1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "code/aotCodeCache.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/debugInfoRec.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interp_masm.hpp" 39 #include "logging/log.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/continuation.hpp" 46 #include "runtime/continuationEntry.inline.hpp" 47 #include "runtime/globals.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/signature.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/timerTrace.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/align.hpp" 56 #include "utilities/formatBuffer.hpp" 57 #include "vmreg_aarch64.inline.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_Runtime1.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "adfiles/ad_aarch64.hpp" 63 #include "opto/runtime.hpp" 64 #endif 65 #if INCLUDE_JVMCI 66 #include "jvmci/jvmciJavaClasses.hpp" 67 #endif 68 69 #define __ masm-> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) __ block_comment(str) 75 #endif 76 77 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 78 79 // FIXME -- this is used by C1 80 class RegisterSaver { 81 const bool _save_vectors; 82 public: 83 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 84 85 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 86 void restore_live_registers(MacroAssembler* masm); 87 88 // Offsets into the register save area 89 // Used by deoptimization when it is managing result register 90 // values on its own 91 92 int reg_offset_in_bytes(Register r); 93 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 94 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 95 int v0_offset_in_bytes(); 96 97 // Total stack size in bytes for saving sve predicate registers. 98 int total_sve_predicate_in_bytes(); 99 100 // Capture info about frame layout 101 // Note this is only correct when not saving full vectors. 102 enum layout { 103 fpu_state_off = 0, 104 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 105 // The frame sender code expects that rfp will be in 106 // the "natural" place and will override any oopMap 107 // setting for it. We must therefore force the layout 108 // so that it agrees with the frame sender code. 109 r0_off = fpu_state_off + FPUStateSizeInWords, 110 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 111 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 112 reg_save_size = return_off + Register::max_slots_per_register}; 113 114 }; 115 116 int RegisterSaver::reg_offset_in_bytes(Register r) { 117 // The integer registers are located above the floating point 118 // registers in the stack frame pushed by save_live_registers() so the 119 // offset depends on whether we are saving full vectors, and whether 120 // those vectors are NEON or SVE. 121 122 int slots_per_vect = FloatRegister::save_slots_per_register; 123 124 #if COMPILER2_OR_JVMCI 125 if (_save_vectors) { 126 slots_per_vect = FloatRegister::slots_per_neon_register; 127 128 #ifdef COMPILER2 129 if (Matcher::supports_scalable_vector()) { 130 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 131 } 132 #endif 133 } 134 #endif 135 136 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 137 return r0_offset + r->encoding() * wordSize; 138 } 139 140 int RegisterSaver::v0_offset_in_bytes() { 141 // The floating point registers are located above the predicate registers if 142 // they are present in the stack frame pushed by save_live_registers(). So the 143 // offset depends on the saved total predicate vectors in the stack frame. 144 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 145 } 146 147 int RegisterSaver::total_sve_predicate_in_bytes() { 148 #ifdef COMPILER2 149 if (_save_vectors && Matcher::supports_scalable_vector()) { 150 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 151 PRegister::number_of_registers; 152 } 153 #endif 154 return 0; 155 } 156 157 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 158 bool use_sve = false; 159 int sve_vector_size_in_bytes = 0; 160 int sve_vector_size_in_slots = 0; 161 int sve_predicate_size_in_slots = 0; 162 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 163 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 164 165 #ifdef COMPILER2 166 use_sve = Matcher::supports_scalable_vector(); 167 if (use_sve) { 168 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 169 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 170 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 171 } 172 #endif 173 174 #if COMPILER2_OR_JVMCI 175 if (_save_vectors) { 176 int extra_save_slots_per_register = 0; 177 // Save upper half of vector registers 178 if (use_sve) { 179 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 180 } else { 181 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 182 } 183 int extra_vector_bytes = extra_save_slots_per_register * 184 VMRegImpl::stack_slot_size * 185 FloatRegister::number_of_registers; 186 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 187 } 188 #else 189 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 190 #endif 191 192 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 193 reg_save_size * BytesPerInt, 16); 194 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 195 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 196 // The caller will allocate additional_frame_words 197 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 198 // CodeBlob frame size is in words. 199 int frame_size_in_words = frame_size_in_bytes / wordSize; 200 *total_frame_words = frame_size_in_words; 201 202 // Save Integer and Float registers. 203 __ enter(); 204 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 205 206 // Set an oopmap for the call site. This oopmap will map all 207 // oop-registers and debug-info registers as callee-saved. This 208 // will allow deoptimization at this safepoint to find all possible 209 // debug-info recordings, as well as let GC find all oops. 210 211 OopMapSet *oop_maps = new OopMapSet(); 212 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 213 214 for (int i = 0; i < Register::number_of_registers; i++) { 215 Register r = as_Register(i); 216 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 217 // SP offsets are in 4-byte words. 218 // Register slots are 8 bytes wide, 32 floating-point registers. 219 int sp_offset = Register::max_slots_per_register * i + 220 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 221 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 222 } 223 } 224 225 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 226 FloatRegister r = as_FloatRegister(i); 227 int sp_offset = 0; 228 if (_save_vectors) { 229 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 230 (FloatRegister::slots_per_neon_register * i); 231 } else { 232 sp_offset = FloatRegister::save_slots_per_register * i; 233 } 234 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 235 } 236 237 return oop_map; 238 } 239 240 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 241 #ifdef COMPILER2 242 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 243 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 244 #else 245 #if !INCLUDE_JVMCI 246 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 247 #endif 248 __ pop_CPU_state(_save_vectors); 249 #endif 250 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 251 __ authenticate_return_address(); 252 } 253 254 // Is vector's size (in bytes) bigger than a size saved by default? 255 // 8 bytes vector registers are saved by default on AArch64. 256 // The SVE supported min vector size is 8 bytes and we need to save 257 // predicate registers when the vector size is 8 bytes as well. 258 bool SharedRuntime::is_wide_vector(int size) { 259 return size > 8 || (UseSVE > 0 && size >= 8); 260 } 261 262 // --------------------------------------------------------------------------- 263 // Read the array of BasicTypes from a signature, and compute where the 264 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 265 // quantities. Values less than VMRegImpl::stack0 are registers, those above 266 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 267 // as framesizes are fixed. 268 // VMRegImpl::stack0 refers to the first slot 0(sp). 269 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 270 // Register up to Register::number_of_registers are the 64-bit 271 // integer registers. 272 273 // Note: the INPUTS in sig_bt are in units of Java argument words, 274 // which are 64-bit. The OUTPUTS are in 32-bit units. 275 276 // The Java calling convention is a "shifted" version of the C ABI. 277 // By skipping the first C ABI register we can call non-static jni 278 // methods with small numbers of arguments without having to shuffle 279 // the arguments at all. Since we control the java ABI we ought to at 280 // least get some advantage out of it. 281 282 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 283 VMRegPair *regs, 284 int total_args_passed) { 285 286 // Create the mapping between argument positions and 287 // registers. 288 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 289 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 290 }; 291 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 292 j_farg0, j_farg1, j_farg2, j_farg3, 293 j_farg4, j_farg5, j_farg6, j_farg7 294 }; 295 296 297 uint int_args = 0; 298 uint fp_args = 0; 299 uint stk_args = 0; 300 301 for (int i = 0; i < total_args_passed; i++) { 302 switch (sig_bt[i]) { 303 case T_BOOLEAN: 304 case T_CHAR: 305 case T_BYTE: 306 case T_SHORT: 307 case T_INT: 308 if (int_args < Argument::n_int_register_parameters_j) { 309 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 310 } else { 311 stk_args = align_up(stk_args, 2); 312 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 313 stk_args += 1; 314 } 315 break; 316 case T_VOID: 317 // halves of T_LONG or T_DOUBLE 318 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 319 regs[i].set_bad(); 320 break; 321 case T_LONG: 322 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 323 // fall through 324 case T_OBJECT: 325 case T_ARRAY: 326 case T_ADDRESS: 327 if (int_args < Argument::n_int_register_parameters_j) { 328 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 329 } else { 330 stk_args = align_up(stk_args, 2); 331 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 332 stk_args += 2; 333 } 334 break; 335 case T_FLOAT: 336 if (fp_args < Argument::n_float_register_parameters_j) { 337 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 338 } else { 339 stk_args = align_up(stk_args, 2); 340 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 341 stk_args += 1; 342 } 343 break; 344 case T_DOUBLE: 345 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 346 if (fp_args < Argument::n_float_register_parameters_j) { 347 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 348 } else { 349 stk_args = align_up(stk_args, 2); 350 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 351 stk_args += 2; 352 } 353 break; 354 default: 355 ShouldNotReachHere(); 356 break; 357 } 358 } 359 360 return stk_args; 361 } 362 363 364 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j; 365 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j; 366 367 int SharedRuntime::java_return_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) { 368 369 // Create the mapping between argument positions and registers. 370 371 static const Register INT_ArgReg[java_return_convention_max_int] = { 372 r0 /* j_rarg7 */, j_rarg6, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0 373 }; 374 375 static const FloatRegister FP_ArgReg[java_return_convention_max_float] = { 376 j_farg0, j_farg1, j_farg2, j_farg3, j_farg4, j_farg5, j_farg6, j_farg7 377 }; 378 379 uint int_args = 0; 380 uint fp_args = 0; 381 382 for (int i = 0; i < total_args_passed; i++) { 383 switch (sig_bt[i]) { 384 case T_BOOLEAN: 385 case T_CHAR: 386 case T_BYTE: 387 case T_SHORT: 388 case T_INT: 389 if (int_args < SharedRuntime::java_return_convention_max_int) { 390 regs[i].set1(INT_ArgReg[int_args]->as_VMReg()); 391 int_args ++; 392 } else { 393 return -1; 394 } 395 break; 396 case T_VOID: 397 // halves of T_LONG or T_DOUBLE 398 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 399 regs[i].set_bad(); 400 break; 401 case T_LONG: 402 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 403 // fall through 404 case T_OBJECT: 405 case T_ARRAY: 406 case T_ADDRESS: 407 // Should T_METADATA be added to java_calling_convention as well ? 408 case T_METADATA: 409 if (int_args < SharedRuntime::java_return_convention_max_int) { 410 regs[i].set2(INT_ArgReg[int_args]->as_VMReg()); 411 int_args ++; 412 } else { 413 return -1; 414 } 415 break; 416 case T_FLOAT: 417 if (fp_args < SharedRuntime::java_return_convention_max_float) { 418 regs[i].set1(FP_ArgReg[fp_args]->as_VMReg()); 419 fp_args ++; 420 } else { 421 return -1; 422 } 423 break; 424 case T_DOUBLE: 425 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 426 if (fp_args < SharedRuntime::java_return_convention_max_float) { 427 regs[i].set2(FP_ArgReg[fp_args]->as_VMReg()); 428 fp_args ++; 429 } else { 430 return -1; 431 } 432 break; 433 default: 434 ShouldNotReachHere(); 435 break; 436 } 437 } 438 439 return int_args + fp_args; 440 } 441 442 // Patch the callers callsite with entry to compiled code if it exists. 443 static void patch_callers_callsite(MacroAssembler *masm) { 444 Label L; 445 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 446 __ cbz(rscratch1, L); 447 448 __ enter(); 449 __ push_CPU_state(); 450 451 // VM needs caller's callsite 452 // VM needs target method 453 // This needs to be a long call since we will relocate this adapter to 454 // the codeBuffer and it may not reach 455 456 #ifndef PRODUCT 457 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 458 #endif 459 460 __ mov(c_rarg0, rmethod); 461 __ mov(c_rarg1, lr); 462 __ authenticate_return_address(c_rarg1); 463 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 464 __ blr(rscratch1); 465 466 // Explicit isb required because fixup_callers_callsite may change the code 467 // stream. 468 __ safepoint_isb(); 469 470 __ pop_CPU_state(); 471 // restore sp 472 __ leave(); 473 __ bind(L); 474 } 475 476 // For each inline type argument, sig includes the list of fields of 477 // the inline type. This utility function computes the number of 478 // arguments for the call if inline types are passed by reference (the 479 // calling convention the interpreter expects). 480 static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) { 481 int total_args_passed = 0; 482 if (InlineTypePassFieldsAsArgs) { 483 for (int i = 0; i < sig_extended->length(); i++) { 484 BasicType bt = sig_extended->at(i)._bt; 485 if (bt == T_METADATA) { 486 // In sig_extended, an inline type argument starts with: 487 // T_METADATA, followed by the types of the fields of the 488 // inline type and T_VOID to mark the end of the value 489 // type. Inline types are flattened so, for instance, in the 490 // case of an inline type with an int field and an inline type 491 // field that itself has 2 fields, an int and a long: 492 // T_METADATA T_INT T_METADATA T_INT T_LONG T_VOID (second 493 // slot for the T_LONG) T_VOID (inner inline type) T_VOID 494 // (outer inline type) 495 total_args_passed++; 496 int vt = 1; 497 do { 498 i++; 499 BasicType bt = sig_extended->at(i)._bt; 500 BasicType prev_bt = sig_extended->at(i-1)._bt; 501 if (bt == T_METADATA) { 502 vt++; 503 } else if (bt == T_VOID && 504 prev_bt != T_LONG && 505 prev_bt != T_DOUBLE) { 506 vt--; 507 } 508 } while (vt != 0); 509 } else { 510 total_args_passed++; 511 } 512 } 513 } else { 514 total_args_passed = sig_extended->length(); 515 } 516 517 return total_args_passed; 518 } 519 520 521 static void gen_c2i_adapter_helper(MacroAssembler* masm, 522 BasicType bt, 523 BasicType prev_bt, 524 size_t size_in_bytes, 525 const VMRegPair& reg_pair, 526 const Address& to, 527 Register tmp1, 528 Register tmp2, 529 Register tmp3, 530 int extraspace, 531 bool is_oop) { 532 if (bt == T_VOID) { 533 assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half"); 534 return; 535 } 536 537 // Say 4 args: 538 // i st_off 539 // 0 32 T_LONG 540 // 1 24 T_VOID 541 // 2 16 T_OBJECT 542 // 3 8 T_BOOL 543 // - 0 return address 544 // 545 // However to make thing extra confusing. Because we can fit a Java long/double in 546 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 547 // leaves one slot empty and only stores to a single slot. In this case the 548 // slot that is occupied is the T_VOID slot. See I said it was confusing. 549 550 bool wide = (size_in_bytes == wordSize); 551 VMReg r_1 = reg_pair.first(); 552 VMReg r_2 = reg_pair.second(); 553 assert(r_2->is_valid() == wide, "invalid size"); 554 if (!r_1->is_valid()) { 555 assert(!r_2->is_valid(), ""); 556 return; 557 } 558 559 if (!r_1->is_FloatRegister()) { 560 Register val = r25; 561 if (r_1->is_stack()) { 562 // memory to memory use r25 (scratch registers is used by store_heap_oop) 563 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 564 __ load_sized_value(val, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 565 } else { 566 val = r_1->as_Register(); 567 } 568 assert_different_registers(to.base(), val, tmp1, tmp2, tmp3); 569 if (is_oop) { 570 __ store_heap_oop(to, val, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 571 } else { 572 __ store_sized_value(to, val, size_in_bytes); 573 } 574 } else { 575 if (wide) { 576 __ strd(r_1->as_FloatRegister(), to); 577 } else { 578 // only a float use just part of the slot 579 __ strs(r_1->as_FloatRegister(), to); 580 } 581 } 582 } 583 584 static void gen_c2i_adapter(MacroAssembler *masm, 585 const GrowableArray<SigEntry>* sig_extended, 586 const VMRegPair *regs, 587 bool requires_clinit_barrier, 588 address& c2i_no_clinit_check_entry, 589 Label& skip_fixup, 590 address start, 591 OopMapSet* oop_maps, 592 int& frame_complete, 593 int& frame_size_in_words, 594 bool alloc_inline_receiver) { 595 if (requires_clinit_barrier && VM_Version::supports_fast_class_init_checks()) { 596 Label L_skip_barrier; 597 598 { // Bypass the barrier for non-static methods 599 __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset())); 600 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 601 __ br(Assembler::EQ, L_skip_barrier); // non-static 602 } 603 604 __ load_method_holder(rscratch2, rmethod); 605 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 606 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 607 608 __ bind(L_skip_barrier); 609 c2i_no_clinit_check_entry = __ pc(); 610 } 611 612 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 613 bs->c2i_entry_barrier(masm); 614 615 // Before we get into the guts of the C2I adapter, see if we should be here 616 // at all. We've come from compiled code and are attempting to jump to the 617 // interpreter, which means the caller made a static call to get here 618 // (vcalls always get a compiled target if there is one). Check for a 619 // compiled target. If there is one, we need to patch the caller's call. 620 patch_callers_callsite(masm); 621 622 __ bind(skip_fixup); 623 624 // Name some registers to be used in the following code. We can use 625 // anything except r0-r7 which are arguments in the Java calling 626 // convention, rmethod (r12), and r13 which holds the outgoing sender 627 // SP for the interpreter. 628 Register buf_array = r10; // Array of buffered inline types 629 Register buf_oop = r11; // Buffered inline type oop 630 Register tmp1 = r15; 631 Register tmp2 = r16; 632 Register tmp3 = r17; 633 634 if (InlineTypePassFieldsAsArgs) { 635 // Is there an inline type argument? 636 bool has_inline_argument = false; 637 for (int i = 0; i < sig_extended->length() && !has_inline_argument; i++) { 638 has_inline_argument = (sig_extended->at(i)._bt == T_METADATA); 639 } 640 if (has_inline_argument) { 641 // There is at least an inline type argument: we're coming from 642 // compiled code so we have no buffers to back the inline types 643 // Allocate the buffers here with a runtime call. 644 RegisterSaver reg_save(false /* save_vectors */); 645 OopMap* map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 646 647 frame_complete = __ offset(); 648 address the_pc = __ pc(); 649 650 Label retaddr; 651 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 652 653 __ mov(c_rarg0, rthread); 654 __ mov(c_rarg1, rmethod); 655 __ mov(c_rarg2, (int64_t)alloc_inline_receiver); 656 657 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_inline_types))); 658 __ blr(rscratch1); 659 __ bind(retaddr); 660 661 oop_maps->add_gc_map(__ pc() - start, map); 662 __ reset_last_Java_frame(false); 663 664 reg_save.restore_live_registers(masm); 665 666 Label no_exception; 667 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 668 __ cbz(rscratch1, no_exception); 669 670 __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset())); 671 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 672 __ b(RuntimeAddress(StubRoutines::forward_exception_entry())); 673 674 __ bind(no_exception); 675 676 // We get an array of objects from the runtime call 677 __ get_vm_result_oop(buf_array, rthread); 678 __ get_vm_result_metadata(rmethod, rthread); // TODO: required to keep the callee Method live? 679 } 680 } 681 682 // Since all args are passed on the stack, total_args_passed * 683 // Interpreter::stackElementSize is the space we need. 684 685 int total_args_passed = compute_total_args_passed_int(sig_extended); 686 int extraspace = total_args_passed * Interpreter::stackElementSize; 687 688 // stack is aligned, keep it that way 689 extraspace = align_up(extraspace, StackAlignmentInBytes); 690 691 // set senderSP value 692 __ mov(r19_sender_sp, sp); 693 694 __ sub(sp, sp, extraspace); 695 696 // Now write the args into the outgoing interpreter space 697 698 // next_arg_comp is the next argument from the compiler point of 699 // view (inline type fields are passed in registers/on the stack). In 700 // sig_extended, an inline type argument starts with: T_METADATA, 701 // followed by the types of the fields of the inline type and T_VOID 702 // to mark the end of the inline type. ignored counts the number of 703 // T_METADATA/T_VOID. next_vt_arg is the next inline type argument: 704 // used to get the buffer for that argument from the pool of buffers 705 // we allocated above and want to pass to the 706 // interpreter. next_arg_int is the next argument from the 707 // interpreter point of view (inline types are passed by reference). 708 for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0; 709 next_arg_comp < sig_extended->length(); next_arg_comp++) { 710 assert(ignored <= next_arg_comp, "shouldn't skip over more slots than there are arguments"); 711 assert(next_arg_int <= total_args_passed, "more arguments for the interpreter than expected?"); 712 BasicType bt = sig_extended->at(next_arg_comp)._bt; 713 int st_off = (total_args_passed - next_arg_int - 1) * Interpreter::stackElementSize; 714 if (!InlineTypePassFieldsAsArgs || bt != T_METADATA) { 715 int next_off = st_off - Interpreter::stackElementSize; 716 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off; 717 const VMRegPair reg_pair = regs[next_arg_comp-ignored]; 718 size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4; 719 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 720 size_in_bytes, reg_pair, Address(sp, offset), tmp1, tmp2, tmp3, extraspace, false); 721 next_arg_int++; 722 #ifdef ASSERT 723 if (bt == T_LONG || bt == T_DOUBLE) { 724 // Overwrite the unused slot with known junk 725 __ mov(rscratch1, CONST64(0xdeadffffdeadaaaa)); 726 __ str(rscratch1, Address(sp, st_off)); 727 } 728 #endif /* ASSERT */ 729 } else { 730 ignored++; 731 // get the buffer from the just allocated pool of buffers 732 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_OBJECT); 733 __ load_heap_oop(buf_oop, Address(buf_array, index), tmp1, tmp2); 734 next_vt_arg++; next_arg_int++; 735 int vt = 1; 736 // write fields we get from compiled code in registers/stack 737 // slots to the buffer: we know we are done with that inline type 738 // argument when we hit the T_VOID that acts as an end of inline 739 // type delimiter for this inline type. Inline types are flattened 740 // so we might encounter embedded inline types. Each entry in 741 // sig_extended contains a field offset in the buffer. 742 Label L_null; 743 do { 744 next_arg_comp++; 745 BasicType bt = sig_extended->at(next_arg_comp)._bt; 746 BasicType prev_bt = sig_extended->at(next_arg_comp - 1)._bt; 747 if (bt == T_METADATA) { 748 vt++; 749 ignored++; 750 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 751 vt--; 752 ignored++; 753 } else { 754 int off = sig_extended->at(next_arg_comp)._offset; 755 if (off == -1) { 756 // Nullable inline type argument, emit null check 757 VMReg reg = regs[next_arg_comp-ignored].first(); 758 Label L_notNull; 759 if (reg->is_stack()) { 760 int ld_off = reg->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 761 __ ldrb(tmp1, Address(sp, ld_off)); 762 __ cbnz(tmp1, L_notNull); 763 } else { 764 __ cbnz(reg->as_Register(), L_notNull); 765 } 766 __ str(zr, Address(sp, st_off)); 767 __ b(L_null); 768 __ bind(L_notNull); 769 continue; 770 } 771 assert(off > 0, "offset in object should be positive"); 772 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 773 bool is_oop = is_reference_type(bt); 774 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 775 size_in_bytes, regs[next_arg_comp-ignored], Address(buf_oop, off), tmp1, tmp2, tmp3, extraspace, is_oop); 776 } 777 } while (vt != 0); 778 // pass the buffer to the interpreter 779 __ str(buf_oop, Address(sp, st_off)); 780 __ bind(L_null); 781 } 782 } 783 784 __ mov(esp, sp); // Interp expects args on caller's expression stack 785 786 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 787 __ br(rscratch1); 788 } 789 790 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, int comp_args_on_stack, const GrowableArray<SigEntry>* sig, const VMRegPair *regs) { 791 792 793 // Note: r19_sender_sp contains the senderSP on entry. We must 794 // preserve it since we may do a i2c -> c2i transition if we lose a 795 // race where compiled code goes non-entrant while we get args 796 // ready. 797 798 // Adapters are frameless. 799 800 // An i2c adapter is frameless because the *caller* frame, which is 801 // interpreted, routinely repairs its own esp (from 802 // interpreter_frame_last_sp), even if a callee has modified the 803 // stack pointer. It also recalculates and aligns sp. 804 805 // A c2i adapter is frameless because the *callee* frame, which is 806 // interpreted, routinely repairs its caller's sp (from sender_sp, 807 // which is set up via the senderSP register). 808 809 // In other words, if *either* the caller or callee is interpreted, we can 810 // get the stack pointer repaired after a call. 811 812 // This is why c2i and i2c adapters cannot be indefinitely composed. 813 // In particular, if a c2i adapter were to somehow call an i2c adapter, 814 // both caller and callee would be compiled methods, and neither would 815 // clean up the stack pointer changes performed by the two adapters. 816 // If this happens, control eventually transfers back to the compiled 817 // caller, but with an uncorrected stack, causing delayed havoc. 818 819 // Cut-out for having no stack args. 820 int comp_words_on_stack = 0; 821 if (comp_args_on_stack) { 822 comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 823 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 824 __ andr(sp, rscratch1, -16); 825 } 826 827 // Will jump to the compiled code just as if compiled code was doing it. 828 // Pre-load the register-jump target early, to schedule it better. 829 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_inline_offset()))); 830 831 #if INCLUDE_JVMCI 832 if (EnableJVMCI) { 833 // check if this call should be routed towards a specific entry point 834 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 835 Label no_alternative_target; 836 __ cbz(rscratch2, no_alternative_target); 837 __ mov(rscratch1, rscratch2); 838 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 839 __ bind(no_alternative_target); 840 } 841 #endif // INCLUDE_JVMCI 842 843 int total_args_passed = sig->length(); 844 845 // Now generate the shuffle code. 846 for (int i = 0; i < total_args_passed; i++) { 847 BasicType bt = sig->at(i)._bt; 848 if (bt == T_VOID) { 849 assert(i > 0 && (sig->at(i - 1)._bt == T_LONG || sig->at(i - 1)._bt == T_DOUBLE), "missing half"); 850 continue; 851 } 852 853 // Pick up 0, 1 or 2 words from SP+offset. 854 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); 855 856 // Load in argument order going down. 857 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 858 // Point to interpreter value (vs. tag) 859 int next_off = ld_off - Interpreter::stackElementSize; 860 // 861 // 862 // 863 VMReg r_1 = regs[i].first(); 864 VMReg r_2 = regs[i].second(); 865 if (!r_1->is_valid()) { 866 assert(!r_2->is_valid(), ""); 867 continue; 868 } 869 if (r_1->is_stack()) { 870 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 871 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 872 if (!r_2->is_valid()) { 873 // sign extend??? 874 __ ldrsw(rscratch2, Address(esp, ld_off)); 875 __ str(rscratch2, Address(sp, st_off)); 876 } else { 877 // 878 // We are using two optoregs. This can be either T_OBJECT, 879 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 880 // two slots but only uses one for thr T_LONG or T_DOUBLE case 881 // So we must adjust where to pick up the data to match the 882 // interpreter. 883 // 884 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 885 // are accessed as negative so LSW is at LOW address 886 887 // ld_off is MSW so get LSW 888 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 889 __ ldr(rscratch2, Address(esp, offset)); 890 // st_off is LSW (i.e. reg.first()) 891 __ str(rscratch2, Address(sp, st_off)); 892 } 893 } else if (r_1->is_Register()) { // Register argument 894 Register r = r_1->as_Register(); 895 if (r_2->is_valid()) { 896 // 897 // We are using two VMRegs. This can be either T_OBJECT, 898 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 899 // two slots but only uses one for thr T_LONG or T_DOUBLE case 900 // So we must adjust where to pick up the data to match the 901 // interpreter. 902 903 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 904 905 // this can be a misaligned move 906 __ ldr(r, Address(esp, offset)); 907 } else { 908 // sign extend and use a full word? 909 __ ldrw(r, Address(esp, ld_off)); 910 } 911 } else { 912 if (!r_2->is_valid()) { 913 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 914 } else { 915 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 916 } 917 } 918 } 919 920 921 __ mov(rscratch2, rscratch1); 922 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 923 __ mov(rscratch1, rscratch2); 924 925 // 6243940 We might end up in handle_wrong_method if 926 // the callee is deoptimized as we race thru here. If that 927 // happens we don't want to take a safepoint because the 928 // caller frame will look interpreted and arguments are now 929 // "compiled" so it is much better to make this transition 930 // invisible to the stack walking code. Unfortunately if 931 // we try and find the callee by normal means a safepoint 932 // is possible. So we stash the desired callee in the thread 933 // and the vm will find there should this case occur. 934 935 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 936 __ br(rscratch1); 937 } 938 939 static void gen_inline_cache_check(MacroAssembler *masm, Label& skip_fixup) { 940 Register data = rscratch2; 941 __ ic_check(1 /* end_alignment */); 942 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 943 944 // Method might have been compiled since the call site was patched to 945 // interpreted; if that is the case treat it as a miss so we can get 946 // the call site corrected. 947 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 948 __ cbz(rscratch1, skip_fixup); 949 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 950 } 951 952 // --------------------------------------------------------------- 953 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler* masm, 954 int comp_args_on_stack, 955 const GrowableArray<SigEntry>* sig, 956 const VMRegPair* regs, 957 const GrowableArray<SigEntry>* sig_cc, 958 const VMRegPair* regs_cc, 959 const GrowableArray<SigEntry>* sig_cc_ro, 960 const VMRegPair* regs_cc_ro, 961 AdapterHandlerEntry* handler, 962 AdapterBlob*& new_adapter, 963 bool allocate_code_blob) { 964 965 address i2c_entry = __ pc(); 966 gen_i2c_adapter(masm, comp_args_on_stack, sig, regs); 967 968 // ------------------------------------------------------------------------- 969 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 970 // to the interpreter. The args start out packed in the compiled layout. They 971 // need to be unpacked into the interpreter layout. This will almost always 972 // require some stack space. We grow the current (compiled) stack, then repack 973 // the args. We finally end in a jump to the generic interpreter entry point. 974 // On exit from the interpreter, the interpreter will restore our SP (lest the 975 // compiled code, which relies solely on SP and not FP, get sick). 976 977 address c2i_unverified_entry = __ pc(); 978 address c2i_unverified_inline_entry = __ pc(); 979 Label skip_fixup; 980 981 gen_inline_cache_check(masm, skip_fixup); 982 983 OopMapSet* oop_maps = new OopMapSet(); 984 int frame_complete = CodeOffsets::frame_never_safe; 985 int frame_size_in_words = 0; 986 987 // Scalarized c2i adapter with non-scalarized receiver (i.e., don't pack receiver) 988 address c2i_no_clinit_check_entry = nullptr; 989 address c2i_inline_ro_entry = __ pc(); 990 if (regs_cc != regs_cc_ro) { 991 // No class init barrier needed because method is guaranteed to be non-static 992 gen_c2i_adapter(masm, sig_cc_ro, regs_cc_ro, /* requires_clinit_barrier = */ false, c2i_no_clinit_check_entry, 993 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 994 skip_fixup.reset(); 995 } 996 997 // Scalarized c2i adapter 998 address c2i_entry = __ pc(); 999 address c2i_inline_entry = __ pc(); 1000 gen_c2i_adapter(masm, sig_cc, regs_cc, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1001 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ true); 1002 1003 // Non-scalarized c2i adapter 1004 if (regs != regs_cc) { 1005 c2i_unverified_inline_entry = __ pc(); 1006 Label inline_entry_skip_fixup; 1007 gen_inline_cache_check(masm, inline_entry_skip_fixup); 1008 1009 c2i_inline_entry = __ pc(); 1010 gen_c2i_adapter(masm, sig, regs, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1011 inline_entry_skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 1012 } 1013 1014 1015 // The c2i adapter might safepoint and trigger a GC. The caller must make sure that 1016 // the GC knows about the location of oop argument locations passed to the c2i adapter. 1017 if (allocate_code_blob) { 1018 bool caller_must_gc_arguments = (regs != regs_cc); 1019 new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments); 1020 } 1021 1022 handler->set_entry_points(i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, 1023 c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 1024 } 1025 1026 static int c_calling_convention_priv(const BasicType *sig_bt, 1027 VMRegPair *regs, 1028 int total_args_passed) { 1029 1030 // We return the amount of VMRegImpl stack slots we need to reserve for all 1031 // the arguments NOT counting out_preserve_stack_slots. 1032 1033 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1034 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 1035 }; 1036 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1037 c_farg0, c_farg1, c_farg2, c_farg3, 1038 c_farg4, c_farg5, c_farg6, c_farg7 1039 }; 1040 1041 uint int_args = 0; 1042 uint fp_args = 0; 1043 uint stk_args = 0; // inc by 2 each time 1044 1045 for (int i = 0; i < total_args_passed; i++) { 1046 switch (sig_bt[i]) { 1047 case T_BOOLEAN: 1048 case T_CHAR: 1049 case T_BYTE: 1050 case T_SHORT: 1051 case T_INT: 1052 if (int_args < Argument::n_int_register_parameters_c) { 1053 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 1054 } else { 1055 #ifdef __APPLE__ 1056 // Less-than word types are stored one after another. 1057 // The code is unable to handle this so bailout. 1058 return -1; 1059 #endif 1060 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1061 stk_args += 2; 1062 } 1063 break; 1064 case T_LONG: 1065 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1066 // fall through 1067 case T_OBJECT: 1068 case T_ARRAY: 1069 case T_ADDRESS: 1070 case T_METADATA: 1071 if (int_args < Argument::n_int_register_parameters_c) { 1072 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 1073 } else { 1074 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1075 stk_args += 2; 1076 } 1077 break; 1078 case T_FLOAT: 1079 if (fp_args < Argument::n_float_register_parameters_c) { 1080 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 1081 } else { 1082 #ifdef __APPLE__ 1083 // Less-than word types are stored one after another. 1084 // The code is unable to handle this so bailout. 1085 return -1; 1086 #endif 1087 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1088 stk_args += 2; 1089 } 1090 break; 1091 case T_DOUBLE: 1092 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1093 if (fp_args < Argument::n_float_register_parameters_c) { 1094 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 1095 } else { 1096 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1097 stk_args += 2; 1098 } 1099 break; 1100 case T_VOID: // Halves of longs and doubles 1101 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1102 regs[i].set_bad(); 1103 break; 1104 default: 1105 ShouldNotReachHere(); 1106 break; 1107 } 1108 } 1109 1110 return stk_args; 1111 } 1112 1113 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1114 uint num_bits, 1115 uint total_args_passed) { 1116 // More than 8 argument inputs are not supported now. 1117 assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported"); 1118 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 1119 1120 static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = { 1121 v0, v1, v2, v3, v4, v5, v6, v7 1122 }; 1123 1124 // On SVE, we use the same vector registers with 128-bit vector registers on NEON. 1125 int next_reg_val = num_bits == 64 ? 1 : 3; 1126 for (uint i = 0; i < total_args_passed; i++) { 1127 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 1128 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 1129 } 1130 return 0; 1131 } 1132 1133 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1134 VMRegPair *regs, 1135 int total_args_passed) 1136 { 1137 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 1138 guarantee(result >= 0, "Unsupported arguments configuration"); 1139 return result; 1140 } 1141 1142 1143 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1144 // We always ignore the frame_slots arg and just use the space just below frame pointer 1145 // which by this time is free to use 1146 switch (ret_type) { 1147 case T_FLOAT: 1148 __ strs(v0, Address(rfp, -wordSize)); 1149 break; 1150 case T_DOUBLE: 1151 __ strd(v0, Address(rfp, -wordSize)); 1152 break; 1153 case T_VOID: break; 1154 default: { 1155 __ str(r0, Address(rfp, -wordSize)); 1156 } 1157 } 1158 } 1159 1160 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1161 // We always ignore the frame_slots arg and just use the space just below frame pointer 1162 // which by this time is free to use 1163 switch (ret_type) { 1164 case T_FLOAT: 1165 __ ldrs(v0, Address(rfp, -wordSize)); 1166 break; 1167 case T_DOUBLE: 1168 __ ldrd(v0, Address(rfp, -wordSize)); 1169 break; 1170 case T_VOID: break; 1171 default: { 1172 __ ldr(r0, Address(rfp, -wordSize)); 1173 } 1174 } 1175 } 1176 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1177 RegSet x; 1178 for ( int i = first_arg ; i < arg_count ; i++ ) { 1179 if (args[i].first()->is_Register()) { 1180 x = x + args[i].first()->as_Register(); 1181 } else if (args[i].first()->is_FloatRegister()) { 1182 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 1183 } 1184 } 1185 __ push(x, sp); 1186 } 1187 1188 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1189 RegSet x; 1190 for ( int i = first_arg ; i < arg_count ; i++ ) { 1191 if (args[i].first()->is_Register()) { 1192 x = x + args[i].first()->as_Register(); 1193 } else { 1194 ; 1195 } 1196 } 1197 __ pop(x, sp); 1198 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1199 if (args[i].first()->is_Register()) { 1200 ; 1201 } else if (args[i].first()->is_FloatRegister()) { 1202 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 1203 } 1204 } 1205 } 1206 1207 static void verify_oop_args(MacroAssembler* masm, 1208 const methodHandle& method, 1209 const BasicType* sig_bt, 1210 const VMRegPair* regs) { 1211 Register temp_reg = r19; // not part of any compiled calling seq 1212 if (VerifyOops) { 1213 for (int i = 0; i < method->size_of_parameters(); i++) { 1214 if (sig_bt[i] == T_OBJECT || 1215 sig_bt[i] == T_ARRAY) { 1216 VMReg r = regs[i].first(); 1217 assert(r->is_valid(), "bad oop arg"); 1218 if (r->is_stack()) { 1219 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1220 __ verify_oop(temp_reg); 1221 } else { 1222 __ verify_oop(r->as_Register()); 1223 } 1224 } 1225 } 1226 } 1227 } 1228 1229 // on exit, sp points to the ContinuationEntry 1230 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 1231 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 1232 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1233 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1234 1235 stack_slots += (int)ContinuationEntry::size()/wordSize; 1236 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 1237 1238 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1239 1240 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1241 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1242 __ mov(rscratch1, sp); // we can't use sp as the source in str 1243 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1244 1245 return map; 1246 } 1247 1248 // on entry c_rarg1 points to the continuation 1249 // sp points to ContinuationEntry 1250 // c_rarg3 -- isVirtualThread 1251 static void fill_continuation_entry(MacroAssembler* masm) { 1252 #ifdef ASSERT 1253 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1254 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1255 #endif 1256 1257 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1258 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1259 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1260 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1261 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1262 1263 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1264 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1265 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1266 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1267 1268 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1269 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1270 } 1271 1272 // on entry, sp points to the ContinuationEntry 1273 // on exit, rfp points to the spilled rfp in the entry frame 1274 static void continuation_enter_cleanup(MacroAssembler* masm) { 1275 #ifndef PRODUCT 1276 Label OK; 1277 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1278 __ cmp(sp, rscratch1); 1279 __ br(Assembler::EQ, OK); 1280 __ stop("incorrect sp1"); 1281 __ bind(OK); 1282 #endif 1283 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1284 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1285 1286 if (CheckJNICalls) { 1287 // Check if this is a virtual thread continuation 1288 Label L_skip_vthread_code; 1289 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1290 __ cbzw(rscratch1, L_skip_vthread_code); 1291 1292 // If the held monitor count is > 0 and this vthread is terminating then 1293 // it failed to release a JNI monitor. So we issue the same log message 1294 // that JavaThread::exit does. 1295 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset())); 1296 __ cbz(rscratch1, L_skip_vthread_code); 1297 1298 // Save return value potentially containing the exception oop in callee-saved R19. 1299 __ mov(r19, r0); 1300 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 1301 // Restore potential return value. 1302 __ mov(r0, r19); 1303 1304 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 1305 // on termination. The held count is implicitly zeroed below when we restore from 1306 // the parent held count (which has to be zero). 1307 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1308 1309 __ bind(L_skip_vthread_code); 1310 } 1311 #ifdef ASSERT 1312 else { 1313 // Check if this is a virtual thread continuation 1314 Label L_skip_vthread_code; 1315 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1316 __ cbzw(rscratch1, L_skip_vthread_code); 1317 1318 // See comment just above. If not checking JNI calls the JNI count is only 1319 // needed for assertion checking. 1320 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1321 1322 __ bind(L_skip_vthread_code); 1323 } 1324 #endif 1325 1326 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1327 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1328 1329 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1330 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1331 __ add(rfp, sp, (int)ContinuationEntry::size()); 1332 } 1333 1334 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1335 // On entry: c_rarg1 -- the continuation object 1336 // c_rarg2 -- isContinue 1337 // c_rarg3 -- isVirtualThread 1338 static void gen_continuation_enter(MacroAssembler* masm, 1339 const methodHandle& method, 1340 const BasicType* sig_bt, 1341 const VMRegPair* regs, 1342 int& exception_offset, 1343 OopMapSet*oop_maps, 1344 int& frame_complete, 1345 int& stack_slots, 1346 int& interpreted_entry_offset, 1347 int& compiled_entry_offset) { 1348 //verify_oop_args(masm, method, sig_bt, regs); 1349 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1350 1351 address start = __ pc(); 1352 1353 Label call_thaw, exit; 1354 1355 // i2i entry used at interp_only_mode only 1356 interpreted_entry_offset = __ pc() - start; 1357 { 1358 1359 #ifdef ASSERT 1360 Label is_interp_only; 1361 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1362 __ cbnzw(rscratch1, is_interp_only); 1363 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1364 __ bind(is_interp_only); 1365 #endif 1366 1367 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1368 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1369 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1370 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1371 __ push_cont_fastpath(rthread); 1372 1373 __ enter(); 1374 stack_slots = 2; // will be adjusted in setup 1375 OopMap* map = continuation_enter_setup(masm, stack_slots); 1376 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1377 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1378 1379 fill_continuation_entry(masm); 1380 1381 __ cbnz(c_rarg2, call_thaw); 1382 1383 const address tr_call = __ trampoline_call(resolve); 1384 if (tr_call == nullptr) { 1385 fatal("CodeCache is full at gen_continuation_enter"); 1386 } 1387 1388 oop_maps->add_gc_map(__ pc() - start, map); 1389 __ post_call_nop(); 1390 1391 __ b(exit); 1392 1393 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1394 if (stub == nullptr) { 1395 fatal("CodeCache is full at gen_continuation_enter"); 1396 } 1397 } 1398 1399 // compiled entry 1400 __ align(CodeEntryAlignment); 1401 compiled_entry_offset = __ pc() - start; 1402 1403 __ enter(); 1404 stack_slots = 2; // will be adjusted in setup 1405 OopMap* map = continuation_enter_setup(masm, stack_slots); 1406 frame_complete = __ pc() - start; 1407 1408 fill_continuation_entry(masm); 1409 1410 __ cbnz(c_rarg2, call_thaw); 1411 1412 const address tr_call = __ trampoline_call(resolve); 1413 if (tr_call == nullptr) { 1414 fatal("CodeCache is full at gen_continuation_enter"); 1415 } 1416 1417 oop_maps->add_gc_map(__ pc() - start, map); 1418 __ post_call_nop(); 1419 1420 __ b(exit); 1421 1422 __ bind(call_thaw); 1423 1424 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start; 1425 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1426 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1427 ContinuationEntry::_return_pc_offset = __ pc() - start; 1428 __ post_call_nop(); 1429 1430 __ bind(exit); 1431 ContinuationEntry::_cleanup_offset = __ pc() - start; 1432 continuation_enter_cleanup(masm); 1433 __ leave(); 1434 __ ret(lr); 1435 1436 /// exception handling 1437 1438 exception_offset = __ pc() - start; 1439 { 1440 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1441 1442 continuation_enter_cleanup(masm); 1443 1444 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1445 __ authenticate_return_address(c_rarg1); 1446 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1447 1448 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1449 1450 __ mov(r1, r0); // the exception handler 1451 __ mov(r0, r19); // restore return value contaning the exception oop 1452 __ verify_oop(r0); 1453 1454 __ leave(); 1455 __ mov(r3, lr); 1456 __ br(r1); // the exception handler 1457 } 1458 1459 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1460 if (stub == nullptr) { 1461 fatal("CodeCache is full at gen_continuation_enter"); 1462 } 1463 } 1464 1465 static void gen_continuation_yield(MacroAssembler* masm, 1466 const methodHandle& method, 1467 const BasicType* sig_bt, 1468 const VMRegPair* regs, 1469 OopMapSet* oop_maps, 1470 int& frame_complete, 1471 int& stack_slots, 1472 int& compiled_entry_offset) { 1473 enum layout { 1474 rfp_off1, 1475 rfp_off2, 1476 lr_off, 1477 lr_off2, 1478 framesize // inclusive of return address 1479 }; 1480 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1481 stack_slots = framesize / VMRegImpl::slots_per_word; 1482 assert(stack_slots == 2, "recheck layout"); 1483 1484 address start = __ pc(); 1485 1486 compiled_entry_offset = __ pc() - start; 1487 __ enter(); 1488 1489 __ mov(c_rarg1, sp); 1490 1491 frame_complete = __ pc() - start; 1492 address the_pc = __ pc(); 1493 1494 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1495 1496 __ mov(c_rarg0, rthread); 1497 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1498 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1499 __ reset_last_Java_frame(true); 1500 1501 Label pinned; 1502 1503 __ cbnz(r0, pinned); 1504 1505 // We've succeeded, set sp to the ContinuationEntry 1506 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1507 __ mov(sp, rscratch1); 1508 continuation_enter_cleanup(masm); 1509 1510 __ bind(pinned); // pinned -- return to caller 1511 1512 // handle pending exception thrown by freeze 1513 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1514 Label ok; 1515 __ cbz(rscratch1, ok); 1516 __ leave(); 1517 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1518 __ br(rscratch1); 1519 __ bind(ok); 1520 1521 __ leave(); 1522 __ ret(lr); 1523 1524 OopMap* map = new OopMap(framesize, 1); 1525 oop_maps->add_gc_map(the_pc - start, map); 1526 } 1527 1528 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) { 1529 ::continuation_enter_cleanup(masm); 1530 } 1531 1532 static void gen_special_dispatch(MacroAssembler* masm, 1533 const methodHandle& method, 1534 const BasicType* sig_bt, 1535 const VMRegPair* regs) { 1536 verify_oop_args(masm, method, sig_bt, regs); 1537 vmIntrinsics::ID iid = method->intrinsic_id(); 1538 1539 // Now write the args into the outgoing interpreter space 1540 bool has_receiver = false; 1541 Register receiver_reg = noreg; 1542 int member_arg_pos = -1; 1543 Register member_reg = noreg; 1544 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1545 if (ref_kind != 0) { 1546 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1547 member_reg = r19; // known to be free at this point 1548 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1549 } else if (iid == vmIntrinsics::_invokeBasic) { 1550 has_receiver = true; 1551 } else if (iid == vmIntrinsics::_linkToNative) { 1552 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1553 member_reg = r19; // known to be free at this point 1554 } else { 1555 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1556 } 1557 1558 if (member_reg != noreg) { 1559 // Load the member_arg into register, if necessary. 1560 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1561 VMReg r = regs[member_arg_pos].first(); 1562 if (r->is_stack()) { 1563 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1564 } else { 1565 // no data motion is needed 1566 member_reg = r->as_Register(); 1567 } 1568 } 1569 1570 if (has_receiver) { 1571 // Make sure the receiver is loaded into a register. 1572 assert(method->size_of_parameters() > 0, "oob"); 1573 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1574 VMReg r = regs[0].first(); 1575 assert(r->is_valid(), "bad receiver arg"); 1576 if (r->is_stack()) { 1577 // Porting note: This assumes that compiled calling conventions always 1578 // pass the receiver oop in a register. If this is not true on some 1579 // platform, pick a temp and load the receiver from stack. 1580 fatal("receiver always in a register"); 1581 receiver_reg = r2; // known to be free at this point 1582 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1583 } else { 1584 // no data motion is needed 1585 receiver_reg = r->as_Register(); 1586 } 1587 } 1588 1589 // Figure out which address we are really jumping to: 1590 MethodHandles::generate_method_handle_dispatch(masm, iid, 1591 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1592 } 1593 1594 // --------------------------------------------------------------------------- 1595 // Generate a native wrapper for a given method. The method takes arguments 1596 // in the Java compiled code convention, marshals them to the native 1597 // convention (handlizes oops, etc), transitions to native, makes the call, 1598 // returns to java state (possibly blocking), unhandlizes any result and 1599 // returns. 1600 // 1601 // Critical native functions are a shorthand for the use of 1602 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1603 // functions. The wrapper is expected to unpack the arguments before 1604 // passing them to the callee. Critical native functions leave the state _in_Java, 1605 // since they block out GC. 1606 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1607 // block and the check for pending exceptions it's impossible for them 1608 // to be thrown. 1609 // 1610 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1611 const methodHandle& method, 1612 int compile_id, 1613 BasicType* in_sig_bt, 1614 VMRegPair* in_regs, 1615 BasicType ret_type) { 1616 if (method->is_continuation_native_intrinsic()) { 1617 int exception_offset = -1; 1618 OopMapSet* oop_maps = new OopMapSet(); 1619 int frame_complete = -1; 1620 int stack_slots = -1; 1621 int interpreted_entry_offset = -1; 1622 int vep_offset = -1; 1623 if (method->is_continuation_enter_intrinsic()) { 1624 gen_continuation_enter(masm, 1625 method, 1626 in_sig_bt, 1627 in_regs, 1628 exception_offset, 1629 oop_maps, 1630 frame_complete, 1631 stack_slots, 1632 interpreted_entry_offset, 1633 vep_offset); 1634 } else if (method->is_continuation_yield_intrinsic()) { 1635 gen_continuation_yield(masm, 1636 method, 1637 in_sig_bt, 1638 in_regs, 1639 oop_maps, 1640 frame_complete, 1641 stack_slots, 1642 vep_offset); 1643 } else { 1644 guarantee(false, "Unknown Continuation native intrinsic"); 1645 } 1646 1647 #ifdef ASSERT 1648 if (method->is_continuation_enter_intrinsic()) { 1649 assert(interpreted_entry_offset != -1, "Must be set"); 1650 assert(exception_offset != -1, "Must be set"); 1651 } else { 1652 assert(interpreted_entry_offset == -1, "Must be unset"); 1653 assert(exception_offset == -1, "Must be unset"); 1654 } 1655 assert(frame_complete != -1, "Must be set"); 1656 assert(stack_slots != -1, "Must be set"); 1657 assert(vep_offset != -1, "Must be set"); 1658 #endif 1659 1660 __ flush(); 1661 nmethod* nm = nmethod::new_native_nmethod(method, 1662 compile_id, 1663 masm->code(), 1664 vep_offset, 1665 frame_complete, 1666 stack_slots, 1667 in_ByteSize(-1), 1668 in_ByteSize(-1), 1669 oop_maps, 1670 exception_offset); 1671 if (nm == nullptr) return nm; 1672 if (method->is_continuation_enter_intrinsic()) { 1673 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1674 } else if (method->is_continuation_yield_intrinsic()) { 1675 _cont_doYield_stub = nm; 1676 } else { 1677 guarantee(false, "Unknown Continuation native intrinsic"); 1678 } 1679 return nm; 1680 } 1681 1682 if (method->is_method_handle_intrinsic()) { 1683 vmIntrinsics::ID iid = method->intrinsic_id(); 1684 intptr_t start = (intptr_t)__ pc(); 1685 int vep_offset = ((intptr_t)__ pc()) - start; 1686 1687 // First instruction must be a nop as it may need to be patched on deoptimisation 1688 __ nop(); 1689 gen_special_dispatch(masm, 1690 method, 1691 in_sig_bt, 1692 in_regs); 1693 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1694 __ flush(); 1695 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1696 return nmethod::new_native_nmethod(method, 1697 compile_id, 1698 masm->code(), 1699 vep_offset, 1700 frame_complete, 1701 stack_slots / VMRegImpl::slots_per_word, 1702 in_ByteSize(-1), 1703 in_ByteSize(-1), 1704 nullptr); 1705 } 1706 address native_func = method->native_function(); 1707 assert(native_func != nullptr, "must have function"); 1708 1709 // An OopMap for lock (and class if static) 1710 OopMapSet *oop_maps = new OopMapSet(); 1711 intptr_t start = (intptr_t)__ pc(); 1712 1713 // We have received a description of where all the java arg are located 1714 // on entry to the wrapper. We need to convert these args to where 1715 // the jni function will expect them. To figure out where they go 1716 // we convert the java signature to a C signature by inserting 1717 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1718 1719 const int total_in_args = method->size_of_parameters(); 1720 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1721 1722 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1723 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1724 1725 int argc = 0; 1726 out_sig_bt[argc++] = T_ADDRESS; 1727 if (method->is_static()) { 1728 out_sig_bt[argc++] = T_OBJECT; 1729 } 1730 1731 for (int i = 0; i < total_in_args ; i++ ) { 1732 out_sig_bt[argc++] = in_sig_bt[i]; 1733 } 1734 1735 // Now figure out where the args must be stored and how much stack space 1736 // they require. 1737 int out_arg_slots; 1738 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1739 1740 if (out_arg_slots < 0) { 1741 return nullptr; 1742 } 1743 1744 // Compute framesize for the wrapper. We need to handlize all oops in 1745 // incoming registers 1746 1747 // Calculate the total number of stack slots we will need. 1748 1749 // First count the abi requirement plus all of the outgoing args 1750 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1751 1752 // Now the space for the inbound oop handle area 1753 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1754 1755 int oop_handle_offset = stack_slots; 1756 stack_slots += total_save_slots; 1757 1758 // Now any space we need for handlizing a klass if static method 1759 1760 int klass_slot_offset = 0; 1761 int klass_offset = -1; 1762 int lock_slot_offset = 0; 1763 bool is_static = false; 1764 1765 if (method->is_static()) { 1766 klass_slot_offset = stack_slots; 1767 stack_slots += VMRegImpl::slots_per_word; 1768 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1769 is_static = true; 1770 } 1771 1772 // Plus a lock if needed 1773 1774 if (method->is_synchronized()) { 1775 lock_slot_offset = stack_slots; 1776 stack_slots += VMRegImpl::slots_per_word; 1777 } 1778 1779 // Now a place (+2) to save return values or temp during shuffling 1780 // + 4 for return address (which we own) and saved rfp 1781 stack_slots += 6; 1782 1783 // Ok The space we have allocated will look like: 1784 // 1785 // 1786 // FP-> | | 1787 // |---------------------| 1788 // | 2 slots for moves | 1789 // |---------------------| 1790 // | lock box (if sync) | 1791 // |---------------------| <- lock_slot_offset 1792 // | klass (if static) | 1793 // |---------------------| <- klass_slot_offset 1794 // | oopHandle area | 1795 // |---------------------| <- oop_handle_offset (8 java arg registers) 1796 // | outbound memory | 1797 // | based arguments | 1798 // | | 1799 // |---------------------| 1800 // | | 1801 // SP-> | out_preserved_slots | 1802 // 1803 // 1804 1805 1806 // Now compute actual number of stack words we need rounding to make 1807 // stack properly aligned. 1808 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1809 1810 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1811 1812 // First thing make an ic check to see if we should even be here 1813 1814 // We are free to use all registers as temps without saving them and 1815 // restoring them except rfp. rfp is the only callee save register 1816 // as far as the interpreter and the compiler(s) are concerned. 1817 1818 const Register receiver = j_rarg0; 1819 1820 Label exception_pending; 1821 1822 assert_different_registers(receiver, rscratch1); 1823 __ verify_oop(receiver); 1824 __ ic_check(8 /* end_alignment */); 1825 1826 // Verified entry point must be aligned 1827 int vep_offset = ((intptr_t)__ pc()) - start; 1828 1829 // If we have to make this method not-entrant we'll overwrite its 1830 // first instruction with a jump. For this action to be legal we 1831 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1832 // SVC, HVC, or SMC. Make it a NOP. 1833 __ nop(); 1834 1835 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1836 Label L_skip_barrier; 1837 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1838 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1839 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1840 1841 __ bind(L_skip_barrier); 1842 } 1843 1844 // Generate stack overflow check 1845 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1846 1847 // Generate a new frame for the wrapper. 1848 __ enter(); 1849 // -2 because return address is already present and so is saved rfp 1850 __ sub(sp, sp, stack_size - 2*wordSize); 1851 1852 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1853 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1854 1855 // Frame is now completed as far as size and linkage. 1856 int frame_complete = ((intptr_t)__ pc()) - start; 1857 1858 // We use r20 as the oop handle for the receiver/klass 1859 // It is callee save so it survives the call to native 1860 1861 const Register oop_handle_reg = r20; 1862 1863 // 1864 // We immediately shuffle the arguments so that any vm call we have to 1865 // make from here on out (sync slow path, jvmti, etc.) we will have 1866 // captured the oops from our caller and have a valid oopMap for 1867 // them. 1868 1869 // ----------------- 1870 // The Grand Shuffle 1871 1872 // The Java calling convention is either equal (linux) or denser (win64) than the 1873 // c calling convention. However the because of the jni_env argument the c calling 1874 // convention always has at least one more (and two for static) arguments than Java. 1875 // Therefore if we move the args from java -> c backwards then we will never have 1876 // a register->register conflict and we don't have to build a dependency graph 1877 // and figure out how to break any cycles. 1878 // 1879 1880 // Record esp-based slot for receiver on stack for non-static methods 1881 int receiver_offset = -1; 1882 1883 // This is a trick. We double the stack slots so we can claim 1884 // the oops in the caller's frame. Since we are sure to have 1885 // more args than the caller doubling is enough to make 1886 // sure we can capture all the incoming oop args from the 1887 // caller. 1888 // 1889 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1890 1891 // Mark location of rfp (someday) 1892 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1893 1894 1895 int float_args = 0; 1896 int int_args = 0; 1897 1898 #ifdef ASSERT 1899 bool reg_destroyed[Register::number_of_registers]; 1900 bool freg_destroyed[FloatRegister::number_of_registers]; 1901 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1902 reg_destroyed[r] = false; 1903 } 1904 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1905 freg_destroyed[f] = false; 1906 } 1907 1908 #endif /* ASSERT */ 1909 1910 // For JNI natives the incoming and outgoing registers are offset upwards. 1911 GrowableArray<int> arg_order(2 * total_in_args); 1912 1913 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1914 arg_order.push(i); 1915 arg_order.push(c_arg); 1916 } 1917 1918 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1919 int i = arg_order.at(ai); 1920 int c_arg = arg_order.at(ai + 1); 1921 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1922 assert(c_arg != -1 && i != -1, "wrong order"); 1923 #ifdef ASSERT 1924 if (in_regs[i].first()->is_Register()) { 1925 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1926 } else if (in_regs[i].first()->is_FloatRegister()) { 1927 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1928 } 1929 if (out_regs[c_arg].first()->is_Register()) { 1930 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1931 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1932 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1933 } 1934 #endif /* ASSERT */ 1935 switch (in_sig_bt[i]) { 1936 case T_ARRAY: 1937 case T_OBJECT: 1938 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1939 ((i == 0) && (!is_static)), 1940 &receiver_offset); 1941 int_args++; 1942 break; 1943 case T_VOID: 1944 break; 1945 1946 case T_FLOAT: 1947 __ float_move(in_regs[i], out_regs[c_arg]); 1948 float_args++; 1949 break; 1950 1951 case T_DOUBLE: 1952 assert( i + 1 < total_in_args && 1953 in_sig_bt[i + 1] == T_VOID && 1954 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1955 __ double_move(in_regs[i], out_regs[c_arg]); 1956 float_args++; 1957 break; 1958 1959 case T_LONG : 1960 __ long_move(in_regs[i], out_regs[c_arg]); 1961 int_args++; 1962 break; 1963 1964 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1965 1966 default: 1967 __ move32_64(in_regs[i], out_regs[c_arg]); 1968 int_args++; 1969 } 1970 } 1971 1972 // point c_arg at the first arg that is already loaded in case we 1973 // need to spill before we call out 1974 int c_arg = total_c_args - total_in_args; 1975 1976 // Pre-load a static method's oop into c_rarg1. 1977 if (method->is_static()) { 1978 1979 // load oop into a register 1980 __ movoop(c_rarg1, 1981 JNIHandles::make_local(method->method_holder()->java_mirror())); 1982 1983 // Now handlize the static class mirror it's known not-null. 1984 __ str(c_rarg1, Address(sp, klass_offset)); 1985 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1986 1987 // Now get the handle 1988 __ lea(c_rarg1, Address(sp, klass_offset)); 1989 // and protect the arg if we must spill 1990 c_arg--; 1991 } 1992 1993 // Change state to native (we save the return address in the thread, since it might not 1994 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1995 // points into the right code segment. It does not have to be the correct return pc. 1996 // We use the same pc/oopMap repeatedly when we call out. 1997 1998 Label native_return; 1999 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 2000 // For convenience we use the pc we want to resume to in case of preemption on Object.wait. 2001 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 2002 } else { 2003 intptr_t the_pc = (intptr_t) __ pc(); 2004 oop_maps->add_gc_map(the_pc - start, map); 2005 2006 __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1); 2007 } 2008 2009 Label dtrace_method_entry, dtrace_method_entry_done; 2010 if (DTraceMethodProbes) { 2011 __ b(dtrace_method_entry); 2012 __ bind(dtrace_method_entry_done); 2013 } 2014 2015 // RedefineClasses() tracing support for obsolete method entry 2016 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2017 // protect the args we've loaded 2018 save_args(masm, total_c_args, c_arg, out_regs); 2019 __ mov_metadata(c_rarg1, method()); 2020 __ call_VM_leaf( 2021 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2022 rthread, c_rarg1); 2023 restore_args(masm, total_c_args, c_arg, out_regs); 2024 } 2025 2026 // Lock a synchronized method 2027 2028 // Register definitions used by locking and unlocking 2029 2030 const Register swap_reg = r0; 2031 const Register obj_reg = r19; // Will contain the oop 2032 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 2033 const Register old_hdr = r13; // value of old header at unlock time 2034 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 2035 const Register tmp = lr; 2036 2037 Label slow_path_lock; 2038 Label lock_done; 2039 2040 if (method->is_synchronized()) { 2041 Label count; 2042 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2043 2044 // Get the handle (the 2nd argument) 2045 __ mov(oop_handle_reg, c_rarg1); 2046 2047 // Get address of the box 2048 2049 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2050 2051 // Load the oop from the handle 2052 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2053 2054 if (LockingMode == LM_MONITOR) { 2055 __ b(slow_path_lock); 2056 } else if (LockingMode == LM_LEGACY) { 2057 // Load (object->mark() | 1) into swap_reg %r0 2058 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2059 __ orr(swap_reg, rscratch1, 1); 2060 if (EnableValhalla) { 2061 // Mask inline_type bit such that we go to the slow path if object is an inline type 2062 __ andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 2063 } 2064 2065 // Save (object->mark() | 1) into BasicLock's displaced header 2066 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 2067 2068 // src -> dest iff dest == r0 else r0 <- dest 2069 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 2070 2071 // Hmm should this move to the slow path code area??? 2072 2073 // Test if the oopMark is an obvious stack pointer, i.e., 2074 // 1) (mark & 3) == 0, and 2075 // 2) sp <= mark < mark + os::pagesize() 2076 // These 3 tests can be done by evaluating the following 2077 // expression: ((mark - sp) & (3 - os::vm_page_size())), 2078 // assuming both stack pointer and pagesize have their 2079 // least significant 2 bits clear. 2080 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 2081 2082 __ sub(swap_reg, sp, swap_reg); 2083 __ neg(swap_reg, swap_reg); 2084 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 2085 2086 // Save the test result, for recursive case, the result is zero 2087 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 2088 __ br(Assembler::NE, slow_path_lock); 2089 2090 __ bind(count); 2091 __ inc_held_monitor_count(rscratch1); 2092 } else { 2093 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 2094 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 2095 } 2096 2097 // Slow path will re-enter here 2098 __ bind(lock_done); 2099 } 2100 2101 2102 // Finally just about ready to make the JNI call 2103 2104 // get JNIEnv* which is first argument to native 2105 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 2106 2107 // Now set thread in native 2108 __ mov(rscratch1, _thread_in_native); 2109 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2110 __ stlrw(rscratch1, rscratch2); 2111 2112 __ rt_call(native_func); 2113 2114 // Verify or restore cpu control state after JNI call 2115 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 2116 2117 // Unpack native results. 2118 switch (ret_type) { 2119 case T_BOOLEAN: __ c2bool(r0); break; 2120 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 2121 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 2122 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 2123 case T_INT : __ sbfx(r0, r0, 0, 32); break; 2124 case T_DOUBLE : 2125 case T_FLOAT : 2126 // Result is in v0 we'll save as needed 2127 break; 2128 case T_ARRAY: // Really a handle 2129 case T_OBJECT: // Really a handle 2130 break; // can't de-handlize until after safepoint check 2131 case T_VOID: break; 2132 case T_LONG: break; 2133 default : ShouldNotReachHere(); 2134 } 2135 2136 Label safepoint_in_progress, safepoint_in_progress_done; 2137 2138 // Switch thread to "native transition" state before reading the synchronization state. 2139 // This additional state is necessary because reading and testing the synchronization 2140 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2141 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2142 // VM thread changes sync state to synchronizing and suspends threads for GC. 2143 // Thread A is resumed to finish this native method, but doesn't block here since it 2144 // didn't see any synchronization is progress, and escapes. 2145 __ mov(rscratch1, _thread_in_native_trans); 2146 2147 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 2148 2149 // Force this write out before the read below 2150 if (!UseSystemMemoryBarrier) { 2151 __ dmb(Assembler::ISH); 2152 } 2153 2154 __ verify_sve_vector_length(); 2155 2156 // Check for safepoint operation in progress and/or pending suspend requests. 2157 { 2158 // No need for acquire as Java threads always disarm themselves. 2159 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* acquire */, false /* in_nmethod */); 2160 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 2161 __ cbnzw(rscratch1, safepoint_in_progress); 2162 __ bind(safepoint_in_progress_done); 2163 } 2164 2165 // change thread state 2166 __ mov(rscratch1, _thread_in_Java); 2167 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2168 __ stlrw(rscratch1, rscratch2); 2169 2170 if (LockingMode != LM_LEGACY && method->is_object_wait0()) { 2171 // Check preemption for Object.wait() 2172 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 2173 __ cbz(rscratch1, native_return); 2174 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 2175 __ br(rscratch1); 2176 __ bind(native_return); 2177 2178 intptr_t the_pc = (intptr_t) __ pc(); 2179 oop_maps->add_gc_map(the_pc - start, map); 2180 } 2181 2182 Label reguard; 2183 Label reguard_done; 2184 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 2185 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 2186 __ br(Assembler::EQ, reguard); 2187 __ bind(reguard_done); 2188 2189 // native result if any is live 2190 2191 // Unlock 2192 Label unlock_done; 2193 Label slow_path_unlock; 2194 if (method->is_synchronized()) { 2195 2196 // Get locked oop from the handle we passed to jni 2197 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2198 2199 Label done, not_recursive; 2200 2201 if (LockingMode == LM_LEGACY) { 2202 // Simple recursive lock? 2203 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2204 __ cbnz(rscratch1, not_recursive); 2205 __ dec_held_monitor_count(rscratch1); 2206 __ b(done); 2207 } 2208 2209 __ bind(not_recursive); 2210 2211 // Must save r0 if if it is live now because cmpxchg must use it 2212 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2213 save_native_result(masm, ret_type, stack_slots); 2214 } 2215 2216 if (LockingMode == LM_MONITOR) { 2217 __ b(slow_path_unlock); 2218 } else if (LockingMode == LM_LEGACY) { 2219 // get address of the stack lock 2220 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2221 // get old displaced header 2222 __ ldr(old_hdr, Address(r0, 0)); 2223 2224 // Atomic swap old header if oop still contains the stack lock 2225 Label count; 2226 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 2227 __ bind(count); 2228 __ dec_held_monitor_count(rscratch1); 2229 } else { 2230 assert(LockingMode == LM_LIGHTWEIGHT, ""); 2231 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 2232 } 2233 2234 // slow path re-enters here 2235 __ bind(unlock_done); 2236 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2237 restore_native_result(masm, ret_type, stack_slots); 2238 } 2239 2240 __ bind(done); 2241 } 2242 2243 Label dtrace_method_exit, dtrace_method_exit_done; 2244 if (DTraceMethodProbes) { 2245 __ b(dtrace_method_exit); 2246 __ bind(dtrace_method_exit_done); 2247 } 2248 2249 __ reset_last_Java_frame(false); 2250 2251 // Unbox oop result, e.g. JNIHandles::resolve result. 2252 if (is_reference_type(ret_type)) { 2253 __ resolve_jobject(r0, r1, r2); 2254 } 2255 2256 if (CheckJNICalls) { 2257 // clear_pending_jni_exception_check 2258 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 2259 } 2260 2261 // reset handle block 2262 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 2263 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 2264 2265 __ leave(); 2266 2267 #if INCLUDE_JFR 2268 // We need to do a poll test after unwind in case the sampler 2269 // managed to sample the native frame after returning to Java. 2270 Label L_return; 2271 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2272 address poll_test_pc = __ pc(); 2273 __ relocate(relocInfo::poll_return_type); 2274 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), L_return); 2275 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 2276 "polling page return stub not created yet"); 2277 address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 2278 __ adr(rscratch1, InternalAddress(poll_test_pc)); 2279 __ str(rscratch1, Address(rthread, JavaThread::saved_exception_pc_offset())); 2280 __ far_jump(RuntimeAddress(stub)); 2281 __ bind(L_return); 2282 #endif // INCLUDE_JFR 2283 2284 // Any exception pending? 2285 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2286 __ cbnz(rscratch1, exception_pending); 2287 2288 // We're done 2289 __ ret(lr); 2290 2291 // Unexpected paths are out of line and go here 2292 2293 // forward the exception 2294 __ bind(exception_pending); 2295 2296 // and forward the exception 2297 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2298 2299 // Slow path locking & unlocking 2300 if (method->is_synchronized()) { 2301 2302 __ block_comment("Slow path lock {"); 2303 __ bind(slow_path_lock); 2304 2305 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2306 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2307 2308 // protect the args we've loaded 2309 save_args(masm, total_c_args, c_arg, out_regs); 2310 2311 __ mov(c_rarg0, obj_reg); 2312 __ mov(c_rarg1, lock_reg); 2313 __ mov(c_rarg2, rthread); 2314 2315 // Not a leaf but we have last_Java_frame setup as we want. 2316 // We don't want to unmount in case of contention since that would complicate preserving 2317 // the arguments that had already been marshalled into the native convention. So we force 2318 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame()) 2319 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack. 2320 __ push_cont_fastpath(); 2321 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2322 __ pop_cont_fastpath(); 2323 restore_args(masm, total_c_args, c_arg, out_regs); 2324 2325 #ifdef ASSERT 2326 { Label L; 2327 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2328 __ cbz(rscratch1, L); 2329 __ stop("no pending exception allowed on exit from monitorenter"); 2330 __ bind(L); 2331 } 2332 #endif 2333 __ b(lock_done); 2334 2335 __ block_comment("} Slow path lock"); 2336 2337 __ block_comment("Slow path unlock {"); 2338 __ bind(slow_path_unlock); 2339 2340 // If we haven't already saved the native result we must save it now as xmm registers 2341 // are still exposed. 2342 2343 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2344 save_native_result(masm, ret_type, stack_slots); 2345 } 2346 2347 __ mov(c_rarg2, rthread); 2348 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2349 __ mov(c_rarg0, obj_reg); 2350 2351 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2352 // NOTE that obj_reg == r19 currently 2353 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2354 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2355 2356 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2357 2358 #ifdef ASSERT 2359 { 2360 Label L; 2361 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2362 __ cbz(rscratch1, L); 2363 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2364 __ bind(L); 2365 } 2366 #endif /* ASSERT */ 2367 2368 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2369 2370 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2371 restore_native_result(masm, ret_type, stack_slots); 2372 } 2373 __ b(unlock_done); 2374 2375 __ block_comment("} Slow path unlock"); 2376 2377 } // synchronized 2378 2379 // SLOW PATH Reguard the stack if needed 2380 2381 __ bind(reguard); 2382 save_native_result(masm, ret_type, stack_slots); 2383 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2384 restore_native_result(masm, ret_type, stack_slots); 2385 // and continue 2386 __ b(reguard_done); 2387 2388 // SLOW PATH safepoint 2389 { 2390 __ block_comment("safepoint {"); 2391 __ bind(safepoint_in_progress); 2392 2393 // Don't use call_VM as it will see a possible pending exception and forward it 2394 // and never return here preventing us from clearing _last_native_pc down below. 2395 // 2396 save_native_result(masm, ret_type, stack_slots); 2397 __ mov(c_rarg0, rthread); 2398 #ifndef PRODUCT 2399 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2400 #endif 2401 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2402 __ blr(rscratch1); 2403 2404 // Restore any method result value 2405 restore_native_result(masm, ret_type, stack_slots); 2406 2407 __ b(safepoint_in_progress_done); 2408 __ block_comment("} safepoint"); 2409 } 2410 2411 // SLOW PATH dtrace support 2412 if (DTraceMethodProbes) { 2413 { 2414 __ block_comment("dtrace entry {"); 2415 __ bind(dtrace_method_entry); 2416 2417 // We have all of the arguments setup at this point. We must not touch any register 2418 // argument registers at this point (what if we save/restore them there are no oop? 2419 2420 save_args(masm, total_c_args, c_arg, out_regs); 2421 __ mov_metadata(c_rarg1, method()); 2422 __ call_VM_leaf( 2423 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2424 rthread, c_rarg1); 2425 restore_args(masm, total_c_args, c_arg, out_regs); 2426 __ b(dtrace_method_entry_done); 2427 __ block_comment("} dtrace entry"); 2428 } 2429 2430 { 2431 __ block_comment("dtrace exit {"); 2432 __ bind(dtrace_method_exit); 2433 save_native_result(masm, ret_type, stack_slots); 2434 __ mov_metadata(c_rarg1, method()); 2435 __ call_VM_leaf( 2436 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2437 rthread, c_rarg1); 2438 restore_native_result(masm, ret_type, stack_slots); 2439 __ b(dtrace_method_exit_done); 2440 __ block_comment("} dtrace exit"); 2441 } 2442 } 2443 2444 __ flush(); 2445 2446 nmethod *nm = nmethod::new_native_nmethod(method, 2447 compile_id, 2448 masm->code(), 2449 vep_offset, 2450 frame_complete, 2451 stack_slots / VMRegImpl::slots_per_word, 2452 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2453 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2454 oop_maps); 2455 2456 return nm; 2457 } 2458 2459 // this function returns the adjust size (in number of words) to a c2i adapter 2460 // activation for use during deoptimization 2461 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2462 assert(callee_locals >= callee_parameters, 2463 "test and remove; got more parms than locals"); 2464 if (callee_locals < callee_parameters) 2465 return 0; // No adjustment for negative locals 2466 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2467 // diff is counted in stack words 2468 return align_up(diff, 2); 2469 } 2470 2471 2472 //------------------------------generate_deopt_blob---------------------------- 2473 void SharedRuntime::generate_deopt_blob() { 2474 // Allocate space for the code 2475 ResourceMark rm; 2476 // Setup code generation tools 2477 int pad = 0; 2478 #if INCLUDE_JVMCI 2479 if (EnableJVMCI) { 2480 pad += 512; // Increase the buffer size when compiling for JVMCI 2481 } 2482 #endif 2483 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2484 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)SharedStubId::deopt_id, name); 2485 if (blob != nullptr) { 2486 _deopt_blob = blob->as_deoptimization_blob(); 2487 return; 2488 } 2489 2490 CodeBuffer buffer(name, 2048+pad, 1024); 2491 MacroAssembler* masm = new MacroAssembler(&buffer); 2492 int frame_size_in_words; 2493 OopMap* map = nullptr; 2494 OopMapSet *oop_maps = new OopMapSet(); 2495 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2496 2497 // ------------- 2498 // This code enters when returning to a de-optimized nmethod. A return 2499 // address has been pushed on the stack, and return values are in 2500 // registers. 2501 // If we are doing a normal deopt then we were called from the patched 2502 // nmethod from the point we returned to the nmethod. So the return 2503 // address on the stack is wrong by NativeCall::instruction_size 2504 // We will adjust the value so it looks like we have the original return 2505 // address on the stack (like when we eagerly deoptimized). 2506 // In the case of an exception pending when deoptimizing, we enter 2507 // with a return address on the stack that points after the call we patched 2508 // into the exception handler. We have the following register state from, 2509 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2510 // r0: exception oop 2511 // r19: exception handler 2512 // r3: throwing pc 2513 // So in this case we simply jam r3 into the useless return address and 2514 // the stack looks just like we want. 2515 // 2516 // At this point we need to de-opt. We save the argument return 2517 // registers. We call the first C routine, fetch_unroll_info(). This 2518 // routine captures the return values and returns a structure which 2519 // describes the current frame size and the sizes of all replacement frames. 2520 // The current frame is compiled code and may contain many inlined 2521 // functions, each with their own JVM state. We pop the current frame, then 2522 // push all the new frames. Then we call the C routine unpack_frames() to 2523 // populate these frames. Finally unpack_frames() returns us the new target 2524 // address. Notice that callee-save registers are BLOWN here; they have 2525 // already been captured in the vframeArray at the time the return PC was 2526 // patched. 2527 address start = __ pc(); 2528 Label cont; 2529 2530 // Prolog for non exception case! 2531 2532 // Save everything in sight. 2533 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2534 2535 // Normal deoptimization. Save exec mode for unpack_frames. 2536 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2537 __ b(cont); 2538 2539 int reexecute_offset = __ pc() - start; 2540 #if INCLUDE_JVMCI && !defined(COMPILER1) 2541 if (UseJVMCICompiler) { 2542 // JVMCI does not use this kind of deoptimization 2543 __ should_not_reach_here(); 2544 } 2545 #endif 2546 2547 // Reexecute case 2548 // return address is the pc describes what bci to do re-execute at 2549 2550 // No need to update map as each call to save_live_registers will produce identical oopmap 2551 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2552 2553 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2554 __ b(cont); 2555 2556 #if INCLUDE_JVMCI 2557 Label after_fetch_unroll_info_call; 2558 int implicit_exception_uncommon_trap_offset = 0; 2559 int uncommon_trap_offset = 0; 2560 2561 if (EnableJVMCI) { 2562 implicit_exception_uncommon_trap_offset = __ pc() - start; 2563 2564 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2565 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2566 2567 uncommon_trap_offset = __ pc() - start; 2568 2569 // Save everything in sight. 2570 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2571 // fetch_unroll_info needs to call last_java_frame() 2572 Label retaddr; 2573 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2574 2575 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2576 __ movw(rscratch1, -1); 2577 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2578 2579 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2580 __ mov(c_rarg0, rthread); 2581 __ movw(c_rarg2, rcpool); // exec mode 2582 __ lea(rscratch1, 2583 RuntimeAddress(CAST_FROM_FN_PTR(address, 2584 Deoptimization::uncommon_trap))); 2585 __ blr(rscratch1); 2586 __ bind(retaddr); 2587 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2588 2589 __ reset_last_Java_frame(false); 2590 2591 __ b(after_fetch_unroll_info_call); 2592 } // EnableJVMCI 2593 #endif // INCLUDE_JVMCI 2594 2595 int exception_offset = __ pc() - start; 2596 2597 // Prolog for exception case 2598 2599 // all registers are dead at this entry point, except for r0, and 2600 // r3 which contain the exception oop and exception pc 2601 // respectively. Set them in TLS and fall thru to the 2602 // unpack_with_exception_in_tls entry point. 2603 2604 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2605 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2606 2607 int exception_in_tls_offset = __ pc() - start; 2608 2609 // new implementation because exception oop is now passed in JavaThread 2610 2611 // Prolog for exception case 2612 // All registers must be preserved because they might be used by LinearScan 2613 // Exceptiop oop and throwing PC are passed in JavaThread 2614 // tos: stack at point of call to method that threw the exception (i.e. only 2615 // args are on the stack, no return address) 2616 2617 // The return address pushed by save_live_registers will be patched 2618 // later with the throwing pc. The correct value is not available 2619 // now because loading it from memory would destroy registers. 2620 2621 // NB: The SP at this point must be the SP of the method that is 2622 // being deoptimized. Deoptimization assumes that the frame created 2623 // here by save_live_registers is immediately below the method's SP. 2624 // This is a somewhat fragile mechanism. 2625 2626 // Save everything in sight. 2627 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2628 2629 // Now it is safe to overwrite any register 2630 2631 // Deopt during an exception. Save exec mode for unpack_frames. 2632 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2633 2634 // load throwing pc from JavaThread and patch it as the return address 2635 // of the current frame. Then clear the field in JavaThread 2636 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2637 __ protect_return_address(r3); 2638 __ str(r3, Address(rfp, wordSize)); 2639 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2640 2641 #ifdef ASSERT 2642 // verify that there is really an exception oop in JavaThread 2643 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2644 __ verify_oop(r0); 2645 2646 // verify that there is no pending exception 2647 Label no_pending_exception; 2648 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2649 __ cbz(rscratch1, no_pending_exception); 2650 __ stop("must not have pending exception here"); 2651 __ bind(no_pending_exception); 2652 #endif 2653 2654 __ bind(cont); 2655 2656 // Call C code. Need thread and this frame, but NOT official VM entry 2657 // crud. We cannot block on this call, no GC can happen. 2658 // 2659 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2660 2661 // fetch_unroll_info needs to call last_java_frame(). 2662 2663 Label retaddr; 2664 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2665 #ifdef ASSERT 2666 { Label L; 2667 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2668 __ cbz(rscratch1, L); 2669 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2670 __ bind(L); 2671 } 2672 #endif // ASSERT 2673 __ mov(c_rarg0, rthread); 2674 __ mov(c_rarg1, rcpool); 2675 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2676 __ blr(rscratch1); 2677 __ bind(retaddr); 2678 2679 // Need to have an oopmap that tells fetch_unroll_info where to 2680 // find any register it might need. 2681 oop_maps->add_gc_map(__ pc() - start, map); 2682 2683 __ reset_last_Java_frame(false); 2684 2685 #if INCLUDE_JVMCI 2686 if (EnableJVMCI) { 2687 __ bind(after_fetch_unroll_info_call); 2688 } 2689 #endif 2690 2691 // Load UnrollBlock* into r5 2692 __ mov(r5, r0); 2693 2694 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2695 Label noException; 2696 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2697 __ br(Assembler::NE, noException); 2698 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2699 // QQQ this is useless it was null above 2700 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2701 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2702 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2703 2704 __ verify_oop(r0); 2705 2706 // Overwrite the result registers with the exception results. 2707 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2708 // I think this is useless 2709 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2710 2711 __ bind(noException); 2712 2713 // Only register save data is on the stack. 2714 // Now restore the result registers. Everything else is either dead 2715 // or captured in the vframeArray. 2716 2717 // Restore fp result register 2718 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2719 // Restore integer result register 2720 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2721 2722 // Pop all of the register save area off the stack 2723 __ add(sp, sp, frame_size_in_words * wordSize); 2724 2725 // All of the register save area has been popped of the stack. Only the 2726 // return address remains. 2727 2728 // Pop all the frames we must move/replace. 2729 // 2730 // Frame picture (youngest to oldest) 2731 // 1: self-frame (no frame link) 2732 // 2: deopting frame (no frame link) 2733 // 3: caller of deopting frame (could be compiled/interpreted). 2734 // 2735 // Note: by leaving the return address of self-frame on the stack 2736 // and using the size of frame 2 to adjust the stack 2737 // when we are done the return to frame 3 will still be on the stack. 2738 2739 // Pop deoptimized frame 2740 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2741 __ sub(r2, r2, 2 * wordSize); 2742 __ add(sp, sp, r2); 2743 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2744 2745 #ifdef ASSERT 2746 // Compilers generate code that bang the stack by as much as the 2747 // interpreter would need. So this stack banging should never 2748 // trigger a fault. Verify that it does not on non product builds. 2749 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2750 __ bang_stack_size(r19, r2); 2751 #endif 2752 // Load address of array of frame pcs into r2 2753 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2754 2755 // Trash the old pc 2756 // __ addptr(sp, wordSize); FIXME ???? 2757 2758 // Load address of array of frame sizes into r4 2759 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2760 2761 // Load counter into r3 2762 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2763 2764 // Now adjust the caller's stack to make up for the extra locals 2765 // but record the original sp so that we can save it in the skeletal interpreter 2766 // frame and the stack walking of interpreter_sender will get the unextended sp 2767 // value and not the "real" sp value. 2768 2769 const Register sender_sp = r6; 2770 2771 __ mov(sender_sp, sp); 2772 __ ldrw(r19, Address(r5, 2773 Deoptimization::UnrollBlock:: 2774 caller_adjustment_offset())); 2775 __ sub(sp, sp, r19); 2776 2777 // Push interpreter frames in a loop 2778 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2779 __ mov(rscratch2, rscratch1); 2780 Label loop; 2781 __ bind(loop); 2782 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2783 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2784 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2785 __ enter(); // Save old & set new fp 2786 __ sub(sp, sp, r19); // Prolog 2787 // This value is corrected by layout_activation_impl 2788 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2789 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2790 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2791 __ sub(r3, r3, 1); // Decrement counter 2792 __ cbnz(r3, loop); 2793 2794 // Re-push self-frame 2795 __ ldr(lr, Address(r2)); 2796 __ enter(); 2797 2798 // Allocate a full sized register save area. We subtract 2 because 2799 // enter() just pushed 2 words 2800 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2801 2802 // Restore frame locals after moving the frame 2803 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2804 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2805 2806 // Call C code. Need thread but NOT official VM entry 2807 // crud. We cannot block on this call, no GC can happen. Call should 2808 // restore return values to their stack-slots with the new SP. 2809 // 2810 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2811 2812 // Use rfp because the frames look interpreted now 2813 // Don't need the precise return PC here, just precise enough to point into this code blob. 2814 address the_pc = __ pc(); 2815 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2816 2817 __ mov(c_rarg0, rthread); 2818 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2819 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2820 __ blr(rscratch1); 2821 2822 // Set an oopmap for the call site 2823 // Use the same PC we used for the last java frame 2824 oop_maps->add_gc_map(the_pc - start, 2825 new OopMap( frame_size_in_words, 0 )); 2826 2827 // Clear fp AND pc 2828 __ reset_last_Java_frame(true); 2829 2830 // Collect return values 2831 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2832 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2833 // I think this is useless (throwing pc?) 2834 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2835 2836 // Pop self-frame. 2837 __ leave(); // Epilog 2838 2839 // Jump to interpreter 2840 __ ret(lr); 2841 2842 // Make sure all code is generated 2843 masm->flush(); 2844 2845 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2846 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2847 #if INCLUDE_JVMCI 2848 if (EnableJVMCI) { 2849 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2850 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2851 } 2852 #endif 2853 2854 AOTCodeCache::store_code_blob(*_deopt_blob, AOTCodeEntry::SharedBlob, (uint)SharedStubId::deopt_id, name); 2855 } 2856 2857 // Number of stack slots between incoming argument block and the start of 2858 // a new frame. The PROLOG must add this many slots to the stack. The 2859 // EPILOG must remove this many slots. aarch64 needs two slots for 2860 // return address and fp. 2861 // TODO think this is correct but check 2862 uint SharedRuntime::in_preserve_stack_slots() { 2863 return 4; 2864 } 2865 2866 uint SharedRuntime::out_preserve_stack_slots() { 2867 return 0; 2868 } 2869 2870 2871 VMReg SharedRuntime::thread_register() { 2872 return rthread->as_VMReg(); 2873 } 2874 2875 //------------------------------generate_handler_blob------ 2876 // 2877 // Generate a special Compile2Runtime blob that saves all registers, 2878 // and setup oopmap. 2879 // 2880 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2881 assert(is_polling_page_id(id), "expected a polling page stub id"); 2882 2883 // Allocate space for the code. Setup code generation tools. 2884 const char* name = SharedRuntime::stub_name(id); 2885 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name); 2886 if (blob != nullptr) { 2887 return blob->as_safepoint_blob(); 2888 } 2889 2890 ResourceMark rm; 2891 OopMapSet *oop_maps = new OopMapSet(); 2892 OopMap* map; 2893 CodeBuffer buffer(name, 2048, 1024); 2894 MacroAssembler* masm = new MacroAssembler(&buffer); 2895 2896 address start = __ pc(); 2897 address call_pc = nullptr; 2898 int frame_size_in_words; 2899 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2900 RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */); 2901 2902 // When the signal occurred, the LR was either signed and stored on the stack (in which 2903 // case it will be restored from the stack before being used) or unsigned and not stored 2904 // on the stack. Stipping ensures we get the right value. 2905 __ strip_return_address(); 2906 2907 // Save Integer and Float registers. 2908 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2909 2910 // The following is basically a call_VM. However, we need the precise 2911 // address of the call in order to generate an oopmap. Hence, we do all the 2912 // work ourselves. 2913 2914 Label retaddr; 2915 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2916 2917 // The return address must always be correct so that frame constructor never 2918 // sees an invalid pc. 2919 2920 if (!cause_return) { 2921 // overwrite the return address pushed by save_live_registers 2922 // Additionally, r20 is a callee-saved register so we can look at 2923 // it later to determine if someone changed the return address for 2924 // us! 2925 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2926 __ protect_return_address(r20); 2927 __ str(r20, Address(rfp, wordSize)); 2928 } 2929 2930 // Do the call 2931 __ mov(c_rarg0, rthread); 2932 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2933 __ blr(rscratch1); 2934 __ bind(retaddr); 2935 2936 // Set an oopmap for the call site. This oopmap will map all 2937 // oop-registers and debug-info registers as callee-saved. This 2938 // will allow deoptimization at this safepoint to find all possible 2939 // debug-info recordings, as well as let GC find all oops. 2940 2941 oop_maps->add_gc_map( __ pc() - start, map); 2942 2943 Label noException; 2944 2945 __ reset_last_Java_frame(false); 2946 2947 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2948 2949 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2950 __ cbz(rscratch1, noException); 2951 2952 // Exception pending 2953 2954 reg_save.restore_live_registers(masm); 2955 2956 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2957 2958 // No exception case 2959 __ bind(noException); 2960 2961 Label no_adjust, bail; 2962 if (!cause_return) { 2963 // If our stashed return pc was modified by the runtime we avoid touching it 2964 __ ldr(rscratch1, Address(rfp, wordSize)); 2965 __ cmp(r20, rscratch1); 2966 __ br(Assembler::NE, no_adjust); 2967 __ authenticate_return_address(r20); 2968 2969 #ifdef ASSERT 2970 // Verify the correct encoding of the poll we're about to skip. 2971 // See NativeInstruction::is_ldrw_to_zr() 2972 __ ldrw(rscratch1, Address(r20)); 2973 __ ubfx(rscratch2, rscratch1, 22, 10); 2974 __ cmpw(rscratch2, 0b1011100101); 2975 __ br(Assembler::NE, bail); 2976 __ ubfx(rscratch2, rscratch1, 0, 5); 2977 __ cmpw(rscratch2, 0b11111); 2978 __ br(Assembler::NE, bail); 2979 #endif 2980 // Adjust return pc forward to step over the safepoint poll instruction 2981 __ add(r20, r20, NativeInstruction::instruction_size); 2982 __ protect_return_address(r20); 2983 __ str(r20, Address(rfp, wordSize)); 2984 } 2985 2986 __ bind(no_adjust); 2987 // Normal exit, restore registers and exit. 2988 reg_save.restore_live_registers(masm); 2989 2990 __ ret(lr); 2991 2992 #ifdef ASSERT 2993 __ bind(bail); 2994 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2995 #endif 2996 2997 // Make sure all code is generated 2998 masm->flush(); 2999 3000 // Fill-out other meta info 3001 SafepointBlob* sp_blob = SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 3002 3003 AOTCodeCache::store_code_blob(*sp_blob, AOTCodeEntry::SharedBlob, (uint)id, name); 3004 return sp_blob; 3005 } 3006 3007 // 3008 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 3009 // 3010 // Generate a stub that calls into vm to find out the proper destination 3011 // of a java call. All the argument registers are live at this point 3012 // but since this is generic code we don't know what they are and the caller 3013 // must do any gc of the args. 3014 // 3015 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 3016 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 3017 assert(is_resolve_id(id), "expected a resolve stub id"); 3018 3019 const char* name = SharedRuntime::stub_name(id); 3020 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name); 3021 if (blob != nullptr) { 3022 return blob->as_runtime_stub(); 3023 } 3024 3025 // allocate space for the code 3026 ResourceMark rm; 3027 CodeBuffer buffer(name, 1000, 512); 3028 MacroAssembler* masm = new MacroAssembler(&buffer); 3029 3030 int frame_size_in_words; 3031 RegisterSaver reg_save(false /* save_vectors */); 3032 3033 OopMapSet *oop_maps = new OopMapSet(); 3034 OopMap* map = nullptr; 3035 3036 int start = __ offset(); 3037 3038 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 3039 3040 int frame_complete = __ offset(); 3041 3042 { 3043 Label retaddr; 3044 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 3045 3046 __ mov(c_rarg0, rthread); 3047 __ lea(rscratch1, RuntimeAddress(destination)); 3048 3049 __ blr(rscratch1); 3050 __ bind(retaddr); 3051 } 3052 3053 // Set an oopmap for the call site. 3054 // We need this not only for callee-saved registers, but also for volatile 3055 // registers that the compiler might be keeping live across a safepoint. 3056 3057 oop_maps->add_gc_map( __ offset() - start, map); 3058 3059 // r0 contains the address we are going to jump to assuming no exception got installed 3060 3061 // clear last_Java_sp 3062 __ reset_last_Java_frame(false); 3063 // check for pending exceptions 3064 Label pending; 3065 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3066 __ cbnz(rscratch1, pending); 3067 3068 // get the returned Method* 3069 __ get_vm_result_metadata(rmethod, rthread); 3070 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 3071 3072 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 3073 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 3074 reg_save.restore_live_registers(masm); 3075 3076 // We are back to the original state on entry and ready to go. 3077 3078 __ br(rscratch1); 3079 3080 // Pending exception after the safepoint 3081 3082 __ bind(pending); 3083 3084 reg_save.restore_live_registers(masm); 3085 3086 // exception pending => remove activation and forward to exception handler 3087 3088 __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset())); 3089 3090 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 3091 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3092 3093 // ------------- 3094 // make sure all code is generated 3095 masm->flush(); 3096 3097 // return the blob 3098 // frame_size_words or bytes?? 3099 RuntimeStub* rs_blob = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 3100 3101 AOTCodeCache::store_code_blob(*rs_blob, AOTCodeEntry::SharedBlob, (uint)id, name); 3102 return rs_blob; 3103 } 3104 3105 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) { 3106 BufferBlob* buf = BufferBlob::create("inline types pack/unpack", 16 * K); 3107 CodeBuffer buffer(buf); 3108 short buffer_locs[20]; 3109 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3110 sizeof(buffer_locs)/sizeof(relocInfo)); 3111 3112 MacroAssembler _masm(&buffer); 3113 MacroAssembler* masm = &_masm; 3114 3115 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3116 const Array<VMRegPair>* regs = vk->return_regs(); 3117 3118 int pack_fields_jobject_off = __ offset(); 3119 // Resolve pre-allocated buffer from JNI handle. 3120 // We cannot do this in generate_call_stub() because it requires GC code to be initialized. 3121 Register Rresult = r14; // See StubGenerator::generate_call_stub(). 3122 __ ldr(r0, Address(Rresult)); 3123 __ resolve_jobject(r0 /* value */, 3124 rthread /* thread */, 3125 r12 /* tmp */); 3126 __ str(r0, Address(Rresult)); 3127 3128 int pack_fields_off = __ offset(); 3129 3130 int j = 1; 3131 for (int i = 0; i < sig_vk->length(); i++) { 3132 BasicType bt = sig_vk->at(i)._bt; 3133 if (bt == T_METADATA) { 3134 continue; 3135 } 3136 if (bt == T_VOID) { 3137 if (sig_vk->at(i-1)._bt == T_LONG || 3138 sig_vk->at(i-1)._bt == T_DOUBLE) { 3139 j++; 3140 } 3141 continue; 3142 } 3143 int off = sig_vk->at(i)._offset; 3144 VMRegPair pair = regs->at(j); 3145 VMReg r_1 = pair.first(); 3146 VMReg r_2 = pair.second(); 3147 Address to(r0, off); 3148 if (bt == T_FLOAT) { 3149 __ strs(r_1->as_FloatRegister(), to); 3150 } else if (bt == T_DOUBLE) { 3151 __ strd(r_1->as_FloatRegister(), to); 3152 } else { 3153 Register val = r_1->as_Register(); 3154 assert_different_registers(to.base(), val, r15, r16, r17); 3155 if (is_reference_type(bt)) { 3156 __ store_heap_oop(to, val, r15, r16, r17, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 3157 } else { 3158 __ store_sized_value(to, r_1->as_Register(), type2aelembytes(bt)); 3159 } 3160 } 3161 j++; 3162 } 3163 assert(j == regs->length(), "missed a field?"); 3164 if (vk->has_nullable_atomic_layout()) { 3165 // Zero the null marker (setting it to 1 would be better but would require an additional register) 3166 __ strb(zr, Address(r0, vk->null_marker_offset())); 3167 } 3168 __ ret(lr); 3169 3170 int unpack_fields_off = __ offset(); 3171 3172 Label skip; 3173 Label not_null; 3174 __ cbnz(r0, not_null); 3175 3176 // Return value is null. Zero oop registers to make the GC happy. 3177 j = 1; 3178 for (int i = 0; i < sig_vk->length(); i++) { 3179 BasicType bt = sig_vk->at(i)._bt; 3180 if (bt == T_METADATA) { 3181 continue; 3182 } 3183 if (bt == T_VOID) { 3184 if (sig_vk->at(i-1)._bt == T_LONG || 3185 sig_vk->at(i-1)._bt == T_DOUBLE) { 3186 j++; 3187 } 3188 continue; 3189 } 3190 if (bt == T_OBJECT || bt == T_ARRAY) { 3191 VMRegPair pair = regs->at(j); 3192 VMReg r_1 = pair.first(); 3193 __ mov(r_1->as_Register(), zr); 3194 } 3195 j++; 3196 } 3197 __ b(skip); 3198 __ bind(not_null); 3199 3200 j = 1; 3201 for (int i = 0; i < sig_vk->length(); i++) { 3202 BasicType bt = sig_vk->at(i)._bt; 3203 if (bt == T_METADATA) { 3204 continue; 3205 } 3206 if (bt == T_VOID) { 3207 if (sig_vk->at(i-1)._bt == T_LONG || 3208 sig_vk->at(i-1)._bt == T_DOUBLE) { 3209 j++; 3210 } 3211 continue; 3212 } 3213 int off = sig_vk->at(i)._offset; 3214 assert(off > 0, "offset in object should be positive"); 3215 VMRegPair pair = regs->at(j); 3216 VMReg r_1 = pair.first(); 3217 VMReg r_2 = pair.second(); 3218 Address from(r0, off); 3219 if (bt == T_FLOAT) { 3220 __ ldrs(r_1->as_FloatRegister(), from); 3221 } else if (bt == T_DOUBLE) { 3222 __ ldrd(r_1->as_FloatRegister(), from); 3223 } else if (bt == T_OBJECT || bt == T_ARRAY) { 3224 assert_different_registers(r0, r_1->as_Register()); 3225 __ load_heap_oop(r_1->as_Register(), from, rscratch1, rscratch2); 3226 } else { 3227 assert(is_java_primitive(bt), "unexpected basic type"); 3228 assert_different_registers(r0, r_1->as_Register()); 3229 3230 size_t size_in_bytes = type2aelembytes(bt); 3231 __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN); 3232 } 3233 j++; 3234 } 3235 assert(j == regs->length(), "missed a field?"); 3236 3237 __ bind(skip); 3238 3239 __ ret(lr); 3240 3241 __ flush(); 3242 3243 return BufferedInlineTypeBlob::create(&buffer, pack_fields_off, pack_fields_jobject_off, unpack_fields_off); 3244 } 3245 3246 // Continuation point for throwing of implicit exceptions that are 3247 // not handled in the current activation. Fabricates an exception 3248 // oop and initiates normal exception dispatching in this 3249 // frame. Since we need to preserve callee-saved values (currently 3250 // only for C2, but done for C1 as well) we need a callee-saved oop 3251 // map and therefore have to make these stubs into RuntimeStubs 3252 // rather than BufferBlobs. If the compiler needs all registers to 3253 // be preserved between the fault point and the exception handler 3254 // then it must assume responsibility for that in 3255 // AbstractCompiler::continuation_for_implicit_null_exception or 3256 // continuation_for_implicit_division_by_zero_exception. All other 3257 // implicit exceptions (e.g., NullPointerException or 3258 // AbstractMethodError on entry) are either at call sites or 3259 // otherwise assume that stack unwinding will be initiated, so 3260 // caller saved registers were assumed volatile in the compiler. 3261 3262 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 3263 assert(is_throw_id(id), "expected a throw stub id"); 3264 3265 const char* name = SharedRuntime::stub_name(id); 3266 3267 // Information about frame layout at time of blocking runtime call. 3268 // Note that we only have to preserve callee-saved registers since 3269 // the compilers are responsible for supplying a continuation point 3270 // if they expect all registers to be preserved. 3271 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0 3272 enum layout { 3273 rfp_off = 0, 3274 rfp_off2, 3275 return_off, 3276 return_off2, 3277 framesize // inclusive of return address 3278 }; 3279 3280 int insts_size = 512; 3281 int locs_size = 64; 3282 3283 const char* timer_msg = "SharedRuntime generate_throw_exception"; 3284 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 3285 3286 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name); 3287 if (blob != nullptr) { 3288 return blob->as_runtime_stub(); 3289 } 3290 3291 ResourceMark rm; 3292 CodeBuffer code(name, insts_size, locs_size); 3293 OopMapSet* oop_maps = new OopMapSet(); 3294 MacroAssembler* masm = new MacroAssembler(&code); 3295 3296 address start = __ pc(); 3297 3298 // This is an inlined and slightly modified version of call_VM 3299 // which has the ability to fetch the return PC out of 3300 // thread-local storage and also sets up last_Java_sp slightly 3301 // differently than the real call_VM 3302 3303 __ enter(); // Save FP and LR before call 3304 3305 assert(is_even(framesize/2), "sp not 16-byte aligned"); 3306 3307 // lr and fp are already in place 3308 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog 3309 3310 int frame_complete = __ pc() - start; 3311 3312 // Set up last_Java_sp and last_Java_fp 3313 address the_pc = __ pc(); 3314 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3315 3316 __ mov(c_rarg0, rthread); 3317 BLOCK_COMMENT("call runtime_entry"); 3318 __ lea(rscratch1, RuntimeAddress(runtime_entry)); 3319 __ blr(rscratch1); 3320 3321 // Generate oop map 3322 OopMap* map = new OopMap(framesize, 0); 3323 3324 oop_maps->add_gc_map(the_pc - start, map); 3325 3326 __ reset_last_Java_frame(true); 3327 3328 // Reinitialize the ptrue predicate register, in case the external runtime 3329 // call clobbers ptrue reg, as we may return to SVE compiled code. 3330 __ reinitialize_ptrue(); 3331 3332 __ leave(); 3333 3334 // check for pending exceptions 3335 #ifdef ASSERT 3336 Label L; 3337 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3338 __ cbnz(rscratch1, L); 3339 __ should_not_reach_here(); 3340 __ bind(L); 3341 #endif // ASSERT 3342 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3343 3344 // codeBlob framesize is in words (not VMRegImpl::slot_size) 3345 RuntimeStub* stub = 3346 RuntimeStub::new_runtime_stub(name, 3347 &code, 3348 frame_complete, 3349 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3350 oop_maps, false); 3351 AOTCodeCache::store_code_blob(*stub, AOTCodeEntry::SharedBlob, (uint)id, name); 3352 3353 return stub; 3354 } 3355 3356 #if INCLUDE_JFR 3357 3358 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 3359 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3360 __ mov(c_rarg0, thread); 3361 } 3362 3363 // The handle is dereferenced through a load barrier. 3364 static void jfr_epilogue(MacroAssembler* masm) { 3365 __ reset_last_Java_frame(true); 3366 } 3367 3368 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 3369 // It returns a jobject handle to the event writer. 3370 // The handle is dereferenced and the return value is the event writer oop. 3371 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 3372 enum layout { 3373 rbp_off, 3374 rbpH_off, 3375 return_off, 3376 return_off2, 3377 framesize // inclusive of return address 3378 }; 3379 3380 int insts_size = 1024; 3381 int locs_size = 64; 3382 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 3383 CodeBuffer code(name, insts_size, locs_size); 3384 OopMapSet* oop_maps = new OopMapSet(); 3385 MacroAssembler* masm = new MacroAssembler(&code); 3386 3387 address start = __ pc(); 3388 __ enter(); 3389 int frame_complete = __ pc() - start; 3390 address the_pc = __ pc(); 3391 jfr_prologue(the_pc, masm, rthread); 3392 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 3393 jfr_epilogue(masm); 3394 __ resolve_global_jobject(r0, rscratch1, rscratch2); 3395 __ leave(); 3396 __ ret(lr); 3397 3398 OopMap* map = new OopMap(framesize, 1); // rfp 3399 oop_maps->add_gc_map(the_pc - start, map); 3400 3401 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3402 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3403 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3404 oop_maps, false); 3405 return stub; 3406 } 3407 3408 // For c2: call to return a leased buffer. 3409 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 3410 enum layout { 3411 rbp_off, 3412 rbpH_off, 3413 return_off, 3414 return_off2, 3415 framesize // inclusive of return address 3416 }; 3417 3418 int insts_size = 1024; 3419 int locs_size = 64; 3420 3421 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 3422 CodeBuffer code(name, insts_size, locs_size); 3423 OopMapSet* oop_maps = new OopMapSet(); 3424 MacroAssembler* masm = new MacroAssembler(&code); 3425 3426 address start = __ pc(); 3427 __ enter(); 3428 int frame_complete = __ pc() - start; 3429 address the_pc = __ pc(); 3430 jfr_prologue(the_pc, masm, rthread); 3431 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 3432 jfr_epilogue(masm); 3433 3434 __ leave(); 3435 __ ret(lr); 3436 3437 OopMap* map = new OopMap(framesize, 1); // rfp 3438 oop_maps->add_gc_map(the_pc - start, map); 3439 3440 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3441 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3442 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3443 oop_maps, false); 3444 return stub; 3445 } 3446 3447 #endif // INCLUDE_JFR