1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "oops/compressedKlass.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/macros.hpp"
  36 #include "utilities/powerOfTwo.hpp"
  37 #include "runtime/signature.hpp"
  38 
  39 
  40 class ciInlineKlass;
  41 
  42 class OopMap;
  43 
  44 // MacroAssembler extends Assembler by frequently used macros.
  45 //
  46 // Instructions for which a 'better' code sequence exists depending
  47 // on arguments should also go in here.
  48 
  49 class MacroAssembler: public Assembler {
  50   friend class LIR_Assembler;
  51 
  52  public:
  53   using Assembler::mov;
  54   using Assembler::movi;
  55 
  56  protected:
  57 
  58   // Support for VM calls
  59   //
  60   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  61   // may customize this version by overriding it for its purposes (e.g., to save/restore
  62   // additional registers when doing a VM call).
  63   virtual void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label *retaddr = nullptr
  67   );
  68 
  69   virtual void call_VM_leaf_base(
  70     address entry_point,               // the entry point
  71     int     number_of_arguments,        // the number of arguments to pop after the call
  72     Label &retaddr) {
  73     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  74   }
  75 
  76   // This is the base routine called by the different versions of call_VM. The interpreter
  77   // may customize this version by overriding it for its purposes (e.g., to save/restore
  78   // additional registers when doing a VM call).
  79   //
  80   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  81   // returns the register which contains the thread upon return. If a thread register has been
  82   // specified, the return value will correspond to that register. If no last_java_sp is specified
  83   // (noreg) than rsp will be used instead.
  84   virtual void call_VM_base(           // returns the register containing the thread upon return
  85     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  86     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  87     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  88     address  entry_point,              // the entry point
  89     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  90     bool     check_exceptions          // whether to check for pending exceptions after return
  91   );
  92 
  93   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  94 
  95   enum KlassDecodeMode {
  96     KlassDecodeNone,
  97     KlassDecodeZero,
  98     KlassDecodeXor,
  99     KlassDecodeMovk
 100   };
 101 
 102   KlassDecodeMode klass_decode_mode();
 103 
 104  private:
 105   static KlassDecodeMode _klass_decode_mode;
 106 
 107  public:
 108   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 109 
 110  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 111  // The implementation is only non-empty for the InterpreterMacroAssembler,
 112  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 113  virtual void check_and_handle_popframe(Register java_thread);
 114  virtual void check_and_handle_earlyret(Register java_thread);
 115 
 116   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 117   void rt_call(address dest, Register tmp = rscratch1);
 118 
 119   // Load Effective Address
 120   void lea(Register r, const Address &a) {
 121     InstructionMark im(this);
 122     a.lea(this, r);
 123   }
 124 
 125   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 126      accesses, and these can exceed the offset range. */
 127   Address legitimize_address(const Address &a, int size, Register scratch) {
 128     if (a.getMode() == Address::base_plus_offset) {
 129       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 130         block_comment("legitimize_address {");
 131         lea(scratch, a);
 132         block_comment("} legitimize_address");
 133         return Address(scratch);
 134       }
 135     }
 136     return a;
 137   }
 138 
 139   void addmw(Address a, Register incr, Register scratch) {
 140     ldrw(scratch, a);
 141     addw(scratch, scratch, incr);
 142     strw(scratch, a);
 143   }
 144 
 145   // Add constant to memory word
 146   void addmw(Address a, int imm, Register scratch) {
 147     ldrw(scratch, a);
 148     if (imm > 0)
 149       addw(scratch, scratch, (unsigned)imm);
 150     else
 151       subw(scratch, scratch, (unsigned)-imm);
 152     strw(scratch, a);
 153   }
 154 
 155   void bind(Label& L) {
 156     Assembler::bind(L);
 157     code()->clear_last_insn();
 158   }
 159 
 160   void membar(Membar_mask_bits order_constraint);
 161 
 162   using Assembler::ldr;
 163   using Assembler::str;
 164   using Assembler::ldrw;
 165   using Assembler::strw;
 166 
 167   void ldr(Register Rx, const Address &adr);
 168   void ldrw(Register Rw, const Address &adr);
 169   void str(Register Rx, const Address &adr);
 170   void strw(Register Rx, const Address &adr);
 171 
 172   // Frame creation and destruction shared between JITs.
 173   void build_frame(int framesize);
 174   void remove_frame(int framesize);
 175 
 176   virtual void _call_Unimplemented(address call_site) {
 177     mov(rscratch2, call_site);
 178   }
 179 
 180 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 181 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 182 // https://reviews.llvm.org/D3311
 183 
 184 #ifdef _WIN64
 185 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 186 #else
 187 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 188 #endif
 189 
 190   // aliases defined in AARCH64 spec
 191 
 192   template<class T>
 193   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 194 
 195   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 196   inline void cmp(Register Rd, unsigned imm) = delete;
 197 
 198   template<class T>
 199   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 200 
 201   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 202   inline void cmn(Register Rd, unsigned imm) = delete;
 203 
 204   void cset(Register Rd, Assembler::Condition cond) {
 205     csinc(Rd, zr, zr, ~cond);
 206   }
 207   void csetw(Register Rd, Assembler::Condition cond) {
 208     csincw(Rd, zr, zr, ~cond);
 209   }
 210 
 211   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 212     csneg(Rd, Rn, Rn, ~cond);
 213   }
 214   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 215     csnegw(Rd, Rn, Rn, ~cond);
 216   }
 217 
 218   inline void movw(Register Rd, Register Rn) {
 219     if (Rd == sp || Rn == sp) {
 220       Assembler::addw(Rd, Rn, 0U);
 221     } else {
 222       orrw(Rd, zr, Rn);
 223     }
 224   }
 225   inline void mov(Register Rd, Register Rn) {
 226     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 227     if (Rd == Rn) {
 228     } else if (Rd == sp || Rn == sp) {
 229       Assembler::add(Rd, Rn, 0U);
 230     } else {
 231       orr(Rd, zr, Rn);
 232     }
 233   }
 234 
 235   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 236   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 237 
 238   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 239   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 240 
 241   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 242   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 243 
 244   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 245     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 246   }
 247   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 248     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 249   }
 250 
 251   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 253   }
 254   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     bfm(Rd, Rn, lsb , (lsb + width - 1));
 256   }
 257 
 258   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 260   }
 261   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 262     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 263   }
 264 
 265   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 267   }
 268   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 269     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 270   }
 271 
 272   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 274   }
 275   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 276     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 277   }
 278 
 279   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 281   }
 282   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 283     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 284   }
 285 
 286   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 287     sbfmw(Rd, Rn, imm, 31);
 288   }
 289 
 290   inline void asr(Register Rd, Register Rn, unsigned imm) {
 291     sbfm(Rd, Rn, imm, 63);
 292   }
 293 
 294   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 295     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 296   }
 297 
 298   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 299     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 300   }
 301 
 302   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 303     ubfmw(Rd, Rn, imm, 31);
 304   }
 305 
 306   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 307     ubfm(Rd, Rn, imm, 63);
 308   }
 309 
 310   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 311     extrw(Rd, Rn, Rn, imm);
 312   }
 313 
 314   inline void ror(Register Rd, Register Rn, unsigned imm) {
 315     extr(Rd, Rn, Rn, imm);
 316   }
 317 
 318   inline void sxtbw(Register Rd, Register Rn) {
 319     sbfmw(Rd, Rn, 0, 7);
 320   }
 321   inline void sxthw(Register Rd, Register Rn) {
 322     sbfmw(Rd, Rn, 0, 15);
 323   }
 324   inline void sxtb(Register Rd, Register Rn) {
 325     sbfm(Rd, Rn, 0, 7);
 326   }
 327   inline void sxth(Register Rd, Register Rn) {
 328     sbfm(Rd, Rn, 0, 15);
 329   }
 330   inline void sxtw(Register Rd, Register Rn) {
 331     sbfm(Rd, Rn, 0, 31);
 332   }
 333 
 334   inline void uxtbw(Register Rd, Register Rn) {
 335     ubfmw(Rd, Rn, 0, 7);
 336   }
 337   inline void uxthw(Register Rd, Register Rn) {
 338     ubfmw(Rd, Rn, 0, 15);
 339   }
 340   inline void uxtb(Register Rd, Register Rn) {
 341     ubfm(Rd, Rn, 0, 7);
 342   }
 343   inline void uxth(Register Rd, Register Rn) {
 344     ubfm(Rd, Rn, 0, 15);
 345   }
 346   inline void uxtw(Register Rd, Register Rn) {
 347     ubfm(Rd, Rn, 0, 31);
 348   }
 349 
 350   inline void cmnw(Register Rn, Register Rm) {
 351     addsw(zr, Rn, Rm);
 352   }
 353   inline void cmn(Register Rn, Register Rm) {
 354     adds(zr, Rn, Rm);
 355   }
 356 
 357   inline void cmpw(Register Rn, Register Rm) {
 358     subsw(zr, Rn, Rm);
 359   }
 360   inline void cmp(Register Rn, Register Rm) {
 361     subs(zr, Rn, Rm);
 362   }
 363 
 364   inline void negw(Register Rd, Register Rn) {
 365     subw(Rd, zr, Rn);
 366   }
 367 
 368   inline void neg(Register Rd, Register Rn) {
 369     sub(Rd, zr, Rn);
 370   }
 371 
 372   inline void negsw(Register Rd, Register Rn) {
 373     subsw(Rd, zr, Rn);
 374   }
 375 
 376   inline void negs(Register Rd, Register Rn) {
 377     subs(Rd, zr, Rn);
 378   }
 379 
 380   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 381     addsw(zr, Rn, Rm, kind, shift);
 382   }
 383   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 384     adds(zr, Rn, Rm, kind, shift);
 385   }
 386 
 387   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 388     subsw(zr, Rn, Rm, kind, shift);
 389   }
 390   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 391     subs(zr, Rn, Rm, kind, shift);
 392   }
 393 
 394   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 395     subw(Rd, zr, Rn, kind, shift);
 396   }
 397 
 398   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 399     sub(Rd, zr, Rn, kind, shift);
 400   }
 401 
 402   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 403     subsw(Rd, zr, Rn, kind, shift);
 404   }
 405 
 406   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 407     subs(Rd, zr, Rn, kind, shift);
 408   }
 409 
 410   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 411     msubw(Rd, Rn, Rm, zr);
 412   }
 413   inline void mneg(Register Rd, Register Rn, Register Rm) {
 414     msub(Rd, Rn, Rm, zr);
 415   }
 416 
 417   inline void mulw(Register Rd, Register Rn, Register Rm) {
 418     maddw(Rd, Rn, Rm, zr);
 419   }
 420   inline void mul(Register Rd, Register Rn, Register Rm) {
 421     madd(Rd, Rn, Rm, zr);
 422   }
 423 
 424   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 425     smsubl(Rd, Rn, Rm, zr);
 426   }
 427   inline void smull(Register Rd, Register Rn, Register Rm) {
 428     smaddl(Rd, Rn, Rm, zr);
 429   }
 430 
 431   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 432     umsubl(Rd, Rn, Rm, zr);
 433   }
 434   inline void umull(Register Rd, Register Rn, Register Rm) {
 435     umaddl(Rd, Rn, Rm, zr);
 436   }
 437 
 438 #define WRAP(INSN)                                                            \
 439   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 440     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 441       nop();                                                                  \
 442     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 443   }
 444 
 445   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 446   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 447 #undef WRAP
 448 
 449 
 450   // macro assembly operations needed for aarch64
 451 
 452   // first two private routines for loading 32 bit or 64 bit constants
 453 private:
 454 
 455   void mov_immediate64(Register dst, uint64_t imm64);
 456   void mov_immediate32(Register dst, uint32_t imm32);
 457 
 458   int push(unsigned int bitset, Register stack);
 459   int pop(unsigned int bitset, Register stack);
 460 
 461   int push_fp(unsigned int bitset, Register stack);
 462   int pop_fp(unsigned int bitset, Register stack);
 463 
 464   int push_p(unsigned int bitset, Register stack);
 465   int pop_p(unsigned int bitset, Register stack);
 466 
 467   void mov(Register dst, Address a);
 468 
 469 public:
 470   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 471   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 472 
 473   void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 474   void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 475 
 476   static RegSet call_clobbered_gp_registers();
 477 
 478   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 479   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 480 
 481   // Push and pop everything that might be clobbered by a native
 482   // runtime call except rscratch1 and rscratch2.  (They are always
 483   // scratch, so we don't have to protect them.)  Only save the lower
 484   // 64 bits of each vector register. Additional registers can be excluded
 485   // in a passed RegSet.
 486   void push_call_clobbered_registers_except(RegSet exclude);
 487   void pop_call_clobbered_registers_except(RegSet exclude);
 488 
 489   void push_call_clobbered_registers() {
 490     push_call_clobbered_registers_except(RegSet());
 491   }
 492   void pop_call_clobbered_registers() {
 493     pop_call_clobbered_registers_except(RegSet());
 494   }
 495 
 496 
 497   // now mov instructions for loading absolute addresses and 32 or
 498   // 64 bit integers
 499 
 500   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 501 
 502   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 503   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 504 
 505   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 506 
 507   void mov(Register dst, RegisterOrConstant src) {
 508     if (src.is_register())
 509       mov(dst, src.as_register());
 510     else
 511       mov(dst, src.as_constant());
 512   }
 513 
 514   void movptr(Register r, uintptr_t imm64);
 515 
 516   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 517 
 518   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 519     orr(Vd, T, Vn, Vn);
 520   }
 521 
 522   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 523     fcvtsh(tmp, src);
 524     smov(dst, tmp, H, 0);
 525   }
 526 
 527   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 528     mov(tmp, H, 0, src);
 529     fcvths(dst, tmp);
 530   }
 531 
 532   // Generalized Test Bit And Branch, including a "far" variety which
 533   // spans more than 32KiB.
 534   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 535     assert(cond == EQ || cond == NE, "must be");
 536 
 537     if (isfar)
 538       cond = ~cond;
 539 
 540     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 541     if (cond == Assembler::EQ)
 542       branch = &Assembler::tbz;
 543     else
 544       branch = &Assembler::tbnz;
 545 
 546     if (isfar) {
 547       Label L;
 548       (this->*branch)(Rt, bitpos, L);
 549       b(dest);
 550       bind(L);
 551     } else {
 552       (this->*branch)(Rt, bitpos, dest);
 553     }
 554   }
 555 
 556   // macro instructions for accessing and updating floating point
 557   // status register
 558   //
 559   // FPSR : op1 == 011
 560   //        CRn == 0100
 561   //        CRm == 0100
 562   //        op2 == 001
 563 
 564   inline void get_fpsr(Register reg)
 565   {
 566     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 567   }
 568 
 569   inline void set_fpsr(Register reg)
 570   {
 571     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 572   }
 573 
 574   inline void clear_fpsr()
 575   {
 576     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 577   }
 578 
 579   // FPCR : op1 == 011
 580   //        CRn == 0100
 581   //        CRm == 0100
 582   //        op2 == 000
 583 
 584   inline void get_fpcr(Register reg) {
 585     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 586   }
 587 
 588   inline void set_fpcr(Register reg) {
 589     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 590   }
 591 
 592   // DCZID_EL0: op1 == 011
 593   //            CRn == 0000
 594   //            CRm == 0000
 595   //            op2 == 111
 596   inline void get_dczid_el0(Register reg)
 597   {
 598     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 599   }
 600 
 601   // CTR_EL0:   op1 == 011
 602   //            CRn == 0000
 603   //            CRm == 0000
 604   //            op2 == 001
 605   inline void get_ctr_el0(Register reg)
 606   {
 607     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 608   }
 609 
 610   inline void get_nzcv(Register reg) {
 611     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 612   }
 613 
 614   inline void set_nzcv(Register reg) {
 615     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 616   }
 617 
 618   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 619   int corrected_idivl(Register result, Register ra, Register rb,
 620                       bool want_remainder, Register tmp = rscratch1);
 621   int corrected_idivq(Register result, Register ra, Register rb,
 622                       bool want_remainder, Register tmp = rscratch1);
 623 
 624   // Support for null-checks
 625   //
 626   // Generates code that causes a null OS exception if the content of reg is null.
 627   // If the accessed location is M[reg + offset] and the offset is known, provide the
 628   // offset. No explicit code generation is needed if the offset is within a certain
 629   // range (0 <= offset <= page_size).
 630 
 631   virtual void null_check(Register reg, int offset = -1);
 632   static bool needs_explicit_null_check(intptr_t offset);
 633   static bool uses_implicit_null_check(void* address);
 634 
 635   // markWord tests, kills markWord reg
 636   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 637 
 638   // inlineKlass queries, kills temp_reg
 639   void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type);
 640   void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type);
 641   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type);
 642 
 643   // Get the default value oop for the given InlineKlass
 644   void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj);
 645   // The empty value oop, for the given InlineKlass ("empty" as in no instance fields)
 646   // get_default_value_oop with extra assertion for empty inline klass
 647   void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj);
 648 
 649   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 650   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 651   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 652 
 653   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 654   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 655   void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array);
 656   void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array);
 657   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 658   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 659 
 660   // Check array klass layout helper for flat or null-free arrays...
 661   void test_flat_array_layout(Register lh, Label& is_flat_array);
 662   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 663   void test_null_free_array_layout(Register lh, Label& is_null_free_array);
 664   void test_non_null_free_array_layout(Register lh, Label& is_non_null_free_array);
 665 
 666   static address target_addr_for_insn(address insn_addr, unsigned insn);
 667   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 668   static address target_addr_for_insn(address insn_addr) {
 669     unsigned insn = *(unsigned*)insn_addr;
 670     return target_addr_for_insn(insn_addr, insn);
 671   }
 672   static address target_addr_for_insn_or_null(address insn_addr) {
 673     unsigned insn = *(unsigned*)insn_addr;
 674     return target_addr_for_insn_or_null(insn_addr, insn);
 675   }
 676 
 677   // Required platform-specific helpers for Label::patch_instructions.
 678   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 679   static int pd_patch_instruction_size(address branch, address target);
 680   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 681     pd_patch_instruction_size(branch, target);
 682   }
 683   static address pd_call_destination(address branch) {
 684     return target_addr_for_insn(branch);
 685   }
 686 #ifndef PRODUCT
 687   static void pd_print_patched_instruction(address branch);
 688 #endif
 689 
 690   static int patch_oop(address insn_addr, address o);
 691   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 692 
 693   // Return whether code is emitted to a scratch blob.
 694   virtual bool in_scratch_emit_size() {
 695     return false;
 696   }
 697   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 698   static int max_trampoline_stub_size();
 699   void emit_static_call_stub();
 700   static int static_call_stub_size();
 701 
 702   // The following 4 methods return the offset of the appropriate move instruction
 703 
 704   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 705   int load_unsigned_byte(Register dst, Address src);
 706   int load_unsigned_short(Register dst, Address src);
 707 
 708   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 709   int load_signed_byte(Register dst, Address src);
 710   int load_signed_short(Register dst, Address src);
 711 
 712   int load_signed_byte32(Register dst, Address src);
 713   int load_signed_short32(Register dst, Address src);
 714 
 715   // Support for sign-extension (hi:lo = extend_sign(lo))
 716   void extend_sign(Register hi, Register lo);
 717 
 718   // Load and store values by size and signed-ness
 719   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 720   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 721 
 722   // Support for inc/dec with optimal instruction selection depending on value
 723 
 724   // x86_64 aliases an unqualified register/address increment and
 725   // decrement to call incrementq and decrementq but also supports
 726   // explicitly sized calls to incrementq/decrementq or
 727   // incrementl/decrementl
 728 
 729   // for aarch64 the proper convention would be to use
 730   // increment/decrement for 64 bit operations and
 731   // incrementw/decrementw for 32 bit operations. so when porting
 732   // x86_64 code we can leave calls to increment/decrement as is,
 733   // replace incrementq/decrementq with increment/decrement and
 734   // replace incrementl/decrementl with incrementw/decrementw.
 735 
 736   // n.b. increment/decrement calls with an Address destination will
 737   // need to use a scratch register to load the value to be
 738   // incremented. increment/decrement calls which add or subtract a
 739   // constant value greater than 2^12 will need to use a 2nd scratch
 740   // register to hold the constant. so, a register increment/decrement
 741   // may trash rscratch2 and an address increment/decrement trash
 742   // rscratch and rscratch2
 743 
 744   void decrementw(Address dst, int value = 1);
 745   void decrementw(Register reg, int value = 1);
 746 
 747   void decrement(Register reg, int value = 1);
 748   void decrement(Address dst, int value = 1);
 749 
 750   void incrementw(Address dst, int value = 1);
 751   void incrementw(Register reg, int value = 1);
 752 
 753   void increment(Register reg, int value = 1);
 754   void increment(Address dst, int value = 1);
 755 
 756 
 757   // Alignment
 758   void align(int modulus);
 759 
 760   // nop
 761   void post_call_nop();
 762 
 763   // Stack frame creation/removal
 764   void enter(bool strip_ret_addr = false);
 765   void leave();
 766 
 767   // ROP Protection
 768   void protect_return_address();
 769   void protect_return_address(Register return_reg);
 770   void authenticate_return_address();
 771   void authenticate_return_address(Register return_reg);
 772   void strip_return_address();
 773   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 774 
 775   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 776   // The pointer will be loaded into the thread register.
 777   void get_thread(Register thread);
 778 
 779   // support for argument shuffling
 780   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 781   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 782   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 783   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 784   void object_move(
 785                    OopMap* map,
 786                    int oop_handle_offset,
 787                    int framesize_in_slots,
 788                    VMRegPair src,
 789                    VMRegPair dst,
 790                    bool is_receiver,
 791                    int* receiver_offset);
 792 
 793 
 794   // Support for VM calls
 795   //
 796   // It is imperative that all calls into the VM are handled via the call_VM macros.
 797   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 798   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 799 
 800 
 801   void call_VM(Register oop_result,
 802                address entry_point,
 803                bool check_exceptions = true);
 804   void call_VM(Register oop_result,
 805                address entry_point,
 806                Register arg_1,
 807                bool check_exceptions = true);
 808   void call_VM(Register oop_result,
 809                address entry_point,
 810                Register arg_1, Register arg_2,
 811                bool check_exceptions = true);
 812   void call_VM(Register oop_result,
 813                address entry_point,
 814                Register arg_1, Register arg_2, Register arg_3,
 815                bool check_exceptions = true);
 816 
 817   // Overloadings with last_Java_sp
 818   void call_VM(Register oop_result,
 819                Register last_java_sp,
 820                address entry_point,
 821                int number_of_arguments = 0,
 822                bool check_exceptions = true);
 823   void call_VM(Register oop_result,
 824                Register last_java_sp,
 825                address entry_point,
 826                Register arg_1, bool
 827                check_exceptions = true);
 828   void call_VM(Register oop_result,
 829                Register last_java_sp,
 830                address entry_point,
 831                Register arg_1, Register arg_2,
 832                bool check_exceptions = true);
 833   void call_VM(Register oop_result,
 834                Register last_java_sp,
 835                address entry_point,
 836                Register arg_1, Register arg_2, Register arg_3,
 837                bool check_exceptions = true);
 838 
 839   void get_vm_result  (Register oop_result, Register thread);
 840   void get_vm_result_2(Register metadata_result, Register thread);
 841 
 842   // These always tightly bind to MacroAssembler::call_VM_base
 843   // bypassing the virtual implementation
 844   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 845   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 846   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 847   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 848   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 849 
 850   void call_VM_leaf(address entry_point,
 851                     int number_of_arguments = 0);
 852   void call_VM_leaf(address entry_point,
 853                     Register arg_1);
 854   void call_VM_leaf(address entry_point,
 855                     Register arg_1, Register arg_2);
 856   void call_VM_leaf(address entry_point,
 857                     Register arg_1, Register arg_2, Register arg_3);
 858 
 859   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 860   // bypassing the virtual implementation
 861   void super_call_VM_leaf(address entry_point);
 862   void super_call_VM_leaf(address entry_point, Register arg_1);
 863   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 864   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 865   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 866 
 867   // last Java Frame (fills frame anchor)
 868   void set_last_Java_frame(Register last_java_sp,
 869                            Register last_java_fp,
 870                            address last_java_pc,
 871                            Register scratch);
 872 
 873   void set_last_Java_frame(Register last_java_sp,
 874                            Register last_java_fp,
 875                            Label &last_java_pc,
 876                            Register scratch);
 877 
 878   void set_last_Java_frame(Register last_java_sp,
 879                            Register last_java_fp,
 880                            Register last_java_pc,
 881                            Register scratch);
 882 
 883   void reset_last_Java_frame(Register thread);
 884 
 885   // thread in the default location (rthread)
 886   void reset_last_Java_frame(bool clear_fp);
 887 
 888   // Stores
 889   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 890   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 891 
 892   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 893   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 894 
 895   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 896   void c2bool(Register x);
 897 
 898   void load_method_holder_cld(Register rresult, Register rmethod);
 899   void load_method_holder(Register holder, Register method);
 900 
 901   // oop manipulations
 902   void load_metadata(Register dst, Register src);
 903 
 904   void load_klass(Register dst, Register src);
 905   void store_klass(Register dst, Register src);
 906   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 907 
 908   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 909   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 910   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 911 
 912   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 913                       Register tmp1, Register tmp2);
 914 
 915   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 916                        Register tmp1, Register tmp2, Register tmp3);
 917 
 918   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register inline_klass);
 919 
 920   // inline type data payload offsets...
 921   void first_field_offset(Register inline_klass, Register offset);
 922   void data_for_oop(Register oop, Register data, Register inline_klass);
 923   // get data payload ptr a flat value array at index, kills rcx and index
 924   void data_for_value_array_index(Register array, Register array_klass,
 925                                   Register index, Register data);
 926 
 927   void load_heap_oop(Register dst, Address src, Register tmp1,
 928                      Register tmp2, DecoratorSet decorators = 0);
 929 
 930   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 931                               Register tmp2, DecoratorSet decorators = 0);
 932   void store_heap_oop(Address dst, Register val, Register tmp1,
 933                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 934 
 935   // currently unimplemented
 936   // Used for storing null. All other oop constants should be
 937   // stored using routines that take a jobject.
 938   void store_heap_oop_null(Address dst);
 939 
 940   void load_prototype_header(Register dst, Register src);
 941 
 942   void store_klass_gap(Register dst, Register src);
 943 
 944   // This dummy is to prevent a call to store_heap_oop from
 945   // converting a zero (like null) into a Register by giving
 946   // the compiler two choices it can't resolve
 947 
 948   void store_heap_oop(Address dst, void* dummy);
 949 
 950   void encode_heap_oop(Register d, Register s);
 951   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 952   void decode_heap_oop(Register d, Register s);
 953   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 954   void encode_heap_oop_not_null(Register r);
 955   void decode_heap_oop_not_null(Register r);
 956   void encode_heap_oop_not_null(Register dst, Register src);
 957   void decode_heap_oop_not_null(Register dst, Register src);
 958 
 959   void set_narrow_oop(Register dst, jobject obj);
 960 
 961   void encode_klass_not_null(Register r);
 962   void decode_klass_not_null(Register r);
 963   void encode_klass_not_null(Register dst, Register src);
 964   void decode_klass_not_null(Register dst, Register src);
 965 
 966   void set_narrow_klass(Register dst, Klass* k);
 967 
 968   // if heap base register is used - reinit it with the correct value
 969   void reinit_heapbase();
 970 
 971   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 972 
 973   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 974                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 975   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 976                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 977 
 978   void push_cont_fastpath(Register java_thread);
 979   void pop_cont_fastpath(Register java_thread);
 980 
 981   // Round up to a power of two
 982   void round_to(Register reg, int modulus);
 983 
 984   // java.lang.Math::round intrinsics
 985   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 986   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 987 
 988   // allocation
 989 
 990   // Object / value buffer allocation...
 991   // Allocate instance of klass, assumes klass initialized by caller
 992   // new_obj prefers to be rax
 993   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 994   void allocate_instance(Register klass, Register new_obj,
 995                          Register t1, Register t2,
 996                          bool clear_fields, Label& alloc_failed);
 997 
 998   void tlab_allocate(
 999     Register obj,                      // result: pointer to object after successful allocation
1000     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1001     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1002     Register t1,                       // temp register
1003     Register t2,                       // temp register
1004     Label&   slow_case                 // continuation point if fast allocation fails
1005   );
1006   void verify_tlab();
1007 
1008   // For field "index" within "klass", return inline_klass ...
1009   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
1010 
1011   // interface method calling
1012   void lookup_interface_method(Register recv_klass,
1013                                Register intf_klass,
1014                                RegisterOrConstant itable_index,
1015                                Register method_result,
1016                                Register scan_temp,
1017                                Label& no_such_interface,
1018                    bool return_method = true);
1019 
1020   void lookup_interface_method_stub(Register recv_klass,
1021                                     Register holder_klass,
1022                                     Register resolved_klass,
1023                                     Register method_result,
1024                                     Register temp_reg,
1025                                     Register temp_reg2,
1026                                     int itable_index,
1027                                     Label& L_no_such_interface);
1028 
1029   // virtual method calling
1030   // n.b. x86 allows RegisterOrConstant for vtable_index
1031   void lookup_virtual_method(Register recv_klass,
1032                              RegisterOrConstant vtable_index,
1033                              Register method_result);
1034 
1035   // Test sub_klass against super_klass, with fast and slow paths.
1036 
1037   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1038   // One of the three labels can be null, meaning take the fall-through.
1039   // If super_check_offset is -1, the value is loaded up from super_klass.
1040   // No registers are killed, except temp_reg.
1041   void check_klass_subtype_fast_path(Register sub_klass,
1042                                      Register super_klass,
1043                                      Register temp_reg,
1044                                      Label* L_success,
1045                                      Label* L_failure,
1046                                      Label* L_slow_path,
1047                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1048 
1049   // The rest of the type check; must be wired to a corresponding fast path.
1050   // It does not repeat the fast path logic, so don't use it standalone.
1051   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1052   // Updates the sub's secondary super cache as necessary.
1053   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1054   void check_klass_subtype_slow_path(Register sub_klass,
1055                                      Register super_klass,
1056                                      Register temp_reg,
1057                                      Register temp2_reg,
1058                                      Label* L_success,
1059                                      Label* L_failure,
1060                                      bool set_cond_codes = false);
1061 
1062   // Simplified, combined version, good for typical uses.
1063   // Falls through on failure.
1064   void check_klass_subtype(Register sub_klass,
1065                            Register super_klass,
1066                            Register temp_reg,
1067                            Label& L_success);
1068 
1069   void clinit_barrier(Register klass,
1070                       Register thread,
1071                       Label* L_fast_path = nullptr,
1072                       Label* L_slow_path = nullptr);
1073 
1074   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1075 
1076   void verify_sve_vector_length(Register tmp = rscratch1);
1077   void reinitialize_ptrue() {
1078     if (UseSVE > 0) {
1079       sve_ptrue(ptrue, B);
1080     }
1081   }
1082   void verify_ptrue();
1083 
1084   // Debugging
1085 
1086   // only if +VerifyOops
1087   void _verify_oop(Register reg, const char* s, const char* file, int line);
1088   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1089 
1090   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1091     if (VerifyOops) {
1092       _verify_oop(reg, s, file, line);
1093     }
1094   }
1095   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1096     if (VerifyOops) {
1097       _verify_oop_addr(reg, s, file, line);
1098     }
1099   }
1100 
1101 // TODO: verify method and klass metadata (compare against vptr?)
1102   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1103   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1104 
1105 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1106 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1107 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1108 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1109 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1110 
1111   // Restore cpu control state after JNI call
1112   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1113 
1114   // prints msg, dumps registers and stops execution
1115   void stop(const char* msg);
1116 
1117   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1118 
1119   void untested()                                { stop("untested"); }
1120 
1121   void unimplemented(const char* what = "");
1122 
1123   void should_not_reach_here()                   { stop("should not reach here"); }
1124 
1125   void _assert_asm(Condition cc, const char* msg);
1126 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1127 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1128 
1129   // Stack overflow checking
1130   void bang_stack_with_offset(int offset) {
1131     // stack grows down, caller passes positive offset
1132     assert(offset > 0, "must bang with negative offset");
1133     sub(rscratch2, sp, offset);
1134     str(zr, Address(rscratch2));
1135   }
1136 
1137   // Writes to stack successive pages until offset reached to check for
1138   // stack overflow + shadow pages.  Also, clobbers tmp
1139   void bang_stack_size(Register size, Register tmp);
1140 
1141   // Check for reserved stack access in method being exited (for JIT)
1142   void reserved_stack_check();
1143 
1144   // Arithmetics
1145 
1146   void addptr(const Address &dst, int32_t src);
1147   void cmpptr(Register src1, Address src2);
1148 
1149   void cmpoop(Register obj1, Register obj2);
1150 
1151   // Various forms of CAS
1152 
1153   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1154                           Label &succeed, Label *fail);
1155   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1156                   Label &succeed, Label *fail);
1157 
1158   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1159                   Label &succeed, Label *fail);
1160 
1161   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1162   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1163   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1164   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1165 
1166   void atomic_xchg(Register prev, Register newv, Register addr);
1167   void atomic_xchgw(Register prev, Register newv, Register addr);
1168   void atomic_xchgl(Register prev, Register newv, Register addr);
1169   void atomic_xchglw(Register prev, Register newv, Register addr);
1170   void atomic_xchgal(Register prev, Register newv, Register addr);
1171   void atomic_xchgalw(Register prev, Register newv, Register addr);
1172 
1173   void orptr(Address adr, RegisterOrConstant src) {
1174     ldr(rscratch1, adr);
1175     if (src.is_register())
1176       orr(rscratch1, rscratch1, src.as_register());
1177     else
1178       orr(rscratch1, rscratch1, src.as_constant());
1179     str(rscratch1, adr);
1180   }
1181 
1182   // A generic CAS; success or failure is in the EQ flag.
1183   // Clobbers rscratch1
1184   void cmpxchg(Register addr, Register expected, Register new_val,
1185                enum operand_size size,
1186                bool acquire, bool release, bool weak,
1187                Register result);
1188 
1189 #ifdef ASSERT
1190   // Template short-hand support to clean-up after a failed call to trampoline
1191   // call generation (see trampoline_call() below),  when a set of Labels must
1192   // be reset (before returning).
1193   template<typename Label, typename... More>
1194   void reset_labels(Label &lbl, More&... more) {
1195     lbl.reset(); reset_labels(more...);
1196   }
1197   template<typename Label>
1198   void reset_labels(Label &lbl) {
1199     lbl.reset();
1200   }
1201 #endif
1202 
1203 private:
1204   void compare_eq(Register rn, Register rm, enum operand_size size);
1205 
1206 public:
1207   // AArch64 OpenJDK uses four different types of calls:
1208   //   - direct call: bl pc_relative_offset
1209   //     This is the shortest and the fastest, but the offset has the range:
1210   //     +/-128MB for the release build, +/-2MB for the debug build.
1211   //
1212   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1213   //     This is longer than a direct call. The offset has
1214   //     the range +/-4GB. As the code cache size is limited to 4GB,
1215   //     far calls can reach anywhere in the code cache. If a jump is
1216   //     needed rather than a call, a far jump 'b reg' can be used instead.
1217   //     All instructions are embedded at a call site.
1218   //
1219   //   - trampoline call:
1220   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1221   //     of a direct call, which is used if the destination of a call is in range,
1222   //     and a register-indirect call. It has the advantages of reaching anywhere in
1223   //     the AArch64 address space and being patchable at runtime when the generated
1224   //     code is being executed by other threads.
1225   //
1226   //     [Main code section]
1227   //       bl trampoline
1228   //     [Stub code section]
1229   //     trampoline:
1230   //       ldr reg, pc + 8
1231   //       br reg
1232   //       <64-bit destination address>
1233   //
1234   //     If the destination is in range when the generated code is moved to the code
1235   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1236   //     is not used.
1237   //     The optimization does not remove the trampoline from the stub section.
1238   //     This is necessary because the trampoline may well be redirected later when
1239   //     code is patched, and the new destination may not be reachable by a simple BR
1240   //     instruction.
1241   //
1242   //   - indirect call: move reg, address; blr reg
1243   //     This too can reach anywhere in the address space, but it cannot be
1244   //     patched while code is running, so it must only be modified at a safepoint.
1245   //     This form of call is most suitable for targets at fixed addresses, which
1246   //     will never be patched.
1247   //
1248   // The patching we do conforms to the "Concurrent modification and
1249   // execution of instructions" section of the Arm Architectural
1250   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1251   // or SVC instructions to be modified while another thread is
1252   // executing them.
1253   //
1254   // To patch a trampoline call when the BL can't reach, we first modify
1255   // the 64-bit destination address in the trampoline, then modify the
1256   // BL to point to the trampoline, then flush the instruction cache to
1257   // broadcast the change to all executing threads. See
1258   // NativeCall::set_destination_mt_safe for the details.
1259   //
1260   // There is a benign race in that the other thread might observe the
1261   // modified BL before it observes the modified 64-bit destination
1262   // address. That does not matter because the destination method has been
1263   // invalidated, so there will be a trap at its start.
1264   // For this to work, the destination address in the trampoline is
1265   // always updated, even if we're not using the trampoline.
1266 
1267   // Emit a direct call if the entry address will always be in range,
1268   // otherwise a trampoline call.
1269   // Supported entry.rspec():
1270   // - relocInfo::runtime_call_type
1271   // - relocInfo::opt_virtual_call_type
1272   // - relocInfo::static_call_type
1273   // - relocInfo::virtual_call_type
1274   //
1275   // Return: the call PC or null if CodeCache is full.
1276   address trampoline_call(Address entry);
1277 
1278   static bool far_branches() {
1279     return ReservedCodeCacheSize > branch_range;
1280   }
1281 
1282   // Check if branches to the non nmethod section require a far jump
1283   static bool codestub_branch_needs_far_jump() {
1284     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1285   }
1286 
1287   // Emit a direct call/jump if the entry address will always be in range,
1288   // otherwise a far call/jump.
1289   // The address must be inside the code cache.
1290   // Supported entry.rspec():
1291   // - relocInfo::external_word_type
1292   // - relocInfo::runtime_call_type
1293   // - relocInfo::none
1294   // In the case of a far call/jump, the entry address is put in the tmp register.
1295   // The tmp register is invalidated.
1296   //
1297   // Far_jump returns the amount of the emitted code.
1298   void far_call(Address entry, Register tmp = rscratch1);
1299   int far_jump(Address entry, Register tmp = rscratch1);
1300 
1301   static int far_codestub_branch_size() {
1302     if (codestub_branch_needs_far_jump()) {
1303       return 3 * 4;  // adrp, add, br
1304     } else {
1305       return 4;
1306     }
1307   }
1308 
1309   // Emit the CompiledIC call idiom
1310   address ic_call(address entry, jint method_index = 0);
1311 
1312 public:
1313 
1314   // Data
1315 
1316   void mov_metadata(Register dst, Metadata* obj);
1317   Address allocate_metadata_address(Metadata* obj);
1318   Address constant_oop_address(jobject obj);
1319 
1320   void movoop(Register dst, jobject obj);
1321 
1322   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1323   void kernel_crc32(Register crc, Register buf, Register len,
1324         Register table0, Register table1, Register table2, Register table3,
1325         Register tmp, Register tmp2, Register tmp3);
1326   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1327   void kernel_crc32c(Register crc, Register buf, Register len,
1328         Register table0, Register table1, Register table2, Register table3,
1329         Register tmp, Register tmp2, Register tmp3);
1330 
1331   // Stack push and pop individual 64 bit registers
1332   void push(Register src);
1333   void pop(Register dst);
1334 
1335   void repne_scan(Register addr, Register value, Register count,
1336                   Register scratch);
1337   void repne_scanw(Register addr, Register value, Register count,
1338                    Register scratch);
1339 
1340   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1341   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1342 
1343   // If a constant does not fit in an immediate field, generate some
1344   // number of MOV instructions and then perform the operation
1345   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1346                              add_sub_imm_insn insn1,
1347                              add_sub_reg_insn insn2, bool is32);
1348   // Separate vsn which sets the flags
1349   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1350                                add_sub_imm_insn insn1,
1351                                add_sub_reg_insn insn2, bool is32);
1352 
1353 #define WRAP(INSN, is32)                                                \
1354   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1355     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1356   }                                                                     \
1357                                                                         \
1358   void INSN(Register Rd, Register Rn, Register Rm,                      \
1359              enum shift_kind kind, unsigned shift = 0) {                \
1360     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1361   }                                                                     \
1362                                                                         \
1363   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1364     Assembler::INSN(Rd, Rn, Rm);                                        \
1365   }                                                                     \
1366                                                                         \
1367   void INSN(Register Rd, Register Rn, Register Rm,                      \
1368            ext::operation option, int amount = 0) {                     \
1369     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1370   }
1371 
1372   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1373 
1374 #undef WRAP
1375 #define WRAP(INSN, is32)                                                \
1376   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1377     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1378   }                                                                     \
1379                                                                         \
1380   void INSN(Register Rd, Register Rn, Register Rm,                      \
1381              enum shift_kind kind, unsigned shift = 0) {                \
1382     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1383   }                                                                     \
1384                                                                         \
1385   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1386     Assembler::INSN(Rd, Rn, Rm);                                        \
1387   }                                                                     \
1388                                                                         \
1389   void INSN(Register Rd, Register Rn, Register Rm,                      \
1390            ext::operation option, int amount = 0) {                     \
1391     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1392   }
1393 
1394   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1395 
1396   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1397   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1398   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1399   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1400 
1401   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1402 
1403   void verified_entry(Compile* C, int sp_inc);
1404 
1405   // Inline type specific methods
1406   #include "asm/macroAssembler_common.hpp"
1407 
1408   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
1409   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
1410   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
1411                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
1412                             RegState reg_state[]);
1413   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1414                           VMRegPair* from, int from_count, int& from_index, VMReg to,
1415                           RegState reg_state[], Register val_array);
1416   int extend_stack_for_inline_args(int args_on_stack);
1417   void remove_frame(int initial_framesize, bool needs_stack_repair);
1418   VMReg spill_reg_for(VMReg reg);
1419   void save_stack_increment(int sp_inc, int frame_size);
1420 
1421   void tableswitch(Register index, jint lowbound, jint highbound,
1422                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1423     adr(rscratch1, jumptable);
1424     subsw(rscratch2, index, lowbound);
1425     subsw(zr, rscratch2, highbound - lowbound);
1426     br(Assembler::HS, jumptable_end);
1427     add(rscratch1, rscratch1, rscratch2,
1428         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1429     br(rscratch1);
1430   }
1431 
1432   // Form an address from base + offset in Rd.  Rd may or may not
1433   // actually be used: you must use the Address that is returned.  It
1434   // is up to you to ensure that the shift provided matches the size
1435   // of your data.
1436   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1437 
1438   // Return true iff an address is within the 48-bit AArch64 address
1439   // space.
1440   bool is_valid_AArch64_address(address a) {
1441     return ((uint64_t)a >> 48) == 0;
1442   }
1443 
1444   // Load the base of the cardtable byte map into reg.
1445   void load_byte_map_base(Register reg);
1446 
1447   // Prolog generator routines to support switch between x86 code and
1448   // generated ARM code
1449 
1450   // routine to generate an x86 prolog for a stub function which
1451   // bootstraps into the generated ARM code which directly follows the
1452   // stub
1453   //
1454 
1455   public:
1456 
1457   void ldr_constant(Register dest, const Address &const_addr) {
1458     if (NearCpool) {
1459       ldr(dest, const_addr);
1460     } else {
1461       uint64_t offset;
1462       adrp(dest, InternalAddress(const_addr.target()), offset);
1463       ldr(dest, Address(dest, offset));
1464     }
1465   }
1466 
1467   address read_polling_page(Register r, relocInfo::relocType rtype);
1468   void get_polling_page(Register dest, relocInfo::relocType rtype);
1469 
1470   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1471   void update_byte_crc32(Register crc, Register val, Register table);
1472   void update_word_crc32(Register crc, Register v, Register tmp,
1473         Register table0, Register table1, Register table2, Register table3,
1474         bool upper = false);
1475 
1476   address count_positives(Register ary1, Register len, Register result);
1477 
1478   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1479                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1480 
1481   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1482                      int elem_size);
1483 
1484   void fill_words(Register base, Register cnt, Register value);
1485   void fill_words(Register base, uint64_t cnt, Register value);
1486 
1487   address zero_words(Register base, uint64_t cnt);
1488   address zero_words(Register ptr, Register cnt);
1489   void zero_dcache_blocks(Register base, Register cnt);
1490 
1491   static const int zero_words_block_size;
1492 
1493   address byte_array_inflate(Register src, Register dst, Register len,
1494                              FloatRegister vtmp1, FloatRegister vtmp2,
1495                              FloatRegister vtmp3, Register tmp4);
1496 
1497   void char_array_compress(Register src, Register dst, Register len,
1498                            Register res,
1499                            FloatRegister vtmp0, FloatRegister vtmp1,
1500                            FloatRegister vtmp2, FloatRegister vtmp3,
1501                            FloatRegister vtmp4, FloatRegister vtmp5);
1502 
1503   void encode_iso_array(Register src, Register dst,
1504                         Register len, Register res, bool ascii,
1505                         FloatRegister vtmp0, FloatRegister vtmp1,
1506                         FloatRegister vtmp2, FloatRegister vtmp3,
1507                         FloatRegister vtmp4, FloatRegister vtmp5);
1508 
1509   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1510                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1511                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1512                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1513                 Register tmp3, Register tmp4, Register tmp5);
1514   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1515       address pio2, address dsin_coef, address dcos_coef);
1516  private:
1517   // begin trigonometric functions support block
1518   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1519   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1520   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1521   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1522   // end trigonometric functions support block
1523   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1524                        Register src1, Register src2);
1525   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1526     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1527   }
1528   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1529                              Register y, Register y_idx, Register z,
1530                              Register carry, Register product,
1531                              Register idx, Register kdx);
1532   void multiply_128_x_128_loop(Register y, Register z,
1533                                Register carry, Register carry2,
1534                                Register idx, Register jdx,
1535                                Register yz_idx1, Register yz_idx2,
1536                                Register tmp, Register tmp3, Register tmp4,
1537                                Register tmp7, Register product_hi);
1538   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1539         Register len, Register tmp0, Register tmp1, Register tmp2,
1540         Register tmp3);
1541   void kernel_crc32_using_crc32(Register crc, Register buf,
1542         Register len, Register tmp0, Register tmp1, Register tmp2,
1543         Register tmp3);
1544   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1545         Register len, Register tmp0, Register tmp1, Register tmp2,
1546         Register tmp3);
1547   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1548         Register len, Register tmp0, Register tmp1, Register tmp2,
1549         Register tmp3);
1550   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1551         Register len, Register tmp0, Register tmp1, Register tmp2,
1552         size_t table_offset);
1553 
1554   void ghash_modmul (FloatRegister result,
1555                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1556                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1557                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1558   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1559 public:
1560   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1561                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1562                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1563   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1564   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1565                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1566                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1567   void ghash_multiply_wide(int index,
1568                            FloatRegister result_lo, FloatRegister result_hi,
1569                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1570                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1571   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1572                     FloatRegister p, FloatRegister z, FloatRegister t1);
1573   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1574                     FloatRegister p, FloatRegister z, FloatRegister t1);
1575   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1576                                 Register data, Register blocks, int unrolls);
1577 
1578 
1579   void aesenc_loadkeys(Register key, Register keylen);
1580   void aesecb_encrypt(Register from, Register to, Register keylen,
1581                       FloatRegister data = v0, int unrolls = 1);
1582   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1583   void aes_round(FloatRegister input, FloatRegister subkey);
1584 
1585   // ChaCha20 functions support block
1586   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1587           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1588           FloatRegister tbl);
1589   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1590           FloatRegister dVec, bool colToDiag);
1591 
1592   // Place an ISB after code may have been modified due to a safepoint.
1593   void safepoint_isb();
1594 
1595 private:
1596   // Return the effective address r + (r1 << ext) + offset.
1597   // Uses rscratch2.
1598   Address offsetted_address(Register r, Register r1, Address::extend ext,
1599                             int offset, int size);
1600 
1601 private:
1602   // Returns an address on the stack which is reachable with a ldr/str of size
1603   // Uses rscratch2 if the address is not directly reachable
1604   Address spill_address(int size, int offset, Register tmp=rscratch2);
1605   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1606 
1607   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1608 
1609   // Check whether two loads/stores can be merged into ldp/stp.
1610   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1611 
1612   // Merge current load/store with previous load/store into ldp/stp.
1613   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1614 
1615   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1616   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1617 
1618 public:
1619   void spill(Register Rx, bool is64, int offset) {
1620     if (is64) {
1621       str(Rx, spill_address(8, offset));
1622     } else {
1623       strw(Rx, spill_address(4, offset));
1624     }
1625   }
1626   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1627     str(Vx, T, spill_address(1 << (int)T, offset));
1628   }
1629 
1630   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1631     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1632   }
1633   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1634     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1635   }
1636 
1637   void unspill(Register Rx, bool is64, int offset) {
1638     if (is64) {
1639       ldr(Rx, spill_address(8, offset));
1640     } else {
1641       ldrw(Rx, spill_address(4, offset));
1642     }
1643   }
1644   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1645     ldr(Vx, T, spill_address(1 << (int)T, offset));
1646   }
1647 
1648   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1649     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1650   }
1651   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1652     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1653   }
1654 
1655   void spill_copy128(int src_offset, int dst_offset,
1656                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1657     if (src_offset < 512 && (src_offset & 7) == 0 &&
1658         dst_offset < 512 && (dst_offset & 7) == 0) {
1659       ldp(tmp1, tmp2, Address(sp, src_offset));
1660       stp(tmp1, tmp2, Address(sp, dst_offset));
1661     } else {
1662       unspill(tmp1, true, src_offset);
1663       spill(tmp1, true, dst_offset);
1664       unspill(tmp1, true, src_offset+8);
1665       spill(tmp1, true, dst_offset+8);
1666     }
1667   }
1668   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1669                                             int sve_vec_reg_size_in_bytes) {
1670     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1671     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1672       spill_copy128(src_offset, dst_offset);
1673       src_offset += 16;
1674       dst_offset += 16;
1675     }
1676   }
1677   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1678                                                int sve_predicate_reg_size_in_bytes) {
1679     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1680     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1681     reinitialize_ptrue();
1682   }
1683   void cache_wb(Address line);
1684   void cache_wbsync(bool is_pre);
1685 
1686   // Code for java.lang.Thread::onSpinWait() intrinsic.
1687   void spin_wait();
1688 
1689   void lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow);
1690   void lightweight_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow);
1691 
1692 private:
1693   // Check the current thread doesn't need a cross modify fence.
1694   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1695 
1696 };
1697 
1698 #ifdef ASSERT
1699 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1700 #endif
1701 
1702 /**
1703  * class SkipIfEqual:
1704  *
1705  * Instantiating this class will result in assembly code being output that will
1706  * jump around any code emitted between the creation of the instance and it's
1707  * automatic destruction at the end of a scope block, depending on the value of
1708  * the flag passed to the constructor, which will be checked at run-time.
1709  */
1710 class SkipIfEqual {
1711  private:
1712   MacroAssembler* _masm;
1713   Label _label;
1714 
1715  public:
1716    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1717    ~SkipIfEqual();
1718 };
1719 
1720 struct tableswitch {
1721   Register _reg;
1722   int _insn_index; jint _first_key; jint _last_key;
1723   Label _after;
1724   Label _branches;
1725 };
1726 
1727 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP