1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "code/aotCodeCache.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/debugInfoRec.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interp_masm.hpp" 39 #include "logging/log.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/continuation.hpp" 46 #include "runtime/continuationEntry.inline.hpp" 47 #include "runtime/globals.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/signature.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/timerTrace.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/align.hpp" 56 #include "utilities/formatBuffer.hpp" 57 #include "vmreg_aarch64.inline.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_Runtime1.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "adfiles/ad_aarch64.hpp" 63 #include "opto/runtime.hpp" 64 #endif 65 #if INCLUDE_JVMCI 66 #include "jvmci/jvmciJavaClasses.hpp" 67 #endif 68 69 #define __ masm-> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) __ block_comment(str) 75 #endif 76 77 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 78 79 // FIXME -- this is used by C1 80 class RegisterSaver { 81 const bool _save_vectors; 82 public: 83 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 84 85 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 86 void restore_live_registers(MacroAssembler* masm); 87 88 // Offsets into the register save area 89 // Used by deoptimization when it is managing result register 90 // values on its own 91 92 int reg_offset_in_bytes(Register r); 93 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 94 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 95 int v0_offset_in_bytes(); 96 97 // Total stack size in bytes for saving sve predicate registers. 98 int total_sve_predicate_in_bytes(); 99 100 // Capture info about frame layout 101 // Note this is only correct when not saving full vectors. 102 enum layout { 103 fpu_state_off = 0, 104 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 105 // The frame sender code expects that rfp will be in 106 // the "natural" place and will override any oopMap 107 // setting for it. We must therefore force the layout 108 // so that it agrees with the frame sender code. 109 r0_off = fpu_state_off + FPUStateSizeInWords, 110 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 111 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 112 reg_save_size = return_off + Register::max_slots_per_register}; 113 114 }; 115 116 int RegisterSaver::reg_offset_in_bytes(Register r) { 117 // The integer registers are located above the floating point 118 // registers in the stack frame pushed by save_live_registers() so the 119 // offset depends on whether we are saving full vectors, and whether 120 // those vectors are NEON or SVE. 121 122 int slots_per_vect = FloatRegister::save_slots_per_register; 123 124 #if COMPILER2_OR_JVMCI 125 if (_save_vectors) { 126 slots_per_vect = FloatRegister::slots_per_neon_register; 127 128 #ifdef COMPILER2 129 if (Matcher::supports_scalable_vector()) { 130 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 131 } 132 #endif 133 } 134 #endif 135 136 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 137 return r0_offset + r->encoding() * wordSize; 138 } 139 140 int RegisterSaver::v0_offset_in_bytes() { 141 // The floating point registers are located above the predicate registers if 142 // they are present in the stack frame pushed by save_live_registers(). So the 143 // offset depends on the saved total predicate vectors in the stack frame. 144 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 145 } 146 147 int RegisterSaver::total_sve_predicate_in_bytes() { 148 #ifdef COMPILER2 149 if (_save_vectors && Matcher::supports_scalable_vector()) { 150 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 151 PRegister::number_of_registers; 152 } 153 #endif 154 return 0; 155 } 156 157 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 158 bool use_sve = false; 159 int sve_vector_size_in_bytes = 0; 160 int sve_vector_size_in_slots = 0; 161 int sve_predicate_size_in_slots = 0; 162 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 163 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 164 165 #ifdef COMPILER2 166 use_sve = Matcher::supports_scalable_vector(); 167 if (use_sve) { 168 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 169 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 170 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 171 } 172 #endif 173 174 #if COMPILER2_OR_JVMCI 175 if (_save_vectors) { 176 int extra_save_slots_per_register = 0; 177 // Save upper half of vector registers 178 if (use_sve) { 179 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 180 } else { 181 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 182 } 183 int extra_vector_bytes = extra_save_slots_per_register * 184 VMRegImpl::stack_slot_size * 185 FloatRegister::number_of_registers; 186 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 187 } 188 #else 189 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 190 #endif 191 192 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 193 reg_save_size * BytesPerInt, 16); 194 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 195 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 196 // The caller will allocate additional_frame_words 197 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 198 // CodeBlob frame size is in words. 199 int frame_size_in_words = frame_size_in_bytes / wordSize; 200 *total_frame_words = frame_size_in_words; 201 202 // Save Integer and Float registers. 203 __ enter(); 204 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 205 206 // Set an oopmap for the call site. This oopmap will map all 207 // oop-registers and debug-info registers as callee-saved. This 208 // will allow deoptimization at this safepoint to find all possible 209 // debug-info recordings, as well as let GC find all oops. 210 211 OopMapSet *oop_maps = new OopMapSet(); 212 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 213 214 for (int i = 0; i < Register::number_of_registers; i++) { 215 Register r = as_Register(i); 216 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 217 // SP offsets are in 4-byte words. 218 // Register slots are 8 bytes wide, 32 floating-point registers. 219 int sp_offset = Register::max_slots_per_register * i + 220 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 221 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 222 } 223 } 224 225 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 226 FloatRegister r = as_FloatRegister(i); 227 int sp_offset = 0; 228 if (_save_vectors) { 229 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 230 (FloatRegister::slots_per_neon_register * i); 231 } else { 232 sp_offset = FloatRegister::save_slots_per_register * i; 233 } 234 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 235 } 236 237 return oop_map; 238 } 239 240 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 241 #ifdef COMPILER2 242 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 243 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 244 #else 245 #if !INCLUDE_JVMCI 246 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 247 #endif 248 __ pop_CPU_state(_save_vectors); 249 #endif 250 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 251 __ authenticate_return_address(); 252 } 253 254 // Is vector's size (in bytes) bigger than a size saved by default? 255 // 8 bytes vector registers are saved by default on AArch64. 256 // The SVE supported min vector size is 8 bytes and we need to save 257 // predicate registers when the vector size is 8 bytes as well. 258 bool SharedRuntime::is_wide_vector(int size) { 259 return size > 8 || (UseSVE > 0 && size >= 8); 260 } 261 262 // --------------------------------------------------------------------------- 263 // Read the array of BasicTypes from a signature, and compute where the 264 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 265 // quantities. Values less than VMRegImpl::stack0 are registers, those above 266 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 267 // as framesizes are fixed. 268 // VMRegImpl::stack0 refers to the first slot 0(sp). 269 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 270 // Register up to Register::number_of_registers are the 64-bit 271 // integer registers. 272 273 // Note: the INPUTS in sig_bt are in units of Java argument words, 274 // which are 64-bit. The OUTPUTS are in 32-bit units. 275 276 // The Java calling convention is a "shifted" version of the C ABI. 277 // By skipping the first C ABI register we can call non-static jni 278 // methods with small numbers of arguments without having to shuffle 279 // the arguments at all. Since we control the java ABI we ought to at 280 // least get some advantage out of it. 281 282 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 283 VMRegPair *regs, 284 int total_args_passed) { 285 286 // Create the mapping between argument positions and 287 // registers. 288 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 289 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 290 }; 291 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 292 j_farg0, j_farg1, j_farg2, j_farg3, 293 j_farg4, j_farg5, j_farg6, j_farg7 294 }; 295 296 297 uint int_args = 0; 298 uint fp_args = 0; 299 uint stk_args = 0; 300 301 for (int i = 0; i < total_args_passed; i++) { 302 switch (sig_bt[i]) { 303 case T_BOOLEAN: 304 case T_CHAR: 305 case T_BYTE: 306 case T_SHORT: 307 case T_INT: 308 if (int_args < Argument::n_int_register_parameters_j) { 309 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 310 } else { 311 stk_args = align_up(stk_args, 2); 312 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 313 stk_args += 1; 314 } 315 break; 316 case T_VOID: 317 // halves of T_LONG or T_DOUBLE 318 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 319 regs[i].set_bad(); 320 break; 321 case T_LONG: 322 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 323 // fall through 324 case T_OBJECT: 325 case T_ARRAY: 326 case T_ADDRESS: 327 if (int_args < Argument::n_int_register_parameters_j) { 328 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 329 } else { 330 stk_args = align_up(stk_args, 2); 331 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 332 stk_args += 2; 333 } 334 break; 335 case T_FLOAT: 336 if (fp_args < Argument::n_float_register_parameters_j) { 337 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 338 } else { 339 stk_args = align_up(stk_args, 2); 340 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 341 stk_args += 1; 342 } 343 break; 344 case T_DOUBLE: 345 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 346 if (fp_args < Argument::n_float_register_parameters_j) { 347 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 348 } else { 349 stk_args = align_up(stk_args, 2); 350 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 351 stk_args += 2; 352 } 353 break; 354 default: 355 ShouldNotReachHere(); 356 break; 357 } 358 } 359 360 return stk_args; 361 } 362 363 364 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j; 365 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j; 366 367 int SharedRuntime::java_return_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) { 368 369 // Create the mapping between argument positions and registers. 370 371 static const Register INT_ArgReg[java_return_convention_max_int] = { 372 r0 /* j_rarg7 */, j_rarg6, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0 373 }; 374 375 static const FloatRegister FP_ArgReg[java_return_convention_max_float] = { 376 j_farg0, j_farg1, j_farg2, j_farg3, j_farg4, j_farg5, j_farg6, j_farg7 377 }; 378 379 uint int_args = 0; 380 uint fp_args = 0; 381 382 for (int i = 0; i < total_args_passed; i++) { 383 switch (sig_bt[i]) { 384 case T_BOOLEAN: 385 case T_CHAR: 386 case T_BYTE: 387 case T_SHORT: 388 case T_INT: 389 if (int_args < SharedRuntime::java_return_convention_max_int) { 390 regs[i].set1(INT_ArgReg[int_args]->as_VMReg()); 391 int_args ++; 392 } else { 393 return -1; 394 } 395 break; 396 case T_VOID: 397 // halves of T_LONG or T_DOUBLE 398 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 399 regs[i].set_bad(); 400 break; 401 case T_LONG: 402 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 403 // fall through 404 case T_OBJECT: 405 case T_ARRAY: 406 case T_ADDRESS: 407 // Should T_METADATA be added to java_calling_convention as well ? 408 case T_METADATA: 409 if (int_args < SharedRuntime::java_return_convention_max_int) { 410 regs[i].set2(INT_ArgReg[int_args]->as_VMReg()); 411 int_args ++; 412 } else { 413 return -1; 414 } 415 break; 416 case T_FLOAT: 417 if (fp_args < SharedRuntime::java_return_convention_max_float) { 418 regs[i].set1(FP_ArgReg[fp_args]->as_VMReg()); 419 fp_args ++; 420 } else { 421 return -1; 422 } 423 break; 424 case T_DOUBLE: 425 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 426 if (fp_args < SharedRuntime::java_return_convention_max_float) { 427 regs[i].set2(FP_ArgReg[fp_args]->as_VMReg()); 428 fp_args ++; 429 } else { 430 return -1; 431 } 432 break; 433 default: 434 ShouldNotReachHere(); 435 break; 436 } 437 } 438 439 return int_args + fp_args; 440 } 441 442 // Patch the callers callsite with entry to compiled code if it exists. 443 static void patch_callers_callsite(MacroAssembler *masm) { 444 Label L; 445 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 446 __ cbz(rscratch1, L); 447 448 __ enter(); 449 __ push_CPU_state(); 450 451 // VM needs caller's callsite 452 // VM needs target method 453 // This needs to be a long call since we will relocate this adapter to 454 // the codeBuffer and it may not reach 455 456 #ifndef PRODUCT 457 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 458 #endif 459 460 __ mov(c_rarg0, rmethod); 461 __ mov(c_rarg1, lr); 462 __ authenticate_return_address(c_rarg1); 463 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 464 __ blr(rscratch1); 465 466 // Explicit isb required because fixup_callers_callsite may change the code 467 // stream. 468 __ safepoint_isb(); 469 470 __ pop_CPU_state(); 471 // restore sp 472 __ leave(); 473 __ bind(L); 474 } 475 476 // For each inline type argument, sig includes the list of fields of 477 // the inline type. This utility function computes the number of 478 // arguments for the call if inline types are passed by reference (the 479 // calling convention the interpreter expects). 480 static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) { 481 int total_args_passed = 0; 482 if (InlineTypePassFieldsAsArgs) { 483 for (int i = 0; i < sig_extended->length(); i++) { 484 BasicType bt = sig_extended->at(i)._bt; 485 if (bt == T_METADATA) { 486 // In sig_extended, an inline type argument starts with: 487 // T_METADATA, followed by the types of the fields of the 488 // inline type and T_VOID to mark the end of the value 489 // type. Inline types are flattened so, for instance, in the 490 // case of an inline type with an int field and an inline type 491 // field that itself has 2 fields, an int and a long: 492 // T_METADATA T_INT T_METADATA T_INT T_LONG T_VOID (second 493 // slot for the T_LONG) T_VOID (inner inline type) T_VOID 494 // (outer inline type) 495 total_args_passed++; 496 int vt = 1; 497 do { 498 i++; 499 BasicType bt = sig_extended->at(i)._bt; 500 BasicType prev_bt = sig_extended->at(i-1)._bt; 501 if (bt == T_METADATA) { 502 vt++; 503 } else if (bt == T_VOID && 504 prev_bt != T_LONG && 505 prev_bt != T_DOUBLE) { 506 vt--; 507 } 508 } while (vt != 0); 509 } else { 510 total_args_passed++; 511 } 512 } 513 } else { 514 total_args_passed = sig_extended->length(); 515 } 516 return total_args_passed; 517 } 518 519 520 static void gen_c2i_adapter_helper(MacroAssembler* masm, 521 BasicType bt, 522 BasicType prev_bt, 523 size_t size_in_bytes, 524 const VMRegPair& reg_pair, 525 const Address& to, 526 Register tmp1, 527 Register tmp2, 528 Register tmp3, 529 int extraspace, 530 bool is_oop) { 531 if (bt == T_VOID) { 532 assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half"); 533 return; 534 } 535 536 // Say 4 args: 537 // i st_off 538 // 0 32 T_LONG 539 // 1 24 T_VOID 540 // 2 16 T_OBJECT 541 // 3 8 T_BOOL 542 // - 0 return address 543 // 544 // However to make thing extra confusing. Because we can fit a Java long/double in 545 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 546 // leaves one slot empty and only stores to a single slot. In this case the 547 // slot that is occupied is the T_VOID slot. See I said it was confusing. 548 549 bool wide = (size_in_bytes == wordSize); 550 VMReg r_1 = reg_pair.first(); 551 VMReg r_2 = reg_pair.second(); 552 assert(r_2->is_valid() == wide, "invalid size"); 553 if (!r_1->is_valid()) { 554 assert(!r_2->is_valid(), ""); 555 return; 556 } 557 558 if (!r_1->is_FloatRegister()) { 559 Register val = r25; 560 if (r_1->is_stack()) { 561 // memory to memory use r25 (scratch registers is used by store_heap_oop) 562 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 563 __ load_sized_value(val, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 564 } else { 565 val = r_1->as_Register(); 566 } 567 assert_different_registers(to.base(), val, tmp1, tmp2, tmp3); 568 if (is_oop) { 569 __ store_heap_oop(to, val, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 570 } else { 571 __ store_sized_value(to, val, size_in_bytes); 572 } 573 } else { 574 if (wide) { 575 __ strd(r_1->as_FloatRegister(), to); 576 } else { 577 // only a float use just part of the slot 578 __ strs(r_1->as_FloatRegister(), to); 579 } 580 } 581 } 582 583 static void gen_c2i_adapter(MacroAssembler *masm, 584 const GrowableArray<SigEntry>* sig_extended, 585 const VMRegPair *regs, 586 bool requires_clinit_barrier, 587 address& c2i_no_clinit_check_entry, 588 Label& skip_fixup, 589 address start, 590 OopMapSet* oop_maps, 591 int& frame_complete, 592 int& frame_size_in_words, 593 bool alloc_inline_receiver) { 594 if (requires_clinit_barrier && VM_Version::supports_fast_class_init_checks()) { 595 Label L_skip_barrier; 596 597 { // Bypass the barrier for non-static methods 598 __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset())); 599 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 600 __ br(Assembler::EQ, L_skip_barrier); // non-static 601 } 602 603 __ load_method_holder(rscratch2, rmethod); 604 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 605 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 606 607 __ bind(L_skip_barrier); 608 c2i_no_clinit_check_entry = __ pc(); 609 } 610 611 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 612 bs->c2i_entry_barrier(masm); 613 614 // Before we get into the guts of the C2I adapter, see if we should be here 615 // at all. We've come from compiled code and are attempting to jump to the 616 // interpreter, which means the caller made a static call to get here 617 // (vcalls always get a compiled target if there is one). Check for a 618 // compiled target. If there is one, we need to patch the caller's call. 619 patch_callers_callsite(masm); 620 621 __ bind(skip_fixup); 622 623 // TODO 8366717 Is the comment about r13 correct? Isn't that r19_sender_sp? 624 // Name some registers to be used in the following code. We can use 625 // anything except r0-r7 which are arguments in the Java calling 626 // convention, rmethod (r12), and r13 which holds the outgoing sender 627 // SP for the interpreter. 628 // TODO 8366717 We need to make sure that buf_array, buf_oop (and potentially other long-life regs) are kept live in slowpath runtime calls in GC barriers 629 Register buf_array = r10; // Array of buffered inline types 630 Register buf_oop = r11; // Buffered inline type oop 631 Register tmp1 = r15; 632 Register tmp2 = r16; 633 Register tmp3 = r17; 634 635 if (InlineTypePassFieldsAsArgs) { 636 // Is there an inline type argument? 637 bool has_inline_argument = false; 638 for (int i = 0; i < sig_extended->length() && !has_inline_argument; i++) { 639 has_inline_argument = (sig_extended->at(i)._bt == T_METADATA); 640 } 641 if (has_inline_argument) { 642 // There is at least an inline type argument: we're coming from 643 // compiled code so we have no buffers to back the inline types 644 // Allocate the buffers here with a runtime call. 645 // TODO 8366717 Do we need to save vectors here? They could be used as arg registers, right? Same on x64. 646 RegisterSaver reg_save(true /* save_vectors */); 647 OopMap* map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 648 649 frame_complete = __ offset(); 650 address the_pc = __ pc(); 651 652 Label retaddr; 653 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 654 655 __ mov(c_rarg0, rthread); 656 __ mov(c_rarg1, rmethod); 657 __ mov(c_rarg2, (int64_t)alloc_inline_receiver); 658 659 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_inline_types))); 660 __ blr(rscratch1); 661 __ bind(retaddr); 662 663 oop_maps->add_gc_map(__ pc() - start, map); 664 __ reset_last_Java_frame(false); 665 666 reg_save.restore_live_registers(masm); 667 668 Label no_exception; 669 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 670 __ cbz(rscratch1, no_exception); 671 672 __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset())); 673 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 674 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 675 676 __ bind(no_exception); 677 678 // We get an array of objects from the runtime call 679 __ get_vm_result_oop(buf_array, rthread); 680 __ get_vm_result_metadata(rmethod, rthread); // TODO: required to keep the callee Method live? 681 } 682 } 683 684 // Since all args are passed on the stack, total_args_passed * 685 // Interpreter::stackElementSize is the space we need. 686 687 int total_args_passed = compute_total_args_passed_int(sig_extended); 688 int extraspace = total_args_passed * Interpreter::stackElementSize; 689 690 // stack is aligned, keep it that way 691 extraspace = align_up(extraspace, StackAlignmentInBytes); 692 693 // set senderSP value 694 __ mov(r19_sender_sp, sp); 695 696 __ sub(sp, sp, extraspace); 697 698 // Now write the args into the outgoing interpreter space 699 700 // next_arg_comp is the next argument from the compiler point of 701 // view (inline type fields are passed in registers/on the stack). In 702 // sig_extended, an inline type argument starts with: T_METADATA, 703 // followed by the types of the fields of the inline type and T_VOID 704 // to mark the end of the inline type. ignored counts the number of 705 // T_METADATA/T_VOID. next_vt_arg is the next inline type argument: 706 // used to get the buffer for that argument from the pool of buffers 707 // we allocated above and want to pass to the 708 // interpreter. next_arg_int is the next argument from the 709 // interpreter point of view (inline types are passed by reference). 710 for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0; 711 next_arg_comp < sig_extended->length(); next_arg_comp++) { 712 assert(ignored <= next_arg_comp, "shouldn't skip over more slots than there are arguments"); 713 assert(next_arg_int <= total_args_passed, "more arguments for the interpreter than expected?"); 714 BasicType bt = sig_extended->at(next_arg_comp)._bt; 715 int st_off = (total_args_passed - next_arg_int - 1) * Interpreter::stackElementSize; 716 if (!InlineTypePassFieldsAsArgs || bt != T_METADATA) { 717 int next_off = st_off - Interpreter::stackElementSize; 718 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off; 719 const VMRegPair reg_pair = regs[next_arg_comp-ignored]; 720 size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4; 721 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 722 size_in_bytes, reg_pair, Address(sp, offset), tmp1, tmp2, tmp3, extraspace, false); 723 next_arg_int++; 724 #ifdef ASSERT 725 if (bt == T_LONG || bt == T_DOUBLE) { 726 // Overwrite the unused slot with known junk 727 __ mov(rscratch1, CONST64(0xdeadffffdeadaaaa)); 728 __ str(rscratch1, Address(sp, st_off)); 729 } 730 #endif /* ASSERT */ 731 } else { 732 ignored++; 733 // get the buffer from the just allocated pool of buffers 734 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_OBJECT); 735 __ load_heap_oop(buf_oop, Address(buf_array, index), tmp1, tmp2); 736 next_vt_arg++; next_arg_int++; 737 int vt = 1; 738 // write fields we get from compiled code in registers/stack 739 // slots to the buffer: we know we are done with that inline type 740 // argument when we hit the T_VOID that acts as an end of inline 741 // type delimiter for this inline type. Inline types are flattened 742 // so we might encounter embedded inline types. Each entry in 743 // sig_extended contains a field offset in the buffer. 744 Label L_null; 745 do { 746 next_arg_comp++; 747 BasicType bt = sig_extended->at(next_arg_comp)._bt; 748 BasicType prev_bt = sig_extended->at(next_arg_comp - 1)._bt; 749 if (bt == T_METADATA) { 750 vt++; 751 ignored++; 752 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 753 vt--; 754 ignored++; 755 } else { 756 int off = sig_extended->at(next_arg_comp)._offset; 757 if (off == -1) { 758 // Nullable inline type argument, emit null check 759 VMReg reg = regs[next_arg_comp-ignored].first(); 760 Label L_notNull; 761 if (reg->is_stack()) { 762 int ld_off = reg->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 763 __ ldrb(tmp1, Address(sp, ld_off)); 764 __ cbnz(tmp1, L_notNull); 765 } else { 766 __ cbnz(reg->as_Register(), L_notNull); 767 } 768 __ str(zr, Address(sp, st_off)); 769 __ b(L_null); 770 __ bind(L_notNull); 771 continue; 772 } 773 assert(off > 0, "offset in object should be positive"); 774 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 775 bool is_oop = is_reference_type(bt); 776 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 777 size_in_bytes, regs[next_arg_comp-ignored], Address(buf_oop, off), tmp1, tmp2, tmp3, extraspace, is_oop); 778 } 779 } while (vt != 0); 780 // pass the buffer to the interpreter 781 __ str(buf_oop, Address(sp, st_off)); 782 __ bind(L_null); 783 } 784 } 785 786 __ mov(esp, sp); // Interp expects args on caller's expression stack 787 788 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 789 __ br(rscratch1); 790 } 791 792 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, int comp_args_on_stack, const GrowableArray<SigEntry>* sig, const VMRegPair *regs) { 793 794 795 // Note: r19_sender_sp contains the senderSP on entry. We must 796 // preserve it since we may do a i2c -> c2i transition if we lose a 797 // race where compiled code goes non-entrant while we get args 798 // ready. 799 800 // Adapters are frameless. 801 802 // An i2c adapter is frameless because the *caller* frame, which is 803 // interpreted, routinely repairs its own esp (from 804 // interpreter_frame_last_sp), even if a callee has modified the 805 // stack pointer. It also recalculates and aligns sp. 806 807 // A c2i adapter is frameless because the *callee* frame, which is 808 // interpreted, routinely repairs its caller's sp (from sender_sp, 809 // which is set up via the senderSP register). 810 811 // In other words, if *either* the caller or callee is interpreted, we can 812 // get the stack pointer repaired after a call. 813 814 // This is why c2i and i2c adapters cannot be indefinitely composed. 815 // In particular, if a c2i adapter were to somehow call an i2c adapter, 816 // both caller and callee would be compiled methods, and neither would 817 // clean up the stack pointer changes performed by the two adapters. 818 // If this happens, control eventually transfers back to the compiled 819 // caller, but with an uncorrected stack, causing delayed havoc. 820 821 // Cut-out for having no stack args. 822 int comp_words_on_stack = 0; 823 if (comp_args_on_stack) { 824 comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 825 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 826 __ andr(sp, rscratch1, -16); 827 } 828 829 // Will jump to the compiled code just as if compiled code was doing it. 830 // Pre-load the register-jump target early, to schedule it better. 831 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_inline_offset()))); 832 833 #if INCLUDE_JVMCI 834 if (EnableJVMCI) { 835 // check if this call should be routed towards a specific entry point 836 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 837 Label no_alternative_target; 838 __ cbz(rscratch2, no_alternative_target); 839 __ mov(rscratch1, rscratch2); 840 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 841 __ bind(no_alternative_target); 842 } 843 #endif // INCLUDE_JVMCI 844 845 int total_args_passed = sig->length(); 846 847 // Now generate the shuffle code. 848 for (int i = 0; i < total_args_passed; i++) { 849 BasicType bt = sig->at(i)._bt; 850 if (bt == T_VOID) { 851 assert(i > 0 && (sig->at(i - 1)._bt == T_LONG || sig->at(i - 1)._bt == T_DOUBLE), "missing half"); 852 continue; 853 } 854 855 // Pick up 0, 1 or 2 words from SP+offset. 856 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); 857 858 // Load in argument order going down. 859 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 860 // Point to interpreter value (vs. tag) 861 int next_off = ld_off - Interpreter::stackElementSize; 862 // 863 // 864 // 865 VMReg r_1 = regs[i].first(); 866 VMReg r_2 = regs[i].second(); 867 if (!r_1->is_valid()) { 868 assert(!r_2->is_valid(), ""); 869 continue; 870 } 871 if (r_1->is_stack()) { 872 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 873 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 874 if (!r_2->is_valid()) { 875 // sign extend??? 876 __ ldrsw(rscratch2, Address(esp, ld_off)); 877 __ str(rscratch2, Address(sp, st_off)); 878 } else { 879 // 880 // We are using two optoregs. This can be either T_OBJECT, 881 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 882 // two slots but only uses one for thr T_LONG or T_DOUBLE case 883 // So we must adjust where to pick up the data to match the 884 // interpreter. 885 // 886 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 887 // are accessed as negative so LSW is at LOW address 888 889 // ld_off is MSW so get LSW 890 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 891 __ ldr(rscratch2, Address(esp, offset)); 892 // st_off is LSW (i.e. reg.first()) 893 __ str(rscratch2, Address(sp, st_off)); 894 } 895 } else if (r_1->is_Register()) { // Register argument 896 Register r = r_1->as_Register(); 897 if (r_2->is_valid()) { 898 // 899 // We are using two VMRegs. This can be either T_OBJECT, 900 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 901 // two slots but only uses one for thr T_LONG or T_DOUBLE case 902 // So we must adjust where to pick up the data to match the 903 // interpreter. 904 905 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 906 907 // this can be a misaligned move 908 __ ldr(r, Address(esp, offset)); 909 } else { 910 // sign extend and use a full word? 911 __ ldrw(r, Address(esp, ld_off)); 912 } 913 } else { 914 if (!r_2->is_valid()) { 915 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 916 } else { 917 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 918 } 919 } 920 } 921 922 923 __ mov(rscratch2, rscratch1); 924 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 925 __ mov(rscratch1, rscratch2); 926 927 // 6243940 We might end up in handle_wrong_method if 928 // the callee is deoptimized as we race thru here. If that 929 // happens we don't want to take a safepoint because the 930 // caller frame will look interpreted and arguments are now 931 // "compiled" so it is much better to make this transition 932 // invisible to the stack walking code. Unfortunately if 933 // we try and find the callee by normal means a safepoint 934 // is possible. So we stash the desired callee in the thread 935 // and the vm will find there should this case occur. 936 937 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 938 __ br(rscratch1); 939 } 940 941 static void gen_inline_cache_check(MacroAssembler *masm, Label& skip_fixup) { 942 Register data = rscratch2; 943 __ ic_check(1 /* end_alignment */); 944 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 945 946 // Method might have been compiled since the call site was patched to 947 // interpreted; if that is the case treat it as a miss so we can get 948 // the call site corrected. 949 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 950 __ cbz(rscratch1, skip_fixup); 951 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 952 } 953 954 // --------------------------------------------------------------- 955 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler* masm, 956 int comp_args_on_stack, 957 const GrowableArray<SigEntry>* sig, 958 const VMRegPair* regs, 959 const GrowableArray<SigEntry>* sig_cc, 960 const VMRegPair* regs_cc, 961 const GrowableArray<SigEntry>* sig_cc_ro, 962 const VMRegPair* regs_cc_ro, 963 AdapterHandlerEntry* handler, 964 AdapterBlob*& new_adapter, 965 bool allocate_code_blob) { 966 address i2c_entry = __ pc(); 967 gen_i2c_adapter(masm, comp_args_on_stack, sig, regs); 968 969 // ------------------------------------------------------------------------- 970 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 971 // to the interpreter. The args start out packed in the compiled layout. They 972 // need to be unpacked into the interpreter layout. This will almost always 973 // require some stack space. We grow the current (compiled) stack, then repack 974 // the args. We finally end in a jump to the generic interpreter entry point. 975 // On exit from the interpreter, the interpreter will restore our SP (lest the 976 // compiled code, which relies solely on SP and not FP, get sick). 977 978 address c2i_unverified_entry = __ pc(); 979 address c2i_unverified_inline_entry = __ pc(); 980 Label skip_fixup; 981 982 gen_inline_cache_check(masm, skip_fixup); 983 984 OopMapSet* oop_maps = new OopMapSet(); 985 int frame_complete = CodeOffsets::frame_never_safe; 986 int frame_size_in_words = 0; 987 988 // Scalarized c2i adapter with non-scalarized receiver (i.e., don't pack receiver) 989 address c2i_no_clinit_check_entry = nullptr; 990 address c2i_inline_ro_entry = __ pc(); 991 if (regs_cc != regs_cc_ro) { 992 // No class init barrier needed because method is guaranteed to be non-static 993 gen_c2i_adapter(masm, sig_cc_ro, regs_cc_ro, /* requires_clinit_barrier = */ false, c2i_no_clinit_check_entry, 994 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 995 skip_fixup.reset(); 996 } 997 998 // Scalarized c2i adapter 999 address c2i_entry = __ pc(); 1000 address c2i_inline_entry = __ pc(); 1001 gen_c2i_adapter(masm, sig_cc, regs_cc, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1002 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ true); 1003 1004 // Non-scalarized c2i adapter 1005 if (regs != regs_cc) { 1006 c2i_unverified_inline_entry = __ pc(); 1007 Label inline_entry_skip_fixup; 1008 gen_inline_cache_check(masm, inline_entry_skip_fixup); 1009 1010 c2i_inline_entry = __ pc(); 1011 gen_c2i_adapter(masm, sig, regs, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1012 inline_entry_skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 1013 } 1014 1015 // The c2i adapters might safepoint and trigger a GC. The caller must make sure that 1016 // the GC knows about the location of oop argument locations passed to the c2i adapter. 1017 if (allocate_code_blob) { 1018 bool caller_must_gc_arguments = (regs != regs_cc); 1019 int entry_offset[AdapterHandlerEntry::ENTRIES_COUNT]; 1020 assert(AdapterHandlerEntry::ENTRIES_COUNT == 7, "sanity"); 1021 entry_offset[0] = 0; // i2c_entry offset 1022 entry_offset[1] = c2i_entry - i2c_entry; 1023 entry_offset[2] = c2i_inline_entry - i2c_entry; 1024 entry_offset[3] = c2i_inline_ro_entry - i2c_entry; 1025 entry_offset[4] = c2i_unverified_entry - i2c_entry; 1026 entry_offset[5] = c2i_unverified_inline_entry - i2c_entry; 1027 entry_offset[6] = c2i_no_clinit_check_entry - i2c_entry; 1028 new_adapter = AdapterBlob::create(masm->code(), entry_offset, frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments); 1029 } 1030 1031 handler->set_entry_points(i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, 1032 c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 1033 } 1034 1035 static int c_calling_convention_priv(const BasicType *sig_bt, 1036 VMRegPair *regs, 1037 int total_args_passed) { 1038 1039 // We return the amount of VMRegImpl stack slots we need to reserve for all 1040 // the arguments NOT counting out_preserve_stack_slots. 1041 1042 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1043 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 1044 }; 1045 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1046 c_farg0, c_farg1, c_farg2, c_farg3, 1047 c_farg4, c_farg5, c_farg6, c_farg7 1048 }; 1049 1050 uint int_args = 0; 1051 uint fp_args = 0; 1052 uint stk_args = 0; // inc by 2 each time 1053 1054 for (int i = 0; i < total_args_passed; i++) { 1055 switch (sig_bt[i]) { 1056 case T_BOOLEAN: 1057 case T_CHAR: 1058 case T_BYTE: 1059 case T_SHORT: 1060 case T_INT: 1061 if (int_args < Argument::n_int_register_parameters_c) { 1062 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 1063 } else { 1064 #ifdef __APPLE__ 1065 // Less-than word types are stored one after another. 1066 // The code is unable to handle this so bailout. 1067 return -1; 1068 #endif 1069 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1070 stk_args += 2; 1071 } 1072 break; 1073 case T_LONG: 1074 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1075 // fall through 1076 case T_OBJECT: 1077 case T_ARRAY: 1078 case T_ADDRESS: 1079 case T_METADATA: 1080 if (int_args < Argument::n_int_register_parameters_c) { 1081 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 1082 } else { 1083 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1084 stk_args += 2; 1085 } 1086 break; 1087 case T_FLOAT: 1088 if (fp_args < Argument::n_float_register_parameters_c) { 1089 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 1090 } else { 1091 #ifdef __APPLE__ 1092 // Less-than word types are stored one after another. 1093 // The code is unable to handle this so bailout. 1094 return -1; 1095 #endif 1096 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1097 stk_args += 2; 1098 } 1099 break; 1100 case T_DOUBLE: 1101 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1102 if (fp_args < Argument::n_float_register_parameters_c) { 1103 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 1104 } else { 1105 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1106 stk_args += 2; 1107 } 1108 break; 1109 case T_VOID: // Halves of longs and doubles 1110 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1111 regs[i].set_bad(); 1112 break; 1113 default: 1114 ShouldNotReachHere(); 1115 break; 1116 } 1117 } 1118 1119 return stk_args; 1120 } 1121 1122 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1123 uint num_bits, 1124 uint total_args_passed) { 1125 // More than 8 argument inputs are not supported now. 1126 assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported"); 1127 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 1128 1129 static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = { 1130 v0, v1, v2, v3, v4, v5, v6, v7 1131 }; 1132 1133 // On SVE, we use the same vector registers with 128-bit vector registers on NEON. 1134 int next_reg_val = num_bits == 64 ? 1 : 3; 1135 for (uint i = 0; i < total_args_passed; i++) { 1136 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 1137 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 1138 } 1139 return 0; 1140 } 1141 1142 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1143 VMRegPair *regs, 1144 int total_args_passed) 1145 { 1146 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 1147 guarantee(result >= 0, "Unsupported arguments configuration"); 1148 return result; 1149 } 1150 1151 1152 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1153 // We always ignore the frame_slots arg and just use the space just below frame pointer 1154 // which by this time is free to use 1155 switch (ret_type) { 1156 case T_FLOAT: 1157 __ strs(v0, Address(rfp, -wordSize)); 1158 break; 1159 case T_DOUBLE: 1160 __ strd(v0, Address(rfp, -wordSize)); 1161 break; 1162 case T_VOID: break; 1163 default: { 1164 __ str(r0, Address(rfp, -wordSize)); 1165 } 1166 } 1167 } 1168 1169 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1170 // We always ignore the frame_slots arg and just use the space just below frame pointer 1171 // which by this time is free to use 1172 switch (ret_type) { 1173 case T_FLOAT: 1174 __ ldrs(v0, Address(rfp, -wordSize)); 1175 break; 1176 case T_DOUBLE: 1177 __ ldrd(v0, Address(rfp, -wordSize)); 1178 break; 1179 case T_VOID: break; 1180 default: { 1181 __ ldr(r0, Address(rfp, -wordSize)); 1182 } 1183 } 1184 } 1185 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1186 RegSet x; 1187 for ( int i = first_arg ; i < arg_count ; i++ ) { 1188 if (args[i].first()->is_Register()) { 1189 x = x + args[i].first()->as_Register(); 1190 } else if (args[i].first()->is_FloatRegister()) { 1191 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 1192 } 1193 } 1194 __ push(x, sp); 1195 } 1196 1197 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1198 RegSet x; 1199 for ( int i = first_arg ; i < arg_count ; i++ ) { 1200 if (args[i].first()->is_Register()) { 1201 x = x + args[i].first()->as_Register(); 1202 } else { 1203 ; 1204 } 1205 } 1206 __ pop(x, sp); 1207 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1208 if (args[i].first()->is_Register()) { 1209 ; 1210 } else if (args[i].first()->is_FloatRegister()) { 1211 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 1212 } 1213 } 1214 } 1215 1216 static void verify_oop_args(MacroAssembler* masm, 1217 const methodHandle& method, 1218 const BasicType* sig_bt, 1219 const VMRegPair* regs) { 1220 Register temp_reg = r19; // not part of any compiled calling seq 1221 if (VerifyOops) { 1222 for (int i = 0; i < method->size_of_parameters(); i++) { 1223 if (sig_bt[i] == T_OBJECT || 1224 sig_bt[i] == T_ARRAY) { 1225 VMReg r = regs[i].first(); 1226 assert(r->is_valid(), "bad oop arg"); 1227 if (r->is_stack()) { 1228 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1229 __ verify_oop(temp_reg); 1230 } else { 1231 __ verify_oop(r->as_Register()); 1232 } 1233 } 1234 } 1235 } 1236 } 1237 1238 // on exit, sp points to the ContinuationEntry 1239 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 1240 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 1241 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1242 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1243 1244 stack_slots += (int)ContinuationEntry::size()/wordSize; 1245 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 1246 1247 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1248 1249 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1250 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1251 __ mov(rscratch1, sp); // we can't use sp as the source in str 1252 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1253 1254 return map; 1255 } 1256 1257 // on entry c_rarg1 points to the continuation 1258 // sp points to ContinuationEntry 1259 // c_rarg3 -- isVirtualThread 1260 static void fill_continuation_entry(MacroAssembler* masm) { 1261 #ifdef ASSERT 1262 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1263 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1264 #endif 1265 1266 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1267 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1268 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1269 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1270 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1271 1272 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1273 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1274 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1275 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1276 1277 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1278 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1279 } 1280 1281 // on entry, sp points to the ContinuationEntry 1282 // on exit, rfp points to the spilled rfp in the entry frame 1283 static void continuation_enter_cleanup(MacroAssembler* masm) { 1284 #ifndef PRODUCT 1285 Label OK; 1286 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1287 __ cmp(sp, rscratch1); 1288 __ br(Assembler::EQ, OK); 1289 __ stop("incorrect sp1"); 1290 __ bind(OK); 1291 #endif 1292 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1293 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1294 1295 if (CheckJNICalls) { 1296 // Check if this is a virtual thread continuation 1297 Label L_skip_vthread_code; 1298 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1299 __ cbzw(rscratch1, L_skip_vthread_code); 1300 1301 // If the held monitor count is > 0 and this vthread is terminating then 1302 // it failed to release a JNI monitor. So we issue the same log message 1303 // that JavaThread::exit does. 1304 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset())); 1305 __ cbz(rscratch1, L_skip_vthread_code); 1306 1307 // Save return value potentially containing the exception oop in callee-saved R19. 1308 __ mov(r19, r0); 1309 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 1310 // Restore potential return value. 1311 __ mov(r0, r19); 1312 1313 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 1314 // on termination. The held count is implicitly zeroed below when we restore from 1315 // the parent held count (which has to be zero). 1316 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1317 1318 __ bind(L_skip_vthread_code); 1319 } 1320 #ifdef ASSERT 1321 else { 1322 // Check if this is a virtual thread continuation 1323 Label L_skip_vthread_code; 1324 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1325 __ cbzw(rscratch1, L_skip_vthread_code); 1326 1327 // See comment just above. If not checking JNI calls the JNI count is only 1328 // needed for assertion checking. 1329 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1330 1331 __ bind(L_skip_vthread_code); 1332 } 1333 #endif 1334 1335 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1336 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1337 1338 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1339 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1340 __ add(rfp, sp, (int)ContinuationEntry::size()); 1341 } 1342 1343 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1344 // On entry: c_rarg1 -- the continuation object 1345 // c_rarg2 -- isContinue 1346 // c_rarg3 -- isVirtualThread 1347 static void gen_continuation_enter(MacroAssembler* masm, 1348 const methodHandle& method, 1349 const BasicType* sig_bt, 1350 const VMRegPair* regs, 1351 int& exception_offset, 1352 OopMapSet*oop_maps, 1353 int& frame_complete, 1354 int& stack_slots, 1355 int& interpreted_entry_offset, 1356 int& compiled_entry_offset) { 1357 //verify_oop_args(masm, method, sig_bt, regs); 1358 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1359 1360 address start = __ pc(); 1361 1362 Label call_thaw, exit; 1363 1364 // i2i entry used at interp_only_mode only 1365 interpreted_entry_offset = __ pc() - start; 1366 { 1367 1368 #ifdef ASSERT 1369 Label is_interp_only; 1370 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1371 __ cbnzw(rscratch1, is_interp_only); 1372 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1373 __ bind(is_interp_only); 1374 #endif 1375 1376 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1377 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1378 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1379 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1380 __ push_cont_fastpath(rthread); 1381 1382 __ enter(); 1383 stack_slots = 2; // will be adjusted in setup 1384 OopMap* map = continuation_enter_setup(masm, stack_slots); 1385 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1386 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1387 1388 fill_continuation_entry(masm); 1389 1390 __ cbnz(c_rarg2, call_thaw); 1391 1392 const address tr_call = __ trampoline_call(resolve); 1393 if (tr_call == nullptr) { 1394 fatal("CodeCache is full at gen_continuation_enter"); 1395 } 1396 1397 oop_maps->add_gc_map(__ pc() - start, map); 1398 __ post_call_nop(); 1399 1400 __ b(exit); 1401 1402 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1403 if (stub == nullptr) { 1404 fatal("CodeCache is full at gen_continuation_enter"); 1405 } 1406 } 1407 1408 // compiled entry 1409 __ align(CodeEntryAlignment); 1410 compiled_entry_offset = __ pc() - start; 1411 1412 __ enter(); 1413 stack_slots = 2; // will be adjusted in setup 1414 OopMap* map = continuation_enter_setup(masm, stack_slots); 1415 frame_complete = __ pc() - start; 1416 1417 fill_continuation_entry(masm); 1418 1419 __ cbnz(c_rarg2, call_thaw); 1420 1421 const address tr_call = __ trampoline_call(resolve); 1422 if (tr_call == nullptr) { 1423 fatal("CodeCache is full at gen_continuation_enter"); 1424 } 1425 1426 oop_maps->add_gc_map(__ pc() - start, map); 1427 __ post_call_nop(); 1428 1429 __ b(exit); 1430 1431 __ bind(call_thaw); 1432 1433 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start; 1434 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1435 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1436 ContinuationEntry::_return_pc_offset = __ pc() - start; 1437 __ post_call_nop(); 1438 1439 __ bind(exit); 1440 ContinuationEntry::_cleanup_offset = __ pc() - start; 1441 continuation_enter_cleanup(masm); 1442 __ leave(); 1443 __ ret(lr); 1444 1445 /// exception handling 1446 1447 exception_offset = __ pc() - start; 1448 { 1449 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1450 1451 continuation_enter_cleanup(masm); 1452 1453 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1454 __ authenticate_return_address(c_rarg1); 1455 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1456 1457 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1458 1459 __ mov(r1, r0); // the exception handler 1460 __ mov(r0, r19); // restore return value contaning the exception oop 1461 __ verify_oop(r0); 1462 1463 __ leave(); 1464 __ mov(r3, lr); 1465 __ br(r1); // the exception handler 1466 } 1467 1468 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1469 if (stub == nullptr) { 1470 fatal("CodeCache is full at gen_continuation_enter"); 1471 } 1472 } 1473 1474 static void gen_continuation_yield(MacroAssembler* masm, 1475 const methodHandle& method, 1476 const BasicType* sig_bt, 1477 const VMRegPair* regs, 1478 OopMapSet* oop_maps, 1479 int& frame_complete, 1480 int& stack_slots, 1481 int& compiled_entry_offset) { 1482 enum layout { 1483 rfp_off1, 1484 rfp_off2, 1485 lr_off, 1486 lr_off2, 1487 framesize // inclusive of return address 1488 }; 1489 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1490 stack_slots = framesize / VMRegImpl::slots_per_word; 1491 assert(stack_slots == 2, "recheck layout"); 1492 1493 address start = __ pc(); 1494 1495 compiled_entry_offset = __ pc() - start; 1496 __ enter(); 1497 1498 __ mov(c_rarg1, sp); 1499 1500 frame_complete = __ pc() - start; 1501 address the_pc = __ pc(); 1502 1503 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1504 1505 __ mov(c_rarg0, rthread); 1506 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1507 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1508 __ reset_last_Java_frame(true); 1509 1510 Label pinned; 1511 1512 __ cbnz(r0, pinned); 1513 1514 // We've succeeded, set sp to the ContinuationEntry 1515 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1516 __ mov(sp, rscratch1); 1517 continuation_enter_cleanup(masm); 1518 1519 __ bind(pinned); // pinned -- return to caller 1520 1521 // handle pending exception thrown by freeze 1522 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1523 Label ok; 1524 __ cbz(rscratch1, ok); 1525 __ leave(); 1526 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1527 __ br(rscratch1); 1528 __ bind(ok); 1529 1530 __ leave(); 1531 __ ret(lr); 1532 1533 OopMap* map = new OopMap(framesize, 1); 1534 oop_maps->add_gc_map(the_pc - start, map); 1535 } 1536 1537 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) { 1538 ::continuation_enter_cleanup(masm); 1539 } 1540 1541 static void gen_special_dispatch(MacroAssembler* masm, 1542 const methodHandle& method, 1543 const BasicType* sig_bt, 1544 const VMRegPair* regs) { 1545 verify_oop_args(masm, method, sig_bt, regs); 1546 vmIntrinsics::ID iid = method->intrinsic_id(); 1547 1548 // Now write the args into the outgoing interpreter space 1549 bool has_receiver = false; 1550 Register receiver_reg = noreg; 1551 int member_arg_pos = -1; 1552 Register member_reg = noreg; 1553 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1554 if (ref_kind != 0) { 1555 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1556 member_reg = r19; // known to be free at this point 1557 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1558 } else if (iid == vmIntrinsics::_invokeBasic) { 1559 has_receiver = true; 1560 } else if (iid == vmIntrinsics::_linkToNative) { 1561 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1562 member_reg = r19; // known to be free at this point 1563 } else { 1564 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1565 } 1566 1567 if (member_reg != noreg) { 1568 // Load the member_arg into register, if necessary. 1569 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1570 VMReg r = regs[member_arg_pos].first(); 1571 if (r->is_stack()) { 1572 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1573 } else { 1574 // no data motion is needed 1575 member_reg = r->as_Register(); 1576 } 1577 } 1578 1579 if (has_receiver) { 1580 // Make sure the receiver is loaded into a register. 1581 assert(method->size_of_parameters() > 0, "oob"); 1582 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1583 VMReg r = regs[0].first(); 1584 assert(r->is_valid(), "bad receiver arg"); 1585 if (r->is_stack()) { 1586 // Porting note: This assumes that compiled calling conventions always 1587 // pass the receiver oop in a register. If this is not true on some 1588 // platform, pick a temp and load the receiver from stack. 1589 fatal("receiver always in a register"); 1590 receiver_reg = r2; // known to be free at this point 1591 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1592 } else { 1593 // no data motion is needed 1594 receiver_reg = r->as_Register(); 1595 } 1596 } 1597 1598 // Figure out which address we are really jumping to: 1599 MethodHandles::generate_method_handle_dispatch(masm, iid, 1600 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1601 } 1602 1603 // --------------------------------------------------------------------------- 1604 // Generate a native wrapper for a given method. The method takes arguments 1605 // in the Java compiled code convention, marshals them to the native 1606 // convention (handlizes oops, etc), transitions to native, makes the call, 1607 // returns to java state (possibly blocking), unhandlizes any result and 1608 // returns. 1609 // 1610 // Critical native functions are a shorthand for the use of 1611 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1612 // functions. The wrapper is expected to unpack the arguments before 1613 // passing them to the callee. Critical native functions leave the state _in_Java, 1614 // since they block out GC. 1615 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1616 // block and the check for pending exceptions it's impossible for them 1617 // to be thrown. 1618 // 1619 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1620 const methodHandle& method, 1621 int compile_id, 1622 BasicType* in_sig_bt, 1623 VMRegPair* in_regs, 1624 BasicType ret_type) { 1625 if (method->is_continuation_native_intrinsic()) { 1626 int exception_offset = -1; 1627 OopMapSet* oop_maps = new OopMapSet(); 1628 int frame_complete = -1; 1629 int stack_slots = -1; 1630 int interpreted_entry_offset = -1; 1631 int vep_offset = -1; 1632 if (method->is_continuation_enter_intrinsic()) { 1633 gen_continuation_enter(masm, 1634 method, 1635 in_sig_bt, 1636 in_regs, 1637 exception_offset, 1638 oop_maps, 1639 frame_complete, 1640 stack_slots, 1641 interpreted_entry_offset, 1642 vep_offset); 1643 } else if (method->is_continuation_yield_intrinsic()) { 1644 gen_continuation_yield(masm, 1645 method, 1646 in_sig_bt, 1647 in_regs, 1648 oop_maps, 1649 frame_complete, 1650 stack_slots, 1651 vep_offset); 1652 } else { 1653 guarantee(false, "Unknown Continuation native intrinsic"); 1654 } 1655 1656 #ifdef ASSERT 1657 if (method->is_continuation_enter_intrinsic()) { 1658 assert(interpreted_entry_offset != -1, "Must be set"); 1659 assert(exception_offset != -1, "Must be set"); 1660 } else { 1661 assert(interpreted_entry_offset == -1, "Must be unset"); 1662 assert(exception_offset == -1, "Must be unset"); 1663 } 1664 assert(frame_complete != -1, "Must be set"); 1665 assert(stack_slots != -1, "Must be set"); 1666 assert(vep_offset != -1, "Must be set"); 1667 #endif 1668 1669 __ flush(); 1670 nmethod* nm = nmethod::new_native_nmethod(method, 1671 compile_id, 1672 masm->code(), 1673 vep_offset, 1674 frame_complete, 1675 stack_slots, 1676 in_ByteSize(-1), 1677 in_ByteSize(-1), 1678 oop_maps, 1679 exception_offset); 1680 if (nm == nullptr) return nm; 1681 if (method->is_continuation_enter_intrinsic()) { 1682 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1683 } else if (method->is_continuation_yield_intrinsic()) { 1684 _cont_doYield_stub = nm; 1685 } else { 1686 guarantee(false, "Unknown Continuation native intrinsic"); 1687 } 1688 return nm; 1689 } 1690 1691 if (method->is_method_handle_intrinsic()) { 1692 vmIntrinsics::ID iid = method->intrinsic_id(); 1693 intptr_t start = (intptr_t)__ pc(); 1694 int vep_offset = ((intptr_t)__ pc()) - start; 1695 1696 // First instruction must be a nop as it may need to be patched on deoptimisation 1697 __ nop(); 1698 gen_special_dispatch(masm, 1699 method, 1700 in_sig_bt, 1701 in_regs); 1702 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1703 __ flush(); 1704 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1705 return nmethod::new_native_nmethod(method, 1706 compile_id, 1707 masm->code(), 1708 vep_offset, 1709 frame_complete, 1710 stack_slots / VMRegImpl::slots_per_word, 1711 in_ByteSize(-1), 1712 in_ByteSize(-1), 1713 nullptr); 1714 } 1715 address native_func = method->native_function(); 1716 assert(native_func != nullptr, "must have function"); 1717 1718 // An OopMap for lock (and class if static) 1719 OopMapSet *oop_maps = new OopMapSet(); 1720 intptr_t start = (intptr_t)__ pc(); 1721 1722 // We have received a description of where all the java arg are located 1723 // on entry to the wrapper. We need to convert these args to where 1724 // the jni function will expect them. To figure out where they go 1725 // we convert the java signature to a C signature by inserting 1726 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1727 1728 const int total_in_args = method->size_of_parameters(); 1729 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1730 1731 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1732 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1733 1734 int argc = 0; 1735 out_sig_bt[argc++] = T_ADDRESS; 1736 if (method->is_static()) { 1737 out_sig_bt[argc++] = T_OBJECT; 1738 } 1739 1740 for (int i = 0; i < total_in_args ; i++ ) { 1741 out_sig_bt[argc++] = in_sig_bt[i]; 1742 } 1743 1744 // Now figure out where the args must be stored and how much stack space 1745 // they require. 1746 int out_arg_slots; 1747 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1748 1749 if (out_arg_slots < 0) { 1750 return nullptr; 1751 } 1752 1753 // Compute framesize for the wrapper. We need to handlize all oops in 1754 // incoming registers 1755 1756 // Calculate the total number of stack slots we will need. 1757 1758 // First count the abi requirement plus all of the outgoing args 1759 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1760 1761 // Now the space for the inbound oop handle area 1762 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1763 1764 int oop_handle_offset = stack_slots; 1765 stack_slots += total_save_slots; 1766 1767 // Now any space we need for handlizing a klass if static method 1768 1769 int klass_slot_offset = 0; 1770 int klass_offset = -1; 1771 int lock_slot_offset = 0; 1772 bool is_static = false; 1773 1774 if (method->is_static()) { 1775 klass_slot_offset = stack_slots; 1776 stack_slots += VMRegImpl::slots_per_word; 1777 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1778 is_static = true; 1779 } 1780 1781 // Plus a lock if needed 1782 1783 if (method->is_synchronized()) { 1784 lock_slot_offset = stack_slots; 1785 stack_slots += VMRegImpl::slots_per_word; 1786 } 1787 1788 // Now a place (+2) to save return values or temp during shuffling 1789 // + 4 for return address (which we own) and saved rfp 1790 stack_slots += 6; 1791 1792 // Ok The space we have allocated will look like: 1793 // 1794 // 1795 // FP-> | | 1796 // |---------------------| 1797 // | 2 slots for moves | 1798 // |---------------------| 1799 // | lock box (if sync) | 1800 // |---------------------| <- lock_slot_offset 1801 // | klass (if static) | 1802 // |---------------------| <- klass_slot_offset 1803 // | oopHandle area | 1804 // |---------------------| <- oop_handle_offset (8 java arg registers) 1805 // | outbound memory | 1806 // | based arguments | 1807 // | | 1808 // |---------------------| 1809 // | | 1810 // SP-> | out_preserved_slots | 1811 // 1812 // 1813 1814 1815 // Now compute actual number of stack words we need rounding to make 1816 // stack properly aligned. 1817 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1818 1819 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1820 1821 // First thing make an ic check to see if we should even be here 1822 1823 // We are free to use all registers as temps without saving them and 1824 // restoring them except rfp. rfp is the only callee save register 1825 // as far as the interpreter and the compiler(s) are concerned. 1826 1827 const Register receiver = j_rarg0; 1828 1829 Label exception_pending; 1830 1831 assert_different_registers(receiver, rscratch1); 1832 __ verify_oop(receiver); 1833 __ ic_check(8 /* end_alignment */); 1834 1835 // Verified entry point must be aligned 1836 int vep_offset = ((intptr_t)__ pc()) - start; 1837 1838 // If we have to make this method not-entrant we'll overwrite its 1839 // first instruction with a jump. For this action to be legal we 1840 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1841 // SVC, HVC, or SMC. Make it a NOP. 1842 __ nop(); 1843 1844 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1845 Label L_skip_barrier; 1846 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1847 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1848 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1849 1850 __ bind(L_skip_barrier); 1851 } 1852 1853 // Generate stack overflow check 1854 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1855 1856 // Generate a new frame for the wrapper. 1857 __ enter(); 1858 // -2 because return address is already present and so is saved rfp 1859 __ sub(sp, sp, stack_size - 2*wordSize); 1860 1861 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1862 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1863 1864 // Frame is now completed as far as size and linkage. 1865 int frame_complete = ((intptr_t)__ pc()) - start; 1866 1867 // We use r20 as the oop handle for the receiver/klass 1868 // It is callee save so it survives the call to native 1869 1870 const Register oop_handle_reg = r20; 1871 1872 // 1873 // We immediately shuffle the arguments so that any vm call we have to 1874 // make from here on out (sync slow path, jvmti, etc.) we will have 1875 // captured the oops from our caller and have a valid oopMap for 1876 // them. 1877 1878 // ----------------- 1879 // The Grand Shuffle 1880 1881 // The Java calling convention is either equal (linux) or denser (win64) than the 1882 // c calling convention. However the because of the jni_env argument the c calling 1883 // convention always has at least one more (and two for static) arguments than Java. 1884 // Therefore if we move the args from java -> c backwards then we will never have 1885 // a register->register conflict and we don't have to build a dependency graph 1886 // and figure out how to break any cycles. 1887 // 1888 1889 // Record esp-based slot for receiver on stack for non-static methods 1890 int receiver_offset = -1; 1891 1892 // This is a trick. We double the stack slots so we can claim 1893 // the oops in the caller's frame. Since we are sure to have 1894 // more args than the caller doubling is enough to make 1895 // sure we can capture all the incoming oop args from the 1896 // caller. 1897 // 1898 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1899 1900 // Mark location of rfp (someday) 1901 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1902 1903 1904 int float_args = 0; 1905 int int_args = 0; 1906 1907 #ifdef ASSERT 1908 bool reg_destroyed[Register::number_of_registers]; 1909 bool freg_destroyed[FloatRegister::number_of_registers]; 1910 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1911 reg_destroyed[r] = false; 1912 } 1913 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1914 freg_destroyed[f] = false; 1915 } 1916 1917 #endif /* ASSERT */ 1918 1919 // For JNI natives the incoming and outgoing registers are offset upwards. 1920 GrowableArray<int> arg_order(2 * total_in_args); 1921 1922 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1923 arg_order.push(i); 1924 arg_order.push(c_arg); 1925 } 1926 1927 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1928 int i = arg_order.at(ai); 1929 int c_arg = arg_order.at(ai + 1); 1930 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1931 assert(c_arg != -1 && i != -1, "wrong order"); 1932 #ifdef ASSERT 1933 if (in_regs[i].first()->is_Register()) { 1934 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1935 } else if (in_regs[i].first()->is_FloatRegister()) { 1936 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1937 } 1938 if (out_regs[c_arg].first()->is_Register()) { 1939 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1940 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1941 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1942 } 1943 #endif /* ASSERT */ 1944 switch (in_sig_bt[i]) { 1945 case T_ARRAY: 1946 case T_OBJECT: 1947 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1948 ((i == 0) && (!is_static)), 1949 &receiver_offset); 1950 int_args++; 1951 break; 1952 case T_VOID: 1953 break; 1954 1955 case T_FLOAT: 1956 __ float_move(in_regs[i], out_regs[c_arg]); 1957 float_args++; 1958 break; 1959 1960 case T_DOUBLE: 1961 assert( i + 1 < total_in_args && 1962 in_sig_bt[i + 1] == T_VOID && 1963 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1964 __ double_move(in_regs[i], out_regs[c_arg]); 1965 float_args++; 1966 break; 1967 1968 case T_LONG : 1969 __ long_move(in_regs[i], out_regs[c_arg]); 1970 int_args++; 1971 break; 1972 1973 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1974 1975 default: 1976 __ move32_64(in_regs[i], out_regs[c_arg]); 1977 int_args++; 1978 } 1979 } 1980 1981 // point c_arg at the first arg that is already loaded in case we 1982 // need to spill before we call out 1983 int c_arg = total_c_args - total_in_args; 1984 1985 // Pre-load a static method's oop into c_rarg1. 1986 if (method->is_static()) { 1987 1988 // load oop into a register 1989 __ movoop(c_rarg1, 1990 JNIHandles::make_local(method->method_holder()->java_mirror())); 1991 1992 // Now handlize the static class mirror it's known not-null. 1993 __ str(c_rarg1, Address(sp, klass_offset)); 1994 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1995 1996 // Now get the handle 1997 __ lea(c_rarg1, Address(sp, klass_offset)); 1998 // and protect the arg if we must spill 1999 c_arg--; 2000 } 2001 2002 // Change state to native (we save the return address in the thread, since it might not 2003 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 2004 // points into the right code segment. It does not have to be the correct return pc. 2005 // We use the same pc/oopMap repeatedly when we call out. 2006 2007 Label native_return; 2008 if (method->is_object_wait0()) { 2009 // For convenience we use the pc we want to resume to in case of preemption on Object.wait. 2010 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 2011 } else { 2012 intptr_t the_pc = (intptr_t) __ pc(); 2013 oop_maps->add_gc_map(the_pc - start, map); 2014 2015 __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1); 2016 } 2017 2018 Label dtrace_method_entry, dtrace_method_entry_done; 2019 if (DTraceMethodProbes) { 2020 __ b(dtrace_method_entry); 2021 __ bind(dtrace_method_entry_done); 2022 } 2023 2024 // RedefineClasses() tracing support for obsolete method entry 2025 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2026 // protect the args we've loaded 2027 save_args(masm, total_c_args, c_arg, out_regs); 2028 __ mov_metadata(c_rarg1, method()); 2029 __ call_VM_leaf( 2030 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2031 rthread, c_rarg1); 2032 restore_args(masm, total_c_args, c_arg, out_regs); 2033 } 2034 2035 // Lock a synchronized method 2036 2037 // Register definitions used by locking and unlocking 2038 2039 const Register swap_reg = r0; 2040 const Register obj_reg = r19; // Will contain the oop 2041 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 2042 const Register old_hdr = r13; // value of old header at unlock time 2043 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 2044 const Register tmp = lr; 2045 2046 Label slow_path_lock; 2047 Label lock_done; 2048 2049 if (method->is_synchronized()) { 2050 Label count; 2051 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2052 2053 // Get the handle (the 2nd argument) 2054 __ mov(oop_handle_reg, c_rarg1); 2055 2056 // Get address of the box 2057 2058 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2059 2060 // Load the oop from the handle 2061 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2062 2063 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 2064 2065 // Slow path will re-enter here 2066 __ bind(lock_done); 2067 } 2068 2069 2070 // Finally just about ready to make the JNI call 2071 2072 // get JNIEnv* which is first argument to native 2073 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 2074 2075 // Now set thread in native 2076 __ mov(rscratch1, _thread_in_native); 2077 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2078 __ stlrw(rscratch1, rscratch2); 2079 2080 __ rt_call(native_func); 2081 2082 // Verify or restore cpu control state after JNI call 2083 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 2084 2085 // Unpack native results. 2086 switch (ret_type) { 2087 case T_BOOLEAN: __ c2bool(r0); break; 2088 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 2089 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 2090 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 2091 case T_INT : __ sbfx(r0, r0, 0, 32); break; 2092 case T_DOUBLE : 2093 case T_FLOAT : 2094 // Result is in v0 we'll save as needed 2095 break; 2096 case T_ARRAY: // Really a handle 2097 case T_OBJECT: // Really a handle 2098 break; // can't de-handlize until after safepoint check 2099 case T_VOID: break; 2100 case T_LONG: break; 2101 default : ShouldNotReachHere(); 2102 } 2103 2104 Label safepoint_in_progress, safepoint_in_progress_done; 2105 2106 // Switch thread to "native transition" state before reading the synchronization state. 2107 // This additional state is necessary because reading and testing the synchronization 2108 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2109 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2110 // VM thread changes sync state to synchronizing and suspends threads for GC. 2111 // Thread A is resumed to finish this native method, but doesn't block here since it 2112 // didn't see any synchronization is progress, and escapes. 2113 __ mov(rscratch1, _thread_in_native_trans); 2114 2115 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 2116 2117 // Force this write out before the read below 2118 if (!UseSystemMemoryBarrier) { 2119 __ dmb(Assembler::ISH); 2120 } 2121 2122 __ verify_sve_vector_length(); 2123 2124 // Check for safepoint operation in progress and/or pending suspend requests. 2125 { 2126 // No need for acquire as Java threads always disarm themselves. 2127 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* in_nmethod */); 2128 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 2129 __ cbnzw(rscratch1, safepoint_in_progress); 2130 __ bind(safepoint_in_progress_done); 2131 } 2132 2133 // change thread state 2134 __ mov(rscratch1, _thread_in_Java); 2135 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2136 __ stlrw(rscratch1, rscratch2); 2137 2138 if (method->is_object_wait0()) { 2139 // Check preemption for Object.wait() 2140 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 2141 __ cbz(rscratch1, native_return); 2142 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 2143 __ br(rscratch1); 2144 __ bind(native_return); 2145 2146 intptr_t the_pc = (intptr_t) __ pc(); 2147 oop_maps->add_gc_map(the_pc - start, map); 2148 } 2149 2150 Label reguard; 2151 Label reguard_done; 2152 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 2153 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 2154 __ br(Assembler::EQ, reguard); 2155 __ bind(reguard_done); 2156 2157 // native result if any is live 2158 2159 // Unlock 2160 Label unlock_done; 2161 Label slow_path_unlock; 2162 if (method->is_synchronized()) { 2163 2164 // Get locked oop from the handle we passed to jni 2165 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2166 2167 // Must save r0 if if it is live now because cmpxchg must use it 2168 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2169 save_native_result(masm, ret_type, stack_slots); 2170 } 2171 2172 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 2173 2174 // slow path re-enters here 2175 __ bind(unlock_done); 2176 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2177 restore_native_result(masm, ret_type, stack_slots); 2178 } 2179 } 2180 2181 Label dtrace_method_exit, dtrace_method_exit_done; 2182 if (DTraceMethodProbes) { 2183 __ b(dtrace_method_exit); 2184 __ bind(dtrace_method_exit_done); 2185 } 2186 2187 __ reset_last_Java_frame(false); 2188 2189 // Unbox oop result, e.g. JNIHandles::resolve result. 2190 if (is_reference_type(ret_type)) { 2191 __ resolve_jobject(r0, r1, r2); 2192 } 2193 2194 if (CheckJNICalls) { 2195 // clear_pending_jni_exception_check 2196 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 2197 } 2198 2199 // reset handle block 2200 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 2201 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 2202 2203 __ leave(); 2204 2205 #if INCLUDE_JFR 2206 // We need to do a poll test after unwind in case the sampler 2207 // managed to sample the native frame after returning to Java. 2208 Label L_return; 2209 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 2210 address poll_test_pc = __ pc(); 2211 __ relocate(relocInfo::poll_return_type); 2212 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), L_return); 2213 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 2214 "polling page return stub not created yet"); 2215 address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 2216 __ adr(rscratch1, InternalAddress(poll_test_pc)); 2217 __ str(rscratch1, Address(rthread, JavaThread::saved_exception_pc_offset())); 2218 __ far_jump(RuntimeAddress(stub)); 2219 __ bind(L_return); 2220 #endif // INCLUDE_JFR 2221 2222 // Any exception pending? 2223 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2224 __ cbnz(rscratch1, exception_pending); 2225 2226 // We're done 2227 __ ret(lr); 2228 2229 // Unexpected paths are out of line and go here 2230 2231 // forward the exception 2232 __ bind(exception_pending); 2233 2234 // and forward the exception 2235 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2236 2237 // Slow path locking & unlocking 2238 if (method->is_synchronized()) { 2239 2240 __ block_comment("Slow path lock {"); 2241 __ bind(slow_path_lock); 2242 2243 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2244 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2245 2246 // protect the args we've loaded 2247 save_args(masm, total_c_args, c_arg, out_regs); 2248 2249 __ mov(c_rarg0, obj_reg); 2250 __ mov(c_rarg1, lock_reg); 2251 __ mov(c_rarg2, rthread); 2252 2253 // Not a leaf but we have last_Java_frame setup as we want. 2254 // We don't want to unmount in case of contention since that would complicate preserving 2255 // the arguments that had already been marshalled into the native convention. So we force 2256 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame()) 2257 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack. 2258 __ push_cont_fastpath(); 2259 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2260 __ pop_cont_fastpath(); 2261 restore_args(masm, total_c_args, c_arg, out_regs); 2262 2263 #ifdef ASSERT 2264 { Label L; 2265 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2266 __ cbz(rscratch1, L); 2267 __ stop("no pending exception allowed on exit from monitorenter"); 2268 __ bind(L); 2269 } 2270 #endif 2271 __ b(lock_done); 2272 2273 __ block_comment("} Slow path lock"); 2274 2275 __ block_comment("Slow path unlock {"); 2276 __ bind(slow_path_unlock); 2277 2278 // If we haven't already saved the native result we must save it now as xmm registers 2279 // are still exposed. 2280 2281 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2282 save_native_result(masm, ret_type, stack_slots); 2283 } 2284 2285 __ mov(c_rarg2, rthread); 2286 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2287 __ mov(c_rarg0, obj_reg); 2288 2289 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2290 // NOTE that obj_reg == r19 currently 2291 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2292 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2293 2294 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2295 2296 #ifdef ASSERT 2297 { 2298 Label L; 2299 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2300 __ cbz(rscratch1, L); 2301 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2302 __ bind(L); 2303 } 2304 #endif /* ASSERT */ 2305 2306 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2307 2308 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2309 restore_native_result(masm, ret_type, stack_slots); 2310 } 2311 __ b(unlock_done); 2312 2313 __ block_comment("} Slow path unlock"); 2314 2315 } // synchronized 2316 2317 // SLOW PATH Reguard the stack if needed 2318 2319 __ bind(reguard); 2320 save_native_result(masm, ret_type, stack_slots); 2321 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2322 restore_native_result(masm, ret_type, stack_slots); 2323 // and continue 2324 __ b(reguard_done); 2325 2326 // SLOW PATH safepoint 2327 { 2328 __ block_comment("safepoint {"); 2329 __ bind(safepoint_in_progress); 2330 2331 // Don't use call_VM as it will see a possible pending exception and forward it 2332 // and never return here preventing us from clearing _last_native_pc down below. 2333 // 2334 save_native_result(masm, ret_type, stack_slots); 2335 __ mov(c_rarg0, rthread); 2336 #ifndef PRODUCT 2337 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2338 #endif 2339 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2340 __ blr(rscratch1); 2341 2342 // Restore any method result value 2343 restore_native_result(masm, ret_type, stack_slots); 2344 2345 __ b(safepoint_in_progress_done); 2346 __ block_comment("} safepoint"); 2347 } 2348 2349 // SLOW PATH dtrace support 2350 if (DTraceMethodProbes) { 2351 { 2352 __ block_comment("dtrace entry {"); 2353 __ bind(dtrace_method_entry); 2354 2355 // We have all of the arguments setup at this point. We must not touch any register 2356 // argument registers at this point (what if we save/restore them there are no oop? 2357 2358 save_args(masm, total_c_args, c_arg, out_regs); 2359 __ mov_metadata(c_rarg1, method()); 2360 __ call_VM_leaf( 2361 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2362 rthread, c_rarg1); 2363 restore_args(masm, total_c_args, c_arg, out_regs); 2364 __ b(dtrace_method_entry_done); 2365 __ block_comment("} dtrace entry"); 2366 } 2367 2368 { 2369 __ block_comment("dtrace exit {"); 2370 __ bind(dtrace_method_exit); 2371 save_native_result(masm, ret_type, stack_slots); 2372 __ mov_metadata(c_rarg1, method()); 2373 __ call_VM_leaf( 2374 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2375 rthread, c_rarg1); 2376 restore_native_result(masm, ret_type, stack_slots); 2377 __ b(dtrace_method_exit_done); 2378 __ block_comment("} dtrace exit"); 2379 } 2380 } 2381 2382 __ flush(); 2383 2384 nmethod *nm = nmethod::new_native_nmethod(method, 2385 compile_id, 2386 masm->code(), 2387 vep_offset, 2388 frame_complete, 2389 stack_slots / VMRegImpl::slots_per_word, 2390 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2391 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2392 oop_maps); 2393 2394 return nm; 2395 } 2396 2397 // this function returns the adjust size (in number of words) to a c2i adapter 2398 // activation for use during deoptimization 2399 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2400 assert(callee_locals >= callee_parameters, 2401 "test and remove; got more parms than locals"); 2402 if (callee_locals < callee_parameters) 2403 return 0; // No adjustment for negative locals 2404 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2405 // diff is counted in stack words 2406 return align_up(diff, 2); 2407 } 2408 2409 2410 //------------------------------generate_deopt_blob---------------------------- 2411 void SharedRuntime::generate_deopt_blob() { 2412 // Allocate space for the code 2413 ResourceMark rm; 2414 // Setup code generation tools 2415 int pad = 0; 2416 #if INCLUDE_JVMCI 2417 if (EnableJVMCI) { 2418 pad += 512; // Increase the buffer size when compiling for JVMCI 2419 } 2420 #endif 2421 const char* name = SharedRuntime::stub_name(StubId::shared_deopt_id); 2422 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, BlobId::shared_deopt_id); 2423 if (blob != nullptr) { 2424 _deopt_blob = blob->as_deoptimization_blob(); 2425 return; 2426 } 2427 2428 CodeBuffer buffer(name, 2048+pad, 1024); 2429 MacroAssembler* masm = new MacroAssembler(&buffer); 2430 int frame_size_in_words; 2431 OopMap* map = nullptr; 2432 OopMapSet *oop_maps = new OopMapSet(); 2433 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2434 2435 // ------------- 2436 // This code enters when returning to a de-optimized nmethod. A return 2437 // address has been pushed on the stack, and return values are in 2438 // registers. 2439 // If we are doing a normal deopt then we were called from the patched 2440 // nmethod from the point we returned to the nmethod. So the return 2441 // address on the stack is wrong by NativeCall::instruction_size 2442 // We will adjust the value so it looks like we have the original return 2443 // address on the stack (like when we eagerly deoptimized). 2444 // In the case of an exception pending when deoptimizing, we enter 2445 // with a return address on the stack that points after the call we patched 2446 // into the exception handler. We have the following register state from, 2447 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2448 // r0: exception oop 2449 // r19: exception handler 2450 // r3: throwing pc 2451 // So in this case we simply jam r3 into the useless return address and 2452 // the stack looks just like we want. 2453 // 2454 // At this point we need to de-opt. We save the argument return 2455 // registers. We call the first C routine, fetch_unroll_info(). This 2456 // routine captures the return values and returns a structure which 2457 // describes the current frame size and the sizes of all replacement frames. 2458 // The current frame is compiled code and may contain many inlined 2459 // functions, each with their own JVM state. We pop the current frame, then 2460 // push all the new frames. Then we call the C routine unpack_frames() to 2461 // populate these frames. Finally unpack_frames() returns us the new target 2462 // address. Notice that callee-save registers are BLOWN here; they have 2463 // already been captured in the vframeArray at the time the return PC was 2464 // patched. 2465 address start = __ pc(); 2466 Label cont; 2467 2468 // Prolog for non exception case! 2469 2470 // Save everything in sight. 2471 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2472 2473 // Normal deoptimization. Save exec mode for unpack_frames. 2474 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2475 __ b(cont); 2476 2477 int reexecute_offset = __ pc() - start; 2478 #if INCLUDE_JVMCI && !defined(COMPILER1) 2479 if (UseJVMCICompiler) { 2480 // JVMCI does not use this kind of deoptimization 2481 __ should_not_reach_here(); 2482 } 2483 #endif 2484 2485 // Reexecute case 2486 // return address is the pc describes what bci to do re-execute at 2487 2488 // No need to update map as each call to save_live_registers will produce identical oopmap 2489 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2490 2491 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2492 __ b(cont); 2493 2494 #if INCLUDE_JVMCI 2495 Label after_fetch_unroll_info_call; 2496 int implicit_exception_uncommon_trap_offset = 0; 2497 int uncommon_trap_offset = 0; 2498 2499 if (EnableJVMCI) { 2500 implicit_exception_uncommon_trap_offset = __ pc() - start; 2501 2502 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2503 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2504 2505 uncommon_trap_offset = __ pc() - start; 2506 2507 // Save everything in sight. 2508 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2509 // fetch_unroll_info needs to call last_java_frame() 2510 Label retaddr; 2511 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2512 2513 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2514 __ movw(rscratch1, -1); 2515 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2516 2517 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2518 __ mov(c_rarg0, rthread); 2519 __ movw(c_rarg2, rcpool); // exec mode 2520 __ lea(rscratch1, 2521 RuntimeAddress(CAST_FROM_FN_PTR(address, 2522 Deoptimization::uncommon_trap))); 2523 __ blr(rscratch1); 2524 __ bind(retaddr); 2525 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2526 2527 __ reset_last_Java_frame(false); 2528 2529 __ b(after_fetch_unroll_info_call); 2530 } // EnableJVMCI 2531 #endif // INCLUDE_JVMCI 2532 2533 int exception_offset = __ pc() - start; 2534 2535 // Prolog for exception case 2536 2537 // all registers are dead at this entry point, except for r0, and 2538 // r3 which contain the exception oop and exception pc 2539 // respectively. Set them in TLS and fall thru to the 2540 // unpack_with_exception_in_tls entry point. 2541 2542 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2543 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2544 2545 int exception_in_tls_offset = __ pc() - start; 2546 2547 // new implementation because exception oop is now passed in JavaThread 2548 2549 // Prolog for exception case 2550 // All registers must be preserved because they might be used by LinearScan 2551 // Exceptiop oop and throwing PC are passed in JavaThread 2552 // tos: stack at point of call to method that threw the exception (i.e. only 2553 // args are on the stack, no return address) 2554 2555 // The return address pushed by save_live_registers will be patched 2556 // later with the throwing pc. The correct value is not available 2557 // now because loading it from memory would destroy registers. 2558 2559 // NB: The SP at this point must be the SP of the method that is 2560 // being deoptimized. Deoptimization assumes that the frame created 2561 // here by save_live_registers is immediately below the method's SP. 2562 // This is a somewhat fragile mechanism. 2563 2564 // Save everything in sight. 2565 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2566 2567 // Now it is safe to overwrite any register 2568 2569 // Deopt during an exception. Save exec mode for unpack_frames. 2570 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2571 2572 // load throwing pc from JavaThread and patch it as the return address 2573 // of the current frame. Then clear the field in JavaThread 2574 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2575 __ protect_return_address(r3); 2576 __ str(r3, Address(rfp, wordSize)); 2577 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2578 2579 #ifdef ASSERT 2580 // verify that there is really an exception oop in JavaThread 2581 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2582 __ verify_oop(r0); 2583 2584 // verify that there is no pending exception 2585 Label no_pending_exception; 2586 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2587 __ cbz(rscratch1, no_pending_exception); 2588 __ stop("must not have pending exception here"); 2589 __ bind(no_pending_exception); 2590 #endif 2591 2592 __ bind(cont); 2593 2594 // Call C code. Need thread and this frame, but NOT official VM entry 2595 // crud. We cannot block on this call, no GC can happen. 2596 // 2597 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2598 2599 // fetch_unroll_info needs to call last_java_frame(). 2600 2601 Label retaddr; 2602 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2603 #ifdef ASSERT 2604 { Label L; 2605 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2606 __ cbz(rscratch1, L); 2607 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2608 __ bind(L); 2609 } 2610 #endif // ASSERT 2611 __ mov(c_rarg0, rthread); 2612 __ mov(c_rarg1, rcpool); 2613 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2614 __ blr(rscratch1); 2615 __ bind(retaddr); 2616 2617 // Need to have an oopmap that tells fetch_unroll_info where to 2618 // find any register it might need. 2619 oop_maps->add_gc_map(__ pc() - start, map); 2620 2621 __ reset_last_Java_frame(false); 2622 2623 #if INCLUDE_JVMCI 2624 if (EnableJVMCI) { 2625 __ bind(after_fetch_unroll_info_call); 2626 } 2627 #endif 2628 2629 // Load UnrollBlock* into r5 2630 __ mov(r5, r0); 2631 2632 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2633 Label noException; 2634 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2635 __ br(Assembler::NE, noException); 2636 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2637 // QQQ this is useless it was null above 2638 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2639 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2640 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2641 2642 __ verify_oop(r0); 2643 2644 // Overwrite the result registers with the exception results. 2645 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2646 // I think this is useless 2647 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2648 2649 __ bind(noException); 2650 2651 // Only register save data is on the stack. 2652 // Now restore the result registers. Everything else is either dead 2653 // or captured in the vframeArray. 2654 2655 // Restore fp result register 2656 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2657 // Restore integer result register 2658 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2659 2660 // Pop all of the register save area off the stack 2661 __ add(sp, sp, frame_size_in_words * wordSize); 2662 2663 // All of the register save area has been popped of the stack. Only the 2664 // return address remains. 2665 2666 // Pop all the frames we must move/replace. 2667 // 2668 // Frame picture (youngest to oldest) 2669 // 1: self-frame (no frame link) 2670 // 2: deopting frame (no frame link) 2671 // 3: caller of deopting frame (could be compiled/interpreted). 2672 // 2673 // Note: by leaving the return address of self-frame on the stack 2674 // and using the size of frame 2 to adjust the stack 2675 // when we are done the return to frame 3 will still be on the stack. 2676 2677 // Pop deoptimized frame 2678 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2679 __ sub(r2, r2, 2 * wordSize); 2680 __ add(sp, sp, r2); 2681 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2682 2683 #ifdef ASSERT 2684 // Compilers generate code that bang the stack by as much as the 2685 // interpreter would need. So this stack banging should never 2686 // trigger a fault. Verify that it does not on non product builds. 2687 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2688 __ bang_stack_size(r19, r2); 2689 #endif 2690 // Load address of array of frame pcs into r2 2691 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2692 2693 // Trash the old pc 2694 // __ addptr(sp, wordSize); FIXME ???? 2695 2696 // Load address of array of frame sizes into r4 2697 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2698 2699 // Load counter into r3 2700 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2701 2702 // Now adjust the caller's stack to make up for the extra locals 2703 // but record the original sp so that we can save it in the skeletal interpreter 2704 // frame and the stack walking of interpreter_sender will get the unextended sp 2705 // value and not the "real" sp value. 2706 2707 const Register sender_sp = r6; 2708 2709 __ mov(sender_sp, sp); 2710 __ ldrw(r19, Address(r5, 2711 Deoptimization::UnrollBlock:: 2712 caller_adjustment_offset())); 2713 __ sub(sp, sp, r19); 2714 2715 // Push interpreter frames in a loop 2716 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2717 __ mov(rscratch2, rscratch1); 2718 Label loop; 2719 __ bind(loop); 2720 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2721 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2722 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2723 __ enter(); // Save old & set new fp 2724 __ sub(sp, sp, r19); // Prolog 2725 // This value is corrected by layout_activation_impl 2726 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2727 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2728 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2729 __ sub(r3, r3, 1); // Decrement counter 2730 __ cbnz(r3, loop); 2731 2732 // Re-push self-frame 2733 __ ldr(lr, Address(r2)); 2734 __ enter(); 2735 2736 // Allocate a full sized register save area. We subtract 2 because 2737 // enter() just pushed 2 words 2738 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2739 2740 // Restore frame locals after moving the frame 2741 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2742 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2743 2744 // Call C code. Need thread but NOT official VM entry 2745 // crud. We cannot block on this call, no GC can happen. Call should 2746 // restore return values to their stack-slots with the new SP. 2747 // 2748 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2749 2750 // Use rfp because the frames look interpreted now 2751 // Don't need the precise return PC here, just precise enough to point into this code blob. 2752 address the_pc = __ pc(); 2753 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2754 2755 __ mov(c_rarg0, rthread); 2756 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2757 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2758 __ blr(rscratch1); 2759 2760 // Set an oopmap for the call site 2761 // Use the same PC we used for the last java frame 2762 oop_maps->add_gc_map(the_pc - start, 2763 new OopMap( frame_size_in_words, 0 )); 2764 2765 // Clear fp AND pc 2766 __ reset_last_Java_frame(true); 2767 2768 // Collect return values 2769 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2770 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2771 // I think this is useless (throwing pc?) 2772 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2773 2774 // Pop self-frame. 2775 __ leave(); // Epilog 2776 2777 // Jump to interpreter 2778 __ ret(lr); 2779 2780 // Make sure all code is generated 2781 masm->flush(); 2782 2783 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2784 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2785 #if INCLUDE_JVMCI 2786 if (EnableJVMCI) { 2787 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2788 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2789 } 2790 #endif 2791 2792 AOTCodeCache::store_code_blob(*_deopt_blob, AOTCodeEntry::SharedBlob, BlobId::shared_deopt_id); 2793 } 2794 2795 // Number of stack slots between incoming argument block and the start of 2796 // a new frame. The PROLOG must add this many slots to the stack. The 2797 // EPILOG must remove this many slots. aarch64 needs two slots for 2798 // return address and fp. 2799 // TODO think this is correct but check 2800 uint SharedRuntime::in_preserve_stack_slots() { 2801 return 4; 2802 } 2803 2804 uint SharedRuntime::out_preserve_stack_slots() { 2805 return 0; 2806 } 2807 2808 2809 VMReg SharedRuntime::thread_register() { 2810 return rthread->as_VMReg(); 2811 } 2812 2813 //------------------------------generate_handler_blob------ 2814 // 2815 // Generate a special Compile2Runtime blob that saves all registers, 2816 // and setup oopmap. 2817 // 2818 SafepointBlob* SharedRuntime::generate_handler_blob(StubId id, address call_ptr) { 2819 assert(is_polling_page_id(id), "expected a polling page stub id"); 2820 2821 // Allocate space for the code. Setup code generation tools. 2822 const char* name = SharedRuntime::stub_name(id); 2823 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2824 if (blob != nullptr) { 2825 return blob->as_safepoint_blob(); 2826 } 2827 2828 ResourceMark rm; 2829 OopMapSet *oop_maps = new OopMapSet(); 2830 OopMap* map; 2831 CodeBuffer buffer(name, 2048, 1024); 2832 MacroAssembler* masm = new MacroAssembler(&buffer); 2833 2834 address start = __ pc(); 2835 address call_pc = nullptr; 2836 int frame_size_in_words; 2837 bool cause_return = (id == StubId::shared_polling_page_return_handler_id); 2838 RegisterSaver reg_save(id == StubId::shared_polling_page_vectors_safepoint_handler_id /* save_vectors */); 2839 2840 // When the signal occurred, the LR was either signed and stored on the stack (in which 2841 // case it will be restored from the stack before being used) or unsigned and not stored 2842 // on the stack. Stipping ensures we get the right value. 2843 __ strip_return_address(); 2844 2845 // Save Integer and Float registers. 2846 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2847 2848 // The following is basically a call_VM. However, we need the precise 2849 // address of the call in order to generate an oopmap. Hence, we do all the 2850 // work ourselves. 2851 2852 Label retaddr; 2853 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2854 2855 // The return address must always be correct so that frame constructor never 2856 // sees an invalid pc. 2857 2858 if (!cause_return) { 2859 // overwrite the return address pushed by save_live_registers 2860 // Additionally, r20 is a callee-saved register so we can look at 2861 // it later to determine if someone changed the return address for 2862 // us! 2863 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2864 __ protect_return_address(r20); 2865 __ str(r20, Address(rfp, wordSize)); 2866 } 2867 2868 // Do the call 2869 __ mov(c_rarg0, rthread); 2870 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2871 __ blr(rscratch1); 2872 __ bind(retaddr); 2873 2874 // Set an oopmap for the call site. This oopmap will map all 2875 // oop-registers and debug-info registers as callee-saved. This 2876 // will allow deoptimization at this safepoint to find all possible 2877 // debug-info recordings, as well as let GC find all oops. 2878 2879 oop_maps->add_gc_map( __ pc() - start, map); 2880 2881 Label noException; 2882 2883 __ reset_last_Java_frame(false); 2884 2885 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2886 2887 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2888 __ cbz(rscratch1, noException); 2889 2890 // Exception pending 2891 2892 reg_save.restore_live_registers(masm); 2893 2894 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2895 2896 // No exception case 2897 __ bind(noException); 2898 2899 Label no_adjust, bail; 2900 if (!cause_return) { 2901 // If our stashed return pc was modified by the runtime we avoid touching it 2902 __ ldr(rscratch1, Address(rfp, wordSize)); 2903 __ cmp(r20, rscratch1); 2904 __ br(Assembler::NE, no_adjust); 2905 __ authenticate_return_address(r20); 2906 2907 #ifdef ASSERT 2908 // Verify the correct encoding of the poll we're about to skip. 2909 // See NativeInstruction::is_ldrw_to_zr() 2910 __ ldrw(rscratch1, Address(r20)); 2911 __ ubfx(rscratch2, rscratch1, 22, 10); 2912 __ cmpw(rscratch2, 0b1011100101); 2913 __ br(Assembler::NE, bail); 2914 __ ubfx(rscratch2, rscratch1, 0, 5); 2915 __ cmpw(rscratch2, 0b11111); 2916 __ br(Assembler::NE, bail); 2917 #endif 2918 // Adjust return pc forward to step over the safepoint poll instruction 2919 __ add(r20, r20, NativeInstruction::instruction_size); 2920 __ protect_return_address(r20); 2921 __ str(r20, Address(rfp, wordSize)); 2922 } 2923 2924 __ bind(no_adjust); 2925 // Normal exit, restore registers and exit. 2926 reg_save.restore_live_registers(masm); 2927 2928 __ ret(lr); 2929 2930 #ifdef ASSERT 2931 __ bind(bail); 2932 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2933 #endif 2934 2935 // Make sure all code is generated 2936 masm->flush(); 2937 2938 // Fill-out other meta info 2939 SafepointBlob* sp_blob = SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2940 2941 AOTCodeCache::store_code_blob(*sp_blob, AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2942 return sp_blob; 2943 } 2944 2945 // 2946 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2947 // 2948 // Generate a stub that calls into vm to find out the proper destination 2949 // of a java call. All the argument registers are live at this point 2950 // but since this is generic code we don't know what they are and the caller 2951 // must do any gc of the args. 2952 // 2953 RuntimeStub* SharedRuntime::generate_resolve_blob(StubId id, address destination) { 2954 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2955 assert(is_resolve_id(id), "expected a resolve stub id"); 2956 2957 const char* name = SharedRuntime::stub_name(id); 2958 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2959 if (blob != nullptr) { 2960 return blob->as_runtime_stub(); 2961 } 2962 2963 // allocate space for the code 2964 ResourceMark rm; 2965 CodeBuffer buffer(name, 1000, 512); 2966 MacroAssembler* masm = new MacroAssembler(&buffer); 2967 2968 int frame_size_in_words; 2969 RegisterSaver reg_save(false /* save_vectors */); 2970 2971 OopMapSet *oop_maps = new OopMapSet(); 2972 OopMap* map = nullptr; 2973 2974 int start = __ offset(); 2975 2976 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2977 2978 int frame_complete = __ offset(); 2979 2980 { 2981 Label retaddr; 2982 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2983 2984 __ mov(c_rarg0, rthread); 2985 __ lea(rscratch1, RuntimeAddress(destination)); 2986 2987 __ blr(rscratch1); 2988 __ bind(retaddr); 2989 } 2990 2991 // Set an oopmap for the call site. 2992 // We need this not only for callee-saved registers, but also for volatile 2993 // registers that the compiler might be keeping live across a safepoint. 2994 2995 oop_maps->add_gc_map( __ offset() - start, map); 2996 2997 // r0 contains the address we are going to jump to assuming no exception got installed 2998 2999 // clear last_Java_sp 3000 __ reset_last_Java_frame(false); 3001 // check for pending exceptions 3002 Label pending; 3003 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3004 __ cbnz(rscratch1, pending); 3005 3006 // get the returned Method* 3007 __ get_vm_result_metadata(rmethod, rthread); 3008 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 3009 3010 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 3011 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 3012 reg_save.restore_live_registers(masm); 3013 3014 // We are back to the original state on entry and ready to go. 3015 3016 __ br(rscratch1); 3017 3018 // Pending exception after the safepoint 3019 3020 __ bind(pending); 3021 3022 reg_save.restore_live_registers(masm); 3023 3024 // exception pending => remove activation and forward to exception handler 3025 3026 __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset())); 3027 3028 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 3029 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3030 3031 // ------------- 3032 // make sure all code is generated 3033 masm->flush(); 3034 3035 // return the blob 3036 // frame_size_words or bytes?? 3037 RuntimeStub* rs_blob = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 3038 3039 AOTCodeCache::store_code_blob(*rs_blob, AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 3040 return rs_blob; 3041 } 3042 3043 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) { 3044 BufferBlob* buf = BufferBlob::create("inline types pack/unpack", 16 * K); 3045 if (buf == nullptr) { 3046 return nullptr; 3047 } 3048 CodeBuffer buffer(buf); 3049 short buffer_locs[20]; 3050 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3051 sizeof(buffer_locs)/sizeof(relocInfo)); 3052 3053 MacroAssembler _masm(&buffer); 3054 MacroAssembler* masm = &_masm; 3055 3056 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3057 const Array<VMRegPair>* regs = vk->return_regs(); 3058 3059 int pack_fields_jobject_off = __ offset(); 3060 // Resolve pre-allocated buffer from JNI handle. 3061 // We cannot do this in generate_call_stub() because it requires GC code to be initialized. 3062 Register Rresult = r14; // See StubGenerator::generate_call_stub(). 3063 __ ldr(r0, Address(Rresult)); 3064 __ resolve_jobject(r0 /* value */, 3065 rthread /* thread */, 3066 r12 /* tmp */); 3067 __ str(r0, Address(Rresult)); 3068 3069 int pack_fields_off = __ offset(); 3070 3071 int j = 1; 3072 for (int i = 0; i < sig_vk->length(); i++) { 3073 BasicType bt = sig_vk->at(i)._bt; 3074 if (bt == T_METADATA) { 3075 continue; 3076 } 3077 if (bt == T_VOID) { 3078 if (sig_vk->at(i-1)._bt == T_LONG || 3079 sig_vk->at(i-1)._bt == T_DOUBLE) { 3080 j++; 3081 } 3082 continue; 3083 } 3084 int off = sig_vk->at(i)._offset; 3085 VMRegPair pair = regs->at(j); 3086 VMReg r_1 = pair.first(); 3087 VMReg r_2 = pair.second(); 3088 Address to(r0, off); 3089 if (bt == T_FLOAT) { 3090 __ strs(r_1->as_FloatRegister(), to); 3091 } else if (bt == T_DOUBLE) { 3092 __ strd(r_1->as_FloatRegister(), to); 3093 } else { 3094 Register val = r_1->as_Register(); 3095 assert_different_registers(to.base(), val, r15, r16, r17); 3096 if (is_reference_type(bt)) { 3097 __ store_heap_oop(to, val, r15, r16, r17, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 3098 } else { 3099 __ store_sized_value(to, r_1->as_Register(), type2aelembytes(bt)); 3100 } 3101 } 3102 j++; 3103 } 3104 assert(j == regs->length(), "missed a field?"); 3105 if (vk->has_nullable_atomic_layout()) { 3106 // Zero the null marker (setting it to 1 would be better but would require an additional register) 3107 __ strb(zr, Address(r0, vk->null_marker_offset())); 3108 } 3109 __ ret(lr); 3110 3111 int unpack_fields_off = __ offset(); 3112 3113 Label skip; 3114 Label not_null; 3115 __ cbnz(r0, not_null); 3116 3117 // Return value is null. Zero oop registers to make the GC happy. 3118 j = 1; 3119 for (int i = 0; i < sig_vk->length(); i++) { 3120 BasicType bt = sig_vk->at(i)._bt; 3121 if (bt == T_METADATA) { 3122 continue; 3123 } 3124 if (bt == T_VOID) { 3125 if (sig_vk->at(i-1)._bt == T_LONG || 3126 sig_vk->at(i-1)._bt == T_DOUBLE) { 3127 j++; 3128 } 3129 continue; 3130 } 3131 if (bt == T_OBJECT || bt == T_ARRAY) { 3132 VMRegPair pair = regs->at(j); 3133 VMReg r_1 = pair.first(); 3134 __ mov(r_1->as_Register(), zr); 3135 } 3136 j++; 3137 } 3138 __ b(skip); 3139 __ bind(not_null); 3140 3141 j = 1; 3142 for (int i = 0; i < sig_vk->length(); i++) { 3143 BasicType bt = sig_vk->at(i)._bt; 3144 if (bt == T_METADATA) { 3145 continue; 3146 } 3147 if (bt == T_VOID) { 3148 if (sig_vk->at(i-1)._bt == T_LONG || 3149 sig_vk->at(i-1)._bt == T_DOUBLE) { 3150 j++; 3151 } 3152 continue; 3153 } 3154 int off = sig_vk->at(i)._offset; 3155 assert(off > 0, "offset in object should be positive"); 3156 VMRegPair pair = regs->at(j); 3157 VMReg r_1 = pair.first(); 3158 VMReg r_2 = pair.second(); 3159 Address from(r0, off); 3160 if (bt == T_FLOAT) { 3161 __ ldrs(r_1->as_FloatRegister(), from); 3162 } else if (bt == T_DOUBLE) { 3163 __ ldrd(r_1->as_FloatRegister(), from); 3164 } else if (bt == T_OBJECT || bt == T_ARRAY) { 3165 assert_different_registers(r0, r_1->as_Register()); 3166 __ load_heap_oop(r_1->as_Register(), from, rscratch1, rscratch2); 3167 } else { 3168 assert(is_java_primitive(bt), "unexpected basic type"); 3169 assert_different_registers(r0, r_1->as_Register()); 3170 size_t size_in_bytes = type2aelembytes(bt); 3171 __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN); 3172 } 3173 j++; 3174 } 3175 assert(j == regs->length(), "missed a field?"); 3176 3177 __ bind(skip); 3178 3179 __ ret(lr); 3180 3181 __ flush(); 3182 3183 return BufferedInlineTypeBlob::create(&buffer, pack_fields_off, pack_fields_jobject_off, unpack_fields_off); 3184 } 3185 3186 // Continuation point for throwing of implicit exceptions that are 3187 // not handled in the current activation. Fabricates an exception 3188 // oop and initiates normal exception dispatching in this 3189 // frame. Since we need to preserve callee-saved values (currently 3190 // only for C2, but done for C1 as well) we need a callee-saved oop 3191 // map and therefore have to make these stubs into RuntimeStubs 3192 // rather than BufferBlobs. If the compiler needs all registers to 3193 // be preserved between the fault point and the exception handler 3194 // then it must assume responsibility for that in 3195 // AbstractCompiler::continuation_for_implicit_null_exception or 3196 // continuation_for_implicit_division_by_zero_exception. All other 3197 // implicit exceptions (e.g., NullPointerException or 3198 // AbstractMethodError on entry) are either at call sites or 3199 // otherwise assume that stack unwinding will be initiated, so 3200 // caller saved registers were assumed volatile in the compiler. 3201 3202 RuntimeStub* SharedRuntime::generate_throw_exception(StubId id, address runtime_entry) { 3203 assert(is_throw_id(id), "expected a throw stub id"); 3204 3205 const char* name = SharedRuntime::stub_name(id); 3206 3207 // Information about frame layout at time of blocking runtime call. 3208 // Note that we only have to preserve callee-saved registers since 3209 // the compilers are responsible for supplying a continuation point 3210 // if they expect all registers to be preserved. 3211 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0 3212 enum layout { 3213 rfp_off = 0, 3214 rfp_off2, 3215 return_off, 3216 return_off2, 3217 framesize // inclusive of return address 3218 }; 3219 3220 int insts_size = 512; 3221 int locs_size = 64; 3222 3223 const char* timer_msg = "SharedRuntime generate_throw_exception"; 3224 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 3225 3226 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 3227 if (blob != nullptr) { 3228 return blob->as_runtime_stub(); 3229 } 3230 3231 ResourceMark rm; 3232 CodeBuffer code(name, insts_size, locs_size); 3233 OopMapSet* oop_maps = new OopMapSet(); 3234 MacroAssembler* masm = new MacroAssembler(&code); 3235 3236 address start = __ pc(); 3237 3238 // This is an inlined and slightly modified version of call_VM 3239 // which has the ability to fetch the return PC out of 3240 // thread-local storage and also sets up last_Java_sp slightly 3241 // differently than the real call_VM 3242 3243 __ enter(); // Save FP and LR before call 3244 3245 assert(is_even(framesize/2), "sp not 16-byte aligned"); 3246 3247 // lr and fp are already in place 3248 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog 3249 3250 int frame_complete = __ pc() - start; 3251 3252 // Set up last_Java_sp and last_Java_fp 3253 address the_pc = __ pc(); 3254 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3255 3256 __ mov(c_rarg0, rthread); 3257 BLOCK_COMMENT("call runtime_entry"); 3258 __ lea(rscratch1, RuntimeAddress(runtime_entry)); 3259 __ blr(rscratch1); 3260 3261 // Generate oop map 3262 OopMap* map = new OopMap(framesize, 0); 3263 3264 oop_maps->add_gc_map(the_pc - start, map); 3265 3266 __ reset_last_Java_frame(true); 3267 3268 // Reinitialize the ptrue predicate register, in case the external runtime 3269 // call clobbers ptrue reg, as we may return to SVE compiled code. 3270 __ reinitialize_ptrue(); 3271 3272 __ leave(); 3273 3274 // check for pending exceptions 3275 #ifdef ASSERT 3276 Label L; 3277 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3278 __ cbnz(rscratch1, L); 3279 __ should_not_reach_here(); 3280 __ bind(L); 3281 #endif // ASSERT 3282 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3283 3284 // codeBlob framesize is in words (not VMRegImpl::slot_size) 3285 RuntimeStub* stub = 3286 RuntimeStub::new_runtime_stub(name, 3287 &code, 3288 frame_complete, 3289 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3290 oop_maps, false); 3291 AOTCodeCache::store_code_blob(*stub, AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 3292 3293 return stub; 3294 } 3295 3296 #if INCLUDE_JFR 3297 3298 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 3299 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3300 __ mov(c_rarg0, thread); 3301 } 3302 3303 // The handle is dereferenced through a load barrier. 3304 static void jfr_epilogue(MacroAssembler* masm) { 3305 __ reset_last_Java_frame(true); 3306 } 3307 3308 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 3309 // It returns a jobject handle to the event writer. 3310 // The handle is dereferenced and the return value is the event writer oop. 3311 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 3312 enum layout { 3313 rbp_off, 3314 rbpH_off, 3315 return_off, 3316 return_off2, 3317 framesize // inclusive of return address 3318 }; 3319 3320 int insts_size = 1024; 3321 int locs_size = 64; 3322 const char* name = SharedRuntime::stub_name(StubId::shared_jfr_write_checkpoint_id); 3323 CodeBuffer code(name, insts_size, locs_size); 3324 OopMapSet* oop_maps = new OopMapSet(); 3325 MacroAssembler* masm = new MacroAssembler(&code); 3326 3327 address start = __ pc(); 3328 __ enter(); 3329 int frame_complete = __ pc() - start; 3330 address the_pc = __ pc(); 3331 jfr_prologue(the_pc, masm, rthread); 3332 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 3333 jfr_epilogue(masm); 3334 __ resolve_global_jobject(r0, rscratch1, rscratch2); 3335 __ leave(); 3336 __ ret(lr); 3337 3338 OopMap* map = new OopMap(framesize, 1); // rfp 3339 oop_maps->add_gc_map(the_pc - start, map); 3340 3341 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3342 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3343 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3344 oop_maps, false); 3345 return stub; 3346 } 3347 3348 // For c2: call to return a leased buffer. 3349 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 3350 enum layout { 3351 rbp_off, 3352 rbpH_off, 3353 return_off, 3354 return_off2, 3355 framesize // inclusive of return address 3356 }; 3357 3358 int insts_size = 1024; 3359 int locs_size = 64; 3360 3361 const char* name = SharedRuntime::stub_name(StubId::shared_jfr_return_lease_id); 3362 CodeBuffer code(name, insts_size, locs_size); 3363 OopMapSet* oop_maps = new OopMapSet(); 3364 MacroAssembler* masm = new MacroAssembler(&code); 3365 3366 address start = __ pc(); 3367 __ enter(); 3368 int frame_complete = __ pc() - start; 3369 address the_pc = __ pc(); 3370 jfr_prologue(the_pc, masm, rthread); 3371 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 3372 jfr_epilogue(masm); 3373 3374 __ leave(); 3375 __ ret(lr); 3376 3377 OopMap* map = new OopMap(framesize, 1); // rfp 3378 oop_maps->add_gc_map(the_pc - start, map); 3379 3380 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3381 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3382 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3383 oop_maps, false); 3384 return stub; 3385 } 3386 3387 #endif // INCLUDE_JFR