1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "oops/compressedKlass.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/macros.hpp"
  36 #include "utilities/powerOfTwo.hpp"
  37 #include "runtime/signature.hpp"
  38 
  39 
  40 class ciInlineKlass;
  41 
  42 class OopMap;
  43 
  44 // MacroAssembler extends Assembler by frequently used macros.
  45 //
  46 // Instructions for which a 'better' code sequence exists depending
  47 // on arguments should also go in here.
  48 
  49 class MacroAssembler: public Assembler {
  50   friend class LIR_Assembler;
  51 
  52  public:
  53   using Assembler::mov;
  54   using Assembler::movi;
  55 
  56  protected:
  57 
  58   // Support for VM calls
  59   //
  60   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  61   // may customize this version by overriding it for its purposes (e.g., to save/restore
  62   // additional registers when doing a VM call).
  63   virtual void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label *retaddr = nullptr
  67   );
  68 
  69   virtual void call_VM_leaf_base(
  70     address entry_point,               // the entry point
  71     int     number_of_arguments,        // the number of arguments to pop after the call
  72     Label &retaddr) {
  73     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  74   }
  75 
  76   // This is the base routine called by the different versions of call_VM. The interpreter
  77   // may customize this version by overriding it for its purposes (e.g., to save/restore
  78   // additional registers when doing a VM call).
  79   //
  80   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  81   // returns the register which contains the thread upon return. If a thread register has been
  82   // specified, the return value will correspond to that register. If no last_java_sp is specified
  83   // (noreg) than rsp will be used instead.
  84   virtual void call_VM_base(           // returns the register containing the thread upon return
  85     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  86     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  87     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  88     address  entry_point,              // the entry point
  89     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  90     bool     check_exceptions          // whether to check for pending exceptions after return
  91   );
  92 
  93   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  94 
  95   enum KlassDecodeMode {
  96     KlassDecodeNone,
  97     KlassDecodeZero,
  98     KlassDecodeXor,
  99     KlassDecodeMovk
 100   };
 101 
 102   KlassDecodeMode klass_decode_mode();
 103 
 104  private:
 105   static KlassDecodeMode _klass_decode_mode;
 106 
 107  public:
 108   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 109 
 110  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 111  // The implementation is only non-empty for the InterpreterMacroAssembler,
 112  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 113  virtual void check_and_handle_popframe(Register java_thread);
 114  virtual void check_and_handle_earlyret(Register java_thread);
 115 
 116   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 117   void rt_call(address dest, Register tmp = rscratch1);
 118 
 119   // Load Effective Address
 120   void lea(Register r, const Address &a) {
 121     InstructionMark im(this);
 122     a.lea(this, r);
 123   }
 124 
 125   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 126      accesses, and these can exceed the offset range. */
 127   Address legitimize_address(const Address &a, int size, Register scratch) {
 128     if (a.getMode() == Address::base_plus_offset) {
 129       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 130         block_comment("legitimize_address {");
 131         lea(scratch, a);
 132         block_comment("} legitimize_address");
 133         return Address(scratch);
 134       }
 135     }
 136     return a;
 137   }
 138 
 139   void addmw(Address a, Register incr, Register scratch) {
 140     ldrw(scratch, a);
 141     addw(scratch, scratch, incr);
 142     strw(scratch, a);
 143   }
 144 
 145   // Add constant to memory word
 146   void addmw(Address a, int imm, Register scratch) {
 147     ldrw(scratch, a);
 148     if (imm > 0)
 149       addw(scratch, scratch, (unsigned)imm);
 150     else
 151       subw(scratch, scratch, (unsigned)-imm);
 152     strw(scratch, a);
 153   }
 154 
 155   void bind(Label& L) {
 156     Assembler::bind(L);
 157     code()->clear_last_insn();
 158   }
 159 
 160   void membar(Membar_mask_bits order_constraint);
 161 
 162   using Assembler::ldr;
 163   using Assembler::str;
 164   using Assembler::ldrw;
 165   using Assembler::strw;
 166 
 167   void ldr(Register Rx, const Address &adr);
 168   void ldrw(Register Rw, const Address &adr);
 169   void str(Register Rx, const Address &adr);
 170   void strw(Register Rx, const Address &adr);
 171 
 172   // Frame creation and destruction shared between JITs.
 173   void build_frame(int framesize);
 174   void remove_frame(int framesize);
 175 
 176   virtual void _call_Unimplemented(address call_site) {
 177     mov(rscratch2, call_site);
 178   }
 179 
 180 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 181 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 182 // https://reviews.llvm.org/D3311
 183 
 184 #ifdef _WIN64
 185 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 186 #else
 187 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 188 #endif
 189 
 190   // aliases defined in AARCH64 spec
 191 
 192   template<class T>
 193   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 194 
 195   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 196   inline void cmp(Register Rd, unsigned imm) = delete;
 197 
 198   template<class T>
 199   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 200 
 201   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 202   inline void cmn(Register Rd, unsigned imm) = delete;
 203 
 204   void cset(Register Rd, Assembler::Condition cond) {
 205     csinc(Rd, zr, zr, ~cond);
 206   }
 207   void csetw(Register Rd, Assembler::Condition cond) {
 208     csincw(Rd, zr, zr, ~cond);
 209   }
 210 
 211   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 212     csneg(Rd, Rn, Rn, ~cond);
 213   }
 214   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 215     csnegw(Rd, Rn, Rn, ~cond);
 216   }
 217 
 218   inline void movw(Register Rd, Register Rn) {
 219     if (Rd == sp || Rn == sp) {
 220       Assembler::addw(Rd, Rn, 0U);
 221     } else {
 222       orrw(Rd, zr, Rn);
 223     }
 224   }
 225   inline void mov(Register Rd, Register Rn) {
 226     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 227     if (Rd == Rn) {
 228     } else if (Rd == sp || Rn == sp) {
 229       Assembler::add(Rd, Rn, 0U);
 230     } else {
 231       orr(Rd, zr, Rn);
 232     }
 233   }
 234 
 235   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 236   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 237 
 238   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 239   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 240 
 241   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 242   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 243 
 244   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 245     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 246   }
 247   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 248     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 249   }
 250 
 251   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 253   }
 254   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     bfm(Rd, Rn, lsb , (lsb + width - 1));
 256   }
 257 
 258   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 260   }
 261   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 262     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 263   }
 264 
 265   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 267   }
 268   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 269     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 270   }
 271 
 272   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 274   }
 275   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 276     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 277   }
 278 
 279   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 281   }
 282   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 283     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 284   }
 285 
 286   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 287     sbfmw(Rd, Rn, imm, 31);
 288   }
 289 
 290   inline void asr(Register Rd, Register Rn, unsigned imm) {
 291     sbfm(Rd, Rn, imm, 63);
 292   }
 293 
 294   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 295     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 296   }
 297 
 298   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 299     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 300   }
 301 
 302   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 303     ubfmw(Rd, Rn, imm, 31);
 304   }
 305 
 306   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 307     ubfm(Rd, Rn, imm, 63);
 308   }
 309 
 310   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 311     extrw(Rd, Rn, Rn, imm);
 312   }
 313 
 314   inline void ror(Register Rd, Register Rn, unsigned imm) {
 315     extr(Rd, Rn, Rn, imm);
 316   }
 317 
 318   inline void sxtbw(Register Rd, Register Rn) {
 319     sbfmw(Rd, Rn, 0, 7);
 320   }
 321   inline void sxthw(Register Rd, Register Rn) {
 322     sbfmw(Rd, Rn, 0, 15);
 323   }
 324   inline void sxtb(Register Rd, Register Rn) {
 325     sbfm(Rd, Rn, 0, 7);
 326   }
 327   inline void sxth(Register Rd, Register Rn) {
 328     sbfm(Rd, Rn, 0, 15);
 329   }
 330   inline void sxtw(Register Rd, Register Rn) {
 331     sbfm(Rd, Rn, 0, 31);
 332   }
 333 
 334   inline void uxtbw(Register Rd, Register Rn) {
 335     ubfmw(Rd, Rn, 0, 7);
 336   }
 337   inline void uxthw(Register Rd, Register Rn) {
 338     ubfmw(Rd, Rn, 0, 15);
 339   }
 340   inline void uxtb(Register Rd, Register Rn) {
 341     ubfm(Rd, Rn, 0, 7);
 342   }
 343   inline void uxth(Register Rd, Register Rn) {
 344     ubfm(Rd, Rn, 0, 15);
 345   }
 346   inline void uxtw(Register Rd, Register Rn) {
 347     ubfm(Rd, Rn, 0, 31);
 348   }
 349 
 350   inline void cmnw(Register Rn, Register Rm) {
 351     addsw(zr, Rn, Rm);
 352   }
 353   inline void cmn(Register Rn, Register Rm) {
 354     adds(zr, Rn, Rm);
 355   }
 356 
 357   inline void cmpw(Register Rn, Register Rm) {
 358     subsw(zr, Rn, Rm);
 359   }
 360   inline void cmp(Register Rn, Register Rm) {
 361     subs(zr, Rn, Rm);
 362   }
 363 
 364   inline void negw(Register Rd, Register Rn) {
 365     subw(Rd, zr, Rn);
 366   }
 367 
 368   inline void neg(Register Rd, Register Rn) {
 369     sub(Rd, zr, Rn);
 370   }
 371 
 372   inline void negsw(Register Rd, Register Rn) {
 373     subsw(Rd, zr, Rn);
 374   }
 375 
 376   inline void negs(Register Rd, Register Rn) {
 377     subs(Rd, zr, Rn);
 378   }
 379 
 380   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 381     addsw(zr, Rn, Rm, kind, shift);
 382   }
 383   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 384     adds(zr, Rn, Rm, kind, shift);
 385   }
 386 
 387   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 388     subsw(zr, Rn, Rm, kind, shift);
 389   }
 390   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 391     subs(zr, Rn, Rm, kind, shift);
 392   }
 393 
 394   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 395     subw(Rd, zr, Rn, kind, shift);
 396   }
 397 
 398   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 399     sub(Rd, zr, Rn, kind, shift);
 400   }
 401 
 402   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 403     subsw(Rd, zr, Rn, kind, shift);
 404   }
 405 
 406   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 407     subs(Rd, zr, Rn, kind, shift);
 408   }
 409 
 410   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 411     msubw(Rd, Rn, Rm, zr);
 412   }
 413   inline void mneg(Register Rd, Register Rn, Register Rm) {
 414     msub(Rd, Rn, Rm, zr);
 415   }
 416 
 417   inline void mulw(Register Rd, Register Rn, Register Rm) {
 418     maddw(Rd, Rn, Rm, zr);
 419   }
 420   inline void mul(Register Rd, Register Rn, Register Rm) {
 421     madd(Rd, Rn, Rm, zr);
 422   }
 423 
 424   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 425     smsubl(Rd, Rn, Rm, zr);
 426   }
 427   inline void smull(Register Rd, Register Rn, Register Rm) {
 428     smaddl(Rd, Rn, Rm, zr);
 429   }
 430 
 431   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 432     umsubl(Rd, Rn, Rm, zr);
 433   }
 434   inline void umull(Register Rd, Register Rn, Register Rm) {
 435     umaddl(Rd, Rn, Rm, zr);
 436   }
 437 
 438 #define WRAP(INSN)                                                            \
 439   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 440     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 441       nop();                                                                  \
 442     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 443   }
 444 
 445   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 446   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 447 #undef WRAP
 448 
 449 
 450   // macro assembly operations needed for aarch64
 451 
 452   // first two private routines for loading 32 bit or 64 bit constants
 453 private:
 454 
 455   void mov_immediate64(Register dst, uint64_t imm64);
 456   void mov_immediate32(Register dst, uint32_t imm32);
 457 
 458   int push(unsigned int bitset, Register stack);
 459   int pop(unsigned int bitset, Register stack);
 460 
 461   int push_fp(unsigned int bitset, Register stack);
 462   int pop_fp(unsigned int bitset, Register stack);
 463 
 464   int push_p(unsigned int bitset, Register stack);
 465   int pop_p(unsigned int bitset, Register stack);
 466 
 467   void mov(Register dst, Address a);
 468 
 469 public:
 470   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 471   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 472 
 473   void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 474   void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 475 
 476   static RegSet call_clobbered_gp_registers();
 477 
 478   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 479   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 480 
 481   // Push and pop everything that might be clobbered by a native
 482   // runtime call except rscratch1 and rscratch2.  (They are always
 483   // scratch, so we don't have to protect them.)  Only save the lower
 484   // 64 bits of each vector register. Additional registers can be excluded
 485   // in a passed RegSet.
 486   void push_call_clobbered_registers_except(RegSet exclude);
 487   void pop_call_clobbered_registers_except(RegSet exclude);
 488 
 489   void push_call_clobbered_registers() {
 490     push_call_clobbered_registers_except(RegSet());
 491   }
 492   void pop_call_clobbered_registers() {
 493     pop_call_clobbered_registers_except(RegSet());
 494   }
 495 
 496 
 497   // now mov instructions for loading absolute addresses and 32 or
 498   // 64 bit integers
 499 
 500   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 501 
 502   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 503   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 504 
 505   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 506 
 507   void mov(Register dst, RegisterOrConstant src) {
 508     if (src.is_register())
 509       mov(dst, src.as_register());
 510     else
 511       mov(dst, src.as_constant());
 512   }
 513 
 514   void movptr(Register r, uintptr_t imm64);
 515 
 516   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 517 
 518   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 519     orr(Vd, T, Vn, Vn);
 520   }
 521 
 522   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 523     fcvtsh(tmp, src);
 524     smov(dst, tmp, H, 0);
 525   }
 526 
 527   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 528     mov(tmp, H, 0, src);
 529     fcvths(dst, tmp);
 530   }
 531 
 532   // Generalized Test Bit And Branch, including a "far" variety which
 533   // spans more than 32KiB.
 534   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 535     assert(cond == EQ || cond == NE, "must be");
 536 
 537     if (isfar)
 538       cond = ~cond;
 539 
 540     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 541     if (cond == Assembler::EQ)
 542       branch = &Assembler::tbz;
 543     else
 544       branch = &Assembler::tbnz;
 545 
 546     if (isfar) {
 547       Label L;
 548       (this->*branch)(Rt, bitpos, L);
 549       b(dest);
 550       bind(L);
 551     } else {
 552       (this->*branch)(Rt, bitpos, dest);
 553     }
 554   }
 555 
 556   // macro instructions for accessing and updating floating point
 557   // status register
 558   //
 559   // FPSR : op1 == 011
 560   //        CRn == 0100
 561   //        CRm == 0100
 562   //        op2 == 001
 563 
 564   inline void get_fpsr(Register reg)
 565   {
 566     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 567   }
 568 
 569   inline void set_fpsr(Register reg)
 570   {
 571     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 572   }
 573 
 574   inline void clear_fpsr()
 575   {
 576     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 577   }
 578 
 579   // FPCR : op1 == 011
 580   //        CRn == 0100
 581   //        CRm == 0100
 582   //        op2 == 000
 583 
 584   inline void get_fpcr(Register reg) {
 585     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 586   }
 587 
 588   inline void set_fpcr(Register reg) {
 589     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 590   }
 591 
 592   // DCZID_EL0: op1 == 011
 593   //            CRn == 0000
 594   //            CRm == 0000
 595   //            op2 == 111
 596   inline void get_dczid_el0(Register reg)
 597   {
 598     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 599   }
 600 
 601   // CTR_EL0:   op1 == 011
 602   //            CRn == 0000
 603   //            CRm == 0000
 604   //            op2 == 001
 605   inline void get_ctr_el0(Register reg)
 606   {
 607     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 608   }
 609 
 610   inline void get_nzcv(Register reg) {
 611     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 612   }
 613 
 614   inline void set_nzcv(Register reg) {
 615     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 616   }
 617 
 618   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 619   int corrected_idivl(Register result, Register ra, Register rb,
 620                       bool want_remainder, Register tmp = rscratch1);
 621   int corrected_idivq(Register result, Register ra, Register rb,
 622                       bool want_remainder, Register tmp = rscratch1);
 623 
 624   // Support for null-checks
 625   //
 626   // Generates code that causes a null OS exception if the content of reg is null.
 627   // If the accessed location is M[reg + offset] and the offset is known, provide the
 628   // offset. No explicit code generation is needed if the offset is within a certain
 629   // range (0 <= offset <= page_size).
 630 
 631   virtual void null_check(Register reg, int offset = -1);
 632   static bool needs_explicit_null_check(intptr_t offset);
 633   static bool uses_implicit_null_check(void* address);
 634 
 635   // markWord tests, kills markWord reg
 636   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 637 
 638   // inlineKlass queries, kills temp_reg
 639   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 640   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 641   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 642 
 643   // Get the default value oop for the given InlineKlass
 644   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 645   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 646   // get_default_value_oop with extra assertion for empty inline klass
 647   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 648 
 649   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 650   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 651   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 652   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 653 
 654   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 655   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 656   void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array);
 657   void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array);
 658   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 659   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 660 
 661   // Check array klass layout helper for flat or null-free arrays...
 662   void test_flat_array_layout(Register lh, Label& is_flat_array);
 663   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 664 
 665   static address target_addr_for_insn(address insn_addr, unsigned insn);
 666   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 667   static address target_addr_for_insn(address insn_addr) {
 668     unsigned insn = *(unsigned*)insn_addr;
 669     return target_addr_for_insn(insn_addr, insn);
 670   }
 671   static address target_addr_for_insn_or_null(address insn_addr) {
 672     unsigned insn = *(unsigned*)insn_addr;
 673     return target_addr_for_insn_or_null(insn_addr, insn);
 674   }
 675 
 676   // Required platform-specific helpers for Label::patch_instructions.
 677   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 678   static int pd_patch_instruction_size(address branch, address target);
 679   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 680     pd_patch_instruction_size(branch, target);
 681   }
 682   static address pd_call_destination(address branch) {
 683     return target_addr_for_insn(branch);
 684   }
 685 #ifndef PRODUCT
 686   static void pd_print_patched_instruction(address branch);
 687 #endif
 688 
 689   static int patch_oop(address insn_addr, address o);
 690   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 691 
 692   // Return whether code is emitted to a scratch blob.
 693   virtual bool in_scratch_emit_size() {
 694     return false;
 695   }
 696   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 697   static int max_trampoline_stub_size();
 698   void emit_static_call_stub();
 699   static int static_call_stub_size();
 700 
 701   // The following 4 methods return the offset of the appropriate move instruction
 702 
 703   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 704   int load_unsigned_byte(Register dst, Address src);
 705   int load_unsigned_short(Register dst, Address src);
 706 
 707   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 708   int load_signed_byte(Register dst, Address src);
 709   int load_signed_short(Register dst, Address src);
 710 
 711   int load_signed_byte32(Register dst, Address src);
 712   int load_signed_short32(Register dst, Address src);
 713 
 714   // Support for sign-extension (hi:lo = extend_sign(lo))
 715   void extend_sign(Register hi, Register lo);
 716 
 717   // Load and store values by size and signed-ness
 718   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 719   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 720 
 721   // Support for inc/dec with optimal instruction selection depending on value
 722 
 723   // x86_64 aliases an unqualified register/address increment and
 724   // decrement to call incrementq and decrementq but also supports
 725   // explicitly sized calls to incrementq/decrementq or
 726   // incrementl/decrementl
 727 
 728   // for aarch64 the proper convention would be to use
 729   // increment/decrement for 64 bit operations and
 730   // incrementw/decrementw for 32 bit operations. so when porting
 731   // x86_64 code we can leave calls to increment/decrement as is,
 732   // replace incrementq/decrementq with increment/decrement and
 733   // replace incrementl/decrementl with incrementw/decrementw.
 734 
 735   // n.b. increment/decrement calls with an Address destination will
 736   // need to use a scratch register to load the value to be
 737   // incremented. increment/decrement calls which add or subtract a
 738   // constant value greater than 2^12 will need to use a 2nd scratch
 739   // register to hold the constant. so, a register increment/decrement
 740   // may trash rscratch2 and an address increment/decrement trash
 741   // rscratch and rscratch2
 742 
 743   void decrementw(Address dst, int value = 1);
 744   void decrementw(Register reg, int value = 1);
 745 
 746   void decrement(Register reg, int value = 1);
 747   void decrement(Address dst, int value = 1);
 748 
 749   void incrementw(Address dst, int value = 1);
 750   void incrementw(Register reg, int value = 1);
 751 
 752   void increment(Register reg, int value = 1);
 753   void increment(Address dst, int value = 1);
 754 
 755 
 756   // Alignment
 757   void align(int modulus);
 758   void align(int modulus, int target);
 759 
 760   // nop
 761   void post_call_nop();
 762 
 763   // Stack frame creation/removal
 764   void enter(bool strip_ret_addr = false);
 765   void leave();
 766 
 767   // ROP Protection
 768   void protect_return_address();
 769   void protect_return_address(Register return_reg);
 770   void authenticate_return_address();
 771   void authenticate_return_address(Register return_reg);
 772   void strip_return_address();
 773   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 774 
 775   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 776   // The pointer will be loaded into the thread register.
 777   void get_thread(Register thread);
 778 
 779   // support for argument shuffling
 780   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 781   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 782   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 783   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 784   void object_move(
 785                    OopMap* map,
 786                    int oop_handle_offset,
 787                    int framesize_in_slots,
 788                    VMRegPair src,
 789                    VMRegPair dst,
 790                    bool is_receiver,
 791                    int* receiver_offset);
 792 
 793 
 794   // Support for VM calls
 795   //
 796   // It is imperative that all calls into the VM are handled via the call_VM macros.
 797   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 798   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 799 
 800 
 801   void call_VM(Register oop_result,
 802                address entry_point,
 803                bool check_exceptions = true);
 804   void call_VM(Register oop_result,
 805                address entry_point,
 806                Register arg_1,
 807                bool check_exceptions = true);
 808   void call_VM(Register oop_result,
 809                address entry_point,
 810                Register arg_1, Register arg_2,
 811                bool check_exceptions = true);
 812   void call_VM(Register oop_result,
 813                address entry_point,
 814                Register arg_1, Register arg_2, Register arg_3,
 815                bool check_exceptions = true);
 816 
 817   // Overloadings with last_Java_sp
 818   void call_VM(Register oop_result,
 819                Register last_java_sp,
 820                address entry_point,
 821                int number_of_arguments = 0,
 822                bool check_exceptions = true);
 823   void call_VM(Register oop_result,
 824                Register last_java_sp,
 825                address entry_point,
 826                Register arg_1, bool
 827                check_exceptions = true);
 828   void call_VM(Register oop_result,
 829                Register last_java_sp,
 830                address entry_point,
 831                Register arg_1, Register arg_2,
 832                bool check_exceptions = true);
 833   void call_VM(Register oop_result,
 834                Register last_java_sp,
 835                address entry_point,
 836                Register arg_1, Register arg_2, Register arg_3,
 837                bool check_exceptions = true);
 838 
 839   void get_vm_result  (Register oop_result, Register thread);
 840   void get_vm_result_2(Register metadata_result, Register thread);
 841 
 842   // These always tightly bind to MacroAssembler::call_VM_base
 843   // bypassing the virtual implementation
 844   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 845   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 846   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 847   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 848   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 849 
 850   void call_VM_leaf(address entry_point,
 851                     int number_of_arguments = 0);
 852   void call_VM_leaf(address entry_point,
 853                     Register arg_1);
 854   void call_VM_leaf(address entry_point,
 855                     Register arg_1, Register arg_2);
 856   void call_VM_leaf(address entry_point,
 857                     Register arg_1, Register arg_2, Register arg_3);
 858 
 859   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 860   // bypassing the virtual implementation
 861   void super_call_VM_leaf(address entry_point);
 862   void super_call_VM_leaf(address entry_point, Register arg_1);
 863   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 864   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 865   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 866 
 867   // last Java Frame (fills frame anchor)
 868   void set_last_Java_frame(Register last_java_sp,
 869                            Register last_java_fp,
 870                            address last_java_pc,
 871                            Register scratch);
 872 
 873   void set_last_Java_frame(Register last_java_sp,
 874                            Register last_java_fp,
 875                            Label &last_java_pc,
 876                            Register scratch);
 877 
 878   void set_last_Java_frame(Register last_java_sp,
 879                            Register last_java_fp,
 880                            Register last_java_pc,
 881                            Register scratch);
 882 
 883   void reset_last_Java_frame(Register thread);
 884 
 885   // thread in the default location (rthread)
 886   void reset_last_Java_frame(bool clear_fp);
 887 
 888   // Stores
 889   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 890   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 891 
 892   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 893   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 894 
 895   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 896   void c2bool(Register x);
 897 
 898   void load_method_holder_cld(Register rresult, Register rmethod);
 899   void load_method_holder(Register holder, Register method);
 900 
 901   // oop manipulations
 902   void load_metadata(Register dst, Register src);
 903 
 904   void load_klass(Register dst, Register src);
 905   void store_klass(Register dst, Register src);
 906   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 907 
 908   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 909   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 910   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 911 
 912   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 913                       Register tmp1, Register tmp2);
 914 
 915   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 916                        Register tmp1, Register tmp2, Register tmp3);
 917 
 918   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register inline_klass);
 919 
 920   // inline type data payload offsets...
 921   void first_field_offset(Register inline_klass, Register offset);
 922   void data_for_oop(Register oop, Register data, Register inline_klass);
 923   // get data payload ptr a flat value array at index, kills rcx and index
 924   void data_for_value_array_index(Register array, Register array_klass,
 925                                   Register index, Register data);
 926 
 927   void load_heap_oop(Register dst, Address src, Register tmp1,
 928                      Register tmp2, DecoratorSet decorators = 0);
 929 
 930   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 931                               Register tmp2, DecoratorSet decorators = 0);
 932   void store_heap_oop(Address dst, Register val, Register tmp1,
 933                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 934 
 935   // currently unimplemented
 936   // Used for storing null. All other oop constants should be
 937   // stored using routines that take a jobject.
 938   void store_heap_oop_null(Address dst);
 939 
 940   void load_prototype_header(Register dst, Register src);
 941 
 942   void store_klass_gap(Register dst, Register src);
 943 
 944   // This dummy is to prevent a call to store_heap_oop from
 945   // converting a zero (like null) into a Register by giving
 946   // the compiler two choices it can't resolve
 947 
 948   void store_heap_oop(Address dst, void* dummy);
 949 
 950   void encode_heap_oop(Register d, Register s);
 951   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 952   void decode_heap_oop(Register d, Register s);
 953   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 954   void encode_heap_oop_not_null(Register r);
 955   void decode_heap_oop_not_null(Register r);
 956   void encode_heap_oop_not_null(Register dst, Register src);
 957   void decode_heap_oop_not_null(Register dst, Register src);
 958 
 959   void set_narrow_oop(Register dst, jobject obj);
 960 
 961   void encode_klass_not_null(Register r);
 962   void decode_klass_not_null(Register r);
 963   void encode_klass_not_null(Register dst, Register src);
 964   void decode_klass_not_null(Register dst, Register src);
 965 
 966   void set_narrow_klass(Register dst, Klass* k);
 967 
 968   // if heap base register is used - reinit it with the correct value
 969   void reinit_heapbase();
 970 
 971   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 972 
 973   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 974                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 975   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 976                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 977 
 978   void push_cont_fastpath(Register java_thread);
 979   void pop_cont_fastpath(Register java_thread);
 980 
 981   // Round up to a power of two
 982   void round_to(Register reg, int modulus);
 983 
 984   // java.lang.Math::round intrinsics
 985   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 986   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 987 
 988   // allocation
 989 
 990   // Object / value buffer allocation...
 991   // Allocate instance of klass, assumes klass initialized by caller
 992   // new_obj prefers to be rax
 993   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 994   void allocate_instance(Register klass, Register new_obj,
 995                          Register t1, Register t2,
 996                          bool clear_fields, Label& alloc_failed);
 997 
 998   void tlab_allocate(
 999     Register obj,                      // result: pointer to object after successful allocation
1000     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1001     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1002     Register t1,                       // temp register
1003     Register t2,                       // temp register
1004     Label&   slow_case                 // continuation point if fast allocation fails
1005   );
1006   void verify_tlab();
1007 
1008   // For field "index" within "klass", return inline_klass ...
1009   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
1010 
1011   // interface method calling
1012   void lookup_interface_method(Register recv_klass,
1013                                Register intf_klass,
1014                                RegisterOrConstant itable_index,
1015                                Register method_result,
1016                                Register scan_temp,
1017                                Label& no_such_interface,
1018                    bool return_method = true);
1019 
1020   void lookup_interface_method_stub(Register recv_klass,
1021                                     Register holder_klass,
1022                                     Register resolved_klass,
1023                                     Register method_result,
1024                                     Register temp_reg,
1025                                     Register temp_reg2,
1026                                     int itable_index,
1027                                     Label& L_no_such_interface);
1028 
1029   // virtual method calling
1030   // n.b. x86 allows RegisterOrConstant for vtable_index
1031   void lookup_virtual_method(Register recv_klass,
1032                              RegisterOrConstant vtable_index,
1033                              Register method_result);
1034 
1035   // Test sub_klass against super_klass, with fast and slow paths.
1036 
1037   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1038   // One of the three labels can be null, meaning take the fall-through.
1039   // If super_check_offset is -1, the value is loaded up from super_klass.
1040   // No registers are killed, except temp_reg.
1041   void check_klass_subtype_fast_path(Register sub_klass,
1042                                      Register super_klass,
1043                                      Register temp_reg,
1044                                      Label* L_success,
1045                                      Label* L_failure,
1046                                      Label* L_slow_path,
1047                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1048 
1049   // The rest of the type check; must be wired to a corresponding fast path.
1050   // It does not repeat the fast path logic, so don't use it standalone.
1051   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1052   // Updates the sub's secondary super cache as necessary.
1053   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1054   void check_klass_subtype_slow_path(Register sub_klass,
1055                                      Register super_klass,
1056                                      Register temp_reg,
1057                                      Register temp2_reg,
1058                                      Label* L_success,
1059                                      Label* L_failure,
1060                                      bool set_cond_codes = false);
1061 
1062   // Simplified, combined version, good for typical uses.
1063   // Falls through on failure.
1064   void check_klass_subtype(Register sub_klass,
1065                            Register super_klass,
1066                            Register temp_reg,
1067                            Label& L_success);
1068 
1069   void clinit_barrier(Register klass,
1070                       Register thread,
1071                       Label* L_fast_path = nullptr,
1072                       Label* L_slow_path = nullptr);
1073 
1074   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1075 
1076   void verify_sve_vector_length(Register tmp = rscratch1);
1077   void reinitialize_ptrue() {
1078     if (UseSVE > 0) {
1079       sve_ptrue(ptrue, B);
1080     }
1081   }
1082   void verify_ptrue();
1083 
1084   // Debugging
1085 
1086   // only if +VerifyOops
1087   void _verify_oop(Register reg, const char* s, const char* file, int line);
1088   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1089 
1090   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1091     if (VerifyOops) {
1092       _verify_oop(reg, s, file, line);
1093     }
1094   }
1095   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1096     if (VerifyOops) {
1097       _verify_oop_addr(reg, s, file, line);
1098     }
1099   }
1100 
1101 // TODO: verify method and klass metadata (compare against vptr?)
1102   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1103   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1104 
1105 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1106 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1107 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1108 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1109 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1110 
1111   // Restore cpu control state after JNI call
1112   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1113 
1114   // prints msg, dumps registers and stops execution
1115   void stop(const char* msg);
1116 
1117   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1118 
1119   void untested()                                { stop("untested"); }
1120 
1121   void unimplemented(const char* what = "");
1122 
1123   void should_not_reach_here()                   { stop("should not reach here"); }
1124 
1125   void _assert_asm(Condition cc, const char* msg);
1126 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1127 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1128 
1129   // Stack overflow checking
1130   void bang_stack_with_offset(int offset) {
1131     // stack grows down, caller passes positive offset
1132     assert(offset > 0, "must bang with negative offset");
1133     sub(rscratch2, sp, offset);
1134     str(zr, Address(rscratch2));
1135   }
1136 
1137   // Writes to stack successive pages until offset reached to check for
1138   // stack overflow + shadow pages.  Also, clobbers tmp
1139   void bang_stack_size(Register size, Register tmp);
1140 
1141   // Check for reserved stack access in method being exited (for JIT)
1142   void reserved_stack_check();
1143 
1144   // Arithmetics
1145 
1146   void addptr(const Address &dst, int32_t src);
1147   void cmpptr(Register src1, Address src2);
1148 
1149   void cmpoop(Register obj1, Register obj2);
1150 
1151   // Various forms of CAS
1152 
1153   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1154                           Label &succeed, Label *fail);
1155   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1156                   Label &succeed, Label *fail);
1157 
1158   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1159                   Label &succeed, Label *fail);
1160 
1161   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1162   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1163   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1164   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1165 
1166   void atomic_xchg(Register prev, Register newv, Register addr);
1167   void atomic_xchgw(Register prev, Register newv, Register addr);
1168   void atomic_xchgl(Register prev, Register newv, Register addr);
1169   void atomic_xchglw(Register prev, Register newv, Register addr);
1170   void atomic_xchgal(Register prev, Register newv, Register addr);
1171   void atomic_xchgalw(Register prev, Register newv, Register addr);
1172 
1173   void orptr(Address adr, RegisterOrConstant src) {
1174     ldr(rscratch1, adr);
1175     if (src.is_register())
1176       orr(rscratch1, rscratch1, src.as_register());
1177     else
1178       orr(rscratch1, rscratch1, src.as_constant());
1179     str(rscratch1, adr);
1180   }
1181 
1182   // A generic CAS; success or failure is in the EQ flag.
1183   // Clobbers rscratch1
1184   void cmpxchg(Register addr, Register expected, Register new_val,
1185                enum operand_size size,
1186                bool acquire, bool release, bool weak,
1187                Register result);
1188 
1189 #ifdef ASSERT
1190   // Template short-hand support to clean-up after a failed call to trampoline
1191   // call generation (see trampoline_call() below),  when a set of Labels must
1192   // be reset (before returning).
1193   template<typename Label, typename... More>
1194   void reset_labels(Label &lbl, More&... more) {
1195     lbl.reset(); reset_labels(more...);
1196   }
1197   template<typename Label>
1198   void reset_labels(Label &lbl) {
1199     lbl.reset();
1200   }
1201 #endif
1202 
1203 private:
1204   void compare_eq(Register rn, Register rm, enum operand_size size);
1205 
1206 public:
1207   // AArch64 OpenJDK uses four different types of calls:
1208   //   - direct call: bl pc_relative_offset
1209   //     This is the shortest and the fastest, but the offset has the range:
1210   //     +/-128MB for the release build, +/-2MB for the debug build.
1211   //
1212   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1213   //     This is longer than a direct call. The offset has
1214   //     the range +/-4GB. As the code cache size is limited to 4GB,
1215   //     far calls can reach anywhere in the code cache. If a jump is
1216   //     needed rather than a call, a far jump 'b reg' can be used instead.
1217   //     All instructions are embedded at a call site.
1218   //
1219   //   - trampoline call:
1220   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1221   //     of a direct call, which is used if the destination of a call is in range,
1222   //     and a register-indirect call. It has the advantages of reaching anywhere in
1223   //     the AArch64 address space and being patchable at runtime when the generated
1224   //     code is being executed by other threads.
1225   //
1226   //     [Main code section]
1227   //       bl trampoline
1228   //     [Stub code section]
1229   //     trampoline:
1230   //       ldr reg, pc + 8
1231   //       br reg
1232   //       <64-bit destination address>
1233   //
1234   //     If the destination is in range when the generated code is moved to the code
1235   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1236   //     is not used.
1237   //     The optimization does not remove the trampoline from the stub section.
1238   //     This is necessary because the trampoline may well be redirected later when
1239   //     code is patched, and the new destination may not be reachable by a simple BR
1240   //     instruction.
1241   //
1242   //   - indirect call: move reg, address; blr reg
1243   //     This too can reach anywhere in the address space, but it cannot be
1244   //     patched while code is running, so it must only be modified at a safepoint.
1245   //     This form of call is most suitable for targets at fixed addresses, which
1246   //     will never be patched.
1247   //
1248   // The patching we do conforms to the "Concurrent modification and
1249   // execution of instructions" section of the Arm Architectural
1250   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1251   // or SVC instructions to be modified while another thread is
1252   // executing them.
1253   //
1254   // To patch a trampoline call when the BL can't reach, we first modify
1255   // the 64-bit destination address in the trampoline, then modify the
1256   // BL to point to the trampoline, then flush the instruction cache to
1257   // broadcast the change to all executing threads. See
1258   // NativeCall::set_destination_mt_safe for the details.
1259   //
1260   // There is a benign race in that the other thread might observe the
1261   // modified BL before it observes the modified 64-bit destination
1262   // address. That does not matter because the destination method has been
1263   // invalidated, so there will be a trap at its start.
1264   // For this to work, the destination address in the trampoline is
1265   // always updated, even if we're not using the trampoline.
1266 
1267   // Emit a direct call if the entry address will always be in range,
1268   // otherwise a trampoline call.
1269   // Supported entry.rspec():
1270   // - relocInfo::runtime_call_type
1271   // - relocInfo::opt_virtual_call_type
1272   // - relocInfo::static_call_type
1273   // - relocInfo::virtual_call_type
1274   //
1275   // Return: the call PC or null if CodeCache is full.
1276   address trampoline_call(Address entry);
1277 
1278   static bool far_branches() {
1279     return ReservedCodeCacheSize > branch_range;
1280   }
1281 
1282   // Check if branches to the non nmethod section require a far jump
1283   static bool codestub_branch_needs_far_jump() {
1284     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1285   }
1286 
1287   // Emit a direct call/jump if the entry address will always be in range,
1288   // otherwise a far call/jump.
1289   // The address must be inside the code cache.
1290   // Supported entry.rspec():
1291   // - relocInfo::external_word_type
1292   // - relocInfo::runtime_call_type
1293   // - relocInfo::none
1294   // In the case of a far call/jump, the entry address is put in the tmp register.
1295   // The tmp register is invalidated.
1296   //
1297   // Far_jump returns the amount of the emitted code.
1298   void far_call(Address entry, Register tmp = rscratch1);
1299   int far_jump(Address entry, Register tmp = rscratch1);
1300 
1301   static int far_codestub_branch_size() {
1302     if (codestub_branch_needs_far_jump()) {
1303       return 3 * 4;  // adrp, add, br
1304     } else {
1305       return 4;
1306     }
1307   }
1308 
1309   // Emit the CompiledIC call idiom
1310   address ic_call(address entry, jint method_index = 0);
1311   static int ic_check_size();
1312   int ic_check(int end_alignment);
1313 
1314 public:
1315 
1316   // Data
1317 
1318   void mov_metadata(Register dst, Metadata* obj);
1319   Address allocate_metadata_address(Metadata* obj);
1320   Address constant_oop_address(jobject obj);
1321 
1322   void movoop(Register dst, jobject obj);
1323 
1324   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1325   void kernel_crc32(Register crc, Register buf, Register len,
1326         Register table0, Register table1, Register table2, Register table3,
1327         Register tmp, Register tmp2, Register tmp3);
1328   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1329   void kernel_crc32c(Register crc, Register buf, Register len,
1330         Register table0, Register table1, Register table2, Register table3,
1331         Register tmp, Register tmp2, Register tmp3);
1332 
1333   // Stack push and pop individual 64 bit registers
1334   void push(Register src);
1335   void pop(Register dst);
1336 
1337   void repne_scan(Register addr, Register value, Register count,
1338                   Register scratch);
1339   void repne_scanw(Register addr, Register value, Register count,
1340                    Register scratch);
1341 
1342   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1343   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1344 
1345   // If a constant does not fit in an immediate field, generate some
1346   // number of MOV instructions and then perform the operation
1347   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1348                              add_sub_imm_insn insn1,
1349                              add_sub_reg_insn insn2, bool is32);
1350   // Separate vsn which sets the flags
1351   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1352                                add_sub_imm_insn insn1,
1353                                add_sub_reg_insn insn2, bool is32);
1354 
1355 #define WRAP(INSN, is32)                                                \
1356   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1357     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1358   }                                                                     \
1359                                                                         \
1360   void INSN(Register Rd, Register Rn, Register Rm,                      \
1361              enum shift_kind kind, unsigned shift = 0) {                \
1362     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1363   }                                                                     \
1364                                                                         \
1365   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1366     Assembler::INSN(Rd, Rn, Rm);                                        \
1367   }                                                                     \
1368                                                                         \
1369   void INSN(Register Rd, Register Rn, Register Rm,                      \
1370            ext::operation option, int amount = 0) {                     \
1371     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1372   }
1373 
1374   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1375 
1376 #undef WRAP
1377 #define WRAP(INSN, is32)                                                \
1378   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1379     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1380   }                                                                     \
1381                                                                         \
1382   void INSN(Register Rd, Register Rn, Register Rm,                      \
1383              enum shift_kind kind, unsigned shift = 0) {                \
1384     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1385   }                                                                     \
1386                                                                         \
1387   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1388     Assembler::INSN(Rd, Rn, Rm);                                        \
1389   }                                                                     \
1390                                                                         \
1391   void INSN(Register Rd, Register Rn, Register Rm,                      \
1392            ext::operation option, int amount = 0) {                     \
1393     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1394   }
1395 
1396   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1397 
1398   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1399   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1400   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1401   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1402 
1403   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1404 
1405   void verified_entry(Compile* C, int sp_inc);
1406 
1407   // Inline type specific methods
1408   #include "asm/macroAssembler_common.hpp"
1409 
1410   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
1411   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
1412   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
1413                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
1414                             RegState reg_state[]);
1415   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1416                           VMRegPair* from, int from_count, int& from_index, VMReg to,
1417                           RegState reg_state[], Register val_array);
1418   int extend_stack_for_inline_args(int args_on_stack);
1419   void remove_frame(int initial_framesize, bool needs_stack_repair);
1420   VMReg spill_reg_for(VMReg reg);
1421   void save_stack_increment(int sp_inc, int frame_size);
1422 
1423   void tableswitch(Register index, jint lowbound, jint highbound,
1424                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1425     adr(rscratch1, jumptable);
1426     subsw(rscratch2, index, lowbound);
1427     subsw(zr, rscratch2, highbound - lowbound);
1428     br(Assembler::HS, jumptable_end);
1429     add(rscratch1, rscratch1, rscratch2,
1430         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1431     br(rscratch1);
1432   }
1433 
1434   // Form an address from base + offset in Rd.  Rd may or may not
1435   // actually be used: you must use the Address that is returned.  It
1436   // is up to you to ensure that the shift provided matches the size
1437   // of your data.
1438   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1439 
1440   // Return true iff an address is within the 48-bit AArch64 address
1441   // space.
1442   bool is_valid_AArch64_address(address a) {
1443     return ((uint64_t)a >> 48) == 0;
1444   }
1445 
1446   // Load the base of the cardtable byte map into reg.
1447   void load_byte_map_base(Register reg);
1448 
1449   // Prolog generator routines to support switch between x86 code and
1450   // generated ARM code
1451 
1452   // routine to generate an x86 prolog for a stub function which
1453   // bootstraps into the generated ARM code which directly follows the
1454   // stub
1455   //
1456 
1457   public:
1458 
1459   void ldr_constant(Register dest, const Address &const_addr) {
1460     if (NearCpool) {
1461       ldr(dest, const_addr);
1462     } else {
1463       uint64_t offset;
1464       adrp(dest, InternalAddress(const_addr.target()), offset);
1465       ldr(dest, Address(dest, offset));
1466     }
1467   }
1468 
1469   address read_polling_page(Register r, relocInfo::relocType rtype);
1470   void get_polling_page(Register dest, relocInfo::relocType rtype);
1471 
1472   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1473   void update_byte_crc32(Register crc, Register val, Register table);
1474   void update_word_crc32(Register crc, Register v, Register tmp,
1475         Register table0, Register table1, Register table2, Register table3,
1476         bool upper = false);
1477 
1478   address count_positives(Register ary1, Register len, Register result);
1479 
1480   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1481                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1482 
1483   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1484 
1485   void fill_words(Register base, Register cnt, Register value);
1486   void fill_words(Register base, uint64_t cnt, Register value);
1487 
1488   address zero_words(Register base, uint64_t cnt);
1489   address zero_words(Register ptr, Register cnt);
1490   void zero_dcache_blocks(Register base, Register cnt);
1491 
1492   static const int zero_words_block_size;
1493 
1494   address byte_array_inflate(Register src, Register dst, Register len,
1495                              FloatRegister vtmp1, FloatRegister vtmp2,
1496                              FloatRegister vtmp3, Register tmp4);
1497 
1498   void char_array_compress(Register src, Register dst, Register len,
1499                            Register res,
1500                            FloatRegister vtmp0, FloatRegister vtmp1,
1501                            FloatRegister vtmp2, FloatRegister vtmp3,
1502                            FloatRegister vtmp4, FloatRegister vtmp5);
1503 
1504   void encode_iso_array(Register src, Register dst,
1505                         Register len, Register res, bool ascii,
1506                         FloatRegister vtmp0, FloatRegister vtmp1,
1507                         FloatRegister vtmp2, FloatRegister vtmp3,
1508                         FloatRegister vtmp4, FloatRegister vtmp5);
1509 
1510   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1511       address pio2, address dsin_coef, address dcos_coef);
1512  private:
1513   // begin trigonometric functions support block
1514   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1515   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1516   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1517   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1518   // end trigonometric functions support block
1519   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1520                        Register src1, Register src2);
1521   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1522     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1523   }
1524   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1525                              Register y, Register y_idx, Register z,
1526                              Register carry, Register product,
1527                              Register idx, Register kdx);
1528   void multiply_128_x_128_loop(Register y, Register z,
1529                                Register carry, Register carry2,
1530                                Register idx, Register jdx,
1531                                Register yz_idx1, Register yz_idx2,
1532                                Register tmp, Register tmp3, Register tmp4,
1533                                Register tmp7, Register product_hi);
1534   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1535         Register len, Register tmp0, Register tmp1, Register tmp2,
1536         Register tmp3);
1537   void kernel_crc32_using_crc32(Register crc, Register buf,
1538         Register len, Register tmp0, Register tmp1, Register tmp2,
1539         Register tmp3);
1540   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1541         Register len, Register tmp0, Register tmp1, Register tmp2,
1542         Register tmp3);
1543   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1544         Register len, Register tmp0, Register tmp1, Register tmp2,
1545         Register tmp3);
1546   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1547         Register len, Register tmp0, Register tmp1, Register tmp2,
1548         size_t table_offset);
1549 
1550   void ghash_modmul (FloatRegister result,
1551                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1552                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1553                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1554   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1555 public:
1556   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1557                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1558                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1559   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1560   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1561                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1562                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1563   void ghash_multiply_wide(int index,
1564                            FloatRegister result_lo, FloatRegister result_hi,
1565                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1566                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1567   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1568                     FloatRegister p, FloatRegister z, FloatRegister t1);
1569   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1570                     FloatRegister p, FloatRegister z, FloatRegister t1);
1571   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1572                                 Register data, Register blocks, int unrolls);
1573 
1574 
1575   void aesenc_loadkeys(Register key, Register keylen);
1576   void aesecb_encrypt(Register from, Register to, Register keylen,
1577                       FloatRegister data = v0, int unrolls = 1);
1578   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1579   void aes_round(FloatRegister input, FloatRegister subkey);
1580 
1581   // ChaCha20 functions support block
1582   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1583           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1584           FloatRegister tbl);
1585   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1586           FloatRegister dVec, bool colToDiag);
1587 
1588   // Place an ISB after code may have been modified due to a safepoint.
1589   void safepoint_isb();
1590 
1591 private:
1592   // Return the effective address r + (r1 << ext) + offset.
1593   // Uses rscratch2.
1594   Address offsetted_address(Register r, Register r1, Address::extend ext,
1595                             int offset, int size);
1596 
1597 private:
1598   // Returns an address on the stack which is reachable with a ldr/str of size
1599   // Uses rscratch2 if the address is not directly reachable
1600   Address spill_address(int size, int offset, Register tmp=rscratch2);
1601   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1602 
1603   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1604 
1605   // Check whether two loads/stores can be merged into ldp/stp.
1606   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1607 
1608   // Merge current load/store with previous load/store into ldp/stp.
1609   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1610 
1611   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1612   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1613 
1614 public:
1615   void spill(Register Rx, bool is64, int offset) {
1616     if (is64) {
1617       str(Rx, spill_address(8, offset));
1618     } else {
1619       strw(Rx, spill_address(4, offset));
1620     }
1621   }
1622   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1623     str(Vx, T, spill_address(1 << (int)T, offset));
1624   }
1625 
1626   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1627     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1628   }
1629   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1630     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1631   }
1632 
1633   void unspill(Register Rx, bool is64, int offset) {
1634     if (is64) {
1635       ldr(Rx, spill_address(8, offset));
1636     } else {
1637       ldrw(Rx, spill_address(4, offset));
1638     }
1639   }
1640   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1641     ldr(Vx, T, spill_address(1 << (int)T, offset));
1642   }
1643 
1644   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1645     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1646   }
1647   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1648     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1649   }
1650 
1651   void spill_copy128(int src_offset, int dst_offset,
1652                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1653     if (src_offset < 512 && (src_offset & 7) == 0 &&
1654         dst_offset < 512 && (dst_offset & 7) == 0) {
1655       ldp(tmp1, tmp2, Address(sp, src_offset));
1656       stp(tmp1, tmp2, Address(sp, dst_offset));
1657     } else {
1658       unspill(tmp1, true, src_offset);
1659       spill(tmp1, true, dst_offset);
1660       unspill(tmp1, true, src_offset+8);
1661       spill(tmp1, true, dst_offset+8);
1662     }
1663   }
1664   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1665                                             int sve_vec_reg_size_in_bytes) {
1666     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1667     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1668       spill_copy128(src_offset, dst_offset);
1669       src_offset += 16;
1670       dst_offset += 16;
1671     }
1672   }
1673   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1674                                                int sve_predicate_reg_size_in_bytes) {
1675     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1676     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1677     reinitialize_ptrue();
1678   }
1679   void cache_wb(Address line);
1680   void cache_wbsync(bool is_pre);
1681 
1682   // Code for java.lang.Thread::onSpinWait() intrinsic.
1683   void spin_wait();
1684 
1685   void lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow);
1686   void lightweight_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow);
1687 
1688 private:
1689   // Check the current thread doesn't need a cross modify fence.
1690   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1691 
1692 };
1693 
1694 #ifdef ASSERT
1695 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1696 #endif
1697 
1698 /**
1699  * class SkipIfEqual:
1700  *
1701  * Instantiating this class will result in assembly code being output that will
1702  * jump around any code emitted between the creation of the instance and it's
1703  * automatic destruction at the end of a scope block, depending on the value of
1704  * the flag passed to the constructor, which will be checked at run-time.
1705  */
1706 class SkipIfEqual {
1707  private:
1708   MacroAssembler* _masm;
1709   Label _label;
1710 
1711  public:
1712    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1713    ~SkipIfEqual();
1714 };
1715 
1716 struct tableswitch {
1717   Register _reg;
1718   int _insn_index; jint _first_key; jint _last_key;
1719   Label _after;
1720   Label _branches;
1721 };
1722 
1723 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP