1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "asm/macroAssembler.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "code/aotCodeCache.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/debugInfoRec.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSetAssembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/interp_masm.hpp"
  39 #include "logging/log.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "nativeInst_aarch64.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/method.inline.hpp"
  44 #include "prims/methodHandles.hpp"
  45 #include "runtime/continuation.hpp"
  46 #include "runtime/continuationEntry.inline.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/jniHandles.hpp"
  49 #include "runtime/safepointMechanism.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/signature.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/timerTrace.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/align.hpp"
  56 #include "utilities/formatBuffer.hpp"
  57 #include "vmreg_aarch64.inline.hpp"
  58 #ifdef COMPILER1
  59 #include "c1/c1_Runtime1.hpp"
  60 #endif
  61 #ifdef COMPILER2
  62 #include "adfiles/ad_aarch64.hpp"
  63 #include "opto/runtime.hpp"
  64 #endif
  65 #if INCLUDE_JVMCI
  66 #include "jvmci/jvmciJavaClasses.hpp"
  67 #endif
  68 
  69 #define __ masm->
  70 
  71 #ifdef PRODUCT
  72 #define BLOCK_COMMENT(str) /* nothing */
  73 #else
  74 #define BLOCK_COMMENT(str) __ block_comment(str)
  75 #endif
  76 
  77 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  78 
  79 // FIXME -- this is used by C1
  80 class RegisterSaver {
  81   const bool _save_vectors;
  82  public:
  83   RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {}
  84 
  85   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  86   void restore_live_registers(MacroAssembler* masm);
  87 
  88   // Offsets into the register save area
  89   // Used by deoptimization when it is managing result register
  90   // values on its own
  91 
  92   int reg_offset_in_bytes(Register r);
  93   int r0_offset_in_bytes()    { return reg_offset_in_bytes(r0); }
  94   int rscratch1_offset_in_bytes()    { return reg_offset_in_bytes(rscratch1); }
  95   int v0_offset_in_bytes();
  96 
  97   // Total stack size in bytes for saving sve predicate registers.
  98   int total_sve_predicate_in_bytes();
  99 
 100   // Capture info about frame layout
 101   // Note this is only correct when not saving full vectors.
 102   enum layout {
 103                 fpu_state_off = 0,
 104                 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1,
 105                 // The frame sender code expects that rfp will be in
 106                 // the "natural" place and will override any oopMap
 107                 // setting for it. We must therefore force the layout
 108                 // so that it agrees with the frame sender code.
 109                 r0_off = fpu_state_off + FPUStateSizeInWords,
 110                 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register,
 111                 return_off = rfp_off + Register::max_slots_per_register,      // slot for return address
 112                 reg_save_size = return_off + Register::max_slots_per_register};
 113 
 114 };
 115 
 116 int RegisterSaver::reg_offset_in_bytes(Register r) {
 117   // The integer registers are located above the floating point
 118   // registers in the stack frame pushed by save_live_registers() so the
 119   // offset depends on whether we are saving full vectors, and whether
 120   // those vectors are NEON or SVE.
 121 
 122   int slots_per_vect = FloatRegister::save_slots_per_register;
 123 
 124 #if COMPILER2_OR_JVMCI
 125   if (_save_vectors) {
 126     slots_per_vect = FloatRegister::slots_per_neon_register;
 127 
 128 #ifdef COMPILER2
 129     if (Matcher::supports_scalable_vector()) {
 130       slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT);
 131     }
 132 #endif
 133   }
 134 #endif
 135 
 136   int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt;
 137   return r0_offset + r->encoding() * wordSize;
 138 }
 139 
 140 int RegisterSaver::v0_offset_in_bytes() {
 141   // The floating point registers are located above the predicate registers if
 142   // they are present in the stack frame pushed by save_live_registers(). So the
 143   // offset depends on the saved total predicate vectors in the stack frame.
 144   return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt;
 145 }
 146 
 147 int RegisterSaver::total_sve_predicate_in_bytes() {
 148 #ifdef COMPILER2
 149   if (_save_vectors && Matcher::supports_scalable_vector()) {
 150     return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) *
 151            PRegister::number_of_registers;
 152   }
 153 #endif
 154   return 0;
 155 }
 156 
 157 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 158   bool use_sve = false;
 159   int sve_vector_size_in_bytes = 0;
 160   int sve_vector_size_in_slots = 0;
 161   int sve_predicate_size_in_slots = 0;
 162   int total_predicate_in_bytes = total_sve_predicate_in_bytes();
 163   int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size;
 164 
 165 #ifdef COMPILER2
 166   use_sve = Matcher::supports_scalable_vector();
 167   if (use_sve) {
 168     sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 169     sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT);
 170     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
 171   }
 172 #endif
 173 
 174 #if COMPILER2_OR_JVMCI
 175   if (_save_vectors) {
 176     int extra_save_slots_per_register = 0;
 177     // Save upper half of vector registers
 178     if (use_sve) {
 179       extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register;
 180     } else {
 181       extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register;
 182     }
 183     int extra_vector_bytes = extra_save_slots_per_register *
 184                              VMRegImpl::stack_slot_size *
 185                              FloatRegister::number_of_registers;
 186     additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize);
 187   }
 188 #else
 189   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 190 #endif
 191 
 192   int frame_size_in_bytes = align_up(additional_frame_words * wordSize +
 193                                      reg_save_size * BytesPerInt, 16);
 194   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 195   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 196   // The caller will allocate additional_frame_words
 197   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
 198   // CodeBlob frame size is in words.
 199   int frame_size_in_words = frame_size_in_bytes / wordSize;
 200   *total_frame_words = frame_size_in_words;
 201 
 202   // Save Integer and Float registers.
 203   __ enter();
 204   __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes);
 205 
 206   // Set an oopmap for the call site.  This oopmap will map all
 207   // oop-registers and debug-info registers as callee-saved.  This
 208   // will allow deoptimization at this safepoint to find all possible
 209   // debug-info recordings, as well as let GC find all oops.
 210 
 211   OopMapSet *oop_maps = new OopMapSet();
 212   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 213 
 214   for (int i = 0; i < Register::number_of_registers; i++) {
 215     Register r = as_Register(i);
 216     if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) {
 217       // SP offsets are in 4-byte words.
 218       // Register slots are 8 bytes wide, 32 floating-point registers.
 219       int sp_offset = Register::max_slots_per_register * i +
 220                       FloatRegister::save_slots_per_register * FloatRegister::number_of_registers;
 221       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg());
 222     }
 223   }
 224 
 225   for (int i = 0; i < FloatRegister::number_of_registers; i++) {
 226     FloatRegister r = as_FloatRegister(i);
 227     int sp_offset = 0;
 228     if (_save_vectors) {
 229       sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) :
 230                             (FloatRegister::slots_per_neon_register * i);
 231     } else {
 232       sp_offset = FloatRegister::save_slots_per_register * i;
 233     }
 234     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg());
 235   }
 236 
 237   return oop_map;
 238 }
 239 
 240 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 241 #ifdef COMPILER2
 242   __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(),
 243                    Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes());
 244 #else
 245 #if !INCLUDE_JVMCI
 246   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 247 #endif
 248   __ pop_CPU_state(_save_vectors);
 249 #endif
 250   __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize)));
 251   __ authenticate_return_address();
 252 }
 253 
 254 // Is vector's size (in bytes) bigger than a size saved by default?
 255 // 8 bytes vector registers are saved by default on AArch64.
 256 // The SVE supported min vector size is 8 bytes and we need to save
 257 // predicate registers when the vector size is 8 bytes as well.
 258 bool SharedRuntime::is_wide_vector(int size) {
 259   return size > 8 || (UseSVE > 0 && size >= 8);
 260 }
 261 
 262 // ---------------------------------------------------------------------------
 263 // Read the array of BasicTypes from a signature, and compute where the
 264 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 265 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 266 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 267 // as framesizes are fixed.
 268 // VMRegImpl::stack0 refers to the first slot 0(sp).
 269 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 270 // Register up to Register::number_of_registers are the 64-bit
 271 // integer registers.
 272 
 273 // Note: the INPUTS in sig_bt are in units of Java argument words,
 274 // which are 64-bit.  The OUTPUTS are in 32-bit units.
 275 
 276 // The Java calling convention is a "shifted" version of the C ABI.
 277 // By skipping the first C ABI register we can call non-static jni
 278 // methods with small numbers of arguments without having to shuffle
 279 // the arguments at all. Since we control the java ABI we ought to at
 280 // least get some advantage out of it.
 281 
 282 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 283                                            VMRegPair *regs,
 284                                            int total_args_passed) {
 285 
 286   // Create the mapping between argument positions and
 287   // registers.
 288   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 289     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
 290   };
 291   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 292     j_farg0, j_farg1, j_farg2, j_farg3,
 293     j_farg4, j_farg5, j_farg6, j_farg7
 294   };
 295 
 296 
 297   uint int_args = 0;
 298   uint fp_args = 0;
 299   uint stk_args = 0;
 300 
 301   for (int i = 0; i < total_args_passed; i++) {
 302     switch (sig_bt[i]) {
 303     case T_BOOLEAN:
 304     case T_CHAR:
 305     case T_BYTE:
 306     case T_SHORT:
 307     case T_INT:
 308       if (int_args < Argument::n_int_register_parameters_j) {
 309         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 310       } else {
 311         stk_args = align_up(stk_args, 2);
 312         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 313         stk_args += 1;
 314       }
 315       break;
 316     case T_VOID:
 317       // halves of T_LONG or T_DOUBLE
 318       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 319       regs[i].set_bad();
 320       break;
 321     case T_LONG:
 322       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 323       // fall through
 324     case T_OBJECT:
 325     case T_ARRAY:
 326     case T_ADDRESS:
 327       if (int_args < Argument::n_int_register_parameters_j) {
 328         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 329       } else {
 330         stk_args = align_up(stk_args, 2);
 331         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 332         stk_args += 2;
 333       }
 334       break;
 335     case T_FLOAT:
 336       if (fp_args < Argument::n_float_register_parameters_j) {
 337         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 338       } else {
 339         stk_args = align_up(stk_args, 2);
 340         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 341         stk_args += 1;
 342       }
 343       break;
 344     case T_DOUBLE:
 345       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 346       if (fp_args < Argument::n_float_register_parameters_j) {
 347         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 348       } else {
 349         stk_args = align_up(stk_args, 2);
 350         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 351         stk_args += 2;
 352       }
 353       break;
 354     default:
 355       ShouldNotReachHere();
 356       break;
 357     }
 358   }
 359 
 360   return stk_args;
 361 }
 362 
 363 
 364 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j;
 365 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j;
 366 
 367 int SharedRuntime::java_return_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) {
 368 
 369   // Create the mapping between argument positions and registers.
 370 
 371   static const Register INT_ArgReg[java_return_convention_max_int] = {
 372     r0 /* j_rarg7 */, j_rarg6, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0
 373   };
 374 
 375   static const FloatRegister FP_ArgReg[java_return_convention_max_float] = {
 376     j_farg0, j_farg1, j_farg2, j_farg3, j_farg4, j_farg5, j_farg6, j_farg7
 377   };
 378 
 379   uint int_args = 0;
 380   uint fp_args = 0;
 381 
 382   for (int i = 0; i < total_args_passed; i++) {
 383     switch (sig_bt[i]) {
 384     case T_BOOLEAN:
 385     case T_CHAR:
 386     case T_BYTE:
 387     case T_SHORT:
 388     case T_INT:
 389       if (int_args < SharedRuntime::java_return_convention_max_int) {
 390         regs[i].set1(INT_ArgReg[int_args]->as_VMReg());
 391         int_args ++;
 392       } else {
 393         return -1;
 394       }
 395       break;
 396     case T_VOID:
 397       // halves of T_LONG or T_DOUBLE
 398       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 399       regs[i].set_bad();
 400       break;
 401     case T_LONG:
 402       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 403       // fall through
 404     case T_OBJECT:
 405     case T_ARRAY:
 406     case T_ADDRESS:
 407       // Should T_METADATA be added to java_calling_convention as well ?
 408     case T_METADATA:
 409       if (int_args < SharedRuntime::java_return_convention_max_int) {
 410         regs[i].set2(INT_ArgReg[int_args]->as_VMReg());
 411         int_args ++;
 412       } else {
 413         return -1;
 414       }
 415       break;
 416     case T_FLOAT:
 417       if (fp_args < SharedRuntime::java_return_convention_max_float) {
 418         regs[i].set1(FP_ArgReg[fp_args]->as_VMReg());
 419         fp_args ++;
 420       } else {
 421         return -1;
 422       }
 423       break;
 424     case T_DOUBLE:
 425       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 426       if (fp_args < SharedRuntime::java_return_convention_max_float) {
 427         regs[i].set2(FP_ArgReg[fp_args]->as_VMReg());
 428         fp_args ++;
 429       } else {
 430         return -1;
 431       }
 432       break;
 433     default:
 434       ShouldNotReachHere();
 435       break;
 436     }
 437   }
 438 
 439   return int_args + fp_args;
 440 }
 441 
 442 // Patch the callers callsite with entry to compiled code if it exists.
 443 static void patch_callers_callsite(MacroAssembler *masm) {
 444   Label L;
 445   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 446   __ cbz(rscratch1, L);
 447 
 448   __ enter();
 449   __ push_CPU_state();
 450 
 451   // VM needs caller's callsite
 452   // VM needs target method
 453   // This needs to be a long call since we will relocate this adapter to
 454   // the codeBuffer and it may not reach
 455 
 456 #ifndef PRODUCT
 457   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
 458 #endif
 459 
 460   __ mov(c_rarg0, rmethod);
 461   __ mov(c_rarg1, lr);
 462   __ authenticate_return_address(c_rarg1);
 463   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 464   __ blr(rscratch1);
 465 
 466   // Explicit isb required because fixup_callers_callsite may change the code
 467   // stream.
 468   __ safepoint_isb();
 469 
 470   __ pop_CPU_state();
 471   // restore sp
 472   __ leave();
 473   __ bind(L);
 474 }
 475 
 476 // For each inline type argument, sig includes the list of fields of
 477 // the inline type. This utility function computes the number of
 478 // arguments for the call if inline types are passed by reference (the
 479 // calling convention the interpreter expects).
 480 static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) {
 481   int total_args_passed = 0;
 482   if (InlineTypePassFieldsAsArgs) {
 483      for (int i = 0; i < sig_extended->length(); i++) {
 484        BasicType bt = sig_extended->at(i)._bt;
 485        if (bt == T_METADATA) {
 486          // In sig_extended, an inline type argument starts with:
 487          // T_METADATA, followed by the types of the fields of the
 488          // inline type and T_VOID to mark the end of the value
 489          // type. Inline types are flattened so, for instance, in the
 490          // case of an inline type with an int field and an inline type
 491          // field that itself has 2 fields, an int and a long:
 492          // T_METADATA T_INT T_METADATA T_INT T_LONG T_VOID (second
 493          // slot for the T_LONG) T_VOID (inner inline type) T_VOID
 494          // (outer inline type)
 495          total_args_passed++;
 496          int vt = 1;
 497          do {
 498            i++;
 499            BasicType bt = sig_extended->at(i)._bt;
 500            BasicType prev_bt = sig_extended->at(i-1)._bt;
 501            if (bt == T_METADATA) {
 502              vt++;
 503            } else if (bt == T_VOID &&
 504                       prev_bt != T_LONG &&
 505                       prev_bt != T_DOUBLE) {
 506              vt--;
 507            }
 508          } while (vt != 0);
 509        } else {
 510          total_args_passed++;
 511        }
 512      }
 513   } else {
 514     total_args_passed = sig_extended->length();
 515   }
 516 
 517   return total_args_passed;
 518 }
 519 
 520 
 521 static void gen_c2i_adapter_helper(MacroAssembler* masm,
 522                                    BasicType bt,
 523                                    BasicType prev_bt,
 524                                    size_t size_in_bytes,
 525                                    const VMRegPair& reg_pair,
 526                                    const Address& to,
 527                                    Register tmp1,
 528                                    Register tmp2,
 529                                    Register tmp3,
 530                                    int extraspace,
 531                                    bool is_oop) {
 532   if (bt == T_VOID) {
 533     assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half");
 534     return;
 535   }
 536 
 537   // Say 4 args:
 538   // i   st_off
 539   // 0   32 T_LONG
 540   // 1   24 T_VOID
 541   // 2   16 T_OBJECT
 542   // 3    8 T_BOOL
 543   // -    0 return address
 544   //
 545   // However to make thing extra confusing. Because we can fit a Java long/double in
 546   // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 547   // leaves one slot empty and only stores to a single slot. In this case the
 548   // slot that is occupied is the T_VOID slot. See I said it was confusing.
 549 
 550   bool wide = (size_in_bytes == wordSize);
 551   VMReg r_1 = reg_pair.first();
 552   VMReg r_2 = reg_pair.second();
 553   assert(r_2->is_valid() == wide, "invalid size");
 554   if (!r_1->is_valid()) {
 555     assert(!r_2->is_valid(), "");
 556     return;
 557   }
 558 
 559   if (!r_1->is_FloatRegister()) {
 560     Register val = r25;
 561     if (r_1->is_stack()) {
 562       // memory to memory use r25 (scratch registers is used by store_heap_oop)
 563       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 564       __ load_sized_value(val, Address(sp, ld_off), size_in_bytes, /* is_signed */ false);
 565     } else {
 566       val = r_1->as_Register();
 567     }
 568     assert_different_registers(to.base(), val, tmp1, tmp2, tmp3);
 569     if (is_oop) {
 570       __ store_heap_oop(to, val, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
 571     } else {
 572       __ store_sized_value(to, val, size_in_bytes);
 573     }
 574   } else {
 575     if (wide) {
 576       __ strd(r_1->as_FloatRegister(), to);
 577     } else {
 578       // only a float use just part of the slot
 579       __ strs(r_1->as_FloatRegister(), to);
 580     }
 581   }
 582 }
 583 
 584 static void gen_c2i_adapter(MacroAssembler *masm,
 585                             const GrowableArray<SigEntry>* sig_extended,
 586                             const VMRegPair *regs,
 587                             bool requires_clinit_barrier,
 588                             address& c2i_no_clinit_check_entry,
 589                             Label& skip_fixup,
 590                             address start,
 591                             OopMapSet* oop_maps,
 592                             int& frame_complete,
 593                             int& frame_size_in_words,
 594                             bool alloc_inline_receiver) {
 595   if (requires_clinit_barrier && VM_Version::supports_fast_class_init_checks()) {
 596     Label L_skip_barrier;
 597 
 598     { // Bypass the barrier for non-static methods
 599       __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset()));
 600       __ andsw(zr, rscratch1, JVM_ACC_STATIC);
 601       __ br(Assembler::EQ, L_skip_barrier); // non-static
 602     }
 603 
 604     __ load_method_holder(rscratch2, rmethod);
 605     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 606     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 607 
 608     __ bind(L_skip_barrier);
 609     c2i_no_clinit_check_entry = __ pc();
 610   }
 611 
 612   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 613   bs->c2i_entry_barrier(masm);
 614 
 615   // Before we get into the guts of the C2I adapter, see if we should be here
 616   // at all.  We've come from compiled code and are attempting to jump to the
 617   // interpreter, which means the caller made a static call to get here
 618   // (vcalls always get a compiled target if there is one).  Check for a
 619   // compiled target.  If there is one, we need to patch the caller's call.
 620   patch_callers_callsite(masm);
 621 
 622   __ bind(skip_fixup);
 623 
 624   // Name some registers to be used in the following code. We can use
 625   // anything except r0-r7 which are arguments in the Java calling
 626   // convention, rmethod (r12), and r13 which holds the outgoing sender
 627   // SP for the interpreter.
 628   Register buf_array = r10;   // Array of buffered inline types
 629   Register buf_oop = r11;     // Buffered inline type oop
 630   Register tmp1 = r15;
 631   Register tmp2 = r16;
 632   Register tmp3 = r17;
 633 
 634   if (InlineTypePassFieldsAsArgs) {
 635     // Is there an inline type argument?
 636     bool has_inline_argument = false;
 637     for (int i = 0; i < sig_extended->length() && !has_inline_argument; i++) {
 638       has_inline_argument = (sig_extended->at(i)._bt == T_METADATA);
 639     }
 640     if (has_inline_argument) {
 641       // There is at least an inline type argument: we're coming from
 642       // compiled code so we have no buffers to back the inline types
 643       // Allocate the buffers here with a runtime call.
 644       RegisterSaver reg_save(false /* save_vectors */);
 645       OopMap* map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
 646 
 647       frame_complete = __ offset();
 648       address the_pc = __ pc();
 649 
 650       Label retaddr;
 651       __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
 652 
 653       __ mov(c_rarg0, rthread);
 654       __ mov(c_rarg1, rmethod);
 655       __ mov(c_rarg2, (int64_t)alloc_inline_receiver);
 656 
 657       __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_inline_types)));
 658       __ blr(rscratch1);
 659       __ bind(retaddr);
 660 
 661       oop_maps->add_gc_map(__ pc() - start, map);
 662       __ reset_last_Java_frame(false);
 663 
 664       reg_save.restore_live_registers(masm);
 665 
 666       Label no_exception;
 667       __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 668       __ cbz(rscratch1, no_exception);
 669 
 670       __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset()));
 671       __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
 672       __ b(RuntimeAddress(StubRoutines::forward_exception_entry()));
 673 
 674       __ bind(no_exception);
 675 
 676       // We get an array of objects from the runtime call
 677       __ get_vm_result_oop(buf_array, rthread);
 678       __ get_vm_result_metadata(rmethod, rthread); // TODO: required to keep the callee Method live?
 679     }
 680   }
 681 
 682   // Since all args are passed on the stack, total_args_passed *
 683   // Interpreter::stackElementSize is the space we need.
 684 
 685   int total_args_passed = compute_total_args_passed_int(sig_extended);
 686   int extraspace = total_args_passed * Interpreter::stackElementSize;
 687 
 688   // stack is aligned, keep it that way
 689   extraspace = align_up(extraspace, StackAlignmentInBytes);
 690 
 691   // set senderSP value
 692   __ mov(r19_sender_sp, sp);
 693 
 694   __ sub(sp, sp, extraspace);
 695 
 696   // Now write the args into the outgoing interpreter space
 697 
 698   // next_arg_comp is the next argument from the compiler point of
 699   // view (inline type fields are passed in registers/on the stack). In
 700   // sig_extended, an inline type argument starts with: T_METADATA,
 701   // followed by the types of the fields of the inline type and T_VOID
 702   // to mark the end of the inline type. ignored counts the number of
 703   // T_METADATA/T_VOID. next_vt_arg is the next inline type argument:
 704   // used to get the buffer for that argument from the pool of buffers
 705   // we allocated above and want to pass to the
 706   // interpreter. next_arg_int is the next argument from the
 707   // interpreter point of view (inline types are passed by reference).
 708   for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0;
 709        next_arg_comp < sig_extended->length(); next_arg_comp++) {
 710     assert(ignored <= next_arg_comp, "shouldn't skip over more slots than there are arguments");
 711     assert(next_arg_int <= total_args_passed, "more arguments for the interpreter than expected?");
 712     BasicType bt = sig_extended->at(next_arg_comp)._bt;
 713     int st_off = (total_args_passed - next_arg_int - 1) * Interpreter::stackElementSize;
 714     if (!InlineTypePassFieldsAsArgs || bt != T_METADATA) {
 715       int next_off = st_off - Interpreter::stackElementSize;
 716       const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off;
 717       const VMRegPair reg_pair = regs[next_arg_comp-ignored];
 718       size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4;
 719       gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL,
 720                              size_in_bytes, reg_pair, Address(sp, offset), tmp1, tmp2, tmp3, extraspace, false);
 721       next_arg_int++;
 722 #ifdef ASSERT
 723       if (bt == T_LONG || bt == T_DOUBLE) {
 724         // Overwrite the unused slot with known junk
 725         __ mov(rscratch1, CONST64(0xdeadffffdeadaaaa));
 726         __ str(rscratch1, Address(sp, st_off));
 727       }
 728 #endif /* ASSERT */
 729     } else {
 730       ignored++;
 731       // get the buffer from the just allocated pool of buffers
 732       int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_OBJECT);
 733       __ load_heap_oop(buf_oop, Address(buf_array, index), tmp1, tmp2);
 734       next_vt_arg++; next_arg_int++;
 735       int vt = 1;
 736       // write fields we get from compiled code in registers/stack
 737       // slots to the buffer: we know we are done with that inline type
 738       // argument when we hit the T_VOID that acts as an end of inline
 739       // type delimiter for this inline type. Inline types are flattened
 740       // so we might encounter embedded inline types. Each entry in
 741       // sig_extended contains a field offset in the buffer.
 742       Label L_null;
 743       do {
 744         next_arg_comp++;
 745         BasicType bt = sig_extended->at(next_arg_comp)._bt;
 746         BasicType prev_bt = sig_extended->at(next_arg_comp - 1)._bt;
 747         if (bt == T_METADATA) {
 748           vt++;
 749           ignored++;
 750         } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) {
 751           vt--;
 752           ignored++;
 753         } else {
 754           int off = sig_extended->at(next_arg_comp)._offset;
 755           if (off == -1) {
 756             // Nullable inline type argument, emit null check
 757             VMReg reg = regs[next_arg_comp-ignored].first();
 758             Label L_notNull;
 759             if (reg->is_stack()) {
 760               int ld_off = reg->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 761               __ ldrb(tmp1, Address(sp, ld_off));
 762               __ cbnz(tmp1, L_notNull);
 763             } else {
 764               __ cbnz(reg->as_Register(), L_notNull);
 765             }
 766             __ str(zr, Address(sp, st_off));
 767             __ b(L_null);
 768             __ bind(L_notNull);
 769             continue;
 770           }
 771           assert(off > 0, "offset in object should be positive");
 772           size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
 773           bool is_oop = is_reference_type(bt);
 774           gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL,
 775                                  size_in_bytes, regs[next_arg_comp-ignored], Address(buf_oop, off), tmp1, tmp2, tmp3, extraspace, is_oop);
 776         }
 777       } while (vt != 0);
 778       // pass the buffer to the interpreter
 779       __ str(buf_oop, Address(sp, st_off));
 780       __ bind(L_null);
 781     }
 782   }
 783 
 784   __ mov(esp, sp); // Interp expects args on caller's expression stack
 785 
 786   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
 787   __ br(rscratch1);
 788 }
 789 
 790 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, int comp_args_on_stack, const GrowableArray<SigEntry>* sig, const VMRegPair *regs) {
 791 
 792 
 793   // Note: r19_sender_sp contains the senderSP on entry. We must
 794   // preserve it since we may do a i2c -> c2i transition if we lose a
 795   // race where compiled code goes non-entrant while we get args
 796   // ready.
 797 
 798   // Adapters are frameless.
 799 
 800   // An i2c adapter is frameless because the *caller* frame, which is
 801   // interpreted, routinely repairs its own esp (from
 802   // interpreter_frame_last_sp), even if a callee has modified the
 803   // stack pointer.  It also recalculates and aligns sp.
 804 
 805   // A c2i adapter is frameless because the *callee* frame, which is
 806   // interpreted, routinely repairs its caller's sp (from sender_sp,
 807   // which is set up via the senderSP register).
 808 
 809   // In other words, if *either* the caller or callee is interpreted, we can
 810   // get the stack pointer repaired after a call.
 811 
 812   // This is why c2i and i2c adapters cannot be indefinitely composed.
 813   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 814   // both caller and callee would be compiled methods, and neither would
 815   // clean up the stack pointer changes performed by the two adapters.
 816   // If this happens, control eventually transfers back to the compiled
 817   // caller, but with an uncorrected stack, causing delayed havoc.
 818 
 819   // Cut-out for having no stack args.
 820   int comp_words_on_stack = 0;
 821   if (comp_args_on_stack) {
 822      comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord;
 823      __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
 824      __ andr(sp, rscratch1, -16);
 825   }
 826 
 827   // Will jump to the compiled code just as if compiled code was doing it.
 828   // Pre-load the register-jump target early, to schedule it better.
 829   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_inline_offset())));
 830 
 831 #if INCLUDE_JVMCI
 832   if (EnableJVMCI) {
 833     // check if this call should be routed towards a specific entry point
 834     __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 835     Label no_alternative_target;
 836     __ cbz(rscratch2, no_alternative_target);
 837     __ mov(rscratch1, rscratch2);
 838     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 839     __ bind(no_alternative_target);
 840   }
 841 #endif // INCLUDE_JVMCI
 842 
 843   int total_args_passed = sig->length();
 844 
 845   // Now generate the shuffle code.
 846   for (int i = 0; i < total_args_passed; i++) {
 847     BasicType bt = sig->at(i)._bt;
 848     if (bt == T_VOID) {
 849       assert(i > 0 && (sig->at(i - 1)._bt == T_LONG || sig->at(i - 1)._bt == T_DOUBLE), "missing half");
 850       continue;
 851     }
 852 
 853     // Pick up 0, 1 or 2 words from SP+offset.
 854     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?");
 855 
 856     // Load in argument order going down.
 857     int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 858     // Point to interpreter value (vs. tag)
 859     int next_off = ld_off - Interpreter::stackElementSize;
 860     //
 861     //
 862     //
 863     VMReg r_1 = regs[i].first();
 864     VMReg r_2 = regs[i].second();
 865     if (!r_1->is_valid()) {
 866       assert(!r_2->is_valid(), "");
 867       continue;
 868     }
 869     if (r_1->is_stack()) {
 870       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 871       int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size;
 872       if (!r_2->is_valid()) {
 873         // sign extend???
 874         __ ldrsw(rscratch2, Address(esp, ld_off));
 875         __ str(rscratch2, Address(sp, st_off));
 876       } else {
 877         //
 878         // We are using two optoregs. This can be either T_OBJECT,
 879         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 880         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 881         // So we must adjust where to pick up the data to match the
 882         // interpreter.
 883         //
 884         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 885         // are accessed as negative so LSW is at LOW address
 886 
 887         // ld_off is MSW so get LSW
 888         const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off;
 889         __ ldr(rscratch2, Address(esp, offset));
 890         // st_off is LSW (i.e. reg.first())
 891          __ str(rscratch2, Address(sp, st_off));
 892        }
 893      } else if (r_1->is_Register()) {  // Register argument
 894        Register r = r_1->as_Register();
 895        if (r_2->is_valid()) {
 896          //
 897          // We are using two VMRegs. This can be either T_OBJECT,
 898          // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 899          // two slots but only uses one for thr T_LONG or T_DOUBLE case
 900          // So we must adjust where to pick up the data to match the
 901          // interpreter.
 902 
 903         const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off;
 904 
 905          // this can be a misaligned move
 906          __ ldr(r, Address(esp, offset));
 907        } else {
 908          // sign extend and use a full word?
 909          __ ldrw(r, Address(esp, ld_off));
 910        }
 911      } else {
 912        if (!r_2->is_valid()) {
 913          __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
 914        } else {
 915          __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
 916        }
 917      }
 918    }
 919 
 920 
 921   __ mov(rscratch2, rscratch1);
 922   __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1
 923   __ mov(rscratch1, rscratch2);
 924 
 925   // 6243940 We might end up in handle_wrong_method if
 926   // the callee is deoptimized as we race thru here. If that
 927   // happens we don't want to take a safepoint because the
 928   // caller frame will look interpreted and arguments are now
 929   // "compiled" so it is much better to make this transition
 930   // invisible to the stack walking code. Unfortunately if
 931   // we try and find the callee by normal means a safepoint
 932   // is possible. So we stash the desired callee in the thread
 933   // and the vm will find there should this case occur.
 934 
 935   __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
 936   __ br(rscratch1);
 937 }
 938 
 939 static void gen_inline_cache_check(MacroAssembler *masm, Label& skip_fixup) {
 940   Register data = rscratch2;
 941   __ ic_check(1 /* end_alignment */);
 942   __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset()));
 943 
 944   // Method might have been compiled since the call site was patched to
 945   // interpreted; if that is the case treat it as a miss so we can get
 946   // the call site corrected.
 947   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 948   __ cbz(rscratch1, skip_fixup);
 949   __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 950 }
 951 
 952 // ---------------------------------------------------------------
 953 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler* masm,
 954                                             int comp_args_on_stack,
 955                                             const GrowableArray<SigEntry>* sig,
 956                                             const VMRegPair* regs,
 957                                             const GrowableArray<SigEntry>* sig_cc,
 958                                             const VMRegPair* regs_cc,
 959                                             const GrowableArray<SigEntry>* sig_cc_ro,
 960                                             const VMRegPair* regs_cc_ro,
 961                                             AdapterHandlerEntry* handler,
 962                                             AdapterBlob*& new_adapter,
 963                                             bool allocate_code_blob) {
 964 
 965   address i2c_entry = __ pc();
 966   gen_i2c_adapter(masm, comp_args_on_stack, sig, regs);
 967 
 968   // -------------------------------------------------------------------------
 969   // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
 970   // to the interpreter.  The args start out packed in the compiled layout.  They
 971   // need to be unpacked into the interpreter layout.  This will almost always
 972   // require some stack space.  We grow the current (compiled) stack, then repack
 973   // the args.  We  finally end in a jump to the generic interpreter entry point.
 974   // On exit from the interpreter, the interpreter will restore our SP (lest the
 975   // compiled code, which relies solely on SP and not FP, get sick).
 976 
 977   address c2i_unverified_entry        = __ pc();
 978   address c2i_unverified_inline_entry = __ pc();
 979   Label skip_fixup;
 980 
 981   gen_inline_cache_check(masm, skip_fixup);
 982 
 983   OopMapSet* oop_maps = new OopMapSet();
 984   int frame_complete = CodeOffsets::frame_never_safe;
 985   int frame_size_in_words = 0;
 986 
 987   // Scalarized c2i adapter with non-scalarized receiver (i.e., don't pack receiver)
 988   address c2i_no_clinit_check_entry = nullptr;
 989   address c2i_inline_ro_entry = __ pc();
 990   if (regs_cc != regs_cc_ro) {
 991     // No class init barrier needed because method is guaranteed to be non-static
 992     gen_c2i_adapter(masm, sig_cc_ro, regs_cc_ro, /* requires_clinit_barrier = */ false, c2i_no_clinit_check_entry,
 993                     skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false);
 994     skip_fixup.reset();
 995   }
 996 
 997   // Scalarized c2i adapter
 998   address c2i_entry        = __ pc();
 999   address c2i_inline_entry = __ pc();
1000   gen_c2i_adapter(masm, sig_cc, regs_cc, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry,
1001                   skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ true);
1002 
1003   // Non-scalarized c2i adapter
1004   if (regs != regs_cc) {
1005     c2i_unverified_inline_entry = __ pc();
1006     Label inline_entry_skip_fixup;
1007     gen_inline_cache_check(masm, inline_entry_skip_fixup);
1008 
1009     c2i_inline_entry = __ pc();
1010     gen_c2i_adapter(masm, sig, regs, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry,
1011                     inline_entry_skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false);
1012   }
1013 
1014 
1015   // The c2i adapter might safepoint and trigger a GC. The caller must make sure that
1016   // the GC knows about the location of oop argument locations passed to the c2i adapter.
1017   if (allocate_code_blob) {
1018     bool caller_must_gc_arguments = (regs != regs_cc);
1019     new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments);
1020   }
1021 
1022   handler->set_entry_points(i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry,
1023                             c2i_unverified_inline_entry, c2i_no_clinit_check_entry);
1024 }
1025 
1026 static int c_calling_convention_priv(const BasicType *sig_bt,
1027                                          VMRegPair *regs,
1028                                          int total_args_passed) {
1029 
1030 // We return the amount of VMRegImpl stack slots we need to reserve for all
1031 // the arguments NOT counting out_preserve_stack_slots.
1032 
1033     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1034       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
1035     };
1036     static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1037       c_farg0, c_farg1, c_farg2, c_farg3,
1038       c_farg4, c_farg5, c_farg6, c_farg7
1039     };
1040 
1041     uint int_args = 0;
1042     uint fp_args = 0;
1043     uint stk_args = 0; // inc by 2 each time
1044 
1045     for (int i = 0; i < total_args_passed; i++) {
1046       switch (sig_bt[i]) {
1047       case T_BOOLEAN:
1048       case T_CHAR:
1049       case T_BYTE:
1050       case T_SHORT:
1051       case T_INT:
1052         if (int_args < Argument::n_int_register_parameters_c) {
1053           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1054         } else {
1055 #ifdef __APPLE__
1056           // Less-than word types are stored one after another.
1057           // The code is unable to handle this so bailout.
1058           return -1;
1059 #endif
1060           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1061           stk_args += 2;
1062         }
1063         break;
1064       case T_LONG:
1065         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1066         // fall through
1067       case T_OBJECT:
1068       case T_ARRAY:
1069       case T_ADDRESS:
1070       case T_METADATA:
1071         if (int_args < Argument::n_int_register_parameters_c) {
1072           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1073         } else {
1074           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1075           stk_args += 2;
1076         }
1077         break;
1078       case T_FLOAT:
1079         if (fp_args < Argument::n_float_register_parameters_c) {
1080           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1081         } else {
1082 #ifdef __APPLE__
1083           // Less-than word types are stored one after another.
1084           // The code is unable to handle this so bailout.
1085           return -1;
1086 #endif
1087           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1088           stk_args += 2;
1089         }
1090         break;
1091       case T_DOUBLE:
1092         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1093         if (fp_args < Argument::n_float_register_parameters_c) {
1094           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1095         } else {
1096           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1097           stk_args += 2;
1098         }
1099         break;
1100       case T_VOID: // Halves of longs and doubles
1101         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1102         regs[i].set_bad();
1103         break;
1104       default:
1105         ShouldNotReachHere();
1106         break;
1107       }
1108     }
1109 
1110   return stk_args;
1111 }
1112 
1113 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1114                                              uint num_bits,
1115                                              uint total_args_passed) {
1116   // More than 8 argument inputs are not supported now.
1117   assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported");
1118   assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported");
1119 
1120   static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = {
1121     v0, v1, v2, v3, v4, v5, v6, v7
1122   };
1123 
1124   // On SVE, we use the same vector registers with 128-bit vector registers on NEON.
1125   int next_reg_val = num_bits == 64 ? 1 : 3;
1126   for (uint i = 0; i < total_args_passed; i++) {
1127     VMReg vmreg = VEC_ArgReg[i]->as_VMReg();
1128     regs[i].set_pair(vmreg->next(next_reg_val), vmreg);
1129   }
1130   return 0;
1131 }
1132 
1133 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1134                                          VMRegPair *regs,
1135                                          int total_args_passed)
1136 {
1137   int result = c_calling_convention_priv(sig_bt, regs, total_args_passed);
1138   guarantee(result >= 0, "Unsupported arguments configuration");
1139   return result;
1140 }
1141 
1142 
1143 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1144   // We always ignore the frame_slots arg and just use the space just below frame pointer
1145   // which by this time is free to use
1146   switch (ret_type) {
1147   case T_FLOAT:
1148     __ strs(v0, Address(rfp, -wordSize));
1149     break;
1150   case T_DOUBLE:
1151     __ strd(v0, Address(rfp, -wordSize));
1152     break;
1153   case T_VOID:  break;
1154   default: {
1155     __ str(r0, Address(rfp, -wordSize));
1156     }
1157   }
1158 }
1159 
1160 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1161   // We always ignore the frame_slots arg and just use the space just below frame pointer
1162   // which by this time is free to use
1163   switch (ret_type) {
1164   case T_FLOAT:
1165     __ ldrs(v0, Address(rfp, -wordSize));
1166     break;
1167   case T_DOUBLE:
1168     __ ldrd(v0, Address(rfp, -wordSize));
1169     break;
1170   case T_VOID:  break;
1171   default: {
1172     __ ldr(r0, Address(rfp, -wordSize));
1173     }
1174   }
1175 }
1176 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1177   RegSet x;
1178   for ( int i = first_arg ; i < arg_count ; i++ ) {
1179     if (args[i].first()->is_Register()) {
1180       x = x + args[i].first()->as_Register();
1181     } else if (args[i].first()->is_FloatRegister()) {
1182       __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
1183     }
1184   }
1185   __ push(x, sp);
1186 }
1187 
1188 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1189   RegSet x;
1190   for ( int i = first_arg ; i < arg_count ; i++ ) {
1191     if (args[i].first()->is_Register()) {
1192       x = x + args[i].first()->as_Register();
1193     } else {
1194       ;
1195     }
1196   }
1197   __ pop(x, sp);
1198   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1199     if (args[i].first()->is_Register()) {
1200       ;
1201     } else if (args[i].first()->is_FloatRegister()) {
1202       __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
1203     }
1204   }
1205 }
1206 
1207 static void verify_oop_args(MacroAssembler* masm,
1208                             const methodHandle& method,
1209                             const BasicType* sig_bt,
1210                             const VMRegPair* regs) {
1211   Register temp_reg = r19;  // not part of any compiled calling seq
1212   if (VerifyOops) {
1213     for (int i = 0; i < method->size_of_parameters(); i++) {
1214       if (sig_bt[i] == T_OBJECT ||
1215           sig_bt[i] == T_ARRAY) {
1216         VMReg r = regs[i].first();
1217         assert(r->is_valid(), "bad oop arg");
1218         if (r->is_stack()) {
1219           __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1220           __ verify_oop(temp_reg);
1221         } else {
1222           __ verify_oop(r->as_Register());
1223         }
1224       }
1225     }
1226   }
1227 }
1228 
1229 // on exit, sp points to the ContinuationEntry
1230 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
1231   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
1232   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
1233   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
1234 
1235   stack_slots += (int)ContinuationEntry::size()/wordSize;
1236   __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
1237 
1238   OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
1239 
1240   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1241   __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset()));
1242   __ mov(rscratch1, sp); // we can't use sp as the source in str
1243   __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1244 
1245   return map;
1246 }
1247 
1248 // on entry c_rarg1 points to the continuation
1249 //          sp points to ContinuationEntry
1250 //          c_rarg3 -- isVirtualThread
1251 static void fill_continuation_entry(MacroAssembler* masm) {
1252 #ifdef ASSERT
1253   __ movw(rscratch1, ContinuationEntry::cookie_value());
1254   __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset()));
1255 #endif
1256 
1257   __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
1258   __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
1259   __ str (zr,      Address(sp, ContinuationEntry::chunk_offset()));
1260   __ strw(zr,      Address(sp, ContinuationEntry::argsize_offset()));
1261   __ strw(zr,      Address(sp, ContinuationEntry::pin_count_offset()));
1262 
1263   __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1264   __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1265   __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1266   __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1267 
1268   __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset()));
1269   __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset()));
1270 }
1271 
1272 // on entry, sp points to the ContinuationEntry
1273 // on exit, rfp points to the spilled rfp in the entry frame
1274 static void continuation_enter_cleanup(MacroAssembler* masm) {
1275 #ifndef PRODUCT
1276   Label OK;
1277   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1278   __ cmp(sp, rscratch1);
1279   __ br(Assembler::EQ, OK);
1280   __ stop("incorrect sp1");
1281   __ bind(OK);
1282 #endif
1283   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1284   __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1285 
1286   if (CheckJNICalls) {
1287     // Check if this is a virtual thread continuation
1288     Label L_skip_vthread_code;
1289     __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset()));
1290     __ cbzw(rscratch1, L_skip_vthread_code);
1291 
1292     // If the held monitor count is > 0 and this vthread is terminating then
1293     // it failed to release a JNI monitor. So we issue the same log message
1294     // that JavaThread::exit does.
1295     __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset()));
1296     __ cbz(rscratch1, L_skip_vthread_code);
1297 
1298     // Save return value potentially containing the exception oop in callee-saved R19.
1299     __ mov(r19, r0);
1300     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
1301     // Restore potential return value.
1302     __ mov(r0, r19);
1303 
1304     // For vthreads we have to explicitly zero the JNI monitor count of the carrier
1305     // on termination. The held count is implicitly zeroed below when we restore from
1306     // the parent held count (which has to be zero).
1307     __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset()));
1308 
1309     __ bind(L_skip_vthread_code);
1310   }
1311 #ifdef ASSERT
1312   else {
1313     // Check if this is a virtual thread continuation
1314     Label L_skip_vthread_code;
1315     __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset()));
1316     __ cbzw(rscratch1, L_skip_vthread_code);
1317 
1318     // See comment just above. If not checking JNI calls the JNI count is only
1319     // needed for assertion checking.
1320     __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset()));
1321 
1322     __ bind(L_skip_vthread_code);
1323   }
1324 #endif
1325 
1326   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1327   __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1328 
1329   __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset()));
1330   __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset()));
1331   __ add(rfp, sp, (int)ContinuationEntry::size());
1332 }
1333 
1334 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1335 // On entry: c_rarg1 -- the continuation object
1336 //           c_rarg2 -- isContinue
1337 //           c_rarg3 -- isVirtualThread
1338 static void gen_continuation_enter(MacroAssembler* masm,
1339                                  const methodHandle& method,
1340                                  const BasicType* sig_bt,
1341                                  const VMRegPair* regs,
1342                                  int& exception_offset,
1343                                  OopMapSet*oop_maps,
1344                                  int& frame_complete,
1345                                  int& stack_slots,
1346                                  int& interpreted_entry_offset,
1347                                  int& compiled_entry_offset) {
1348   //verify_oop_args(masm, method, sig_bt, regs);
1349   Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
1350 
1351   address start = __ pc();
1352 
1353   Label call_thaw, exit;
1354 
1355   // i2i entry used at interp_only_mode only
1356   interpreted_entry_offset = __ pc() - start;
1357   {
1358 
1359 #ifdef ASSERT
1360     Label is_interp_only;
1361     __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
1362     __ cbnzw(rscratch1, is_interp_only);
1363     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1364     __ bind(is_interp_only);
1365 #endif
1366 
1367     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1368     __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2));
1369     __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1));
1370     __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0));
1371     __ push_cont_fastpath(rthread);
1372 
1373     __ enter();
1374     stack_slots = 2; // will be adjusted in setup
1375     OopMap* map = continuation_enter_setup(masm, stack_slots);
1376     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1377     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1378 
1379     fill_continuation_entry(masm);
1380 
1381     __ cbnz(c_rarg2, call_thaw);
1382 
1383     const address tr_call = __ trampoline_call(resolve);
1384     if (tr_call == nullptr) {
1385       fatal("CodeCache is full at gen_continuation_enter");
1386     }
1387 
1388     oop_maps->add_gc_map(__ pc() - start, map);
1389     __ post_call_nop();
1390 
1391     __ b(exit);
1392 
1393     address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1394     if (stub == nullptr) {
1395       fatal("CodeCache is full at gen_continuation_enter");
1396     }
1397   }
1398 
1399   // compiled entry
1400   __ align(CodeEntryAlignment);
1401   compiled_entry_offset = __ pc() - start;
1402 
1403   __ enter();
1404   stack_slots = 2; // will be adjusted in setup
1405   OopMap* map = continuation_enter_setup(masm, stack_slots);
1406   frame_complete = __ pc() - start;
1407 
1408   fill_continuation_entry(masm);
1409 
1410   __ cbnz(c_rarg2, call_thaw);
1411 
1412   const address tr_call = __ trampoline_call(resolve);
1413   if (tr_call == nullptr) {
1414     fatal("CodeCache is full at gen_continuation_enter");
1415   }
1416 
1417   oop_maps->add_gc_map(__ pc() - start, map);
1418   __ post_call_nop();
1419 
1420   __ b(exit);
1421 
1422   __ bind(call_thaw);
1423 
1424   ContinuationEntry::_thaw_call_pc_offset = __ pc() - start;
1425   __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1426   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1427   ContinuationEntry::_return_pc_offset = __ pc() - start;
1428   __ post_call_nop();
1429 
1430   __ bind(exit);
1431   ContinuationEntry::_cleanup_offset = __ pc() - start;
1432   continuation_enter_cleanup(masm);
1433   __ leave();
1434   __ ret(lr);
1435 
1436   /// exception handling
1437 
1438   exception_offset = __ pc() - start;
1439   {
1440       __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19
1441 
1442       continuation_enter_cleanup(masm);
1443 
1444       __ ldr(c_rarg1, Address(rfp, wordSize)); // return address
1445       __ authenticate_return_address(c_rarg1);
1446       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1);
1447 
1448       // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc
1449 
1450       __ mov(r1, r0); // the exception handler
1451       __ mov(r0, r19); // restore return value contaning the exception oop
1452       __ verify_oop(r0);
1453 
1454       __ leave();
1455       __ mov(r3, lr);
1456       __ br(r1); // the exception handler
1457   }
1458 
1459   address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1460   if (stub == nullptr) {
1461     fatal("CodeCache is full at gen_continuation_enter");
1462   }
1463 }
1464 
1465 static void gen_continuation_yield(MacroAssembler* masm,
1466                                    const methodHandle& method,
1467                                    const BasicType* sig_bt,
1468                                    const VMRegPair* regs,
1469                                    OopMapSet* oop_maps,
1470                                    int& frame_complete,
1471                                    int& stack_slots,
1472                                    int& compiled_entry_offset) {
1473     enum layout {
1474       rfp_off1,
1475       rfp_off2,
1476       lr_off,
1477       lr_off2,
1478       framesize // inclusive of return address
1479     };
1480     // assert(is_even(framesize/2), "sp not 16-byte aligned");
1481     stack_slots = framesize /  VMRegImpl::slots_per_word;
1482     assert(stack_slots == 2, "recheck layout");
1483 
1484     address start = __ pc();
1485 
1486     compiled_entry_offset = __ pc() - start;
1487     __ enter();
1488 
1489     __ mov(c_rarg1, sp);
1490 
1491     frame_complete = __ pc() - start;
1492     address the_pc = __ pc();
1493 
1494     __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1495 
1496     __ mov(c_rarg0, rthread);
1497     __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
1498     __ call_VM_leaf(Continuation::freeze_entry(), 2);
1499     __ reset_last_Java_frame(true);
1500 
1501     Label pinned;
1502 
1503     __ cbnz(r0, pinned);
1504 
1505     // We've succeeded, set sp to the ContinuationEntry
1506     __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1507     __ mov(sp, rscratch1);
1508     continuation_enter_cleanup(masm);
1509 
1510     __ bind(pinned); // pinned -- return to caller
1511 
1512     // handle pending exception thrown by freeze
1513     __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1514     Label ok;
1515     __ cbz(rscratch1, ok);
1516     __ leave();
1517     __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1518     __ br(rscratch1);
1519     __ bind(ok);
1520 
1521     __ leave();
1522     __ ret(lr);
1523 
1524     OopMap* map = new OopMap(framesize, 1);
1525     oop_maps->add_gc_map(the_pc - start, map);
1526 }
1527 
1528 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) {
1529   ::continuation_enter_cleanup(masm);
1530 }
1531 
1532 static void gen_special_dispatch(MacroAssembler* masm,
1533                                  const methodHandle& method,
1534                                  const BasicType* sig_bt,
1535                                  const VMRegPair* regs) {
1536   verify_oop_args(masm, method, sig_bt, regs);
1537   vmIntrinsics::ID iid = method->intrinsic_id();
1538 
1539   // Now write the args into the outgoing interpreter space
1540   bool     has_receiver   = false;
1541   Register receiver_reg   = noreg;
1542   int      member_arg_pos = -1;
1543   Register member_reg     = noreg;
1544   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1545   if (ref_kind != 0) {
1546     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1547     member_reg = r19;  // known to be free at this point
1548     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1549   } else if (iid == vmIntrinsics::_invokeBasic) {
1550     has_receiver = true;
1551   } else if (iid == vmIntrinsics::_linkToNative) {
1552     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1553     member_reg = r19;  // known to be free at this point
1554   } else {
1555     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1556   }
1557 
1558   if (member_reg != noreg) {
1559     // Load the member_arg into register, if necessary.
1560     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1561     VMReg r = regs[member_arg_pos].first();
1562     if (r->is_stack()) {
1563       __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1564     } else {
1565       // no data motion is needed
1566       member_reg = r->as_Register();
1567     }
1568   }
1569 
1570   if (has_receiver) {
1571     // Make sure the receiver is loaded into a register.
1572     assert(method->size_of_parameters() > 0, "oob");
1573     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1574     VMReg r = regs[0].first();
1575     assert(r->is_valid(), "bad receiver arg");
1576     if (r->is_stack()) {
1577       // Porting note:  This assumes that compiled calling conventions always
1578       // pass the receiver oop in a register.  If this is not true on some
1579       // platform, pick a temp and load the receiver from stack.
1580       fatal("receiver always in a register");
1581       receiver_reg = r2;  // known to be free at this point
1582       __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1583     } else {
1584       // no data motion is needed
1585       receiver_reg = r->as_Register();
1586     }
1587   }
1588 
1589   // Figure out which address we are really jumping to:
1590   MethodHandles::generate_method_handle_dispatch(masm, iid,
1591                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1592 }
1593 
1594 // ---------------------------------------------------------------------------
1595 // Generate a native wrapper for a given method.  The method takes arguments
1596 // in the Java compiled code convention, marshals them to the native
1597 // convention (handlizes oops, etc), transitions to native, makes the call,
1598 // returns to java state (possibly blocking), unhandlizes any result and
1599 // returns.
1600 //
1601 // Critical native functions are a shorthand for the use of
1602 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1603 // functions.  The wrapper is expected to unpack the arguments before
1604 // passing them to the callee. Critical native functions leave the state _in_Java,
1605 // since they block out GC.
1606 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1607 // block and the check for pending exceptions it's impossible for them
1608 // to be thrown.
1609 //
1610 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1611                                                 const methodHandle& method,
1612                                                 int compile_id,
1613                                                 BasicType* in_sig_bt,
1614                                                 VMRegPair* in_regs,
1615                                                 BasicType ret_type) {
1616   if (method->is_continuation_native_intrinsic()) {
1617     int exception_offset = -1;
1618     OopMapSet* oop_maps = new OopMapSet();
1619     int frame_complete = -1;
1620     int stack_slots = -1;
1621     int interpreted_entry_offset = -1;
1622     int vep_offset = -1;
1623     if (method->is_continuation_enter_intrinsic()) {
1624       gen_continuation_enter(masm,
1625                              method,
1626                              in_sig_bt,
1627                              in_regs,
1628                              exception_offset,
1629                              oop_maps,
1630                              frame_complete,
1631                              stack_slots,
1632                              interpreted_entry_offset,
1633                              vep_offset);
1634     } else if (method->is_continuation_yield_intrinsic()) {
1635       gen_continuation_yield(masm,
1636                              method,
1637                              in_sig_bt,
1638                              in_regs,
1639                              oop_maps,
1640                              frame_complete,
1641                              stack_slots,
1642                              vep_offset);
1643     } else {
1644       guarantee(false, "Unknown Continuation native intrinsic");
1645     }
1646 
1647 #ifdef ASSERT
1648     if (method->is_continuation_enter_intrinsic()) {
1649       assert(interpreted_entry_offset != -1, "Must be set");
1650       assert(exception_offset != -1,         "Must be set");
1651     } else {
1652       assert(interpreted_entry_offset == -1, "Must be unset");
1653       assert(exception_offset == -1,         "Must be unset");
1654     }
1655     assert(frame_complete != -1,    "Must be set");
1656     assert(stack_slots != -1,       "Must be set");
1657     assert(vep_offset != -1,        "Must be set");
1658 #endif
1659 
1660     __ flush();
1661     nmethod* nm = nmethod::new_native_nmethod(method,
1662                                               compile_id,
1663                                               masm->code(),
1664                                               vep_offset,
1665                                               frame_complete,
1666                                               stack_slots,
1667                                               in_ByteSize(-1),
1668                                               in_ByteSize(-1),
1669                                               oop_maps,
1670                                               exception_offset);
1671     if (nm == nullptr) return nm;
1672     if (method->is_continuation_enter_intrinsic()) {
1673       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1674     } else if (method->is_continuation_yield_intrinsic()) {
1675       _cont_doYield_stub = nm;
1676     } else {
1677       guarantee(false, "Unknown Continuation native intrinsic");
1678     }
1679     return nm;
1680   }
1681 
1682   if (method->is_method_handle_intrinsic()) {
1683     vmIntrinsics::ID iid = method->intrinsic_id();
1684     intptr_t start = (intptr_t)__ pc();
1685     int vep_offset = ((intptr_t)__ pc()) - start;
1686 
1687     // First instruction must be a nop as it may need to be patched on deoptimisation
1688     __ nop();
1689     gen_special_dispatch(masm,
1690                          method,
1691                          in_sig_bt,
1692                          in_regs);
1693     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1694     __ flush();
1695     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1696     return nmethod::new_native_nmethod(method,
1697                                        compile_id,
1698                                        masm->code(),
1699                                        vep_offset,
1700                                        frame_complete,
1701                                        stack_slots / VMRegImpl::slots_per_word,
1702                                        in_ByteSize(-1),
1703                                        in_ByteSize(-1),
1704                                        nullptr);
1705   }
1706   address native_func = method->native_function();
1707   assert(native_func != nullptr, "must have function");
1708 
1709   // An OopMap for lock (and class if static)
1710   OopMapSet *oop_maps = new OopMapSet();
1711   intptr_t start = (intptr_t)__ pc();
1712 
1713   // We have received a description of where all the java arg are located
1714   // on entry to the wrapper. We need to convert these args to where
1715   // the jni function will expect them. To figure out where they go
1716   // we convert the java signature to a C signature by inserting
1717   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1718 
1719   const int total_in_args = method->size_of_parameters();
1720   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1721 
1722   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1723   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1724 
1725   int argc = 0;
1726   out_sig_bt[argc++] = T_ADDRESS;
1727   if (method->is_static()) {
1728     out_sig_bt[argc++] = T_OBJECT;
1729   }
1730 
1731   for (int i = 0; i < total_in_args ; i++ ) {
1732     out_sig_bt[argc++] = in_sig_bt[i];
1733   }
1734 
1735   // Now figure out where the args must be stored and how much stack space
1736   // they require.
1737   int out_arg_slots;
1738   out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args);
1739 
1740   if (out_arg_slots < 0) {
1741     return nullptr;
1742   }
1743 
1744   // Compute framesize for the wrapper.  We need to handlize all oops in
1745   // incoming registers
1746 
1747   // Calculate the total number of stack slots we will need.
1748 
1749   // First count the abi requirement plus all of the outgoing args
1750   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1751 
1752   // Now the space for the inbound oop handle area
1753   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1754 
1755   int oop_handle_offset = stack_slots;
1756   stack_slots += total_save_slots;
1757 
1758   // Now any space we need for handlizing a klass if static method
1759 
1760   int klass_slot_offset = 0;
1761   int klass_offset = -1;
1762   int lock_slot_offset = 0;
1763   bool is_static = false;
1764 
1765   if (method->is_static()) {
1766     klass_slot_offset = stack_slots;
1767     stack_slots += VMRegImpl::slots_per_word;
1768     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1769     is_static = true;
1770   }
1771 
1772   // Plus a lock if needed
1773 
1774   if (method->is_synchronized()) {
1775     lock_slot_offset = stack_slots;
1776     stack_slots += VMRegImpl::slots_per_word;
1777   }
1778 
1779   // Now a place (+2) to save return values or temp during shuffling
1780   // + 4 for return address (which we own) and saved rfp
1781   stack_slots += 6;
1782 
1783   // Ok The space we have allocated will look like:
1784   //
1785   //
1786   // FP-> |                     |
1787   //      |---------------------|
1788   //      | 2 slots for moves   |
1789   //      |---------------------|
1790   //      | lock box (if sync)  |
1791   //      |---------------------| <- lock_slot_offset
1792   //      | klass (if static)   |
1793   //      |---------------------| <- klass_slot_offset
1794   //      | oopHandle area      |
1795   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1796   //      | outbound memory     |
1797   //      | based arguments     |
1798   //      |                     |
1799   //      |---------------------|
1800   //      |                     |
1801   // SP-> | out_preserved_slots |
1802   //
1803   //
1804 
1805 
1806   // Now compute actual number of stack words we need rounding to make
1807   // stack properly aligned.
1808   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1809 
1810   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1811 
1812   // First thing make an ic check to see if we should even be here
1813 
1814   // We are free to use all registers as temps without saving them and
1815   // restoring them except rfp. rfp is the only callee save register
1816   // as far as the interpreter and the compiler(s) are concerned.
1817 
1818   const Register receiver = j_rarg0;
1819 
1820   Label exception_pending;
1821 
1822   assert_different_registers(receiver, rscratch1);
1823   __ verify_oop(receiver);
1824   __ ic_check(8 /* end_alignment */);
1825 
1826   // Verified entry point must be aligned
1827   int vep_offset = ((intptr_t)__ pc()) - start;
1828 
1829   // If we have to make this method not-entrant we'll overwrite its
1830   // first instruction with a jump.  For this action to be legal we
1831   // must ensure that this first instruction is a B, BL, NOP, BKPT,
1832   // SVC, HVC, or SMC.  Make it a NOP.
1833   __ nop();
1834 
1835   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1836     Label L_skip_barrier;
1837     __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
1838     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
1839     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1840 
1841     __ bind(L_skip_barrier);
1842   }
1843 
1844   // Generate stack overflow check
1845   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1846 
1847   // Generate a new frame for the wrapper.
1848   __ enter();
1849   // -2 because return address is already present and so is saved rfp
1850   __ sub(sp, sp, stack_size - 2*wordSize);
1851 
1852   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1853   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1854 
1855   // Frame is now completed as far as size and linkage.
1856   int frame_complete = ((intptr_t)__ pc()) - start;
1857 
1858   // We use r20 as the oop handle for the receiver/klass
1859   // It is callee save so it survives the call to native
1860 
1861   const Register oop_handle_reg = r20;
1862 
1863   //
1864   // We immediately shuffle the arguments so that any vm call we have to
1865   // make from here on out (sync slow path, jvmti, etc.) we will have
1866   // captured the oops from our caller and have a valid oopMap for
1867   // them.
1868 
1869   // -----------------
1870   // The Grand Shuffle
1871 
1872   // The Java calling convention is either equal (linux) or denser (win64) than the
1873   // c calling convention. However the because of the jni_env argument the c calling
1874   // convention always has at least one more (and two for static) arguments than Java.
1875   // Therefore if we move the args from java -> c backwards then we will never have
1876   // a register->register conflict and we don't have to build a dependency graph
1877   // and figure out how to break any cycles.
1878   //
1879 
1880   // Record esp-based slot for receiver on stack for non-static methods
1881   int receiver_offset = -1;
1882 
1883   // This is a trick. We double the stack slots so we can claim
1884   // the oops in the caller's frame. Since we are sure to have
1885   // more args than the caller doubling is enough to make
1886   // sure we can capture all the incoming oop args from the
1887   // caller.
1888   //
1889   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1890 
1891   // Mark location of rfp (someday)
1892   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1893 
1894 
1895   int float_args = 0;
1896   int int_args = 0;
1897 
1898 #ifdef ASSERT
1899   bool reg_destroyed[Register::number_of_registers];
1900   bool freg_destroyed[FloatRegister::number_of_registers];
1901   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1902     reg_destroyed[r] = false;
1903   }
1904   for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1905     freg_destroyed[f] = false;
1906   }
1907 
1908 #endif /* ASSERT */
1909 
1910   // For JNI natives the incoming and outgoing registers are offset upwards.
1911   GrowableArray<int> arg_order(2 * total_in_args);
1912 
1913   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1914     arg_order.push(i);
1915     arg_order.push(c_arg);
1916   }
1917 
1918   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1919     int i = arg_order.at(ai);
1920     int c_arg = arg_order.at(ai + 1);
1921     __ block_comment(err_msg("move %d -> %d", i, c_arg));
1922     assert(c_arg != -1 && i != -1, "wrong order");
1923 #ifdef ASSERT
1924     if (in_regs[i].first()->is_Register()) {
1925       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1926     } else if (in_regs[i].first()->is_FloatRegister()) {
1927       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1928     }
1929     if (out_regs[c_arg].first()->is_Register()) {
1930       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1931     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1932       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1933     }
1934 #endif /* ASSERT */
1935     switch (in_sig_bt[i]) {
1936       case T_ARRAY:
1937       case T_OBJECT:
1938         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1939                        ((i == 0) && (!is_static)),
1940                        &receiver_offset);
1941         int_args++;
1942         break;
1943       case T_VOID:
1944         break;
1945 
1946       case T_FLOAT:
1947         __ float_move(in_regs[i], out_regs[c_arg]);
1948         float_args++;
1949         break;
1950 
1951       case T_DOUBLE:
1952         assert( i + 1 < total_in_args &&
1953                 in_sig_bt[i + 1] == T_VOID &&
1954                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1955         __ double_move(in_regs[i], out_regs[c_arg]);
1956         float_args++;
1957         break;
1958 
1959       case T_LONG :
1960         __ long_move(in_regs[i], out_regs[c_arg]);
1961         int_args++;
1962         break;
1963 
1964       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1965 
1966       default:
1967         __ move32_64(in_regs[i], out_regs[c_arg]);
1968         int_args++;
1969     }
1970   }
1971 
1972   // point c_arg at the first arg that is already loaded in case we
1973   // need to spill before we call out
1974   int c_arg = total_c_args - total_in_args;
1975 
1976   // Pre-load a static method's oop into c_rarg1.
1977   if (method->is_static()) {
1978 
1979     //  load oop into a register
1980     __ movoop(c_rarg1,
1981               JNIHandles::make_local(method->method_holder()->java_mirror()));
1982 
1983     // Now handlize the static class mirror it's known not-null.
1984     __ str(c_rarg1, Address(sp, klass_offset));
1985     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1986 
1987     // Now get the handle
1988     __ lea(c_rarg1, Address(sp, klass_offset));
1989     // and protect the arg if we must spill
1990     c_arg--;
1991   }
1992 
1993   // Change state to native (we save the return address in the thread, since it might not
1994   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1995   // points into the right code segment. It does not have to be the correct return pc.
1996   // We use the same pc/oopMap repeatedly when we call out.
1997 
1998   Label native_return;
1999   if (LockingMode != LM_LEGACY && method->is_object_wait0()) {
2000     // For convenience we use the pc we want to resume to in case of preemption on Object.wait.
2001     __ set_last_Java_frame(sp, noreg, native_return, rscratch1);
2002   } else {
2003     intptr_t the_pc = (intptr_t) __ pc();
2004     oop_maps->add_gc_map(the_pc - start, map);
2005 
2006     __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1);
2007   }
2008 
2009   Label dtrace_method_entry, dtrace_method_entry_done;
2010   if (DTraceMethodProbes) {
2011     __ b(dtrace_method_entry);
2012     __ bind(dtrace_method_entry_done);
2013   }
2014 
2015   // RedefineClasses() tracing support for obsolete method entry
2016   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2017     // protect the args we've loaded
2018     save_args(masm, total_c_args, c_arg, out_regs);
2019     __ mov_metadata(c_rarg1, method());
2020     __ call_VM_leaf(
2021       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2022       rthread, c_rarg1);
2023     restore_args(masm, total_c_args, c_arg, out_regs);
2024   }
2025 
2026   // Lock a synchronized method
2027 
2028   // Register definitions used by locking and unlocking
2029 
2030   const Register swap_reg = r0;
2031   const Register obj_reg  = r19;  // Will contain the oop
2032   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2033   const Register old_hdr  = r13;  // value of old header at unlock time
2034   const Register lock_tmp = r14;  // Temporary used by lightweight_lock/unlock
2035   const Register tmp = lr;
2036 
2037   Label slow_path_lock;
2038   Label lock_done;
2039 
2040   if (method->is_synchronized()) {
2041     Label count;
2042     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2043 
2044     // Get the handle (the 2nd argument)
2045     __ mov(oop_handle_reg, c_rarg1);
2046 
2047     // Get address of the box
2048 
2049     __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2050 
2051     // Load the oop from the handle
2052     __ ldr(obj_reg, Address(oop_handle_reg, 0));
2053 
2054     if (LockingMode == LM_MONITOR) {
2055       __ b(slow_path_lock);
2056     } else if (LockingMode == LM_LEGACY) {
2057       // Load (object->mark() | 1) into swap_reg %r0
2058       __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2059       __ orr(swap_reg, rscratch1, 1);
2060       if (EnableValhalla) {
2061         // Mask inline_type bit such that we go to the slow path if object is an inline type
2062         __ andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place));
2063       }
2064 
2065       // Save (object->mark() | 1) into BasicLock's displaced header
2066       __ str(swap_reg, Address(lock_reg, mark_word_offset));
2067 
2068       // src -> dest iff dest == r0 else r0 <- dest
2069       __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
2070 
2071       // Hmm should this move to the slow path code area???
2072 
2073       // Test if the oopMark is an obvious stack pointer, i.e.,
2074       //  1) (mark & 3) == 0, and
2075       //  2) sp <= mark < mark + os::pagesize()
2076       // These 3 tests can be done by evaluating the following
2077       // expression: ((mark - sp) & (3 - os::vm_page_size())),
2078       // assuming both stack pointer and pagesize have their
2079       // least significant 2 bits clear.
2080       // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
2081 
2082       __ sub(swap_reg, sp, swap_reg);
2083       __ neg(swap_reg, swap_reg);
2084       __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size());
2085 
2086       // Save the test result, for recursive case, the result is zero
2087       __ str(swap_reg, Address(lock_reg, mark_word_offset));
2088       __ br(Assembler::NE, slow_path_lock);
2089 
2090       __ bind(count);
2091       __ inc_held_monitor_count(rscratch1);
2092     } else {
2093       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
2094       __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
2095     }
2096 
2097     // Slow path will re-enter here
2098     __ bind(lock_done);
2099   }
2100 
2101 
2102   // Finally just about ready to make the JNI call
2103 
2104   // get JNIEnv* which is first argument to native
2105   __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
2106 
2107   // Now set thread in native
2108   __ mov(rscratch1, _thread_in_native);
2109   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
2110   __ stlrw(rscratch1, rscratch2);
2111 
2112   __ rt_call(native_func);
2113 
2114   // Verify or restore cpu control state after JNI call
2115   __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
2116 
2117   // Unpack native results.
2118   switch (ret_type) {
2119   case T_BOOLEAN: __ c2bool(r0);                     break;
2120   case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
2121   case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
2122   case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
2123   case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
2124   case T_DOUBLE :
2125   case T_FLOAT  :
2126     // Result is in v0 we'll save as needed
2127     break;
2128   case T_ARRAY:                 // Really a handle
2129   case T_OBJECT:                // Really a handle
2130       break; // can't de-handlize until after safepoint check
2131   case T_VOID: break;
2132   case T_LONG: break;
2133   default       : ShouldNotReachHere();
2134   }
2135 
2136   Label safepoint_in_progress, safepoint_in_progress_done;
2137 
2138   // Switch thread to "native transition" state before reading the synchronization state.
2139   // This additional state is necessary because reading and testing the synchronization
2140   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2141   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2142   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2143   //     Thread A is resumed to finish this native method, but doesn't block here since it
2144   //     didn't see any synchronization is progress, and escapes.
2145   __ mov(rscratch1, _thread_in_native_trans);
2146 
2147   __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
2148 
2149   // Force this write out before the read below
2150   if (!UseSystemMemoryBarrier) {
2151     __ dmb(Assembler::ISH);
2152   }
2153 
2154   __ verify_sve_vector_length();
2155 
2156   // Check for safepoint operation in progress and/or pending suspend requests.
2157   {
2158     // No need for acquire as Java threads always disarm themselves.
2159     __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* acquire */, false /* in_nmethod */);
2160     __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
2161     __ cbnzw(rscratch1, safepoint_in_progress);
2162     __ bind(safepoint_in_progress_done);
2163   }
2164 
2165   // change thread state
2166   __ mov(rscratch1, _thread_in_Java);
2167   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
2168   __ stlrw(rscratch1, rscratch2);
2169 
2170   if (LockingMode != LM_LEGACY && method->is_object_wait0()) {
2171     // Check preemption for Object.wait()
2172     __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
2173     __ cbz(rscratch1, native_return);
2174     __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
2175     __ br(rscratch1);
2176     __ bind(native_return);
2177 
2178     intptr_t the_pc = (intptr_t) __ pc();
2179     oop_maps->add_gc_map(the_pc - start, map);
2180   }
2181 
2182   Label reguard;
2183   Label reguard_done;
2184   __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
2185   __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
2186   __ br(Assembler::EQ, reguard);
2187   __ bind(reguard_done);
2188 
2189   // native result if any is live
2190 
2191   // Unlock
2192   Label unlock_done;
2193   Label slow_path_unlock;
2194   if (method->is_synchronized()) {
2195 
2196     // Get locked oop from the handle we passed to jni
2197     __ ldr(obj_reg, Address(oop_handle_reg, 0));
2198 
2199     Label done, not_recursive;
2200 
2201     if (LockingMode == LM_LEGACY) {
2202       // Simple recursive lock?
2203       __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2204       __ cbnz(rscratch1, not_recursive);
2205       __ dec_held_monitor_count(rscratch1);
2206       __ b(done);
2207     }
2208 
2209     __ bind(not_recursive);
2210 
2211     // Must save r0 if if it is live now because cmpxchg must use it
2212     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2213       save_native_result(masm, ret_type, stack_slots);
2214     }
2215 
2216     if (LockingMode == LM_MONITOR) {
2217       __ b(slow_path_unlock);
2218     } else if (LockingMode == LM_LEGACY) {
2219       // get address of the stack lock
2220       __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2221       //  get old displaced header
2222       __ ldr(old_hdr, Address(r0, 0));
2223 
2224       // Atomic swap old header if oop still contains the stack lock
2225       Label count;
2226       __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock);
2227       __ bind(count);
2228       __ dec_held_monitor_count(rscratch1);
2229     } else {
2230       assert(LockingMode == LM_LIGHTWEIGHT, "");
2231       __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
2232     }
2233 
2234     // slow path re-enters here
2235     __ bind(unlock_done);
2236     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2237       restore_native_result(masm, ret_type, stack_slots);
2238     }
2239 
2240     __ bind(done);
2241   }
2242 
2243   Label dtrace_method_exit, dtrace_method_exit_done;
2244   if (DTraceMethodProbes) {
2245     __ b(dtrace_method_exit);
2246     __ bind(dtrace_method_exit_done);
2247   }
2248 
2249   __ reset_last_Java_frame(false);
2250 
2251   // Unbox oop result, e.g. JNIHandles::resolve result.
2252   if (is_reference_type(ret_type)) {
2253     __ resolve_jobject(r0, r1, r2);
2254   }
2255 
2256   if (CheckJNICalls) {
2257     // clear_pending_jni_exception_check
2258     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
2259   }
2260 
2261   // reset handle block
2262   __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
2263   __ str(zr, Address(r2, JNIHandleBlock::top_offset()));
2264 
2265   __ leave();
2266 
2267   #if INCLUDE_JFR
2268   // We need to do a poll test after unwind in case the sampler
2269   // managed to sample the native frame after returning to Java.
2270   Label L_return;
2271   __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2272   address poll_test_pc = __ pc();
2273   __ relocate(relocInfo::poll_return_type);
2274   __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), L_return);
2275   assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
2276     "polling page return stub not created yet");
2277   address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
2278   __ adr(rscratch1, InternalAddress(poll_test_pc));
2279   __ str(rscratch1, Address(rthread, JavaThread::saved_exception_pc_offset()));
2280   __ far_jump(RuntimeAddress(stub));
2281   __ bind(L_return);
2282 #endif // INCLUDE_JFR
2283 
2284   // Any exception pending?
2285   __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2286   __ cbnz(rscratch1, exception_pending);
2287 
2288   // We're done
2289   __ ret(lr);
2290 
2291   // Unexpected paths are out of line and go here
2292 
2293   // forward the exception
2294   __ bind(exception_pending);
2295 
2296   // and forward the exception
2297   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2298 
2299   // Slow path locking & unlocking
2300   if (method->is_synchronized()) {
2301 
2302     __ block_comment("Slow path lock {");
2303     __ bind(slow_path_lock);
2304 
2305     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2306     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2307 
2308     // protect the args we've loaded
2309     save_args(masm, total_c_args, c_arg, out_regs);
2310 
2311     __ mov(c_rarg0, obj_reg);
2312     __ mov(c_rarg1, lock_reg);
2313     __ mov(c_rarg2, rthread);
2314 
2315     // Not a leaf but we have last_Java_frame setup as we want.
2316     // We don't want to unmount in case of contention since that would complicate preserving
2317     // the arguments that had already been marshalled into the native convention. So we force
2318     // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame())
2319     // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack.
2320     __ push_cont_fastpath();
2321     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2322     __ pop_cont_fastpath();
2323     restore_args(masm, total_c_args, c_arg, out_regs);
2324 
2325 #ifdef ASSERT
2326     { Label L;
2327       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2328       __ cbz(rscratch1, L);
2329       __ stop("no pending exception allowed on exit from monitorenter");
2330       __ bind(L);
2331     }
2332 #endif
2333     __ b(lock_done);
2334 
2335     __ block_comment("} Slow path lock");
2336 
2337     __ block_comment("Slow path unlock {");
2338     __ bind(slow_path_unlock);
2339 
2340     // If we haven't already saved the native result we must save it now as xmm registers
2341     // are still exposed.
2342 
2343     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2344       save_native_result(masm, ret_type, stack_slots);
2345     }
2346 
2347     __ mov(c_rarg2, rthread);
2348     __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2349     __ mov(c_rarg0, obj_reg);
2350 
2351     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2352     // NOTE that obj_reg == r19 currently
2353     __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2354     __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2355 
2356     __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
2357 
2358 #ifdef ASSERT
2359     {
2360       Label L;
2361       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2362       __ cbz(rscratch1, L);
2363       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2364       __ bind(L);
2365     }
2366 #endif /* ASSERT */
2367 
2368     __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2369 
2370     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2371       restore_native_result(masm, ret_type, stack_slots);
2372     }
2373     __ b(unlock_done);
2374 
2375     __ block_comment("} Slow path unlock");
2376 
2377   } // synchronized
2378 
2379   // SLOW PATH Reguard the stack if needed
2380 
2381   __ bind(reguard);
2382   save_native_result(masm, ret_type, stack_slots);
2383   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2384   restore_native_result(masm, ret_type, stack_slots);
2385   // and continue
2386   __ b(reguard_done);
2387 
2388   // SLOW PATH safepoint
2389   {
2390     __ block_comment("safepoint {");
2391     __ bind(safepoint_in_progress);
2392 
2393     // Don't use call_VM as it will see a possible pending exception and forward it
2394     // and never return here preventing us from clearing _last_native_pc down below.
2395     //
2396     save_native_result(masm, ret_type, stack_slots);
2397     __ mov(c_rarg0, rthread);
2398 #ifndef PRODUCT
2399   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2400 #endif
2401     __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2402     __ blr(rscratch1);
2403 
2404     // Restore any method result value
2405     restore_native_result(masm, ret_type, stack_slots);
2406 
2407     __ b(safepoint_in_progress_done);
2408     __ block_comment("} safepoint");
2409   }
2410 
2411   // SLOW PATH dtrace support
2412   if (DTraceMethodProbes) {
2413     {
2414       __ block_comment("dtrace entry {");
2415       __ bind(dtrace_method_entry);
2416 
2417       // We have all of the arguments setup at this point. We must not touch any register
2418       // argument registers at this point (what if we save/restore them there are no oop?
2419 
2420       save_args(masm, total_c_args, c_arg, out_regs);
2421       __ mov_metadata(c_rarg1, method());
2422       __ call_VM_leaf(
2423         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2424         rthread, c_rarg1);
2425       restore_args(masm, total_c_args, c_arg, out_regs);
2426       __ b(dtrace_method_entry_done);
2427       __ block_comment("} dtrace entry");
2428     }
2429 
2430     {
2431       __ block_comment("dtrace exit {");
2432       __ bind(dtrace_method_exit);
2433       save_native_result(masm, ret_type, stack_slots);
2434       __ mov_metadata(c_rarg1, method());
2435       __ call_VM_leaf(
2436         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2437         rthread, c_rarg1);
2438       restore_native_result(masm, ret_type, stack_slots);
2439       __ b(dtrace_method_exit_done);
2440       __ block_comment("} dtrace exit");
2441     }
2442   }
2443 
2444   __ flush();
2445 
2446   nmethod *nm = nmethod::new_native_nmethod(method,
2447                                             compile_id,
2448                                             masm->code(),
2449                                             vep_offset,
2450                                             frame_complete,
2451                                             stack_slots / VMRegImpl::slots_per_word,
2452                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2453                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2454                                             oop_maps);
2455 
2456   return nm;
2457 }
2458 
2459 // this function returns the adjust size (in number of words) to a c2i adapter
2460 // activation for use during deoptimization
2461 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2462   assert(callee_locals >= callee_parameters,
2463           "test and remove; got more parms than locals");
2464   if (callee_locals < callee_parameters)
2465     return 0;                   // No adjustment for negative locals
2466   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2467   // diff is counted in stack words
2468   return align_up(diff, 2);
2469 }
2470 
2471 
2472 //------------------------------generate_deopt_blob----------------------------
2473 void SharedRuntime::generate_deopt_blob() {
2474   // Allocate space for the code
2475   ResourceMark rm;
2476   // Setup code generation tools
2477   int pad = 0;
2478 #if INCLUDE_JVMCI
2479   if (EnableJVMCI) {
2480     pad += 512; // Increase the buffer size when compiling for JVMCI
2481   }
2482 #endif
2483   const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2484   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)SharedStubId::deopt_id, name);
2485   if (blob != nullptr) {
2486     _deopt_blob = blob->as_deoptimization_blob();
2487     return;
2488   }
2489 
2490   CodeBuffer buffer(name, 2048+pad, 1024);
2491   MacroAssembler* masm = new MacroAssembler(&buffer);
2492   int frame_size_in_words;
2493   OopMap* map = nullptr;
2494   OopMapSet *oop_maps = new OopMapSet();
2495   RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0);
2496 
2497   // -------------
2498   // This code enters when returning to a de-optimized nmethod.  A return
2499   // address has been pushed on the stack, and return values are in
2500   // registers.
2501   // If we are doing a normal deopt then we were called from the patched
2502   // nmethod from the point we returned to the nmethod. So the return
2503   // address on the stack is wrong by NativeCall::instruction_size
2504   // We will adjust the value so it looks like we have the original return
2505   // address on the stack (like when we eagerly deoptimized).
2506   // In the case of an exception pending when deoptimizing, we enter
2507   // with a return address on the stack that points after the call we patched
2508   // into the exception handler. We have the following register state from,
2509   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2510   //    r0: exception oop
2511   //    r19: exception handler
2512   //    r3: throwing pc
2513   // So in this case we simply jam r3 into the useless return address and
2514   // the stack looks just like we want.
2515   //
2516   // At this point we need to de-opt.  We save the argument return
2517   // registers.  We call the first C routine, fetch_unroll_info().  This
2518   // routine captures the return values and returns a structure which
2519   // describes the current frame size and the sizes of all replacement frames.
2520   // The current frame is compiled code and may contain many inlined
2521   // functions, each with their own JVM state.  We pop the current frame, then
2522   // push all the new frames.  Then we call the C routine unpack_frames() to
2523   // populate these frames.  Finally unpack_frames() returns us the new target
2524   // address.  Notice that callee-save registers are BLOWN here; they have
2525   // already been captured in the vframeArray at the time the return PC was
2526   // patched.
2527   address start = __ pc();
2528   Label cont;
2529 
2530   // Prolog for non exception case!
2531 
2532   // Save everything in sight.
2533   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2534 
2535   // Normal deoptimization.  Save exec mode for unpack_frames.
2536   __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2537   __ b(cont);
2538 
2539   int reexecute_offset = __ pc() - start;
2540 #if INCLUDE_JVMCI && !defined(COMPILER1)
2541   if (UseJVMCICompiler) {
2542     // JVMCI does not use this kind of deoptimization
2543     __ should_not_reach_here();
2544   }
2545 #endif
2546 
2547   // Reexecute case
2548   // return address is the pc describes what bci to do re-execute at
2549 
2550   // No need to update map as each call to save_live_registers will produce identical oopmap
2551   (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2552 
2553   __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2554   __ b(cont);
2555 
2556 #if INCLUDE_JVMCI
2557   Label after_fetch_unroll_info_call;
2558   int implicit_exception_uncommon_trap_offset = 0;
2559   int uncommon_trap_offset = 0;
2560 
2561   if (EnableJVMCI) {
2562     implicit_exception_uncommon_trap_offset = __ pc() - start;
2563 
2564     __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2565     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2566 
2567     uncommon_trap_offset = __ pc() - start;
2568 
2569     // Save everything in sight.
2570     reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2571     // fetch_unroll_info needs to call last_java_frame()
2572     Label retaddr;
2573     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2574 
2575     __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2576     __ movw(rscratch1, -1);
2577     __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2578 
2579     __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2580     __ mov(c_rarg0, rthread);
2581     __ movw(c_rarg2, rcpool); // exec mode
2582     __ lea(rscratch1,
2583            RuntimeAddress(CAST_FROM_FN_PTR(address,
2584                                            Deoptimization::uncommon_trap)));
2585     __ blr(rscratch1);
2586     __ bind(retaddr);
2587     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2588 
2589     __ reset_last_Java_frame(false);
2590 
2591     __ b(after_fetch_unroll_info_call);
2592   } // EnableJVMCI
2593 #endif // INCLUDE_JVMCI
2594 
2595   int exception_offset = __ pc() - start;
2596 
2597   // Prolog for exception case
2598 
2599   // all registers are dead at this entry point, except for r0, and
2600   // r3 which contain the exception oop and exception pc
2601   // respectively.  Set them in TLS and fall thru to the
2602   // unpack_with_exception_in_tls entry point.
2603 
2604   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2605   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2606 
2607   int exception_in_tls_offset = __ pc() - start;
2608 
2609   // new implementation because exception oop is now passed in JavaThread
2610 
2611   // Prolog for exception case
2612   // All registers must be preserved because they might be used by LinearScan
2613   // Exceptiop oop and throwing PC are passed in JavaThread
2614   // tos: stack at point of call to method that threw the exception (i.e. only
2615   // args are on the stack, no return address)
2616 
2617   // The return address pushed by save_live_registers will be patched
2618   // later with the throwing pc. The correct value is not available
2619   // now because loading it from memory would destroy registers.
2620 
2621   // NB: The SP at this point must be the SP of the method that is
2622   // being deoptimized.  Deoptimization assumes that the frame created
2623   // here by save_live_registers is immediately below the method's SP.
2624   // This is a somewhat fragile mechanism.
2625 
2626   // Save everything in sight.
2627   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2628 
2629   // Now it is safe to overwrite any register
2630 
2631   // Deopt during an exception.  Save exec mode for unpack_frames.
2632   __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2633 
2634   // load throwing pc from JavaThread and patch it as the return address
2635   // of the current frame. Then clear the field in JavaThread
2636   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2637   __ protect_return_address(r3);
2638   __ str(r3, Address(rfp, wordSize));
2639   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2640 
2641 #ifdef ASSERT
2642   // verify that there is really an exception oop in JavaThread
2643   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2644   __ verify_oop(r0);
2645 
2646   // verify that there is no pending exception
2647   Label no_pending_exception;
2648   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2649   __ cbz(rscratch1, no_pending_exception);
2650   __ stop("must not have pending exception here");
2651   __ bind(no_pending_exception);
2652 #endif
2653 
2654   __ bind(cont);
2655 
2656   // Call C code.  Need thread and this frame, but NOT official VM entry
2657   // crud.  We cannot block on this call, no GC can happen.
2658   //
2659   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2660 
2661   // fetch_unroll_info needs to call last_java_frame().
2662 
2663   Label retaddr;
2664   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2665 #ifdef ASSERT
2666   { Label L;
2667     __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset()));
2668     __ cbz(rscratch1, L);
2669     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2670     __ bind(L);
2671   }
2672 #endif // ASSERT
2673   __ mov(c_rarg0, rthread);
2674   __ mov(c_rarg1, rcpool);
2675   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2676   __ blr(rscratch1);
2677   __ bind(retaddr);
2678 
2679   // Need to have an oopmap that tells fetch_unroll_info where to
2680   // find any register it might need.
2681   oop_maps->add_gc_map(__ pc() - start, map);
2682 
2683   __ reset_last_Java_frame(false);
2684 
2685 #if INCLUDE_JVMCI
2686   if (EnableJVMCI) {
2687     __ bind(after_fetch_unroll_info_call);
2688   }
2689 #endif
2690 
2691   // Load UnrollBlock* into r5
2692   __ mov(r5, r0);
2693 
2694   __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset()));
2695    Label noException;
2696   __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2697   __ br(Assembler::NE, noException);
2698   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2699   // QQQ this is useless it was null above
2700   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2701   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2702   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2703 
2704   __ verify_oop(r0);
2705 
2706   // Overwrite the result registers with the exception results.
2707   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2708   // I think this is useless
2709   // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2710 
2711   __ bind(noException);
2712 
2713   // Only register save data is on the stack.
2714   // Now restore the result registers.  Everything else is either dead
2715   // or captured in the vframeArray.
2716 
2717   // Restore fp result register
2718   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2719   // Restore integer result register
2720   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2721 
2722   // Pop all of the register save area off the stack
2723   __ add(sp, sp, frame_size_in_words * wordSize);
2724 
2725   // All of the register save area has been popped of the stack. Only the
2726   // return address remains.
2727 
2728   // Pop all the frames we must move/replace.
2729   //
2730   // Frame picture (youngest to oldest)
2731   // 1: self-frame (no frame link)
2732   // 2: deopting frame  (no frame link)
2733   // 3: caller of deopting frame (could be compiled/interpreted).
2734   //
2735   // Note: by leaving the return address of self-frame on the stack
2736   // and using the size of frame 2 to adjust the stack
2737   // when we are done the return to frame 3 will still be on the stack.
2738 
2739   // Pop deoptimized frame
2740   __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2741   __ sub(r2, r2, 2 * wordSize);
2742   __ add(sp, sp, r2);
2743   __ ldp(rfp, zr, __ post(sp, 2 * wordSize));
2744 
2745 #ifdef ASSERT
2746   // Compilers generate code that bang the stack by as much as the
2747   // interpreter would need. So this stack banging should never
2748   // trigger a fault. Verify that it does not on non product builds.
2749   __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2750   __ bang_stack_size(r19, r2);
2751 #endif
2752   // Load address of array of frame pcs into r2
2753   __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset()));
2754 
2755   // Trash the old pc
2756   // __ addptr(sp, wordSize);  FIXME ????
2757 
2758   // Load address of array of frame sizes into r4
2759   __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset()));
2760 
2761   // Load counter into r3
2762   __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset()));
2763 
2764   // Now adjust the caller's stack to make up for the extra locals
2765   // but record the original sp so that we can save it in the skeletal interpreter
2766   // frame and the stack walking of interpreter_sender will get the unextended sp
2767   // value and not the "real" sp value.
2768 
2769   const Register sender_sp = r6;
2770 
2771   __ mov(sender_sp, sp);
2772   __ ldrw(r19, Address(r5,
2773                        Deoptimization::UnrollBlock::
2774                        caller_adjustment_offset()));
2775   __ sub(sp, sp, r19);
2776 
2777   // Push interpreter frames in a loop
2778   __ mov(rscratch1, (uint64_t)0xDEADDEAD);        // Make a recognizable pattern
2779   __ mov(rscratch2, rscratch1);
2780   Label loop;
2781   __ bind(loop);
2782   __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2783   __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2784   __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2785   __ enter();                           // Save old & set new fp
2786   __ sub(sp, sp, r19);                  // Prolog
2787   // This value is corrected by layout_activation_impl
2788   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2789   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2790   __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2791   __ sub(r3, r3, 1);                   // Decrement counter
2792   __ cbnz(r3, loop);
2793 
2794     // Re-push self-frame
2795   __ ldr(lr, Address(r2));
2796   __ enter();
2797 
2798   // Allocate a full sized register save area.  We subtract 2 because
2799   // enter() just pushed 2 words
2800   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2801 
2802   // Restore frame locals after moving the frame
2803   __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2804   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2805 
2806   // Call C code.  Need thread but NOT official VM entry
2807   // crud.  We cannot block on this call, no GC can happen.  Call should
2808   // restore return values to their stack-slots with the new SP.
2809   //
2810   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2811 
2812   // Use rfp because the frames look interpreted now
2813   // Don't need the precise return PC here, just precise enough to point into this code blob.
2814   address the_pc = __ pc();
2815   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2816 
2817   __ mov(c_rarg0, rthread);
2818   __ movw(c_rarg1, rcpool); // second arg: exec_mode
2819   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2820   __ blr(rscratch1);
2821 
2822   // Set an oopmap for the call site
2823   // Use the same PC we used for the last java frame
2824   oop_maps->add_gc_map(the_pc - start,
2825                        new OopMap( frame_size_in_words, 0 ));
2826 
2827   // Clear fp AND pc
2828   __ reset_last_Java_frame(true);
2829 
2830   // Collect return values
2831   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2832   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2833   // I think this is useless (throwing pc?)
2834   // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2835 
2836   // Pop self-frame.
2837   __ leave();                           // Epilog
2838 
2839   // Jump to interpreter
2840   __ ret(lr);
2841 
2842   // Make sure all code is generated
2843   masm->flush();
2844 
2845   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2846   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2847 #if INCLUDE_JVMCI
2848   if (EnableJVMCI) {
2849     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2850     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2851   }
2852 #endif
2853 
2854   AOTCodeCache::store_code_blob(*_deopt_blob, AOTCodeEntry::SharedBlob, (uint)SharedStubId::deopt_id, name);
2855 }
2856 
2857 // Number of stack slots between incoming argument block and the start of
2858 // a new frame.  The PROLOG must add this many slots to the stack.  The
2859 // EPILOG must remove this many slots. aarch64 needs two slots for
2860 // return address and fp.
2861 // TODO think this is correct but check
2862 uint SharedRuntime::in_preserve_stack_slots() {
2863   return 4;
2864 }
2865 
2866 uint SharedRuntime::out_preserve_stack_slots() {
2867   return 0;
2868 }
2869 
2870 
2871 VMReg SharedRuntime::thread_register() {
2872   return rthread->as_VMReg();
2873 }
2874 
2875 //------------------------------generate_handler_blob------
2876 //
2877 // Generate a special Compile2Runtime blob that saves all registers,
2878 // and setup oopmap.
2879 //
2880 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2881   assert(is_polling_page_id(id), "expected a polling page stub id");
2882 
2883   // Allocate space for the code.  Setup code generation tools.
2884   const char* name = SharedRuntime::stub_name(id);
2885   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name);
2886   if (blob != nullptr) {
2887     return blob->as_safepoint_blob();
2888   }
2889 
2890   ResourceMark rm;
2891   OopMapSet *oop_maps = new OopMapSet();
2892   OopMap* map;
2893   CodeBuffer buffer(name, 2048, 1024);
2894   MacroAssembler* masm = new MacroAssembler(&buffer);
2895 
2896   address start   = __ pc();
2897   address call_pc = nullptr;
2898   int frame_size_in_words;
2899   bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2900   RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */);
2901 
2902   // When the signal occurred, the LR was either signed and stored on the stack (in which
2903   // case it will be restored from the stack before being used) or unsigned and not stored
2904   // on the stack. Stipping ensures we get the right value.
2905   __ strip_return_address();
2906 
2907   // Save Integer and Float registers.
2908   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2909 
2910   // The following is basically a call_VM.  However, we need the precise
2911   // address of the call in order to generate an oopmap. Hence, we do all the
2912   // work ourselves.
2913 
2914   Label retaddr;
2915   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2916 
2917   // The return address must always be correct so that frame constructor never
2918   // sees an invalid pc.
2919 
2920   if (!cause_return) {
2921     // overwrite the return address pushed by save_live_registers
2922     // Additionally, r20 is a callee-saved register so we can look at
2923     // it later to determine if someone changed the return address for
2924     // us!
2925     __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset()));
2926     __ protect_return_address(r20);
2927     __ str(r20, Address(rfp, wordSize));
2928   }
2929 
2930   // Do the call
2931   __ mov(c_rarg0, rthread);
2932   __ lea(rscratch1, RuntimeAddress(call_ptr));
2933   __ blr(rscratch1);
2934   __ bind(retaddr);
2935 
2936   // Set an oopmap for the call site.  This oopmap will map all
2937   // oop-registers and debug-info registers as callee-saved.  This
2938   // will allow deoptimization at this safepoint to find all possible
2939   // debug-info recordings, as well as let GC find all oops.
2940 
2941   oop_maps->add_gc_map( __ pc() - start, map);
2942 
2943   Label noException;
2944 
2945   __ reset_last_Java_frame(false);
2946 
2947   __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2948 
2949   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2950   __ cbz(rscratch1, noException);
2951 
2952   // Exception pending
2953 
2954   reg_save.restore_live_registers(masm);
2955 
2956   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2957 
2958   // No exception case
2959   __ bind(noException);
2960 
2961   Label no_adjust, bail;
2962   if (!cause_return) {
2963     // If our stashed return pc was modified by the runtime we avoid touching it
2964     __ ldr(rscratch1, Address(rfp, wordSize));
2965     __ cmp(r20, rscratch1);
2966     __ br(Assembler::NE, no_adjust);
2967     __ authenticate_return_address(r20);
2968 
2969 #ifdef ASSERT
2970     // Verify the correct encoding of the poll we're about to skip.
2971     // See NativeInstruction::is_ldrw_to_zr()
2972     __ ldrw(rscratch1, Address(r20));
2973     __ ubfx(rscratch2, rscratch1, 22, 10);
2974     __ cmpw(rscratch2, 0b1011100101);
2975     __ br(Assembler::NE, bail);
2976     __ ubfx(rscratch2, rscratch1, 0, 5);
2977     __ cmpw(rscratch2, 0b11111);
2978     __ br(Assembler::NE, bail);
2979 #endif
2980     // Adjust return pc forward to step over the safepoint poll instruction
2981     __ add(r20, r20, NativeInstruction::instruction_size);
2982     __ protect_return_address(r20);
2983     __ str(r20, Address(rfp, wordSize));
2984   }
2985 
2986   __ bind(no_adjust);
2987   // Normal exit, restore registers and exit.
2988   reg_save.restore_live_registers(masm);
2989 
2990   __ ret(lr);
2991 
2992 #ifdef ASSERT
2993   __ bind(bail);
2994   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2995 #endif
2996 
2997   // Make sure all code is generated
2998   masm->flush();
2999 
3000   // Fill-out other meta info
3001   SafepointBlob* sp_blob = SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3002 
3003   AOTCodeCache::store_code_blob(*sp_blob, AOTCodeEntry::SharedBlob, (uint)id, name);
3004   return sp_blob;
3005 }
3006 
3007 //
3008 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3009 //
3010 // Generate a stub that calls into vm to find out the proper destination
3011 // of a java call. All the argument registers are live at this point
3012 // but since this is generic code we don't know what they are and the caller
3013 // must do any gc of the args.
3014 //
3015 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
3016   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
3017   assert(is_resolve_id(id), "expected a resolve stub id");
3018 
3019   const char* name = SharedRuntime::stub_name(id);
3020   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name);
3021   if (blob != nullptr) {
3022     return blob->as_runtime_stub();
3023   }
3024 
3025   // allocate space for the code
3026   ResourceMark rm;
3027   CodeBuffer buffer(name, 1000, 512);
3028   MacroAssembler* masm                = new MacroAssembler(&buffer);
3029 
3030   int frame_size_in_words;
3031   RegisterSaver reg_save(false /* save_vectors */);
3032 
3033   OopMapSet *oop_maps = new OopMapSet();
3034   OopMap* map = nullptr;
3035 
3036   int start = __ offset();
3037 
3038   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
3039 
3040   int frame_complete = __ offset();
3041 
3042   {
3043     Label retaddr;
3044     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
3045 
3046     __ mov(c_rarg0, rthread);
3047     __ lea(rscratch1, RuntimeAddress(destination));
3048 
3049     __ blr(rscratch1);
3050     __ bind(retaddr);
3051   }
3052 
3053   // Set an oopmap for the call site.
3054   // We need this not only for callee-saved registers, but also for volatile
3055   // registers that the compiler might be keeping live across a safepoint.
3056 
3057   oop_maps->add_gc_map( __ offset() - start, map);
3058 
3059   // r0 contains the address we are going to jump to assuming no exception got installed
3060 
3061   // clear last_Java_sp
3062   __ reset_last_Java_frame(false);
3063   // check for pending exceptions
3064   Label pending;
3065   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
3066   __ cbnz(rscratch1, pending);
3067 
3068   // get the returned Method*
3069   __ get_vm_result_metadata(rmethod, rthread);
3070   __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod)));
3071 
3072   // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
3073   __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes()));
3074   reg_save.restore_live_registers(masm);
3075 
3076   // We are back to the original state on entry and ready to go.
3077 
3078   __ br(rscratch1);
3079 
3080   // Pending exception after the safepoint
3081 
3082   __ bind(pending);
3083 
3084   reg_save.restore_live_registers(masm);
3085 
3086   // exception pending => remove activation and forward to exception handler
3087 
3088   __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset()));
3089 
3090   __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
3091   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3092 
3093   // -------------
3094   // make sure all code is generated
3095   masm->flush();
3096 
3097   // return the  blob
3098   // frame_size_words or bytes??
3099   RuntimeStub* rs_blob = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3100 
3101   AOTCodeCache::store_code_blob(*rs_blob, AOTCodeEntry::SharedBlob, (uint)id, name);
3102   return rs_blob;
3103 }
3104 
3105 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) {
3106   BufferBlob* buf = BufferBlob::create("inline types pack/unpack", 16 * K);
3107   CodeBuffer buffer(buf);
3108   short buffer_locs[20];
3109   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
3110                                          sizeof(buffer_locs)/sizeof(relocInfo));
3111 
3112   MacroAssembler _masm(&buffer);
3113   MacroAssembler* masm = &_masm;
3114 
3115   const Array<SigEntry>* sig_vk = vk->extended_sig();
3116   const Array<VMRegPair>* regs = vk->return_regs();
3117 
3118   int pack_fields_jobject_off = __ offset();
3119   // Resolve pre-allocated buffer from JNI handle.
3120   // We cannot do this in generate_call_stub() because it requires GC code to be initialized.
3121   Register Rresult = r14;  // See StubGenerator::generate_call_stub().
3122   __ ldr(r0, Address(Rresult));
3123   __ resolve_jobject(r0 /* value */,
3124                      rthread /* thread */,
3125                      r12 /* tmp */);
3126   __ str(r0, Address(Rresult));
3127 
3128   int pack_fields_off = __ offset();
3129 
3130   int j = 1;
3131   for (int i = 0; i < sig_vk->length(); i++) {
3132     BasicType bt = sig_vk->at(i)._bt;
3133     if (bt == T_METADATA) {
3134       continue;
3135     }
3136     if (bt == T_VOID) {
3137       if (sig_vk->at(i-1)._bt == T_LONG ||
3138           sig_vk->at(i-1)._bt == T_DOUBLE) {
3139         j++;
3140       }
3141       continue;
3142     }
3143     int off = sig_vk->at(i)._offset;
3144     VMRegPair pair = regs->at(j);
3145     VMReg r_1 = pair.first();
3146     VMReg r_2 = pair.second();
3147     Address to(r0, off);
3148     if (bt == T_FLOAT) {
3149       __ strs(r_1->as_FloatRegister(), to);
3150     } else if (bt == T_DOUBLE) {
3151       __ strd(r_1->as_FloatRegister(), to);
3152     } else {
3153       Register val = r_1->as_Register();
3154       assert_different_registers(to.base(), val, r15, r16, r17);
3155       if (is_reference_type(bt)) {
3156         __ store_heap_oop(to, val, r15, r16, r17, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED);
3157       } else {
3158         __ store_sized_value(to, r_1->as_Register(), type2aelembytes(bt));
3159       }
3160     }
3161     j++;
3162   }
3163   assert(j == regs->length(), "missed a field?");
3164   if (vk->has_nullable_atomic_layout()) {
3165     // Zero the null marker (setting it to 1 would be better but would require an additional register)
3166     __ strb(zr, Address(r0, vk->null_marker_offset()));
3167   }
3168   __ ret(lr);
3169 
3170   int unpack_fields_off = __ offset();
3171 
3172   Label skip;
3173   Label not_null;
3174   __ cbnz(r0, not_null);
3175 
3176   // Return value is null. Zero oop registers to make the GC happy.
3177   j = 1;
3178   for (int i = 0; i < sig_vk->length(); i++) {
3179     BasicType bt = sig_vk->at(i)._bt;
3180     if (bt == T_METADATA) {
3181       continue;
3182     }
3183     if (bt == T_VOID) {
3184       if (sig_vk->at(i-1)._bt == T_LONG ||
3185           sig_vk->at(i-1)._bt == T_DOUBLE) {
3186         j++;
3187       }
3188       continue;
3189     }
3190     if (bt == T_OBJECT || bt == T_ARRAY) {
3191       VMRegPair pair = regs->at(j);
3192       VMReg r_1 = pair.first();
3193       __ mov(r_1->as_Register(), zr);
3194     }
3195     j++;
3196   }
3197   __ b(skip);
3198   __ bind(not_null);
3199 
3200   j = 1;
3201   for (int i = 0; i < sig_vk->length(); i++) {
3202     BasicType bt = sig_vk->at(i)._bt;
3203     if (bt == T_METADATA) {
3204       continue;
3205     }
3206     if (bt == T_VOID) {
3207       if (sig_vk->at(i-1)._bt == T_LONG ||
3208           sig_vk->at(i-1)._bt == T_DOUBLE) {
3209         j++;
3210       }
3211       continue;
3212     }
3213     int off = sig_vk->at(i)._offset;
3214     assert(off > 0, "offset in object should be positive");
3215     VMRegPair pair = regs->at(j);
3216     VMReg r_1 = pair.first();
3217     VMReg r_2 = pair.second();
3218     Address from(r0, off);
3219     if (bt == T_FLOAT) {
3220       __ ldrs(r_1->as_FloatRegister(), from);
3221     } else if (bt == T_DOUBLE) {
3222       __ ldrd(r_1->as_FloatRegister(), from);
3223     } else if (bt == T_OBJECT || bt == T_ARRAY) {
3224       assert_different_registers(r0, r_1->as_Register());
3225       __ load_heap_oop(r_1->as_Register(), from, rscratch1, rscratch2);
3226     } else {
3227       assert(is_java_primitive(bt), "unexpected basic type");
3228       assert_different_registers(r0, r_1->as_Register());
3229 
3230       size_t size_in_bytes = type2aelembytes(bt);
3231       __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN);
3232     }
3233     j++;
3234   }
3235   assert(j == regs->length(), "missed a field?");
3236 
3237   __ bind(skip);
3238 
3239   __ ret(lr);
3240 
3241   __ flush();
3242 
3243   return BufferedInlineTypeBlob::create(&buffer, pack_fields_off, pack_fields_jobject_off, unpack_fields_off);
3244 }
3245 
3246 // Continuation point for throwing of implicit exceptions that are
3247 // not handled in the current activation. Fabricates an exception
3248 // oop and initiates normal exception dispatching in this
3249 // frame. Since we need to preserve callee-saved values (currently
3250 // only for C2, but done for C1 as well) we need a callee-saved oop
3251 // map and therefore have to make these stubs into RuntimeStubs
3252 // rather than BufferBlobs.  If the compiler needs all registers to
3253 // be preserved between the fault point and the exception handler
3254 // then it must assume responsibility for that in
3255 // AbstractCompiler::continuation_for_implicit_null_exception or
3256 // continuation_for_implicit_division_by_zero_exception. All other
3257 // implicit exceptions (e.g., NullPointerException or
3258 // AbstractMethodError on entry) are either at call sites or
3259 // otherwise assume that stack unwinding will be initiated, so
3260 // caller saved registers were assumed volatile in the compiler.
3261 
3262 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
3263   assert(is_throw_id(id), "expected a throw stub id");
3264 
3265   const char* name = SharedRuntime::stub_name(id);
3266 
3267   // Information about frame layout at time of blocking runtime call.
3268   // Note that we only have to preserve callee-saved registers since
3269   // the compilers are responsible for supplying a continuation point
3270   // if they expect all registers to be preserved.
3271   // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0
3272   enum layout {
3273     rfp_off = 0,
3274     rfp_off2,
3275     return_off,
3276     return_off2,
3277     framesize // inclusive of return address
3278   };
3279 
3280   int insts_size = 512;
3281   int locs_size  = 64;
3282 
3283   const char* timer_msg = "SharedRuntime generate_throw_exception";
3284   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
3285 
3286   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name);
3287   if (blob != nullptr) {
3288     return blob->as_runtime_stub();
3289   }
3290 
3291   ResourceMark rm;
3292   CodeBuffer code(name, insts_size, locs_size);
3293   OopMapSet* oop_maps  = new OopMapSet();
3294   MacroAssembler* masm = new MacroAssembler(&code);
3295 
3296   address start = __ pc();
3297 
3298   // This is an inlined and slightly modified version of call_VM
3299   // which has the ability to fetch the return PC out of
3300   // thread-local storage and also sets up last_Java_sp slightly
3301   // differently than the real call_VM
3302 
3303   __ enter(); // Save FP and LR before call
3304 
3305   assert(is_even(framesize/2), "sp not 16-byte aligned");
3306 
3307   // lr and fp are already in place
3308   __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog
3309 
3310   int frame_complete = __ pc() - start;
3311 
3312   // Set up last_Java_sp and last_Java_fp
3313   address the_pc = __ pc();
3314   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
3315 
3316   __ mov(c_rarg0, rthread);
3317   BLOCK_COMMENT("call runtime_entry");
3318   __ lea(rscratch1, RuntimeAddress(runtime_entry));
3319   __ blr(rscratch1);
3320 
3321   // Generate oop map
3322   OopMap* map = new OopMap(framesize, 0);
3323 
3324   oop_maps->add_gc_map(the_pc - start, map);
3325 
3326   __ reset_last_Java_frame(true);
3327 
3328   // Reinitialize the ptrue predicate register, in case the external runtime
3329   // call clobbers ptrue reg, as we may return to SVE compiled code.
3330   __ reinitialize_ptrue();
3331 
3332   __ leave();
3333 
3334   // check for pending exceptions
3335 #ifdef ASSERT
3336   Label L;
3337   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
3338   __ cbnz(rscratch1, L);
3339   __ should_not_reach_here();
3340   __ bind(L);
3341 #endif // ASSERT
3342   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3343 
3344   // codeBlob framesize is in words (not VMRegImpl::slot_size)
3345   RuntimeStub* stub =
3346     RuntimeStub::new_runtime_stub(name,
3347                                   &code,
3348                                   frame_complete,
3349                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3350                                   oop_maps, false);
3351   AOTCodeCache::store_code_blob(*stub, AOTCodeEntry::SharedBlob, (uint)id, name);
3352 
3353   return stub;
3354 }
3355 
3356 #if INCLUDE_JFR
3357 
3358 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) {
3359   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
3360   __ mov(c_rarg0, thread);
3361 }
3362 
3363 // The handle is dereferenced through a load barrier.
3364 static void jfr_epilogue(MacroAssembler* masm) {
3365   __ reset_last_Java_frame(true);
3366 }
3367 
3368 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
3369 // It returns a jobject handle to the event writer.
3370 // The handle is dereferenced and the return value is the event writer oop.
3371 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
3372   enum layout {
3373     rbp_off,
3374     rbpH_off,
3375     return_off,
3376     return_off2,
3377     framesize // inclusive of return address
3378   };
3379 
3380   int insts_size = 1024;
3381   int locs_size = 64;
3382   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
3383   CodeBuffer code(name, insts_size, locs_size);
3384   OopMapSet* oop_maps = new OopMapSet();
3385   MacroAssembler* masm = new MacroAssembler(&code);
3386 
3387   address start = __ pc();
3388   __ enter();
3389   int frame_complete = __ pc() - start;
3390   address the_pc = __ pc();
3391   jfr_prologue(the_pc, masm, rthread);
3392   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
3393   jfr_epilogue(masm);
3394   __ resolve_global_jobject(r0, rscratch1, rscratch2);
3395   __ leave();
3396   __ ret(lr);
3397 
3398   OopMap* map = new OopMap(framesize, 1); // rfp
3399   oop_maps->add_gc_map(the_pc - start, map);
3400 
3401   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
3402     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
3403                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3404                                   oop_maps, false);
3405   return stub;
3406 }
3407 
3408 // For c2: call to return a leased buffer.
3409 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
3410   enum layout {
3411     rbp_off,
3412     rbpH_off,
3413     return_off,
3414     return_off2,
3415     framesize // inclusive of return address
3416   };
3417 
3418   int insts_size = 1024;
3419   int locs_size = 64;
3420 
3421   const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
3422   CodeBuffer code(name, insts_size, locs_size);
3423   OopMapSet* oop_maps = new OopMapSet();
3424   MacroAssembler* masm = new MacroAssembler(&code);
3425 
3426   address start = __ pc();
3427   __ enter();
3428   int frame_complete = __ pc() - start;
3429   address the_pc = __ pc();
3430   jfr_prologue(the_pc, masm, rthread);
3431   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
3432   jfr_epilogue(masm);
3433 
3434   __ leave();
3435   __ ret(lr);
3436 
3437   OopMap* map = new OopMap(framesize, 1); // rfp
3438   oop_maps->add_gc_map(the_pc - start, map);
3439 
3440   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
3441     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
3442                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3443                                   oop_maps, false);
3444   return stub;
3445 }
3446 
3447 #endif // INCLUDE_JFR