1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "classfile/symbolTable.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/debugInfoRec.hpp" 34 #include "code/icBuffer.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/shared/barrierSetAssembler.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "interpreter/interp_masm.hpp" 40 #include "logging/log.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "nativeInst_aarch64.hpp" 43 #include "oops/compiledICHolder.hpp" 44 #include "oops/klass.inline.hpp" 45 #include "oops/method.inline.hpp" 46 #include "prims/methodHandles.hpp" 47 #include "runtime/continuation.hpp" 48 #include "runtime/continuationEntry.inline.hpp" 49 #include "runtime/globals.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/safepointMechanism.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/signature.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/vframeArray.hpp" 56 #include "utilities/align.hpp" 57 #include "utilities/formatBuffer.hpp" 58 #include "vmreg_aarch64.inline.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_Runtime1.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "adfiles/ad_aarch64.hpp" 64 #include "opto/runtime.hpp" 65 #endif 66 #if INCLUDE_JVMCI 67 #include "jvmci/jvmciJavaClasses.hpp" 68 #endif 69 70 #define __ masm-> 71 72 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 73 74 class SimpleRuntimeFrame { 75 76 public: 77 78 // Most of the runtime stubs have this simple frame layout. 79 // This class exists to make the layout shared in one place. 80 // Offsets are for compiler stack slots, which are jints. 81 enum layout { 82 // The frame sender code expects that rbp will be in the "natural" place and 83 // will override any oopMap setting for it. We must therefore force the layout 84 // so that it agrees with the frame sender code. 85 // we don't expect any arg reg save area so aarch64 asserts that 86 // frame::arg_reg_save_area_bytes == 0 87 rfp_off = 0, 88 rfp_off2, 89 return_off, return_off2, 90 framesize 91 }; 92 }; 93 94 // FIXME -- this is used by C1 95 class RegisterSaver { 96 const bool _save_vectors; 97 public: 98 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 99 100 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 101 void restore_live_registers(MacroAssembler* masm); 102 103 // Offsets into the register save area 104 // Used by deoptimization when it is managing result register 105 // values on its own 106 107 int reg_offset_in_bytes(Register r); 108 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 109 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 110 int v0_offset_in_bytes(); 111 112 // Total stack size in bytes for saving sve predicate registers. 113 int total_sve_predicate_in_bytes(); 114 115 // Capture info about frame layout 116 // Note this is only correct when not saving full vectors. 117 enum layout { 118 fpu_state_off = 0, 119 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 120 // The frame sender code expects that rfp will be in 121 // the "natural" place and will override any oopMap 122 // setting for it. We must therefore force the layout 123 // so that it agrees with the frame sender code. 124 r0_off = fpu_state_off + FPUStateSizeInWords, 125 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 126 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 127 reg_save_size = return_off + Register::max_slots_per_register}; 128 129 }; 130 131 int RegisterSaver::reg_offset_in_bytes(Register r) { 132 // The integer registers are located above the floating point 133 // registers in the stack frame pushed by save_live_registers() so the 134 // offset depends on whether we are saving full vectors, and whether 135 // those vectors are NEON or SVE. 136 137 int slots_per_vect = FloatRegister::save_slots_per_register; 138 139 #if COMPILER2_OR_JVMCI 140 if (_save_vectors) { 141 slots_per_vect = FloatRegister::slots_per_neon_register; 142 143 #ifdef COMPILER2 144 if (Matcher::supports_scalable_vector()) { 145 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 146 } 147 #endif 148 } 149 #endif 150 151 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 152 return r0_offset + r->encoding() * wordSize; 153 } 154 155 int RegisterSaver::v0_offset_in_bytes() { 156 // The floating point registers are located above the predicate registers if 157 // they are present in the stack frame pushed by save_live_registers(). So the 158 // offset depends on the saved total predicate vectors in the stack frame. 159 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 160 } 161 162 int RegisterSaver::total_sve_predicate_in_bytes() { 163 #ifdef COMPILER2 164 if (_save_vectors && Matcher::supports_scalable_vector()) { 165 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 166 PRegister::number_of_registers; 167 } 168 #endif 169 return 0; 170 } 171 172 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 173 bool use_sve = false; 174 int sve_vector_size_in_bytes = 0; 175 int sve_vector_size_in_slots = 0; 176 int sve_predicate_size_in_slots = 0; 177 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 178 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 179 180 #ifdef COMPILER2 181 use_sve = Matcher::supports_scalable_vector(); 182 if (use_sve) { 183 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 184 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 185 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 186 } 187 #endif 188 189 #if COMPILER2_OR_JVMCI 190 if (_save_vectors) { 191 int extra_save_slots_per_register = 0; 192 // Save upper half of vector registers 193 if (use_sve) { 194 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 195 } else { 196 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 197 } 198 int extra_vector_bytes = extra_save_slots_per_register * 199 VMRegImpl::stack_slot_size * 200 FloatRegister::number_of_registers; 201 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 202 } 203 #else 204 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 205 #endif 206 207 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 208 reg_save_size * BytesPerInt, 16); 209 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 210 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 211 // The caller will allocate additional_frame_words 212 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 213 // CodeBlob frame size is in words. 214 int frame_size_in_words = frame_size_in_bytes / wordSize; 215 *total_frame_words = frame_size_in_words; 216 217 // Save Integer and Float registers. 218 __ enter(); 219 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 220 221 // Set an oopmap for the call site. This oopmap will map all 222 // oop-registers and debug-info registers as callee-saved. This 223 // will allow deoptimization at this safepoint to find all possible 224 // debug-info recordings, as well as let GC find all oops. 225 226 OopMapSet *oop_maps = new OopMapSet(); 227 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 228 229 for (int i = 0; i < Register::number_of_registers; i++) { 230 Register r = as_Register(i); 231 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 232 // SP offsets are in 4-byte words. 233 // Register slots are 8 bytes wide, 32 floating-point registers. 234 int sp_offset = Register::max_slots_per_register * i + 235 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 236 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 237 } 238 } 239 240 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 241 FloatRegister r = as_FloatRegister(i); 242 int sp_offset = 0; 243 if (_save_vectors) { 244 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 245 (FloatRegister::slots_per_neon_register * i); 246 } else { 247 sp_offset = FloatRegister::save_slots_per_register * i; 248 } 249 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 250 } 251 252 return oop_map; 253 } 254 255 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 256 #ifdef COMPILER2 257 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 258 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 259 #else 260 #if !INCLUDE_JVMCI 261 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 262 #endif 263 __ pop_CPU_state(_save_vectors); 264 #endif 265 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 266 __ authenticate_return_address(); 267 } 268 269 // Is vector's size (in bytes) bigger than a size saved by default? 270 // 8 bytes vector registers are saved by default on AArch64. 271 // The SVE supported min vector size is 8 bytes and we need to save 272 // predicate registers when the vector size is 8 bytes as well. 273 bool SharedRuntime::is_wide_vector(int size) { 274 return size > 8 || (UseSVE > 0 && size >= 8); 275 } 276 277 // --------------------------------------------------------------------------- 278 // Read the array of BasicTypes from a signature, and compute where the 279 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 280 // quantities. Values less than VMRegImpl::stack0 are registers, those above 281 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 282 // as framesizes are fixed. 283 // VMRegImpl::stack0 refers to the first slot 0(sp). 284 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 285 // Register up to Register::number_of_registers are the 64-bit 286 // integer registers. 287 288 // Note: the INPUTS in sig_bt are in units of Java argument words, 289 // which are 64-bit. The OUTPUTS are in 32-bit units. 290 291 // The Java calling convention is a "shifted" version of the C ABI. 292 // By skipping the first C ABI register we can call non-static jni 293 // methods with small numbers of arguments without having to shuffle 294 // the arguments at all. Since we control the java ABI we ought to at 295 // least get some advantage out of it. 296 297 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 298 VMRegPair *regs, 299 int total_args_passed) { 300 301 // Create the mapping between argument positions and 302 // registers. 303 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 304 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 305 }; 306 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 307 j_farg0, j_farg1, j_farg2, j_farg3, 308 j_farg4, j_farg5, j_farg6, j_farg7 309 }; 310 311 312 uint int_args = 0; 313 uint fp_args = 0; 314 uint stk_args = 0; // inc by 2 each time 315 316 for (int i = 0; i < total_args_passed; i++) { 317 switch (sig_bt[i]) { 318 case T_BOOLEAN: 319 case T_CHAR: 320 case T_BYTE: 321 case T_SHORT: 322 case T_INT: 323 if (int_args < Argument::n_int_register_parameters_j) { 324 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 325 } else { 326 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 327 stk_args += 2; 328 } 329 break; 330 case T_VOID: 331 // halves of T_LONG or T_DOUBLE 332 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 333 regs[i].set_bad(); 334 break; 335 case T_LONG: 336 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 337 // fall through 338 case T_OBJECT: 339 case T_ARRAY: 340 case T_ADDRESS: 341 case T_PRIMITIVE_OBJECT: 342 if (int_args < Argument::n_int_register_parameters_j) { 343 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 344 } else { 345 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 346 stk_args += 2; 347 } 348 break; 349 case T_FLOAT: 350 if (fp_args < Argument::n_float_register_parameters_j) { 351 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 352 } else { 353 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 354 stk_args += 2; 355 } 356 break; 357 case T_DOUBLE: 358 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 359 if (fp_args < Argument::n_float_register_parameters_j) { 360 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 361 } else { 362 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 363 stk_args += 2; 364 } 365 break; 366 default: 367 ShouldNotReachHere(); 368 break; 369 } 370 } 371 372 return align_up(stk_args, 2); 373 } 374 375 376 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j; 377 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j; 378 379 int SharedRuntime::java_return_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) { 380 381 // Create the mapping between argument positions and registers. 382 383 static const Register INT_ArgReg[java_return_convention_max_int] = { 384 r0 /* j_rarg7 */, j_rarg6, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0 385 }; 386 387 static const FloatRegister FP_ArgReg[java_return_convention_max_float] = { 388 j_farg0, j_farg1, j_farg2, j_farg3, j_farg4, j_farg5, j_farg6, j_farg7 389 }; 390 391 uint int_args = 0; 392 uint fp_args = 0; 393 394 for (int i = 0; i < total_args_passed; i++) { 395 switch (sig_bt[i]) { 396 case T_BOOLEAN: 397 case T_CHAR: 398 case T_BYTE: 399 case T_SHORT: 400 case T_INT: 401 if (int_args < SharedRuntime::java_return_convention_max_int) { 402 regs[i].set1(INT_ArgReg[int_args]->as_VMReg()); 403 int_args ++; 404 } else { 405 return -1; 406 } 407 break; 408 case T_VOID: 409 // halves of T_LONG or T_DOUBLE 410 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 411 regs[i].set_bad(); 412 break; 413 case T_LONG: 414 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 415 // fall through 416 case T_OBJECT: 417 case T_ARRAY: 418 case T_ADDRESS: 419 // Should T_METADATA be added to java_calling_convention as well ? 420 case T_METADATA: 421 case T_PRIMITIVE_OBJECT: 422 if (int_args < SharedRuntime::java_return_convention_max_int) { 423 regs[i].set2(INT_ArgReg[int_args]->as_VMReg()); 424 int_args ++; 425 } else { 426 return -1; 427 } 428 break; 429 case T_FLOAT: 430 if (fp_args < SharedRuntime::java_return_convention_max_float) { 431 regs[i].set1(FP_ArgReg[fp_args]->as_VMReg()); 432 fp_args ++; 433 } else { 434 return -1; 435 } 436 break; 437 case T_DOUBLE: 438 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 439 if (fp_args < SharedRuntime::java_return_convention_max_float) { 440 regs[i].set2(FP_ArgReg[fp_args]->as_VMReg()); 441 fp_args ++; 442 } else { 443 return -1; 444 } 445 break; 446 default: 447 ShouldNotReachHere(); 448 break; 449 } 450 } 451 452 return int_args + fp_args; 453 } 454 455 // Patch the callers callsite with entry to compiled code if it exists. 456 static void patch_callers_callsite(MacroAssembler *masm) { 457 Label L; 458 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 459 __ cbz(rscratch1, L); 460 461 __ enter(); 462 __ push_CPU_state(); 463 464 // VM needs caller's callsite 465 // VM needs target method 466 // This needs to be a long call since we will relocate this adapter to 467 // the codeBuffer and it may not reach 468 469 #ifndef PRODUCT 470 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 471 #endif 472 473 __ mov(c_rarg0, rmethod); 474 __ mov(c_rarg1, lr); 475 __ authenticate_return_address(c_rarg1, rscratch1); 476 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 477 __ blr(rscratch1); 478 479 // Explicit isb required because fixup_callers_callsite may change the code 480 // stream. 481 __ safepoint_isb(); 482 483 __ pop_CPU_state(); 484 // restore sp 485 __ leave(); 486 __ bind(L); 487 } 488 489 // For each inline type argument, sig includes the list of fields of 490 // the inline type. This utility function computes the number of 491 // arguments for the call if inline types are passed by reference (the 492 // calling convention the interpreter expects). 493 static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) { 494 int total_args_passed = 0; 495 if (InlineTypePassFieldsAsArgs) { 496 for (int i = 0; i < sig_extended->length(); i++) { 497 BasicType bt = sig_extended->at(i)._bt; 498 if (bt == T_PRIMITIVE_OBJECT) { 499 // In sig_extended, an inline type argument starts with: 500 // T_PRIMITIVE_OBJECT, followed by the types of the fields of the 501 // inline type and T_VOID to mark the end of the value 502 // type. Inline types are flattened so, for instance, in the 503 // case of an inline type with an int field and an inline type 504 // field that itself has 2 fields, an int and a long: 505 // T_PRIMITIVE_OBJECT T_INT T_PRIMITIVE_OBJECT T_INT T_LONG T_VOID (second 506 // slot for the T_LONG) T_VOID (inner T_PRIMITIVE_OBJECT) T_VOID 507 // (outer T_PRIMITIVE_OBJECT) 508 total_args_passed++; 509 int vt = 1; 510 do { 511 i++; 512 BasicType bt = sig_extended->at(i)._bt; 513 BasicType prev_bt = sig_extended->at(i-1)._bt; 514 if (bt == T_PRIMITIVE_OBJECT) { 515 vt++; 516 } else if (bt == T_VOID && 517 prev_bt != T_LONG && 518 prev_bt != T_DOUBLE) { 519 vt--; 520 } 521 } while (vt != 0); 522 } else { 523 total_args_passed++; 524 } 525 } 526 } else { 527 total_args_passed = sig_extended->length(); 528 } 529 530 return total_args_passed; 531 } 532 533 534 static void gen_c2i_adapter_helper(MacroAssembler* masm, 535 BasicType bt, 536 BasicType prev_bt, 537 size_t size_in_bytes, 538 const VMRegPair& reg_pair, 539 const Address& to, 540 Register tmp1, 541 Register tmp2, 542 Register tmp3, 543 int extraspace, 544 bool is_oop) { 545 assert(bt != T_PRIMITIVE_OBJECT || !InlineTypePassFieldsAsArgs, "no inline type here"); 546 if (bt == T_VOID) { 547 assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half"); 548 return; 549 } 550 551 // Say 4 args: 552 // i st_off 553 // 0 32 T_LONG 554 // 1 24 T_VOID 555 // 2 16 T_OBJECT 556 // 3 8 T_BOOL 557 // - 0 return address 558 // 559 // However to make thing extra confusing. Because we can fit a Java long/double in 560 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 561 // leaves one slot empty and only stores to a single slot. In this case the 562 // slot that is occupied is the T_VOID slot. See I said it was confusing. 563 564 bool wide = (size_in_bytes == wordSize); 565 VMReg r_1 = reg_pair.first(); 566 VMReg r_2 = reg_pair.second(); 567 assert(r_2->is_valid() == wide, "invalid size"); 568 if (!r_1->is_valid()) { 569 assert(!r_2->is_valid(), ""); 570 return; 571 } 572 573 if (!r_1->is_FloatRegister()) { 574 Register val = r25; 575 if (r_1->is_stack()) { 576 // memory to memory use r25 (scratch registers is used by store_heap_oop) 577 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 578 __ load_sized_value(val, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 579 } else { 580 val = r_1->as_Register(); 581 } 582 assert_different_registers(to.base(), val, tmp1, tmp2, tmp3); 583 if (is_oop) { 584 __ store_heap_oop(to, val, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 585 } else { 586 __ store_sized_value(to, val, size_in_bytes); 587 } 588 } else { 589 if (wide) { 590 __ strd(r_1->as_FloatRegister(), to); 591 } else { 592 // only a float use just part of the slot 593 __ strs(r_1->as_FloatRegister(), to); 594 } 595 } 596 } 597 598 static void gen_c2i_adapter(MacroAssembler *masm, 599 const GrowableArray<SigEntry>* sig_extended, 600 const VMRegPair *regs, 601 bool requires_clinit_barrier, 602 address& c2i_no_clinit_check_entry, 603 Label& skip_fixup, 604 address start, 605 OopMapSet* oop_maps, 606 int& frame_complete, 607 int& frame_size_in_words, 608 bool alloc_inline_receiver) { 609 if (requires_clinit_barrier && VM_Version::supports_fast_class_init_checks()) { 610 Label L_skip_barrier; 611 612 { // Bypass the barrier for non-static methods 613 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 614 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 615 __ br(Assembler::EQ, L_skip_barrier); // non-static 616 } 617 618 __ load_method_holder(rscratch2, rmethod); 619 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 620 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 621 622 __ bind(L_skip_barrier); 623 c2i_no_clinit_check_entry = __ pc(); 624 } 625 626 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 627 bs->c2i_entry_barrier(masm); 628 629 // Before we get into the guts of the C2I adapter, see if we should be here 630 // at all. We've come from compiled code and are attempting to jump to the 631 // interpreter, which means the caller made a static call to get here 632 // (vcalls always get a compiled target if there is one). Check for a 633 // compiled target. If there is one, we need to patch the caller's call. 634 patch_callers_callsite(masm); 635 636 __ bind(skip_fixup); 637 638 // Name some registers to be used in the following code. We can use 639 // anything except r0-r7 which are arguments in the Java calling 640 // convention, rmethod (r12), and r13 which holds the outgoing sender 641 // SP for the interpreter. 642 Register buf_array = r10; // Array of buffered inline types 643 Register buf_oop = r11; // Buffered inline type oop 644 Register tmp1 = r15; 645 Register tmp2 = r16; 646 Register tmp3 = r17; 647 648 if (InlineTypePassFieldsAsArgs) { 649 // Is there an inline type argument? 650 bool has_inline_argument = false; 651 for (int i = 0; i < sig_extended->length() && !has_inline_argument; i++) { 652 has_inline_argument = (sig_extended->at(i)._bt == T_PRIMITIVE_OBJECT); 653 } 654 if (has_inline_argument) { 655 // There is at least an inline type argument: we're coming from 656 // compiled code so we have no buffers to back the inline types 657 // Allocate the buffers here with a runtime call. 658 RegisterSaver reg_save(false /* save_vectors */); 659 OopMap* map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 660 661 frame_complete = __ offset(); 662 address the_pc = __ pc(); 663 664 Label retaddr; 665 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 666 667 __ mov(c_rarg0, rthread); 668 __ mov(c_rarg1, rmethod); 669 __ mov(c_rarg2, (int64_t)alloc_inline_receiver); 670 671 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_inline_types))); 672 __ blr(rscratch1); 673 __ bind(retaddr); 674 675 oop_maps->add_gc_map(__ pc() - start, map); 676 __ reset_last_Java_frame(false); 677 678 reg_save.restore_live_registers(masm); 679 680 Label no_exception; 681 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 682 __ cbz(rscratch1, no_exception); 683 684 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 685 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 686 __ b(RuntimeAddress(StubRoutines::forward_exception_entry())); 687 688 __ bind(no_exception); 689 690 // We get an array of objects from the runtime call 691 __ get_vm_result(buf_array, rthread); 692 __ get_vm_result_2(rmethod, rthread); // TODO: required to keep the callee Method live? 693 } 694 } 695 696 // Since all args are passed on the stack, total_args_passed * 697 // Interpreter::stackElementSize is the space we need. 698 699 int total_args_passed = compute_total_args_passed_int(sig_extended); 700 int extraspace = total_args_passed * Interpreter::stackElementSize; 701 702 // stack is aligned, keep it that way 703 extraspace = align_up(extraspace, StackAlignmentInBytes); 704 705 // set senderSP value 706 __ mov(r19_sender_sp, sp); 707 708 __ sub(sp, sp, extraspace); 709 710 // Now write the args into the outgoing interpreter space 711 712 // next_arg_comp is the next argument from the compiler point of 713 // view (inline type fields are passed in registers/on the stack). In 714 // sig_extended, an inline type argument starts with: T_PRIMITIVE_OBJECT, 715 // followed by the types of the fields of the inline type and T_VOID 716 // to mark the end of the inline type. ignored counts the number of 717 // T_PRIMITIVE_OBJECT/T_VOID. next_vt_arg is the next inline type argument: 718 // used to get the buffer for that argument from the pool of buffers 719 // we allocated above and want to pass to the 720 // interpreter. next_arg_int is the next argument from the 721 // interpreter point of view (inline types are passed by reference). 722 for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0; 723 next_arg_comp < sig_extended->length(); next_arg_comp++) { 724 assert(ignored <= next_arg_comp, "shouldn't skip over more slots than there are arguments"); 725 assert(next_arg_int <= total_args_passed, "more arguments for the interpreter than expected?"); 726 BasicType bt = sig_extended->at(next_arg_comp)._bt; 727 int st_off = (total_args_passed - next_arg_int - 1) * Interpreter::stackElementSize; 728 if (!InlineTypePassFieldsAsArgs || bt != T_PRIMITIVE_OBJECT) { 729 int next_off = st_off - Interpreter::stackElementSize; 730 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off; 731 const VMRegPair reg_pair = regs[next_arg_comp-ignored]; 732 size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4; 733 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 734 size_in_bytes, reg_pair, Address(sp, offset), tmp1, tmp2, tmp3, extraspace, false); 735 next_arg_int++; 736 #ifdef ASSERT 737 if (bt == T_LONG || bt == T_DOUBLE) { 738 // Overwrite the unused slot with known junk 739 __ mov(rscratch1, CONST64(0xdeadffffdeadaaaa)); 740 __ str(rscratch1, Address(sp, st_off)); 741 } 742 #endif /* ASSERT */ 743 } else { 744 ignored++; 745 // get the buffer from the just allocated pool of buffers 746 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_PRIMITIVE_OBJECT); 747 __ load_heap_oop(buf_oop, Address(buf_array, index), tmp1, tmp2); 748 next_vt_arg++; next_arg_int++; 749 int vt = 1; 750 // write fields we get from compiled code in registers/stack 751 // slots to the buffer: we know we are done with that inline type 752 // argument when we hit the T_VOID that acts as an end of inline 753 // type delimiter for this inline type. Inline types are flattened 754 // so we might encounter embedded inline types. Each entry in 755 // sig_extended contains a field offset in the buffer. 756 Label L_null; 757 do { 758 next_arg_comp++; 759 BasicType bt = sig_extended->at(next_arg_comp)._bt; 760 BasicType prev_bt = sig_extended->at(next_arg_comp - 1)._bt; 761 if (bt == T_PRIMITIVE_OBJECT) { 762 vt++; 763 ignored++; 764 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 765 vt--; 766 ignored++; 767 } else { 768 int off = sig_extended->at(next_arg_comp)._offset; 769 if (off == -1) { 770 // Nullable inline type argument, emit null check 771 VMReg reg = regs[next_arg_comp-ignored].first(); 772 Label L_notNull; 773 if (reg->is_stack()) { 774 int ld_off = reg->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 775 __ ldrb(tmp1, Address(sp, ld_off)); 776 __ cbnz(tmp1, L_notNull); 777 } else { 778 __ cbnz(reg->as_Register(), L_notNull); 779 } 780 __ str(zr, Address(sp, st_off)); 781 __ b(L_null); 782 __ bind(L_notNull); 783 continue; 784 } 785 assert(off > 0, "offset in object should be positive"); 786 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 787 bool is_oop = is_reference_type(bt); 788 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 789 size_in_bytes, regs[next_arg_comp-ignored], Address(buf_oop, off), tmp1, tmp2, tmp3, extraspace, is_oop); 790 } 791 } while (vt != 0); 792 // pass the buffer to the interpreter 793 __ str(buf_oop, Address(sp, st_off)); 794 __ bind(L_null); 795 } 796 } 797 798 __ mov(esp, sp); // Interp expects args on caller's expression stack 799 800 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 801 __ br(rscratch1); 802 } 803 804 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, int comp_args_on_stack, const GrowableArray<SigEntry>* sig, const VMRegPair *regs) { 805 806 807 // Note: r19_sender_sp contains the senderSP on entry. We must 808 // preserve it since we may do a i2c -> c2i transition if we lose a 809 // race where compiled code goes non-entrant while we get args 810 // ready. 811 812 // Adapters are frameless. 813 814 // An i2c adapter is frameless because the *caller* frame, which is 815 // interpreted, routinely repairs its own esp (from 816 // interpreter_frame_last_sp), even if a callee has modified the 817 // stack pointer. It also recalculates and aligns sp. 818 819 // A c2i adapter is frameless because the *callee* frame, which is 820 // interpreted, routinely repairs its caller's sp (from sender_sp, 821 // which is set up via the senderSP register). 822 823 // In other words, if *either* the caller or callee is interpreted, we can 824 // get the stack pointer repaired after a call. 825 826 // This is why c2i and i2c adapters cannot be indefinitely composed. 827 // In particular, if a c2i adapter were to somehow call an i2c adapter, 828 // both caller and callee would be compiled methods, and neither would 829 // clean up the stack pointer changes performed by the two adapters. 830 // If this happens, control eventually transfers back to the compiled 831 // caller, but with an uncorrected stack, causing delayed havoc. 832 833 if (VerifyAdapterCalls && 834 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 835 #if 0 836 // So, let's test for cascading c2i/i2c adapters right now. 837 // assert(Interpreter::contains($return_addr) || 838 // StubRoutines::contains($return_addr), 839 // "i2c adapter must return to an interpreter frame"); 840 __ block_comment("verify_i2c { "); 841 Label L_ok; 842 if (Interpreter::code() != nullptr) { 843 range_check(masm, rax, r11, 844 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 845 L_ok); 846 } 847 if (StubRoutines::initial_stubs_code() != nullptr) { 848 range_check(masm, rax, r11, 849 StubRoutines::initial_stubs_code()->code_begin(), 850 StubRoutines::initial_stubs_code()->code_end(), 851 L_ok); 852 } 853 if (StubRoutines::final_stubs_code() != nullptr) { 854 range_check(masm, rax, r11, 855 StubRoutines::final_stubs_code()->code_begin(), 856 StubRoutines::final_stubs_code()->code_end(), 857 L_ok); 858 } 859 const char* msg = "i2c adapter must return to an interpreter frame"; 860 __ block_comment(msg); 861 __ stop(msg); 862 __ bind(L_ok); 863 __ block_comment("} verify_i2ce "); 864 #endif 865 } 866 867 // Cut-out for having no stack args. 868 int comp_words_on_stack = 0; 869 if (comp_args_on_stack) { 870 comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 871 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 872 __ andr(sp, rscratch1, -16); 873 } 874 875 // Will jump to the compiled code just as if compiled code was doing it. 876 // Pre-load the register-jump target early, to schedule it better. 877 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_inline_offset()))); 878 879 #if INCLUDE_JVMCI 880 if (EnableJVMCI) { 881 // check if this call should be routed towards a specific entry point 882 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 883 Label no_alternative_target; 884 __ cbz(rscratch2, no_alternative_target); 885 __ mov(rscratch1, rscratch2); 886 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 887 __ bind(no_alternative_target); 888 } 889 #endif // INCLUDE_JVMCI 890 891 int total_args_passed = sig->length(); 892 893 // Now generate the shuffle code. 894 for (int i = 0; i < total_args_passed; i++) { 895 BasicType bt = sig->at(i)._bt; 896 897 assert(bt != T_PRIMITIVE_OBJECT, "i2c adapter doesn't unpack inline typ args"); 898 if (bt == T_VOID) { 899 assert(i > 0 && (sig->at(i - 1)._bt == T_LONG || sig->at(i - 1)._bt == T_DOUBLE), "missing half"); 900 continue; 901 } 902 903 // Pick up 0, 1 or 2 words from SP+offset. 904 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); 905 906 // Load in argument order going down. 907 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 908 // Point to interpreter value (vs. tag) 909 int next_off = ld_off - Interpreter::stackElementSize; 910 // 911 // 912 // 913 VMReg r_1 = regs[i].first(); 914 VMReg r_2 = regs[i].second(); 915 if (!r_1->is_valid()) { 916 assert(!r_2->is_valid(), ""); 917 continue; 918 } 919 if (r_1->is_stack()) { 920 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 921 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 922 if (!r_2->is_valid()) { 923 // sign extend??? 924 __ ldrsw(rscratch2, Address(esp, ld_off)); 925 __ str(rscratch2, Address(sp, st_off)); 926 } else { 927 // 928 // We are using two optoregs. This can be either T_OBJECT, 929 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 930 // two slots but only uses one for thr T_LONG or T_DOUBLE case 931 // So we must adjust where to pick up the data to match the 932 // interpreter. 933 // 934 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 935 // are accessed as negative so LSW is at LOW address 936 937 // ld_off is MSW so get LSW 938 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 939 __ ldr(rscratch2, Address(esp, offset)); 940 // st_off is LSW (i.e. reg.first()) 941 __ str(rscratch2, Address(sp, st_off)); 942 } 943 } else if (r_1->is_Register()) { // Register argument 944 Register r = r_1->as_Register(); 945 if (r_2->is_valid()) { 946 // 947 // We are using two VMRegs. This can be either T_OBJECT, 948 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 949 // two slots but only uses one for thr T_LONG or T_DOUBLE case 950 // So we must adjust where to pick up the data to match the 951 // interpreter. 952 953 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 954 955 // this can be a misaligned move 956 __ ldr(r, Address(esp, offset)); 957 } else { 958 // sign extend and use a full word? 959 __ ldrw(r, Address(esp, ld_off)); 960 } 961 } else { 962 if (!r_2->is_valid()) { 963 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 964 } else { 965 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 966 } 967 } 968 } 969 970 971 __ mov(rscratch2, rscratch1); 972 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 973 __ mov(rscratch1, rscratch2); 974 975 // 6243940 We might end up in handle_wrong_method if 976 // the callee is deoptimized as we race thru here. If that 977 // happens we don't want to take a safepoint because the 978 // caller frame will look interpreted and arguments are now 979 // "compiled" so it is much better to make this transition 980 // invisible to the stack walking code. Unfortunately if 981 // we try and find the callee by normal means a safepoint 982 // is possible. So we stash the desired callee in the thread 983 // and the vm will find there should this case occur. 984 985 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 986 __ br(rscratch1); 987 } 988 989 static void gen_inline_cache_check(MacroAssembler *masm, Label& skip_fixup) { 990 991 Label ok; 992 993 Register holder = rscratch2; 994 Register receiver = j_rarg0; 995 Register tmp = r10; // A call-clobbered register not used for arg passing 996 997 // ------------------------------------------------------------------------- 998 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 999 // to the interpreter. The args start out packed in the compiled layout. They 1000 // need to be unpacked into the interpreter layout. This will almost always 1001 // require some stack space. We grow the current (compiled) stack, then repack 1002 // the args. We finally end in a jump to the generic interpreter entry point. 1003 // On exit from the interpreter, the interpreter will restore our SP (lest the 1004 // compiled code, which relies solely on SP and not FP, get sick). 1005 1006 { 1007 __ block_comment("c2i_unverified_entry {"); 1008 __ load_klass(rscratch1, receiver); 1009 __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 1010 __ cmp(rscratch1, tmp); 1011 __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 1012 __ br(Assembler::EQ, ok); 1013 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1014 1015 __ bind(ok); 1016 // Method might have been compiled since the call site was patched to 1017 // interpreted; if that is the case treat it as a miss so we can get 1018 // the call site corrected. 1019 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 1020 __ cbz(rscratch1, skip_fixup); 1021 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1022 __ block_comment("} c2i_unverified_entry"); 1023 } 1024 } 1025 1026 1027 // --------------------------------------------------------------- 1028 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler* masm, 1029 int comp_args_on_stack, 1030 const GrowableArray<SigEntry>* sig, 1031 const VMRegPair* regs, 1032 const GrowableArray<SigEntry>* sig_cc, 1033 const VMRegPair* regs_cc, 1034 const GrowableArray<SigEntry>* sig_cc_ro, 1035 const VMRegPair* regs_cc_ro, 1036 AdapterFingerPrint* fingerprint, 1037 AdapterBlob*& new_adapter, 1038 bool allocate_code_blob) { 1039 1040 address i2c_entry = __ pc(); 1041 gen_i2c_adapter(masm, comp_args_on_stack, sig, regs); 1042 1043 address c2i_unverified_entry = __ pc(); 1044 address c2i_unverified_inline_entry = __ pc(); 1045 Label skip_fixup; 1046 1047 gen_inline_cache_check(masm, skip_fixup); 1048 1049 OopMapSet* oop_maps = new OopMapSet(); 1050 int frame_complete = CodeOffsets::frame_never_safe; 1051 int frame_size_in_words = 0; 1052 1053 // Scalarized c2i adapter with non-scalarized receiver (i.e., don't pack receiver) 1054 address c2i_no_clinit_check_entry = nullptr; 1055 address c2i_inline_ro_entry = __ pc(); 1056 if (regs_cc != regs_cc_ro) { 1057 // No class init barrier needed because method is guaranteed to be non-static 1058 gen_c2i_adapter(masm, sig_cc_ro, regs_cc_ro, /* requires_clinit_barrier = */ false, c2i_no_clinit_check_entry, 1059 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 1060 skip_fixup.reset(); 1061 } 1062 1063 // Scalarized c2i adapter 1064 address c2i_entry = __ pc(); 1065 address c2i_inline_entry = __ pc(); 1066 gen_c2i_adapter(masm, sig_cc, regs_cc, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1067 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ true); 1068 1069 // Non-scalarized c2i adapter 1070 if (regs != regs_cc) { 1071 c2i_unverified_inline_entry = __ pc(); 1072 Label inline_entry_skip_fixup; 1073 gen_inline_cache_check(masm, inline_entry_skip_fixup); 1074 1075 c2i_inline_entry = __ pc(); 1076 gen_c2i_adapter(masm, sig, regs, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1077 inline_entry_skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 1078 } 1079 1080 1081 // The c2i adapter might safepoint and trigger a GC. The caller must make sure that 1082 // the GC knows about the location of oop argument locations passed to the c2i adapter. 1083 if (allocate_code_blob) { 1084 bool caller_must_gc_arguments = (regs != regs_cc); 1085 new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments); 1086 } 1087 1088 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 1089 } 1090 1091 static int c_calling_convention_priv(const BasicType *sig_bt, 1092 VMRegPair *regs, 1093 VMRegPair *regs2, 1094 int total_args_passed) { 1095 assert(regs2 == nullptr, "not needed on AArch64"); 1096 1097 // We return the amount of VMRegImpl stack slots we need to reserve for all 1098 // the arguments NOT counting out_preserve_stack_slots. 1099 1100 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1101 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 1102 }; 1103 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1104 c_farg0, c_farg1, c_farg2, c_farg3, 1105 c_farg4, c_farg5, c_farg6, c_farg7 1106 }; 1107 1108 uint int_args = 0; 1109 uint fp_args = 0; 1110 uint stk_args = 0; // inc by 2 each time 1111 1112 for (int i = 0; i < total_args_passed; i++) { 1113 switch (sig_bt[i]) { 1114 case T_BOOLEAN: 1115 case T_CHAR: 1116 case T_BYTE: 1117 case T_SHORT: 1118 case T_INT: 1119 if (int_args < Argument::n_int_register_parameters_c) { 1120 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 1121 } else { 1122 #ifdef __APPLE__ 1123 // Less-than word types are stored one after another. 1124 // The code is unable to handle this so bailout. 1125 return -1; 1126 #endif 1127 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1128 stk_args += 2; 1129 } 1130 break; 1131 case T_LONG: 1132 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1133 // fall through 1134 case T_OBJECT: 1135 case T_ARRAY: 1136 case T_PRIMITIVE_OBJECT: 1137 case T_ADDRESS: 1138 case T_METADATA: 1139 if (int_args < Argument::n_int_register_parameters_c) { 1140 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 1141 } else { 1142 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1143 stk_args += 2; 1144 } 1145 break; 1146 case T_FLOAT: 1147 if (fp_args < Argument::n_float_register_parameters_c) { 1148 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 1149 } else { 1150 #ifdef __APPLE__ 1151 // Less-than word types are stored one after another. 1152 // The code is unable to handle this so bailout. 1153 return -1; 1154 #endif 1155 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1156 stk_args += 2; 1157 } 1158 break; 1159 case T_DOUBLE: 1160 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1161 if (fp_args < Argument::n_float_register_parameters_c) { 1162 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 1163 } else { 1164 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1165 stk_args += 2; 1166 } 1167 break; 1168 case T_VOID: // Halves of longs and doubles 1169 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1170 regs[i].set_bad(); 1171 break; 1172 default: 1173 ShouldNotReachHere(); 1174 break; 1175 } 1176 } 1177 1178 return stk_args; 1179 } 1180 1181 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1182 uint num_bits, 1183 uint total_args_passed) { 1184 Unimplemented(); 1185 return 0; 1186 } 1187 1188 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1189 VMRegPair *regs, 1190 VMRegPair *regs2, 1191 int total_args_passed) 1192 { 1193 int result = c_calling_convention_priv(sig_bt, regs, regs2, total_args_passed); 1194 guarantee(result >= 0, "Unsupported arguments configuration"); 1195 return result; 1196 } 1197 1198 1199 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1200 // We always ignore the frame_slots arg and just use the space just below frame pointer 1201 // which by this time is free to use 1202 switch (ret_type) { 1203 case T_FLOAT: 1204 __ strs(v0, Address(rfp, -wordSize)); 1205 break; 1206 case T_DOUBLE: 1207 __ strd(v0, Address(rfp, -wordSize)); 1208 break; 1209 case T_VOID: break; 1210 default: { 1211 __ str(r0, Address(rfp, -wordSize)); 1212 } 1213 } 1214 } 1215 1216 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1217 // We always ignore the frame_slots arg and just use the space just below frame pointer 1218 // which by this time is free to use 1219 switch (ret_type) { 1220 case T_FLOAT: 1221 __ ldrs(v0, Address(rfp, -wordSize)); 1222 break; 1223 case T_DOUBLE: 1224 __ ldrd(v0, Address(rfp, -wordSize)); 1225 break; 1226 case T_VOID: break; 1227 default: { 1228 __ ldr(r0, Address(rfp, -wordSize)); 1229 } 1230 } 1231 } 1232 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1233 RegSet x; 1234 for ( int i = first_arg ; i < arg_count ; i++ ) { 1235 if (args[i].first()->is_Register()) { 1236 x = x + args[i].first()->as_Register(); 1237 } else if (args[i].first()->is_FloatRegister()) { 1238 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 1239 } 1240 } 1241 __ push(x, sp); 1242 } 1243 1244 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1245 RegSet x; 1246 for ( int i = first_arg ; i < arg_count ; i++ ) { 1247 if (args[i].first()->is_Register()) { 1248 x = x + args[i].first()->as_Register(); 1249 } else { 1250 ; 1251 } 1252 } 1253 __ pop(x, sp); 1254 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1255 if (args[i].first()->is_Register()) { 1256 ; 1257 } else if (args[i].first()->is_FloatRegister()) { 1258 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 1259 } 1260 } 1261 } 1262 1263 static void verify_oop_args(MacroAssembler* masm, 1264 const methodHandle& method, 1265 const BasicType* sig_bt, 1266 const VMRegPair* regs) { 1267 Register temp_reg = r19; // not part of any compiled calling seq 1268 if (VerifyOops) { 1269 for (int i = 0; i < method->size_of_parameters(); i++) { 1270 if (sig_bt[i] == T_OBJECT || 1271 sig_bt[i] == T_ARRAY) { 1272 VMReg r = regs[i].first(); 1273 assert(r->is_valid(), "bad oop arg"); 1274 if (r->is_stack()) { 1275 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1276 __ verify_oop(temp_reg); 1277 } else { 1278 __ verify_oop(r->as_Register()); 1279 } 1280 } 1281 } 1282 } 1283 } 1284 1285 // on exit, sp points to the ContinuationEntry 1286 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 1287 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 1288 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1289 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1290 1291 stack_slots += (int)ContinuationEntry::size()/wordSize; 1292 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 1293 1294 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1295 1296 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1297 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1298 __ mov(rscratch1, sp); // we can't use sp as the source in str 1299 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1300 1301 return map; 1302 } 1303 1304 // on entry c_rarg1 points to the continuation 1305 // sp points to ContinuationEntry 1306 // c_rarg3 -- isVirtualThread 1307 static void fill_continuation_entry(MacroAssembler* masm) { 1308 #ifdef ASSERT 1309 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1310 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1311 #endif 1312 1313 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1314 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1315 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1316 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1317 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1318 1319 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1320 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1321 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1322 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1323 1324 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1325 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1326 } 1327 1328 // on entry, sp points to the ContinuationEntry 1329 // on exit, rfp points to the spilled rfp in the entry frame 1330 static void continuation_enter_cleanup(MacroAssembler* masm) { 1331 #ifndef PRODUCT 1332 Label OK; 1333 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1334 __ cmp(sp, rscratch1); 1335 __ br(Assembler::EQ, OK); 1336 __ stop("incorrect sp1"); 1337 __ bind(OK); 1338 #endif 1339 1340 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1341 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1342 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1343 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1344 1345 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1346 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1347 __ add(rfp, sp, (int)ContinuationEntry::size()); 1348 } 1349 1350 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1351 // On entry: c_rarg1 -- the continuation object 1352 // c_rarg2 -- isContinue 1353 // c_rarg3 -- isVirtualThread 1354 static void gen_continuation_enter(MacroAssembler* masm, 1355 const methodHandle& method, 1356 const BasicType* sig_bt, 1357 const VMRegPair* regs, 1358 int& exception_offset, 1359 OopMapSet*oop_maps, 1360 int& frame_complete, 1361 int& stack_slots, 1362 int& interpreted_entry_offset, 1363 int& compiled_entry_offset) { 1364 //verify_oop_args(masm, method, sig_bt, regs); 1365 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1366 1367 address start = __ pc(); 1368 1369 Label call_thaw, exit; 1370 1371 // i2i entry used at interp_only_mode only 1372 interpreted_entry_offset = __ pc() - start; 1373 { 1374 1375 #ifdef ASSERT 1376 Label is_interp_only; 1377 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1378 __ cbnzw(rscratch1, is_interp_only); 1379 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1380 __ bind(is_interp_only); 1381 #endif 1382 1383 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1384 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1385 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1386 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1387 __ push_cont_fastpath(rthread); 1388 1389 __ enter(); 1390 stack_slots = 2; // will be adjusted in setup 1391 OopMap* map = continuation_enter_setup(masm, stack_slots); 1392 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1393 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1394 1395 fill_continuation_entry(masm); 1396 1397 __ cbnz(c_rarg2, call_thaw); 1398 1399 const address tr_call = __ trampoline_call(resolve); 1400 if (tr_call == nullptr) { 1401 fatal("CodeCache is full at gen_continuation_enter"); 1402 } 1403 1404 oop_maps->add_gc_map(__ pc() - start, map); 1405 __ post_call_nop(); 1406 1407 __ b(exit); 1408 1409 CodeBuffer* cbuf = masm->code_section()->outer(); 1410 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1411 if (stub == nullptr) { 1412 fatal("CodeCache is full at gen_continuation_enter"); 1413 } 1414 } 1415 1416 // compiled entry 1417 __ align(CodeEntryAlignment); 1418 compiled_entry_offset = __ pc() - start; 1419 1420 __ enter(); 1421 stack_slots = 2; // will be adjusted in setup 1422 OopMap* map = continuation_enter_setup(masm, stack_slots); 1423 frame_complete = __ pc() - start; 1424 1425 fill_continuation_entry(masm); 1426 1427 __ cbnz(c_rarg2, call_thaw); 1428 1429 const address tr_call = __ trampoline_call(resolve); 1430 if (tr_call == nullptr) { 1431 fatal("CodeCache is full at gen_continuation_enter"); 1432 } 1433 1434 oop_maps->add_gc_map(__ pc() - start, map); 1435 __ post_call_nop(); 1436 1437 __ b(exit); 1438 1439 __ bind(call_thaw); 1440 1441 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1442 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1443 ContinuationEntry::_return_pc_offset = __ pc() - start; 1444 __ post_call_nop(); 1445 1446 __ bind(exit); 1447 continuation_enter_cleanup(masm); 1448 __ leave(); 1449 __ ret(lr); 1450 1451 /// exception handling 1452 1453 exception_offset = __ pc() - start; 1454 { 1455 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1456 1457 continuation_enter_cleanup(masm); 1458 1459 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1460 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1461 1462 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1463 1464 __ mov(r1, r0); // the exception handler 1465 __ mov(r0, r19); // restore return value contaning the exception oop 1466 __ verify_oop(r0); 1467 1468 __ leave(); 1469 __ mov(r3, lr); 1470 __ br(r1); // the exception handler 1471 } 1472 1473 CodeBuffer* cbuf = masm->code_section()->outer(); 1474 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1475 if (stub == nullptr) { 1476 fatal("CodeCache is full at gen_continuation_enter"); 1477 } 1478 } 1479 1480 static void gen_continuation_yield(MacroAssembler* masm, 1481 const methodHandle& method, 1482 const BasicType* sig_bt, 1483 const VMRegPair* regs, 1484 OopMapSet* oop_maps, 1485 int& frame_complete, 1486 int& stack_slots, 1487 int& compiled_entry_offset) { 1488 enum layout { 1489 rfp_off1, 1490 rfp_off2, 1491 lr_off, 1492 lr_off2, 1493 framesize // inclusive of return address 1494 }; 1495 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1496 stack_slots = framesize / VMRegImpl::slots_per_word; 1497 assert(stack_slots == 2, "recheck layout"); 1498 1499 address start = __ pc(); 1500 1501 compiled_entry_offset = __ pc() - start; 1502 __ enter(); 1503 1504 __ mov(c_rarg1, sp); 1505 1506 frame_complete = __ pc() - start; 1507 address the_pc = __ pc(); 1508 1509 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1510 1511 __ mov(c_rarg0, rthread); 1512 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1513 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1514 __ reset_last_Java_frame(true); 1515 1516 Label pinned; 1517 1518 __ cbnz(r0, pinned); 1519 1520 // We've succeeded, set sp to the ContinuationEntry 1521 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1522 __ mov(sp, rscratch1); 1523 continuation_enter_cleanup(masm); 1524 1525 __ bind(pinned); // pinned -- return to caller 1526 1527 // handle pending exception thrown by freeze 1528 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1529 Label ok; 1530 __ cbz(rscratch1, ok); 1531 __ leave(); 1532 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1533 __ br(rscratch1); 1534 __ bind(ok); 1535 1536 __ leave(); 1537 __ ret(lr); 1538 1539 OopMap* map = new OopMap(framesize, 1); 1540 oop_maps->add_gc_map(the_pc - start, map); 1541 } 1542 1543 static void gen_special_dispatch(MacroAssembler* masm, 1544 const methodHandle& method, 1545 const BasicType* sig_bt, 1546 const VMRegPair* regs) { 1547 verify_oop_args(masm, method, sig_bt, regs); 1548 vmIntrinsics::ID iid = method->intrinsic_id(); 1549 1550 // Now write the args into the outgoing interpreter space 1551 bool has_receiver = false; 1552 Register receiver_reg = noreg; 1553 int member_arg_pos = -1; 1554 Register member_reg = noreg; 1555 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1556 if (ref_kind != 0) { 1557 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1558 member_reg = r19; // known to be free at this point 1559 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1560 } else if (iid == vmIntrinsics::_invokeBasic) { 1561 has_receiver = true; 1562 } else if (iid == vmIntrinsics::_linkToNative) { 1563 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1564 member_reg = r19; // known to be free at this point 1565 } else { 1566 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1567 } 1568 1569 if (member_reg != noreg) { 1570 // Load the member_arg into register, if necessary. 1571 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1572 VMReg r = regs[member_arg_pos].first(); 1573 if (r->is_stack()) { 1574 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1575 } else { 1576 // no data motion is needed 1577 member_reg = r->as_Register(); 1578 } 1579 } 1580 1581 if (has_receiver) { 1582 // Make sure the receiver is loaded into a register. 1583 assert(method->size_of_parameters() > 0, "oob"); 1584 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1585 VMReg r = regs[0].first(); 1586 assert(r->is_valid(), "bad receiver arg"); 1587 if (r->is_stack()) { 1588 // Porting note: This assumes that compiled calling conventions always 1589 // pass the receiver oop in a register. If this is not true on some 1590 // platform, pick a temp and load the receiver from stack. 1591 fatal("receiver always in a register"); 1592 receiver_reg = r2; // known to be free at this point 1593 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1594 } else { 1595 // no data motion is needed 1596 receiver_reg = r->as_Register(); 1597 } 1598 } 1599 1600 // Figure out which address we are really jumping to: 1601 MethodHandles::generate_method_handle_dispatch(masm, iid, 1602 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1603 } 1604 1605 // --------------------------------------------------------------------------- 1606 // Generate a native wrapper for a given method. The method takes arguments 1607 // in the Java compiled code convention, marshals them to the native 1608 // convention (handlizes oops, etc), transitions to native, makes the call, 1609 // returns to java state (possibly blocking), unhandlizes any result and 1610 // returns. 1611 // 1612 // Critical native functions are a shorthand for the use of 1613 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1614 // functions. The wrapper is expected to unpack the arguments before 1615 // passing them to the callee. Critical native functions leave the state _in_Java, 1616 // since they block out GC. 1617 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1618 // block and the check for pending exceptions it's impossible for them 1619 // to be thrown. 1620 // 1621 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1622 const methodHandle& method, 1623 int compile_id, 1624 BasicType* in_sig_bt, 1625 VMRegPair* in_regs, 1626 BasicType ret_type) { 1627 if (method->is_continuation_native_intrinsic()) { 1628 int exception_offset = -1; 1629 OopMapSet* oop_maps = new OopMapSet(); 1630 int frame_complete = -1; 1631 int stack_slots = -1; 1632 int interpreted_entry_offset = -1; 1633 int vep_offset = -1; 1634 if (method->is_continuation_enter_intrinsic()) { 1635 gen_continuation_enter(masm, 1636 method, 1637 in_sig_bt, 1638 in_regs, 1639 exception_offset, 1640 oop_maps, 1641 frame_complete, 1642 stack_slots, 1643 interpreted_entry_offset, 1644 vep_offset); 1645 } else if (method->is_continuation_yield_intrinsic()) { 1646 gen_continuation_yield(masm, 1647 method, 1648 in_sig_bt, 1649 in_regs, 1650 oop_maps, 1651 frame_complete, 1652 stack_slots, 1653 vep_offset); 1654 } else { 1655 guarantee(false, "Unknown Continuation native intrinsic"); 1656 } 1657 1658 #ifdef ASSERT 1659 if (method->is_continuation_enter_intrinsic()) { 1660 assert(interpreted_entry_offset != -1, "Must be set"); 1661 assert(exception_offset != -1, "Must be set"); 1662 } else { 1663 assert(interpreted_entry_offset == -1, "Must be unset"); 1664 assert(exception_offset == -1, "Must be unset"); 1665 } 1666 assert(frame_complete != -1, "Must be set"); 1667 assert(stack_slots != -1, "Must be set"); 1668 assert(vep_offset != -1, "Must be set"); 1669 #endif 1670 1671 __ flush(); 1672 nmethod* nm = nmethod::new_native_nmethod(method, 1673 compile_id, 1674 masm->code(), 1675 vep_offset, 1676 frame_complete, 1677 stack_slots, 1678 in_ByteSize(-1), 1679 in_ByteSize(-1), 1680 oop_maps, 1681 exception_offset); 1682 if (method->is_continuation_enter_intrinsic()) { 1683 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1684 } else if (method->is_continuation_yield_intrinsic()) { 1685 _cont_doYield_stub = nm; 1686 } else { 1687 guarantee(false, "Unknown Continuation native intrinsic"); 1688 } 1689 return nm; 1690 } 1691 1692 if (method->is_method_handle_intrinsic()) { 1693 vmIntrinsics::ID iid = method->intrinsic_id(); 1694 intptr_t start = (intptr_t)__ pc(); 1695 int vep_offset = ((intptr_t)__ pc()) - start; 1696 1697 // First instruction must be a nop as it may need to be patched on deoptimisation 1698 __ nop(); 1699 gen_special_dispatch(masm, 1700 method, 1701 in_sig_bt, 1702 in_regs); 1703 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1704 __ flush(); 1705 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1706 return nmethod::new_native_nmethod(method, 1707 compile_id, 1708 masm->code(), 1709 vep_offset, 1710 frame_complete, 1711 stack_slots / VMRegImpl::slots_per_word, 1712 in_ByteSize(-1), 1713 in_ByteSize(-1), 1714 nullptr); 1715 } 1716 address native_func = method->native_function(); 1717 assert(native_func != nullptr, "must have function"); 1718 1719 // An OopMap for lock (and class if static) 1720 OopMapSet *oop_maps = new OopMapSet(); 1721 intptr_t start = (intptr_t)__ pc(); 1722 1723 // We have received a description of where all the java arg are located 1724 // on entry to the wrapper. We need to convert these args to where 1725 // the jni function will expect them. To figure out where they go 1726 // we convert the java signature to a C signature by inserting 1727 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1728 1729 const int total_in_args = method->size_of_parameters(); 1730 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1731 1732 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1733 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1734 BasicType* in_elem_bt = nullptr; 1735 1736 int argc = 0; 1737 out_sig_bt[argc++] = T_ADDRESS; 1738 if (method->is_static()) { 1739 out_sig_bt[argc++] = T_OBJECT; 1740 } 1741 1742 for (int i = 0; i < total_in_args ; i++ ) { 1743 out_sig_bt[argc++] = in_sig_bt[i]; 1744 } 1745 1746 // Now figure out where the args must be stored and how much stack space 1747 // they require. 1748 int out_arg_slots; 1749 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, nullptr, total_c_args); 1750 1751 if (out_arg_slots < 0) { 1752 return nullptr; 1753 } 1754 1755 // Compute framesize for the wrapper. We need to handlize all oops in 1756 // incoming registers 1757 1758 // Calculate the total number of stack slots we will need. 1759 1760 // First count the abi requirement plus all of the outgoing args 1761 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1762 1763 // Now the space for the inbound oop handle area 1764 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1765 1766 int oop_handle_offset = stack_slots; 1767 stack_slots += total_save_slots; 1768 1769 // Now any space we need for handlizing a klass if static method 1770 1771 int klass_slot_offset = 0; 1772 int klass_offset = -1; 1773 int lock_slot_offset = 0; 1774 bool is_static = false; 1775 1776 if (method->is_static()) { 1777 klass_slot_offset = stack_slots; 1778 stack_slots += VMRegImpl::slots_per_word; 1779 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1780 is_static = true; 1781 } 1782 1783 // Plus a lock if needed 1784 1785 if (method->is_synchronized()) { 1786 lock_slot_offset = stack_slots; 1787 stack_slots += VMRegImpl::slots_per_word; 1788 } 1789 1790 // Now a place (+2) to save return values or temp during shuffling 1791 // + 4 for return address (which we own) and saved rfp 1792 stack_slots += 6; 1793 1794 // Ok The space we have allocated will look like: 1795 // 1796 // 1797 // FP-> | | 1798 // |---------------------| 1799 // | 2 slots for moves | 1800 // |---------------------| 1801 // | lock box (if sync) | 1802 // |---------------------| <- lock_slot_offset 1803 // | klass (if static) | 1804 // |---------------------| <- klass_slot_offset 1805 // | oopHandle area | 1806 // |---------------------| <- oop_handle_offset (8 java arg registers) 1807 // | outbound memory | 1808 // | based arguments | 1809 // | | 1810 // |---------------------| 1811 // | | 1812 // SP-> | out_preserved_slots | 1813 // 1814 // 1815 1816 1817 // Now compute actual number of stack words we need rounding to make 1818 // stack properly aligned. 1819 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1820 1821 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1822 1823 // First thing make an ic check to see if we should even be here 1824 1825 // We are free to use all registers as temps without saving them and 1826 // restoring them except rfp. rfp is the only callee save register 1827 // as far as the interpreter and the compiler(s) are concerned. 1828 1829 1830 const Register ic_reg = rscratch2; 1831 const Register receiver = j_rarg0; 1832 1833 Label hit; 1834 Label exception_pending; 1835 1836 assert_different_registers(ic_reg, receiver, rscratch1); 1837 __ verify_oop(receiver); 1838 __ cmp_klass(receiver, ic_reg, rscratch1); 1839 __ br(Assembler::EQ, hit); 1840 1841 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1842 1843 // Verified entry point must be aligned 1844 __ align(8); 1845 1846 __ bind(hit); 1847 1848 int vep_offset = ((intptr_t)__ pc()) - start; 1849 1850 // If we have to make this method not-entrant we'll overwrite its 1851 // first instruction with a jump. For this action to be legal we 1852 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1853 // SVC, HVC, or SMC. Make it a NOP. 1854 __ nop(); 1855 1856 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1857 Label L_skip_barrier; 1858 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1859 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1860 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1861 1862 __ bind(L_skip_barrier); 1863 } 1864 1865 // Generate stack overflow check 1866 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1867 1868 // Generate a new frame for the wrapper. 1869 __ enter(); 1870 // -2 because return address is already present and so is saved rfp 1871 __ sub(sp, sp, stack_size - 2*wordSize); 1872 1873 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1874 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1875 1876 // Frame is now completed as far as size and linkage. 1877 int frame_complete = ((intptr_t)__ pc()) - start; 1878 1879 // We use r20 as the oop handle for the receiver/klass 1880 // It is callee save so it survives the call to native 1881 1882 const Register oop_handle_reg = r20; 1883 1884 // 1885 // We immediately shuffle the arguments so that any vm call we have to 1886 // make from here on out (sync slow path, jvmti, etc.) we will have 1887 // captured the oops from our caller and have a valid oopMap for 1888 // them. 1889 1890 // ----------------- 1891 // The Grand Shuffle 1892 1893 // The Java calling convention is either equal (linux) or denser (win64) than the 1894 // c calling convention. However the because of the jni_env argument the c calling 1895 // convention always has at least one more (and two for static) arguments than Java. 1896 // Therefore if we move the args from java -> c backwards then we will never have 1897 // a register->register conflict and we don't have to build a dependency graph 1898 // and figure out how to break any cycles. 1899 // 1900 1901 // Record esp-based slot for receiver on stack for non-static methods 1902 int receiver_offset = -1; 1903 1904 // This is a trick. We double the stack slots so we can claim 1905 // the oops in the caller's frame. Since we are sure to have 1906 // more args than the caller doubling is enough to make 1907 // sure we can capture all the incoming oop args from the 1908 // caller. 1909 // 1910 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1911 1912 // Mark location of rfp (someday) 1913 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1914 1915 1916 int float_args = 0; 1917 int int_args = 0; 1918 1919 #ifdef ASSERT 1920 bool reg_destroyed[Register::number_of_registers]; 1921 bool freg_destroyed[FloatRegister::number_of_registers]; 1922 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1923 reg_destroyed[r] = false; 1924 } 1925 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1926 freg_destroyed[f] = false; 1927 } 1928 1929 #endif /* ASSERT */ 1930 1931 // For JNI natives the incoming and outgoing registers are offset upwards. 1932 GrowableArray<int> arg_order(2 * total_in_args); 1933 VMRegPair tmp_vmreg; 1934 tmp_vmreg.set2(r19->as_VMReg()); 1935 1936 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1937 arg_order.push(i); 1938 arg_order.push(c_arg); 1939 } 1940 1941 int temploc = -1; 1942 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1943 int i = arg_order.at(ai); 1944 int c_arg = arg_order.at(ai + 1); 1945 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1946 assert(c_arg != -1 && i != -1, "wrong order"); 1947 #ifdef ASSERT 1948 if (in_regs[i].first()->is_Register()) { 1949 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1950 } else if (in_regs[i].first()->is_FloatRegister()) { 1951 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1952 } 1953 if (out_regs[c_arg].first()->is_Register()) { 1954 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1955 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1956 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1957 } 1958 #endif /* ASSERT */ 1959 switch (in_sig_bt[i]) { 1960 case T_ARRAY: 1961 case T_PRIMITIVE_OBJECT: 1962 case T_OBJECT: 1963 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1964 ((i == 0) && (!is_static)), 1965 &receiver_offset); 1966 int_args++; 1967 break; 1968 case T_VOID: 1969 break; 1970 1971 case T_FLOAT: 1972 __ float_move(in_regs[i], out_regs[c_arg]); 1973 float_args++; 1974 break; 1975 1976 case T_DOUBLE: 1977 assert( i + 1 < total_in_args && 1978 in_sig_bt[i + 1] == T_VOID && 1979 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1980 __ double_move(in_regs[i], out_regs[c_arg]); 1981 float_args++; 1982 break; 1983 1984 case T_LONG : 1985 __ long_move(in_regs[i], out_regs[c_arg]); 1986 int_args++; 1987 break; 1988 1989 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1990 1991 default: 1992 __ move32_64(in_regs[i], out_regs[c_arg]); 1993 int_args++; 1994 } 1995 } 1996 1997 // point c_arg at the first arg that is already loaded in case we 1998 // need to spill before we call out 1999 int c_arg = total_c_args - total_in_args; 2000 2001 // Pre-load a static method's oop into c_rarg1. 2002 if (method->is_static()) { 2003 2004 // load oop into a register 2005 __ movoop(c_rarg1, 2006 JNIHandles::make_local(method->method_holder()->java_mirror())); 2007 2008 // Now handlize the static class mirror it's known not-null. 2009 __ str(c_rarg1, Address(sp, klass_offset)); 2010 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 2011 2012 // Now get the handle 2013 __ lea(c_rarg1, Address(sp, klass_offset)); 2014 // and protect the arg if we must spill 2015 c_arg--; 2016 } 2017 2018 // Change state to native (we save the return address in the thread, since it might not 2019 // be pushed on the stack when we do a stack traversal). 2020 // We use the same pc/oopMap repeatedly when we call out 2021 2022 Label native_return; 2023 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 2024 2025 Label dtrace_method_entry, dtrace_method_entry_done; 2026 { 2027 uint64_t offset; 2028 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 2029 __ ldrb(rscratch1, Address(rscratch1, offset)); 2030 __ cbnzw(rscratch1, dtrace_method_entry); 2031 __ bind(dtrace_method_entry_done); 2032 } 2033 2034 // RedefineClasses() tracing support for obsolete method entry 2035 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2036 // protect the args we've loaded 2037 save_args(masm, total_c_args, c_arg, out_regs); 2038 __ mov_metadata(c_rarg1, method()); 2039 __ call_VM_leaf( 2040 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2041 rthread, c_rarg1); 2042 restore_args(masm, total_c_args, c_arg, out_regs); 2043 } 2044 2045 // Lock a synchronized method 2046 2047 // Register definitions used by locking and unlocking 2048 2049 const Register swap_reg = r0; 2050 const Register obj_reg = r19; // Will contain the oop 2051 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 2052 const Register old_hdr = r13; // value of old header at unlock time 2053 const Register tmp = lr; 2054 2055 Label slow_path_lock; 2056 Label lock_done; 2057 2058 if (method->is_synchronized()) { 2059 Label count; 2060 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2061 2062 // Get the handle (the 2nd argument) 2063 __ mov(oop_handle_reg, c_rarg1); 2064 2065 // Get address of the box 2066 2067 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2068 2069 // Load the oop from the handle 2070 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2071 2072 if (LockingMode == LM_MONITOR) { 2073 __ b(slow_path_lock); 2074 } else if (LockingMode == LM_LEGACY) { 2075 // Load (object->mark() | 1) into swap_reg %r0 2076 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2077 __ orr(swap_reg, rscratch1, 1); 2078 if (EnableValhalla) { 2079 // Mask inline_type bit such that we go to the slow path if object is an inline type 2080 __ andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 2081 } 2082 2083 // Save (object->mark() | 1) into BasicLock's displaced header 2084 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 2085 2086 // src -> dest iff dest == r0 else r0 <- dest 2087 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 2088 2089 // Hmm should this move to the slow path code area??? 2090 2091 // Test if the oopMark is an obvious stack pointer, i.e., 2092 // 1) (mark & 3) == 0, and 2093 // 2) sp <= mark < mark + os::pagesize() 2094 // These 3 tests can be done by evaluating the following 2095 // expression: ((mark - sp) & (3 - os::vm_page_size())), 2096 // assuming both stack pointer and pagesize have their 2097 // least significant 2 bits clear. 2098 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 2099 2100 __ sub(swap_reg, sp, swap_reg); 2101 __ neg(swap_reg, swap_reg); 2102 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 2103 2104 // Save the test result, for recursive case, the result is zero 2105 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 2106 __ br(Assembler::NE, slow_path_lock); 2107 } else { 2108 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 2109 __ ldr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2110 __ fast_lock(obj_reg, swap_reg, tmp, rscratch1, slow_path_lock); 2111 } 2112 __ bind(count); 2113 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 2114 2115 // Slow path will re-enter here 2116 __ bind(lock_done); 2117 } 2118 2119 2120 // Finally just about ready to make the JNI call 2121 2122 // get JNIEnv* which is first argument to native 2123 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 2124 2125 // Now set thread in native 2126 __ mov(rscratch1, _thread_in_native); 2127 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2128 __ stlrw(rscratch1, rscratch2); 2129 2130 __ rt_call(native_func); 2131 2132 __ bind(native_return); 2133 2134 intptr_t return_pc = (intptr_t) __ pc(); 2135 oop_maps->add_gc_map(return_pc - start, map); 2136 2137 // Unpack native results. 2138 switch (ret_type) { 2139 case T_BOOLEAN: __ c2bool(r0); break; 2140 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 2141 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 2142 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 2143 case T_INT : __ sbfx(r0, r0, 0, 32); break; 2144 case T_DOUBLE : 2145 case T_FLOAT : 2146 // Result is in v0 we'll save as needed 2147 break; 2148 case T_ARRAY: // Really a handle 2149 case T_PRIMITIVE_OBJECT: // Really a handle 2150 case T_OBJECT: // Really a handle 2151 break; // can't de-handlize until after safepoint check 2152 case T_VOID: break; 2153 case T_LONG: break; 2154 default : ShouldNotReachHere(); 2155 } 2156 2157 Label safepoint_in_progress, safepoint_in_progress_done; 2158 Label after_transition; 2159 2160 // Switch thread to "native transition" state before reading the synchronization state. 2161 // This additional state is necessary because reading and testing the synchronization 2162 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2163 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2164 // VM thread changes sync state to synchronizing and suspends threads for GC. 2165 // Thread A is resumed to finish this native method, but doesn't block here since it 2166 // didn't see any synchronization is progress, and escapes. 2167 __ mov(rscratch1, _thread_in_native_trans); 2168 2169 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 2170 2171 // Force this write out before the read below 2172 if (!UseSystemMemoryBarrier) { 2173 __ dmb(Assembler::ISH); 2174 } 2175 2176 __ verify_sve_vector_length(); 2177 2178 // Check for safepoint operation in progress and/or pending suspend requests. 2179 { 2180 // We need an acquire here to ensure that any subsequent load of the 2181 // global SafepointSynchronize::_state flag is ordered after this load 2182 // of the thread-local polling word. We don't want this poll to 2183 // return false (i.e. not safepointing) and a later poll of the global 2184 // SafepointSynchronize::_state spuriously to return true. 2185 // 2186 // This is to avoid a race when we're in a native->Java transition 2187 // racing the code which wakes up from a safepoint. 2188 2189 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 2190 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 2191 __ cbnzw(rscratch1, safepoint_in_progress); 2192 __ bind(safepoint_in_progress_done); 2193 } 2194 2195 // change thread state 2196 __ mov(rscratch1, _thread_in_Java); 2197 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2198 __ stlrw(rscratch1, rscratch2); 2199 __ bind(after_transition); 2200 2201 Label reguard; 2202 Label reguard_done; 2203 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 2204 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 2205 __ br(Assembler::EQ, reguard); 2206 __ bind(reguard_done); 2207 2208 // native result if any is live 2209 2210 // Unlock 2211 Label unlock_done; 2212 Label slow_path_unlock; 2213 if (method->is_synchronized()) { 2214 2215 // Get locked oop from the handle we passed to jni 2216 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2217 2218 Label done, not_recursive; 2219 2220 if (LockingMode == LM_LEGACY) { 2221 // Simple recursive lock? 2222 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2223 __ cbnz(rscratch1, not_recursive); 2224 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 2225 __ b(done); 2226 } 2227 2228 __ bind(not_recursive); 2229 2230 // Must save r0 if if it is live now because cmpxchg must use it 2231 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2232 save_native_result(masm, ret_type, stack_slots); 2233 } 2234 2235 if (LockingMode == LM_MONITOR) { 2236 __ b(slow_path_unlock); 2237 } else if (LockingMode == LM_LEGACY) { 2238 // get address of the stack lock 2239 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2240 // get old displaced header 2241 __ ldr(old_hdr, Address(r0, 0)); 2242 2243 // Atomic swap old header if oop still contains the stack lock 2244 Label count; 2245 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 2246 __ bind(count); 2247 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 2248 } else { 2249 assert(LockingMode == LM_LIGHTWEIGHT, ""); 2250 __ ldr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2251 __ tbnz(old_hdr, exact_log2(markWord::monitor_value), slow_path_unlock); 2252 __ fast_unlock(obj_reg, old_hdr, swap_reg, rscratch1, slow_path_unlock); 2253 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 2254 } 2255 2256 // slow path re-enters here 2257 __ bind(unlock_done); 2258 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2259 restore_native_result(masm, ret_type, stack_slots); 2260 } 2261 2262 __ bind(done); 2263 } 2264 2265 Label dtrace_method_exit, dtrace_method_exit_done; 2266 { 2267 uint64_t offset; 2268 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 2269 __ ldrb(rscratch1, Address(rscratch1, offset)); 2270 __ cbnzw(rscratch1, dtrace_method_exit); 2271 __ bind(dtrace_method_exit_done); 2272 } 2273 2274 __ reset_last_Java_frame(false); 2275 2276 // Unbox oop result, e.g. JNIHandles::resolve result. 2277 if (is_reference_type(ret_type)) { 2278 __ resolve_jobject(r0, r1, r2); 2279 } 2280 2281 if (CheckJNICalls) { 2282 // clear_pending_jni_exception_check 2283 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 2284 } 2285 2286 // reset handle block 2287 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 2288 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 2289 2290 __ leave(); 2291 2292 // Any exception pending? 2293 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2294 __ cbnz(rscratch1, exception_pending); 2295 2296 // We're done 2297 __ ret(lr); 2298 2299 // Unexpected paths are out of line and go here 2300 2301 // forward the exception 2302 __ bind(exception_pending); 2303 2304 // and forward the exception 2305 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2306 2307 // Slow path locking & unlocking 2308 if (method->is_synchronized()) { 2309 2310 __ block_comment("Slow path lock {"); 2311 __ bind(slow_path_lock); 2312 2313 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2314 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2315 2316 // protect the args we've loaded 2317 save_args(masm, total_c_args, c_arg, out_regs); 2318 2319 __ mov(c_rarg0, obj_reg); 2320 __ mov(c_rarg1, lock_reg); 2321 __ mov(c_rarg2, rthread); 2322 2323 // Not a leaf but we have last_Java_frame setup as we want 2324 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2325 restore_args(masm, total_c_args, c_arg, out_regs); 2326 2327 #ifdef ASSERT 2328 { Label L; 2329 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2330 __ cbz(rscratch1, L); 2331 __ stop("no pending exception allowed on exit from monitorenter"); 2332 __ bind(L); 2333 } 2334 #endif 2335 __ b(lock_done); 2336 2337 __ block_comment("} Slow path lock"); 2338 2339 __ block_comment("Slow path unlock {"); 2340 __ bind(slow_path_unlock); 2341 2342 // If we haven't already saved the native result we must save it now as xmm registers 2343 // are still exposed. 2344 2345 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2346 save_native_result(masm, ret_type, stack_slots); 2347 } 2348 2349 __ mov(c_rarg2, rthread); 2350 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2351 __ mov(c_rarg0, obj_reg); 2352 2353 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2354 // NOTE that obj_reg == r19 currently 2355 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2356 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2357 2358 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2359 2360 #ifdef ASSERT 2361 { 2362 Label L; 2363 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2364 __ cbz(rscratch1, L); 2365 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2366 __ bind(L); 2367 } 2368 #endif /* ASSERT */ 2369 2370 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2371 2372 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2373 restore_native_result(masm, ret_type, stack_slots); 2374 } 2375 __ b(unlock_done); 2376 2377 __ block_comment("} Slow path unlock"); 2378 2379 } // synchronized 2380 2381 // SLOW PATH Reguard the stack if needed 2382 2383 __ bind(reguard); 2384 save_native_result(masm, ret_type, stack_slots); 2385 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2386 restore_native_result(masm, ret_type, stack_slots); 2387 // and continue 2388 __ b(reguard_done); 2389 2390 // SLOW PATH safepoint 2391 { 2392 __ block_comment("safepoint {"); 2393 __ bind(safepoint_in_progress); 2394 2395 // Don't use call_VM as it will see a possible pending exception and forward it 2396 // and never return here preventing us from clearing _last_native_pc down below. 2397 // 2398 save_native_result(masm, ret_type, stack_slots); 2399 __ mov(c_rarg0, rthread); 2400 #ifndef PRODUCT 2401 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2402 #endif 2403 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2404 __ blr(rscratch1); 2405 2406 // Restore any method result value 2407 restore_native_result(masm, ret_type, stack_slots); 2408 2409 __ b(safepoint_in_progress_done); 2410 __ block_comment("} safepoint"); 2411 } 2412 2413 // SLOW PATH dtrace support 2414 { 2415 __ block_comment("dtrace entry {"); 2416 __ bind(dtrace_method_entry); 2417 2418 // We have all of the arguments setup at this point. We must not touch any register 2419 // argument registers at this point (what if we save/restore them there are no oop? 2420 2421 save_args(masm, total_c_args, c_arg, out_regs); 2422 __ mov_metadata(c_rarg1, method()); 2423 __ call_VM_leaf( 2424 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2425 rthread, c_rarg1); 2426 restore_args(masm, total_c_args, c_arg, out_regs); 2427 __ b(dtrace_method_entry_done); 2428 __ block_comment("} dtrace entry"); 2429 } 2430 2431 { 2432 __ block_comment("dtrace exit {"); 2433 __ bind(dtrace_method_exit); 2434 save_native_result(masm, ret_type, stack_slots); 2435 __ mov_metadata(c_rarg1, method()); 2436 __ call_VM_leaf( 2437 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2438 rthread, c_rarg1); 2439 restore_native_result(masm, ret_type, stack_slots); 2440 __ b(dtrace_method_exit_done); 2441 __ block_comment("} dtrace exit"); 2442 } 2443 2444 2445 __ flush(); 2446 2447 nmethod *nm = nmethod::new_native_nmethod(method, 2448 compile_id, 2449 masm->code(), 2450 vep_offset, 2451 frame_complete, 2452 stack_slots / VMRegImpl::slots_per_word, 2453 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2454 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2455 oop_maps); 2456 2457 return nm; 2458 } 2459 2460 // this function returns the adjust size (in number of words) to a c2i adapter 2461 // activation for use during deoptimization 2462 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2463 assert(callee_locals >= callee_parameters, 2464 "test and remove; got more parms than locals"); 2465 if (callee_locals < callee_parameters) 2466 return 0; // No adjustment for negative locals 2467 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2468 // diff is counted in stack words 2469 return align_up(diff, 2); 2470 } 2471 2472 2473 //------------------------------generate_deopt_blob---------------------------- 2474 void SharedRuntime::generate_deopt_blob() { 2475 // Allocate space for the code 2476 ResourceMark rm; 2477 // Setup code generation tools 2478 int pad = 0; 2479 #if INCLUDE_JVMCI 2480 if (EnableJVMCI) { 2481 pad += 512; // Increase the buffer size when compiling for JVMCI 2482 } 2483 #endif 2484 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2485 MacroAssembler* masm = new MacroAssembler(&buffer); 2486 int frame_size_in_words; 2487 OopMap* map = nullptr; 2488 OopMapSet *oop_maps = new OopMapSet(); 2489 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2490 2491 // ------------- 2492 // This code enters when returning to a de-optimized nmethod. A return 2493 // address has been pushed on the stack, and return values are in 2494 // registers. 2495 // If we are doing a normal deopt then we were called from the patched 2496 // nmethod from the point we returned to the nmethod. So the return 2497 // address on the stack is wrong by NativeCall::instruction_size 2498 // We will adjust the value so it looks like we have the original return 2499 // address on the stack (like when we eagerly deoptimized). 2500 // In the case of an exception pending when deoptimizing, we enter 2501 // with a return address on the stack that points after the call we patched 2502 // into the exception handler. We have the following register state from, 2503 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2504 // r0: exception oop 2505 // r19: exception handler 2506 // r3: throwing pc 2507 // So in this case we simply jam r3 into the useless return address and 2508 // the stack looks just like we want. 2509 // 2510 // At this point we need to de-opt. We save the argument return 2511 // registers. We call the first C routine, fetch_unroll_info(). This 2512 // routine captures the return values and returns a structure which 2513 // describes the current frame size and the sizes of all replacement frames. 2514 // The current frame is compiled code and may contain many inlined 2515 // functions, each with their own JVM state. We pop the current frame, then 2516 // push all the new frames. Then we call the C routine unpack_frames() to 2517 // populate these frames. Finally unpack_frames() returns us the new target 2518 // address. Notice that callee-save registers are BLOWN here; they have 2519 // already been captured in the vframeArray at the time the return PC was 2520 // patched. 2521 address start = __ pc(); 2522 Label cont; 2523 2524 // Prolog for non exception case! 2525 2526 // Save everything in sight. 2527 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2528 2529 // Normal deoptimization. Save exec mode for unpack_frames. 2530 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2531 __ b(cont); 2532 2533 int reexecute_offset = __ pc() - start; 2534 #if INCLUDE_JVMCI && !defined(COMPILER1) 2535 if (EnableJVMCI && UseJVMCICompiler) { 2536 // JVMCI does not use this kind of deoptimization 2537 __ should_not_reach_here(); 2538 } 2539 #endif 2540 2541 // Reexecute case 2542 // return address is the pc describes what bci to do re-execute at 2543 2544 // No need to update map as each call to save_live_registers will produce identical oopmap 2545 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2546 2547 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2548 __ b(cont); 2549 2550 #if INCLUDE_JVMCI 2551 Label after_fetch_unroll_info_call; 2552 int implicit_exception_uncommon_trap_offset = 0; 2553 int uncommon_trap_offset = 0; 2554 2555 if (EnableJVMCI) { 2556 implicit_exception_uncommon_trap_offset = __ pc() - start; 2557 2558 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2559 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2560 2561 uncommon_trap_offset = __ pc() - start; 2562 2563 // Save everything in sight. 2564 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2565 // fetch_unroll_info needs to call last_java_frame() 2566 Label retaddr; 2567 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2568 2569 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2570 __ movw(rscratch1, -1); 2571 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2572 2573 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2574 __ mov(c_rarg0, rthread); 2575 __ movw(c_rarg2, rcpool); // exec mode 2576 __ lea(rscratch1, 2577 RuntimeAddress(CAST_FROM_FN_PTR(address, 2578 Deoptimization::uncommon_trap))); 2579 __ blr(rscratch1); 2580 __ bind(retaddr); 2581 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2582 2583 __ reset_last_Java_frame(false); 2584 2585 __ b(after_fetch_unroll_info_call); 2586 } // EnableJVMCI 2587 #endif // INCLUDE_JVMCI 2588 2589 int exception_offset = __ pc() - start; 2590 2591 // Prolog for exception case 2592 2593 // all registers are dead at this entry point, except for r0, and 2594 // r3 which contain the exception oop and exception pc 2595 // respectively. Set them in TLS and fall thru to the 2596 // unpack_with_exception_in_tls entry point. 2597 2598 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2599 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2600 2601 int exception_in_tls_offset = __ pc() - start; 2602 2603 // new implementation because exception oop is now passed in JavaThread 2604 2605 // Prolog for exception case 2606 // All registers must be preserved because they might be used by LinearScan 2607 // Exceptiop oop and throwing PC are passed in JavaThread 2608 // tos: stack at point of call to method that threw the exception (i.e. only 2609 // args are on the stack, no return address) 2610 2611 // The return address pushed by save_live_registers will be patched 2612 // later with the throwing pc. The correct value is not available 2613 // now because loading it from memory would destroy registers. 2614 2615 // NB: The SP at this point must be the SP of the method that is 2616 // being deoptimized. Deoptimization assumes that the frame created 2617 // here by save_live_registers is immediately below the method's SP. 2618 // This is a somewhat fragile mechanism. 2619 2620 // Save everything in sight. 2621 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2622 2623 // Now it is safe to overwrite any register 2624 2625 // Deopt during an exception. Save exec mode for unpack_frames. 2626 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2627 2628 // load throwing pc from JavaThread and patch it as the return address 2629 // of the current frame. Then clear the field in JavaThread 2630 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2631 __ protect_return_address(r3, rscratch1); 2632 __ str(r3, Address(rfp, wordSize)); 2633 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2634 2635 #ifdef ASSERT 2636 // verify that there is really an exception oop in JavaThread 2637 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2638 __ verify_oop(r0); 2639 2640 // verify that there is no pending exception 2641 Label no_pending_exception; 2642 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2643 __ cbz(rscratch1, no_pending_exception); 2644 __ stop("must not have pending exception here"); 2645 __ bind(no_pending_exception); 2646 #endif 2647 2648 __ bind(cont); 2649 2650 // Call C code. Need thread and this frame, but NOT official VM entry 2651 // crud. We cannot block on this call, no GC can happen. 2652 // 2653 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2654 2655 // fetch_unroll_info needs to call last_java_frame(). 2656 2657 Label retaddr; 2658 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2659 #ifdef ASSERT 2660 { Label L; 2661 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2662 __ cbz(rscratch1, L); 2663 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2664 __ bind(L); 2665 } 2666 #endif // ASSERT 2667 __ mov(c_rarg0, rthread); 2668 __ mov(c_rarg1, rcpool); 2669 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2670 __ blr(rscratch1); 2671 __ bind(retaddr); 2672 2673 // Need to have an oopmap that tells fetch_unroll_info where to 2674 // find any register it might need. 2675 oop_maps->add_gc_map(__ pc() - start, map); 2676 2677 __ reset_last_Java_frame(false); 2678 2679 #if INCLUDE_JVMCI 2680 if (EnableJVMCI) { 2681 __ bind(after_fetch_unroll_info_call); 2682 } 2683 #endif 2684 2685 // Load UnrollBlock* into r5 2686 __ mov(r5, r0); 2687 2688 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2689 Label noException; 2690 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2691 __ br(Assembler::NE, noException); 2692 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2693 // QQQ this is useless it was null above 2694 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2695 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2696 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2697 2698 __ verify_oop(r0); 2699 2700 // Overwrite the result registers with the exception results. 2701 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2702 // I think this is useless 2703 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2704 2705 __ bind(noException); 2706 2707 // Only register save data is on the stack. 2708 // Now restore the result registers. Everything else is either dead 2709 // or captured in the vframeArray. 2710 2711 // Restore fp result register 2712 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2713 // Restore integer result register 2714 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2715 2716 // Pop all of the register save area off the stack 2717 __ add(sp, sp, frame_size_in_words * wordSize); 2718 2719 // All of the register save area has been popped of the stack. Only the 2720 // return address remains. 2721 2722 // Pop all the frames we must move/replace. 2723 // 2724 // Frame picture (youngest to oldest) 2725 // 1: self-frame (no frame link) 2726 // 2: deopting frame (no frame link) 2727 // 3: caller of deopting frame (could be compiled/interpreted). 2728 // 2729 // Note: by leaving the return address of self-frame on the stack 2730 // and using the size of frame 2 to adjust the stack 2731 // when we are done the return to frame 3 will still be on the stack. 2732 2733 // Pop deoptimized frame 2734 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2735 __ sub(r2, r2, 2 * wordSize); 2736 __ add(sp, sp, r2); 2737 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2738 __ authenticate_return_address(); 2739 // LR should now be the return address to the caller (3) 2740 2741 #ifdef ASSERT 2742 // Compilers generate code that bang the stack by as much as the 2743 // interpreter would need. So this stack banging should never 2744 // trigger a fault. Verify that it does not on non product builds. 2745 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2746 __ bang_stack_size(r19, r2); 2747 #endif 2748 // Load address of array of frame pcs into r2 2749 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2750 2751 // Trash the old pc 2752 // __ addptr(sp, wordSize); FIXME ???? 2753 2754 // Load address of array of frame sizes into r4 2755 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2756 2757 // Load counter into r3 2758 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2759 2760 // Now adjust the caller's stack to make up for the extra locals 2761 // but record the original sp so that we can save it in the skeletal interpreter 2762 // frame and the stack walking of interpreter_sender will get the unextended sp 2763 // value and not the "real" sp value. 2764 2765 const Register sender_sp = r6; 2766 2767 __ mov(sender_sp, sp); 2768 __ ldrw(r19, Address(r5, 2769 Deoptimization::UnrollBlock:: 2770 caller_adjustment_offset())); 2771 __ sub(sp, sp, r19); 2772 2773 // Push interpreter frames in a loop 2774 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2775 __ mov(rscratch2, rscratch1); 2776 Label loop; 2777 __ bind(loop); 2778 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2779 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2780 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2781 __ enter(); // Save old & set new fp 2782 __ sub(sp, sp, r19); // Prolog 2783 // This value is corrected by layout_activation_impl 2784 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2785 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2786 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2787 __ sub(r3, r3, 1); // Decrement counter 2788 __ cbnz(r3, loop); 2789 2790 // Re-push self-frame 2791 __ ldr(lr, Address(r2)); 2792 __ enter(); 2793 2794 // Allocate a full sized register save area. We subtract 2 because 2795 // enter() just pushed 2 words 2796 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2797 2798 // Restore frame locals after moving the frame 2799 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2800 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2801 2802 // Call C code. Need thread but NOT official VM entry 2803 // crud. We cannot block on this call, no GC can happen. Call should 2804 // restore return values to their stack-slots with the new SP. 2805 // 2806 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2807 2808 // Use rfp because the frames look interpreted now 2809 // Don't need the precise return PC here, just precise enough to point into this code blob. 2810 address the_pc = __ pc(); 2811 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2812 2813 __ mov(c_rarg0, rthread); 2814 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2815 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2816 __ blr(rscratch1); 2817 2818 // Set an oopmap for the call site 2819 // Use the same PC we used for the last java frame 2820 oop_maps->add_gc_map(the_pc - start, 2821 new OopMap( frame_size_in_words, 0 )); 2822 2823 // Clear fp AND pc 2824 __ reset_last_Java_frame(true); 2825 2826 // Collect return values 2827 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2828 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2829 // I think this is useless (throwing pc?) 2830 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2831 2832 // Pop self-frame. 2833 __ leave(); // Epilog 2834 2835 // Jump to interpreter 2836 __ ret(lr); 2837 2838 // Make sure all code is generated 2839 masm->flush(); 2840 2841 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2842 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2843 #if INCLUDE_JVMCI 2844 if (EnableJVMCI) { 2845 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2846 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2847 } 2848 #endif 2849 } 2850 2851 // Number of stack slots between incoming argument block and the start of 2852 // a new frame. The PROLOG must add this many slots to the stack. The 2853 // EPILOG must remove this many slots. aarch64 needs two slots for 2854 // return address and fp. 2855 // TODO think this is correct but check 2856 uint SharedRuntime::in_preserve_stack_slots() { 2857 return 4; 2858 } 2859 2860 uint SharedRuntime::out_preserve_stack_slots() { 2861 return 0; 2862 } 2863 2864 #ifdef COMPILER2 2865 //------------------------------generate_uncommon_trap_blob-------------------- 2866 void SharedRuntime::generate_uncommon_trap_blob() { 2867 // Allocate space for the code 2868 ResourceMark rm; 2869 // Setup code generation tools 2870 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2871 MacroAssembler* masm = new MacroAssembler(&buffer); 2872 2873 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2874 2875 address start = __ pc(); 2876 2877 // Push self-frame. We get here with a return address in LR 2878 // and sp should be 16 byte aligned 2879 // push rfp and retaddr by hand 2880 __ protect_return_address(); 2881 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2882 // we don't expect an arg reg save area 2883 #ifndef PRODUCT 2884 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2885 #endif 2886 // compiler left unloaded_class_index in j_rarg0 move to where the 2887 // runtime expects it. 2888 if (c_rarg1 != j_rarg0) { 2889 __ movw(c_rarg1, j_rarg0); 2890 } 2891 2892 // we need to set the past SP to the stack pointer of the stub frame 2893 // and the pc to the address where this runtime call will return 2894 // although actually any pc in this code blob will do). 2895 Label retaddr; 2896 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2897 2898 // Call C code. Need thread but NOT official VM entry 2899 // crud. We cannot block on this call, no GC can happen. Call should 2900 // capture callee-saved registers as well as return values. 2901 // Thread is in rdi already. 2902 // 2903 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 2904 // 2905 // n.b. 2 gp args, 0 fp args, integral return type 2906 2907 __ mov(c_rarg0, rthread); 2908 __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap); 2909 __ lea(rscratch1, 2910 RuntimeAddress(CAST_FROM_FN_PTR(address, 2911 Deoptimization::uncommon_trap))); 2912 __ blr(rscratch1); 2913 __ bind(retaddr); 2914 2915 // Set an oopmap for the call site 2916 OopMapSet* oop_maps = new OopMapSet(); 2917 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2918 2919 // location of rfp is known implicitly by the frame sender code 2920 2921 oop_maps->add_gc_map(__ pc() - start, map); 2922 2923 __ reset_last_Java_frame(false); 2924 2925 // move UnrollBlock* into r4 2926 __ mov(r4, r0); 2927 2928 #ifdef ASSERT 2929 { Label L; 2930 __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset())); 2931 __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2932 __ br(Assembler::EQ, L); 2933 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2934 __ bind(L); 2935 } 2936 #endif 2937 2938 // Pop all the frames we must move/replace. 2939 // 2940 // Frame picture (youngest to oldest) 2941 // 1: self-frame (no frame link) 2942 // 2: deopting frame (no frame link) 2943 // 3: caller of deopting frame (could be compiled/interpreted). 2944 2945 // Pop self-frame. We have no frame, and must rely only on r0 and sp. 2946 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2947 2948 // Pop deoptimized frame (int) 2949 __ ldrw(r2, Address(r4, 2950 Deoptimization::UnrollBlock:: 2951 size_of_deoptimized_frame_offset())); 2952 __ sub(r2, r2, 2 * wordSize); 2953 __ add(sp, sp, r2); 2954 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2955 __ authenticate_return_address(); 2956 // LR should now be the return address to the caller (3) frame 2957 2958 #ifdef ASSERT 2959 // Compilers generate code that bang the stack by as much as the 2960 // interpreter would need. So this stack banging should never 2961 // trigger a fault. Verify that it does not on non product builds. 2962 __ ldrw(r1, Address(r4, 2963 Deoptimization::UnrollBlock:: 2964 total_frame_sizes_offset())); 2965 __ bang_stack_size(r1, r2); 2966 #endif 2967 2968 // Load address of array of frame pcs into r2 (address*) 2969 __ ldr(r2, Address(r4, 2970 Deoptimization::UnrollBlock::frame_pcs_offset())); 2971 2972 // Load address of array of frame sizes into r5 (intptr_t*) 2973 __ ldr(r5, Address(r4, 2974 Deoptimization::UnrollBlock:: 2975 frame_sizes_offset())); 2976 2977 // Counter 2978 __ ldrw(r3, Address(r4, 2979 Deoptimization::UnrollBlock:: 2980 number_of_frames_offset())); // (int) 2981 2982 // Now adjust the caller's stack to make up for the extra locals but 2983 // record the original sp so that we can save it in the skeletal 2984 // interpreter frame and the stack walking of interpreter_sender 2985 // will get the unextended sp value and not the "real" sp value. 2986 2987 const Register sender_sp = r8; 2988 2989 __ mov(sender_sp, sp); 2990 __ ldrw(r1, Address(r4, 2991 Deoptimization::UnrollBlock:: 2992 caller_adjustment_offset())); // (int) 2993 __ sub(sp, sp, r1); 2994 2995 // Push interpreter frames in a loop 2996 Label loop; 2997 __ bind(loop); 2998 __ ldr(r1, Address(r5, 0)); // Load frame size 2999 __ sub(r1, r1, 2 * wordSize); // We'll push pc and rfp by hand 3000 __ ldr(lr, Address(r2, 0)); // Save return address 3001 __ enter(); // and old rfp & set new rfp 3002 __ sub(sp, sp, r1); // Prolog 3003 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 3004 // This value is corrected by layout_activation_impl 3005 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 3006 __ mov(sender_sp, sp); // Pass sender_sp to next frame 3007 __ add(r5, r5, wordSize); // Bump array pointer (sizes) 3008 __ add(r2, r2, wordSize); // Bump array pointer (pcs) 3009 __ subsw(r3, r3, 1); // Decrement counter 3010 __ br(Assembler::GT, loop); 3011 __ ldr(lr, Address(r2, 0)); // save final return address 3012 // Re-push self-frame 3013 __ enter(); // & old rfp & set new rfp 3014 3015 // Use rfp because the frames look interpreted now 3016 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 3017 // Don't need the precise return PC here, just precise enough to point into this code blob. 3018 address the_pc = __ pc(); 3019 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3020 3021 // Call C code. Need thread but NOT official VM entry 3022 // crud. We cannot block on this call, no GC can happen. Call should 3023 // restore return values to their stack-slots with the new SP. 3024 // Thread is in rdi already. 3025 // 3026 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 3027 // 3028 // n.b. 2 gp args, 0 fp args, integral return type 3029 3030 // sp should already be aligned 3031 __ mov(c_rarg0, rthread); 3032 __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 3033 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3034 __ blr(rscratch1); 3035 3036 // Set an oopmap for the call site 3037 // Use the same PC we used for the last java frame 3038 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3039 3040 // Clear fp AND pc 3041 __ reset_last_Java_frame(true); 3042 3043 // Pop self-frame. 3044 __ leave(); // Epilog 3045 3046 // Jump to interpreter 3047 __ ret(lr); 3048 3049 // Make sure all code is generated 3050 masm->flush(); 3051 3052 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 3053 SimpleRuntimeFrame::framesize >> 1); 3054 } 3055 #endif // COMPILER2 3056 3057 3058 //------------------------------generate_handler_blob------ 3059 // 3060 // Generate a special Compile2Runtime blob that saves all registers, 3061 // and setup oopmap. 3062 // 3063 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 3064 ResourceMark rm; 3065 OopMapSet *oop_maps = new OopMapSet(); 3066 OopMap* map; 3067 3068 // Allocate space for the code. Setup code generation tools. 3069 CodeBuffer buffer("handler_blob", 2048, 1024); 3070 MacroAssembler* masm = new MacroAssembler(&buffer); 3071 3072 address start = __ pc(); 3073 address call_pc = nullptr; 3074 int frame_size_in_words; 3075 bool cause_return = (poll_type == POLL_AT_RETURN); 3076 RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 3077 3078 // When the signal occurred, the LR was either signed and stored on the stack (in which 3079 // case it will be restored from the stack before being used) or unsigned and not stored 3080 // on the stack. Stipping ensures we get the right value. 3081 __ strip_return_address(); 3082 3083 // Save Integer and Float registers. 3084 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 3085 3086 // The following is basically a call_VM. However, we need the precise 3087 // address of the call in order to generate an oopmap. Hence, we do all the 3088 // work ourselves. 3089 3090 Label retaddr; 3091 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 3092 3093 // The return address must always be correct so that frame constructor never 3094 // sees an invalid pc. 3095 3096 if (!cause_return) { 3097 // overwrite the return address pushed by save_live_registers 3098 // Additionally, r20 is a callee-saved register so we can look at 3099 // it later to determine if someone changed the return address for 3100 // us! 3101 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 3102 __ protect_return_address(r20, rscratch1); 3103 __ str(r20, Address(rfp, wordSize)); 3104 } 3105 3106 // Do the call 3107 __ mov(c_rarg0, rthread); 3108 __ lea(rscratch1, RuntimeAddress(call_ptr)); 3109 __ blr(rscratch1); 3110 __ bind(retaddr); 3111 3112 // Set an oopmap for the call site. This oopmap will map all 3113 // oop-registers and debug-info registers as callee-saved. This 3114 // will allow deoptimization at this safepoint to find all possible 3115 // debug-info recordings, as well as let GC find all oops. 3116 3117 oop_maps->add_gc_map( __ pc() - start, map); 3118 3119 Label noException; 3120 3121 __ reset_last_Java_frame(false); 3122 3123 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 3124 3125 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3126 __ cbz(rscratch1, noException); 3127 3128 // Exception pending 3129 3130 reg_save.restore_live_registers(masm); 3131 3132 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3133 3134 // No exception case 3135 __ bind(noException); 3136 3137 Label no_adjust, bail; 3138 if (!cause_return) { 3139 // If our stashed return pc was modified by the runtime we avoid touching it 3140 __ ldr(rscratch1, Address(rfp, wordSize)); 3141 __ cmp(r20, rscratch1); 3142 __ br(Assembler::NE, no_adjust); 3143 __ authenticate_return_address(r20, rscratch1); 3144 3145 #ifdef ASSERT 3146 // Verify the correct encoding of the poll we're about to skip. 3147 // See NativeInstruction::is_ldrw_to_zr() 3148 __ ldrw(rscratch1, Address(r20)); 3149 __ ubfx(rscratch2, rscratch1, 22, 10); 3150 __ cmpw(rscratch2, 0b1011100101); 3151 __ br(Assembler::NE, bail); 3152 __ ubfx(rscratch2, rscratch1, 0, 5); 3153 __ cmpw(rscratch2, 0b11111); 3154 __ br(Assembler::NE, bail); 3155 #endif 3156 // Adjust return pc forward to step over the safepoint poll instruction 3157 __ add(r20, r20, NativeInstruction::instruction_size); 3158 __ protect_return_address(r20, rscratch1); 3159 __ str(r20, Address(rfp, wordSize)); 3160 } 3161 3162 __ bind(no_adjust); 3163 // Normal exit, restore registers and exit. 3164 reg_save.restore_live_registers(masm); 3165 3166 __ ret(lr); 3167 3168 #ifdef ASSERT 3169 __ bind(bail); 3170 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 3171 #endif 3172 3173 // Make sure all code is generated 3174 masm->flush(); 3175 3176 // Fill-out other meta info 3177 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 3178 } 3179 3180 // 3181 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 3182 // 3183 // Generate a stub that calls into vm to find out the proper destination 3184 // of a java call. All the argument registers are live at this point 3185 // but since this is generic code we don't know what they are and the caller 3186 // must do any gc of the args. 3187 // 3188 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 3189 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 3190 3191 // allocate space for the code 3192 ResourceMark rm; 3193 3194 CodeBuffer buffer(name, 1000, 512); 3195 MacroAssembler* masm = new MacroAssembler(&buffer); 3196 3197 int frame_size_in_words; 3198 RegisterSaver reg_save(false /* save_vectors */); 3199 3200 OopMapSet *oop_maps = new OopMapSet(); 3201 OopMap* map = nullptr; 3202 3203 int start = __ offset(); 3204 3205 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 3206 3207 int frame_complete = __ offset(); 3208 3209 { 3210 Label retaddr; 3211 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 3212 3213 __ mov(c_rarg0, rthread); 3214 __ lea(rscratch1, RuntimeAddress(destination)); 3215 3216 __ blr(rscratch1); 3217 __ bind(retaddr); 3218 } 3219 3220 // Set an oopmap for the call site. 3221 // We need this not only for callee-saved registers, but also for volatile 3222 // registers that the compiler might be keeping live across a safepoint. 3223 3224 oop_maps->add_gc_map( __ offset() - start, map); 3225 3226 // r0 contains the address we are going to jump to assuming no exception got installed 3227 3228 // clear last_Java_sp 3229 __ reset_last_Java_frame(false); 3230 // check for pending exceptions 3231 Label pending; 3232 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3233 __ cbnz(rscratch1, pending); 3234 3235 // get the returned Method* 3236 __ get_vm_result_2(rmethod, rthread); 3237 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 3238 3239 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 3240 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 3241 reg_save.restore_live_registers(masm); 3242 3243 // We are back to the original state on entry and ready to go. 3244 3245 __ br(rscratch1); 3246 3247 // Pending exception after the safepoint 3248 3249 __ bind(pending); 3250 3251 reg_save.restore_live_registers(masm); 3252 3253 // exception pending => remove activation and forward to exception handler 3254 3255 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 3256 3257 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 3258 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3259 3260 // ------------- 3261 // make sure all code is generated 3262 masm->flush(); 3263 3264 // return the blob 3265 // frame_size_words or bytes?? 3266 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 3267 } 3268 3269 #ifdef COMPILER2 3270 // This is here instead of runtime_aarch64_64.cpp because it uses SimpleRuntimeFrame 3271 // 3272 //------------------------------generate_exception_blob--------------------------- 3273 // creates exception blob at the end 3274 // Using exception blob, this code is jumped from a compiled method. 3275 // (see emit_exception_handler in x86_64.ad file) 3276 // 3277 // Given an exception pc at a call we call into the runtime for the 3278 // handler in this method. This handler might merely restore state 3279 // (i.e. callee save registers) unwind the frame and jump to the 3280 // exception handler for the nmethod if there is no Java level handler 3281 // for the nmethod. 3282 // 3283 // This code is entered with a jmp. 3284 // 3285 // Arguments: 3286 // r0: exception oop 3287 // r3: exception pc 3288 // 3289 // Results: 3290 // r0: exception oop 3291 // r3: exception pc in caller or ??? 3292 // destination: exception handler of caller 3293 // 3294 // Note: the exception pc MUST be at a call (precise debug information) 3295 // Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved. 3296 // 3297 3298 void OptoRuntime::generate_exception_blob() { 3299 assert(!OptoRuntime::is_callee_saved_register(R3_num), ""); 3300 assert(!OptoRuntime::is_callee_saved_register(R0_num), ""); 3301 assert(!OptoRuntime::is_callee_saved_register(R2_num), ""); 3302 3303 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3304 3305 // Allocate space for the code 3306 ResourceMark rm; 3307 // Setup code generation tools 3308 CodeBuffer buffer("exception_blob", 2048, 1024); 3309 MacroAssembler* masm = new MacroAssembler(&buffer); 3310 3311 // TODO check various assumptions made here 3312 // 3313 // make sure we do so before running this 3314 3315 address start = __ pc(); 3316 3317 // push rfp and retaddr by hand 3318 // Exception pc is 'return address' for stack walker 3319 __ protect_return_address(); 3320 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 3321 // there are no callee save registers and we don't expect an 3322 // arg reg save area 3323 #ifndef PRODUCT 3324 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 3325 #endif 3326 // Store exception in Thread object. We cannot pass any arguments to the 3327 // handle_exception call, since we do not want to make any assumption 3328 // about the size of the frame where the exception happened in. 3329 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 3330 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 3331 3332 // This call does all the hard work. It checks if an exception handler 3333 // exists in the method. 3334 // If so, it returns the handler address. 3335 // If not, it prepares for stack-unwinding, restoring the callee-save 3336 // registers of the frame being removed. 3337 // 3338 // address OptoRuntime::handle_exception_C(JavaThread* thread) 3339 // 3340 // n.b. 1 gp arg, 0 fp args, integral return type 3341 3342 // the stack should always be aligned 3343 address the_pc = __ pc(); 3344 __ set_last_Java_frame(sp, noreg, the_pc, rscratch1); 3345 __ mov(c_rarg0, rthread); 3346 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 3347 __ blr(rscratch1); 3348 // handle_exception_C is a special VM call which does not require an explicit 3349 // instruction sync afterwards. 3350 3351 // May jump to SVE compiled code 3352 __ reinitialize_ptrue(); 3353 3354 // Set an oopmap for the call site. This oopmap will only be used if we 3355 // are unwinding the stack. Hence, all locations will be dead. 3356 // Callee-saved registers will be the same as the frame above (i.e., 3357 // handle_exception_stub), since they were restored when we got the 3358 // exception. 3359 3360 OopMapSet* oop_maps = new OopMapSet(); 3361 3362 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3363 3364 __ reset_last_Java_frame(false); 3365 3366 // Restore callee-saved registers 3367 3368 // rfp is an implicitly saved callee saved register (i.e. the calling 3369 // convention will save restore it in prolog/epilog) Other than that 3370 // there are no callee save registers now that adapter frames are gone. 3371 // and we dont' expect an arg reg save area 3372 __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize))); 3373 __ authenticate_return_address(r3); 3374 3375 // r0: exception handler 3376 3377 // We have a handler in r0 (could be deopt blob). 3378 __ mov(r8, r0); 3379 3380 // Get the exception oop 3381 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 3382 // Get the exception pc in case we are deoptimized 3383 __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset())); 3384 #ifdef ASSERT 3385 __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset())); 3386 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 3387 #endif 3388 // Clear the exception oop so GC no longer processes it as a root. 3389 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 3390 3391 // r0: exception oop 3392 // r8: exception handler 3393 // r4: exception pc 3394 // Jump to handler 3395 3396 __ br(r8); 3397 3398 // Make sure all code is generated 3399 masm->flush(); 3400 3401 // Set exception blob 3402 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3403 } 3404 3405 #endif // COMPILER2 3406 3407 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) { 3408 BufferBlob* buf = BufferBlob::create("inline types pack/unpack", 16 * K); 3409 CodeBuffer buffer(buf); 3410 short buffer_locs[20]; 3411 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3412 sizeof(buffer_locs)/sizeof(relocInfo)); 3413 3414 MacroAssembler _masm(&buffer); 3415 MacroAssembler* masm = &_masm; 3416 3417 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3418 const Array<VMRegPair>* regs = vk->return_regs(); 3419 3420 int pack_fields_jobject_off = __ offset(); 3421 // Resolve pre-allocated buffer from JNI handle. 3422 // We cannot do this in generate_call_stub() because it requires GC code to be initialized. 3423 Register Rresult = r14; // See StubGenerator::generate_call_stub(). 3424 __ ldr(r0, Address(Rresult)); 3425 __ resolve_jobject(r0 /* value */, 3426 rthread /* thread */, 3427 r12 /* tmp */); 3428 __ str(r0, Address(Rresult)); 3429 3430 int pack_fields_off = __ offset(); 3431 3432 int j = 1; 3433 for (int i = 0; i < sig_vk->length(); i++) { 3434 BasicType bt = sig_vk->at(i)._bt; 3435 if (bt == T_PRIMITIVE_OBJECT) { 3436 continue; 3437 } 3438 if (bt == T_VOID) { 3439 if (sig_vk->at(i-1)._bt == T_LONG || 3440 sig_vk->at(i-1)._bt == T_DOUBLE) { 3441 j++; 3442 } 3443 continue; 3444 } 3445 int off = sig_vk->at(i)._offset; 3446 VMRegPair pair = regs->at(j); 3447 VMReg r_1 = pair.first(); 3448 VMReg r_2 = pair.second(); 3449 Address to(r0, off); 3450 if (bt == T_FLOAT) { 3451 __ strs(r_1->as_FloatRegister(), to); 3452 } else if (bt == T_DOUBLE) { 3453 __ strd(r_1->as_FloatRegister(), to); 3454 } else { 3455 Register val = r_1->as_Register(); 3456 assert_different_registers(to.base(), val, r15, r16, r17); 3457 if (is_reference_type(bt)) { 3458 __ store_heap_oop(to, val, r15, r16, r17, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 3459 } else { 3460 __ store_sized_value(to, r_1->as_Register(), type2aelembytes(bt)); 3461 } 3462 } 3463 j++; 3464 } 3465 assert(j == regs->length(), "missed a field?"); 3466 3467 __ ret(lr); 3468 3469 int unpack_fields_off = __ offset(); 3470 3471 Label skip; 3472 __ cbz(r0, skip); 3473 3474 j = 1; 3475 for (int i = 0; i < sig_vk->length(); i++) { 3476 BasicType bt = sig_vk->at(i)._bt; 3477 if (bt == T_PRIMITIVE_OBJECT) { 3478 continue; 3479 } 3480 if (bt == T_VOID) { 3481 if (sig_vk->at(i-1)._bt == T_LONG || 3482 sig_vk->at(i-1)._bt == T_DOUBLE) { 3483 j++; 3484 } 3485 continue; 3486 } 3487 int off = sig_vk->at(i)._offset; 3488 assert(off > 0, "offset in object should be positive"); 3489 VMRegPair pair = regs->at(j); 3490 VMReg r_1 = pair.first(); 3491 VMReg r_2 = pair.second(); 3492 Address from(r0, off); 3493 if (bt == T_FLOAT) { 3494 __ ldrs(r_1->as_FloatRegister(), from); 3495 } else if (bt == T_DOUBLE) { 3496 __ ldrd(r_1->as_FloatRegister(), from); 3497 } else if (bt == T_OBJECT || bt == T_ARRAY) { 3498 assert_different_registers(r0, r_1->as_Register()); 3499 __ load_heap_oop(r_1->as_Register(), from, rscratch1, rscratch2); 3500 } else { 3501 assert(is_java_primitive(bt), "unexpected basic type"); 3502 assert_different_registers(r0, r_1->as_Register()); 3503 3504 size_t size_in_bytes = type2aelembytes(bt); 3505 __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN); 3506 } 3507 j++; 3508 } 3509 assert(j == regs->length(), "missed a field?"); 3510 3511 __ bind(skip); 3512 3513 __ ret(lr); 3514 3515 __ flush(); 3516 3517 return BufferedInlineTypeBlob::create(&buffer, pack_fields_off, pack_fields_jobject_off, unpack_fields_off); 3518 }