1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "compiler/compiler_globals.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "interpreter/bytecodeHistogram.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "interpreter/templateInterpreterGenerator.hpp" 37 #include "interpreter/templateTable.hpp" 38 #include "interpreter/bytecodeTracer.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "oops/arrayOop.hpp" 41 #include "oops/method.hpp" 42 #include "oops/methodCounters.hpp" 43 #include "oops/methodData.hpp" 44 #include "oops/oop.inline.hpp" 45 #include "oops/inlineKlass.hpp" 46 #include "oops/resolvedIndyEntry.hpp" 47 #include "oops/resolvedMethodEntry.hpp" 48 #include "prims/jvmtiExport.hpp" 49 #include "prims/jvmtiThreadState.hpp" 50 #include "runtime/arguments.hpp" 51 #include "runtime/deoptimization.hpp" 52 #include "runtime/frame.inline.hpp" 53 #include "runtime/globals.hpp" 54 #include "runtime/jniHandles.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "runtime/synchronizer.hpp" 58 #include "runtime/timer.hpp" 59 #include "runtime/vframeArray.hpp" 60 #include "utilities/checkedCast.hpp" 61 #include "utilities/debug.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 #include <sys/types.h> 64 65 // Size of interpreter code. Increase if too small. Interpreter will 66 // fail with a guarantee ("not enough space for interpreter generation"); 67 // if too small. 68 // Run with +PrintInterpreter to get the VM to print out the size. 69 // Max size with JVMTI 70 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 71 72 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 73 74 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 75 address entry = __ pc(); 76 77 __ andr(esp, esp, -16); 78 __ mov(c_rarg3, esp); 79 // rmethod 80 // rlocals 81 // c_rarg3: first stack arg - wordSize 82 83 // adjust sp 84 __ sub(sp, c_rarg3, 18 * wordSize); 85 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 86 __ call_VM(noreg, 87 CAST_FROM_FN_PTR(address, 88 InterpreterRuntime::slow_signature_handler), 89 rmethod, rlocals, c_rarg3); 90 91 // r0: result handler 92 93 // Stack layout: 94 // rsp: return address <- sp 95 // 1 garbage 96 // 8 integer args (if static first is unused) 97 // 1 float/double identifiers 98 // 8 double args 99 // stack args <- esp 100 // garbage 101 // expression stack bottom 102 // bcp (null) 103 // ... 104 105 // Restore LR 106 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 107 108 // Do FP first so we can use c_rarg3 as temp 109 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 110 111 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 112 const FloatRegister r = as_FloatRegister(i); 113 114 Label d, done; 115 116 __ tbnz(c_rarg3, i, d); 117 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 118 __ b(done); 119 __ bind(d); 120 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 121 __ bind(done); 122 } 123 124 // c_rarg0 contains the result from the call of 125 // InterpreterRuntime::slow_signature_handler so we don't touch it 126 // here. It will be loaded with the JNIEnv* later. 127 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 128 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 129 Register rm = as_Register(i), rn = as_Register(i+1); 130 __ ldp(rm, rn, Address(sp, i * wordSize)); 131 } 132 133 __ add(sp, sp, 18 * wordSize); 134 __ ret(lr); 135 136 return entry; 137 } 138 139 140 // 141 // Various method entries 142 // 143 144 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 145 // rmethod: Method* 146 // r19_sender_sp: sender sp 147 // esp: args 148 149 // These don't need a safepoint check because they aren't virtually 150 // callable. We won't enter these intrinsics from compiled code. 151 // If in the future we added an intrinsic which was virtually callable 152 // we'd have to worry about how to safepoint so that this code is used. 153 154 // mathematical functions inlined by compiler 155 // (interpreter must provide identical implementation 156 // in order to avoid monotonicity bugs when switching 157 // from interpreter to compiler in the middle of some 158 // computation) 159 // 160 // stack: 161 // [ arg ] <-- esp 162 // [ arg ] 163 // retaddr in lr 164 165 address entry_point = nullptr; 166 Register continuation = lr; 167 switch (kind) { 168 case Interpreter::java_lang_math_abs: 169 entry_point = __ pc(); 170 __ ldrd(v0, Address(esp)); 171 __ fabsd(v0, v0); 172 __ mov(sp, r19_sender_sp); // Restore caller's SP 173 break; 174 case Interpreter::java_lang_math_sqrt: 175 entry_point = __ pc(); 176 __ ldrd(v0, Address(esp)); 177 __ fsqrtd(v0, v0); 178 __ mov(sp, r19_sender_sp); 179 break; 180 case Interpreter::java_lang_math_sin : 181 case Interpreter::java_lang_math_cos : 182 case Interpreter::java_lang_math_tan : 183 case Interpreter::java_lang_math_log : 184 case Interpreter::java_lang_math_log10 : 185 case Interpreter::java_lang_math_exp : 186 entry_point = __ pc(); 187 __ ldrd(v0, Address(esp)); 188 __ mov(sp, r19_sender_sp); 189 __ mov(r23, lr); 190 continuation = r23; // The first free callee-saved register 191 generate_transcendental_entry(kind, 1); 192 break; 193 case Interpreter::java_lang_math_pow : 194 entry_point = __ pc(); 195 __ mov(r23, lr); 196 continuation = r23; 197 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 198 __ ldrd(v1, Address(esp)); 199 __ mov(sp, r19_sender_sp); 200 generate_transcendental_entry(kind, 2); 201 break; 202 case Interpreter::java_lang_math_fmaD : 203 if (UseFMA) { 204 entry_point = __ pc(); 205 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 206 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 207 __ ldrd(v2, Address(esp)); 208 __ fmaddd(v0, v0, v1, v2); 209 __ mov(sp, r19_sender_sp); // Restore caller's SP 210 } 211 break; 212 case Interpreter::java_lang_math_fmaF : 213 if (UseFMA) { 214 entry_point = __ pc(); 215 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 216 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 217 __ ldrs(v2, Address(esp)); 218 __ fmadds(v0, v0, v1, v2); 219 __ mov(sp, r19_sender_sp); // Restore caller's SP 220 } 221 break; 222 default: 223 ; 224 } 225 if (entry_point) { 226 __ br(continuation); 227 } 228 229 return entry_point; 230 } 231 232 // double trigonometrics and transcendentals 233 // static jdouble dsin(jdouble x); 234 // static jdouble dcos(jdouble x); 235 // static jdouble dtan(jdouble x); 236 // static jdouble dlog(jdouble x); 237 // static jdouble dlog10(jdouble x); 238 // static jdouble dexp(jdouble x); 239 // static jdouble dpow(jdouble x, jdouble y); 240 241 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 242 address fn; 243 switch (kind) { 244 case Interpreter::java_lang_math_sin : 245 if (StubRoutines::dsin() == nullptr) { 246 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 247 } else { 248 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 249 } 250 break; 251 case Interpreter::java_lang_math_cos : 252 if (StubRoutines::dcos() == nullptr) { 253 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 254 } else { 255 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 256 } 257 break; 258 case Interpreter::java_lang_math_tan : 259 if (StubRoutines::dtan() == nullptr) { 260 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 261 } else { 262 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 263 } 264 break; 265 case Interpreter::java_lang_math_log : 266 if (StubRoutines::dlog() == nullptr) { 267 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 268 } else { 269 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 270 } 271 break; 272 case Interpreter::java_lang_math_log10 : 273 if (StubRoutines::dlog10() == nullptr) { 274 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 275 } else { 276 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 277 } 278 break; 279 case Interpreter::java_lang_math_exp : 280 if (StubRoutines::dexp() == nullptr) { 281 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 282 } else { 283 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 284 } 285 break; 286 case Interpreter::java_lang_math_pow : 287 if (StubRoutines::dpow() == nullptr) { 288 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 289 } else { 290 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 291 } 292 break; 293 default: 294 ShouldNotReachHere(); 295 fn = nullptr; // unreachable 296 } 297 __ mov(rscratch1, fn); 298 __ blr(rscratch1); 299 } 300 301 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 302 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 303 // r19_sender_sp: sender sp 304 // stack: 305 // [ arg ] <-- esp 306 // [ arg ] 307 // retaddr in lr 308 // result in v0 309 310 address entry_point = __ pc(); 311 __ ldrw(c_rarg0, Address(esp)); 312 __ flt16_to_flt(v0, c_rarg0, v1); 313 __ mov(sp, r19_sender_sp); // Restore caller's SP 314 __ br(lr); 315 return entry_point; 316 } 317 318 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 319 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 320 // r19_sender_sp: sender sp 321 // stack: 322 // [ arg ] <-- esp 323 // [ arg ] 324 // retaddr in lr 325 // result in c_rarg0 326 327 address entry_point = __ pc(); 328 __ ldrs(v0, Address(esp)); 329 __ flt_to_flt16(c_rarg0, v0, v1); 330 __ mov(sp, r19_sender_sp); // Restore caller's SP 331 __ br(lr); 332 return entry_point; 333 } 334 335 // Abstract method entry 336 // Attempt to execute abstract method. Throw exception 337 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 338 // rmethod: Method* 339 // r19_sender_sp: sender SP 340 341 address entry_point = __ pc(); 342 343 // abstract method entry 344 345 // pop return address, reset last_sp to null 346 __ empty_expression_stack(); 347 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 348 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 349 350 // throw exception 351 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 352 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 353 rmethod); 354 // the call_VM checks for exception, so we should never return here. 355 __ should_not_reach_here(); 356 357 return entry_point; 358 } 359 360 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 361 address entry = __ pc(); 362 363 #ifdef ASSERT 364 { 365 Label L; 366 __ ldr(rscratch1, Address(rfp, 367 frame::interpreter_frame_monitor_block_top_offset * 368 wordSize)); 369 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 370 __ mov(rscratch2, sp); 371 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 372 // grows negative) 373 __ br(Assembler::HS, L); // check if frame is complete 374 __ stop ("interpreter frame not set up"); 375 __ bind(L); 376 } 377 #endif // ASSERT 378 // Restore bcp under the assumption that the current frame is still 379 // interpreted 380 __ restore_bcp(); 381 382 // expression stack must be empty before entering the VM if an 383 // exception happened 384 __ empty_expression_stack(); 385 // throw exception 386 __ call_VM(noreg, 387 CAST_FROM_FN_PTR(address, 388 InterpreterRuntime::throw_StackOverflowError)); 389 return entry; 390 } 391 392 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 393 address entry = __ pc(); 394 // expression stack must be empty before entering the VM if an 395 // exception happened 396 __ empty_expression_stack(); 397 // setup parameters 398 399 // ??? convention: expect aberrant index in register r1 400 __ movw(c_rarg2, r1); 401 // ??? convention: expect array in register r3 402 __ mov(c_rarg1, r3); 403 __ call_VM(noreg, 404 CAST_FROM_FN_PTR(address, 405 InterpreterRuntime:: 406 throw_ArrayIndexOutOfBoundsException), 407 c_rarg1, c_rarg2); 408 return entry; 409 } 410 411 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 412 address entry = __ pc(); 413 414 // object is at TOS 415 __ pop(c_rarg1); 416 417 // expression stack must be empty before entering the VM if an 418 // exception happened 419 __ empty_expression_stack(); 420 421 __ call_VM(noreg, 422 CAST_FROM_FN_PTR(address, 423 InterpreterRuntime:: 424 throw_ClassCastException), 425 c_rarg1); 426 return entry; 427 } 428 429 address TemplateInterpreterGenerator::generate_exception_handler_common( 430 const char* name, const char* message, bool pass_oop) { 431 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 432 address entry = __ pc(); 433 if (pass_oop) { 434 // object is at TOS 435 __ pop(c_rarg2); 436 } 437 // expression stack must be empty before entering the VM if an 438 // exception happened 439 __ empty_expression_stack(); 440 // setup parameters 441 __ lea(c_rarg1, Address((address)name)); 442 if (pass_oop) { 443 __ call_VM(r0, CAST_FROM_FN_PTR(address, 444 InterpreterRuntime:: 445 create_klass_exception), 446 c_rarg1, c_rarg2); 447 } else { 448 // kind of lame ExternalAddress can't take null because 449 // external_word_Relocation will assert. 450 if (message != nullptr) { 451 __ lea(c_rarg2, Address((address)message)); 452 } else { 453 __ mov(c_rarg2, NULL_WORD); 454 } 455 __ call_VM(r0, 456 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 457 c_rarg1, c_rarg2); 458 } 459 // throw exception 460 __ b(address(Interpreter::throw_exception_entry())); 461 return entry; 462 } 463 464 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 465 address entry = __ pc(); 466 467 // Restore stack bottom in case i2c adjusted stack 468 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 469 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 470 // and null it as marker that esp is now tos until next java call 471 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 472 473 if (state == atos && InlineTypeReturnedAsFields) { 474 __ store_inline_type_fields_to_buf(nullptr, true); 475 } 476 477 __ restore_bcp(); 478 __ restore_locals(); 479 __ restore_constant_pool_cache(); 480 __ get_method(rmethod); 481 482 if (state == atos) { 483 Register obj = r0; 484 Register mdp = r1; 485 Register tmp = r2; 486 __ profile_return_type(mdp, obj, tmp); 487 } 488 489 const Register cache = r1; 490 const Register index = r2; 491 492 if (index_size == sizeof(u4)) { 493 __ load_resolved_indy_entry(cache, index); 494 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 495 __ add(esp, esp, cache, Assembler::LSL, 3); 496 } else { 497 // Pop N words from the stack 498 assert(index_size == sizeof(u2), "Can only be u2"); 499 __ load_method_entry(cache, index); 500 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 501 __ add(esp, esp, cache, Assembler::LSL, 3); 502 } 503 504 // Restore machine SP 505 __ restore_sp_after_call(); 506 507 __ check_and_handle_popframe(rthread); 508 __ check_and_handle_earlyret(rthread); 509 510 __ get_dispatch(); 511 __ dispatch_next(state, step); 512 513 return entry; 514 } 515 516 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 517 int step, 518 address continuation) { 519 address entry = __ pc(); 520 __ restore_bcp(); 521 __ restore_locals(); 522 __ restore_constant_pool_cache(); 523 __ get_method(rmethod); 524 __ get_dispatch(); 525 526 __ restore_sp_after_call(); // Restore SP to extended SP 527 528 // Restore expression stack pointer 529 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 530 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 531 // null last_sp until next java call 532 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 533 534 #if INCLUDE_JVMCI 535 // Check if we need to take lock at entry of synchronized method. This can 536 // only occur on method entry so emit it only for vtos with step 0. 537 if (EnableJVMCI && state == vtos && step == 0) { 538 Label L; 539 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 540 __ cbz(rscratch1, L); 541 // Clear flag. 542 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 543 // Take lock. 544 lock_method(); 545 __ bind(L); 546 } else { 547 #ifdef ASSERT 548 if (EnableJVMCI) { 549 Label L; 550 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 551 __ cbz(rscratch1, L); 552 __ stop("unexpected pending monitor in deopt entry"); 553 __ bind(L); 554 } 555 #endif 556 } 557 #endif 558 // handle exceptions 559 { 560 Label L; 561 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 562 __ cbz(rscratch1, L); 563 __ call_VM(noreg, 564 CAST_FROM_FN_PTR(address, 565 InterpreterRuntime::throw_pending_exception)); 566 __ should_not_reach_here(); 567 __ bind(L); 568 } 569 570 if (continuation == nullptr) { 571 __ dispatch_next(state, step); 572 } else { 573 __ jump_to_entry(continuation); 574 } 575 return entry; 576 } 577 578 address TemplateInterpreterGenerator::generate_result_handler_for( 579 BasicType type) { 580 address entry = __ pc(); 581 switch (type) { 582 case T_BOOLEAN: __ c2bool(r0); break; 583 case T_CHAR : __ uxth(r0, r0); break; 584 case T_BYTE : __ sxtb(r0, r0); break; 585 case T_SHORT : __ sxth(r0, r0); break; 586 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 587 case T_LONG : /* nothing to do */ break; 588 case T_VOID : /* nothing to do */ break; 589 case T_FLOAT : /* nothing to do */ break; 590 case T_DOUBLE : /* nothing to do */ break; 591 case T_OBJECT : 592 // retrieve result from frame 593 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 594 // and verify it 595 __ verify_oop(r0); 596 break; 597 default : ShouldNotReachHere(); 598 } 599 __ ret(lr); // return from result handler 600 return entry; 601 } 602 603 address TemplateInterpreterGenerator::generate_safept_entry_for( 604 TosState state, 605 address runtime_entry) { 606 address entry = __ pc(); 607 __ push(state); 608 __ push_cont_fastpath(rthread); 609 __ call_VM(noreg, runtime_entry); 610 __ pop_cont_fastpath(rthread); 611 __ membar(Assembler::AnyAny); 612 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 613 return entry; 614 } 615 616 // Helpers for commoning out cases in the various type of method entries. 617 // 618 619 620 // increment invocation count & check for overflow 621 // 622 // Note: checking for negative value instead of overflow 623 // so we have a 'sticky' overflow test 624 // 625 // rmethod: method 626 // 627 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 628 Label done; 629 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 630 int increment = InvocationCounter::count_increment; 631 Label no_mdo; 632 if (ProfileInterpreter) { 633 // Are we profiling? 634 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 635 __ cbz(r0, no_mdo); 636 // Increment counter in the MDO 637 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 638 in_bytes(InvocationCounter::counter_offset())); 639 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 640 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 641 __ b(done); 642 } 643 __ bind(no_mdo); 644 // Increment counter in MethodCounters 645 const Address invocation_counter(rscratch2, 646 MethodCounters::invocation_counter_offset() + 647 InvocationCounter::counter_offset()); 648 __ get_method_counters(rmethod, rscratch2, done); 649 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 650 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 651 __ bind(done); 652 } 653 654 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 655 656 // Asm interpreter on entry 657 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 658 // Everything as it was on entry 659 660 // InterpreterRuntime::frequency_counter_overflow takes two 661 // arguments, the first (thread) is passed by call_VM, the second 662 // indicates if the counter overflow occurs at a backwards branch 663 // (null bcp). We pass zero for it. The call returns the address 664 // of the verified entry point for the method or null if the 665 // compilation did not complete (either went background or bailed 666 // out). 667 __ mov(c_rarg1, 0); 668 __ call_VM(noreg, 669 CAST_FROM_FN_PTR(address, 670 InterpreterRuntime::frequency_counter_overflow), 671 c_rarg1); 672 673 __ b(do_continue); 674 } 675 676 // See if we've got enough room on the stack for locals plus overhead 677 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 678 // without going through the signal handler, i.e., reserved and yellow zones 679 // will not be made usable. The shadow zone must suffice to handle the 680 // overflow. 681 // The expression stack grows down incrementally, so the normal guard 682 // page mechanism will work for that. 683 // 684 // NOTE: Since the additional locals are also always pushed (wasn't 685 // obvious in generate_method_entry) so the guard should work for them 686 // too. 687 // 688 // Args: 689 // r3: number of additional locals this frame needs (what we must check) 690 // rmethod: Method* 691 // 692 // Kills: 693 // r0 694 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 695 696 // monitor entry size: see picture of stack set 697 // (generate_method_entry) and frame_amd64.hpp 698 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 699 700 // total overhead size: entry_size + (saved rbp through expr stack 701 // bottom). be sure to change this if you add/subtract anything 702 // to/from the overhead area 703 const int overhead_size = 704 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 705 706 const size_t page_size = os::vm_page_size(); 707 708 Label after_frame_check; 709 710 // see if the frame is greater than one page in size. If so, 711 // then we need to verify there is enough stack space remaining 712 // for the additional locals. 713 // 714 // Note that we use SUBS rather than CMP here because the immediate 715 // field of this instruction may overflow. SUBS can cope with this 716 // because it is a macro that will expand to some number of MOV 717 // instructions and a register operation. 718 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 719 __ br(Assembler::LS, after_frame_check); 720 721 // compute rsp as if this were going to be the last frame on 722 // the stack before the red zone 723 724 // locals + overhead, in bytes 725 __ mov(r0, overhead_size); 726 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 727 728 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 729 __ ldr(rscratch1, stack_limit); 730 731 #ifdef ASSERT 732 Label limit_okay; 733 // Verify that thread stack limit is non-zero. 734 __ cbnz(rscratch1, limit_okay); 735 __ stop("stack overflow limit is zero"); 736 __ bind(limit_okay); 737 #endif 738 739 // Add stack limit to locals. 740 __ add(r0, r0, rscratch1); 741 742 // Check against the current stack bottom. 743 __ cmp(sp, r0); 744 __ br(Assembler::HI, after_frame_check); 745 746 // Remove the incoming args, peeling the machine SP back to where it 747 // was in the caller. This is not strictly necessary, but unless we 748 // do so the stack frame may have a garbage FP; this ensures a 749 // correct call stack that we can always unwind. The ANDR should be 750 // unnecessary because the sender SP in r19 is always aligned, but 751 // it doesn't hurt. 752 __ andr(sp, r19_sender_sp, -16); 753 754 // Note: the restored frame is not necessarily interpreted. 755 // Use the shared runtime version of the StackOverflowError. 756 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 757 __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 758 759 // all done with frame size check 760 __ bind(after_frame_check); 761 } 762 763 // Allocate monitor and lock method (asm interpreter) 764 // 765 // Args: 766 // rmethod: Method* 767 // rlocals: locals 768 // 769 // Kills: 770 // r0 771 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 772 // rscratch1, rscratch2 (scratch regs) 773 void TemplateInterpreterGenerator::lock_method() { 774 // synchronize method 775 const Address access_flags(rmethod, Method::access_flags_offset()); 776 const Address monitor_block_top( 777 rfp, 778 frame::interpreter_frame_monitor_block_top_offset * wordSize); 779 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 780 781 #ifdef ASSERT 782 { 783 Label L; 784 __ ldrw(r0, access_flags); 785 __ tst(r0, JVM_ACC_SYNCHRONIZED); 786 __ br(Assembler::NE, L); 787 __ stop("method doesn't need synchronization"); 788 __ bind(L); 789 } 790 #endif // ASSERT 791 792 // get synchronization object 793 { 794 Label done; 795 __ ldrw(r0, access_flags); 796 __ tst(r0, JVM_ACC_STATIC); 797 // get receiver (assume this is frequent case) 798 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 799 __ br(Assembler::EQ, done); 800 __ load_mirror(r0, rmethod, r5, rscratch2); 801 802 #ifdef ASSERT 803 { 804 Label L; 805 __ cbnz(r0, L); 806 __ stop("synchronization object is null"); 807 __ bind(L); 808 } 809 #endif // ASSERT 810 811 __ bind(done); 812 } 813 814 // add space for monitor & lock 815 __ check_extended_sp(); 816 __ sub(sp, sp, entry_size); // add space for a monitor entry 817 __ sub(esp, esp, entry_size); 818 __ sub(rscratch1, sp, rfp); 819 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 820 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 821 __ sub(rscratch1, esp, rfp); 822 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 823 __ str(rscratch1, monitor_block_top); // set new monitor block top 824 825 // store object 826 __ str(r0, Address(esp, BasicObjectLock::obj_offset())); 827 __ mov(c_rarg1, esp); // object address 828 __ lock_object(c_rarg1); 829 } 830 831 // Generate a fixed interpreter frame. This is identical setup for 832 // interpreted methods and for native methods hence the shared code. 833 // 834 // Args: 835 // lr: return address 836 // rmethod: Method* 837 // rlocals: pointer to locals 838 // rcpool: cp cache 839 // stack_pointer: previous sp 840 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 841 // initialize fixed part of activation frame 842 if (native_call) { 843 __ sub(esp, sp, 14 * wordSize); 844 __ mov(rbcp, zr); 845 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 846 __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize))); 847 // add 2 zero-initialized slots for native calls 848 __ stp(zr, zr, Address(sp, 12 * wordSize)); 849 } else { 850 __ sub(esp, sp, 12 * wordSize); 851 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 852 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 853 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 854 __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize))); 855 } 856 857 if (ProfileInterpreter) { 858 Label method_data_continue; 859 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 860 __ cbz(rscratch1, method_data_continue); 861 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 862 __ bind(method_data_continue); 863 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 864 } else { 865 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 866 } 867 868 __ protect_return_address(); 869 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 870 __ lea(rfp, Address(sp, 10 * wordSize)); 871 872 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 873 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 874 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset())); 875 __ sub(rscratch1, rlocals, rfp); 876 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp(); 877 // Store relativized rlocals, see frame::interpreter_frame_locals(). 878 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize)); 879 880 // set sender sp 881 // leave last_sp as null 882 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 883 884 // Get mirror 885 __ load_mirror(r10, rmethod, r5, rscratch2); 886 if (! native_call) { 887 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 888 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 889 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 890 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 891 __ andr(rscratch1, rscratch1, -16); 892 __ sub(rscratch2, rscratch1, rfp); 893 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 894 // Store extended SP and mirror 895 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 896 // Move SP out of the way 897 __ mov(sp, rscratch1); 898 } else { 899 // Make sure there is room for the exception oop pushed in case method throws 900 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 901 __ sub(rscratch1, sp, 2 * wordSize); 902 __ sub(rscratch2, rscratch1, rfp); 903 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 904 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 905 __ mov(sp, rscratch1); 906 } 907 } 908 909 // End of helpers 910 911 // Various method entries 912 //------------------------------------------------------------------------------------------------------------------------ 913 // 914 // 915 916 // Method entry for java.lang.ref.Reference.get. 917 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 918 // Code: _aload_0, _getfield, _areturn 919 // parameter size = 1 920 // 921 // The code that gets generated by this routine is split into 2 parts: 922 // 1. The "intrinsified" code for G1 (or any SATB based GC), 923 // 2. The slow path - which is an expansion of the regular method entry. 924 // 925 // Notes:- 926 // * In the G1 code we do not check whether we need to block for 927 // a safepoint. If G1 is enabled then we must execute the specialized 928 // code for Reference.get (except when the Reference object is null) 929 // so that we can log the value in the referent field with an SATB 930 // update buffer. 931 // If the code for the getfield template is modified so that the 932 // G1 pre-barrier code is executed when the current method is 933 // Reference.get() then going through the normal method entry 934 // will be fine. 935 // * The G1 code can, however, check the receiver object (the instance 936 // of java.lang.Reference) and jump to the slow path if null. If the 937 // Reference object is null then we obviously cannot fetch the referent 938 // and so we don't need to call the G1 pre-barrier. Thus we can use the 939 // regular method entry code to generate the NPE. 940 // 941 // This code is based on generate_accessor_entry. 942 // 943 // rmethod: Method* 944 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 945 946 // LR is live. It must be saved around calls. 947 948 address entry = __ pc(); 949 950 const int referent_offset = java_lang_ref_Reference::referent_offset(); 951 952 Label slow_path; 953 const Register local_0 = c_rarg0; 954 // Check if local 0 != null 955 // If the receiver is null then it is OK to jump to the slow path. 956 __ ldr(local_0, Address(esp, 0)); 957 __ cbz(local_0, slow_path); 958 959 // Load the value of the referent field. 960 const Address field_address(local_0, referent_offset); 961 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 962 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 963 964 // areturn 965 __ andr(sp, r19_sender_sp, -16); // done with stack 966 __ ret(lr); 967 968 // generate a vanilla interpreter entry as the slow path 969 __ bind(slow_path); 970 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 971 return entry; 972 973 } 974 975 /** 976 * Method entry for static native methods: 977 * int java.util.zip.CRC32.update(int crc, int b) 978 */ 979 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 980 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 981 address entry = __ pc(); 982 983 // rmethod: Method* 984 // r19_sender_sp: senderSP must preserved for slow path 985 // esp: args 986 987 Label slow_path; 988 // If we need a safepoint check, generate full interpreter entry. 989 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 990 991 // We don't generate local frame and don't align stack because 992 // we call stub code and there is no safepoint on this path. 993 994 // Load parameters 995 const Register crc = c_rarg0; // crc 996 const Register val = c_rarg1; // source java byte value 997 const Register tbl = c_rarg2; // scratch 998 999 // Arguments are reversed on java expression stack 1000 __ ldrw(val, Address(esp, 0)); // byte value 1001 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 1002 1003 uint64_t offset; 1004 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 1005 __ add(tbl, tbl, offset); 1006 1007 __ mvnw(crc, crc); // ~crc 1008 __ update_byte_crc32(crc, val, tbl); 1009 __ mvnw(crc, crc); // ~crc 1010 1011 // result in c_rarg0 1012 1013 __ andr(sp, r19_sender_sp, -16); 1014 __ ret(lr); 1015 1016 // generate a vanilla native entry as the slow path 1017 __ bind(slow_path); 1018 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1019 return entry; 1020 } 1021 1022 /** 1023 * Method entry for static native methods: 1024 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1025 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1026 */ 1027 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1028 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1029 address entry = __ pc(); 1030 1031 // rmethod,: Method* 1032 // r19_sender_sp: senderSP must preserved for slow path 1033 1034 Label slow_path; 1035 // If we need a safepoint check, generate full interpreter entry. 1036 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1037 1038 // We don't generate local frame and don't align stack because 1039 // we call stub code and there is no safepoint on this path. 1040 1041 // Load parameters 1042 const Register crc = c_rarg0; // crc 1043 const Register buf = c_rarg1; // source java byte array address 1044 const Register len = c_rarg2; // length 1045 const Register off = len; // offset (never overlaps with 'len') 1046 1047 // Arguments are reversed on java expression stack 1048 // Calculate address of start element 1049 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1050 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1051 __ ldrw(off, Address(esp, wordSize)); // offset 1052 __ add(buf, buf, off); // + offset 1053 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1054 } else { 1055 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1056 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1057 __ ldrw(off, Address(esp, wordSize)); // offset 1058 __ add(buf, buf, off); // + offset 1059 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1060 } 1061 // Can now load 'len' since we're finished with 'off' 1062 __ ldrw(len, Address(esp, 0x0)); // Length 1063 1064 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1065 1066 // We are frameless so we can just jump to the stub. 1067 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1068 1069 // generate a vanilla native entry as the slow path 1070 __ bind(slow_path); 1071 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1072 return entry; 1073 } 1074 1075 /** 1076 * Method entry for intrinsic-candidate (non-native) methods: 1077 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1078 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1079 * Unlike CRC32, CRC32C does not have any methods marked as native 1080 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1081 */ 1082 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1083 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1084 address entry = __ pc(); 1085 1086 // Prepare jump to stub using parameters from the stack 1087 const Register crc = c_rarg0; // initial crc 1088 const Register buf = c_rarg1; // source java byte array address 1089 const Register len = c_rarg2; // len argument to the kernel 1090 1091 const Register end = len; // index of last element to process 1092 const Register off = crc; // offset 1093 1094 __ ldrw(end, Address(esp)); // int end 1095 __ ldrw(off, Address(esp, wordSize)); // int offset 1096 __ sub(len, end, off); 1097 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1098 __ add(buf, buf, off); // + offset 1099 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1100 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1101 } else { 1102 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1103 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1104 } 1105 1106 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1107 1108 // Jump to the stub. 1109 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1110 1111 return entry; 1112 } 1113 1114 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1115 // See more discussion in stackOverflow.hpp. 1116 1117 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1118 const int page_size = (int)os::vm_page_size(); 1119 const int n_shadow_pages = shadow_zone_size / page_size; 1120 1121 #ifdef ASSERT 1122 Label L_good_limit; 1123 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1124 __ cbnz(rscratch1, L_good_limit); 1125 __ stop("shadow zone safe limit is not initialized"); 1126 __ bind(L_good_limit); 1127 1128 Label L_good_watermark; 1129 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1130 __ cbnz(rscratch1, L_good_watermark); 1131 __ stop("shadow zone growth watermark is not initialized"); 1132 __ bind(L_good_watermark); 1133 #endif 1134 1135 Label L_done; 1136 1137 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1138 __ cmp(sp, rscratch1); 1139 __ br(Assembler::HI, L_done); 1140 1141 for (int p = 1; p <= n_shadow_pages; p++) { 1142 __ sub(rscratch2, sp, p*page_size); 1143 __ str(zr, Address(rscratch2)); 1144 } 1145 1146 // Record the new watermark, but only if the update is above the safe limit. 1147 // Otherwise, the next time around the check above would pass the safe limit. 1148 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1149 __ cmp(sp, rscratch1); 1150 __ br(Assembler::LS, L_done); 1151 __ mov(rscratch1, sp); 1152 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1153 1154 __ bind(L_done); 1155 } 1156 1157 // Interpreter stub for calling a native method. (asm interpreter) 1158 // This sets up a somewhat different looking stack for calling the 1159 // native method than the typical interpreter frame setup. 1160 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1161 // determine code generation flags 1162 bool inc_counter = UseCompiler || CountCompiledCalls; 1163 1164 // r1: Method* 1165 // rscratch1: sender sp 1166 1167 address entry_point = __ pc(); 1168 1169 const Address constMethod (rmethod, Method::const_offset()); 1170 const Address access_flags (rmethod, Method::access_flags_offset()); 1171 const Address size_of_parameters(r2, ConstMethod:: 1172 size_of_parameters_offset()); 1173 1174 // get parameter size (always needed) 1175 __ ldr(r2, constMethod); 1176 __ load_unsigned_short(r2, size_of_parameters); 1177 1178 // Native calls don't need the stack size check since they have no 1179 // expression stack and the arguments are already on the stack and 1180 // we only add a handful of words to the stack. 1181 1182 // rmethod: Method* 1183 // r2: size of parameters 1184 // rscratch1: sender sp 1185 1186 // for natives the size of locals is zero 1187 1188 // compute beginning of parameters (rlocals) 1189 __ add(rlocals, esp, r2, ext::uxtx, 3); 1190 __ add(rlocals, rlocals, -wordSize); 1191 1192 // Pull SP back to minimum size: this avoids holes in the stack 1193 __ andr(sp, esp, -16); 1194 1195 // initialize fixed part of activation frame 1196 generate_fixed_frame(true); 1197 1198 // make sure method is native & not abstract 1199 #ifdef ASSERT 1200 __ ldrw(r0, access_flags); 1201 { 1202 Label L; 1203 __ tst(r0, JVM_ACC_NATIVE); 1204 __ br(Assembler::NE, L); 1205 __ stop("tried to execute non-native method as native"); 1206 __ bind(L); 1207 } 1208 { 1209 Label L; 1210 __ tst(r0, JVM_ACC_ABSTRACT); 1211 __ br(Assembler::EQ, L); 1212 __ stop("tried to execute abstract method in interpreter"); 1213 __ bind(L); 1214 } 1215 #endif 1216 1217 // Since at this point in the method invocation the exception 1218 // handler would try to exit the monitor of synchronized methods 1219 // which hasn't been entered yet, we set the thread local variable 1220 // _do_not_unlock_if_synchronized to true. The remove_activation 1221 // will check this flag. 1222 1223 const Address do_not_unlock_if_synchronized(rthread, 1224 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1225 __ mov(rscratch2, true); 1226 __ strb(rscratch2, do_not_unlock_if_synchronized); 1227 1228 // increment invocation count & check for overflow 1229 Label invocation_counter_overflow; 1230 if (inc_counter) { 1231 generate_counter_incr(&invocation_counter_overflow); 1232 } 1233 1234 Label continue_after_compile; 1235 __ bind(continue_after_compile); 1236 1237 bang_stack_shadow_pages(true); 1238 1239 // reset the _do_not_unlock_if_synchronized flag 1240 __ strb(zr, do_not_unlock_if_synchronized); 1241 1242 // check for synchronized methods 1243 // Must happen AFTER invocation_counter check and stack overflow check, 1244 // so method is not locked if overflows. 1245 if (synchronized) { 1246 lock_method(); 1247 } else { 1248 // no synchronization necessary 1249 #ifdef ASSERT 1250 { 1251 Label L; 1252 __ ldrw(r0, access_flags); 1253 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1254 __ br(Assembler::EQ, L); 1255 __ stop("method needs synchronization"); 1256 __ bind(L); 1257 } 1258 #endif 1259 } 1260 1261 // start execution 1262 #ifdef ASSERT 1263 { 1264 Label L; 1265 const Address monitor_block_top(rfp, 1266 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1267 __ ldr(rscratch1, monitor_block_top); 1268 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1269 __ cmp(esp, rscratch1); 1270 __ br(Assembler::EQ, L); 1271 __ stop("broken stack frame setup in interpreter 1"); 1272 __ bind(L); 1273 } 1274 #endif 1275 1276 // jvmti support 1277 __ notify_method_entry(); 1278 1279 // work registers 1280 const Register t = r17; 1281 const Register result_handler = r19; 1282 1283 // allocate space for parameters 1284 __ ldr(t, Address(rmethod, Method::const_offset())); 1285 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1286 1287 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1288 __ andr(sp, rscratch1, -16); 1289 __ mov(esp, rscratch1); 1290 1291 // get signature handler 1292 { 1293 Label L; 1294 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1295 __ cbnz(t, L); 1296 __ call_VM(noreg, 1297 CAST_FROM_FN_PTR(address, 1298 InterpreterRuntime::prepare_native_call), 1299 rmethod); 1300 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1301 __ bind(L); 1302 } 1303 1304 // call signature handler 1305 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1306 "adjust this code"); 1307 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1308 "adjust this code"); 1309 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1310 "adjust this code"); 1311 1312 // The generated handlers do not touch rmethod (the method). 1313 // However, large signatures cannot be cached and are generated 1314 // each time here. The slow-path generator can do a GC on return, 1315 // so we must reload it after the call. 1316 __ blr(t); 1317 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1318 1319 1320 // result handler is in r0 1321 // set result handler 1322 __ mov(result_handler, r0); 1323 // pass mirror handle if static call 1324 { 1325 Label L; 1326 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1327 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1328 // get mirror 1329 __ load_mirror(t, rmethod, r10, rscratch2); 1330 // copy mirror into activation frame 1331 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1332 // pass handle to mirror 1333 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1334 __ bind(L); 1335 } 1336 1337 // get native function entry point in r10 1338 { 1339 Label L; 1340 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1341 ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1342 __ lea(rscratch2, unsatisfied); 1343 __ ldr(rscratch2, rscratch2); 1344 __ cmp(r10, rscratch2); 1345 __ br(Assembler::NE, L); 1346 __ call_VM(noreg, 1347 CAST_FROM_FN_PTR(address, 1348 InterpreterRuntime::prepare_native_call), 1349 rmethod); 1350 __ get_method(rmethod); 1351 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1352 __ bind(L); 1353 } 1354 1355 // pass JNIEnv 1356 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1357 1358 // Set the last Java PC in the frame anchor to be the return address from 1359 // the call to the native method: this will allow the debugger to 1360 // generate an accurate stack trace. 1361 Label native_return; 1362 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1363 1364 // change thread state 1365 #ifdef ASSERT 1366 { 1367 Label L; 1368 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1369 __ cmp(t, (u1)_thread_in_Java); 1370 __ br(Assembler::EQ, L); 1371 __ stop("Wrong thread state in native stub"); 1372 __ bind(L); 1373 } 1374 #endif 1375 1376 // Change state to native 1377 __ mov(rscratch1, _thread_in_native); 1378 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1379 __ stlrw(rscratch1, rscratch2); 1380 1381 // Call the native method. 1382 __ blr(r10); 1383 __ bind(native_return); 1384 __ get_method(rmethod); 1385 // result potentially in r0 or v0 1386 1387 // Restore cpu control state after JNI call 1388 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1389 1390 // make room for the pushes we're about to do 1391 __ sub(rscratch1, esp, 4 * wordSize); 1392 __ andr(sp, rscratch1, -16); 1393 1394 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1395 // in order to extract the result of a method call. If the order of these 1396 // pushes change or anything else is added to the stack then the code in 1397 // interpreter_frame_result must also change. 1398 __ push(dtos); 1399 __ push(ltos); 1400 1401 __ verify_sve_vector_length(); 1402 1403 // change thread state 1404 __ mov(rscratch1, _thread_in_native_trans); 1405 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1406 __ stlrw(rscratch1, rscratch2); 1407 1408 // Force this write out before the read below 1409 if (!UseSystemMemoryBarrier) { 1410 __ dmb(Assembler::ISH); 1411 } 1412 1413 // check for safepoint operation in progress and/or pending suspend requests 1414 { 1415 Label L, Continue; 1416 1417 // No need for acquire as Java threads always disarm themselves. 1418 __ safepoint_poll(L, true /* at_return */, false /* acquire */, false /* in_nmethod */); 1419 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1420 __ cbz(rscratch2, Continue); 1421 __ bind(L); 1422 1423 // Don't use call_VM as it will see a possible pending exception 1424 // and forward it and never return here preventing us from 1425 // clearing _last_native_pc down below. So we do a runtime call by 1426 // hand. 1427 // 1428 __ mov(c_rarg0, rthread); 1429 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 1430 __ blr(rscratch2); 1431 __ get_method(rmethod); 1432 __ reinit_heapbase(); 1433 __ bind(Continue); 1434 } 1435 1436 // change thread state 1437 __ mov(rscratch1, _thread_in_Java); 1438 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1439 __ stlrw(rscratch1, rscratch2); 1440 1441 // reset_last_Java_frame 1442 __ reset_last_Java_frame(true); 1443 1444 if (CheckJNICalls) { 1445 // clear_pending_jni_exception_check 1446 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1447 } 1448 1449 // reset handle block 1450 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1451 __ str(zr, Address(t, JNIHandleBlock::top_offset())); 1452 1453 // If result is an oop unbox and store it in frame where gc will see it 1454 // and result handler will pick it up 1455 1456 { 1457 Label no_oop; 1458 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1459 __ cmp(t, result_handler); 1460 __ br(Assembler::NE, no_oop); 1461 // Unbox oop result, e.g. JNIHandles::resolve result. 1462 __ pop(ltos); 1463 __ resolve_jobject(r0, t, rscratch2); 1464 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1465 // keep stack depth as expected by pushing oop which will eventually be discarded 1466 __ push(ltos); 1467 __ bind(no_oop); 1468 } 1469 1470 { 1471 Label no_reguard; 1472 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1473 __ ldrw(rscratch1, Address(rscratch1)); 1474 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1475 __ br(Assembler::NE, no_reguard); 1476 1477 __ push_call_clobbered_registers(); 1478 __ mov(c_rarg0, rthread); 1479 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 1480 __ blr(rscratch2); 1481 __ pop_call_clobbered_registers(); 1482 1483 __ bind(no_reguard); 1484 } 1485 1486 // The method register is junk from after the thread_in_native transition 1487 // until here. Also can't call_VM until the bcp has been 1488 // restored. Need bcp for throwing exception below so get it now. 1489 __ get_method(rmethod); 1490 1491 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1492 // rbcp == code_base() 1493 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1494 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1495 // handle exceptions (exception handling will handle unlocking!) 1496 { 1497 Label L; 1498 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1499 __ cbz(rscratch1, L); 1500 // Note: At some point we may want to unify this with the code 1501 // used in call_VM_base(); i.e., we should use the 1502 // StubRoutines::forward_exception code. For now this doesn't work 1503 // here because the rsp is not correctly set at this point. 1504 __ MacroAssembler::call_VM(noreg, 1505 CAST_FROM_FN_PTR(address, 1506 InterpreterRuntime::throw_pending_exception)); 1507 __ should_not_reach_here(); 1508 __ bind(L); 1509 } 1510 1511 // do unlocking if necessary 1512 { 1513 Label L; 1514 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1515 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1516 // the code below should be shared with interpreter macro 1517 // assembler implementation 1518 { 1519 Label unlock; 1520 // BasicObjectLock will be first in list, since this is a 1521 // synchronized method. However, need to check that the object 1522 // has not been unlocked by an explicit monitorexit bytecode. 1523 1524 // monitor expect in c_rarg1 for slow unlock path 1525 __ lea (c_rarg1, Address(rfp, // address of first monitor 1526 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1527 wordSize - sizeof(BasicObjectLock)))); 1528 1529 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset())); 1530 __ cbnz(t, unlock); 1531 1532 // Entry already unlocked, need to throw exception 1533 __ MacroAssembler::call_VM(noreg, 1534 CAST_FROM_FN_PTR(address, 1535 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1536 __ should_not_reach_here(); 1537 1538 __ bind(unlock); 1539 __ unlock_object(c_rarg1); 1540 } 1541 __ bind(L); 1542 } 1543 1544 // jvmti support 1545 // Note: This must happen _after_ handling/throwing any exceptions since 1546 // the exception handler code notifies the runtime of method exits 1547 // too. If this happens before, method entry/exit notifications are 1548 // not properly paired (was bug - gri 11/22/99). 1549 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1550 1551 // restore potential result in r0:d0, call result handler to 1552 // restore potential result in ST0 & handle result 1553 1554 __ pop(ltos); 1555 __ pop(dtos); 1556 1557 __ blr(result_handler); 1558 1559 // remove activation 1560 __ ldr(esp, Address(rfp, 1561 frame::interpreter_frame_sender_sp_offset * 1562 wordSize)); // get sender sp 1563 // remove frame anchor 1564 __ leave(); 1565 1566 // restore sender sp 1567 __ mov(sp, esp); 1568 1569 __ ret(lr); 1570 1571 if (inc_counter) { 1572 // Handle overflow of counter and compile method 1573 __ bind(invocation_counter_overflow); 1574 generate_counter_overflow(continue_after_compile); 1575 } 1576 1577 return entry_point; 1578 } 1579 1580 // 1581 // Generic interpreted method entry to (asm) interpreter 1582 // 1583 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1584 // determine code generation flags 1585 bool inc_counter = UseCompiler || CountCompiledCalls; 1586 1587 // rscratch1: sender sp 1588 address entry_point = __ pc(); 1589 1590 const Address constMethod(rmethod, Method::const_offset()); 1591 const Address access_flags(rmethod, Method::access_flags_offset()); 1592 const Address size_of_parameters(r3, 1593 ConstMethod::size_of_parameters_offset()); 1594 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1595 1596 // get parameter size (always needed) 1597 // need to load the const method first 1598 __ ldr(r3, constMethod); 1599 __ load_unsigned_short(r2, size_of_parameters); 1600 1601 // r2: size of parameters 1602 1603 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1604 __ sub(r3, r3, r2); // r3 = no. of additional locals 1605 1606 // see if we've got enough room on the stack for locals plus overhead. 1607 generate_stack_overflow_check(); 1608 1609 // compute beginning of parameters (rlocals) 1610 __ add(rlocals, esp, r2, ext::uxtx, 3); 1611 __ sub(rlocals, rlocals, wordSize); 1612 1613 __ mov(rscratch1, esp); 1614 1615 // r3 - # of additional locals 1616 // allocate space for locals 1617 // explicitly initialize locals 1618 // Initializing memory allocated for locals in the same direction as 1619 // the stack grows to ensure page initialization order according 1620 // to windows-aarch64 stack page growth requirement (see 1621 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1622 { 1623 Label exit, loop; 1624 __ ands(zr, r3, r3); 1625 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1626 __ bind(loop); 1627 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1628 __ sub(r3, r3, 1); // until everything initialized 1629 __ cbnz(r3, loop); 1630 __ bind(exit); 1631 } 1632 1633 // Padding between locals and fixed part of activation frame to ensure 1634 // SP is always 16-byte aligned. 1635 __ andr(sp, rscratch1, -16); 1636 1637 // And the base dispatch table 1638 __ get_dispatch(); 1639 1640 // initialize fixed part of activation frame 1641 generate_fixed_frame(false); 1642 1643 // make sure method is not native & not abstract 1644 #ifdef ASSERT 1645 __ ldrw(r0, access_flags); 1646 { 1647 Label L; 1648 __ tst(r0, JVM_ACC_NATIVE); 1649 __ br(Assembler::EQ, L); 1650 __ stop("tried to execute native method as non-native"); 1651 __ bind(L); 1652 } 1653 { 1654 Label L; 1655 __ tst(r0, JVM_ACC_ABSTRACT); 1656 __ br(Assembler::EQ, L); 1657 __ stop("tried to execute abstract method in interpreter"); 1658 __ bind(L); 1659 } 1660 #endif 1661 1662 // Since at this point in the method invocation the exception 1663 // handler would try to exit the monitor of synchronized methods 1664 // which hasn't been entered yet, we set the thread local variable 1665 // _do_not_unlock_if_synchronized to true. The remove_activation 1666 // will check this flag. 1667 1668 const Address do_not_unlock_if_synchronized(rthread, 1669 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1670 __ mov(rscratch2, true); 1671 __ strb(rscratch2, do_not_unlock_if_synchronized); 1672 1673 Register mdp = r3; 1674 __ profile_parameters_type(mdp, r1, r2); 1675 1676 // increment invocation count & check for overflow 1677 Label invocation_counter_overflow; 1678 if (inc_counter) { 1679 generate_counter_incr(&invocation_counter_overflow); 1680 } 1681 1682 Label continue_after_compile; 1683 __ bind(continue_after_compile); 1684 1685 bang_stack_shadow_pages(false); 1686 1687 // reset the _do_not_unlock_if_synchronized flag 1688 __ strb(zr, do_not_unlock_if_synchronized); 1689 1690 // check for synchronized methods 1691 // Must happen AFTER invocation_counter check and stack overflow check, 1692 // so method is not locked if overflows. 1693 if (synchronized) { 1694 // Allocate monitor and lock method 1695 lock_method(); 1696 } else { 1697 // no synchronization necessary 1698 #ifdef ASSERT 1699 { 1700 Label L; 1701 __ ldrw(r0, access_flags); 1702 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1703 __ br(Assembler::EQ, L); 1704 __ stop("method needs synchronization"); 1705 __ bind(L); 1706 } 1707 #endif 1708 } 1709 1710 // start execution 1711 #ifdef ASSERT 1712 { 1713 Label L; 1714 const Address monitor_block_top (rfp, 1715 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1716 __ ldr(rscratch1, monitor_block_top); 1717 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1718 __ cmp(esp, rscratch1); 1719 __ br(Assembler::EQ, L); 1720 __ stop("broken stack frame setup in interpreter 2"); 1721 __ bind(L); 1722 } 1723 #endif 1724 1725 // jvmti support 1726 __ notify_method_entry(); 1727 1728 __ dispatch_next(vtos); 1729 1730 // invocation counter overflow 1731 if (inc_counter) { 1732 // Handle overflow of counter and compile method 1733 __ bind(invocation_counter_overflow); 1734 generate_counter_overflow(continue_after_compile); 1735 } 1736 1737 return entry_point; 1738 } 1739 1740 // Method entry for java.lang.Thread.currentThread 1741 address TemplateInterpreterGenerator::generate_currentThread() { 1742 address entry_point = __ pc(); 1743 1744 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1745 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1746 __ ret(lr); 1747 1748 return entry_point; 1749 } 1750 1751 // Not supported 1752 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 1753 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 1754 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 1755 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 1756 1757 //----------------------------------------------------------------------------- 1758 // Exceptions 1759 1760 void TemplateInterpreterGenerator::generate_throw_exception() { 1761 // Entry point in previous activation (i.e., if the caller was 1762 // interpreted) 1763 Interpreter::_rethrow_exception_entry = __ pc(); 1764 // Restore sp to interpreter_frame_last_sp even though we are going 1765 // to empty the expression stack for the exception processing. 1766 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1767 // r0: exception 1768 // r3: return address/pc that threw exception 1769 __ restore_bcp(); // rbcp points to call/send 1770 __ restore_locals(); 1771 __ restore_constant_pool_cache(); 1772 __ reinit_heapbase(); // restore rheapbase as heapbase. 1773 __ get_dispatch(); 1774 1775 // Entry point for exceptions thrown within interpreter code 1776 Interpreter::_throw_exception_entry = __ pc(); 1777 // If we came here via a NullPointerException on the receiver of a 1778 // method, rmethod may be corrupt. 1779 __ get_method(rmethod); 1780 // expression stack is undefined here 1781 // r0: exception 1782 // rbcp: exception bcp 1783 __ verify_oop(r0); 1784 __ mov(c_rarg1, r0); 1785 1786 // expression stack must be empty before entering the VM in case of 1787 // an exception 1788 __ empty_expression_stack(); 1789 // find exception handler address and preserve exception oop 1790 __ call_VM(r3, 1791 CAST_FROM_FN_PTR(address, 1792 InterpreterRuntime::exception_handler_for_exception), 1793 c_rarg1); 1794 1795 // Restore machine SP 1796 __ restore_sp_after_call(); 1797 1798 // r0: exception handler entry point 1799 // r3: preserved exception oop 1800 // rbcp: bcp for exception handler 1801 __ push_ptr(r3); // push exception which is now the only value on the stack 1802 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1803 1804 // If the exception is not handled in the current frame the frame is 1805 // removed and the exception is rethrown (i.e. exception 1806 // continuation is _rethrow_exception). 1807 // 1808 // Note: At this point the bci is still the bxi for the instruction 1809 // which caused the exception and the expression stack is 1810 // empty. Thus, for any VM calls at this point, GC will find a legal 1811 // oop map (with empty expression stack). 1812 1813 // 1814 // JVMTI PopFrame support 1815 // 1816 1817 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1818 __ empty_expression_stack(); 1819 // Set the popframe_processing bit in pending_popframe_condition 1820 // indicating that we are currently handling popframe, so that 1821 // call_VMs that may happen later do not trigger new popframe 1822 // handling cycles. 1823 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1824 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1825 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1826 1827 { 1828 // Check to see whether we are returning to a deoptimized frame. 1829 // (The PopFrame call ensures that the caller of the popped frame is 1830 // either interpreted or compiled and deoptimizes it if compiled.) 1831 // In this case, we can't call dispatch_next() after the frame is 1832 // popped, but instead must save the incoming arguments and restore 1833 // them after deoptimization has occurred. 1834 // 1835 // Note that we don't compare the return PC against the 1836 // deoptimization blob's unpack entry because of the presence of 1837 // adapter frames in C2. 1838 Label caller_not_deoptimized; 1839 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1840 // This is a return address, so requires authenticating for PAC. 1841 __ authenticate_return_address(c_rarg1); 1842 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1843 InterpreterRuntime::interpreter_contains), c_rarg1); 1844 __ cbnz(r0, caller_not_deoptimized); 1845 1846 // Compute size of arguments for saving when returning to 1847 // deoptimized caller 1848 __ get_method(r0); 1849 __ ldr(r0, Address(r0, Method::const_offset())); 1850 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1851 size_of_parameters_offset()))); 1852 __ lsl(r0, r0, Interpreter::logStackElementSize); 1853 __ restore_locals(); // XXX do we need this? 1854 __ sub(rlocals, rlocals, r0); 1855 __ add(rlocals, rlocals, wordSize); 1856 // Save these arguments 1857 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1858 Deoptimization:: 1859 popframe_preserve_args), 1860 rthread, r0, rlocals); 1861 1862 __ remove_activation(vtos, 1863 /* throw_monitor_exception */ false, 1864 /* install_monitor_exception */ false, 1865 /* notify_jvmdi */ false); 1866 1867 // Inform deoptimization that it is responsible for restoring 1868 // these arguments 1869 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1870 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1871 1872 // Continue in deoptimization handler 1873 __ ret(lr); 1874 1875 __ bind(caller_not_deoptimized); 1876 } 1877 1878 __ remove_activation(vtos, 1879 /* throw_monitor_exception */ false, 1880 /* install_monitor_exception */ false, 1881 /* notify_jvmdi */ false); 1882 1883 // Restore the last_sp and null it out 1884 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1885 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1886 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1887 1888 __ restore_bcp(); 1889 __ restore_locals(); 1890 __ restore_constant_pool_cache(); 1891 __ get_method(rmethod); 1892 __ get_dispatch(); 1893 1894 // The method data pointer was incremented already during 1895 // call profiling. We have to restore the mdp for the current bcp. 1896 if (ProfileInterpreter) { 1897 __ set_method_data_pointer_for_bcp(); 1898 } 1899 1900 // Clear the popframe condition flag 1901 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1902 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1903 1904 #if INCLUDE_JVMTI 1905 { 1906 Label L_done; 1907 1908 __ ldrb(rscratch1, Address(rbcp, 0)); 1909 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1910 __ br(Assembler::NE, L_done); 1911 1912 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1913 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1914 1915 __ ldr(c_rarg0, Address(rlocals, 0)); 1916 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1917 1918 __ cbz(r0, L_done); 1919 1920 __ str(r0, Address(esp, 0)); 1921 __ bind(L_done); 1922 } 1923 #endif // INCLUDE_JVMTI 1924 1925 // Restore machine SP 1926 __ restore_sp_after_call(); 1927 1928 __ dispatch_next(vtos); 1929 // end of PopFrame support 1930 1931 Interpreter::_remove_activation_entry = __ pc(); 1932 1933 // preserve exception over this code sequence 1934 __ pop_ptr(r0); 1935 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1936 // remove the activation (without doing throws on illegalMonitorExceptions) 1937 __ remove_activation(vtos, false, true, false); 1938 // restore exception 1939 __ get_vm_result(r0, rthread); 1940 1941 // In between activations - previous activation type unknown yet 1942 // compute continuation point - the continuation point expects the 1943 // following registers set up: 1944 // 1945 // r0: exception 1946 // lr: return address/pc that threw exception 1947 // esp: expression stack of caller 1948 // rfp: fp of caller 1949 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 1950 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1951 SharedRuntime::exception_handler_for_return_address), 1952 rthread, lr); 1953 __ mov(r1, r0); // save exception handler 1954 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 1955 // We might be returning to a deopt handler that expects r3 to 1956 // contain the exception pc 1957 __ mov(r3, lr); 1958 // Note that an "issuing PC" is actually the next PC after the call 1959 __ br(r1); // jump to exception 1960 // handler of caller 1961 } 1962 1963 1964 // 1965 // JVMTI ForceEarlyReturn support 1966 // 1967 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1968 address entry = __ pc(); 1969 1970 __ restore_bcp(); 1971 __ restore_locals(); 1972 __ empty_expression_stack(); 1973 __ load_earlyret_value(state); 1974 1975 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 1976 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 1977 1978 // Clear the earlyret state 1979 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 1980 __ str(zr, cond_addr); 1981 1982 __ remove_activation(state, 1983 false, /* throw_monitor_exception */ 1984 false, /* install_monitor_exception */ 1985 true); /* notify_jvmdi */ 1986 __ ret(lr); 1987 1988 return entry; 1989 } // end of ForceEarlyReturn support 1990 1991 1992 1993 //----------------------------------------------------------------------------- 1994 // Helper for vtos entry point generation 1995 1996 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 1997 address& bep, 1998 address& cep, 1999 address& sep, 2000 address& aep, 2001 address& iep, 2002 address& lep, 2003 address& fep, 2004 address& dep, 2005 address& vep) { 2006 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2007 Label L; 2008 aep = __ pc(); // atos entry point 2009 __ push_ptr(); 2010 __ b(L); 2011 fep = __ pc(); // ftos entry point 2012 __ push_f(); 2013 __ b(L); 2014 dep = __ pc(); // dtos entry point 2015 __ push_d(); 2016 __ b(L); 2017 lep = __ pc(); // ltos entry point 2018 __ push_l(); 2019 __ b(L); 2020 bep = cep = sep = iep = __ pc(); // [bcsi]tos entry point 2021 __ push_i(); 2022 vep = __ pc(); // vtos entry point 2023 __ bind(L); 2024 generate_and_dispatch(t); 2025 } 2026 2027 //----------------------------------------------------------------------------- 2028 2029 // Non-product code 2030 #ifndef PRODUCT 2031 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2032 address entry = __ pc(); 2033 2034 __ protect_return_address(); 2035 __ push(lr); 2036 __ push(state); 2037 __ push(RegSet::range(r0, r15), sp); 2038 __ mov(c_rarg2, r0); // Pass itos 2039 __ call_VM(noreg, 2040 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2041 c_rarg1, c_rarg2, c_rarg3); 2042 __ pop(RegSet::range(r0, r15), sp); 2043 __ pop(state); 2044 __ pop(lr); 2045 __ authenticate_return_address(); 2046 __ ret(lr); // return from result handler 2047 2048 return entry; 2049 } 2050 2051 void TemplateInterpreterGenerator::count_bytecode() { 2052 __ mov(r10, (address) &BytecodeCounter::_counter_value); 2053 __ atomic_addw(noreg, 1, r10); 2054 } 2055 2056 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2057 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 2058 __ atomic_addw(noreg, 1, r10); 2059 } 2060 2061 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2062 // Calculate new index for counter: 2063 // _index = (_index >> log2_number_of_codes) | 2064 // (bytecode << log2_number_of_codes); 2065 Register index_addr = rscratch1; 2066 Register index = rscratch2; 2067 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2068 __ ldrw(index, index_addr); 2069 __ mov(r10, 2070 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2071 __ orrw(index, r10, index, Assembler::LSR, 2072 BytecodePairHistogram::log2_number_of_codes); 2073 __ strw(index, index_addr); 2074 2075 // Bump bucket contents: 2076 // _counters[_index] ++; 2077 Register counter_addr = rscratch1; 2078 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2079 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2080 __ atomic_addw(noreg, 1, counter_addr); 2081 } 2082 2083 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2084 // Call a little run-time stub to avoid blow-up for each bytecode. 2085 // The run-time runtime saves the right registers, depending on 2086 // the tosca in-state for the given template. 2087 2088 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2089 "entry must have been generated"); 2090 __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); 2091 __ reinit_heapbase(); 2092 } 2093 2094 2095 void TemplateInterpreterGenerator::stop_interpreter_at() { 2096 Label L; 2097 __ push(rscratch1); 2098 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2099 __ ldr(rscratch1, Address(rscratch1)); 2100 __ mov(rscratch2, StopInterpreterAt); 2101 __ cmpw(rscratch1, rscratch2); 2102 __ br(Assembler::NE, L); 2103 __ brk(0); 2104 __ bind(L); 2105 __ pop(rscratch1); 2106 } 2107 2108 #endif // !PRODUCT