1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/interp_masm.hpp" 38 #include "logging/log.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/method.inline.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/continuation.hpp" 45 #include "runtime/continuationEntry.inline.hpp" 46 #include "runtime/globals.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "runtime/signature.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/timerTrace.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/formatBuffer.hpp" 56 #include "vmreg_aarch64.inline.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_Runtime1.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "adfiles/ad_aarch64.hpp" 62 #include "opto/runtime.hpp" 63 #endif 64 #if INCLUDE_JVMCI 65 #include "jvmci/jvmciJavaClasses.hpp" 66 #endif 67 68 #define __ masm-> 69 70 #ifdef PRODUCT 71 #define BLOCK_COMMENT(str) /* nothing */ 72 #else 73 #define BLOCK_COMMENT(str) __ block_comment(str) 74 #endif 75 76 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 77 78 // FIXME -- this is used by C1 79 class RegisterSaver { 80 const bool _save_vectors; 81 public: 82 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 83 84 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 85 void restore_live_registers(MacroAssembler* masm); 86 87 // Offsets into the register save area 88 // Used by deoptimization when it is managing result register 89 // values on its own 90 91 int reg_offset_in_bytes(Register r); 92 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 93 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 94 int v0_offset_in_bytes(); 95 96 // Total stack size in bytes for saving sve predicate registers. 97 int total_sve_predicate_in_bytes(); 98 99 // Capture info about frame layout 100 // Note this is only correct when not saving full vectors. 101 enum layout { 102 fpu_state_off = 0, 103 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 104 // The frame sender code expects that rfp will be in 105 // the "natural" place and will override any oopMap 106 // setting for it. We must therefore force the layout 107 // so that it agrees with the frame sender code. 108 r0_off = fpu_state_off + FPUStateSizeInWords, 109 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 110 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 111 reg_save_size = return_off + Register::max_slots_per_register}; 112 113 }; 114 115 int RegisterSaver::reg_offset_in_bytes(Register r) { 116 // The integer registers are located above the floating point 117 // registers in the stack frame pushed by save_live_registers() so the 118 // offset depends on whether we are saving full vectors, and whether 119 // those vectors are NEON or SVE. 120 121 int slots_per_vect = FloatRegister::save_slots_per_register; 122 123 #if COMPILER2_OR_JVMCI 124 if (_save_vectors) { 125 slots_per_vect = FloatRegister::slots_per_neon_register; 126 127 #ifdef COMPILER2 128 if (Matcher::supports_scalable_vector()) { 129 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 130 } 131 #endif 132 } 133 #endif 134 135 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 136 return r0_offset + r->encoding() * wordSize; 137 } 138 139 int RegisterSaver::v0_offset_in_bytes() { 140 // The floating point registers are located above the predicate registers if 141 // they are present in the stack frame pushed by save_live_registers(). So the 142 // offset depends on the saved total predicate vectors in the stack frame. 143 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 144 } 145 146 int RegisterSaver::total_sve_predicate_in_bytes() { 147 #ifdef COMPILER2 148 if (_save_vectors && Matcher::supports_scalable_vector()) { 149 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 150 PRegister::number_of_registers; 151 } 152 #endif 153 return 0; 154 } 155 156 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 157 bool use_sve = false; 158 int sve_vector_size_in_bytes = 0; 159 int sve_vector_size_in_slots = 0; 160 int sve_predicate_size_in_slots = 0; 161 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 162 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 163 164 #ifdef COMPILER2 165 use_sve = Matcher::supports_scalable_vector(); 166 if (use_sve) { 167 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 168 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 169 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 170 } 171 #endif 172 173 #if COMPILER2_OR_JVMCI 174 if (_save_vectors) { 175 int extra_save_slots_per_register = 0; 176 // Save upper half of vector registers 177 if (use_sve) { 178 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 179 } else { 180 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 181 } 182 int extra_vector_bytes = extra_save_slots_per_register * 183 VMRegImpl::stack_slot_size * 184 FloatRegister::number_of_registers; 185 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 186 } 187 #else 188 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 189 #endif 190 191 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 192 reg_save_size * BytesPerInt, 16); 193 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 194 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 195 // The caller will allocate additional_frame_words 196 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 197 // CodeBlob frame size is in words. 198 int frame_size_in_words = frame_size_in_bytes / wordSize; 199 *total_frame_words = frame_size_in_words; 200 201 // Save Integer and Float registers. 202 __ enter(); 203 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 204 205 // Set an oopmap for the call site. This oopmap will map all 206 // oop-registers and debug-info registers as callee-saved. This 207 // will allow deoptimization at this safepoint to find all possible 208 // debug-info recordings, as well as let GC find all oops. 209 210 OopMapSet *oop_maps = new OopMapSet(); 211 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 212 213 for (int i = 0; i < Register::number_of_registers; i++) { 214 Register r = as_Register(i); 215 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 216 // SP offsets are in 4-byte words. 217 // Register slots are 8 bytes wide, 32 floating-point registers. 218 int sp_offset = Register::max_slots_per_register * i + 219 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 220 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 221 } 222 } 223 224 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 225 FloatRegister r = as_FloatRegister(i); 226 int sp_offset = 0; 227 if (_save_vectors) { 228 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 229 (FloatRegister::slots_per_neon_register * i); 230 } else { 231 sp_offset = FloatRegister::save_slots_per_register * i; 232 } 233 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 234 } 235 236 return oop_map; 237 } 238 239 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 240 #ifdef COMPILER2 241 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 242 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 243 #else 244 #if !INCLUDE_JVMCI 245 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 246 #endif 247 __ pop_CPU_state(_save_vectors); 248 #endif 249 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 250 __ authenticate_return_address(); 251 } 252 253 // Is vector's size (in bytes) bigger than a size saved by default? 254 // 8 bytes vector registers are saved by default on AArch64. 255 // The SVE supported min vector size is 8 bytes and we need to save 256 // predicate registers when the vector size is 8 bytes as well. 257 bool SharedRuntime::is_wide_vector(int size) { 258 return size > 8 || (UseSVE > 0 && size >= 8); 259 } 260 261 // --------------------------------------------------------------------------- 262 // Read the array of BasicTypes from a signature, and compute where the 263 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 264 // quantities. Values less than VMRegImpl::stack0 are registers, those above 265 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 266 // as framesizes are fixed. 267 // VMRegImpl::stack0 refers to the first slot 0(sp). 268 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 269 // Register up to Register::number_of_registers are the 64-bit 270 // integer registers. 271 272 // Note: the INPUTS in sig_bt are in units of Java argument words, 273 // which are 64-bit. The OUTPUTS are in 32-bit units. 274 275 // The Java calling convention is a "shifted" version of the C ABI. 276 // By skipping the first C ABI register we can call non-static jni 277 // methods with small numbers of arguments without having to shuffle 278 // the arguments at all. Since we control the java ABI we ought to at 279 // least get some advantage out of it. 280 281 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 282 VMRegPair *regs, 283 int total_args_passed) { 284 285 // Create the mapping between argument positions and 286 // registers. 287 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 288 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 289 }; 290 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 291 j_farg0, j_farg1, j_farg2, j_farg3, 292 j_farg4, j_farg5, j_farg6, j_farg7 293 }; 294 295 296 uint int_args = 0; 297 uint fp_args = 0; 298 uint stk_args = 0; 299 300 for (int i = 0; i < total_args_passed; i++) { 301 switch (sig_bt[i]) { 302 case T_BOOLEAN: 303 case T_CHAR: 304 case T_BYTE: 305 case T_SHORT: 306 case T_INT: 307 if (int_args < Argument::n_int_register_parameters_j) { 308 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 309 } else { 310 stk_args = align_up(stk_args, 2); 311 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 312 stk_args += 1; 313 } 314 break; 315 case T_VOID: 316 // halves of T_LONG or T_DOUBLE 317 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 318 regs[i].set_bad(); 319 break; 320 case T_LONG: 321 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 322 // fall through 323 case T_OBJECT: 324 case T_ARRAY: 325 case T_ADDRESS: 326 if (int_args < Argument::n_int_register_parameters_j) { 327 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 328 } else { 329 stk_args = align_up(stk_args, 2); 330 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 331 stk_args += 2; 332 } 333 break; 334 case T_FLOAT: 335 if (fp_args < Argument::n_float_register_parameters_j) { 336 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 337 } else { 338 stk_args = align_up(stk_args, 2); 339 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 340 stk_args += 1; 341 } 342 break; 343 case T_DOUBLE: 344 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 345 if (fp_args < Argument::n_float_register_parameters_j) { 346 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 347 } else { 348 stk_args = align_up(stk_args, 2); 349 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 350 stk_args += 2; 351 } 352 break; 353 default: 354 ShouldNotReachHere(); 355 break; 356 } 357 } 358 359 return stk_args; 360 } 361 362 // Patch the callers callsite with entry to compiled code if it exists. 363 static void patch_callers_callsite(MacroAssembler *masm) { 364 Label L; 365 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 366 __ cbz(rscratch1, L); 367 368 __ enter(); 369 __ push_CPU_state(); 370 371 // VM needs caller's callsite 372 // VM needs target method 373 // This needs to be a long call since we will relocate this adapter to 374 // the codeBuffer and it may not reach 375 376 #ifndef PRODUCT 377 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 378 #endif 379 380 __ mov(c_rarg0, rmethod); 381 __ mov(c_rarg1, lr); 382 __ authenticate_return_address(c_rarg1); 383 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 384 __ blr(rscratch1); 385 386 // Explicit isb required because fixup_callers_callsite may change the code 387 // stream. 388 __ safepoint_isb(); 389 390 __ pop_CPU_state(); 391 // restore sp 392 __ leave(); 393 __ bind(L); 394 } 395 396 static void gen_c2i_adapter(MacroAssembler *masm, 397 int total_args_passed, 398 int comp_args_on_stack, 399 const BasicType *sig_bt, 400 const VMRegPair *regs, 401 Label& skip_fixup) { 402 // Before we get into the guts of the C2I adapter, see if we should be here 403 // at all. We've come from compiled code and are attempting to jump to the 404 // interpreter, which means the caller made a static call to get here 405 // (vcalls always get a compiled target if there is one). Check for a 406 // compiled target. If there is one, we need to patch the caller's call. 407 patch_callers_callsite(masm); 408 409 __ bind(skip_fixup); 410 411 int words_pushed = 0; 412 413 // Since all args are passed on the stack, total_args_passed * 414 // Interpreter::stackElementSize is the space we need. 415 416 int extraspace = total_args_passed * Interpreter::stackElementSize; 417 418 __ mov(r19_sender_sp, sp); 419 420 // stack is aligned, keep it that way 421 extraspace = align_up(extraspace, 2*wordSize); 422 423 if (extraspace) 424 __ sub(sp, sp, extraspace); 425 426 // Now write the args into the outgoing interpreter space 427 for (int i = 0; i < total_args_passed; i++) { 428 if (sig_bt[i] == T_VOID) { 429 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 430 continue; 431 } 432 433 // offset to start parameters 434 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 435 int next_off = st_off - Interpreter::stackElementSize; 436 437 // Say 4 args: 438 // i st_off 439 // 0 32 T_LONG 440 // 1 24 T_VOID 441 // 2 16 T_OBJECT 442 // 3 8 T_BOOL 443 // - 0 return address 444 // 445 // However to make thing extra confusing. Because we can fit a Java long/double in 446 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 447 // leaves one slot empty and only stores to a single slot. In this case the 448 // slot that is occupied is the T_VOID slot. See I said it was confusing. 449 450 VMReg r_1 = regs[i].first(); 451 VMReg r_2 = regs[i].second(); 452 if (!r_1->is_valid()) { 453 assert(!r_2->is_valid(), ""); 454 continue; 455 } 456 if (r_1->is_stack()) { 457 // memory to memory use rscratch1 458 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 459 + extraspace 460 + words_pushed * wordSize); 461 if (!r_2->is_valid()) { 462 // sign extend?? 463 __ ldrw(rscratch1, Address(sp, ld_off)); 464 __ str(rscratch1, Address(sp, st_off)); 465 466 } else { 467 468 __ ldr(rscratch1, Address(sp, ld_off)); 469 470 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 471 // T_DOUBLE and T_LONG use two slots in the interpreter 472 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 473 // ld_off == LSW, ld_off+wordSize == MSW 474 // st_off == MSW, next_off == LSW 475 __ str(rscratch1, Address(sp, next_off)); 476 #ifdef ASSERT 477 // Overwrite the unused slot with known junk 478 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 479 __ str(rscratch1, Address(sp, st_off)); 480 #endif /* ASSERT */ 481 } else { 482 __ str(rscratch1, Address(sp, st_off)); 483 } 484 } 485 } else if (r_1->is_Register()) { 486 Register r = r_1->as_Register(); 487 if (!r_2->is_valid()) { 488 // must be only an int (or less ) so move only 32bits to slot 489 // why not sign extend?? 490 __ str(r, Address(sp, st_off)); 491 } else { 492 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 493 // T_DOUBLE and T_LONG use two slots in the interpreter 494 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 495 // jlong/double in gpr 496 #ifdef ASSERT 497 // Overwrite the unused slot with known junk 498 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 499 __ str(rscratch1, Address(sp, st_off)); 500 #endif /* ASSERT */ 501 __ str(r, Address(sp, next_off)); 502 } else { 503 __ str(r, Address(sp, st_off)); 504 } 505 } 506 } else { 507 assert(r_1->is_FloatRegister(), ""); 508 if (!r_2->is_valid()) { 509 // only a float use just part of the slot 510 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 511 } else { 512 #ifdef ASSERT 513 // Overwrite the unused slot with known junk 514 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 515 __ str(rscratch1, Address(sp, st_off)); 516 #endif /* ASSERT */ 517 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 518 } 519 } 520 } 521 522 __ mov(esp, sp); // Interp expects args on caller's expression stack 523 524 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 525 __ br(rscratch1); 526 } 527 528 529 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 530 int total_args_passed, 531 int comp_args_on_stack, 532 const BasicType *sig_bt, 533 const VMRegPair *regs) { 534 535 // Note: r19_sender_sp contains the senderSP on entry. We must 536 // preserve it since we may do a i2c -> c2i transition if we lose a 537 // race where compiled code goes non-entrant while we get args 538 // ready. 539 540 // Adapters are frameless. 541 542 // An i2c adapter is frameless because the *caller* frame, which is 543 // interpreted, routinely repairs its own esp (from 544 // interpreter_frame_last_sp), even if a callee has modified the 545 // stack pointer. It also recalculates and aligns sp. 546 547 // A c2i adapter is frameless because the *callee* frame, which is 548 // interpreted, routinely repairs its caller's sp (from sender_sp, 549 // which is set up via the senderSP register). 550 551 // In other words, if *either* the caller or callee is interpreted, we can 552 // get the stack pointer repaired after a call. 553 554 // This is why c2i and i2c adapters cannot be indefinitely composed. 555 // In particular, if a c2i adapter were to somehow call an i2c adapter, 556 // both caller and callee would be compiled methods, and neither would 557 // clean up the stack pointer changes performed by the two adapters. 558 // If this happens, control eventually transfers back to the compiled 559 // caller, but with an uncorrected stack, causing delayed havoc. 560 561 if (VerifyAdapterCalls && 562 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 563 #if 0 564 // So, let's test for cascading c2i/i2c adapters right now. 565 // assert(Interpreter::contains($return_addr) || 566 // StubRoutines::contains($return_addr), 567 // "i2c adapter must return to an interpreter frame"); 568 __ block_comment("verify_i2c { "); 569 Label L_ok; 570 if (Interpreter::code() != nullptr) { 571 range_check(masm, rax, r11, 572 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 573 L_ok); 574 } 575 if (StubRoutines::initial_stubs_code() != nullptr) { 576 range_check(masm, rax, r11, 577 StubRoutines::initial_stubs_code()->code_begin(), 578 StubRoutines::initial_stubs_code()->code_end(), 579 L_ok); 580 } 581 if (StubRoutines::final_stubs_code() != nullptr) { 582 range_check(masm, rax, r11, 583 StubRoutines::final_stubs_code()->code_begin(), 584 StubRoutines::final_stubs_code()->code_end(), 585 L_ok); 586 } 587 const char* msg = "i2c adapter must return to an interpreter frame"; 588 __ block_comment(msg); 589 __ stop(msg); 590 __ bind(L_ok); 591 __ block_comment("} verify_i2ce "); 592 #endif 593 } 594 595 // Cut-out for having no stack args. 596 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 597 if (comp_args_on_stack) { 598 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 599 __ andr(sp, rscratch1, -16); 600 } 601 602 // Will jump to the compiled code just as if compiled code was doing it. 603 // Pre-load the register-jump target early, to schedule it better. 604 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 605 606 #if INCLUDE_JVMCI 607 if (EnableJVMCI) { 608 // check if this call should be routed towards a specific entry point 609 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 610 Label no_alternative_target; 611 __ cbz(rscratch2, no_alternative_target); 612 __ mov(rscratch1, rscratch2); 613 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 614 __ bind(no_alternative_target); 615 } 616 #endif // INCLUDE_JVMCI 617 618 // Now generate the shuffle code. 619 for (int i = 0; i < total_args_passed; i++) { 620 if (sig_bt[i] == T_VOID) { 621 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 622 continue; 623 } 624 625 // Pick up 0, 1 or 2 words from SP+offset. 626 627 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 628 "scrambled load targets?"); 629 // Load in argument order going down. 630 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 631 // Point to interpreter value (vs. tag) 632 int next_off = ld_off - Interpreter::stackElementSize; 633 // 634 // 635 // 636 VMReg r_1 = regs[i].first(); 637 VMReg r_2 = regs[i].second(); 638 if (!r_1->is_valid()) { 639 assert(!r_2->is_valid(), ""); 640 continue; 641 } 642 if (r_1->is_stack()) { 643 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 644 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 645 if (!r_2->is_valid()) { 646 // sign extend??? 647 __ ldrsw(rscratch2, Address(esp, ld_off)); 648 __ str(rscratch2, Address(sp, st_off)); 649 } else { 650 // 651 // We are using two optoregs. This can be either T_OBJECT, 652 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 653 // two slots but only uses one for thr T_LONG or T_DOUBLE case 654 // So we must adjust where to pick up the data to match the 655 // interpreter. 656 // 657 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 658 // are accessed as negative so LSW is at LOW address 659 660 // ld_off is MSW so get LSW 661 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 662 next_off : ld_off; 663 __ ldr(rscratch2, Address(esp, offset)); 664 // st_off is LSW (i.e. reg.first()) 665 __ str(rscratch2, Address(sp, st_off)); 666 } 667 } else if (r_1->is_Register()) { // Register argument 668 Register r = r_1->as_Register(); 669 if (r_2->is_valid()) { 670 // 671 // We are using two VMRegs. This can be either T_OBJECT, 672 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 673 // two slots but only uses one for thr T_LONG or T_DOUBLE case 674 // So we must adjust where to pick up the data to match the 675 // interpreter. 676 677 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 678 next_off : ld_off; 679 680 // this can be a misaligned move 681 __ ldr(r, Address(esp, offset)); 682 } else { 683 // sign extend and use a full word? 684 __ ldrw(r, Address(esp, ld_off)); 685 } 686 } else { 687 if (!r_2->is_valid()) { 688 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 689 } else { 690 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 691 } 692 } 693 } 694 695 __ mov(rscratch2, rscratch1); 696 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 697 __ mov(rscratch1, rscratch2); 698 699 // 6243940 We might end up in handle_wrong_method if 700 // the callee is deoptimized as we race thru here. If that 701 // happens we don't want to take a safepoint because the 702 // caller frame will look interpreted and arguments are now 703 // "compiled" so it is much better to make this transition 704 // invisible to the stack walking code. Unfortunately if 705 // we try and find the callee by normal means a safepoint 706 // is possible. So we stash the desired callee in the thread 707 // and the vm will find there should this case occur. 708 709 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 710 711 __ br(rscratch1); 712 } 713 714 // --------------------------------------------------------------- 715 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 716 int total_args_passed, 717 int comp_args_on_stack, 718 const BasicType *sig_bt, 719 const VMRegPair *regs, 720 AdapterFingerPrint* fingerprint) { 721 address i2c_entry = __ pc(); 722 723 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 724 725 address c2i_unverified_entry = __ pc(); 726 Label skip_fixup; 727 728 Register data = rscratch2; 729 Register receiver = j_rarg0; 730 Register tmp = r10; // A call-clobbered register not used for arg passing 731 732 // ------------------------------------------------------------------------- 733 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 734 // to the interpreter. The args start out packed in the compiled layout. They 735 // need to be unpacked into the interpreter layout. This will almost always 736 // require some stack space. We grow the current (compiled) stack, then repack 737 // the args. We finally end in a jump to the generic interpreter entry point. 738 // On exit from the interpreter, the interpreter will restore our SP (lest the 739 // compiled code, which relies solely on SP and not FP, get sick). 740 741 { 742 __ block_comment("c2i_unverified_entry {"); 743 // Method might have been compiled since the call site was patched to 744 // interpreted; if that is the case treat it as a miss so we can get 745 // the call site corrected. 746 __ ic_check(1 /* end_alignment */); 747 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 748 749 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 750 __ cbz(rscratch1, skip_fixup); 751 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 752 __ block_comment("} c2i_unverified_entry"); 753 } 754 755 address c2i_entry = __ pc(); 756 757 // Class initialization barrier for static methods 758 address c2i_no_clinit_check_entry = nullptr; 759 if (VM_Version::supports_fast_class_init_checks()) { 760 Label L_skip_barrier; 761 762 { // Bypass the barrier for non-static methods 763 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 764 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 765 __ br(Assembler::EQ, L_skip_barrier); // non-static 766 } 767 768 __ load_method_holder(rscratch2, rmethod); 769 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 770 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 771 772 __ bind(L_skip_barrier); 773 c2i_no_clinit_check_entry = __ pc(); 774 } 775 776 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 777 bs->c2i_entry_barrier(masm); 778 779 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 780 781 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 782 } 783 784 static int c_calling_convention_priv(const BasicType *sig_bt, 785 VMRegPair *regs, 786 int total_args_passed) { 787 788 // We return the amount of VMRegImpl stack slots we need to reserve for all 789 // the arguments NOT counting out_preserve_stack_slots. 790 791 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 792 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 793 }; 794 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 795 c_farg0, c_farg1, c_farg2, c_farg3, 796 c_farg4, c_farg5, c_farg6, c_farg7 797 }; 798 799 uint int_args = 0; 800 uint fp_args = 0; 801 uint stk_args = 0; // inc by 2 each time 802 803 for (int i = 0; i < total_args_passed; i++) { 804 switch (sig_bt[i]) { 805 case T_BOOLEAN: 806 case T_CHAR: 807 case T_BYTE: 808 case T_SHORT: 809 case T_INT: 810 if (int_args < Argument::n_int_register_parameters_c) { 811 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 812 } else { 813 #ifdef __APPLE__ 814 // Less-than word types are stored one after another. 815 // The code is unable to handle this so bailout. 816 return -1; 817 #endif 818 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 819 stk_args += 2; 820 } 821 break; 822 case T_LONG: 823 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 824 // fall through 825 case T_OBJECT: 826 case T_ARRAY: 827 case T_ADDRESS: 828 case T_METADATA: 829 if (int_args < Argument::n_int_register_parameters_c) { 830 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 831 } else { 832 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 833 stk_args += 2; 834 } 835 break; 836 case T_FLOAT: 837 if (fp_args < Argument::n_float_register_parameters_c) { 838 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 839 } else { 840 #ifdef __APPLE__ 841 // Less-than word types are stored one after another. 842 // The code is unable to handle this so bailout. 843 return -1; 844 #endif 845 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 846 stk_args += 2; 847 } 848 break; 849 case T_DOUBLE: 850 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 851 if (fp_args < Argument::n_float_register_parameters_c) { 852 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 853 } else { 854 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 855 stk_args += 2; 856 } 857 break; 858 case T_VOID: // Halves of longs and doubles 859 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 860 regs[i].set_bad(); 861 break; 862 default: 863 ShouldNotReachHere(); 864 break; 865 } 866 } 867 868 return stk_args; 869 } 870 871 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 872 uint num_bits, 873 uint total_args_passed) { 874 // More than 8 argument inputs are not supported now. 875 assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported"); 876 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 877 878 static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = { 879 v0, v1, v2, v3, v4, v5, v6, v7 880 }; 881 882 // On SVE, we use the same vector registers with 128-bit vector registers on NEON. 883 int next_reg_val = num_bits == 64 ? 1 : 3; 884 for (uint i = 0; i < total_args_passed; i++) { 885 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 886 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 887 } 888 return 0; 889 } 890 891 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 892 VMRegPair *regs, 893 int total_args_passed) 894 { 895 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 896 guarantee(result >= 0, "Unsupported arguments configuration"); 897 return result; 898 } 899 900 901 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 902 // We always ignore the frame_slots arg and just use the space just below frame pointer 903 // which by this time is free to use 904 switch (ret_type) { 905 case T_FLOAT: 906 __ strs(v0, Address(rfp, -wordSize)); 907 break; 908 case T_DOUBLE: 909 __ strd(v0, Address(rfp, -wordSize)); 910 break; 911 case T_VOID: break; 912 default: { 913 __ str(r0, Address(rfp, -wordSize)); 914 } 915 } 916 } 917 918 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 919 // We always ignore the frame_slots arg and just use the space just below frame pointer 920 // which by this time is free to use 921 switch (ret_type) { 922 case T_FLOAT: 923 __ ldrs(v0, Address(rfp, -wordSize)); 924 break; 925 case T_DOUBLE: 926 __ ldrd(v0, Address(rfp, -wordSize)); 927 break; 928 case T_VOID: break; 929 default: { 930 __ ldr(r0, Address(rfp, -wordSize)); 931 } 932 } 933 } 934 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 935 RegSet x; 936 for ( int i = first_arg ; i < arg_count ; i++ ) { 937 if (args[i].first()->is_Register()) { 938 x = x + args[i].first()->as_Register(); 939 } else if (args[i].first()->is_FloatRegister()) { 940 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 941 } 942 } 943 __ push(x, sp); 944 } 945 946 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 947 RegSet x; 948 for ( int i = first_arg ; i < arg_count ; i++ ) { 949 if (args[i].first()->is_Register()) { 950 x = x + args[i].first()->as_Register(); 951 } else { 952 ; 953 } 954 } 955 __ pop(x, sp); 956 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 957 if (args[i].first()->is_Register()) { 958 ; 959 } else if (args[i].first()->is_FloatRegister()) { 960 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 961 } 962 } 963 } 964 965 static void verify_oop_args(MacroAssembler* masm, 966 const methodHandle& method, 967 const BasicType* sig_bt, 968 const VMRegPair* regs) { 969 Register temp_reg = r19; // not part of any compiled calling seq 970 if (VerifyOops) { 971 for (int i = 0; i < method->size_of_parameters(); i++) { 972 if (sig_bt[i] == T_OBJECT || 973 sig_bt[i] == T_ARRAY) { 974 VMReg r = regs[i].first(); 975 assert(r->is_valid(), "bad oop arg"); 976 if (r->is_stack()) { 977 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 978 __ verify_oop(temp_reg); 979 } else { 980 __ verify_oop(r->as_Register()); 981 } 982 } 983 } 984 } 985 } 986 987 // on exit, sp points to the ContinuationEntry 988 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 989 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 990 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 991 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 992 993 stack_slots += (int)ContinuationEntry::size()/wordSize; 994 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 995 996 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 997 998 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 999 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1000 __ mov(rscratch1, sp); // we can't use sp as the source in str 1001 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1002 1003 return map; 1004 } 1005 1006 // on entry c_rarg1 points to the continuation 1007 // sp points to ContinuationEntry 1008 // c_rarg3 -- isVirtualThread 1009 static void fill_continuation_entry(MacroAssembler* masm) { 1010 #ifdef ASSERT 1011 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1012 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1013 #endif 1014 1015 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1016 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1017 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1018 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1019 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1020 1021 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1022 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1023 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1024 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1025 1026 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1027 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1028 } 1029 1030 // on entry, sp points to the ContinuationEntry 1031 // on exit, rfp points to the spilled rfp in the entry frame 1032 static void continuation_enter_cleanup(MacroAssembler* masm) { 1033 #ifndef PRODUCT 1034 Label OK; 1035 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1036 __ cmp(sp, rscratch1); 1037 __ br(Assembler::EQ, OK); 1038 __ stop("incorrect sp1"); 1039 __ bind(OK); 1040 #endif 1041 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1042 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1043 1044 if (CheckJNICalls) { 1045 // Check if this is a virtual thread continuation 1046 Label L_skip_vthread_code; 1047 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1048 __ cbzw(rscratch1, L_skip_vthread_code); 1049 1050 // If the held monitor count is > 0 and this vthread is terminating then 1051 // it failed to release a JNI monitor. So we issue the same log message 1052 // that JavaThread::exit does. 1053 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset())); 1054 __ cbz(rscratch1, L_skip_vthread_code); 1055 1056 // Save return value potentially containing the exception oop in callee-saved R19. 1057 __ mov(r19, r0); 1058 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 1059 // Restore potential return value. 1060 __ mov(r0, r19); 1061 1062 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 1063 // on termination. The held count is implicitly zeroed below when we restore from 1064 // the parent held count (which has to be zero). 1065 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1066 1067 __ bind(L_skip_vthread_code); 1068 } 1069 #ifdef ASSERT 1070 else { 1071 // Check if this is a virtual thread continuation 1072 Label L_skip_vthread_code; 1073 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1074 __ cbzw(rscratch1, L_skip_vthread_code); 1075 1076 // See comment just above. If not checking JNI calls the JNI count is only 1077 // needed for assertion checking. 1078 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1079 1080 __ bind(L_skip_vthread_code); 1081 } 1082 #endif 1083 1084 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1085 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1086 1087 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1088 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1089 __ add(rfp, sp, (int)ContinuationEntry::size()); 1090 } 1091 1092 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1093 // On entry: c_rarg1 -- the continuation object 1094 // c_rarg2 -- isContinue 1095 // c_rarg3 -- isVirtualThread 1096 static void gen_continuation_enter(MacroAssembler* masm, 1097 const methodHandle& method, 1098 const BasicType* sig_bt, 1099 const VMRegPair* regs, 1100 int& exception_offset, 1101 OopMapSet*oop_maps, 1102 int& frame_complete, 1103 int& stack_slots, 1104 int& interpreted_entry_offset, 1105 int& compiled_entry_offset) { 1106 //verify_oop_args(masm, method, sig_bt, regs); 1107 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1108 1109 address start = __ pc(); 1110 1111 Label call_thaw, exit; 1112 1113 // i2i entry used at interp_only_mode only 1114 interpreted_entry_offset = __ pc() - start; 1115 { 1116 1117 #ifdef ASSERT 1118 Label is_interp_only; 1119 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1120 __ cbnzw(rscratch1, is_interp_only); 1121 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1122 __ bind(is_interp_only); 1123 #endif 1124 1125 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1126 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1127 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1128 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1129 __ push_cont_fastpath(rthread); 1130 1131 __ enter(); 1132 stack_slots = 2; // will be adjusted in setup 1133 OopMap* map = continuation_enter_setup(masm, stack_slots); 1134 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1135 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1136 1137 fill_continuation_entry(masm); 1138 1139 __ cbnz(c_rarg2, call_thaw); 1140 1141 const address tr_call = __ trampoline_call(resolve); 1142 if (tr_call == nullptr) { 1143 fatal("CodeCache is full at gen_continuation_enter"); 1144 } 1145 1146 oop_maps->add_gc_map(__ pc() - start, map); 1147 __ post_call_nop(); 1148 1149 __ b(exit); 1150 1151 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1152 if (stub == nullptr) { 1153 fatal("CodeCache is full at gen_continuation_enter"); 1154 } 1155 } 1156 1157 // compiled entry 1158 __ align(CodeEntryAlignment); 1159 compiled_entry_offset = __ pc() - start; 1160 1161 __ enter(); 1162 stack_slots = 2; // will be adjusted in setup 1163 OopMap* map = continuation_enter_setup(masm, stack_slots); 1164 frame_complete = __ pc() - start; 1165 1166 fill_continuation_entry(masm); 1167 1168 __ cbnz(c_rarg2, call_thaw); 1169 1170 const address tr_call = __ trampoline_call(resolve); 1171 if (tr_call == nullptr) { 1172 fatal("CodeCache is full at gen_continuation_enter"); 1173 } 1174 1175 oop_maps->add_gc_map(__ pc() - start, map); 1176 __ post_call_nop(); 1177 1178 __ b(exit); 1179 1180 __ bind(call_thaw); 1181 1182 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1183 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1184 ContinuationEntry::_return_pc_offset = __ pc() - start; 1185 __ post_call_nop(); 1186 1187 __ bind(exit); 1188 continuation_enter_cleanup(masm); 1189 __ leave(); 1190 __ ret(lr); 1191 1192 /// exception handling 1193 1194 exception_offset = __ pc() - start; 1195 { 1196 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1197 1198 continuation_enter_cleanup(masm); 1199 1200 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1201 __ authenticate_return_address(c_rarg1); 1202 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1203 1204 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1205 1206 __ mov(r1, r0); // the exception handler 1207 __ mov(r0, r19); // restore return value contaning the exception oop 1208 __ verify_oop(r0); 1209 1210 __ leave(); 1211 __ mov(r3, lr); 1212 __ br(r1); // the exception handler 1213 } 1214 1215 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1216 if (stub == nullptr) { 1217 fatal("CodeCache is full at gen_continuation_enter"); 1218 } 1219 } 1220 1221 static void gen_continuation_yield(MacroAssembler* masm, 1222 const methodHandle& method, 1223 const BasicType* sig_bt, 1224 const VMRegPair* regs, 1225 OopMapSet* oop_maps, 1226 int& frame_complete, 1227 int& stack_slots, 1228 int& compiled_entry_offset) { 1229 enum layout { 1230 rfp_off1, 1231 rfp_off2, 1232 lr_off, 1233 lr_off2, 1234 framesize // inclusive of return address 1235 }; 1236 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1237 stack_slots = framesize / VMRegImpl::slots_per_word; 1238 assert(stack_slots == 2, "recheck layout"); 1239 1240 address start = __ pc(); 1241 1242 compiled_entry_offset = __ pc() - start; 1243 __ enter(); 1244 1245 __ mov(c_rarg1, sp); 1246 1247 frame_complete = __ pc() - start; 1248 address the_pc = __ pc(); 1249 1250 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1251 1252 __ mov(c_rarg0, rthread); 1253 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1254 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1255 __ reset_last_Java_frame(true); 1256 1257 Label pinned; 1258 1259 __ cbnz(r0, pinned); 1260 1261 // We've succeeded, set sp to the ContinuationEntry 1262 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1263 __ mov(sp, rscratch1); 1264 continuation_enter_cleanup(masm); 1265 1266 __ bind(pinned); // pinned -- return to caller 1267 1268 // handle pending exception thrown by freeze 1269 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1270 Label ok; 1271 __ cbz(rscratch1, ok); 1272 __ leave(); 1273 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1274 __ br(rscratch1); 1275 __ bind(ok); 1276 1277 __ leave(); 1278 __ ret(lr); 1279 1280 OopMap* map = new OopMap(framesize, 1); 1281 oop_maps->add_gc_map(the_pc - start, map); 1282 } 1283 1284 static void gen_special_dispatch(MacroAssembler* masm, 1285 const methodHandle& method, 1286 const BasicType* sig_bt, 1287 const VMRegPair* regs) { 1288 verify_oop_args(masm, method, sig_bt, regs); 1289 vmIntrinsics::ID iid = method->intrinsic_id(); 1290 1291 // Now write the args into the outgoing interpreter space 1292 bool has_receiver = false; 1293 Register receiver_reg = noreg; 1294 int member_arg_pos = -1; 1295 Register member_reg = noreg; 1296 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1297 if (ref_kind != 0) { 1298 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1299 member_reg = r19; // known to be free at this point 1300 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1301 } else if (iid == vmIntrinsics::_invokeBasic) { 1302 has_receiver = true; 1303 } else if (iid == vmIntrinsics::_linkToNative) { 1304 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1305 member_reg = r19; // known to be free at this point 1306 } else { 1307 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1308 } 1309 1310 if (member_reg != noreg) { 1311 // Load the member_arg into register, if necessary. 1312 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1313 VMReg r = regs[member_arg_pos].first(); 1314 if (r->is_stack()) { 1315 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1316 } else { 1317 // no data motion is needed 1318 member_reg = r->as_Register(); 1319 } 1320 } 1321 1322 if (has_receiver) { 1323 // Make sure the receiver is loaded into a register. 1324 assert(method->size_of_parameters() > 0, "oob"); 1325 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1326 VMReg r = regs[0].first(); 1327 assert(r->is_valid(), "bad receiver arg"); 1328 if (r->is_stack()) { 1329 // Porting note: This assumes that compiled calling conventions always 1330 // pass the receiver oop in a register. If this is not true on some 1331 // platform, pick a temp and load the receiver from stack. 1332 fatal("receiver always in a register"); 1333 receiver_reg = r2; // known to be free at this point 1334 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1335 } else { 1336 // no data motion is needed 1337 receiver_reg = r->as_Register(); 1338 } 1339 } 1340 1341 // Figure out which address we are really jumping to: 1342 MethodHandles::generate_method_handle_dispatch(masm, iid, 1343 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1344 } 1345 1346 // --------------------------------------------------------------------------- 1347 // Generate a native wrapper for a given method. The method takes arguments 1348 // in the Java compiled code convention, marshals them to the native 1349 // convention (handlizes oops, etc), transitions to native, makes the call, 1350 // returns to java state (possibly blocking), unhandlizes any result and 1351 // returns. 1352 // 1353 // Critical native functions are a shorthand for the use of 1354 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1355 // functions. The wrapper is expected to unpack the arguments before 1356 // passing them to the callee. Critical native functions leave the state _in_Java, 1357 // since they block out GC. 1358 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1359 // block and the check for pending exceptions it's impossible for them 1360 // to be thrown. 1361 // 1362 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1363 const methodHandle& method, 1364 int compile_id, 1365 BasicType* in_sig_bt, 1366 VMRegPair* in_regs, 1367 BasicType ret_type) { 1368 if (method->is_continuation_native_intrinsic()) { 1369 int exception_offset = -1; 1370 OopMapSet* oop_maps = new OopMapSet(); 1371 int frame_complete = -1; 1372 int stack_slots = -1; 1373 int interpreted_entry_offset = -1; 1374 int vep_offset = -1; 1375 if (method->is_continuation_enter_intrinsic()) { 1376 gen_continuation_enter(masm, 1377 method, 1378 in_sig_bt, 1379 in_regs, 1380 exception_offset, 1381 oop_maps, 1382 frame_complete, 1383 stack_slots, 1384 interpreted_entry_offset, 1385 vep_offset); 1386 } else if (method->is_continuation_yield_intrinsic()) { 1387 gen_continuation_yield(masm, 1388 method, 1389 in_sig_bt, 1390 in_regs, 1391 oop_maps, 1392 frame_complete, 1393 stack_slots, 1394 vep_offset); 1395 } else { 1396 guarantee(false, "Unknown Continuation native intrinsic"); 1397 } 1398 1399 #ifdef ASSERT 1400 if (method->is_continuation_enter_intrinsic()) { 1401 assert(interpreted_entry_offset != -1, "Must be set"); 1402 assert(exception_offset != -1, "Must be set"); 1403 } else { 1404 assert(interpreted_entry_offset == -1, "Must be unset"); 1405 assert(exception_offset == -1, "Must be unset"); 1406 } 1407 assert(frame_complete != -1, "Must be set"); 1408 assert(stack_slots != -1, "Must be set"); 1409 assert(vep_offset != -1, "Must be set"); 1410 #endif 1411 1412 __ flush(); 1413 nmethod* nm = nmethod::new_native_nmethod(method, 1414 compile_id, 1415 masm->code(), 1416 vep_offset, 1417 frame_complete, 1418 stack_slots, 1419 in_ByteSize(-1), 1420 in_ByteSize(-1), 1421 oop_maps, 1422 exception_offset); 1423 if (nm == nullptr) return nm; 1424 if (method->is_continuation_enter_intrinsic()) { 1425 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1426 } else if (method->is_continuation_yield_intrinsic()) { 1427 _cont_doYield_stub = nm; 1428 } else { 1429 guarantee(false, "Unknown Continuation native intrinsic"); 1430 } 1431 return nm; 1432 } 1433 1434 if (method->is_method_handle_intrinsic()) { 1435 vmIntrinsics::ID iid = method->intrinsic_id(); 1436 intptr_t start = (intptr_t)__ pc(); 1437 int vep_offset = ((intptr_t)__ pc()) - start; 1438 1439 // First instruction must be a nop as it may need to be patched on deoptimisation 1440 __ nop(); 1441 gen_special_dispatch(masm, 1442 method, 1443 in_sig_bt, 1444 in_regs); 1445 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1446 __ flush(); 1447 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1448 return nmethod::new_native_nmethod(method, 1449 compile_id, 1450 masm->code(), 1451 vep_offset, 1452 frame_complete, 1453 stack_slots / VMRegImpl::slots_per_word, 1454 in_ByteSize(-1), 1455 in_ByteSize(-1), 1456 nullptr); 1457 } 1458 address native_func = method->native_function(); 1459 assert(native_func != nullptr, "must have function"); 1460 1461 // An OopMap for lock (and class if static) 1462 OopMapSet *oop_maps = new OopMapSet(); 1463 intptr_t start = (intptr_t)__ pc(); 1464 1465 // We have received a description of where all the java arg are located 1466 // on entry to the wrapper. We need to convert these args to where 1467 // the jni function will expect them. To figure out where they go 1468 // we convert the java signature to a C signature by inserting 1469 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1470 1471 const int total_in_args = method->size_of_parameters(); 1472 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1473 1474 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1475 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1476 BasicType* in_elem_bt = nullptr; 1477 1478 int argc = 0; 1479 out_sig_bt[argc++] = T_ADDRESS; 1480 if (method->is_static()) { 1481 out_sig_bt[argc++] = T_OBJECT; 1482 } 1483 1484 for (int i = 0; i < total_in_args ; i++ ) { 1485 out_sig_bt[argc++] = in_sig_bt[i]; 1486 } 1487 1488 // Now figure out where the args must be stored and how much stack space 1489 // they require. 1490 int out_arg_slots; 1491 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1492 1493 if (out_arg_slots < 0) { 1494 return nullptr; 1495 } 1496 1497 // Compute framesize for the wrapper. We need to handlize all oops in 1498 // incoming registers 1499 1500 // Calculate the total number of stack slots we will need. 1501 1502 // First count the abi requirement plus all of the outgoing args 1503 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1504 1505 // Now the space for the inbound oop handle area 1506 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1507 1508 int oop_handle_offset = stack_slots; 1509 stack_slots += total_save_slots; 1510 1511 // Now any space we need for handlizing a klass if static method 1512 1513 int klass_slot_offset = 0; 1514 int klass_offset = -1; 1515 int lock_slot_offset = 0; 1516 bool is_static = false; 1517 1518 if (method->is_static()) { 1519 klass_slot_offset = stack_slots; 1520 stack_slots += VMRegImpl::slots_per_word; 1521 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1522 is_static = true; 1523 } 1524 1525 // Plus a lock if needed 1526 1527 if (method->is_synchronized()) { 1528 lock_slot_offset = stack_slots; 1529 stack_slots += VMRegImpl::slots_per_word; 1530 } 1531 1532 // Now a place (+2) to save return values or temp during shuffling 1533 // + 4 for return address (which we own) and saved rfp 1534 stack_slots += 6; 1535 1536 // Ok The space we have allocated will look like: 1537 // 1538 // 1539 // FP-> | | 1540 // |---------------------| 1541 // | 2 slots for moves | 1542 // |---------------------| 1543 // | lock box (if sync) | 1544 // |---------------------| <- lock_slot_offset 1545 // | klass (if static) | 1546 // |---------------------| <- klass_slot_offset 1547 // | oopHandle area | 1548 // |---------------------| <- oop_handle_offset (8 java arg registers) 1549 // | outbound memory | 1550 // | based arguments | 1551 // | | 1552 // |---------------------| 1553 // | | 1554 // SP-> | out_preserved_slots | 1555 // 1556 // 1557 1558 1559 // Now compute actual number of stack words we need rounding to make 1560 // stack properly aligned. 1561 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1562 1563 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1564 1565 // First thing make an ic check to see if we should even be here 1566 1567 // We are free to use all registers as temps without saving them and 1568 // restoring them except rfp. rfp is the only callee save register 1569 // as far as the interpreter and the compiler(s) are concerned. 1570 1571 const Register receiver = j_rarg0; 1572 1573 Label exception_pending; 1574 1575 assert_different_registers(receiver, rscratch1); 1576 __ verify_oop(receiver); 1577 __ ic_check(8 /* end_alignment */); 1578 1579 // Verified entry point must be aligned 1580 int vep_offset = ((intptr_t)__ pc()) - start; 1581 1582 // If we have to make this method not-entrant we'll overwrite its 1583 // first instruction with a jump. For this action to be legal we 1584 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1585 // SVC, HVC, or SMC. Make it a NOP. 1586 __ nop(); 1587 1588 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1589 Label L_skip_barrier; 1590 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1591 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1592 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1593 1594 __ bind(L_skip_barrier); 1595 } 1596 1597 // Generate stack overflow check 1598 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1599 1600 // Generate a new frame for the wrapper. 1601 __ enter(); 1602 // -2 because return address is already present and so is saved rfp 1603 __ sub(sp, sp, stack_size - 2*wordSize); 1604 1605 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1606 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1607 1608 // Frame is now completed as far as size and linkage. 1609 int frame_complete = ((intptr_t)__ pc()) - start; 1610 1611 // We use r20 as the oop handle for the receiver/klass 1612 // It is callee save so it survives the call to native 1613 1614 const Register oop_handle_reg = r20; 1615 1616 // 1617 // We immediately shuffle the arguments so that any vm call we have to 1618 // make from here on out (sync slow path, jvmti, etc.) we will have 1619 // captured the oops from our caller and have a valid oopMap for 1620 // them. 1621 1622 // ----------------- 1623 // The Grand Shuffle 1624 1625 // The Java calling convention is either equal (linux) or denser (win64) than the 1626 // c calling convention. However the because of the jni_env argument the c calling 1627 // convention always has at least one more (and two for static) arguments than Java. 1628 // Therefore if we move the args from java -> c backwards then we will never have 1629 // a register->register conflict and we don't have to build a dependency graph 1630 // and figure out how to break any cycles. 1631 // 1632 1633 // Record esp-based slot for receiver on stack for non-static methods 1634 int receiver_offset = -1; 1635 1636 // This is a trick. We double the stack slots so we can claim 1637 // the oops in the caller's frame. Since we are sure to have 1638 // more args than the caller doubling is enough to make 1639 // sure we can capture all the incoming oop args from the 1640 // caller. 1641 // 1642 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1643 1644 // Mark location of rfp (someday) 1645 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1646 1647 1648 int float_args = 0; 1649 int int_args = 0; 1650 1651 #ifdef ASSERT 1652 bool reg_destroyed[Register::number_of_registers]; 1653 bool freg_destroyed[FloatRegister::number_of_registers]; 1654 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1655 reg_destroyed[r] = false; 1656 } 1657 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1658 freg_destroyed[f] = false; 1659 } 1660 1661 #endif /* ASSERT */ 1662 1663 // For JNI natives the incoming and outgoing registers are offset upwards. 1664 GrowableArray<int> arg_order(2 * total_in_args); 1665 VMRegPair tmp_vmreg; 1666 tmp_vmreg.set2(r19->as_VMReg()); 1667 1668 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1669 arg_order.push(i); 1670 arg_order.push(c_arg); 1671 } 1672 1673 int temploc = -1; 1674 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1675 int i = arg_order.at(ai); 1676 int c_arg = arg_order.at(ai + 1); 1677 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1678 assert(c_arg != -1 && i != -1, "wrong order"); 1679 #ifdef ASSERT 1680 if (in_regs[i].first()->is_Register()) { 1681 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1682 } else if (in_regs[i].first()->is_FloatRegister()) { 1683 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1684 } 1685 if (out_regs[c_arg].first()->is_Register()) { 1686 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1687 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1688 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1689 } 1690 #endif /* ASSERT */ 1691 switch (in_sig_bt[i]) { 1692 case T_ARRAY: 1693 case T_OBJECT: 1694 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1695 ((i == 0) && (!is_static)), 1696 &receiver_offset); 1697 int_args++; 1698 break; 1699 case T_VOID: 1700 break; 1701 1702 case T_FLOAT: 1703 __ float_move(in_regs[i], out_regs[c_arg]); 1704 float_args++; 1705 break; 1706 1707 case T_DOUBLE: 1708 assert( i + 1 < total_in_args && 1709 in_sig_bt[i + 1] == T_VOID && 1710 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1711 __ double_move(in_regs[i], out_regs[c_arg]); 1712 float_args++; 1713 break; 1714 1715 case T_LONG : 1716 __ long_move(in_regs[i], out_regs[c_arg]); 1717 int_args++; 1718 break; 1719 1720 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1721 1722 default: 1723 __ move32_64(in_regs[i], out_regs[c_arg]); 1724 int_args++; 1725 } 1726 } 1727 1728 // point c_arg at the first arg that is already loaded in case we 1729 // need to spill before we call out 1730 int c_arg = total_c_args - total_in_args; 1731 1732 // Pre-load a static method's oop into c_rarg1. 1733 if (method->is_static()) { 1734 1735 // load oop into a register 1736 __ movoop(c_rarg1, 1737 JNIHandles::make_local(method->method_holder()->java_mirror())); 1738 1739 // Now handlize the static class mirror it's known not-null. 1740 __ str(c_rarg1, Address(sp, klass_offset)); 1741 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1742 1743 // Now get the handle 1744 __ lea(c_rarg1, Address(sp, klass_offset)); 1745 // and protect the arg if we must spill 1746 c_arg--; 1747 } 1748 1749 // Change state to native (we save the return address in the thread, since it might not 1750 // be pushed on the stack when we do a stack traversal). 1751 // We use the same pc/oopMap repeatedly when we call out 1752 1753 Label native_return; 1754 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1755 1756 Label dtrace_method_entry, dtrace_method_entry_done; 1757 if (DTraceMethodProbes) { 1758 __ b(dtrace_method_entry); 1759 __ bind(dtrace_method_entry_done); 1760 } 1761 1762 // RedefineClasses() tracing support for obsolete method entry 1763 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1764 // protect the args we've loaded 1765 save_args(masm, total_c_args, c_arg, out_regs); 1766 __ mov_metadata(c_rarg1, method()); 1767 __ call_VM_leaf( 1768 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1769 rthread, c_rarg1); 1770 restore_args(masm, total_c_args, c_arg, out_regs); 1771 } 1772 1773 // Lock a synchronized method 1774 1775 // Register definitions used by locking and unlocking 1776 1777 const Register swap_reg = r0; 1778 const Register obj_reg = r19; // Will contain the oop 1779 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1780 const Register old_hdr = r13; // value of old header at unlock time 1781 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 1782 const Register tmp = lr; 1783 1784 Label slow_path_lock; 1785 Label lock_done; 1786 1787 if (method->is_synchronized()) { 1788 Label count; 1789 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1790 1791 // Get the handle (the 2nd argument) 1792 __ mov(oop_handle_reg, c_rarg1); 1793 1794 // Get address of the box 1795 1796 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1797 1798 // Load the oop from the handle 1799 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1800 1801 if (LockingMode == LM_MONITOR) { 1802 __ b(slow_path_lock); 1803 } else if (LockingMode == LM_LEGACY) { 1804 // Load (object->mark() | 1) into swap_reg %r0 1805 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1806 __ orr(swap_reg, rscratch1, 1); 1807 1808 // Save (object->mark() | 1) into BasicLock's displaced header 1809 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1810 1811 // src -> dest iff dest == r0 else r0 <- dest 1812 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 1813 1814 // Hmm should this move to the slow path code area??? 1815 1816 // Test if the oopMark is an obvious stack pointer, i.e., 1817 // 1) (mark & 3) == 0, and 1818 // 2) sp <= mark < mark + os::pagesize() 1819 // These 3 tests can be done by evaluating the following 1820 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1821 // assuming both stack pointer and pagesize have their 1822 // least significant 2 bits clear. 1823 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1824 1825 __ sub(swap_reg, sp, swap_reg); 1826 __ neg(swap_reg, swap_reg); 1827 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1828 1829 // Save the test result, for recursive case, the result is zero 1830 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1831 __ br(Assembler::NE, slow_path_lock); 1832 } else { 1833 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1834 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1835 } 1836 __ bind(count); 1837 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 1838 1839 // Slow path will re-enter here 1840 __ bind(lock_done); 1841 } 1842 1843 1844 // Finally just about ready to make the JNI call 1845 1846 // get JNIEnv* which is first argument to native 1847 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1848 1849 // Now set thread in native 1850 __ mov(rscratch1, _thread_in_native); 1851 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1852 __ stlrw(rscratch1, rscratch2); 1853 1854 __ rt_call(native_func); 1855 1856 __ bind(native_return); 1857 1858 intptr_t return_pc = (intptr_t) __ pc(); 1859 oop_maps->add_gc_map(return_pc - start, map); 1860 1861 // Verify or restore cpu control state after JNI call 1862 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1863 1864 // Unpack native results. 1865 switch (ret_type) { 1866 case T_BOOLEAN: __ c2bool(r0); break; 1867 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1868 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1869 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1870 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1871 case T_DOUBLE : 1872 case T_FLOAT : 1873 // Result is in v0 we'll save as needed 1874 break; 1875 case T_ARRAY: // Really a handle 1876 case T_OBJECT: // Really a handle 1877 break; // can't de-handlize until after safepoint check 1878 case T_VOID: break; 1879 case T_LONG: break; 1880 default : ShouldNotReachHere(); 1881 } 1882 1883 Label safepoint_in_progress, safepoint_in_progress_done; 1884 Label after_transition; 1885 1886 // Switch thread to "native transition" state before reading the synchronization state. 1887 // This additional state is necessary because reading and testing the synchronization 1888 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1889 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1890 // VM thread changes sync state to synchronizing and suspends threads for GC. 1891 // Thread A is resumed to finish this native method, but doesn't block here since it 1892 // didn't see any synchronization is progress, and escapes. 1893 __ mov(rscratch1, _thread_in_native_trans); 1894 1895 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1896 1897 // Force this write out before the read below 1898 if (!UseSystemMemoryBarrier) { 1899 __ dmb(Assembler::ISH); 1900 } 1901 1902 __ verify_sve_vector_length(); 1903 1904 // Check for safepoint operation in progress and/or pending suspend requests. 1905 { 1906 // No need for acquire as Java threads always disarm themselves. 1907 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* acquire */, false /* in_nmethod */); 1908 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1909 __ cbnzw(rscratch1, safepoint_in_progress); 1910 __ bind(safepoint_in_progress_done); 1911 } 1912 1913 // change thread state 1914 __ mov(rscratch1, _thread_in_Java); 1915 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1916 __ stlrw(rscratch1, rscratch2); 1917 __ bind(after_transition); 1918 1919 Label reguard; 1920 Label reguard_done; 1921 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1922 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1923 __ br(Assembler::EQ, reguard); 1924 __ bind(reguard_done); 1925 1926 // native result if any is live 1927 1928 // Unlock 1929 Label unlock_done; 1930 Label slow_path_unlock; 1931 if (method->is_synchronized()) { 1932 1933 // Get locked oop from the handle we passed to jni 1934 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1935 1936 Label done, not_recursive; 1937 1938 if (LockingMode == LM_LEGACY) { 1939 // Simple recursive lock? 1940 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1941 __ cbnz(rscratch1, not_recursive); 1942 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1943 __ b(done); 1944 } 1945 1946 __ bind(not_recursive); 1947 1948 // Must save r0 if if it is live now because cmpxchg must use it 1949 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1950 save_native_result(masm, ret_type, stack_slots); 1951 } 1952 1953 if (LockingMode == LM_MONITOR) { 1954 __ b(slow_path_unlock); 1955 } else if (LockingMode == LM_LEGACY) { 1956 // get address of the stack lock 1957 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1958 // get old displaced header 1959 __ ldr(old_hdr, Address(r0, 0)); 1960 1961 // Atomic swap old header if oop still contains the stack lock 1962 Label count; 1963 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 1964 __ bind(count); 1965 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1966 } else { 1967 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1968 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1969 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1970 } 1971 1972 // slow path re-enters here 1973 __ bind(unlock_done); 1974 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1975 restore_native_result(masm, ret_type, stack_slots); 1976 } 1977 1978 __ bind(done); 1979 } 1980 1981 Label dtrace_method_exit, dtrace_method_exit_done; 1982 if (DTraceMethodProbes) { 1983 __ b(dtrace_method_exit); 1984 __ bind(dtrace_method_exit_done); 1985 } 1986 1987 __ reset_last_Java_frame(false); 1988 1989 // Unbox oop result, e.g. JNIHandles::resolve result. 1990 if (is_reference_type(ret_type)) { 1991 __ resolve_jobject(r0, r1, r2); 1992 } 1993 1994 if (CheckJNICalls) { 1995 // clear_pending_jni_exception_check 1996 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1997 } 1998 1999 // reset handle block 2000 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 2001 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 2002 2003 __ leave(); 2004 2005 // Any exception pending? 2006 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2007 __ cbnz(rscratch1, exception_pending); 2008 2009 // We're done 2010 __ ret(lr); 2011 2012 // Unexpected paths are out of line and go here 2013 2014 // forward the exception 2015 __ bind(exception_pending); 2016 2017 // and forward the exception 2018 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2019 2020 // Slow path locking & unlocking 2021 if (method->is_synchronized()) { 2022 2023 __ block_comment("Slow path lock {"); 2024 __ bind(slow_path_lock); 2025 2026 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2027 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2028 2029 // protect the args we've loaded 2030 save_args(masm, total_c_args, c_arg, out_regs); 2031 2032 __ mov(c_rarg0, obj_reg); 2033 __ mov(c_rarg1, lock_reg); 2034 __ mov(c_rarg2, rthread); 2035 2036 // Not a leaf but we have last_Java_frame setup as we want 2037 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2038 restore_args(masm, total_c_args, c_arg, out_regs); 2039 2040 #ifdef ASSERT 2041 { Label L; 2042 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2043 __ cbz(rscratch1, L); 2044 __ stop("no pending exception allowed on exit from monitorenter"); 2045 __ bind(L); 2046 } 2047 #endif 2048 __ b(lock_done); 2049 2050 __ block_comment("} Slow path lock"); 2051 2052 __ block_comment("Slow path unlock {"); 2053 __ bind(slow_path_unlock); 2054 2055 // If we haven't already saved the native result we must save it now as xmm registers 2056 // are still exposed. 2057 2058 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2059 save_native_result(masm, ret_type, stack_slots); 2060 } 2061 2062 __ mov(c_rarg2, rthread); 2063 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2064 __ mov(c_rarg0, obj_reg); 2065 2066 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2067 // NOTE that obj_reg == r19 currently 2068 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2069 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2070 2071 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2072 2073 #ifdef ASSERT 2074 { 2075 Label L; 2076 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2077 __ cbz(rscratch1, L); 2078 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2079 __ bind(L); 2080 } 2081 #endif /* ASSERT */ 2082 2083 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2084 2085 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2086 restore_native_result(masm, ret_type, stack_slots); 2087 } 2088 __ b(unlock_done); 2089 2090 __ block_comment("} Slow path unlock"); 2091 2092 } // synchronized 2093 2094 // SLOW PATH Reguard the stack if needed 2095 2096 __ bind(reguard); 2097 save_native_result(masm, ret_type, stack_slots); 2098 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2099 restore_native_result(masm, ret_type, stack_slots); 2100 // and continue 2101 __ b(reguard_done); 2102 2103 // SLOW PATH safepoint 2104 { 2105 __ block_comment("safepoint {"); 2106 __ bind(safepoint_in_progress); 2107 2108 // Don't use call_VM as it will see a possible pending exception and forward it 2109 // and never return here preventing us from clearing _last_native_pc down below. 2110 // 2111 save_native_result(masm, ret_type, stack_slots); 2112 __ mov(c_rarg0, rthread); 2113 #ifndef PRODUCT 2114 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2115 #endif 2116 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2117 __ blr(rscratch1); 2118 2119 // Restore any method result value 2120 restore_native_result(masm, ret_type, stack_slots); 2121 2122 __ b(safepoint_in_progress_done); 2123 __ block_comment("} safepoint"); 2124 } 2125 2126 // SLOW PATH dtrace support 2127 if (DTraceMethodProbes) { 2128 { 2129 __ block_comment("dtrace entry {"); 2130 __ bind(dtrace_method_entry); 2131 2132 // We have all of the arguments setup at this point. We must not touch any register 2133 // argument registers at this point (what if we save/restore them there are no oop? 2134 2135 save_args(masm, total_c_args, c_arg, out_regs); 2136 __ mov_metadata(c_rarg1, method()); 2137 __ call_VM_leaf( 2138 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2139 rthread, c_rarg1); 2140 restore_args(masm, total_c_args, c_arg, out_regs); 2141 __ b(dtrace_method_entry_done); 2142 __ block_comment("} dtrace entry"); 2143 } 2144 2145 { 2146 __ block_comment("dtrace exit {"); 2147 __ bind(dtrace_method_exit); 2148 save_native_result(masm, ret_type, stack_slots); 2149 __ mov_metadata(c_rarg1, method()); 2150 __ call_VM_leaf( 2151 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2152 rthread, c_rarg1); 2153 restore_native_result(masm, ret_type, stack_slots); 2154 __ b(dtrace_method_exit_done); 2155 __ block_comment("} dtrace exit"); 2156 } 2157 } 2158 2159 __ flush(); 2160 2161 nmethod *nm = nmethod::new_native_nmethod(method, 2162 compile_id, 2163 masm->code(), 2164 vep_offset, 2165 frame_complete, 2166 stack_slots / VMRegImpl::slots_per_word, 2167 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2168 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2169 oop_maps); 2170 2171 return nm; 2172 } 2173 2174 // this function returns the adjust size (in number of words) to a c2i adapter 2175 // activation for use during deoptimization 2176 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2177 assert(callee_locals >= callee_parameters, 2178 "test and remove; got more parms than locals"); 2179 if (callee_locals < callee_parameters) 2180 return 0; // No adjustment for negative locals 2181 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2182 // diff is counted in stack words 2183 return align_up(diff, 2); 2184 } 2185 2186 2187 //------------------------------generate_deopt_blob---------------------------- 2188 void SharedRuntime::generate_deopt_blob() { 2189 // Allocate space for the code 2190 ResourceMark rm; 2191 // Setup code generation tools 2192 int pad = 0; 2193 #if INCLUDE_JVMCI 2194 if (EnableJVMCI) { 2195 pad += 512; // Increase the buffer size when compiling for JVMCI 2196 } 2197 #endif 2198 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2199 CodeBuffer buffer(name, 2048+pad, 1024); 2200 MacroAssembler* masm = new MacroAssembler(&buffer); 2201 int frame_size_in_words; 2202 OopMap* map = nullptr; 2203 OopMapSet *oop_maps = new OopMapSet(); 2204 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2205 2206 // ------------- 2207 // This code enters when returning to a de-optimized nmethod. A return 2208 // address has been pushed on the stack, and return values are in 2209 // registers. 2210 // If we are doing a normal deopt then we were called from the patched 2211 // nmethod from the point we returned to the nmethod. So the return 2212 // address on the stack is wrong by NativeCall::instruction_size 2213 // We will adjust the value so it looks like we have the original return 2214 // address on the stack (like when we eagerly deoptimized). 2215 // In the case of an exception pending when deoptimizing, we enter 2216 // with a return address on the stack that points after the call we patched 2217 // into the exception handler. We have the following register state from, 2218 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2219 // r0: exception oop 2220 // r19: exception handler 2221 // r3: throwing pc 2222 // So in this case we simply jam r3 into the useless return address and 2223 // the stack looks just like we want. 2224 // 2225 // At this point we need to de-opt. We save the argument return 2226 // registers. We call the first C routine, fetch_unroll_info(). This 2227 // routine captures the return values and returns a structure which 2228 // describes the current frame size and the sizes of all replacement frames. 2229 // The current frame is compiled code and may contain many inlined 2230 // functions, each with their own JVM state. We pop the current frame, then 2231 // push all the new frames. Then we call the C routine unpack_frames() to 2232 // populate these frames. Finally unpack_frames() returns us the new target 2233 // address. Notice that callee-save registers are BLOWN here; they have 2234 // already been captured in the vframeArray at the time the return PC was 2235 // patched. 2236 address start = __ pc(); 2237 Label cont; 2238 2239 // Prolog for non exception case! 2240 2241 // Save everything in sight. 2242 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2243 2244 // Normal deoptimization. Save exec mode for unpack_frames. 2245 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2246 __ b(cont); 2247 2248 int reexecute_offset = __ pc() - start; 2249 #if INCLUDE_JVMCI && !defined(COMPILER1) 2250 if (UseJVMCICompiler) { 2251 // JVMCI does not use this kind of deoptimization 2252 __ should_not_reach_here(); 2253 } 2254 #endif 2255 2256 // Reexecute case 2257 // return address is the pc describes what bci to do re-execute at 2258 2259 // No need to update map as each call to save_live_registers will produce identical oopmap 2260 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2261 2262 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2263 __ b(cont); 2264 2265 #if INCLUDE_JVMCI 2266 Label after_fetch_unroll_info_call; 2267 int implicit_exception_uncommon_trap_offset = 0; 2268 int uncommon_trap_offset = 0; 2269 2270 if (EnableJVMCI) { 2271 implicit_exception_uncommon_trap_offset = __ pc() - start; 2272 2273 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2274 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2275 2276 uncommon_trap_offset = __ pc() - start; 2277 2278 // Save everything in sight. 2279 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2280 // fetch_unroll_info needs to call last_java_frame() 2281 Label retaddr; 2282 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2283 2284 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2285 __ movw(rscratch1, -1); 2286 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2287 2288 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2289 __ mov(c_rarg0, rthread); 2290 __ movw(c_rarg2, rcpool); // exec mode 2291 __ lea(rscratch1, 2292 RuntimeAddress(CAST_FROM_FN_PTR(address, 2293 Deoptimization::uncommon_trap))); 2294 __ blr(rscratch1); 2295 __ bind(retaddr); 2296 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2297 2298 __ reset_last_Java_frame(false); 2299 2300 __ b(after_fetch_unroll_info_call); 2301 } // EnableJVMCI 2302 #endif // INCLUDE_JVMCI 2303 2304 int exception_offset = __ pc() - start; 2305 2306 // Prolog for exception case 2307 2308 // all registers are dead at this entry point, except for r0, and 2309 // r3 which contain the exception oop and exception pc 2310 // respectively. Set them in TLS and fall thru to the 2311 // unpack_with_exception_in_tls entry point. 2312 2313 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2314 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2315 2316 int exception_in_tls_offset = __ pc() - start; 2317 2318 // new implementation because exception oop is now passed in JavaThread 2319 2320 // Prolog for exception case 2321 // All registers must be preserved because they might be used by LinearScan 2322 // Exceptiop oop and throwing PC are passed in JavaThread 2323 // tos: stack at point of call to method that threw the exception (i.e. only 2324 // args are on the stack, no return address) 2325 2326 // The return address pushed by save_live_registers will be patched 2327 // later with the throwing pc. The correct value is not available 2328 // now because loading it from memory would destroy registers. 2329 2330 // NB: The SP at this point must be the SP of the method that is 2331 // being deoptimized. Deoptimization assumes that the frame created 2332 // here by save_live_registers is immediately below the method's SP. 2333 // This is a somewhat fragile mechanism. 2334 2335 // Save everything in sight. 2336 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2337 2338 // Now it is safe to overwrite any register 2339 2340 // Deopt during an exception. Save exec mode for unpack_frames. 2341 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2342 2343 // load throwing pc from JavaThread and patch it as the return address 2344 // of the current frame. Then clear the field in JavaThread 2345 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2346 __ protect_return_address(r3); 2347 __ str(r3, Address(rfp, wordSize)); 2348 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2349 2350 #ifdef ASSERT 2351 // verify that there is really an exception oop in JavaThread 2352 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2353 __ verify_oop(r0); 2354 2355 // verify that there is no pending exception 2356 Label no_pending_exception; 2357 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2358 __ cbz(rscratch1, no_pending_exception); 2359 __ stop("must not have pending exception here"); 2360 __ bind(no_pending_exception); 2361 #endif 2362 2363 __ bind(cont); 2364 2365 // Call C code. Need thread and this frame, but NOT official VM entry 2366 // crud. We cannot block on this call, no GC can happen. 2367 // 2368 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2369 2370 // fetch_unroll_info needs to call last_java_frame(). 2371 2372 Label retaddr; 2373 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2374 #ifdef ASSERT 2375 { Label L; 2376 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2377 __ cbz(rscratch1, L); 2378 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2379 __ bind(L); 2380 } 2381 #endif // ASSERT 2382 __ mov(c_rarg0, rthread); 2383 __ mov(c_rarg1, rcpool); 2384 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2385 __ blr(rscratch1); 2386 __ bind(retaddr); 2387 2388 // Need to have an oopmap that tells fetch_unroll_info where to 2389 // find any register it might need. 2390 oop_maps->add_gc_map(__ pc() - start, map); 2391 2392 __ reset_last_Java_frame(false); 2393 2394 #if INCLUDE_JVMCI 2395 if (EnableJVMCI) { 2396 __ bind(after_fetch_unroll_info_call); 2397 } 2398 #endif 2399 2400 // Load UnrollBlock* into r5 2401 __ mov(r5, r0); 2402 2403 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2404 Label noException; 2405 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2406 __ br(Assembler::NE, noException); 2407 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2408 // QQQ this is useless it was null above 2409 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2410 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2411 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2412 2413 __ verify_oop(r0); 2414 2415 // Overwrite the result registers with the exception results. 2416 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2417 // I think this is useless 2418 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2419 2420 __ bind(noException); 2421 2422 // Only register save data is on the stack. 2423 // Now restore the result registers. Everything else is either dead 2424 // or captured in the vframeArray. 2425 2426 // Restore fp result register 2427 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2428 // Restore integer result register 2429 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2430 2431 // Pop all of the register save area off the stack 2432 __ add(sp, sp, frame_size_in_words * wordSize); 2433 2434 // All of the register save area has been popped of the stack. Only the 2435 // return address remains. 2436 2437 // Pop all the frames we must move/replace. 2438 // 2439 // Frame picture (youngest to oldest) 2440 // 1: self-frame (no frame link) 2441 // 2: deopting frame (no frame link) 2442 // 3: caller of deopting frame (could be compiled/interpreted). 2443 // 2444 // Note: by leaving the return address of self-frame on the stack 2445 // and using the size of frame 2 to adjust the stack 2446 // when we are done the return to frame 3 will still be on the stack. 2447 2448 // Pop deoptimized frame 2449 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2450 __ sub(r2, r2, 2 * wordSize); 2451 __ add(sp, sp, r2); 2452 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2453 2454 #ifdef ASSERT 2455 // Compilers generate code that bang the stack by as much as the 2456 // interpreter would need. So this stack banging should never 2457 // trigger a fault. Verify that it does not on non product builds. 2458 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2459 __ bang_stack_size(r19, r2); 2460 #endif 2461 // Load address of array of frame pcs into r2 2462 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2463 2464 // Trash the old pc 2465 // __ addptr(sp, wordSize); FIXME ???? 2466 2467 // Load address of array of frame sizes into r4 2468 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2469 2470 // Load counter into r3 2471 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2472 2473 // Now adjust the caller's stack to make up for the extra locals 2474 // but record the original sp so that we can save it in the skeletal interpreter 2475 // frame and the stack walking of interpreter_sender will get the unextended sp 2476 // value and not the "real" sp value. 2477 2478 const Register sender_sp = r6; 2479 2480 __ mov(sender_sp, sp); 2481 __ ldrw(r19, Address(r5, 2482 Deoptimization::UnrollBlock:: 2483 caller_adjustment_offset())); 2484 __ sub(sp, sp, r19); 2485 2486 // Push interpreter frames in a loop 2487 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2488 __ mov(rscratch2, rscratch1); 2489 Label loop; 2490 __ bind(loop); 2491 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2492 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2493 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2494 __ enter(); // Save old & set new fp 2495 __ sub(sp, sp, r19); // Prolog 2496 // This value is corrected by layout_activation_impl 2497 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2498 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2499 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2500 __ sub(r3, r3, 1); // Decrement counter 2501 __ cbnz(r3, loop); 2502 2503 // Re-push self-frame 2504 __ ldr(lr, Address(r2)); 2505 __ enter(); 2506 2507 // Allocate a full sized register save area. We subtract 2 because 2508 // enter() just pushed 2 words 2509 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2510 2511 // Restore frame locals after moving the frame 2512 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2513 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2514 2515 // Call C code. Need thread but NOT official VM entry 2516 // crud. We cannot block on this call, no GC can happen. Call should 2517 // restore return values to their stack-slots with the new SP. 2518 // 2519 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2520 2521 // Use rfp because the frames look interpreted now 2522 // Don't need the precise return PC here, just precise enough to point into this code blob. 2523 address the_pc = __ pc(); 2524 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2525 2526 __ mov(c_rarg0, rthread); 2527 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2528 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2529 __ blr(rscratch1); 2530 2531 // Set an oopmap for the call site 2532 // Use the same PC we used for the last java frame 2533 oop_maps->add_gc_map(the_pc - start, 2534 new OopMap( frame_size_in_words, 0 )); 2535 2536 // Clear fp AND pc 2537 __ reset_last_Java_frame(true); 2538 2539 // Collect return values 2540 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2541 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2542 // I think this is useless (throwing pc?) 2543 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2544 2545 // Pop self-frame. 2546 __ leave(); // Epilog 2547 2548 // Jump to interpreter 2549 __ ret(lr); 2550 2551 // Make sure all code is generated 2552 masm->flush(); 2553 2554 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2555 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2556 #if INCLUDE_JVMCI 2557 if (EnableJVMCI) { 2558 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2559 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2560 } 2561 #endif 2562 } 2563 2564 // Number of stack slots between incoming argument block and the start of 2565 // a new frame. The PROLOG must add this many slots to the stack. The 2566 // EPILOG must remove this many slots. aarch64 needs two slots for 2567 // return address and fp. 2568 // TODO think this is correct but check 2569 uint SharedRuntime::in_preserve_stack_slots() { 2570 return 4; 2571 } 2572 2573 uint SharedRuntime::out_preserve_stack_slots() { 2574 return 0; 2575 } 2576 2577 2578 //------------------------------generate_handler_blob------ 2579 // 2580 // Generate a special Compile2Runtime blob that saves all registers, 2581 // and setup oopmap. 2582 // 2583 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2584 assert(is_polling_page_id(id), "expected a polling page stub id"); 2585 2586 ResourceMark rm; 2587 OopMapSet *oop_maps = new OopMapSet(); 2588 OopMap* map; 2589 2590 // Allocate space for the code. Setup code generation tools. 2591 const char* name = SharedRuntime::stub_name(id); 2592 CodeBuffer buffer(name, 2048, 1024); 2593 MacroAssembler* masm = new MacroAssembler(&buffer); 2594 2595 address start = __ pc(); 2596 address call_pc = nullptr; 2597 int frame_size_in_words; 2598 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2599 RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */); 2600 2601 // When the signal occurred, the LR was either signed and stored on the stack (in which 2602 // case it will be restored from the stack before being used) or unsigned and not stored 2603 // on the stack. Stipping ensures we get the right value. 2604 __ strip_return_address(); 2605 2606 // Save Integer and Float registers. 2607 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2608 2609 // The following is basically a call_VM. However, we need the precise 2610 // address of the call in order to generate an oopmap. Hence, we do all the 2611 // work ourselves. 2612 2613 Label retaddr; 2614 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2615 2616 // The return address must always be correct so that frame constructor never 2617 // sees an invalid pc. 2618 2619 if (!cause_return) { 2620 // overwrite the return address pushed by save_live_registers 2621 // Additionally, r20 is a callee-saved register so we can look at 2622 // it later to determine if someone changed the return address for 2623 // us! 2624 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2625 __ protect_return_address(r20); 2626 __ str(r20, Address(rfp, wordSize)); 2627 } 2628 2629 // Do the call 2630 __ mov(c_rarg0, rthread); 2631 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2632 __ blr(rscratch1); 2633 __ bind(retaddr); 2634 2635 // Set an oopmap for the call site. This oopmap will map all 2636 // oop-registers and debug-info registers as callee-saved. This 2637 // will allow deoptimization at this safepoint to find all possible 2638 // debug-info recordings, as well as let GC find all oops. 2639 2640 oop_maps->add_gc_map( __ pc() - start, map); 2641 2642 Label noException; 2643 2644 __ reset_last_Java_frame(false); 2645 2646 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2647 2648 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2649 __ cbz(rscratch1, noException); 2650 2651 // Exception pending 2652 2653 reg_save.restore_live_registers(masm); 2654 2655 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2656 2657 // No exception case 2658 __ bind(noException); 2659 2660 Label no_adjust, bail; 2661 if (!cause_return) { 2662 // If our stashed return pc was modified by the runtime we avoid touching it 2663 __ ldr(rscratch1, Address(rfp, wordSize)); 2664 __ cmp(r20, rscratch1); 2665 __ br(Assembler::NE, no_adjust); 2666 __ authenticate_return_address(r20); 2667 2668 #ifdef ASSERT 2669 // Verify the correct encoding of the poll we're about to skip. 2670 // See NativeInstruction::is_ldrw_to_zr() 2671 __ ldrw(rscratch1, Address(r20)); 2672 __ ubfx(rscratch2, rscratch1, 22, 10); 2673 __ cmpw(rscratch2, 0b1011100101); 2674 __ br(Assembler::NE, bail); 2675 __ ubfx(rscratch2, rscratch1, 0, 5); 2676 __ cmpw(rscratch2, 0b11111); 2677 __ br(Assembler::NE, bail); 2678 #endif 2679 // Adjust return pc forward to step over the safepoint poll instruction 2680 __ add(r20, r20, NativeInstruction::instruction_size); 2681 __ protect_return_address(r20); 2682 __ str(r20, Address(rfp, wordSize)); 2683 } 2684 2685 __ bind(no_adjust); 2686 // Normal exit, restore registers and exit. 2687 reg_save.restore_live_registers(masm); 2688 2689 __ ret(lr); 2690 2691 #ifdef ASSERT 2692 __ bind(bail); 2693 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2694 #endif 2695 2696 // Make sure all code is generated 2697 masm->flush(); 2698 2699 // Fill-out other meta info 2700 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2701 } 2702 2703 // 2704 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2705 // 2706 // Generate a stub that calls into vm to find out the proper destination 2707 // of a java call. All the argument registers are live at this point 2708 // but since this is generic code we don't know what they are and the caller 2709 // must do any gc of the args. 2710 // 2711 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2712 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2713 assert(is_resolve_id(id), "expected a resolve stub id"); 2714 2715 // allocate space for the code 2716 ResourceMark rm; 2717 2718 const char* name = SharedRuntime::stub_name(id); 2719 CodeBuffer buffer(name, 1000, 512); 2720 MacroAssembler* masm = new MacroAssembler(&buffer); 2721 2722 int frame_size_in_words; 2723 RegisterSaver reg_save(false /* save_vectors */); 2724 2725 OopMapSet *oop_maps = new OopMapSet(); 2726 OopMap* map = nullptr; 2727 2728 int start = __ offset(); 2729 2730 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2731 2732 int frame_complete = __ offset(); 2733 2734 { 2735 Label retaddr; 2736 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2737 2738 __ mov(c_rarg0, rthread); 2739 __ lea(rscratch1, RuntimeAddress(destination)); 2740 2741 __ blr(rscratch1); 2742 __ bind(retaddr); 2743 } 2744 2745 // Set an oopmap for the call site. 2746 // We need this not only for callee-saved registers, but also for volatile 2747 // registers that the compiler might be keeping live across a safepoint. 2748 2749 oop_maps->add_gc_map( __ offset() - start, map); 2750 2751 // r0 contains the address we are going to jump to assuming no exception got installed 2752 2753 // clear last_Java_sp 2754 __ reset_last_Java_frame(false); 2755 // check for pending exceptions 2756 Label pending; 2757 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2758 __ cbnz(rscratch1, pending); 2759 2760 // get the returned Method* 2761 __ get_vm_result_2(rmethod, rthread); 2762 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2763 2764 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2765 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2766 reg_save.restore_live_registers(masm); 2767 2768 // We are back to the original state on entry and ready to go. 2769 2770 __ br(rscratch1); 2771 2772 // Pending exception after the safepoint 2773 2774 __ bind(pending); 2775 2776 reg_save.restore_live_registers(masm); 2777 2778 // exception pending => remove activation and forward to exception handler 2779 2780 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2781 2782 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2783 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2784 2785 // ------------- 2786 // make sure all code is generated 2787 masm->flush(); 2788 2789 // return the blob 2790 // frame_size_words or bytes?? 2791 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2792 } 2793 2794 // Continuation point for throwing of implicit exceptions that are 2795 // not handled in the current activation. Fabricates an exception 2796 // oop and initiates normal exception dispatching in this 2797 // frame. Since we need to preserve callee-saved values (currently 2798 // only for C2, but done for C1 as well) we need a callee-saved oop 2799 // map and therefore have to make these stubs into RuntimeStubs 2800 // rather than BufferBlobs. If the compiler needs all registers to 2801 // be preserved between the fault point and the exception handler 2802 // then it must assume responsibility for that in 2803 // AbstractCompiler::continuation_for_implicit_null_exception or 2804 // continuation_for_implicit_division_by_zero_exception. All other 2805 // implicit exceptions (e.g., NullPointerException or 2806 // AbstractMethodError on entry) are either at call sites or 2807 // otherwise assume that stack unwinding will be initiated, so 2808 // caller saved registers were assumed volatile in the compiler. 2809 2810 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 2811 assert(is_throw_id(id), "expected a throw stub id"); 2812 2813 const char* name = SharedRuntime::stub_name(id); 2814 2815 // Information about frame layout at time of blocking runtime call. 2816 // Note that we only have to preserve callee-saved registers since 2817 // the compilers are responsible for supplying a continuation point 2818 // if they expect all registers to be preserved. 2819 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0 2820 enum layout { 2821 rfp_off = 0, 2822 rfp_off2, 2823 return_off, 2824 return_off2, 2825 framesize // inclusive of return address 2826 }; 2827 2828 int insts_size = 512; 2829 int locs_size = 64; 2830 2831 ResourceMark rm; 2832 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2833 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2834 2835 CodeBuffer code(name, insts_size, locs_size); 2836 OopMapSet* oop_maps = new OopMapSet(); 2837 MacroAssembler* masm = new MacroAssembler(&code); 2838 2839 address start = __ pc(); 2840 2841 // This is an inlined and slightly modified version of call_VM 2842 // which has the ability to fetch the return PC out of 2843 // thread-local storage and also sets up last_Java_sp slightly 2844 // differently than the real call_VM 2845 2846 __ enter(); // Save FP and LR before call 2847 2848 assert(is_even(framesize/2), "sp not 16-byte aligned"); 2849 2850 // lr and fp are already in place 2851 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog 2852 2853 int frame_complete = __ pc() - start; 2854 2855 // Set up last_Java_sp and last_Java_fp 2856 address the_pc = __ pc(); 2857 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2858 2859 __ mov(c_rarg0, rthread); 2860 BLOCK_COMMENT("call runtime_entry"); 2861 __ mov(rscratch1, runtime_entry); 2862 __ blr(rscratch1); 2863 2864 // Generate oop map 2865 OopMap* map = new OopMap(framesize, 0); 2866 2867 oop_maps->add_gc_map(the_pc - start, map); 2868 2869 __ reset_last_Java_frame(true); 2870 2871 // Reinitialize the ptrue predicate register, in case the external runtime 2872 // call clobbers ptrue reg, as we may return to SVE compiled code. 2873 __ reinitialize_ptrue(); 2874 2875 __ leave(); 2876 2877 // check for pending exceptions 2878 #ifdef ASSERT 2879 Label L; 2880 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2881 __ cbnz(rscratch1, L); 2882 __ should_not_reach_here(); 2883 __ bind(L); 2884 #endif // ASSERT 2885 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2886 2887 // codeBlob framesize is in words (not VMRegImpl::slot_size) 2888 RuntimeStub* stub = 2889 RuntimeStub::new_runtime_stub(name, 2890 &code, 2891 frame_complete, 2892 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2893 oop_maps, false); 2894 return stub; 2895 } 2896 2897 #if INCLUDE_JFR 2898 2899 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 2900 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2901 __ mov(c_rarg0, thread); 2902 } 2903 2904 // The handle is dereferenced through a load barrier. 2905 static void jfr_epilogue(MacroAssembler* masm) { 2906 __ reset_last_Java_frame(true); 2907 } 2908 2909 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2910 // It returns a jobject handle to the event writer. 2911 // The handle is dereferenced and the return value is the event writer oop. 2912 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2913 enum layout { 2914 rbp_off, 2915 rbpH_off, 2916 return_off, 2917 return_off2, 2918 framesize // inclusive of return address 2919 }; 2920 2921 int insts_size = 1024; 2922 int locs_size = 64; 2923 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 2924 CodeBuffer code(name, insts_size, locs_size); 2925 OopMapSet* oop_maps = new OopMapSet(); 2926 MacroAssembler* masm = new MacroAssembler(&code); 2927 2928 address start = __ pc(); 2929 __ enter(); 2930 int frame_complete = __ pc() - start; 2931 address the_pc = __ pc(); 2932 jfr_prologue(the_pc, masm, rthread); 2933 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2934 jfr_epilogue(masm); 2935 __ resolve_global_jobject(r0, rscratch1, rscratch2); 2936 __ leave(); 2937 __ ret(lr); 2938 2939 OopMap* map = new OopMap(framesize, 1); // rfp 2940 oop_maps->add_gc_map(the_pc - start, map); 2941 2942 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2943 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2944 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2945 oop_maps, false); 2946 return stub; 2947 } 2948 2949 // For c2: call to return a leased buffer. 2950 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2951 enum layout { 2952 rbp_off, 2953 rbpH_off, 2954 return_off, 2955 return_off2, 2956 framesize // inclusive of return address 2957 }; 2958 2959 int insts_size = 1024; 2960 int locs_size = 64; 2961 2962 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 2963 CodeBuffer code(name, insts_size, locs_size); 2964 OopMapSet* oop_maps = new OopMapSet(); 2965 MacroAssembler* masm = new MacroAssembler(&code); 2966 2967 address start = __ pc(); 2968 __ enter(); 2969 int frame_complete = __ pc() - start; 2970 address the_pc = __ pc(); 2971 jfr_prologue(the_pc, masm, rthread); 2972 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2973 jfr_epilogue(masm); 2974 2975 __ leave(); 2976 __ ret(lr); 2977 2978 OopMap* map = new OopMap(framesize, 1); // rfp 2979 oop_maps->add_gc_map(the_pc - start, map); 2980 2981 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2982 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2983 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2984 oop_maps, false); 2985 return stub; 2986 } 2987 2988 #endif // INCLUDE_JFR