1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "code/aotCodeCache.hpp" 31 #include "code/vmreg.hpp" 32 #include "metaprogramming/enableIf.hpp" 33 #include "oops/compressedOops.hpp" 34 #include "oops/compressedKlass.hpp" 35 #include "runtime/vm_version.hpp" 36 #include "utilities/macros.hpp" 37 #include "utilities/powerOfTwo.hpp" 38 #include "runtime/signature.hpp" 39 40 41 class ciInlineKlass; 42 43 class OopMap; 44 45 // MacroAssembler extends Assembler by frequently used macros. 46 // 47 // Instructions for which a 'better' code sequence exists depending 48 // on arguments should also go in here. 49 50 class MacroAssembler: public Assembler { 51 friend class LIR_Assembler; 52 53 public: 54 using Assembler::mov; 55 using Assembler::movi; 56 57 protected: 58 59 // Support for VM calls 60 // 61 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 62 // may customize this version by overriding it for its purposes (e.g., to save/restore 63 // additional registers when doing a VM call). 64 virtual void call_VM_leaf_base( 65 address entry_point, // the entry point 66 int number_of_arguments, // the number of arguments to pop after the call 67 Label *retaddr = nullptr 68 ); 69 70 virtual void call_VM_leaf_base( 71 address entry_point, // the entry point 72 int number_of_arguments, // the number of arguments to pop after the call 73 Label &retaddr) { 74 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 75 } 76 77 // This is the base routine called by the different versions of call_VM. The interpreter 78 // may customize this version by overriding it for its purposes (e.g., to save/restore 79 // additional registers when doing a VM call). 80 // 81 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 82 // returns the register which contains the thread upon return. If a thread register has been 83 // specified, the return value will correspond to that register. If no last_java_sp is specified 84 // (noreg) than rsp will be used instead. 85 virtual void call_VM_base( // returns the register containing the thread upon return 86 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 87 Register java_thread, // the thread if computed before ; use noreg otherwise 88 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 89 address entry_point, // the entry point 90 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 91 bool check_exceptions // whether to check for pending exceptions after return 92 ); 93 94 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 95 96 enum KlassDecodeMode { 97 KlassDecodeNone, 98 KlassDecodeZero, 99 KlassDecodeXor, 100 KlassDecodeMovk 101 }; 102 103 // Calculate decoding mode based on given parameters, used for checking then ultimately setting. 104 static KlassDecodeMode klass_decode_mode(address base, int shift, const size_t range); 105 106 private: 107 static KlassDecodeMode _klass_decode_mode; 108 109 // Returns above setting with asserts 110 static KlassDecodeMode klass_decode_mode(); 111 112 public: 113 // Checks the decode mode and returns false if not compatible with preferred decoding mode. 114 static bool check_klass_decode_mode(address base, int shift, const size_t range); 115 116 // Sets the decode mode and returns false if cannot be set. 117 static bool set_klass_decode_mode(address base, int shift, const size_t range); 118 119 public: 120 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 121 122 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 123 // The implementation is only non-empty for the InterpreterMacroAssembler, 124 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 125 virtual void check_and_handle_popframe(Register java_thread); 126 virtual void check_and_handle_earlyret(Register java_thread); 127 128 void safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp = rscratch1); 129 void rt_call(address dest, Register tmp = rscratch1); 130 131 // Load Effective Address 132 void lea(Register r, const Address &a) { 133 InstructionMark im(this); 134 a.lea(this, r); 135 } 136 137 // Whether materializing the given address for a LDR/STR requires an 138 // additional lea instruction. 139 static bool legitimize_address_requires_lea(const Address &a, int size) { 140 return a.getMode() == Address::base_plus_offset && 141 !Address::offset_ok_for_immed(a.offset(), exact_log2(size)); 142 } 143 144 /* Sometimes we get misaligned loads and stores, usually from Unsafe 145 accesses, and these can exceed the offset range. */ 146 Address legitimize_address(const Address &a, int size, Register scratch) { 147 if (legitimize_address_requires_lea(a, size)) { 148 block_comment("legitimize_address {"); 149 lea(scratch, a); 150 block_comment("} legitimize_address"); 151 return Address(scratch); 152 } 153 return a; 154 } 155 156 void addmw(Address a, Register incr, Register scratch) { 157 ldrw(scratch, a); 158 addw(scratch, scratch, incr); 159 strw(scratch, a); 160 } 161 162 // Add constant to memory word 163 void addmw(Address a, int imm, Register scratch) { 164 ldrw(scratch, a); 165 if (imm > 0) 166 addw(scratch, scratch, (unsigned)imm); 167 else 168 subw(scratch, scratch, (unsigned)-imm); 169 strw(scratch, a); 170 } 171 172 void bind(Label& L) { 173 Assembler::bind(L); 174 code()->clear_last_insn(); 175 code()->set_last_label(pc()); 176 } 177 178 void membar(Membar_mask_bits order_constraint); 179 180 using Assembler::ldr; 181 using Assembler::str; 182 using Assembler::ldrw; 183 using Assembler::strw; 184 185 void ldr(Register Rx, const Address &adr); 186 void ldrw(Register Rw, const Address &adr); 187 void str(Register Rx, const Address &adr); 188 void strw(Register Rx, const Address &adr); 189 190 // Frame creation and destruction shared between JITs. 191 void build_frame(int framesize); 192 void remove_frame(int framesize); 193 194 virtual void _call_Unimplemented(address call_site) { 195 mov(rscratch2, call_site); 196 } 197 198 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 199 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 200 // https://reviews.llvm.org/D3311 201 202 #ifdef _WIN64 203 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 204 #else 205 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 206 #endif 207 208 // aliases defined in AARCH64 spec 209 210 template<class T> 211 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 212 213 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 214 inline void cmp(Register Rd, unsigned imm) = delete; 215 216 template<class T> 217 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 218 219 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 220 inline void cmn(Register Rd, unsigned imm) = delete; 221 222 void cset(Register Rd, Assembler::Condition cond) { 223 csinc(Rd, zr, zr, ~cond); 224 } 225 void csetw(Register Rd, Assembler::Condition cond) { 226 csincw(Rd, zr, zr, ~cond); 227 } 228 229 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 230 csneg(Rd, Rn, Rn, ~cond); 231 } 232 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 233 csnegw(Rd, Rn, Rn, ~cond); 234 } 235 236 inline void movw(Register Rd, Register Rn) { 237 if (Rd == sp || Rn == sp) { 238 Assembler::addw(Rd, Rn, 0U); 239 } else { 240 orrw(Rd, zr, Rn); 241 } 242 } 243 inline void mov(Register Rd, Register Rn) { 244 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 245 if (Rd == Rn) { 246 } else if (Rd == sp || Rn == sp) { 247 Assembler::add(Rd, Rn, 0U); 248 } else { 249 orr(Rd, zr, Rn); 250 } 251 } 252 253 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 254 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 255 256 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 257 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 258 259 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 260 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 261 262 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 264 } 265 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 266 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 267 } 268 269 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 271 } 272 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 273 bfm(Rd, Rn, lsb , (lsb + width - 1)); 274 } 275 276 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 278 } 279 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 280 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 281 } 282 283 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 284 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 285 } 286 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 287 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 288 } 289 290 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 291 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 292 } 293 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 294 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 295 } 296 297 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 298 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 299 } 300 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 301 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 302 } 303 304 inline void asrw(Register Rd, Register Rn, unsigned imm) { 305 sbfmw(Rd, Rn, imm, 31); 306 } 307 308 inline void asr(Register Rd, Register Rn, unsigned imm) { 309 sbfm(Rd, Rn, imm, 63); 310 } 311 312 inline void lslw(Register Rd, Register Rn, unsigned imm) { 313 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 314 } 315 316 inline void lsl(Register Rd, Register Rn, unsigned imm) { 317 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 318 } 319 320 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 321 ubfmw(Rd, Rn, imm, 31); 322 } 323 324 inline void lsr(Register Rd, Register Rn, unsigned imm) { 325 ubfm(Rd, Rn, imm, 63); 326 } 327 328 inline void rorw(Register Rd, Register Rn, unsigned imm) { 329 extrw(Rd, Rn, Rn, imm); 330 } 331 332 inline void ror(Register Rd, Register Rn, unsigned imm) { 333 extr(Rd, Rn, Rn, imm); 334 } 335 336 inline void rolw(Register Rd, Register Rn, unsigned imm) { 337 extrw(Rd, Rn, Rn, (32 - imm)); 338 } 339 340 inline void rol(Register Rd, Register Rn, unsigned imm) { 341 extr(Rd, Rn, Rn, (64 - imm)); 342 } 343 344 using Assembler::rax1; 345 using Assembler::eor3; 346 347 inline void rax1(Register Rd, Register Rn, Register Rm) { 348 eor(Rd, Rn, Rm, ROR, 63); // Rd = Rn ^ rol(Rm, 1) 349 } 350 351 inline void eor3(Register Rd, Register Rn, Register Rm, Register Rk) { 352 assert(Rd != Rn, "Use tmp register"); 353 eor(Rd, Rm, Rk); 354 eor(Rd, Rd, Rn); 355 } 356 357 inline void sxtbw(Register Rd, Register Rn) { 358 sbfmw(Rd, Rn, 0, 7); 359 } 360 inline void sxthw(Register Rd, Register Rn) { 361 sbfmw(Rd, Rn, 0, 15); 362 } 363 inline void sxtb(Register Rd, Register Rn) { 364 sbfm(Rd, Rn, 0, 7); 365 } 366 inline void sxth(Register Rd, Register Rn) { 367 sbfm(Rd, Rn, 0, 15); 368 } 369 inline void sxtw(Register Rd, Register Rn) { 370 sbfm(Rd, Rn, 0, 31); 371 } 372 373 inline void uxtbw(Register Rd, Register Rn) { 374 ubfmw(Rd, Rn, 0, 7); 375 } 376 inline void uxthw(Register Rd, Register Rn) { 377 ubfmw(Rd, Rn, 0, 15); 378 } 379 inline void uxtb(Register Rd, Register Rn) { 380 ubfm(Rd, Rn, 0, 7); 381 } 382 inline void uxth(Register Rd, Register Rn) { 383 ubfm(Rd, Rn, 0, 15); 384 } 385 inline void uxtw(Register Rd, Register Rn) { 386 ubfm(Rd, Rn, 0, 31); 387 } 388 389 inline void cmnw(Register Rn, Register Rm) { 390 addsw(zr, Rn, Rm); 391 } 392 inline void cmn(Register Rn, Register Rm) { 393 adds(zr, Rn, Rm); 394 } 395 396 inline void cmpw(Register Rn, Register Rm) { 397 subsw(zr, Rn, Rm); 398 } 399 inline void cmp(Register Rn, Register Rm) { 400 subs(zr, Rn, Rm); 401 } 402 403 inline void negw(Register Rd, Register Rn) { 404 subw(Rd, zr, Rn); 405 } 406 407 inline void neg(Register Rd, Register Rn) { 408 sub(Rd, zr, Rn); 409 } 410 411 inline void negsw(Register Rd, Register Rn) { 412 subsw(Rd, zr, Rn); 413 } 414 415 inline void negs(Register Rd, Register Rn) { 416 subs(Rd, zr, Rn); 417 } 418 419 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 420 addsw(zr, Rn, Rm, kind, shift); 421 } 422 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 423 adds(zr, Rn, Rm, kind, shift); 424 } 425 426 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 427 subsw(zr, Rn, Rm, kind, shift); 428 } 429 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 430 subs(zr, Rn, Rm, kind, shift); 431 } 432 433 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 434 subw(Rd, zr, Rn, kind, shift); 435 } 436 437 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 438 sub(Rd, zr, Rn, kind, shift); 439 } 440 441 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 442 subsw(Rd, zr, Rn, kind, shift); 443 } 444 445 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 446 subs(Rd, zr, Rn, kind, shift); 447 } 448 449 inline void mnegw(Register Rd, Register Rn, Register Rm) { 450 msubw(Rd, Rn, Rm, zr); 451 } 452 inline void mneg(Register Rd, Register Rn, Register Rm) { 453 msub(Rd, Rn, Rm, zr); 454 } 455 456 inline void mulw(Register Rd, Register Rn, Register Rm) { 457 maddw(Rd, Rn, Rm, zr); 458 } 459 inline void mul(Register Rd, Register Rn, Register Rm) { 460 madd(Rd, Rn, Rm, zr); 461 } 462 463 inline void smnegl(Register Rd, Register Rn, Register Rm) { 464 smsubl(Rd, Rn, Rm, zr); 465 } 466 inline void smull(Register Rd, Register Rn, Register Rm) { 467 smaddl(Rd, Rn, Rm, zr); 468 } 469 470 inline void umnegl(Register Rd, Register Rn, Register Rm) { 471 umsubl(Rd, Rn, Rm, zr); 472 } 473 inline void umull(Register Rd, Register Rn, Register Rm) { 474 umaddl(Rd, Rn, Rm, zr); 475 } 476 477 #define WRAP(INSN) \ 478 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 479 if (VM_Version::supports_a53mac() && Ra != zr) \ 480 nop(); \ 481 Assembler::INSN(Rd, Rn, Rm, Ra); \ 482 } 483 484 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 485 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 486 #undef WRAP 487 488 489 // macro assembly operations needed for aarch64 490 491 public: 492 493 enum FpPushPopMode { 494 PushPopFull, 495 PushPopSVE, 496 PushPopNeon, 497 PushPopFp 498 }; 499 500 // first two private routines for loading 32 bit or 64 bit constants 501 private: 502 503 void mov_immediate64(Register dst, uint64_t imm64); 504 void mov_immediate32(Register dst, uint32_t imm32); 505 506 int push(unsigned int bitset, Register stack); 507 int pop(unsigned int bitset, Register stack); 508 509 int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 510 int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode); 511 512 int push_p(unsigned int bitset, Register stack); 513 int pop_p(unsigned int bitset, Register stack); 514 515 void mov(Register dst, Address a); 516 517 public: 518 519 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 520 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 521 522 void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); } 523 void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); } 524 525 static RegSet call_clobbered_gp_registers(); 526 527 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); } 528 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); } 529 530 // Push and pop everything that might be clobbered by a native 531 // runtime call except rscratch1 and rscratch2. (They are always 532 // scratch, so we don't have to protect them.) Only save the lower 533 // 64 bits of each vector register. Additional registers can be excluded 534 // in a passed RegSet. 535 void push_call_clobbered_registers_except(RegSet exclude); 536 void pop_call_clobbered_registers_except(RegSet exclude); 537 538 void push_call_clobbered_registers() { 539 push_call_clobbered_registers_except(RegSet()); 540 } 541 void pop_call_clobbered_registers() { 542 pop_call_clobbered_registers_except(RegSet()); 543 } 544 545 546 // now mov instructions for loading absolute addresses and 32 or 547 // 64 bit integers 548 549 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 550 551 template<typename T, ENABLE_IF(std::is_integral<T>::value)> 552 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); } 553 554 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); } 555 556 void mov(Register dst, RegisterOrConstant src) { 557 if (src.is_register()) 558 mov(dst, src.as_register()); 559 else 560 mov(dst, src.as_constant()); 561 } 562 563 void movptr(Register r, uintptr_t imm64); 564 565 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 566 567 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 568 orr(Vd, T, Vn, Vn); 569 } 570 571 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) { 572 fcvtsh(tmp, src); 573 smov(dst, tmp, H, 0); 574 } 575 576 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) { 577 mov(tmp, H, 0, src); 578 fcvths(dst, tmp); 579 } 580 581 // Generalized Test Bit And Branch, including a "far" variety which 582 // spans more than 32KiB. 583 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 584 assert(cond == EQ || cond == NE, "must be"); 585 586 if (isfar) 587 cond = ~cond; 588 589 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 590 if (cond == Assembler::EQ) 591 branch = &Assembler::tbz; 592 else 593 branch = &Assembler::tbnz; 594 595 if (isfar) { 596 Label L; 597 (this->*branch)(Rt, bitpos, L); 598 b(dest); 599 bind(L); 600 } else { 601 (this->*branch)(Rt, bitpos, dest); 602 } 603 } 604 605 // macro instructions for accessing and updating floating point 606 // status register 607 // 608 // FPSR : op1 == 011 609 // CRn == 0100 610 // CRm == 0100 611 // op2 == 001 612 613 inline void get_fpsr(Register reg) 614 { 615 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 616 } 617 618 inline void set_fpsr(Register reg) 619 { 620 msr(0b011, 0b0100, 0b0100, 0b001, reg); 621 } 622 623 inline void clear_fpsr() 624 { 625 msr(0b011, 0b0100, 0b0100, 0b001, zr); 626 } 627 628 // FPCR : op1 == 011 629 // CRn == 0100 630 // CRm == 0100 631 // op2 == 000 632 633 inline void get_fpcr(Register reg) { 634 mrs(0b11, 0b0100, 0b0100, 0b000, reg); 635 } 636 637 inline void set_fpcr(Register reg) { 638 msr(0b011, 0b0100, 0b0100, 0b000, reg); 639 } 640 641 // DCZID_EL0: op1 == 011 642 // CRn == 0000 643 // CRm == 0000 644 // op2 == 111 645 inline void get_dczid_el0(Register reg) 646 { 647 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 648 } 649 650 // CTR_EL0: op1 == 011 651 // CRn == 0000 652 // CRm == 0000 653 // op2 == 001 654 inline void get_ctr_el0(Register reg) 655 { 656 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 657 } 658 659 inline void get_nzcv(Register reg) { 660 mrs(0b011, 0b0100, 0b0010, 0b000, reg); 661 } 662 663 inline void set_nzcv(Register reg) { 664 msr(0b011, 0b0100, 0b0010, 0b000, reg); 665 } 666 667 // idiv variant which deals with MINLONG as dividend and -1 as divisor 668 int corrected_idivl(Register result, Register ra, Register rb, 669 bool want_remainder, Register tmp = rscratch1); 670 int corrected_idivq(Register result, Register ra, Register rb, 671 bool want_remainder, Register tmp = rscratch1); 672 673 // Support for null-checks 674 // 675 // Generates code that causes a null OS exception if the content of reg is null. 676 // If the accessed location is M[reg + offset] and the offset is known, provide the 677 // offset. No explicit code generation is needed if the offset is within a certain 678 // range (0 <= offset <= page_size). 679 680 virtual void null_check(Register reg, int offset = -1); 681 static bool needs_explicit_null_check(intptr_t offset); 682 static bool uses_implicit_null_check(void* address); 683 684 // markWord tests, kills markWord reg 685 void test_markword_is_inline_type(Register markword, Label& is_inline_type); 686 687 // inlineKlass queries, kills temp_reg 688 void test_oop_is_not_inline_type(Register object, Register tmp, Label& not_inline_type, bool can_be_null = true); 689 690 void test_field_is_null_free_inline_type(Register flags, Register temp_reg, Label& is_null_free); 691 void test_field_is_not_null_free_inline_type(Register flags, Register temp_reg, Label& not_null_free); 692 void test_field_is_flat(Register flags, Register temp_reg, Label& is_flat); 693 void test_field_has_null_marker(Register flags, Register temp_reg, Label& has_null_marker); 694 695 // Check oops for special arrays, i.e. flat arrays and/or null-free arrays 696 void test_oop_prototype_bit(Register oop, Register temp_reg, int32_t test_bit, bool jmp_set, Label& jmp_label); 697 void test_flat_array_oop(Register klass, Register temp_reg, Label& is_flat_array); 698 void test_non_flat_array_oop(Register oop, Register temp_reg, Label&is_non_flat_array); 699 void test_null_free_array_oop(Register oop, Register temp_reg, Label& is_null_free_array); 700 void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array); 701 702 // Check array klass layout helper for flat or null-free arrays... 703 void test_flat_array_layout(Register lh, Label& is_flat_array); 704 void test_non_flat_array_layout(Register lh, Label& is_non_flat_array); 705 706 static address target_addr_for_insn(address insn_addr, unsigned insn); 707 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn); 708 static address target_addr_for_insn(address insn_addr) { 709 unsigned insn = *(unsigned*)insn_addr; 710 return target_addr_for_insn(insn_addr, insn); 711 } 712 static address target_addr_for_insn_or_null(address insn_addr) { 713 unsigned insn = *(unsigned*)insn_addr; 714 return target_addr_for_insn_or_null(insn_addr, insn); 715 } 716 717 // Required platform-specific helpers for Label::patch_instructions. 718 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 719 static int pd_patch_instruction_size(address branch, address target); 720 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) { 721 pd_patch_instruction_size(branch, target); 722 } 723 static address pd_call_destination(address branch) { 724 return target_addr_for_insn(branch); 725 } 726 #ifndef PRODUCT 727 static void pd_print_patched_instruction(address branch); 728 #endif 729 730 static int patch_oop(address insn_addr, address o); 731 static int patch_narrow_klass(address insn_addr, narrowKlass n); 732 733 // Return whether code is emitted to a scratch blob. 734 virtual bool in_scratch_emit_size() { 735 return false; 736 } 737 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 738 static int max_trampoline_stub_size(); 739 void emit_static_call_stub(); 740 static int static_call_stub_size(); 741 742 // The following 4 methods return the offset of the appropriate move instruction 743 744 // Support for fast byte/short loading with zero extension (depending on particular CPU) 745 int load_unsigned_byte(Register dst, Address src); 746 int load_unsigned_short(Register dst, Address src); 747 748 // Support for fast byte/short loading with sign extension (depending on particular CPU) 749 int load_signed_byte(Register dst, Address src); 750 int load_signed_short(Register dst, Address src); 751 752 int load_signed_byte32(Register dst, Address src); 753 int load_signed_short32(Register dst, Address src); 754 755 // Support for sign-extension (hi:lo = extend_sign(lo)) 756 void extend_sign(Register hi, Register lo); 757 758 // Load and store values by size and signed-ness 759 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); 760 void store_sized_value(Address dst, Register src, size_t size_in_bytes); 761 762 // Support for inc/dec with optimal instruction selection depending on value 763 764 // x86_64 aliases an unqualified register/address increment and 765 // decrement to call incrementq and decrementq but also supports 766 // explicitly sized calls to incrementq/decrementq or 767 // incrementl/decrementl 768 769 // for aarch64 the proper convention would be to use 770 // increment/decrement for 64 bit operations and 771 // incrementw/decrementw for 32 bit operations. so when porting 772 // x86_64 code we can leave calls to increment/decrement as is, 773 // replace incrementq/decrementq with increment/decrement and 774 // replace incrementl/decrementl with incrementw/decrementw. 775 776 // n.b. increment/decrement calls with an Address destination will 777 // need to use a scratch register to load the value to be 778 // incremented. increment/decrement calls which add or subtract a 779 // constant value greater than 2^12 will need to use a 2nd scratch 780 // register to hold the constant. so, a register increment/decrement 781 // may trash rscratch2 and an address increment/decrement trash 782 // rscratch and rscratch2 783 784 void decrementw(Address dst, int value = 1); 785 void decrementw(Register reg, int value = 1); 786 787 void decrement(Register reg, int value = 1); 788 void decrement(Address dst, int value = 1); 789 790 void incrementw(Address dst, int value = 1); 791 void incrementw(Register reg, int value = 1); 792 793 void increment(Register reg, int value = 1); 794 void increment(Address dst, int value = 1); 795 796 797 // Alignment 798 void align(int modulus); 799 void align(int modulus, int target); 800 801 // nop 802 void post_call_nop(); 803 804 // Stack frame creation/removal 805 void enter(bool strip_ret_addr = false); 806 void leave(); 807 808 // ROP Protection 809 void protect_return_address(); 810 void protect_return_address(Register return_reg); 811 void authenticate_return_address(); 812 void authenticate_return_address(Register return_reg); 813 void strip_return_address(); 814 void check_return_address(Register return_reg=lr) PRODUCT_RETURN; 815 816 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 817 // The pointer will be loaded into the thread register. 818 void get_thread(Register thread); 819 820 // support for argument shuffling 821 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 822 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 823 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 824 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1); 825 void object_move( 826 OopMap* map, 827 int oop_handle_offset, 828 int framesize_in_slots, 829 VMRegPair src, 830 VMRegPair dst, 831 bool is_receiver, 832 int* receiver_offset); 833 834 835 // Support for VM calls 836 // 837 // It is imperative that all calls into the VM are handled via the call_VM macros. 838 // They make sure that the stack linkage is setup correctly. call_VM's correspond 839 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 840 841 842 void call_VM(Register oop_result, 843 address entry_point, 844 bool check_exceptions = true); 845 void call_VM(Register oop_result, 846 address entry_point, 847 Register arg_1, 848 bool check_exceptions = true); 849 void call_VM(Register oop_result, 850 address entry_point, 851 Register arg_1, Register arg_2, 852 bool check_exceptions = true); 853 void call_VM(Register oop_result, 854 address entry_point, 855 Register arg_1, Register arg_2, Register arg_3, 856 bool check_exceptions = true); 857 858 // Overloadings with last_Java_sp 859 void call_VM(Register oop_result, 860 Register last_java_sp, 861 address entry_point, 862 int number_of_arguments = 0, 863 bool check_exceptions = true); 864 void call_VM(Register oop_result, 865 Register last_java_sp, 866 address entry_point, 867 Register arg_1, bool 868 check_exceptions = true); 869 void call_VM(Register oop_result, 870 Register last_java_sp, 871 address entry_point, 872 Register arg_1, Register arg_2, 873 bool check_exceptions = true); 874 void call_VM(Register oop_result, 875 Register last_java_sp, 876 address entry_point, 877 Register arg_1, Register arg_2, Register arg_3, 878 bool check_exceptions = true); 879 880 void get_vm_result_oop(Register oop_result, Register thread); 881 void get_vm_result_metadata(Register metadata_result, Register thread); 882 883 // These always tightly bind to MacroAssembler::call_VM_base 884 // bypassing the virtual implementation 885 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 886 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 887 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 888 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 889 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 890 891 void call_VM_leaf(address entry_point, 892 int number_of_arguments = 0); 893 void call_VM_leaf(address entry_point, 894 Register arg_1); 895 void call_VM_leaf(address entry_point, 896 Register arg_1, Register arg_2); 897 void call_VM_leaf(address entry_point, 898 Register arg_1, Register arg_2, Register arg_3); 899 900 // These always tightly bind to MacroAssembler::call_VM_leaf_base 901 // bypassing the virtual implementation 902 void super_call_VM_leaf(address entry_point); 903 void super_call_VM_leaf(address entry_point, Register arg_1); 904 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 905 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 906 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 907 908 // last Java Frame (fills frame anchor) 909 void set_last_Java_frame(Register last_java_sp, 910 Register last_java_fp, 911 address last_java_pc, 912 Register scratch); 913 914 void set_last_Java_frame(Register last_java_sp, 915 Register last_java_fp, 916 Label &last_java_pc, 917 Register scratch); 918 919 void set_last_Java_frame(Register last_java_sp, 920 Register last_java_fp, 921 Register last_java_pc, 922 Register scratch); 923 924 void reset_last_Java_frame(Register thread); 925 926 // thread in the default location (rthread) 927 void reset_last_Java_frame(bool clear_fp); 928 929 // Stores 930 void store_check(Register obj); // store check for obj - register is destroyed afterwards 931 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 932 933 void resolve_jobject(Register value, Register tmp1, Register tmp2); 934 void resolve_global_jobject(Register value, Register tmp1, Register tmp2); 935 936 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 937 void c2bool(Register x); 938 939 void load_method_holder_cld(Register rresult, Register rmethod); 940 void load_method_holder(Register holder, Register method); 941 942 // oop manipulations 943 void load_metadata(Register dst, Register src); 944 945 void load_narrow_klass_compact(Register dst, Register src); 946 void load_klass(Register dst, Register src); 947 void store_klass(Register dst, Register src); 948 void cmp_klass(Register obj, Register klass, Register tmp); 949 void cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2); 950 951 void resolve_weak_handle(Register result, Register tmp1, Register tmp2); 952 void resolve_oop_handle(Register result, Register tmp1, Register tmp2); 953 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2); 954 955 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 956 Register tmp1, Register tmp2); 957 958 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 959 Register tmp1, Register tmp2, Register tmp3); 960 961 void flat_field_copy(DecoratorSet decorators, Register src, Register dst, Register inline_layout_info); 962 963 // inline type data payload offsets... 964 void payload_offset(Register inline_klass, Register offset); 965 void payload_address(Register oop, Register data, Register inline_klass); 966 // get data payload ptr a flat value array at index, kills rcx and index 967 void data_for_value_array_index(Register array, Register array_klass, 968 Register index, Register data); 969 970 void load_heap_oop(Register dst, Address src, Register tmp1, 971 Register tmp2, DecoratorSet decorators = 0); 972 973 void load_heap_oop_not_null(Register dst, Address src, Register tmp1, 974 Register tmp2, DecoratorSet decorators = 0); 975 void store_heap_oop(Address dst, Register val, Register tmp1, 976 Register tmp2, Register tmp3, DecoratorSet decorators = 0); 977 978 // currently unimplemented 979 // Used for storing null. All other oop constants should be 980 // stored using routines that take a jobject. 981 void store_heap_oop_null(Address dst); 982 983 void load_prototype_header(Register dst, Register src); 984 985 void store_klass_gap(Register dst, Register src); 986 987 // This dummy is to prevent a call to store_heap_oop from 988 // converting a zero (like null) into a Register by giving 989 // the compiler two choices it can't resolve 990 991 void store_heap_oop(Address dst, void* dummy); 992 993 void encode_heap_oop(Register d, Register s); 994 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 995 void decode_heap_oop(Register d, Register s); 996 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 997 void encode_heap_oop_not_null(Register r); 998 void decode_heap_oop_not_null(Register r); 999 void encode_heap_oop_not_null(Register dst, Register src); 1000 void decode_heap_oop_not_null(Register dst, Register src); 1001 1002 void set_narrow_oop(Register dst, jobject obj); 1003 1004 void decode_klass_not_null_for_aot(Register dst, Register src); 1005 void encode_klass_not_null_for_aot(Register dst, Register src); 1006 void encode_klass_not_null(Register r); 1007 void decode_klass_not_null(Register r); 1008 void encode_klass_not_null(Register dst, Register src); 1009 void decode_klass_not_null(Register dst, Register src); 1010 1011 void set_narrow_klass(Register dst, Klass* k); 1012 1013 // if heap base register is used - reinit it with the correct value 1014 void reinit_heapbase(); 1015 1016 DEBUG_ONLY(void verify_heapbase(const char* msg);) 1017 1018 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 1019 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 1020 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 1021 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0); 1022 1023 void push_cont_fastpath(Register java_thread = rthread); 1024 void pop_cont_fastpath(Register java_thread = rthread); 1025 1026 void inc_held_monitor_count(Register tmp); 1027 void dec_held_monitor_count(Register tmp); 1028 1029 // Round up to a power of two 1030 void round_to(Register reg, int modulus); 1031 1032 // java.lang.Math::round intrinsics 1033 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp); 1034 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp); 1035 1036 // allocation 1037 1038 // Object / value buffer allocation... 1039 // Allocate instance of klass, assumes klass initialized by caller 1040 // new_obj prefers to be rax 1041 // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64) 1042 void allocate_instance(Register klass, Register new_obj, 1043 Register t1, Register t2, 1044 bool clear_fields, Label& alloc_failed); 1045 1046 void tlab_allocate( 1047 Register obj, // result: pointer to object after successful allocation 1048 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 1049 int con_size_in_bytes, // object size in bytes if known at compile time 1050 Register t1, // temp register 1051 Register t2, // temp register 1052 Label& slow_case // continuation point if fast allocation fails 1053 ); 1054 void verify_tlab(); 1055 1056 // For field "index" within "klass", return inline_klass ... 1057 void get_inline_type_field_klass(Register klass, Register index, Register inline_klass); 1058 void inline_layout_info(Register holder_klass, Register index, Register layout_info); 1059 1060 1061 // interface method calling 1062 void lookup_interface_method(Register recv_klass, 1063 Register intf_klass, 1064 RegisterOrConstant itable_index, 1065 Register method_result, 1066 Register scan_temp, 1067 Label& no_such_interface, 1068 bool return_method = true); 1069 1070 void lookup_interface_method_stub(Register recv_klass, 1071 Register holder_klass, 1072 Register resolved_klass, 1073 Register method_result, 1074 Register temp_reg, 1075 Register temp_reg2, 1076 int itable_index, 1077 Label& L_no_such_interface); 1078 1079 // virtual method calling 1080 // n.b. x86 allows RegisterOrConstant for vtable_index 1081 void lookup_virtual_method(Register recv_klass, 1082 RegisterOrConstant vtable_index, 1083 Register method_result); 1084 1085 // Test sub_klass against super_klass, with fast and slow paths. 1086 1087 // The fast path produces a tri-state answer: yes / no / maybe-slow. 1088 // One of the three labels can be null, meaning take the fall-through. 1089 // If super_check_offset is -1, the value is loaded up from super_klass. 1090 // No registers are killed, except temp_reg. 1091 void check_klass_subtype_fast_path(Register sub_klass, 1092 Register super_klass, 1093 Register temp_reg, 1094 Label* L_success, 1095 Label* L_failure, 1096 Label* L_slow_path, 1097 Register super_check_offset = noreg); 1098 1099 // The rest of the type check; must be wired to a corresponding fast path. 1100 // It does not repeat the fast path logic, so don't use it standalone. 1101 // The temp_reg and temp2_reg can be noreg, if no temps are available. 1102 // Updates the sub's secondary super cache as necessary. 1103 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 1104 void check_klass_subtype_slow_path(Register sub_klass, 1105 Register super_klass, 1106 Register temp_reg, 1107 Register temp2_reg, 1108 Label* L_success, 1109 Label* L_failure, 1110 bool set_cond_codes = false); 1111 1112 void check_klass_subtype_slow_path_linear(Register sub_klass, 1113 Register super_klass, 1114 Register temp_reg, 1115 Register temp2_reg, 1116 Label* L_success, 1117 Label* L_failure, 1118 bool set_cond_codes = false); 1119 1120 void check_klass_subtype_slow_path_table(Register sub_klass, 1121 Register super_klass, 1122 Register temp_reg, 1123 Register temp2_reg, 1124 Register temp3_reg, 1125 Register result_reg, 1126 FloatRegister vtemp_reg, 1127 Label* L_success, 1128 Label* L_failure, 1129 bool set_cond_codes = false); 1130 1131 // If r is valid, return r. 1132 // If r is invalid, remove a register r2 from available_regs, add r2 1133 // to regs_to_push, then return r2. 1134 Register allocate_if_noreg(const Register r, 1135 RegSetIterator<Register> &available_regs, 1136 RegSet ®s_to_push); 1137 1138 // Secondary subtype checking 1139 void lookup_secondary_supers_table_var(Register sub_klass, 1140 Register r_super_klass, 1141 Register temp1, 1142 Register temp2, 1143 Register temp3, 1144 FloatRegister vtemp, 1145 Register result, 1146 Label *L_success); 1147 1148 1149 // As above, but with a constant super_klass. 1150 // The result is in Register result, not the condition codes. 1151 bool lookup_secondary_supers_table_const(Register r_sub_klass, 1152 Register r_super_klass, 1153 Register temp1, 1154 Register temp2, 1155 Register temp3, 1156 FloatRegister vtemp, 1157 Register result, 1158 u1 super_klass_slot, 1159 bool stub_is_near = false); 1160 1161 void verify_secondary_supers_table(Register r_sub_klass, 1162 Register r_super_klass, 1163 Register temp1, 1164 Register temp2, 1165 Register result); 1166 1167 void lookup_secondary_supers_table_slow_path(Register r_super_klass, 1168 Register r_array_base, 1169 Register r_array_index, 1170 Register r_bitmap, 1171 Register temp1, 1172 Register result, 1173 bool is_stub = true); 1174 1175 // Simplified, combined version, good for typical uses. 1176 // Falls through on failure. 1177 void check_klass_subtype(Register sub_klass, 1178 Register super_klass, 1179 Register temp_reg, 1180 Label& L_success); 1181 1182 void clinit_barrier(Register klass, 1183 Register thread, 1184 Label* L_fast_path = nullptr, 1185 Label* L_slow_path = nullptr); 1186 1187 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 1188 1189 void verify_sve_vector_length(Register tmp = rscratch1); 1190 void reinitialize_ptrue() { 1191 if (UseSVE > 0) { 1192 sve_ptrue(ptrue, B); 1193 } 1194 } 1195 void verify_ptrue(); 1196 1197 // Debugging 1198 1199 // only if +VerifyOops 1200 void _verify_oop(Register reg, const char* s, const char* file, int line); 1201 void _verify_oop_addr(Address addr, const char * s, const char* file, int line); 1202 1203 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) { 1204 if (VerifyOops) { 1205 _verify_oop(reg, s, file, line); 1206 } 1207 } 1208 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) { 1209 if (VerifyOops) { 1210 _verify_oop_addr(reg, s, file, line); 1211 } 1212 } 1213 1214 // TODO: verify method and klass metadata (compare against vptr?) 1215 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 1216 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 1217 1218 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__) 1219 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__) 1220 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__) 1221 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 1222 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 1223 1224 // Restore cpu control state after JNI call 1225 void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2); 1226 1227 // prints msg, dumps registers and stops execution 1228 void stop(const char* msg); 1229 1230 static void debug64(char* msg, int64_t pc, int64_t regs[]); 1231 1232 void untested() { stop("untested"); } 1233 1234 void unimplemented(const char* what = ""); 1235 1236 void should_not_reach_here() { stop("should not reach here"); } 1237 1238 void _assert_asm(Condition cc, const char* msg); 1239 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg) 1240 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg)) 1241 1242 // Stack overflow checking 1243 void bang_stack_with_offset(int offset) { 1244 // stack grows down, caller passes positive offset 1245 assert(offset > 0, "must bang with negative offset"); 1246 sub(rscratch2, sp, offset); 1247 str(zr, Address(rscratch2)); 1248 } 1249 1250 // Writes to stack successive pages until offset reached to check for 1251 // stack overflow + shadow pages. Also, clobbers tmp 1252 void bang_stack_size(Register size, Register tmp); 1253 1254 // Check for reserved stack access in method being exited (for JIT) 1255 void reserved_stack_check(); 1256 1257 // Arithmetics 1258 1259 // Clobber: rscratch1, rscratch2 1260 void addptr(const Address &dst, int32_t src); 1261 1262 // Clobber: rscratch1 1263 void cmpptr(Register src1, Address src2); 1264 1265 void cmpoop(Register obj1, Register obj2); 1266 1267 // Various forms of CAS 1268 1269 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1270 Label &succeed, Label *fail); 1271 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1272 Label &succeed, Label *fail); 1273 1274 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1275 Label &succeed, Label *fail); 1276 1277 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1278 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1279 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1280 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1281 1282 void atomic_xchg(Register prev, Register newv, Register addr); 1283 void atomic_xchgw(Register prev, Register newv, Register addr); 1284 void atomic_xchgl(Register prev, Register newv, Register addr); 1285 void atomic_xchglw(Register prev, Register newv, Register addr); 1286 void atomic_xchgal(Register prev, Register newv, Register addr); 1287 void atomic_xchgalw(Register prev, Register newv, Register addr); 1288 1289 void orptr(Address adr, RegisterOrConstant src) { 1290 ldr(rscratch1, adr); 1291 if (src.is_register()) 1292 orr(rscratch1, rscratch1, src.as_register()); 1293 else 1294 orr(rscratch1, rscratch1, src.as_constant()); 1295 str(rscratch1, adr); 1296 } 1297 1298 // A generic CAS; success or failure is in the EQ flag. 1299 // Clobbers rscratch1 1300 void cmpxchg(Register addr, Register expected, Register new_val, 1301 enum operand_size size, 1302 bool acquire, bool release, bool weak, 1303 Register result); 1304 1305 #ifdef ASSERT 1306 // Template short-hand support to clean-up after a failed call to trampoline 1307 // call generation (see trampoline_call() below), when a set of Labels must 1308 // be reset (before returning). 1309 template<typename Label, typename... More> 1310 void reset_labels(Label &lbl, More&... more) { 1311 lbl.reset(); reset_labels(more...); 1312 } 1313 template<typename Label> 1314 void reset_labels(Label &lbl) { 1315 lbl.reset(); 1316 } 1317 #endif 1318 1319 private: 1320 void compare_eq(Register rn, Register rm, enum operand_size size); 1321 1322 public: 1323 // AArch64 OpenJDK uses four different types of calls: 1324 // - direct call: bl pc_relative_offset 1325 // This is the shortest and the fastest, but the offset has the range: 1326 // +/-128MB for the release build, +/-2MB for the debug build. 1327 // 1328 // - far call: adrp reg, pc_relative_offset; add; bl reg 1329 // This is longer than a direct call. The offset has 1330 // the range +/-4GB. As the code cache size is limited to 4GB, 1331 // far calls can reach anywhere in the code cache. If a jump is 1332 // needed rather than a call, a far jump 'b reg' can be used instead. 1333 // All instructions are embedded at a call site. 1334 // 1335 // - trampoline call: 1336 // This is only available in C1/C2-generated code (nmethod). It is a combination 1337 // of a direct call, which is used if the destination of a call is in range, 1338 // and a register-indirect call. It has the advantages of reaching anywhere in 1339 // the AArch64 address space and being patchable at runtime when the generated 1340 // code is being executed by other threads. 1341 // 1342 // [Main code section] 1343 // bl trampoline 1344 // [Stub code section] 1345 // trampoline: 1346 // ldr reg, pc + 8 1347 // br reg 1348 // <64-bit destination address> 1349 // 1350 // If the destination is in range when the generated code is moved to the code 1351 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline 1352 // is not used. 1353 // The optimization does not remove the trampoline from the stub section. 1354 // This is necessary because the trampoline may well be redirected later when 1355 // code is patched, and the new destination may not be reachable by a simple BR 1356 // instruction. 1357 // 1358 // - indirect call: move reg, address; blr reg 1359 // This too can reach anywhere in the address space, but it cannot be 1360 // patched while code is running, so it must only be modified at a safepoint. 1361 // This form of call is most suitable for targets at fixed addresses, which 1362 // will never be patched. 1363 // 1364 // The patching we do conforms to the "Concurrent modification and 1365 // execution of instructions" section of the Arm Architectural 1366 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC, 1367 // or SVC instructions to be modified while another thread is 1368 // executing them. 1369 // 1370 // To patch a trampoline call when the BL can't reach, we first modify 1371 // the 64-bit destination address in the trampoline, then modify the 1372 // BL to point to the trampoline, then flush the instruction cache to 1373 // broadcast the change to all executing threads. See 1374 // NativeCall::set_destination_mt_safe for the details. 1375 // 1376 // There is a benign race in that the other thread might observe the 1377 // modified BL before it observes the modified 64-bit destination 1378 // address. That does not matter because the destination method has been 1379 // invalidated, so there will be a trap at its start. 1380 // For this to work, the destination address in the trampoline is 1381 // always updated, even if we're not using the trampoline. 1382 1383 // Emit a direct call if the entry address will always be in range, 1384 // otherwise a trampoline call. 1385 // Supported entry.rspec(): 1386 // - relocInfo::runtime_call_type 1387 // - relocInfo::opt_virtual_call_type 1388 // - relocInfo::static_call_type 1389 // - relocInfo::virtual_call_type 1390 // 1391 // Return: the call PC or null if CodeCache is full. 1392 // Clobbers: rscratch1 1393 address trampoline_call(Address entry); 1394 1395 static bool far_branches() { 1396 return ReservedCodeCacheSize > branch_range; 1397 } 1398 1399 // Check if branches to the non nmethod section require a far jump 1400 static bool codestub_branch_needs_far_jump() { 1401 if (AOTCodeCache::is_on_for_dump()) { 1402 // To calculate far_codestub_branch_size correctly. 1403 return true; 1404 } 1405 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1406 } 1407 1408 // Emit a direct call/jump if the entry address will always be in range, 1409 // otherwise a far call/jump. 1410 // The address must be inside the code cache. 1411 // Supported entry.rspec(): 1412 // - relocInfo::external_word_type 1413 // - relocInfo::runtime_call_type 1414 // - relocInfo::none 1415 // In the case of a far call/jump, the entry address is put in the tmp register. 1416 // The tmp register is invalidated. 1417 // 1418 // Far_jump returns the amount of the emitted code. 1419 void far_call(Address entry, Register tmp = rscratch1); 1420 int far_jump(Address entry, Register tmp = rscratch1); 1421 1422 static int far_codestub_branch_size() { 1423 if (codestub_branch_needs_far_jump()) { 1424 return 3 * 4; // adrp, add, br 1425 } else { 1426 return 4; 1427 } 1428 } 1429 1430 // Emit the CompiledIC call idiom 1431 address ic_call(address entry, jint method_index = 0); 1432 static int ic_check_size(); 1433 int ic_check(int end_alignment); 1434 1435 public: 1436 1437 // Data 1438 1439 void mov_metadata(Register dst, Metadata* obj); 1440 Address allocate_metadata_address(Metadata* obj); 1441 Address constant_oop_address(jobject obj); 1442 1443 void movoop(Register dst, jobject obj); 1444 1445 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1446 void kernel_crc32(Register crc, Register buf, Register len, 1447 Register table0, Register table1, Register table2, Register table3, 1448 Register tmp, Register tmp2, Register tmp3); 1449 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic. 1450 void kernel_crc32c(Register crc, Register buf, Register len, 1451 Register table0, Register table1, Register table2, Register table3, 1452 Register tmp, Register tmp2, Register tmp3); 1453 1454 // Stack push and pop individual 64 bit registers 1455 void push(Register src); 1456 void pop(Register dst); 1457 1458 void repne_scan(Register addr, Register value, Register count, 1459 Register scratch); 1460 void repne_scanw(Register addr, Register value, Register count, 1461 Register scratch); 1462 1463 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1464 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1465 1466 // If a constant does not fit in an immediate field, generate some 1467 // number of MOV instructions and then perform the operation 1468 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1469 add_sub_imm_insn insn1, 1470 add_sub_reg_insn insn2, bool is32); 1471 // Separate vsn which sets the flags 1472 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1473 add_sub_imm_insn insn1, 1474 add_sub_reg_insn insn2, bool is32); 1475 1476 #define WRAP(INSN, is32) \ 1477 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1478 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1479 } \ 1480 \ 1481 void INSN(Register Rd, Register Rn, Register Rm, \ 1482 enum shift_kind kind, unsigned shift = 0) { \ 1483 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1484 } \ 1485 \ 1486 void INSN(Register Rd, Register Rn, Register Rm) { \ 1487 Assembler::INSN(Rd, Rn, Rm); \ 1488 } \ 1489 \ 1490 void INSN(Register Rd, Register Rn, Register Rm, \ 1491 ext::operation option, int amount = 0) { \ 1492 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1493 } 1494 1495 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1496 1497 #undef WRAP 1498 #define WRAP(INSN, is32) \ 1499 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1500 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1501 } \ 1502 \ 1503 void INSN(Register Rd, Register Rn, Register Rm, \ 1504 enum shift_kind kind, unsigned shift = 0) { \ 1505 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1506 } \ 1507 \ 1508 void INSN(Register Rd, Register Rn, Register Rm) { \ 1509 Assembler::INSN(Rd, Rn, Rm); \ 1510 } \ 1511 \ 1512 void INSN(Register Rd, Register Rn, Register Rm, \ 1513 ext::operation option, int amount = 0) { \ 1514 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1515 } 1516 1517 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1518 1519 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1520 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1521 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1522 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1523 1524 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1525 1526 void verified_entry(Compile* C, int sp_inc); 1527 1528 // Inline type specific methods 1529 #include "asm/macroAssembler_common.hpp" 1530 1531 int store_inline_type_fields_to_buf(ciInlineKlass* vk, bool from_interpreter = true); 1532 bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[]); 1533 bool unpack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, 1534 VMReg from, int& from_index, VMRegPair* to, int to_count, int& to_index, 1535 RegState reg_state[]); 1536 bool pack_inline_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index, 1537 VMRegPair* from, int from_count, int& from_index, VMReg to, 1538 RegState reg_state[], Register val_array); 1539 int extend_stack_for_inline_args(int args_on_stack); 1540 void remove_frame(int initial_framesize, bool needs_stack_repair); 1541 VMReg spill_reg_for(VMReg reg); 1542 void save_stack_increment(int sp_inc, int frame_size); 1543 1544 void tableswitch(Register index, jint lowbound, jint highbound, 1545 Label &jumptable, Label &jumptable_end, int stride = 1) { 1546 adr(rscratch1, jumptable); 1547 subsw(rscratch2, index, lowbound); 1548 subsw(zr, rscratch2, highbound - lowbound); 1549 br(Assembler::HS, jumptable_end); 1550 add(rscratch1, rscratch1, rscratch2, 1551 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1552 br(rscratch1); 1553 } 1554 1555 // Form an address from base + offset in Rd. Rd may or may not 1556 // actually be used: you must use the Address that is returned. It 1557 // is up to you to ensure that the shift provided matches the size 1558 // of your data. 1559 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1560 1561 // Return true iff an address is within the 48-bit AArch64 address 1562 // space. 1563 bool is_valid_AArch64_address(address a) { 1564 return ((uint64_t)a >> 48) == 0; 1565 } 1566 1567 // Load the base of the cardtable byte map into reg. 1568 void load_byte_map_base(Register reg); 1569 1570 // Prolog generator routines to support switch between x86 code and 1571 // generated ARM code 1572 1573 // routine to generate an x86 prolog for a stub function which 1574 // bootstraps into the generated ARM code which directly follows the 1575 // stub 1576 // 1577 1578 public: 1579 1580 address read_polling_page(Register r, relocInfo::relocType rtype); 1581 void get_polling_page(Register dest, relocInfo::relocType rtype); 1582 1583 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. 1584 void update_byte_crc32(Register crc, Register val, Register table); 1585 void update_word_crc32(Register crc, Register v, Register tmp, 1586 Register table0, Register table1, Register table2, Register table3, 1587 bool upper = false); 1588 1589 address count_positives(Register ary1, Register len, Register result); 1590 1591 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1592 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1593 1594 // Ensure that the inline code and the stub use the same registers. 1595 #define ARRAYS_HASHCODE_REGISTERS \ 1596 do { \ 1597 assert(result == r0 && \ 1598 ary == r1 && \ 1599 cnt == r2 && \ 1600 vdata0 == v3 && \ 1601 vdata1 == v2 && \ 1602 vdata2 == v1 && \ 1603 vdata3 == v0 && \ 1604 vmul0 == v4 && \ 1605 vmul1 == v5 && \ 1606 vmul2 == v6 && \ 1607 vmul3 == v7 && \ 1608 vpow == v12 && \ 1609 vpowm == v13, "registers must match aarch64.ad"); \ 1610 } while (0) 1611 1612 void string_equals(Register a1, Register a2, Register result, Register cnt1); 1613 1614 void fill_words(Register base, Register cnt, Register value); 1615 void fill_words(Register base, uint64_t cnt, Register value); 1616 1617 address zero_words(Register base, uint64_t cnt); 1618 address zero_words(Register ptr, Register cnt); 1619 void zero_dcache_blocks(Register base, Register cnt); 1620 1621 static const int zero_words_block_size; 1622 1623 address byte_array_inflate(Register src, Register dst, Register len, 1624 FloatRegister vtmp1, FloatRegister vtmp2, 1625 FloatRegister vtmp3, Register tmp4); 1626 1627 void char_array_compress(Register src, Register dst, Register len, 1628 Register res, 1629 FloatRegister vtmp0, FloatRegister vtmp1, 1630 FloatRegister vtmp2, FloatRegister vtmp3, 1631 FloatRegister vtmp4, FloatRegister vtmp5); 1632 1633 void encode_iso_array(Register src, Register dst, 1634 Register len, Register res, bool ascii, 1635 FloatRegister vtmp0, FloatRegister vtmp1, 1636 FloatRegister vtmp2, FloatRegister vtmp3, 1637 FloatRegister vtmp4, FloatRegister vtmp5); 1638 1639 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1640 address pio2, address dsin_coef, address dcos_coef); 1641 private: 1642 // begin trigonometric functions support block 1643 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1644 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1645 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1646 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1647 // end trigonometric functions support block 1648 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1649 Register src1, Register src2); 1650 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1651 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1652 } 1653 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1654 Register y, Register y_idx, Register z, 1655 Register carry, Register product, 1656 Register idx, Register kdx); 1657 void multiply_128_x_128_loop(Register y, Register z, 1658 Register carry, Register carry2, 1659 Register idx, Register jdx, 1660 Register yz_idx1, Register yz_idx2, 1661 Register tmp, Register tmp3, Register tmp4, 1662 Register tmp7, Register product_hi); 1663 void kernel_crc32_using_crypto_pmull(Register crc, Register buf, 1664 Register len, Register tmp0, Register tmp1, Register tmp2, 1665 Register tmp3); 1666 void kernel_crc32_using_crc32(Register crc, Register buf, 1667 Register len, Register tmp0, Register tmp1, Register tmp2, 1668 Register tmp3); 1669 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 1670 Register len, Register tmp0, Register tmp1, Register tmp2, 1671 Register tmp3); 1672 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1673 Register len, Register tmp0, Register tmp1, Register tmp2, 1674 Register tmp3); 1675 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 1676 Register len, Register tmp0, Register tmp1, Register tmp2, 1677 size_t table_offset); 1678 1679 void ghash_modmul (FloatRegister result, 1680 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1681 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1682 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1683 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state); 1684 public: 1685 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1686 Register tmp0, Register tmp1, Register tmp2, Register tmp3, 1687 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1688 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1689 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1690 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1691 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1692 void ghash_multiply_wide(int index, 1693 FloatRegister result_lo, FloatRegister result_hi, 1694 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1695 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1696 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1697 FloatRegister p, FloatRegister z, FloatRegister t1); 1698 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi, 1699 FloatRegister p, FloatRegister z, FloatRegister t1); 1700 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1701 Register data, Register blocks, int unrolls); 1702 1703 1704 void aesenc_loadkeys(Register key, Register keylen); 1705 void aesecb_encrypt(Register from, Register to, Register keylen, 1706 FloatRegister data = v0, int unrolls = 1); 1707 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1708 void aes_round(FloatRegister input, FloatRegister subkey); 1709 1710 // ChaCha20 functions support block 1711 void cc20_qr_add4(FloatRegister (&addFirst)[4], 1712 FloatRegister (&addSecond)[4]); 1713 void cc20_qr_xor4(FloatRegister (&firstElem)[4], 1714 FloatRegister (&secondElem)[4], FloatRegister (&result)[4]); 1715 void cc20_qr_lrot4(FloatRegister (&sourceReg)[4], 1716 FloatRegister (&destReg)[4], int bits, FloatRegister table); 1717 void cc20_set_qr_registers(FloatRegister (&vectorSet)[4], 1718 const FloatRegister (&stateVectors)[16], int idx1, int idx2, 1719 int idx3, int idx4); 1720 1721 // Place an ISB after code may have been modified due to a safepoint. 1722 void safepoint_isb(); 1723 1724 private: 1725 // Return the effective address r + (r1 << ext) + offset. 1726 // Uses rscratch2. 1727 Address offsetted_address(Register r, Register r1, Address::extend ext, 1728 int offset, int size); 1729 1730 private: 1731 // Returns an address on the stack which is reachable with a ldr/str of size 1732 // Uses rscratch2 if the address is not directly reachable 1733 Address spill_address(int size, int offset, Register tmp=rscratch2); 1734 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1735 1736 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1737 1738 // Check whether two loads/stores can be merged into ldp/stp. 1739 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1740 1741 // Merge current load/store with previous load/store into ldp/stp. 1742 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1743 1744 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1745 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1746 1747 public: 1748 void spill(Register Rx, bool is64, int offset) { 1749 if (is64) { 1750 str(Rx, spill_address(8, offset)); 1751 } else { 1752 strw(Rx, spill_address(4, offset)); 1753 } 1754 } 1755 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1756 str(Vx, T, spill_address(1 << (int)T, offset)); 1757 } 1758 1759 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1760 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1761 } 1762 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1763 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1764 } 1765 1766 void unspill(Register Rx, bool is64, int offset) { 1767 if (is64) { 1768 ldr(Rx, spill_address(8, offset)); 1769 } else { 1770 ldrw(Rx, spill_address(4, offset)); 1771 } 1772 } 1773 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1774 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1775 } 1776 1777 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1778 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1779 } 1780 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) { 1781 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset)); 1782 } 1783 1784 void spill_copy128(int src_offset, int dst_offset, 1785 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1786 if (src_offset < 512 && (src_offset & 7) == 0 && 1787 dst_offset < 512 && (dst_offset & 7) == 0) { 1788 ldp(tmp1, tmp2, Address(sp, src_offset)); 1789 stp(tmp1, tmp2, Address(sp, dst_offset)); 1790 } else { 1791 unspill(tmp1, true, src_offset); 1792 spill(tmp1, true, dst_offset); 1793 unspill(tmp1, true, src_offset+8); 1794 spill(tmp1, true, dst_offset+8); 1795 } 1796 } 1797 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1798 int sve_vec_reg_size_in_bytes) { 1799 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1800 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1801 spill_copy128(src_offset, dst_offset); 1802 src_offset += 16; 1803 dst_offset += 16; 1804 } 1805 } 1806 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset, 1807 int sve_predicate_reg_size_in_bytes) { 1808 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset)); 1809 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset)); 1810 reinitialize_ptrue(); 1811 } 1812 void cache_wb(Address line); 1813 void cache_wbsync(bool is_pre); 1814 1815 // Code for java.lang.Thread::onSpinWait() intrinsic. 1816 void spin_wait(); 1817 1818 void lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow); 1819 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow); 1820 1821 private: 1822 // Check the current thread doesn't need a cross modify fence. 1823 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1824 1825 }; 1826 1827 #ifdef ASSERT 1828 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1829 #endif 1830 1831 struct tableswitch { 1832 Register _reg; 1833 int _insn_index; jint _first_key; jint _last_key; 1834 Label _after; 1835 Label _branches; 1836 }; 1837 1838 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP