1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "oops/compressedKlass.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/macros.hpp"
  36 #include "utilities/powerOfTwo.hpp"
  37 #include "runtime/signature.hpp"
  38 
  39 
  40 class ciInlineKlass;
  41 
  42 class OopMap;
  43 
  44 // MacroAssembler extends Assembler by frequently used macros.
  45 //
  46 // Instructions for which a 'better' code sequence exists depending
  47 // on arguments should also go in here.
  48 
  49 class MacroAssembler: public Assembler {
  50   friend class LIR_Assembler;
  51 
  52  public:
  53   using Assembler::mov;
  54   using Assembler::movi;
  55 
  56  protected:
  57 
  58   // Support for VM calls
  59   //
  60   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  61   // may customize this version by overriding it for its purposes (e.g., to save/restore
  62   // additional registers when doing a VM call).
  63   virtual void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label *retaddr = nullptr
  67   );
  68 
  69   virtual void call_VM_leaf_base(
  70     address entry_point,               // the entry point
  71     int     number_of_arguments,        // the number of arguments to pop after the call
  72     Label &retaddr) {
  73     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  74   }
  75 
  76   // This is the base routine called by the different versions of call_VM. The interpreter
  77   // may customize this version by overriding it for its purposes (e.g., to save/restore
  78   // additional registers when doing a VM call).
  79   //
  80   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  81   // returns the register which contains the thread upon return. If a thread register has been
  82   // specified, the return value will correspond to that register. If no last_java_sp is specified
  83   // (noreg) than rsp will be used instead.
  84   virtual void call_VM_base(           // returns the register containing the thread upon return
  85     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  86     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  87     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  88     address  entry_point,              // the entry point
  89     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  90     bool     check_exceptions          // whether to check for pending exceptions after return
  91   );
  92 
  93   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  94 
  95   enum KlassDecodeMode {
  96     KlassDecodeNone,
  97     KlassDecodeZero,
  98     KlassDecodeXor,
  99     KlassDecodeMovk
 100   };
 101 
 102   KlassDecodeMode klass_decode_mode();
 103 
 104  private:
 105   static KlassDecodeMode _klass_decode_mode;
 106 
 107  public:
 108   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 109 
 110  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 111  // The implementation is only non-empty for the InterpreterMacroAssembler,
 112  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 113  virtual void check_and_handle_popframe(Register java_thread);
 114  virtual void check_and_handle_earlyret(Register java_thread);
 115 
 116   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 117   void rt_call(address dest, Register tmp = rscratch1);
 118 
 119   // Load Effective Address
 120   void lea(Register r, const Address &a) {
 121     InstructionMark im(this);
 122     a.lea(this, r);
 123   }
 124 
 125   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 126      accesses, and these can exceed the offset range. */
 127   Address legitimize_address(const Address &a, int size, Register scratch) {
 128     if (a.getMode() == Address::base_plus_offset) {
 129       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 130         block_comment("legitimize_address {");
 131         lea(scratch, a);
 132         block_comment("} legitimize_address");
 133         return Address(scratch);
 134       }
 135     }
 136     return a;
 137   }
 138 
 139   void addmw(Address a, Register incr, Register scratch) {
 140     ldrw(scratch, a);
 141     addw(scratch, scratch, incr);
 142     strw(scratch, a);
 143   }
 144 
 145   // Add constant to memory word
 146   void addmw(Address a, int imm, Register scratch) {
 147     ldrw(scratch, a);
 148     if (imm > 0)
 149       addw(scratch, scratch, (unsigned)imm);
 150     else
 151       subw(scratch, scratch, (unsigned)-imm);
 152     strw(scratch, a);
 153   }
 154 
 155   void bind(Label& L) {
 156     Assembler::bind(L);
 157     code()->clear_last_insn();
 158     code()->set_last_label(pc());
 159   }
 160 
 161   void membar(Membar_mask_bits order_constraint);
 162 
 163   using Assembler::ldr;
 164   using Assembler::str;
 165   using Assembler::ldrw;
 166   using Assembler::strw;
 167 
 168   void ldr(Register Rx, const Address &adr);
 169   void ldrw(Register Rw, const Address &adr);
 170   void str(Register Rx, const Address &adr);
 171   void strw(Register Rx, const Address &adr);
 172 
 173   // Frame creation and destruction shared between JITs.
 174   void build_frame(int framesize);
 175   void remove_frame(int framesize);
 176 
 177   virtual void _call_Unimplemented(address call_site) {
 178     mov(rscratch2, call_site);
 179   }
 180 
 181 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 182 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 183 // https://reviews.llvm.org/D3311
 184 
 185 #ifdef _WIN64
 186 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 187 #else
 188 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 189 #endif
 190 
 191   // aliases defined in AARCH64 spec
 192 
 193   template<class T>
 194   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 195 
 196   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 197   inline void cmp(Register Rd, unsigned imm) = delete;
 198 
 199   template<class T>
 200   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 201 
 202   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 203   inline void cmn(Register Rd, unsigned imm) = delete;
 204 
 205   void cset(Register Rd, Assembler::Condition cond) {
 206     csinc(Rd, zr, zr, ~cond);
 207   }
 208   void csetw(Register Rd, Assembler::Condition cond) {
 209     csincw(Rd, zr, zr, ~cond);
 210   }
 211 
 212   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 213     csneg(Rd, Rn, Rn, ~cond);
 214   }
 215   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 216     csnegw(Rd, Rn, Rn, ~cond);
 217   }
 218 
 219   inline void movw(Register Rd, Register Rn) {
 220     if (Rd == sp || Rn == sp) {
 221       Assembler::addw(Rd, Rn, 0U);
 222     } else {
 223       orrw(Rd, zr, Rn);
 224     }
 225   }
 226   inline void mov(Register Rd, Register Rn) {
 227     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 228     if (Rd == Rn) {
 229     } else if (Rd == sp || Rn == sp) {
 230       Assembler::add(Rd, Rn, 0U);
 231     } else {
 232       orr(Rd, zr, Rn);
 233     }
 234   }
 235 
 236   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 237   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 238 
 239   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 240   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 241 
 242   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 243   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 244 
 245   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 247   }
 248   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 249     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 250   }
 251 
 252   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 254   }
 255   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     bfm(Rd, Rn, lsb , (lsb + width - 1));
 257   }
 258 
 259   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 261   }
 262   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 264   }
 265 
 266   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 267     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 268   }
 269   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 271   }
 272 
 273   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 274     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 275   }
 276   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 278   }
 279 
 280   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 281     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 282   }
 283   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 284     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 285   }
 286 
 287   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 288     sbfmw(Rd, Rn, imm, 31);
 289   }
 290 
 291   inline void asr(Register Rd, Register Rn, unsigned imm) {
 292     sbfm(Rd, Rn, imm, 63);
 293   }
 294 
 295   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 296     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 297   }
 298 
 299   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 300     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 301   }
 302 
 303   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 304     ubfmw(Rd, Rn, imm, 31);
 305   }
 306 
 307   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 308     ubfm(Rd, Rn, imm, 63);
 309   }
 310 
 311   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 312     extrw(Rd, Rn, Rn, imm);
 313   }
 314 
 315   inline void ror(Register Rd, Register Rn, unsigned imm) {
 316     extr(Rd, Rn, Rn, imm);
 317   }
 318 
 319   inline void sxtbw(Register Rd, Register Rn) {
 320     sbfmw(Rd, Rn, 0, 7);
 321   }
 322   inline void sxthw(Register Rd, Register Rn) {
 323     sbfmw(Rd, Rn, 0, 15);
 324   }
 325   inline void sxtb(Register Rd, Register Rn) {
 326     sbfm(Rd, Rn, 0, 7);
 327   }
 328   inline void sxth(Register Rd, Register Rn) {
 329     sbfm(Rd, Rn, 0, 15);
 330   }
 331   inline void sxtw(Register Rd, Register Rn) {
 332     sbfm(Rd, Rn, 0, 31);
 333   }
 334 
 335   inline void uxtbw(Register Rd, Register Rn) {
 336     ubfmw(Rd, Rn, 0, 7);
 337   }
 338   inline void uxthw(Register Rd, Register Rn) {
 339     ubfmw(Rd, Rn, 0, 15);
 340   }
 341   inline void uxtb(Register Rd, Register Rn) {
 342     ubfm(Rd, Rn, 0, 7);
 343   }
 344   inline void uxth(Register Rd, Register Rn) {
 345     ubfm(Rd, Rn, 0, 15);
 346   }
 347   inline void uxtw(Register Rd, Register Rn) {
 348     ubfm(Rd, Rn, 0, 31);
 349   }
 350 
 351   inline void cmnw(Register Rn, Register Rm) {
 352     addsw(zr, Rn, Rm);
 353   }
 354   inline void cmn(Register Rn, Register Rm) {
 355     adds(zr, Rn, Rm);
 356   }
 357 
 358   inline void cmpw(Register Rn, Register Rm) {
 359     subsw(zr, Rn, Rm);
 360   }
 361   inline void cmp(Register Rn, Register Rm) {
 362     subs(zr, Rn, Rm);
 363   }
 364 
 365   inline void negw(Register Rd, Register Rn) {
 366     subw(Rd, zr, Rn);
 367   }
 368 
 369   inline void neg(Register Rd, Register Rn) {
 370     sub(Rd, zr, Rn);
 371   }
 372 
 373   inline void negsw(Register Rd, Register Rn) {
 374     subsw(Rd, zr, Rn);
 375   }
 376 
 377   inline void negs(Register Rd, Register Rn) {
 378     subs(Rd, zr, Rn);
 379   }
 380 
 381   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 382     addsw(zr, Rn, Rm, kind, shift);
 383   }
 384   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 385     adds(zr, Rn, Rm, kind, shift);
 386   }
 387 
 388   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 389     subsw(zr, Rn, Rm, kind, shift);
 390   }
 391   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 392     subs(zr, Rn, Rm, kind, shift);
 393   }
 394 
 395   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 396     subw(Rd, zr, Rn, kind, shift);
 397   }
 398 
 399   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 400     sub(Rd, zr, Rn, kind, shift);
 401   }
 402 
 403   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 404     subsw(Rd, zr, Rn, kind, shift);
 405   }
 406 
 407   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 408     subs(Rd, zr, Rn, kind, shift);
 409   }
 410 
 411   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 412     msubw(Rd, Rn, Rm, zr);
 413   }
 414   inline void mneg(Register Rd, Register Rn, Register Rm) {
 415     msub(Rd, Rn, Rm, zr);
 416   }
 417 
 418   inline void mulw(Register Rd, Register Rn, Register Rm) {
 419     maddw(Rd, Rn, Rm, zr);
 420   }
 421   inline void mul(Register Rd, Register Rn, Register Rm) {
 422     madd(Rd, Rn, Rm, zr);
 423   }
 424 
 425   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 426     smsubl(Rd, Rn, Rm, zr);
 427   }
 428   inline void smull(Register Rd, Register Rn, Register Rm) {
 429     smaddl(Rd, Rn, Rm, zr);
 430   }
 431 
 432   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 433     umsubl(Rd, Rn, Rm, zr);
 434   }
 435   inline void umull(Register Rd, Register Rn, Register Rm) {
 436     umaddl(Rd, Rn, Rm, zr);
 437   }
 438 
 439 #define WRAP(INSN)                                                            \
 440   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 441     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 442       nop();                                                                  \
 443     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 444   }
 445 
 446   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 447   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 448 #undef WRAP
 449 
 450 
 451   // macro assembly operations needed for aarch64
 452 
 453 public:
 454 
 455   enum FpPushPopMode {
 456     PushPopFull,
 457     PushPopSVE,
 458     PushPopNeon,
 459     PushPopFp
 460   };
 461 
 462   // first two private routines for loading 32 bit or 64 bit constants
 463 private:
 464 
 465   void mov_immediate64(Register dst, uint64_t imm64);
 466   void mov_immediate32(Register dst, uint32_t imm32);
 467 
 468   int push(unsigned int bitset, Register stack);
 469   int pop(unsigned int bitset, Register stack);
 470 
 471   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 472   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 473 
 474   int push_p(unsigned int bitset, Register stack);
 475   int pop_p(unsigned int bitset, Register stack);
 476 
 477   void mov(Register dst, Address a);
 478 
 479 public:
 480 
 481   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 482   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 483 
 484   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 485   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 486 
 487   static RegSet call_clobbered_gp_registers();
 488 
 489   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 490   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 491 
 492   // Push and pop everything that might be clobbered by a native
 493   // runtime call except rscratch1 and rscratch2.  (They are always
 494   // scratch, so we don't have to protect them.)  Only save the lower
 495   // 64 bits of each vector register. Additional registers can be excluded
 496   // in a passed RegSet.
 497   void push_call_clobbered_registers_except(RegSet exclude);
 498   void pop_call_clobbered_registers_except(RegSet exclude);
 499 
 500   void push_call_clobbered_registers() {
 501     push_call_clobbered_registers_except(RegSet());
 502   }
 503   void pop_call_clobbered_registers() {
 504     pop_call_clobbered_registers_except(RegSet());
 505   }
 506 
 507 
 508   // now mov instructions for loading absolute addresses and 32 or
 509   // 64 bit integers
 510 
 511   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 512 
 513   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 514   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 515 
 516   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 517 
 518   void mov(Register dst, RegisterOrConstant src) {
 519     if (src.is_register())
 520       mov(dst, src.as_register());
 521     else
 522       mov(dst, src.as_constant());
 523   }
 524 
 525   void movptr(Register r, uintptr_t imm64);
 526 
 527   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 528 
 529   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 530     orr(Vd, T, Vn, Vn);
 531   }
 532 
 533   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 534     fcvtsh(tmp, src);
 535     smov(dst, tmp, H, 0);
 536   }
 537 
 538   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 539     mov(tmp, H, 0, src);
 540     fcvths(dst, tmp);
 541   }
 542 
 543   // Generalized Test Bit And Branch, including a "far" variety which
 544   // spans more than 32KiB.
 545   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 546     assert(cond == EQ || cond == NE, "must be");
 547 
 548     if (isfar)
 549       cond = ~cond;
 550 
 551     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 552     if (cond == Assembler::EQ)
 553       branch = &Assembler::tbz;
 554     else
 555       branch = &Assembler::tbnz;
 556 
 557     if (isfar) {
 558       Label L;
 559       (this->*branch)(Rt, bitpos, L);
 560       b(dest);
 561       bind(L);
 562     } else {
 563       (this->*branch)(Rt, bitpos, dest);
 564     }
 565   }
 566 
 567   // macro instructions for accessing and updating floating point
 568   // status register
 569   //
 570   // FPSR : op1 == 011
 571   //        CRn == 0100
 572   //        CRm == 0100
 573   //        op2 == 001
 574 
 575   inline void get_fpsr(Register reg)
 576   {
 577     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 578   }
 579 
 580   inline void set_fpsr(Register reg)
 581   {
 582     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 583   }
 584 
 585   inline void clear_fpsr()
 586   {
 587     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 588   }
 589 
 590   // FPCR : op1 == 011
 591   //        CRn == 0100
 592   //        CRm == 0100
 593   //        op2 == 000
 594 
 595   inline void get_fpcr(Register reg) {
 596     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 597   }
 598 
 599   inline void set_fpcr(Register reg) {
 600     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 601   }
 602 
 603   // DCZID_EL0: op1 == 011
 604   //            CRn == 0000
 605   //            CRm == 0000
 606   //            op2 == 111
 607   inline void get_dczid_el0(Register reg)
 608   {
 609     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 610   }
 611 
 612   // CTR_EL0:   op1 == 011
 613   //            CRn == 0000
 614   //            CRm == 0000
 615   //            op2 == 001
 616   inline void get_ctr_el0(Register reg)
 617   {
 618     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 619   }
 620 
 621   inline void get_nzcv(Register reg) {
 622     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 623   }
 624 
 625   inline void set_nzcv(Register reg) {
 626     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 627   }
 628 
 629   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 630   int corrected_idivl(Register result, Register ra, Register rb,
 631                       bool want_remainder, Register tmp = rscratch1);
 632   int corrected_idivq(Register result, Register ra, Register rb,
 633                       bool want_remainder, Register tmp = rscratch1);
 634 
 635   // Support for null-checks
 636   //
 637   // Generates code that causes a null OS exception if the content of reg is null.
 638   // If the accessed location is M[reg + offset] and the offset is known, provide the
 639   // offset. No explicit code generation is needed if the offset is within a certain
 640   // range (0 <= offset <= page_size).
 641 
 642   virtual void null_check(Register reg, int offset = -1);
 643   static bool needs_explicit_null_check(intptr_t offset);
 644   static bool uses_implicit_null_check(void* address);
 645 
 646   // markWord tests, kills markWord reg
 647   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 648 
 649   // inlineKlass queries, kills temp_reg
 650   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 651   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 652   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 653 
 654   // Get the default value oop for the given InlineKlass
 655   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 656   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 657   // get_default_value_oop with extra assertion for empty inline klass
 658   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 659 
 660   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 661   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 662   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 663   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 664 
 665   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 666   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 667   void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array);
 668   void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array);
 669   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 670   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 671 
 672   // Check array klass layout helper for flat or null-free arrays...
 673   void test_flat_array_layout(Register lh, Label& is_flat_array);
 674   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 675 
 676   static address target_addr_for_insn(address insn_addr, unsigned insn);
 677   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 678   static address target_addr_for_insn(address insn_addr) {
 679     unsigned insn = *(unsigned*)insn_addr;
 680     return target_addr_for_insn(insn_addr, insn);
 681   }
 682   static address target_addr_for_insn_or_null(address insn_addr) {
 683     unsigned insn = *(unsigned*)insn_addr;
 684     return target_addr_for_insn_or_null(insn_addr, insn);
 685   }
 686 
 687   // Required platform-specific helpers for Label::patch_instructions.
 688   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 689   static int pd_patch_instruction_size(address branch, address target);
 690   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 691     pd_patch_instruction_size(branch, target);
 692   }
 693   static address pd_call_destination(address branch) {
 694     return target_addr_for_insn(branch);
 695   }
 696 #ifndef PRODUCT
 697   static void pd_print_patched_instruction(address branch);
 698 #endif
 699 
 700   static int patch_oop(address insn_addr, address o);
 701   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 702 
 703   // Return whether code is emitted to a scratch blob.
 704   virtual bool in_scratch_emit_size() {
 705     return false;
 706   }
 707   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 708   static int max_trampoline_stub_size();
 709   void emit_static_call_stub();
 710   static int static_call_stub_size();
 711 
 712   // The following 4 methods return the offset of the appropriate move instruction
 713 
 714   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 715   int load_unsigned_byte(Register dst, Address src);
 716   int load_unsigned_short(Register dst, Address src);
 717 
 718   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 719   int load_signed_byte(Register dst, Address src);
 720   int load_signed_short(Register dst, Address src);
 721 
 722   int load_signed_byte32(Register dst, Address src);
 723   int load_signed_short32(Register dst, Address src);
 724 
 725   // Support for sign-extension (hi:lo = extend_sign(lo))
 726   void extend_sign(Register hi, Register lo);
 727 
 728   // Load and store values by size and signed-ness
 729   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 730   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 731 
 732   // Support for inc/dec with optimal instruction selection depending on value
 733 
 734   // x86_64 aliases an unqualified register/address increment and
 735   // decrement to call incrementq and decrementq but also supports
 736   // explicitly sized calls to incrementq/decrementq or
 737   // incrementl/decrementl
 738 
 739   // for aarch64 the proper convention would be to use
 740   // increment/decrement for 64 bit operations and
 741   // incrementw/decrementw for 32 bit operations. so when porting
 742   // x86_64 code we can leave calls to increment/decrement as is,
 743   // replace incrementq/decrementq with increment/decrement and
 744   // replace incrementl/decrementl with incrementw/decrementw.
 745 
 746   // n.b. increment/decrement calls with an Address destination will
 747   // need to use a scratch register to load the value to be
 748   // incremented. increment/decrement calls which add or subtract a
 749   // constant value greater than 2^12 will need to use a 2nd scratch
 750   // register to hold the constant. so, a register increment/decrement
 751   // may trash rscratch2 and an address increment/decrement trash
 752   // rscratch and rscratch2
 753 
 754   void decrementw(Address dst, int value = 1);
 755   void decrementw(Register reg, int value = 1);
 756 
 757   void decrement(Register reg, int value = 1);
 758   void decrement(Address dst, int value = 1);
 759 
 760   void incrementw(Address dst, int value = 1);
 761   void incrementw(Register reg, int value = 1);
 762 
 763   void increment(Register reg, int value = 1);
 764   void increment(Address dst, int value = 1);
 765 
 766 
 767   // Alignment
 768   void align(int modulus);
 769   void align(int modulus, int target);
 770 
 771   // nop
 772   void post_call_nop();
 773 
 774   // Stack frame creation/removal
 775   void enter(bool strip_ret_addr = false);
 776   void leave();
 777 
 778   // ROP Protection
 779   void protect_return_address();
 780   void protect_return_address(Register return_reg);
 781   void authenticate_return_address();
 782   void authenticate_return_address(Register return_reg);
 783   void strip_return_address();
 784   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 785 
 786   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 787   // The pointer will be loaded into the thread register.
 788   void get_thread(Register thread);
 789 
 790   // support for argument shuffling
 791   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 792   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 793   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 794   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 795   void object_move(
 796                    OopMap* map,
 797                    int oop_handle_offset,
 798                    int framesize_in_slots,
 799                    VMRegPair src,
 800                    VMRegPair dst,
 801                    bool is_receiver,
 802                    int* receiver_offset);
 803 
 804 
 805   // Support for VM calls
 806   //
 807   // It is imperative that all calls into the VM are handled via the call_VM macros.
 808   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 809   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 810 
 811 
 812   void call_VM(Register oop_result,
 813                address entry_point,
 814                bool check_exceptions = true);
 815   void call_VM(Register oop_result,
 816                address entry_point,
 817                Register arg_1,
 818                bool check_exceptions = true);
 819   void call_VM(Register oop_result,
 820                address entry_point,
 821                Register arg_1, Register arg_2,
 822                bool check_exceptions = true);
 823   void call_VM(Register oop_result,
 824                address entry_point,
 825                Register arg_1, Register arg_2, Register arg_3,
 826                bool check_exceptions = true);
 827 
 828   // Overloadings with last_Java_sp
 829   void call_VM(Register oop_result,
 830                Register last_java_sp,
 831                address entry_point,
 832                int number_of_arguments = 0,
 833                bool check_exceptions = true);
 834   void call_VM(Register oop_result,
 835                Register last_java_sp,
 836                address entry_point,
 837                Register arg_1, bool
 838                check_exceptions = true);
 839   void call_VM(Register oop_result,
 840                Register last_java_sp,
 841                address entry_point,
 842                Register arg_1, Register arg_2,
 843                bool check_exceptions = true);
 844   void call_VM(Register oop_result,
 845                Register last_java_sp,
 846                address entry_point,
 847                Register arg_1, Register arg_2, Register arg_3,
 848                bool check_exceptions = true);
 849 
 850   void get_vm_result  (Register oop_result, Register thread);
 851   void get_vm_result_2(Register metadata_result, Register thread);
 852 
 853   // These always tightly bind to MacroAssembler::call_VM_base
 854   // bypassing the virtual implementation
 855   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 856   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 857   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 858   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 859   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 860 
 861   void call_VM_leaf(address entry_point,
 862                     int number_of_arguments = 0);
 863   void call_VM_leaf(address entry_point,
 864                     Register arg_1);
 865   void call_VM_leaf(address entry_point,
 866                     Register arg_1, Register arg_2);
 867   void call_VM_leaf(address entry_point,
 868                     Register arg_1, Register arg_2, Register arg_3);
 869 
 870   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 871   // bypassing the virtual implementation
 872   void super_call_VM_leaf(address entry_point);
 873   void super_call_VM_leaf(address entry_point, Register arg_1);
 874   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 875   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 876   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 877 
 878   // last Java Frame (fills frame anchor)
 879   void set_last_Java_frame(Register last_java_sp,
 880                            Register last_java_fp,
 881                            address last_java_pc,
 882                            Register scratch);
 883 
 884   void set_last_Java_frame(Register last_java_sp,
 885                            Register last_java_fp,
 886                            Label &last_java_pc,
 887                            Register scratch);
 888 
 889   void set_last_Java_frame(Register last_java_sp,
 890                            Register last_java_fp,
 891                            Register last_java_pc,
 892                            Register scratch);
 893 
 894   void reset_last_Java_frame(Register thread);
 895 
 896   // thread in the default location (rthread)
 897   void reset_last_Java_frame(bool clear_fp);
 898 
 899   // Stores
 900   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 901   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 902 
 903   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 904   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 905 
 906   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 907   void c2bool(Register x);
 908 
 909   void load_method_holder_cld(Register rresult, Register rmethod);
 910   void load_method_holder(Register holder, Register method);
 911 
 912   // oop manipulations
 913   void load_metadata(Register dst, Register src);
 914 
 915   void load_klass(Register dst, Register src);
 916   void store_klass(Register dst, Register src);
 917   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 918 
 919   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 920   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 921   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 922 
 923   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 924                       Register tmp1, Register tmp2);
 925 
 926   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 927                        Register tmp1, Register tmp2, Register tmp3);
 928 
 929   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register inline_klass);
 930 
 931   // inline type data payload offsets...
 932   void first_field_offset(Register inline_klass, Register offset);
 933   void data_for_oop(Register oop, Register data, Register inline_klass);
 934   // get data payload ptr a flat value array at index, kills rcx and index
 935   void data_for_value_array_index(Register array, Register array_klass,
 936                                   Register index, Register data);
 937 
 938   void load_heap_oop(Register dst, Address src, Register tmp1,
 939                      Register tmp2, DecoratorSet decorators = 0);
 940 
 941   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 942                               Register tmp2, DecoratorSet decorators = 0);
 943   void store_heap_oop(Address dst, Register val, Register tmp1,
 944                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 945 
 946   // currently unimplemented
 947   // Used for storing null. All other oop constants should be
 948   // stored using routines that take a jobject.
 949   void store_heap_oop_null(Address dst);
 950 
 951   void load_prototype_header(Register dst, Register src);
 952 
 953   void store_klass_gap(Register dst, Register src);
 954 
 955   // This dummy is to prevent a call to store_heap_oop from
 956   // converting a zero (like null) into a Register by giving
 957   // the compiler two choices it can't resolve
 958 
 959   void store_heap_oop(Address dst, void* dummy);
 960 
 961   void encode_heap_oop(Register d, Register s);
 962   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 963   void decode_heap_oop(Register d, Register s);
 964   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 965   void encode_heap_oop_not_null(Register r);
 966   void decode_heap_oop_not_null(Register r);
 967   void encode_heap_oop_not_null(Register dst, Register src);
 968   void decode_heap_oop_not_null(Register dst, Register src);
 969 
 970   void set_narrow_oop(Register dst, jobject obj);
 971 
 972   void encode_klass_not_null(Register r);
 973   void decode_klass_not_null(Register r);
 974   void encode_klass_not_null(Register dst, Register src);
 975   void decode_klass_not_null(Register dst, Register src);
 976 
 977   void set_narrow_klass(Register dst, Klass* k);
 978 
 979   // if heap base register is used - reinit it with the correct value
 980   void reinit_heapbase();
 981 
 982   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 983 
 984   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 985                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 986   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 987                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 988 
 989   void push_cont_fastpath(Register java_thread);
 990   void pop_cont_fastpath(Register java_thread);
 991 
 992   // Round up to a power of two
 993   void round_to(Register reg, int modulus);
 994 
 995   // java.lang.Math::round intrinsics
 996   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 997   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 998 
 999   // allocation
1000 
1001   // Object / value buffer allocation...
1002   // Allocate instance of klass, assumes klass initialized by caller
1003   // new_obj prefers to be rax
1004   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
1005   void allocate_instance(Register klass, Register new_obj,
1006                          Register t1, Register t2,
1007                          bool clear_fields, Label& alloc_failed);
1008 
1009   void tlab_allocate(
1010     Register obj,                      // result: pointer to object after successful allocation
1011     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1012     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1013     Register t1,                       // temp register
1014     Register t2,                       // temp register
1015     Label&   slow_case                 // continuation point if fast allocation fails
1016   );
1017   void verify_tlab();
1018 
1019   // For field "index" within "klass", return inline_klass ...
1020   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
1021 
1022   // interface method calling
1023   void lookup_interface_method(Register recv_klass,
1024                                Register intf_klass,
1025                                RegisterOrConstant itable_index,
1026                                Register method_result,
1027                                Register scan_temp,
1028                                Label& no_such_interface,
1029                    bool return_method = true);
1030 
1031   void lookup_interface_method_stub(Register recv_klass,
1032                                     Register holder_klass,
1033                                     Register resolved_klass,
1034                                     Register method_result,
1035                                     Register temp_reg,
1036                                     Register temp_reg2,
1037                                     int itable_index,
1038                                     Label& L_no_such_interface);
1039 
1040   // virtual method calling
1041   // n.b. x86 allows RegisterOrConstant for vtable_index
1042   void lookup_virtual_method(Register recv_klass,
1043                              RegisterOrConstant vtable_index,
1044                              Register method_result);
1045 
1046   // Test sub_klass against super_klass, with fast and slow paths.
1047 
1048   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1049   // One of the three labels can be null, meaning take the fall-through.
1050   // If super_check_offset is -1, the value is loaded up from super_klass.
1051   // No registers are killed, except temp_reg.
1052   void check_klass_subtype_fast_path(Register sub_klass,
1053                                      Register super_klass,
1054                                      Register temp_reg,
1055                                      Label* L_success,
1056                                      Label* L_failure,
1057                                      Label* L_slow_path,
1058                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1059 
1060   // The rest of the type check; must be wired to a corresponding fast path.
1061   // It does not repeat the fast path logic, so don't use it standalone.
1062   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1063   // Updates the sub's secondary super cache as necessary.
1064   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1065   void check_klass_subtype_slow_path(Register sub_klass,
1066                                      Register super_klass,
1067                                      Register temp_reg,
1068                                      Register temp2_reg,
1069                                      Label* L_success,
1070                                      Label* L_failure,
1071                                      bool set_cond_codes = false);
1072 
1073   // As above, but with a constant super_klass.
1074   // The result is in Register result, not the condition codes.
1075   bool lookup_secondary_supers_table(Register r_sub_klass,
1076                                      Register r_super_klass,
1077                                      Register temp1,
1078                                      Register temp2,
1079                                      Register temp3,
1080                                      FloatRegister vtemp,
1081                                      Register result,
1082                                      u1 super_klass_slot,
1083                                      bool stub_is_near = false);
1084 
1085   void verify_secondary_supers_table(Register r_sub_klass,
1086                                      Register r_super_klass,
1087                                      Register temp1,
1088                                      Register temp2,
1089                                      Register result);
1090 
1091   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1092                                                Register r_array_base,
1093                                                Register r_array_index,
1094                                                Register r_bitmap,
1095                                                Register temp1,
1096                                                Register result);
1097 
1098   // Simplified, combined version, good for typical uses.
1099   // Falls through on failure.
1100   void check_klass_subtype(Register sub_klass,
1101                            Register super_klass,
1102                            Register temp_reg,
1103                            Label& L_success);
1104 
1105   void clinit_barrier(Register klass,
1106                       Register thread,
1107                       Label* L_fast_path = nullptr,
1108                       Label* L_slow_path = nullptr);
1109 
1110   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1111 
1112   void verify_sve_vector_length(Register tmp = rscratch1);
1113   void reinitialize_ptrue() {
1114     if (UseSVE > 0) {
1115       sve_ptrue(ptrue, B);
1116     }
1117   }
1118   void verify_ptrue();
1119 
1120   // Debugging
1121 
1122   // only if +VerifyOops
1123   void _verify_oop(Register reg, const char* s, const char* file, int line);
1124   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1125 
1126   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1127     if (VerifyOops) {
1128       _verify_oop(reg, s, file, line);
1129     }
1130   }
1131   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1132     if (VerifyOops) {
1133       _verify_oop_addr(reg, s, file, line);
1134     }
1135   }
1136 
1137 // TODO: verify method and klass metadata (compare against vptr?)
1138   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1139   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1140 
1141 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1142 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1143 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1144 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1145 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1146 
1147   // Restore cpu control state after JNI call
1148   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1149 
1150   // prints msg, dumps registers and stops execution
1151   void stop(const char* msg);
1152 
1153   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1154 
1155   void untested()                                { stop("untested"); }
1156 
1157   void unimplemented(const char* what = "");
1158 
1159   void should_not_reach_here()                   { stop("should not reach here"); }
1160 
1161   void _assert_asm(Condition cc, const char* msg);
1162 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1163 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1164 
1165   // Stack overflow checking
1166   void bang_stack_with_offset(int offset) {
1167     // stack grows down, caller passes positive offset
1168     assert(offset > 0, "must bang with negative offset");
1169     sub(rscratch2, sp, offset);
1170     str(zr, Address(rscratch2));
1171   }
1172 
1173   // Writes to stack successive pages until offset reached to check for
1174   // stack overflow + shadow pages.  Also, clobbers tmp
1175   void bang_stack_size(Register size, Register tmp);
1176 
1177   // Check for reserved stack access in method being exited (for JIT)
1178   void reserved_stack_check();
1179 
1180   // Arithmetics
1181 
1182   void addptr(const Address &dst, int32_t src);
1183   void cmpptr(Register src1, Address src2);
1184 
1185   void cmpoop(Register obj1, Register obj2);
1186 
1187   // Various forms of CAS
1188 
1189   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1190                           Label &succeed, Label *fail);
1191   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1192                   Label &succeed, Label *fail);
1193 
1194   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1195                   Label &succeed, Label *fail);
1196 
1197   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1198   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1199   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1200   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1201 
1202   void atomic_xchg(Register prev, Register newv, Register addr);
1203   void atomic_xchgw(Register prev, Register newv, Register addr);
1204   void atomic_xchgl(Register prev, Register newv, Register addr);
1205   void atomic_xchglw(Register prev, Register newv, Register addr);
1206   void atomic_xchgal(Register prev, Register newv, Register addr);
1207   void atomic_xchgalw(Register prev, Register newv, Register addr);
1208 
1209   void orptr(Address adr, RegisterOrConstant src) {
1210     ldr(rscratch1, adr);
1211     if (src.is_register())
1212       orr(rscratch1, rscratch1, src.as_register());
1213     else
1214       orr(rscratch1, rscratch1, src.as_constant());
1215     str(rscratch1, adr);
1216   }
1217 
1218   // A generic CAS; success or failure is in the EQ flag.
1219   // Clobbers rscratch1
1220   void cmpxchg(Register addr, Register expected, Register new_val,
1221                enum operand_size size,
1222                bool acquire, bool release, bool weak,
1223                Register result);
1224 
1225 #ifdef ASSERT
1226   // Template short-hand support to clean-up after a failed call to trampoline
1227   // call generation (see trampoline_call() below),  when a set of Labels must
1228   // be reset (before returning).
1229   template<typename Label, typename... More>
1230   void reset_labels(Label &lbl, More&... more) {
1231     lbl.reset(); reset_labels(more...);
1232   }
1233   template<typename Label>
1234   void reset_labels(Label &lbl) {
1235     lbl.reset();
1236   }
1237 #endif
1238 
1239 private:
1240   void compare_eq(Register rn, Register rm, enum operand_size size);
1241 
1242 public:
1243   // AArch64 OpenJDK uses four different types of calls:
1244   //   - direct call: bl pc_relative_offset
1245   //     This is the shortest and the fastest, but the offset has the range:
1246   //     +/-128MB for the release build, +/-2MB for the debug build.
1247   //
1248   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1249   //     This is longer than a direct call. The offset has
1250   //     the range +/-4GB. As the code cache size is limited to 4GB,
1251   //     far calls can reach anywhere in the code cache. If a jump is
1252   //     needed rather than a call, a far jump 'b reg' can be used instead.
1253   //     All instructions are embedded at a call site.
1254   //
1255   //   - trampoline call:
1256   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1257   //     of a direct call, which is used if the destination of a call is in range,
1258   //     and a register-indirect call. It has the advantages of reaching anywhere in
1259   //     the AArch64 address space and being patchable at runtime when the generated
1260   //     code is being executed by other threads.
1261   //
1262   //     [Main code section]
1263   //       bl trampoline
1264   //     [Stub code section]
1265   //     trampoline:
1266   //       ldr reg, pc + 8
1267   //       br reg
1268   //       <64-bit destination address>
1269   //
1270   //     If the destination is in range when the generated code is moved to the code
1271   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1272   //     is not used.
1273   //     The optimization does not remove the trampoline from the stub section.
1274   //     This is necessary because the trampoline may well be redirected later when
1275   //     code is patched, and the new destination may not be reachable by a simple BR
1276   //     instruction.
1277   //
1278   //   - indirect call: move reg, address; blr reg
1279   //     This too can reach anywhere in the address space, but it cannot be
1280   //     patched while code is running, so it must only be modified at a safepoint.
1281   //     This form of call is most suitable for targets at fixed addresses, which
1282   //     will never be patched.
1283   //
1284   // The patching we do conforms to the "Concurrent modification and
1285   // execution of instructions" section of the Arm Architectural
1286   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1287   // or SVC instructions to be modified while another thread is
1288   // executing them.
1289   //
1290   // To patch a trampoline call when the BL can't reach, we first modify
1291   // the 64-bit destination address in the trampoline, then modify the
1292   // BL to point to the trampoline, then flush the instruction cache to
1293   // broadcast the change to all executing threads. See
1294   // NativeCall::set_destination_mt_safe for the details.
1295   //
1296   // There is a benign race in that the other thread might observe the
1297   // modified BL before it observes the modified 64-bit destination
1298   // address. That does not matter because the destination method has been
1299   // invalidated, so there will be a trap at its start.
1300   // For this to work, the destination address in the trampoline is
1301   // always updated, even if we're not using the trampoline.
1302 
1303   // Emit a direct call if the entry address will always be in range,
1304   // otherwise a trampoline call.
1305   // Supported entry.rspec():
1306   // - relocInfo::runtime_call_type
1307   // - relocInfo::opt_virtual_call_type
1308   // - relocInfo::static_call_type
1309   // - relocInfo::virtual_call_type
1310   //
1311   // Return: the call PC or null if CodeCache is full.
1312   // Clobbers: rscratch1
1313   address trampoline_call(Address entry);
1314 
1315   static bool far_branches() {
1316     return ReservedCodeCacheSize > branch_range;
1317   }
1318 
1319   // Check if branches to the non nmethod section require a far jump
1320   static bool codestub_branch_needs_far_jump() {
1321     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1322   }
1323 
1324   // Emit a direct call/jump if the entry address will always be in range,
1325   // otherwise a far call/jump.
1326   // The address must be inside the code cache.
1327   // Supported entry.rspec():
1328   // - relocInfo::external_word_type
1329   // - relocInfo::runtime_call_type
1330   // - relocInfo::none
1331   // In the case of a far call/jump, the entry address is put in the tmp register.
1332   // The tmp register is invalidated.
1333   //
1334   // Far_jump returns the amount of the emitted code.
1335   void far_call(Address entry, Register tmp = rscratch1);
1336   int far_jump(Address entry, Register tmp = rscratch1);
1337 
1338   static int far_codestub_branch_size() {
1339     if (codestub_branch_needs_far_jump()) {
1340       return 3 * 4;  // adrp, add, br
1341     } else {
1342       return 4;
1343     }
1344   }
1345 
1346   // Emit the CompiledIC call idiom
1347   address ic_call(address entry, jint method_index = 0);
1348   static int ic_check_size();
1349   int ic_check(int end_alignment);
1350 
1351 public:
1352 
1353   // Data
1354 
1355   void mov_metadata(Register dst, Metadata* obj);
1356   Address allocate_metadata_address(Metadata* obj);
1357   Address constant_oop_address(jobject obj);
1358 
1359   void movoop(Register dst, jobject obj);
1360 
1361   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1362   void kernel_crc32(Register crc, Register buf, Register len,
1363         Register table0, Register table1, Register table2, Register table3,
1364         Register tmp, Register tmp2, Register tmp3);
1365   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1366   void kernel_crc32c(Register crc, Register buf, Register len,
1367         Register table0, Register table1, Register table2, Register table3,
1368         Register tmp, Register tmp2, Register tmp3);
1369 
1370   // Stack push and pop individual 64 bit registers
1371   void push(Register src);
1372   void pop(Register dst);
1373 
1374   void repne_scan(Register addr, Register value, Register count,
1375                   Register scratch);
1376   void repne_scanw(Register addr, Register value, Register count,
1377                    Register scratch);
1378 
1379   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1380   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1381 
1382   // If a constant does not fit in an immediate field, generate some
1383   // number of MOV instructions and then perform the operation
1384   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1385                              add_sub_imm_insn insn1,
1386                              add_sub_reg_insn insn2, bool is32);
1387   // Separate vsn which sets the flags
1388   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1389                                add_sub_imm_insn insn1,
1390                                add_sub_reg_insn insn2, bool is32);
1391 
1392 #define WRAP(INSN, is32)                                                \
1393   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1394     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1395   }                                                                     \
1396                                                                         \
1397   void INSN(Register Rd, Register Rn, Register Rm,                      \
1398              enum shift_kind kind, unsigned shift = 0) {                \
1399     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1400   }                                                                     \
1401                                                                         \
1402   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1403     Assembler::INSN(Rd, Rn, Rm);                                        \
1404   }                                                                     \
1405                                                                         \
1406   void INSN(Register Rd, Register Rn, Register Rm,                      \
1407            ext::operation option, int amount = 0) {                     \
1408     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1409   }
1410 
1411   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1412 
1413 #undef WRAP
1414 #define WRAP(INSN, is32)                                                \
1415   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1416     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1417   }                                                                     \
1418                                                                         \
1419   void INSN(Register Rd, Register Rn, Register Rm,                      \
1420              enum shift_kind kind, unsigned shift = 0) {                \
1421     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1422   }                                                                     \
1423                                                                         \
1424   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1425     Assembler::INSN(Rd, Rn, Rm);                                        \
1426   }                                                                     \
1427                                                                         \
1428   void INSN(Register Rd, Register Rn, Register Rm,                      \
1429            ext::operation option, int amount = 0) {                     \
1430     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1431   }
1432 
1433   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1434 
1435   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1436   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1437   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1438   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1439 
1440   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1441 
1442   void verified_entry(Compile* C, int sp_inc);
1443 
1444   // Inline type specific methods
1445   #include "asm/macroAssembler_common.hpp"
1446 
1447   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
1448   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
1449   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
1450                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
1451                             RegState reg_state[]);
1452   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1453                           VMRegPair* from, int from_count, int& from_index, VMReg to,
1454                           RegState reg_state[], Register val_array);
1455   int extend_stack_for_inline_args(int args_on_stack);
1456   void remove_frame(int initial_framesize, bool needs_stack_repair);
1457   VMReg spill_reg_for(VMReg reg);
1458   void save_stack_increment(int sp_inc, int frame_size);
1459 
1460   void tableswitch(Register index, jint lowbound, jint highbound,
1461                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1462     adr(rscratch1, jumptable);
1463     subsw(rscratch2, index, lowbound);
1464     subsw(zr, rscratch2, highbound - lowbound);
1465     br(Assembler::HS, jumptable_end);
1466     add(rscratch1, rscratch1, rscratch2,
1467         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1468     br(rscratch1);
1469   }
1470 
1471   // Form an address from base + offset in Rd.  Rd may or may not
1472   // actually be used: you must use the Address that is returned.  It
1473   // is up to you to ensure that the shift provided matches the size
1474   // of your data.
1475   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1476 
1477   // Return true iff an address is within the 48-bit AArch64 address
1478   // space.
1479   bool is_valid_AArch64_address(address a) {
1480     return ((uint64_t)a >> 48) == 0;
1481   }
1482 
1483   // Load the base of the cardtable byte map into reg.
1484   void load_byte_map_base(Register reg);
1485 
1486   // Prolog generator routines to support switch between x86 code and
1487   // generated ARM code
1488 
1489   // routine to generate an x86 prolog for a stub function which
1490   // bootstraps into the generated ARM code which directly follows the
1491   // stub
1492   //
1493 
1494   public:
1495 
1496   void ldr_constant(Register dest, const Address &const_addr) {
1497     if (NearCpool) {
1498       ldr(dest, const_addr);
1499     } else {
1500       uint64_t offset;
1501       adrp(dest, InternalAddress(const_addr.target()), offset);
1502       ldr(dest, Address(dest, offset));
1503     }
1504   }
1505 
1506   address read_polling_page(Register r, relocInfo::relocType rtype);
1507   void get_polling_page(Register dest, relocInfo::relocType rtype);
1508 
1509   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1510   void update_byte_crc32(Register crc, Register val, Register table);
1511   void update_word_crc32(Register crc, Register v, Register tmp,
1512         Register table0, Register table1, Register table2, Register table3,
1513         bool upper = false);
1514 
1515   address count_positives(Register ary1, Register len, Register result);
1516 
1517   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1518                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1519 
1520   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1521 
1522   void fill_words(Register base, Register cnt, Register value);
1523   void fill_words(Register base, uint64_t cnt, Register value);
1524 
1525   address zero_words(Register base, uint64_t cnt);
1526   address zero_words(Register ptr, Register cnt);
1527   void zero_dcache_blocks(Register base, Register cnt);
1528 
1529   static const int zero_words_block_size;
1530 
1531   address byte_array_inflate(Register src, Register dst, Register len,
1532                              FloatRegister vtmp1, FloatRegister vtmp2,
1533                              FloatRegister vtmp3, Register tmp4);
1534 
1535   void char_array_compress(Register src, Register dst, Register len,
1536                            Register res,
1537                            FloatRegister vtmp0, FloatRegister vtmp1,
1538                            FloatRegister vtmp2, FloatRegister vtmp3,
1539                            FloatRegister vtmp4, FloatRegister vtmp5);
1540 
1541   void encode_iso_array(Register src, Register dst,
1542                         Register len, Register res, bool ascii,
1543                         FloatRegister vtmp0, FloatRegister vtmp1,
1544                         FloatRegister vtmp2, FloatRegister vtmp3,
1545                         FloatRegister vtmp4, FloatRegister vtmp5);
1546 
1547   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1548       address pio2, address dsin_coef, address dcos_coef);
1549  private:
1550   // begin trigonometric functions support block
1551   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1552   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1553   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1554   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1555   // end trigonometric functions support block
1556   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1557                        Register src1, Register src2);
1558   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1559     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1560   }
1561   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1562                              Register y, Register y_idx, Register z,
1563                              Register carry, Register product,
1564                              Register idx, Register kdx);
1565   void multiply_128_x_128_loop(Register y, Register z,
1566                                Register carry, Register carry2,
1567                                Register idx, Register jdx,
1568                                Register yz_idx1, Register yz_idx2,
1569                                Register tmp, Register tmp3, Register tmp4,
1570                                Register tmp7, Register product_hi);
1571   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1572         Register len, Register tmp0, Register tmp1, Register tmp2,
1573         Register tmp3);
1574   void kernel_crc32_using_crc32(Register crc, Register buf,
1575         Register len, Register tmp0, Register tmp1, Register tmp2,
1576         Register tmp3);
1577   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1578         Register len, Register tmp0, Register tmp1, Register tmp2,
1579         Register tmp3);
1580   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1581         Register len, Register tmp0, Register tmp1, Register tmp2,
1582         Register tmp3);
1583   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1584         Register len, Register tmp0, Register tmp1, Register tmp2,
1585         size_t table_offset);
1586 
1587   void ghash_modmul (FloatRegister result,
1588                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1589                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1590                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1591   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1592 public:
1593   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1594                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1595                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1596   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1597   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1598                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1599                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1600   void ghash_multiply_wide(int index,
1601                            FloatRegister result_lo, FloatRegister result_hi,
1602                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1603                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1604   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1605                     FloatRegister p, FloatRegister z, FloatRegister t1);
1606   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1607                     FloatRegister p, FloatRegister z, FloatRegister t1);
1608   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1609                                 Register data, Register blocks, int unrolls);
1610 
1611 
1612   void aesenc_loadkeys(Register key, Register keylen);
1613   void aesecb_encrypt(Register from, Register to, Register keylen,
1614                       FloatRegister data = v0, int unrolls = 1);
1615   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1616   void aes_round(FloatRegister input, FloatRegister subkey);
1617 
1618   // ChaCha20 functions support block
1619   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1620           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1621           FloatRegister tbl);
1622   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1623           FloatRegister dVec, bool colToDiag);
1624 
1625   // Place an ISB after code may have been modified due to a safepoint.
1626   void safepoint_isb();
1627 
1628 private:
1629   // Return the effective address r + (r1 << ext) + offset.
1630   // Uses rscratch2.
1631   Address offsetted_address(Register r, Register r1, Address::extend ext,
1632                             int offset, int size);
1633 
1634 private:
1635   // Returns an address on the stack which is reachable with a ldr/str of size
1636   // Uses rscratch2 if the address is not directly reachable
1637   Address spill_address(int size, int offset, Register tmp=rscratch2);
1638   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1639 
1640   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1641 
1642   // Check whether two loads/stores can be merged into ldp/stp.
1643   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1644 
1645   // Merge current load/store with previous load/store into ldp/stp.
1646   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1647 
1648   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1649   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1650 
1651 public:
1652   void spill(Register Rx, bool is64, int offset) {
1653     if (is64) {
1654       str(Rx, spill_address(8, offset));
1655     } else {
1656       strw(Rx, spill_address(4, offset));
1657     }
1658   }
1659   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1660     str(Vx, T, spill_address(1 << (int)T, offset));
1661   }
1662 
1663   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1664     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1665   }
1666   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1667     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1668   }
1669 
1670   void unspill(Register Rx, bool is64, int offset) {
1671     if (is64) {
1672       ldr(Rx, spill_address(8, offset));
1673     } else {
1674       ldrw(Rx, spill_address(4, offset));
1675     }
1676   }
1677   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1678     ldr(Vx, T, spill_address(1 << (int)T, offset));
1679   }
1680 
1681   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1682     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1683   }
1684   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1685     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1686   }
1687 
1688   void spill_copy128(int src_offset, int dst_offset,
1689                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1690     if (src_offset < 512 && (src_offset & 7) == 0 &&
1691         dst_offset < 512 && (dst_offset & 7) == 0) {
1692       ldp(tmp1, tmp2, Address(sp, src_offset));
1693       stp(tmp1, tmp2, Address(sp, dst_offset));
1694     } else {
1695       unspill(tmp1, true, src_offset);
1696       spill(tmp1, true, dst_offset);
1697       unspill(tmp1, true, src_offset+8);
1698       spill(tmp1, true, dst_offset+8);
1699     }
1700   }
1701   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1702                                             int sve_vec_reg_size_in_bytes) {
1703     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1704     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1705       spill_copy128(src_offset, dst_offset);
1706       src_offset += 16;
1707       dst_offset += 16;
1708     }
1709   }
1710   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1711                                                int sve_predicate_reg_size_in_bytes) {
1712     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1713     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1714     reinitialize_ptrue();
1715   }
1716   void cache_wb(Address line);
1717   void cache_wbsync(bool is_pre);
1718 
1719   // Code for java.lang.Thread::onSpinWait() intrinsic.
1720   void spin_wait();
1721 
1722   void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow);
1723   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1724 
1725 private:
1726   // Check the current thread doesn't need a cross modify fence.
1727   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1728 
1729 };
1730 
1731 #ifdef ASSERT
1732 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1733 #endif
1734 
1735 /**
1736  * class SkipIfEqual:
1737  *
1738  * Instantiating this class will result in assembly code being output that will
1739  * jump around any code emitted between the creation of the instance and it's
1740  * automatic destruction at the end of a scope block, depending on the value of
1741  * the flag passed to the constructor, which will be checked at run-time.
1742  */
1743 class SkipIfEqual {
1744  private:
1745   MacroAssembler* _masm;
1746   Label _label;
1747 
1748  public:
1749    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1750    ~SkipIfEqual();
1751 };
1752 
1753 struct tableswitch {
1754   Register _reg;
1755   int _insn_index; jint _first_key; jint _last_key;
1756   Label _after;
1757   Label _branches;
1758 };
1759 
1760 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP