1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "classfile/symbolTable.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/debugInfoRec.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interp_masm.hpp" 39 #include "logging/log.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/continuation.hpp" 46 #include "runtime/continuationEntry.inline.hpp" 47 #include "runtime/globals.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/signature.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/timerTrace.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/align.hpp" 56 #include "utilities/formatBuffer.hpp" 57 #include "vmreg_aarch64.inline.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_Runtime1.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "adfiles/ad_aarch64.hpp" 63 #include "opto/runtime.hpp" 64 #endif 65 #if INCLUDE_JVMCI 66 #include "jvmci/jvmciJavaClasses.hpp" 67 #endif 68 69 #define __ masm-> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) __ block_comment(str) 75 #endif 76 77 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 78 79 // FIXME -- this is used by C1 80 class RegisterSaver { 81 const bool _save_vectors; 82 public: 83 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 84 85 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 86 void restore_live_registers(MacroAssembler* masm); 87 88 // Offsets into the register save area 89 // Used by deoptimization when it is managing result register 90 // values on its own 91 92 int reg_offset_in_bytes(Register r); 93 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 94 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 95 int v0_offset_in_bytes(); 96 97 // Total stack size in bytes for saving sve predicate registers. 98 int total_sve_predicate_in_bytes(); 99 100 // Capture info about frame layout 101 // Note this is only correct when not saving full vectors. 102 enum layout { 103 fpu_state_off = 0, 104 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 105 // The frame sender code expects that rfp will be in 106 // the "natural" place and will override any oopMap 107 // setting for it. We must therefore force the layout 108 // so that it agrees with the frame sender code. 109 r0_off = fpu_state_off + FPUStateSizeInWords, 110 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 111 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 112 reg_save_size = return_off + Register::max_slots_per_register}; 113 114 }; 115 116 int RegisterSaver::reg_offset_in_bytes(Register r) { 117 // The integer registers are located above the floating point 118 // registers in the stack frame pushed by save_live_registers() so the 119 // offset depends on whether we are saving full vectors, and whether 120 // those vectors are NEON or SVE. 121 122 int slots_per_vect = FloatRegister::save_slots_per_register; 123 124 #if COMPILER2_OR_JVMCI 125 if (_save_vectors) { 126 slots_per_vect = FloatRegister::slots_per_neon_register; 127 128 #ifdef COMPILER2 129 if (Matcher::supports_scalable_vector()) { 130 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 131 } 132 #endif 133 } 134 #endif 135 136 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 137 return r0_offset + r->encoding() * wordSize; 138 } 139 140 int RegisterSaver::v0_offset_in_bytes() { 141 // The floating point registers are located above the predicate registers if 142 // they are present in the stack frame pushed by save_live_registers(). So the 143 // offset depends on the saved total predicate vectors in the stack frame. 144 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 145 } 146 147 int RegisterSaver::total_sve_predicate_in_bytes() { 148 #ifdef COMPILER2 149 if (_save_vectors && Matcher::supports_scalable_vector()) { 150 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 151 PRegister::number_of_registers; 152 } 153 #endif 154 return 0; 155 } 156 157 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 158 bool use_sve = false; 159 int sve_vector_size_in_bytes = 0; 160 int sve_vector_size_in_slots = 0; 161 int sve_predicate_size_in_slots = 0; 162 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 163 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 164 165 #ifdef COMPILER2 166 use_sve = Matcher::supports_scalable_vector(); 167 if (use_sve) { 168 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 169 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 170 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 171 } 172 #endif 173 174 #if COMPILER2_OR_JVMCI 175 if (_save_vectors) { 176 int extra_save_slots_per_register = 0; 177 // Save upper half of vector registers 178 if (use_sve) { 179 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 180 } else { 181 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 182 } 183 int extra_vector_bytes = extra_save_slots_per_register * 184 VMRegImpl::stack_slot_size * 185 FloatRegister::number_of_registers; 186 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 187 } 188 #else 189 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 190 #endif 191 192 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 193 reg_save_size * BytesPerInt, 16); 194 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 195 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 196 // The caller will allocate additional_frame_words 197 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 198 // CodeBlob frame size is in words. 199 int frame_size_in_words = frame_size_in_bytes / wordSize; 200 *total_frame_words = frame_size_in_words; 201 202 // Save Integer and Float registers. 203 __ enter(); 204 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 205 206 // Set an oopmap for the call site. This oopmap will map all 207 // oop-registers and debug-info registers as callee-saved. This 208 // will allow deoptimization at this safepoint to find all possible 209 // debug-info recordings, as well as let GC find all oops. 210 211 OopMapSet *oop_maps = new OopMapSet(); 212 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 213 214 for (int i = 0; i < Register::number_of_registers; i++) { 215 Register r = as_Register(i); 216 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 217 // SP offsets are in 4-byte words. 218 // Register slots are 8 bytes wide, 32 floating-point registers. 219 int sp_offset = Register::max_slots_per_register * i + 220 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 221 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 222 } 223 } 224 225 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 226 FloatRegister r = as_FloatRegister(i); 227 int sp_offset = 0; 228 if (_save_vectors) { 229 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 230 (FloatRegister::slots_per_neon_register * i); 231 } else { 232 sp_offset = FloatRegister::save_slots_per_register * i; 233 } 234 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 235 } 236 237 return oop_map; 238 } 239 240 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 241 #ifdef COMPILER2 242 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 243 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 244 #else 245 #if !INCLUDE_JVMCI 246 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 247 #endif 248 __ pop_CPU_state(_save_vectors); 249 #endif 250 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 251 __ authenticate_return_address(); 252 } 253 254 // Is vector's size (in bytes) bigger than a size saved by default? 255 // 8 bytes vector registers are saved by default on AArch64. 256 // The SVE supported min vector size is 8 bytes and we need to save 257 // predicate registers when the vector size is 8 bytes as well. 258 bool SharedRuntime::is_wide_vector(int size) { 259 return size > 8 || (UseSVE > 0 && size >= 8); 260 } 261 262 // --------------------------------------------------------------------------- 263 // Read the array of BasicTypes from a signature, and compute where the 264 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 265 // quantities. Values less than VMRegImpl::stack0 are registers, those above 266 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 267 // as framesizes are fixed. 268 // VMRegImpl::stack0 refers to the first slot 0(sp). 269 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 270 // Register up to Register::number_of_registers are the 64-bit 271 // integer registers. 272 273 // Note: the INPUTS in sig_bt are in units of Java argument words, 274 // which are 64-bit. The OUTPUTS are in 32-bit units. 275 276 // The Java calling convention is a "shifted" version of the C ABI. 277 // By skipping the first C ABI register we can call non-static jni 278 // methods with small numbers of arguments without having to shuffle 279 // the arguments at all. Since we control the java ABI we ought to at 280 // least get some advantage out of it. 281 282 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 283 VMRegPair *regs, 284 int total_args_passed) { 285 286 // Create the mapping between argument positions and 287 // registers. 288 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 289 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 290 }; 291 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 292 j_farg0, j_farg1, j_farg2, j_farg3, 293 j_farg4, j_farg5, j_farg6, j_farg7 294 }; 295 296 297 uint int_args = 0; 298 uint fp_args = 0; 299 uint stk_args = 0; 300 301 for (int i = 0; i < total_args_passed; i++) { 302 switch (sig_bt[i]) { 303 case T_BOOLEAN: 304 case T_CHAR: 305 case T_BYTE: 306 case T_SHORT: 307 case T_INT: 308 if (int_args < Argument::n_int_register_parameters_j) { 309 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 310 } else { 311 stk_args = align_up(stk_args, 2); 312 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 313 stk_args += 1; 314 } 315 break; 316 case T_VOID: 317 // halves of T_LONG or T_DOUBLE 318 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 319 regs[i].set_bad(); 320 break; 321 case T_LONG: 322 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 323 // fall through 324 case T_OBJECT: 325 case T_ARRAY: 326 case T_ADDRESS: 327 if (int_args < Argument::n_int_register_parameters_j) { 328 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 329 } else { 330 stk_args = align_up(stk_args, 2); 331 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 332 stk_args += 2; 333 } 334 break; 335 case T_FLOAT: 336 if (fp_args < Argument::n_float_register_parameters_j) { 337 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 338 } else { 339 stk_args = align_up(stk_args, 2); 340 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 341 stk_args += 1; 342 } 343 break; 344 case T_DOUBLE: 345 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 346 if (fp_args < Argument::n_float_register_parameters_j) { 347 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 348 } else { 349 stk_args = align_up(stk_args, 2); 350 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 351 stk_args += 2; 352 } 353 break; 354 default: 355 ShouldNotReachHere(); 356 break; 357 } 358 } 359 360 return stk_args; 361 } 362 363 364 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j; 365 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j; 366 367 int SharedRuntime::java_return_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) { 368 369 // Create the mapping between argument positions and registers. 370 371 static const Register INT_ArgReg[java_return_convention_max_int] = { 372 r0 /* j_rarg7 */, j_rarg6, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0 373 }; 374 375 static const FloatRegister FP_ArgReg[java_return_convention_max_float] = { 376 j_farg0, j_farg1, j_farg2, j_farg3, j_farg4, j_farg5, j_farg6, j_farg7 377 }; 378 379 uint int_args = 0; 380 uint fp_args = 0; 381 382 for (int i = 0; i < total_args_passed; i++) { 383 switch (sig_bt[i]) { 384 case T_BOOLEAN: 385 case T_CHAR: 386 case T_BYTE: 387 case T_SHORT: 388 case T_INT: 389 if (int_args < SharedRuntime::java_return_convention_max_int) { 390 regs[i].set1(INT_ArgReg[int_args]->as_VMReg()); 391 int_args ++; 392 } else { 393 return -1; 394 } 395 break; 396 case T_VOID: 397 // halves of T_LONG or T_DOUBLE 398 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 399 regs[i].set_bad(); 400 break; 401 case T_LONG: 402 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 403 // fall through 404 case T_OBJECT: 405 case T_ARRAY: 406 case T_ADDRESS: 407 // Should T_METADATA be added to java_calling_convention as well ? 408 case T_METADATA: 409 if (int_args < SharedRuntime::java_return_convention_max_int) { 410 regs[i].set2(INT_ArgReg[int_args]->as_VMReg()); 411 int_args ++; 412 } else { 413 return -1; 414 } 415 break; 416 case T_FLOAT: 417 if (fp_args < SharedRuntime::java_return_convention_max_float) { 418 regs[i].set1(FP_ArgReg[fp_args]->as_VMReg()); 419 fp_args ++; 420 } else { 421 return -1; 422 } 423 break; 424 case T_DOUBLE: 425 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 426 if (fp_args < SharedRuntime::java_return_convention_max_float) { 427 regs[i].set2(FP_ArgReg[fp_args]->as_VMReg()); 428 fp_args ++; 429 } else { 430 return -1; 431 } 432 break; 433 default: 434 ShouldNotReachHere(); 435 break; 436 } 437 } 438 439 return int_args + fp_args; 440 } 441 442 // Patch the callers callsite with entry to compiled code if it exists. 443 static void patch_callers_callsite(MacroAssembler *masm) { 444 Label L; 445 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 446 __ cbz(rscratch1, L); 447 448 __ enter(); 449 __ push_CPU_state(); 450 451 // VM needs caller's callsite 452 // VM needs target method 453 // This needs to be a long call since we will relocate this adapter to 454 // the codeBuffer and it may not reach 455 456 #ifndef PRODUCT 457 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 458 #endif 459 460 __ mov(c_rarg0, rmethod); 461 __ mov(c_rarg1, lr); 462 __ authenticate_return_address(c_rarg1); 463 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 464 __ blr(rscratch1); 465 466 // Explicit isb required because fixup_callers_callsite may change the code 467 // stream. 468 __ safepoint_isb(); 469 470 __ pop_CPU_state(); 471 // restore sp 472 __ leave(); 473 __ bind(L); 474 } 475 476 // For each inline type argument, sig includes the list of fields of 477 // the inline type. This utility function computes the number of 478 // arguments for the call if inline types are passed by reference (the 479 // calling convention the interpreter expects). 480 static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) { 481 int total_args_passed = 0; 482 if (InlineTypePassFieldsAsArgs) { 483 for (int i = 0; i < sig_extended->length(); i++) { 484 BasicType bt = sig_extended->at(i)._bt; 485 if (bt == T_METADATA) { 486 // In sig_extended, an inline type argument starts with: 487 // T_METADATA, followed by the types of the fields of the 488 // inline type and T_VOID to mark the end of the value 489 // type. Inline types are flattened so, for instance, in the 490 // case of an inline type with an int field and an inline type 491 // field that itself has 2 fields, an int and a long: 492 // T_METADATA T_INT T_METADATA T_INT T_LONG T_VOID (second 493 // slot for the T_LONG) T_VOID (inner inline type) T_VOID 494 // (outer inline type) 495 total_args_passed++; 496 int vt = 1; 497 do { 498 i++; 499 BasicType bt = sig_extended->at(i)._bt; 500 BasicType prev_bt = sig_extended->at(i-1)._bt; 501 if (bt == T_METADATA) { 502 vt++; 503 } else if (bt == T_VOID && 504 prev_bt != T_LONG && 505 prev_bt != T_DOUBLE) { 506 vt--; 507 } 508 } while (vt != 0); 509 } else { 510 total_args_passed++; 511 } 512 } 513 } else { 514 total_args_passed = sig_extended->length(); 515 } 516 517 return total_args_passed; 518 } 519 520 521 static void gen_c2i_adapter_helper(MacroAssembler* masm, 522 BasicType bt, 523 BasicType prev_bt, 524 size_t size_in_bytes, 525 const VMRegPair& reg_pair, 526 const Address& to, 527 Register tmp1, 528 Register tmp2, 529 Register tmp3, 530 int extraspace, 531 bool is_oop) { 532 if (bt == T_VOID) { 533 assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half"); 534 return; 535 } 536 537 // Say 4 args: 538 // i st_off 539 // 0 32 T_LONG 540 // 1 24 T_VOID 541 // 2 16 T_OBJECT 542 // 3 8 T_BOOL 543 // - 0 return address 544 // 545 // However to make thing extra confusing. Because we can fit a Java long/double in 546 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 547 // leaves one slot empty and only stores to a single slot. In this case the 548 // slot that is occupied is the T_VOID slot. See I said it was confusing. 549 550 bool wide = (size_in_bytes == wordSize); 551 VMReg r_1 = reg_pair.first(); 552 VMReg r_2 = reg_pair.second(); 553 assert(r_2->is_valid() == wide, "invalid size"); 554 if (!r_1->is_valid()) { 555 assert(!r_2->is_valid(), ""); 556 return; 557 } 558 559 if (!r_1->is_FloatRegister()) { 560 Register val = r25; 561 if (r_1->is_stack()) { 562 // memory to memory use r25 (scratch registers is used by store_heap_oop) 563 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 564 __ load_sized_value(val, Address(sp, ld_off), size_in_bytes, /* is_signed */ false); 565 } else { 566 val = r_1->as_Register(); 567 } 568 assert_different_registers(to.base(), val, tmp1, tmp2, tmp3); 569 if (is_oop) { 570 __ store_heap_oop(to, val, tmp1, tmp2, tmp3, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 571 } else { 572 __ store_sized_value(to, val, size_in_bytes); 573 } 574 } else { 575 if (wide) { 576 __ strd(r_1->as_FloatRegister(), to); 577 } else { 578 // only a float use just part of the slot 579 __ strs(r_1->as_FloatRegister(), to); 580 } 581 } 582 } 583 584 static void gen_c2i_adapter(MacroAssembler *masm, 585 const GrowableArray<SigEntry>* sig_extended, 586 const VMRegPair *regs, 587 bool requires_clinit_barrier, 588 address& c2i_no_clinit_check_entry, 589 Label& skip_fixup, 590 address start, 591 OopMapSet* oop_maps, 592 int& frame_complete, 593 int& frame_size_in_words, 594 bool alloc_inline_receiver) { 595 if (requires_clinit_barrier && VM_Version::supports_fast_class_init_checks()) { 596 Label L_skip_barrier; 597 598 { // Bypass the barrier for non-static methods 599 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 600 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 601 __ br(Assembler::EQ, L_skip_barrier); // non-static 602 } 603 604 __ load_method_holder(rscratch2, rmethod); 605 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 606 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 607 608 __ bind(L_skip_barrier); 609 c2i_no_clinit_check_entry = __ pc(); 610 } 611 612 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 613 bs->c2i_entry_barrier(masm); 614 615 // Before we get into the guts of the C2I adapter, see if we should be here 616 // at all. We've come from compiled code and are attempting to jump to the 617 // interpreter, which means the caller made a static call to get here 618 // (vcalls always get a compiled target if there is one). Check for a 619 // compiled target. If there is one, we need to patch the caller's call. 620 patch_callers_callsite(masm); 621 622 __ bind(skip_fixup); 623 624 // Name some registers to be used in the following code. We can use 625 // anything except r0-r7 which are arguments in the Java calling 626 // convention, rmethod (r12), and r13 which holds the outgoing sender 627 // SP for the interpreter. 628 Register buf_array = r10; // Array of buffered inline types 629 Register buf_oop = r11; // Buffered inline type oop 630 Register tmp1 = r15; 631 Register tmp2 = r16; 632 Register tmp3 = r17; 633 634 if (InlineTypePassFieldsAsArgs) { 635 // Is there an inline type argument? 636 bool has_inline_argument = false; 637 for (int i = 0; i < sig_extended->length() && !has_inline_argument; i++) { 638 has_inline_argument = (sig_extended->at(i)._bt == T_METADATA); 639 } 640 if (has_inline_argument) { 641 // There is at least an inline type argument: we're coming from 642 // compiled code so we have no buffers to back the inline types 643 // Allocate the buffers here with a runtime call. 644 RegisterSaver reg_save(false /* save_vectors */); 645 OopMap* map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 646 647 frame_complete = __ offset(); 648 address the_pc = __ pc(); 649 650 Label retaddr; 651 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 652 653 __ mov(c_rarg0, rthread); 654 __ mov(c_rarg1, rmethod); 655 __ mov(c_rarg2, (int64_t)alloc_inline_receiver); 656 657 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_inline_types))); 658 __ blr(rscratch1); 659 __ bind(retaddr); 660 661 oop_maps->add_gc_map(__ pc() - start, map); 662 __ reset_last_Java_frame(false); 663 664 reg_save.restore_live_registers(masm); 665 666 Label no_exception; 667 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 668 __ cbz(rscratch1, no_exception); 669 670 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 671 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 672 __ b(RuntimeAddress(StubRoutines::forward_exception_entry())); 673 674 __ bind(no_exception); 675 676 // We get an array of objects from the runtime call 677 __ get_vm_result(buf_array, rthread); 678 __ get_vm_result_2(rmethod, rthread); // TODO: required to keep the callee Method live? 679 } 680 } 681 682 // Since all args are passed on the stack, total_args_passed * 683 // Interpreter::stackElementSize is the space we need. 684 685 int total_args_passed = compute_total_args_passed_int(sig_extended); 686 int extraspace = total_args_passed * Interpreter::stackElementSize; 687 688 // stack is aligned, keep it that way 689 extraspace = align_up(extraspace, StackAlignmentInBytes); 690 691 // set senderSP value 692 __ mov(r19_sender_sp, sp); 693 694 __ sub(sp, sp, extraspace); 695 696 // Now write the args into the outgoing interpreter space 697 698 // next_arg_comp is the next argument from the compiler point of 699 // view (inline type fields are passed in registers/on the stack). In 700 // sig_extended, an inline type argument starts with: T_METADATA, 701 // followed by the types of the fields of the inline type and T_VOID 702 // to mark the end of the inline type. ignored counts the number of 703 // T_METADATA/T_VOID. next_vt_arg is the next inline type argument: 704 // used to get the buffer for that argument from the pool of buffers 705 // we allocated above and want to pass to the 706 // interpreter. next_arg_int is the next argument from the 707 // interpreter point of view (inline types are passed by reference). 708 for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0; 709 next_arg_comp < sig_extended->length(); next_arg_comp++) { 710 assert(ignored <= next_arg_comp, "shouldn't skip over more slots than there are arguments"); 711 assert(next_arg_int <= total_args_passed, "more arguments for the interpreter than expected?"); 712 BasicType bt = sig_extended->at(next_arg_comp)._bt; 713 int st_off = (total_args_passed - next_arg_int - 1) * Interpreter::stackElementSize; 714 if (!InlineTypePassFieldsAsArgs || bt != T_METADATA) { 715 int next_off = st_off - Interpreter::stackElementSize; 716 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off; 717 const VMRegPair reg_pair = regs[next_arg_comp-ignored]; 718 size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4; 719 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 720 size_in_bytes, reg_pair, Address(sp, offset), tmp1, tmp2, tmp3, extraspace, false); 721 next_arg_int++; 722 #ifdef ASSERT 723 if (bt == T_LONG || bt == T_DOUBLE) { 724 // Overwrite the unused slot with known junk 725 __ mov(rscratch1, CONST64(0xdeadffffdeadaaaa)); 726 __ str(rscratch1, Address(sp, st_off)); 727 } 728 #endif /* ASSERT */ 729 } else { 730 ignored++; 731 // get the buffer from the just allocated pool of buffers 732 int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_OBJECT); 733 __ load_heap_oop(buf_oop, Address(buf_array, index), tmp1, tmp2); 734 next_vt_arg++; next_arg_int++; 735 int vt = 1; 736 // write fields we get from compiled code in registers/stack 737 // slots to the buffer: we know we are done with that inline type 738 // argument when we hit the T_VOID that acts as an end of inline 739 // type delimiter for this inline type. Inline types are flattened 740 // so we might encounter embedded inline types. Each entry in 741 // sig_extended contains a field offset in the buffer. 742 Label L_null; 743 do { 744 next_arg_comp++; 745 BasicType bt = sig_extended->at(next_arg_comp)._bt; 746 BasicType prev_bt = sig_extended->at(next_arg_comp - 1)._bt; 747 if (bt == T_METADATA) { 748 vt++; 749 ignored++; 750 } else if (bt == T_VOID && prev_bt != T_LONG && prev_bt != T_DOUBLE) { 751 vt--; 752 ignored++; 753 } else { 754 int off = sig_extended->at(next_arg_comp)._offset; 755 if (off == -1) { 756 // Nullable inline type argument, emit null check 757 VMReg reg = regs[next_arg_comp-ignored].first(); 758 Label L_notNull; 759 if (reg->is_stack()) { 760 int ld_off = reg->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 761 __ ldrb(tmp1, Address(sp, ld_off)); 762 __ cbnz(tmp1, L_notNull); 763 } else { 764 __ cbnz(reg->as_Register(), L_notNull); 765 } 766 __ str(zr, Address(sp, st_off)); 767 __ b(L_null); 768 __ bind(L_notNull); 769 continue; 770 } 771 assert(off > 0, "offset in object should be positive"); 772 size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize; 773 bool is_oop = is_reference_type(bt); 774 gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended->at(next_arg_comp-1)._bt : T_ILLEGAL, 775 size_in_bytes, regs[next_arg_comp-ignored], Address(buf_oop, off), tmp1, tmp2, tmp3, extraspace, is_oop); 776 } 777 } while (vt != 0); 778 // pass the buffer to the interpreter 779 __ str(buf_oop, Address(sp, st_off)); 780 __ bind(L_null); 781 } 782 } 783 784 __ mov(esp, sp); // Interp expects args on caller's expression stack 785 786 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 787 __ br(rscratch1); 788 } 789 790 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, int comp_args_on_stack, const GrowableArray<SigEntry>* sig, const VMRegPair *regs) { 791 792 793 // Note: r19_sender_sp contains the senderSP on entry. We must 794 // preserve it since we may do a i2c -> c2i transition if we lose a 795 // race where compiled code goes non-entrant while we get args 796 // ready. 797 798 // Adapters are frameless. 799 800 // An i2c adapter is frameless because the *caller* frame, which is 801 // interpreted, routinely repairs its own esp (from 802 // interpreter_frame_last_sp), even if a callee has modified the 803 // stack pointer. It also recalculates and aligns sp. 804 805 // A c2i adapter is frameless because the *callee* frame, which is 806 // interpreted, routinely repairs its caller's sp (from sender_sp, 807 // which is set up via the senderSP register). 808 809 // In other words, if *either* the caller or callee is interpreted, we can 810 // get the stack pointer repaired after a call. 811 812 // This is why c2i and i2c adapters cannot be indefinitely composed. 813 // In particular, if a c2i adapter were to somehow call an i2c adapter, 814 // both caller and callee would be compiled methods, and neither would 815 // clean up the stack pointer changes performed by the two adapters. 816 // If this happens, control eventually transfers back to the compiled 817 // caller, but with an uncorrected stack, causing delayed havoc. 818 819 if (VerifyAdapterCalls && 820 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 821 #if 0 822 // So, let's test for cascading c2i/i2c adapters right now. 823 // assert(Interpreter::contains($return_addr) || 824 // StubRoutines::contains($return_addr), 825 // "i2c adapter must return to an interpreter frame"); 826 __ block_comment("verify_i2c { "); 827 Label L_ok; 828 if (Interpreter::code() != nullptr) { 829 range_check(masm, rax, r11, 830 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 831 L_ok); 832 } 833 if (StubRoutines::initial_stubs_code() != nullptr) { 834 range_check(masm, rax, r11, 835 StubRoutines::initial_stubs_code()->code_begin(), 836 StubRoutines::initial_stubs_code()->code_end(), 837 L_ok); 838 } 839 if (StubRoutines::final_stubs_code() != nullptr) { 840 range_check(masm, rax, r11, 841 StubRoutines::final_stubs_code()->code_begin(), 842 StubRoutines::final_stubs_code()->code_end(), 843 L_ok); 844 } 845 const char* msg = "i2c adapter must return to an interpreter frame"; 846 __ block_comment(msg); 847 __ stop(msg); 848 __ bind(L_ok); 849 __ block_comment("} verify_i2ce "); 850 #endif 851 } 852 853 // Cut-out for having no stack args. 854 int comp_words_on_stack = 0; 855 if (comp_args_on_stack) { 856 comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 857 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 858 __ andr(sp, rscratch1, -16); 859 } 860 861 // Will jump to the compiled code just as if compiled code was doing it. 862 // Pre-load the register-jump target early, to schedule it better. 863 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_inline_offset()))); 864 865 #if INCLUDE_JVMCI 866 if (EnableJVMCI) { 867 // check if this call should be routed towards a specific entry point 868 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 869 Label no_alternative_target; 870 __ cbz(rscratch2, no_alternative_target); 871 __ mov(rscratch1, rscratch2); 872 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 873 __ bind(no_alternative_target); 874 } 875 #endif // INCLUDE_JVMCI 876 877 int total_args_passed = sig->length(); 878 879 // Now generate the shuffle code. 880 for (int i = 0; i < total_args_passed; i++) { 881 BasicType bt = sig->at(i)._bt; 882 if (bt == T_VOID) { 883 assert(i > 0 && (sig->at(i - 1)._bt == T_LONG || sig->at(i - 1)._bt == T_DOUBLE), "missing half"); 884 continue; 885 } 886 887 // Pick up 0, 1 or 2 words from SP+offset. 888 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); 889 890 // Load in argument order going down. 891 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 892 // Point to interpreter value (vs. tag) 893 int next_off = ld_off - Interpreter::stackElementSize; 894 // 895 // 896 // 897 VMReg r_1 = regs[i].first(); 898 VMReg r_2 = regs[i].second(); 899 if (!r_1->is_valid()) { 900 assert(!r_2->is_valid(), ""); 901 continue; 902 } 903 if (r_1->is_stack()) { 904 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 905 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 906 if (!r_2->is_valid()) { 907 // sign extend??? 908 __ ldrsw(rscratch2, Address(esp, ld_off)); 909 __ str(rscratch2, Address(sp, st_off)); 910 } else { 911 // 912 // We are using two optoregs. This can be either T_OBJECT, 913 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 914 // two slots but only uses one for thr T_LONG or T_DOUBLE case 915 // So we must adjust where to pick up the data to match the 916 // interpreter. 917 // 918 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 919 // are accessed as negative so LSW is at LOW address 920 921 // ld_off is MSW so get LSW 922 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 923 __ ldr(rscratch2, Address(esp, offset)); 924 // st_off is LSW (i.e. reg.first()) 925 __ str(rscratch2, Address(sp, st_off)); 926 } 927 } else if (r_1->is_Register()) { // Register argument 928 Register r = r_1->as_Register(); 929 if (r_2->is_valid()) { 930 // 931 // We are using two VMRegs. This can be either T_OBJECT, 932 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 933 // two slots but only uses one for thr T_LONG or T_DOUBLE case 934 // So we must adjust where to pick up the data to match the 935 // interpreter. 936 937 const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off; 938 939 // this can be a misaligned move 940 __ ldr(r, Address(esp, offset)); 941 } else { 942 // sign extend and use a full word? 943 __ ldrw(r, Address(esp, ld_off)); 944 } 945 } else { 946 if (!r_2->is_valid()) { 947 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 948 } else { 949 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 950 } 951 } 952 } 953 954 955 __ mov(rscratch2, rscratch1); 956 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 957 __ mov(rscratch1, rscratch2); 958 959 // 6243940 We might end up in handle_wrong_method if 960 // the callee is deoptimized as we race thru here. If that 961 // happens we don't want to take a safepoint because the 962 // caller frame will look interpreted and arguments are now 963 // "compiled" so it is much better to make this transition 964 // invisible to the stack walking code. Unfortunately if 965 // we try and find the callee by normal means a safepoint 966 // is possible. So we stash the desired callee in the thread 967 // and the vm will find there should this case occur. 968 969 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 970 __ br(rscratch1); 971 } 972 973 static void gen_inline_cache_check(MacroAssembler *masm, Label& skip_fixup) { 974 Register data = rscratch2; 975 __ ic_check(1 /* end_alignment */); 976 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 977 978 // Method might have been compiled since the call site was patched to 979 // interpreted; if that is the case treat it as a miss so we can get 980 // the call site corrected. 981 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 982 __ cbz(rscratch1, skip_fixup); 983 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 984 } 985 986 // --------------------------------------------------------------- 987 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler* masm, 988 int comp_args_on_stack, 989 const GrowableArray<SigEntry>* sig, 990 const VMRegPair* regs, 991 const GrowableArray<SigEntry>* sig_cc, 992 const VMRegPair* regs_cc, 993 const GrowableArray<SigEntry>* sig_cc_ro, 994 const VMRegPair* regs_cc_ro, 995 AdapterFingerPrint* fingerprint, 996 AdapterBlob*& new_adapter, 997 bool allocate_code_blob) { 998 999 address i2c_entry = __ pc(); 1000 gen_i2c_adapter(masm, comp_args_on_stack, sig, regs); 1001 1002 // ------------------------------------------------------------------------- 1003 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 1004 // to the interpreter. The args start out packed in the compiled layout. They 1005 // need to be unpacked into the interpreter layout. This will almost always 1006 // require some stack space. We grow the current (compiled) stack, then repack 1007 // the args. We finally end in a jump to the generic interpreter entry point. 1008 // On exit from the interpreter, the interpreter will restore our SP (lest the 1009 // compiled code, which relies solely on SP and not FP, get sick). 1010 1011 address c2i_unverified_entry = __ pc(); 1012 address c2i_unverified_inline_entry = __ pc(); 1013 Label skip_fixup; 1014 1015 gen_inline_cache_check(masm, skip_fixup); 1016 1017 OopMapSet* oop_maps = new OopMapSet(); 1018 int frame_complete = CodeOffsets::frame_never_safe; 1019 int frame_size_in_words = 0; 1020 1021 // Scalarized c2i adapter with non-scalarized receiver (i.e., don't pack receiver) 1022 address c2i_no_clinit_check_entry = nullptr; 1023 address c2i_inline_ro_entry = __ pc(); 1024 if (regs_cc != regs_cc_ro) { 1025 // No class init barrier needed because method is guaranteed to be non-static 1026 gen_c2i_adapter(masm, sig_cc_ro, regs_cc_ro, /* requires_clinit_barrier = */ false, c2i_no_clinit_check_entry, 1027 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 1028 skip_fixup.reset(); 1029 } 1030 1031 // Scalarized c2i adapter 1032 address c2i_entry = __ pc(); 1033 address c2i_inline_entry = __ pc(); 1034 gen_c2i_adapter(masm, sig_cc, regs_cc, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1035 skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ true); 1036 1037 // Non-scalarized c2i adapter 1038 if (regs != regs_cc) { 1039 c2i_unverified_inline_entry = __ pc(); 1040 Label inline_entry_skip_fixup; 1041 gen_inline_cache_check(masm, inline_entry_skip_fixup); 1042 1043 c2i_inline_entry = __ pc(); 1044 gen_c2i_adapter(masm, sig, regs, /* requires_clinit_barrier = */ true, c2i_no_clinit_check_entry, 1045 inline_entry_skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words, /* alloc_inline_receiver = */ false); 1046 } 1047 1048 1049 // The c2i adapter might safepoint and trigger a GC. The caller must make sure that 1050 // the GC knows about the location of oop argument locations passed to the c2i adapter. 1051 if (allocate_code_blob) { 1052 bool caller_must_gc_arguments = (regs != regs_cc); 1053 new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments); 1054 } 1055 1056 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_inline_entry, c2i_inline_ro_entry, c2i_unverified_entry, c2i_unverified_inline_entry, c2i_no_clinit_check_entry); 1057 } 1058 1059 static int c_calling_convention_priv(const BasicType *sig_bt, 1060 VMRegPair *regs, 1061 int total_args_passed) { 1062 1063 // We return the amount of VMRegImpl stack slots we need to reserve for all 1064 // the arguments NOT counting out_preserve_stack_slots. 1065 1066 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1067 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 1068 }; 1069 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1070 c_farg0, c_farg1, c_farg2, c_farg3, 1071 c_farg4, c_farg5, c_farg6, c_farg7 1072 }; 1073 1074 uint int_args = 0; 1075 uint fp_args = 0; 1076 uint stk_args = 0; // inc by 2 each time 1077 1078 for (int i = 0; i < total_args_passed; i++) { 1079 switch (sig_bt[i]) { 1080 case T_BOOLEAN: 1081 case T_CHAR: 1082 case T_BYTE: 1083 case T_SHORT: 1084 case T_INT: 1085 if (int_args < Argument::n_int_register_parameters_c) { 1086 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 1087 } else { 1088 #ifdef __APPLE__ 1089 // Less-than word types are stored one after another. 1090 // The code is unable to handle this so bailout. 1091 return -1; 1092 #endif 1093 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1094 stk_args += 2; 1095 } 1096 break; 1097 case T_LONG: 1098 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1099 // fall through 1100 case T_OBJECT: 1101 case T_ARRAY: 1102 case T_ADDRESS: 1103 case T_METADATA: 1104 if (int_args < Argument::n_int_register_parameters_c) { 1105 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 1106 } else { 1107 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1108 stk_args += 2; 1109 } 1110 break; 1111 case T_FLOAT: 1112 if (fp_args < Argument::n_float_register_parameters_c) { 1113 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 1114 } else { 1115 #ifdef __APPLE__ 1116 // Less-than word types are stored one after another. 1117 // The code is unable to handle this so bailout. 1118 return -1; 1119 #endif 1120 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1121 stk_args += 2; 1122 } 1123 break; 1124 case T_DOUBLE: 1125 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1126 if (fp_args < Argument::n_float_register_parameters_c) { 1127 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 1128 } else { 1129 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1130 stk_args += 2; 1131 } 1132 break; 1133 case T_VOID: // Halves of longs and doubles 1134 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1135 regs[i].set_bad(); 1136 break; 1137 default: 1138 ShouldNotReachHere(); 1139 break; 1140 } 1141 } 1142 1143 return stk_args; 1144 } 1145 1146 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1147 uint num_bits, 1148 uint total_args_passed) { 1149 Unimplemented(); 1150 return 0; 1151 } 1152 1153 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1154 VMRegPair *regs, 1155 int total_args_passed) 1156 { 1157 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 1158 guarantee(result >= 0, "Unsupported arguments configuration"); 1159 return result; 1160 } 1161 1162 1163 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1164 // We always ignore the frame_slots arg and just use the space just below frame pointer 1165 // which by this time is free to use 1166 switch (ret_type) { 1167 case T_FLOAT: 1168 __ strs(v0, Address(rfp, -wordSize)); 1169 break; 1170 case T_DOUBLE: 1171 __ strd(v0, Address(rfp, -wordSize)); 1172 break; 1173 case T_VOID: break; 1174 default: { 1175 __ str(r0, Address(rfp, -wordSize)); 1176 } 1177 } 1178 } 1179 1180 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1181 // We always ignore the frame_slots arg and just use the space just below frame pointer 1182 // which by this time is free to use 1183 switch (ret_type) { 1184 case T_FLOAT: 1185 __ ldrs(v0, Address(rfp, -wordSize)); 1186 break; 1187 case T_DOUBLE: 1188 __ ldrd(v0, Address(rfp, -wordSize)); 1189 break; 1190 case T_VOID: break; 1191 default: { 1192 __ ldr(r0, Address(rfp, -wordSize)); 1193 } 1194 } 1195 } 1196 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1197 RegSet x; 1198 for ( int i = first_arg ; i < arg_count ; i++ ) { 1199 if (args[i].first()->is_Register()) { 1200 x = x + args[i].first()->as_Register(); 1201 } else if (args[i].first()->is_FloatRegister()) { 1202 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 1203 } 1204 } 1205 __ push(x, sp); 1206 } 1207 1208 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1209 RegSet x; 1210 for ( int i = first_arg ; i < arg_count ; i++ ) { 1211 if (args[i].first()->is_Register()) { 1212 x = x + args[i].first()->as_Register(); 1213 } else { 1214 ; 1215 } 1216 } 1217 __ pop(x, sp); 1218 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1219 if (args[i].first()->is_Register()) { 1220 ; 1221 } else if (args[i].first()->is_FloatRegister()) { 1222 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 1223 } 1224 } 1225 } 1226 1227 static void verify_oop_args(MacroAssembler* masm, 1228 const methodHandle& method, 1229 const BasicType* sig_bt, 1230 const VMRegPair* regs) { 1231 Register temp_reg = r19; // not part of any compiled calling seq 1232 if (VerifyOops) { 1233 for (int i = 0; i < method->size_of_parameters(); i++) { 1234 if (sig_bt[i] == T_OBJECT || 1235 sig_bt[i] == T_ARRAY) { 1236 VMReg r = regs[i].first(); 1237 assert(r->is_valid(), "bad oop arg"); 1238 if (r->is_stack()) { 1239 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1240 __ verify_oop(temp_reg); 1241 } else { 1242 __ verify_oop(r->as_Register()); 1243 } 1244 } 1245 } 1246 } 1247 } 1248 1249 // on exit, sp points to the ContinuationEntry 1250 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 1251 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 1252 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1253 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1254 1255 stack_slots += (int)ContinuationEntry::size()/wordSize; 1256 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 1257 1258 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1259 1260 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1261 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1262 __ mov(rscratch1, sp); // we can't use sp as the source in str 1263 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1264 1265 return map; 1266 } 1267 1268 // on entry c_rarg1 points to the continuation 1269 // sp points to ContinuationEntry 1270 // c_rarg3 -- isVirtualThread 1271 static void fill_continuation_entry(MacroAssembler* masm) { 1272 #ifdef ASSERT 1273 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1274 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1275 #endif 1276 1277 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1278 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1279 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1280 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1281 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1282 1283 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1284 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1285 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1286 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1287 1288 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1289 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1290 } 1291 1292 // on entry, sp points to the ContinuationEntry 1293 // on exit, rfp points to the spilled rfp in the entry frame 1294 static void continuation_enter_cleanup(MacroAssembler* masm) { 1295 #ifndef PRODUCT 1296 Label OK; 1297 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1298 __ cmp(sp, rscratch1); 1299 __ br(Assembler::EQ, OK); 1300 __ stop("incorrect sp1"); 1301 __ bind(OK); 1302 #endif 1303 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1304 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1305 1306 if (CheckJNICalls) { 1307 // Check if this is a virtual thread continuation 1308 Label L_skip_vthread_code; 1309 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1310 __ cbzw(rscratch1, L_skip_vthread_code); 1311 1312 // If the held monitor count is > 0 and this vthread is terminating then 1313 // it failed to release a JNI monitor. So we issue the same log message 1314 // that JavaThread::exit does. 1315 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset())); 1316 __ cbz(rscratch1, L_skip_vthread_code); 1317 1318 // Save return value potentially containing the exception oop in callee-saved R19. 1319 __ mov(r19, r0); 1320 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 1321 // Restore potential return value. 1322 __ mov(r0, r19); 1323 1324 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 1325 // on termination. The held count is implicitly zeroed below when we restore from 1326 // the parent held count (which has to be zero). 1327 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1328 1329 __ bind(L_skip_vthread_code); 1330 } 1331 #ifdef ASSERT 1332 else { 1333 // Check if this is a virtual thread continuation 1334 Label L_skip_vthread_code; 1335 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1336 __ cbzw(rscratch1, L_skip_vthread_code); 1337 1338 // See comment just above. If not checking JNI calls the JNI count is only 1339 // needed for assertion checking. 1340 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1341 1342 __ bind(L_skip_vthread_code); 1343 } 1344 #endif 1345 1346 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1347 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1348 1349 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1350 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1351 __ add(rfp, sp, (int)ContinuationEntry::size()); 1352 } 1353 1354 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1355 // On entry: c_rarg1 -- the continuation object 1356 // c_rarg2 -- isContinue 1357 // c_rarg3 -- isVirtualThread 1358 static void gen_continuation_enter(MacroAssembler* masm, 1359 const methodHandle& method, 1360 const BasicType* sig_bt, 1361 const VMRegPair* regs, 1362 int& exception_offset, 1363 OopMapSet*oop_maps, 1364 int& frame_complete, 1365 int& stack_slots, 1366 int& interpreted_entry_offset, 1367 int& compiled_entry_offset) { 1368 //verify_oop_args(masm, method, sig_bt, regs); 1369 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1370 1371 address start = __ pc(); 1372 1373 Label call_thaw, exit; 1374 1375 // i2i entry used at interp_only_mode only 1376 interpreted_entry_offset = __ pc() - start; 1377 { 1378 1379 #ifdef ASSERT 1380 Label is_interp_only; 1381 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1382 __ cbnzw(rscratch1, is_interp_only); 1383 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1384 __ bind(is_interp_only); 1385 #endif 1386 1387 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1388 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1389 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1390 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1391 __ push_cont_fastpath(rthread); 1392 1393 __ enter(); 1394 stack_slots = 2; // will be adjusted in setup 1395 OopMap* map = continuation_enter_setup(masm, stack_slots); 1396 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1397 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1398 1399 fill_continuation_entry(masm); 1400 1401 __ cbnz(c_rarg2, call_thaw); 1402 1403 const address tr_call = __ trampoline_call(resolve); 1404 if (tr_call == nullptr) { 1405 fatal("CodeCache is full at gen_continuation_enter"); 1406 } 1407 1408 oop_maps->add_gc_map(__ pc() - start, map); 1409 __ post_call_nop(); 1410 1411 __ b(exit); 1412 1413 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1414 if (stub == nullptr) { 1415 fatal("CodeCache is full at gen_continuation_enter"); 1416 } 1417 } 1418 1419 // compiled entry 1420 __ align(CodeEntryAlignment); 1421 compiled_entry_offset = __ pc() - start; 1422 1423 __ enter(); 1424 stack_slots = 2; // will be adjusted in setup 1425 OopMap* map = continuation_enter_setup(masm, stack_slots); 1426 frame_complete = __ pc() - start; 1427 1428 fill_continuation_entry(masm); 1429 1430 __ cbnz(c_rarg2, call_thaw); 1431 1432 const address tr_call = __ trampoline_call(resolve); 1433 if (tr_call == nullptr) { 1434 fatal("CodeCache is full at gen_continuation_enter"); 1435 } 1436 1437 oop_maps->add_gc_map(__ pc() - start, map); 1438 __ post_call_nop(); 1439 1440 __ b(exit); 1441 1442 __ bind(call_thaw); 1443 1444 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1445 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1446 ContinuationEntry::_return_pc_offset = __ pc() - start; 1447 __ post_call_nop(); 1448 1449 __ bind(exit); 1450 continuation_enter_cleanup(masm); 1451 __ leave(); 1452 __ ret(lr); 1453 1454 /// exception handling 1455 1456 exception_offset = __ pc() - start; 1457 { 1458 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1459 1460 continuation_enter_cleanup(masm); 1461 1462 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1463 __ authenticate_return_address(c_rarg1); 1464 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1465 1466 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1467 1468 __ mov(r1, r0); // the exception handler 1469 __ mov(r0, r19); // restore return value contaning the exception oop 1470 __ verify_oop(r0); 1471 1472 __ leave(); 1473 __ mov(r3, lr); 1474 __ br(r1); // the exception handler 1475 } 1476 1477 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1478 if (stub == nullptr) { 1479 fatal("CodeCache is full at gen_continuation_enter"); 1480 } 1481 } 1482 1483 static void gen_continuation_yield(MacroAssembler* masm, 1484 const methodHandle& method, 1485 const BasicType* sig_bt, 1486 const VMRegPair* regs, 1487 OopMapSet* oop_maps, 1488 int& frame_complete, 1489 int& stack_slots, 1490 int& compiled_entry_offset) { 1491 enum layout { 1492 rfp_off1, 1493 rfp_off2, 1494 lr_off, 1495 lr_off2, 1496 framesize // inclusive of return address 1497 }; 1498 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1499 stack_slots = framesize / VMRegImpl::slots_per_word; 1500 assert(stack_slots == 2, "recheck layout"); 1501 1502 address start = __ pc(); 1503 1504 compiled_entry_offset = __ pc() - start; 1505 __ enter(); 1506 1507 __ mov(c_rarg1, sp); 1508 1509 frame_complete = __ pc() - start; 1510 address the_pc = __ pc(); 1511 1512 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1513 1514 __ mov(c_rarg0, rthread); 1515 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1516 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1517 __ reset_last_Java_frame(true); 1518 1519 Label pinned; 1520 1521 __ cbnz(r0, pinned); 1522 1523 // We've succeeded, set sp to the ContinuationEntry 1524 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1525 __ mov(sp, rscratch1); 1526 continuation_enter_cleanup(masm); 1527 1528 __ bind(pinned); // pinned -- return to caller 1529 1530 // handle pending exception thrown by freeze 1531 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1532 Label ok; 1533 __ cbz(rscratch1, ok); 1534 __ leave(); 1535 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1536 __ br(rscratch1); 1537 __ bind(ok); 1538 1539 __ leave(); 1540 __ ret(lr); 1541 1542 OopMap* map = new OopMap(framesize, 1); 1543 oop_maps->add_gc_map(the_pc - start, map); 1544 } 1545 1546 static void gen_special_dispatch(MacroAssembler* masm, 1547 const methodHandle& method, 1548 const BasicType* sig_bt, 1549 const VMRegPair* regs) { 1550 verify_oop_args(masm, method, sig_bt, regs); 1551 vmIntrinsics::ID iid = method->intrinsic_id(); 1552 1553 // Now write the args into the outgoing interpreter space 1554 bool has_receiver = false; 1555 Register receiver_reg = noreg; 1556 int member_arg_pos = -1; 1557 Register member_reg = noreg; 1558 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1559 if (ref_kind != 0) { 1560 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1561 member_reg = r19; // known to be free at this point 1562 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1563 } else if (iid == vmIntrinsics::_invokeBasic) { 1564 has_receiver = true; 1565 } else if (iid == vmIntrinsics::_linkToNative) { 1566 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1567 member_reg = r19; // known to be free at this point 1568 } else { 1569 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1570 } 1571 1572 if (member_reg != noreg) { 1573 // Load the member_arg into register, if necessary. 1574 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1575 VMReg r = regs[member_arg_pos].first(); 1576 if (r->is_stack()) { 1577 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1578 } else { 1579 // no data motion is needed 1580 member_reg = r->as_Register(); 1581 } 1582 } 1583 1584 if (has_receiver) { 1585 // Make sure the receiver is loaded into a register. 1586 assert(method->size_of_parameters() > 0, "oob"); 1587 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1588 VMReg r = regs[0].first(); 1589 assert(r->is_valid(), "bad receiver arg"); 1590 if (r->is_stack()) { 1591 // Porting note: This assumes that compiled calling conventions always 1592 // pass the receiver oop in a register. If this is not true on some 1593 // platform, pick a temp and load the receiver from stack. 1594 fatal("receiver always in a register"); 1595 receiver_reg = r2; // known to be free at this point 1596 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1597 } else { 1598 // no data motion is needed 1599 receiver_reg = r->as_Register(); 1600 } 1601 } 1602 1603 // Figure out which address we are really jumping to: 1604 MethodHandles::generate_method_handle_dispatch(masm, iid, 1605 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1606 } 1607 1608 // --------------------------------------------------------------------------- 1609 // Generate a native wrapper for a given method. The method takes arguments 1610 // in the Java compiled code convention, marshals them to the native 1611 // convention (handlizes oops, etc), transitions to native, makes the call, 1612 // returns to java state (possibly blocking), unhandlizes any result and 1613 // returns. 1614 // 1615 // Critical native functions are a shorthand for the use of 1616 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1617 // functions. The wrapper is expected to unpack the arguments before 1618 // passing them to the callee. Critical native functions leave the state _in_Java, 1619 // since they block out GC. 1620 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1621 // block and the check for pending exceptions it's impossible for them 1622 // to be thrown. 1623 // 1624 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1625 const methodHandle& method, 1626 int compile_id, 1627 BasicType* in_sig_bt, 1628 VMRegPair* in_regs, 1629 BasicType ret_type) { 1630 if (method->is_continuation_native_intrinsic()) { 1631 int exception_offset = -1; 1632 OopMapSet* oop_maps = new OopMapSet(); 1633 int frame_complete = -1; 1634 int stack_slots = -1; 1635 int interpreted_entry_offset = -1; 1636 int vep_offset = -1; 1637 if (method->is_continuation_enter_intrinsic()) { 1638 gen_continuation_enter(masm, 1639 method, 1640 in_sig_bt, 1641 in_regs, 1642 exception_offset, 1643 oop_maps, 1644 frame_complete, 1645 stack_slots, 1646 interpreted_entry_offset, 1647 vep_offset); 1648 } else if (method->is_continuation_yield_intrinsic()) { 1649 gen_continuation_yield(masm, 1650 method, 1651 in_sig_bt, 1652 in_regs, 1653 oop_maps, 1654 frame_complete, 1655 stack_slots, 1656 vep_offset); 1657 } else { 1658 guarantee(false, "Unknown Continuation native intrinsic"); 1659 } 1660 1661 #ifdef ASSERT 1662 if (method->is_continuation_enter_intrinsic()) { 1663 assert(interpreted_entry_offset != -1, "Must be set"); 1664 assert(exception_offset != -1, "Must be set"); 1665 } else { 1666 assert(interpreted_entry_offset == -1, "Must be unset"); 1667 assert(exception_offset == -1, "Must be unset"); 1668 } 1669 assert(frame_complete != -1, "Must be set"); 1670 assert(stack_slots != -1, "Must be set"); 1671 assert(vep_offset != -1, "Must be set"); 1672 #endif 1673 1674 __ flush(); 1675 nmethod* nm = nmethod::new_native_nmethod(method, 1676 compile_id, 1677 masm->code(), 1678 vep_offset, 1679 frame_complete, 1680 stack_slots, 1681 in_ByteSize(-1), 1682 in_ByteSize(-1), 1683 oop_maps, 1684 exception_offset); 1685 if (nm == nullptr) return nm; 1686 if (method->is_continuation_enter_intrinsic()) { 1687 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1688 } else if (method->is_continuation_yield_intrinsic()) { 1689 _cont_doYield_stub = nm; 1690 } else { 1691 guarantee(false, "Unknown Continuation native intrinsic"); 1692 } 1693 return nm; 1694 } 1695 1696 if (method->is_method_handle_intrinsic()) { 1697 vmIntrinsics::ID iid = method->intrinsic_id(); 1698 intptr_t start = (intptr_t)__ pc(); 1699 int vep_offset = ((intptr_t)__ pc()) - start; 1700 1701 // First instruction must be a nop as it may need to be patched on deoptimisation 1702 __ nop(); 1703 gen_special_dispatch(masm, 1704 method, 1705 in_sig_bt, 1706 in_regs); 1707 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1708 __ flush(); 1709 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1710 return nmethod::new_native_nmethod(method, 1711 compile_id, 1712 masm->code(), 1713 vep_offset, 1714 frame_complete, 1715 stack_slots / VMRegImpl::slots_per_word, 1716 in_ByteSize(-1), 1717 in_ByteSize(-1), 1718 nullptr); 1719 } 1720 address native_func = method->native_function(); 1721 assert(native_func != nullptr, "must have function"); 1722 1723 // An OopMap for lock (and class if static) 1724 OopMapSet *oop_maps = new OopMapSet(); 1725 intptr_t start = (intptr_t)__ pc(); 1726 1727 // We have received a description of where all the java arg are located 1728 // on entry to the wrapper. We need to convert these args to where 1729 // the jni function will expect them. To figure out where they go 1730 // we convert the java signature to a C signature by inserting 1731 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1732 1733 const int total_in_args = method->size_of_parameters(); 1734 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1735 1736 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1737 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1738 BasicType* in_elem_bt = nullptr; 1739 1740 int argc = 0; 1741 out_sig_bt[argc++] = T_ADDRESS; 1742 if (method->is_static()) { 1743 out_sig_bt[argc++] = T_OBJECT; 1744 } 1745 1746 for (int i = 0; i < total_in_args ; i++ ) { 1747 out_sig_bt[argc++] = in_sig_bt[i]; 1748 } 1749 1750 // Now figure out where the args must be stored and how much stack space 1751 // they require. 1752 int out_arg_slots; 1753 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1754 1755 if (out_arg_slots < 0) { 1756 return nullptr; 1757 } 1758 1759 // Compute framesize for the wrapper. We need to handlize all oops in 1760 // incoming registers 1761 1762 // Calculate the total number of stack slots we will need. 1763 1764 // First count the abi requirement plus all of the outgoing args 1765 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1766 1767 // Now the space for the inbound oop handle area 1768 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1769 1770 int oop_handle_offset = stack_slots; 1771 stack_slots += total_save_slots; 1772 1773 // Now any space we need for handlizing a klass if static method 1774 1775 int klass_slot_offset = 0; 1776 int klass_offset = -1; 1777 int lock_slot_offset = 0; 1778 bool is_static = false; 1779 1780 if (method->is_static()) { 1781 klass_slot_offset = stack_slots; 1782 stack_slots += VMRegImpl::slots_per_word; 1783 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1784 is_static = true; 1785 } 1786 1787 // Plus a lock if needed 1788 1789 if (method->is_synchronized()) { 1790 lock_slot_offset = stack_slots; 1791 stack_slots += VMRegImpl::slots_per_word; 1792 } 1793 1794 // Now a place (+2) to save return values or temp during shuffling 1795 // + 4 for return address (which we own) and saved rfp 1796 stack_slots += 6; 1797 1798 // Ok The space we have allocated will look like: 1799 // 1800 // 1801 // FP-> | | 1802 // |---------------------| 1803 // | 2 slots for moves | 1804 // |---------------------| 1805 // | lock box (if sync) | 1806 // |---------------------| <- lock_slot_offset 1807 // | klass (if static) | 1808 // |---------------------| <- klass_slot_offset 1809 // | oopHandle area | 1810 // |---------------------| <- oop_handle_offset (8 java arg registers) 1811 // | outbound memory | 1812 // | based arguments | 1813 // | | 1814 // |---------------------| 1815 // | | 1816 // SP-> | out_preserved_slots | 1817 // 1818 // 1819 1820 1821 // Now compute actual number of stack words we need rounding to make 1822 // stack properly aligned. 1823 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1824 1825 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1826 1827 // First thing make an ic check to see if we should even be here 1828 1829 // We are free to use all registers as temps without saving them and 1830 // restoring them except rfp. rfp is the only callee save register 1831 // as far as the interpreter and the compiler(s) are concerned. 1832 1833 const Register receiver = j_rarg0; 1834 1835 Label exception_pending; 1836 1837 assert_different_registers(receiver, rscratch1); 1838 __ verify_oop(receiver); 1839 __ ic_check(8 /* end_alignment */); 1840 1841 // Verified entry point must be aligned 1842 int vep_offset = ((intptr_t)__ pc()) - start; 1843 1844 // If we have to make this method not-entrant we'll overwrite its 1845 // first instruction with a jump. For this action to be legal we 1846 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1847 // SVC, HVC, or SMC. Make it a NOP. 1848 __ nop(); 1849 1850 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1851 Label L_skip_barrier; 1852 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1853 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1854 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1855 1856 __ bind(L_skip_barrier); 1857 } 1858 1859 // Generate stack overflow check 1860 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1861 1862 // Generate a new frame for the wrapper. 1863 __ enter(); 1864 // -2 because return address is already present and so is saved rfp 1865 __ sub(sp, sp, stack_size - 2*wordSize); 1866 1867 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1868 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1869 1870 // Frame is now completed as far as size and linkage. 1871 int frame_complete = ((intptr_t)__ pc()) - start; 1872 1873 // We use r20 as the oop handle for the receiver/klass 1874 // It is callee save so it survives the call to native 1875 1876 const Register oop_handle_reg = r20; 1877 1878 // 1879 // We immediately shuffle the arguments so that any vm call we have to 1880 // make from here on out (sync slow path, jvmti, etc.) we will have 1881 // captured the oops from our caller and have a valid oopMap for 1882 // them. 1883 1884 // ----------------- 1885 // The Grand Shuffle 1886 1887 // The Java calling convention is either equal (linux) or denser (win64) than the 1888 // c calling convention. However the because of the jni_env argument the c calling 1889 // convention always has at least one more (and two for static) arguments than Java. 1890 // Therefore if we move the args from java -> c backwards then we will never have 1891 // a register->register conflict and we don't have to build a dependency graph 1892 // and figure out how to break any cycles. 1893 // 1894 1895 // Record esp-based slot for receiver on stack for non-static methods 1896 int receiver_offset = -1; 1897 1898 // This is a trick. We double the stack slots so we can claim 1899 // the oops in the caller's frame. Since we are sure to have 1900 // more args than the caller doubling is enough to make 1901 // sure we can capture all the incoming oop args from the 1902 // caller. 1903 // 1904 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1905 1906 // Mark location of rfp (someday) 1907 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1908 1909 1910 int float_args = 0; 1911 int int_args = 0; 1912 1913 #ifdef ASSERT 1914 bool reg_destroyed[Register::number_of_registers]; 1915 bool freg_destroyed[FloatRegister::number_of_registers]; 1916 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1917 reg_destroyed[r] = false; 1918 } 1919 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1920 freg_destroyed[f] = false; 1921 } 1922 1923 #endif /* ASSERT */ 1924 1925 // For JNI natives the incoming and outgoing registers are offset upwards. 1926 GrowableArray<int> arg_order(2 * total_in_args); 1927 VMRegPair tmp_vmreg; 1928 tmp_vmreg.set2(r19->as_VMReg()); 1929 1930 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1931 arg_order.push(i); 1932 arg_order.push(c_arg); 1933 } 1934 1935 int temploc = -1; 1936 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1937 int i = arg_order.at(ai); 1938 int c_arg = arg_order.at(ai + 1); 1939 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1940 assert(c_arg != -1 && i != -1, "wrong order"); 1941 #ifdef ASSERT 1942 if (in_regs[i].first()->is_Register()) { 1943 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1944 } else if (in_regs[i].first()->is_FloatRegister()) { 1945 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1946 } 1947 if (out_regs[c_arg].first()->is_Register()) { 1948 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1949 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1950 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1951 } 1952 #endif /* ASSERT */ 1953 switch (in_sig_bt[i]) { 1954 case T_ARRAY: 1955 case T_OBJECT: 1956 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1957 ((i == 0) && (!is_static)), 1958 &receiver_offset); 1959 int_args++; 1960 break; 1961 case T_VOID: 1962 break; 1963 1964 case T_FLOAT: 1965 __ float_move(in_regs[i], out_regs[c_arg]); 1966 float_args++; 1967 break; 1968 1969 case T_DOUBLE: 1970 assert( i + 1 < total_in_args && 1971 in_sig_bt[i + 1] == T_VOID && 1972 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1973 __ double_move(in_regs[i], out_regs[c_arg]); 1974 float_args++; 1975 break; 1976 1977 case T_LONG : 1978 __ long_move(in_regs[i], out_regs[c_arg]); 1979 int_args++; 1980 break; 1981 1982 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1983 1984 default: 1985 __ move32_64(in_regs[i], out_regs[c_arg]); 1986 int_args++; 1987 } 1988 } 1989 1990 // point c_arg at the first arg that is already loaded in case we 1991 // need to spill before we call out 1992 int c_arg = total_c_args - total_in_args; 1993 1994 // Pre-load a static method's oop into c_rarg1. 1995 if (method->is_static()) { 1996 1997 // load oop into a register 1998 __ movoop(c_rarg1, 1999 JNIHandles::make_local(method->method_holder()->java_mirror())); 2000 2001 // Now handlize the static class mirror it's known not-null. 2002 __ str(c_rarg1, Address(sp, klass_offset)); 2003 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 2004 2005 // Now get the handle 2006 __ lea(c_rarg1, Address(sp, klass_offset)); 2007 // and protect the arg if we must spill 2008 c_arg--; 2009 } 2010 2011 // Change state to native (we save the return address in the thread, since it might not 2012 // be pushed on the stack when we do a stack traversal). 2013 // We use the same pc/oopMap repeatedly when we call out 2014 2015 Label native_return; 2016 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 2017 2018 Label dtrace_method_entry, dtrace_method_entry_done; 2019 if (DTraceMethodProbes) { 2020 __ b(dtrace_method_entry); 2021 __ bind(dtrace_method_entry_done); 2022 } 2023 2024 // RedefineClasses() tracing support for obsolete method entry 2025 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2026 // protect the args we've loaded 2027 save_args(masm, total_c_args, c_arg, out_regs); 2028 __ mov_metadata(c_rarg1, method()); 2029 __ call_VM_leaf( 2030 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2031 rthread, c_rarg1); 2032 restore_args(masm, total_c_args, c_arg, out_regs); 2033 } 2034 2035 // Lock a synchronized method 2036 2037 // Register definitions used by locking and unlocking 2038 2039 const Register swap_reg = r0; 2040 const Register obj_reg = r19; // Will contain the oop 2041 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 2042 const Register old_hdr = r13; // value of old header at unlock time 2043 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 2044 const Register tmp = lr; 2045 2046 Label slow_path_lock; 2047 Label lock_done; 2048 2049 if (method->is_synchronized()) { 2050 Label count; 2051 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2052 2053 // Get the handle (the 2nd argument) 2054 __ mov(oop_handle_reg, c_rarg1); 2055 2056 // Get address of the box 2057 2058 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2059 2060 // Load the oop from the handle 2061 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2062 2063 if (LockingMode == LM_MONITOR) { 2064 __ b(slow_path_lock); 2065 } else if (LockingMode == LM_LEGACY) { 2066 // Load (object->mark() | 1) into swap_reg %r0 2067 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2068 __ orr(swap_reg, rscratch1, 1); 2069 if (EnableValhalla) { 2070 // Mask inline_type bit such that we go to the slow path if object is an inline type 2071 __ andr(swap_reg, swap_reg, ~((int) markWord::inline_type_bit_in_place)); 2072 } 2073 2074 // Save (object->mark() | 1) into BasicLock's displaced header 2075 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 2076 2077 // src -> dest iff dest == r0 else r0 <- dest 2078 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 2079 2080 // Hmm should this move to the slow path code area??? 2081 2082 // Test if the oopMark is an obvious stack pointer, i.e., 2083 // 1) (mark & 3) == 0, and 2084 // 2) sp <= mark < mark + os::pagesize() 2085 // These 3 tests can be done by evaluating the following 2086 // expression: ((mark - sp) & (3 - os::vm_page_size())), 2087 // assuming both stack pointer and pagesize have their 2088 // least significant 2 bits clear. 2089 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 2090 2091 __ sub(swap_reg, sp, swap_reg); 2092 __ neg(swap_reg, swap_reg); 2093 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 2094 2095 // Save the test result, for recursive case, the result is zero 2096 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 2097 __ br(Assembler::NE, slow_path_lock); 2098 } else { 2099 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 2100 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 2101 } 2102 __ bind(count); 2103 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 2104 2105 // Slow path will re-enter here 2106 __ bind(lock_done); 2107 } 2108 2109 2110 // Finally just about ready to make the JNI call 2111 2112 // get JNIEnv* which is first argument to native 2113 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 2114 2115 // Now set thread in native 2116 __ mov(rscratch1, _thread_in_native); 2117 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2118 __ stlrw(rscratch1, rscratch2); 2119 2120 __ rt_call(native_func); 2121 2122 __ bind(native_return); 2123 2124 intptr_t return_pc = (intptr_t) __ pc(); 2125 oop_maps->add_gc_map(return_pc - start, map); 2126 2127 // Verify or restore cpu control state after JNI call 2128 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 2129 2130 // Unpack native results. 2131 switch (ret_type) { 2132 case T_BOOLEAN: __ c2bool(r0); break; 2133 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 2134 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 2135 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 2136 case T_INT : __ sbfx(r0, r0, 0, 32); break; 2137 case T_DOUBLE : 2138 case T_FLOAT : 2139 // Result is in v0 we'll save as needed 2140 break; 2141 case T_ARRAY: // Really a handle 2142 case T_OBJECT: // Really a handle 2143 break; // can't de-handlize until after safepoint check 2144 case T_VOID: break; 2145 case T_LONG: break; 2146 default : ShouldNotReachHere(); 2147 } 2148 2149 Label safepoint_in_progress, safepoint_in_progress_done; 2150 Label after_transition; 2151 2152 // Switch thread to "native transition" state before reading the synchronization state. 2153 // This additional state is necessary because reading and testing the synchronization 2154 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2155 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2156 // VM thread changes sync state to synchronizing and suspends threads for GC. 2157 // Thread A is resumed to finish this native method, but doesn't block here since it 2158 // didn't see any synchronization is progress, and escapes. 2159 __ mov(rscratch1, _thread_in_native_trans); 2160 2161 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 2162 2163 // Force this write out before the read below 2164 if (!UseSystemMemoryBarrier) { 2165 __ dmb(Assembler::ISH); 2166 } 2167 2168 __ verify_sve_vector_length(); 2169 2170 // Check for safepoint operation in progress and/or pending suspend requests. 2171 { 2172 // No need for acquire as Java threads always disarm themselves. 2173 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* acquire */, false /* in_nmethod */); 2174 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 2175 __ cbnzw(rscratch1, safepoint_in_progress); 2176 __ bind(safepoint_in_progress_done); 2177 } 2178 2179 // change thread state 2180 __ mov(rscratch1, _thread_in_Java); 2181 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 2182 __ stlrw(rscratch1, rscratch2); 2183 __ bind(after_transition); 2184 2185 Label reguard; 2186 Label reguard_done; 2187 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 2188 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 2189 __ br(Assembler::EQ, reguard); 2190 __ bind(reguard_done); 2191 2192 // native result if any is live 2193 2194 // Unlock 2195 Label unlock_done; 2196 Label slow_path_unlock; 2197 if (method->is_synchronized()) { 2198 2199 // Get locked oop from the handle we passed to jni 2200 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 2201 2202 Label done, not_recursive; 2203 2204 if (LockingMode == LM_LEGACY) { 2205 // Simple recursive lock? 2206 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2207 __ cbnz(rscratch1, not_recursive); 2208 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 2209 __ b(done); 2210 } 2211 2212 __ bind(not_recursive); 2213 2214 // Must save r0 if if it is live now because cmpxchg must use it 2215 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2216 save_native_result(masm, ret_type, stack_slots); 2217 } 2218 2219 if (LockingMode == LM_MONITOR) { 2220 __ b(slow_path_unlock); 2221 } else if (LockingMode == LM_LEGACY) { 2222 // get address of the stack lock 2223 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2224 // get old displaced header 2225 __ ldr(old_hdr, Address(r0, 0)); 2226 2227 // Atomic swap old header if oop still contains the stack lock 2228 Label count; 2229 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 2230 __ bind(count); 2231 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 2232 } else { 2233 assert(LockingMode == LM_LIGHTWEIGHT, ""); 2234 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 2235 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 2236 } 2237 2238 // slow path re-enters here 2239 __ bind(unlock_done); 2240 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2241 restore_native_result(masm, ret_type, stack_slots); 2242 } 2243 2244 __ bind(done); 2245 } 2246 2247 Label dtrace_method_exit, dtrace_method_exit_done; 2248 if (DTraceMethodProbes) { 2249 __ b(dtrace_method_exit); 2250 __ bind(dtrace_method_exit_done); 2251 } 2252 2253 __ reset_last_Java_frame(false); 2254 2255 // Unbox oop result, e.g. JNIHandles::resolve result. 2256 if (is_reference_type(ret_type)) { 2257 __ resolve_jobject(r0, r1, r2); 2258 } 2259 2260 if (CheckJNICalls) { 2261 // clear_pending_jni_exception_check 2262 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 2263 } 2264 2265 // reset handle block 2266 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 2267 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 2268 2269 __ leave(); 2270 2271 // Any exception pending? 2272 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2273 __ cbnz(rscratch1, exception_pending); 2274 2275 // We're done 2276 __ ret(lr); 2277 2278 // Unexpected paths are out of line and go here 2279 2280 // forward the exception 2281 __ bind(exception_pending); 2282 2283 // and forward the exception 2284 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2285 2286 // Slow path locking & unlocking 2287 if (method->is_synchronized()) { 2288 2289 __ block_comment("Slow path lock {"); 2290 __ bind(slow_path_lock); 2291 2292 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2293 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2294 2295 // protect the args we've loaded 2296 save_args(masm, total_c_args, c_arg, out_regs); 2297 2298 __ mov(c_rarg0, obj_reg); 2299 __ mov(c_rarg1, lock_reg); 2300 __ mov(c_rarg2, rthread); 2301 2302 // Not a leaf but we have last_Java_frame setup as we want 2303 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2304 restore_args(masm, total_c_args, c_arg, out_regs); 2305 2306 #ifdef ASSERT 2307 { Label L; 2308 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2309 __ cbz(rscratch1, L); 2310 __ stop("no pending exception allowed on exit from monitorenter"); 2311 __ bind(L); 2312 } 2313 #endif 2314 __ b(lock_done); 2315 2316 __ block_comment("} Slow path lock"); 2317 2318 __ block_comment("Slow path unlock {"); 2319 __ bind(slow_path_unlock); 2320 2321 // If we haven't already saved the native result we must save it now as xmm registers 2322 // are still exposed. 2323 2324 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2325 save_native_result(masm, ret_type, stack_slots); 2326 } 2327 2328 __ mov(c_rarg2, rthread); 2329 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2330 __ mov(c_rarg0, obj_reg); 2331 2332 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2333 // NOTE that obj_reg == r19 currently 2334 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2335 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2336 2337 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2338 2339 #ifdef ASSERT 2340 { 2341 Label L; 2342 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2343 __ cbz(rscratch1, L); 2344 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2345 __ bind(L); 2346 } 2347 #endif /* ASSERT */ 2348 2349 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2350 2351 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2352 restore_native_result(masm, ret_type, stack_slots); 2353 } 2354 __ b(unlock_done); 2355 2356 __ block_comment("} Slow path unlock"); 2357 2358 } // synchronized 2359 2360 // SLOW PATH Reguard the stack if needed 2361 2362 __ bind(reguard); 2363 save_native_result(masm, ret_type, stack_slots); 2364 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2365 restore_native_result(masm, ret_type, stack_slots); 2366 // and continue 2367 __ b(reguard_done); 2368 2369 // SLOW PATH safepoint 2370 { 2371 __ block_comment("safepoint {"); 2372 __ bind(safepoint_in_progress); 2373 2374 // Don't use call_VM as it will see a possible pending exception and forward it 2375 // and never return here preventing us from clearing _last_native_pc down below. 2376 // 2377 save_native_result(masm, ret_type, stack_slots); 2378 __ mov(c_rarg0, rthread); 2379 #ifndef PRODUCT 2380 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2381 #endif 2382 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2383 __ blr(rscratch1); 2384 2385 // Restore any method result value 2386 restore_native_result(masm, ret_type, stack_slots); 2387 2388 __ b(safepoint_in_progress_done); 2389 __ block_comment("} safepoint"); 2390 } 2391 2392 // SLOW PATH dtrace support 2393 if (DTraceMethodProbes) { 2394 { 2395 __ block_comment("dtrace entry {"); 2396 __ bind(dtrace_method_entry); 2397 2398 // We have all of the arguments setup at this point. We must not touch any register 2399 // argument registers at this point (what if we save/restore them there are no oop? 2400 2401 save_args(masm, total_c_args, c_arg, out_regs); 2402 __ mov_metadata(c_rarg1, method()); 2403 __ call_VM_leaf( 2404 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2405 rthread, c_rarg1); 2406 restore_args(masm, total_c_args, c_arg, out_regs); 2407 __ b(dtrace_method_entry_done); 2408 __ block_comment("} dtrace entry"); 2409 } 2410 2411 { 2412 __ block_comment("dtrace exit {"); 2413 __ bind(dtrace_method_exit); 2414 save_native_result(masm, ret_type, stack_slots); 2415 __ mov_metadata(c_rarg1, method()); 2416 __ call_VM_leaf( 2417 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2418 rthread, c_rarg1); 2419 restore_native_result(masm, ret_type, stack_slots); 2420 __ b(dtrace_method_exit_done); 2421 __ block_comment("} dtrace exit"); 2422 } 2423 } 2424 2425 __ flush(); 2426 2427 nmethod *nm = nmethod::new_native_nmethod(method, 2428 compile_id, 2429 masm->code(), 2430 vep_offset, 2431 frame_complete, 2432 stack_slots / VMRegImpl::slots_per_word, 2433 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2434 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2435 oop_maps); 2436 2437 return nm; 2438 } 2439 2440 // this function returns the adjust size (in number of words) to a c2i adapter 2441 // activation for use during deoptimization 2442 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2443 assert(callee_locals >= callee_parameters, 2444 "test and remove; got more parms than locals"); 2445 if (callee_locals < callee_parameters) 2446 return 0; // No adjustment for negative locals 2447 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2448 // diff is counted in stack words 2449 return align_up(diff, 2); 2450 } 2451 2452 2453 //------------------------------generate_deopt_blob---------------------------- 2454 void SharedRuntime::generate_deopt_blob() { 2455 // Allocate space for the code 2456 ResourceMark rm; 2457 // Setup code generation tools 2458 int pad = 0; 2459 #if INCLUDE_JVMCI 2460 if (EnableJVMCI) { 2461 pad += 512; // Increase the buffer size when compiling for JVMCI 2462 } 2463 #endif 2464 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id); 2465 CodeBuffer buffer(name, 2048+pad, 1024); 2466 MacroAssembler* masm = new MacroAssembler(&buffer); 2467 int frame_size_in_words; 2468 OopMap* map = nullptr; 2469 OopMapSet *oop_maps = new OopMapSet(); 2470 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2471 2472 // ------------- 2473 // This code enters when returning to a de-optimized nmethod. A return 2474 // address has been pushed on the stack, and return values are in 2475 // registers. 2476 // If we are doing a normal deopt then we were called from the patched 2477 // nmethod from the point we returned to the nmethod. So the return 2478 // address on the stack is wrong by NativeCall::instruction_size 2479 // We will adjust the value so it looks like we have the original return 2480 // address on the stack (like when we eagerly deoptimized). 2481 // In the case of an exception pending when deoptimizing, we enter 2482 // with a return address on the stack that points after the call we patched 2483 // into the exception handler. We have the following register state from, 2484 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2485 // r0: exception oop 2486 // r19: exception handler 2487 // r3: throwing pc 2488 // So in this case we simply jam r3 into the useless return address and 2489 // the stack looks just like we want. 2490 // 2491 // At this point we need to de-opt. We save the argument return 2492 // registers. We call the first C routine, fetch_unroll_info(). This 2493 // routine captures the return values and returns a structure which 2494 // describes the current frame size and the sizes of all replacement frames. 2495 // The current frame is compiled code and may contain many inlined 2496 // functions, each with their own JVM state. We pop the current frame, then 2497 // push all the new frames. Then we call the C routine unpack_frames() to 2498 // populate these frames. Finally unpack_frames() returns us the new target 2499 // address. Notice that callee-save registers are BLOWN here; they have 2500 // already been captured in the vframeArray at the time the return PC was 2501 // patched. 2502 address start = __ pc(); 2503 Label cont; 2504 2505 // Prolog for non exception case! 2506 2507 // Save everything in sight. 2508 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2509 2510 // Normal deoptimization. Save exec mode for unpack_frames. 2511 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2512 __ b(cont); 2513 2514 int reexecute_offset = __ pc() - start; 2515 #if INCLUDE_JVMCI && !defined(COMPILER1) 2516 if (UseJVMCICompiler) { 2517 // JVMCI does not use this kind of deoptimization 2518 __ should_not_reach_here(); 2519 } 2520 #endif 2521 2522 // Reexecute case 2523 // return address is the pc describes what bci to do re-execute at 2524 2525 // No need to update map as each call to save_live_registers will produce identical oopmap 2526 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2527 2528 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2529 __ b(cont); 2530 2531 #if INCLUDE_JVMCI 2532 Label after_fetch_unroll_info_call; 2533 int implicit_exception_uncommon_trap_offset = 0; 2534 int uncommon_trap_offset = 0; 2535 2536 if (EnableJVMCI) { 2537 implicit_exception_uncommon_trap_offset = __ pc() - start; 2538 2539 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2540 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2541 2542 uncommon_trap_offset = __ pc() - start; 2543 2544 // Save everything in sight. 2545 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2546 // fetch_unroll_info needs to call last_java_frame() 2547 Label retaddr; 2548 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2549 2550 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2551 __ movw(rscratch1, -1); 2552 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2553 2554 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2555 __ mov(c_rarg0, rthread); 2556 __ movw(c_rarg2, rcpool); // exec mode 2557 __ lea(rscratch1, 2558 RuntimeAddress(CAST_FROM_FN_PTR(address, 2559 Deoptimization::uncommon_trap))); 2560 __ blr(rscratch1); 2561 __ bind(retaddr); 2562 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2563 2564 __ reset_last_Java_frame(false); 2565 2566 __ b(after_fetch_unroll_info_call); 2567 } // EnableJVMCI 2568 #endif // INCLUDE_JVMCI 2569 2570 int exception_offset = __ pc() - start; 2571 2572 // Prolog for exception case 2573 2574 // all registers are dead at this entry point, except for r0, and 2575 // r3 which contain the exception oop and exception pc 2576 // respectively. Set them in TLS and fall thru to the 2577 // unpack_with_exception_in_tls entry point. 2578 2579 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2580 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2581 2582 int exception_in_tls_offset = __ pc() - start; 2583 2584 // new implementation because exception oop is now passed in JavaThread 2585 2586 // Prolog for exception case 2587 // All registers must be preserved because they might be used by LinearScan 2588 // Exceptiop oop and throwing PC are passed in JavaThread 2589 // tos: stack at point of call to method that threw the exception (i.e. only 2590 // args are on the stack, no return address) 2591 2592 // The return address pushed by save_live_registers will be patched 2593 // later with the throwing pc. The correct value is not available 2594 // now because loading it from memory would destroy registers. 2595 2596 // NB: The SP at this point must be the SP of the method that is 2597 // being deoptimized. Deoptimization assumes that the frame created 2598 // here by save_live_registers is immediately below the method's SP. 2599 // This is a somewhat fragile mechanism. 2600 2601 // Save everything in sight. 2602 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2603 2604 // Now it is safe to overwrite any register 2605 2606 // Deopt during an exception. Save exec mode for unpack_frames. 2607 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2608 2609 // load throwing pc from JavaThread and patch it as the return address 2610 // of the current frame. Then clear the field in JavaThread 2611 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2612 __ protect_return_address(r3); 2613 __ str(r3, Address(rfp, wordSize)); 2614 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2615 2616 #ifdef ASSERT 2617 // verify that there is really an exception oop in JavaThread 2618 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2619 __ verify_oop(r0); 2620 2621 // verify that there is no pending exception 2622 Label no_pending_exception; 2623 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2624 __ cbz(rscratch1, no_pending_exception); 2625 __ stop("must not have pending exception here"); 2626 __ bind(no_pending_exception); 2627 #endif 2628 2629 __ bind(cont); 2630 2631 // Call C code. Need thread and this frame, but NOT official VM entry 2632 // crud. We cannot block on this call, no GC can happen. 2633 // 2634 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2635 2636 // fetch_unroll_info needs to call last_java_frame(). 2637 2638 Label retaddr; 2639 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2640 #ifdef ASSERT 2641 { Label L; 2642 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2643 __ cbz(rscratch1, L); 2644 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2645 __ bind(L); 2646 } 2647 #endif // ASSERT 2648 __ mov(c_rarg0, rthread); 2649 __ mov(c_rarg1, rcpool); 2650 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2651 __ blr(rscratch1); 2652 __ bind(retaddr); 2653 2654 // Need to have an oopmap that tells fetch_unroll_info where to 2655 // find any register it might need. 2656 oop_maps->add_gc_map(__ pc() - start, map); 2657 2658 __ reset_last_Java_frame(false); 2659 2660 #if INCLUDE_JVMCI 2661 if (EnableJVMCI) { 2662 __ bind(after_fetch_unroll_info_call); 2663 } 2664 #endif 2665 2666 // Load UnrollBlock* into r5 2667 __ mov(r5, r0); 2668 2669 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2670 Label noException; 2671 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2672 __ br(Assembler::NE, noException); 2673 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2674 // QQQ this is useless it was null above 2675 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2676 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2677 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2678 2679 __ verify_oop(r0); 2680 2681 // Overwrite the result registers with the exception results. 2682 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2683 // I think this is useless 2684 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2685 2686 __ bind(noException); 2687 2688 // Only register save data is on the stack. 2689 // Now restore the result registers. Everything else is either dead 2690 // or captured in the vframeArray. 2691 2692 // Restore fp result register 2693 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2694 // Restore integer result register 2695 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2696 2697 // Pop all of the register save area off the stack 2698 __ add(sp, sp, frame_size_in_words * wordSize); 2699 2700 // All of the register save area has been popped of the stack. Only the 2701 // return address remains. 2702 2703 // Pop all the frames we must move/replace. 2704 // 2705 // Frame picture (youngest to oldest) 2706 // 1: self-frame (no frame link) 2707 // 2: deopting frame (no frame link) 2708 // 3: caller of deopting frame (could be compiled/interpreted). 2709 // 2710 // Note: by leaving the return address of self-frame on the stack 2711 // and using the size of frame 2 to adjust the stack 2712 // when we are done the return to frame 3 will still be on the stack. 2713 2714 // Pop deoptimized frame 2715 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2716 __ sub(r2, r2, 2 * wordSize); 2717 __ add(sp, sp, r2); 2718 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2719 2720 #ifdef ASSERT 2721 // Compilers generate code that bang the stack by as much as the 2722 // interpreter would need. So this stack banging should never 2723 // trigger a fault. Verify that it does not on non product builds. 2724 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2725 __ bang_stack_size(r19, r2); 2726 #endif 2727 // Load address of array of frame pcs into r2 2728 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2729 2730 // Trash the old pc 2731 // __ addptr(sp, wordSize); FIXME ???? 2732 2733 // Load address of array of frame sizes into r4 2734 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2735 2736 // Load counter into r3 2737 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2738 2739 // Now adjust the caller's stack to make up for the extra locals 2740 // but record the original sp so that we can save it in the skeletal interpreter 2741 // frame and the stack walking of interpreter_sender will get the unextended sp 2742 // value and not the "real" sp value. 2743 2744 const Register sender_sp = r6; 2745 2746 __ mov(sender_sp, sp); 2747 __ ldrw(r19, Address(r5, 2748 Deoptimization::UnrollBlock:: 2749 caller_adjustment_offset())); 2750 __ sub(sp, sp, r19); 2751 2752 // Push interpreter frames in a loop 2753 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2754 __ mov(rscratch2, rscratch1); 2755 Label loop; 2756 __ bind(loop); 2757 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2758 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2759 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2760 __ enter(); // Save old & set new fp 2761 __ sub(sp, sp, r19); // Prolog 2762 // This value is corrected by layout_activation_impl 2763 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2764 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2765 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2766 __ sub(r3, r3, 1); // Decrement counter 2767 __ cbnz(r3, loop); 2768 2769 // Re-push self-frame 2770 __ ldr(lr, Address(r2)); 2771 __ enter(); 2772 2773 // Allocate a full sized register save area. We subtract 2 because 2774 // enter() just pushed 2 words 2775 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2776 2777 // Restore frame locals after moving the frame 2778 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2779 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2780 2781 // Call C code. Need thread but NOT official VM entry 2782 // crud. We cannot block on this call, no GC can happen. Call should 2783 // restore return values to their stack-slots with the new SP. 2784 // 2785 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2786 2787 // Use rfp because the frames look interpreted now 2788 // Don't need the precise return PC here, just precise enough to point into this code blob. 2789 address the_pc = __ pc(); 2790 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2791 2792 __ mov(c_rarg0, rthread); 2793 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2794 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2795 __ blr(rscratch1); 2796 2797 // Set an oopmap for the call site 2798 // Use the same PC we used for the last java frame 2799 oop_maps->add_gc_map(the_pc - start, 2800 new OopMap( frame_size_in_words, 0 )); 2801 2802 // Clear fp AND pc 2803 __ reset_last_Java_frame(true); 2804 2805 // Collect return values 2806 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2807 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2808 // I think this is useless (throwing pc?) 2809 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2810 2811 // Pop self-frame. 2812 __ leave(); // Epilog 2813 2814 // Jump to interpreter 2815 __ ret(lr); 2816 2817 // Make sure all code is generated 2818 masm->flush(); 2819 2820 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2821 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2822 #if INCLUDE_JVMCI 2823 if (EnableJVMCI) { 2824 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2825 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2826 } 2827 #endif 2828 } 2829 2830 // Number of stack slots between incoming argument block and the start of 2831 // a new frame. The PROLOG must add this many slots to the stack. The 2832 // EPILOG must remove this many slots. aarch64 needs two slots for 2833 // return address and fp. 2834 // TODO think this is correct but check 2835 uint SharedRuntime::in_preserve_stack_slots() { 2836 return 4; 2837 } 2838 2839 uint SharedRuntime::out_preserve_stack_slots() { 2840 return 0; 2841 } 2842 2843 2844 //------------------------------generate_handler_blob------ 2845 // 2846 // Generate a special Compile2Runtime blob that saves all registers, 2847 // and setup oopmap. 2848 // 2849 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) { 2850 assert(is_polling_page_id(id), "expected a polling page stub id"); 2851 2852 ResourceMark rm; 2853 OopMapSet *oop_maps = new OopMapSet(); 2854 OopMap* map; 2855 2856 // Allocate space for the code. Setup code generation tools. 2857 const char* name = SharedRuntime::stub_name(id); 2858 CodeBuffer buffer(name, 2048, 1024); 2859 MacroAssembler* masm = new MacroAssembler(&buffer); 2860 2861 address start = __ pc(); 2862 address call_pc = nullptr; 2863 int frame_size_in_words; 2864 bool cause_return = (id == SharedStubId::polling_page_return_handler_id); 2865 RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */); 2866 2867 // When the signal occurred, the LR was either signed and stored on the stack (in which 2868 // case it will be restored from the stack before being used) or unsigned and not stored 2869 // on the stack. Stipping ensures we get the right value. 2870 __ strip_return_address(); 2871 2872 // Save Integer and Float registers. 2873 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2874 2875 // The following is basically a call_VM. However, we need the precise 2876 // address of the call in order to generate an oopmap. Hence, we do all the 2877 // work ourselves. 2878 2879 Label retaddr; 2880 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2881 2882 // The return address must always be correct so that frame constructor never 2883 // sees an invalid pc. 2884 2885 if (!cause_return) { 2886 // overwrite the return address pushed by save_live_registers 2887 // Additionally, r20 is a callee-saved register so we can look at 2888 // it later to determine if someone changed the return address for 2889 // us! 2890 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2891 __ protect_return_address(r20); 2892 __ str(r20, Address(rfp, wordSize)); 2893 } 2894 2895 // Do the call 2896 __ mov(c_rarg0, rthread); 2897 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2898 __ blr(rscratch1); 2899 __ bind(retaddr); 2900 2901 // Set an oopmap for the call site. This oopmap will map all 2902 // oop-registers and debug-info registers as callee-saved. This 2903 // will allow deoptimization at this safepoint to find all possible 2904 // debug-info recordings, as well as let GC find all oops. 2905 2906 oop_maps->add_gc_map( __ pc() - start, map); 2907 2908 Label noException; 2909 2910 __ reset_last_Java_frame(false); 2911 2912 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2913 2914 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2915 __ cbz(rscratch1, noException); 2916 2917 // Exception pending 2918 2919 reg_save.restore_live_registers(masm); 2920 2921 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2922 2923 // No exception case 2924 __ bind(noException); 2925 2926 Label no_adjust, bail; 2927 if (!cause_return) { 2928 // If our stashed return pc was modified by the runtime we avoid touching it 2929 __ ldr(rscratch1, Address(rfp, wordSize)); 2930 __ cmp(r20, rscratch1); 2931 __ br(Assembler::NE, no_adjust); 2932 __ authenticate_return_address(r20); 2933 2934 #ifdef ASSERT 2935 // Verify the correct encoding of the poll we're about to skip. 2936 // See NativeInstruction::is_ldrw_to_zr() 2937 __ ldrw(rscratch1, Address(r20)); 2938 __ ubfx(rscratch2, rscratch1, 22, 10); 2939 __ cmpw(rscratch2, 0b1011100101); 2940 __ br(Assembler::NE, bail); 2941 __ ubfx(rscratch2, rscratch1, 0, 5); 2942 __ cmpw(rscratch2, 0b11111); 2943 __ br(Assembler::NE, bail); 2944 #endif 2945 // Adjust return pc forward to step over the safepoint poll instruction 2946 __ add(r20, r20, NativeInstruction::instruction_size); 2947 __ protect_return_address(r20); 2948 __ str(r20, Address(rfp, wordSize)); 2949 } 2950 2951 __ bind(no_adjust); 2952 // Normal exit, restore registers and exit. 2953 reg_save.restore_live_registers(masm); 2954 2955 __ ret(lr); 2956 2957 #ifdef ASSERT 2958 __ bind(bail); 2959 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2960 #endif 2961 2962 // Make sure all code is generated 2963 masm->flush(); 2964 2965 // Fill-out other meta info 2966 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2967 } 2968 2969 // 2970 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2971 // 2972 // Generate a stub that calls into vm to find out the proper destination 2973 // of a java call. All the argument registers are live at this point 2974 // but since this is generic code we don't know what they are and the caller 2975 // must do any gc of the args. 2976 // 2977 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) { 2978 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2979 assert(is_resolve_id(id), "expected a resolve stub id"); 2980 2981 // allocate space for the code 2982 ResourceMark rm; 2983 2984 const char* name = SharedRuntime::stub_name(id); 2985 CodeBuffer buffer(name, 1000, 512); 2986 MacroAssembler* masm = new MacroAssembler(&buffer); 2987 2988 int frame_size_in_words; 2989 RegisterSaver reg_save(false /* save_vectors */); 2990 2991 OopMapSet *oop_maps = new OopMapSet(); 2992 OopMap* map = nullptr; 2993 2994 int start = __ offset(); 2995 2996 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2997 2998 int frame_complete = __ offset(); 2999 3000 { 3001 Label retaddr; 3002 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 3003 3004 __ mov(c_rarg0, rthread); 3005 __ lea(rscratch1, RuntimeAddress(destination)); 3006 3007 __ blr(rscratch1); 3008 __ bind(retaddr); 3009 } 3010 3011 // Set an oopmap for the call site. 3012 // We need this not only for callee-saved registers, but also for volatile 3013 // registers that the compiler might be keeping live across a safepoint. 3014 3015 oop_maps->add_gc_map( __ offset() - start, map); 3016 3017 // r0 contains the address we are going to jump to assuming no exception got installed 3018 3019 // clear last_Java_sp 3020 __ reset_last_Java_frame(false); 3021 // check for pending exceptions 3022 Label pending; 3023 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3024 __ cbnz(rscratch1, pending); 3025 3026 // get the returned Method* 3027 __ get_vm_result_2(rmethod, rthread); 3028 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 3029 3030 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 3031 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 3032 reg_save.restore_live_registers(masm); 3033 3034 // We are back to the original state on entry and ready to go. 3035 3036 __ br(rscratch1); 3037 3038 // Pending exception after the safepoint 3039 3040 __ bind(pending); 3041 3042 reg_save.restore_live_registers(masm); 3043 3044 // exception pending => remove activation and forward to exception handler 3045 3046 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 3047 3048 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 3049 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3050 3051 // ------------- 3052 // make sure all code is generated 3053 masm->flush(); 3054 3055 // return the blob 3056 // frame_size_words or bytes?? 3057 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 3058 } 3059 3060 BufferedInlineTypeBlob* SharedRuntime::generate_buffered_inline_type_adapter(const InlineKlass* vk) { 3061 BufferBlob* buf = BufferBlob::create("inline types pack/unpack", 16 * K); 3062 CodeBuffer buffer(buf); 3063 short buffer_locs[20]; 3064 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 3065 sizeof(buffer_locs)/sizeof(relocInfo)); 3066 3067 MacroAssembler _masm(&buffer); 3068 MacroAssembler* masm = &_masm; 3069 3070 const Array<SigEntry>* sig_vk = vk->extended_sig(); 3071 const Array<VMRegPair>* regs = vk->return_regs(); 3072 3073 int pack_fields_jobject_off = __ offset(); 3074 // Resolve pre-allocated buffer from JNI handle. 3075 // We cannot do this in generate_call_stub() because it requires GC code to be initialized. 3076 Register Rresult = r14; // See StubGenerator::generate_call_stub(). 3077 __ ldr(r0, Address(Rresult)); 3078 __ resolve_jobject(r0 /* value */, 3079 rthread /* thread */, 3080 r12 /* tmp */); 3081 __ str(r0, Address(Rresult)); 3082 3083 int pack_fields_off = __ offset(); 3084 3085 int j = 1; 3086 for (int i = 0; i < sig_vk->length(); i++) { 3087 BasicType bt = sig_vk->at(i)._bt; 3088 if (bt == T_METADATA) { 3089 continue; 3090 } 3091 if (bt == T_VOID) { 3092 if (sig_vk->at(i-1)._bt == T_LONG || 3093 sig_vk->at(i-1)._bt == T_DOUBLE) { 3094 j++; 3095 } 3096 continue; 3097 } 3098 int off = sig_vk->at(i)._offset; 3099 VMRegPair pair = regs->at(j); 3100 VMReg r_1 = pair.first(); 3101 VMReg r_2 = pair.second(); 3102 Address to(r0, off); 3103 if (bt == T_FLOAT) { 3104 __ strs(r_1->as_FloatRegister(), to); 3105 } else if (bt == T_DOUBLE) { 3106 __ strd(r_1->as_FloatRegister(), to); 3107 } else { 3108 Register val = r_1->as_Register(); 3109 assert_different_registers(to.base(), val, r15, r16, r17); 3110 if (is_reference_type(bt)) { 3111 __ store_heap_oop(to, val, r15, r16, r17, IN_HEAP | ACCESS_WRITE | IS_DEST_UNINITIALIZED); 3112 } else { 3113 __ store_sized_value(to, r_1->as_Register(), type2aelembytes(bt)); 3114 } 3115 } 3116 j++; 3117 } 3118 assert(j == regs->length(), "missed a field?"); 3119 3120 __ ret(lr); 3121 3122 int unpack_fields_off = __ offset(); 3123 3124 Label skip; 3125 __ cbz(r0, skip); 3126 3127 j = 1; 3128 for (int i = 0; i < sig_vk->length(); i++) { 3129 BasicType bt = sig_vk->at(i)._bt; 3130 if (bt == T_METADATA) { 3131 continue; 3132 } 3133 if (bt == T_VOID) { 3134 if (sig_vk->at(i-1)._bt == T_LONG || 3135 sig_vk->at(i-1)._bt == T_DOUBLE) { 3136 j++; 3137 } 3138 continue; 3139 } 3140 int off = sig_vk->at(i)._offset; 3141 assert(off > 0, "offset in object should be positive"); 3142 VMRegPair pair = regs->at(j); 3143 VMReg r_1 = pair.first(); 3144 VMReg r_2 = pair.second(); 3145 Address from(r0, off); 3146 if (bt == T_FLOAT) { 3147 __ ldrs(r_1->as_FloatRegister(), from); 3148 } else if (bt == T_DOUBLE) { 3149 __ ldrd(r_1->as_FloatRegister(), from); 3150 } else if (bt == T_OBJECT || bt == T_ARRAY) { 3151 assert_different_registers(r0, r_1->as_Register()); 3152 __ load_heap_oop(r_1->as_Register(), from, rscratch1, rscratch2); 3153 } else { 3154 assert(is_java_primitive(bt), "unexpected basic type"); 3155 assert_different_registers(r0, r_1->as_Register()); 3156 3157 size_t size_in_bytes = type2aelembytes(bt); 3158 __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN); 3159 } 3160 j++; 3161 } 3162 assert(j == regs->length(), "missed a field?"); 3163 3164 __ bind(skip); 3165 3166 __ ret(lr); 3167 3168 __ flush(); 3169 3170 return BufferedInlineTypeBlob::create(&buffer, pack_fields_off, pack_fields_jobject_off, unpack_fields_off); 3171 } 3172 3173 // Continuation point for throwing of implicit exceptions that are 3174 // not handled in the current activation. Fabricates an exception 3175 // oop and initiates normal exception dispatching in this 3176 // frame. Since we need to preserve callee-saved values (currently 3177 // only for C2, but done for C1 as well) we need a callee-saved oop 3178 // map and therefore have to make these stubs into RuntimeStubs 3179 // rather than BufferBlobs. If the compiler needs all registers to 3180 // be preserved between the fault point and the exception handler 3181 // then it must assume responsibility for that in 3182 // AbstractCompiler::continuation_for_implicit_null_exception or 3183 // continuation_for_implicit_division_by_zero_exception. All other 3184 // implicit exceptions (e.g., NullPointerException or 3185 // AbstractMethodError on entry) are either at call sites or 3186 // otherwise assume that stack unwinding will be initiated, so 3187 // caller saved registers were assumed volatile in the compiler. 3188 3189 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) { 3190 assert(is_throw_id(id), "expected a throw stub id"); 3191 3192 const char* name = SharedRuntime::stub_name(id); 3193 3194 // Information about frame layout at time of blocking runtime call. 3195 // Note that we only have to preserve callee-saved registers since 3196 // the compilers are responsible for supplying a continuation point 3197 // if they expect all registers to be preserved. 3198 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0 3199 enum layout { 3200 rfp_off = 0, 3201 rfp_off2, 3202 return_off, 3203 return_off2, 3204 framesize // inclusive of return address 3205 }; 3206 3207 int insts_size = 512; 3208 int locs_size = 64; 3209 3210 ResourceMark rm; 3211 const char* timer_msg = "SharedRuntime generate_throw_exception"; 3212 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 3213 3214 CodeBuffer code(name, insts_size, locs_size); 3215 OopMapSet* oop_maps = new OopMapSet(); 3216 MacroAssembler* masm = new MacroAssembler(&code); 3217 3218 address start = __ pc(); 3219 3220 // This is an inlined and slightly modified version of call_VM 3221 // which has the ability to fetch the return PC out of 3222 // thread-local storage and also sets up last_Java_sp slightly 3223 // differently than the real call_VM 3224 3225 __ enter(); // Save FP and LR before call 3226 3227 assert(is_even(framesize/2), "sp not 16-byte aligned"); 3228 3229 // lr and fp are already in place 3230 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog 3231 3232 int frame_complete = __ pc() - start; 3233 3234 // Set up last_Java_sp and last_Java_fp 3235 address the_pc = __ pc(); 3236 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3237 3238 __ mov(c_rarg0, rthread); 3239 BLOCK_COMMENT("call runtime_entry"); 3240 __ mov(rscratch1, runtime_entry); 3241 __ blr(rscratch1); 3242 3243 // Generate oop map 3244 OopMap* map = new OopMap(framesize, 0); 3245 3246 oop_maps->add_gc_map(the_pc - start, map); 3247 3248 __ reset_last_Java_frame(true); 3249 3250 // Reinitialize the ptrue predicate register, in case the external runtime 3251 // call clobbers ptrue reg, as we may return to SVE compiled code. 3252 __ reinitialize_ptrue(); 3253 3254 __ leave(); 3255 3256 // check for pending exceptions 3257 #ifdef ASSERT 3258 Label L; 3259 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 3260 __ cbnz(rscratch1, L); 3261 __ should_not_reach_here(); 3262 __ bind(L); 3263 #endif // ASSERT 3264 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3265 3266 // codeBlob framesize is in words (not VMRegImpl::slot_size) 3267 RuntimeStub* stub = 3268 RuntimeStub::new_runtime_stub(name, 3269 &code, 3270 frame_complete, 3271 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3272 oop_maps, false); 3273 return stub; 3274 } 3275 3276 #if INCLUDE_JFR 3277 3278 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 3279 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 3280 __ mov(c_rarg0, thread); 3281 } 3282 3283 // The handle is dereferenced through a load barrier. 3284 static void jfr_epilogue(MacroAssembler* masm) { 3285 __ reset_last_Java_frame(true); 3286 } 3287 3288 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 3289 // It returns a jobject handle to the event writer. 3290 // The handle is dereferenced and the return value is the event writer oop. 3291 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 3292 enum layout { 3293 rbp_off, 3294 rbpH_off, 3295 return_off, 3296 return_off2, 3297 framesize // inclusive of return address 3298 }; 3299 3300 int insts_size = 1024; 3301 int locs_size = 64; 3302 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id); 3303 CodeBuffer code(name, insts_size, locs_size); 3304 OopMapSet* oop_maps = new OopMapSet(); 3305 MacroAssembler* masm = new MacroAssembler(&code); 3306 3307 address start = __ pc(); 3308 __ enter(); 3309 int frame_complete = __ pc() - start; 3310 address the_pc = __ pc(); 3311 jfr_prologue(the_pc, masm, rthread); 3312 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 3313 jfr_epilogue(masm); 3314 __ resolve_global_jobject(r0, rscratch1, rscratch2); 3315 __ leave(); 3316 __ ret(lr); 3317 3318 OopMap* map = new OopMap(framesize, 1); // rfp 3319 oop_maps->add_gc_map(the_pc - start, map); 3320 3321 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3322 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3323 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3324 oop_maps, false); 3325 return stub; 3326 } 3327 3328 // For c2: call to return a leased buffer. 3329 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 3330 enum layout { 3331 rbp_off, 3332 rbpH_off, 3333 return_off, 3334 return_off2, 3335 framesize // inclusive of return address 3336 }; 3337 3338 int insts_size = 1024; 3339 int locs_size = 64; 3340 3341 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id); 3342 CodeBuffer code(name, insts_size, locs_size); 3343 OopMapSet* oop_maps = new OopMapSet(); 3344 MacroAssembler* masm = new MacroAssembler(&code); 3345 3346 address start = __ pc(); 3347 __ enter(); 3348 int frame_complete = __ pc() - start; 3349 address the_pc = __ pc(); 3350 jfr_prologue(the_pc, masm, rthread); 3351 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 3352 jfr_epilogue(masm); 3353 3354 __ leave(); 3355 __ ret(lr); 3356 3357 OopMap* map = new OopMap(framesize, 1); // rfp 3358 oop_maps->add_gc_map(the_pc - start, map); 3359 3360 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 3361 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 3362 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3363 oop_maps, false); 3364 return stub; 3365 } 3366 3367 #endif // INCLUDE_JFR