private:
1725   // Return the effective address r + (r1 << ext) + offset.
1726   // Uses rscratch2.
1727   Address offsetted_address(Register r, Register r1, Address::extend ext,
1728                             int offset, int size);
1729 
1730 private:
1731   // Returns an address on the stack which is reachable with a ldr/str of size
1732   // Uses rscratch2 if the address is not directly reachable
1733   Address spill_address(int size, int offset, Register tmp=rscratch2);
1734   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1735 
1736   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1737 
1738   // Check whether two loads/stores can be merged into ldp/stp.
1739   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1740 
1741   // Merge current load/store with previous load/store into ldp/stp.
1742   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1743 
1744   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1745   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1746 
1747 public:
1748   void spill(Register Rx, bool is64, int offset) {
1749     if (is64) {
1750       str(Rx, spill_address(8, offset));
1751     } else {
1752       strw(Rx, spill_address(4, offset));
1753     }
1754   }
1755   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1756     str(Vx, T, spill_address(1 << (int)T, offset));
1757   }
1758 
1759   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1760     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1761   }
1762   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1763     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1764   }
1765 
1766   void unspill(Register Rx, bool is64, int offset) {
1767     if (is64) {
1768       ldr(Rx, spill_address(8, offset));
1769     } else {
1770       ldrw(Rx, spill_address(4, offset));
1771     }
1772   }
1773   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1774     ldr(Vx, T, spill_address(1 << (int)T, offset));
1775   }
1776 
1777   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1778     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1779   }
1780   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1781     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1782   }
1783 
1784   void spill_copy128(int src_offset, int dst_offset,
1785                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1786     if (src_offset < 512 && (src_offset & 7) == 0 &&
1787         dst_offset < 512 && (dst_offset & 7) == 0) {
1788       ldp(tmp1, tmp2, Address(sp, src_offset));
1789       stp(tmp1, tmp2, Address(sp, dst_offset));
1790     } else {
1791       unspill(tmp1, true, src_offset);
1792       spill(tmp1, true, dst_offset);
1793       unspill(tmp1, true, src_offset+8);
1794       spill(tmp1, true, dst_offset+8);
1795     }
1796   }
1797   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1798                                             int sve_vec_reg_size_in_bytes) {
1799     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1800     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1801       spill_copy128(src_offset, dst_offset);
1802       src_offset += 16;
1803       dst_offset += 16;
1804     }
1805   }
1806   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1807                                                int sve_predicate_reg_size_in_bytes) {
1808     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1809     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1810     reinitialize_ptrue();
1811   }
1812   void cache_wb(Address line);
1813   void cache_wbsync(bool is_pre);
1814 
1815   // Code for java.lang.Thread::onSpinWait() intrinsic.
1816   void spin_wait();
1817 
1818   void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow);
1819   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1820 
1821 private:
1822   // Check the current thread doesn't need a cross modify fence.
1823   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1824 
1825 };
1826 
1827 #ifdef ASSERT
1828 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1829 #endif
1830 
1831 struct tableswitch {
1832   Register _reg;
1833   int _insn_index; jint _first_key; jint _last_key;
1834   Label _after;
1835   Label _branches;
1836 };
1837 
1838 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP