1 /* 2 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "interpreter/bytecodeTracer.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/arrayOop.hpp" 40 #include "oops/methodData.hpp" 41 #include "oops/method.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "oops/inlineKlass.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/jvmtiThreadState.hpp" 46 #include "runtime/arguments.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/frame.inline.hpp" 49 #include "runtime/globals.hpp" 50 #include "runtime/jniHandles.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/synchronizer.hpp" 54 #include "runtime/timer.hpp" 55 #include "runtime/vframeArray.hpp" 56 #include "utilities/debug.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include <sys/types.h> 59 60 // Size of interpreter code. Increase if too small. Interpreter will 61 // fail with a guarantee ("not enough space for interpreter generation"); 62 // if too small. 63 // Run with +PrintInterpreter to get the VM to print out the size. 64 // Max size with JVMTI 65 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 66 67 #define __ _masm-> 68 69 //----------------------------------------------------------------------------- 70 71 extern "C" void entry(CodeBuffer*); 72 73 //----------------------------------------------------------------------------- 74 75 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 76 address entry = __ pc(); 77 78 __ andr(esp, esp, -16); 79 __ mov(c_rarg3, esp); 80 // rmethod 81 // rlocals 82 // c_rarg3: first stack arg - wordSize 83 84 // adjust sp 85 __ sub(sp, c_rarg3, 18 * wordSize); 86 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 87 __ call_VM(noreg, 88 CAST_FROM_FN_PTR(address, 89 InterpreterRuntime::slow_signature_handler), 90 rmethod, rlocals, c_rarg3); 91 92 // r0: result handler 93 94 // Stack layout: 95 // rsp: return address <- sp 96 // 1 garbage 97 // 8 integer args (if static first is unused) 98 // 1 float/double identifiers 99 // 8 double args 100 // stack args <- esp 101 // garbage 102 // expression stack bottom 103 // bcp (NULL) 104 // ... 105 106 // Restore LR 107 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 108 109 // Do FP first so we can use c_rarg3 as temp 110 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 111 112 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 113 const FloatRegister r = as_FloatRegister(i); 114 115 Label d, done; 116 117 __ tbnz(c_rarg3, i, d); 118 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 119 __ b(done); 120 __ bind(d); 121 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 122 __ bind(done); 123 } 124 125 // c_rarg0 contains the result from the call of 126 // InterpreterRuntime::slow_signature_handler so we don't touch it 127 // here. It will be loaded with the JNIEnv* later. 128 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 129 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 130 Register rm = as_Register(i), rn = as_Register(i+1); 131 __ ldp(rm, rn, Address(sp, i * wordSize)); 132 } 133 134 __ add(sp, sp, 18 * wordSize); 135 __ ret(lr); 136 137 return entry; 138 } 139 140 141 // 142 // Various method entries 143 // 144 145 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 146 // rmethod: Method* 147 // r19_sender_sp: sender sp 148 // esp: args 149 150 if (!InlineIntrinsics) return NULL; // Generate a vanilla entry 151 152 // These don't need a safepoint check because they aren't virtually 153 // callable. We won't enter these intrinsics from compiled code. 154 // If in the future we added an intrinsic which was virtually callable 155 // we'd have to worry about how to safepoint so that this code is used. 156 157 // mathematical functions inlined by compiler 158 // (interpreter must provide identical implementation 159 // in order to avoid monotonicity bugs when switching 160 // from interpreter to compiler in the middle of some 161 // computation) 162 // 163 // stack: 164 // [ arg ] <-- esp 165 // [ arg ] 166 // retaddr in lr 167 168 address entry_point = NULL; 169 Register continuation = lr; 170 switch (kind) { 171 case Interpreter::java_lang_math_abs: 172 entry_point = __ pc(); 173 __ ldrd(v0, Address(esp)); 174 __ fabsd(v0, v0); 175 __ mov(sp, r19_sender_sp); // Restore caller's SP 176 break; 177 case Interpreter::java_lang_math_sqrt: 178 entry_point = __ pc(); 179 __ ldrd(v0, Address(esp)); 180 __ fsqrtd(v0, v0); 181 __ mov(sp, r19_sender_sp); 182 break; 183 case Interpreter::java_lang_math_sin : 184 case Interpreter::java_lang_math_cos : 185 case Interpreter::java_lang_math_tan : 186 case Interpreter::java_lang_math_log : 187 case Interpreter::java_lang_math_log10 : 188 case Interpreter::java_lang_math_exp : 189 entry_point = __ pc(); 190 __ ldrd(v0, Address(esp)); 191 __ mov(sp, r19_sender_sp); 192 __ mov(r23, lr); 193 continuation = r23; // The first free callee-saved register 194 generate_transcendental_entry(kind, 1); 195 break; 196 case Interpreter::java_lang_math_pow : 197 entry_point = __ pc(); 198 __ mov(r23, lr); 199 continuation = r23; 200 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 201 __ ldrd(v1, Address(esp)); 202 __ mov(sp, r19_sender_sp); 203 generate_transcendental_entry(kind, 2); 204 break; 205 case Interpreter::java_lang_math_fmaD : 206 if (UseFMA) { 207 entry_point = __ pc(); 208 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 209 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 210 __ ldrd(v2, Address(esp)); 211 __ fmaddd(v0, v0, v1, v2); 212 __ mov(sp, r19_sender_sp); // Restore caller's SP 213 } 214 break; 215 case Interpreter::java_lang_math_fmaF : 216 if (UseFMA) { 217 entry_point = __ pc(); 218 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 219 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 220 __ ldrs(v2, Address(esp)); 221 __ fmadds(v0, v0, v1, v2); 222 __ mov(sp, r19_sender_sp); // Restore caller's SP 223 } 224 break; 225 default: 226 ; 227 } 228 if (entry_point) { 229 __ br(continuation); 230 } 231 232 return entry_point; 233 } 234 235 // double trigonometrics and transcendentals 236 // static jdouble dsin(jdouble x); 237 // static jdouble dcos(jdouble x); 238 // static jdouble dtan(jdouble x); 239 // static jdouble dlog(jdouble x); 240 // static jdouble dlog10(jdouble x); 241 // static jdouble dexp(jdouble x); 242 // static jdouble dpow(jdouble x, jdouble y); 243 244 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 245 address fn; 246 switch (kind) { 247 case Interpreter::java_lang_math_sin : 248 if (StubRoutines::dsin() == NULL) { 249 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 250 } else { 251 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 252 } 253 break; 254 case Interpreter::java_lang_math_cos : 255 if (StubRoutines::dcos() == NULL) { 256 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 257 } else { 258 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 259 } 260 break; 261 case Interpreter::java_lang_math_tan : 262 if (StubRoutines::dtan() == NULL) { 263 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 264 } else { 265 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 266 } 267 break; 268 case Interpreter::java_lang_math_log : 269 if (StubRoutines::dlog() == NULL) { 270 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 271 } else { 272 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 273 } 274 break; 275 case Interpreter::java_lang_math_log10 : 276 if (StubRoutines::dlog10() == NULL) { 277 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 278 } else { 279 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 280 } 281 break; 282 case Interpreter::java_lang_math_exp : 283 if (StubRoutines::dexp() == NULL) { 284 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 285 } else { 286 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 287 } 288 break; 289 case Interpreter::java_lang_math_pow : 290 if (StubRoutines::dpow() == NULL) { 291 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 292 } else { 293 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 294 } 295 break; 296 default: 297 ShouldNotReachHere(); 298 fn = NULL; // unreachable 299 } 300 __ mov(rscratch1, fn); 301 __ blr(rscratch1); 302 } 303 304 // Abstract method entry 305 // Attempt to execute abstract method. Throw exception 306 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 307 // rmethod: Method* 308 // r19_sender_sp: sender SP 309 310 address entry_point = __ pc(); 311 312 // abstract method entry 313 314 // pop return address, reset last_sp to NULL 315 __ empty_expression_stack(); 316 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 317 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 318 319 // throw exception 320 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 321 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 322 rmethod); 323 // the call_VM checks for exception, so we should never return here. 324 __ should_not_reach_here(); 325 326 return entry_point; 327 } 328 329 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 330 address entry = __ pc(); 331 332 #ifdef ASSERT 333 { 334 Label L; 335 __ ldr(rscratch1, Address(rfp, 336 frame::interpreter_frame_monitor_block_top_offset * 337 wordSize)); 338 __ mov(rscratch2, sp); 339 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 340 // grows negative) 341 __ br(Assembler::HS, L); // check if frame is complete 342 __ stop ("interpreter frame not set up"); 343 __ bind(L); 344 } 345 #endif // ASSERT 346 // Restore bcp under the assumption that the current frame is still 347 // interpreted 348 __ restore_bcp(); 349 350 // expression stack must be empty before entering the VM if an 351 // exception happened 352 __ empty_expression_stack(); 353 // throw exception 354 __ call_VM(noreg, 355 CAST_FROM_FN_PTR(address, 356 InterpreterRuntime::throw_StackOverflowError)); 357 return entry; 358 } 359 360 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 361 address entry = __ pc(); 362 // expression stack must be empty before entering the VM if an 363 // exception happened 364 __ empty_expression_stack(); 365 // setup parameters 366 367 // ??? convention: expect aberrant index in register r1 368 __ movw(c_rarg2, r1); 369 // ??? convention: expect array in register r3 370 __ mov(c_rarg1, r3); 371 __ call_VM(noreg, 372 CAST_FROM_FN_PTR(address, 373 InterpreterRuntime:: 374 throw_ArrayIndexOutOfBoundsException), 375 c_rarg1, c_rarg2); 376 return entry; 377 } 378 379 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 380 address entry = __ pc(); 381 382 // object is at TOS 383 __ pop(c_rarg1); 384 385 // expression stack must be empty before entering the VM if an 386 // exception happened 387 __ empty_expression_stack(); 388 389 __ call_VM(noreg, 390 CAST_FROM_FN_PTR(address, 391 InterpreterRuntime:: 392 throw_ClassCastException), 393 c_rarg1); 394 return entry; 395 } 396 397 address TemplateInterpreterGenerator::generate_exception_handler_common( 398 const char* name, const char* message, bool pass_oop) { 399 assert(!pass_oop || message == NULL, "either oop or message but not both"); 400 address entry = __ pc(); 401 if (pass_oop) { 402 // object is at TOS 403 __ pop(c_rarg2); 404 } 405 // expression stack must be empty before entering the VM if an 406 // exception happened 407 __ empty_expression_stack(); 408 // setup parameters 409 __ lea(c_rarg1, Address((address)name)); 410 if (pass_oop) { 411 __ call_VM(r0, CAST_FROM_FN_PTR(address, 412 InterpreterRuntime:: 413 create_klass_exception), 414 c_rarg1, c_rarg2); 415 } else { 416 // kind of lame ExternalAddress can't take NULL because 417 // external_word_Relocation will assert. 418 if (message != NULL) { 419 __ lea(c_rarg2, Address((address)message)); 420 } else { 421 __ mov(c_rarg2, NULL_WORD); 422 } 423 __ call_VM(r0, 424 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 425 c_rarg1, c_rarg2); 426 } 427 // throw exception 428 __ b(address(Interpreter::throw_exception_entry())); 429 return entry; 430 } 431 432 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 433 address entry = __ pc(); 434 435 // Restore stack bottom in case i2c adjusted stack 436 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 437 // and NULL it as marker that esp is now tos until next java call 438 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 439 440 if (state == atos && InlineTypeReturnedAsFields) { 441 __ store_inline_type_fields_to_buf(NULL, true); 442 } 443 444 __ restore_bcp(); 445 __ restore_locals(); 446 __ restore_constant_pool_cache(); 447 __ get_method(rmethod); 448 449 if (state == atos) { 450 Register obj = r0; 451 Register mdp = r1; 452 Register tmp = r2; 453 __ profile_return_type(mdp, obj, tmp); 454 } 455 456 // Pop N words from the stack 457 __ get_cache_and_index_at_bcp(r1, r2, 1, index_size); 458 __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); 459 __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask); 460 461 __ add(esp, esp, r1, Assembler::LSL, 3); 462 463 // Restore machine SP 464 __ restore_sp_after_call(); 465 466 __ check_and_handle_popframe(rthread); 467 __ check_and_handle_earlyret(rthread); 468 469 __ get_dispatch(); 470 __ dispatch_next(state, step); 471 472 return entry; 473 } 474 475 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 476 int step, 477 address continuation) { 478 address entry = __ pc(); 479 __ restore_bcp(); 480 __ restore_locals(); 481 __ restore_constant_pool_cache(); 482 __ get_method(rmethod); 483 __ get_dispatch(); 484 485 __ restore_sp_after_call(); // Restore SP to extended SP 486 487 // Restore expression stack pointer 488 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 489 // NULL last_sp until next java call 490 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 491 492 #if INCLUDE_JVMCI 493 // Check if we need to take lock at entry of synchronized method. This can 494 // only occur on method entry so emit it only for vtos with step 0. 495 if (EnableJVMCI && state == vtos && step == 0) { 496 Label L; 497 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 498 __ cbz(rscratch1, L); 499 // Clear flag. 500 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 501 // Take lock. 502 lock_method(); 503 __ bind(L); 504 } else { 505 #ifdef ASSERT 506 if (EnableJVMCI) { 507 Label L; 508 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 509 __ cbz(rscratch1, L); 510 __ stop("unexpected pending monitor in deopt entry"); 511 __ bind(L); 512 } 513 #endif 514 } 515 #endif 516 // handle exceptions 517 { 518 Label L; 519 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 520 __ cbz(rscratch1, L); 521 __ call_VM(noreg, 522 CAST_FROM_FN_PTR(address, 523 InterpreterRuntime::throw_pending_exception)); 524 __ should_not_reach_here(); 525 __ bind(L); 526 } 527 528 if (continuation == NULL) { 529 __ dispatch_next(state, step); 530 } else { 531 __ jump_to_entry(continuation); 532 } 533 return entry; 534 } 535 536 address TemplateInterpreterGenerator::generate_result_handler_for( 537 BasicType type) { 538 address entry = __ pc(); 539 switch (type) { 540 case T_BOOLEAN: __ c2bool(r0); break; 541 case T_CHAR : __ uxth(r0, r0); break; 542 case T_BYTE : __ sxtb(r0, r0); break; 543 case T_SHORT : __ sxth(r0, r0); break; 544 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 545 case T_LONG : /* nothing to do */ break; 546 case T_VOID : /* nothing to do */ break; 547 case T_FLOAT : /* nothing to do */ break; 548 case T_DOUBLE : /* nothing to do */ break; 549 case T_PRIMITIVE_OBJECT: // fall through (value types are handled with oops) 550 case T_OBJECT : 551 // retrieve result from frame 552 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 553 // and verify it 554 __ verify_oop(r0); 555 break; 556 default : ShouldNotReachHere(); 557 } 558 __ ret(lr); // return from result handler 559 return entry; 560 } 561 562 address TemplateInterpreterGenerator::generate_safept_entry_for( 563 TosState state, 564 address runtime_entry) { 565 address entry = __ pc(); 566 __ push(state); 567 __ push_cont_fastpath(rthread); 568 __ call_VM(noreg, runtime_entry); 569 __ pop_cont_fastpath(rthread); 570 __ membar(Assembler::AnyAny); 571 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 572 return entry; 573 } 574 575 // Helpers for commoning out cases in the various type of method entries. 576 // 577 578 579 // increment invocation count & check for overflow 580 // 581 // Note: checking for negative value instead of overflow 582 // so we have a 'sticky' overflow test 583 // 584 // rmethod: method 585 // 586 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 587 Label done; 588 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 589 int increment = InvocationCounter::count_increment; 590 Label no_mdo; 591 if (ProfileInterpreter) { 592 // Are we profiling? 593 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 594 __ cbz(r0, no_mdo); 595 // Increment counter in the MDO 596 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 597 in_bytes(InvocationCounter::counter_offset())); 598 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 599 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 600 __ b(done); 601 } 602 __ bind(no_mdo); 603 // Increment counter in MethodCounters 604 const Address invocation_counter(rscratch2, 605 MethodCounters::invocation_counter_offset() + 606 InvocationCounter::counter_offset()); 607 __ get_method_counters(rmethod, rscratch2, done); 608 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 609 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 610 __ bind(done); 611 } 612 613 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 614 615 // Asm interpreter on entry 616 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 617 // Everything as it was on entry 618 619 // InterpreterRuntime::frequency_counter_overflow takes two 620 // arguments, the first (thread) is passed by call_VM, the second 621 // indicates if the counter overflow occurs at a backwards branch 622 // (NULL bcp). We pass zero for it. The call returns the address 623 // of the verified entry point for the method or NULL if the 624 // compilation did not complete (either went background or bailed 625 // out). 626 __ mov(c_rarg1, 0); 627 __ call_VM(noreg, 628 CAST_FROM_FN_PTR(address, 629 InterpreterRuntime::frequency_counter_overflow), 630 c_rarg1); 631 632 __ b(do_continue); 633 } 634 635 // See if we've got enough room on the stack for locals plus overhead 636 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 637 // without going through the signal handler, i.e., reserved and yellow zones 638 // will not be made usable. The shadow zone must suffice to handle the 639 // overflow. 640 // The expression stack grows down incrementally, so the normal guard 641 // page mechanism will work for that. 642 // 643 // NOTE: Since the additional locals are also always pushed (wasn't 644 // obvious in generate_method_entry) so the guard should work for them 645 // too. 646 // 647 // Args: 648 // r3: number of additional locals this frame needs (what we must check) 649 // rmethod: Method* 650 // 651 // Kills: 652 // r0 653 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 654 655 // monitor entry size: see picture of stack set 656 // (generate_method_entry) and frame_amd64.hpp 657 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 658 659 // total overhead size: entry_size + (saved rbp through expr stack 660 // bottom). be sure to change this if you add/subtract anything 661 // to/from the overhead area 662 const int overhead_size = 663 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 664 665 const int page_size = os::vm_page_size(); 666 667 Label after_frame_check; 668 669 // see if the frame is greater than one page in size. If so, 670 // then we need to verify there is enough stack space remaining 671 // for the additional locals. 672 // 673 // Note that we use SUBS rather than CMP here because the immediate 674 // field of this instruction may overflow. SUBS can cope with this 675 // because it is a macro that will expand to some number of MOV 676 // instructions and a register operation. 677 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 678 __ br(Assembler::LS, after_frame_check); 679 680 // compute rsp as if this were going to be the last frame on 681 // the stack before the red zone 682 683 // locals + overhead, in bytes 684 __ mov(r0, overhead_size); 685 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 686 687 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 688 __ ldr(rscratch1, stack_limit); 689 690 #ifdef ASSERT 691 Label limit_okay; 692 // Verify that thread stack limit is non-zero. 693 __ cbnz(rscratch1, limit_okay); 694 __ stop("stack overflow limit is zero"); 695 __ bind(limit_okay); 696 #endif 697 698 // Add stack limit to locals. 699 __ add(r0, r0, rscratch1); 700 701 // Check against the current stack bottom. 702 __ cmp(sp, r0); 703 __ br(Assembler::HI, after_frame_check); 704 705 // Remove the incoming args, peeling the machine SP back to where it 706 // was in the caller. This is not strictly necessary, but unless we 707 // do so the stack frame may have a garbage FP; this ensures a 708 // correct call stack that we can always unwind. The ANDR should be 709 // unnecessary because the sender SP in r19 is always aligned, but 710 // it doesn't hurt. 711 __ andr(sp, r19_sender_sp, -16); 712 713 // Note: the restored frame is not necessarily interpreted. 714 // Use the shared runtime version of the StackOverflowError. 715 assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); 716 __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry())); 717 718 // all done with frame size check 719 __ bind(after_frame_check); 720 } 721 722 // Allocate monitor and lock method (asm interpreter) 723 // 724 // Args: 725 // rmethod: Method* 726 // rlocals: locals 727 // 728 // Kills: 729 // r0 730 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 731 // rscratch1, rscratch2 (scratch regs) 732 void TemplateInterpreterGenerator::lock_method() { 733 // synchronize method 734 const Address access_flags(rmethod, Method::access_flags_offset()); 735 const Address monitor_block_top( 736 rfp, 737 frame::interpreter_frame_monitor_block_top_offset * wordSize); 738 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 739 740 #ifdef ASSERT 741 { 742 Label L; 743 __ ldrw(r0, access_flags); 744 __ tst(r0, JVM_ACC_SYNCHRONIZED); 745 __ br(Assembler::NE, L); 746 __ stop("method doesn't need synchronization"); 747 __ bind(L); 748 } 749 #endif // ASSERT 750 751 // get synchronization object 752 { 753 Label done; 754 __ ldrw(r0, access_flags); 755 __ tst(r0, JVM_ACC_STATIC); 756 // get receiver (assume this is frequent case) 757 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 758 __ br(Assembler::EQ, done); 759 __ load_mirror(r0, rmethod, r5, rscratch2); 760 761 #ifdef ASSERT 762 { 763 Label L; 764 __ cbnz(r0, L); 765 __ stop("synchronization object is NULL"); 766 __ bind(L); 767 } 768 #endif // ASSERT 769 770 __ bind(done); 771 } 772 773 // add space for monitor & lock 774 __ check_extended_sp(); 775 __ sub(sp, sp, entry_size); // add space for a monitor entry 776 __ sub(esp, esp, entry_size); 777 __ mov(rscratch1, sp); 778 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 779 __ str(esp, monitor_block_top); // set new monitor block top 780 // store object 781 __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes())); 782 __ mov(c_rarg1, esp); // object address 783 __ lock_object(c_rarg1); 784 } 785 786 // Generate a fixed interpreter frame. This is identical setup for 787 // interpreted methods and for native methods hence the shared code. 788 // 789 // Args: 790 // lr: return address 791 // rmethod: Method* 792 // rlocals: pointer to locals 793 // rcpool: cp cache 794 // stack_pointer: previous sp 795 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 796 // initialize fixed part of activation frame 797 if (native_call) { 798 __ sub(esp, sp, 14 * wordSize); 799 __ mov(rbcp, zr); 800 __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize))); 801 // add 2 zero-initialized slots for native calls 802 __ stp(zr, zr, Address(sp, 12 * wordSize)); 803 } else { 804 __ sub(esp, sp, 12 * wordSize); 805 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 806 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 807 __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize))); 808 } 809 810 if (ProfileInterpreter) { 811 Label method_data_continue; 812 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 813 __ cbz(rscratch1, method_data_continue); 814 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 815 __ bind(method_data_continue); 816 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 817 } else { 818 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 819 } 820 821 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 822 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 823 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes())); 824 __ stp(rlocals, rcpool, Address(sp, 2 * wordSize)); 825 826 __ protect_return_address(); 827 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 828 __ lea(rfp, Address(sp, 10 * wordSize)); 829 830 // set sender sp 831 // leave last_sp as null 832 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 833 834 // Get mirror 835 __ load_mirror(r10, rmethod, r5, rscratch2); 836 if (! native_call) { 837 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 838 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 839 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 840 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 841 __ andr(rscratch1, rscratch1, -16); 842 // Store extended SP and mirror 843 __ stp(r10, rscratch1, Address(sp, 4 * wordSize)); 844 // Move SP out of the way 845 __ mov(sp, rscratch1); 846 } else { 847 // Make sure there is room for the exception oop pushed in case method throws 848 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 849 __ sub(rscratch1, sp, 2 * wordSize); 850 __ stp(zr, rscratch1, Address(sp, 4 * wordSize)); 851 __ mov(sp, rscratch1); 852 } 853 } 854 855 // End of helpers 856 857 // Various method entries 858 //------------------------------------------------------------------------------------------------------------------------ 859 // 860 // 861 862 // Method entry for java.lang.ref.Reference.get. 863 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 864 // Code: _aload_0, _getfield, _areturn 865 // parameter size = 1 866 // 867 // The code that gets generated by this routine is split into 2 parts: 868 // 1. The "intrinsified" code for G1 (or any SATB based GC), 869 // 2. The slow path - which is an expansion of the regular method entry. 870 // 871 // Notes:- 872 // * In the G1 code we do not check whether we need to block for 873 // a safepoint. If G1 is enabled then we must execute the specialized 874 // code for Reference.get (except when the Reference object is null) 875 // so that we can log the value in the referent field with an SATB 876 // update buffer. 877 // If the code for the getfield template is modified so that the 878 // G1 pre-barrier code is executed when the current method is 879 // Reference.get() then going through the normal method entry 880 // will be fine. 881 // * The G1 code can, however, check the receiver object (the instance 882 // of java.lang.Reference) and jump to the slow path if null. If the 883 // Reference object is null then we obviously cannot fetch the referent 884 // and so we don't need to call the G1 pre-barrier. Thus we can use the 885 // regular method entry code to generate the NPE. 886 // 887 // This code is based on generate_accessor_entry. 888 // 889 // rmethod: Method* 890 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 891 892 // LR is live. It must be saved around calls. 893 894 address entry = __ pc(); 895 896 const int referent_offset = java_lang_ref_Reference::referent_offset(); 897 898 Label slow_path; 899 const Register local_0 = c_rarg0; 900 // Check if local 0 != NULL 901 // If the receiver is null then it is OK to jump to the slow path. 902 __ ldr(local_0, Address(esp, 0)); 903 __ cbz(local_0, slow_path); 904 905 // Load the value of the referent field. 906 const Address field_address(local_0, referent_offset); 907 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 908 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 909 910 // areturn 911 __ andr(sp, r19_sender_sp, -16); // done with stack 912 __ ret(lr); 913 914 // generate a vanilla interpreter entry as the slow path 915 __ bind(slow_path); 916 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 917 return entry; 918 919 } 920 921 /** 922 * Method entry for static native methods: 923 * int java.util.zip.CRC32.update(int crc, int b) 924 */ 925 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 926 if (UseCRC32Intrinsics) { 927 address entry = __ pc(); 928 929 // rmethod: Method* 930 // r19_sender_sp: senderSP must preserved for slow path 931 // esp: args 932 933 Label slow_path; 934 // If we need a safepoint check, generate full interpreter entry. 935 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 936 937 // We don't generate local frame and don't align stack because 938 // we call stub code and there is no safepoint on this path. 939 940 // Load parameters 941 const Register crc = c_rarg0; // crc 942 const Register val = c_rarg1; // source java byte value 943 const Register tbl = c_rarg2; // scratch 944 945 // Arguments are reversed on java expression stack 946 __ ldrw(val, Address(esp, 0)); // byte value 947 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 948 949 uint64_t offset; 950 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 951 __ add(tbl, tbl, offset); 952 953 __ mvnw(crc, crc); // ~crc 954 __ update_byte_crc32(crc, val, tbl); 955 __ mvnw(crc, crc); // ~crc 956 957 // result in c_rarg0 958 959 __ andr(sp, r19_sender_sp, -16); 960 __ ret(lr); 961 962 // generate a vanilla native entry as the slow path 963 __ bind(slow_path); 964 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 965 return entry; 966 } 967 return NULL; 968 } 969 970 /** 971 * Method entry for static native methods: 972 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 973 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 974 */ 975 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 976 if (UseCRC32Intrinsics) { 977 address entry = __ pc(); 978 979 // rmethod,: Method* 980 // r19_sender_sp: senderSP must preserved for slow path 981 982 Label slow_path; 983 // If we need a safepoint check, generate full interpreter entry. 984 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 985 986 // We don't generate local frame and don't align stack because 987 // we call stub code and there is no safepoint on this path. 988 989 // Load parameters 990 const Register crc = c_rarg0; // crc 991 const Register buf = c_rarg1; // source java byte array address 992 const Register len = c_rarg2; // length 993 const Register off = len; // offset (never overlaps with 'len') 994 995 // Arguments are reversed on java expression stack 996 // Calculate address of start element 997 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 998 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 999 __ ldrw(off, Address(esp, wordSize)); // offset 1000 __ add(buf, buf, off); // + offset 1001 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1002 } else { 1003 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1004 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1005 __ ldrw(off, Address(esp, wordSize)); // offset 1006 __ add(buf, buf, off); // + offset 1007 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1008 } 1009 // Can now load 'len' since we're finished with 'off' 1010 __ ldrw(len, Address(esp, 0x0)); // Length 1011 1012 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1013 1014 // We are frameless so we can just jump to the stub. 1015 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1016 1017 // generate a vanilla native entry as the slow path 1018 __ bind(slow_path); 1019 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1020 return entry; 1021 } 1022 return NULL; 1023 } 1024 1025 /** 1026 * Method entry for intrinsic-candidate (non-native) methods: 1027 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1028 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1029 * Unlike CRC32, CRC32C does not have any methods marked as native 1030 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1031 */ 1032 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1033 if (UseCRC32CIntrinsics) { 1034 address entry = __ pc(); 1035 1036 // Prepare jump to stub using parameters from the stack 1037 const Register crc = c_rarg0; // initial crc 1038 const Register buf = c_rarg1; // source java byte array address 1039 const Register len = c_rarg2; // len argument to the kernel 1040 1041 const Register end = len; // index of last element to process 1042 const Register off = crc; // offset 1043 1044 __ ldrw(end, Address(esp)); // int end 1045 __ ldrw(off, Address(esp, wordSize)); // int offset 1046 __ sub(len, end, off); 1047 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1048 __ add(buf, buf, off); // + offset 1049 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1050 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1051 } else { 1052 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1053 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1054 } 1055 1056 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1057 1058 // Jump to the stub. 1059 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1060 1061 return entry; 1062 } 1063 return NULL; 1064 } 1065 1066 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1067 // See more discussion in stackOverflow.hpp. 1068 1069 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1070 const int page_size = os::vm_page_size(); 1071 const int n_shadow_pages = shadow_zone_size / page_size; 1072 1073 #ifdef ASSERT 1074 Label L_good_limit; 1075 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1076 __ cbnz(rscratch1, L_good_limit); 1077 __ stop("shadow zone safe limit is not initialized"); 1078 __ bind(L_good_limit); 1079 1080 Label L_good_watermark; 1081 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1082 __ cbnz(rscratch1, L_good_watermark); 1083 __ stop("shadow zone growth watermark is not initialized"); 1084 __ bind(L_good_watermark); 1085 #endif 1086 1087 Label L_done; 1088 1089 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1090 __ cmp(sp, rscratch1); 1091 __ br(Assembler::HI, L_done); 1092 1093 for (int p = 1; p <= n_shadow_pages; p++) { 1094 __ sub(rscratch2, sp, p*page_size); 1095 __ str(zr, Address(rscratch2)); 1096 } 1097 1098 // Record the new watermark, but only if the update is above the safe limit. 1099 // Otherwise, the next time around the check above would pass the safe limit. 1100 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1101 __ cmp(sp, rscratch1); 1102 __ br(Assembler::LS, L_done); 1103 __ mov(rscratch1, sp); 1104 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1105 1106 __ bind(L_done); 1107 } 1108 1109 // Interpreter stub for calling a native method. (asm interpreter) 1110 // This sets up a somewhat different looking stack for calling the 1111 // native method than the typical interpreter frame setup. 1112 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1113 // determine code generation flags 1114 bool inc_counter = UseCompiler || CountCompiledCalls; 1115 1116 // r1: Method* 1117 // rscratch1: sender sp 1118 1119 address entry_point = __ pc(); 1120 1121 const Address constMethod (rmethod, Method::const_offset()); 1122 const Address access_flags (rmethod, Method::access_flags_offset()); 1123 const Address size_of_parameters(r2, ConstMethod:: 1124 size_of_parameters_offset()); 1125 1126 // get parameter size (always needed) 1127 __ ldr(r2, constMethod); 1128 __ load_unsigned_short(r2, size_of_parameters); 1129 1130 // Native calls don't need the stack size check since they have no 1131 // expression stack and the arguments are already on the stack and 1132 // we only add a handful of words to the stack. 1133 1134 // rmethod: Method* 1135 // r2: size of parameters 1136 // rscratch1: sender sp 1137 1138 // for natives the size of locals is zero 1139 1140 // compute beginning of parameters (rlocals) 1141 __ add(rlocals, esp, r2, ext::uxtx, 3); 1142 __ add(rlocals, rlocals, -wordSize); 1143 1144 // Pull SP back to minimum size: this avoids holes in the stack 1145 __ andr(sp, esp, -16); 1146 1147 // initialize fixed part of activation frame 1148 generate_fixed_frame(true); 1149 1150 // make sure method is native & not abstract 1151 #ifdef ASSERT 1152 __ ldrw(r0, access_flags); 1153 { 1154 Label L; 1155 __ tst(r0, JVM_ACC_NATIVE); 1156 __ br(Assembler::NE, L); 1157 __ stop("tried to execute non-native method as native"); 1158 __ bind(L); 1159 } 1160 { 1161 Label L; 1162 __ tst(r0, JVM_ACC_ABSTRACT); 1163 __ br(Assembler::EQ, L); 1164 __ stop("tried to execute abstract method in interpreter"); 1165 __ bind(L); 1166 } 1167 #endif 1168 1169 // Since at this point in the method invocation the exception 1170 // handler would try to exit the monitor of synchronized methods 1171 // which hasn't been entered yet, we set the thread local variable 1172 // _do_not_unlock_if_synchronized to true. The remove_activation 1173 // will check this flag. 1174 1175 const Address do_not_unlock_if_synchronized(rthread, 1176 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1177 __ mov(rscratch2, true); 1178 __ strb(rscratch2, do_not_unlock_if_synchronized); 1179 1180 // increment invocation count & check for overflow 1181 Label invocation_counter_overflow; 1182 if (inc_counter) { 1183 generate_counter_incr(&invocation_counter_overflow); 1184 } 1185 1186 Label continue_after_compile; 1187 __ bind(continue_after_compile); 1188 1189 bang_stack_shadow_pages(true); 1190 1191 // reset the _do_not_unlock_if_synchronized flag 1192 __ strb(zr, do_not_unlock_if_synchronized); 1193 1194 // check for synchronized methods 1195 // Must happen AFTER invocation_counter check and stack overflow check, 1196 // so method is not locked if overflows. 1197 if (synchronized) { 1198 lock_method(); 1199 } else { 1200 // no synchronization necessary 1201 #ifdef ASSERT 1202 { 1203 Label L; 1204 __ ldrw(r0, access_flags); 1205 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1206 __ br(Assembler::EQ, L); 1207 __ stop("method needs synchronization"); 1208 __ bind(L); 1209 } 1210 #endif 1211 } 1212 1213 // start execution 1214 #ifdef ASSERT 1215 { 1216 Label L; 1217 const Address monitor_block_top(rfp, 1218 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1219 __ ldr(rscratch1, monitor_block_top); 1220 __ cmp(esp, rscratch1); 1221 __ br(Assembler::EQ, L); 1222 __ stop("broken stack frame setup in interpreter 1"); 1223 __ bind(L); 1224 } 1225 #endif 1226 1227 // jvmti support 1228 __ notify_method_entry(); 1229 1230 // work registers 1231 const Register t = r17; 1232 const Register result_handler = r19; 1233 1234 // allocate space for parameters 1235 __ ldr(t, Address(rmethod, Method::const_offset())); 1236 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1237 1238 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1239 __ andr(sp, rscratch1, -16); 1240 __ mov(esp, rscratch1); 1241 1242 // get signature handler 1243 { 1244 Label L; 1245 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1246 __ cbnz(t, L); 1247 __ call_VM(noreg, 1248 CAST_FROM_FN_PTR(address, 1249 InterpreterRuntime::prepare_native_call), 1250 rmethod); 1251 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1252 __ bind(L); 1253 } 1254 1255 // call signature handler 1256 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1257 "adjust this code"); 1258 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1259 "adjust this code"); 1260 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1261 "adjust this code"); 1262 1263 // The generated handlers do not touch rmethod (the method). 1264 // However, large signatures cannot be cached and are generated 1265 // each time here. The slow-path generator can do a GC on return, 1266 // so we must reload it after the call. 1267 __ blr(t); 1268 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1269 1270 1271 // result handler is in r0 1272 // set result handler 1273 __ mov(result_handler, r0); 1274 // pass mirror handle if static call 1275 { 1276 Label L; 1277 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1278 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1279 // get mirror 1280 __ load_mirror(t, rmethod, r10, rscratch2); 1281 // copy mirror into activation frame 1282 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1283 // pass handle to mirror 1284 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1285 __ bind(L); 1286 } 1287 1288 // get native function entry point in r10 1289 { 1290 Label L; 1291 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1292 address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1293 __ mov(rscratch2, unsatisfied); 1294 __ ldr(rscratch2, rscratch2); 1295 __ cmp(r10, rscratch2); 1296 __ br(Assembler::NE, L); 1297 __ call_VM(noreg, 1298 CAST_FROM_FN_PTR(address, 1299 InterpreterRuntime::prepare_native_call), 1300 rmethod); 1301 __ get_method(rmethod); 1302 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1303 __ bind(L); 1304 } 1305 1306 // pass JNIEnv 1307 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1308 1309 // Set the last Java PC in the frame anchor to be the return address from 1310 // the call to the native method: this will allow the debugger to 1311 // generate an accurate stack trace. 1312 Label native_return; 1313 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1314 1315 // change thread state 1316 #ifdef ASSERT 1317 { 1318 Label L; 1319 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1320 __ cmp(t, (u1)_thread_in_Java); 1321 __ br(Assembler::EQ, L); 1322 __ stop("Wrong thread state in native stub"); 1323 __ bind(L); 1324 } 1325 #endif 1326 1327 // Change state to native 1328 __ mov(rscratch1, _thread_in_native); 1329 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1330 __ stlrw(rscratch1, rscratch2); 1331 1332 // Call the native method. 1333 __ blr(r10); 1334 __ bind(native_return); 1335 __ get_method(rmethod); 1336 // result potentially in r0 or v0 1337 1338 // make room for the pushes we're about to do 1339 __ sub(rscratch1, esp, 4 * wordSize); 1340 __ andr(sp, rscratch1, -16); 1341 1342 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1343 // in order to extract the result of a method call. If the order of these 1344 // pushes change or anything else is added to the stack then the code in 1345 // interpreter_frame_result must also change. 1346 __ push(dtos); 1347 __ push(ltos); 1348 1349 __ verify_sve_vector_length(); 1350 1351 // change thread state 1352 __ mov(rscratch1, _thread_in_native_trans); 1353 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1354 __ stlrw(rscratch1, rscratch2); 1355 1356 // Force this write out before the read below 1357 if (!UseSystemMemoryBarrier) { 1358 __ dmb(Assembler::ISH); 1359 } 1360 1361 // check for safepoint operation in progress and/or pending suspend requests 1362 { 1363 Label L, Continue; 1364 1365 // We need an acquire here to ensure that any subsequent load of the 1366 // global SafepointSynchronize::_state flag is ordered after this load 1367 // of the thread-local polling word. We don't want this poll to 1368 // return false (i.e. not safepointing) and a later poll of the global 1369 // SafepointSynchronize::_state spuriously to return true. 1370 // 1371 // This is to avoid a race when we're in a native->Java transition 1372 // racing the code which wakes up from a safepoint. 1373 __ safepoint_poll(L, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1374 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1375 __ cbz(rscratch2, Continue); 1376 __ bind(L); 1377 1378 // Don't use call_VM as it will see a possible pending exception 1379 // and forward it and never return here preventing us from 1380 // clearing _last_native_pc down below. So we do a runtime call by 1381 // hand. 1382 // 1383 __ mov(c_rarg0, rthread); 1384 __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1385 __ blr(rscratch2); 1386 __ get_method(rmethod); 1387 __ reinit_heapbase(); 1388 __ bind(Continue); 1389 } 1390 1391 // change thread state 1392 __ mov(rscratch1, _thread_in_Java); 1393 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1394 __ stlrw(rscratch1, rscratch2); 1395 1396 // reset_last_Java_frame 1397 __ reset_last_Java_frame(true); 1398 1399 if (CheckJNICalls) { 1400 // clear_pending_jni_exception_check 1401 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1402 } 1403 1404 // reset handle block 1405 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1406 __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes())); 1407 1408 // If result is an oop unbox and store it in frame where gc will see it 1409 // and result handler will pick it up 1410 1411 { 1412 Label no_oop; 1413 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1414 __ cmp(t, result_handler); 1415 __ br(Assembler::NE, no_oop); 1416 // Unbox oop result, e.g. JNIHandles::resolve result. 1417 __ pop(ltos); 1418 __ resolve_jobject(r0, t, rscratch2); 1419 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1420 // keep stack depth as expected by pushing oop which will eventually be discarded 1421 __ push(ltos); 1422 __ bind(no_oop); 1423 } 1424 1425 { 1426 Label no_reguard; 1427 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1428 __ ldrw(rscratch1, Address(rscratch1)); 1429 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1430 __ br(Assembler::NE, no_reguard); 1431 1432 __ push_call_clobbered_registers(); 1433 __ mov(c_rarg0, rthread); 1434 __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1435 __ blr(rscratch2); 1436 __ pop_call_clobbered_registers(); 1437 1438 __ bind(no_reguard); 1439 } 1440 1441 // The method register is junk from after the thread_in_native transition 1442 // until here. Also can't call_VM until the bcp has been 1443 // restored. Need bcp for throwing exception below so get it now. 1444 __ get_method(rmethod); 1445 1446 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1447 // rbcp == code_base() 1448 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1449 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1450 // handle exceptions (exception handling will handle unlocking!) 1451 { 1452 Label L; 1453 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1454 __ cbz(rscratch1, L); 1455 // Note: At some point we may want to unify this with the code 1456 // used in call_VM_base(); i.e., we should use the 1457 // StubRoutines::forward_exception code. For now this doesn't work 1458 // here because the rsp is not correctly set at this point. 1459 __ MacroAssembler::call_VM(noreg, 1460 CAST_FROM_FN_PTR(address, 1461 InterpreterRuntime::throw_pending_exception)); 1462 __ should_not_reach_here(); 1463 __ bind(L); 1464 } 1465 1466 // do unlocking if necessary 1467 { 1468 Label L; 1469 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1470 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1471 // the code below should be shared with interpreter macro 1472 // assembler implementation 1473 { 1474 Label unlock; 1475 // BasicObjectLock will be first in list, since this is a 1476 // synchronized method. However, need to check that the object 1477 // has not been unlocked by an explicit monitorexit bytecode. 1478 1479 // monitor expect in c_rarg1 for slow unlock path 1480 __ lea (c_rarg1, Address(rfp, // address of first monitor 1481 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1482 wordSize - sizeof(BasicObjectLock)))); 1483 1484 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 1485 __ cbnz(t, unlock); 1486 1487 // Entry already unlocked, need to throw exception 1488 __ MacroAssembler::call_VM(noreg, 1489 CAST_FROM_FN_PTR(address, 1490 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1491 __ should_not_reach_here(); 1492 1493 __ bind(unlock); 1494 __ unlock_object(c_rarg1); 1495 } 1496 __ bind(L); 1497 } 1498 1499 // jvmti support 1500 // Note: This must happen _after_ handling/throwing any exceptions since 1501 // the exception handler code notifies the runtime of method exits 1502 // too. If this happens before, method entry/exit notifications are 1503 // not properly paired (was bug - gri 11/22/99). 1504 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1505 1506 // restore potential result in r0:d0, call result handler to 1507 // restore potential result in ST0 & handle result 1508 1509 __ pop(ltos); 1510 __ pop(dtos); 1511 1512 __ blr(result_handler); 1513 1514 // remove activation 1515 __ ldr(esp, Address(rfp, 1516 frame::interpreter_frame_sender_sp_offset * 1517 wordSize)); // get sender sp 1518 // remove frame anchor 1519 __ leave(); 1520 1521 // restore sender sp 1522 __ mov(sp, esp); 1523 1524 __ ret(lr); 1525 1526 if (inc_counter) { 1527 // Handle overflow of counter and compile method 1528 __ bind(invocation_counter_overflow); 1529 generate_counter_overflow(continue_after_compile); 1530 } 1531 1532 return entry_point; 1533 } 1534 1535 // 1536 // Generic interpreted method entry to (asm) interpreter 1537 // 1538 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1539 // determine code generation flags 1540 bool inc_counter = UseCompiler || CountCompiledCalls; 1541 1542 // rscratch1: sender sp 1543 address entry_point = __ pc(); 1544 1545 const Address constMethod(rmethod, Method::const_offset()); 1546 const Address access_flags(rmethod, Method::access_flags_offset()); 1547 const Address size_of_parameters(r3, 1548 ConstMethod::size_of_parameters_offset()); 1549 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1550 1551 // get parameter size (always needed) 1552 // need to load the const method first 1553 __ ldr(r3, constMethod); 1554 __ load_unsigned_short(r2, size_of_parameters); 1555 1556 // r2: size of parameters 1557 1558 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1559 __ sub(r3, r3, r2); // r3 = no. of additional locals 1560 1561 // see if we've got enough room on the stack for locals plus overhead. 1562 generate_stack_overflow_check(); 1563 1564 // compute beginning of parameters (rlocals) 1565 __ add(rlocals, esp, r2, ext::uxtx, 3); 1566 __ sub(rlocals, rlocals, wordSize); 1567 1568 __ mov(rscratch1, esp); 1569 1570 // r3 - # of additional locals 1571 // allocate space for locals 1572 // explicitly initialize locals 1573 // Initializing memory allocated for locals in the same direction as 1574 // the stack grows to ensure page initialization order according 1575 // to windows-aarch64 stack page growth requirement (see 1576 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1577 { 1578 Label exit, loop; 1579 __ ands(zr, r3, r3); 1580 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1581 __ bind(loop); 1582 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1583 __ sub(r3, r3, 1); // until everything initialized 1584 __ cbnz(r3, loop); 1585 __ bind(exit); 1586 } 1587 1588 // Padding between locals and fixed part of activation frame to ensure 1589 // SP is always 16-byte aligned. 1590 __ andr(sp, rscratch1, -16); 1591 1592 // And the base dispatch table 1593 __ get_dispatch(); 1594 1595 // initialize fixed part of activation frame 1596 generate_fixed_frame(false); 1597 1598 // make sure method is not native & not abstract 1599 #ifdef ASSERT 1600 __ ldrw(r0, access_flags); 1601 { 1602 Label L; 1603 __ tst(r0, JVM_ACC_NATIVE); 1604 __ br(Assembler::EQ, L); 1605 __ stop("tried to execute native method as non-native"); 1606 __ bind(L); 1607 } 1608 { 1609 Label L; 1610 __ tst(r0, JVM_ACC_ABSTRACT); 1611 __ br(Assembler::EQ, L); 1612 __ stop("tried to execute abstract method in interpreter"); 1613 __ bind(L); 1614 } 1615 #endif 1616 1617 // Since at this point in the method invocation the exception 1618 // handler would try to exit the monitor of synchronized methods 1619 // which hasn't been entered yet, we set the thread local variable 1620 // _do_not_unlock_if_synchronized to true. The remove_activation 1621 // will check this flag. 1622 1623 const Address do_not_unlock_if_synchronized(rthread, 1624 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1625 __ mov(rscratch2, true); 1626 __ strb(rscratch2, do_not_unlock_if_synchronized); 1627 1628 Register mdp = r3; 1629 __ profile_parameters_type(mdp, r1, r2); 1630 1631 // increment invocation count & check for overflow 1632 Label invocation_counter_overflow; 1633 if (inc_counter) { 1634 generate_counter_incr(&invocation_counter_overflow); 1635 } 1636 1637 Label continue_after_compile; 1638 __ bind(continue_after_compile); 1639 1640 bang_stack_shadow_pages(false); 1641 1642 // reset the _do_not_unlock_if_synchronized flag 1643 __ strb(zr, do_not_unlock_if_synchronized); 1644 1645 // check for synchronized methods 1646 // Must happen AFTER invocation_counter check and stack overflow check, 1647 // so method is not locked if overflows. 1648 if (synchronized) { 1649 // Allocate monitor and lock method 1650 lock_method(); 1651 } else { 1652 // no synchronization necessary 1653 #ifdef ASSERT 1654 { 1655 Label L; 1656 __ ldrw(r0, access_flags); 1657 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1658 __ br(Assembler::EQ, L); 1659 __ stop("method needs synchronization"); 1660 __ bind(L); 1661 } 1662 #endif 1663 } 1664 1665 // start execution 1666 #ifdef ASSERT 1667 { 1668 Label L; 1669 const Address monitor_block_top (rfp, 1670 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1671 __ ldr(rscratch1, monitor_block_top); 1672 __ cmp(esp, rscratch1); 1673 __ br(Assembler::EQ, L); 1674 __ stop("broken stack frame setup in interpreter 2"); 1675 __ bind(L); 1676 } 1677 #endif 1678 1679 // jvmti support 1680 __ notify_method_entry(); 1681 1682 __ dispatch_next(vtos); 1683 1684 // invocation counter overflow 1685 if (inc_counter) { 1686 // Handle overflow of counter and compile method 1687 __ bind(invocation_counter_overflow); 1688 generate_counter_overflow(continue_after_compile); 1689 } 1690 1691 return entry_point; 1692 } 1693 1694 // Method entry for java.lang.Thread.currentThread 1695 address TemplateInterpreterGenerator::generate_currentThread() { 1696 address entry_point = __ pc(); 1697 1698 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1699 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1700 __ ret(lr); 1701 1702 return entry_point; 1703 } 1704 1705 //----------------------------------------------------------------------------- 1706 // Exceptions 1707 1708 void TemplateInterpreterGenerator::generate_throw_exception() { 1709 // Entry point in previous activation (i.e., if the caller was 1710 // interpreted) 1711 Interpreter::_rethrow_exception_entry = __ pc(); 1712 // Restore sp to interpreter_frame_last_sp even though we are going 1713 // to empty the expression stack for the exception processing. 1714 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1715 // r0: exception 1716 // r3: return address/pc that threw exception 1717 __ restore_bcp(); // rbcp points to call/send 1718 __ restore_locals(); 1719 __ restore_constant_pool_cache(); 1720 __ reinit_heapbase(); // restore rheapbase as heapbase. 1721 __ get_dispatch(); 1722 1723 // Entry point for exceptions thrown within interpreter code 1724 Interpreter::_throw_exception_entry = __ pc(); 1725 // If we came here via a NullPointerException on the receiver of a 1726 // method, rmethod may be corrupt. 1727 __ get_method(rmethod); 1728 // expression stack is undefined here 1729 // r0: exception 1730 // rbcp: exception bcp 1731 __ verify_oop(r0); 1732 __ mov(c_rarg1, r0); 1733 1734 // expression stack must be empty before entering the VM in case of 1735 // an exception 1736 __ empty_expression_stack(); 1737 // find exception handler address and preserve exception oop 1738 __ call_VM(r3, 1739 CAST_FROM_FN_PTR(address, 1740 InterpreterRuntime::exception_handler_for_exception), 1741 c_rarg1); 1742 1743 // Restore machine SP 1744 __ restore_sp_after_call(); 1745 1746 // r0: exception handler entry point 1747 // r3: preserved exception oop 1748 // rbcp: bcp for exception handler 1749 __ push_ptr(r3); // push exception which is now the only value on the stack 1750 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1751 1752 // If the exception is not handled in the current frame the frame is 1753 // removed and the exception is rethrown (i.e. exception 1754 // continuation is _rethrow_exception). 1755 // 1756 // Note: At this point the bci is still the bxi for the instruction 1757 // which caused the exception and the expression stack is 1758 // empty. Thus, for any VM calls at this point, GC will find a legal 1759 // oop map (with empty expression stack). 1760 1761 // 1762 // JVMTI PopFrame support 1763 // 1764 1765 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1766 __ empty_expression_stack(); 1767 // Set the popframe_processing bit in pending_popframe_condition 1768 // indicating that we are currently handling popframe, so that 1769 // call_VMs that may happen later do not trigger new popframe 1770 // handling cycles. 1771 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1772 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1773 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1774 1775 { 1776 // Check to see whether we are returning to a deoptimized frame. 1777 // (The PopFrame call ensures that the caller of the popped frame is 1778 // either interpreted or compiled and deoptimizes it if compiled.) 1779 // In this case, we can't call dispatch_next() after the frame is 1780 // popped, but instead must save the incoming arguments and restore 1781 // them after deoptimization has occurred. 1782 // 1783 // Note that we don't compare the return PC against the 1784 // deoptimization blob's unpack entry because of the presence of 1785 // adapter frames in C2. 1786 Label caller_not_deoptimized; 1787 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1788 // This is a return address, so requires authenticating for PAC. 1789 __ authenticate_return_address(c_rarg1, rscratch1); 1790 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1791 InterpreterRuntime::interpreter_contains), c_rarg1); 1792 __ cbnz(r0, caller_not_deoptimized); 1793 1794 // Compute size of arguments for saving when returning to 1795 // deoptimized caller 1796 __ get_method(r0); 1797 __ ldr(r0, Address(r0, Method::const_offset())); 1798 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1799 size_of_parameters_offset()))); 1800 __ lsl(r0, r0, Interpreter::logStackElementSize); 1801 __ restore_locals(); // XXX do we need this? 1802 __ sub(rlocals, rlocals, r0); 1803 __ add(rlocals, rlocals, wordSize); 1804 // Save these arguments 1805 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1806 Deoptimization:: 1807 popframe_preserve_args), 1808 rthread, r0, rlocals); 1809 1810 __ remove_activation(vtos, 1811 /* throw_monitor_exception */ false, 1812 /* install_monitor_exception */ false, 1813 /* notify_jvmdi */ false); 1814 1815 // Inform deoptimization that it is responsible for restoring 1816 // these arguments 1817 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1818 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1819 1820 // Continue in deoptimization handler 1821 __ ret(lr); 1822 1823 __ bind(caller_not_deoptimized); 1824 } 1825 1826 __ remove_activation(vtos, 1827 /* throw_monitor_exception */ false, 1828 /* install_monitor_exception */ false, 1829 /* notify_jvmdi */ false); 1830 1831 // Restore the last_sp and null it out 1832 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1833 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1834 1835 __ restore_bcp(); 1836 __ restore_locals(); 1837 __ restore_constant_pool_cache(); 1838 __ get_method(rmethod); 1839 __ get_dispatch(); 1840 1841 // The method data pointer was incremented already during 1842 // call profiling. We have to restore the mdp for the current bcp. 1843 if (ProfileInterpreter) { 1844 __ set_method_data_pointer_for_bcp(); 1845 } 1846 1847 // Clear the popframe condition flag 1848 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1849 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1850 1851 #if INCLUDE_JVMTI 1852 { 1853 Label L_done; 1854 1855 __ ldrb(rscratch1, Address(rbcp, 0)); 1856 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1857 __ br(Assembler::NE, L_done); 1858 1859 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1860 // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. 1861 1862 __ ldr(c_rarg0, Address(rlocals, 0)); 1863 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1864 1865 __ cbz(r0, L_done); 1866 1867 __ str(r0, Address(esp, 0)); 1868 __ bind(L_done); 1869 } 1870 #endif // INCLUDE_JVMTI 1871 1872 // Restore machine SP 1873 __ restore_sp_after_call(); 1874 1875 __ dispatch_next(vtos); 1876 // end of PopFrame support 1877 1878 Interpreter::_remove_activation_entry = __ pc(); 1879 1880 // preserve exception over this code sequence 1881 __ pop_ptr(r0); 1882 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1883 // remove the activation (without doing throws on illegalMonitorExceptions) 1884 __ remove_activation(vtos, false, true, false); 1885 // restore exception 1886 __ get_vm_result(r0, rthread); 1887 1888 // In between activations - previous activation type unknown yet 1889 // compute continuation point - the continuation point expects the 1890 // following registers set up: 1891 // 1892 // r0: exception 1893 // lr: return address/pc that threw exception 1894 // esp: expression stack of caller 1895 // rfp: fp of caller 1896 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 1897 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1898 SharedRuntime::exception_handler_for_return_address), 1899 rthread, lr); 1900 __ mov(r1, r0); // save exception handler 1901 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 1902 // We might be returning to a deopt handler that expects r3 to 1903 // contain the exception pc 1904 __ mov(r3, lr); 1905 // Note that an "issuing PC" is actually the next PC after the call 1906 __ br(r1); // jump to exception 1907 // handler of caller 1908 } 1909 1910 1911 // 1912 // JVMTI ForceEarlyReturn support 1913 // 1914 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1915 address entry = __ pc(); 1916 1917 __ restore_bcp(); 1918 __ restore_locals(); 1919 __ empty_expression_stack(); 1920 __ load_earlyret_value(state); 1921 1922 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 1923 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 1924 1925 // Clear the earlyret state 1926 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 1927 __ str(zr, cond_addr); 1928 1929 __ remove_activation(state, 1930 false, /* throw_monitor_exception */ 1931 false, /* install_monitor_exception */ 1932 true); /* notify_jvmdi */ 1933 __ ret(lr); 1934 1935 return entry; 1936 } // end of ForceEarlyReturn support 1937 1938 1939 1940 //----------------------------------------------------------------------------- 1941 // Helper for vtos entry point generation 1942 1943 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 1944 address& bep, 1945 address& cep, 1946 address& sep, 1947 address& aep, 1948 address& iep, 1949 address& lep, 1950 address& fep, 1951 address& dep, 1952 address& vep) { 1953 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1954 Label L; 1955 aep = __ pc(); __ push_ptr(); __ b(L); 1956 fep = __ pc(); __ push_f(); __ b(L); 1957 dep = __ pc(); __ push_d(); __ b(L); 1958 lep = __ pc(); __ push_l(); __ b(L); 1959 bep = cep = sep = 1960 iep = __ pc(); __ push_i(); 1961 vep = __ pc(); 1962 __ bind(L); 1963 generate_and_dispatch(t); 1964 } 1965 1966 //----------------------------------------------------------------------------- 1967 1968 // Non-product code 1969 #ifndef PRODUCT 1970 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1971 address entry = __ pc(); 1972 1973 __ protect_return_address(); 1974 __ push(lr); 1975 __ push(state); 1976 __ push(RegSet::range(r0, r15), sp); 1977 __ mov(c_rarg2, r0); // Pass itos 1978 __ call_VM(noreg, 1979 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 1980 c_rarg1, c_rarg2, c_rarg3); 1981 __ pop(RegSet::range(r0, r15), sp); 1982 __ pop(state); 1983 __ pop(lr); 1984 __ authenticate_return_address(); 1985 __ ret(lr); // return from result handler 1986 1987 return entry; 1988 } 1989 1990 void TemplateInterpreterGenerator::count_bytecode() { 1991 __ mov(r10, (address) &BytecodeCounter::_counter_value); 1992 __ atomic_addw(noreg, 1, r10); 1993 } 1994 1995 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1996 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 1997 __ atomic_addw(noreg, 1, r10); 1998 } 1999 2000 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2001 // Calculate new index for counter: 2002 // _index = (_index >> log2_number_of_codes) | 2003 // (bytecode << log2_number_of_codes); 2004 Register index_addr = rscratch1; 2005 Register index = rscratch2; 2006 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2007 __ ldrw(index, index_addr); 2008 __ mov(r10, 2009 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2010 __ orrw(index, r10, index, Assembler::LSR, 2011 BytecodePairHistogram::log2_number_of_codes); 2012 __ strw(index, index_addr); 2013 2014 // Bump bucket contents: 2015 // _counters[_index] ++; 2016 Register counter_addr = rscratch1; 2017 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2018 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2019 __ atomic_addw(noreg, 1, counter_addr); 2020 } 2021 2022 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2023 // Call a little run-time stub to avoid blow-up for each bytecode. 2024 // The run-time runtime saves the right registers, depending on 2025 // the tosca in-state for the given template. 2026 2027 assert(Interpreter::trace_code(t->tos_in()) != NULL, 2028 "entry must have been generated"); 2029 __ bl(Interpreter::trace_code(t->tos_in())); 2030 __ reinit_heapbase(); 2031 } 2032 2033 2034 void TemplateInterpreterGenerator::stop_interpreter_at() { 2035 Label L; 2036 __ push(rscratch1); 2037 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2038 __ ldr(rscratch1, Address(rscratch1)); 2039 __ mov(rscratch2, StopInterpreterAt); 2040 __ cmpw(rscratch1, rscratch2); 2041 __ br(Assembler::NE, L); 2042 __ brk(0); 2043 __ bind(L); 2044 __ pop(rscratch1); 2045 } 2046 2047 #endif // !PRODUCT