1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "asm/macroAssembler.hpp"
  28 #include "asm/macroAssembler.inline.hpp"

  29 #include "code/aotCodeCache.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/interp_masm.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "nativeInst_aarch64.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "oops/method.inline.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "runtime/continuation.hpp"
  45 #include "runtime/continuationEntry.inline.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/jniHandles.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/timerTrace.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/formatBuffer.hpp"
  56 #include "vmreg_aarch64.inline.hpp"
  57 #ifdef COMPILER1
  58 #include "c1/c1_Runtime1.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "adfiles/ad_aarch64.hpp"
  62 #include "opto/runtime.hpp"
  63 #endif
  64 #if INCLUDE_JVMCI
  65 #include "jvmci/jvmciJavaClasses.hpp"
  66 #endif
  67 
  68 #define __ masm->
  69 
  70 #ifdef PRODUCT
  71 #define BLOCK_COMMENT(str) /* nothing */
  72 #else
  73 #define BLOCK_COMMENT(str) __ block_comment(str)
  74 #endif
  75 
  76 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  77 
  78 // FIXME -- this is used by C1
  79 class RegisterSaver {
  80   const bool _save_vectors;
  81  public:
  82   RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {}
  83 
  84   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  85   void restore_live_registers(MacroAssembler* masm);
  86 
  87   // Offsets into the register save area
  88   // Used by deoptimization when it is managing result register
  89   // values on its own
  90 
  91   int reg_offset_in_bytes(Register r);
  92   int r0_offset_in_bytes()    { return reg_offset_in_bytes(r0); }
  93   int rscratch1_offset_in_bytes()    { return reg_offset_in_bytes(rscratch1); }
  94   int v0_offset_in_bytes();
  95 
  96   // Total stack size in bytes for saving sve predicate registers.
  97   int total_sve_predicate_in_bytes();
  98 
  99   // Capture info about frame layout
 100   // Note this is only correct when not saving full vectors.
 101   enum layout {
 102                 fpu_state_off = 0,
 103                 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1,
 104                 // The frame sender code expects that rfp will be in
 105                 // the "natural" place and will override any oopMap
 106                 // setting for it. We must therefore force the layout
 107                 // so that it agrees with the frame sender code.
 108                 r0_off = fpu_state_off + FPUStateSizeInWords,
 109                 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register,
 110                 return_off = rfp_off + Register::max_slots_per_register,      // slot for return address
 111                 reg_save_size = return_off + Register::max_slots_per_register};
 112 
 113 };
 114 
 115 int RegisterSaver::reg_offset_in_bytes(Register r) {
 116   // The integer registers are located above the floating point
 117   // registers in the stack frame pushed by save_live_registers() so the
 118   // offset depends on whether we are saving full vectors, and whether
 119   // those vectors are NEON or SVE.
 120 
 121   int slots_per_vect = FloatRegister::save_slots_per_register;
 122 
 123 #if COMPILER2_OR_JVMCI
 124   if (_save_vectors) {
 125     slots_per_vect = FloatRegister::slots_per_neon_register;
 126 
 127 #ifdef COMPILER2
 128     if (Matcher::supports_scalable_vector()) {
 129       slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT);
 130     }
 131 #endif
 132   }
 133 #endif
 134 
 135   int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt;
 136   return r0_offset + r->encoding() * wordSize;
 137 }
 138 
 139 int RegisterSaver::v0_offset_in_bytes() {
 140   // The floating point registers are located above the predicate registers if
 141   // they are present in the stack frame pushed by save_live_registers(). So the
 142   // offset depends on the saved total predicate vectors in the stack frame.
 143   return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt;
 144 }
 145 
 146 int RegisterSaver::total_sve_predicate_in_bytes() {
 147 #ifdef COMPILER2
 148   if (_save_vectors && Matcher::supports_scalable_vector()) {
 149     return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) *
 150            PRegister::number_of_registers;
 151   }
 152 #endif
 153   return 0;
 154 }
 155 
 156 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 157   bool use_sve = false;
 158   int sve_vector_size_in_bytes = 0;
 159   int sve_vector_size_in_slots = 0;
 160   int sve_predicate_size_in_slots = 0;
 161   int total_predicate_in_bytes = total_sve_predicate_in_bytes();
 162   int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size;
 163 
 164 #ifdef COMPILER2
 165   use_sve = Matcher::supports_scalable_vector();
 166   if (use_sve) {
 167     sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 168     sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT);
 169     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
 170   }
 171 #endif
 172 
 173 #if COMPILER2_OR_JVMCI
 174   if (_save_vectors) {
 175     int extra_save_slots_per_register = 0;
 176     // Save upper half of vector registers
 177     if (use_sve) {
 178       extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register;
 179     } else {
 180       extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register;
 181     }
 182     int extra_vector_bytes = extra_save_slots_per_register *
 183                              VMRegImpl::stack_slot_size *
 184                              FloatRegister::number_of_registers;
 185     additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize);
 186   }
 187 #else
 188   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 189 #endif
 190 
 191   int frame_size_in_bytes = align_up(additional_frame_words * wordSize +
 192                                      reg_save_size * BytesPerInt, 16);
 193   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 194   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 195   // The caller will allocate additional_frame_words
 196   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
 197   // CodeBlob frame size is in words.
 198   int frame_size_in_words = frame_size_in_bytes / wordSize;
 199   *total_frame_words = frame_size_in_words;
 200 
 201   // Save Integer and Float registers.
 202   __ enter();
 203   __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes);
 204 
 205   // Set an oopmap for the call site.  This oopmap will map all
 206   // oop-registers and debug-info registers as callee-saved.  This
 207   // will allow deoptimization at this safepoint to find all possible
 208   // debug-info recordings, as well as let GC find all oops.
 209 
 210   OopMapSet *oop_maps = new OopMapSet();
 211   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 212 
 213   for (int i = 0; i < Register::number_of_registers; i++) {
 214     Register r = as_Register(i);
 215     if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) {
 216       // SP offsets are in 4-byte words.
 217       // Register slots are 8 bytes wide, 32 floating-point registers.
 218       int sp_offset = Register::max_slots_per_register * i +
 219                       FloatRegister::save_slots_per_register * FloatRegister::number_of_registers;
 220       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg());
 221     }
 222   }
 223 
 224   for (int i = 0; i < FloatRegister::number_of_registers; i++) {
 225     FloatRegister r = as_FloatRegister(i);
 226     int sp_offset = 0;
 227     if (_save_vectors) {
 228       sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) :
 229                             (FloatRegister::slots_per_neon_register * i);
 230     } else {
 231       sp_offset = FloatRegister::save_slots_per_register * i;
 232     }
 233     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg());
 234   }
 235 
 236   return oop_map;
 237 }
 238 
 239 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 240 #ifdef COMPILER2
 241   __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(),
 242                    Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes());
 243 #else
 244 #if !INCLUDE_JVMCI
 245   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 246 #endif
 247   __ pop_CPU_state(_save_vectors);
 248 #endif
 249   __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize)));
 250   __ authenticate_return_address();
 251 }
 252 
 253 // Is vector's size (in bytes) bigger than a size saved by default?
 254 // 8 bytes vector registers are saved by default on AArch64.
 255 // The SVE supported min vector size is 8 bytes and we need to save
 256 // predicate registers when the vector size is 8 bytes as well.
 257 bool SharedRuntime::is_wide_vector(int size) {
 258   return size > 8 || (UseSVE > 0 && size >= 8);
 259 }
 260 
 261 // ---------------------------------------------------------------------------
 262 // Read the array of BasicTypes from a signature, and compute where the
 263 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 264 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 265 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 266 // as framesizes are fixed.
 267 // VMRegImpl::stack0 refers to the first slot 0(sp).
 268 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 269 // Register up to Register::number_of_registers are the 64-bit
 270 // integer registers.
 271 
 272 // Note: the INPUTS in sig_bt are in units of Java argument words,
 273 // which are 64-bit.  The OUTPUTS are in 32-bit units.
 274 
 275 // The Java calling convention is a "shifted" version of the C ABI.
 276 // By skipping the first C ABI register we can call non-static jni
 277 // methods with small numbers of arguments without having to shuffle
 278 // the arguments at all. Since we control the java ABI we ought to at
 279 // least get some advantage out of it.
 280 
 281 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 282                                            VMRegPair *regs,
 283                                            int total_args_passed) {
 284 
 285   // Create the mapping between argument positions and
 286   // registers.
 287   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 288     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
 289   };
 290   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 291     j_farg0, j_farg1, j_farg2, j_farg3,
 292     j_farg4, j_farg5, j_farg6, j_farg7
 293   };
 294 
 295 
 296   uint int_args = 0;
 297   uint fp_args = 0;
 298   uint stk_args = 0;
 299 
 300   for (int i = 0; i < total_args_passed; i++) {
 301     switch (sig_bt[i]) {
 302     case T_BOOLEAN:
 303     case T_CHAR:
 304     case T_BYTE:
 305     case T_SHORT:
 306     case T_INT:
 307       if (int_args < Argument::n_int_register_parameters_j) {
 308         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 309       } else {
 310         stk_args = align_up(stk_args, 2);
 311         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 312         stk_args += 1;
 313       }
 314       break;
 315     case T_VOID:
 316       // halves of T_LONG or T_DOUBLE
 317       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 318       regs[i].set_bad();
 319       break;
 320     case T_LONG:
 321       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 322       // fall through
 323     case T_OBJECT:
 324     case T_ARRAY:
 325     case T_ADDRESS:
 326       if (int_args < Argument::n_int_register_parameters_j) {
 327         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 328       } else {
 329         stk_args = align_up(stk_args, 2);
 330         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 331         stk_args += 2;
 332       }
 333       break;
 334     case T_FLOAT:
 335       if (fp_args < Argument::n_float_register_parameters_j) {
 336         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 337       } else {
 338         stk_args = align_up(stk_args, 2);
 339         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 340         stk_args += 1;
 341       }
 342       break;
 343     case T_DOUBLE:
 344       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 345       if (fp_args < Argument::n_float_register_parameters_j) {
 346         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 347       } else {
 348         stk_args = align_up(stk_args, 2);
 349         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 350         stk_args += 2;
 351       }
 352       break;
 353     default:
 354       ShouldNotReachHere();
 355       break;
 356     }
 357   }
 358 
 359   return stk_args;
 360 }
 361 















































































 362 // Patch the callers callsite with entry to compiled code if it exists.
 363 static void patch_callers_callsite(MacroAssembler *masm) {
 364   Label L;
 365   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 366   __ cbz(rscratch1, L);
 367 
 368   __ enter();
 369   __ push_CPU_state();
 370 
 371   // VM needs caller's callsite
 372   // VM needs target method
 373   // This needs to be a long call since we will relocate this adapter to
 374   // the codeBuffer and it may not reach
 375 
 376 #ifndef PRODUCT
 377   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
 378 #endif
 379 
 380   __ mov(c_rarg0, rmethod);
 381   __ mov(c_rarg1, lr);
 382   __ authenticate_return_address(c_rarg1);
 383   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 384   __ blr(rscratch1);
 385 
 386   // Explicit isb required because fixup_callers_callsite may change the code
 387   // stream.
 388   __ safepoint_isb();
 389 
 390   __ pop_CPU_state();
 391   // restore sp
 392   __ leave();
 393   __ bind(L);
 394 }
 395 











































































































 396 static void gen_c2i_adapter(MacroAssembler *masm,
 397                             int total_args_passed,
 398                             int comp_args_on_stack,
 399                             const BasicType *sig_bt,
 400                             const VMRegPair *regs,
 401                             Label& skip_fixup) {



























 402   // Before we get into the guts of the C2I adapter, see if we should be here
 403   // at all.  We've come from compiled code and are attempting to jump to the
 404   // interpreter, which means the caller made a static call to get here
 405   // (vcalls always get a compiled target if there is one).  Check for a
 406   // compiled target.  If there is one, we need to patch the caller's call.
 407   patch_callers_callsite(masm);
 408 
 409   __ bind(skip_fixup);
 410 
 411   int words_pushed = 0;
























 412 
 413   // Since all args are passed on the stack, total_args_passed *
 414   // Interpreter::stackElementSize is the space we need.
 415 
 416   int extraspace = total_args_passed * Interpreter::stackElementSize;

 417 
 418   __ mov(r19_sender_sp, sp);


 419 
 420   // stack is aligned, keep it that way
 421   extraspace = align_up(extraspace, 2*wordSize);

 422 
 423   if (extraspace)
 424     __ sub(sp, sp, extraspace);
 425 
 426   // Now write the args into the outgoing interpreter space
 427   for (int i = 0; i < total_args_passed; i++) {
 428     if (sig_bt[i] == T_VOID) {
 429       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 430       continue;
 431     }
 432 
 433     // offset to start parameters
 434     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 435     int next_off = st_off - Interpreter::stackElementSize;
 436 
 437     // Say 4 args:
 438     // i   st_off
 439     // 0   32 T_LONG
 440     // 1   24 T_VOID
 441     // 2   16 T_OBJECT
 442     // 3    8 T_BOOL
 443     // -    0 return address
 444     //
 445     // However to make thing extra confusing. Because we can fit a Java long/double in
 446     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 447     // leaves one slot empty and only stores to a single slot. In this case the
 448     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 449 
 450     VMReg r_1 = regs[i].first();
 451     VMReg r_2 = regs[i].second();
 452     if (!r_1->is_valid()) {
 453       assert(!r_2->is_valid(), "");
 454       continue;




 455     }
 456     if (r_1->is_stack()) {
 457       // memory to memory use rscratch1
 458       int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
 459                     + extraspace
 460                     + words_pushed * wordSize);
 461       if (!r_2->is_valid()) {
 462         // sign extend??
 463         __ ldrw(rscratch1, Address(sp, ld_off));
 464         __ str(rscratch1, Address(sp, st_off));
 465 
 466       } else {










 467 
 468         __ ldr(rscratch1, Address(sp, ld_off));
 469 
 470         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 471         // T_DOUBLE and T_LONG use two slots in the interpreter
 472         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 473           // ld_off == LSW, ld_off+wordSize == MSW
 474           // st_off == MSW, next_off == LSW
 475           __ str(rscratch1, Address(sp, next_off));




















 476 #ifdef ASSERT
 477           // Overwrite the unused slot with known junk
 478           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull);
 479           __ str(rscratch1, Address(sp, st_off));
 480 #endif /* ASSERT */
 481         } else {
 482           __ str(rscratch1, Address(sp, st_off));
 483         }
 484       }
 485     } else if (r_1->is_Register()) {
 486       Register r = r_1->as_Register();
 487       if (!r_2->is_valid()) {
 488         // must be only an int (or less ) so move only 32bits to slot
 489         // why not sign extend??
 490         __ str(r, Address(sp, st_off));
 491       } else {
 492         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 493         // T_DOUBLE and T_LONG use two slots in the interpreter
 494         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 495           // jlong/double in gpr
 496 #ifdef ASSERT
 497           // Overwrite the unused slot with known junk
 498           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull);
 499           __ str(rscratch1, Address(sp, st_off));
 500 #endif /* ASSERT */
 501           __ str(r, Address(sp, next_off));























 502         } else {
 503           __ str(r, Address(sp, st_off));





















 504         }
 505       }
 506     } else {
 507       assert(r_1->is_FloatRegister(), "");
 508       if (!r_2->is_valid()) {
 509         // only a float use just part of the slot
 510         __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
 511       } else {
 512 #ifdef ASSERT
 513         // Overwrite the unused slot with known junk
 514         __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull);
 515         __ str(rscratch1, Address(sp, st_off));
 516 #endif /* ASSERT */
 517         __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
 518       }
 519     }
 520   }
 521 
 522   __ mov(esp, sp); // Interp expects args on caller's expression stack
 523 
 524   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
 525   __ br(rscratch1);
 526 }
 527 

 528 
 529 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 530                                     int total_args_passed,
 531                                     int comp_args_on_stack,
 532                                     const BasicType *sig_bt,
 533                                     const VMRegPair *regs) {
 534 
 535   // Note: r19_sender_sp contains the senderSP on entry. We must
 536   // preserve it since we may do a i2c -> c2i transition if we lose a
 537   // race where compiled code goes non-entrant while we get args
 538   // ready.
 539 
 540   // Adapters are frameless.
 541 
 542   // An i2c adapter is frameless because the *caller* frame, which is
 543   // interpreted, routinely repairs its own esp (from
 544   // interpreter_frame_last_sp), even if a callee has modified the
 545   // stack pointer.  It also recalculates and aligns sp.
 546 
 547   // A c2i adapter is frameless because the *callee* frame, which is
 548   // interpreted, routinely repairs its caller's sp (from sender_sp,
 549   // which is set up via the senderSP register).
 550 
 551   // In other words, if *either* the caller or callee is interpreted, we can
 552   // get the stack pointer repaired after a call.
 553 
 554   // This is why c2i and i2c adapters cannot be indefinitely composed.
 555   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 556   // both caller and callee would be compiled methods, and neither would
 557   // clean up the stack pointer changes performed by the two adapters.
 558   // If this happens, control eventually transfers back to the compiled
 559   // caller, but with an uncorrected stack, causing delayed havoc.
 560 
 561   // Cut-out for having no stack args.
 562   int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 563   if (comp_args_on_stack) {
 564     __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
 565     __ andr(sp, rscratch1, -16);

 566   }
 567 
 568   // Will jump to the compiled code just as if compiled code was doing it.
 569   // Pre-load the register-jump target early, to schedule it better.
 570   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
 571 
 572 #if INCLUDE_JVMCI
 573   if (EnableJVMCI) {
 574     // check if this call should be routed towards a specific entry point
 575     __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 576     Label no_alternative_target;
 577     __ cbz(rscratch2, no_alternative_target);
 578     __ mov(rscratch1, rscratch2);
 579     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 580     __ bind(no_alternative_target);
 581   }
 582 #endif // INCLUDE_JVMCI
 583 


 584   // Now generate the shuffle code.
 585   for (int i = 0; i < total_args_passed; i++) {
 586     if (sig_bt[i] == T_VOID) {
 587       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");

 588       continue;
 589     }
 590 
 591     // Pick up 0, 1 or 2 words from SP+offset.

 592 
 593     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 594             "scrambled load targets?");
 595     // Load in argument order going down.
 596     int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
 597     // Point to interpreter value (vs. tag)
 598     int next_off = ld_off - Interpreter::stackElementSize;
 599     //
 600     //
 601     //
 602     VMReg r_1 = regs[i].first();
 603     VMReg r_2 = regs[i].second();
 604     if (!r_1->is_valid()) {
 605       assert(!r_2->is_valid(), "");
 606       continue;
 607     }
 608     if (r_1->is_stack()) {
 609       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 610       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
 611       if (!r_2->is_valid()) {
 612         // sign extend???
 613         __ ldrsw(rscratch2, Address(esp, ld_off));
 614         __ str(rscratch2, Address(sp, st_off));
 615       } else {
 616         //
 617         // We are using two optoregs. This can be either T_OBJECT,
 618         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 619         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 620         // So we must adjust where to pick up the data to match the
 621         // interpreter.
 622         //
 623         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 624         // are accessed as negative so LSW is at LOW address
 625 
 626         // ld_off is MSW so get LSW
 627         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 628                            next_off : ld_off;
 629         __ ldr(rscratch2, Address(esp, offset));
 630         // st_off is LSW (i.e. reg.first())
 631         __ str(rscratch2, Address(sp, st_off));
 632       }
 633     } else if (r_1->is_Register()) {  // Register argument
 634       Register r = r_1->as_Register();
 635       if (r_2->is_valid()) {
 636         //
 637         // We are using two VMRegs. This can be either T_OBJECT,
 638         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 639         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 640         // So we must adjust where to pick up the data to match the
 641         // interpreter.

















 642 
 643         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 644                            next_off : ld_off;
 645 
 646         // this can be a misaligned move
 647         __ ldr(r, Address(esp, offset));
 648       } else {
 649         // sign extend and use a full word?
 650         __ ldrw(r, Address(esp, ld_off));
 651       }
 652     } else {
 653       if (!r_2->is_valid()) {
 654         __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
 655       } else {
 656         __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
 657       }
 658     }
 659   }
 660 
 661   __ mov(rscratch2, rscratch1);
 662   __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1
 663   __ mov(rscratch1, rscratch2);
 664 
 665   // 6243940 We might end up in handle_wrong_method if
 666   // the callee is deoptimized as we race thru here. If that
 667   // happens we don't want to take a safepoint because the
 668   // caller frame will look interpreted and arguments are now
 669   // "compiled" so it is much better to make this transition
 670   // invisible to the stack walking code. Unfortunately if
 671   // we try and find the callee by normal means a safepoint
 672   // is possible. So we stash the desired callee in the thread
 673   // and the vm will find there should this case occur.
 674 
 675   __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
 676 
 677   __ br(rscratch1);
 678 }
 679 
 680 // ---------------------------------------------------------------
 681 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 682                                             int total_args_passed,
 683                                             int comp_args_on_stack,
 684                                             const BasicType *sig_bt,
 685                                             const VMRegPair *regs,
 686                                             address entry_address[AdapterBlob::ENTRY_COUNT]) {
 687   entry_address[AdapterBlob::I2C] = __ pc();
 688 
 689   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);






 690 
 691   entry_address[AdapterBlob::C2I_Unverified] = __ pc();
 692   Label skip_fixup;










 693 
 694   Register data = rscratch2;
 695   Register receiver = j_rarg0;
 696   Register tmp = r10;  // A call-clobbered register not used for arg passing
 697 
 698   // -------------------------------------------------------------------------
 699   // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
 700   // to the interpreter.  The args start out packed in the compiled layout.  They
 701   // need to be unpacked into the interpreter layout.  This will almost always
 702   // require some stack space.  We grow the current (compiled) stack, then repack
 703   // the args.  We  finally end in a jump to the generic interpreter entry point.
 704   // On exit from the interpreter, the interpreter will restore our SP (lest the
 705   // compiled code, which relies solely on SP and not FP, get sick).
 706 
 707   {
 708     __ block_comment("c2i_unverified_entry {");
 709     // Method might have been compiled since the call site was patched to
 710     // interpreted; if that is the case treat it as a miss so we can get
 711     // the call site corrected.
 712     __ ic_check(1 /* end_alignment */);
 713     __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset()));
 714 
 715     __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 716     __ cbz(rscratch1, skip_fixup);
 717     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 718     __ block_comment("} c2i_unverified_entry");
 719   }
 720 
 721   entry_address[AdapterBlob::C2I] = __ pc();


 722 
 723   // Class initialization barrier for static methods
 724   entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr;
 725   if (VM_Version::supports_fast_class_init_checks()) {
 726     Label L_skip_barrier;
 727 
 728     { // Bypass the barrier for non-static methods
 729       __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset()));
 730       __ andsw(zr, rscratch1, JVM_ACC_STATIC);
 731       __ br(Assembler::EQ, L_skip_barrier); // non-static
 732     }
 733 
 734     __ load_method_holder(rscratch2, rmethod);
 735     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 736     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 737 
 738     __ bind(L_skip_barrier);
 739     entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc();


















 740   }
 741 
 742   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 743   bs->c2i_entry_barrier(masm);
 744 
 745   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 746   return;
 747 }
 748 
 749 static int c_calling_convention_priv(const BasicType *sig_bt,
 750                                          VMRegPair *regs,
 751                                          int total_args_passed) {
 752 
 753 // We return the amount of VMRegImpl stack slots we need to reserve for all
 754 // the arguments NOT counting out_preserve_stack_slots.
 755 
 756     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 757       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
 758     };
 759     static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 760       c_farg0, c_farg1, c_farg2, c_farg3,
 761       c_farg4, c_farg5, c_farg6, c_farg7
 762     };
 763 
 764     uint int_args = 0;
 765     uint fp_args = 0;
 766     uint stk_args = 0; // inc by 2 each time
 767 
 768     for (int i = 0; i < total_args_passed; i++) {
 769       switch (sig_bt[i]) {
 770       case T_BOOLEAN:
 771       case T_CHAR:
 772       case T_BYTE:
 773       case T_SHORT:
 774       case T_INT:
 775         if (int_args < Argument::n_int_register_parameters_c) {
 776           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 777         } else {
 778 #ifdef __APPLE__
 779           // Less-than word types are stored one after another.
 780           // The code is unable to handle this so bailout.
 781           return -1;
 782 #endif
 783           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 784           stk_args += 2;
 785         }
 786         break;
 787       case T_LONG:
 788         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 789         // fall through
 790       case T_OBJECT:
 791       case T_ARRAY:
 792       case T_ADDRESS:
 793       case T_METADATA:
 794         if (int_args < Argument::n_int_register_parameters_c) {
 795           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 796         } else {
 797           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 798           stk_args += 2;
 799         }
 800         break;
 801       case T_FLOAT:
 802         if (fp_args < Argument::n_float_register_parameters_c) {
 803           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 804         } else {
 805 #ifdef __APPLE__
 806           // Less-than word types are stored one after another.
 807           // The code is unable to handle this so bailout.
 808           return -1;
 809 #endif
 810           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 811           stk_args += 2;
 812         }
 813         break;
 814       case T_DOUBLE:
 815         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 816         if (fp_args < Argument::n_float_register_parameters_c) {
 817           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 818         } else {
 819           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 820           stk_args += 2;
 821         }
 822         break;
 823       case T_VOID: // Halves of longs and doubles
 824         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 825         regs[i].set_bad();
 826         break;
 827       default:
 828         ShouldNotReachHere();
 829         break;
 830       }
 831     }
 832 
 833   return stk_args;
 834 }
 835 
 836 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 837                                              uint num_bits,
 838                                              uint total_args_passed) {
 839   // More than 8 argument inputs are not supported now.
 840   assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported");
 841   assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported");
 842 
 843   static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = {
 844     v0, v1, v2, v3, v4, v5, v6, v7
 845   };
 846 
 847   // On SVE, we use the same vector registers with 128-bit vector registers on NEON.
 848   int next_reg_val = num_bits == 64 ? 1 : 3;
 849   for (uint i = 0; i < total_args_passed; i++) {
 850     VMReg vmreg = VEC_ArgReg[i]->as_VMReg();
 851     regs[i].set_pair(vmreg->next(next_reg_val), vmreg);
 852   }
 853   return 0;
 854 }
 855 
 856 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 857                                          VMRegPair *regs,
 858                                          int total_args_passed)
 859 {
 860   int result = c_calling_convention_priv(sig_bt, regs, total_args_passed);
 861   guarantee(result >= 0, "Unsupported arguments configuration");
 862   return result;
 863 }
 864 
 865 
 866 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 867   // We always ignore the frame_slots arg and just use the space just below frame pointer
 868   // which by this time is free to use
 869   switch (ret_type) {
 870   case T_FLOAT:
 871     __ strs(v0, Address(rfp, -wordSize));
 872     break;
 873   case T_DOUBLE:
 874     __ strd(v0, Address(rfp, -wordSize));
 875     break;
 876   case T_VOID:  break;
 877   default: {
 878     __ str(r0, Address(rfp, -wordSize));
 879     }
 880   }
 881 }
 882 
 883 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 884   // We always ignore the frame_slots arg and just use the space just below frame pointer
 885   // which by this time is free to use
 886   switch (ret_type) {
 887   case T_FLOAT:
 888     __ ldrs(v0, Address(rfp, -wordSize));
 889     break;
 890   case T_DOUBLE:
 891     __ ldrd(v0, Address(rfp, -wordSize));
 892     break;
 893   case T_VOID:  break;
 894   default: {
 895     __ ldr(r0, Address(rfp, -wordSize));
 896     }
 897   }
 898 }
 899 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 900   RegSet x;
 901   for ( int i = first_arg ; i < arg_count ; i++ ) {
 902     if (args[i].first()->is_Register()) {
 903       x = x + args[i].first()->as_Register();
 904     } else if (args[i].first()->is_FloatRegister()) {
 905       __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
 906     }
 907   }
 908   __ push(x, sp);
 909 }
 910 
 911 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 912   RegSet x;
 913   for ( int i = first_arg ; i < arg_count ; i++ ) {
 914     if (args[i].first()->is_Register()) {
 915       x = x + args[i].first()->as_Register();
 916     } else {
 917       ;
 918     }
 919   }
 920   __ pop(x, sp);
 921   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
 922     if (args[i].first()->is_Register()) {
 923       ;
 924     } else if (args[i].first()->is_FloatRegister()) {
 925       __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
 926     }
 927   }
 928 }
 929 
 930 static void verify_oop_args(MacroAssembler* masm,
 931                             const methodHandle& method,
 932                             const BasicType* sig_bt,
 933                             const VMRegPair* regs) {
 934   Register temp_reg = r19;  // not part of any compiled calling seq
 935   if (VerifyOops) {
 936     for (int i = 0; i < method->size_of_parameters(); i++) {
 937       if (sig_bt[i] == T_OBJECT ||
 938           sig_bt[i] == T_ARRAY) {
 939         VMReg r = regs[i].first();
 940         assert(r->is_valid(), "bad oop arg");
 941         if (r->is_stack()) {
 942           __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
 943           __ verify_oop(temp_reg);
 944         } else {
 945           __ verify_oop(r->as_Register());
 946         }
 947       }
 948     }
 949   }
 950 }
 951 
 952 // on exit, sp points to the ContinuationEntry
 953 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
 954   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
 955   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
 956   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
 957 
 958   stack_slots += (int)ContinuationEntry::size()/wordSize;
 959   __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
 960 
 961   OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
 962 
 963   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
 964   __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset()));
 965   __ mov(rscratch1, sp); // we can't use sp as the source in str
 966   __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
 967 
 968   return map;
 969 }
 970 
 971 // on entry c_rarg1 points to the continuation
 972 //          sp points to ContinuationEntry
 973 //          c_rarg3 -- isVirtualThread
 974 static void fill_continuation_entry(MacroAssembler* masm) {
 975 #ifdef ASSERT
 976   __ movw(rscratch1, ContinuationEntry::cookie_value());
 977   __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset()));
 978 #endif
 979 
 980   __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
 981   __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
 982   __ str (zr,      Address(sp, ContinuationEntry::chunk_offset()));
 983   __ strw(zr,      Address(sp, ContinuationEntry::argsize_offset()));
 984   __ strw(zr,      Address(sp, ContinuationEntry::pin_count_offset()));
 985 
 986   __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
 987   __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
 988 
 989   __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset()));
 990 }
 991 
 992 // on entry, sp points to the ContinuationEntry
 993 // on exit, rfp points to the spilled rfp in the entry frame
 994 static void continuation_enter_cleanup(MacroAssembler* masm) {
 995 #ifndef PRODUCT
 996   Label OK;
 997   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
 998   __ cmp(sp, rscratch1);
 999   __ br(Assembler::EQ, OK);
1000   __ stop("incorrect sp1");
1001   __ bind(OK);
1002 #endif
1003   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1004   __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1005   __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset()));
1006   __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset()));
1007   __ add(rfp, sp, (int)ContinuationEntry::size());
1008 }
1009 
1010 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1011 // On entry: c_rarg1 -- the continuation object
1012 //           c_rarg2 -- isContinue
1013 //           c_rarg3 -- isVirtualThread
1014 static void gen_continuation_enter(MacroAssembler* masm,
1015                                  const methodHandle& method,
1016                                  const BasicType* sig_bt,
1017                                  const VMRegPair* regs,
1018                                  int& exception_offset,
1019                                  OopMapSet*oop_maps,
1020                                  int& frame_complete,
1021                                  int& stack_slots,
1022                                  int& interpreted_entry_offset,
1023                                  int& compiled_entry_offset) {
1024   //verify_oop_args(masm, method, sig_bt, regs);
1025   Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
1026 
1027   address start = __ pc();
1028 
1029   Label call_thaw, exit;
1030 
1031   // i2i entry used at interp_only_mode only
1032   interpreted_entry_offset = __ pc() - start;
1033   {
1034 
1035 #ifdef ASSERT
1036     Label is_interp_only;
1037     __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
1038     __ cbnzw(rscratch1, is_interp_only);
1039     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1040     __ bind(is_interp_only);
1041 #endif
1042 
1043     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1044     __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2));
1045     __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1));
1046     __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0));
1047     __ push_cont_fastpath(rthread);
1048 
1049     __ enter();
1050     stack_slots = 2; // will be adjusted in setup
1051     OopMap* map = continuation_enter_setup(masm, stack_slots);
1052     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1053     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1054 
1055     fill_continuation_entry(masm);
1056 
1057     __ cbnz(c_rarg2, call_thaw);
1058 
1059     const address tr_call = __ trampoline_call(resolve);
1060     if (tr_call == nullptr) {
1061       fatal("CodeCache is full at gen_continuation_enter");
1062     }
1063 
1064     oop_maps->add_gc_map(__ pc() - start, map);
1065     __ post_call_nop();
1066 
1067     __ b(exit);
1068 
1069     address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1070     if (stub == nullptr) {
1071       fatal("CodeCache is full at gen_continuation_enter");
1072     }
1073   }
1074 
1075   // compiled entry
1076   __ align(CodeEntryAlignment);
1077   compiled_entry_offset = __ pc() - start;
1078 
1079   __ enter();
1080   stack_slots = 2; // will be adjusted in setup
1081   OopMap* map = continuation_enter_setup(masm, stack_slots);
1082   frame_complete = __ pc() - start;
1083 
1084   fill_continuation_entry(masm);
1085 
1086   __ cbnz(c_rarg2, call_thaw);
1087 
1088   const address tr_call = __ trampoline_call(resolve);
1089   if (tr_call == nullptr) {
1090     fatal("CodeCache is full at gen_continuation_enter");
1091   }
1092 
1093   oop_maps->add_gc_map(__ pc() - start, map);
1094   __ post_call_nop();
1095 
1096   __ b(exit);
1097 
1098   __ bind(call_thaw);
1099 
1100   ContinuationEntry::_thaw_call_pc_offset = __ pc() - start;
1101   __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1102   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1103   ContinuationEntry::_return_pc_offset = __ pc() - start;
1104   __ post_call_nop();
1105 
1106   __ bind(exit);
1107   ContinuationEntry::_cleanup_offset = __ pc() - start;
1108   continuation_enter_cleanup(masm);
1109   __ leave();
1110   __ ret(lr);
1111 
1112   /// exception handling
1113 
1114   exception_offset = __ pc() - start;
1115   {
1116       __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19
1117 
1118       continuation_enter_cleanup(masm);
1119 
1120       __ ldr(c_rarg1, Address(rfp, wordSize)); // return address
1121       __ authenticate_return_address(c_rarg1);
1122       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1);
1123 
1124       // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc
1125 
1126       __ mov(r1, r0); // the exception handler
1127       __ mov(r0, r19); // restore return value contaning the exception oop
1128       __ verify_oop(r0);
1129 
1130       __ leave();
1131       __ mov(r3, lr);
1132       __ br(r1); // the exception handler
1133   }
1134 
1135   address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1136   if (stub == nullptr) {
1137     fatal("CodeCache is full at gen_continuation_enter");
1138   }
1139 }
1140 
1141 static void gen_continuation_yield(MacroAssembler* masm,
1142                                    const methodHandle& method,
1143                                    const BasicType* sig_bt,
1144                                    const VMRegPair* regs,
1145                                    OopMapSet* oop_maps,
1146                                    int& frame_complete,
1147                                    int& stack_slots,
1148                                    int& compiled_entry_offset) {
1149     enum layout {
1150       rfp_off1,
1151       rfp_off2,
1152       lr_off,
1153       lr_off2,
1154       framesize // inclusive of return address
1155     };
1156     // assert(is_even(framesize/2), "sp not 16-byte aligned");
1157     stack_slots = framesize /  VMRegImpl::slots_per_word;
1158     assert(stack_slots == 2, "recheck layout");
1159 
1160     address start = __ pc();
1161 
1162     compiled_entry_offset = __ pc() - start;
1163     __ enter();
1164 
1165     __ mov(c_rarg1, sp);
1166 
1167     frame_complete = __ pc() - start;
1168     address the_pc = __ pc();
1169 
1170     __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1171 
1172     __ mov(c_rarg0, rthread);
1173     __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
1174     __ call_VM_leaf(Continuation::freeze_entry(), 2);
1175     __ reset_last_Java_frame(true);
1176 
1177     Label pinned;
1178 
1179     __ cbnz(r0, pinned);
1180 
1181     // We've succeeded, set sp to the ContinuationEntry
1182     __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1183     __ mov(sp, rscratch1);
1184     continuation_enter_cleanup(masm);
1185 
1186     __ bind(pinned); // pinned -- return to caller
1187 
1188     // handle pending exception thrown by freeze
1189     __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1190     Label ok;
1191     __ cbz(rscratch1, ok);
1192     __ leave();
1193     __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1194     __ br(rscratch1);
1195     __ bind(ok);
1196 
1197     __ leave();
1198     __ ret(lr);
1199 
1200     OopMap* map = new OopMap(framesize, 1);
1201     oop_maps->add_gc_map(the_pc - start, map);
1202 }
1203 
1204 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) {
1205   ::continuation_enter_cleanup(masm);
1206 }
1207 
1208 static void gen_special_dispatch(MacroAssembler* masm,
1209                                  const methodHandle& method,
1210                                  const BasicType* sig_bt,
1211                                  const VMRegPair* regs) {
1212   verify_oop_args(masm, method, sig_bt, regs);
1213   vmIntrinsics::ID iid = method->intrinsic_id();
1214 
1215   // Now write the args into the outgoing interpreter space
1216   bool     has_receiver   = false;
1217   Register receiver_reg   = noreg;
1218   int      member_arg_pos = -1;
1219   Register member_reg     = noreg;
1220   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1221   if (ref_kind != 0) {
1222     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1223     member_reg = r19;  // known to be free at this point
1224     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1225   } else if (iid == vmIntrinsics::_invokeBasic) {
1226     has_receiver = true;
1227   } else if (iid == vmIntrinsics::_linkToNative) {
1228     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1229     member_reg = r19;  // known to be free at this point
1230   } else {
1231     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1232   }
1233 
1234   if (member_reg != noreg) {
1235     // Load the member_arg into register, if necessary.
1236     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1237     VMReg r = regs[member_arg_pos].first();
1238     if (r->is_stack()) {
1239       __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1240     } else {
1241       // no data motion is needed
1242       member_reg = r->as_Register();
1243     }
1244   }
1245 
1246   if (has_receiver) {
1247     // Make sure the receiver is loaded into a register.
1248     assert(method->size_of_parameters() > 0, "oob");
1249     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1250     VMReg r = regs[0].first();
1251     assert(r->is_valid(), "bad receiver arg");
1252     if (r->is_stack()) {
1253       // Porting note:  This assumes that compiled calling conventions always
1254       // pass the receiver oop in a register.  If this is not true on some
1255       // platform, pick a temp and load the receiver from stack.
1256       fatal("receiver always in a register");
1257       receiver_reg = r2;  // known to be free at this point
1258       __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1259     } else {
1260       // no data motion is needed
1261       receiver_reg = r->as_Register();
1262     }
1263   }
1264 
1265   // Figure out which address we are really jumping to:
1266   MethodHandles::generate_method_handle_dispatch(masm, iid,
1267                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1268 }
1269 
1270 // ---------------------------------------------------------------------------
1271 // Generate a native wrapper for a given method.  The method takes arguments
1272 // in the Java compiled code convention, marshals them to the native
1273 // convention (handlizes oops, etc), transitions to native, makes the call,
1274 // returns to java state (possibly blocking), unhandlizes any result and
1275 // returns.
1276 //
1277 // Critical native functions are a shorthand for the use of
1278 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1279 // functions.  The wrapper is expected to unpack the arguments before
1280 // passing them to the callee. Critical native functions leave the state _in_Java,
1281 // since they block out GC.
1282 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1283 // block and the check for pending exceptions it's impossible for them
1284 // to be thrown.
1285 //
1286 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1287                                                 const methodHandle& method,
1288                                                 int compile_id,
1289                                                 BasicType* in_sig_bt,
1290                                                 VMRegPair* in_regs,
1291                                                 BasicType ret_type) {
1292   if (method->is_continuation_native_intrinsic()) {
1293     int exception_offset = -1;
1294     OopMapSet* oop_maps = new OopMapSet();
1295     int frame_complete = -1;
1296     int stack_slots = -1;
1297     int interpreted_entry_offset = -1;
1298     int vep_offset = -1;
1299     if (method->is_continuation_enter_intrinsic()) {
1300       gen_continuation_enter(masm,
1301                              method,
1302                              in_sig_bt,
1303                              in_regs,
1304                              exception_offset,
1305                              oop_maps,
1306                              frame_complete,
1307                              stack_slots,
1308                              interpreted_entry_offset,
1309                              vep_offset);
1310     } else if (method->is_continuation_yield_intrinsic()) {
1311       gen_continuation_yield(masm,
1312                              method,
1313                              in_sig_bt,
1314                              in_regs,
1315                              oop_maps,
1316                              frame_complete,
1317                              stack_slots,
1318                              vep_offset);
1319     } else {
1320       guarantee(false, "Unknown Continuation native intrinsic");
1321     }
1322 
1323 #ifdef ASSERT
1324     if (method->is_continuation_enter_intrinsic()) {
1325       assert(interpreted_entry_offset != -1, "Must be set");
1326       assert(exception_offset != -1,         "Must be set");
1327     } else {
1328       assert(interpreted_entry_offset == -1, "Must be unset");
1329       assert(exception_offset == -1,         "Must be unset");
1330     }
1331     assert(frame_complete != -1,    "Must be set");
1332     assert(stack_slots != -1,       "Must be set");
1333     assert(vep_offset != -1,        "Must be set");
1334 #endif
1335 
1336     __ flush();
1337     nmethod* nm = nmethod::new_native_nmethod(method,
1338                                               compile_id,
1339                                               masm->code(),
1340                                               vep_offset,
1341                                               frame_complete,
1342                                               stack_slots,
1343                                               in_ByteSize(-1),
1344                                               in_ByteSize(-1),
1345                                               oop_maps,
1346                                               exception_offset);
1347     if (nm == nullptr) return nm;
1348     if (method->is_continuation_enter_intrinsic()) {
1349       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1350     } else if (method->is_continuation_yield_intrinsic()) {
1351       _cont_doYield_stub = nm;
1352     } else {
1353       guarantee(false, "Unknown Continuation native intrinsic");
1354     }
1355     return nm;
1356   }
1357 
1358   if (method->is_method_handle_intrinsic()) {
1359     vmIntrinsics::ID iid = method->intrinsic_id();
1360     intptr_t start = (intptr_t)__ pc();
1361     int vep_offset = ((intptr_t)__ pc()) - start;
1362 
1363     // First instruction must be a nop as it may need to be patched on deoptimisation
1364     __ nop();
1365     gen_special_dispatch(masm,
1366                          method,
1367                          in_sig_bt,
1368                          in_regs);
1369     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1370     __ flush();
1371     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1372     return nmethod::new_native_nmethod(method,
1373                                        compile_id,
1374                                        masm->code(),
1375                                        vep_offset,
1376                                        frame_complete,
1377                                        stack_slots / VMRegImpl::slots_per_word,
1378                                        in_ByteSize(-1),
1379                                        in_ByteSize(-1),
1380                                        nullptr);
1381   }
1382   address native_func = method->native_function();
1383   assert(native_func != nullptr, "must have function");
1384 
1385   // An OopMap for lock (and class if static)
1386   OopMapSet *oop_maps = new OopMapSet();
1387   intptr_t start = (intptr_t)__ pc();
1388 
1389   // We have received a description of where all the java arg are located
1390   // on entry to the wrapper. We need to convert these args to where
1391   // the jni function will expect them. To figure out where they go
1392   // we convert the java signature to a C signature by inserting
1393   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1394 
1395   const int total_in_args = method->size_of_parameters();
1396   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1397 
1398   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1399   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1400 
1401   int argc = 0;
1402   out_sig_bt[argc++] = T_ADDRESS;
1403   if (method->is_static()) {
1404     out_sig_bt[argc++] = T_OBJECT;
1405   }
1406 
1407   for (int i = 0; i < total_in_args ; i++ ) {
1408     out_sig_bt[argc++] = in_sig_bt[i];
1409   }
1410 
1411   // Now figure out where the args must be stored and how much stack space
1412   // they require.
1413   int out_arg_slots;
1414   out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args);
1415 
1416   if (out_arg_slots < 0) {
1417     return nullptr;
1418   }
1419 
1420   // Compute framesize for the wrapper.  We need to handlize all oops in
1421   // incoming registers
1422 
1423   // Calculate the total number of stack slots we will need.
1424 
1425   // First count the abi requirement plus all of the outgoing args
1426   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1427 
1428   // Now the space for the inbound oop handle area
1429   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1430 
1431   int oop_handle_offset = stack_slots;
1432   stack_slots += total_save_slots;
1433 
1434   // Now any space we need for handlizing a klass if static method
1435 
1436   int klass_slot_offset = 0;
1437   int klass_offset = -1;
1438   int lock_slot_offset = 0;
1439   bool is_static = false;
1440 
1441   if (method->is_static()) {
1442     klass_slot_offset = stack_slots;
1443     stack_slots += VMRegImpl::slots_per_word;
1444     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1445     is_static = true;
1446   }
1447 
1448   // Plus a lock if needed
1449 
1450   if (method->is_synchronized()) {
1451     lock_slot_offset = stack_slots;
1452     stack_slots += VMRegImpl::slots_per_word;
1453   }
1454 
1455   // Now a place (+2) to save return values or temp during shuffling
1456   // + 4 for return address (which we own) and saved rfp
1457   stack_slots += 6;
1458 
1459   // Ok The space we have allocated will look like:
1460   //
1461   //
1462   // FP-> |                     |
1463   //      |---------------------|
1464   //      | 2 slots for moves   |
1465   //      |---------------------|
1466   //      | lock box (if sync)  |
1467   //      |---------------------| <- lock_slot_offset
1468   //      | klass (if static)   |
1469   //      |---------------------| <- klass_slot_offset
1470   //      | oopHandle area      |
1471   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1472   //      | outbound memory     |
1473   //      | based arguments     |
1474   //      |                     |
1475   //      |---------------------|
1476   //      |                     |
1477   // SP-> | out_preserved_slots |
1478   //
1479   //
1480 
1481 
1482   // Now compute actual number of stack words we need rounding to make
1483   // stack properly aligned.
1484   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1485 
1486   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1487 
1488   // First thing make an ic check to see if we should even be here
1489 
1490   // We are free to use all registers as temps without saving them and
1491   // restoring them except rfp. rfp is the only callee save register
1492   // as far as the interpreter and the compiler(s) are concerned.
1493 
1494   const Register receiver = j_rarg0;
1495 
1496   Label exception_pending;
1497 
1498   assert_different_registers(receiver, rscratch1);
1499   __ verify_oop(receiver);
1500   __ ic_check(8 /* end_alignment */);
1501 
1502   // Verified entry point must be aligned
1503   int vep_offset = ((intptr_t)__ pc()) - start;
1504 
1505   // If we have to make this method not-entrant we'll overwrite its
1506   // first instruction with a jump.  For this action to be legal we
1507   // must ensure that this first instruction is a B, BL, NOP, BKPT,
1508   // SVC, HVC, or SMC.  Make it a NOP.
1509   __ nop();
1510 
1511   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1512     Label L_skip_barrier;
1513     __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
1514     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
1515     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1516 
1517     __ bind(L_skip_barrier);
1518   }
1519 
1520   // Generate stack overflow check
1521   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1522 
1523   // Generate a new frame for the wrapper.
1524   __ enter();
1525   // -2 because return address is already present and so is saved rfp
1526   __ sub(sp, sp, stack_size - 2*wordSize);
1527 
1528   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1529   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1530 
1531   // Frame is now completed as far as size and linkage.
1532   int frame_complete = ((intptr_t)__ pc()) - start;
1533 
1534   // We use r20 as the oop handle for the receiver/klass
1535   // It is callee save so it survives the call to native
1536 
1537   const Register oop_handle_reg = r20;
1538 
1539   //
1540   // We immediately shuffle the arguments so that any vm call we have to
1541   // make from here on out (sync slow path, jvmti, etc.) we will have
1542   // captured the oops from our caller and have a valid oopMap for
1543   // them.
1544 
1545   // -----------------
1546   // The Grand Shuffle
1547 
1548   // The Java calling convention is either equal (linux) or denser (win64) than the
1549   // c calling convention. However the because of the jni_env argument the c calling
1550   // convention always has at least one more (and two for static) arguments than Java.
1551   // Therefore if we move the args from java -> c backwards then we will never have
1552   // a register->register conflict and we don't have to build a dependency graph
1553   // and figure out how to break any cycles.
1554   //
1555 
1556   // Record esp-based slot for receiver on stack for non-static methods
1557   int receiver_offset = -1;
1558 
1559   // This is a trick. We double the stack slots so we can claim
1560   // the oops in the caller's frame. Since we are sure to have
1561   // more args than the caller doubling is enough to make
1562   // sure we can capture all the incoming oop args from the
1563   // caller.
1564   //
1565   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1566 
1567   // Mark location of rfp (someday)
1568   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1569 
1570 
1571   int float_args = 0;
1572   int int_args = 0;
1573 
1574 #ifdef ASSERT
1575   bool reg_destroyed[Register::number_of_registers];
1576   bool freg_destroyed[FloatRegister::number_of_registers];
1577   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1578     reg_destroyed[r] = false;
1579   }
1580   for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1581     freg_destroyed[f] = false;
1582   }
1583 
1584 #endif /* ASSERT */
1585 
1586   // For JNI natives the incoming and outgoing registers are offset upwards.
1587   GrowableArray<int> arg_order(2 * total_in_args);
1588 
1589   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1590     arg_order.push(i);
1591     arg_order.push(c_arg);
1592   }
1593 
1594   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1595     int i = arg_order.at(ai);
1596     int c_arg = arg_order.at(ai + 1);
1597     __ block_comment(err_msg("move %d -> %d", i, c_arg));
1598     assert(c_arg != -1 && i != -1, "wrong order");
1599 #ifdef ASSERT
1600     if (in_regs[i].first()->is_Register()) {
1601       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1602     } else if (in_regs[i].first()->is_FloatRegister()) {
1603       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1604     }
1605     if (out_regs[c_arg].first()->is_Register()) {
1606       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1607     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1608       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1609     }
1610 #endif /* ASSERT */
1611     switch (in_sig_bt[i]) {
1612       case T_ARRAY:
1613       case T_OBJECT:
1614         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1615                        ((i == 0) && (!is_static)),
1616                        &receiver_offset);
1617         int_args++;
1618         break;
1619       case T_VOID:
1620         break;
1621 
1622       case T_FLOAT:
1623         __ float_move(in_regs[i], out_regs[c_arg]);
1624         float_args++;
1625         break;
1626 
1627       case T_DOUBLE:
1628         assert( i + 1 < total_in_args &&
1629                 in_sig_bt[i + 1] == T_VOID &&
1630                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1631         __ double_move(in_regs[i], out_regs[c_arg]);
1632         float_args++;
1633         break;
1634 
1635       case T_LONG :
1636         __ long_move(in_regs[i], out_regs[c_arg]);
1637         int_args++;
1638         break;
1639 
1640       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1641 
1642       default:
1643         __ move32_64(in_regs[i], out_regs[c_arg]);
1644         int_args++;
1645     }
1646   }
1647 
1648   // point c_arg at the first arg that is already loaded in case we
1649   // need to spill before we call out
1650   int c_arg = total_c_args - total_in_args;
1651 
1652   // Pre-load a static method's oop into c_rarg1.
1653   if (method->is_static()) {
1654 
1655     //  load oop into a register
1656     __ movoop(c_rarg1,
1657               JNIHandles::make_local(method->method_holder()->java_mirror()));
1658 
1659     // Now handlize the static class mirror it's known not-null.
1660     __ str(c_rarg1, Address(sp, klass_offset));
1661     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1662 
1663     // Now get the handle
1664     __ lea(c_rarg1, Address(sp, klass_offset));
1665     // and protect the arg if we must spill
1666     c_arg--;
1667   }
1668 
1669   // Change state to native (we save the return address in the thread, since it might not
1670   // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1671   // points into the right code segment. It does not have to be the correct return pc.
1672   // We use the same pc/oopMap repeatedly when we call out.
1673 
1674   Label native_return;
1675   if (method->is_object_wait0()) {
1676     // For convenience we use the pc we want to resume to in case of preemption on Object.wait.
1677     __ set_last_Java_frame(sp, noreg, native_return, rscratch1);
1678   } else {
1679     intptr_t the_pc = (intptr_t) __ pc();
1680     oop_maps->add_gc_map(the_pc - start, map);
1681 
1682     __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1);
1683   }
1684 
1685   Label dtrace_method_entry, dtrace_method_entry_done;
1686   if (DTraceMethodProbes) {
1687     __ b(dtrace_method_entry);
1688     __ bind(dtrace_method_entry_done);
1689   }
1690 
1691   // RedefineClasses() tracing support for obsolete method entry
1692   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1693     // protect the args we've loaded
1694     save_args(masm, total_c_args, c_arg, out_regs);
1695     __ mov_metadata(c_rarg1, method());
1696     __ call_VM_leaf(
1697       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1698       rthread, c_rarg1);
1699     restore_args(masm, total_c_args, c_arg, out_regs);
1700   }
1701 
1702   // Lock a synchronized method
1703 
1704   // Register definitions used by locking and unlocking
1705 
1706   const Register swap_reg = r0;
1707   const Register obj_reg  = r19;  // Will contain the oop
1708   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1709   const Register old_hdr  = r13;  // value of old header at unlock time
1710   const Register lock_tmp = r14;  // Temporary used by lightweight_lock/unlock
1711   const Register tmp = lr;
1712 
1713   Label slow_path_lock;
1714   Label lock_done;
1715 
1716   if (method->is_synchronized()) {
1717     // Get the handle (the 2nd argument)
1718     __ mov(oop_handle_reg, c_rarg1);
1719 
1720     // Get address of the box
1721 
1722     __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1723 
1724     // Load the oop from the handle
1725     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1726 
1727     __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
1728 
1729     // Slow path will re-enter here
1730     __ bind(lock_done);
1731   }
1732 
1733 
1734   // Finally just about ready to make the JNI call
1735 
1736   // get JNIEnv* which is first argument to native
1737   __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1738 
1739   // Now set thread in native
1740   __ mov(rscratch1, _thread_in_native);
1741   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1742   __ stlrw(rscratch1, rscratch2);
1743 
1744   __ rt_call(native_func);
1745 
1746   // Verify or restore cpu control state after JNI call
1747   __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1748 
1749   // Unpack native results.
1750   switch (ret_type) {
1751   case T_BOOLEAN: __ c2bool(r0);                     break;
1752   case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
1753   case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
1754   case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
1755   case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
1756   case T_DOUBLE :
1757   case T_FLOAT  :
1758     // Result is in v0 we'll save as needed
1759     break;
1760   case T_ARRAY:                 // Really a handle
1761   case T_OBJECT:                // Really a handle
1762       break; // can't de-handlize until after safepoint check
1763   case T_VOID: break;
1764   case T_LONG: break;
1765   default       : ShouldNotReachHere();
1766   }
1767 
1768   Label safepoint_in_progress, safepoint_in_progress_done;
1769 
1770   // Switch thread to "native transition" state before reading the synchronization state.
1771   // This additional state is necessary because reading and testing the synchronization
1772   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1773   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1774   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1775   //     Thread A is resumed to finish this native method, but doesn't block here since it
1776   //     didn't see any synchronization is progress, and escapes.
1777   __ mov(rscratch1, _thread_in_native_trans);
1778 
1779   __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1780 
1781   // Force this write out before the read below
1782   if (!UseSystemMemoryBarrier) {
1783     __ dmb(Assembler::ISH);
1784   }
1785 
1786   __ verify_sve_vector_length();
1787 
1788   // Check for safepoint operation in progress and/or pending suspend requests.
1789   {
1790     // No need for acquire as Java threads always disarm themselves.
1791     __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* in_nmethod */);
1792     __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1793     __ cbnzw(rscratch1, safepoint_in_progress);
1794     __ bind(safepoint_in_progress_done);
1795   }
1796 
1797   // change thread state
1798   __ mov(rscratch1, _thread_in_Java);
1799   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1800   __ stlrw(rscratch1, rscratch2);
1801 
1802   if (method->is_object_wait0()) {
1803     // Check preemption for Object.wait()
1804     __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1805     __ cbz(rscratch1, native_return);
1806     __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1807     __ br(rscratch1);
1808     __ bind(native_return);
1809 
1810     intptr_t the_pc = (intptr_t) __ pc();
1811     oop_maps->add_gc_map(the_pc - start, map);
1812   }
1813 
1814   Label reguard;
1815   Label reguard_done;
1816   __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1817   __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
1818   __ br(Assembler::EQ, reguard);
1819   __ bind(reguard_done);
1820 
1821   // native result if any is live
1822 
1823   // Unlock
1824   Label unlock_done;
1825   Label slow_path_unlock;
1826   if (method->is_synchronized()) {
1827 
1828     // Get locked oop from the handle we passed to jni
1829     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1830 
1831     // Must save r0 if if it is live now because cmpxchg must use it
1832     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1833       save_native_result(masm, ret_type, stack_slots);
1834     }
1835 
1836     __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
1837 
1838     // slow path re-enters here
1839     __ bind(unlock_done);
1840     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1841       restore_native_result(masm, ret_type, stack_slots);
1842     }
1843   }
1844 
1845   Label dtrace_method_exit, dtrace_method_exit_done;
1846   if (DTraceMethodProbes) {
1847     __ b(dtrace_method_exit);
1848     __ bind(dtrace_method_exit_done);
1849   }
1850 
1851   __ reset_last_Java_frame(false);
1852 
1853   // Unbox oop result, e.g. JNIHandles::resolve result.
1854   if (is_reference_type(ret_type)) {
1855     __ resolve_jobject(r0, r1, r2);
1856   }
1857 
1858   if (CheckJNICalls) {
1859     // clear_pending_jni_exception_check
1860     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1861   }
1862 
1863   // reset handle block
1864   __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
1865   __ str(zr, Address(r2, JNIHandleBlock::top_offset()));
1866 
1867   __ leave();
1868 
1869   #if INCLUDE_JFR
1870   // We need to do a poll test after unwind in case the sampler
1871   // managed to sample the native frame after returning to Java.
1872   Label L_return;
1873   __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
1874   address poll_test_pc = __ pc();
1875   __ relocate(relocInfo::poll_return_type);
1876   __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), L_return);
1877   assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
1878     "polling page return stub not created yet");
1879   address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
1880   __ adr(rscratch1, InternalAddress(poll_test_pc));
1881   __ str(rscratch1, Address(rthread, JavaThread::saved_exception_pc_offset()));
1882   __ far_jump(RuntimeAddress(stub));
1883   __ bind(L_return);
1884 #endif // INCLUDE_JFR
1885 
1886   // Any exception pending?
1887   __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1888   __ cbnz(rscratch1, exception_pending);
1889 
1890   // We're done
1891   __ ret(lr);
1892 
1893   // Unexpected paths are out of line and go here
1894 
1895   // forward the exception
1896   __ bind(exception_pending);
1897 
1898   // and forward the exception
1899   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1900 
1901   // Slow path locking & unlocking
1902   if (method->is_synchronized()) {
1903 
1904     __ block_comment("Slow path lock {");
1905     __ bind(slow_path_lock);
1906 
1907     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1908     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1909 
1910     // protect the args we've loaded
1911     save_args(masm, total_c_args, c_arg, out_regs);
1912 
1913     __ mov(c_rarg0, obj_reg);
1914     __ mov(c_rarg1, lock_reg);
1915     __ mov(c_rarg2, rthread);
1916 
1917     // Not a leaf but we have last_Java_frame setup as we want.
1918     // We don't want to unmount in case of contention since that would complicate preserving
1919     // the arguments that had already been marshalled into the native convention. So we force
1920     // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame())
1921     // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack.
1922     __ push_cont_fastpath();
1923     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1924     __ pop_cont_fastpath();
1925     restore_args(masm, total_c_args, c_arg, out_regs);
1926 
1927 #ifdef ASSERT
1928     { Label L;
1929       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1930       __ cbz(rscratch1, L);
1931       __ stop("no pending exception allowed on exit from monitorenter");
1932       __ bind(L);
1933     }
1934 #endif
1935     __ b(lock_done);
1936 
1937     __ block_comment("} Slow path lock");
1938 
1939     __ block_comment("Slow path unlock {");
1940     __ bind(slow_path_unlock);
1941 
1942     // If we haven't already saved the native result we must save it now as xmm registers
1943     // are still exposed.
1944 
1945     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1946       save_native_result(masm, ret_type, stack_slots);
1947     }
1948 
1949     __ mov(c_rarg2, rthread);
1950     __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1951     __ mov(c_rarg0, obj_reg);
1952 
1953     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1954     // NOTE that obj_reg == r19 currently
1955     __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1956     __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1957 
1958     __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
1959 
1960 #ifdef ASSERT
1961     {
1962       Label L;
1963       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1964       __ cbz(rscratch1, L);
1965       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1966       __ bind(L);
1967     }
1968 #endif /* ASSERT */
1969 
1970     __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1971 
1972     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1973       restore_native_result(masm, ret_type, stack_slots);
1974     }
1975     __ b(unlock_done);
1976 
1977     __ block_comment("} Slow path unlock");
1978 
1979   } // synchronized
1980 
1981   // SLOW PATH Reguard the stack if needed
1982 
1983   __ bind(reguard);
1984   save_native_result(masm, ret_type, stack_slots);
1985   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1986   restore_native_result(masm, ret_type, stack_slots);
1987   // and continue
1988   __ b(reguard_done);
1989 
1990   // SLOW PATH safepoint
1991   {
1992     __ block_comment("safepoint {");
1993     __ bind(safepoint_in_progress);
1994 
1995     // Don't use call_VM as it will see a possible pending exception and forward it
1996     // and never return here preventing us from clearing _last_native_pc down below.
1997     //
1998     save_native_result(masm, ret_type, stack_slots);
1999     __ mov(c_rarg0, rthread);
2000 #ifndef PRODUCT
2001   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2002 #endif
2003     __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2004     __ blr(rscratch1);
2005 
2006     // Restore any method result value
2007     restore_native_result(masm, ret_type, stack_slots);
2008 
2009     __ b(safepoint_in_progress_done);
2010     __ block_comment("} safepoint");
2011   }
2012 
2013   // SLOW PATH dtrace support
2014   if (DTraceMethodProbes) {
2015     {
2016       __ block_comment("dtrace entry {");
2017       __ bind(dtrace_method_entry);
2018 
2019       // We have all of the arguments setup at this point. We must not touch any register
2020       // argument registers at this point (what if we save/restore them there are no oop?
2021 
2022       save_args(masm, total_c_args, c_arg, out_regs);
2023       __ mov_metadata(c_rarg1, method());
2024       __ call_VM_leaf(
2025         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2026         rthread, c_rarg1);
2027       restore_args(masm, total_c_args, c_arg, out_regs);
2028       __ b(dtrace_method_entry_done);
2029       __ block_comment("} dtrace entry");
2030     }
2031 
2032     {
2033       __ block_comment("dtrace exit {");
2034       __ bind(dtrace_method_exit);
2035       save_native_result(masm, ret_type, stack_slots);
2036       __ mov_metadata(c_rarg1, method());
2037       __ call_VM_leaf(
2038         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2039         rthread, c_rarg1);
2040       restore_native_result(masm, ret_type, stack_slots);
2041       __ b(dtrace_method_exit_done);
2042       __ block_comment("} dtrace exit");
2043     }
2044   }
2045 
2046   __ flush();
2047 
2048   nmethod *nm = nmethod::new_native_nmethod(method,
2049                                             compile_id,
2050                                             masm->code(),
2051                                             vep_offset,
2052                                             frame_complete,
2053                                             stack_slots / VMRegImpl::slots_per_word,
2054                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2055                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2056                                             oop_maps);
2057 
2058   return nm;
2059 }
2060 
2061 // this function returns the adjust size (in number of words) to a c2i adapter
2062 // activation for use during deoptimization
2063 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2064   assert(callee_locals >= callee_parameters,
2065           "test and remove; got more parms than locals");
2066   if (callee_locals < callee_parameters)
2067     return 0;                   // No adjustment for negative locals
2068   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2069   // diff is counted in stack words
2070   return align_up(diff, 2);
2071 }
2072 
2073 
2074 //------------------------------generate_deopt_blob----------------------------
2075 void SharedRuntime::generate_deopt_blob() {
2076   // Allocate space for the code
2077   ResourceMark rm;
2078   // Setup code generation tools
2079   int pad = 0;
2080 #if INCLUDE_JVMCI
2081   if (EnableJVMCI) {
2082     pad += 512; // Increase the buffer size when compiling for JVMCI
2083   }
2084 #endif
2085   const char* name = SharedRuntime::stub_name(StubId::shared_deopt_id);
2086   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, BlobId::shared_deopt_id);
2087   if (blob != nullptr) {
2088     _deopt_blob = blob->as_deoptimization_blob();
2089     return;
2090   }
2091 
2092   CodeBuffer buffer(name, 2048+pad, 1024);
2093   MacroAssembler* masm = new MacroAssembler(&buffer);
2094   int frame_size_in_words;
2095   OopMap* map = nullptr;
2096   OopMapSet *oop_maps = new OopMapSet();
2097   RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0);
2098 
2099   // -------------
2100   // This code enters when returning to a de-optimized nmethod.  A return
2101   // address has been pushed on the stack, and return values are in
2102   // registers.
2103   // If we are doing a normal deopt then we were called from the patched
2104   // nmethod from the point we returned to the nmethod. So the return
2105   // address on the stack is wrong by NativeCall::instruction_size
2106   // We will adjust the value so it looks like we have the original return
2107   // address on the stack (like when we eagerly deoptimized).
2108   // In the case of an exception pending when deoptimizing, we enter
2109   // with a return address on the stack that points after the call we patched
2110   // into the exception handler. We have the following register state from,
2111   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2112   //    r0: exception oop
2113   //    r19: exception handler
2114   //    r3: throwing pc
2115   // So in this case we simply jam r3 into the useless return address and
2116   // the stack looks just like we want.
2117   //
2118   // At this point we need to de-opt.  We save the argument return
2119   // registers.  We call the first C routine, fetch_unroll_info().  This
2120   // routine captures the return values and returns a structure which
2121   // describes the current frame size and the sizes of all replacement frames.
2122   // The current frame is compiled code and may contain many inlined
2123   // functions, each with their own JVM state.  We pop the current frame, then
2124   // push all the new frames.  Then we call the C routine unpack_frames() to
2125   // populate these frames.  Finally unpack_frames() returns us the new target
2126   // address.  Notice that callee-save registers are BLOWN here; they have
2127   // already been captured in the vframeArray at the time the return PC was
2128   // patched.
2129   address start = __ pc();
2130   Label cont;
2131 
2132   // Prolog for non exception case!
2133 
2134   // Save everything in sight.
2135   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2136 
2137   // Normal deoptimization.  Save exec mode for unpack_frames.
2138   __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2139   __ b(cont);
2140 
2141   int reexecute_offset = __ pc() - start;
2142 #if INCLUDE_JVMCI && !defined(COMPILER1)
2143   if (UseJVMCICompiler) {
2144     // JVMCI does not use this kind of deoptimization
2145     __ should_not_reach_here();
2146   }
2147 #endif
2148 
2149   // Reexecute case
2150   // return address is the pc describes what bci to do re-execute at
2151 
2152   // No need to update map as each call to save_live_registers will produce identical oopmap
2153   (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2154 
2155   __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2156   __ b(cont);
2157 
2158 #if INCLUDE_JVMCI
2159   Label after_fetch_unroll_info_call;
2160   int implicit_exception_uncommon_trap_offset = 0;
2161   int uncommon_trap_offset = 0;
2162 
2163   if (EnableJVMCI) {
2164     implicit_exception_uncommon_trap_offset = __ pc() - start;
2165 
2166     __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2167     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2168 
2169     uncommon_trap_offset = __ pc() - start;
2170 
2171     // Save everything in sight.
2172     reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2173     // fetch_unroll_info needs to call last_java_frame()
2174     Label retaddr;
2175     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2176 
2177     __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2178     __ movw(rscratch1, -1);
2179     __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2180 
2181     __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2182     __ mov(c_rarg0, rthread);
2183     __ movw(c_rarg2, rcpool); // exec mode
2184     __ lea(rscratch1,
2185            RuntimeAddress(CAST_FROM_FN_PTR(address,
2186                                            Deoptimization::uncommon_trap)));
2187     __ blr(rscratch1);
2188     __ bind(retaddr);
2189     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2190 
2191     __ reset_last_Java_frame(false);
2192 
2193     __ b(after_fetch_unroll_info_call);
2194   } // EnableJVMCI
2195 #endif // INCLUDE_JVMCI
2196 
2197   int exception_offset = __ pc() - start;
2198 
2199   // Prolog for exception case
2200 
2201   // all registers are dead at this entry point, except for r0, and
2202   // r3 which contain the exception oop and exception pc
2203   // respectively.  Set them in TLS and fall thru to the
2204   // unpack_with_exception_in_tls entry point.
2205 
2206   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2207   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2208 
2209   int exception_in_tls_offset = __ pc() - start;
2210 
2211   // new implementation because exception oop is now passed in JavaThread
2212 
2213   // Prolog for exception case
2214   // All registers must be preserved because they might be used by LinearScan
2215   // Exceptiop oop and throwing PC are passed in JavaThread
2216   // tos: stack at point of call to method that threw the exception (i.e. only
2217   // args are on the stack, no return address)
2218 
2219   // The return address pushed by save_live_registers will be patched
2220   // later with the throwing pc. The correct value is not available
2221   // now because loading it from memory would destroy registers.
2222 
2223   // NB: The SP at this point must be the SP of the method that is
2224   // being deoptimized.  Deoptimization assumes that the frame created
2225   // here by save_live_registers is immediately below the method's SP.
2226   // This is a somewhat fragile mechanism.
2227 
2228   // Save everything in sight.
2229   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2230 
2231   // Now it is safe to overwrite any register
2232 
2233   // Deopt during an exception.  Save exec mode for unpack_frames.
2234   __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2235 
2236   // load throwing pc from JavaThread and patch it as the return address
2237   // of the current frame. Then clear the field in JavaThread
2238   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2239   __ protect_return_address(r3);
2240   __ str(r3, Address(rfp, wordSize));
2241   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2242 
2243 #ifdef ASSERT
2244   // verify that there is really an exception oop in JavaThread
2245   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2246   __ verify_oop(r0);
2247 
2248   // verify that there is no pending exception
2249   Label no_pending_exception;
2250   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2251   __ cbz(rscratch1, no_pending_exception);
2252   __ stop("must not have pending exception here");
2253   __ bind(no_pending_exception);
2254 #endif
2255 
2256   __ bind(cont);
2257 
2258   // Call C code.  Need thread and this frame, but NOT official VM entry
2259   // crud.  We cannot block on this call, no GC can happen.
2260   //
2261   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2262 
2263   // fetch_unroll_info needs to call last_java_frame().
2264 
2265   Label retaddr;
2266   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2267 #ifdef ASSERT
2268   { Label L;
2269     __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset()));
2270     __ cbz(rscratch1, L);
2271     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2272     __ bind(L);
2273   }
2274 #endif // ASSERT
2275   __ mov(c_rarg0, rthread);
2276   __ mov(c_rarg1, rcpool);
2277   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2278   __ blr(rscratch1);
2279   __ bind(retaddr);
2280 
2281   // Need to have an oopmap that tells fetch_unroll_info where to
2282   // find any register it might need.
2283   oop_maps->add_gc_map(__ pc() - start, map);
2284 
2285   __ reset_last_Java_frame(false);
2286 
2287 #if INCLUDE_JVMCI
2288   if (EnableJVMCI) {
2289     __ bind(after_fetch_unroll_info_call);
2290   }
2291 #endif
2292 
2293   // Load UnrollBlock* into r5
2294   __ mov(r5, r0);
2295 
2296   __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset()));
2297    Label noException;
2298   __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2299   __ br(Assembler::NE, noException);
2300   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2301   // QQQ this is useless it was null above
2302   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2303   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2304   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2305 
2306   __ verify_oop(r0);
2307 
2308   // Overwrite the result registers with the exception results.
2309   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2310   // I think this is useless
2311   // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2312 
2313   __ bind(noException);
2314 
2315   // Only register save data is on the stack.
2316   // Now restore the result registers.  Everything else is either dead
2317   // or captured in the vframeArray.
2318 
2319   // Restore fp result register
2320   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2321   // Restore integer result register
2322   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2323 
2324   // Pop all of the register save area off the stack
2325   __ add(sp, sp, frame_size_in_words * wordSize);
2326 
2327   // All of the register save area has been popped of the stack. Only the
2328   // return address remains.
2329 
2330   // Pop all the frames we must move/replace.
2331   //
2332   // Frame picture (youngest to oldest)
2333   // 1: self-frame (no frame link)
2334   // 2: deopting frame  (no frame link)
2335   // 3: caller of deopting frame (could be compiled/interpreted).
2336   //
2337   // Note: by leaving the return address of self-frame on the stack
2338   // and using the size of frame 2 to adjust the stack
2339   // when we are done the return to frame 3 will still be on the stack.
2340 
2341   // Pop deoptimized frame
2342   __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2343   __ sub(r2, r2, 2 * wordSize);
2344   __ add(sp, sp, r2);
2345   __ ldp(rfp, zr, __ post(sp, 2 * wordSize));
2346 
2347 #ifdef ASSERT
2348   // Compilers generate code that bang the stack by as much as the
2349   // interpreter would need. So this stack banging should never
2350   // trigger a fault. Verify that it does not on non product builds.
2351   __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2352   __ bang_stack_size(r19, r2);
2353 #endif
2354   // Load address of array of frame pcs into r2
2355   __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset()));
2356 
2357   // Trash the old pc
2358   // __ addptr(sp, wordSize);  FIXME ????
2359 
2360   // Load address of array of frame sizes into r4
2361   __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset()));
2362 
2363   // Load counter into r3
2364   __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset()));
2365 
2366   // Now adjust the caller's stack to make up for the extra locals
2367   // but record the original sp so that we can save it in the skeletal interpreter
2368   // frame and the stack walking of interpreter_sender will get the unextended sp
2369   // value and not the "real" sp value.
2370 
2371   const Register sender_sp = r6;
2372 
2373   __ mov(sender_sp, sp);
2374   __ ldrw(r19, Address(r5,
2375                        Deoptimization::UnrollBlock::
2376                        caller_adjustment_offset()));
2377   __ sub(sp, sp, r19);
2378 
2379   // Push interpreter frames in a loop
2380   __ mov(rscratch1, (uint64_t)0xDEADDEAD);        // Make a recognizable pattern
2381   __ mov(rscratch2, rscratch1);
2382   Label loop;
2383   __ bind(loop);
2384   __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2385   __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2386   __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2387   __ enter();                           // Save old & set new fp
2388   __ sub(sp, sp, r19);                  // Prolog
2389   // This value is corrected by layout_activation_impl
2390   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2391   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2392   __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2393   __ sub(r3, r3, 1);                   // Decrement counter
2394   __ cbnz(r3, loop);
2395 
2396     // Re-push self-frame
2397   __ ldr(lr, Address(r2));
2398   __ enter();
2399 
2400   // Allocate a full sized register save area.  We subtract 2 because
2401   // enter() just pushed 2 words
2402   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2403 
2404   // Restore frame locals after moving the frame
2405   __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2406   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2407 
2408   // Call C code.  Need thread but NOT official VM entry
2409   // crud.  We cannot block on this call, no GC can happen.  Call should
2410   // restore return values to their stack-slots with the new SP.
2411   //
2412   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2413 
2414   // Use rfp because the frames look interpreted now
2415   // Don't need the precise return PC here, just precise enough to point into this code blob.
2416   address the_pc = __ pc();
2417   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2418 
2419   __ mov(c_rarg0, rthread);
2420   __ movw(c_rarg1, rcpool); // second arg: exec_mode
2421   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2422   __ blr(rscratch1);
2423 
2424   // Set an oopmap for the call site
2425   // Use the same PC we used for the last java frame
2426   oop_maps->add_gc_map(the_pc - start,
2427                        new OopMap( frame_size_in_words, 0 ));
2428 
2429   // Clear fp AND pc
2430   __ reset_last_Java_frame(true);
2431 
2432   // Collect return values
2433   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2434   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2435   // I think this is useless (throwing pc?)
2436   // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2437 
2438   // Pop self-frame.
2439   __ leave();                           // Epilog
2440 
2441   // Jump to interpreter
2442   __ ret(lr);
2443 
2444   // Make sure all code is generated
2445   masm->flush();
2446 
2447   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2448   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2449 #if INCLUDE_JVMCI
2450   if (EnableJVMCI) {
2451     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2452     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2453   }
2454 #endif
2455 
2456   AOTCodeCache::store_code_blob(*_deopt_blob, AOTCodeEntry::SharedBlob, BlobId::shared_deopt_id);
2457 }
2458 
2459 // Number of stack slots between incoming argument block and the start of
2460 // a new frame.  The PROLOG must add this many slots to the stack.  The
2461 // EPILOG must remove this many slots. aarch64 needs two slots for
2462 // return address and fp.
2463 // TODO think this is correct but check
2464 uint SharedRuntime::in_preserve_stack_slots() {
2465   return 4;
2466 }
2467 
2468 uint SharedRuntime::out_preserve_stack_slots() {
2469   return 0;
2470 }
2471 
2472 
2473 VMReg SharedRuntime::thread_register() {
2474   return rthread->as_VMReg();
2475 }
2476 
2477 //------------------------------generate_handler_blob------
2478 //
2479 // Generate a special Compile2Runtime blob that saves all registers,
2480 // and setup oopmap.
2481 //
2482 SafepointBlob* SharedRuntime::generate_handler_blob(StubId id, address call_ptr) {
2483   assert(is_polling_page_id(id), "expected a polling page stub id");
2484 
2485   // Allocate space for the code.  Setup code generation tools.
2486   const char* name = SharedRuntime::stub_name(id);
2487   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id));
2488   if (blob != nullptr) {
2489     return blob->as_safepoint_blob();
2490   }
2491 
2492   ResourceMark rm;
2493   OopMapSet *oop_maps = new OopMapSet();
2494   OopMap* map;
2495   CodeBuffer buffer(name, 2048, 1024);
2496   MacroAssembler* masm = new MacroAssembler(&buffer);
2497 
2498   address start   = __ pc();
2499   address call_pc = nullptr;
2500   int frame_size_in_words;
2501   bool cause_return = (id == StubId::shared_polling_page_return_handler_id);
2502   RegisterSaver reg_save(id == StubId::shared_polling_page_vectors_safepoint_handler_id /* save_vectors */);
2503 
2504   // When the signal occurred, the LR was either signed and stored on the stack (in which
2505   // case it will be restored from the stack before being used) or unsigned and not stored
2506   // on the stack. Stipping ensures we get the right value.
2507   __ strip_return_address();
2508 
2509   // Save Integer and Float registers.
2510   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2511 
2512   // The following is basically a call_VM.  However, we need the precise
2513   // address of the call in order to generate an oopmap. Hence, we do all the
2514   // work ourselves.
2515 
2516   Label retaddr;
2517   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2518 
2519   // The return address must always be correct so that frame constructor never
2520   // sees an invalid pc.
2521 
2522   if (!cause_return) {
2523     // overwrite the return address pushed by save_live_registers
2524     // Additionally, r20 is a callee-saved register so we can look at
2525     // it later to determine if someone changed the return address for
2526     // us!
2527     __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset()));
2528     __ protect_return_address(r20);
2529     __ str(r20, Address(rfp, wordSize));
2530   }
2531 
2532   // Do the call
2533   __ mov(c_rarg0, rthread);
2534   __ lea(rscratch1, RuntimeAddress(call_ptr));
2535   __ blr(rscratch1);
2536   __ bind(retaddr);
2537 
2538   // Set an oopmap for the call site.  This oopmap will map all
2539   // oop-registers and debug-info registers as callee-saved.  This
2540   // will allow deoptimization at this safepoint to find all possible
2541   // debug-info recordings, as well as let GC find all oops.
2542 
2543   oop_maps->add_gc_map( __ pc() - start, map);
2544 
2545   Label noException;
2546 
2547   __ reset_last_Java_frame(false);
2548 
2549   __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2550 
2551   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2552   __ cbz(rscratch1, noException);
2553 
2554   // Exception pending
2555 
2556   reg_save.restore_live_registers(masm);
2557 
2558   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2559 
2560   // No exception case
2561   __ bind(noException);
2562 
2563   Label no_adjust, bail;
2564   if (!cause_return) {
2565     // If our stashed return pc was modified by the runtime we avoid touching it
2566     __ ldr(rscratch1, Address(rfp, wordSize));
2567     __ cmp(r20, rscratch1);
2568     __ br(Assembler::NE, no_adjust);
2569     __ authenticate_return_address(r20);
2570 
2571 #ifdef ASSERT
2572     // Verify the correct encoding of the poll we're about to skip.
2573     // See NativeInstruction::is_ldrw_to_zr()
2574     __ ldrw(rscratch1, Address(r20));
2575     __ ubfx(rscratch2, rscratch1, 22, 10);
2576     __ cmpw(rscratch2, 0b1011100101);
2577     __ br(Assembler::NE, bail);
2578     __ ubfx(rscratch2, rscratch1, 0, 5);
2579     __ cmpw(rscratch2, 0b11111);
2580     __ br(Assembler::NE, bail);
2581 #endif
2582     // Adjust return pc forward to step over the safepoint poll instruction
2583     __ add(r20, r20, NativeInstruction::instruction_size);
2584     __ protect_return_address(r20);
2585     __ str(r20, Address(rfp, wordSize));
2586   }
2587 
2588   __ bind(no_adjust);
2589   // Normal exit, restore registers and exit.
2590   reg_save.restore_live_registers(masm);
2591 
2592   __ ret(lr);
2593 
2594 #ifdef ASSERT
2595   __ bind(bail);
2596   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2597 #endif
2598 
2599   // Make sure all code is generated
2600   masm->flush();
2601 
2602   // Fill-out other meta info
2603   SafepointBlob* sp_blob = SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2604 
2605   AOTCodeCache::store_code_blob(*sp_blob, AOTCodeEntry::SharedBlob, StubInfo::blob(id));
2606   return sp_blob;
2607 }
2608 
2609 //
2610 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2611 //
2612 // Generate a stub that calls into vm to find out the proper destination
2613 // of a java call. All the argument registers are live at this point
2614 // but since this is generic code we don't know what they are and the caller
2615 // must do any gc of the args.
2616 //
2617 RuntimeStub* SharedRuntime::generate_resolve_blob(StubId id, address destination) {
2618   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2619   assert(is_resolve_id(id), "expected a resolve stub id");
2620 
2621   const char* name = SharedRuntime::stub_name(id);
2622   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id));
2623   if (blob != nullptr) {
2624     return blob->as_runtime_stub();
2625   }
2626 
2627   // allocate space for the code
2628   ResourceMark rm;
2629   CodeBuffer buffer(name, 1000, 512);
2630   MacroAssembler* masm                = new MacroAssembler(&buffer);
2631 
2632   int frame_size_in_words;
2633   RegisterSaver reg_save(false /* save_vectors */);
2634 
2635   OopMapSet *oop_maps = new OopMapSet();
2636   OopMap* map = nullptr;
2637 
2638   int start = __ offset();
2639 
2640   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2641 
2642   int frame_complete = __ offset();
2643 
2644   {
2645     Label retaddr;
2646     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2647 
2648     __ mov(c_rarg0, rthread);
2649     __ lea(rscratch1, RuntimeAddress(destination));
2650 
2651     __ blr(rscratch1);
2652     __ bind(retaddr);
2653   }
2654 
2655   // Set an oopmap for the call site.
2656   // We need this not only for callee-saved registers, but also for volatile
2657   // registers that the compiler might be keeping live across a safepoint.
2658 
2659   oop_maps->add_gc_map( __ offset() - start, map);
2660 
2661   // r0 contains the address we are going to jump to assuming no exception got installed
2662 
2663   // clear last_Java_sp
2664   __ reset_last_Java_frame(false);
2665   // check for pending exceptions
2666   Label pending;
2667   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2668   __ cbnz(rscratch1, pending);
2669 
2670   // get the returned Method*
2671   __ get_vm_result_metadata(rmethod, rthread);
2672   __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod)));
2673 
2674   // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2675   __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes()));
2676   reg_save.restore_live_registers(masm);
2677 
2678   // We are back to the original state on entry and ready to go.
2679 
2680   __ br(rscratch1);
2681 
2682   // Pending exception after the safepoint
2683 
2684   __ bind(pending);
2685 
2686   reg_save.restore_live_registers(masm);
2687 
2688   // exception pending => remove activation and forward to exception handler
2689 
2690   __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset()));
2691 
2692   __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
2693   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2694 
2695   // -------------
2696   // make sure all code is generated
2697   masm->flush();
2698 
2699   // return the  blob
2700   // frame_size_words or bytes??
2701   RuntimeStub* rs_blob = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2702 
2703   AOTCodeCache::store_code_blob(*rs_blob, AOTCodeEntry::SharedBlob, StubInfo::blob(id));
2704   return rs_blob;
2705 }
2706 















































































































































2707 // Continuation point for throwing of implicit exceptions that are
2708 // not handled in the current activation. Fabricates an exception
2709 // oop and initiates normal exception dispatching in this
2710 // frame. Since we need to preserve callee-saved values (currently
2711 // only for C2, but done for C1 as well) we need a callee-saved oop
2712 // map and therefore have to make these stubs into RuntimeStubs
2713 // rather than BufferBlobs.  If the compiler needs all registers to
2714 // be preserved between the fault point and the exception handler
2715 // then it must assume responsibility for that in
2716 // AbstractCompiler::continuation_for_implicit_null_exception or
2717 // continuation_for_implicit_division_by_zero_exception. All other
2718 // implicit exceptions (e.g., NullPointerException or
2719 // AbstractMethodError on entry) are either at call sites or
2720 // otherwise assume that stack unwinding will be initiated, so
2721 // caller saved registers were assumed volatile in the compiler.
2722 
2723 RuntimeStub* SharedRuntime::generate_throw_exception(StubId id, address runtime_entry) {
2724   assert(is_throw_id(id), "expected a throw stub id");
2725 
2726   const char* name = SharedRuntime::stub_name(id);
2727 
2728   // Information about frame layout at time of blocking runtime call.
2729   // Note that we only have to preserve callee-saved registers since
2730   // the compilers are responsible for supplying a continuation point
2731   // if they expect all registers to be preserved.
2732   // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0
2733   enum layout {
2734     rfp_off = 0,
2735     rfp_off2,
2736     return_off,
2737     return_off2,
2738     framesize // inclusive of return address
2739   };
2740 
2741   int insts_size = 512;
2742   int locs_size  = 64;
2743 
2744   const char* timer_msg = "SharedRuntime generate_throw_exception";
2745   TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2746 
2747   CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id));
2748   if (blob != nullptr) {
2749     return blob->as_runtime_stub();
2750   }
2751 
2752   ResourceMark rm;
2753   CodeBuffer code(name, insts_size, locs_size);
2754   OopMapSet* oop_maps  = new OopMapSet();
2755   MacroAssembler* masm = new MacroAssembler(&code);
2756 
2757   address start = __ pc();
2758 
2759   // This is an inlined and slightly modified version of call_VM
2760   // which has the ability to fetch the return PC out of
2761   // thread-local storage and also sets up last_Java_sp slightly
2762   // differently than the real call_VM
2763 
2764   __ enter(); // Save FP and LR before call
2765 
2766   assert(is_even(framesize/2), "sp not 16-byte aligned");
2767 
2768   // lr and fp are already in place
2769   __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog
2770 
2771   int frame_complete = __ pc() - start;
2772 
2773   // Set up last_Java_sp and last_Java_fp
2774   address the_pc = __ pc();
2775   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2776 
2777   __ mov(c_rarg0, rthread);
2778   BLOCK_COMMENT("call runtime_entry");
2779   __ lea(rscratch1, RuntimeAddress(runtime_entry));
2780   __ blr(rscratch1);
2781 
2782   // Generate oop map
2783   OopMap* map = new OopMap(framesize, 0);
2784 
2785   oop_maps->add_gc_map(the_pc - start, map);
2786 
2787   __ reset_last_Java_frame(true);
2788 
2789   // Reinitialize the ptrue predicate register, in case the external runtime
2790   // call clobbers ptrue reg, as we may return to SVE compiled code.
2791   __ reinitialize_ptrue();
2792 
2793   __ leave();
2794 
2795   // check for pending exceptions
2796 #ifdef ASSERT
2797   Label L;
2798   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2799   __ cbnz(rscratch1, L);
2800   __ should_not_reach_here();
2801   __ bind(L);
2802 #endif // ASSERT
2803   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2804 
2805   // codeBlob framesize is in words (not VMRegImpl::slot_size)
2806   RuntimeStub* stub =
2807     RuntimeStub::new_runtime_stub(name,
2808                                   &code,
2809                                   frame_complete,
2810                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2811                                   oop_maps, false);
2812   AOTCodeCache::store_code_blob(*stub, AOTCodeEntry::SharedBlob, StubInfo::blob(id));
2813 
2814   return stub;
2815 }
2816 
2817 #if INCLUDE_JFR
2818 
2819 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) {
2820   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2821   __ mov(c_rarg0, thread);
2822 }
2823 
2824 // The handle is dereferenced through a load barrier.
2825 static void jfr_epilogue(MacroAssembler* masm) {
2826   __ reset_last_Java_frame(true);
2827 }
2828 
2829 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2830 // It returns a jobject handle to the event writer.
2831 // The handle is dereferenced and the return value is the event writer oop.
2832 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2833   enum layout {
2834     rbp_off,
2835     rbpH_off,
2836     return_off,
2837     return_off2,
2838     framesize // inclusive of return address
2839   };
2840 
2841   int insts_size = 1024;
2842   int locs_size = 64;
2843   const char* name = SharedRuntime::stub_name(StubId::shared_jfr_write_checkpoint_id);
2844   CodeBuffer code(name, insts_size, locs_size);
2845   OopMapSet* oop_maps = new OopMapSet();
2846   MacroAssembler* masm = new MacroAssembler(&code);
2847 
2848   address start = __ pc();
2849   __ enter();
2850   int frame_complete = __ pc() - start;
2851   address the_pc = __ pc();
2852   jfr_prologue(the_pc, masm, rthread);
2853   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2854   jfr_epilogue(masm);
2855   __ resolve_global_jobject(r0, rscratch1, rscratch2);
2856   __ leave();
2857   __ ret(lr);
2858 
2859   OopMap* map = new OopMap(framesize, 1); // rfp
2860   oop_maps->add_gc_map(the_pc - start, map);
2861 
2862   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2863     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2864                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2865                                   oop_maps, false);
2866   return stub;
2867 }
2868 
2869 // For c2: call to return a leased buffer.
2870 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2871   enum layout {
2872     rbp_off,
2873     rbpH_off,
2874     return_off,
2875     return_off2,
2876     framesize // inclusive of return address
2877   };
2878 
2879   int insts_size = 1024;
2880   int locs_size = 64;
2881 
2882   const char* name = SharedRuntime::stub_name(StubId::shared_jfr_return_lease_id);
2883   CodeBuffer code(name, insts_size, locs_size);
2884   OopMapSet* oop_maps = new OopMapSet();
2885   MacroAssembler* masm = new MacroAssembler(&code);
2886 
2887   address start = __ pc();
2888   __ enter();
2889   int frame_complete = __ pc() - start;
2890   address the_pc = __ pc();
2891   jfr_prologue(the_pc, masm, rthread);
2892   __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
2893   jfr_epilogue(masm);
2894 
2895   __ leave();
2896   __ ret(lr);
2897 
2898   OopMap* map = new OopMap(framesize, 1); // rfp
2899   oop_maps->add_gc_map(the_pc - start, map);
2900 
2901   RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2902     RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2903                                   (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2904                                   oop_maps, false);
2905   return stub;
2906 }
2907 
2908 #endif // INCLUDE_JFR
--- EOF ---