1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/aotCodeCache.hpp"
  31 #include "code/vmreg.hpp"
  32 #include "metaprogramming/enableIf.hpp"
  33 #include "oops/compressedOops.hpp"
  34 #include "oops/compressedKlass.hpp"
  35 #include "runtime/vm_version.hpp"
  36 #include "utilities/macros.hpp"
  37 #include "utilities/powerOfTwo.hpp"
  38 #include "runtime/signature.hpp"
  39 
  40 
  41 class ciInlineKlass;
  42 
  43 class OopMap;
  44 
  45 // MacroAssembler extends Assembler by frequently used macros.
  46 //
  47 // Instructions for which a 'better' code sequence exists depending
  48 // on arguments should also go in here.
  49 
  50 class MacroAssembler: public Assembler {
  51   friend class LIR_Assembler;
  52 
  53  public:
  54   using Assembler::mov;
  55   using Assembler::movi;
  56 
  57  protected:
  58 
  59   // Support for VM calls
  60   //
  61   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  62   // may customize this version by overriding it for its purposes (e.g., to save/restore
  63   // additional registers when doing a VM call).
  64   virtual void call_VM_leaf_base(
  65     address entry_point,               // the entry point
  66     int     number_of_arguments,        // the number of arguments to pop after the call
  67     Label *retaddr = nullptr
  68   );
  69 
  70   virtual void call_VM_leaf_base(
  71     address entry_point,               // the entry point
  72     int     number_of_arguments,        // the number of arguments to pop after the call
  73     Label &retaddr) {
  74     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  75   }
  76 
  77   // This is the base routine called by the different versions of call_VM. The interpreter
  78   // may customize this version by overriding it for its purposes (e.g., to save/restore
  79   // additional registers when doing a VM call).
  80   //
  81   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  82   // returns the register which contains the thread upon return. If a thread register has been
  83   // specified, the return value will correspond to that register. If no last_java_sp is specified
  84   // (noreg) than rsp will be used instead.
  85   virtual void call_VM_base(           // returns the register containing the thread upon return
  86     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  87     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  88     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  89     address  entry_point,              // the entry point
  90     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  91     bool     check_exceptions          // whether to check for pending exceptions after return
  92   );
  93 
  94   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  95 
  96   enum KlassDecodeMode {
  97     KlassDecodeNone,
  98     KlassDecodeZero,
  99     KlassDecodeXor,
 100     KlassDecodeMovk
 101   };
 102 
 103   // Calculate decoding mode based on given parameters, used for checking then ultimately setting.
 104   static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range);
 105 
 106  private:
 107   static KlassDecodeMode _klass_decode_mode;
 108 
 109   // Returns above setting with asserts
 110   static KlassDecodeMode klass_decode_mode();
 111 
 112  public:
 113   // Checks the decode mode and returns false if not compatible with preferred decoding mode.
 114   static bool check_klass_decode_mode(address base, int shift, const size_t range);
 115 
 116   // Sets the decode mode and returns false if cannot be set.
 117   static bool set_klass_decode_mode(address base, int shift, const size_t range);
 118 
 119  public:
 120   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 121 
 122  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 123  // The implementation is only non-empty for the InterpreterMacroAssembler,
 124  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 125  virtual void check_and_handle_popframe(Register java_thread);
 126  virtual void check_and_handle_earlyret(Register java_thread);
 127 
 128   void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp = rscratch1);
 129   void rt_call(address dest, Register tmp = rscratch1);
 130 
 131   // Load Effective Address
 132   void lea(Register r, const Address &a) {
 133     InstructionMark im(this);
 134     a.lea(this, r);
 135   }
 136 
 137   // Whether materializing the given address for a LDR/STR requires an
 138   // additional lea instruction.
 139   static bool legitimize_address_requires_lea(const Address &a, int size) {
 140     return a.getMode() == Address::base_plus_offset &&
 141            !Address::offset_ok_for_immed(a.offset(), exact_log2(size));
 142   }
 143 
 144   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 145      accesses, and these can exceed the offset range. */
 146   Address legitimize_address(const Address &a, int size, Register scratch) {
 147     if (legitimize_address_requires_lea(a, size)) {
 148       block_comment("legitimize_address {");
 149       lea(scratch, a);
 150       block_comment("} legitimize_address");
 151       return Address(scratch);
 152     }
 153     return a;
 154   }
 155 
 156   void addmw(Address a, Register incr, Register scratch) {
 157     ldrw(scratch, a);
 158     addw(scratch, scratch, incr);
 159     strw(scratch, a);
 160   }
 161 
 162   // Add constant to memory word
 163   void addmw(Address a, int imm, Register scratch) {
 164     ldrw(scratch, a);
 165     if (imm > 0)
 166       addw(scratch, scratch, (unsigned)imm);
 167     else
 168       subw(scratch, scratch, (unsigned)-imm);
 169     strw(scratch, a);
 170   }
 171 
 172   void bind(Label& L) {
 173     Assembler::bind(L);
 174     code()->clear_last_insn();
 175     code()->set_last_label(pc());
 176   }
 177 
 178   void membar(Membar_mask_bits order_constraint);
 179 
 180   using Assembler::ldr;
 181   using Assembler::str;
 182   using Assembler::ldrw;
 183   using Assembler::strw;
 184 
 185   void ldr(Register Rx, const Address &adr);
 186   void ldrw(Register Rw, const Address &adr);
 187   void str(Register Rx, const Address &adr);
 188   void strw(Register Rx, const Address &adr);
 189 
 190   // Frame creation and destruction shared between JITs.
 191   void build_frame(int framesize);
 192   void remove_frame(int framesize);
 193 
 194   virtual void _call_Unimplemented(address call_site) {
 195     mov(rscratch2, call_site);
 196   }
 197 
 198 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 199 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 200 // https://reviews.llvm.org/D3311
 201 
 202 #ifdef _WIN64
 203 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 204 #else
 205 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 206 #endif
 207 
 208   // aliases defined in AARCH64 spec
 209 
 210   template<class T>
 211   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 212 
 213   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 214   inline void cmp(Register Rd, unsigned imm) = delete;
 215 
 216   template<class T>
 217   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 218 
 219   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 220   inline void cmn(Register Rd, unsigned imm) = delete;
 221 
 222   void cset(Register Rd, Assembler::Condition cond) {
 223     csinc(Rd, zr, zr, ~cond);
 224   }
 225   void csetw(Register Rd, Assembler::Condition cond) {
 226     csincw(Rd, zr, zr, ~cond);
 227   }
 228 
 229   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 230     csneg(Rd, Rn, Rn, ~cond);
 231   }
 232   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 233     csnegw(Rd, Rn, Rn, ~cond);
 234   }
 235 
 236   inline void movw(Register Rd, Register Rn) {
 237     if (Rd == sp || Rn == sp) {
 238       Assembler::addw(Rd, Rn, 0U);
 239     } else {
 240       orrw(Rd, zr, Rn);
 241     }
 242   }
 243   inline void mov(Register Rd, Register Rn) {
 244     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 245     if (Rd == Rn) {
 246     } else if (Rd == sp || Rn == sp) {
 247       Assembler::add(Rd, Rn, 0U);
 248     } else {
 249       orr(Rd, zr, Rn);
 250     }
 251   }
 252 
 253   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 254   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 255 
 256   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 257   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 258 
 259   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 260   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 261 
 262   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 264   }
 265   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 267   }
 268 
 269   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 271   }
 272   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     bfm(Rd, Rn, lsb , (lsb + width - 1));
 274   }
 275 
 276   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 278   }
 279   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 281   }
 282 
 283   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 284     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 285   }
 286   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 287     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 288   }
 289 
 290   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 291     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 292   }
 293   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 294     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 295   }
 296 
 297   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 298     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 299   }
 300   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 301     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 302   }
 303 
 304   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 305     sbfmw(Rd, Rn, imm, 31);
 306   }
 307 
 308   inline void asr(Register Rd, Register Rn, unsigned imm) {
 309     sbfm(Rd, Rn, imm, 63);
 310   }
 311 
 312   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 313     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 314   }
 315 
 316   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 317     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 318   }
 319 
 320   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 321     ubfmw(Rd, Rn, imm, 31);
 322   }
 323 
 324   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 325     ubfm(Rd, Rn, imm, 63);
 326   }
 327 
 328   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 329     extrw(Rd, Rn, Rn, imm);
 330   }
 331 
 332   inline void ror(Register Rd, Register Rn, unsigned imm) {
 333     extr(Rd, Rn, Rn, imm);
 334   }
 335 
 336   inline void rolw(Register Rd, Register Rn, unsigned imm) {
 337     extrw(Rd, Rn, Rn, (32 - imm));
 338   }
 339 
 340   inline void rol(Register Rd, Register Rn, unsigned imm) {
 341     extr(Rd, Rn, Rn, (64 - imm));
 342   }
 343 
 344   using Assembler::rax1;
 345   using Assembler::eor3;
 346 
 347   inline void rax1(Register Rd, Register Rn, Register Rm) {
 348     eor(Rd, Rn, Rm, ROR, 63); // Rd = Rn ^ rol(Rm, 1)
 349   }
 350 
 351   inline void eor3(Register Rd, Register Rn, Register Rm, Register Rk) {
 352     assert(Rd != Rn, "Use tmp register");
 353     eor(Rd, Rm, Rk);
 354     eor(Rd, Rd, Rn);
 355   }
 356 
 357   inline void sxtbw(Register Rd, Register Rn) {
 358     sbfmw(Rd, Rn, 0, 7);
 359   }
 360   inline void sxthw(Register Rd, Register Rn) {
 361     sbfmw(Rd, Rn, 0, 15);
 362   }
 363   inline void sxtb(Register Rd, Register Rn) {
 364     sbfm(Rd, Rn, 0, 7);
 365   }
 366   inline void sxth(Register Rd, Register Rn) {
 367     sbfm(Rd, Rn, 0, 15);
 368   }
 369   inline void sxtw(Register Rd, Register Rn) {
 370     sbfm(Rd, Rn, 0, 31);
 371   }
 372 
 373   inline void uxtbw(Register Rd, Register Rn) {
 374     ubfmw(Rd, Rn, 0, 7);
 375   }
 376   inline void uxthw(Register Rd, Register Rn) {
 377     ubfmw(Rd, Rn, 0, 15);
 378   }
 379   inline void uxtb(Register Rd, Register Rn) {
 380     ubfm(Rd, Rn, 0, 7);
 381   }
 382   inline void uxth(Register Rd, Register Rn) {
 383     ubfm(Rd, Rn, 0, 15);
 384   }
 385   inline void uxtw(Register Rd, Register Rn) {
 386     ubfm(Rd, Rn, 0, 31);
 387   }
 388 
 389   inline void cmnw(Register Rn, Register Rm) {
 390     addsw(zr, Rn, Rm);
 391   }
 392   inline void cmn(Register Rn, Register Rm) {
 393     adds(zr, Rn, Rm);
 394   }
 395 
 396   inline void cmpw(Register Rn, Register Rm) {
 397     subsw(zr, Rn, Rm);
 398   }
 399   inline void cmp(Register Rn, Register Rm) {
 400     subs(zr, Rn, Rm);
 401   }
 402 
 403   inline void negw(Register Rd, Register Rn) {
 404     subw(Rd, zr, Rn);
 405   }
 406 
 407   inline void neg(Register Rd, Register Rn) {
 408     sub(Rd, zr, Rn);
 409   }
 410 
 411   inline void negsw(Register Rd, Register Rn) {
 412     subsw(Rd, zr, Rn);
 413   }
 414 
 415   inline void negs(Register Rd, Register Rn) {
 416     subs(Rd, zr, Rn);
 417   }
 418 
 419   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 420     addsw(zr, Rn, Rm, kind, shift);
 421   }
 422   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 423     adds(zr, Rn, Rm, kind, shift);
 424   }
 425 
 426   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 427     subsw(zr, Rn, Rm, kind, shift);
 428   }
 429   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 430     subs(zr, Rn, Rm, kind, shift);
 431   }
 432 
 433   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 434     subw(Rd, zr, Rn, kind, shift);
 435   }
 436 
 437   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 438     sub(Rd, zr, Rn, kind, shift);
 439   }
 440 
 441   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 442     subsw(Rd, zr, Rn, kind, shift);
 443   }
 444 
 445   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 446     subs(Rd, zr, Rn, kind, shift);
 447   }
 448 
 449   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 450     msubw(Rd, Rn, Rm, zr);
 451   }
 452   inline void mneg(Register Rd, Register Rn, Register Rm) {
 453     msub(Rd, Rn, Rm, zr);
 454   }
 455 
 456   inline void mulw(Register Rd, Register Rn, Register Rm) {
 457     maddw(Rd, Rn, Rm, zr);
 458   }
 459   inline void mul(Register Rd, Register Rn, Register Rm) {
 460     madd(Rd, Rn, Rm, zr);
 461   }
 462 
 463   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 464     smsubl(Rd, Rn, Rm, zr);
 465   }
 466   inline void smull(Register Rd, Register Rn, Register Rm) {
 467     smaddl(Rd, Rn, Rm, zr);
 468   }
 469 
 470   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 471     umsubl(Rd, Rn, Rm, zr);
 472   }
 473   inline void umull(Register Rd, Register Rn, Register Rm) {
 474     umaddl(Rd, Rn, Rm, zr);
 475   }
 476 
 477 #define WRAP(INSN)                                                            \
 478   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 479     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 480       nop();                                                                  \
 481     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 482   }
 483 
 484   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 485   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 486 #undef WRAP
 487 
 488 
 489   // macro assembly operations needed for aarch64
 490 
 491 public:
 492 
 493   enum FpPushPopMode {
 494     PushPopFull,
 495     PushPopSVE,
 496     PushPopNeon,
 497     PushPopFp
 498   };
 499 
 500   // first two private routines for loading 32 bit or 64 bit constants
 501 private:
 502 
 503   void mov_immediate64(Register dst, uint64_t imm64);
 504   void mov_immediate32(Register dst, uint32_t imm32);
 505 
 506   int push(unsigned int bitset, Register stack);
 507   int pop(unsigned int bitset, Register stack);
 508 
 509   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 510   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 511 
 512   int push_p(unsigned int bitset, Register stack);
 513   int pop_p(unsigned int bitset, Register stack);
 514 
 515   void mov(Register dst, Address a);
 516 
 517 public:
 518 
 519   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 520   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 521 
 522   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 523   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 524 
 525   static RegSet call_clobbered_gp_registers();
 526 
 527   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 528   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 529 
 530   // Push and pop everything that might be clobbered by a native
 531   // runtime call except rscratch1 and rscratch2.  (They are always
 532   // scratch, so we don't have to protect them.)  Only save the lower
 533   // 64 bits of each vector register. Additional registers can be excluded
 534   // in a passed RegSet.
 535   void push_call_clobbered_registers_except(RegSet exclude);
 536   void pop_call_clobbered_registers_except(RegSet exclude);
 537 
 538   void push_call_clobbered_registers() {
 539     push_call_clobbered_registers_except(RegSet());
 540   }
 541   void pop_call_clobbered_registers() {
 542     pop_call_clobbered_registers_except(RegSet());
 543   }
 544 
 545 
 546   // now mov instructions for loading absolute addresses and 32 or
 547   // 64 bit integers
 548 
 549   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 550 
 551   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 552   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 553 
 554   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 555 
 556   void mov(Register dst, RegisterOrConstant src) {
 557     if (src.is_register())
 558       mov(dst, src.as_register());
 559     else
 560       mov(dst, src.as_constant());
 561   }
 562 
 563   void movptr(Register r, uintptr_t imm64);
 564 
 565   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 566 
 567   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 568     orr(Vd, T, Vn, Vn);
 569   }
 570 
 571   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 572     fcvtsh(tmp, src);
 573     smov(dst, tmp, H, 0);
 574   }
 575 
 576   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 577     mov(tmp, H, 0, src);
 578     fcvths(dst, tmp);
 579   }
 580 
 581   // Generalized Test Bit And Branch, including a "far" variety which
 582   // spans more than 32KiB.
 583   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 584     assert(cond == EQ || cond == NE, "must be");
 585 
 586     if (isfar)
 587       cond = ~cond;
 588 
 589     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 590     if (cond == Assembler::EQ)
 591       branch = &Assembler::tbz;
 592     else
 593       branch = &Assembler::tbnz;
 594 
 595     if (isfar) {
 596       Label L;
 597       (this->*branch)(Rt, bitpos, L);
 598       b(dest);
 599       bind(L);
 600     } else {
 601       (this->*branch)(Rt, bitpos, dest);
 602     }
 603   }
 604 
 605   // macro instructions for accessing and updating floating point
 606   // status register
 607   //
 608   // FPSR : op1 == 011
 609   //        CRn == 0100
 610   //        CRm == 0100
 611   //        op2 == 001
 612 
 613   inline void get_fpsr(Register reg)
 614   {
 615     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 616   }
 617 
 618   inline void set_fpsr(Register reg)
 619   {
 620     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 621   }
 622 
 623   inline void clear_fpsr()
 624   {
 625     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 626   }
 627 
 628   // FPCR : op1 == 011
 629   //        CRn == 0100
 630   //        CRm == 0100
 631   //        op2 == 000
 632 
 633   inline void get_fpcr(Register reg) {
 634     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 635   }
 636 
 637   inline void set_fpcr(Register reg) {
 638     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 639   }
 640 
 641   // DCZID_EL0: op1 == 011
 642   //            CRn == 0000
 643   //            CRm == 0000
 644   //            op2 == 111
 645   inline void get_dczid_el0(Register reg)
 646   {
 647     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 648   }
 649 
 650   // CTR_EL0:   op1 == 011
 651   //            CRn == 0000
 652   //            CRm == 0000
 653   //            op2 == 001
 654   inline void get_ctr_el0(Register reg)
 655   {
 656     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 657   }
 658 
 659   inline void get_nzcv(Register reg) {
 660     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 661   }
 662 
 663   inline void set_nzcv(Register reg) {
 664     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 665   }
 666 
 667   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 668   int corrected_idivl(Register result, Register ra, Register rb,
 669                       bool want_remainder, Register tmp = rscratch1);
 670   int corrected_idivq(Register result, Register ra, Register rb,
 671                       bool want_remainder, Register tmp = rscratch1);
 672 
 673   // Support for null-checks
 674   //
 675   // Generates code that causes a null OS exception if the content of reg is null.
 676   // If the accessed location is M[reg + offset] and the offset is known, provide the
 677   // offset. No explicit code generation is needed if the offset is within a certain
 678   // range (0 <= offset <= page_size).
 679 
 680   virtual void null_check(Register reg, int offset = -1);
 681   static bool needs_explicit_null_check(intptr_t offset);
 682   static bool uses_implicit_null_check(void* address);
 683 
 684   // markWord tests, kills markWord reg
 685   void test_markword_is_inline_type(Register markword, Label& is_inline_type);
 686 
 687   // inlineKlass queries, kills temp_reg
 688   void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null = true);
 689 
 690   void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free);
 691   void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free);
 692   void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat);
 693   void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker);
 694 
 695   // Check oops for special arrays, i.e. flat arrays and/or null-free arrays
 696   void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label);
 697   void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array);
 698   void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array);
 699   void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array);
 700   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 701 
 702   // Check array klass layout helper for flat or null-free arrays...
 703   void test_flat_array_layout(Register lh, Label& is_flat_array);
 704   void test_non_flat_array_layout(Register lh, Label& is_non_flat_array);
 705 
 706   static address target_addr_for_insn(address insn_addr, unsigned insn);
 707   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 708   static address target_addr_for_insn(address insn_addr) {
 709     unsigned insn = *(unsigned*)insn_addr;
 710     return target_addr_for_insn(insn_addr, insn);
 711   }
 712   static address target_addr_for_insn_or_null(address insn_addr) {
 713     unsigned insn = *(unsigned*)insn_addr;
 714     return target_addr_for_insn_or_null(insn_addr, insn);
 715   }
 716 
 717   // Required platform-specific helpers for Label::patch_instructions.
 718   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 719   static int pd_patch_instruction_size(address branch, address target);
 720   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 721     pd_patch_instruction_size(branch, target);
 722   }
 723   static address pd_call_destination(address branch) {
 724     return target_addr_for_insn(branch);
 725   }
 726 #ifndef PRODUCT
 727   static void pd_print_patched_instruction(address branch);
 728 #endif
 729 
 730   static int patch_oop(address insn_addr, address o);
 731   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 732 
 733   // Return whether code is emitted to a scratch blob.
 734   virtual bool in_scratch_emit_size() {
 735     return false;
 736   }
 737   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 738   static int max_trampoline_stub_size();
 739   void emit_static_call_stub();
 740   static int static_call_stub_size();
 741 
 742   // The following 4 methods return the offset of the appropriate move instruction
 743 
 744   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 745   int load_unsigned_byte(Register dst, Address src);
 746   int load_unsigned_short(Register dst, Address src);
 747 
 748   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 749   int load_signed_byte(Register dst, Address src);
 750   int load_signed_short(Register dst, Address src);
 751 
 752   int load_signed_byte32(Register dst, Address src);
 753   int load_signed_short32(Register dst, Address src);
 754 
 755   // Support for sign-extension (hi:lo = extend_sign(lo))
 756   void extend_sign(Register hi, Register lo);
 757 
 758   // Load and store values by size and signed-ness
 759   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 760   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 761 
 762   // Support for inc/dec with optimal instruction selection depending on value
 763 
 764   // x86_64 aliases an unqualified register/address increment and
 765   // decrement to call incrementq and decrementq but also supports
 766   // explicitly sized calls to incrementq/decrementq or
 767   // incrementl/decrementl
 768 
 769   // for aarch64 the proper convention would be to use
 770   // increment/decrement for 64 bit operations and
 771   // incrementw/decrementw for 32 bit operations. so when porting
 772   // x86_64 code we can leave calls to increment/decrement as is,
 773   // replace incrementq/decrementq with increment/decrement and
 774   // replace incrementl/decrementl with incrementw/decrementw.
 775 
 776   // n.b. increment/decrement calls with an Address destination will
 777   // need to use a scratch register to load the value to be
 778   // incremented. increment/decrement calls which add or subtract a
 779   // constant value greater than 2^12 will need to use a 2nd scratch
 780   // register to hold the constant. so, a register increment/decrement
 781   // may trash rscratch2 and an address increment/decrement trash
 782   // rscratch and rscratch2
 783 
 784   void decrementw(Address dst, int value = 1);
 785   void decrementw(Register reg, int value = 1);
 786 
 787   void decrement(Register reg, int value = 1);
 788   void decrement(Address dst, int value = 1);
 789 
 790   void incrementw(Address dst, int value = 1);
 791   void incrementw(Register reg, int value = 1);
 792 
 793   void increment(Register reg, int value = 1);
 794   void increment(Address dst, int value = 1);
 795 
 796 
 797   // Alignment
 798   void align(int modulus);
 799   void align(int modulus, int target);
 800 
 801   // nop
 802   void post_call_nop();
 803 
 804   // Stack frame creation/removal
 805   void enter(bool strip_ret_addr = false);
 806   void leave();
 807 
 808   // ROP Protection
 809   void protect_return_address();
 810   void protect_return_address(Register return_reg);
 811   void authenticate_return_address();
 812   void authenticate_return_address(Register return_reg);
 813   void strip_return_address();
 814   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 815 
 816   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 817   // The pointer will be loaded into the thread register.
 818   void get_thread(Register thread);
 819 
 820   // support for argument shuffling
 821   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 822   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 823   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 824   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 825   void object_move(
 826                    OopMap* map,
 827                    int oop_handle_offset,
 828                    int framesize_in_slots,
 829                    VMRegPair src,
 830                    VMRegPair dst,
 831                    bool is_receiver,
 832                    int* receiver_offset);
 833 
 834 
 835   // Support for VM calls
 836   //
 837   // It is imperative that all calls into the VM are handled via the call_VM macros.
 838   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 839   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 840 
 841 
 842   void call_VM(Register oop_result,
 843                address entry_point,
 844                bool check_exceptions = true);
 845   void call_VM(Register oop_result,
 846                address entry_point,
 847                Register arg_1,
 848                bool check_exceptions = true);
 849   void call_VM(Register oop_result,
 850                address entry_point,
 851                Register arg_1, Register arg_2,
 852                bool check_exceptions = true);
 853   void call_VM(Register oop_result,
 854                address entry_point,
 855                Register arg_1, Register arg_2, Register arg_3,
 856                bool check_exceptions = true);
 857 
 858   // Overloadings with last_Java_sp
 859   void call_VM(Register oop_result,
 860                Register last_java_sp,
 861                address entry_point,
 862                int number_of_arguments = 0,
 863                bool check_exceptions = true);
 864   void call_VM(Register oop_result,
 865                Register last_java_sp,
 866                address entry_point,
 867                Register arg_1, bool
 868                check_exceptions = true);
 869   void call_VM(Register oop_result,
 870                Register last_java_sp,
 871                address entry_point,
 872                Register arg_1, Register arg_2,
 873                bool check_exceptions = true);
 874   void call_VM(Register oop_result,
 875                Register last_java_sp,
 876                address entry_point,
 877                Register arg_1, Register arg_2, Register arg_3,
 878                bool check_exceptions = true);
 879 
 880   void get_vm_result_oop(Register oop_result, Register thread);
 881   void get_vm_result_metadata(Register metadata_result, Register thread);
 882 
 883   // These always tightly bind to MacroAssembler::call_VM_base
 884   // bypassing the virtual implementation
 885   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 886   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 887   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 888   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 889   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 890 
 891   void call_VM_leaf(address entry_point,
 892                     int number_of_arguments = 0);
 893   void call_VM_leaf(address entry_point,
 894                     Register arg_1);
 895   void call_VM_leaf(address entry_point,
 896                     Register arg_1, Register arg_2);
 897   void call_VM_leaf(address entry_point,
 898                     Register arg_1, Register arg_2, Register arg_3);
 899 
 900   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 901   // bypassing the virtual implementation
 902   void super_call_VM_leaf(address entry_point);
 903   void super_call_VM_leaf(address entry_point, Register arg_1);
 904   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 905   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 906   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 907 
 908   // last Java Frame (fills frame anchor)
 909   void set_last_Java_frame(Register last_java_sp,
 910                            Register last_java_fp,
 911                            address last_java_pc,
 912                            Register scratch);
 913 
 914   void set_last_Java_frame(Register last_java_sp,
 915                            Register last_java_fp,
 916                            Label &last_java_pc,
 917                            Register scratch);
 918 
 919   void set_last_Java_frame(Register last_java_sp,
 920                            Register last_java_fp,
 921                            Register last_java_pc,
 922                            Register scratch);
 923 
 924   void reset_last_Java_frame(Register thread);
 925 
 926   // thread in the default location (rthread)
 927   void reset_last_Java_frame(bool clear_fp);
 928 
 929   // Stores
 930   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 931   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 932 
 933   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 934   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 935 
 936   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 937   void c2bool(Register x);
 938 
 939   void load_method_holder_cld(Register rresult, Register rmethod);
 940   void load_method_holder(Register holder, Register method);
 941 
 942   // oop manipulations
 943   void load_metadata(Register dst, Register src);
 944 
 945   void load_narrow_klass_compact(Register dst, Register src);
 946   void load_klass(Register dst, Register src);
 947   void store_klass(Register dst, Register src);
 948   void cmp_klass(Register obj, Register klass, Register tmp);
 949   void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2);
 950 
 951   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 952   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 953   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 954 
 955   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 956                       Register tmp1, Register tmp2);
 957 
 958   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 959                        Register tmp1, Register tmp2, Register tmp3);
 960 
 961   void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info);
 962 
 963   // inline type data payload offsets...
 964   void payload_offset(Register inline_klass, Register offset);
 965   void payload_address(Register oop, Register data, Register inline_klass);
 966   // get data payload ptr a flat value array at index, kills rcx and index
 967   void data_for_value_array_index(Register array, Register array_klass,
 968                                   Register index, Register data);
 969 
 970   void load_heap_oop(Register dst, Address src, Register tmp1,
 971                      Register tmp2, DecoratorSet decorators = 0);
 972 
 973   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 974                               Register tmp2, DecoratorSet decorators = 0);
 975   void store_heap_oop(Address dst, Register val, Register tmp1,
 976                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 977 
 978   // currently unimplemented
 979   // Used for storing null. All other oop constants should be
 980   // stored using routines that take a jobject.
 981   void store_heap_oop_null(Address dst);
 982 
 983   void load_prototype_header(Register dst, Register src);
 984 
 985   void store_klass_gap(Register dst, Register src);
 986 
 987   // This dummy is to prevent a call to store_heap_oop from
 988   // converting a zero (like null) into a Register by giving
 989   // the compiler two choices it can't resolve
 990 
 991   void store_heap_oop(Address dst, void* dummy);
 992 
 993   void encode_heap_oop(Register d, Register s);
 994   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 995   void decode_heap_oop(Register d, Register s);
 996   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 997   void encode_heap_oop_not_null(Register r);
 998   void decode_heap_oop_not_null(Register r);
 999   void encode_heap_oop_not_null(Register dst, Register src);
1000   void decode_heap_oop_not_null(Register dst, Register src);
1001 
1002   void set_narrow_oop(Register dst, jobject obj);
1003 
1004   void decode_klass_not_null_for_aot(Register dst, Register src);
1005   void encode_klass_not_null_for_aot(Register dst, Register src);
1006   void encode_klass_not_null(Register r);
1007   void decode_klass_not_null(Register r);
1008   void encode_klass_not_null(Register dst, Register src);
1009   void decode_klass_not_null(Register dst, Register src);
1010 
1011   void set_narrow_klass(Register dst, Klass* k);
1012 
1013   // if heap base register is used - reinit it with the correct value
1014   void reinit_heapbase();
1015 
1016   DEBUG_ONLY(void verify_heapbase(const char* msg);)
1017 
1018   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
1019                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
1020   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
1021                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
1022 
1023   void push_cont_fastpath(Register java_thread = rthread);
1024   void pop_cont_fastpath(Register java_thread = rthread);
1025 
1026   // Round up to a power of two
1027   void round_to(Register reg, int modulus);
1028 
1029   // java.lang.Math::round intrinsics
1030   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
1031   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
1032 
1033   // allocation
1034 
1035   // Object / value buffer allocation...
1036   // Allocate instance of klass, assumes klass initialized by caller
1037   // new_obj prefers to be rax
1038   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
1039   void allocate_instance(Register klass, Register new_obj,
1040                          Register t1, Register t2,
1041                          bool clear_fields, Label& alloc_failed);
1042 
1043   void tlab_allocate(
1044     Register obj,                      // result: pointer to object after successful allocation
1045     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1046     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1047     Register t1,                       // temp register
1048     Register t2,                       // temp register
1049     Label&   slow_case                 // continuation point if fast allocation fails
1050   );
1051   void verify_tlab();
1052 
1053   // For field "index" within "klass", return inline_klass ...
1054   void get_inline_type_field_klass(Register klass, Register index, Register inline_klass);
1055   void inline_layout_info(Register holder_klass, Register index, Register layout_info);
1056 
1057 
1058   // interface method calling
1059   void lookup_interface_method(Register recv_klass,
1060                                Register intf_klass,
1061                                RegisterOrConstant itable_index,
1062                                Register method_result,
1063                                Register scan_temp,
1064                                Label& no_such_interface,
1065                    bool return_method = true);
1066 
1067   void lookup_interface_method_stub(Register recv_klass,
1068                                     Register holder_klass,
1069                                     Register resolved_klass,
1070                                     Register method_result,
1071                                     Register temp_reg,
1072                                     Register temp_reg2,
1073                                     int itable_index,
1074                                     Label& L_no_such_interface);
1075 
1076   // virtual method calling
1077   // n.b. x86 allows RegisterOrConstant for vtable_index
1078   void lookup_virtual_method(Register recv_klass,
1079                              RegisterOrConstant vtable_index,
1080                              Register method_result);
1081 
1082   // Test sub_klass against super_klass, with fast and slow paths.
1083 
1084   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1085   // One of the three labels can be null, meaning take the fall-through.
1086   // If super_check_offset is -1, the value is loaded up from super_klass.
1087   // No registers are killed, except temp_reg.
1088   void check_klass_subtype_fast_path(Register sub_klass,
1089                                      Register super_klass,
1090                                      Register temp_reg,
1091                                      Label* L_success,
1092                                      Label* L_failure,
1093                                      Label* L_slow_path,
1094                                      Register super_check_offset = noreg);
1095 
1096   // The rest of the type check; must be wired to a corresponding fast path.
1097   // It does not repeat the fast path logic, so don't use it standalone.
1098   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1099   // Updates the sub's secondary super cache as necessary.
1100   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1101   void check_klass_subtype_slow_path(Register sub_klass,
1102                                      Register super_klass,
1103                                      Register temp_reg,
1104                                      Register temp2_reg,
1105                                      Label* L_success,
1106                                      Label* L_failure,
1107                                      bool set_cond_codes = false);
1108 
1109   void check_klass_subtype_slow_path_linear(Register sub_klass,
1110                                             Register super_klass,
1111                                             Register temp_reg,
1112                                             Register temp2_reg,
1113                                             Label* L_success,
1114                                             Label* L_failure,
1115                                             bool set_cond_codes = false);
1116 
1117   void check_klass_subtype_slow_path_table(Register sub_klass,
1118                                            Register super_klass,
1119                                            Register temp_reg,
1120                                            Register temp2_reg,
1121                                            Register temp3_reg,
1122                                            Register result_reg,
1123                                            FloatRegister vtemp_reg,
1124                                            Label* L_success,
1125                                            Label* L_failure,
1126                                            bool set_cond_codes = false);
1127 
1128   // If r is valid, return r.
1129   // If r is invalid, remove a register r2 from available_regs, add r2
1130   // to regs_to_push, then return r2.
1131   Register allocate_if_noreg(const Register r,
1132                              RegSetIterator<Register> &available_regs,
1133                              RegSet &regs_to_push);
1134 
1135   // Secondary subtype checking
1136   void lookup_secondary_supers_table_var(Register sub_klass,
1137                                          Register r_super_klass,
1138                                          Register temp1,
1139                                          Register temp2,
1140                                          Register temp3,
1141                                          FloatRegister vtemp,
1142                                          Register result,
1143                                          Label *L_success);
1144 
1145 
1146   // As above, but with a constant super_klass.
1147   // The result is in Register result, not the condition codes.
1148   bool lookup_secondary_supers_table_const(Register r_sub_klass,
1149                                            Register r_super_klass,
1150                                            Register temp1,
1151                                            Register temp2,
1152                                            Register temp3,
1153                                            FloatRegister vtemp,
1154                                            Register result,
1155                                            u1 super_klass_slot,
1156                                            bool stub_is_near = false);
1157 
1158   void verify_secondary_supers_table(Register r_sub_klass,
1159                                      Register r_super_klass,
1160                                      Register temp1,
1161                                      Register temp2,
1162                                      Register result);
1163 
1164   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1165                                                Register r_array_base,
1166                                                Register r_array_index,
1167                                                Register r_bitmap,
1168                                                Register temp1,
1169                                                Register result,
1170                                                bool is_stub = true);
1171 
1172   // Simplified, combined version, good for typical uses.
1173   // Falls through on failure.
1174   void check_klass_subtype(Register sub_klass,
1175                            Register super_klass,
1176                            Register temp_reg,
1177                            Label& L_success);
1178 
1179   void clinit_barrier(Register klass,
1180                       Register thread,
1181                       Label* L_fast_path = nullptr,
1182                       Label* L_slow_path = nullptr);
1183 
1184   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1185 
1186   void verify_sve_vector_length(Register tmp = rscratch1);
1187   void reinitialize_ptrue() {
1188     if (UseSVE > 0) {
1189       sve_ptrue(ptrue, B);
1190     }
1191   }
1192   void verify_ptrue();
1193 
1194   // Debugging
1195 
1196   // only if +VerifyOops
1197   void _verify_oop(Register reg, const char* s, const char* file, int line);
1198   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1199 
1200   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1201     if (VerifyOops) {
1202       _verify_oop(reg, s, file, line);
1203     }
1204   }
1205   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1206     if (VerifyOops) {
1207       _verify_oop_addr(reg, s, file, line);
1208     }
1209   }
1210 
1211 // TODO: verify method and klass metadata (compare against vptr?)
1212   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1213   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1214 
1215 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1216 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1217 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1218 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1219 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1220 
1221   // Restore cpu control state after JNI call
1222   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1223 
1224   // prints msg, dumps registers and stops execution
1225   void stop(const char* msg);
1226 
1227   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1228 
1229   void untested()                                { stop("untested"); }
1230 
1231   void unimplemented(const char* what = "");
1232 
1233   void should_not_reach_here()                   { stop("should not reach here"); }
1234 
1235   void _assert_asm(Condition cc, const char* msg);
1236 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1237 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1238 
1239   // Stack overflow checking
1240   void bang_stack_with_offset(int offset) {
1241     // stack grows down, caller passes positive offset
1242     assert(offset > 0, "must bang with negative offset");
1243     sub(rscratch2, sp, offset);
1244     str(zr, Address(rscratch2));
1245   }
1246 
1247   // Writes to stack successive pages until offset reached to check for
1248   // stack overflow + shadow pages.  Also, clobbers tmp
1249   void bang_stack_size(Register size, Register tmp);
1250 
1251   // Check for reserved stack access in method being exited (for JIT)
1252   void reserved_stack_check();
1253 
1254   // Arithmetics
1255 
1256   // Clobber: rscratch1, rscratch2
1257   void addptr(const Address &dst, int32_t src);
1258 
1259   // Clobber: rscratch1
1260   void cmpptr(Register src1, Address src2);
1261 
1262   void cmpoop(Register obj1, Register obj2);
1263 
1264   // Various forms of CAS
1265 
1266   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1267                           Label &succeed, Label *fail);
1268   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1269                   Label &succeed, Label *fail);
1270 
1271   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1272                   Label &succeed, Label *fail);
1273 
1274   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1275   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1276   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1277   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1278 
1279   void atomic_xchg(Register prev, Register newv, Register addr);
1280   void atomic_xchgw(Register prev, Register newv, Register addr);
1281   void atomic_xchgl(Register prev, Register newv, Register addr);
1282   void atomic_xchglw(Register prev, Register newv, Register addr);
1283   void atomic_xchgal(Register prev, Register newv, Register addr);
1284   void atomic_xchgalw(Register prev, Register newv, Register addr);
1285 
1286   void orptr(Address adr, RegisterOrConstant src) {
1287     ldr(rscratch1, adr);
1288     if (src.is_register())
1289       orr(rscratch1, rscratch1, src.as_register());
1290     else
1291       orr(rscratch1, rscratch1, src.as_constant());
1292     str(rscratch1, adr);
1293   }
1294 
1295   // A generic CAS; success or failure is in the EQ flag.
1296   // Clobbers rscratch1
1297   void cmpxchg(Register addr, Register expected, Register new_val,
1298                enum operand_size size,
1299                bool acquire, bool release, bool weak,
1300                Register result);
1301 
1302 #ifdef ASSERT
1303   // Template short-hand support to clean-up after a failed call to trampoline
1304   // call generation (see trampoline_call() below),  when a set of Labels must
1305   // be reset (before returning).
1306   template<typename Label, typename... More>
1307   void reset_labels(Label &lbl, More&... more) {
1308     lbl.reset(); reset_labels(more...);
1309   }
1310   template<typename Label>
1311   void reset_labels(Label &lbl) {
1312     lbl.reset();
1313   }
1314 #endif
1315 
1316 private:
1317   void compare_eq(Register rn, Register rm, enum operand_size size);
1318 
1319 public:
1320   // AArch64 OpenJDK uses four different types of calls:
1321   //   - direct call: bl pc_relative_offset
1322   //     This is the shortest and the fastest, but the offset has the range:
1323   //     +/-128MB for the release build, +/-2MB for the debug build.
1324   //
1325   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1326   //     This is longer than a direct call. The offset has
1327   //     the range +/-4GB. As the code cache size is limited to 4GB,
1328   //     far calls can reach anywhere in the code cache. If a jump is
1329   //     needed rather than a call, a far jump 'b reg' can be used instead.
1330   //     All instructions are embedded at a call site.
1331   //
1332   //   - trampoline call:
1333   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1334   //     of a direct call, which is used if the destination of a call is in range,
1335   //     and a register-indirect call. It has the advantages of reaching anywhere in
1336   //     the AArch64 address space and being patchable at runtime when the generated
1337   //     code is being executed by other threads.
1338   //
1339   //     [Main code section]
1340   //       bl trampoline
1341   //     [Stub code section]
1342   //     trampoline:
1343   //       ldr reg, pc + 8
1344   //       br reg
1345   //       <64-bit destination address>
1346   //
1347   //     If the destination is in range when the generated code is moved to the code
1348   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1349   //     is not used.
1350   //     The optimization does not remove the trampoline from the stub section.
1351   //     This is necessary because the trampoline may well be redirected later when
1352   //     code is patched, and the new destination may not be reachable by a simple BR
1353   //     instruction.
1354   //
1355   //   - indirect call: move reg, address; blr reg
1356   //     This too can reach anywhere in the address space, but it cannot be
1357   //     patched while code is running, so it must only be modified at a safepoint.
1358   //     This form of call is most suitable for targets at fixed addresses, which
1359   //     will never be patched.
1360   //
1361   // The patching we do conforms to the "Concurrent modification and
1362   // execution of instructions" section of the Arm Architectural
1363   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1364   // or SVC instructions to be modified while another thread is
1365   // executing them.
1366   //
1367   // To patch a trampoline call when the BL can't reach, we first modify
1368   // the 64-bit destination address in the trampoline, then modify the
1369   // BL to point to the trampoline, then flush the instruction cache to
1370   // broadcast the change to all executing threads. See
1371   // NativeCall::set_destination_mt_safe for the details.
1372   //
1373   // There is a benign race in that the other thread might observe the
1374   // modified BL before it observes the modified 64-bit destination
1375   // address. That does not matter because the destination method has been
1376   // invalidated, so there will be a trap at its start.
1377   // For this to work, the destination address in the trampoline is
1378   // always updated, even if we're not using the trampoline.
1379 
1380   // Emit a direct call if the entry address will always be in range,
1381   // otherwise a trampoline call.
1382   // Supported entry.rspec():
1383   // - relocInfo::runtime_call_type
1384   // - relocInfo::opt_virtual_call_type
1385   // - relocInfo::static_call_type
1386   // - relocInfo::virtual_call_type
1387   //
1388   // Return: the call PC or null if CodeCache is full.
1389   // Clobbers: rscratch1
1390   address trampoline_call(Address entry);
1391 
1392   static bool far_branches() {
1393     return ReservedCodeCacheSize > branch_range;
1394   }
1395 
1396   // Check if branches to the non nmethod section require a far jump
1397   static bool codestub_branch_needs_far_jump() {
1398     if (AOTCodeCache::is_on_for_dump()) {
1399       // To calculate far_codestub_branch_size correctly.
1400       return true;
1401     }
1402     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1403   }
1404 
1405   // Emit a direct call/jump if the entry address will always be in range,
1406   // otherwise a far call/jump.
1407   // The address must be inside the code cache.
1408   // Supported entry.rspec():
1409   // - relocInfo::external_word_type
1410   // - relocInfo::runtime_call_type
1411   // - relocInfo::none
1412   // In the case of a far call/jump, the entry address is put in the tmp register.
1413   // The tmp register is invalidated.
1414   //
1415   // Far_jump returns the amount of the emitted code.
1416   void far_call(Address entry, Register tmp = rscratch1);
1417   int far_jump(Address entry, Register tmp = rscratch1);
1418 
1419   static int far_codestub_branch_size() {
1420     if (codestub_branch_needs_far_jump()) {
1421       return 3 * 4;  // adrp, add, br
1422     } else {
1423       return 4;
1424     }
1425   }
1426 
1427   // Emit the CompiledIC call idiom
1428   address ic_call(address entry, jint method_index = 0);
1429   static int ic_check_size();
1430   int ic_check(int end_alignment);
1431 
1432 public:
1433 
1434   // Data
1435 
1436   void mov_metadata(Register dst, Metadata* obj);
1437   Address allocate_metadata_address(Metadata* obj);
1438   Address constant_oop_address(jobject obj);
1439 
1440   void movoop(Register dst, jobject obj);
1441 
1442   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1443   void kernel_crc32(Register crc, Register buf, Register len,
1444         Register table0, Register table1, Register table2, Register table3,
1445         Register tmp, Register tmp2, Register tmp3);
1446   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1447   void kernel_crc32c(Register crc, Register buf, Register len,
1448         Register table0, Register table1, Register table2, Register table3,
1449         Register tmp, Register tmp2, Register tmp3);
1450 
1451   // Stack push and pop individual 64 bit registers
1452   void push(Register src);
1453   void pop(Register dst);
1454 
1455   void repne_scan(Register addr, Register value, Register count,
1456                   Register scratch);
1457   void repne_scanw(Register addr, Register value, Register count,
1458                    Register scratch);
1459 
1460   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1461   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1462 
1463   // If a constant does not fit in an immediate field, generate some
1464   // number of MOV instructions and then perform the operation
1465   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1466                              add_sub_imm_insn insn1,
1467                              add_sub_reg_insn insn2, bool is32);
1468   // Separate vsn which sets the flags
1469   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1470                                add_sub_imm_insn insn1,
1471                                add_sub_reg_insn insn2, bool is32);
1472 
1473 #define WRAP(INSN, is32)                                                \
1474   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1475     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1476   }                                                                     \
1477                                                                         \
1478   void INSN(Register Rd, Register Rn, Register Rm,                      \
1479              enum shift_kind kind, unsigned shift = 0) {                \
1480     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1481   }                                                                     \
1482                                                                         \
1483   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1484     Assembler::INSN(Rd, Rn, Rm);                                        \
1485   }                                                                     \
1486                                                                         \
1487   void INSN(Register Rd, Register Rn, Register Rm,                      \
1488            ext::operation option, int amount = 0) {                     \
1489     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1490   }
1491 
1492   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1493 
1494 #undef WRAP
1495 #define WRAP(INSN, is32)                                                \
1496   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1497     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1498   }                                                                     \
1499                                                                         \
1500   void INSN(Register Rd, Register Rn, Register Rm,                      \
1501              enum shift_kind kind, unsigned shift = 0) {                \
1502     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1503   }                                                                     \
1504                                                                         \
1505   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1506     Assembler::INSN(Rd, Rn, Rm);                                        \
1507   }                                                                     \
1508                                                                         \
1509   void INSN(Register Rd, Register Rn, Register Rm,                      \
1510            ext::operation option, int amount = 0) {                     \
1511     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1512   }
1513 
1514   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1515 
1516   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1517   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1518   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1519   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1520 
1521   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1522 
1523   void verified_entry(Compile* C, int sp_inc);
1524 
1525   // Inline type specific methods
1526   #include "asm/macroAssembler_common.hpp"
1527 
1528   int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true);
1529   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]);
1530   bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index,
1531                             VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index,
1532                             RegState reg_state[]);
1533   bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1534                           VMRegPair* from, int from_count, int& from_index, VMReg to,
1535                           RegState reg_state[], Register val_array);
1536   int extend_stack_for_inline_args(int args_on_stack);
1537   void remove_frame(int initial_framesize, bool needs_stack_repair);
1538   VMReg spill_reg_for(VMReg reg);
1539   void save_stack_increment(int sp_inc, int frame_size);
1540 
1541   void tableswitch(Register index, jint lowbound, jint highbound,
1542                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1543     adr(rscratch1, jumptable);
1544     subsw(rscratch2, index, lowbound);
1545     subsw(zr, rscratch2, highbound - lowbound);
1546     br(Assembler::HS, jumptable_end);
1547     add(rscratch1, rscratch1, rscratch2,
1548         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1549     br(rscratch1);
1550   }
1551 
1552   // Form an address from base + offset in Rd.  Rd may or may not
1553   // actually be used: you must use the Address that is returned.  It
1554   // is up to you to ensure that the shift provided matches the size
1555   // of your data.
1556   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1557 
1558   // Return true iff an address is within the 48-bit AArch64 address
1559   // space.
1560   bool is_valid_AArch64_address(address a) {
1561     return ((uint64_t)a >> 48) == 0;
1562   }
1563 
1564   // Load the base of the cardtable byte map into reg.
1565   void load_byte_map_base(Register reg);
1566 
1567   // Prolog generator routines to support switch between x86 code and
1568   // generated ARM code
1569 
1570   // routine to generate an x86 prolog for a stub function which
1571   // bootstraps into the generated ARM code which directly follows the
1572   // stub
1573   //
1574 
1575   public:
1576 
1577   address read_polling_page(Register r, relocInfo::relocType rtype);
1578   void get_polling_page(Register dest, relocInfo::relocType rtype);
1579 
1580   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1581   void update_byte_crc32(Register crc, Register val, Register table);
1582   void update_word_crc32(Register crc, Register v, Register tmp,
1583         Register table0, Register table1, Register table2, Register table3,
1584         bool upper = false);
1585 
1586   address count_positives(Register ary1, Register len, Register result);
1587 
1588   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1589                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1590 
1591 // Ensure that the inline code and the stub use the same registers.
1592 #define ARRAYS_HASHCODE_REGISTERS \
1593   do {                      \
1594     assert(result == r0  && \
1595            ary    == r1  && \
1596            cnt    == r2  && \
1597            vdata0 == v3  && \
1598            vdata1 == v2  && \
1599            vdata2 == v1  && \
1600            vdata3 == v0  && \
1601            vmul0  == v4  && \
1602            vmul1  == v5  && \
1603            vmul2  == v6  && \
1604            vmul3  == v7  && \
1605            vpow   == v12 && \
1606            vpowm  == v13, "registers must match aarch64.ad"); \
1607   } while (0)
1608 
1609   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1610 
1611   void fill_words(Register base, Register cnt, Register value);
1612   void fill_words(Register base, uint64_t cnt, Register value);
1613 
1614   address zero_words(Register base, uint64_t cnt);
1615   address zero_words(Register ptr, Register cnt);
1616   void zero_dcache_blocks(Register base, Register cnt);
1617 
1618   static const int zero_words_block_size;
1619 
1620   address byte_array_inflate(Register src, Register dst, Register len,
1621                              FloatRegister vtmp1, FloatRegister vtmp2,
1622                              FloatRegister vtmp3, Register tmp4);
1623 
1624   void char_array_compress(Register src, Register dst, Register len,
1625                            Register res,
1626                            FloatRegister vtmp0, FloatRegister vtmp1,
1627                            FloatRegister vtmp2, FloatRegister vtmp3,
1628                            FloatRegister vtmp4, FloatRegister vtmp5);
1629 
1630   void encode_iso_array(Register src, Register dst,
1631                         Register len, Register res, bool ascii,
1632                         FloatRegister vtmp0, FloatRegister vtmp1,
1633                         FloatRegister vtmp2, FloatRegister vtmp3,
1634                         FloatRegister vtmp4, FloatRegister vtmp5);
1635 
1636   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1637       address pio2, address dsin_coef, address dcos_coef);
1638  private:
1639   // begin trigonometric functions support block
1640   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1641   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1642   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1643   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1644   // end trigonometric functions support block
1645   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1646                        Register src1, Register src2);
1647   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1648     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1649   }
1650   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1651                              Register y, Register y_idx, Register z,
1652                              Register carry, Register product,
1653                              Register idx, Register kdx);
1654   void multiply_128_x_128_loop(Register y, Register z,
1655                                Register carry, Register carry2,
1656                                Register idx, Register jdx,
1657                                Register yz_idx1, Register yz_idx2,
1658                                Register tmp, Register tmp3, Register tmp4,
1659                                Register tmp7, Register product_hi);
1660   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1661         Register len, Register tmp0, Register tmp1, Register tmp2,
1662         Register tmp3);
1663   void kernel_crc32_using_crc32(Register crc, Register buf,
1664         Register len, Register tmp0, Register tmp1, Register tmp2,
1665         Register tmp3);
1666   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1667         Register len, Register tmp0, Register tmp1, Register tmp2,
1668         Register tmp3);
1669   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1670         Register len, Register tmp0, Register tmp1, Register tmp2,
1671         Register tmp3);
1672   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1673         Register len, Register tmp0, Register tmp1, Register tmp2,
1674         size_t table_offset);
1675 
1676   void ghash_modmul (FloatRegister result,
1677                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1678                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1679                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1680   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1681 public:
1682   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1683                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1684                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1685   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1686   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1687                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1688                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1689   void ghash_multiply_wide(int index,
1690                            FloatRegister result_lo, FloatRegister result_hi,
1691                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1692                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1693   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1694                     FloatRegister p, FloatRegister z, FloatRegister t1);
1695   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1696                     FloatRegister p, FloatRegister z, FloatRegister t1);
1697   void ghash_processBlocks_wide(Label& p, Register state, Register subkeyH,
1698                                 Register data, Register blocks, int unrolls);
1699 
1700 
1701   void aesenc_loadkeys(Register key, Register keylen);
1702   void aesecb_encrypt(Register from, Register to, Register keylen,
1703                       FloatRegister data = v0, int unrolls = 1);
1704   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1705   void aes_round(FloatRegister input, FloatRegister subkey);
1706 
1707   // ChaCha20 functions support block
1708   void cc20_qr_add4(FloatRegister (&addFirst)[4],
1709           FloatRegister (&addSecond)[4]);
1710   void cc20_qr_xor4(FloatRegister (&firstElem)[4],
1711           FloatRegister (&secondElem)[4], FloatRegister (&result)[4]);
1712   void cc20_qr_lrot4(FloatRegister (&sourceReg)[4],
1713           FloatRegister (&destReg)[4], int bits, FloatRegister table);
1714   void cc20_set_qr_registers(FloatRegister (&vectorSet)[4],
1715           const FloatRegister (&stateVectors)[16], int idx1, int idx2,
1716           int idx3, int idx4);
1717 
1718   // Place an ISB after code may have been modified due to a safepoint.
1719   void safepoint_isb();
1720 
1721 private:
1722   // Return the effective address r + (r1 << ext) + offset.
1723   // Uses rscratch2.
1724   Address offsetted_address(Register r, Register r1, Address::extend ext,
1725                             int offset, int size);
1726 
1727 private:
1728   // Returns an address on the stack which is reachable with a ldr/str of size
1729   // Uses rscratch2 if the address is not directly reachable
1730   Address spill_address(int size, int offset, Register tmp=rscratch2);
1731   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1732 
1733   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1734 
1735   // Check whether two loads/stores can be merged into ldp/stp.
1736   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1737 
1738   // Merge current load/store with previous load/store into ldp/stp.
1739   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1740 
1741   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1742   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1743 
1744 public:
1745   void spill(Register Rx, bool is64, int offset) {
1746     if (is64) {
1747       str(Rx, spill_address(8, offset));
1748     } else {
1749       strw(Rx, spill_address(4, offset));
1750     }
1751   }
1752   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1753     str(Vx, T, spill_address(1 << (int)T, offset));
1754   }
1755 
1756   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1757     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1758   }
1759   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1760     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1761   }
1762 
1763   void unspill(Register Rx, bool is64, int offset) {
1764     if (is64) {
1765       ldr(Rx, spill_address(8, offset));
1766     } else {
1767       ldrw(Rx, spill_address(4, offset));
1768     }
1769   }
1770   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1771     ldr(Vx, T, spill_address(1 << (int)T, offset));
1772   }
1773 
1774   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1775     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1776   }
1777   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1778     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1779   }
1780 
1781   void spill_copy128(int src_offset, int dst_offset,
1782                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1783     if (src_offset < 512 && (src_offset & 7) == 0 &&
1784         dst_offset < 512 && (dst_offset & 7) == 0) {
1785       ldp(tmp1, tmp2, Address(sp, src_offset));
1786       stp(tmp1, tmp2, Address(sp, dst_offset));
1787     } else {
1788       unspill(tmp1, true, src_offset);
1789       spill(tmp1, true, dst_offset);
1790       unspill(tmp1, true, src_offset+8);
1791       spill(tmp1, true, dst_offset+8);
1792     }
1793   }
1794   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1795                                             int sve_vec_reg_size_in_bytes) {
1796     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1797     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1798       spill_copy128(src_offset, dst_offset);
1799       src_offset += 16;
1800       dst_offset += 16;
1801     }
1802   }
1803   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1804                                                int sve_predicate_reg_size_in_bytes) {
1805     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1806     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1807     reinitialize_ptrue();
1808   }
1809   void cache_wb(Address line);
1810   void cache_wbsync(bool is_pre);
1811 
1812   // Code for java.lang.Thread::onSpinWait() intrinsic.
1813   void spin_wait();
1814 
1815   void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow);
1816   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1817 
1818 private:
1819   // Check the current thread doesn't need a cross modify fence.
1820   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1821 
1822 };
1823 
1824 #ifdef ASSERT
1825 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1826 #endif
1827 
1828 struct tableswitch {
1829   Register _reg;
1830   int _insn_index; jint _first_key; jint _last_key;
1831   Label _after;
1832   Label _branches;
1833 };
1834 
1835 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP