1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/vmreg.hpp" 31 #include "metaprogramming/enableIf.hpp" 32 #include "oops/compressedOops.hpp" 33 #include "oops/compressedKlass.hpp" 34 #include "runtime/vm_version.hpp" 35 #include "utilities/macros.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 #include "runtime/signature.hpp" 38 39 40 class ciInlineKlass; 41 42 class OopMap; 43 44 // MacroAssembler extends Assembler by frequently used macros. 45 // 46 // Instructions for which a 'better' code sequence exists depending 47 // on arguments should also go in here. 48 49 class MacroAssembler: public Assembler { 50 friend class LIR_Assembler; 51 52 public: 53 using Assembler::mov; 54 using Assembler::movi; 55 56 protected: 57 58 // Support for VM calls 59 // 60 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 61 // may customize this version by overriding it for its purposes (e.g., to save/restore 62 // additional registers when doing a VM call). 63 virtual void call_VM_leaf_base( 64 address entry_point, // the entry point 65 int number_of_arguments, // the number of arguments to pop after the call 66 Label *retaddr = nullptr 67 ); 68 69 virtual void call_VM_leaf_base( 70 address entry_point, // the entry point 71 int number_of_arguments, // the number of arguments to pop after the call 72 Label &retaddr) { 73 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 74 } 75 76 // This is the base routine called by the different versions of call_VM. The interpreter 77 // may customize this version by overriding it for its purposes (e.g., to save/restore 78 // additional registers when doing a VM call). 79 // 80 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 81 // returns the register which contains the thread upon return. If a thread register has been 82 // specified, the return value will correspond to that register. If no last_java_sp is specified 83 // (noreg) than rsp will be used instead. 84 virtual void call_VM_base( // returns the register containing the thread upon return 85 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 86 Register java_thread, // the thread if computed before ; use noreg otherwise 87 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 88 address entry_point, // the entry point 89 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 90 bool check_exceptions // whether to check for pending exceptions after return 91 ); 92 93 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 94 95 enum KlassDecodeMode { 96 KlassDecodeNone, 97 KlassDecodeZero, 98 KlassDecodeXor, 99 KlassDecodeMovk 100 }; 101 102 KlassDecodeMode klass_decode_mode(); 103 104 private: 105 static KlassDecodeMode _klass_decode_mode; 106 107 public: 108 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 109 110 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 111 // The implementation is only non-empty for the InterpreterMacroAssembler, 112 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 113 virtual void check_and_handle_popframe(Register java_thread); 114 virtual void check_and_handle_earlyret(Register java_thread); 115 116 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1); 117 void rt_call(address dest, Register tmp = rscratch1); 118 119 // Load Effective Address 120 void lea(Register r, const Address &a) { 121 InstructionMark im(this); 122 a.lea(this, r); 123 } 124 125 /* Sometimes we get misaligned loads and stores, usually from Unsafe 126 accesses, and these can exceed the offset range. */ 127 Address legitimize_address(const Address &a, int size, Register scratch) { 128 if (a.getMode() == Address::base_plus_offset) { 129 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 130 block_comment("legitimize_address {"); 131 lea(scratch, a); 132 block_comment("} legitimize_address"); 133 return Address(scratch); 134 } 135 } 136 return a; 137 } 138 139 void addmw(Address a, Register incr, Register scratch) { 140 ldrw(scratch, a); 141 addw(scratch, scratch, incr); 142 strw(scratch, a); 143 } 144 145 // Add constant to memory word 146 void addmw(Address a, int imm, Register scratch) { 147 ldrw(scratch, a); 148 if (imm > 0) 149 addw(scratch, scratch, (unsigned)imm); 150 else 151 subw(scratch, scratch, (unsigned)-imm); 152 strw(scratch, a); 153 } 154 155 void bind(Label& L) { 156 Assembler::bind(L); 157 code()->clear_last_insn(); 158 code()->set_last_label(pc()); 159 } 160 161 void membar(Membar_mask_bits order_constraint); 162 163 using Assembler::ldr; 164 using Assembler::str; 165 using Assembler::ldrw; 166 using Assembler::strw; 167 168 void ldr(Register Rx, const Address &adr); 169 void ldrw(Register Rw, const Address &adr); 170 void str(Register Rx, const Address &adr); 171 void strw(Register Rx, const Address &adr); 172 173 // Frame creation and destruction shared between JITs. 174 void build_frame(int framesize); 175 void remove_frame(int framesize); 176 177 virtual void _call_Unimplemented(address call_site) { 178 mov(rscratch2, call_site); 179 } 180 181 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 182 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 183 // https://reviews.llvm.org/D3311 184 185 #ifdef _WIN64 186 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 187 #else 188 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 189 #endif 190 191 // aliases defined in AARCH64 spec 192 193 template<class T> 194 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 195 196 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 197 inline void cmp(Register Rd, unsigned imm) = delete; 198 199 template<class T> 200 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 201 202 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 203 inline void cmn(Register Rd, unsigned imm) = delete; 204 205 void cset(Register Rd, Assembler::Condition cond) { 206 csinc(Rd, zr, zr, ~cond); 207 } 208 void csetw(Register Rd, Assembler::Condition cond) { 209 csincw(Rd, zr, zr, ~cond); 210 } 211 212 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 213 csneg(Rd, Rn, Rn, ~cond); 214 } 215 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 216 csnegw(Rd, Rn, Rn, ~cond); 217 } 218 219 inline void movw(Register Rd, Register Rn) { 220 if (Rd == sp || Rn == sp) { 221 Assembler::addw(Rd, Rn, 0U); 222 } else { 223 orrw(Rd, zr, Rn); 224 } 225 } 226 inline void mov(Register Rd, Register Rn) { 227 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 228 if (Rd == Rn) { 229 } else if (Rd == sp || Rn == sp) { 230 Assembler::add(Rd, Rn, 0U); 231 } else { 232 orr(Rd, zr, Rn); 233 } 234 } 235 236 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 237 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 238 239 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 240 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 241 242 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 243 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 244 245 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 246 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 247 } 248 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 249 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 250 } 251 252 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 253 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 254 } 255 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 bfm(Rd, Rn, lsb , (lsb + width - 1)); 257 } 258 259 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 260 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 261 } 262 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 264 } 265 266 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 267 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 268 } 269 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 271 } 272 273 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 274 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 275 } 276 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 278 } 279 280 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 281 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 282 } 283 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 284 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 285 } 286 287 inline void asrw(Register Rd, Register Rn, unsigned imm) { 288 sbfmw(Rd, Rn, imm, 31); 289 } 290 291 inline void asr(Register Rd, Register Rn, unsigned imm) { 292 sbfm(Rd, Rn, imm, 63); 293 } 294 295 inline void lslw(Register Rd, Register Rn, unsigned imm) { 296 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 297 } 298 299 inline void lsl(Register Rd, Register Rn, unsigned imm) { 300 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 301 } 302 303 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 304 ubfmw(Rd, Rn, imm, 31); 305 } 306 307 inline void lsr(Register Rd, Register Rn, unsigned imm) { 308 ubfm(Rd, Rn, imm, 63); 309 } 310 311 inline void rorw(Register Rd, Register Rn, unsigned imm) { 312 extrw(Rd, Rn, Rn, imm); 313 } 314 315 inline void ror(Register Rd, Register Rn, unsigned imm) { 316 extr(Rd, Rn, Rn, imm); 317 } 318 319 inline void sxtbw(Register Rd, Register Rn) { 320 sbfmw(Rd, Rn, 0, 7); 321 } 322 inline void sxthw(Register Rd, Register Rn) { 323 sbfmw(Rd, Rn, 0, 15); 324 } 325 inline void sxtb(Register Rd, Register Rn) { 326 sbfm(Rd, Rn, 0, 7); 327 } 328 inline void sxth(Register Rd, Register Rn) { 329 sbfm(Rd, Rn, 0, 15); 330 } 331 inline void sxtw(Register Rd, Register Rn) { 332 sbfm(Rd, Rn, 0, 31); 333 } 334 335 inline void uxtbw(Register Rd, Register Rn) { 336 ubfmw(Rd, Rn, 0, 7); 337 } 338 inline void uxthw(Register Rd, Register Rn) { 339 ubfmw(Rd, Rn, 0, 15); 340 } 341 inline void uxtb(Register Rd, Register Rn) { 342 ubfm(Rd, Rn, 0, 7); 343 } 344 inline void uxth(Register Rd, Register Rn) { 345 ubfm(Rd, Rn, 0, 15); 346 } 347 inline void uxtw(Register Rd, Register Rn) { 348 ubfm(Rd, Rn, 0, 31); 349 } 350 351 inline void cmnw(Register Rn, Register Rm) { 352 addsw(zr, Rn, Rm); 353 } 354 inline void cmn(Register Rn, Register Rm) { 355 adds(zr, Rn, Rm); 356 } 357 358 inline void cmpw(Register Rn, Register Rm) { 359 subsw(zr, Rn, Rm); 360 } 361 inline void cmp(Register Rn, Register Rm) { 362 subs(zr, Rn, Rm); 363 } 364 365 inline void negw(Register Rd, Register Rn) { 366 subw(Rd, zr, Rn); 367 } 368 369 inline void neg(Register Rd, Register Rn) { 370 sub(Rd, zr, Rn); 371 } 372 373 inline void negsw(Register Rd, Register Rn) { 374 subsw(Rd, zr, Rn); 375 } 376 377 inline void negs(Register Rd, Register Rn) { 378 subs(Rd, zr, Rn); 379 } 380 381 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 382 addsw(zr, Rn, Rm, kind, shift); 383 } 384 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 385 adds(zr, Rn, Rm, kind, shift); 386 } 387 388 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 389 subsw(zr, Rn, Rm, kind, shift); 390 } 391 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 392 subs(zr, Rn, Rm, kind, shift); 393 } 394 395 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 396 subw(Rd, zr, Rn, kind, shift); 397 } 398 399 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 400 sub(Rd, zr, Rn, kind, shift); 401 } 402 403 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 404 subsw(Rd, zr, Rn, kind, shift); 405 } 406 407 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 408 subs(Rd, zr, Rn, kind, shift); 409 } 410 411 inline void mnegw(Register Rd, Register Rn, Register Rm) { 412 msubw(Rd, Rn, Rm, zr); 413 } 414 inline void mneg(Register Rd, Register Rn, Register Rm) { 415 msub(Rd, Rn, Rm, zr); 416 } 417 418 inline void mulw(Register Rd, Register Rn, Register Rm) { 419 maddw(Rd, Rn, Rm, zr); 420 } 421 inline void mul(Register Rd, Register Rn, Register Rm) { 422 madd(Rd, Rn, Rm, zr); 423 } 424 425 inline void smnegl(Register Rd, Register Rn, Register Rm) { 426 smsubl(Rd, Rn, Rm, zr); 427 } 428 inline void smull(Register Rd, Register Rn, Register Rm) { 429 smaddl(Rd, Rn, Rm, zr); 430 } 431 432 inline void umnegl(Register Rd, Register Rn, Register Rm) { 433 umsubl(Rd, Rn, Rm, zr); 434 } 435 inline void umull(Register Rd, Register Rn, Register Rm) { 436 umaddl(Rd, Rn, Rm, zr); 437 } 438 439 #define WRAP(INSN) \ 440 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 441 if (VM_Version::supports_a53mac() && Ra != zr) \ 442 nop(); \ 443 Assembler::INSN(Rd, Rn, Rm, Ra); \ 444 } 445 446 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 447 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 448 #undef WRAP 449 450 451 // macro assembly operations needed for aarch64 452 453 public: 454 455 enum FpPushPopMode { 456 PushPopFull, 457 PushPopSVE, 458 PushPopNeon, 459 PushPopFp 460 }; 461 462 // first two private routines for loading 32 bit or 64 bit constants 463 private: 464 465 void mov_immediate64(Register dst, uint64_t imm64); 466 void mov_immediate32(Register dst, uint32_t imm32); 467 468 int push(unsigned int bitset, Register stack); 469 int pop(unsigned int bitset, Register stack); 470 471 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 472 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 473 474 int push_p(unsigned int bitset, Register stack); 475 int pop_p(unsigned int bitset, Register stack); 476 477 void mov(Register dst, Address a); 478 479 public: 480 481 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 482 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 483 484 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 485 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 486 487 static RegSet call_clobbered_gp_registers(); 488 489 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 490 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 491 492 // Push and pop everything that might be clobbered by a native 493 // runtime call except rscratch1 and rscratch2. (They are always 494 // scratch, so we don't have to protect them.) Only save the lower 495 // 64 bits of each vector register. Additional registers can be excluded 496 // in a passed RegSet. 497 void push_call_clobbered_registers_except(RegSet exclude); 498 void pop_call_clobbered_registers_except(RegSet exclude); 499 500 void push_call_clobbered_registers() { 501 push_call_clobbered_registers_except(RegSet()); 502 } 503 void pop_call_clobbered_registers() { 504 pop_call_clobbered_registers_except(RegSet()); 505 } 506 507 508 // now mov instructions for loading absolute addresses and 32 or 509 // 64 bit integers 510 511 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 512 513 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 514 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 515 516 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 517 518 void mov(Register dst, RegisterOrConstant src) { 519 if (src.is_register()) 520 mov(dst, src.as_register()); 521 else 522 mov(dst, src.as_constant()); 523 } 524 525 void movptr(Register r, uintptr_t imm64); 526 527 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 528 529 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 530 orr(Vd, T, Vn, Vn); 531 } 532 533 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 534 fcvtsh(tmp, src); 535 smov(dst, tmp, H, 0); 536 } 537 538 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 539 mov(tmp, H, 0, src); 540 fcvths(dst, tmp); 541 } 542 543 // Generalized Test Bit And Branch, including a "far" variety which 544 // spans more than 32KiB. 545 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 546 assert(cond == EQ || cond == NE, "must be"); 547 548 if (isfar) 549 cond = ~cond; 550 551 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 552 if (cond == Assembler::EQ) 553 branch = &Assembler::tbz; 554 else 555 branch = &Assembler::tbnz; 556 557 if (isfar) { 558 Label L; 559 (this->*branch)(Rt, bitpos, L); 560 b(dest); 561 bind(L); 562 } else { 563 (this->*branch)(Rt, bitpos, dest); 564 } 565 } 566 567 // macro instructions for accessing and updating floating point 568 // status register 569 // 570 // FPSR : op1 == 011 571 // CRn == 0100 572 // CRm == 0100 573 // op2 == 001 574 575 inline void get_fpsr(Register reg) 576 { 577 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 578 } 579 580 inline void set_fpsr(Register reg) 581 { 582 msr(0b011, 0b0100, 0b0100, 0b001, reg); 583 } 584 585 inline void clear_fpsr() 586 { 587 msr(0b011, 0b0100, 0b0100, 0b001, zr); 588 } 589 590 // FPCR : op1 == 011 591 // CRn == 0100 592 // CRm == 0100 593 // op2 == 000 594 595 inline void get_fpcr(Register reg) { 596 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 597 } 598 599 inline void set_fpcr(Register reg) { 600 msr(0b011, 0b0100, 0b0100, 0b000, reg); 601 } 602 603 // DCZID_EL0: op1 == 011 604 // CRn == 0000 605 // CRm == 0000 606 // op2 == 111 607 inline void get_dczid_el0(Register reg) 608 { 609 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 610 } 611 612 // CTR_EL0: op1 == 011 613 // CRn == 0000 614 // CRm == 0000 615 // op2 == 001 616 inline void get_ctr_el0(Register reg) 617 { 618 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 619 } 620 621 inline void get_nzcv(Register reg) { 622 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 623 } 624 625 inline void set_nzcv(Register reg) { 626 msr(0b011, 0b0100, 0b0010, 0b000, reg); 627 } 628 629 // idiv variant which deals with MINLONG as dividend and -1 as divisor 630 int corrected_idivl(Register result, Register ra, Register rb, 631 bool want_remainder, Register tmp = rscratch1); 632 int corrected_idivq(Register result, Register ra, Register rb, 633 bool want_remainder, Register tmp = rscratch1); 634 635 // Support for null-checks 636 // 637 // Generates code that causes a null OS exception if the content of reg is null. 638 // If the accessed location is M[reg + offset] and the offset is known, provide the 639 // offset. No explicit code generation is needed if the offset is within a certain 640 // range (0 <= offset <= page_size). 641 642 virtual void null_check(Register reg, int offset = -1); 643 static bool needs_explicit_null_check(intptr_t offset); 644 static bool uses_implicit_null_check(void* address); 645 646 // markWord tests, kills markWord reg 647 void test_markword_is_inline_type(Register markword, Label& is_inline_type); 648 649 // inlineKlass queries, kills temp_reg 650 void test_klass_is_inline_type(Register klass, Register temp_reg, Label& is_inline_type); 651 void test_klass_is_empty_inline_type(Register klass, Register temp_reg, Label& is_empty_inline_type); 652 void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type); 653 654 // Get the default value oop for the given InlineKlass 655 void get_default_value_oop(Register inline_klass, Register temp_reg, Register obj); 656 // The empty value oop, for the given InlineKlass ("empty" as in no instance fields) 657 // get_default_value_oop with extra assertion for empty inline klass 658 void get_empty_inline_type_oop(Register inline_klass, Register temp_reg, Register obj); 659 660 void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free); 661 void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free); 662 void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat); 663 void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker); 664 665 // Check oops for special arrays, i.e. flat arrays and/or null-free arrays 666 void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label); 667 void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array); 668 void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array); 669 void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array); 670 void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array); 671 672 // Check array klass layout helper for flat or null-free arrays... 673 void test_flat_array_layout(Register lh, Label& is_flat_array); 674 void test_non_flat_array_layout(Register lh, Label& is_non_flat_array); 675 676 static address target_addr_for_insn(address insn_addr, unsigned insn); 677 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 678 static address target_addr_for_insn(address insn_addr) { 679 unsigned insn = *(unsigned*)insn_addr; 680 return target_addr_for_insn(insn_addr, insn); 681 } 682 static address target_addr_for_insn_or_null(address insn_addr) { 683 unsigned insn = *(unsigned*)insn_addr; 684 return target_addr_for_insn_or_null(insn_addr, insn); 685 } 686 687 // Required platform-specific helpers for Label::patch_instructions. 688 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 689 static int pd_patch_instruction_size(address branch, address target); 690 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 691 pd_patch_instruction_size(branch, target); 692 } 693 static address pd_call_destination(address branch) { 694 return target_addr_for_insn(branch); 695 } 696 #ifndef PRODUCT 697 static void pd_print_patched_instruction(address branch); 698 #endif 699 700 static int patch_oop(address insn_addr, address o); 701 static int patch_narrow_klass(address insn_addr, narrowKlass n); 702 703 // Return whether code is emitted to a scratch blob. 704 virtual bool in_scratch_emit_size() { 705 return false; 706 } 707 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 708 static int max_trampoline_stub_size(); 709 void emit_static_call_stub(); 710 static int static_call_stub_size(); 711 712 // The following 4 methods return the offset of the appropriate move instruction 713 714 // Support for fast byte/short loading with zero extension (depending on particular CPU) 715 int load_unsigned_byte(Register dst, Address src); 716 int load_unsigned_short(Register dst, Address src); 717 718 // Support for fast byte/short loading with sign extension (depending on particular CPU) 719 int load_signed_byte(Register dst, Address src); 720 int load_signed_short(Register dst, Address src); 721 722 int load_signed_byte32(Register dst, Address src); 723 int load_signed_short32(Register dst, Address src); 724 725 // Support for sign-extension (hi:lo = extend_sign(lo)) 726 void extend_sign(Register hi, Register lo); 727 728 // Load and store values by size and signed-ness 729 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 730 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 731 732 // Support for inc/dec with optimal instruction selection depending on value 733 734 // x86_64 aliases an unqualified register/address increment and 735 // decrement to call incrementq and decrementq but also supports 736 // explicitly sized calls to incrementq/decrementq or 737 // incrementl/decrementl 738 739 // for aarch64 the proper convention would be to use 740 // increment/decrement for 64 bit operations and 741 // incrementw/decrementw for 32 bit operations. so when porting 742 // x86_64 code we can leave calls to increment/decrement as is, 743 // replace incrementq/decrementq with increment/decrement and 744 // replace incrementl/decrementl with incrementw/decrementw. 745 746 // n.b. increment/decrement calls with an Address destination will 747 // need to use a scratch register to load the value to be 748 // incremented. increment/decrement calls which add or subtract a 749 // constant value greater than 2^12 will need to use a 2nd scratch 750 // register to hold the constant. so, a register increment/decrement 751 // may trash rscratch2 and an address increment/decrement trash 752 // rscratch and rscratch2 753 754 void decrementw(Address dst, int value = 1); 755 void decrementw(Register reg, int value = 1); 756 757 void decrement(Register reg, int value = 1); 758 void decrement(Address dst, int value = 1); 759 760 void incrementw(Address dst, int value = 1); 761 void incrementw(Register reg, int value = 1); 762 763 void increment(Register reg, int value = 1); 764 void increment(Address dst, int value = 1); 765 766 767 // Alignment 768 void align(int modulus); 769 void align(int modulus, int target); 770 771 // nop 772 void post_call_nop(); 773 774 // Stack frame creation/removal 775 void enter(bool strip_ret_addr = false); 776 void leave(); 777 778 // ROP Protection 779 void protect_return_address(); 780 void protect_return_address(Register return_reg); 781 void authenticate_return_address(); 782 void authenticate_return_address(Register return_reg); 783 void strip_return_address(); 784 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 785 786 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 787 // The pointer will be loaded into the thread register. 788 void get_thread(Register thread); 789 790 // support for argument shuffling 791 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 792 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 793 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 794 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 795 void object_move( 796 OopMap* map, 797 int oop_handle_offset, 798 int framesize_in_slots, 799 VMRegPair src, 800 VMRegPair dst, 801 bool is_receiver, 802 int* receiver_offset); 803 804 805 // Support for VM calls 806 // 807 // It is imperative that all calls into the VM are handled via the call_VM macros. 808 // They make sure that the stack linkage is setup correctly. call_VM's correspond 809 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 810 811 812 void call_VM(Register oop_result, 813 address entry_point, 814 bool check_exceptions = true); 815 void call_VM(Register oop_result, 816 address entry_point, 817 Register arg_1, 818 bool check_exceptions = true); 819 void call_VM(Register oop_result, 820 address entry_point, 821 Register arg_1, Register arg_2, 822 bool check_exceptions = true); 823 void call_VM(Register oop_result, 824 address entry_point, 825 Register arg_1, Register arg_2, Register arg_3, 826 bool check_exceptions = true); 827 828 // Overloadings with last_Java_sp 829 void call_VM(Register oop_result, 830 Register last_java_sp, 831 address entry_point, 832 int number_of_arguments = 0, 833 bool check_exceptions = true); 834 void call_VM(Register oop_result, 835 Register last_java_sp, 836 address entry_point, 837 Register arg_1, bool 838 check_exceptions = true); 839 void call_VM(Register oop_result, 840 Register last_java_sp, 841 address entry_point, 842 Register arg_1, Register arg_2, 843 bool check_exceptions = true); 844 void call_VM(Register oop_result, 845 Register last_java_sp, 846 address entry_point, 847 Register arg_1, Register arg_2, Register arg_3, 848 bool check_exceptions = true); 849 850 void get_vm_result (Register oop_result, Register thread); 851 void get_vm_result_2(Register metadata_result, Register thread); 852 853 // These always tightly bind to MacroAssembler::call_VM_base 854 // bypassing the virtual implementation 855 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 856 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 857 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 858 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 859 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 860 861 void call_VM_leaf(address entry_point, 862 int number_of_arguments = 0); 863 void call_VM_leaf(address entry_point, 864 Register arg_1); 865 void call_VM_leaf(address entry_point, 866 Register arg_1, Register arg_2); 867 void call_VM_leaf(address entry_point, 868 Register arg_1, Register arg_2, Register arg_3); 869 870 // These always tightly bind to MacroAssembler::call_VM_leaf_base 871 // bypassing the virtual implementation 872 void super_call_VM_leaf(address entry_point); 873 void super_call_VM_leaf(address entry_point, Register arg_1); 874 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 875 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 876 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 877 878 // last Java Frame (fills frame anchor) 879 void set_last_Java_frame(Register last_java_sp, 880 Register last_java_fp, 881 address last_java_pc, 882 Register scratch); 883 884 void set_last_Java_frame(Register last_java_sp, 885 Register last_java_fp, 886 Label &last_java_pc, 887 Register scratch); 888 889 void set_last_Java_frame(Register last_java_sp, 890 Register last_java_fp, 891 Register last_java_pc, 892 Register scratch); 893 894 void reset_last_Java_frame(Register thread); 895 896 // thread in the default location (rthread) 897 void reset_last_Java_frame(bool clear_fp); 898 899 // Stores 900 void store_check(Register obj); // store check for obj - register is destroyed afterwards 901 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 902 903 void resolve_jobject(Register value, Register tmp1, Register tmp2); 904 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 905 906 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 907 void c2bool(Register x); 908 909 void load_method_holder_cld(Register rresult, Register rmethod); 910 void load_method_holder(Register holder, Register method); 911 912 // oop manipulations 913 void load_metadata(Register dst, Register src); 914 915 void load_klass(Register dst, Register src); 916 void store_klass(Register dst, Register src); 917 void cmp_klass(Register oop, Register trial_klass, Register tmp); 918 919 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 920 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 921 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 922 923 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 924 Register tmp1, Register tmp2); 925 926 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 927 Register tmp1, Register tmp2, Register tmp3); 928 929 void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info); 930 931 // inline type data payload offsets... 932 void first_field_offset(Register inline_klass, Register offset); 933 void data_for_oop(Register oop, Register data, Register inline_klass); 934 // get data payload ptr a flat value array at index, kills rcx and index 935 void data_for_value_array_index(Register array, Register array_klass, 936 Register index, Register data); 937 938 void load_heap_oop(Register dst, Address src, Register tmp1, 939 Register tmp2, DecoratorSet decorators = 0); 940 941 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 942 Register tmp2, DecoratorSet decorators = 0); 943 void store_heap_oop(Address dst, Register val, Register tmp1, 944 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 945 946 // currently unimplemented 947 // Used for storing null. All other oop constants should be 948 // stored using routines that take a jobject. 949 void store_heap_oop_null(Address dst); 950 951 void load_prototype_header(Register dst, Register src); 952 953 void store_klass_gap(Register dst, Register src); 954 955 // This dummy is to prevent a call to store_heap_oop from 956 // converting a zero (like null) into a Register by giving 957 // the compiler two choices it can't resolve 958 959 void store_heap_oop(Address dst, void* dummy); 960 961 void encode_heap_oop(Register d, Register s); 962 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 963 void decode_heap_oop(Register d, Register s); 964 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 965 void encode_heap_oop_not_null(Register r); 966 void decode_heap_oop_not_null(Register r); 967 void encode_heap_oop_not_null(Register dst, Register src); 968 void decode_heap_oop_not_null(Register dst, Register src); 969 970 void set_narrow_oop(Register dst, jobject obj); 971 972 void encode_klass_not_null(Register r); 973 void decode_klass_not_null(Register r); 974 void encode_klass_not_null(Register dst, Register src); 975 void decode_klass_not_null(Register dst, Register src); 976 977 void set_narrow_klass(Register dst, Klass* k); 978 979 // if heap base register is used - reinit it with the correct value 980 void reinit_heapbase(); 981 982 DEBUG_ONLY(void verify_heapbase(const char* msg);) 983 984 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 985 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 986 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 987 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 988 989 void push_cont_fastpath(Register java_thread); 990 void pop_cont_fastpath(Register java_thread); 991 992 // Round up to a power of two 993 void round_to(Register reg, int modulus); 994 995 // java.lang.Math::round intrinsics 996 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 997 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 998 999 // allocation 1000 1001 // Object / value buffer allocation... 1002 // Allocate instance of klass, assumes klass initialized by caller 1003 // new_obj prefers to be rax 1004 // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64) 1005 void allocate_instance(Register klass, Register new_obj, 1006 Register t1, Register t2, 1007 bool clear_fields, Label& alloc_failed); 1008 1009 void tlab_allocate( 1010 Register obj, // result: pointer to object after successful allocation 1011 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 1012 int con_size_in_bytes, // object size in bytes if known at compile time 1013 Register t1, // temp register 1014 Register t2, // temp register 1015 Label& slow_case // continuation point if fast allocation fails 1016 ); 1017 void verify_tlab(); 1018 1019 // For field "index" within "klass", return inline_klass ... 1020 void get_inline_type_field_klass(Register klass, Register index, Register inline_klass); 1021 void inline_layout_info(Register holder_klass, Register index, Register layout_info); 1022 1023 1024 // interface method calling 1025 void lookup_interface_method(Register recv_klass, 1026 Register intf_klass, 1027 RegisterOrConstant itable_index, 1028 Register method_result, 1029 Register scan_temp, 1030 Label& no_such_interface, 1031 bool return_method = true); 1032 1033 void lookup_interface_method_stub(Register recv_klass, 1034 Register holder_klass, 1035 Register resolved_klass, 1036 Register method_result, 1037 Register temp_reg, 1038 Register temp_reg2, 1039 int itable_index, 1040 Label& L_no_such_interface); 1041 1042 // virtual method calling 1043 // n.b. x86 allows RegisterOrConstant for vtable_index 1044 void lookup_virtual_method(Register recv_klass, 1045 RegisterOrConstant vtable_index, 1046 Register method_result); 1047 1048 // Test sub_klass against super_klass, with fast and slow paths. 1049 1050 // The fast path produces a tri-state answer: yes / no / maybe-slow. 1051 // One of the three labels can be null, meaning take the fall-through. 1052 // If super_check_offset is -1, the value is loaded up from super_klass. 1053 // No registers are killed, except temp_reg. 1054 void check_klass_subtype_fast_path(Register sub_klass, 1055 Register super_klass, 1056 Register temp_reg, 1057 Label* L_success, 1058 Label* L_failure, 1059 Label* L_slow_path, 1060 Register super_check_offset = noreg); 1061 1062 // The rest of the type check; must be wired to a corresponding fast path. 1063 // It does not repeat the fast path logic, so don't use it standalone. 1064 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1065 // Updates the sub's secondary super cache as necessary. 1066 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1067 void check_klass_subtype_slow_path(Register sub_klass, 1068 Register super_klass, 1069 Register temp_reg, 1070 Register temp2_reg, 1071 Label* L_success, 1072 Label* L_failure, 1073 bool set_cond_codes = false); 1074 1075 void check_klass_subtype_slow_path_linear(Register sub_klass, 1076 Register super_klass, 1077 Register temp_reg, 1078 Register temp2_reg, 1079 Label* L_success, 1080 Label* L_failure, 1081 bool set_cond_codes = false); 1082 1083 void check_klass_subtype_slow_path_table(Register sub_klass, 1084 Register super_klass, 1085 Register temp_reg, 1086 Register temp2_reg, 1087 Register temp3_reg, 1088 Register result_reg, 1089 FloatRegister vtemp_reg, 1090 Label* L_success, 1091 Label* L_failure, 1092 bool set_cond_codes = false); 1093 1094 // If r is valid, return r. 1095 // If r is invalid, remove a register r2 from available_regs, add r2 1096 // to regs_to_push, then return r2. 1097 Register allocate_if_noreg(const Register r, 1098 RegSetIterator<Register> &available_regs, 1099 RegSet ®s_to_push); 1100 1101 // Secondary subtype checking 1102 void lookup_secondary_supers_table_var(Register sub_klass, 1103 Register r_super_klass, 1104 Register temp1, 1105 Register temp2, 1106 Register temp3, 1107 FloatRegister vtemp, 1108 Register result, 1109 Label *L_success); 1110 1111 1112 // As above, but with a constant super_klass. 1113 // The result is in Register result, not the condition codes. 1114 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1115 Register r_super_klass, 1116 Register temp1, 1117 Register temp2, 1118 Register temp3, 1119 FloatRegister vtemp, 1120 Register result, 1121 u1 super_klass_slot, 1122 bool stub_is_near = false); 1123 1124 void verify_secondary_supers_table(Register r_sub_klass, 1125 Register r_super_klass, 1126 Register temp1, 1127 Register temp2, 1128 Register result); 1129 1130 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1131 Register r_array_base, 1132 Register r_array_index, 1133 Register r_bitmap, 1134 Register temp1, 1135 Register result, 1136 bool is_stub = true); 1137 1138 // Simplified, combined version, good for typical uses. 1139 // Falls through on failure. 1140 void check_klass_subtype(Register sub_klass, 1141 Register super_klass, 1142 Register temp_reg, 1143 Label& L_success); 1144 1145 void clinit_barrier(Register klass, 1146 Register thread, 1147 Label* L_fast_path = nullptr, 1148 Label* L_slow_path = nullptr); 1149 1150 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1151 1152 void verify_sve_vector_length(Register tmp = rscratch1); 1153 void reinitialize_ptrue() { 1154 if (UseSVE > 0) { 1155 sve_ptrue(ptrue, B); 1156 } 1157 } 1158 void verify_ptrue(); 1159 1160 // Debugging 1161 1162 // only if +VerifyOops 1163 void _verify_oop(Register reg, const char* s, const char* file, int line); 1164 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1165 1166 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1167 if (VerifyOops) { 1168 _verify_oop(reg, s, file, line); 1169 } 1170 } 1171 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1172 if (VerifyOops) { 1173 _verify_oop_addr(reg, s, file, line); 1174 } 1175 } 1176 1177 // TODO: verify method and klass metadata (compare against vptr?) 1178 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1179 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1180 1181 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1182 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1183 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1184 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1185 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1186 1187 // Restore cpu control state after JNI call 1188 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1189 1190 // prints msg, dumps registers and stops execution 1191 void stop(const char* msg); 1192 1193 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1194 1195 void untested() { stop("untested"); } 1196 1197 void unimplemented(const char* what = ""); 1198 1199 void should_not_reach_here() { stop("should not reach here"); } 1200 1201 void _assert_asm(Condition cc, const char* msg); 1202 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1203 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1204 1205 // Stack overflow checking 1206 void bang_stack_with_offset(int offset) { 1207 // stack grows down, caller passes positive offset 1208 assert(offset > 0, "must bang with negative offset"); 1209 sub(rscratch2, sp, offset); 1210 str(zr, Address(rscratch2)); 1211 } 1212 1213 // Writes to stack successive pages until offset reached to check for 1214 // stack overflow + shadow pages. Also, clobbers tmp 1215 void bang_stack_size(Register size, Register tmp); 1216 1217 // Check for reserved stack access in method being exited (for JIT) 1218 void reserved_stack_check(); 1219 1220 // Arithmetics 1221 1222 void addptr(const Address &dst, int32_t src); 1223 void cmpptr(Register src1, Address src2); 1224 1225 void cmpoop(Register obj1, Register obj2); 1226 1227 // Various forms of CAS 1228 1229 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1230 Label &succeed, Label *fail); 1231 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1232 Label &succeed, Label *fail); 1233 1234 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1235 Label &succeed, Label *fail); 1236 1237 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1238 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1239 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1240 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1241 1242 void atomic_xchg(Register prev, Register newv, Register addr); 1243 void atomic_xchgw(Register prev, Register newv, Register addr); 1244 void atomic_xchgl(Register prev, Register newv, Register addr); 1245 void atomic_xchglw(Register prev, Register newv, Register addr); 1246 void atomic_xchgal(Register prev, Register newv, Register addr); 1247 void atomic_xchgalw(Register prev, Register newv, Register addr); 1248 1249 void orptr(Address adr, RegisterOrConstant src) { 1250 ldr(rscratch1, adr); 1251 if (src.is_register()) 1252 orr(rscratch1, rscratch1, src.as_register()); 1253 else 1254 orr(rscratch1, rscratch1, src.as_constant()); 1255 str(rscratch1, adr); 1256 } 1257 1258 // A generic CAS; success or failure is in the EQ flag. 1259 // Clobbers rscratch1 1260 void cmpxchg(Register addr, Register expected, Register new_val, 1261 enum operand_size size, 1262 bool acquire, bool release, bool weak, 1263 Register result); 1264 1265 #ifdef ASSERT 1266 // Template short-hand support to clean-up after a failed call to trampoline 1267 // call generation (see trampoline_call() below), when a set of Labels must 1268 // be reset (before returning). 1269 template<typename Label, typename... More> 1270 void reset_labels(Label &lbl, More&... more) { 1271 lbl.reset(); reset_labels(more...); 1272 } 1273 template<typename Label> 1274 void reset_labels(Label &lbl) { 1275 lbl.reset(); 1276 } 1277 #endif 1278 1279 private: 1280 void compare_eq(Register rn, Register rm, enum operand_size size); 1281 1282 public: 1283 // AArch64 OpenJDK uses four different types of calls: 1284 // - direct call: bl pc_relative_offset 1285 // This is the shortest and the fastest, but the offset has the range: 1286 // +/-128MB for the release build, +/-2MB for the debug build. 1287 // 1288 // - far call: adrp reg, pc_relative_offset; add; bl reg 1289 // This is longer than a direct call. The offset has 1290 // the range +/-4GB. As the code cache size is limited to 4GB, 1291 // far calls can reach anywhere in the code cache. If a jump is 1292 // needed rather than a call, a far jump 'b reg' can be used instead. 1293 // All instructions are embedded at a call site. 1294 // 1295 // - trampoline call: 1296 // This is only available in C1/C2-generated code (nmethod). It is a combination 1297 // of a direct call, which is used if the destination of a call is in range, 1298 // and a register-indirect call. It has the advantages of reaching anywhere in 1299 // the AArch64 address space and being patchable at runtime when the generated 1300 // code is being executed by other threads. 1301 // 1302 // [Main code section] 1303 // bl trampoline 1304 // [Stub code section] 1305 // trampoline: 1306 // ldr reg, pc + 8 1307 // br reg 1308 // <64-bit destination address> 1309 // 1310 // If the destination is in range when the generated code is moved to the code 1311 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1312 // is not used. 1313 // The optimization does not remove the trampoline from the stub section. 1314 // This is necessary because the trampoline may well be redirected later when 1315 // code is patched, and the new destination may not be reachable by a simple BR 1316 // instruction. 1317 // 1318 // - indirect call: move reg, address; blr reg 1319 // This too can reach anywhere in the address space, but it cannot be 1320 // patched while code is running, so it must only be modified at a safepoint. 1321 // This form of call is most suitable for targets at fixed addresses, which 1322 // will never be patched. 1323 // 1324 // The patching we do conforms to the "Concurrent modification and 1325 // execution of instructions" section of the Arm Architectural 1326 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1327 // or SVC instructions to be modified while another thread is 1328 // executing them. 1329 // 1330 // To patch a trampoline call when the BL can't reach, we first modify 1331 // the 64-bit destination address in the trampoline, then modify the 1332 // BL to point to the trampoline, then flush the instruction cache to 1333 // broadcast the change to all executing threads. See 1334 // NativeCall::set_destination_mt_safe for the details. 1335 // 1336 // There is a benign race in that the other thread might observe the 1337 // modified BL before it observes the modified 64-bit destination 1338 // address. That does not matter because the destination method has been 1339 // invalidated, so there will be a trap at its start. 1340 // For this to work, the destination address in the trampoline is 1341 // always updated, even if we're not using the trampoline. 1342 1343 // Emit a direct call if the entry address will always be in range, 1344 // otherwise a trampoline call. 1345 // Supported entry.rspec(): 1346 // - relocInfo::runtime_call_type 1347 // - relocInfo::opt_virtual_call_type 1348 // - relocInfo::static_call_type 1349 // - relocInfo::virtual_call_type 1350 // 1351 // Return: the call PC or null if CodeCache is full. 1352 // Clobbers: rscratch1 1353 address trampoline_call(Address entry); 1354 1355 static bool far_branches() { 1356 return ReservedCodeCacheSize > branch_range; 1357 } 1358 1359 // Check if branches to the non nmethod section require a far jump 1360 static bool codestub_branch_needs_far_jump() { 1361 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1362 } 1363 1364 // Emit a direct call/jump if the entry address will always be in range, 1365 // otherwise a far call/jump. 1366 // The address must be inside the code cache. 1367 // Supported entry.rspec(): 1368 // - relocInfo::external_word_type 1369 // - relocInfo::runtime_call_type 1370 // - relocInfo::none 1371 // In the case of a far call/jump, the entry address is put in the tmp register. 1372 // The tmp register is invalidated. 1373 // 1374 // Far_jump returns the amount of the emitted code. 1375 void far_call(Address entry, Register tmp = rscratch1); 1376 int far_jump(Address entry, Register tmp = rscratch1); 1377 1378 static int far_codestub_branch_size() { 1379 if (codestub_branch_needs_far_jump()) { 1380 return 3 * 4; // adrp, add, br 1381 } else { 1382 return 4; 1383 } 1384 } 1385 1386 // Emit the CompiledIC call idiom 1387 address ic_call(address entry, jint method_index = 0); 1388 static int ic_check_size(); 1389 int ic_check(int end_alignment); 1390 1391 public: 1392 1393 // Data 1394 1395 void mov_metadata(Register dst, Metadata* obj); 1396 Address allocate_metadata_address(Metadata* obj); 1397 Address constant_oop_address(jobject obj); 1398 1399 void movoop(Register dst, jobject obj); 1400 1401 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1402 void kernel_crc32(Register crc, Register buf, Register len, 1403 Register table0, Register table1, Register table2, Register table3, 1404 Register tmp, Register tmp2, Register tmp3); 1405 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1406 void kernel_crc32c(Register crc, Register buf, Register len, 1407 Register table0, Register table1, Register table2, Register table3, 1408 Register tmp, Register tmp2, Register tmp3); 1409 1410 // Stack push and pop individual 64 bit registers 1411 void push(Register src); 1412 void pop(Register dst); 1413 1414 void repne_scan(Register addr, Register value, Register count, 1415 Register scratch); 1416 void repne_scanw(Register addr, Register value, Register count, 1417 Register scratch); 1418 1419 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1420 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1421 1422 // If a constant does not fit in an immediate field, generate some 1423 // number of MOV instructions and then perform the operation 1424 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1425 add_sub_imm_insn insn1, 1426 add_sub_reg_insn insn2, bool is32); 1427 // Separate vsn which sets the flags 1428 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1429 add_sub_imm_insn insn1, 1430 add_sub_reg_insn insn2, bool is32); 1431 1432 #define WRAP(INSN, is32) \ 1433 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1434 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1435 } \ 1436 \ 1437 void INSN(Register Rd, Register Rn, Register Rm, \ 1438 enum shift_kind kind, unsigned shift = 0) { \ 1439 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1440 } \ 1441 \ 1442 void INSN(Register Rd, Register Rn, Register Rm) { \ 1443 Assembler::INSN(Rd, Rn, Rm); \ 1444 } \ 1445 \ 1446 void INSN(Register Rd, Register Rn, Register Rm, \ 1447 ext::operation option, int amount = 0) { \ 1448 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1449 } 1450 1451 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1452 1453 #undef WRAP 1454 #define WRAP(INSN, is32) \ 1455 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1456 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1457 } \ 1458 \ 1459 void INSN(Register Rd, Register Rn, Register Rm, \ 1460 enum shift_kind kind, unsigned shift = 0) { \ 1461 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1462 } \ 1463 \ 1464 void INSN(Register Rd, Register Rn, Register Rm) { \ 1465 Assembler::INSN(Rd, Rn, Rm); \ 1466 } \ 1467 \ 1468 void INSN(Register Rd, Register Rn, Register Rm, \ 1469 ext::operation option, int amount = 0) { \ 1470 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1471 } 1472 1473 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1474 1475 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1476 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1477 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1478 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1479 1480 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1481 1482 void verified_entry(Compile* C, int sp_inc); 1483 1484 // Inline type specific methods 1485 #include "asm/macroAssembler_common.hpp" 1486 1487 int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true); 1488 bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]); 1489 bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 1490 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 1491 RegState reg_state[]); 1492 bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 1493 VMRegPair* from, int from_count, int& from_index, VMReg to, 1494 RegState reg_state[], Register val_array); 1495 int extend_stack_for_inline_args(int args_on_stack); 1496 void remove_frame(int initial_framesize, bool needs_stack_repair); 1497 VMReg spill_reg_for(VMReg reg); 1498 void save_stack_increment(int sp_inc, int frame_size); 1499 1500 void tableswitch(Register index, jint lowbound, jint highbound, 1501 Label &jumptable, Label &jumptable_end, int stride = 1) { 1502 adr(rscratch1, jumptable); 1503 subsw(rscratch2, index, lowbound); 1504 subsw(zr, rscratch2, highbound - lowbound); 1505 br(Assembler::HS, jumptable_end); 1506 add(rscratch1, rscratch1, rscratch2, 1507 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1508 br(rscratch1); 1509 } 1510 1511 // Form an address from base + offset in Rd. Rd may or may not 1512 // actually be used: you must use the Address that is returned. It 1513 // is up to you to ensure that the shift provided matches the size 1514 // of your data. 1515 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1516 1517 // Return true iff an address is within the 48-bit AArch64 address 1518 // space. 1519 bool is_valid_AArch64_address(address a) { 1520 return ((uint64_t)a >> 48) == 0; 1521 } 1522 1523 // Load the base of the cardtable byte map into reg. 1524 void load_byte_map_base(Register reg); 1525 1526 // Prolog generator routines to support switch between x86 code and 1527 // generated ARM code 1528 1529 // routine to generate an x86 prolog for a stub function which 1530 // bootstraps into the generated ARM code which directly follows the 1531 // stub 1532 // 1533 1534 public: 1535 1536 void ldr_constant(Register dest, const Address &const_addr) { 1537 if (NearCpool) { 1538 ldr(dest, const_addr); 1539 } else { 1540 uint64_t offset; 1541 adrp(dest, InternalAddress(const_addr.target()), offset); 1542 ldr(dest, Address(dest, offset)); 1543 } 1544 } 1545 1546 address read_polling_page(Register r, relocInfo::relocType rtype); 1547 void get_polling_page(Register dest, relocInfo::relocType rtype); 1548 1549 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1550 void update_byte_crc32(Register crc, Register val, Register table); 1551 void update_word_crc32(Register crc, Register v, Register tmp, 1552 Register table0, Register table1, Register table2, Register table3, 1553 bool upper = false); 1554 1555 address count_positives(Register ary1, Register len, Register result); 1556 1557 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1558 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1559 1560 // Ensure that the inline code and the stub use the same registers. 1561 #define ARRAYS_HASHCODE_REGISTERS \ 1562 do { \ 1563 assert(result == r0 && \ 1564 ary == r1 && \ 1565 cnt == r2 && \ 1566 vdata0 == v3 && \ 1567 vdata1 == v2 && \ 1568 vdata2 == v1 && \ 1569 vdata3 == v0 && \ 1570 vmul0 == v4 && \ 1571 vmul1 == v5 && \ 1572 vmul2 == v6 && \ 1573 vmul3 == v7 && \ 1574 vpow == v12 && \ 1575 vpowm == v13, "registers must match aarch64.ad"); \ 1576 } while (0) 1577 1578 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1579 1580 void fill_words(Register base, Register cnt, Register value); 1581 void fill_words(Register base, uint64_t cnt, Register value); 1582 1583 address zero_words(Register base, uint64_t cnt); 1584 address zero_words(Register ptr, Register cnt); 1585 void zero_dcache_blocks(Register base, Register cnt); 1586 1587 static const int zero_words_block_size; 1588 1589 address byte_array_inflate(Register src, Register dst, Register len, 1590 FloatRegister vtmp1, FloatRegister vtmp2, 1591 FloatRegister vtmp3, Register tmp4); 1592 1593 void char_array_compress(Register src, Register dst, Register len, 1594 Register res, 1595 FloatRegister vtmp0, FloatRegister vtmp1, 1596 FloatRegister vtmp2, FloatRegister vtmp3, 1597 FloatRegister vtmp4, FloatRegister vtmp5); 1598 1599 void encode_iso_array(Register src, Register dst, 1600 Register len, Register res, bool ascii, 1601 FloatRegister vtmp0, FloatRegister vtmp1, 1602 FloatRegister vtmp2, FloatRegister vtmp3, 1603 FloatRegister vtmp4, FloatRegister vtmp5); 1604 1605 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1606 address pio2, address dsin_coef, address dcos_coef); 1607 private: 1608 // begin trigonometric functions support block 1609 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1610 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1611 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1612 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1613 // end trigonometric functions support block 1614 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1615 Register src1, Register src2); 1616 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1617 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1618 } 1619 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1620 Register y, Register y_idx, Register z, 1621 Register carry, Register product, 1622 Register idx, Register kdx); 1623 void multiply_128_x_128_loop(Register y, Register z, 1624 Register carry, Register carry2, 1625 Register idx, Register jdx, 1626 Register yz_idx1, Register yz_idx2, 1627 Register tmp, Register tmp3, Register tmp4, 1628 Register tmp7, Register product_hi); 1629 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1630 Register len, Register tmp0, Register tmp1, Register tmp2, 1631 Register tmp3); 1632 void kernel_crc32_using_crc32(Register crc, Register buf, 1633 Register len, Register tmp0, Register tmp1, Register tmp2, 1634 Register tmp3); 1635 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1636 Register len, Register tmp0, Register tmp1, Register tmp2, 1637 Register tmp3); 1638 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1639 Register len, Register tmp0, Register tmp1, Register tmp2, 1640 Register tmp3); 1641 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1642 Register len, Register tmp0, Register tmp1, Register tmp2, 1643 size_t table_offset); 1644 1645 void ghash_modmul (FloatRegister result, 1646 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1647 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1648 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1649 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1650 public: 1651 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1652 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1653 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1654 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1655 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1656 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1657 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1658 void ghash_multiply_wide(int index, 1659 FloatRegister result_lo, FloatRegister result_hi, 1660 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1661 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1662 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1663 FloatRegister p, FloatRegister z, FloatRegister t1); 1664 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1665 FloatRegister p, FloatRegister z, FloatRegister t1); 1666 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1667 Register data, Register blocks, int unrolls); 1668 1669 1670 void aesenc_loadkeys(Register key, Register keylen); 1671 void aesecb_encrypt(Register from, Register to, Register keylen, 1672 FloatRegister data = v0, int unrolls = 1); 1673 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1674 void aes_round(FloatRegister input, FloatRegister subkey); 1675 1676 // ChaCha20 functions support block 1677 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec, 1678 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch, 1679 FloatRegister tbl); 1680 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec, 1681 FloatRegister dVec, bool colToDiag); 1682 1683 // Place an ISB after code may have been modified due to a safepoint. 1684 void safepoint_isb(); 1685 1686 private: 1687 // Return the effective address r + (r1 << ext) + offset. 1688 // Uses rscratch2. 1689 Address offsetted_address(Register r, Register r1, Address::extend ext, 1690 int offset, int size); 1691 1692 private: 1693 // Returns an address on the stack which is reachable with a ldr/str of size 1694 // Uses rscratch2 if the address is not directly reachable 1695 Address spill_address(int size, int offset, Register tmp=rscratch2); 1696 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1697 1698 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1699 1700 // Check whether two loads/stores can be merged into ldp/stp. 1701 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1702 1703 // Merge current load/store with previous load/store into ldp/stp. 1704 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1705 1706 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1707 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1708 1709 public: 1710 void spill(Register Rx, bool is64, int offset) { 1711 if (is64) { 1712 str(Rx, spill_address(8, offset)); 1713 } else { 1714 strw(Rx, spill_address(4, offset)); 1715 } 1716 } 1717 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1718 str(Vx, T, spill_address(1 << (int)T, offset)); 1719 } 1720 1721 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1722 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1723 } 1724 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1725 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1726 } 1727 1728 void unspill(Register Rx, bool is64, int offset) { 1729 if (is64) { 1730 ldr(Rx, spill_address(8, offset)); 1731 } else { 1732 ldrw(Rx, spill_address(4, offset)); 1733 } 1734 } 1735 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1736 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1737 } 1738 1739 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1740 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1741 } 1742 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1743 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1744 } 1745 1746 void spill_copy128(int src_offset, int dst_offset, 1747 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1748 if (src_offset < 512 && (src_offset & 7) == 0 && 1749 dst_offset < 512 && (dst_offset & 7) == 0) { 1750 ldp(tmp1, tmp2, Address(sp, src_offset)); 1751 stp(tmp1, tmp2, Address(sp, dst_offset)); 1752 } else { 1753 unspill(tmp1, true, src_offset); 1754 spill(tmp1, true, dst_offset); 1755 unspill(tmp1, true, src_offset+8); 1756 spill(tmp1, true, dst_offset+8); 1757 } 1758 } 1759 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1760 int sve_vec_reg_size_in_bytes) { 1761 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1762 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1763 spill_copy128(src_offset, dst_offset); 1764 src_offset += 16; 1765 dst_offset += 16; 1766 } 1767 } 1768 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1769 int sve_predicate_reg_size_in_bytes) { 1770 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1771 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1772 reinitialize_ptrue(); 1773 } 1774 void cache_wb(Address line); 1775 void cache_wbsync(bool is_pre); 1776 1777 // Code for java.lang.Thread::onSpinWait() intrinsic. 1778 void spin_wait(); 1779 1780 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1781 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1782 1783 private: 1784 // Check the current thread doesn't need a cross modify fence. 1785 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1786 1787 }; 1788 1789 #ifdef ASSERT 1790 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1791 #endif 1792 1793 struct tableswitch { 1794 Register _reg; 1795 int _insn_index; jint _first_key; jint _last_key; 1796 Label _after; 1797 Label _branches; 1798 }; 1799 1800 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP