1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "compiler/compiler_globals.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interpreter/bytecodeHistogram.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateInterpreterGenerator.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "interpreter/bytecodeTracer.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/arrayOop.hpp"
  40 #include "oops/method.hpp"
  41 #include "oops/methodCounters.hpp"
  42 #include "oops/methodData.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/inlineKlass.hpp"
  45 #include "oops/resolvedIndyEntry.hpp"
  46 #include "oops/resolvedMethodEntry.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiThreadState.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/globals.hpp"
  53 #include "runtime/jniHandles.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/synchronizer.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "utilities/checkedCast.hpp"
  60 #include "utilities/debug.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 #include <sys/types.h>
  63 
  64 // Size of interpreter code.  Increase if too small.  Interpreter will
  65 // fail with a guarantee ("not enough space for interpreter generation");
  66 // if too small.
  67 // Run with +PrintInterpreter to get the VM to print out the size.
  68 // Max size with JVMTI
  69 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  70 
  71 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  72 
  73 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  74   address entry = __ pc();
  75 
  76   __ andr(esp, esp, -16);
  77   __ mov(c_rarg3, esp);
  78   // rmethod
  79   // rlocals
  80   // c_rarg3: first stack arg - wordSize
  81 
  82   // adjust sp
  83   __ sub(sp, c_rarg3, 18 * wordSize);
  84   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  85   __ call_VM(noreg,
  86              CAST_FROM_FN_PTR(address,
  87                               InterpreterRuntime::slow_signature_handler),
  88              rmethod, rlocals, c_rarg3);
  89 
  90   // r0: result handler
  91 
  92   // Stack layout:
  93   // rsp: return address           <- sp
  94   //      1 garbage
  95   //      8 integer args (if static first is unused)
  96   //      1 float/double identifiers
  97   //      8 double args
  98   //        stack args              <- esp
  99   //        garbage
 100   //        expression stack bottom
 101   //        bcp (null)
 102   //        ...
 103 
 104   // Restore LR
 105   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 106 
 107   // Do FP first so we can use c_rarg3 as temp
 108   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 109 
 110   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 111     const FloatRegister r = as_FloatRegister(i);
 112 
 113     Label d, done;
 114 
 115     __ tbnz(c_rarg3, i, d);
 116     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 117     __ b(done);
 118     __ bind(d);
 119     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 120     __ bind(done);
 121   }
 122 
 123   // c_rarg0 contains the result from the call of
 124   // InterpreterRuntime::slow_signature_handler so we don't touch it
 125   // here.  It will be loaded with the JNIEnv* later.
 126   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 127   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 128     Register rm = as_Register(i), rn = as_Register(i+1);
 129     __ ldp(rm, rn, Address(sp, i * wordSize));
 130   }
 131 
 132   __ add(sp, sp, 18 * wordSize);
 133   __ ret(lr);
 134 
 135   return entry;
 136 }
 137 
 138 
 139 //
 140 // Various method entries
 141 //
 142 
 143 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 144   // rmethod: Method*
 145   // r19_sender_sp: sender sp
 146   // esp: args
 147 
 148   // These don't need a safepoint check because they aren't virtually
 149   // callable. We won't enter these intrinsics from compiled code.
 150   // If in the future we added an intrinsic which was virtually callable
 151   // we'd have to worry about how to safepoint so that this code is used.
 152 
 153   // mathematical functions inlined by compiler
 154   // (interpreter must provide identical implementation
 155   // in order to avoid monotonicity bugs when switching
 156   // from interpreter to compiler in the middle of some
 157   // computation)
 158   //
 159   // stack:
 160   //        [ arg ] <-- esp
 161   //        [ arg ]
 162   // retaddr in lr
 163 
 164   address entry_point = nullptr;
 165   Register continuation = lr;
 166   switch (kind) {
 167   case Interpreter::java_lang_math_abs:
 168     entry_point = __ pc();
 169     __ ldrd(v0, Address(esp));
 170     __ fabsd(v0, v0);
 171     __ mov(sp, r19_sender_sp); // Restore caller's SP
 172     break;
 173   case Interpreter::java_lang_math_sqrt:
 174     entry_point = __ pc();
 175     __ ldrd(v0, Address(esp));
 176     __ fsqrtd(v0, v0);
 177     __ mov(sp, r19_sender_sp);
 178     break;
 179   case Interpreter::java_lang_math_sin :
 180   case Interpreter::java_lang_math_cos :
 181   case Interpreter::java_lang_math_tan :
 182   case Interpreter::java_lang_math_log :
 183   case Interpreter::java_lang_math_log10 :
 184   case Interpreter::java_lang_math_exp :
 185     entry_point = __ pc();
 186     __ ldrd(v0, Address(esp));
 187     __ mov(sp, r19_sender_sp);
 188     __ mov(r23, lr);
 189     continuation = r23;  // The first free callee-saved register
 190     generate_transcendental_entry(kind, 1);
 191     break;
 192   case Interpreter::java_lang_math_pow :
 193     entry_point = __ pc();
 194     __ mov(r23, lr);
 195     continuation = r23;
 196     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 197     __ ldrd(v1, Address(esp));
 198     __ mov(sp, r19_sender_sp);
 199     generate_transcendental_entry(kind, 2);
 200     break;
 201   case Interpreter::java_lang_math_fmaD :
 202     if (UseFMA) {
 203       entry_point = __ pc();
 204       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 205       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 206       __ ldrd(v2, Address(esp));
 207       __ fmaddd(v0, v0, v1, v2);
 208       __ mov(sp, r19_sender_sp); // Restore caller's SP
 209     }
 210     break;
 211   case Interpreter::java_lang_math_fmaF :
 212     if (UseFMA) {
 213       entry_point = __ pc();
 214       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 215       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 216       __ ldrs(v2, Address(esp));
 217       __ fmadds(v0, v0, v1, v2);
 218       __ mov(sp, r19_sender_sp); // Restore caller's SP
 219     }
 220     break;
 221   default:
 222     ;
 223   }
 224   if (entry_point) {
 225     __ br(continuation);
 226   }
 227 
 228   return entry_point;
 229 }
 230 
 231   // double trigonometrics and transcendentals
 232   // static jdouble dsin(jdouble x);
 233   // static jdouble dcos(jdouble x);
 234   // static jdouble dtan(jdouble x);
 235   // static jdouble dlog(jdouble x);
 236   // static jdouble dlog10(jdouble x);
 237   // static jdouble dexp(jdouble x);
 238   // static jdouble dpow(jdouble x, jdouble y);
 239 
 240 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 241   address fn;
 242   switch (kind) {
 243   case Interpreter::java_lang_math_sin :
 244     if (StubRoutines::dsin() == nullptr) {
 245       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 246     } else {
 247       fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
 248     }
 249     break;
 250   case Interpreter::java_lang_math_cos :
 251     if (StubRoutines::dcos() == nullptr) {
 252       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 253     } else {
 254       fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
 255     }
 256     break;
 257   case Interpreter::java_lang_math_tan :
 258     if (StubRoutines::dtan() == nullptr) {
 259       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 260     } else {
 261       fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
 262     }
 263     break;
 264   case Interpreter::java_lang_math_log :
 265     if (StubRoutines::dlog() == nullptr) {
 266       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 267     } else {
 268       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
 269     }
 270     break;
 271   case Interpreter::java_lang_math_log10 :
 272     if (StubRoutines::dlog10() == nullptr) {
 273       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 274     } else {
 275       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
 276     }
 277     break;
 278   case Interpreter::java_lang_math_exp :
 279     if (StubRoutines::dexp() == nullptr) {
 280       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 281     } else {
 282       fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
 283     }
 284     break;
 285   case Interpreter::java_lang_math_pow :
 286     if (StubRoutines::dpow() == nullptr) {
 287       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 288     } else {
 289       fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
 290     }
 291     break;
 292   default:
 293     ShouldNotReachHere();
 294     fn = nullptr;  // unreachable
 295   }
 296   __ mov(rscratch1, fn);
 297   __ blr(rscratch1);
 298 }
 299 
 300 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() {
 301   assert(VM_Version::supports_float16(), "this intrinsic is not supported");
 302   // r19_sender_sp: sender sp
 303   // stack:
 304   //        [ arg ] <-- esp
 305   //        [ arg ]
 306   // retaddr in lr
 307   // result in v0
 308 
 309   address entry_point = __ pc();
 310   __ ldrw(c_rarg0, Address(esp));
 311   __ flt16_to_flt(v0, c_rarg0, v1);
 312   __ mov(sp, r19_sender_sp); // Restore caller's SP
 313   __ br(lr);
 314   return entry_point;
 315 }
 316 
 317 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() {
 318   assert(VM_Version::supports_float16(), "this intrinsic is not supported");
 319   // r19_sender_sp: sender sp
 320   // stack:
 321   //        [ arg ] <-- esp
 322   //        [ arg ]
 323   // retaddr in lr
 324   // result in c_rarg0
 325 
 326   address entry_point = __ pc();
 327   __ ldrs(v0, Address(esp));
 328   __ flt_to_flt16(c_rarg0, v0, v1);
 329   __ mov(sp, r19_sender_sp); // Restore caller's SP
 330   __ br(lr);
 331   return entry_point;
 332 }
 333 
 334 // Abstract method entry
 335 // Attempt to execute abstract method. Throw exception
 336 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 337   // rmethod: Method*
 338   // r19_sender_sp: sender SP
 339 
 340   address entry_point = __ pc();
 341 
 342   // abstract method entry
 343 
 344   //  pop return address, reset last_sp to null
 345   __ empty_expression_stack();
 346   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 347   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 348 
 349   // throw exception
 350   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 351                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 352                                      rmethod);
 353   // the call_VM checks for exception, so we should never return here.
 354   __ should_not_reach_here();
 355 
 356   return entry_point;
 357 }
 358 
 359 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 360   address entry = __ pc();
 361 
 362 #ifdef ASSERT
 363   {
 364     Label L;
 365     __ ldr(rscratch1, Address(rfp,
 366                        frame::interpreter_frame_monitor_block_top_offset *
 367                        wordSize));
 368     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 369     __ mov(rscratch2, sp);
 370     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 371                            // grows negative)
 372     __ br(Assembler::HS, L); // check if frame is complete
 373     __ stop ("interpreter frame not set up");
 374     __ bind(L);
 375   }
 376 #endif // ASSERT
 377   // Restore bcp under the assumption that the current frame is still
 378   // interpreted
 379   __ restore_bcp();
 380 
 381   // expression stack must be empty before entering the VM if an
 382   // exception happened
 383   __ empty_expression_stack();
 384   // throw exception
 385   __ call_VM(noreg,
 386              CAST_FROM_FN_PTR(address,
 387                               InterpreterRuntime::throw_StackOverflowError));
 388   return entry;
 389 }
 390 
 391 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 392   address entry = __ pc();
 393   // expression stack must be empty before entering the VM if an
 394   // exception happened
 395   __ empty_expression_stack();
 396   // setup parameters
 397 
 398   // ??? convention: expect aberrant index in register r1
 399   __ movw(c_rarg2, r1);
 400   // ??? convention: expect array in register r3
 401   __ mov(c_rarg1, r3);
 402   __ call_VM(noreg,
 403              CAST_FROM_FN_PTR(address,
 404                               InterpreterRuntime::
 405                               throw_ArrayIndexOutOfBoundsException),
 406              c_rarg1, c_rarg2);
 407   return entry;
 408 }
 409 
 410 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 411   address entry = __ pc();
 412 
 413   // object is at TOS
 414   __ pop(c_rarg1);
 415 
 416   // expression stack must be empty before entering the VM if an
 417   // exception happened
 418   __ empty_expression_stack();
 419 
 420   __ call_VM(noreg,
 421              CAST_FROM_FN_PTR(address,
 422                               InterpreterRuntime::
 423                               throw_ClassCastException),
 424              c_rarg1);
 425   return entry;
 426 }
 427 
 428 address TemplateInterpreterGenerator::generate_exception_handler_common(
 429         const char* name, const char* message, bool pass_oop) {
 430   assert(!pass_oop || message == nullptr, "either oop or message but not both");
 431   address entry = __ pc();
 432   if (pass_oop) {
 433     // object is at TOS
 434     __ pop(c_rarg2);
 435   }
 436   // expression stack must be empty before entering the VM if an
 437   // exception happened
 438   __ empty_expression_stack();
 439   // setup parameters
 440   __ lea(c_rarg1, Address((address)name));
 441   if (pass_oop) {
 442     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 443                                     InterpreterRuntime::
 444                                     create_klass_exception),
 445                c_rarg1, c_rarg2);
 446   } else {
 447     // kind of lame ExternalAddress can't take null because
 448     // external_word_Relocation will assert.
 449     if (message != nullptr) {
 450       __ lea(c_rarg2, Address((address)message));
 451     } else {
 452       __ mov(c_rarg2, NULL_WORD);
 453     }
 454     __ call_VM(r0,
 455                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 456                c_rarg1, c_rarg2);
 457   }
 458   // throw exception
 459   __ b(address(Interpreter::throw_exception_entry()));
 460   return entry;
 461 }
 462 
 463 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 464   address entry = __ pc();
 465 
 466   // Restore stack bottom in case i2c adjusted stack
 467   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 468   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 469   // and null it as marker that esp is now tos until next java call
 470   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 471 
 472   if (state == atos && InlineTypeReturnedAsFields) {
 473     __ store_inline_type_fields_to_buf(nullptr, true);
 474   }
 475 
 476   __ restore_bcp();
 477   __ restore_locals();
 478   __ restore_constant_pool_cache();
 479   __ get_method(rmethod);
 480 
 481   if (state == atos) {
 482     Register obj = r0;
 483     Register mdp = r1;
 484     Register tmp = r2;
 485     __ profile_return_type(mdp, obj, tmp);
 486   }
 487 
 488   const Register cache = r1;
 489   const Register index = r2;
 490 
 491   if (index_size == sizeof(u4)) {
 492     __ load_resolved_indy_entry(cache, index);
 493     __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset())));
 494     __ add(esp, esp, cache, Assembler::LSL, 3);
 495   } else {
 496     // Pop N words from the stack
 497     assert(index_size == sizeof(u2), "Can only be u2");
 498     __ load_method_entry(cache, index);
 499     __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
 500     __ add(esp, esp, cache, Assembler::LSL, 3);
 501   }
 502 
 503   // Restore machine SP
 504   __ restore_sp_after_call();
 505 
 506   __ check_and_handle_popframe(rthread);
 507   __ check_and_handle_earlyret(rthread);
 508 
 509   __ get_dispatch();
 510   __ dispatch_next(state, step);
 511 
 512   return entry;
 513 }
 514 
 515 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 516                                                                int step,
 517                                                                address continuation) {
 518   address entry = __ pc();
 519   __ restore_bcp();
 520   __ restore_locals();
 521   __ restore_constant_pool_cache();
 522   __ get_method(rmethod);
 523   __ get_dispatch();
 524 
 525   __ restore_sp_after_call();  // Restore SP to extended SP
 526 
 527   // Restore expression stack pointer
 528   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 529   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 530   // null last_sp until next java call
 531   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 532 
 533 #if INCLUDE_JVMCI
 534   // Check if we need to take lock at entry of synchronized method.  This can
 535   // only occur on method entry so emit it only for vtos with step 0.
 536   if (EnableJVMCI && state == vtos && step == 0) {
 537     Label L;
 538     __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
 539     __ cbz(rscratch1, L);
 540     // Clear flag.
 541     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 542     // Take lock.
 543     lock_method();
 544     __ bind(L);
 545   } else {
 546 #ifdef ASSERT
 547     if (EnableJVMCI) {
 548       Label L;
 549       __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset()));
 550       __ cbz(rscratch1, L);
 551       __ stop("unexpected pending monitor in deopt entry");
 552       __ bind(L);
 553     }
 554 #endif
 555   }
 556 #endif
 557   // handle exceptions
 558   {
 559     Label L;
 560     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 561     __ cbz(rscratch1, L);
 562     __ call_VM(noreg,
 563                CAST_FROM_FN_PTR(address,
 564                                 InterpreterRuntime::throw_pending_exception));
 565     __ should_not_reach_here();
 566     __ bind(L);
 567   }
 568 
 569   if (continuation == nullptr) {
 570     __ dispatch_next(state, step);
 571   } else {
 572     __ jump_to_entry(continuation);
 573   }
 574   return entry;
 575 }
 576 
 577 address TemplateInterpreterGenerator::generate_result_handler_for(
 578         BasicType type) {
 579     address entry = __ pc();
 580   switch (type) {
 581   case T_BOOLEAN: __ c2bool(r0);         break;
 582   case T_CHAR   : __ uxth(r0, r0);       break;
 583   case T_BYTE   : __ sxtb(r0, r0);        break;
 584   case T_SHORT  : __ sxth(r0, r0);        break;
 585   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 586   case T_LONG   : /* nothing to do */        break;
 587   case T_VOID   : /* nothing to do */        break;
 588   case T_FLOAT  : /* nothing to do */        break;
 589   case T_DOUBLE : /* nothing to do */        break;
 590   case T_OBJECT :
 591     // retrieve result from frame
 592     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 593     // and verify it
 594     __ verify_oop(r0);
 595     break;
 596   default       : ShouldNotReachHere();
 597   }
 598   __ ret(lr);                                  // return from result handler
 599   return entry;
 600 }
 601 
 602 address TemplateInterpreterGenerator::generate_safept_entry_for(
 603         TosState state,
 604         address runtime_entry) {
 605   address entry = __ pc();
 606   __ push(state);
 607   __ push_cont_fastpath(rthread);
 608   __ call_VM(noreg, runtime_entry);
 609   __ pop_cont_fastpath(rthread);
 610   __ membar(Assembler::AnyAny);
 611   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 612   return entry;
 613 }
 614 
 615 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() {
 616   if (!Continuations::enabled()) return nullptr;
 617   address start = __ pc();
 618 
 619   __ restore_bcp();
 620   __ restore_locals();
 621 
 622   // Restore constant pool cache
 623   __ ldr(rcpool, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 624 
 625   // Restore Java expression stack pointer
 626   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 627   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
 628   // and null it as marker that esp is now tos until next java call
 629   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 630 
 631   // Restore machine SP
 632   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
 633   __ lea(sp, Address(rfp, rscratch1, Address::lsl(LogBytesPerWord)));
 634 
 635   // Restore method
 636   __ ldr(rmethod, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 637 
 638   // Restore dispatch
 639   uint64_t offset;
 640   __ adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 641   __ add(rdispatch, rdispatch, offset);
 642 
 643   __ ret(lr);
 644 
 645   return start;
 646 }
 647 
 648 
 649 // Helpers for commoning out cases in the various type of method entries.
 650 //
 651 
 652 
 653 // increment invocation count & check for overflow
 654 //
 655 // Note: checking for negative value instead of overflow
 656 //       so we have a 'sticky' overflow test
 657 //
 658 // rmethod: method
 659 //
 660 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
 661   Label done;
 662   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 663   int increment = InvocationCounter::count_increment;
 664   Label no_mdo;
 665   if (ProfileInterpreter) {
 666     // Are we profiling?
 667     __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 668     __ cbz(r0, no_mdo);
 669     // Increment counter in the MDO
 670     const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 671                                               in_bytes(InvocationCounter::counter_offset()));
 672     const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 673     __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 674     __ b(done);
 675   }
 676   __ bind(no_mdo);
 677   // Increment counter in MethodCounters
 678   const Address invocation_counter(rscratch2,
 679                 MethodCounters::invocation_counter_offset() +
 680                 InvocationCounter::counter_offset());
 681   __ get_method_counters(rmethod, rscratch2, done);
 682   const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 683   __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 684   __ bind(done);
 685 }
 686 
 687 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 688 
 689   // Asm interpreter on entry
 690   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 691   // Everything as it was on entry
 692 
 693   // InterpreterRuntime::frequency_counter_overflow takes two
 694   // arguments, the first (thread) is passed by call_VM, the second
 695   // indicates if the counter overflow occurs at a backwards branch
 696   // (null bcp).  We pass zero for it.  The call returns the address
 697   // of the verified entry point for the method or null if the
 698   // compilation did not complete (either went background or bailed
 699   // out).
 700   __ mov(c_rarg1, 0);
 701   __ call_VM(noreg,
 702              CAST_FROM_FN_PTR(address,
 703                               InterpreterRuntime::frequency_counter_overflow),
 704              c_rarg1);
 705 
 706   __ b(do_continue);
 707 }
 708 
 709 // See if we've got enough room on the stack for locals plus overhead
 710 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 711 // without going through the signal handler, i.e., reserved and yellow zones
 712 // will not be made usable. The shadow zone must suffice to handle the
 713 // overflow.
 714 // The expression stack grows down incrementally, so the normal guard
 715 // page mechanism will work for that.
 716 //
 717 // NOTE: Since the additional locals are also always pushed (wasn't
 718 // obvious in generate_method_entry) so the guard should work for them
 719 // too.
 720 //
 721 // Args:
 722 //      r3: number of additional locals this frame needs (what we must check)
 723 //      rmethod: Method*
 724 //
 725 // Kills:
 726 //      r0
 727 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 728 
 729   // monitor entry size: see picture of stack set
 730   // (generate_method_entry) and frame_amd64.hpp
 731   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 732 
 733   // total overhead size: entry_size + (saved rbp through expr stack
 734   // bottom).  be sure to change this if you add/subtract anything
 735   // to/from the overhead area
 736   const int overhead_size =
 737     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 738 
 739   const size_t page_size = os::vm_page_size();
 740 
 741   Label after_frame_check;
 742 
 743   // see if the frame is greater than one page in size. If so,
 744   // then we need to verify there is enough stack space remaining
 745   // for the additional locals.
 746   //
 747   // Note that we use SUBS rather than CMP here because the immediate
 748   // field of this instruction may overflow.  SUBS can cope with this
 749   // because it is a macro that will expand to some number of MOV
 750   // instructions and a register operation.
 751   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 752   __ br(Assembler::LS, after_frame_check);
 753 
 754   // compute rsp as if this were going to be the last frame on
 755   // the stack before the red zone
 756 
 757   // locals + overhead, in bytes
 758   __ mov(r0, overhead_size);
 759   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 760 
 761   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 762   __ ldr(rscratch1, stack_limit);
 763 
 764 #ifdef ASSERT
 765   Label limit_okay;
 766   // Verify that thread stack limit is non-zero.
 767   __ cbnz(rscratch1, limit_okay);
 768   __ stop("stack overflow limit is zero");
 769   __ bind(limit_okay);
 770 #endif
 771 
 772   // Add stack limit to locals.
 773   __ add(r0, r0, rscratch1);
 774 
 775   // Check against the current stack bottom.
 776   __ cmp(sp, r0);
 777   __ br(Assembler::HI, after_frame_check);
 778 
 779   // Remove the incoming args, peeling the machine SP back to where it
 780   // was in the caller.  This is not strictly necessary, but unless we
 781   // do so the stack frame may have a garbage FP; this ensures a
 782   // correct call stack that we can always unwind.  The ANDR should be
 783   // unnecessary because the sender SP in r19 is always aligned, but
 784   // it doesn't hurt.
 785   __ andr(sp, r19_sender_sp, -16);
 786 
 787   // Note: the restored frame is not necessarily interpreted.
 788   // Use the shared runtime version of the StackOverflowError.
 789   assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated");
 790   __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry()));
 791 
 792   // all done with frame size check
 793   __ bind(after_frame_check);
 794 }
 795 
 796 // Allocate monitor and lock method (asm interpreter)
 797 //
 798 // Args:
 799 //      rmethod: Method*
 800 //      rlocals: locals
 801 //
 802 // Kills:
 803 //      r0
 804 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 805 //      rscratch1, rscratch2 (scratch regs)
 806 void TemplateInterpreterGenerator::lock_method() {
 807   // synchronize method
 808   const Address access_flags(rmethod, Method::access_flags_offset());
 809   const Address monitor_block_top(
 810         rfp,
 811         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 812   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 813 
 814 #ifdef ASSERT
 815   {
 816     Label L;
 817     __ ldrh(r0, access_flags);
 818     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 819     __ br(Assembler::NE, L);
 820     __ stop("method doesn't need synchronization");
 821     __ bind(L);
 822   }
 823 #endif // ASSERT
 824 
 825   // get synchronization object
 826   {
 827     Label done;
 828     __ ldrh(r0, access_flags);
 829     __ tst(r0, JVM_ACC_STATIC);
 830     // get receiver (assume this is frequent case)
 831     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 832     __ br(Assembler::EQ, done);
 833     __ load_mirror(r0, rmethod, r5, rscratch2);
 834 
 835 #ifdef ASSERT
 836     {
 837       Label L;
 838       __ cbnz(r0, L);
 839       __ stop("synchronization object is null");
 840       __ bind(L);
 841     }
 842 #endif // ASSERT
 843 
 844     __ bind(done);
 845   }
 846 
 847   // add space for monitor & lock
 848   __ check_extended_sp();
 849   __ sub(sp, sp, entry_size); // add space for a monitor entry
 850   __ sub(esp, esp, entry_size);
 851   __ sub(rscratch1, sp, rfp);
 852   __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 853   __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
 854   __ sub(rscratch1, esp, rfp);
 855   __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
 856   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 857 
 858   // store object
 859   __ str(r0, Address(esp, BasicObjectLock::obj_offset()));
 860   __ mov(c_rarg1, esp); // object address
 861   __ lock_object(c_rarg1);
 862 }
 863 
 864 // Generate a fixed interpreter frame. This is identical setup for
 865 // interpreted methods and for native methods hence the shared code.
 866 //
 867 // Args:
 868 //      lr: return address
 869 //      rmethod: Method*
 870 //      rlocals: pointer to locals
 871 //      rcpool: cp cache
 872 //      stack_pointer: previous sp
 873 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 874   // Save ConstMethod* in r5_const_method for later use to avoid loading multiple times
 875   Register r5_const_method = r5;
 876   __ ldr(r5_const_method, Address(rmethod, Method::const_offset()));
 877 
 878   // initialize fixed part of activation frame
 879   if (native_call) {
 880     __ sub(esp, sp, 14 *  wordSize);
 881     __ mov(rbcp, zr);
 882     __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
 883     __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize)));
 884     // add 2 zero-initialized slots for native calls
 885     __ stp(zr, zr, Address(sp, 12 * wordSize));
 886   } else {
 887     __ sub(esp, sp, 12 *  wordSize);
 888     __ add(rbcp, r5_const_method, in_bytes(ConstMethod::codes_offset())); // get codebase
 889     __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset);
 890     __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize)));
 891   }
 892 
 893   if (ProfileInterpreter) {
 894     Label method_data_continue;
 895     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 896     __ cbz(rscratch1, method_data_continue);
 897     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 898     __ bind(method_data_continue);
 899     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 900   } else {
 901     __ stp(zr, rmethod, Address(sp, 6 * wordSize));         // save Method* (no mdp)
 902   }
 903 
 904   __ protect_return_address();
 905   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 906   __ lea(rfp, Address(sp, 10 * wordSize));
 907 
 908   // Save ConstantPool* in r11_constants for later use to avoid loading multiple times
 909   Register r11_constants = r11;
 910   __ ldr(r11_constants, Address(r5_const_method, ConstMethod::constants_offset()));
 911   __ ldr(rcpool, Address(r11_constants, ConstantPool::cache_offset()));
 912   __ sub(rscratch1, rlocals, rfp);
 913   __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize);   // rscratch1 = rlocals - fp();
 914   // Store relativized rlocals, see frame::interpreter_frame_locals().
 915   __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize));
 916 
 917   // set sender sp
 918   // leave last_sp as null
 919   __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize));
 920 
 921   // Get mirror. Resolve ConstantPool* -> InstanceKlass* -> Java mirror.
 922   __ ldr(r10, Address(r11_constants, ConstantPool::pool_holder_offset()));
 923   __ ldr(r10, Address(r10, in_bytes(Klass::java_mirror_offset())));
 924   __ resolve_oop_handle(r10, rscratch1, rscratch2);
 925   if (! native_call) {
 926     __ ldrh(rscratch1, Address(r5_const_method, ConstMethod::max_stack_offset()));
 927     __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries()));
 928     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 929     __ andr(rscratch1, rscratch1, -16);
 930     __ sub(rscratch2, rscratch1, rfp);
 931     __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
 932     // Store extended SP and mirror
 933     __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
 934     // Move SP out of the way
 935     __ mov(sp, rscratch1);
 936   } else {
 937     // Make sure there is room for the exception oop pushed in case method throws
 938     // an exception (see TemplateInterpreterGenerator::generate_throw_exception())
 939     __ sub(rscratch1, sp, 2 * wordSize);
 940     __ sub(rscratch2, rscratch1, rfp);
 941     __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize);
 942     __ stp(r10, rscratch2, Address(sp, 4 * wordSize));
 943     __ mov(sp, rscratch1);
 944   }
 945 }
 946 
 947 // End of helpers
 948 
 949 // Various method entries
 950 //------------------------------------------------------------------------------------------------------------------------
 951 //
 952 //
 953 
 954 // Method entry for java.lang.ref.Reference.get.
 955 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 956   // Code: _aload_0, _getfield, _areturn
 957   // parameter size = 1
 958   //
 959   // The code that gets generated by this routine is split into 2 parts:
 960   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 961   //    2. The slow path - which is an expansion of the regular method entry.
 962   //
 963   // Notes:-
 964   // * In the G1 code we do not check whether we need to block for
 965   //   a safepoint. If G1 is enabled then we must execute the specialized
 966   //   code for Reference.get (except when the Reference object is null)
 967   //   so that we can log the value in the referent field with an SATB
 968   //   update buffer.
 969   //   If the code for the getfield template is modified so that the
 970   //   G1 pre-barrier code is executed when the current method is
 971   //   Reference.get() then going through the normal method entry
 972   //   will be fine.
 973   // * The G1 code can, however, check the receiver object (the instance
 974   //   of java.lang.Reference) and jump to the slow path if null. If the
 975   //   Reference object is null then we obviously cannot fetch the referent
 976   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 977   //   regular method entry code to generate the NPE.
 978   //
 979   // This code is based on generate_accessor_entry.
 980   //
 981   // rmethod: Method*
 982   // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path
 983 
 984   // LR is live.  It must be saved around calls.
 985 
 986   address entry = __ pc();
 987 
 988   const int referent_offset = java_lang_ref_Reference::referent_offset();
 989 
 990   Label slow_path;
 991   const Register local_0 = c_rarg0;
 992   // Check if local 0 != null
 993   // If the receiver is null then it is OK to jump to the slow path.
 994   __ ldr(local_0, Address(esp, 0));
 995   __ cbz(local_0, slow_path);
 996 
 997   // Load the value of the referent field.
 998   const Address field_address(local_0, referent_offset);
 999   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
1000   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2);
1001 
1002   // areturn
1003   __ andr(sp, r19_sender_sp, -16);  // done with stack
1004   __ ret(lr);
1005 
1006   // generate a vanilla interpreter entry as the slow path
1007   __ bind(slow_path);
1008   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
1009   return entry;
1010 
1011 }
1012 
1013 /**
1014  * Method entry for static native methods:
1015  *   int java.util.zip.CRC32.update(int crc, int b)
1016  */
1017 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1018   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1019   address entry = __ pc();
1020 
1021   // rmethod: Method*
1022   // r19_sender_sp: senderSP must preserved for slow path
1023   // esp: args
1024 
1025   Label slow_path;
1026   // If we need a safepoint check, generate full interpreter entry.
1027   __ safepoint_poll(slow_path, false /* at_return */, false /* in_nmethod */);
1028 
1029   // We don't generate local frame and don't align stack because
1030   // we call stub code and there is no safepoint on this path.
1031 
1032   // Load parameters
1033   const Register crc = c_rarg0;  // crc
1034   const Register val = c_rarg1;  // source java byte value
1035   const Register tbl = c_rarg2;  // scratch
1036 
1037   // Arguments are reversed on java expression stack
1038   __ ldrw(val, Address(esp, 0));              // byte value
1039   __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
1040 
1041   uint64_t offset;
1042   __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
1043   __ add(tbl, tbl, offset);
1044 
1045   __ mvnw(crc, crc); // ~crc
1046   __ update_byte_crc32(crc, val, tbl);
1047   __ mvnw(crc, crc); // ~crc
1048 
1049   // result in c_rarg0
1050 
1051   __ andr(sp, r19_sender_sp, -16);
1052   __ ret(lr);
1053 
1054   // generate a vanilla native entry as the slow path
1055   __ bind(slow_path);
1056   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1057   return entry;
1058 }
1059 
1060 /**
1061  * Method entry for static native methods:
1062  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1063  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1064  */
1065 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1066   assert(UseCRC32Intrinsics, "this intrinsic is not supported");
1067   address entry = __ pc();
1068 
1069   // rmethod,: Method*
1070   // r19_sender_sp: senderSP must preserved for slow path
1071 
1072   Label slow_path;
1073   // If we need a safepoint check, generate full interpreter entry.
1074   __ safepoint_poll(slow_path, false /* at_return */, false /* in_nmethod */);
1075 
1076   // We don't generate local frame and don't align stack because
1077   // we call stub code and there is no safepoint on this path.
1078 
1079   // Load parameters
1080   const Register crc = c_rarg0;  // crc
1081   const Register buf = c_rarg1;  // source java byte array address
1082   const Register len = c_rarg2;  // length
1083   const Register off = len;      // offset (never overlaps with 'len')
1084 
1085   // Arguments are reversed on java expression stack
1086   // Calculate address of start element
1087   if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1088     __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1089     __ ldrw(off, Address(esp, wordSize)); // offset
1090     __ add(buf, buf, off); // + offset
1091     __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1092   } else {
1093     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1094     __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1095     __ ldrw(off, Address(esp, wordSize)); // offset
1096     __ add(buf, buf, off); // + offset
1097     __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1098   }
1099   // Can now load 'len' since we're finished with 'off'
1100   __ ldrw(len, Address(esp, 0x0)); // Length
1101 
1102   __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1103 
1104   // We are frameless so we can just jump to the stub.
1105   __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1106 
1107   // generate a vanilla native entry as the slow path
1108   __ bind(slow_path);
1109   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1110   return entry;
1111 }
1112 
1113 /**
1114  * Method entry for intrinsic-candidate (non-native) methods:
1115  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1116  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1117  * Unlike CRC32, CRC32C does not have any methods marked as native
1118  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1119  */
1120 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1121   assert(UseCRC32CIntrinsics, "this intrinsic is not supported");
1122   address entry = __ pc();
1123 
1124   // Prepare jump to stub using parameters from the stack
1125   const Register crc = c_rarg0; // initial crc
1126   const Register buf = c_rarg1; // source java byte array address
1127   const Register len = c_rarg2; // len argument to the kernel
1128 
1129   const Register end = len; // index of last element to process
1130   const Register off = crc; // offset
1131 
1132   __ ldrw(end, Address(esp)); // int end
1133   __ ldrw(off, Address(esp, wordSize)); // int offset
1134   __ sub(len, end, off);
1135   __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1136   __ add(buf, buf, off); // + offset
1137   if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1138     __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1139   } else {
1140     __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1141     __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1142   }
1143 
1144   __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP
1145 
1146   // Jump to the stub.
1147   __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1148 
1149   return entry;
1150 }
1151 
1152 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1153   // See more discussion in stackOverflow.hpp.
1154 
1155   const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size());
1156   const int page_size = (int)os::vm_page_size();
1157   const int n_shadow_pages = shadow_zone_size / page_size;
1158 
1159 #ifdef ASSERT
1160   Label L_good_limit;
1161   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1162   __ cbnz(rscratch1, L_good_limit);
1163   __ stop("shadow zone safe limit is not initialized");
1164   __ bind(L_good_limit);
1165 
1166   Label L_good_watermark;
1167   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1168   __ cbnz(rscratch1, L_good_watermark);
1169   __ stop("shadow zone growth watermark is not initialized");
1170   __ bind(L_good_watermark);
1171 #endif
1172 
1173   Label L_done;
1174 
1175   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1176   __ cmp(sp, rscratch1);
1177   __ br(Assembler::HI, L_done);
1178 
1179   for (int p = 1; p <= n_shadow_pages; p++) {
1180     __ sub(rscratch2, sp, p*page_size);
1181     __ str(zr, Address(rscratch2));
1182   }
1183 
1184   // Record the new watermark, but only if the update is above the safe limit.
1185   // Otherwise, the next time around the check above would pass the safe limit.
1186   __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit()));
1187   __ cmp(sp, rscratch1);
1188   __ br(Assembler::LS, L_done);
1189   __ mov(rscratch1, sp);
1190   __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark()));
1191 
1192   __ bind(L_done);
1193 }
1194 
1195 // Interpreter stub for calling a native method. (asm interpreter)
1196 // This sets up a somewhat different looking stack for calling the
1197 // native method than the typical interpreter frame setup.
1198 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1199   // determine code generation flags
1200   bool inc_counter  = UseCompiler || CountCompiledCalls;
1201 
1202   // r1: Method*
1203   // rscratch1: sender sp
1204 
1205   address entry_point = __ pc();
1206 
1207   const Address constMethod       (rmethod, Method::const_offset());
1208   const Address access_flags      (rmethod, Method::access_flags_offset());
1209   const Address size_of_parameters(r2, ConstMethod::
1210                                        size_of_parameters_offset());
1211 
1212   // get parameter size (always needed)
1213   __ ldr(r2, constMethod);
1214   __ load_unsigned_short(r2, size_of_parameters);
1215 
1216   // Native calls don't need the stack size check since they have no
1217   // expression stack and the arguments are already on the stack and
1218   // we only add a handful of words to the stack.
1219 
1220   // rmethod: Method*
1221   // r2: size of parameters
1222   // rscratch1: sender sp
1223 
1224   // for natives the size of locals is zero
1225 
1226   // compute beginning of parameters (rlocals)
1227   __ add(rlocals, esp, r2, ext::uxtx, 3);
1228   __ add(rlocals, rlocals, -wordSize);
1229 
1230   // Pull SP back to minimum size: this avoids holes in the stack
1231   __ andr(sp, esp, -16);
1232 
1233   // initialize fixed part of activation frame
1234   generate_fixed_frame(true);
1235 
1236   // make sure method is native & not abstract
1237 #ifdef ASSERT
1238   __ ldrh(r0, access_flags);
1239   {
1240     Label L;
1241     __ tst(r0, JVM_ACC_NATIVE);
1242     __ br(Assembler::NE, L);
1243     __ stop("tried to execute non-native method as native");
1244     __ bind(L);
1245   }
1246   {
1247     Label L;
1248     __ tst(r0, JVM_ACC_ABSTRACT);
1249     __ br(Assembler::EQ, L);
1250     __ stop("tried to execute abstract method in interpreter");
1251     __ bind(L);
1252   }
1253 #endif
1254 
1255   // Since at this point in the method invocation the exception
1256   // handler would try to exit the monitor of synchronized methods
1257   // which hasn't been entered yet, we set the thread local variable
1258   // _do_not_unlock_if_synchronized to true. The remove_activation
1259   // will check this flag.
1260 
1261    const Address do_not_unlock_if_synchronized(rthread,
1262         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1263   __ mov(rscratch2, true);
1264   __ strb(rscratch2, do_not_unlock_if_synchronized);
1265 
1266   // increment invocation count & check for overflow
1267   Label invocation_counter_overflow;
1268   if (inc_counter) {
1269     generate_counter_incr(&invocation_counter_overflow);
1270   }
1271 
1272   Label continue_after_compile;
1273   __ bind(continue_after_compile);
1274 
1275   bang_stack_shadow_pages(true);
1276 
1277   // reset the _do_not_unlock_if_synchronized flag
1278   __ strb(zr, do_not_unlock_if_synchronized);
1279 
1280   // check for synchronized methods
1281   // Must happen AFTER invocation_counter check and stack overflow check,
1282   // so method is not locked if overflows.
1283   if (synchronized) {
1284     lock_method();
1285   } else {
1286     // no synchronization necessary
1287 #ifdef ASSERT
1288     {
1289       Label L;
1290       __ ldrh(r0, access_flags);
1291       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1292       __ br(Assembler::EQ, L);
1293       __ stop("method needs synchronization");
1294       __ bind(L);
1295     }
1296 #endif
1297   }
1298 
1299   // start execution
1300 #ifdef ASSERT
1301   {
1302     Label L;
1303     const Address monitor_block_top(rfp,
1304                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1305     __ ldr(rscratch1, monitor_block_top);
1306     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1307     __ cmp(esp, rscratch1);
1308     __ br(Assembler::EQ, L);
1309     __ stop("broken stack frame setup in interpreter 1");
1310     __ bind(L);
1311   }
1312 #endif
1313 
1314   // jvmti support
1315   __ notify_method_entry();
1316 
1317   // work registers
1318   const Register t = r17;
1319   const Register result_handler = r19;
1320 
1321   // allocate space for parameters
1322   __ ldr(t, Address(rmethod, Method::const_offset()));
1323   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1324 
1325   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1326   __ andr(sp, rscratch1, -16);
1327   __ mov(esp, rscratch1);
1328 
1329   // get signature handler
1330   {
1331     Label L;
1332     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1333     __ cbnz(t, L);
1334     __ call_VM(noreg,
1335                CAST_FROM_FN_PTR(address,
1336                                 InterpreterRuntime::prepare_native_call),
1337                rmethod);
1338     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1339     __ bind(L);
1340   }
1341 
1342   // call signature handler
1343   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1344          "adjust this code");
1345   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1346          "adjust this code");
1347   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1348           "adjust this code");
1349 
1350   // The generated handlers do not touch rmethod (the method).
1351   // However, large signatures cannot be cached and are generated
1352   // each time here.  The slow-path generator can do a GC on return,
1353   // so we must reload it after the call.
1354   __ blr(t);
1355   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1356 
1357 
1358   // result handler is in r0
1359   // set result handler
1360   __ mov(result_handler, r0);
1361   // Save it in the frame in case of preemption; we cannot rely on callee saved registers.
1362   __ str(r0, Address(rfp, frame::interpreter_frame_result_handler_offset * wordSize));
1363 
1364   // pass mirror handle if static call
1365   {
1366     Label L;
1367     __ ldrh(t, Address(rmethod, Method::access_flags_offset()));
1368     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1369     // get mirror
1370     __ load_mirror(t, rmethod, r10, rscratch2);
1371     // copy mirror into activation frame
1372     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1373     // pass handle to mirror
1374     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1375     __ bind(L);
1376   }
1377 
1378   // get native function entry point in r10
1379   {
1380     Label L;
1381     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1382     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1383     __ lea(rscratch2, unsatisfied);
1384     __ ldr(rscratch2, rscratch2);
1385     __ cmp(r10, rscratch2);
1386     __ br(Assembler::NE, L);
1387     __ call_VM(noreg,
1388                CAST_FROM_FN_PTR(address,
1389                                 InterpreterRuntime::prepare_native_call),
1390                rmethod);
1391     __ get_method(rmethod);
1392     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1393     __ bind(L);
1394   }
1395 
1396   // pass JNIEnv
1397   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1398 
1399   // It is enough that the pc() points into the right code
1400   // segment. It does not have to be the correct return pc.
1401   // For convenience we use the pc we want to resume to in
1402   // case of preemption on Object.wait.
1403   Label native_return;
1404   __ set_last_Java_frame(esp, rfp, native_return, rscratch1);
1405 
1406   // change thread state
1407 #ifdef ASSERT
1408   {
1409     Label L;
1410     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1411     __ cmp(t, (u1)_thread_in_Java);
1412     __ br(Assembler::EQ, L);
1413     __ stop("Wrong thread state in native stub");
1414     __ bind(L);
1415   }
1416 #endif
1417 
1418   // Change state to native
1419   __ mov(rscratch1, _thread_in_native);
1420   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1421   __ stlrw(rscratch1, rscratch2);
1422 
1423   __ push_cont_fastpath();
1424 
1425   // Call the native method.
1426   __ blr(r10);
1427 
1428   __ pop_cont_fastpath();
1429 
1430   __ get_method(rmethod);
1431   // result potentially in r0 or v0
1432 
1433   // Restore cpu control state after JNI call
1434   __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1435 
1436   // make room for the pushes we're about to do
1437   __ sub(rscratch1, esp, 4 * wordSize);
1438   __ andr(sp, rscratch1, -16);
1439 
1440   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1441   // in order to extract the result of a method call. If the order of these
1442   // pushes change or anything else is added to the stack then the code in
1443   // interpreter_frame_result must also change.
1444   __ push(dtos);
1445   __ push(ltos);
1446 
1447   __ verify_sve_vector_length();
1448 
1449   // change thread state
1450   __ mov(rscratch1, _thread_in_native_trans);
1451   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1452   __ stlrw(rscratch1, rscratch2);
1453 
1454   // Force this write out before the read below
1455   if (!UseSystemMemoryBarrier) {
1456     __ dmb(Assembler::ISH);
1457   }
1458 
1459   // check for safepoint operation in progress and/or pending suspend requests
1460   {
1461     Label L, Continue;
1462 
1463     // No need for acquire as Java threads always disarm themselves.
1464     __ safepoint_poll(L, true /* at_return */, false /* in_nmethod */);
1465     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1466     __ cbz(rscratch2, Continue);
1467     __ bind(L);
1468 
1469     // Don't use call_VM as it will see a possible pending exception
1470     // and forward it and never return here preventing us from
1471     // clearing _last_native_pc down below. So we do a runtime call by
1472     // hand.
1473     //
1474     __ mov(c_rarg0, rthread);
1475     __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1476     __ blr(rscratch2);
1477     __ get_method(rmethod);
1478     __ reinit_heapbase();
1479     __ bind(Continue);
1480   }
1481 
1482   // change thread state
1483   __ mov(rscratch1, _thread_in_Java);
1484   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1485   __ stlrw(rscratch1, rscratch2);
1486 
1487   if (LockingMode != LM_LEGACY) {
1488     // Check preemption for Object.wait()
1489     Label not_preempted;
1490     __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1491     __ cbz(rscratch1, not_preempted);
1492     __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1493     __ br(rscratch1);
1494     __ bind(native_return);
1495     __ restore_after_resume(true /* is_native */);
1496     // reload result_handler
1497     __ ldr(result_handler, Address(rfp, frame::interpreter_frame_result_handler_offset*wordSize));
1498     __ bind(not_preempted);
1499   } else {
1500     // any pc will do so just use this one for LM_LEGACY to keep code together.
1501     __ bind(native_return);
1502   }
1503 
1504   // reset_last_Java_frame
1505   __ reset_last_Java_frame(true);
1506 
1507   if (CheckJNICalls) {
1508     // clear_pending_jni_exception_check
1509     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1510   }
1511 
1512   // reset handle block
1513   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1514   __ str(zr, Address(t, JNIHandleBlock::top_offset()));
1515 
1516   // If result is an oop unbox and store it in frame where gc will see it
1517   // and result handler will pick it up
1518 
1519   {
1520     Label no_oop;
1521     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1522     __ cmp(t, result_handler);
1523     __ br(Assembler::NE, no_oop);
1524     // Unbox oop result, e.g. JNIHandles::resolve result.
1525     __ pop(ltos);
1526     __ resolve_jobject(r0, t, rscratch2);
1527     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1528     // keep stack depth as expected by pushing oop which will eventually be discarded
1529     __ push(ltos);
1530     __ bind(no_oop);
1531   }
1532 
1533   {
1534     Label no_reguard;
1535     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1536     __ ldrw(rscratch1, Address(rscratch1));
1537     __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled);
1538     __ br(Assembler::NE, no_reguard);
1539 
1540     __ push_call_clobbered_registers();
1541     __ mov(c_rarg0, rthread);
1542     __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1543     __ blr(rscratch2);
1544     __ pop_call_clobbered_registers();
1545 
1546     __ bind(no_reguard);
1547   }
1548 
1549   // The method register is junk from after the thread_in_native transition
1550   // until here.  Also can't call_VM until the bcp has been
1551   // restored.  Need bcp for throwing exception below so get it now.
1552   __ get_method(rmethod);
1553 
1554   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1555   // rbcp == code_base()
1556   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1557   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1558   // handle exceptions (exception handling will handle unlocking!)
1559   {
1560     Label L;
1561     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1562     __ cbz(rscratch1, L);
1563     // Note: At some point we may want to unify this with the code
1564     // used in call_VM_base(); i.e., we should use the
1565     // StubRoutines::forward_exception code. For now this doesn't work
1566     // here because the rsp is not correctly set at this point.
1567     __ MacroAssembler::call_VM(noreg,
1568                                CAST_FROM_FN_PTR(address,
1569                                InterpreterRuntime::throw_pending_exception));
1570     __ should_not_reach_here();
1571     __ bind(L);
1572   }
1573 
1574   // do unlocking if necessary
1575   {
1576     Label L;
1577     __ ldrh(t, Address(rmethod, Method::access_flags_offset()));
1578     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1579     // the code below should be shared with interpreter macro
1580     // assembler implementation
1581     {
1582       Label unlock;
1583       // BasicObjectLock will be first in list, since this is a
1584       // synchronized method. However, need to check that the object
1585       // has not been unlocked by an explicit monitorexit bytecode.
1586 
1587       // monitor expect in c_rarg1 for slow unlock path
1588       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1589                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1590                                           wordSize - sizeof(BasicObjectLock))));
1591 
1592       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset()));
1593       __ cbnz(t, unlock);
1594 
1595       // Entry already unlocked, need to throw exception
1596       __ MacroAssembler::call_VM(noreg,
1597                                  CAST_FROM_FN_PTR(address,
1598                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1599       __ should_not_reach_here();
1600 
1601       __ bind(unlock);
1602       __ unlock_object(c_rarg1);
1603     }
1604     __ bind(L);
1605   }
1606 
1607   #if INCLUDE_JFR
1608   __ enter_jfr_critical_section();
1609 
1610   // This poll test is to uphold the invariant that a JFR sampled frame
1611   // must not return to its caller without a prior safepoint poll check.
1612   // The earlier poll check in this routine is insufficient for this purpose
1613   // because the thread has transitioned back to Java.
1614 
1615   Label slow_path;
1616   Label fast_path;
1617   __ safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
1618   __ br(Assembler::AL, fast_path);
1619   __ bind(slow_path);
1620   __ push(dtos);
1621   __ push(ltos);
1622   __ set_last_Java_frame(esp, rfp, __ pc(), rscratch1);
1623   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
1624   __ reset_last_Java_frame(true);
1625   __ pop(ltos);
1626   __ pop(dtos);
1627   __ bind(fast_path);
1628 
1629 #endif // INCLUDE_JFR
1630 
1631   // jvmti support
1632   // Note: This must happen _after_ handling/throwing any exceptions since
1633   //       the exception handler code notifies the runtime of method exits
1634   //       too. If this happens before, method entry/exit notifications are
1635   //       not properly paired (was bug - gri 11/22/99).
1636   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1637 
1638   // restore potential result in r0:d0, call result handler to
1639   // restore potential result in ST0 & handle result
1640 
1641   __ pop(ltos);
1642   __ pop(dtos);
1643 
1644   __ blr(result_handler);
1645 
1646   // remove activation
1647   __ ldr(esp, Address(rfp,
1648                     frame::interpreter_frame_sender_sp_offset *
1649                     wordSize)); // get sender sp
1650   // remove frame anchor
1651   __ leave();
1652 
1653   JFR_ONLY(__ leave_jfr_critical_section();)
1654 
1655   // restore sender sp
1656   __ mov(sp, esp);
1657 
1658   __ ret(lr);
1659 
1660   if (inc_counter) {
1661     // Handle overflow of counter and compile method
1662     __ bind(invocation_counter_overflow);
1663     generate_counter_overflow(continue_after_compile);
1664   }
1665 
1666   return entry_point;
1667 }
1668 
1669 //
1670 // Generic interpreted method entry to (asm) interpreter
1671 //
1672 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1673   // determine code generation flags
1674   bool inc_counter  = UseCompiler || CountCompiledCalls;
1675 
1676   // rscratch1: sender sp
1677   address entry_point = __ pc();
1678 
1679   const Address constMethod(rmethod, Method::const_offset());
1680   const Address access_flags(rmethod, Method::access_flags_offset());
1681   const Address size_of_parameters(r3,
1682                                    ConstMethod::size_of_parameters_offset());
1683   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1684 
1685   // get parameter size (always needed)
1686   // need to load the const method first
1687   __ ldr(r3, constMethod);
1688   __ load_unsigned_short(r2, size_of_parameters);
1689 
1690   // r2: size of parameters
1691 
1692   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1693   __ sub(r3, r3, r2); // r3 = no. of additional locals
1694 
1695   // see if we've got enough room on the stack for locals plus overhead.
1696   generate_stack_overflow_check();
1697 
1698   // compute beginning of parameters (rlocals)
1699   __ add(rlocals, esp, r2, ext::uxtx, 3);
1700   __ sub(rlocals, rlocals, wordSize);
1701 
1702   __ mov(rscratch1, esp);
1703 
1704   // r3 - # of additional locals
1705   // allocate space for locals
1706   // explicitly initialize locals
1707   // Initializing memory allocated for locals in the same direction as
1708   // the stack grows to ensure page initialization order according
1709   // to windows-aarch64 stack page growth requirement (see
1710   // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack)
1711   {
1712     Label exit, loop;
1713     __ ands(zr, r3, r3);
1714     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1715     __ bind(loop);
1716     __ str(zr, Address(__ pre(rscratch1, -wordSize)));
1717     __ sub(r3, r3, 1); // until everything initialized
1718     __ cbnz(r3, loop);
1719     __ bind(exit);
1720   }
1721 
1722   // Padding between locals and fixed part of activation frame to ensure
1723   // SP is always 16-byte aligned.
1724   __ andr(sp, rscratch1, -16);
1725 
1726   // And the base dispatch table
1727   __ get_dispatch();
1728 
1729   // initialize fixed part of activation frame
1730   generate_fixed_frame(false);
1731 
1732   // make sure method is not native & not abstract
1733 #ifdef ASSERT
1734   __ ldrh(r0, access_flags);
1735   {
1736     Label L;
1737     __ tst(r0, JVM_ACC_NATIVE);
1738     __ br(Assembler::EQ, L);
1739     __ stop("tried to execute native method as non-native");
1740     __ bind(L);
1741   }
1742  {
1743     Label L;
1744     __ tst(r0, JVM_ACC_ABSTRACT);
1745     __ br(Assembler::EQ, L);
1746     __ stop("tried to execute abstract method in interpreter");
1747     __ bind(L);
1748   }
1749 #endif
1750 
1751   // Since at this point in the method invocation the exception
1752   // handler would try to exit the monitor of synchronized methods
1753   // which hasn't been entered yet, we set the thread local variable
1754   // _do_not_unlock_if_synchronized to true. The remove_activation
1755   // will check this flag.
1756 
1757    const Address do_not_unlock_if_synchronized(rthread,
1758         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1759   __ mov(rscratch2, true);
1760   __ strb(rscratch2, do_not_unlock_if_synchronized);
1761 
1762   Register mdp = r3;
1763   __ profile_parameters_type(mdp, r1, r2);
1764 
1765   // increment invocation count & check for overflow
1766   Label invocation_counter_overflow;
1767   if (inc_counter) {
1768     generate_counter_incr(&invocation_counter_overflow);
1769   }
1770 
1771   Label continue_after_compile;
1772   __ bind(continue_after_compile);
1773 
1774   bang_stack_shadow_pages(false);
1775 
1776   // reset the _do_not_unlock_if_synchronized flag
1777   __ strb(zr, do_not_unlock_if_synchronized);
1778 
1779   // check for synchronized methods
1780   // Must happen AFTER invocation_counter check and stack overflow check,
1781   // so method is not locked if overflows.
1782   if (synchronized) {
1783     // Allocate monitor and lock method
1784     lock_method();
1785   } else {
1786     // no synchronization necessary
1787 #ifdef ASSERT
1788     {
1789       Label L;
1790       __ ldrh(r0, access_flags);
1791       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1792       __ br(Assembler::EQ, L);
1793       __ stop("method needs synchronization");
1794       __ bind(L);
1795     }
1796 #endif
1797   }
1798 
1799   // start execution
1800 #ifdef ASSERT
1801   {
1802     Label L;
1803      const Address monitor_block_top (rfp,
1804                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1805     __ ldr(rscratch1, monitor_block_top);
1806     __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1807     __ cmp(esp, rscratch1);
1808     __ br(Assembler::EQ, L);
1809     __ stop("broken stack frame setup in interpreter 2");
1810     __ bind(L);
1811   }
1812 #endif
1813 
1814   // jvmti support
1815   __ notify_method_entry();
1816 
1817   __ dispatch_next(vtos);
1818 
1819   // invocation counter overflow
1820   if (inc_counter) {
1821     // Handle overflow of counter and compile method
1822     __ bind(invocation_counter_overflow);
1823     generate_counter_overflow(continue_after_compile);
1824   }
1825 
1826   return entry_point;
1827 }
1828 
1829 // Method entry for java.lang.Thread.currentThread
1830 address TemplateInterpreterGenerator::generate_currentThread() {
1831   address entry_point = __ pc();
1832 
1833   __ ldr(r0, Address(rthread, JavaThread::vthread_offset()));
1834   __ resolve_oop_handle(r0, rscratch1, rscratch2);
1835   __ ret(lr);
1836 
1837   return entry_point;
1838 }
1839 
1840 //-----------------------------------------------------------------------------
1841 // Exceptions
1842 
1843 void TemplateInterpreterGenerator::generate_throw_exception() {
1844   // Entry point in previous activation (i.e., if the caller was
1845   // interpreted)
1846   Interpreter::_rethrow_exception_entry = __ pc();
1847   // Restore sp to interpreter_frame_last_sp even though we are going
1848   // to empty the expression stack for the exception processing.
1849   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1850   // r0: exception
1851   // r3: return address/pc that threw exception
1852   __ restore_bcp();    // rbcp points to call/send
1853   __ restore_locals();
1854   __ restore_constant_pool_cache();
1855   __ reinit_heapbase();  // restore rheapbase as heapbase.
1856   __ get_dispatch();
1857 
1858   // Entry point for exceptions thrown within interpreter code
1859   Interpreter::_throw_exception_entry = __ pc();
1860   // If we came here via a NullPointerException on the receiver of a
1861   // method, rmethod may be corrupt.
1862   __ get_method(rmethod);
1863   // expression stack is undefined here
1864   // r0: exception
1865   // rbcp: exception bcp
1866   __ verify_oop(r0);
1867   __ mov(c_rarg1, r0);
1868 
1869   // expression stack must be empty before entering the VM in case of
1870   // an exception
1871   __ empty_expression_stack();
1872   // find exception handler address and preserve exception oop
1873   __ call_VM(r3,
1874              CAST_FROM_FN_PTR(address,
1875                           InterpreterRuntime::exception_handler_for_exception),
1876              c_rarg1);
1877 
1878   // Restore machine SP
1879   __ restore_sp_after_call();
1880 
1881   // r0: exception handler entry point
1882   // r3: preserved exception oop
1883   // rbcp: bcp for exception handler
1884   __ push_ptr(r3); // push exception which is now the only value on the stack
1885   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1886 
1887   // If the exception is not handled in the current frame the frame is
1888   // removed and the exception is rethrown (i.e. exception
1889   // continuation is _rethrow_exception).
1890   //
1891   // Note: At this point the bci is still the bxi for the instruction
1892   // which caused the exception and the expression stack is
1893   // empty. Thus, for any VM calls at this point, GC will find a legal
1894   // oop map (with empty expression stack).
1895 
1896   //
1897   // JVMTI PopFrame support
1898   //
1899 
1900   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1901   __ empty_expression_stack();
1902   __ restore_bcp(); // We could have returned from deoptimizing this frame, so restore rbcp.
1903   // Set the popframe_processing bit in pending_popframe_condition
1904   // indicating that we are currently handling popframe, so that
1905   // call_VMs that may happen later do not trigger new popframe
1906   // handling cycles.
1907   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1908   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1909   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1910 
1911   {
1912     // Check to see whether we are returning to a deoptimized frame.
1913     // (The PopFrame call ensures that the caller of the popped frame is
1914     // either interpreted or compiled and deoptimizes it if compiled.)
1915     // In this case, we can't call dispatch_next() after the frame is
1916     // popped, but instead must save the incoming arguments and restore
1917     // them after deoptimization has occurred.
1918     //
1919     // Note that we don't compare the return PC against the
1920     // deoptimization blob's unpack entry because of the presence of
1921     // adapter frames in C2.
1922     Label caller_not_deoptimized;
1923     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1924     // This is a return address, so requires authenticating for PAC.
1925     __ authenticate_return_address(c_rarg1);
1926     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1927                                InterpreterRuntime::interpreter_contains), c_rarg1);
1928     __ cbnz(r0, caller_not_deoptimized);
1929 
1930     // Compute size of arguments for saving when returning to
1931     // deoptimized caller
1932     __ get_method(r0);
1933     __ ldr(r0, Address(r0, Method::const_offset()));
1934     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1935                                                     size_of_parameters_offset())));
1936     __ lsl(r0, r0, Interpreter::logStackElementSize);
1937     __ restore_locals(); // XXX do we need this?
1938     __ sub(rlocals, rlocals, r0);
1939     __ add(rlocals, rlocals, wordSize);
1940     // Save these arguments
1941     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1942                                            Deoptimization::
1943                                            popframe_preserve_args),
1944                           rthread, r0, rlocals);
1945 
1946     __ remove_activation(vtos,
1947                          /* throw_monitor_exception */ false,
1948                          /* install_monitor_exception */ false,
1949                          /* notify_jvmdi */ false);
1950 
1951     // Inform deoptimization that it is responsible for restoring
1952     // these arguments
1953     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1954     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1955 
1956     // Continue in deoptimization handler
1957     __ ret(lr);
1958 
1959     __ bind(caller_not_deoptimized);
1960   }
1961 
1962   __ remove_activation(vtos,
1963                        /* throw_monitor_exception */ false,
1964                        /* install_monitor_exception */ false,
1965                        /* notify_jvmdi */ false);
1966 
1967   // Restore the last_sp and null it out
1968   __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1969   __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize)));
1970   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1971 
1972   __ restore_bcp();
1973   __ restore_locals();
1974   __ restore_constant_pool_cache();
1975   __ get_method(rmethod);
1976   __ get_dispatch();
1977 
1978   // The method data pointer was incremented already during
1979   // call profiling. We have to restore the mdp for the current bcp.
1980   if (ProfileInterpreter) {
1981     __ set_method_data_pointer_for_bcp();
1982   }
1983 
1984   // Clear the popframe condition flag
1985   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1986   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1987 
1988 #if INCLUDE_JVMTI
1989   {
1990     Label L_done;
1991 
1992     __ ldrb(rscratch1, Address(rbcp, 0));
1993     __ cmpw(rscratch1, Bytecodes::_invokestatic);
1994     __ br(Assembler::NE, L_done);
1995 
1996     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1997     // Detect such a case in the InterpreterRuntime function and return the member name argument, or null.
1998 
1999     __ ldr(c_rarg0, Address(rlocals, 0));
2000     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
2001 
2002     __ cbz(r0, L_done);
2003 
2004     __ str(r0, Address(esp, 0));
2005     __ bind(L_done);
2006   }
2007 #endif // INCLUDE_JVMTI
2008 
2009   // Restore machine SP
2010   __ restore_sp_after_call();
2011 
2012   __ dispatch_next(vtos);
2013   // end of PopFrame support
2014 
2015   Interpreter::_remove_activation_entry = __ pc();
2016 
2017   // preserve exception over this code sequence
2018   __ pop_ptr(r0);
2019   __ str(r0, Address(rthread, JavaThread::vm_result_oop_offset()));
2020   // remove the activation (without doing throws on illegalMonitorExceptions)
2021   __ remove_activation(vtos, false, true, false);
2022   // restore exception
2023   __ get_vm_result_oop(r0, rthread);
2024 
2025   // In between activations - previous activation type unknown yet
2026   // compute continuation point - the continuation point expects the
2027   // following registers set up:
2028   //
2029   // r0: exception
2030   // lr: return address/pc that threw exception
2031   // esp: expression stack of caller
2032   // rfp: fp of caller
2033   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
2034   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
2035                           SharedRuntime::exception_handler_for_return_address),
2036                         rthread, lr);
2037   __ mov(r1, r0);                               // save exception handler
2038   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
2039   // We might be returning to a deopt handler that expects r3 to
2040   // contain the exception pc
2041   __ mov(r3, lr);
2042   // Note that an "issuing PC" is actually the next PC after the call
2043   __ br(r1);                                    // jump to exception
2044                                                 // handler of caller
2045 }
2046 
2047 
2048 //
2049 // JVMTI ForceEarlyReturn support
2050 //
2051 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2052   address entry = __ pc();
2053 
2054   __ restore_bcp();
2055   __ restore_locals();
2056   __ empty_expression_stack();
2057   __ load_earlyret_value(state);
2058 
2059   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
2060   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
2061 
2062   // Clear the earlyret state
2063   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
2064   __ str(zr, cond_addr);
2065 
2066   __ remove_activation(state,
2067                        false, /* throw_monitor_exception */
2068                        false, /* install_monitor_exception */
2069                        true); /* notify_jvmdi */
2070   __ ret(lr);
2071 
2072   return entry;
2073 } // end of ForceEarlyReturn support
2074 
2075 
2076 
2077 //-----------------------------------------------------------------------------
2078 // Helper for vtos entry point generation
2079 
2080 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2081                                                          address& bep,
2082                                                          address& cep,
2083                                                          address& sep,
2084                                                          address& aep,
2085                                                          address& iep,
2086                                                          address& lep,
2087                                                          address& fep,
2088                                                          address& dep,
2089                                                          address& vep) {
2090   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2091   Label L;
2092   aep = __ pc();     // atos entry point
2093       __ push_ptr();
2094       __ b(L);
2095   fep = __ pc();     // ftos entry point
2096       __ push_f();
2097       __ b(L);
2098   dep = __ pc();     // dtos entry point
2099       __ push_d();
2100       __ b(L);
2101   lep = __ pc();     // ltos entry point
2102       __ push_l();
2103       __ b(L);
2104   bep = cep = sep = iep = __ pc();     // [bcsi]tos entry point
2105       __ push_i();
2106   vep = __ pc();     // vtos entry point
2107   __ bind(L);
2108   generate_and_dispatch(t);
2109 }
2110 
2111 //-----------------------------------------------------------------------------
2112 
2113 // Non-product code
2114 #ifndef PRODUCT
2115 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2116   address entry = __ pc();
2117 
2118   __ protect_return_address();
2119   __ push(lr);
2120   __ push(state);
2121   __ push(RegSet::range(r0, r15), sp);
2122   __ mov(c_rarg2, r0);  // Pass itos
2123   __ call_VM(noreg,
2124              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2125              c_rarg1, c_rarg2, c_rarg3);
2126   __ pop(RegSet::range(r0, r15), sp);
2127   __ pop(state);
2128   __ pop(lr);
2129   __ authenticate_return_address();
2130   __ ret(lr);                                   // return from result handler
2131 
2132   return entry;
2133 }
2134 
2135 void TemplateInterpreterGenerator::count_bytecode() {
2136   __ mov(r10, (address) &BytecodeCounter::_counter_value);
2137   __ atomic_add(noreg, 1, r10);
2138 }
2139 
2140 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2141   __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]);
2142   __ atomic_addw(noreg, 1, r10);
2143 }
2144 
2145 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2146   // Calculate new index for counter:
2147   //   _index = (_index >> log2_number_of_codes) |
2148   //            (bytecode << log2_number_of_codes);
2149   Register index_addr = rscratch1;
2150   Register index = rscratch2;
2151   __ mov(index_addr, (address) &BytecodePairHistogram::_index);
2152   __ ldrw(index, index_addr);
2153   __ mov(r10,
2154          ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2155   __ orrw(index, r10, index, Assembler::LSR,
2156           BytecodePairHistogram::log2_number_of_codes);
2157   __ strw(index, index_addr);
2158 
2159   // Bump bucket contents:
2160   //   _counters[_index] ++;
2161   Register counter_addr = rscratch1;
2162   __ mov(r10, (address) &BytecodePairHistogram::_counters);
2163   __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt)));
2164   __ atomic_addw(noreg, 1, counter_addr);
2165 }
2166 
2167 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2168   // Call a little run-time stub to avoid blow-up for each bytecode.
2169   // The run-time runtime saves the right registers, depending on
2170   // the tosca in-state for the given template.
2171 
2172   assert(Interpreter::trace_code(t->tos_in()) != nullptr,
2173          "entry must have been generated");
2174   __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2175   __ reinit_heapbase();
2176 }
2177 
2178 
2179 void TemplateInterpreterGenerator::stop_interpreter_at() {
2180   Label L;
2181   __ push(rscratch1);
2182   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2183   __ ldr(rscratch1, Address(rscratch1));
2184   __ mov(rscratch2, StopInterpreterAt);
2185   __ cmp(rscratch1, rscratch2);
2186   __ br(Assembler::NE, L);
2187   __ brk(0);
2188   __ bind(L);
2189   __ pop(rscratch1);
2190 }
2191 
2192 #endif // !PRODUCT