1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/interp_masm.hpp" 38 #include "logging/log.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/method.inline.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/continuation.hpp" 45 #include "runtime/continuationEntry.inline.hpp" 46 #include "runtime/globals.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "runtime/signature.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/vframeArray.hpp" 53 #include "utilities/align.hpp" 54 #include "utilities/formatBuffer.hpp" 55 #include "vmreg_aarch64.inline.hpp" 56 #ifdef COMPILER1 57 #include "c1/c1_Runtime1.hpp" 58 #endif 59 #ifdef COMPILER2 60 #include "adfiles/ad_aarch64.hpp" 61 #include "opto/runtime.hpp" 62 #endif 63 #if INCLUDE_JVMCI 64 #include "jvmci/jvmciJavaClasses.hpp" 65 #endif 66 67 #define __ masm-> 68 69 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 70 71 class SimpleRuntimeFrame { 72 73 public: 74 75 // Most of the runtime stubs have this simple frame layout. 76 // This class exists to make the layout shared in one place. 77 // Offsets are for compiler stack slots, which are jints. 78 enum layout { 79 // The frame sender code expects that rbp will be in the "natural" place and 80 // will override any oopMap setting for it. We must therefore force the layout 81 // so that it agrees with the frame sender code. 82 // we don't expect any arg reg save area so aarch64 asserts that 83 // frame::arg_reg_save_area_bytes == 0 84 rfp_off = 0, 85 rfp_off2, 86 return_off, return_off2, 87 framesize 88 }; 89 }; 90 91 // FIXME -- this is used by C1 92 class RegisterSaver { 93 const bool _save_vectors; 94 public: 95 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 96 97 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 98 void restore_live_registers(MacroAssembler* masm); 99 100 // Offsets into the register save area 101 // Used by deoptimization when it is managing result register 102 // values on its own 103 104 int reg_offset_in_bytes(Register r); 105 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 106 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 107 int v0_offset_in_bytes(); 108 109 // Total stack size in bytes for saving sve predicate registers. 110 int total_sve_predicate_in_bytes(); 111 112 // Capture info about frame layout 113 // Note this is only correct when not saving full vectors. 114 enum layout { 115 fpu_state_off = 0, 116 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 117 // The frame sender code expects that rfp will be in 118 // the "natural" place and will override any oopMap 119 // setting for it. We must therefore force the layout 120 // so that it agrees with the frame sender code. 121 r0_off = fpu_state_off + FPUStateSizeInWords, 122 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 123 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 124 reg_save_size = return_off + Register::max_slots_per_register}; 125 126 }; 127 128 int RegisterSaver::reg_offset_in_bytes(Register r) { 129 // The integer registers are located above the floating point 130 // registers in the stack frame pushed by save_live_registers() so the 131 // offset depends on whether we are saving full vectors, and whether 132 // those vectors are NEON or SVE. 133 134 int slots_per_vect = FloatRegister::save_slots_per_register; 135 136 #if COMPILER2_OR_JVMCI 137 if (_save_vectors) { 138 slots_per_vect = FloatRegister::slots_per_neon_register; 139 140 #ifdef COMPILER2 141 if (Matcher::supports_scalable_vector()) { 142 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 143 } 144 #endif 145 } 146 #endif 147 148 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 149 return r0_offset + r->encoding() * wordSize; 150 } 151 152 int RegisterSaver::v0_offset_in_bytes() { 153 // The floating point registers are located above the predicate registers if 154 // they are present in the stack frame pushed by save_live_registers(). So the 155 // offset depends on the saved total predicate vectors in the stack frame. 156 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 157 } 158 159 int RegisterSaver::total_sve_predicate_in_bytes() { 160 #ifdef COMPILER2 161 if (_save_vectors && Matcher::supports_scalable_vector()) { 162 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 163 PRegister::number_of_registers; 164 } 165 #endif 166 return 0; 167 } 168 169 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 170 bool use_sve = false; 171 int sve_vector_size_in_bytes = 0; 172 int sve_vector_size_in_slots = 0; 173 int sve_predicate_size_in_slots = 0; 174 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 175 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 176 177 #ifdef COMPILER2 178 use_sve = Matcher::supports_scalable_vector(); 179 if (use_sve) { 180 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 181 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 182 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 183 } 184 #endif 185 186 #if COMPILER2_OR_JVMCI 187 if (_save_vectors) { 188 int extra_save_slots_per_register = 0; 189 // Save upper half of vector registers 190 if (use_sve) { 191 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 192 } else { 193 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 194 } 195 int extra_vector_bytes = extra_save_slots_per_register * 196 VMRegImpl::stack_slot_size * 197 FloatRegister::number_of_registers; 198 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 199 } 200 #else 201 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 202 #endif 203 204 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 205 reg_save_size * BytesPerInt, 16); 206 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 207 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 208 // The caller will allocate additional_frame_words 209 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 210 // CodeBlob frame size is in words. 211 int frame_size_in_words = frame_size_in_bytes / wordSize; 212 *total_frame_words = frame_size_in_words; 213 214 // Save Integer and Float registers. 215 __ enter(); 216 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 217 218 // Set an oopmap for the call site. This oopmap will map all 219 // oop-registers and debug-info registers as callee-saved. This 220 // will allow deoptimization at this safepoint to find all possible 221 // debug-info recordings, as well as let GC find all oops. 222 223 OopMapSet *oop_maps = new OopMapSet(); 224 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 225 226 for (int i = 0; i < Register::number_of_registers; i++) { 227 Register r = as_Register(i); 228 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 229 // SP offsets are in 4-byte words. 230 // Register slots are 8 bytes wide, 32 floating-point registers. 231 int sp_offset = Register::max_slots_per_register * i + 232 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 233 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 234 } 235 } 236 237 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 238 FloatRegister r = as_FloatRegister(i); 239 int sp_offset = 0; 240 if (_save_vectors) { 241 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 242 (FloatRegister::slots_per_neon_register * i); 243 } else { 244 sp_offset = FloatRegister::save_slots_per_register * i; 245 } 246 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 247 } 248 249 return oop_map; 250 } 251 252 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 253 #ifdef COMPILER2 254 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 255 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 256 #else 257 #if !INCLUDE_JVMCI 258 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 259 #endif 260 __ pop_CPU_state(_save_vectors); 261 #endif 262 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 263 __ authenticate_return_address(); 264 } 265 266 // Is vector's size (in bytes) bigger than a size saved by default? 267 // 8 bytes vector registers are saved by default on AArch64. 268 // The SVE supported min vector size is 8 bytes and we need to save 269 // predicate registers when the vector size is 8 bytes as well. 270 bool SharedRuntime::is_wide_vector(int size) { 271 return size > 8 || (UseSVE > 0 && size >= 8); 272 } 273 274 // --------------------------------------------------------------------------- 275 // Read the array of BasicTypes from a signature, and compute where the 276 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 277 // quantities. Values less than VMRegImpl::stack0 are registers, those above 278 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 279 // as framesizes are fixed. 280 // VMRegImpl::stack0 refers to the first slot 0(sp). 281 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 282 // Register up to Register::number_of_registers are the 64-bit 283 // integer registers. 284 285 // Note: the INPUTS in sig_bt are in units of Java argument words, 286 // which are 64-bit. The OUTPUTS are in 32-bit units. 287 288 // The Java calling convention is a "shifted" version of the C ABI. 289 // By skipping the first C ABI register we can call non-static jni 290 // methods with small numbers of arguments without having to shuffle 291 // the arguments at all. Since we control the java ABI we ought to at 292 // least get some advantage out of it. 293 294 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 295 VMRegPair *regs, 296 int total_args_passed) { 297 298 // Create the mapping between argument positions and 299 // registers. 300 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 301 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 302 }; 303 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 304 j_farg0, j_farg1, j_farg2, j_farg3, 305 j_farg4, j_farg5, j_farg6, j_farg7 306 }; 307 308 309 uint int_args = 0; 310 uint fp_args = 0; 311 uint stk_args = 0; 312 313 for (int i = 0; i < total_args_passed; i++) { 314 switch (sig_bt[i]) { 315 case T_BOOLEAN: 316 case T_CHAR: 317 case T_BYTE: 318 case T_SHORT: 319 case T_INT: 320 if (int_args < Argument::n_int_register_parameters_j) { 321 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 322 } else { 323 stk_args = align_up(stk_args, 2); 324 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 325 stk_args += 1; 326 } 327 break; 328 case T_VOID: 329 // halves of T_LONG or T_DOUBLE 330 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 331 regs[i].set_bad(); 332 break; 333 case T_LONG: 334 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 335 // fall through 336 case T_OBJECT: 337 case T_ARRAY: 338 case T_ADDRESS: 339 if (int_args < Argument::n_int_register_parameters_j) { 340 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 341 } else { 342 stk_args = align_up(stk_args, 2); 343 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 344 stk_args += 2; 345 } 346 break; 347 case T_FLOAT: 348 if (fp_args < Argument::n_float_register_parameters_j) { 349 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 350 } else { 351 stk_args = align_up(stk_args, 2); 352 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 353 stk_args += 1; 354 } 355 break; 356 case T_DOUBLE: 357 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 358 if (fp_args < Argument::n_float_register_parameters_j) { 359 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 360 } else { 361 stk_args = align_up(stk_args, 2); 362 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 363 stk_args += 2; 364 } 365 break; 366 default: 367 ShouldNotReachHere(); 368 break; 369 } 370 } 371 372 return stk_args; 373 } 374 375 // Patch the callers callsite with entry to compiled code if it exists. 376 static void patch_callers_callsite(MacroAssembler *masm) { 377 Label L; 378 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 379 __ cbz(rscratch1, L); 380 381 __ enter(); 382 __ push_CPU_state(); 383 384 // VM needs caller's callsite 385 // VM needs target method 386 // This needs to be a long call since we will relocate this adapter to 387 // the codeBuffer and it may not reach 388 389 #ifndef PRODUCT 390 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 391 #endif 392 393 __ mov(c_rarg0, rmethod); 394 __ mov(c_rarg1, lr); 395 __ authenticate_return_address(c_rarg1); 396 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 397 __ blr(rscratch1); 398 399 // Explicit isb required because fixup_callers_callsite may change the code 400 // stream. 401 __ safepoint_isb(); 402 403 __ pop_CPU_state(); 404 // restore sp 405 __ leave(); 406 __ bind(L); 407 } 408 409 static void gen_c2i_adapter(MacroAssembler *masm, 410 int total_args_passed, 411 int comp_args_on_stack, 412 const BasicType *sig_bt, 413 const VMRegPair *regs, 414 Label& skip_fixup) { 415 // Before we get into the guts of the C2I adapter, see if we should be here 416 // at all. We've come from compiled code and are attempting to jump to the 417 // interpreter, which means the caller made a static call to get here 418 // (vcalls always get a compiled target if there is one). Check for a 419 // compiled target. If there is one, we need to patch the caller's call. 420 patch_callers_callsite(masm); 421 422 __ bind(skip_fixup); 423 424 int words_pushed = 0; 425 426 // Since all args are passed on the stack, total_args_passed * 427 // Interpreter::stackElementSize is the space we need. 428 429 int extraspace = total_args_passed * Interpreter::stackElementSize; 430 431 __ mov(r19_sender_sp, sp); 432 433 // stack is aligned, keep it that way 434 extraspace = align_up(extraspace, 2*wordSize); 435 436 if (extraspace) 437 __ sub(sp, sp, extraspace); 438 439 // Now write the args into the outgoing interpreter space 440 for (int i = 0; i < total_args_passed; i++) { 441 if (sig_bt[i] == T_VOID) { 442 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 443 continue; 444 } 445 446 // offset to start parameters 447 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 448 int next_off = st_off - Interpreter::stackElementSize; 449 450 // Say 4 args: 451 // i st_off 452 // 0 32 T_LONG 453 // 1 24 T_VOID 454 // 2 16 T_OBJECT 455 // 3 8 T_BOOL 456 // - 0 return address 457 // 458 // However to make thing extra confusing. Because we can fit a Java long/double in 459 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 460 // leaves one slot empty and only stores to a single slot. In this case the 461 // slot that is occupied is the T_VOID slot. See I said it was confusing. 462 463 VMReg r_1 = regs[i].first(); 464 VMReg r_2 = regs[i].second(); 465 if (!r_1->is_valid()) { 466 assert(!r_2->is_valid(), ""); 467 continue; 468 } 469 if (r_1->is_stack()) { 470 // memory to memory use rscratch1 471 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 472 + extraspace 473 + words_pushed * wordSize); 474 if (!r_2->is_valid()) { 475 // sign extend?? 476 __ ldrw(rscratch1, Address(sp, ld_off)); 477 __ str(rscratch1, Address(sp, st_off)); 478 479 } else { 480 481 __ ldr(rscratch1, Address(sp, ld_off)); 482 483 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 484 // T_DOUBLE and T_LONG use two slots in the interpreter 485 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 486 // ld_off == LSW, ld_off+wordSize == MSW 487 // st_off == MSW, next_off == LSW 488 __ str(rscratch1, Address(sp, next_off)); 489 #ifdef ASSERT 490 // Overwrite the unused slot with known junk 491 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 492 __ str(rscratch1, Address(sp, st_off)); 493 #endif /* ASSERT */ 494 } else { 495 __ str(rscratch1, Address(sp, st_off)); 496 } 497 } 498 } else if (r_1->is_Register()) { 499 Register r = r_1->as_Register(); 500 if (!r_2->is_valid()) { 501 // must be only an int (or less ) so move only 32bits to slot 502 // why not sign extend?? 503 __ str(r, Address(sp, st_off)); 504 } else { 505 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 506 // T_DOUBLE and T_LONG use two slots in the interpreter 507 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 508 // jlong/double in gpr 509 #ifdef ASSERT 510 // Overwrite the unused slot with known junk 511 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 512 __ str(rscratch1, Address(sp, st_off)); 513 #endif /* ASSERT */ 514 __ str(r, Address(sp, next_off)); 515 } else { 516 __ str(r, Address(sp, st_off)); 517 } 518 } 519 } else { 520 assert(r_1->is_FloatRegister(), ""); 521 if (!r_2->is_valid()) { 522 // only a float use just part of the slot 523 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 524 } else { 525 #ifdef ASSERT 526 // Overwrite the unused slot with known junk 527 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 528 __ str(rscratch1, Address(sp, st_off)); 529 #endif /* ASSERT */ 530 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 531 } 532 } 533 } 534 535 __ mov(esp, sp); // Interp expects args on caller's expression stack 536 537 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 538 __ br(rscratch1); 539 } 540 541 542 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 543 int total_args_passed, 544 int comp_args_on_stack, 545 const BasicType *sig_bt, 546 const VMRegPair *regs) { 547 548 // Note: r19_sender_sp contains the senderSP on entry. We must 549 // preserve it since we may do a i2c -> c2i transition if we lose a 550 // race where compiled code goes non-entrant while we get args 551 // ready. 552 553 // Adapters are frameless. 554 555 // An i2c adapter is frameless because the *caller* frame, which is 556 // interpreted, routinely repairs its own esp (from 557 // interpreter_frame_last_sp), even if a callee has modified the 558 // stack pointer. It also recalculates and aligns sp. 559 560 // A c2i adapter is frameless because the *callee* frame, which is 561 // interpreted, routinely repairs its caller's sp (from sender_sp, 562 // which is set up via the senderSP register). 563 564 // In other words, if *either* the caller or callee is interpreted, we can 565 // get the stack pointer repaired after a call. 566 567 // This is why c2i and i2c adapters cannot be indefinitely composed. 568 // In particular, if a c2i adapter were to somehow call an i2c adapter, 569 // both caller and callee would be compiled methods, and neither would 570 // clean up the stack pointer changes performed by the two adapters. 571 // If this happens, control eventually transfers back to the compiled 572 // caller, but with an uncorrected stack, causing delayed havoc. 573 574 if (VerifyAdapterCalls && 575 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 576 #if 0 577 // So, let's test for cascading c2i/i2c adapters right now. 578 // assert(Interpreter::contains($return_addr) || 579 // StubRoutines::contains($return_addr), 580 // "i2c adapter must return to an interpreter frame"); 581 __ block_comment("verify_i2c { "); 582 Label L_ok; 583 if (Interpreter::code() != nullptr) { 584 range_check(masm, rax, r11, 585 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 586 L_ok); 587 } 588 if (StubRoutines::initial_stubs_code() != nullptr) { 589 range_check(masm, rax, r11, 590 StubRoutines::initial_stubs_code()->code_begin(), 591 StubRoutines::initial_stubs_code()->code_end(), 592 L_ok); 593 } 594 if (StubRoutines::final_stubs_code() != nullptr) { 595 range_check(masm, rax, r11, 596 StubRoutines::final_stubs_code()->code_begin(), 597 StubRoutines::final_stubs_code()->code_end(), 598 L_ok); 599 } 600 const char* msg = "i2c adapter must return to an interpreter frame"; 601 __ block_comment(msg); 602 __ stop(msg); 603 __ bind(L_ok); 604 __ block_comment("} verify_i2ce "); 605 #endif 606 } 607 608 // Cut-out for having no stack args. 609 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 610 if (comp_args_on_stack) { 611 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 612 __ andr(sp, rscratch1, -16); 613 } 614 615 // Will jump to the compiled code just as if compiled code was doing it. 616 // Pre-load the register-jump target early, to schedule it better. 617 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 618 619 #if INCLUDE_JVMCI 620 if (EnableJVMCI) { 621 // check if this call should be routed towards a specific entry point 622 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 623 Label no_alternative_target; 624 __ cbz(rscratch2, no_alternative_target); 625 __ mov(rscratch1, rscratch2); 626 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 627 __ bind(no_alternative_target); 628 } 629 #endif // INCLUDE_JVMCI 630 631 // Now generate the shuffle code. 632 for (int i = 0; i < total_args_passed; i++) { 633 if (sig_bt[i] == T_VOID) { 634 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 635 continue; 636 } 637 638 // Pick up 0, 1 or 2 words from SP+offset. 639 640 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 641 "scrambled load targets?"); 642 // Load in argument order going down. 643 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 644 // Point to interpreter value (vs. tag) 645 int next_off = ld_off - Interpreter::stackElementSize; 646 // 647 // 648 // 649 VMReg r_1 = regs[i].first(); 650 VMReg r_2 = regs[i].second(); 651 if (!r_1->is_valid()) { 652 assert(!r_2->is_valid(), ""); 653 continue; 654 } 655 if (r_1->is_stack()) { 656 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 657 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 658 if (!r_2->is_valid()) { 659 // sign extend??? 660 __ ldrsw(rscratch2, Address(esp, ld_off)); 661 __ str(rscratch2, Address(sp, st_off)); 662 } else { 663 // 664 // We are using two optoregs. This can be either T_OBJECT, 665 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 666 // two slots but only uses one for thr T_LONG or T_DOUBLE case 667 // So we must adjust where to pick up the data to match the 668 // interpreter. 669 // 670 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 671 // are accessed as negative so LSW is at LOW address 672 673 // ld_off is MSW so get LSW 674 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 675 next_off : ld_off; 676 __ ldr(rscratch2, Address(esp, offset)); 677 // st_off is LSW (i.e. reg.first()) 678 __ str(rscratch2, Address(sp, st_off)); 679 } 680 } else if (r_1->is_Register()) { // Register argument 681 Register r = r_1->as_Register(); 682 if (r_2->is_valid()) { 683 // 684 // We are using two VMRegs. This can be either T_OBJECT, 685 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 686 // two slots but only uses one for thr T_LONG or T_DOUBLE case 687 // So we must adjust where to pick up the data to match the 688 // interpreter. 689 690 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 691 next_off : ld_off; 692 693 // this can be a misaligned move 694 __ ldr(r, Address(esp, offset)); 695 } else { 696 // sign extend and use a full word? 697 __ ldrw(r, Address(esp, ld_off)); 698 } 699 } else { 700 if (!r_2->is_valid()) { 701 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 702 } else { 703 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 704 } 705 } 706 } 707 708 __ mov(rscratch2, rscratch1); 709 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 710 __ mov(rscratch1, rscratch2); 711 712 // 6243940 We might end up in handle_wrong_method if 713 // the callee is deoptimized as we race thru here. If that 714 // happens we don't want to take a safepoint because the 715 // caller frame will look interpreted and arguments are now 716 // "compiled" so it is much better to make this transition 717 // invisible to the stack walking code. Unfortunately if 718 // we try and find the callee by normal means a safepoint 719 // is possible. So we stash the desired callee in the thread 720 // and the vm will find there should this case occur. 721 722 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 723 724 __ br(rscratch1); 725 } 726 727 // --------------------------------------------------------------- 728 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 729 int total_args_passed, 730 int comp_args_on_stack, 731 const BasicType *sig_bt, 732 const VMRegPair *regs, 733 AdapterFingerPrint* fingerprint) { 734 address i2c_entry = __ pc(); 735 736 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 737 738 address c2i_unverified_entry = __ pc(); 739 Label skip_fixup; 740 741 Register data = rscratch2; 742 Register receiver = j_rarg0; 743 Register tmp = r10; // A call-clobbered register not used for arg passing 744 745 // ------------------------------------------------------------------------- 746 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 747 // to the interpreter. The args start out packed in the compiled layout. They 748 // need to be unpacked into the interpreter layout. This will almost always 749 // require some stack space. We grow the current (compiled) stack, then repack 750 // the args. We finally end in a jump to the generic interpreter entry point. 751 // On exit from the interpreter, the interpreter will restore our SP (lest the 752 // compiled code, which relies solely on SP and not FP, get sick). 753 754 { 755 __ block_comment("c2i_unverified_entry {"); 756 // Method might have been compiled since the call site was patched to 757 // interpreted; if that is the case treat it as a miss so we can get 758 // the call site corrected. 759 __ ic_check(1 /* end_alignment */); 760 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 761 762 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 763 __ cbz(rscratch1, skip_fixup); 764 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 765 __ block_comment("} c2i_unverified_entry"); 766 } 767 768 address c2i_entry = __ pc(); 769 770 // Class initialization barrier for static methods 771 address c2i_no_clinit_check_entry = nullptr; 772 if (VM_Version::supports_fast_class_init_checks()) { 773 Label L_skip_barrier; 774 775 { // Bypass the barrier for non-static methods 776 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 777 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 778 __ br(Assembler::EQ, L_skip_barrier); // non-static 779 } 780 781 __ load_method_holder(rscratch2, rmethod); 782 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 783 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 784 785 __ bind(L_skip_barrier); 786 c2i_no_clinit_check_entry = __ pc(); 787 } 788 789 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 790 bs->c2i_entry_barrier(masm); 791 792 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 793 794 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 795 } 796 797 static int c_calling_convention_priv(const BasicType *sig_bt, 798 VMRegPair *regs, 799 int total_args_passed) { 800 801 // We return the amount of VMRegImpl stack slots we need to reserve for all 802 // the arguments NOT counting out_preserve_stack_slots. 803 804 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 805 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 806 }; 807 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 808 c_farg0, c_farg1, c_farg2, c_farg3, 809 c_farg4, c_farg5, c_farg6, c_farg7 810 }; 811 812 uint int_args = 0; 813 uint fp_args = 0; 814 uint stk_args = 0; // inc by 2 each time 815 816 for (int i = 0; i < total_args_passed; i++) { 817 switch (sig_bt[i]) { 818 case T_BOOLEAN: 819 case T_CHAR: 820 case T_BYTE: 821 case T_SHORT: 822 case T_INT: 823 if (int_args < Argument::n_int_register_parameters_c) { 824 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 825 } else { 826 #ifdef __APPLE__ 827 // Less-than word types are stored one after another. 828 // The code is unable to handle this so bailout. 829 return -1; 830 #endif 831 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 832 stk_args += 2; 833 } 834 break; 835 case T_LONG: 836 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 837 // fall through 838 case T_OBJECT: 839 case T_ARRAY: 840 case T_ADDRESS: 841 case T_METADATA: 842 if (int_args < Argument::n_int_register_parameters_c) { 843 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 844 } else { 845 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 846 stk_args += 2; 847 } 848 break; 849 case T_FLOAT: 850 if (fp_args < Argument::n_float_register_parameters_c) { 851 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 852 } else { 853 #ifdef __APPLE__ 854 // Less-than word types are stored one after another. 855 // The code is unable to handle this so bailout. 856 return -1; 857 #endif 858 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 859 stk_args += 2; 860 } 861 break; 862 case T_DOUBLE: 863 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 864 if (fp_args < Argument::n_float_register_parameters_c) { 865 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 866 } else { 867 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 868 stk_args += 2; 869 } 870 break; 871 case T_VOID: // Halves of longs and doubles 872 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 873 regs[i].set_bad(); 874 break; 875 default: 876 ShouldNotReachHere(); 877 break; 878 } 879 } 880 881 return stk_args; 882 } 883 884 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 885 uint num_bits, 886 uint total_args_passed) { 887 Unimplemented(); 888 return 0; 889 } 890 891 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 892 VMRegPair *regs, 893 int total_args_passed) 894 { 895 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 896 guarantee(result >= 0, "Unsupported arguments configuration"); 897 return result; 898 } 899 900 901 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 902 // We always ignore the frame_slots arg and just use the space just below frame pointer 903 // which by this time is free to use 904 switch (ret_type) { 905 case T_FLOAT: 906 __ strs(v0, Address(rfp, -wordSize)); 907 break; 908 case T_DOUBLE: 909 __ strd(v0, Address(rfp, -wordSize)); 910 break; 911 case T_VOID: break; 912 default: { 913 __ str(r0, Address(rfp, -wordSize)); 914 } 915 } 916 } 917 918 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 919 // We always ignore the frame_slots arg and just use the space just below frame pointer 920 // which by this time is free to use 921 switch (ret_type) { 922 case T_FLOAT: 923 __ ldrs(v0, Address(rfp, -wordSize)); 924 break; 925 case T_DOUBLE: 926 __ ldrd(v0, Address(rfp, -wordSize)); 927 break; 928 case T_VOID: break; 929 default: { 930 __ ldr(r0, Address(rfp, -wordSize)); 931 } 932 } 933 } 934 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 935 RegSet x; 936 for ( int i = first_arg ; i < arg_count ; i++ ) { 937 if (args[i].first()->is_Register()) { 938 x = x + args[i].first()->as_Register(); 939 } else if (args[i].first()->is_FloatRegister()) { 940 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 941 } 942 } 943 __ push(x, sp); 944 } 945 946 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 947 RegSet x; 948 for ( int i = first_arg ; i < arg_count ; i++ ) { 949 if (args[i].first()->is_Register()) { 950 x = x + args[i].first()->as_Register(); 951 } else { 952 ; 953 } 954 } 955 __ pop(x, sp); 956 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 957 if (args[i].first()->is_Register()) { 958 ; 959 } else if (args[i].first()->is_FloatRegister()) { 960 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 961 } 962 } 963 } 964 965 static void verify_oop_args(MacroAssembler* masm, 966 const methodHandle& method, 967 const BasicType* sig_bt, 968 const VMRegPair* regs) { 969 Register temp_reg = r19; // not part of any compiled calling seq 970 if (VerifyOops) { 971 for (int i = 0; i < method->size_of_parameters(); i++) { 972 if (sig_bt[i] == T_OBJECT || 973 sig_bt[i] == T_ARRAY) { 974 VMReg r = regs[i].first(); 975 assert(r->is_valid(), "bad oop arg"); 976 if (r->is_stack()) { 977 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 978 __ verify_oop(temp_reg); 979 } else { 980 __ verify_oop(r->as_Register()); 981 } 982 } 983 } 984 } 985 } 986 987 // on exit, sp points to the ContinuationEntry 988 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 989 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 990 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 991 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 992 993 stack_slots += (int)ContinuationEntry::size()/wordSize; 994 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 995 996 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 997 998 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 999 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1000 __ mov(rscratch1, sp); // we can't use sp as the source in str 1001 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1002 1003 return map; 1004 } 1005 1006 // on entry c_rarg1 points to the continuation 1007 // sp points to ContinuationEntry 1008 // c_rarg3 -- isVirtualThread 1009 static void fill_continuation_entry(MacroAssembler* masm) { 1010 #ifdef ASSERT 1011 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1012 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1013 #endif 1014 1015 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1016 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1017 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1018 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1019 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1020 1021 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1022 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1023 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1024 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1025 1026 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1027 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1028 } 1029 1030 // on entry, sp points to the ContinuationEntry 1031 // on exit, rfp points to the spilled rfp in the entry frame 1032 static void continuation_enter_cleanup(MacroAssembler* masm) { 1033 #ifndef PRODUCT 1034 Label OK; 1035 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1036 __ cmp(sp, rscratch1); 1037 __ br(Assembler::EQ, OK); 1038 __ stop("incorrect sp1"); 1039 __ bind(OK); 1040 #endif 1041 1042 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1043 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1044 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1045 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1046 1047 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1048 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1049 __ add(rfp, sp, (int)ContinuationEntry::size()); 1050 } 1051 1052 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1053 // On entry: c_rarg1 -- the continuation object 1054 // c_rarg2 -- isContinue 1055 // c_rarg3 -- isVirtualThread 1056 static void gen_continuation_enter(MacroAssembler* masm, 1057 const methodHandle& method, 1058 const BasicType* sig_bt, 1059 const VMRegPair* regs, 1060 int& exception_offset, 1061 OopMapSet*oop_maps, 1062 int& frame_complete, 1063 int& stack_slots, 1064 int& interpreted_entry_offset, 1065 int& compiled_entry_offset) { 1066 //verify_oop_args(masm, method, sig_bt, regs); 1067 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1068 1069 address start = __ pc(); 1070 1071 Label call_thaw, exit; 1072 1073 // i2i entry used at interp_only_mode only 1074 interpreted_entry_offset = __ pc() - start; 1075 { 1076 1077 #ifdef ASSERT 1078 Label is_interp_only; 1079 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1080 __ cbnzw(rscratch1, is_interp_only); 1081 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1082 __ bind(is_interp_only); 1083 #endif 1084 1085 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1086 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1087 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1088 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1089 __ push_cont_fastpath(rthread); 1090 1091 __ enter(); 1092 stack_slots = 2; // will be adjusted in setup 1093 OopMap* map = continuation_enter_setup(masm, stack_slots); 1094 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1095 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1096 1097 fill_continuation_entry(masm); 1098 1099 __ cbnz(c_rarg2, call_thaw); 1100 1101 const address tr_call = __ trampoline_call(resolve); 1102 if (tr_call == nullptr) { 1103 fatal("CodeCache is full at gen_continuation_enter"); 1104 } 1105 1106 oop_maps->add_gc_map(__ pc() - start, map); 1107 __ post_call_nop(); 1108 1109 __ b(exit); 1110 1111 CodeBuffer* cbuf = masm->code_section()->outer(); 1112 address stub = CompiledDirectCall::emit_to_interp_stub(*cbuf, tr_call); 1113 if (stub == nullptr) { 1114 fatal("CodeCache is full at gen_continuation_enter"); 1115 } 1116 } 1117 1118 // compiled entry 1119 __ align(CodeEntryAlignment); 1120 compiled_entry_offset = __ pc() - start; 1121 1122 __ enter(); 1123 stack_slots = 2; // will be adjusted in setup 1124 OopMap* map = continuation_enter_setup(masm, stack_slots); 1125 frame_complete = __ pc() - start; 1126 1127 fill_continuation_entry(masm); 1128 1129 __ cbnz(c_rarg2, call_thaw); 1130 1131 const address tr_call = __ trampoline_call(resolve); 1132 if (tr_call == nullptr) { 1133 fatal("CodeCache is full at gen_continuation_enter"); 1134 } 1135 1136 oop_maps->add_gc_map(__ pc() - start, map); 1137 __ post_call_nop(); 1138 1139 __ b(exit); 1140 1141 __ bind(call_thaw); 1142 1143 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1144 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1145 ContinuationEntry::_return_pc_offset = __ pc() - start; 1146 __ post_call_nop(); 1147 1148 __ bind(exit); 1149 continuation_enter_cleanup(masm); 1150 __ leave(); 1151 __ ret(lr); 1152 1153 /// exception handling 1154 1155 exception_offset = __ pc() - start; 1156 { 1157 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1158 1159 continuation_enter_cleanup(masm); 1160 1161 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1162 __ authenticate_return_address(c_rarg1); 1163 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1164 1165 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1166 1167 __ mov(r1, r0); // the exception handler 1168 __ mov(r0, r19); // restore return value contaning the exception oop 1169 __ verify_oop(r0); 1170 1171 __ leave(); 1172 __ mov(r3, lr); 1173 __ br(r1); // the exception handler 1174 } 1175 1176 CodeBuffer* cbuf = masm->code_section()->outer(); 1177 address stub = CompiledDirectCall::emit_to_interp_stub(*cbuf, tr_call); 1178 if (stub == nullptr) { 1179 fatal("CodeCache is full at gen_continuation_enter"); 1180 } 1181 } 1182 1183 static void gen_continuation_yield(MacroAssembler* masm, 1184 const methodHandle& method, 1185 const BasicType* sig_bt, 1186 const VMRegPair* regs, 1187 OopMapSet* oop_maps, 1188 int& frame_complete, 1189 int& stack_slots, 1190 int& compiled_entry_offset) { 1191 enum layout { 1192 rfp_off1, 1193 rfp_off2, 1194 lr_off, 1195 lr_off2, 1196 framesize // inclusive of return address 1197 }; 1198 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1199 stack_slots = framesize / VMRegImpl::slots_per_word; 1200 assert(stack_slots == 2, "recheck layout"); 1201 1202 address start = __ pc(); 1203 1204 compiled_entry_offset = __ pc() - start; 1205 __ enter(); 1206 1207 __ mov(c_rarg1, sp); 1208 1209 frame_complete = __ pc() - start; 1210 address the_pc = __ pc(); 1211 1212 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1213 1214 __ mov(c_rarg0, rthread); 1215 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1216 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1217 __ reset_last_Java_frame(true); 1218 1219 Label pinned; 1220 1221 __ cbnz(r0, pinned); 1222 1223 // We've succeeded, set sp to the ContinuationEntry 1224 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1225 __ mov(sp, rscratch1); 1226 continuation_enter_cleanup(masm); 1227 1228 __ bind(pinned); // pinned -- return to caller 1229 1230 // handle pending exception thrown by freeze 1231 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1232 Label ok; 1233 __ cbz(rscratch1, ok); 1234 __ leave(); 1235 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1236 __ br(rscratch1); 1237 __ bind(ok); 1238 1239 __ leave(); 1240 __ ret(lr); 1241 1242 OopMap* map = new OopMap(framesize, 1); 1243 oop_maps->add_gc_map(the_pc - start, map); 1244 } 1245 1246 static void gen_special_dispatch(MacroAssembler* masm, 1247 const methodHandle& method, 1248 const BasicType* sig_bt, 1249 const VMRegPair* regs) { 1250 verify_oop_args(masm, method, sig_bt, regs); 1251 vmIntrinsics::ID iid = method->intrinsic_id(); 1252 1253 // Now write the args into the outgoing interpreter space 1254 bool has_receiver = false; 1255 Register receiver_reg = noreg; 1256 int member_arg_pos = -1; 1257 Register member_reg = noreg; 1258 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1259 if (ref_kind != 0) { 1260 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1261 member_reg = r19; // known to be free at this point 1262 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1263 } else if (iid == vmIntrinsics::_invokeBasic) { 1264 has_receiver = true; 1265 } else if (iid == vmIntrinsics::_linkToNative) { 1266 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1267 member_reg = r19; // known to be free at this point 1268 } else { 1269 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1270 } 1271 1272 if (member_reg != noreg) { 1273 // Load the member_arg into register, if necessary. 1274 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1275 VMReg r = regs[member_arg_pos].first(); 1276 if (r->is_stack()) { 1277 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1278 } else { 1279 // no data motion is needed 1280 member_reg = r->as_Register(); 1281 } 1282 } 1283 1284 if (has_receiver) { 1285 // Make sure the receiver is loaded into a register. 1286 assert(method->size_of_parameters() > 0, "oob"); 1287 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1288 VMReg r = regs[0].first(); 1289 assert(r->is_valid(), "bad receiver arg"); 1290 if (r->is_stack()) { 1291 // Porting note: This assumes that compiled calling conventions always 1292 // pass the receiver oop in a register. If this is not true on some 1293 // platform, pick a temp and load the receiver from stack. 1294 fatal("receiver always in a register"); 1295 receiver_reg = r2; // known to be free at this point 1296 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1297 } else { 1298 // no data motion is needed 1299 receiver_reg = r->as_Register(); 1300 } 1301 } 1302 1303 // Figure out which address we are really jumping to: 1304 MethodHandles::generate_method_handle_dispatch(masm, iid, 1305 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1306 } 1307 1308 // --------------------------------------------------------------------------- 1309 // Generate a native wrapper for a given method. The method takes arguments 1310 // in the Java compiled code convention, marshals them to the native 1311 // convention (handlizes oops, etc), transitions to native, makes the call, 1312 // returns to java state (possibly blocking), unhandlizes any result and 1313 // returns. 1314 // 1315 // Critical native functions are a shorthand for the use of 1316 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1317 // functions. The wrapper is expected to unpack the arguments before 1318 // passing them to the callee. Critical native functions leave the state _in_Java, 1319 // since they block out GC. 1320 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1321 // block and the check for pending exceptions it's impossible for them 1322 // to be thrown. 1323 // 1324 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1325 const methodHandle& method, 1326 int compile_id, 1327 BasicType* in_sig_bt, 1328 VMRegPair* in_regs, 1329 BasicType ret_type) { 1330 if (method->is_continuation_native_intrinsic()) { 1331 int exception_offset = -1; 1332 OopMapSet* oop_maps = new OopMapSet(); 1333 int frame_complete = -1; 1334 int stack_slots = -1; 1335 int interpreted_entry_offset = -1; 1336 int vep_offset = -1; 1337 if (method->is_continuation_enter_intrinsic()) { 1338 gen_continuation_enter(masm, 1339 method, 1340 in_sig_bt, 1341 in_regs, 1342 exception_offset, 1343 oop_maps, 1344 frame_complete, 1345 stack_slots, 1346 interpreted_entry_offset, 1347 vep_offset); 1348 } else if (method->is_continuation_yield_intrinsic()) { 1349 gen_continuation_yield(masm, 1350 method, 1351 in_sig_bt, 1352 in_regs, 1353 oop_maps, 1354 frame_complete, 1355 stack_slots, 1356 vep_offset); 1357 } else { 1358 guarantee(false, "Unknown Continuation native intrinsic"); 1359 } 1360 1361 #ifdef ASSERT 1362 if (method->is_continuation_enter_intrinsic()) { 1363 assert(interpreted_entry_offset != -1, "Must be set"); 1364 assert(exception_offset != -1, "Must be set"); 1365 } else { 1366 assert(interpreted_entry_offset == -1, "Must be unset"); 1367 assert(exception_offset == -1, "Must be unset"); 1368 } 1369 assert(frame_complete != -1, "Must be set"); 1370 assert(stack_slots != -1, "Must be set"); 1371 assert(vep_offset != -1, "Must be set"); 1372 #endif 1373 1374 __ flush(); 1375 nmethod* nm = nmethod::new_native_nmethod(method, 1376 compile_id, 1377 masm->code(), 1378 vep_offset, 1379 frame_complete, 1380 stack_slots, 1381 in_ByteSize(-1), 1382 in_ByteSize(-1), 1383 oop_maps, 1384 exception_offset); 1385 if (nm == nullptr) return nm; 1386 if (method->is_continuation_enter_intrinsic()) { 1387 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1388 } else if (method->is_continuation_yield_intrinsic()) { 1389 _cont_doYield_stub = nm; 1390 } else { 1391 guarantee(false, "Unknown Continuation native intrinsic"); 1392 } 1393 return nm; 1394 } 1395 1396 if (method->is_method_handle_intrinsic()) { 1397 vmIntrinsics::ID iid = method->intrinsic_id(); 1398 intptr_t start = (intptr_t)__ pc(); 1399 int vep_offset = ((intptr_t)__ pc()) - start; 1400 1401 // First instruction must be a nop as it may need to be patched on deoptimisation 1402 __ nop(); 1403 gen_special_dispatch(masm, 1404 method, 1405 in_sig_bt, 1406 in_regs); 1407 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1408 __ flush(); 1409 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1410 return nmethod::new_native_nmethod(method, 1411 compile_id, 1412 masm->code(), 1413 vep_offset, 1414 frame_complete, 1415 stack_slots / VMRegImpl::slots_per_word, 1416 in_ByteSize(-1), 1417 in_ByteSize(-1), 1418 nullptr); 1419 } 1420 address native_func = method->native_function(); 1421 assert(native_func != nullptr, "must have function"); 1422 1423 // An OopMap for lock (and class if static) 1424 OopMapSet *oop_maps = new OopMapSet(); 1425 intptr_t start = (intptr_t)__ pc(); 1426 1427 // We have received a description of where all the java arg are located 1428 // on entry to the wrapper. We need to convert these args to where 1429 // the jni function will expect them. To figure out where they go 1430 // we convert the java signature to a C signature by inserting 1431 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1432 1433 const int total_in_args = method->size_of_parameters(); 1434 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1435 1436 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1437 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1438 BasicType* in_elem_bt = nullptr; 1439 1440 int argc = 0; 1441 out_sig_bt[argc++] = T_ADDRESS; 1442 if (method->is_static()) { 1443 out_sig_bt[argc++] = T_OBJECT; 1444 } 1445 1446 for (int i = 0; i < total_in_args ; i++ ) { 1447 out_sig_bt[argc++] = in_sig_bt[i]; 1448 } 1449 1450 // Now figure out where the args must be stored and how much stack space 1451 // they require. 1452 int out_arg_slots; 1453 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1454 1455 if (out_arg_slots < 0) { 1456 return nullptr; 1457 } 1458 1459 // Compute framesize for the wrapper. We need to handlize all oops in 1460 // incoming registers 1461 1462 // Calculate the total number of stack slots we will need. 1463 1464 // First count the abi requirement plus all of the outgoing args 1465 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1466 1467 // Now the space for the inbound oop handle area 1468 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1469 1470 int oop_handle_offset = stack_slots; 1471 stack_slots += total_save_slots; 1472 1473 // Now any space we need for handlizing a klass if static method 1474 1475 int klass_slot_offset = 0; 1476 int klass_offset = -1; 1477 int lock_slot_offset = 0; 1478 bool is_static = false; 1479 1480 if (method->is_static()) { 1481 klass_slot_offset = stack_slots; 1482 stack_slots += VMRegImpl::slots_per_word; 1483 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1484 is_static = true; 1485 } 1486 1487 // Plus a lock if needed 1488 1489 if (method->is_synchronized()) { 1490 lock_slot_offset = stack_slots; 1491 stack_slots += VMRegImpl::slots_per_word; 1492 } 1493 1494 // Now a place (+2) to save return values or temp during shuffling 1495 // + 4 for return address (which we own) and saved rfp 1496 stack_slots += 6; 1497 1498 // Ok The space we have allocated will look like: 1499 // 1500 // 1501 // FP-> | | 1502 // |---------------------| 1503 // | 2 slots for moves | 1504 // |---------------------| 1505 // | lock box (if sync) | 1506 // |---------------------| <- lock_slot_offset 1507 // | klass (if static) | 1508 // |---------------------| <- klass_slot_offset 1509 // | oopHandle area | 1510 // |---------------------| <- oop_handle_offset (8 java arg registers) 1511 // | outbound memory | 1512 // | based arguments | 1513 // | | 1514 // |---------------------| 1515 // | | 1516 // SP-> | out_preserved_slots | 1517 // 1518 // 1519 1520 1521 // Now compute actual number of stack words we need rounding to make 1522 // stack properly aligned. 1523 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1524 1525 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1526 1527 // First thing make an ic check to see if we should even be here 1528 1529 // We are free to use all registers as temps without saving them and 1530 // restoring them except rfp. rfp is the only callee save register 1531 // as far as the interpreter and the compiler(s) are concerned. 1532 1533 const Register receiver = j_rarg0; 1534 1535 Label exception_pending; 1536 1537 assert_different_registers(receiver, rscratch1); 1538 __ verify_oop(receiver); 1539 __ ic_check(8 /* end_alignment */); 1540 1541 // Verified entry point must be aligned 1542 int vep_offset = ((intptr_t)__ pc()) - start; 1543 1544 // If we have to make this method not-entrant we'll overwrite its 1545 // first instruction with a jump. For this action to be legal we 1546 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1547 // SVC, HVC, or SMC. Make it a NOP. 1548 __ nop(); 1549 1550 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1551 Label L_skip_barrier; 1552 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1553 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1554 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1555 1556 __ bind(L_skip_barrier); 1557 } 1558 1559 // Generate stack overflow check 1560 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1561 1562 // Generate a new frame for the wrapper. 1563 __ enter(); 1564 // -2 because return address is already present and so is saved rfp 1565 __ sub(sp, sp, stack_size - 2*wordSize); 1566 1567 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1568 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1569 1570 // Frame is now completed as far as size and linkage. 1571 int frame_complete = ((intptr_t)__ pc()) - start; 1572 1573 // We use r20 as the oop handle for the receiver/klass 1574 // It is callee save so it survives the call to native 1575 1576 const Register oop_handle_reg = r20; 1577 1578 // 1579 // We immediately shuffle the arguments so that any vm call we have to 1580 // make from here on out (sync slow path, jvmti, etc.) we will have 1581 // captured the oops from our caller and have a valid oopMap for 1582 // them. 1583 1584 // ----------------- 1585 // The Grand Shuffle 1586 1587 // The Java calling convention is either equal (linux) or denser (win64) than the 1588 // c calling convention. However the because of the jni_env argument the c calling 1589 // convention always has at least one more (and two for static) arguments than Java. 1590 // Therefore if we move the args from java -> c backwards then we will never have 1591 // a register->register conflict and we don't have to build a dependency graph 1592 // and figure out how to break any cycles. 1593 // 1594 1595 // Record esp-based slot for receiver on stack for non-static methods 1596 int receiver_offset = -1; 1597 1598 // This is a trick. We double the stack slots so we can claim 1599 // the oops in the caller's frame. Since we are sure to have 1600 // more args than the caller doubling is enough to make 1601 // sure we can capture all the incoming oop args from the 1602 // caller. 1603 // 1604 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1605 1606 // Mark location of rfp (someday) 1607 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1608 1609 1610 int float_args = 0; 1611 int int_args = 0; 1612 1613 #ifdef ASSERT 1614 bool reg_destroyed[Register::number_of_registers]; 1615 bool freg_destroyed[FloatRegister::number_of_registers]; 1616 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1617 reg_destroyed[r] = false; 1618 } 1619 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1620 freg_destroyed[f] = false; 1621 } 1622 1623 #endif /* ASSERT */ 1624 1625 // For JNI natives the incoming and outgoing registers are offset upwards. 1626 GrowableArray<int> arg_order(2 * total_in_args); 1627 VMRegPair tmp_vmreg; 1628 tmp_vmreg.set2(r19->as_VMReg()); 1629 1630 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1631 arg_order.push(i); 1632 arg_order.push(c_arg); 1633 } 1634 1635 int temploc = -1; 1636 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1637 int i = arg_order.at(ai); 1638 int c_arg = arg_order.at(ai + 1); 1639 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1640 assert(c_arg != -1 && i != -1, "wrong order"); 1641 #ifdef ASSERT 1642 if (in_regs[i].first()->is_Register()) { 1643 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1644 } else if (in_regs[i].first()->is_FloatRegister()) { 1645 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1646 } 1647 if (out_regs[c_arg].first()->is_Register()) { 1648 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1649 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1650 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1651 } 1652 #endif /* ASSERT */ 1653 switch (in_sig_bt[i]) { 1654 case T_ARRAY: 1655 case T_OBJECT: 1656 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1657 ((i == 0) && (!is_static)), 1658 &receiver_offset); 1659 int_args++; 1660 break; 1661 case T_VOID: 1662 break; 1663 1664 case T_FLOAT: 1665 __ float_move(in_regs[i], out_regs[c_arg]); 1666 float_args++; 1667 break; 1668 1669 case T_DOUBLE: 1670 assert( i + 1 < total_in_args && 1671 in_sig_bt[i + 1] == T_VOID && 1672 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1673 __ double_move(in_regs[i], out_regs[c_arg]); 1674 float_args++; 1675 break; 1676 1677 case T_LONG : 1678 __ long_move(in_regs[i], out_regs[c_arg]); 1679 int_args++; 1680 break; 1681 1682 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1683 1684 default: 1685 __ move32_64(in_regs[i], out_regs[c_arg]); 1686 int_args++; 1687 } 1688 } 1689 1690 // point c_arg at the first arg that is already loaded in case we 1691 // need to spill before we call out 1692 int c_arg = total_c_args - total_in_args; 1693 1694 // Pre-load a static method's oop into c_rarg1. 1695 if (method->is_static()) { 1696 1697 // load oop into a register 1698 __ movoop(c_rarg1, 1699 JNIHandles::make_local(method->method_holder()->java_mirror())); 1700 1701 // Now handlize the static class mirror it's known not-null. 1702 __ str(c_rarg1, Address(sp, klass_offset)); 1703 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1704 1705 // Now get the handle 1706 __ lea(c_rarg1, Address(sp, klass_offset)); 1707 // and protect the arg if we must spill 1708 c_arg--; 1709 } 1710 1711 // Change state to native (we save the return address in the thread, since it might not 1712 // be pushed on the stack when we do a stack traversal). 1713 // We use the same pc/oopMap repeatedly when we call out 1714 1715 Label native_return; 1716 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1717 1718 Label dtrace_method_entry, dtrace_method_entry_done; 1719 { 1720 uint64_t offset; 1721 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1722 __ ldrb(rscratch1, Address(rscratch1, offset)); 1723 __ cbnzw(rscratch1, dtrace_method_entry); 1724 __ bind(dtrace_method_entry_done); 1725 } 1726 1727 // RedefineClasses() tracing support for obsolete method entry 1728 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1729 // protect the args we've loaded 1730 save_args(masm, total_c_args, c_arg, out_regs); 1731 __ mov_metadata(c_rarg1, method()); 1732 __ call_VM_leaf( 1733 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1734 rthread, c_rarg1); 1735 restore_args(masm, total_c_args, c_arg, out_regs); 1736 } 1737 1738 // Lock a synchronized method 1739 1740 // Register definitions used by locking and unlocking 1741 1742 const Register swap_reg = r0; 1743 const Register obj_reg = r19; // Will contain the oop 1744 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1745 const Register old_hdr = r13; // value of old header at unlock time 1746 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 1747 const Register tmp = lr; 1748 1749 Label slow_path_lock; 1750 Label lock_done; 1751 1752 if (method->is_synchronized()) { 1753 Label count; 1754 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1755 1756 // Get the handle (the 2nd argument) 1757 __ mov(oop_handle_reg, c_rarg1); 1758 1759 // Get address of the box 1760 1761 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1762 1763 // Load the oop from the handle 1764 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1765 1766 if (LockingMode == LM_MONITOR) { 1767 __ b(slow_path_lock); 1768 } else if (LockingMode == LM_LEGACY) { 1769 // Load (object->mark() | 1) into swap_reg %r0 1770 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1771 __ orr(swap_reg, rscratch1, 1); 1772 1773 // Save (object->mark() | 1) into BasicLock's displaced header 1774 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1775 1776 // src -> dest iff dest == r0 else r0 <- dest 1777 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 1778 1779 // Hmm should this move to the slow path code area??? 1780 1781 // Test if the oopMark is an obvious stack pointer, i.e., 1782 // 1) (mark & 3) == 0, and 1783 // 2) sp <= mark < mark + os::pagesize() 1784 // These 3 tests can be done by evaluating the following 1785 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1786 // assuming both stack pointer and pagesize have their 1787 // least significant 2 bits clear. 1788 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1789 1790 __ sub(swap_reg, sp, swap_reg); 1791 __ neg(swap_reg, swap_reg); 1792 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1793 1794 // Save the test result, for recursive case, the result is zero 1795 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1796 __ br(Assembler::NE, slow_path_lock); 1797 } else { 1798 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1799 __ lightweight_lock(obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1800 } 1801 __ bind(count); 1802 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 1803 1804 // Slow path will re-enter here 1805 __ bind(lock_done); 1806 } 1807 1808 1809 // Finally just about ready to make the JNI call 1810 1811 // get JNIEnv* which is first argument to native 1812 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1813 1814 // Now set thread in native 1815 __ mov(rscratch1, _thread_in_native); 1816 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1817 __ stlrw(rscratch1, rscratch2); 1818 1819 __ rt_call(native_func); 1820 1821 __ bind(native_return); 1822 1823 intptr_t return_pc = (intptr_t) __ pc(); 1824 oop_maps->add_gc_map(return_pc - start, map); 1825 1826 // Verify or restore cpu control state after JNI call 1827 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1828 1829 // Unpack native results. 1830 switch (ret_type) { 1831 case T_BOOLEAN: __ c2bool(r0); break; 1832 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1833 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1834 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1835 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1836 case T_DOUBLE : 1837 case T_FLOAT : 1838 // Result is in v0 we'll save as needed 1839 break; 1840 case T_ARRAY: // Really a handle 1841 case T_OBJECT: // Really a handle 1842 break; // can't de-handlize until after safepoint check 1843 case T_VOID: break; 1844 case T_LONG: break; 1845 default : ShouldNotReachHere(); 1846 } 1847 1848 Label safepoint_in_progress, safepoint_in_progress_done; 1849 Label after_transition; 1850 1851 // Switch thread to "native transition" state before reading the synchronization state. 1852 // This additional state is necessary because reading and testing the synchronization 1853 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1854 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1855 // VM thread changes sync state to synchronizing and suspends threads for GC. 1856 // Thread A is resumed to finish this native method, but doesn't block here since it 1857 // didn't see any synchronization is progress, and escapes. 1858 __ mov(rscratch1, _thread_in_native_trans); 1859 1860 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1861 1862 // Force this write out before the read below 1863 if (!UseSystemMemoryBarrier) { 1864 __ dmb(Assembler::ISH); 1865 } 1866 1867 __ verify_sve_vector_length(); 1868 1869 // Check for safepoint operation in progress and/or pending suspend requests. 1870 { 1871 // We need an acquire here to ensure that any subsequent load of the 1872 // global SafepointSynchronize::_state flag is ordered after this load 1873 // of the thread-local polling word. We don't want this poll to 1874 // return false (i.e. not safepointing) and a later poll of the global 1875 // SafepointSynchronize::_state spuriously to return true. 1876 // 1877 // This is to avoid a race when we're in a native->Java transition 1878 // racing the code which wakes up from a safepoint. 1879 1880 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1881 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1882 __ cbnzw(rscratch1, safepoint_in_progress); 1883 __ bind(safepoint_in_progress_done); 1884 } 1885 1886 // change thread state 1887 __ mov(rscratch1, _thread_in_Java); 1888 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1889 __ stlrw(rscratch1, rscratch2); 1890 __ bind(after_transition); 1891 1892 Label reguard; 1893 Label reguard_done; 1894 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1895 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1896 __ br(Assembler::EQ, reguard); 1897 __ bind(reguard_done); 1898 1899 // native result if any is live 1900 1901 // Unlock 1902 Label unlock_done; 1903 Label slow_path_unlock; 1904 if (method->is_synchronized()) { 1905 1906 // Get locked oop from the handle we passed to jni 1907 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1908 1909 Label done, not_recursive; 1910 1911 if (LockingMode == LM_LEGACY) { 1912 // Simple recursive lock? 1913 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1914 __ cbnz(rscratch1, not_recursive); 1915 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1916 __ b(done); 1917 } 1918 1919 __ bind(not_recursive); 1920 1921 // Must save r0 if if it is live now because cmpxchg must use it 1922 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1923 save_native_result(masm, ret_type, stack_slots); 1924 } 1925 1926 if (LockingMode == LM_MONITOR) { 1927 __ b(slow_path_unlock); 1928 } else if (LockingMode == LM_LEGACY) { 1929 // get address of the stack lock 1930 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1931 // get old displaced header 1932 __ ldr(old_hdr, Address(r0, 0)); 1933 1934 // Atomic swap old header if oop still contains the stack lock 1935 Label count; 1936 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 1937 __ bind(count); 1938 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1939 } else { 1940 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1941 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1942 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1943 } 1944 1945 // slow path re-enters here 1946 __ bind(unlock_done); 1947 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1948 restore_native_result(masm, ret_type, stack_slots); 1949 } 1950 1951 __ bind(done); 1952 } 1953 1954 Label dtrace_method_exit, dtrace_method_exit_done; 1955 { 1956 uint64_t offset; 1957 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1958 __ ldrb(rscratch1, Address(rscratch1, offset)); 1959 __ cbnzw(rscratch1, dtrace_method_exit); 1960 __ bind(dtrace_method_exit_done); 1961 } 1962 1963 __ reset_last_Java_frame(false); 1964 1965 // Unbox oop result, e.g. JNIHandles::resolve result. 1966 if (is_reference_type(ret_type)) { 1967 __ resolve_jobject(r0, r1, r2); 1968 } 1969 1970 if (CheckJNICalls) { 1971 // clear_pending_jni_exception_check 1972 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1973 } 1974 1975 // reset handle block 1976 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 1977 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 1978 1979 __ leave(); 1980 1981 // Any exception pending? 1982 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1983 __ cbnz(rscratch1, exception_pending); 1984 1985 // We're done 1986 __ ret(lr); 1987 1988 // Unexpected paths are out of line and go here 1989 1990 // forward the exception 1991 __ bind(exception_pending); 1992 1993 // and forward the exception 1994 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1995 1996 // Slow path locking & unlocking 1997 if (method->is_synchronized()) { 1998 1999 __ block_comment("Slow path lock {"); 2000 __ bind(slow_path_lock); 2001 2002 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2003 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2004 2005 // protect the args we've loaded 2006 save_args(masm, total_c_args, c_arg, out_regs); 2007 2008 __ mov(c_rarg0, obj_reg); 2009 __ mov(c_rarg1, lock_reg); 2010 __ mov(c_rarg2, rthread); 2011 2012 // Not a leaf but we have last_Java_frame setup as we want 2013 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2014 restore_args(masm, total_c_args, c_arg, out_regs); 2015 2016 #ifdef ASSERT 2017 { Label L; 2018 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2019 __ cbz(rscratch1, L); 2020 __ stop("no pending exception allowed on exit from monitorenter"); 2021 __ bind(L); 2022 } 2023 #endif 2024 __ b(lock_done); 2025 2026 __ block_comment("} Slow path lock"); 2027 2028 __ block_comment("Slow path unlock {"); 2029 __ bind(slow_path_unlock); 2030 2031 // If we haven't already saved the native result we must save it now as xmm registers 2032 // are still exposed. 2033 2034 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2035 save_native_result(masm, ret_type, stack_slots); 2036 } 2037 2038 __ mov(c_rarg2, rthread); 2039 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2040 __ mov(c_rarg0, obj_reg); 2041 2042 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2043 // NOTE that obj_reg == r19 currently 2044 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2045 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2046 2047 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2048 2049 #ifdef ASSERT 2050 { 2051 Label L; 2052 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2053 __ cbz(rscratch1, L); 2054 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2055 __ bind(L); 2056 } 2057 #endif /* ASSERT */ 2058 2059 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2060 2061 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2062 restore_native_result(masm, ret_type, stack_slots); 2063 } 2064 __ b(unlock_done); 2065 2066 __ block_comment("} Slow path unlock"); 2067 2068 } // synchronized 2069 2070 // SLOW PATH Reguard the stack if needed 2071 2072 __ bind(reguard); 2073 save_native_result(masm, ret_type, stack_slots); 2074 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2075 restore_native_result(masm, ret_type, stack_slots); 2076 // and continue 2077 __ b(reguard_done); 2078 2079 // SLOW PATH safepoint 2080 { 2081 __ block_comment("safepoint {"); 2082 __ bind(safepoint_in_progress); 2083 2084 // Don't use call_VM as it will see a possible pending exception and forward it 2085 // and never return here preventing us from clearing _last_native_pc down below. 2086 // 2087 save_native_result(masm, ret_type, stack_slots); 2088 __ mov(c_rarg0, rthread); 2089 #ifndef PRODUCT 2090 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2091 #endif 2092 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2093 __ blr(rscratch1); 2094 2095 // Restore any method result value 2096 restore_native_result(masm, ret_type, stack_slots); 2097 2098 __ b(safepoint_in_progress_done); 2099 __ block_comment("} safepoint"); 2100 } 2101 2102 // SLOW PATH dtrace support 2103 { 2104 __ block_comment("dtrace entry {"); 2105 __ bind(dtrace_method_entry); 2106 2107 // We have all of the arguments setup at this point. We must not touch any register 2108 // argument registers at this point (what if we save/restore them there are no oop? 2109 2110 save_args(masm, total_c_args, c_arg, out_regs); 2111 __ mov_metadata(c_rarg1, method()); 2112 __ call_VM_leaf( 2113 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2114 rthread, c_rarg1); 2115 restore_args(masm, total_c_args, c_arg, out_regs); 2116 __ b(dtrace_method_entry_done); 2117 __ block_comment("} dtrace entry"); 2118 } 2119 2120 { 2121 __ block_comment("dtrace exit {"); 2122 __ bind(dtrace_method_exit); 2123 save_native_result(masm, ret_type, stack_slots); 2124 __ mov_metadata(c_rarg1, method()); 2125 __ call_VM_leaf( 2126 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2127 rthread, c_rarg1); 2128 restore_native_result(masm, ret_type, stack_slots); 2129 __ b(dtrace_method_exit_done); 2130 __ block_comment("} dtrace exit"); 2131 } 2132 2133 2134 __ flush(); 2135 2136 nmethod *nm = nmethod::new_native_nmethod(method, 2137 compile_id, 2138 masm->code(), 2139 vep_offset, 2140 frame_complete, 2141 stack_slots / VMRegImpl::slots_per_word, 2142 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2143 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2144 oop_maps); 2145 2146 return nm; 2147 } 2148 2149 // this function returns the adjust size (in number of words) to a c2i adapter 2150 // activation for use during deoptimization 2151 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2152 assert(callee_locals >= callee_parameters, 2153 "test and remove; got more parms than locals"); 2154 if (callee_locals < callee_parameters) 2155 return 0; // No adjustment for negative locals 2156 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2157 // diff is counted in stack words 2158 return align_up(diff, 2); 2159 } 2160 2161 2162 //------------------------------generate_deopt_blob---------------------------- 2163 void SharedRuntime::generate_deopt_blob() { 2164 // Allocate space for the code 2165 ResourceMark rm; 2166 // Setup code generation tools 2167 int pad = 0; 2168 #if INCLUDE_JVMCI 2169 if (EnableJVMCI) { 2170 pad += 512; // Increase the buffer size when compiling for JVMCI 2171 } 2172 #endif 2173 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2174 MacroAssembler* masm = new MacroAssembler(&buffer); 2175 int frame_size_in_words; 2176 OopMap* map = nullptr; 2177 OopMapSet *oop_maps = new OopMapSet(); 2178 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2179 2180 // ------------- 2181 // This code enters when returning to a de-optimized nmethod. A return 2182 // address has been pushed on the stack, and return values are in 2183 // registers. 2184 // If we are doing a normal deopt then we were called from the patched 2185 // nmethod from the point we returned to the nmethod. So the return 2186 // address on the stack is wrong by NativeCall::instruction_size 2187 // We will adjust the value so it looks like we have the original return 2188 // address on the stack (like when we eagerly deoptimized). 2189 // In the case of an exception pending when deoptimizing, we enter 2190 // with a return address on the stack that points after the call we patched 2191 // into the exception handler. We have the following register state from, 2192 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2193 // r0: exception oop 2194 // r19: exception handler 2195 // r3: throwing pc 2196 // So in this case we simply jam r3 into the useless return address and 2197 // the stack looks just like we want. 2198 // 2199 // At this point we need to de-opt. We save the argument return 2200 // registers. We call the first C routine, fetch_unroll_info(). This 2201 // routine captures the return values and returns a structure which 2202 // describes the current frame size and the sizes of all replacement frames. 2203 // The current frame is compiled code and may contain many inlined 2204 // functions, each with their own JVM state. We pop the current frame, then 2205 // push all the new frames. Then we call the C routine unpack_frames() to 2206 // populate these frames. Finally unpack_frames() returns us the new target 2207 // address. Notice that callee-save registers are BLOWN here; they have 2208 // already been captured in the vframeArray at the time the return PC was 2209 // patched. 2210 address start = __ pc(); 2211 Label cont; 2212 2213 // Prolog for non exception case! 2214 2215 // Save everything in sight. 2216 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2217 2218 // Normal deoptimization. Save exec mode for unpack_frames. 2219 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2220 __ b(cont); 2221 2222 int reexecute_offset = __ pc() - start; 2223 #if INCLUDE_JVMCI && !defined(COMPILER1) 2224 if (EnableJVMCI && UseJVMCICompiler) { 2225 // JVMCI does not use this kind of deoptimization 2226 __ should_not_reach_here(); 2227 } 2228 #endif 2229 2230 // Reexecute case 2231 // return address is the pc describes what bci to do re-execute at 2232 2233 // No need to update map as each call to save_live_registers will produce identical oopmap 2234 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2235 2236 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2237 __ b(cont); 2238 2239 #if INCLUDE_JVMCI 2240 Label after_fetch_unroll_info_call; 2241 int implicit_exception_uncommon_trap_offset = 0; 2242 int uncommon_trap_offset = 0; 2243 2244 if (EnableJVMCI) { 2245 implicit_exception_uncommon_trap_offset = __ pc() - start; 2246 2247 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2248 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2249 2250 uncommon_trap_offset = __ pc() - start; 2251 2252 // Save everything in sight. 2253 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2254 // fetch_unroll_info needs to call last_java_frame() 2255 Label retaddr; 2256 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2257 2258 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2259 __ movw(rscratch1, -1); 2260 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2261 2262 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2263 __ mov(c_rarg0, rthread); 2264 __ movw(c_rarg2, rcpool); // exec mode 2265 __ lea(rscratch1, 2266 RuntimeAddress(CAST_FROM_FN_PTR(address, 2267 Deoptimization::uncommon_trap))); 2268 __ blr(rscratch1); 2269 __ bind(retaddr); 2270 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2271 2272 __ reset_last_Java_frame(false); 2273 2274 __ b(after_fetch_unroll_info_call); 2275 } // EnableJVMCI 2276 #endif // INCLUDE_JVMCI 2277 2278 int exception_offset = __ pc() - start; 2279 2280 // Prolog for exception case 2281 2282 // all registers are dead at this entry point, except for r0, and 2283 // r3 which contain the exception oop and exception pc 2284 // respectively. Set them in TLS and fall thru to the 2285 // unpack_with_exception_in_tls entry point. 2286 2287 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2288 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2289 2290 int exception_in_tls_offset = __ pc() - start; 2291 2292 // new implementation because exception oop is now passed in JavaThread 2293 2294 // Prolog for exception case 2295 // All registers must be preserved because they might be used by LinearScan 2296 // Exceptiop oop and throwing PC are passed in JavaThread 2297 // tos: stack at point of call to method that threw the exception (i.e. only 2298 // args are on the stack, no return address) 2299 2300 // The return address pushed by save_live_registers will be patched 2301 // later with the throwing pc. The correct value is not available 2302 // now because loading it from memory would destroy registers. 2303 2304 // NB: The SP at this point must be the SP of the method that is 2305 // being deoptimized. Deoptimization assumes that the frame created 2306 // here by save_live_registers is immediately below the method's SP. 2307 // This is a somewhat fragile mechanism. 2308 2309 // Save everything in sight. 2310 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2311 2312 // Now it is safe to overwrite any register 2313 2314 // Deopt during an exception. Save exec mode for unpack_frames. 2315 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2316 2317 // load throwing pc from JavaThread and patch it as the return address 2318 // of the current frame. Then clear the field in JavaThread 2319 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2320 __ protect_return_address(r3); 2321 __ str(r3, Address(rfp, wordSize)); 2322 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2323 2324 #ifdef ASSERT 2325 // verify that there is really an exception oop in JavaThread 2326 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2327 __ verify_oop(r0); 2328 2329 // verify that there is no pending exception 2330 Label no_pending_exception; 2331 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2332 __ cbz(rscratch1, no_pending_exception); 2333 __ stop("must not have pending exception here"); 2334 __ bind(no_pending_exception); 2335 #endif 2336 2337 __ bind(cont); 2338 2339 // Call C code. Need thread and this frame, but NOT official VM entry 2340 // crud. We cannot block on this call, no GC can happen. 2341 // 2342 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2343 2344 // fetch_unroll_info needs to call last_java_frame(). 2345 2346 Label retaddr; 2347 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2348 #ifdef ASSERT 2349 { Label L; 2350 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2351 __ cbz(rscratch1, L); 2352 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2353 __ bind(L); 2354 } 2355 #endif // ASSERT 2356 __ mov(c_rarg0, rthread); 2357 __ mov(c_rarg1, rcpool); 2358 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2359 __ blr(rscratch1); 2360 __ bind(retaddr); 2361 2362 // Need to have an oopmap that tells fetch_unroll_info where to 2363 // find any register it might need. 2364 oop_maps->add_gc_map(__ pc() - start, map); 2365 2366 __ reset_last_Java_frame(false); 2367 2368 #if INCLUDE_JVMCI 2369 if (EnableJVMCI) { 2370 __ bind(after_fetch_unroll_info_call); 2371 } 2372 #endif 2373 2374 // Load UnrollBlock* into r5 2375 __ mov(r5, r0); 2376 2377 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2378 Label noException; 2379 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2380 __ br(Assembler::NE, noException); 2381 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2382 // QQQ this is useless it was null above 2383 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2384 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2385 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2386 2387 __ verify_oop(r0); 2388 2389 // Overwrite the result registers with the exception results. 2390 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2391 // I think this is useless 2392 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2393 2394 __ bind(noException); 2395 2396 // Only register save data is on the stack. 2397 // Now restore the result registers. Everything else is either dead 2398 // or captured in the vframeArray. 2399 2400 // Restore fp result register 2401 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2402 // Restore integer result register 2403 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2404 2405 // Pop all of the register save area off the stack 2406 __ add(sp, sp, frame_size_in_words * wordSize); 2407 2408 // All of the register save area has been popped of the stack. Only the 2409 // return address remains. 2410 2411 // Pop all the frames we must move/replace. 2412 // 2413 // Frame picture (youngest to oldest) 2414 // 1: self-frame (no frame link) 2415 // 2: deopting frame (no frame link) 2416 // 3: caller of deopting frame (could be compiled/interpreted). 2417 // 2418 // Note: by leaving the return address of self-frame on the stack 2419 // and using the size of frame 2 to adjust the stack 2420 // when we are done the return to frame 3 will still be on the stack. 2421 2422 // Pop deoptimized frame 2423 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2424 __ sub(r2, r2, 2 * wordSize); 2425 __ add(sp, sp, r2); 2426 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2427 2428 #ifdef ASSERT 2429 // Compilers generate code that bang the stack by as much as the 2430 // interpreter would need. So this stack banging should never 2431 // trigger a fault. Verify that it does not on non product builds. 2432 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2433 __ bang_stack_size(r19, r2); 2434 #endif 2435 // Load address of array of frame pcs into r2 2436 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2437 2438 // Trash the old pc 2439 // __ addptr(sp, wordSize); FIXME ???? 2440 2441 // Load address of array of frame sizes into r4 2442 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2443 2444 // Load counter into r3 2445 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2446 2447 // Now adjust the caller's stack to make up for the extra locals 2448 // but record the original sp so that we can save it in the skeletal interpreter 2449 // frame and the stack walking of interpreter_sender will get the unextended sp 2450 // value and not the "real" sp value. 2451 2452 const Register sender_sp = r6; 2453 2454 __ mov(sender_sp, sp); 2455 __ ldrw(r19, Address(r5, 2456 Deoptimization::UnrollBlock:: 2457 caller_adjustment_offset())); 2458 __ sub(sp, sp, r19); 2459 2460 // Push interpreter frames in a loop 2461 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2462 __ mov(rscratch2, rscratch1); 2463 Label loop; 2464 __ bind(loop); 2465 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2466 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2467 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2468 __ enter(); // Save old & set new fp 2469 __ sub(sp, sp, r19); // Prolog 2470 // This value is corrected by layout_activation_impl 2471 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2472 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2473 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2474 __ sub(r3, r3, 1); // Decrement counter 2475 __ cbnz(r3, loop); 2476 2477 // Re-push self-frame 2478 __ ldr(lr, Address(r2)); 2479 __ enter(); 2480 2481 // Allocate a full sized register save area. We subtract 2 because 2482 // enter() just pushed 2 words 2483 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2484 2485 // Restore frame locals after moving the frame 2486 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2487 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2488 2489 // Call C code. Need thread but NOT official VM entry 2490 // crud. We cannot block on this call, no GC can happen. Call should 2491 // restore return values to their stack-slots with the new SP. 2492 // 2493 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2494 2495 // Use rfp because the frames look interpreted now 2496 // Don't need the precise return PC here, just precise enough to point into this code blob. 2497 address the_pc = __ pc(); 2498 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2499 2500 __ mov(c_rarg0, rthread); 2501 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2502 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2503 __ blr(rscratch1); 2504 2505 // Set an oopmap for the call site 2506 // Use the same PC we used for the last java frame 2507 oop_maps->add_gc_map(the_pc - start, 2508 new OopMap( frame_size_in_words, 0 )); 2509 2510 // Clear fp AND pc 2511 __ reset_last_Java_frame(true); 2512 2513 // Collect return values 2514 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2515 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2516 // I think this is useless (throwing pc?) 2517 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2518 2519 // Pop self-frame. 2520 __ leave(); // Epilog 2521 2522 // Jump to interpreter 2523 __ ret(lr); 2524 2525 // Make sure all code is generated 2526 masm->flush(); 2527 2528 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2529 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2530 #if INCLUDE_JVMCI 2531 if (EnableJVMCI) { 2532 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2533 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2534 } 2535 #endif 2536 } 2537 2538 // Number of stack slots between incoming argument block and the start of 2539 // a new frame. The PROLOG must add this many slots to the stack. The 2540 // EPILOG must remove this many slots. aarch64 needs two slots for 2541 // return address and fp. 2542 // TODO think this is correct but check 2543 uint SharedRuntime::in_preserve_stack_slots() { 2544 return 4; 2545 } 2546 2547 uint SharedRuntime::out_preserve_stack_slots() { 2548 return 0; 2549 } 2550 2551 #ifdef COMPILER2 2552 //------------------------------generate_uncommon_trap_blob-------------------- 2553 void SharedRuntime::generate_uncommon_trap_blob() { 2554 // Allocate space for the code 2555 ResourceMark rm; 2556 // Setup code generation tools 2557 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2558 MacroAssembler* masm = new MacroAssembler(&buffer); 2559 2560 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2561 2562 address start = __ pc(); 2563 2564 // Push self-frame. We get here with a return address in LR 2565 // and sp should be 16 byte aligned 2566 // push rfp and retaddr by hand 2567 __ protect_return_address(); 2568 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2569 // we don't expect an arg reg save area 2570 #ifndef PRODUCT 2571 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2572 #endif 2573 // compiler left unloaded_class_index in j_rarg0 move to where the 2574 // runtime expects it. 2575 if (c_rarg1 != j_rarg0) { 2576 __ movw(c_rarg1, j_rarg0); 2577 } 2578 2579 // we need to set the past SP to the stack pointer of the stub frame 2580 // and the pc to the address where this runtime call will return 2581 // although actually any pc in this code blob will do). 2582 Label retaddr; 2583 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2584 2585 // Call C code. Need thread but NOT official VM entry 2586 // crud. We cannot block on this call, no GC can happen. Call should 2587 // capture callee-saved registers as well as return values. 2588 // Thread is in rdi already. 2589 // 2590 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 2591 // 2592 // n.b. 2 gp args, 0 fp args, integral return type 2593 2594 __ mov(c_rarg0, rthread); 2595 __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap); 2596 __ lea(rscratch1, 2597 RuntimeAddress(CAST_FROM_FN_PTR(address, 2598 Deoptimization::uncommon_trap))); 2599 __ blr(rscratch1); 2600 __ bind(retaddr); 2601 2602 // Set an oopmap for the call site 2603 OopMapSet* oop_maps = new OopMapSet(); 2604 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2605 2606 // location of rfp is known implicitly by the frame sender code 2607 2608 oop_maps->add_gc_map(__ pc() - start, map); 2609 2610 __ reset_last_Java_frame(false); 2611 2612 // move UnrollBlock* into r4 2613 __ mov(r4, r0); 2614 2615 #ifdef ASSERT 2616 { Label L; 2617 __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset())); 2618 __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2619 __ br(Assembler::EQ, L); 2620 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2621 __ bind(L); 2622 } 2623 #endif 2624 2625 // Pop all the frames we must move/replace. 2626 // 2627 // Frame picture (youngest to oldest) 2628 // 1: self-frame (no frame link) 2629 // 2: deopting frame (no frame link) 2630 // 3: caller of deopting frame (could be compiled/interpreted). 2631 2632 // Pop self-frame. We have no frame, and must rely only on r0 and sp. 2633 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2634 2635 // Pop deoptimized frame (int) 2636 __ ldrw(r2, Address(r4, 2637 Deoptimization::UnrollBlock:: 2638 size_of_deoptimized_frame_offset())); 2639 __ sub(r2, r2, 2 * wordSize); 2640 __ add(sp, sp, r2); 2641 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2642 2643 #ifdef ASSERT 2644 // Compilers generate code that bang the stack by as much as the 2645 // interpreter would need. So this stack banging should never 2646 // trigger a fault. Verify that it does not on non product builds. 2647 __ ldrw(r1, Address(r4, 2648 Deoptimization::UnrollBlock:: 2649 total_frame_sizes_offset())); 2650 __ bang_stack_size(r1, r2); 2651 #endif 2652 2653 // Load address of array of frame pcs into r2 (address*) 2654 __ ldr(r2, Address(r4, 2655 Deoptimization::UnrollBlock::frame_pcs_offset())); 2656 2657 // Load address of array of frame sizes into r5 (intptr_t*) 2658 __ ldr(r5, Address(r4, 2659 Deoptimization::UnrollBlock:: 2660 frame_sizes_offset())); 2661 2662 // Counter 2663 __ ldrw(r3, Address(r4, 2664 Deoptimization::UnrollBlock:: 2665 number_of_frames_offset())); // (int) 2666 2667 // Now adjust the caller's stack to make up for the extra locals but 2668 // record the original sp so that we can save it in the skeletal 2669 // interpreter frame and the stack walking of interpreter_sender 2670 // will get the unextended sp value and not the "real" sp value. 2671 2672 const Register sender_sp = r8; 2673 2674 __ mov(sender_sp, sp); 2675 __ ldrw(r1, Address(r4, 2676 Deoptimization::UnrollBlock:: 2677 caller_adjustment_offset())); // (int) 2678 __ sub(sp, sp, r1); 2679 2680 // Push interpreter frames in a loop 2681 Label loop; 2682 __ bind(loop); 2683 __ ldr(r1, Address(r5, 0)); // Load frame size 2684 __ sub(r1, r1, 2 * wordSize); // We'll push pc and rfp by hand 2685 __ ldr(lr, Address(r2, 0)); // Save return address 2686 __ enter(); // and old rfp & set new rfp 2687 __ sub(sp, sp, r1); // Prolog 2688 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2689 // This value is corrected by layout_activation_impl 2690 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2691 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2692 __ add(r5, r5, wordSize); // Bump array pointer (sizes) 2693 __ add(r2, r2, wordSize); // Bump array pointer (pcs) 2694 __ subsw(r3, r3, 1); // Decrement counter 2695 __ br(Assembler::GT, loop); 2696 __ ldr(lr, Address(r2, 0)); // save final return address 2697 // Re-push self-frame 2698 __ enter(); // & old rfp & set new rfp 2699 2700 // Use rfp because the frames look interpreted now 2701 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2702 // Don't need the precise return PC here, just precise enough to point into this code blob. 2703 address the_pc = __ pc(); 2704 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2705 2706 // Call C code. Need thread but NOT official VM entry 2707 // crud. We cannot block on this call, no GC can happen. Call should 2708 // restore return values to their stack-slots with the new SP. 2709 // Thread is in rdi already. 2710 // 2711 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 2712 // 2713 // n.b. 2 gp args, 0 fp args, integral return type 2714 2715 // sp should already be aligned 2716 __ mov(c_rarg0, rthread); 2717 __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2718 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2719 __ blr(rscratch1); 2720 2721 // Set an oopmap for the call site 2722 // Use the same PC we used for the last java frame 2723 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2724 2725 // Clear fp AND pc 2726 __ reset_last_Java_frame(true); 2727 2728 // Pop self-frame. 2729 __ leave(); // Epilog 2730 2731 // Jump to interpreter 2732 __ ret(lr); 2733 2734 // Make sure all code is generated 2735 masm->flush(); 2736 2737 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2738 SimpleRuntimeFrame::framesize >> 1); 2739 } 2740 #endif // COMPILER2 2741 2742 2743 //------------------------------generate_handler_blob------ 2744 // 2745 // Generate a special Compile2Runtime blob that saves all registers, 2746 // and setup oopmap. 2747 // 2748 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2749 ResourceMark rm; 2750 OopMapSet *oop_maps = new OopMapSet(); 2751 OopMap* map; 2752 2753 // Allocate space for the code. Setup code generation tools. 2754 CodeBuffer buffer("handler_blob", 2048, 1024); 2755 MacroAssembler* masm = new MacroAssembler(&buffer); 2756 2757 address start = __ pc(); 2758 address call_pc = nullptr; 2759 int frame_size_in_words; 2760 bool cause_return = (poll_type == POLL_AT_RETURN); 2761 RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2762 2763 // When the signal occurred, the LR was either signed and stored on the stack (in which 2764 // case it will be restored from the stack before being used) or unsigned and not stored 2765 // on the stack. Stipping ensures we get the right value. 2766 __ strip_return_address(); 2767 2768 // Save Integer and Float registers. 2769 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2770 2771 // The following is basically a call_VM. However, we need the precise 2772 // address of the call in order to generate an oopmap. Hence, we do all the 2773 // work ourselves. 2774 2775 Label retaddr; 2776 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2777 2778 // The return address must always be correct so that frame constructor never 2779 // sees an invalid pc. 2780 2781 if (!cause_return) { 2782 // overwrite the return address pushed by save_live_registers 2783 // Additionally, r20 is a callee-saved register so we can look at 2784 // it later to determine if someone changed the return address for 2785 // us! 2786 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2787 __ protect_return_address(r20); 2788 __ str(r20, Address(rfp, wordSize)); 2789 } 2790 2791 // Do the call 2792 __ mov(c_rarg0, rthread); 2793 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2794 __ blr(rscratch1); 2795 __ bind(retaddr); 2796 2797 // Set an oopmap for the call site. This oopmap will map all 2798 // oop-registers and debug-info registers as callee-saved. This 2799 // will allow deoptimization at this safepoint to find all possible 2800 // debug-info recordings, as well as let GC find all oops. 2801 2802 oop_maps->add_gc_map( __ pc() - start, map); 2803 2804 Label noException; 2805 2806 __ reset_last_Java_frame(false); 2807 2808 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2809 2810 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2811 __ cbz(rscratch1, noException); 2812 2813 // Exception pending 2814 2815 reg_save.restore_live_registers(masm); 2816 2817 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2818 2819 // No exception case 2820 __ bind(noException); 2821 2822 Label no_adjust, bail; 2823 if (!cause_return) { 2824 // If our stashed return pc was modified by the runtime we avoid touching it 2825 __ ldr(rscratch1, Address(rfp, wordSize)); 2826 __ cmp(r20, rscratch1); 2827 __ br(Assembler::NE, no_adjust); 2828 __ authenticate_return_address(r20); 2829 2830 #ifdef ASSERT 2831 // Verify the correct encoding of the poll we're about to skip. 2832 // See NativeInstruction::is_ldrw_to_zr() 2833 __ ldrw(rscratch1, Address(r20)); 2834 __ ubfx(rscratch2, rscratch1, 22, 10); 2835 __ cmpw(rscratch2, 0b1011100101); 2836 __ br(Assembler::NE, bail); 2837 __ ubfx(rscratch2, rscratch1, 0, 5); 2838 __ cmpw(rscratch2, 0b11111); 2839 __ br(Assembler::NE, bail); 2840 #endif 2841 // Adjust return pc forward to step over the safepoint poll instruction 2842 __ add(r20, r20, NativeInstruction::instruction_size); 2843 __ protect_return_address(r20); 2844 __ str(r20, Address(rfp, wordSize)); 2845 } 2846 2847 __ bind(no_adjust); 2848 // Normal exit, restore registers and exit. 2849 reg_save.restore_live_registers(masm); 2850 2851 __ ret(lr); 2852 2853 #ifdef ASSERT 2854 __ bind(bail); 2855 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2856 #endif 2857 2858 // Make sure all code is generated 2859 masm->flush(); 2860 2861 // Fill-out other meta info 2862 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2863 } 2864 2865 // 2866 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2867 // 2868 // Generate a stub that calls into vm to find out the proper destination 2869 // of a java call. All the argument registers are live at this point 2870 // but since this is generic code we don't know what they are and the caller 2871 // must do any gc of the args. 2872 // 2873 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2874 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2875 2876 // allocate space for the code 2877 ResourceMark rm; 2878 2879 CodeBuffer buffer(name, 1000, 512); 2880 MacroAssembler* masm = new MacroAssembler(&buffer); 2881 2882 int frame_size_in_words; 2883 RegisterSaver reg_save(false /* save_vectors */); 2884 2885 OopMapSet *oop_maps = new OopMapSet(); 2886 OopMap* map = nullptr; 2887 2888 int start = __ offset(); 2889 2890 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2891 2892 int frame_complete = __ offset(); 2893 2894 { 2895 Label retaddr; 2896 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2897 2898 __ mov(c_rarg0, rthread); 2899 __ lea(rscratch1, RuntimeAddress(destination)); 2900 2901 __ blr(rscratch1); 2902 __ bind(retaddr); 2903 } 2904 2905 // Set an oopmap for the call site. 2906 // We need this not only for callee-saved registers, but also for volatile 2907 // registers that the compiler might be keeping live across a safepoint. 2908 2909 oop_maps->add_gc_map( __ offset() - start, map); 2910 2911 // r0 contains the address we are going to jump to assuming no exception got installed 2912 2913 // clear last_Java_sp 2914 __ reset_last_Java_frame(false); 2915 // check for pending exceptions 2916 Label pending; 2917 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2918 __ cbnz(rscratch1, pending); 2919 2920 // get the returned Method* 2921 __ get_vm_result_2(rmethod, rthread); 2922 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2923 2924 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2925 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2926 reg_save.restore_live_registers(masm); 2927 2928 // We are back to the original state on entry and ready to go. 2929 2930 __ br(rscratch1); 2931 2932 // Pending exception after the safepoint 2933 2934 __ bind(pending); 2935 2936 reg_save.restore_live_registers(masm); 2937 2938 // exception pending => remove activation and forward to exception handler 2939 2940 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2941 2942 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2943 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2944 2945 // ------------- 2946 // make sure all code is generated 2947 masm->flush(); 2948 2949 // return the blob 2950 // frame_size_words or bytes?? 2951 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2952 } 2953 2954 #ifdef COMPILER2 2955 // This is here instead of runtime_aarch64_64.cpp because it uses SimpleRuntimeFrame 2956 // 2957 //------------------------------generate_exception_blob--------------------------- 2958 // creates exception blob at the end 2959 // Using exception blob, this code is jumped from a compiled method. 2960 // (see emit_exception_handler in x86_64.ad file) 2961 // 2962 // Given an exception pc at a call we call into the runtime for the 2963 // handler in this method. This handler might merely restore state 2964 // (i.e. callee save registers) unwind the frame and jump to the 2965 // exception handler for the nmethod if there is no Java level handler 2966 // for the nmethod. 2967 // 2968 // This code is entered with a jmp. 2969 // 2970 // Arguments: 2971 // r0: exception oop 2972 // r3: exception pc 2973 // 2974 // Results: 2975 // r0: exception oop 2976 // r3: exception pc in caller or ??? 2977 // destination: exception handler of caller 2978 // 2979 // Note: the exception pc MUST be at a call (precise debug information) 2980 // Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved. 2981 // 2982 2983 void OptoRuntime::generate_exception_blob() { 2984 assert(!OptoRuntime::is_callee_saved_register(R3_num), ""); 2985 assert(!OptoRuntime::is_callee_saved_register(R0_num), ""); 2986 assert(!OptoRuntime::is_callee_saved_register(R2_num), ""); 2987 2988 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2989 2990 // Allocate space for the code 2991 ResourceMark rm; 2992 // Setup code generation tools 2993 CodeBuffer buffer("exception_blob", 2048, 1024); 2994 MacroAssembler* masm = new MacroAssembler(&buffer); 2995 2996 // TODO check various assumptions made here 2997 // 2998 // make sure we do so before running this 2999 3000 address start = __ pc(); 3001 3002 // push rfp and retaddr by hand 3003 // Exception pc is 'return address' for stack walker 3004 __ protect_return_address(); 3005 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 3006 // there are no callee save registers and we don't expect an 3007 // arg reg save area 3008 #ifndef PRODUCT 3009 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 3010 #endif 3011 // Store exception in Thread object. We cannot pass any arguments to the 3012 // handle_exception call, since we do not want to make any assumption 3013 // about the size of the frame where the exception happened in. 3014 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 3015 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 3016 3017 // This call does all the hard work. It checks if an exception handler 3018 // exists in the method. 3019 // If so, it returns the handler address. 3020 // If not, it prepares for stack-unwinding, restoring the callee-save 3021 // registers of the frame being removed. 3022 // 3023 // address OptoRuntime::handle_exception_C(JavaThread* thread) 3024 // 3025 // n.b. 1 gp arg, 0 fp args, integral return type 3026 3027 // the stack should always be aligned 3028 address the_pc = __ pc(); 3029 __ set_last_Java_frame(sp, noreg, the_pc, rscratch1); 3030 __ mov(c_rarg0, rthread); 3031 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 3032 __ blr(rscratch1); 3033 // handle_exception_C is a special VM call which does not require an explicit 3034 // instruction sync afterwards. 3035 3036 // May jump to SVE compiled code 3037 __ reinitialize_ptrue(); 3038 3039 // Set an oopmap for the call site. This oopmap will only be used if we 3040 // are unwinding the stack. Hence, all locations will be dead. 3041 // Callee-saved registers will be the same as the frame above (i.e., 3042 // handle_exception_stub), since they were restored when we got the 3043 // exception. 3044 3045 OopMapSet* oop_maps = new OopMapSet(); 3046 3047 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3048 3049 __ reset_last_Java_frame(false); 3050 3051 // Restore callee-saved registers 3052 3053 // rfp is an implicitly saved callee saved register (i.e. the calling 3054 // convention will save restore it in prolog/epilog) Other than that 3055 // there are no callee save registers now that adapter frames are gone. 3056 // and we dont' expect an arg reg save area 3057 __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize))); 3058 __ authenticate_return_address(r3); 3059 3060 // r0: exception handler 3061 3062 // We have a handler in r0 (could be deopt blob). 3063 __ mov(r8, r0); 3064 3065 // Get the exception oop 3066 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 3067 // Get the exception pc in case we are deoptimized 3068 __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset())); 3069 #ifdef ASSERT 3070 __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset())); 3071 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 3072 #endif 3073 // Clear the exception oop so GC no longer processes it as a root. 3074 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 3075 3076 // r0: exception oop 3077 // r8: exception handler 3078 // r4: exception pc 3079 // Jump to handler 3080 3081 __ br(r8); 3082 3083 // Make sure all code is generated 3084 masm->flush(); 3085 3086 // Set exception blob 3087 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3088 } 3089 3090 #endif // COMPILER2