1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/interp_masm.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "nativeInst_aarch64.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "oops/method.inline.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "runtime/continuation.hpp"
  45 #include "runtime/continuationEntry.inline.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/jniHandles.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/timerTrace.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/formatBuffer.hpp"
  56 #include "vmreg_aarch64.inline.hpp"
  57 #ifdef COMPILER1
  58 #include "c1/c1_Runtime1.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "adfiles/ad_aarch64.hpp"
  62 #include "opto/runtime.hpp"
  63 #endif
  64 #if INCLUDE_JVMCI
  65 #include "jvmci/jvmciJavaClasses.hpp"
  66 #endif
  67 
  68 #define __ masm->
  69 
  70 #ifdef PRODUCT
  71 #define BLOCK_COMMENT(str) /* nothing */
  72 #else
  73 #define BLOCK_COMMENT(str) __ block_comment(str)
  74 #endif
  75 
  76 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  77 
  78 // FIXME -- this is used by C1
  79 class RegisterSaver {
  80   const bool _save_vectors;
  81  public:
  82   RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {}
  83 
  84   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  85   void restore_live_registers(MacroAssembler* masm);
  86 
  87   // Offsets into the register save area
  88   // Used by deoptimization when it is managing result register
  89   // values on its own
  90 
  91   int reg_offset_in_bytes(Register r);
  92   int r0_offset_in_bytes()    { return reg_offset_in_bytes(r0); }
  93   int rscratch1_offset_in_bytes()    { return reg_offset_in_bytes(rscratch1); }
  94   int v0_offset_in_bytes();
  95 
  96   // Total stack size in bytes for saving sve predicate registers.
  97   int total_sve_predicate_in_bytes();
  98 
  99   // Capture info about frame layout
 100   // Note this is only correct when not saving full vectors.
 101   enum layout {
 102                 fpu_state_off = 0,
 103                 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1,
 104                 // The frame sender code expects that rfp will be in
 105                 // the "natural" place and will override any oopMap
 106                 // setting for it. We must therefore force the layout
 107                 // so that it agrees with the frame sender code.
 108                 r0_off = fpu_state_off + FPUStateSizeInWords,
 109                 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register,
 110                 return_off = rfp_off + Register::max_slots_per_register,      // slot for return address
 111                 reg_save_size = return_off + Register::max_slots_per_register};
 112 
 113 };
 114 
 115 int RegisterSaver::reg_offset_in_bytes(Register r) {
 116   // The integer registers are located above the floating point
 117   // registers in the stack frame pushed by save_live_registers() so the
 118   // offset depends on whether we are saving full vectors, and whether
 119   // those vectors are NEON or SVE.
 120 
 121   int slots_per_vect = FloatRegister::save_slots_per_register;
 122 
 123 #if COMPILER2_OR_JVMCI
 124   if (_save_vectors) {
 125     slots_per_vect = FloatRegister::slots_per_neon_register;
 126 
 127 #ifdef COMPILER2
 128     if (Matcher::supports_scalable_vector()) {
 129       slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT);
 130     }
 131 #endif
 132   }
 133 #endif
 134 
 135   int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt;
 136   return r0_offset + r->encoding() * wordSize;
 137 }
 138 
 139 int RegisterSaver::v0_offset_in_bytes() {
 140   // The floating point registers are located above the predicate registers if
 141   // they are present in the stack frame pushed by save_live_registers(). So the
 142   // offset depends on the saved total predicate vectors in the stack frame.
 143   return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt;
 144 }
 145 
 146 int RegisterSaver::total_sve_predicate_in_bytes() {
 147 #ifdef COMPILER2
 148   if (_save_vectors && Matcher::supports_scalable_vector()) {
 149     return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) *
 150            PRegister::number_of_registers;
 151   }
 152 #endif
 153   return 0;
 154 }
 155 
 156 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 157   bool use_sve = false;
 158   int sve_vector_size_in_bytes = 0;
 159   int sve_vector_size_in_slots = 0;
 160   int sve_predicate_size_in_slots = 0;
 161   int total_predicate_in_bytes = total_sve_predicate_in_bytes();
 162   int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size;
 163 
 164 #ifdef COMPILER2
 165   use_sve = Matcher::supports_scalable_vector();
 166   if (use_sve) {
 167     sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 168     sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT);
 169     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
 170   }
 171 #endif
 172 
 173 #if COMPILER2_OR_JVMCI
 174   if (_save_vectors) {
 175     int extra_save_slots_per_register = 0;
 176     // Save upper half of vector registers
 177     if (use_sve) {
 178       extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register;
 179     } else {
 180       extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register;
 181     }
 182     int extra_vector_bytes = extra_save_slots_per_register *
 183                              VMRegImpl::stack_slot_size *
 184                              FloatRegister::number_of_registers;
 185     additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize);
 186   }
 187 #else
 188   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 189 #endif
 190 
 191   int frame_size_in_bytes = align_up(additional_frame_words * wordSize +
 192                                      reg_save_size * BytesPerInt, 16);
 193   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 194   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 195   // The caller will allocate additional_frame_words
 196   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
 197   // CodeBlob frame size is in words.
 198   int frame_size_in_words = frame_size_in_bytes / wordSize;
 199   *total_frame_words = frame_size_in_words;
 200 
 201   // Save Integer and Float registers.
 202   __ enter();
 203   __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes);
 204 
 205   // Set an oopmap for the call site.  This oopmap will map all
 206   // oop-registers and debug-info registers as callee-saved.  This
 207   // will allow deoptimization at this safepoint to find all possible
 208   // debug-info recordings, as well as let GC find all oops.
 209 
 210   OopMapSet *oop_maps = new OopMapSet();
 211   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 212 
 213   for (int i = 0; i < Register::number_of_registers; i++) {
 214     Register r = as_Register(i);
 215     if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) {
 216       // SP offsets are in 4-byte words.
 217       // Register slots are 8 bytes wide, 32 floating-point registers.
 218       int sp_offset = Register::max_slots_per_register * i +
 219                       FloatRegister::save_slots_per_register * FloatRegister::number_of_registers;
 220       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg());
 221     }
 222   }
 223 
 224   for (int i = 0; i < FloatRegister::number_of_registers; i++) {
 225     FloatRegister r = as_FloatRegister(i);
 226     int sp_offset = 0;
 227     if (_save_vectors) {
 228       sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) :
 229                             (FloatRegister::slots_per_neon_register * i);
 230     } else {
 231       sp_offset = FloatRegister::save_slots_per_register * i;
 232     }
 233     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg());
 234   }
 235 
 236   return oop_map;
 237 }
 238 
 239 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 240 #ifdef COMPILER2
 241   __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(),
 242                    Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes());
 243 #else
 244 #if !INCLUDE_JVMCI
 245   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 246 #endif
 247   __ pop_CPU_state(_save_vectors);
 248 #endif
 249   __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize)));
 250   __ authenticate_return_address();
 251 }
 252 
 253 // Is vector's size (in bytes) bigger than a size saved by default?
 254 // 8 bytes vector registers are saved by default on AArch64.
 255 // The SVE supported min vector size is 8 bytes and we need to save
 256 // predicate registers when the vector size is 8 bytes as well.
 257 bool SharedRuntime::is_wide_vector(int size) {
 258   return size > 8 || (UseSVE > 0 && size >= 8);
 259 }
 260 
 261 // ---------------------------------------------------------------------------
 262 // Read the array of BasicTypes from a signature, and compute where the
 263 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 264 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 265 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 266 // as framesizes are fixed.
 267 // VMRegImpl::stack0 refers to the first slot 0(sp).
 268 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 269 // Register up to Register::number_of_registers are the 64-bit
 270 // integer registers.
 271 
 272 // Note: the INPUTS in sig_bt are in units of Java argument words,
 273 // which are 64-bit.  The OUTPUTS are in 32-bit units.
 274 
 275 // The Java calling convention is a "shifted" version of the C ABI.
 276 // By skipping the first C ABI register we can call non-static jni
 277 // methods with small numbers of arguments without having to shuffle
 278 // the arguments at all. Since we control the java ABI we ought to at
 279 // least get some advantage out of it.
 280 
 281 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 282                                            VMRegPair *regs,
 283                                            int total_args_passed) {
 284 
 285   // Create the mapping between argument positions and
 286   // registers.
 287   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 288     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
 289   };
 290   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 291     j_farg0, j_farg1, j_farg2, j_farg3,
 292     j_farg4, j_farg5, j_farg6, j_farg7
 293   };
 294 
 295 
 296   uint int_args = 0;
 297   uint fp_args = 0;
 298   uint stk_args = 0;
 299 
 300   for (int i = 0; i < total_args_passed; i++) {
 301     switch (sig_bt[i]) {
 302     case T_BOOLEAN:
 303     case T_CHAR:
 304     case T_BYTE:
 305     case T_SHORT:
 306     case T_INT:
 307       if (int_args < Argument::n_int_register_parameters_j) {
 308         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 309       } else {
 310         stk_args = align_up(stk_args, 2);
 311         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 312         stk_args += 1;
 313       }
 314       break;
 315     case T_VOID:
 316       // halves of T_LONG or T_DOUBLE
 317       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 318       regs[i].set_bad();
 319       break;
 320     case T_LONG:
 321       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 322       // fall through
 323     case T_OBJECT:
 324     case T_ARRAY:
 325     case T_ADDRESS:
 326       if (int_args < Argument::n_int_register_parameters_j) {
 327         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 328       } else {
 329         stk_args = align_up(stk_args, 2);
 330         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 331         stk_args += 2;
 332       }
 333       break;
 334     case T_FLOAT:
 335       if (fp_args < Argument::n_float_register_parameters_j) {
 336         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 337       } else {
 338         stk_args = align_up(stk_args, 2);
 339         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 340         stk_args += 1;
 341       }
 342       break;
 343     case T_DOUBLE:
 344       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 345       if (fp_args < Argument::n_float_register_parameters_j) {
 346         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 347       } else {
 348         stk_args = align_up(stk_args, 2);
 349         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 350         stk_args += 2;
 351       }
 352       break;
 353     default:
 354       ShouldNotReachHere();
 355       break;
 356     }
 357   }
 358 
 359   return stk_args;
 360 }
 361 
 362 // Patch the callers callsite with entry to compiled code if it exists.
 363 static void patch_callers_callsite(MacroAssembler *masm) {
 364   Label L;
 365   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 366   __ cbz(rscratch1, L);
 367 
 368   __ enter();
 369   __ push_CPU_state();
 370 
 371   // VM needs caller's callsite
 372   // VM needs target method
 373   // This needs to be a long call since we will relocate this adapter to
 374   // the codeBuffer and it may not reach
 375 
 376 #ifndef PRODUCT
 377   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
 378 #endif
 379 
 380   __ mov(c_rarg0, rmethod);
 381   __ mov(c_rarg1, lr);
 382   __ authenticate_return_address(c_rarg1);
 383   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 384   __ blr(rscratch1);
 385 
 386   // Explicit isb required because fixup_callers_callsite may change the code
 387   // stream.
 388   __ safepoint_isb();
 389 
 390   __ pop_CPU_state();
 391   // restore sp
 392   __ leave();
 393   __ bind(L);
 394 }
 395 
 396 static void gen_c2i_adapter(MacroAssembler *masm,
 397                             int total_args_passed,
 398                             int comp_args_on_stack,
 399                             const BasicType *sig_bt,
 400                             const VMRegPair *regs,
 401                             Label& skip_fixup) {
 402   // Before we get into the guts of the C2I adapter, see if we should be here
 403   // at all.  We've come from compiled code and are attempting to jump to the
 404   // interpreter, which means the caller made a static call to get here
 405   // (vcalls always get a compiled target if there is one).  Check for a
 406   // compiled target.  If there is one, we need to patch the caller's call.
 407   patch_callers_callsite(masm);
 408 
 409   __ bind(skip_fixup);
 410 
 411   int words_pushed = 0;
 412 
 413   // Since all args are passed on the stack, total_args_passed *
 414   // Interpreter::stackElementSize is the space we need.
 415 
 416   int extraspace = total_args_passed * Interpreter::stackElementSize;
 417 
 418   __ mov(r19_sender_sp, sp);
 419 
 420   // stack is aligned, keep it that way
 421   extraspace = align_up(extraspace, 2*wordSize);
 422 
 423   if (extraspace)
 424     __ sub(sp, sp, extraspace);
 425 
 426   // Now write the args into the outgoing interpreter space
 427   for (int i = 0; i < total_args_passed; i++) {
 428     if (sig_bt[i] == T_VOID) {
 429       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 430       continue;
 431     }
 432 
 433     // offset to start parameters
 434     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 435     int next_off = st_off - Interpreter::stackElementSize;
 436 
 437     // Say 4 args:
 438     // i   st_off
 439     // 0   32 T_LONG
 440     // 1   24 T_VOID
 441     // 2   16 T_OBJECT
 442     // 3    8 T_BOOL
 443     // -    0 return address
 444     //
 445     // However to make thing extra confusing. Because we can fit a Java long/double in
 446     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 447     // leaves one slot empty and only stores to a single slot. In this case the
 448     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 449 
 450     VMReg r_1 = regs[i].first();
 451     VMReg r_2 = regs[i].second();
 452     if (!r_1->is_valid()) {
 453       assert(!r_2->is_valid(), "");
 454       continue;
 455     }
 456     if (r_1->is_stack()) {
 457       // memory to memory use rscratch1
 458       int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
 459                     + extraspace
 460                     + words_pushed * wordSize);
 461       if (!r_2->is_valid()) {
 462         // sign extend??
 463         __ ldrw(rscratch1, Address(sp, ld_off));
 464         __ str(rscratch1, Address(sp, st_off));
 465 
 466       } else {
 467 
 468         __ ldr(rscratch1, Address(sp, ld_off));
 469 
 470         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 471         // T_DOUBLE and T_LONG use two slots in the interpreter
 472         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 473           // ld_off == LSW, ld_off+wordSize == MSW
 474           // st_off == MSW, next_off == LSW
 475           __ str(rscratch1, Address(sp, next_off));
 476 #ifdef ASSERT
 477           // Overwrite the unused slot with known junk
 478           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull);
 479           __ str(rscratch1, Address(sp, st_off));
 480 #endif /* ASSERT */
 481         } else {
 482           __ str(rscratch1, Address(sp, st_off));
 483         }
 484       }
 485     } else if (r_1->is_Register()) {
 486       Register r = r_1->as_Register();
 487       if (!r_2->is_valid()) {
 488         // must be only an int (or less ) so move only 32bits to slot
 489         // why not sign extend??
 490         __ str(r, Address(sp, st_off));
 491       } else {
 492         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 493         // T_DOUBLE and T_LONG use two slots in the interpreter
 494         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 495           // jlong/double in gpr
 496 #ifdef ASSERT
 497           // Overwrite the unused slot with known junk
 498           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull);
 499           __ str(rscratch1, Address(sp, st_off));
 500 #endif /* ASSERT */
 501           __ str(r, Address(sp, next_off));
 502         } else {
 503           __ str(r, Address(sp, st_off));
 504         }
 505       }
 506     } else {
 507       assert(r_1->is_FloatRegister(), "");
 508       if (!r_2->is_valid()) {
 509         // only a float use just part of the slot
 510         __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
 511       } else {
 512 #ifdef ASSERT
 513         // Overwrite the unused slot with known junk
 514         __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull);
 515         __ str(rscratch1, Address(sp, st_off));
 516 #endif /* ASSERT */
 517         __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
 518       }
 519     }
 520   }
 521 
 522   __ mov(esp, sp); // Interp expects args on caller's expression stack
 523 
 524   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
 525   __ br(rscratch1);
 526 }
 527 
 528 
 529 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 530                                     int total_args_passed,
 531                                     int comp_args_on_stack,
 532                                     const BasicType *sig_bt,
 533                                     const VMRegPair *regs) {
 534 
 535   // Note: r19_sender_sp contains the senderSP on entry. We must
 536   // preserve it since we may do a i2c -> c2i transition if we lose a
 537   // race where compiled code goes non-entrant while we get args
 538   // ready.
 539 
 540   // Adapters are frameless.
 541 
 542   // An i2c adapter is frameless because the *caller* frame, which is
 543   // interpreted, routinely repairs its own esp (from
 544   // interpreter_frame_last_sp), even if a callee has modified the
 545   // stack pointer.  It also recalculates and aligns sp.
 546 
 547   // A c2i adapter is frameless because the *callee* frame, which is
 548   // interpreted, routinely repairs its caller's sp (from sender_sp,
 549   // which is set up via the senderSP register).
 550 
 551   // In other words, if *either* the caller or callee is interpreted, we can
 552   // get the stack pointer repaired after a call.
 553 
 554   // This is why c2i and i2c adapters cannot be indefinitely composed.
 555   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 556   // both caller and callee would be compiled methods, and neither would
 557   // clean up the stack pointer changes performed by the two adapters.
 558   // If this happens, control eventually transfers back to the compiled
 559   // caller, but with an uncorrected stack, causing delayed havoc.
 560 
 561   if (VerifyAdapterCalls &&
 562       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 563 #if 0
 564     // So, let's test for cascading c2i/i2c adapters right now.
 565     //  assert(Interpreter::contains($return_addr) ||
 566     //         StubRoutines::contains($return_addr),
 567     //         "i2c adapter must return to an interpreter frame");
 568     __ block_comment("verify_i2c { ");
 569     Label L_ok;
 570     if (Interpreter::code() != nullptr) {
 571       range_check(masm, rax, r11,
 572                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 573                   L_ok);
 574     }
 575     if (StubRoutines::initial_stubs_code() != nullptr) {
 576       range_check(masm, rax, r11,
 577                   StubRoutines::initial_stubs_code()->code_begin(),
 578                   StubRoutines::initial_stubs_code()->code_end(),
 579                   L_ok);
 580     }
 581     if (StubRoutines::final_stubs_code() != nullptr) {
 582       range_check(masm, rax, r11,
 583                   StubRoutines::final_stubs_code()->code_begin(),
 584                   StubRoutines::final_stubs_code()->code_end(),
 585                   L_ok);
 586     }
 587     const char* msg = "i2c adapter must return to an interpreter frame";
 588     __ block_comment(msg);
 589     __ stop(msg);
 590     __ bind(L_ok);
 591     __ block_comment("} verify_i2ce ");
 592 #endif
 593   }
 594 
 595   // Cut-out for having no stack args.
 596   int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 597   if (comp_args_on_stack) {
 598     __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
 599     __ andr(sp, rscratch1, -16);
 600   }
 601 
 602   // Will jump to the compiled code just as if compiled code was doing it.
 603   // Pre-load the register-jump target early, to schedule it better.
 604   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
 605 
 606 #if INCLUDE_JVMCI
 607   if (EnableJVMCI) {
 608     // check if this call should be routed towards a specific entry point
 609     __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 610     Label no_alternative_target;
 611     __ cbz(rscratch2, no_alternative_target);
 612     __ mov(rscratch1, rscratch2);
 613     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 614     __ bind(no_alternative_target);
 615   }
 616 #endif // INCLUDE_JVMCI
 617 
 618   // Now generate the shuffle code.
 619   for (int i = 0; i < total_args_passed; i++) {
 620     if (sig_bt[i] == T_VOID) {
 621       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 622       continue;
 623     }
 624 
 625     // Pick up 0, 1 or 2 words from SP+offset.
 626 
 627     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 628             "scrambled load targets?");
 629     // Load in argument order going down.
 630     int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
 631     // Point to interpreter value (vs. tag)
 632     int next_off = ld_off - Interpreter::stackElementSize;
 633     //
 634     //
 635     //
 636     VMReg r_1 = regs[i].first();
 637     VMReg r_2 = regs[i].second();
 638     if (!r_1->is_valid()) {
 639       assert(!r_2->is_valid(), "");
 640       continue;
 641     }
 642     if (r_1->is_stack()) {
 643       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 644       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
 645       if (!r_2->is_valid()) {
 646         // sign extend???
 647         __ ldrsw(rscratch2, Address(esp, ld_off));
 648         __ str(rscratch2, Address(sp, st_off));
 649       } else {
 650         //
 651         // We are using two optoregs. This can be either T_OBJECT,
 652         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 653         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 654         // So we must adjust where to pick up the data to match the
 655         // interpreter.
 656         //
 657         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 658         // are accessed as negative so LSW is at LOW address
 659 
 660         // ld_off is MSW so get LSW
 661         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 662                            next_off : ld_off;
 663         __ ldr(rscratch2, Address(esp, offset));
 664         // st_off is LSW (i.e. reg.first())
 665         __ str(rscratch2, Address(sp, st_off));
 666       }
 667     } else if (r_1->is_Register()) {  // Register argument
 668       Register r = r_1->as_Register();
 669       if (r_2->is_valid()) {
 670         //
 671         // We are using two VMRegs. This can be either T_OBJECT,
 672         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 673         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 674         // So we must adjust where to pick up the data to match the
 675         // interpreter.
 676 
 677         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 678                            next_off : ld_off;
 679 
 680         // this can be a misaligned move
 681         __ ldr(r, Address(esp, offset));
 682       } else {
 683         // sign extend and use a full word?
 684         __ ldrw(r, Address(esp, ld_off));
 685       }
 686     } else {
 687       if (!r_2->is_valid()) {
 688         __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
 689       } else {
 690         __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
 691       }
 692     }
 693   }
 694 
 695   __ mov(rscratch2, rscratch1);
 696   __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1
 697   __ mov(rscratch1, rscratch2);
 698 
 699   // 6243940 We might end up in handle_wrong_method if
 700   // the callee is deoptimized as we race thru here. If that
 701   // happens we don't want to take a safepoint because the
 702   // caller frame will look interpreted and arguments are now
 703   // "compiled" so it is much better to make this transition
 704   // invisible to the stack walking code. Unfortunately if
 705   // we try and find the callee by normal means a safepoint
 706   // is possible. So we stash the desired callee in the thread
 707   // and the vm will find there should this case occur.
 708 
 709   __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
 710 
 711   __ br(rscratch1);
 712 }
 713 
 714 // ---------------------------------------------------------------
 715 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 716                                                             int total_args_passed,
 717                                                             int comp_args_on_stack,
 718                                                             const BasicType *sig_bt,
 719                                                             const VMRegPair *regs,
 720                                                             AdapterFingerPrint* fingerprint) {
 721   address i2c_entry = __ pc();
 722 
 723   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 724 
 725   address c2i_unverified_entry = __ pc();
 726   Label skip_fixup;
 727 
 728   Register data = rscratch2;
 729   Register receiver = j_rarg0;
 730   Register tmp = r10;  // A call-clobbered register not used for arg passing
 731 
 732   // -------------------------------------------------------------------------
 733   // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
 734   // to the interpreter.  The args start out packed in the compiled layout.  They
 735   // need to be unpacked into the interpreter layout.  This will almost always
 736   // require some stack space.  We grow the current (compiled) stack, then repack
 737   // the args.  We  finally end in a jump to the generic interpreter entry point.
 738   // On exit from the interpreter, the interpreter will restore our SP (lest the
 739   // compiled code, which relies solely on SP and not FP, get sick).
 740 
 741   {
 742     __ block_comment("c2i_unverified_entry {");
 743     // Method might have been compiled since the call site was patched to
 744     // interpreted; if that is the case treat it as a miss so we can get
 745     // the call site corrected.
 746     __ ic_check(1 /* end_alignment */);
 747     __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset()));
 748 
 749     __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 750     __ cbz(rscratch1, skip_fixup);
 751     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 752     __ block_comment("} c2i_unverified_entry");
 753   }
 754 
 755   address c2i_entry = __ pc();
 756 
 757   // Class initialization barrier for static methods
 758   address c2i_no_clinit_check_entry = nullptr;
 759   if (VM_Version::supports_fast_class_init_checks()) {
 760     Label L_skip_barrier;
 761 
 762     { // Bypass the barrier for non-static methods
 763       __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset()));
 764       __ andsw(zr, rscratch1, JVM_ACC_STATIC);
 765       __ br(Assembler::EQ, L_skip_barrier); // non-static
 766     }
 767 
 768     __ load_method_holder(rscratch2, rmethod);
 769     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 770     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 771 
 772     __ bind(L_skip_barrier);
 773     c2i_no_clinit_check_entry = __ pc();
 774   }
 775 
 776   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 777   bs->c2i_entry_barrier(masm);
 778 
 779   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 780 
 781   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
 782 }
 783 
 784 static int c_calling_convention_priv(const BasicType *sig_bt,
 785                                          VMRegPair *regs,
 786                                          int total_args_passed) {
 787 
 788 // We return the amount of VMRegImpl stack slots we need to reserve for all
 789 // the arguments NOT counting out_preserve_stack_slots.
 790 
 791     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 792       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
 793     };
 794     static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 795       c_farg0, c_farg1, c_farg2, c_farg3,
 796       c_farg4, c_farg5, c_farg6, c_farg7
 797     };
 798 
 799     uint int_args = 0;
 800     uint fp_args = 0;
 801     uint stk_args = 0; // inc by 2 each time
 802 
 803     for (int i = 0; i < total_args_passed; i++) {
 804       switch (sig_bt[i]) {
 805       case T_BOOLEAN:
 806       case T_CHAR:
 807       case T_BYTE:
 808       case T_SHORT:
 809       case T_INT:
 810         if (int_args < Argument::n_int_register_parameters_c) {
 811           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 812         } else {
 813 #ifdef __APPLE__
 814           // Less-than word types are stored one after another.
 815           // The code is unable to handle this so bailout.
 816           return -1;
 817 #endif
 818           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 819           stk_args += 2;
 820         }
 821         break;
 822       case T_LONG:
 823         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 824         // fall through
 825       case T_OBJECT:
 826       case T_ARRAY:
 827       case T_ADDRESS:
 828       case T_METADATA:
 829         if (int_args < Argument::n_int_register_parameters_c) {
 830           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 831         } else {
 832           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 833           stk_args += 2;
 834         }
 835         break;
 836       case T_FLOAT:
 837         if (fp_args < Argument::n_float_register_parameters_c) {
 838           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 839         } else {
 840 #ifdef __APPLE__
 841           // Less-than word types are stored one after another.
 842           // The code is unable to handle this so bailout.
 843           return -1;
 844 #endif
 845           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 846           stk_args += 2;
 847         }
 848         break;
 849       case T_DOUBLE:
 850         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 851         if (fp_args < Argument::n_float_register_parameters_c) {
 852           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 853         } else {
 854           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 855           stk_args += 2;
 856         }
 857         break;
 858       case T_VOID: // Halves of longs and doubles
 859         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 860         regs[i].set_bad();
 861         break;
 862       default:
 863         ShouldNotReachHere();
 864         break;
 865       }
 866     }
 867 
 868   return stk_args;
 869 }
 870 
 871 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 872                                              uint num_bits,
 873                                              uint total_args_passed) {
 874   // More than 8 argument inputs are not supported now.
 875   assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported");
 876   assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported");
 877 
 878   static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = {
 879     v0, v1, v2, v3, v4, v5, v6, v7
 880   };
 881 
 882   // On SVE, we use the same vector registers with 128-bit vector registers on NEON.
 883   int next_reg_val = num_bits == 64 ? 1 : 3;
 884   for (uint i = 0; i < total_args_passed; i++) {
 885     VMReg vmreg = VEC_ArgReg[i]->as_VMReg();
 886     regs[i].set_pair(vmreg->next(next_reg_val), vmreg);
 887   }
 888   return 0;
 889 }
 890 
 891 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 892                                          VMRegPair *regs,
 893                                          int total_args_passed)
 894 {
 895   int result = c_calling_convention_priv(sig_bt, regs, total_args_passed);
 896   guarantee(result >= 0, "Unsupported arguments configuration");
 897   return result;
 898 }
 899 
 900 
 901 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 902   // We always ignore the frame_slots arg and just use the space just below frame pointer
 903   // which by this time is free to use
 904   switch (ret_type) {
 905   case T_FLOAT:
 906     __ strs(v0, Address(rfp, -wordSize));
 907     break;
 908   case T_DOUBLE:
 909     __ strd(v0, Address(rfp, -wordSize));
 910     break;
 911   case T_VOID:  break;
 912   default: {
 913     __ str(r0, Address(rfp, -wordSize));
 914     }
 915   }
 916 }
 917 
 918 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 919   // We always ignore the frame_slots arg and just use the space just below frame pointer
 920   // which by this time is free to use
 921   switch (ret_type) {
 922   case T_FLOAT:
 923     __ ldrs(v0, Address(rfp, -wordSize));
 924     break;
 925   case T_DOUBLE:
 926     __ ldrd(v0, Address(rfp, -wordSize));
 927     break;
 928   case T_VOID:  break;
 929   default: {
 930     __ ldr(r0, Address(rfp, -wordSize));
 931     }
 932   }
 933 }
 934 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 935   RegSet x;
 936   for ( int i = first_arg ; i < arg_count ; i++ ) {
 937     if (args[i].first()->is_Register()) {
 938       x = x + args[i].first()->as_Register();
 939     } else if (args[i].first()->is_FloatRegister()) {
 940       __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
 941     }
 942   }
 943   __ push(x, sp);
 944 }
 945 
 946 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 947   RegSet x;
 948   for ( int i = first_arg ; i < arg_count ; i++ ) {
 949     if (args[i].first()->is_Register()) {
 950       x = x + args[i].first()->as_Register();
 951     } else {
 952       ;
 953     }
 954   }
 955   __ pop(x, sp);
 956   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
 957     if (args[i].first()->is_Register()) {
 958       ;
 959     } else if (args[i].first()->is_FloatRegister()) {
 960       __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
 961     }
 962   }
 963 }
 964 
 965 static void verify_oop_args(MacroAssembler* masm,
 966                             const methodHandle& method,
 967                             const BasicType* sig_bt,
 968                             const VMRegPair* regs) {
 969   Register temp_reg = r19;  // not part of any compiled calling seq
 970   if (VerifyOops) {
 971     for (int i = 0; i < method->size_of_parameters(); i++) {
 972       if (sig_bt[i] == T_OBJECT ||
 973           sig_bt[i] == T_ARRAY) {
 974         VMReg r = regs[i].first();
 975         assert(r->is_valid(), "bad oop arg");
 976         if (r->is_stack()) {
 977           __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
 978           __ verify_oop(temp_reg);
 979         } else {
 980           __ verify_oop(r->as_Register());
 981         }
 982       }
 983     }
 984   }
 985 }
 986 
 987 // on exit, sp points to the ContinuationEntry
 988 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
 989   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
 990   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
 991   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
 992 
 993   stack_slots += (int)ContinuationEntry::size()/wordSize;
 994   __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
 995 
 996   OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
 997 
 998   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
 999   __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset()));
1000   __ mov(rscratch1, sp); // we can't use sp as the source in str
1001   __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1002 
1003   return map;
1004 }
1005 
1006 // on entry c_rarg1 points to the continuation
1007 //          sp points to ContinuationEntry
1008 //          c_rarg3 -- isVirtualThread
1009 static void fill_continuation_entry(MacroAssembler* masm) {
1010 #ifdef ASSERT
1011   __ movw(rscratch1, ContinuationEntry::cookie_value());
1012   __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset()));
1013 #endif
1014 
1015   __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
1016   __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
1017   __ str (zr,      Address(sp, ContinuationEntry::chunk_offset()));
1018   __ strw(zr,      Address(sp, ContinuationEntry::argsize_offset()));
1019   __ strw(zr,      Address(sp, ContinuationEntry::pin_count_offset()));
1020 
1021   __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1022   __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1023   __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1024   __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1025 
1026   __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset()));
1027   __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset()));
1028 }
1029 
1030 // on entry, sp points to the ContinuationEntry
1031 // on exit, rfp points to the spilled rfp in the entry frame
1032 static void continuation_enter_cleanup(MacroAssembler* masm) {
1033 #ifndef PRODUCT
1034   Label OK;
1035   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1036   __ cmp(sp, rscratch1);
1037   __ br(Assembler::EQ, OK);
1038   __ stop("incorrect sp1");
1039   __ bind(OK);
1040 #endif
1041   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1042   __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1043 
1044   if (CheckJNICalls) {
1045     // Check if this is a virtual thread continuation
1046     Label L_skip_vthread_code;
1047     __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset()));
1048     __ cbzw(rscratch1, L_skip_vthread_code);
1049 
1050     // If the held monitor count is > 0 and this vthread is terminating then
1051     // it failed to release a JNI monitor. So we issue the same log message
1052     // that JavaThread::exit does.
1053     __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset()));
1054     __ cbz(rscratch1, L_skip_vthread_code);
1055 
1056     // Save return value potentially containing the exception oop in callee-saved R19.
1057     __ mov(r19, r0);
1058     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
1059     // Restore potential return value.
1060     __ mov(r0, r19);
1061 
1062     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
1063     // on termination. The held count is implicitly zeroed below when we restore from
1064     // the parent held count (which has to be zero).
1065     __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset()));
1066 
1067     __ bind(L_skip_vthread_code);
1068   }
1069 #ifdef ASSERT
1070   else {
1071     // Check if this is a virtual thread continuation
1072     Label L_skip_vthread_code;
1073     __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset()));
1074     __ cbzw(rscratch1, L_skip_vthread_code);
1075 
1076     // See comment just above. If not checking JNI calls the JNI count is only
1077     // needed for assertion checking.
1078     __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset()));
1079 
1080     __ bind(L_skip_vthread_code);
1081   }
1082 #endif
1083 
1084   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1085   __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1086 
1087   __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset()));
1088   __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset()));
1089   __ add(rfp, sp, (int)ContinuationEntry::size());
1090 }
1091 
1092 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1093 // On entry: c_rarg1 -- the continuation object
1094 //           c_rarg2 -- isContinue
1095 //           c_rarg3 -- isVirtualThread
1096 static void gen_continuation_enter(MacroAssembler* masm,
1097                                  const methodHandle& method,
1098                                  const BasicType* sig_bt,
1099                                  const VMRegPair* regs,
1100                                  int& exception_offset,
1101                                  OopMapSet*oop_maps,
1102                                  int& frame_complete,
1103                                  int& stack_slots,
1104                                  int& interpreted_entry_offset,
1105                                  int& compiled_entry_offset) {
1106   //verify_oop_args(masm, method, sig_bt, regs);
1107   Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
1108 
1109   address start = __ pc();
1110 
1111   Label call_thaw, exit;
1112 
1113   // i2i entry used at interp_only_mode only
1114   interpreted_entry_offset = __ pc() - start;
1115   {
1116 
1117 #ifdef ASSERT
1118     Label is_interp_only;
1119     __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
1120     __ cbnzw(rscratch1, is_interp_only);
1121     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1122     __ bind(is_interp_only);
1123 #endif
1124 
1125     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1126     __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2));
1127     __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1));
1128     __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0));
1129     __ push_cont_fastpath(rthread);
1130 
1131     __ enter();
1132     stack_slots = 2; // will be adjusted in setup
1133     OopMap* map = continuation_enter_setup(masm, stack_slots);
1134     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1135     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1136 
1137     fill_continuation_entry(masm);
1138 
1139     __ cbnz(c_rarg2, call_thaw);
1140 
1141     const address tr_call = __ trampoline_call(resolve);
1142     if (tr_call == nullptr) {
1143       fatal("CodeCache is full at gen_continuation_enter");
1144     }
1145 
1146     oop_maps->add_gc_map(__ pc() - start, map);
1147     __ post_call_nop();
1148 
1149     __ b(exit);
1150 
1151     address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1152     if (stub == nullptr) {
1153       fatal("CodeCache is full at gen_continuation_enter");
1154     }
1155   }
1156 
1157   // compiled entry
1158   __ align(CodeEntryAlignment);
1159   compiled_entry_offset = __ pc() - start;
1160 
1161   __ enter();
1162   stack_slots = 2; // will be adjusted in setup
1163   OopMap* map = continuation_enter_setup(masm, stack_slots);
1164   frame_complete = __ pc() - start;
1165 
1166   fill_continuation_entry(masm);
1167 
1168   __ cbnz(c_rarg2, call_thaw);
1169 
1170   const address tr_call = __ trampoline_call(resolve);
1171   if (tr_call == nullptr) {
1172     fatal("CodeCache is full at gen_continuation_enter");
1173   }
1174 
1175   oop_maps->add_gc_map(__ pc() - start, map);
1176   __ post_call_nop();
1177 
1178   __ b(exit);
1179 
1180   __ bind(call_thaw);
1181 
1182   __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1183   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1184   ContinuationEntry::_return_pc_offset = __ pc() - start;
1185   __ post_call_nop();
1186 
1187   __ bind(exit);
1188   continuation_enter_cleanup(masm);
1189   __ leave();
1190   __ ret(lr);
1191 
1192   /// exception handling
1193 
1194   exception_offset = __ pc() - start;
1195   {
1196       __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19
1197 
1198       continuation_enter_cleanup(masm);
1199 
1200       __ ldr(c_rarg1, Address(rfp, wordSize)); // return address
1201       __ authenticate_return_address(c_rarg1);
1202       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1);
1203 
1204       // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc
1205 
1206       __ mov(r1, r0); // the exception handler
1207       __ mov(r0, r19); // restore return value contaning the exception oop
1208       __ verify_oop(r0);
1209 
1210       __ leave();
1211       __ mov(r3, lr);
1212       __ br(r1); // the exception handler
1213   }
1214 
1215   address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1216   if (stub == nullptr) {
1217     fatal("CodeCache is full at gen_continuation_enter");
1218   }
1219 }
1220 
1221 static void gen_continuation_yield(MacroAssembler* masm,
1222                                    const methodHandle& method,
1223                                    const BasicType* sig_bt,
1224                                    const VMRegPair* regs,
1225                                    OopMapSet* oop_maps,
1226                                    int& frame_complete,
1227                                    int& stack_slots,
1228                                    int& compiled_entry_offset) {
1229     enum layout {
1230       rfp_off1,
1231       rfp_off2,
1232       lr_off,
1233       lr_off2,
1234       framesize // inclusive of return address
1235     };
1236     // assert(is_even(framesize/2), "sp not 16-byte aligned");
1237     stack_slots = framesize /  VMRegImpl::slots_per_word;
1238     assert(stack_slots == 2, "recheck layout");
1239 
1240     address start = __ pc();
1241 
1242     compiled_entry_offset = __ pc() - start;
1243     __ enter();
1244 
1245     __ mov(c_rarg1, sp);
1246 
1247     frame_complete = __ pc() - start;
1248     address the_pc = __ pc();
1249 
1250     __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1251 
1252     __ mov(c_rarg0, rthread);
1253     __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
1254     __ call_VM_leaf(Continuation::freeze_entry(), 2);
1255     __ reset_last_Java_frame(true);
1256 
1257     Label pinned;
1258 
1259     __ cbnz(r0, pinned);
1260 
1261     // We've succeeded, set sp to the ContinuationEntry
1262     __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1263     __ mov(sp, rscratch1);
1264     continuation_enter_cleanup(masm);
1265 
1266     __ bind(pinned); // pinned -- return to caller
1267 
1268     // handle pending exception thrown by freeze
1269     __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1270     Label ok;
1271     __ cbz(rscratch1, ok);
1272     __ leave();
1273     __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1274     __ br(rscratch1);
1275     __ bind(ok);
1276 
1277     __ leave();
1278     __ ret(lr);
1279 
1280     OopMap* map = new OopMap(framesize, 1);
1281     oop_maps->add_gc_map(the_pc - start, map);
1282 }
1283 
1284 static void gen_special_dispatch(MacroAssembler* masm,
1285                                  const methodHandle& method,
1286                                  const BasicType* sig_bt,
1287                                  const VMRegPair* regs) {
1288   verify_oop_args(masm, method, sig_bt, regs);
1289   vmIntrinsics::ID iid = method->intrinsic_id();
1290 
1291   // Now write the args into the outgoing interpreter space
1292   bool     has_receiver   = false;
1293   Register receiver_reg   = noreg;
1294   int      member_arg_pos = -1;
1295   Register member_reg     = noreg;
1296   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1297   if (ref_kind != 0) {
1298     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1299     member_reg = r19;  // known to be free at this point
1300     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1301   } else if (iid == vmIntrinsics::_invokeBasic) {
1302     has_receiver = true;
1303   } else if (iid == vmIntrinsics::_linkToNative) {
1304     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1305     member_reg = r19;  // known to be free at this point
1306   } else {
1307     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1308   }
1309 
1310   if (member_reg != noreg) {
1311     // Load the member_arg into register, if necessary.
1312     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1313     VMReg r = regs[member_arg_pos].first();
1314     if (r->is_stack()) {
1315       __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1316     } else {
1317       // no data motion is needed
1318       member_reg = r->as_Register();
1319     }
1320   }
1321 
1322   if (has_receiver) {
1323     // Make sure the receiver is loaded into a register.
1324     assert(method->size_of_parameters() > 0, "oob");
1325     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1326     VMReg r = regs[0].first();
1327     assert(r->is_valid(), "bad receiver arg");
1328     if (r->is_stack()) {
1329       // Porting note:  This assumes that compiled calling conventions always
1330       // pass the receiver oop in a register.  If this is not true on some
1331       // platform, pick a temp and load the receiver from stack.
1332       fatal("receiver always in a register");
1333       receiver_reg = r2;  // known to be free at this point
1334       __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1335     } else {
1336       // no data motion is needed
1337       receiver_reg = r->as_Register();
1338     }
1339   }
1340 
1341   // Figure out which address we are really jumping to:
1342   MethodHandles::generate_method_handle_dispatch(masm, iid,
1343                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1344 }
1345 
1346 // ---------------------------------------------------------------------------
1347 // Generate a native wrapper for a given method.  The method takes arguments
1348 // in the Java compiled code convention, marshals them to the native
1349 // convention (handlizes oops, etc), transitions to native, makes the call,
1350 // returns to java state (possibly blocking), unhandlizes any result and
1351 // returns.
1352 //
1353 // Critical native functions are a shorthand for the use of
1354 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1355 // functions.  The wrapper is expected to unpack the arguments before
1356 // passing them to the callee. Critical native functions leave the state _in_Java,
1357 // since they block out GC.
1358 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1359 // block and the check for pending exceptions it's impossible for them
1360 // to be thrown.
1361 //
1362 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1363                                                 const methodHandle& method,
1364                                                 int compile_id,
1365                                                 BasicType* in_sig_bt,
1366                                                 VMRegPair* in_regs,
1367                                                 BasicType ret_type) {
1368   if (method->is_continuation_native_intrinsic()) {
1369     int exception_offset = -1;
1370     OopMapSet* oop_maps = new OopMapSet();
1371     int frame_complete = -1;
1372     int stack_slots = -1;
1373     int interpreted_entry_offset = -1;
1374     int vep_offset = -1;
1375     if (method->is_continuation_enter_intrinsic()) {
1376       gen_continuation_enter(masm,
1377                              method,
1378                              in_sig_bt,
1379                              in_regs,
1380                              exception_offset,
1381                              oop_maps,
1382                              frame_complete,
1383                              stack_slots,
1384                              interpreted_entry_offset,
1385                              vep_offset);
1386     } else if (method->is_continuation_yield_intrinsic()) {
1387       gen_continuation_yield(masm,
1388                              method,
1389                              in_sig_bt,
1390                              in_regs,
1391                              oop_maps,
1392                              frame_complete,
1393                              stack_slots,
1394                              vep_offset);
1395     } else {
1396       guarantee(false, "Unknown Continuation native intrinsic");
1397     }
1398 
1399 #ifdef ASSERT
1400     if (method->is_continuation_enter_intrinsic()) {
1401       assert(interpreted_entry_offset != -1, "Must be set");
1402       assert(exception_offset != -1,         "Must be set");
1403     } else {
1404       assert(interpreted_entry_offset == -1, "Must be unset");
1405       assert(exception_offset == -1,         "Must be unset");
1406     }
1407     assert(frame_complete != -1,    "Must be set");
1408     assert(stack_slots != -1,       "Must be set");
1409     assert(vep_offset != -1,        "Must be set");
1410 #endif
1411 
1412     __ flush();
1413     nmethod* nm = nmethod::new_native_nmethod(method,
1414                                               compile_id,
1415                                               masm->code(),
1416                                               vep_offset,
1417                                               frame_complete,
1418                                               stack_slots,
1419                                               in_ByteSize(-1),
1420                                               in_ByteSize(-1),
1421                                               oop_maps,
1422                                               exception_offset);
1423     if (nm == nullptr) return nm;
1424     if (method->is_continuation_enter_intrinsic()) {
1425       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1426     } else if (method->is_continuation_yield_intrinsic()) {
1427       _cont_doYield_stub = nm;
1428     } else {
1429       guarantee(false, "Unknown Continuation native intrinsic");
1430     }
1431     return nm;
1432   }
1433 
1434   if (method->is_method_handle_intrinsic()) {
1435     vmIntrinsics::ID iid = method->intrinsic_id();
1436     intptr_t start = (intptr_t)__ pc();
1437     int vep_offset = ((intptr_t)__ pc()) - start;
1438 
1439     // First instruction must be a nop as it may need to be patched on deoptimisation
1440     __ nop();
1441     gen_special_dispatch(masm,
1442                          method,
1443                          in_sig_bt,
1444                          in_regs);
1445     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1446     __ flush();
1447     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1448     return nmethod::new_native_nmethod(method,
1449                                        compile_id,
1450                                        masm->code(),
1451                                        vep_offset,
1452                                        frame_complete,
1453                                        stack_slots / VMRegImpl::slots_per_word,
1454                                        in_ByteSize(-1),
1455                                        in_ByteSize(-1),
1456                                        nullptr);
1457   }
1458   address native_func = method->native_function();
1459   assert(native_func != nullptr, "must have function");
1460 
1461   // An OopMap for lock (and class if static)
1462   OopMapSet *oop_maps = new OopMapSet();
1463   intptr_t start = (intptr_t)__ pc();
1464 
1465   // We have received a description of where all the java arg are located
1466   // on entry to the wrapper. We need to convert these args to where
1467   // the jni function will expect them. To figure out where they go
1468   // we convert the java signature to a C signature by inserting
1469   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1470 
1471   const int total_in_args = method->size_of_parameters();
1472   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1473 
1474   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1475   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1476   BasicType* in_elem_bt = nullptr;
1477 
1478   int argc = 0;
1479   out_sig_bt[argc++] = T_ADDRESS;
1480   if (method->is_static()) {
1481     out_sig_bt[argc++] = T_OBJECT;
1482   }
1483 
1484   for (int i = 0; i < total_in_args ; i++ ) {
1485     out_sig_bt[argc++] = in_sig_bt[i];
1486   }
1487 
1488   // Now figure out where the args must be stored and how much stack space
1489   // they require.
1490   int out_arg_slots;
1491   out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args);
1492 
1493   if (out_arg_slots < 0) {
1494     return nullptr;
1495   }
1496 
1497   // Compute framesize for the wrapper.  We need to handlize all oops in
1498   // incoming registers
1499 
1500   // Calculate the total number of stack slots we will need.
1501 
1502   // First count the abi requirement plus all of the outgoing args
1503   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1504 
1505   // Now the space for the inbound oop handle area
1506   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1507 
1508   int oop_handle_offset = stack_slots;
1509   stack_slots += total_save_slots;
1510 
1511   // Now any space we need for handlizing a klass if static method
1512 
1513   int klass_slot_offset = 0;
1514   int klass_offset = -1;
1515   int lock_slot_offset = 0;
1516   bool is_static = false;
1517 
1518   if (method->is_static()) {
1519     klass_slot_offset = stack_slots;
1520     stack_slots += VMRegImpl::slots_per_word;
1521     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1522     is_static = true;
1523   }
1524 
1525   // Plus a lock if needed
1526 
1527   if (method->is_synchronized()) {
1528     lock_slot_offset = stack_slots;
1529     stack_slots += VMRegImpl::slots_per_word;
1530   }
1531 
1532   // Now a place (+2) to save return values or temp during shuffling
1533   // + 4 for return address (which we own) and saved rfp
1534   stack_slots += 6;
1535 
1536   // Ok The space we have allocated will look like:
1537   //
1538   //
1539   // FP-> |                     |
1540   //      |---------------------|
1541   //      | 2 slots for moves   |
1542   //      |---------------------|
1543   //      | lock box (if sync)  |
1544   //      |---------------------| <- lock_slot_offset
1545   //      | klass (if static)   |
1546   //      |---------------------| <- klass_slot_offset
1547   //      | oopHandle area      |
1548   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1549   //      | outbound memory     |
1550   //      | based arguments     |
1551   //      |                     |
1552   //      |---------------------|
1553   //      |                     |
1554   // SP-> | out_preserved_slots |
1555   //
1556   //
1557 
1558 
1559   // Now compute actual number of stack words we need rounding to make
1560   // stack properly aligned.
1561   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1562 
1563   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1564 
1565   // First thing make an ic check to see if we should even be here
1566 
1567   // We are free to use all registers as temps without saving them and
1568   // restoring them except rfp. rfp is the only callee save register
1569   // as far as the interpreter and the compiler(s) are concerned.
1570 
1571   const Register receiver = j_rarg0;
1572 
1573   Label exception_pending;
1574 
1575   assert_different_registers(receiver, rscratch1);
1576   __ verify_oop(receiver);
1577   __ ic_check(8 /* end_alignment */);
1578 
1579   // Verified entry point must be aligned
1580   int vep_offset = ((intptr_t)__ pc()) - start;
1581 
1582   // If we have to make this method not-entrant we'll overwrite its
1583   // first instruction with a jump.  For this action to be legal we
1584   // must ensure that this first instruction is a B, BL, NOP, BKPT,
1585   // SVC, HVC, or SMC.  Make it a NOP.
1586   __ nop();
1587 
1588   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1589     Label L_skip_barrier;
1590     __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
1591     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
1592     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1593 
1594     __ bind(L_skip_barrier);
1595   }
1596 
1597   // Generate stack overflow check
1598   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1599 
1600   // Generate a new frame for the wrapper.
1601   __ enter();
1602   // -2 because return address is already present and so is saved rfp
1603   __ sub(sp, sp, stack_size - 2*wordSize);
1604 
1605   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1606   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1607 
1608   // Frame is now completed as far as size and linkage.
1609   int frame_complete = ((intptr_t)__ pc()) - start;
1610 
1611   // We use r20 as the oop handle for the receiver/klass
1612   // It is callee save so it survives the call to native
1613 
1614   const Register oop_handle_reg = r20;
1615 
1616   //
1617   // We immediately shuffle the arguments so that any vm call we have to
1618   // make from here on out (sync slow path, jvmti, etc.) we will have
1619   // captured the oops from our caller and have a valid oopMap for
1620   // them.
1621 
1622   // -----------------
1623   // The Grand Shuffle
1624 
1625   // The Java calling convention is either equal (linux) or denser (win64) than the
1626   // c calling convention. However the because of the jni_env argument the c calling
1627   // convention always has at least one more (and two for static) arguments than Java.
1628   // Therefore if we move the args from java -> c backwards then we will never have
1629   // a register->register conflict and we don't have to build a dependency graph
1630   // and figure out how to break any cycles.
1631   //
1632 
1633   // Record esp-based slot for receiver on stack for non-static methods
1634   int receiver_offset = -1;
1635 
1636   // This is a trick. We double the stack slots so we can claim
1637   // the oops in the caller's frame. Since we are sure to have
1638   // more args than the caller doubling is enough to make
1639   // sure we can capture all the incoming oop args from the
1640   // caller.
1641   //
1642   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1643 
1644   // Mark location of rfp (someday)
1645   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1646 
1647 
1648   int float_args = 0;
1649   int int_args = 0;
1650 
1651 #ifdef ASSERT
1652   bool reg_destroyed[Register::number_of_registers];
1653   bool freg_destroyed[FloatRegister::number_of_registers];
1654   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1655     reg_destroyed[r] = false;
1656   }
1657   for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1658     freg_destroyed[f] = false;
1659   }
1660 
1661 #endif /* ASSERT */
1662 
1663   // For JNI natives the incoming and outgoing registers are offset upwards.
1664   GrowableArray<int> arg_order(2 * total_in_args);
1665   VMRegPair tmp_vmreg;
1666   tmp_vmreg.set2(r19->as_VMReg());
1667 
1668   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1669     arg_order.push(i);
1670     arg_order.push(c_arg);
1671   }
1672 
1673   int temploc = -1;
1674   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1675     int i = arg_order.at(ai);
1676     int c_arg = arg_order.at(ai + 1);
1677     __ block_comment(err_msg("move %d -> %d", i, c_arg));
1678     assert(c_arg != -1 && i != -1, "wrong order");
1679 #ifdef ASSERT
1680     if (in_regs[i].first()->is_Register()) {
1681       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1682     } else if (in_regs[i].first()->is_FloatRegister()) {
1683       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1684     }
1685     if (out_regs[c_arg].first()->is_Register()) {
1686       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1687     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1688       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1689     }
1690 #endif /* ASSERT */
1691     switch (in_sig_bt[i]) {
1692       case T_ARRAY:
1693       case T_OBJECT:
1694         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1695                        ((i == 0) && (!is_static)),
1696                        &receiver_offset);
1697         int_args++;
1698         break;
1699       case T_VOID:
1700         break;
1701 
1702       case T_FLOAT:
1703         __ float_move(in_regs[i], out_regs[c_arg]);
1704         float_args++;
1705         break;
1706 
1707       case T_DOUBLE:
1708         assert( i + 1 < total_in_args &&
1709                 in_sig_bt[i + 1] == T_VOID &&
1710                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1711         __ double_move(in_regs[i], out_regs[c_arg]);
1712         float_args++;
1713         break;
1714 
1715       case T_LONG :
1716         __ long_move(in_regs[i], out_regs[c_arg]);
1717         int_args++;
1718         break;
1719 
1720       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1721 
1722       default:
1723         __ move32_64(in_regs[i], out_regs[c_arg]);
1724         int_args++;
1725     }
1726   }
1727 
1728   // point c_arg at the first arg that is already loaded in case we
1729   // need to spill before we call out
1730   int c_arg = total_c_args - total_in_args;
1731 
1732   // Pre-load a static method's oop into c_rarg1.
1733   if (method->is_static()) {
1734 
1735     //  load oop into a register
1736     __ movoop(c_rarg1,
1737               JNIHandles::make_local(method->method_holder()->java_mirror()));
1738 
1739     // Now handlize the static class mirror it's known not-null.
1740     __ str(c_rarg1, Address(sp, klass_offset));
1741     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1742 
1743     // Now get the handle
1744     __ lea(c_rarg1, Address(sp, klass_offset));
1745     // and protect the arg if we must spill
1746     c_arg--;
1747   }
1748 
1749   // Change state to native (we save the return address in the thread, since it might not
1750   // be pushed on the stack when we do a stack traversal).
1751   // We use the same pc/oopMap repeatedly when we call out
1752 
1753   Label native_return;
1754   __ set_last_Java_frame(sp, noreg, native_return, rscratch1);
1755 
1756   Label dtrace_method_entry, dtrace_method_entry_done;
1757   if (DTraceMethodProbes) {
1758     __ b(dtrace_method_entry);
1759     __ bind(dtrace_method_entry_done);
1760   }
1761 
1762   // RedefineClasses() tracing support for obsolete method entry
1763   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1764     // protect the args we've loaded
1765     save_args(masm, total_c_args, c_arg, out_regs);
1766     __ mov_metadata(c_rarg1, method());
1767     __ call_VM_leaf(
1768       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1769       rthread, c_rarg1);
1770     restore_args(masm, total_c_args, c_arg, out_regs);
1771   }
1772 
1773   // Lock a synchronized method
1774 
1775   // Register definitions used by locking and unlocking
1776 
1777   const Register swap_reg = r0;
1778   const Register obj_reg  = r19;  // Will contain the oop
1779   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1780   const Register old_hdr  = r13;  // value of old header at unlock time
1781   const Register lock_tmp = r14;  // Temporary used by lightweight_lock/unlock
1782   const Register tmp = lr;
1783 
1784   Label slow_path_lock;
1785   Label lock_done;
1786 
1787   if (method->is_synchronized()) {
1788     Label count;
1789     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1790 
1791     // Get the handle (the 2nd argument)
1792     __ mov(oop_handle_reg, c_rarg1);
1793 
1794     // Get address of the box
1795 
1796     __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1797 
1798     // Load the oop from the handle
1799     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1800 
1801     if (LockingMode == LM_MONITOR) {
1802       __ b(slow_path_lock);
1803     } else if (LockingMode == LM_LEGACY) {
1804       // Load (object->mark() | 1) into swap_reg %r0
1805       __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1806       __ orr(swap_reg, rscratch1, 1);
1807 
1808       // Save (object->mark() | 1) into BasicLock's displaced header
1809       __ str(swap_reg, Address(lock_reg, mark_word_offset));
1810 
1811       // src -> dest iff dest == r0 else r0 <- dest
1812       __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
1813 
1814       // Hmm should this move to the slow path code area???
1815 
1816       // Test if the oopMark is an obvious stack pointer, i.e.,
1817       //  1) (mark & 3) == 0, and
1818       //  2) sp <= mark < mark + os::pagesize()
1819       // These 3 tests can be done by evaluating the following
1820       // expression: ((mark - sp) & (3 - os::vm_page_size())),
1821       // assuming both stack pointer and pagesize have their
1822       // least significant 2 bits clear.
1823       // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
1824 
1825       __ sub(swap_reg, sp, swap_reg);
1826       __ neg(swap_reg, swap_reg);
1827       __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size());
1828 
1829       // Save the test result, for recursive case, the result is zero
1830       __ str(swap_reg, Address(lock_reg, mark_word_offset));
1831       __ br(Assembler::NE, slow_path_lock);
1832     } else {
1833       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1834       __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
1835     }
1836     __ bind(count);
1837     __ increment(Address(rthread, JavaThread::held_monitor_count_offset()));
1838 
1839     // Slow path will re-enter here
1840     __ bind(lock_done);
1841   }
1842 
1843 
1844   // Finally just about ready to make the JNI call
1845 
1846   // get JNIEnv* which is first argument to native
1847   __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1848 
1849   // Now set thread in native
1850   __ mov(rscratch1, _thread_in_native);
1851   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1852   __ stlrw(rscratch1, rscratch2);
1853 
1854   __ rt_call(native_func);
1855 
1856   __ bind(native_return);
1857 
1858   intptr_t return_pc = (intptr_t) __ pc();
1859   oop_maps->add_gc_map(return_pc - start, map);
1860 
1861   // Verify or restore cpu control state after JNI call
1862   __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1863 
1864   // Unpack native results.
1865   switch (ret_type) {
1866   case T_BOOLEAN: __ c2bool(r0);                     break;
1867   case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
1868   case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
1869   case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
1870   case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
1871   case T_DOUBLE :
1872   case T_FLOAT  :
1873     // Result is in v0 we'll save as needed
1874     break;
1875   case T_ARRAY:                 // Really a handle
1876   case T_OBJECT:                // Really a handle
1877       break; // can't de-handlize until after safepoint check
1878   case T_VOID: break;
1879   case T_LONG: break;
1880   default       : ShouldNotReachHere();
1881   }
1882 
1883   Label safepoint_in_progress, safepoint_in_progress_done;
1884   Label after_transition;
1885 
1886   // Switch thread to "native transition" state before reading the synchronization state.
1887   // This additional state is necessary because reading and testing the synchronization
1888   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1889   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1890   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1891   //     Thread A is resumed to finish this native method, but doesn't block here since it
1892   //     didn't see any synchronization is progress, and escapes.
1893   __ mov(rscratch1, _thread_in_native_trans);
1894 
1895   __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1896 
1897   // Force this write out before the read below
1898   if (!UseSystemMemoryBarrier) {
1899     __ dmb(Assembler::ISH);
1900   }
1901 
1902   __ verify_sve_vector_length();
1903 
1904   // Check for safepoint operation in progress and/or pending suspend requests.
1905   {
1906     // No need for acquire as Java threads always disarm themselves.
1907     __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* acquire */, false /* in_nmethod */);
1908     __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1909     __ cbnzw(rscratch1, safepoint_in_progress);
1910     __ bind(safepoint_in_progress_done);
1911   }
1912 
1913   // change thread state
1914   __ mov(rscratch1, _thread_in_Java);
1915   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1916   __ stlrw(rscratch1, rscratch2);
1917   __ bind(after_transition);
1918 
1919   Label reguard;
1920   Label reguard_done;
1921   __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1922   __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
1923   __ br(Assembler::EQ, reguard);
1924   __ bind(reguard_done);
1925 
1926   // native result if any is live
1927 
1928   // Unlock
1929   Label unlock_done;
1930   Label slow_path_unlock;
1931   if (method->is_synchronized()) {
1932 
1933     // Get locked oop from the handle we passed to jni
1934     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1935 
1936     Label done, not_recursive;
1937 
1938     if (LockingMode == LM_LEGACY) {
1939       // Simple recursive lock?
1940       __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1941       __ cbnz(rscratch1, not_recursive);
1942       __ decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
1943       __ b(done);
1944     }
1945 
1946     __ bind(not_recursive);
1947 
1948     // Must save r0 if if it is live now because cmpxchg must use it
1949     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1950       save_native_result(masm, ret_type, stack_slots);
1951     }
1952 
1953     if (LockingMode == LM_MONITOR) {
1954       __ b(slow_path_unlock);
1955     } else if (LockingMode == LM_LEGACY) {
1956       // get address of the stack lock
1957       __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1958       //  get old displaced header
1959       __ ldr(old_hdr, Address(r0, 0));
1960 
1961       // Atomic swap old header if oop still contains the stack lock
1962       Label count;
1963       __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock);
1964       __ bind(count);
1965       __ decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
1966     } else {
1967       assert(LockingMode == LM_LIGHTWEIGHT, "");
1968       __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
1969       __ decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
1970     }
1971 
1972     // slow path re-enters here
1973     __ bind(unlock_done);
1974     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1975       restore_native_result(masm, ret_type, stack_slots);
1976     }
1977 
1978     __ bind(done);
1979   }
1980 
1981   Label dtrace_method_exit, dtrace_method_exit_done;
1982   if (DTraceMethodProbes) {
1983     __ b(dtrace_method_exit);
1984     __ bind(dtrace_method_exit_done);
1985   }
1986 
1987   __ reset_last_Java_frame(false);
1988 
1989   // Unbox oop result, e.g. JNIHandles::resolve result.
1990   if (is_reference_type(ret_type)) {
1991     __ resolve_jobject(r0, r1, r2);
1992   }
1993 
1994   if (CheckJNICalls) {
1995     // clear_pending_jni_exception_check
1996     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1997   }
1998 
1999   // reset handle block
2000   __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
2001   __ str(zr, Address(r2, JNIHandleBlock::top_offset()));
2002 
2003   __ leave();
2004 
2005   // Any exception pending?
2006   __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2007   __ cbnz(rscratch1, exception_pending);
2008 
2009   // We're done
2010   __ ret(lr);
2011 
2012   // Unexpected paths are out of line and go here
2013 
2014   // forward the exception
2015   __ bind(exception_pending);
2016 
2017   // and forward the exception
2018   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2019 
2020   // Slow path locking & unlocking
2021   if (method->is_synchronized()) {
2022 
2023     __ block_comment("Slow path lock {");
2024     __ bind(slow_path_lock);
2025 
2026     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2027     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2028 
2029     // protect the args we've loaded
2030     save_args(masm, total_c_args, c_arg, out_regs);
2031 
2032     __ mov(c_rarg0, obj_reg);
2033     __ mov(c_rarg1, lock_reg);
2034     __ mov(c_rarg2, rthread);
2035 
2036     // Not a leaf but we have last_Java_frame setup as we want
2037     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2038     restore_args(masm, total_c_args, c_arg, out_regs);
2039 
2040 #ifdef ASSERT
2041     { Label L;
2042       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2043       __ cbz(rscratch1, L);
2044       __ stop("no pending exception allowed on exit from monitorenter");
2045       __ bind(L);
2046     }
2047 #endif
2048     __ b(lock_done);
2049 
2050     __ block_comment("} Slow path lock");
2051 
2052     __ block_comment("Slow path unlock {");
2053     __ bind(slow_path_unlock);
2054 
2055     // If we haven't already saved the native result we must save it now as xmm registers
2056     // are still exposed.
2057 
2058     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2059       save_native_result(masm, ret_type, stack_slots);
2060     }
2061 
2062     __ mov(c_rarg2, rthread);
2063     __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2064     __ mov(c_rarg0, obj_reg);
2065 
2066     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2067     // NOTE that obj_reg == r19 currently
2068     __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2069     __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2070 
2071     __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
2072 
2073 #ifdef ASSERT
2074     {
2075       Label L;
2076       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2077       __ cbz(rscratch1, L);
2078       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2079       __ bind(L);
2080     }
2081 #endif /* ASSERT */
2082 
2083     __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2084 
2085     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2086       restore_native_result(masm, ret_type, stack_slots);
2087     }
2088     __ b(unlock_done);
2089 
2090     __ block_comment("} Slow path unlock");
2091 
2092   } // synchronized
2093 
2094   // SLOW PATH Reguard the stack if needed
2095 
2096   __ bind(reguard);
2097   save_native_result(masm, ret_type, stack_slots);
2098   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2099   restore_native_result(masm, ret_type, stack_slots);
2100   // and continue
2101   __ b(reguard_done);
2102 
2103   // SLOW PATH safepoint
2104   {
2105     __ block_comment("safepoint {");
2106     __ bind(safepoint_in_progress);
2107 
2108     // Don't use call_VM as it will see a possible pending exception and forward it
2109     // and never return here preventing us from clearing _last_native_pc down below.
2110     //
2111     save_native_result(masm, ret_type, stack_slots);
2112     __ mov(c_rarg0, rthread);
2113 #ifndef PRODUCT
2114   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2115 #endif
2116     __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2117     __ blr(rscratch1);
2118 
2119     // Restore any method result value
2120     restore_native_result(masm, ret_type, stack_slots);
2121 
2122     __ b(safepoint_in_progress_done);
2123     __ block_comment("} safepoint");
2124   }
2125 
2126   // SLOW PATH dtrace support
2127   if (DTraceMethodProbes) {
2128     {
2129       __ block_comment("dtrace entry {");
2130       __ bind(dtrace_method_entry);
2131 
2132       // We have all of the arguments setup at this point. We must not touch any register
2133       // argument registers at this point (what if we save/restore them there are no oop?
2134 
2135       save_args(masm, total_c_args, c_arg, out_regs);
2136       __ mov_metadata(c_rarg1, method());
2137       __ call_VM_leaf(
2138         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2139         rthread, c_rarg1);
2140       restore_args(masm, total_c_args, c_arg, out_regs);
2141       __ b(dtrace_method_entry_done);
2142       __ block_comment("} dtrace entry");
2143     }
2144 
2145     {
2146       __ block_comment("dtrace exit {");
2147       __ bind(dtrace_method_exit);
2148       save_native_result(masm, ret_type, stack_slots);
2149       __ mov_metadata(c_rarg1, method());
2150       __ call_VM_leaf(
2151         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2152         rthread, c_rarg1);
2153       restore_native_result(masm, ret_type, stack_slots);
2154       __ b(dtrace_method_exit_done);
2155       __ block_comment("} dtrace exit");
2156     }
2157   }
2158 
2159   __ flush();
2160 
2161   nmethod *nm = nmethod::new_native_nmethod(method,
2162                                             compile_id,
2163                                             masm->code(),
2164                                             vep_offset,
2165                                             frame_complete,
2166                                             stack_slots / VMRegImpl::slots_per_word,
2167                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2168                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2169                                             oop_maps);
2170 
2171   return nm;
2172 }
2173 
2174 // this function returns the adjust size (in number of words) to a c2i adapter
2175 // activation for use during deoptimization
2176 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2177   assert(callee_locals >= callee_parameters,
2178           "test and remove; got more parms than locals");
2179   if (callee_locals < callee_parameters)
2180     return 0;                   // No adjustment for negative locals
2181   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2182   // diff is counted in stack words
2183   return align_up(diff, 2);
2184 }
2185 
2186 
2187 //------------------------------generate_deopt_blob----------------------------
2188 void SharedRuntime::generate_deopt_blob() {
2189   // Allocate space for the code
2190   ResourceMark rm;
2191   // Setup code generation tools
2192   int pad = 0;
2193 #if INCLUDE_JVMCI
2194   if (EnableJVMCI) {
2195     pad += 512; // Increase the buffer size when compiling for JVMCI
2196   }
2197 #endif
2198   const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2199   CodeBuffer buffer(name, 2048+pad, 1024);
2200   MacroAssembler* masm = new MacroAssembler(&buffer);
2201   int frame_size_in_words;
2202   OopMap* map = nullptr;
2203   OopMapSet *oop_maps = new OopMapSet();
2204   RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0);
2205 
2206   // -------------
2207   // This code enters when returning to a de-optimized nmethod.  A return
2208   // address has been pushed on the stack, and return values are in
2209   // registers.
2210   // If we are doing a normal deopt then we were called from the patched
2211   // nmethod from the point we returned to the nmethod. So the return
2212   // address on the stack is wrong by NativeCall::instruction_size
2213   // We will adjust the value so it looks like we have the original return
2214   // address on the stack (like when we eagerly deoptimized).
2215   // In the case of an exception pending when deoptimizing, we enter
2216   // with a return address on the stack that points after the call we patched
2217   // into the exception handler. We have the following register state from,
2218   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2219   //    r0: exception oop
2220   //    r19: exception handler
2221   //    r3: throwing pc
2222   // So in this case we simply jam r3 into the useless return address and
2223   // the stack looks just like we want.
2224   //
2225   // At this point we need to de-opt.  We save the argument return
2226   // registers.  We call the first C routine, fetch_unroll_info().  This
2227   // routine captures the return values and returns a structure which
2228   // describes the current frame size and the sizes of all replacement frames.
2229   // The current frame is compiled code and may contain many inlined
2230   // functions, each with their own JVM state.  We pop the current frame, then
2231   // push all the new frames.  Then we call the C routine unpack_frames() to
2232   // populate these frames.  Finally unpack_frames() returns us the new target
2233   // address.  Notice that callee-save registers are BLOWN here; they have
2234   // already been captured in the vframeArray at the time the return PC was
2235   // patched.
2236   address start = __ pc();
2237   Label cont;
2238 
2239   // Prolog for non exception case!
2240 
2241   // Save everything in sight.
2242   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2243 
2244   // Normal deoptimization.  Save exec mode for unpack_frames.
2245   __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2246   __ b(cont);
2247 
2248   int reexecute_offset = __ pc() - start;
2249 #if INCLUDE_JVMCI && !defined(COMPILER1)
2250   if (UseJVMCICompiler) {
2251     // JVMCI does not use this kind of deoptimization
2252     __ should_not_reach_here();
2253   }
2254 #endif
2255 
2256   // Reexecute case
2257   // return address is the pc describes what bci to do re-execute at
2258 
2259   // No need to update map as each call to save_live_registers will produce identical oopmap
2260   (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2261 
2262   __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2263   __ b(cont);
2264 
2265 #if INCLUDE_JVMCI
2266   Label after_fetch_unroll_info_call;
2267   int implicit_exception_uncommon_trap_offset = 0;
2268   int uncommon_trap_offset = 0;
2269 
2270   if (EnableJVMCI) {
2271     implicit_exception_uncommon_trap_offset = __ pc() - start;
2272 
2273     __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2274     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2275 
2276     uncommon_trap_offset = __ pc() - start;
2277 
2278     // Save everything in sight.
2279     reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2280     // fetch_unroll_info needs to call last_java_frame()
2281     Label retaddr;
2282     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2283 
2284     __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2285     __ movw(rscratch1, -1);
2286     __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2287 
2288     __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2289     __ mov(c_rarg0, rthread);
2290     __ movw(c_rarg2, rcpool); // exec mode
2291     __ lea(rscratch1,
2292            RuntimeAddress(CAST_FROM_FN_PTR(address,
2293                                            Deoptimization::uncommon_trap)));
2294     __ blr(rscratch1);
2295     __ bind(retaddr);
2296     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2297 
2298     __ reset_last_Java_frame(false);
2299 
2300     __ b(after_fetch_unroll_info_call);
2301   } // EnableJVMCI
2302 #endif // INCLUDE_JVMCI
2303 
2304   int exception_offset = __ pc() - start;
2305 
2306   // Prolog for exception case
2307 
2308   // all registers are dead at this entry point, except for r0, and
2309   // r3 which contain the exception oop and exception pc
2310   // respectively.  Set them in TLS and fall thru to the
2311   // unpack_with_exception_in_tls entry point.
2312 
2313   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2314   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2315 
2316   int exception_in_tls_offset = __ pc() - start;
2317 
2318   // new implementation because exception oop is now passed in JavaThread
2319 
2320   // Prolog for exception case
2321   // All registers must be preserved because they might be used by LinearScan
2322   // Exceptiop oop and throwing PC are passed in JavaThread
2323   // tos: stack at point of call to method that threw the exception (i.e. only
2324   // args are on the stack, no return address)
2325 
2326   // The return address pushed by save_live_registers will be patched
2327   // later with the throwing pc. The correct value is not available
2328   // now because loading it from memory would destroy registers.
2329 
2330   // NB: The SP at this point must be the SP of the method that is
2331   // being deoptimized.  Deoptimization assumes that the frame created
2332   // here by save_live_registers is immediately below the method's SP.
2333   // This is a somewhat fragile mechanism.
2334 
2335   // Save everything in sight.
2336   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2337 
2338   // Now it is safe to overwrite any register
2339 
2340   // Deopt during an exception.  Save exec mode for unpack_frames.
2341   __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2342 
2343   // load throwing pc from JavaThread and patch it as the return address
2344   // of the current frame. Then clear the field in JavaThread
2345   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2346   __ protect_return_address(r3);
2347   __ str(r3, Address(rfp, wordSize));
2348   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2349 
2350 #ifdef ASSERT
2351   // verify that there is really an exception oop in JavaThread
2352   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2353   __ verify_oop(r0);
2354 
2355   // verify that there is no pending exception
2356   Label no_pending_exception;
2357   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2358   __ cbz(rscratch1, no_pending_exception);
2359   __ stop("must not have pending exception here");
2360   __ bind(no_pending_exception);
2361 #endif
2362 
2363   __ bind(cont);
2364 
2365   // Call C code.  Need thread and this frame, but NOT official VM entry
2366   // crud.  We cannot block on this call, no GC can happen.
2367   //
2368   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2369 
2370   // fetch_unroll_info needs to call last_java_frame().
2371 
2372   Label retaddr;
2373   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2374 #ifdef ASSERT
2375   { Label L;
2376     __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset()));
2377     __ cbz(rscratch1, L);
2378     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2379     __ bind(L);
2380   }
2381 #endif // ASSERT
2382   __ mov(c_rarg0, rthread);
2383   __ mov(c_rarg1, rcpool);
2384   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2385   __ blr(rscratch1);
2386   __ bind(retaddr);
2387 
2388   // Need to have an oopmap that tells fetch_unroll_info where to
2389   // find any register it might need.
2390   oop_maps->add_gc_map(__ pc() - start, map);
2391 
2392   __ reset_last_Java_frame(false);
2393 
2394 #if INCLUDE_JVMCI
2395   if (EnableJVMCI) {
2396     __ bind(after_fetch_unroll_info_call);
2397   }
2398 #endif
2399 
2400   // Load UnrollBlock* into r5
2401   __ mov(r5, r0);
2402 
2403   __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset()));
2404    Label noException;
2405   __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2406   __ br(Assembler::NE, noException);
2407   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2408   // QQQ this is useless it was null above
2409   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2410   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2411   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2412 
2413   __ verify_oop(r0);
2414 
2415   // Overwrite the result registers with the exception results.
2416   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2417   // I think this is useless
2418   // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2419 
2420   __ bind(noException);
2421 
2422   // Only register save data is on the stack.
2423   // Now restore the result registers.  Everything else is either dead
2424   // or captured in the vframeArray.
2425 
2426   // Restore fp result register
2427   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2428   // Restore integer result register
2429   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2430 
2431   // Pop all of the register save area off the stack
2432   __ add(sp, sp, frame_size_in_words * wordSize);
2433 
2434   // All of the register save area has been popped of the stack. Only the
2435   // return address remains.
2436 
2437   // Pop all the frames we must move/replace.
2438   //
2439   // Frame picture (youngest to oldest)
2440   // 1: self-frame (no frame link)
2441   // 2: deopting frame  (no frame link)
2442   // 3: caller of deopting frame (could be compiled/interpreted).
2443   //
2444   // Note: by leaving the return address of self-frame on the stack
2445   // and using the size of frame 2 to adjust the stack
2446   // when we are done the return to frame 3 will still be on the stack.
2447 
2448   // Pop deoptimized frame
2449   __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2450   __ sub(r2, r2, 2 * wordSize);
2451   __ add(sp, sp, r2);
2452   __ ldp(rfp, zr, __ post(sp, 2 * wordSize));
2453 
2454 #ifdef ASSERT
2455   // Compilers generate code that bang the stack by as much as the
2456   // interpreter would need. So this stack banging should never
2457   // trigger a fault. Verify that it does not on non product builds.
2458   __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2459   __ bang_stack_size(r19, r2);
2460 #endif
2461   // Load address of array of frame pcs into r2
2462   __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset()));
2463 
2464   // Trash the old pc
2465   // __ addptr(sp, wordSize);  FIXME ????
2466 
2467   // Load address of array of frame sizes into r4
2468   __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset()));
2469 
2470   // Load counter into r3
2471   __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset()));
2472 
2473   // Now adjust the caller's stack to make up for the extra locals
2474   // but record the original sp so that we can save it in the skeletal interpreter
2475   // frame and the stack walking of interpreter_sender will get the unextended sp
2476   // value and not the "real" sp value.
2477 
2478   const Register sender_sp = r6;
2479 
2480   __ mov(sender_sp, sp);
2481   __ ldrw(r19, Address(r5,
2482                        Deoptimization::UnrollBlock::
2483                        caller_adjustment_offset()));
2484   __ sub(sp, sp, r19);
2485 
2486   // Push interpreter frames in a loop
2487   __ mov(rscratch1, (uint64_t)0xDEADDEAD);        // Make a recognizable pattern
2488   __ mov(rscratch2, rscratch1);
2489   Label loop;
2490   __ bind(loop);
2491   __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2492   __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2493   __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2494   __ enter();                           // Save old & set new fp
2495   __ sub(sp, sp, r19);                  // Prolog
2496   // This value is corrected by layout_activation_impl
2497   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2498   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2499   __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2500   __ sub(r3, r3, 1);                   // Decrement counter
2501   __ cbnz(r3, loop);
2502 
2503     // Re-push self-frame
2504   __ ldr(lr, Address(r2));
2505   __ enter();
2506 
2507   // Allocate a full sized register save area.  We subtract 2 because
2508   // enter() just pushed 2 words
2509   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2510 
2511   // Restore frame locals after moving the frame
2512   __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2513   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2514 
2515   // Call C code.  Need thread but NOT official VM entry
2516   // crud.  We cannot block on this call, no GC can happen.  Call should
2517   // restore return values to their stack-slots with the new SP.
2518   //
2519   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2520 
2521   // Use rfp because the frames look interpreted now
2522   // Don't need the precise return PC here, just precise enough to point into this code blob.
2523   address the_pc = __ pc();
2524   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2525 
2526   __ mov(c_rarg0, rthread);
2527   __ movw(c_rarg1, rcpool); // second arg: exec_mode
2528   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2529   __ blr(rscratch1);
2530 
2531   // Set an oopmap for the call site
2532   // Use the same PC we used for the last java frame
2533   oop_maps->add_gc_map(the_pc - start,
2534                        new OopMap( frame_size_in_words, 0 ));
2535 
2536   // Clear fp AND pc
2537   __ reset_last_Java_frame(true);
2538 
2539   // Collect return values
2540   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2541   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2542   // I think this is useless (throwing pc?)
2543   // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2544 
2545   // Pop self-frame.
2546   __ leave();                           // Epilog
2547 
2548   // Jump to interpreter
2549   __ ret(lr);
2550 
2551   // Make sure all code is generated
2552   masm->flush();
2553 
2554   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2555   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2556 #if INCLUDE_JVMCI
2557   if (EnableJVMCI) {
2558     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2559     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2560   }
2561 #endif
2562 }
2563 
2564 // Number of stack slots between incoming argument block and the start of
2565 // a new frame.  The PROLOG must add this many slots to the stack.  The
2566 // EPILOG must remove this many slots. aarch64 needs two slots for
2567 // return address and fp.
2568 // TODO think this is correct but check
2569 uint SharedRuntime::in_preserve_stack_slots() {
2570   return 4;
2571 }
2572 
2573 uint SharedRuntime::out_preserve_stack_slots() {
2574   return 0;
2575 }
2576 
2577 
2578 //------------------------------generate_handler_blob------
2579 //
2580 // Generate a special Compile2Runtime blob that saves all registers,
2581 // and setup oopmap.
2582 //
2583 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2584   assert(is_polling_page_id(id), "expected a polling page stub id");
2585 
2586   ResourceMark rm;
2587   OopMapSet *oop_maps = new OopMapSet();
2588   OopMap* map;
2589 
2590   // Allocate space for the code.  Setup code generation tools.
2591   const char* name = SharedRuntime::stub_name(id);
2592   CodeBuffer buffer(name, 2048, 1024);
2593   MacroAssembler* masm = new MacroAssembler(&buffer);
2594 
2595   address start   = __ pc();
2596   address call_pc = nullptr;
2597   int frame_size_in_words;
2598   bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2599   RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */);
2600 
2601   // When the signal occurred, the LR was either signed and stored on the stack (in which
2602   // case it will be restored from the stack before being used) or unsigned and not stored
2603   // on the stack. Stipping ensures we get the right value.
2604   __ strip_return_address();
2605 
2606   // Save Integer and Float registers.
2607   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2608 
2609   // The following is basically a call_VM.  However, we need the precise
2610   // address of the call in order to generate an oopmap. Hence, we do all the
2611   // work ourselves.
2612 
2613   Label retaddr;
2614   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2615 
2616   // The return address must always be correct so that frame constructor never
2617   // sees an invalid pc.
2618 
2619   if (!cause_return) {
2620     // overwrite the return address pushed by save_live_registers
2621     // Additionally, r20 is a callee-saved register so we can look at
2622     // it later to determine if someone changed the return address for
2623     // us!
2624     __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset()));
2625     __ protect_return_address(r20);
2626     __ str(r20, Address(rfp, wordSize));
2627   }
2628 
2629   // Do the call
2630   __ mov(c_rarg0, rthread);
2631   __ lea(rscratch1, RuntimeAddress(call_ptr));
2632   __ blr(rscratch1);
2633   __ bind(retaddr);
2634 
2635   // Set an oopmap for the call site.  This oopmap will map all
2636   // oop-registers and debug-info registers as callee-saved.  This
2637   // will allow deoptimization at this safepoint to find all possible
2638   // debug-info recordings, as well as let GC find all oops.
2639 
2640   oop_maps->add_gc_map( __ pc() - start, map);
2641 
2642   Label noException;
2643 
2644   __ reset_last_Java_frame(false);
2645 
2646   __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2647 
2648   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2649   __ cbz(rscratch1, noException);
2650 
2651   // Exception pending
2652 
2653   reg_save.restore_live_registers(masm);
2654 
2655   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2656 
2657   // No exception case
2658   __ bind(noException);
2659 
2660   Label no_adjust, bail;
2661   if (!cause_return) {
2662     // If our stashed return pc was modified by the runtime we avoid touching it
2663     __ ldr(rscratch1, Address(rfp, wordSize));
2664     __ cmp(r20, rscratch1);
2665     __ br(Assembler::NE, no_adjust);
2666     __ authenticate_return_address(r20);
2667 
2668 #ifdef ASSERT
2669     // Verify the correct encoding of the poll we're about to skip.
2670     // See NativeInstruction::is_ldrw_to_zr()
2671     __ ldrw(rscratch1, Address(r20));
2672     __ ubfx(rscratch2, rscratch1, 22, 10);
2673     __ cmpw(rscratch2, 0b1011100101);
2674     __ br(Assembler::NE, bail);
2675     __ ubfx(rscratch2, rscratch1, 0, 5);
2676     __ cmpw(rscratch2, 0b11111);
2677     __ br(Assembler::NE, bail);
2678 #endif
2679     // Adjust return pc forward to step over the safepoint poll instruction
2680     __ add(r20, r20, NativeInstruction::instruction_size);
2681     __ protect_return_address(r20);
2682     __ str(r20, Address(rfp, wordSize));
2683   }
2684 
2685   __ bind(no_adjust);
2686   // Normal exit, restore registers and exit.
2687   reg_save.restore_live_registers(masm);
2688 
2689   __ ret(lr);
2690 
2691 #ifdef ASSERT
2692   __ bind(bail);
2693   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2694 #endif
2695 
2696   // Make sure all code is generated
2697   masm->flush();
2698 
2699   // Fill-out other meta info
2700   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2701 }
2702 
2703 //
2704 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2705 //
2706 // Generate a stub that calls into vm to find out the proper destination
2707 // of a java call. All the argument registers are live at this point
2708 // but since this is generic code we don't know what they are and the caller
2709 // must do any gc of the args.
2710 //
2711 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
2712   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2713   assert(is_resolve_id(id), "expected a resolve stub id");
2714 
2715   // allocate space for the code
2716   ResourceMark rm;
2717 
2718   const char* name = SharedRuntime::stub_name(id);
2719   CodeBuffer buffer(name, 1000, 512);
2720   MacroAssembler* masm                = new MacroAssembler(&buffer);
2721 
2722   int frame_size_in_words;
2723   RegisterSaver reg_save(false /* save_vectors */);
2724 
2725   OopMapSet *oop_maps = new OopMapSet();
2726   OopMap* map = nullptr;
2727 
2728   int start = __ offset();
2729 
2730   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2731 
2732   int frame_complete = __ offset();
2733 
2734   {
2735     Label retaddr;
2736     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2737 
2738     __ mov(c_rarg0, rthread);
2739     __ lea(rscratch1, RuntimeAddress(destination));
2740 
2741     __ blr(rscratch1);
2742     __ bind(retaddr);
2743   }
2744 
2745   // Set an oopmap for the call site.
2746   // We need this not only for callee-saved registers, but also for volatile
2747   // registers that the compiler might be keeping live across a safepoint.
2748 
2749   oop_maps->add_gc_map( __ offset() - start, map);
2750 
2751   // r0 contains the address we are going to jump to assuming no exception got installed
2752 
2753   // clear last_Java_sp
2754   __ reset_last_Java_frame(false);
2755   // check for pending exceptions
2756   Label pending;
2757   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2758   __ cbnz(rscratch1, pending);
2759 
2760   // get the returned Method*
2761   __ get_vm_result_2(rmethod, rthread);
2762   __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod)));
2763 
2764   // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2765   __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes()));
2766   reg_save.restore_live_registers(masm);
2767 
2768   // We are back to the original state on entry and ready to go.
2769 
2770   __ br(rscratch1);
2771 
2772   // Pending exception after the safepoint
2773 
2774   __ bind(pending);
2775 
2776   reg_save.restore_live_registers(masm);
2777 
2778   // exception pending => remove activation and forward to exception handler
2779 
2780   __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
2781 
2782   __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
2783   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2784 
2785   // -------------
2786   // make sure all code is generated
2787   masm->flush();
2788 
2789   // return the  blob
2790   // frame_size_words or bytes??
2791   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2792 }
2793 
2794 // Continuation point for throwing of implicit exceptions that are
2795 // not handled in the current activation. Fabricates an exception
2796 // oop and initiates normal exception dispatching in this
2797 // frame. Since we need to preserve callee-saved values (currently
2798 // only for C2, but done for C1 as well) we need a callee-saved oop
2799 // map and therefore have to make these stubs into RuntimeStubs
2800 // rather than BufferBlobs.  If the compiler needs all registers to
2801 // be preserved between the fault point and the exception handler
2802 // then it must assume responsibility for that in
2803 // AbstractCompiler::continuation_for_implicit_null_exception or
2804 // continuation_for_implicit_division_by_zero_exception. All other
2805 // implicit exceptions (e.g., NullPointerException or
2806 // AbstractMethodError on entry) are either at call sites or
2807 // otherwise assume that stack unwinding will be initiated, so
2808 // caller saved registers were assumed volatile in the compiler.
2809 
2810 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
2811   assert(is_throw_id(id), "expected a throw stub id");
2812 
2813   const char* name = SharedRuntime::stub_name(id);
2814 
2815   // Information about frame layout at time of blocking runtime call.
2816   // Note that we only have to preserve callee-saved registers since
2817   // the compilers are responsible for supplying a continuation point
2818   // if they expect all registers to be preserved.
2819   // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0
2820   enum layout {
2821     rfp_off = 0,
2822     rfp_off2,
2823     return_off,
2824     return_off2,
2825     framesize // inclusive of return address
2826   };
2827 
2828   int insts_size = 512;
2829   int locs_size  = 64;
2830 
2831   ResourceMark rm;
2832   const char* timer_msg = "SharedRuntime generate_throw_exception";
2833   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2834 
2835   CodeBuffer code(name, insts_size, locs_size);
2836   OopMapSet* oop_maps  = new OopMapSet();
2837   MacroAssembler* masm = new MacroAssembler(&code);
2838 
2839   address start = __ pc();
2840 
2841   // This is an inlined and slightly modified version of call_VM
2842   // which has the ability to fetch the return PC out of
2843   // thread-local storage and also sets up last_Java_sp slightly
2844   // differently than the real call_VM
2845 
2846   __ enter(); // Save FP and LR before call
2847 
2848   assert(is_even(framesize/2), "sp not 16-byte aligned");
2849 
2850   // lr and fp are already in place
2851   __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog
2852 
2853   int frame_complete = __ pc() - start;
2854 
2855   // Set up last_Java_sp and last_Java_fp
2856   address the_pc = __ pc();
2857   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2858 
2859   __ mov(c_rarg0, rthread);
2860   BLOCK_COMMENT("call runtime_entry");
2861   __ mov(rscratch1, runtime_entry);
2862   __ blr(rscratch1);
2863 
2864   // Generate oop map
2865   OopMap* map = new OopMap(framesize, 0);
2866 
2867   oop_maps->add_gc_map(the_pc - start, map);
2868 
2869   __ reset_last_Java_frame(true);
2870 
2871   // Reinitialize the ptrue predicate register, in case the external runtime
2872   // call clobbers ptrue reg, as we may return to SVE compiled code.
2873   __ reinitialize_ptrue();
2874 
2875   __ leave();
2876 
2877   // check for pending exceptions
2878 #ifdef ASSERT
2879   Label L;
2880   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2881   __ cbnz(rscratch1, L);
2882   __ should_not_reach_here();
2883   __ bind(L);
2884 #endif // ASSERT
2885   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2886 
2887   // codeBlob framesize is in words (not VMRegImpl::slot_size)
2888   RuntimeStub* stub =
2889     RuntimeStub::new_runtime_stub(name,
2890                                   &code,
2891                                   frame_complete,
2892                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2893                                   oop_maps, false);
2894   return stub;
2895 }
2896 
2897 #if INCLUDE_JFR
2898 
2899 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) {
2900   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2901   __ mov(c_rarg0, thread);
2902 }
2903 
2904 // The handle is dereferenced through a load barrier.
2905 static void jfr_epilogue(MacroAssembler* masm) {
2906   __ reset_last_Java_frame(true);
2907 }
2908 
2909 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2910 // It returns a jobject handle to the event writer.
2911 // The handle is dereferenced and the return value is the event writer oop.
2912 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2913   enum layout {
2914     rbp_off,
2915     rbpH_off,
2916     return_off,
2917     return_off2,
2918     framesize // inclusive of return address
2919   };
2920 
2921   int insts_size = 1024;
2922   int locs_size = 64;
2923   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
2924   CodeBuffer code(name, insts_size, locs_size);
2925   OopMapSet* oop_maps = new OopMapSet();
2926   MacroAssembler* masm = new MacroAssembler(&code);
2927 
2928   address start = __ pc();
2929   __ enter();
2930   int frame_complete = __ pc() - start;
2931   address the_pc = __ pc();
2932   jfr_prologue(the_pc, masm, rthread);
2933   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2934   jfr_epilogue(masm);
2935   __ resolve_global_jobject(r0, rscratch1, rscratch2);
2936   __ leave();
2937   __ ret(lr);
2938 
2939   OopMap* map = new OopMap(framesize, 1); // rfp
2940   oop_maps->add_gc_map(the_pc - start, map);
2941 
2942   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2943     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2944                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2945                                   oop_maps, false);
2946   return stub;
2947 }
2948 
2949 // For c2: call to return a leased buffer.
2950 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2951   enum layout {
2952     rbp_off,
2953     rbpH_off,
2954     return_off,
2955     return_off2,
2956     framesize // inclusive of return address
2957   };
2958 
2959   int insts_size = 1024;
2960   int locs_size = 64;
2961 
2962   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
2963   CodeBuffer code(name, insts_size, locs_size);
2964   OopMapSet* oop_maps = new OopMapSet();
2965   MacroAssembler* masm = new MacroAssembler(&code);
2966 
2967   address start = __ pc();
2968   __ enter();
2969   int frame_complete = __ pc() - start;
2970   address the_pc = __ pc();
2971   jfr_prologue(the_pc, masm, rthread);
2972   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2973   jfr_epilogue(masm);
2974 
2975   __ leave();
2976   __ ret(lr);
2977 
2978   OopMap* map = new OopMap(framesize, 1); // rfp
2979   oop_maps->add_gc_map(the_pc - start, map);
2980 
2981   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2982     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2983                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2984                                   oop_maps, false);
2985   return stub;
2986 }
2987 
2988 #endif // INCLUDE_JFR