1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "interpreter/bytecodeTracer.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/arrayOop.hpp" 40 #include "oops/method.hpp" 41 #include "oops/methodCounters.hpp" 42 #include "oops/methodData.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/resolvedIndyEntry.hpp" 45 #include "oops/resolvedMethodEntry.hpp" 46 #include "prims/jvmtiExport.hpp" 47 #include "prims/jvmtiThreadState.hpp" 48 #include "runtime/arguments.hpp" 49 #include "runtime/deoptimization.hpp" 50 #include "runtime/frame.inline.hpp" 51 #include "runtime/globals.hpp" 52 #include "runtime/jniHandles.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/vframeArray.hpp" 58 #include "utilities/checkedCast.hpp" 59 #include "utilities/debug.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 #include <sys/types.h> 62 63 // Size of interpreter code. Increase if too small. Interpreter will 64 // fail with a guarantee ("not enough space for interpreter generation"); 65 // if too small. 66 // Run with +PrintInterpreter to get the VM to print out the size. 67 // Max size with JVMTI 68 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 69 70 #define __ _masm-> 71 72 //----------------------------------------------------------------------------- 73 74 extern "C" void entry(CodeBuffer*); 75 76 //----------------------------------------------------------------------------- 77 78 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 79 address entry = __ pc(); 80 81 __ andr(esp, esp, -16); 82 __ mov(c_rarg3, esp); 83 // rmethod 84 // rlocals 85 // c_rarg3: first stack arg - wordSize 86 87 // adjust sp 88 __ sub(sp, c_rarg3, 18 * wordSize); 89 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 90 __ call_VM(noreg, 91 CAST_FROM_FN_PTR(address, 92 InterpreterRuntime::slow_signature_handler), 93 rmethod, rlocals, c_rarg3); 94 95 // r0: result handler 96 97 // Stack layout: 98 // rsp: return address <- sp 99 // 1 garbage 100 // 8 integer args (if static first is unused) 101 // 1 float/double identifiers 102 // 8 double args 103 // stack args <- esp 104 // garbage 105 // expression stack bottom 106 // bcp (null) 107 // ... 108 109 // Restore LR 110 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 111 112 // Do FP first so we can use c_rarg3 as temp 113 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 114 115 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 116 const FloatRegister r = as_FloatRegister(i); 117 118 Label d, done; 119 120 __ tbnz(c_rarg3, i, d); 121 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 122 __ b(done); 123 __ bind(d); 124 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 125 __ bind(done); 126 } 127 128 // c_rarg0 contains the result from the call of 129 // InterpreterRuntime::slow_signature_handler so we don't touch it 130 // here. It will be loaded with the JNIEnv* later. 131 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 132 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 133 Register rm = as_Register(i), rn = as_Register(i+1); 134 __ ldp(rm, rn, Address(sp, i * wordSize)); 135 } 136 137 __ add(sp, sp, 18 * wordSize); 138 __ ret(lr); 139 140 return entry; 141 } 142 143 144 // 145 // Various method entries 146 // 147 148 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 149 // rmethod: Method* 150 // r19_sender_sp: sender sp 151 // esp: args 152 153 // These don't need a safepoint check because they aren't virtually 154 // callable. We won't enter these intrinsics from compiled code. 155 // If in the future we added an intrinsic which was virtually callable 156 // we'd have to worry about how to safepoint so that this code is used. 157 158 // mathematical functions inlined by compiler 159 // (interpreter must provide identical implementation 160 // in order to avoid monotonicity bugs when switching 161 // from interpreter to compiler in the middle of some 162 // computation) 163 // 164 // stack: 165 // [ arg ] <-- esp 166 // [ arg ] 167 // retaddr in lr 168 169 address entry_point = nullptr; 170 Register continuation = lr; 171 switch (kind) { 172 case Interpreter::java_lang_math_abs: 173 entry_point = __ pc(); 174 __ ldrd(v0, Address(esp)); 175 __ fabsd(v0, v0); 176 __ mov(sp, r19_sender_sp); // Restore caller's SP 177 break; 178 case Interpreter::java_lang_math_sqrt: 179 entry_point = __ pc(); 180 __ ldrd(v0, Address(esp)); 181 __ fsqrtd(v0, v0); 182 __ mov(sp, r19_sender_sp); 183 break; 184 case Interpreter::java_lang_math_sin : 185 case Interpreter::java_lang_math_cos : 186 case Interpreter::java_lang_math_tan : 187 case Interpreter::java_lang_math_log : 188 case Interpreter::java_lang_math_log10 : 189 case Interpreter::java_lang_math_exp : 190 entry_point = __ pc(); 191 __ ldrd(v0, Address(esp)); 192 __ mov(sp, r19_sender_sp); 193 __ mov(r23, lr); 194 continuation = r23; // The first free callee-saved register 195 generate_transcendental_entry(kind, 1); 196 break; 197 case Interpreter::java_lang_math_pow : 198 entry_point = __ pc(); 199 __ mov(r23, lr); 200 continuation = r23; 201 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 202 __ ldrd(v1, Address(esp)); 203 __ mov(sp, r19_sender_sp); 204 generate_transcendental_entry(kind, 2); 205 break; 206 case Interpreter::java_lang_math_fmaD : 207 if (UseFMA) { 208 entry_point = __ pc(); 209 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 210 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 211 __ ldrd(v2, Address(esp)); 212 __ fmaddd(v0, v0, v1, v2); 213 __ mov(sp, r19_sender_sp); // Restore caller's SP 214 } 215 break; 216 case Interpreter::java_lang_math_fmaF : 217 if (UseFMA) { 218 entry_point = __ pc(); 219 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 220 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 221 __ ldrs(v2, Address(esp)); 222 __ fmadds(v0, v0, v1, v2); 223 __ mov(sp, r19_sender_sp); // Restore caller's SP 224 } 225 break; 226 default: 227 ; 228 } 229 if (entry_point) { 230 __ br(continuation); 231 } 232 233 return entry_point; 234 } 235 236 // double trigonometrics and transcendentals 237 // static jdouble dsin(jdouble x); 238 // static jdouble dcos(jdouble x); 239 // static jdouble dtan(jdouble x); 240 // static jdouble dlog(jdouble x); 241 // static jdouble dlog10(jdouble x); 242 // static jdouble dexp(jdouble x); 243 // static jdouble dpow(jdouble x, jdouble y); 244 245 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 246 address fn; 247 switch (kind) { 248 case Interpreter::java_lang_math_sin : 249 if (StubRoutines::dsin() == nullptr) { 250 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 251 } else { 252 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 253 } 254 break; 255 case Interpreter::java_lang_math_cos : 256 if (StubRoutines::dcos() == nullptr) { 257 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 258 } else { 259 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 260 } 261 break; 262 case Interpreter::java_lang_math_tan : 263 if (StubRoutines::dtan() == nullptr) { 264 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 265 } else { 266 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 267 } 268 break; 269 case Interpreter::java_lang_math_log : 270 if (StubRoutines::dlog() == nullptr) { 271 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 272 } else { 273 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 274 } 275 break; 276 case Interpreter::java_lang_math_log10 : 277 if (StubRoutines::dlog10() == nullptr) { 278 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 279 } else { 280 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 281 } 282 break; 283 case Interpreter::java_lang_math_exp : 284 if (StubRoutines::dexp() == nullptr) { 285 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 286 } else { 287 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 288 } 289 break; 290 case Interpreter::java_lang_math_pow : 291 if (StubRoutines::dpow() == nullptr) { 292 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 293 } else { 294 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 295 } 296 break; 297 default: 298 ShouldNotReachHere(); 299 fn = nullptr; // unreachable 300 } 301 __ mov(rscratch1, fn); 302 __ blr(rscratch1); 303 } 304 305 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 306 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 307 // r19_sender_sp: sender sp 308 // stack: 309 // [ arg ] <-- esp 310 // [ arg ] 311 // retaddr in lr 312 // result in v0 313 314 address entry_point = __ pc(); 315 __ ldrw(c_rarg0, Address(esp)); 316 __ flt16_to_flt(v0, c_rarg0, v1); 317 __ mov(sp, r19_sender_sp); // Restore caller's SP 318 __ br(lr); 319 return entry_point; 320 } 321 322 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 323 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 324 // r19_sender_sp: sender sp 325 // stack: 326 // [ arg ] <-- esp 327 // [ arg ] 328 // retaddr in lr 329 // result in c_rarg0 330 331 address entry_point = __ pc(); 332 __ ldrs(v0, Address(esp)); 333 __ flt_to_flt16(c_rarg0, v0, v1); 334 __ mov(sp, r19_sender_sp); // Restore caller's SP 335 __ br(lr); 336 return entry_point; 337 } 338 339 // Abstract method entry 340 // Attempt to execute abstract method. Throw exception 341 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 342 // rmethod: Method* 343 // r19_sender_sp: sender SP 344 345 address entry_point = __ pc(); 346 347 // abstract method entry 348 349 // pop return address, reset last_sp to null 350 __ empty_expression_stack(); 351 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 352 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 353 354 // throw exception 355 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 356 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 357 rmethod); 358 // the call_VM checks for exception, so we should never return here. 359 __ should_not_reach_here(); 360 361 return entry_point; 362 } 363 364 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 365 address entry = __ pc(); 366 367 #ifdef ASSERT 368 { 369 Label L; 370 __ ldr(rscratch1, Address(rfp, 371 frame::interpreter_frame_monitor_block_top_offset * 372 wordSize)); 373 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 374 __ mov(rscratch2, sp); 375 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 376 // grows negative) 377 __ br(Assembler::HS, L); // check if frame is complete 378 __ stop ("interpreter frame not set up"); 379 __ bind(L); 380 } 381 #endif // ASSERT 382 // Restore bcp under the assumption that the current frame is still 383 // interpreted 384 __ restore_bcp(); 385 386 // expression stack must be empty before entering the VM if an 387 // exception happened 388 __ empty_expression_stack(); 389 // throw exception 390 __ call_VM(noreg, 391 CAST_FROM_FN_PTR(address, 392 InterpreterRuntime::throw_StackOverflowError)); 393 return entry; 394 } 395 396 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 397 address entry = __ pc(); 398 // expression stack must be empty before entering the VM if an 399 // exception happened 400 __ empty_expression_stack(); 401 // setup parameters 402 403 // ??? convention: expect aberrant index in register r1 404 __ movw(c_rarg2, r1); 405 // ??? convention: expect array in register r3 406 __ mov(c_rarg1, r3); 407 __ call_VM(noreg, 408 CAST_FROM_FN_PTR(address, 409 InterpreterRuntime:: 410 throw_ArrayIndexOutOfBoundsException), 411 c_rarg1, c_rarg2); 412 return entry; 413 } 414 415 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 416 address entry = __ pc(); 417 418 // object is at TOS 419 __ pop(c_rarg1); 420 421 // expression stack must be empty before entering the VM if an 422 // exception happened 423 __ empty_expression_stack(); 424 425 __ call_VM(noreg, 426 CAST_FROM_FN_PTR(address, 427 InterpreterRuntime:: 428 throw_ClassCastException), 429 c_rarg1); 430 return entry; 431 } 432 433 address TemplateInterpreterGenerator::generate_exception_handler_common( 434 const char* name, const char* message, bool pass_oop) { 435 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 436 address entry = __ pc(); 437 if (pass_oop) { 438 // object is at TOS 439 __ pop(c_rarg2); 440 } 441 // expression stack must be empty before entering the VM if an 442 // exception happened 443 __ empty_expression_stack(); 444 // setup parameters 445 __ lea(c_rarg1, Address((address)name)); 446 if (pass_oop) { 447 __ call_VM(r0, CAST_FROM_FN_PTR(address, 448 InterpreterRuntime:: 449 create_klass_exception), 450 c_rarg1, c_rarg2); 451 } else { 452 // kind of lame ExternalAddress can't take null because 453 // external_word_Relocation will assert. 454 if (message != nullptr) { 455 __ lea(c_rarg2, Address((address)message)); 456 } else { 457 __ mov(c_rarg2, NULL_WORD); 458 } 459 __ call_VM(r0, 460 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 461 c_rarg1, c_rarg2); 462 } 463 // throw exception 464 __ b(address(Interpreter::throw_exception_entry())); 465 return entry; 466 } 467 468 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 469 address entry = __ pc(); 470 471 // Restore stack bottom in case i2c adjusted stack 472 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 473 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 474 // and null it as marker that esp is now tos until next java call 475 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 476 __ restore_bcp(); 477 __ restore_locals(); 478 __ restore_constant_pool_cache(); 479 __ get_method(rmethod); 480 481 if (state == atos) { 482 Register obj = r0; 483 Register mdp = r1; 484 Register tmp = r2; 485 __ profile_return_type(mdp, obj, tmp); 486 } 487 488 const Register cache = r1; 489 const Register index = r2; 490 491 if (index_size == sizeof(u4)) { 492 __ load_resolved_indy_entry(cache, index); 493 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 494 __ add(esp, esp, cache, Assembler::LSL, 3); 495 } else { 496 // Pop N words from the stack 497 assert(index_size == sizeof(u2), "Can only be u2"); 498 __ load_method_entry(cache, index); 499 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 500 __ add(esp, esp, cache, Assembler::LSL, 3); 501 } 502 503 // Restore machine SP 504 __ restore_sp_after_call(); 505 506 __ check_and_handle_popframe(rthread); 507 __ check_and_handle_earlyret(rthread); 508 509 __ get_dispatch(); 510 __ dispatch_next(state, step); 511 512 return entry; 513 } 514 515 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 516 int step, 517 address continuation) { 518 address entry = __ pc(); 519 __ restore_bcp(); 520 __ restore_locals(); 521 __ restore_constant_pool_cache(); 522 __ get_method(rmethod); 523 __ get_dispatch(); 524 525 __ restore_sp_after_call(); // Restore SP to extended SP 526 527 // Restore expression stack pointer 528 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 529 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 530 // null last_sp until next java call 531 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 532 533 #if INCLUDE_JVMCI 534 // Check if we need to take lock at entry of synchronized method. This can 535 // only occur on method entry so emit it only for vtos with step 0. 536 if (EnableJVMCI && state == vtos && step == 0) { 537 Label L; 538 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 539 __ cbz(rscratch1, L); 540 // Clear flag. 541 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 542 // Take lock. 543 lock_method(); 544 __ bind(L); 545 } else { 546 #ifdef ASSERT 547 if (EnableJVMCI) { 548 Label L; 549 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 550 __ cbz(rscratch1, L); 551 __ stop("unexpected pending monitor in deopt entry"); 552 __ bind(L); 553 } 554 #endif 555 } 556 #endif 557 // handle exceptions 558 { 559 Label L; 560 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 561 __ cbz(rscratch1, L); 562 __ call_VM(noreg, 563 CAST_FROM_FN_PTR(address, 564 InterpreterRuntime::throw_pending_exception)); 565 __ should_not_reach_here(); 566 __ bind(L); 567 } 568 569 if (continuation == nullptr) { 570 __ dispatch_next(state, step); 571 } else { 572 __ jump_to_entry(continuation); 573 } 574 return entry; 575 } 576 577 address TemplateInterpreterGenerator::generate_result_handler_for( 578 BasicType type) { 579 address entry = __ pc(); 580 switch (type) { 581 case T_BOOLEAN: __ c2bool(r0); break; 582 case T_CHAR : __ uxth(r0, r0); break; 583 case T_BYTE : __ sxtb(r0, r0); break; 584 case T_SHORT : __ sxth(r0, r0); break; 585 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 586 case T_LONG : /* nothing to do */ break; 587 case T_VOID : /* nothing to do */ break; 588 case T_FLOAT : /* nothing to do */ break; 589 case T_DOUBLE : /* nothing to do */ break; 590 case T_OBJECT : 591 // retrieve result from frame 592 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 593 // and verify it 594 __ verify_oop(r0); 595 break; 596 default : ShouldNotReachHere(); 597 } 598 __ ret(lr); // return from result handler 599 return entry; 600 } 601 602 address TemplateInterpreterGenerator::generate_safept_entry_for( 603 TosState state, 604 address runtime_entry) { 605 address entry = __ pc(); 606 __ push(state); 607 __ push_cont_fastpath(rthread); 608 __ call_VM(noreg, runtime_entry); 609 __ pop_cont_fastpath(rthread); 610 __ membar(Assembler::AnyAny); 611 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 612 return entry; 613 } 614 615 // Helpers for commoning out cases in the various type of method entries. 616 // 617 618 619 // increment invocation count & check for overflow 620 // 621 // Note: checking for negative value instead of overflow 622 // so we have a 'sticky' overflow test 623 // 624 // rmethod: method 625 // 626 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 627 Label done; 628 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 629 int increment = InvocationCounter::count_increment; 630 Label no_mdo; 631 if (ProfileInterpreter) { 632 // Are we profiling? 633 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 634 __ cbz(r0, no_mdo); 635 // Increment counter in the MDO 636 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 637 in_bytes(InvocationCounter::counter_offset())); 638 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 639 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 640 __ b(done); 641 } 642 __ bind(no_mdo); 643 // Increment counter in MethodCounters 644 const Address invocation_counter(rscratch2, 645 MethodCounters::invocation_counter_offset() + 646 InvocationCounter::counter_offset()); 647 __ get_method_counters(rmethod, rscratch2, done); 648 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 649 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 650 __ bind(done); 651 } 652 653 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 654 655 // Asm interpreter on entry 656 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 657 // Everything as it was on entry 658 659 // InterpreterRuntime::frequency_counter_overflow takes two 660 // arguments, the first (thread) is passed by call_VM, the second 661 // indicates if the counter overflow occurs at a backwards branch 662 // (null bcp). We pass zero for it. The call returns the address 663 // of the verified entry point for the method or null if the 664 // compilation did not complete (either went background or bailed 665 // out). 666 __ mov(c_rarg1, 0); 667 __ call_VM(noreg, 668 CAST_FROM_FN_PTR(address, 669 InterpreterRuntime::frequency_counter_overflow), 670 c_rarg1); 671 672 __ b(do_continue); 673 } 674 675 // See if we've got enough room on the stack for locals plus overhead 676 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 677 // without going through the signal handler, i.e., reserved and yellow zones 678 // will not be made usable. The shadow zone must suffice to handle the 679 // overflow. 680 // The expression stack grows down incrementally, so the normal guard 681 // page mechanism will work for that. 682 // 683 // NOTE: Since the additional locals are also always pushed (wasn't 684 // obvious in generate_method_entry) so the guard should work for them 685 // too. 686 // 687 // Args: 688 // r3: number of additional locals this frame needs (what we must check) 689 // rmethod: Method* 690 // 691 // Kills: 692 // r0 693 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 694 695 // monitor entry size: see picture of stack set 696 // (generate_method_entry) and frame_amd64.hpp 697 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 698 699 // total overhead size: entry_size + (saved rbp through expr stack 700 // bottom). be sure to change this if you add/subtract anything 701 // to/from the overhead area 702 const int overhead_size = 703 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 704 705 const size_t page_size = os::vm_page_size(); 706 707 Label after_frame_check; 708 709 // see if the frame is greater than one page in size. If so, 710 // then we need to verify there is enough stack space remaining 711 // for the additional locals. 712 // 713 // Note that we use SUBS rather than CMP here because the immediate 714 // field of this instruction may overflow. SUBS can cope with this 715 // because it is a macro that will expand to some number of MOV 716 // instructions and a register operation. 717 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 718 __ br(Assembler::LS, after_frame_check); 719 720 // compute rsp as if this were going to be the last frame on 721 // the stack before the red zone 722 723 // locals + overhead, in bytes 724 __ mov(r0, overhead_size); 725 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 726 727 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 728 __ ldr(rscratch1, stack_limit); 729 730 #ifdef ASSERT 731 Label limit_okay; 732 // Verify that thread stack limit is non-zero. 733 __ cbnz(rscratch1, limit_okay); 734 __ stop("stack overflow limit is zero"); 735 __ bind(limit_okay); 736 #endif 737 738 // Add stack limit to locals. 739 __ add(r0, r0, rscratch1); 740 741 // Check against the current stack bottom. 742 __ cmp(sp, r0); 743 __ br(Assembler::HI, after_frame_check); 744 745 // Remove the incoming args, peeling the machine SP back to where it 746 // was in the caller. This is not strictly necessary, but unless we 747 // do so the stack frame may have a garbage FP; this ensures a 748 // correct call stack that we can always unwind. The ANDR should be 749 // unnecessary because the sender SP in r19 is always aligned, but 750 // it doesn't hurt. 751 __ andr(sp, r19_sender_sp, -16); 752 753 // Note: the restored frame is not necessarily interpreted. 754 // Use the shared runtime version of the StackOverflowError. 755 assert(StubRoutines::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 756 __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry())); 757 758 // all done with frame size check 759 __ bind(after_frame_check); 760 } 761 762 // Allocate monitor and lock method (asm interpreter) 763 // 764 // Args: 765 // rmethod: Method* 766 // rlocals: locals 767 // 768 // Kills: 769 // r0 770 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 771 // rscratch1, rscratch2 (scratch regs) 772 void TemplateInterpreterGenerator::lock_method() { 773 // synchronize method 774 const Address access_flags(rmethod, Method::access_flags_offset()); 775 const Address monitor_block_top( 776 rfp, 777 frame::interpreter_frame_monitor_block_top_offset * wordSize); 778 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 779 780 #ifdef ASSERT 781 { 782 Label L; 783 __ ldrw(r0, access_flags); 784 __ tst(r0, JVM_ACC_SYNCHRONIZED); 785 __ br(Assembler::NE, L); 786 __ stop("method doesn't need synchronization"); 787 __ bind(L); 788 } 789 #endif // ASSERT 790 791 // get synchronization object 792 { 793 Label done; 794 __ ldrw(r0, access_flags); 795 __ tst(r0, JVM_ACC_STATIC); 796 // get receiver (assume this is frequent case) 797 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 798 __ br(Assembler::EQ, done); 799 __ load_mirror(r0, rmethod, r5, rscratch2); 800 801 #ifdef ASSERT 802 { 803 Label L; 804 __ cbnz(r0, L); 805 __ stop("synchronization object is null"); 806 __ bind(L); 807 } 808 #endif // ASSERT 809 810 __ bind(done); 811 } 812 813 // add space for monitor & lock 814 __ check_extended_sp(); 815 __ sub(sp, sp, entry_size); // add space for a monitor entry 816 __ sub(esp, esp, entry_size); 817 __ sub(rscratch1, sp, rfp); 818 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 819 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 820 __ sub(rscratch1, esp, rfp); 821 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 822 __ str(rscratch1, monitor_block_top); // set new monitor block top 823 824 // store object 825 __ str(r0, Address(esp, BasicObjectLock::obj_offset())); 826 __ mov(c_rarg1, esp); // object address 827 __ lock_object(c_rarg1); 828 } 829 830 // Generate a fixed interpreter frame. This is identical setup for 831 // interpreted methods and for native methods hence the shared code. 832 // 833 // Args: 834 // lr: return address 835 // rmethod: Method* 836 // rlocals: pointer to locals 837 // rcpool: cp cache 838 // stack_pointer: previous sp 839 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 840 // initialize fixed part of activation frame 841 if (native_call) { 842 __ sub(esp, sp, 14 * wordSize); 843 __ mov(rbcp, zr); 844 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 845 __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize))); 846 // add 2 zero-initialized slots for native calls 847 __ stp(zr, zr, Address(sp, 12 * wordSize)); 848 } else { 849 __ sub(esp, sp, 12 * wordSize); 850 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 851 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 852 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 853 __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize))); 854 } 855 856 if (ProfileInterpreter) { 857 Label method_data_continue; 858 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 859 __ cbz(rscratch1, method_data_continue); 860 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 861 __ bind(method_data_continue); 862 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 863 } else { 864 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 865 } 866 867 __ protect_return_address(); 868 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 869 __ lea(rfp, Address(sp, 10 * wordSize)); 870 871 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 872 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 873 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset())); 874 __ sub(rscratch1, rlocals, rfp); 875 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp(); 876 // Store relativized rlocals, see frame::interpreter_frame_locals(). 877 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize)); 878 879 // set sender sp 880 // leave last_sp as null 881 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 882 883 // Get mirror 884 __ load_mirror(r10, rmethod, r5, rscratch2); 885 if (! native_call) { 886 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 887 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 888 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 889 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 890 __ andr(rscratch1, rscratch1, -16); 891 __ sub(rscratch2, rscratch1, rfp); 892 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 893 // Store extended SP and mirror 894 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 895 // Move SP out of the way 896 __ mov(sp, rscratch1); 897 } else { 898 // Make sure there is room for the exception oop pushed in case method throws 899 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 900 __ sub(rscratch1, sp, 2 * wordSize); 901 __ sub(rscratch2, rscratch1, rfp); 902 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 903 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 904 __ mov(sp, rscratch1); 905 } 906 } 907 908 // End of helpers 909 910 // Various method entries 911 //------------------------------------------------------------------------------------------------------------------------ 912 // 913 // 914 915 // Method entry for java.lang.ref.Reference.get. 916 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 917 // Code: _aload_0, _getfield, _areturn 918 // parameter size = 1 919 // 920 // The code that gets generated by this routine is split into 2 parts: 921 // 1. The "intrinsified" code for G1 (or any SATB based GC), 922 // 2. The slow path - which is an expansion of the regular method entry. 923 // 924 // Notes:- 925 // * In the G1 code we do not check whether we need to block for 926 // a safepoint. If G1 is enabled then we must execute the specialized 927 // code for Reference.get (except when the Reference object is null) 928 // so that we can log the value in the referent field with an SATB 929 // update buffer. 930 // If the code for the getfield template is modified so that the 931 // G1 pre-barrier code is executed when the current method is 932 // Reference.get() then going through the normal method entry 933 // will be fine. 934 // * The G1 code can, however, check the receiver object (the instance 935 // of java.lang.Reference) and jump to the slow path if null. If the 936 // Reference object is null then we obviously cannot fetch the referent 937 // and so we don't need to call the G1 pre-barrier. Thus we can use the 938 // regular method entry code to generate the NPE. 939 // 940 // This code is based on generate_accessor_entry. 941 // 942 // rmethod: Method* 943 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 944 945 // LR is live. It must be saved around calls. 946 947 address entry = __ pc(); 948 949 const int referent_offset = java_lang_ref_Reference::referent_offset(); 950 951 Label slow_path; 952 const Register local_0 = c_rarg0; 953 // Check if local 0 != null 954 // If the receiver is null then it is OK to jump to the slow path. 955 __ ldr(local_0, Address(esp, 0)); 956 __ cbz(local_0, slow_path); 957 958 // Load the value of the referent field. 959 const Address field_address(local_0, referent_offset); 960 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 961 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 962 963 // areturn 964 __ andr(sp, r19_sender_sp, -16); // done with stack 965 __ ret(lr); 966 967 // generate a vanilla interpreter entry as the slow path 968 __ bind(slow_path); 969 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 970 return entry; 971 972 } 973 974 /** 975 * Method entry for static native methods: 976 * int java.util.zip.CRC32.update(int crc, int b) 977 */ 978 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 979 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 980 address entry = __ pc(); 981 982 // rmethod: Method* 983 // r19_sender_sp: senderSP must preserved for slow path 984 // esp: args 985 986 Label slow_path; 987 // If we need a safepoint check, generate full interpreter entry. 988 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 989 990 // We don't generate local frame and don't align stack because 991 // we call stub code and there is no safepoint on this path. 992 993 // Load parameters 994 const Register crc = c_rarg0; // crc 995 const Register val = c_rarg1; // source java byte value 996 const Register tbl = c_rarg2; // scratch 997 998 // Arguments are reversed on java expression stack 999 __ ldrw(val, Address(esp, 0)); // byte value 1000 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 1001 1002 uint64_t offset; 1003 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 1004 __ add(tbl, tbl, offset); 1005 1006 __ mvnw(crc, crc); // ~crc 1007 __ update_byte_crc32(crc, val, tbl); 1008 __ mvnw(crc, crc); // ~crc 1009 1010 // result in c_rarg0 1011 1012 __ andr(sp, r19_sender_sp, -16); 1013 __ ret(lr); 1014 1015 // generate a vanilla native entry as the slow path 1016 __ bind(slow_path); 1017 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1018 return entry; 1019 } 1020 1021 /** 1022 * Method entry for static native methods: 1023 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1024 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1025 */ 1026 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1027 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1028 address entry = __ pc(); 1029 1030 // rmethod,: Method* 1031 // r19_sender_sp: senderSP must preserved for slow path 1032 1033 Label slow_path; 1034 // If we need a safepoint check, generate full interpreter entry. 1035 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1036 1037 // We don't generate local frame and don't align stack because 1038 // we call stub code and there is no safepoint on this path. 1039 1040 // Load parameters 1041 const Register crc = c_rarg0; // crc 1042 const Register buf = c_rarg1; // source java byte array address 1043 const Register len = c_rarg2; // length 1044 const Register off = len; // offset (never overlaps with 'len') 1045 1046 // Arguments are reversed on java expression stack 1047 // Calculate address of start element 1048 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1049 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1050 __ ldrw(off, Address(esp, wordSize)); // offset 1051 __ add(buf, buf, off); // + offset 1052 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1053 } else { 1054 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1055 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1056 __ ldrw(off, Address(esp, wordSize)); // offset 1057 __ add(buf, buf, off); // + offset 1058 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1059 } 1060 // Can now load 'len' since we're finished with 'off' 1061 __ ldrw(len, Address(esp, 0x0)); // Length 1062 1063 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1064 1065 // We are frameless so we can just jump to the stub. 1066 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1067 1068 // generate a vanilla native entry as the slow path 1069 __ bind(slow_path); 1070 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1071 return entry; 1072 } 1073 1074 /** 1075 * Method entry for intrinsic-candidate (non-native) methods: 1076 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1077 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1078 * Unlike CRC32, CRC32C does not have any methods marked as native 1079 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1080 */ 1081 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1082 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1083 address entry = __ pc(); 1084 1085 // Prepare jump to stub using parameters from the stack 1086 const Register crc = c_rarg0; // initial crc 1087 const Register buf = c_rarg1; // source java byte array address 1088 const Register len = c_rarg2; // len argument to the kernel 1089 1090 const Register end = len; // index of last element to process 1091 const Register off = crc; // offset 1092 1093 __ ldrw(end, Address(esp)); // int end 1094 __ ldrw(off, Address(esp, wordSize)); // int offset 1095 __ sub(len, end, off); 1096 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1097 __ add(buf, buf, off); // + offset 1098 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1099 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1100 } else { 1101 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1102 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1103 } 1104 1105 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1106 1107 // Jump to the stub. 1108 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1109 1110 return entry; 1111 } 1112 1113 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1114 // See more discussion in stackOverflow.hpp. 1115 1116 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1117 const int page_size = (int)os::vm_page_size(); 1118 const int n_shadow_pages = shadow_zone_size / page_size; 1119 1120 #ifdef ASSERT 1121 Label L_good_limit; 1122 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1123 __ cbnz(rscratch1, L_good_limit); 1124 __ stop("shadow zone safe limit is not initialized"); 1125 __ bind(L_good_limit); 1126 1127 Label L_good_watermark; 1128 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1129 __ cbnz(rscratch1, L_good_watermark); 1130 __ stop("shadow zone growth watermark is not initialized"); 1131 __ bind(L_good_watermark); 1132 #endif 1133 1134 Label L_done; 1135 1136 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1137 __ cmp(sp, rscratch1); 1138 __ br(Assembler::HI, L_done); 1139 1140 for (int p = 1; p <= n_shadow_pages; p++) { 1141 __ sub(rscratch2, sp, p*page_size); 1142 __ str(zr, Address(rscratch2)); 1143 } 1144 1145 // Record the new watermark, but only if the update is above the safe limit. 1146 // Otherwise, the next time around the check above would pass the safe limit. 1147 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1148 __ cmp(sp, rscratch1); 1149 __ br(Assembler::LS, L_done); 1150 __ mov(rscratch1, sp); 1151 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1152 1153 __ bind(L_done); 1154 } 1155 1156 // Interpreter stub for calling a native method. (asm interpreter) 1157 // This sets up a somewhat different looking stack for calling the 1158 // native method than the typical interpreter frame setup. 1159 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1160 // determine code generation flags 1161 bool inc_counter = UseCompiler || CountCompiledCalls; 1162 1163 // r1: Method* 1164 // rscratch1: sender sp 1165 1166 address entry_point = __ pc(); 1167 1168 const Address constMethod (rmethod, Method::const_offset()); 1169 const Address access_flags (rmethod, Method::access_flags_offset()); 1170 const Address size_of_parameters(r2, ConstMethod:: 1171 size_of_parameters_offset()); 1172 1173 // get parameter size (always needed) 1174 __ ldr(r2, constMethod); 1175 __ load_unsigned_short(r2, size_of_parameters); 1176 1177 // Native calls don't need the stack size check since they have no 1178 // expression stack and the arguments are already on the stack and 1179 // we only add a handful of words to the stack. 1180 1181 // rmethod: Method* 1182 // r2: size of parameters 1183 // rscratch1: sender sp 1184 1185 // for natives the size of locals is zero 1186 1187 // compute beginning of parameters (rlocals) 1188 __ add(rlocals, esp, r2, ext::uxtx, 3); 1189 __ add(rlocals, rlocals, -wordSize); 1190 1191 // Pull SP back to minimum size: this avoids holes in the stack 1192 __ andr(sp, esp, -16); 1193 1194 // initialize fixed part of activation frame 1195 generate_fixed_frame(true); 1196 1197 // make sure method is native & not abstract 1198 #ifdef ASSERT 1199 __ ldrw(r0, access_flags); 1200 { 1201 Label L; 1202 __ tst(r0, JVM_ACC_NATIVE); 1203 __ br(Assembler::NE, L); 1204 __ stop("tried to execute non-native method as native"); 1205 __ bind(L); 1206 } 1207 { 1208 Label L; 1209 __ tst(r0, JVM_ACC_ABSTRACT); 1210 __ br(Assembler::EQ, L); 1211 __ stop("tried to execute abstract method in interpreter"); 1212 __ bind(L); 1213 } 1214 #endif 1215 1216 // Since at this point in the method invocation the exception 1217 // handler would try to exit the monitor of synchronized methods 1218 // which hasn't been entered yet, we set the thread local variable 1219 // _do_not_unlock_if_synchronized to true. The remove_activation 1220 // will check this flag. 1221 1222 const Address do_not_unlock_if_synchronized(rthread, 1223 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1224 __ mov(rscratch2, true); 1225 __ strb(rscratch2, do_not_unlock_if_synchronized); 1226 1227 // increment invocation count & check for overflow 1228 Label invocation_counter_overflow; 1229 if (inc_counter) { 1230 generate_counter_incr(&invocation_counter_overflow); 1231 } 1232 1233 Label continue_after_compile; 1234 __ bind(continue_after_compile); 1235 1236 bang_stack_shadow_pages(true); 1237 1238 // reset the _do_not_unlock_if_synchronized flag 1239 __ strb(zr, do_not_unlock_if_synchronized); 1240 1241 // check for synchronized methods 1242 // Must happen AFTER invocation_counter check and stack overflow check, 1243 // so method is not locked if overflows. 1244 if (synchronized) { 1245 lock_method(); 1246 } else { 1247 // no synchronization necessary 1248 #ifdef ASSERT 1249 { 1250 Label L; 1251 __ ldrw(r0, access_flags); 1252 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1253 __ br(Assembler::EQ, L); 1254 __ stop("method needs synchronization"); 1255 __ bind(L); 1256 } 1257 #endif 1258 } 1259 1260 // start execution 1261 #ifdef ASSERT 1262 { 1263 Label L; 1264 const Address monitor_block_top(rfp, 1265 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1266 __ ldr(rscratch1, monitor_block_top); 1267 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1268 __ cmp(esp, rscratch1); 1269 __ br(Assembler::EQ, L); 1270 __ stop("broken stack frame setup in interpreter 1"); 1271 __ bind(L); 1272 } 1273 #endif 1274 1275 // jvmti support 1276 __ notify_method_entry(); 1277 1278 // work registers 1279 const Register t = r17; 1280 const Register result_handler = r19; 1281 1282 // allocate space for parameters 1283 __ ldr(t, Address(rmethod, Method::const_offset())); 1284 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1285 1286 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1287 __ andr(sp, rscratch1, -16); 1288 __ mov(esp, rscratch1); 1289 1290 // get signature handler 1291 { 1292 Label L; 1293 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1294 __ cbnz(t, L); 1295 __ call_VM(noreg, 1296 CAST_FROM_FN_PTR(address, 1297 InterpreterRuntime::prepare_native_call), 1298 rmethod); 1299 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1300 __ bind(L); 1301 } 1302 1303 // call signature handler 1304 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1305 "adjust this code"); 1306 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1307 "adjust this code"); 1308 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1309 "adjust this code"); 1310 1311 // The generated handlers do not touch rmethod (the method). 1312 // However, large signatures cannot be cached and are generated 1313 // each time here. The slow-path generator can do a GC on return, 1314 // so we must reload it after the call. 1315 __ blr(t); 1316 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1317 1318 1319 // result handler is in r0 1320 // set result handler 1321 __ mov(result_handler, r0); 1322 // pass mirror handle if static call 1323 { 1324 Label L; 1325 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1326 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1327 // get mirror 1328 __ load_mirror(t, rmethod, r10, rscratch2); 1329 // copy mirror into activation frame 1330 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1331 // pass handle to mirror 1332 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1333 __ bind(L); 1334 } 1335 1336 // get native function entry point in r10 1337 { 1338 Label L; 1339 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1340 address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1341 __ mov(rscratch2, unsatisfied); 1342 __ ldr(rscratch2, rscratch2); 1343 __ cmp(r10, rscratch2); 1344 __ br(Assembler::NE, L); 1345 __ call_VM(noreg, 1346 CAST_FROM_FN_PTR(address, 1347 InterpreterRuntime::prepare_native_call), 1348 rmethod); 1349 __ get_method(rmethod); 1350 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1351 __ bind(L); 1352 } 1353 1354 // pass JNIEnv 1355 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1356 1357 // Set the last Java PC in the frame anchor to be the return address from 1358 // the call to the native method: this will allow the debugger to 1359 // generate an accurate stack trace. 1360 Label native_return; 1361 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1362 1363 // change thread state 1364 #ifdef ASSERT 1365 { 1366 Label L; 1367 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1368 __ cmp(t, (u1)_thread_in_Java); 1369 __ br(Assembler::EQ, L); 1370 __ stop("Wrong thread state in native stub"); 1371 __ bind(L); 1372 } 1373 #endif 1374 1375 // Change state to native 1376 __ mov(rscratch1, _thread_in_native); 1377 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1378 __ stlrw(rscratch1, rscratch2); 1379 1380 // Call the native method. 1381 __ blr(r10); 1382 __ bind(native_return); 1383 __ get_method(rmethod); 1384 // result potentially in r0 or v0 1385 1386 // Restore cpu control state after JNI call 1387 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1388 1389 // make room for the pushes we're about to do 1390 __ sub(rscratch1, esp, 4 * wordSize); 1391 __ andr(sp, rscratch1, -16); 1392 1393 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1394 // in order to extract the result of a method call. If the order of these 1395 // pushes change or anything else is added to the stack then the code in 1396 // interpreter_frame_result must also change. 1397 __ push(dtos); 1398 __ push(ltos); 1399 1400 __ verify_sve_vector_length(); 1401 1402 // change thread state 1403 __ mov(rscratch1, _thread_in_native_trans); 1404 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1405 __ stlrw(rscratch1, rscratch2); 1406 1407 // Force this write out before the read below 1408 if (!UseSystemMemoryBarrier) { 1409 __ dmb(Assembler::ISH); 1410 } 1411 1412 // check for safepoint operation in progress and/or pending suspend requests 1413 { 1414 Label L, Continue; 1415 1416 // We need an acquire here to ensure that any subsequent load of the 1417 // global SafepointSynchronize::_state flag is ordered after this load 1418 // of the thread-local polling word. We don't want this poll to 1419 // return false (i.e. not safepointing) and a later poll of the global 1420 // SafepointSynchronize::_state spuriously to return true. 1421 // 1422 // This is to avoid a race when we're in a native->Java transition 1423 // racing the code which wakes up from a safepoint. 1424 __ safepoint_poll(L, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1425 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1426 __ cbz(rscratch2, Continue); 1427 __ bind(L); 1428 1429 // Don't use call_VM as it will see a possible pending exception 1430 // and forward it and never return here preventing us from 1431 // clearing _last_native_pc down below. So we do a runtime call by 1432 // hand. 1433 // 1434 __ mov(c_rarg0, rthread); 1435 __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1436 __ blr(rscratch2); 1437 __ get_method(rmethod); 1438 __ reinit_heapbase(); 1439 __ bind(Continue); 1440 } 1441 1442 // change thread state 1443 __ mov(rscratch1, _thread_in_Java); 1444 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1445 __ stlrw(rscratch1, rscratch2); 1446 1447 // reset_last_Java_frame 1448 __ reset_last_Java_frame(true); 1449 1450 if (CheckJNICalls) { 1451 // clear_pending_jni_exception_check 1452 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1453 } 1454 1455 // reset handle block 1456 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1457 __ str(zr, Address(t, JNIHandleBlock::top_offset())); 1458 1459 // If result is an oop unbox and store it in frame where gc will see it 1460 // and result handler will pick it up 1461 1462 { 1463 Label no_oop; 1464 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1465 __ cmp(t, result_handler); 1466 __ br(Assembler::NE, no_oop); 1467 // Unbox oop result, e.g. JNIHandles::resolve result. 1468 __ pop(ltos); 1469 __ resolve_jobject(r0, t, rscratch2); 1470 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1471 // keep stack depth as expected by pushing oop which will eventually be discarded 1472 __ push(ltos); 1473 __ bind(no_oop); 1474 } 1475 1476 { 1477 Label no_reguard; 1478 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1479 __ ldrw(rscratch1, Address(rscratch1)); 1480 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1481 __ br(Assembler::NE, no_reguard); 1482 1483 __ push_call_clobbered_registers(); 1484 __ mov(c_rarg0, rthread); 1485 __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1486 __ blr(rscratch2); 1487 __ pop_call_clobbered_registers(); 1488 1489 __ bind(no_reguard); 1490 } 1491 1492 // The method register is junk from after the thread_in_native transition 1493 // until here. Also can't call_VM until the bcp has been 1494 // restored. Need bcp for throwing exception below so get it now. 1495 __ get_method(rmethod); 1496 1497 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1498 // rbcp == code_base() 1499 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1500 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1501 // handle exceptions (exception handling will handle unlocking!) 1502 { 1503 Label L; 1504 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1505 __ cbz(rscratch1, L); 1506 // Note: At some point we may want to unify this with the code 1507 // used in call_VM_base(); i.e., we should use the 1508 // StubRoutines::forward_exception code. For now this doesn't work 1509 // here because the rsp is not correctly set at this point. 1510 __ MacroAssembler::call_VM(noreg, 1511 CAST_FROM_FN_PTR(address, 1512 InterpreterRuntime::throw_pending_exception)); 1513 __ should_not_reach_here(); 1514 __ bind(L); 1515 } 1516 1517 // do unlocking if necessary 1518 { 1519 Label L; 1520 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1521 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1522 // the code below should be shared with interpreter macro 1523 // assembler implementation 1524 { 1525 Label unlock; 1526 // BasicObjectLock will be first in list, since this is a 1527 // synchronized method. However, need to check that the object 1528 // has not been unlocked by an explicit monitorexit bytecode. 1529 1530 // monitor expect in c_rarg1 for slow unlock path 1531 __ lea (c_rarg1, Address(rfp, // address of first monitor 1532 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1533 wordSize - sizeof(BasicObjectLock)))); 1534 1535 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset())); 1536 __ cbnz(t, unlock); 1537 1538 // Entry already unlocked, need to throw exception 1539 __ MacroAssembler::call_VM(noreg, 1540 CAST_FROM_FN_PTR(address, 1541 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1542 __ should_not_reach_here(); 1543 1544 __ bind(unlock); 1545 __ unlock_object(c_rarg1); 1546 } 1547 __ bind(L); 1548 } 1549 1550 // jvmti support 1551 // Note: This must happen _after_ handling/throwing any exceptions since 1552 // the exception handler code notifies the runtime of method exits 1553 // too. If this happens before, method entry/exit notifications are 1554 // not properly paired (was bug - gri 11/22/99). 1555 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1556 1557 // restore potential result in r0:d0, call result handler to 1558 // restore potential result in ST0 & handle result 1559 1560 __ pop(ltos); 1561 __ pop(dtos); 1562 1563 __ blr(result_handler); 1564 1565 // remove activation 1566 __ ldr(esp, Address(rfp, 1567 frame::interpreter_frame_sender_sp_offset * 1568 wordSize)); // get sender sp 1569 // remove frame anchor 1570 __ leave(); 1571 1572 // restore sender sp 1573 __ mov(sp, esp); 1574 1575 __ ret(lr); 1576 1577 if (inc_counter) { 1578 // Handle overflow of counter and compile method 1579 __ bind(invocation_counter_overflow); 1580 generate_counter_overflow(continue_after_compile); 1581 } 1582 1583 return entry_point; 1584 } 1585 1586 // 1587 // Generic interpreted method entry to (asm) interpreter 1588 // 1589 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1590 // determine code generation flags 1591 bool inc_counter = UseCompiler || CountCompiledCalls; 1592 1593 // rscratch1: sender sp 1594 address entry_point = __ pc(); 1595 1596 const Address constMethod(rmethod, Method::const_offset()); 1597 const Address access_flags(rmethod, Method::access_flags_offset()); 1598 const Address size_of_parameters(r3, 1599 ConstMethod::size_of_parameters_offset()); 1600 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1601 1602 // get parameter size (always needed) 1603 // need to load the const method first 1604 __ ldr(r3, constMethod); 1605 __ load_unsigned_short(r2, size_of_parameters); 1606 1607 // r2: size of parameters 1608 1609 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1610 __ sub(r3, r3, r2); // r3 = no. of additional locals 1611 1612 // see if we've got enough room on the stack for locals plus overhead. 1613 generate_stack_overflow_check(); 1614 1615 // compute beginning of parameters (rlocals) 1616 __ add(rlocals, esp, r2, ext::uxtx, 3); 1617 __ sub(rlocals, rlocals, wordSize); 1618 1619 __ mov(rscratch1, esp); 1620 1621 // r3 - # of additional locals 1622 // allocate space for locals 1623 // explicitly initialize locals 1624 // Initializing memory allocated for locals in the same direction as 1625 // the stack grows to ensure page initialization order according 1626 // to windows-aarch64 stack page growth requirement (see 1627 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1628 { 1629 Label exit, loop; 1630 __ ands(zr, r3, r3); 1631 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1632 __ bind(loop); 1633 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1634 __ sub(r3, r3, 1); // until everything initialized 1635 __ cbnz(r3, loop); 1636 __ bind(exit); 1637 } 1638 1639 // Padding between locals and fixed part of activation frame to ensure 1640 // SP is always 16-byte aligned. 1641 __ andr(sp, rscratch1, -16); 1642 1643 // And the base dispatch table 1644 __ get_dispatch(); 1645 1646 // initialize fixed part of activation frame 1647 generate_fixed_frame(false); 1648 1649 // make sure method is not native & not abstract 1650 #ifdef ASSERT 1651 __ ldrw(r0, access_flags); 1652 { 1653 Label L; 1654 __ tst(r0, JVM_ACC_NATIVE); 1655 __ br(Assembler::EQ, L); 1656 __ stop("tried to execute native method as non-native"); 1657 __ bind(L); 1658 } 1659 { 1660 Label L; 1661 __ tst(r0, JVM_ACC_ABSTRACT); 1662 __ br(Assembler::EQ, L); 1663 __ stop("tried to execute abstract method in interpreter"); 1664 __ bind(L); 1665 } 1666 #endif 1667 1668 // Since at this point in the method invocation the exception 1669 // handler would try to exit the monitor of synchronized methods 1670 // which hasn't been entered yet, we set the thread local variable 1671 // _do_not_unlock_if_synchronized to true. The remove_activation 1672 // will check this flag. 1673 1674 const Address do_not_unlock_if_synchronized(rthread, 1675 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1676 __ mov(rscratch2, true); 1677 __ strb(rscratch2, do_not_unlock_if_synchronized); 1678 1679 Register mdp = r3; 1680 __ profile_parameters_type(mdp, r1, r2); 1681 1682 // increment invocation count & check for overflow 1683 Label invocation_counter_overflow; 1684 if (inc_counter) { 1685 generate_counter_incr(&invocation_counter_overflow); 1686 } 1687 1688 Label continue_after_compile; 1689 __ bind(continue_after_compile); 1690 1691 bang_stack_shadow_pages(false); 1692 1693 // reset the _do_not_unlock_if_synchronized flag 1694 __ strb(zr, do_not_unlock_if_synchronized); 1695 1696 // check for synchronized methods 1697 // Must happen AFTER invocation_counter check and stack overflow check, 1698 // so method is not locked if overflows. 1699 if (synchronized) { 1700 // Allocate monitor and lock method 1701 lock_method(); 1702 } else { 1703 // no synchronization necessary 1704 #ifdef ASSERT 1705 { 1706 Label L; 1707 __ ldrw(r0, access_flags); 1708 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1709 __ br(Assembler::EQ, L); 1710 __ stop("method needs synchronization"); 1711 __ bind(L); 1712 } 1713 #endif 1714 } 1715 1716 // start execution 1717 #ifdef ASSERT 1718 { 1719 Label L; 1720 const Address monitor_block_top (rfp, 1721 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1722 __ ldr(rscratch1, monitor_block_top); 1723 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1724 __ cmp(esp, rscratch1); 1725 __ br(Assembler::EQ, L); 1726 __ stop("broken stack frame setup in interpreter 2"); 1727 __ bind(L); 1728 } 1729 #endif 1730 1731 // jvmti support 1732 __ notify_method_entry(); 1733 1734 __ dispatch_next(vtos); 1735 1736 // invocation counter overflow 1737 if (inc_counter) { 1738 // Handle overflow of counter and compile method 1739 __ bind(invocation_counter_overflow); 1740 generate_counter_overflow(continue_after_compile); 1741 } 1742 1743 return entry_point; 1744 } 1745 1746 // Method entry for java.lang.Thread.currentThread 1747 address TemplateInterpreterGenerator::generate_currentThread() { 1748 address entry_point = __ pc(); 1749 1750 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1751 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1752 __ ret(lr); 1753 1754 return entry_point; 1755 } 1756 1757 // Not supported 1758 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 1759 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 1760 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 1761 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 1762 1763 //----------------------------------------------------------------------------- 1764 // Exceptions 1765 1766 void TemplateInterpreterGenerator::generate_throw_exception() { 1767 // Entry point in previous activation (i.e., if the caller was 1768 // interpreted) 1769 Interpreter::_rethrow_exception_entry = __ pc(); 1770 // Restore sp to interpreter_frame_last_sp even though we are going 1771 // to empty the expression stack for the exception processing. 1772 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1773 // r0: exception 1774 // r3: return address/pc that threw exception 1775 __ restore_bcp(); // rbcp points to call/send 1776 __ restore_locals(); 1777 __ restore_constant_pool_cache(); 1778 __ reinit_heapbase(); // restore rheapbase as heapbase. 1779 __ get_dispatch(); 1780 1781 // Entry point for exceptions thrown within interpreter code 1782 Interpreter::_throw_exception_entry = __ pc(); 1783 // If we came here via a NullPointerException on the receiver of a 1784 // method, rmethod may be corrupt. 1785 __ get_method(rmethod); 1786 // expression stack is undefined here 1787 // r0: exception 1788 // rbcp: exception bcp 1789 __ verify_oop(r0); 1790 __ mov(c_rarg1, r0); 1791 1792 // expression stack must be empty before entering the VM in case of 1793 // an exception 1794 __ empty_expression_stack(); 1795 // find exception handler address and preserve exception oop 1796 __ call_VM(r3, 1797 CAST_FROM_FN_PTR(address, 1798 InterpreterRuntime::exception_handler_for_exception), 1799 c_rarg1); 1800 1801 // Restore machine SP 1802 __ restore_sp_after_call(); 1803 1804 // r0: exception handler entry point 1805 // r3: preserved exception oop 1806 // rbcp: bcp for exception handler 1807 __ push_ptr(r3); // push exception which is now the only value on the stack 1808 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1809 1810 // If the exception is not handled in the current frame the frame is 1811 // removed and the exception is rethrown (i.e. exception 1812 // continuation is _rethrow_exception). 1813 // 1814 // Note: At this point the bci is still the bxi for the instruction 1815 // which caused the exception and the expression stack is 1816 // empty. Thus, for any VM calls at this point, GC will find a legal 1817 // oop map (with empty expression stack). 1818 1819 // 1820 // JVMTI PopFrame support 1821 // 1822 1823 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1824 __ empty_expression_stack(); 1825 // Set the popframe_processing bit in pending_popframe_condition 1826 // indicating that we are currently handling popframe, so that 1827 // call_VMs that may happen later do not trigger new popframe 1828 // handling cycles. 1829 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1830 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1831 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1832 1833 { 1834 // Check to see whether we are returning to a deoptimized frame. 1835 // (The PopFrame call ensures that the caller of the popped frame is 1836 // either interpreted or compiled and deoptimizes it if compiled.) 1837 // In this case, we can't call dispatch_next() after the frame is 1838 // popped, but instead must save the incoming arguments and restore 1839 // them after deoptimization has occurred. 1840 // 1841 // Note that we don't compare the return PC against the 1842 // deoptimization blob's unpack entry because of the presence of 1843 // adapter frames in C2. 1844 Label caller_not_deoptimized; 1845 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1846 // This is a return address, so requires authenticating for PAC. 1847 __ authenticate_return_address(c_rarg1); 1848 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1849 InterpreterRuntime::interpreter_contains), c_rarg1); 1850 __ cbnz(r0, caller_not_deoptimized); 1851 1852 // Compute size of arguments for saving when returning to 1853 // deoptimized caller 1854 __ get_method(r0); 1855 __ ldr(r0, Address(r0, Method::const_offset())); 1856 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1857 size_of_parameters_offset()))); 1858 __ lsl(r0, r0, Interpreter::logStackElementSize); 1859 __ restore_locals(); // XXX do we need this? 1860 __ sub(rlocals, rlocals, r0); 1861 __ add(rlocals, rlocals, wordSize); 1862 // Save these arguments 1863 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1864 Deoptimization:: 1865 popframe_preserve_args), 1866 rthread, r0, rlocals); 1867 1868 __ remove_activation(vtos, 1869 /* throw_monitor_exception */ false, 1870 /* install_monitor_exception */ false, 1871 /* notify_jvmdi */ false); 1872 1873 // Inform deoptimization that it is responsible for restoring 1874 // these arguments 1875 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1876 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1877 1878 // Continue in deoptimization handler 1879 __ ret(lr); 1880 1881 __ bind(caller_not_deoptimized); 1882 } 1883 1884 __ remove_activation(vtos, 1885 /* throw_monitor_exception */ false, 1886 /* install_monitor_exception */ false, 1887 /* notify_jvmdi */ false); 1888 1889 // Restore the last_sp and null it out 1890 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1891 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1892 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1893 1894 __ restore_bcp(); 1895 __ restore_locals(); 1896 __ restore_constant_pool_cache(); 1897 __ get_method(rmethod); 1898 __ get_dispatch(); 1899 1900 // The method data pointer was incremented already during 1901 // call profiling. We have to restore the mdp for the current bcp. 1902 if (ProfileInterpreter) { 1903 __ set_method_data_pointer_for_bcp(); 1904 } 1905 1906 // Clear the popframe condition flag 1907 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1908 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1909 1910 #if INCLUDE_JVMTI 1911 { 1912 Label L_done; 1913 1914 __ ldrb(rscratch1, Address(rbcp, 0)); 1915 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1916 __ br(Assembler::NE, L_done); 1917 1918 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1919 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1920 1921 __ ldr(c_rarg0, Address(rlocals, 0)); 1922 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1923 1924 __ cbz(r0, L_done); 1925 1926 __ str(r0, Address(esp, 0)); 1927 __ bind(L_done); 1928 } 1929 #endif // INCLUDE_JVMTI 1930 1931 // Restore machine SP 1932 __ restore_sp_after_call(); 1933 1934 __ dispatch_next(vtos); 1935 // end of PopFrame support 1936 1937 Interpreter::_remove_activation_entry = __ pc(); 1938 1939 // preserve exception over this code sequence 1940 __ pop_ptr(r0); 1941 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1942 // remove the activation (without doing throws on illegalMonitorExceptions) 1943 __ remove_activation(vtos, false, true, false); 1944 // restore exception 1945 __ get_vm_result(r0, rthread); 1946 1947 // In between activations - previous activation type unknown yet 1948 // compute continuation point - the continuation point expects the 1949 // following registers set up: 1950 // 1951 // r0: exception 1952 // lr: return address/pc that threw exception 1953 // esp: expression stack of caller 1954 // rfp: fp of caller 1955 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 1956 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1957 SharedRuntime::exception_handler_for_return_address), 1958 rthread, lr); 1959 __ mov(r1, r0); // save exception handler 1960 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 1961 // We might be returning to a deopt handler that expects r3 to 1962 // contain the exception pc 1963 __ mov(r3, lr); 1964 // Note that an "issuing PC" is actually the next PC after the call 1965 __ br(r1); // jump to exception 1966 // handler of caller 1967 } 1968 1969 1970 // 1971 // JVMTI ForceEarlyReturn support 1972 // 1973 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1974 address entry = __ pc(); 1975 1976 __ restore_bcp(); 1977 __ restore_locals(); 1978 __ empty_expression_stack(); 1979 __ load_earlyret_value(state); 1980 1981 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 1982 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 1983 1984 // Clear the earlyret state 1985 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 1986 __ str(zr, cond_addr); 1987 1988 __ remove_activation(state, 1989 false, /* throw_monitor_exception */ 1990 false, /* install_monitor_exception */ 1991 true); /* notify_jvmdi */ 1992 __ ret(lr); 1993 1994 return entry; 1995 } // end of ForceEarlyReturn support 1996 1997 1998 1999 //----------------------------------------------------------------------------- 2000 // Helper for vtos entry point generation 2001 2002 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2003 address& bep, 2004 address& cep, 2005 address& sep, 2006 address& aep, 2007 address& iep, 2008 address& lep, 2009 address& fep, 2010 address& dep, 2011 address& vep) { 2012 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2013 Label L; 2014 aep = __ pc(); __ push_ptr(); __ b(L); 2015 fep = __ pc(); __ push_f(); __ b(L); 2016 dep = __ pc(); __ push_d(); __ b(L); 2017 lep = __ pc(); __ push_l(); __ b(L); 2018 bep = cep = sep = 2019 iep = __ pc(); __ push_i(); 2020 vep = __ pc(); 2021 __ bind(L); 2022 generate_and_dispatch(t); 2023 } 2024 2025 //----------------------------------------------------------------------------- 2026 2027 // Non-product code 2028 #ifndef PRODUCT 2029 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2030 address entry = __ pc(); 2031 2032 __ protect_return_address(); 2033 __ push(lr); 2034 __ push(state); 2035 __ push(RegSet::range(r0, r15), sp); 2036 __ mov(c_rarg2, r0); // Pass itos 2037 __ call_VM(noreg, 2038 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2039 c_rarg1, c_rarg2, c_rarg3); 2040 __ pop(RegSet::range(r0, r15), sp); 2041 __ pop(state); 2042 __ pop(lr); 2043 __ authenticate_return_address(); 2044 __ ret(lr); // return from result handler 2045 2046 return entry; 2047 } 2048 2049 void TemplateInterpreterGenerator::count_bytecode() { 2050 __ mov(r10, (address) &BytecodeCounter::_counter_value); 2051 __ atomic_addw(noreg, 1, r10); 2052 } 2053 2054 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2055 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 2056 __ atomic_addw(noreg, 1, r10); 2057 } 2058 2059 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2060 // Calculate new index for counter: 2061 // _index = (_index >> log2_number_of_codes) | 2062 // (bytecode << log2_number_of_codes); 2063 Register index_addr = rscratch1; 2064 Register index = rscratch2; 2065 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2066 __ ldrw(index, index_addr); 2067 __ mov(r10, 2068 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2069 __ orrw(index, r10, index, Assembler::LSR, 2070 BytecodePairHistogram::log2_number_of_codes); 2071 __ strw(index, index_addr); 2072 2073 // Bump bucket contents: 2074 // _counters[_index] ++; 2075 Register counter_addr = rscratch1; 2076 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2077 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2078 __ atomic_addw(noreg, 1, counter_addr); 2079 } 2080 2081 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2082 // Call a little run-time stub to avoid blow-up for each bytecode. 2083 // The run-time runtime saves the right registers, depending on 2084 // the tosca in-state for the given template. 2085 2086 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2087 "entry must have been generated"); 2088 __ bl(Interpreter::trace_code(t->tos_in())); 2089 __ reinit_heapbase(); 2090 } 2091 2092 2093 void TemplateInterpreterGenerator::stop_interpreter_at() { 2094 Label L; 2095 __ push(rscratch1); 2096 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2097 __ ldr(rscratch1, Address(rscratch1)); 2098 __ mov(rscratch2, StopInterpreterAt); 2099 __ cmpw(rscratch1, rscratch2); 2100 __ br(Assembler::NE, L); 2101 __ brk(0); 2102 __ bind(L); 2103 __ pop(rscratch1); 2104 } 2105 2106 #endif // !PRODUCT