1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "interpreter/bytecodeTracer.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/arrayOop.hpp" 40 #include "oops/methodData.hpp" 41 #include "oops/method.hpp" 42 #include "oops/oop.inline.hpp" 43 #include "oops/inlineKlass.hpp" 44 #include "oops/resolvedIndyEntry.hpp" 45 #include "prims/jvmtiExport.hpp" 46 #include "prims/jvmtiThreadState.hpp" 47 #include "runtime/arguments.hpp" 48 #include "runtime/deoptimization.hpp" 49 #include "runtime/frame.inline.hpp" 50 #include "runtime/globals.hpp" 51 #include "runtime/jniHandles.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/synchronizer.hpp" 55 #include "runtime/timer.hpp" 56 #include "runtime/vframeArray.hpp" 57 #include "utilities/debug.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #include <sys/types.h> 60 61 // Size of interpreter code. Increase if too small. Interpreter will 62 // fail with a guarantee ("not enough space for interpreter generation"); 63 // if too small. 64 // Run with +PrintInterpreter to get the VM to print out the size. 65 // Max size with JVMTI 66 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 67 68 #define __ _masm-> 69 70 //----------------------------------------------------------------------------- 71 72 extern "C" void entry(CodeBuffer*); 73 74 //----------------------------------------------------------------------------- 75 76 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 77 address entry = __ pc(); 78 79 __ andr(esp, esp, -16); 80 __ mov(c_rarg3, esp); 81 // rmethod 82 // rlocals 83 // c_rarg3: first stack arg - wordSize 84 85 // adjust sp 86 __ sub(sp, c_rarg3, 18 * wordSize); 87 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 88 __ call_VM(noreg, 89 CAST_FROM_FN_PTR(address, 90 InterpreterRuntime::slow_signature_handler), 91 rmethod, rlocals, c_rarg3); 92 93 // r0: result handler 94 95 // Stack layout: 96 // rsp: return address <- sp 97 // 1 garbage 98 // 8 integer args (if static first is unused) 99 // 1 float/double identifiers 100 // 8 double args 101 // stack args <- esp 102 // garbage 103 // expression stack bottom 104 // bcp (null) 105 // ... 106 107 // Restore LR 108 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 109 110 // Do FP first so we can use c_rarg3 as temp 111 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 112 113 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 114 const FloatRegister r = as_FloatRegister(i); 115 116 Label d, done; 117 118 __ tbnz(c_rarg3, i, d); 119 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 120 __ b(done); 121 __ bind(d); 122 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 123 __ bind(done); 124 } 125 126 // c_rarg0 contains the result from the call of 127 // InterpreterRuntime::slow_signature_handler so we don't touch it 128 // here. It will be loaded with the JNIEnv* later. 129 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 130 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 131 Register rm = as_Register(i), rn = as_Register(i+1); 132 __ ldp(rm, rn, Address(sp, i * wordSize)); 133 } 134 135 __ add(sp, sp, 18 * wordSize); 136 __ ret(lr); 137 138 return entry; 139 } 140 141 142 // 143 // Various method entries 144 // 145 146 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 147 // rmethod: Method* 148 // r19_sender_sp: sender sp 149 // esp: args 150 151 // These don't need a safepoint check because they aren't virtually 152 // callable. We won't enter these intrinsics from compiled code. 153 // If in the future we added an intrinsic which was virtually callable 154 // we'd have to worry about how to safepoint so that this code is used. 155 156 // mathematical functions inlined by compiler 157 // (interpreter must provide identical implementation 158 // in order to avoid monotonicity bugs when switching 159 // from interpreter to compiler in the middle of some 160 // computation) 161 // 162 // stack: 163 // [ arg ] <-- esp 164 // [ arg ] 165 // retaddr in lr 166 167 address entry_point = nullptr; 168 Register continuation = lr; 169 switch (kind) { 170 case Interpreter::java_lang_math_abs: 171 entry_point = __ pc(); 172 __ ldrd(v0, Address(esp)); 173 __ fabsd(v0, v0); 174 __ mov(sp, r19_sender_sp); // Restore caller's SP 175 break; 176 case Interpreter::java_lang_math_sqrt: 177 entry_point = __ pc(); 178 __ ldrd(v0, Address(esp)); 179 __ fsqrtd(v0, v0); 180 __ mov(sp, r19_sender_sp); 181 break; 182 case Interpreter::java_lang_math_sin : 183 case Interpreter::java_lang_math_cos : 184 case Interpreter::java_lang_math_tan : 185 case Interpreter::java_lang_math_log : 186 case Interpreter::java_lang_math_log10 : 187 case Interpreter::java_lang_math_exp : 188 entry_point = __ pc(); 189 __ ldrd(v0, Address(esp)); 190 __ mov(sp, r19_sender_sp); 191 __ mov(r23, lr); 192 continuation = r23; // The first free callee-saved register 193 generate_transcendental_entry(kind, 1); 194 break; 195 case Interpreter::java_lang_math_pow : 196 entry_point = __ pc(); 197 __ mov(r23, lr); 198 continuation = r23; 199 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 200 __ ldrd(v1, Address(esp)); 201 __ mov(sp, r19_sender_sp); 202 generate_transcendental_entry(kind, 2); 203 break; 204 case Interpreter::java_lang_math_fmaD : 205 if (UseFMA) { 206 entry_point = __ pc(); 207 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 208 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 209 __ ldrd(v2, Address(esp)); 210 __ fmaddd(v0, v0, v1, v2); 211 __ mov(sp, r19_sender_sp); // Restore caller's SP 212 } 213 break; 214 case Interpreter::java_lang_math_fmaF : 215 if (UseFMA) { 216 entry_point = __ pc(); 217 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 218 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 219 __ ldrs(v2, Address(esp)); 220 __ fmadds(v0, v0, v1, v2); 221 __ mov(sp, r19_sender_sp); // Restore caller's SP 222 } 223 break; 224 default: 225 ; 226 } 227 if (entry_point) { 228 __ br(continuation); 229 } 230 231 return entry_point; 232 } 233 234 // double trigonometrics and transcendentals 235 // static jdouble dsin(jdouble x); 236 // static jdouble dcos(jdouble x); 237 // static jdouble dtan(jdouble x); 238 // static jdouble dlog(jdouble x); 239 // static jdouble dlog10(jdouble x); 240 // static jdouble dexp(jdouble x); 241 // static jdouble dpow(jdouble x, jdouble y); 242 243 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 244 address fn; 245 switch (kind) { 246 case Interpreter::java_lang_math_sin : 247 if (StubRoutines::dsin() == nullptr) { 248 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 249 } else { 250 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 251 } 252 break; 253 case Interpreter::java_lang_math_cos : 254 if (StubRoutines::dcos() == nullptr) { 255 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 256 } else { 257 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 258 } 259 break; 260 case Interpreter::java_lang_math_tan : 261 if (StubRoutines::dtan() == nullptr) { 262 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 263 } else { 264 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 265 } 266 break; 267 case Interpreter::java_lang_math_log : 268 if (StubRoutines::dlog() == nullptr) { 269 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 270 } else { 271 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 272 } 273 break; 274 case Interpreter::java_lang_math_log10 : 275 if (StubRoutines::dlog10() == nullptr) { 276 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 277 } else { 278 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 279 } 280 break; 281 case Interpreter::java_lang_math_exp : 282 if (StubRoutines::dexp() == nullptr) { 283 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 284 } else { 285 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 286 } 287 break; 288 case Interpreter::java_lang_math_pow : 289 if (StubRoutines::dpow() == nullptr) { 290 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 291 } else { 292 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 293 } 294 break; 295 default: 296 ShouldNotReachHere(); 297 fn = nullptr; // unreachable 298 } 299 __ mov(rscratch1, fn); 300 __ blr(rscratch1); 301 } 302 303 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 304 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 305 // r19_sender_sp: sender sp 306 // stack: 307 // [ arg ] <-- esp 308 // [ arg ] 309 // retaddr in lr 310 // result in v0 311 312 address entry_point = __ pc(); 313 __ ldrw(c_rarg0, Address(esp)); 314 __ flt16_to_flt(v0, c_rarg0, v1); 315 __ mov(sp, r19_sender_sp); // Restore caller's SP 316 __ br(lr); 317 return entry_point; 318 } 319 320 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 321 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 322 // r19_sender_sp: sender sp 323 // stack: 324 // [ arg ] <-- esp 325 // [ arg ] 326 // retaddr in lr 327 // result in c_rarg0 328 329 address entry_point = __ pc(); 330 __ ldrs(v0, Address(esp)); 331 __ flt_to_flt16(c_rarg0, v0, v1); 332 __ mov(sp, r19_sender_sp); // Restore caller's SP 333 __ br(lr); 334 return entry_point; 335 } 336 337 // Abstract method entry 338 // Attempt to execute abstract method. Throw exception 339 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 340 // rmethod: Method* 341 // r19_sender_sp: sender SP 342 343 address entry_point = __ pc(); 344 345 // abstract method entry 346 347 // pop return address, reset last_sp to null 348 __ empty_expression_stack(); 349 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 350 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 351 352 // throw exception 353 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 354 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 355 rmethod); 356 // the call_VM checks for exception, so we should never return here. 357 __ should_not_reach_here(); 358 359 return entry_point; 360 } 361 362 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 363 address entry = __ pc(); 364 365 #ifdef ASSERT 366 { 367 Label L; 368 __ ldr(rscratch1, Address(rfp, 369 frame::interpreter_frame_monitor_block_top_offset * 370 wordSize)); 371 __ mov(rscratch2, sp); 372 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 373 // grows negative) 374 __ br(Assembler::HS, L); // check if frame is complete 375 __ stop ("interpreter frame not set up"); 376 __ bind(L); 377 } 378 #endif // ASSERT 379 // Restore bcp under the assumption that the current frame is still 380 // interpreted 381 __ restore_bcp(); 382 383 // expression stack must be empty before entering the VM if an 384 // exception happened 385 __ empty_expression_stack(); 386 // throw exception 387 __ call_VM(noreg, 388 CAST_FROM_FN_PTR(address, 389 InterpreterRuntime::throw_StackOverflowError)); 390 return entry; 391 } 392 393 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 394 address entry = __ pc(); 395 // expression stack must be empty before entering the VM if an 396 // exception happened 397 __ empty_expression_stack(); 398 // setup parameters 399 400 // ??? convention: expect aberrant index in register r1 401 __ movw(c_rarg2, r1); 402 // ??? convention: expect array in register r3 403 __ mov(c_rarg1, r3); 404 __ call_VM(noreg, 405 CAST_FROM_FN_PTR(address, 406 InterpreterRuntime:: 407 throw_ArrayIndexOutOfBoundsException), 408 c_rarg1, c_rarg2); 409 return entry; 410 } 411 412 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 413 address entry = __ pc(); 414 415 // object is at TOS 416 __ pop(c_rarg1); 417 418 // expression stack must be empty before entering the VM if an 419 // exception happened 420 __ empty_expression_stack(); 421 422 __ call_VM(noreg, 423 CAST_FROM_FN_PTR(address, 424 InterpreterRuntime:: 425 throw_ClassCastException), 426 c_rarg1); 427 return entry; 428 } 429 430 address TemplateInterpreterGenerator::generate_exception_handler_common( 431 const char* name, const char* message, bool pass_oop) { 432 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 433 address entry = __ pc(); 434 if (pass_oop) { 435 // object is at TOS 436 __ pop(c_rarg2); 437 } 438 // expression stack must be empty before entering the VM if an 439 // exception happened 440 __ empty_expression_stack(); 441 // setup parameters 442 __ lea(c_rarg1, Address((address)name)); 443 if (pass_oop) { 444 __ call_VM(r0, CAST_FROM_FN_PTR(address, 445 InterpreterRuntime:: 446 create_klass_exception), 447 c_rarg1, c_rarg2); 448 } else { 449 // kind of lame ExternalAddress can't take null because 450 // external_word_Relocation will assert. 451 if (message != nullptr) { 452 __ lea(c_rarg2, Address((address)message)); 453 } else { 454 __ mov(c_rarg2, NULL_WORD); 455 } 456 __ call_VM(r0, 457 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 458 c_rarg1, c_rarg2); 459 } 460 // throw exception 461 __ b(address(Interpreter::throw_exception_entry())); 462 return entry; 463 } 464 465 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 466 address entry = __ pc(); 467 468 // Restore stack bottom in case i2c adjusted stack 469 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 470 // and null it as marker that esp is now tos until next java call 471 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 472 473 if (state == atos && InlineTypeReturnedAsFields) { 474 __ store_inline_type_fields_to_buf(nullptr, true); 475 } 476 477 __ restore_bcp(); 478 __ restore_locals(); 479 __ restore_constant_pool_cache(); 480 __ get_method(rmethod); 481 482 if (state == atos) { 483 Register obj = r0; 484 Register mdp = r1; 485 Register tmp = r2; 486 __ profile_return_type(mdp, obj, tmp); 487 } 488 489 const Register cache = r1; 490 const Register index = r2; 491 492 if (index_size == sizeof(u4)) { 493 __ load_resolved_indy_entry(cache, index); 494 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 495 __ add(esp, esp, cache, Assembler::LSL, 3); 496 } else { 497 // Pop N words from the stack 498 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 499 __ ldr(cache, Address(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); 500 __ andr(cache, cache, ConstantPoolCacheEntry::parameter_size_mask); 501 502 __ add(esp, esp, cache, Assembler::LSL, 3); 503 } 504 505 // Restore machine SP 506 __ restore_sp_after_call(); 507 508 __ check_and_handle_popframe(rthread); 509 __ check_and_handle_earlyret(rthread); 510 511 __ get_dispatch(); 512 __ dispatch_next(state, step); 513 514 return entry; 515 } 516 517 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 518 int step, 519 address continuation) { 520 address entry = __ pc(); 521 __ restore_bcp(); 522 __ restore_locals(); 523 __ restore_constant_pool_cache(); 524 __ get_method(rmethod); 525 __ get_dispatch(); 526 527 __ restore_sp_after_call(); // Restore SP to extended SP 528 529 // Restore expression stack pointer 530 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 531 // null last_sp until next java call 532 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 533 534 #if INCLUDE_JVMCI 535 // Check if we need to take lock at entry of synchronized method. This can 536 // only occur on method entry so emit it only for vtos with step 0. 537 if (EnableJVMCI && state == vtos && step == 0) { 538 Label L; 539 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 540 __ cbz(rscratch1, L); 541 // Clear flag. 542 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 543 // Take lock. 544 lock_method(); 545 __ bind(L); 546 } else { 547 #ifdef ASSERT 548 if (EnableJVMCI) { 549 Label L; 550 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 551 __ cbz(rscratch1, L); 552 __ stop("unexpected pending monitor in deopt entry"); 553 __ bind(L); 554 } 555 #endif 556 } 557 #endif 558 // handle exceptions 559 { 560 Label L; 561 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 562 __ cbz(rscratch1, L); 563 __ call_VM(noreg, 564 CAST_FROM_FN_PTR(address, 565 InterpreterRuntime::throw_pending_exception)); 566 __ should_not_reach_here(); 567 __ bind(L); 568 } 569 570 if (continuation == nullptr) { 571 __ dispatch_next(state, step); 572 } else { 573 __ jump_to_entry(continuation); 574 } 575 return entry; 576 } 577 578 address TemplateInterpreterGenerator::generate_result_handler_for( 579 BasicType type) { 580 address entry = __ pc(); 581 switch (type) { 582 case T_BOOLEAN: __ c2bool(r0); break; 583 case T_CHAR : __ uxth(r0, r0); break; 584 case T_BYTE : __ sxtb(r0, r0); break; 585 case T_SHORT : __ sxth(r0, r0); break; 586 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 587 case T_LONG : /* nothing to do */ break; 588 case T_VOID : /* nothing to do */ break; 589 case T_FLOAT : /* nothing to do */ break; 590 case T_DOUBLE : /* nothing to do */ break; 591 case T_PRIMITIVE_OBJECT: // fall through (value types are handled with oops) 592 case T_OBJECT : 593 // retrieve result from frame 594 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 595 // and verify it 596 __ verify_oop(r0); 597 break; 598 default : ShouldNotReachHere(); 599 } 600 __ ret(lr); // return from result handler 601 return entry; 602 } 603 604 address TemplateInterpreterGenerator::generate_safept_entry_for( 605 TosState state, 606 address runtime_entry) { 607 address entry = __ pc(); 608 __ push(state); 609 __ push_cont_fastpath(rthread); 610 __ call_VM(noreg, runtime_entry); 611 __ pop_cont_fastpath(rthread); 612 __ membar(Assembler::AnyAny); 613 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 614 return entry; 615 } 616 617 // Helpers for commoning out cases in the various type of method entries. 618 // 619 620 621 // increment invocation count & check for overflow 622 // 623 // Note: checking for negative value instead of overflow 624 // so we have a 'sticky' overflow test 625 // 626 // rmethod: method 627 // 628 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 629 Label done; 630 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 631 int increment = InvocationCounter::count_increment; 632 Label no_mdo; 633 if (ProfileInterpreter) { 634 // Are we profiling? 635 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 636 __ cbz(r0, no_mdo); 637 // Increment counter in the MDO 638 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 639 in_bytes(InvocationCounter::counter_offset())); 640 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 641 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 642 __ b(done); 643 } 644 __ bind(no_mdo); 645 // Increment counter in MethodCounters 646 const Address invocation_counter(rscratch2, 647 MethodCounters::invocation_counter_offset() + 648 InvocationCounter::counter_offset()); 649 __ get_method_counters(rmethod, rscratch2, done); 650 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 651 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 652 __ bind(done); 653 } 654 655 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 656 657 // Asm interpreter on entry 658 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 659 // Everything as it was on entry 660 661 // InterpreterRuntime::frequency_counter_overflow takes two 662 // arguments, the first (thread) is passed by call_VM, the second 663 // indicates if the counter overflow occurs at a backwards branch 664 // (null bcp). We pass zero for it. The call returns the address 665 // of the verified entry point for the method or null if the 666 // compilation did not complete (either went background or bailed 667 // out). 668 __ mov(c_rarg1, 0); 669 __ call_VM(noreg, 670 CAST_FROM_FN_PTR(address, 671 InterpreterRuntime::frequency_counter_overflow), 672 c_rarg1); 673 674 __ b(do_continue); 675 } 676 677 // See if we've got enough room on the stack for locals plus overhead 678 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 679 // without going through the signal handler, i.e., reserved and yellow zones 680 // will not be made usable. The shadow zone must suffice to handle the 681 // overflow. 682 // The expression stack grows down incrementally, so the normal guard 683 // page mechanism will work for that. 684 // 685 // NOTE: Since the additional locals are also always pushed (wasn't 686 // obvious in generate_method_entry) so the guard should work for them 687 // too. 688 // 689 // Args: 690 // r3: number of additional locals this frame needs (what we must check) 691 // rmethod: Method* 692 // 693 // Kills: 694 // r0 695 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 696 697 // monitor entry size: see picture of stack set 698 // (generate_method_entry) and frame_amd64.hpp 699 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 700 701 // total overhead size: entry_size + (saved rbp through expr stack 702 // bottom). be sure to change this if you add/subtract anything 703 // to/from the overhead area 704 const int overhead_size = 705 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 706 707 const size_t page_size = os::vm_page_size(); 708 709 Label after_frame_check; 710 711 // see if the frame is greater than one page in size. If so, 712 // then we need to verify there is enough stack space remaining 713 // for the additional locals. 714 // 715 // Note that we use SUBS rather than CMP here because the immediate 716 // field of this instruction may overflow. SUBS can cope with this 717 // because it is a macro that will expand to some number of MOV 718 // instructions and a register operation. 719 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 720 __ br(Assembler::LS, after_frame_check); 721 722 // compute rsp as if this were going to be the last frame on 723 // the stack before the red zone 724 725 // locals + overhead, in bytes 726 __ mov(r0, overhead_size); 727 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 728 729 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 730 __ ldr(rscratch1, stack_limit); 731 732 #ifdef ASSERT 733 Label limit_okay; 734 // Verify that thread stack limit is non-zero. 735 __ cbnz(rscratch1, limit_okay); 736 __ stop("stack overflow limit is zero"); 737 __ bind(limit_okay); 738 #endif 739 740 // Add stack limit to locals. 741 __ add(r0, r0, rscratch1); 742 743 // Check against the current stack bottom. 744 __ cmp(sp, r0); 745 __ br(Assembler::HI, after_frame_check); 746 747 // Remove the incoming args, peeling the machine SP back to where it 748 // was in the caller. This is not strictly necessary, but unless we 749 // do so the stack frame may have a garbage FP; this ensures a 750 // correct call stack that we can always unwind. The ANDR should be 751 // unnecessary because the sender SP in r19 is always aligned, but 752 // it doesn't hurt. 753 __ andr(sp, r19_sender_sp, -16); 754 755 // Note: the restored frame is not necessarily interpreted. 756 // Use the shared runtime version of the StackOverflowError. 757 assert(StubRoutines::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 758 __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry())); 759 760 // all done with frame size check 761 __ bind(after_frame_check); 762 } 763 764 // Allocate monitor and lock method (asm interpreter) 765 // 766 // Args: 767 // rmethod: Method* 768 // rlocals: locals 769 // 770 // Kills: 771 // r0 772 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 773 // rscratch1, rscratch2 (scratch regs) 774 void TemplateInterpreterGenerator::lock_method() { 775 // synchronize method 776 const Address access_flags(rmethod, Method::access_flags_offset()); 777 const Address monitor_block_top( 778 rfp, 779 frame::interpreter_frame_monitor_block_top_offset * wordSize); 780 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 781 782 #ifdef ASSERT 783 { 784 Label L; 785 __ ldrw(r0, access_flags); 786 __ tst(r0, JVM_ACC_SYNCHRONIZED); 787 __ br(Assembler::NE, L); 788 __ stop("method doesn't need synchronization"); 789 __ bind(L); 790 } 791 #endif // ASSERT 792 793 // get synchronization object 794 { 795 Label done; 796 __ ldrw(r0, access_flags); 797 __ tst(r0, JVM_ACC_STATIC); 798 // get receiver (assume this is frequent case) 799 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 800 __ br(Assembler::EQ, done); 801 __ load_mirror(r0, rmethod, r5, rscratch2); 802 803 #ifdef ASSERT 804 { 805 Label L; 806 __ cbnz(r0, L); 807 __ stop("synchronization object is null"); 808 __ bind(L); 809 } 810 #endif // ASSERT 811 812 __ bind(done); 813 } 814 815 // add space for monitor & lock 816 __ check_extended_sp(); 817 __ sub(sp, sp, entry_size); // add space for a monitor entry 818 __ sub(esp, esp, entry_size); 819 __ mov(rscratch1, sp); 820 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 821 __ str(esp, monitor_block_top); // set new monitor block top 822 // store object 823 __ str(r0, Address(esp, BasicObjectLock::obj_offset())); 824 __ mov(c_rarg1, esp); // object address 825 __ lock_object(c_rarg1); 826 } 827 828 // Generate a fixed interpreter frame. This is identical setup for 829 // interpreted methods and for native methods hence the shared code. 830 // 831 // Args: 832 // lr: return address 833 // rmethod: Method* 834 // rlocals: pointer to locals 835 // rcpool: cp cache 836 // stack_pointer: previous sp 837 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 838 // initialize fixed part of activation frame 839 if (native_call) { 840 __ sub(esp, sp, 14 * wordSize); 841 __ mov(rbcp, zr); 842 __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize))); 843 // add 2 zero-initialized slots for native calls 844 __ stp(zr, zr, Address(sp, 12 * wordSize)); 845 } else { 846 __ sub(esp, sp, 12 * wordSize); 847 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 848 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 849 __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize))); 850 } 851 852 if (ProfileInterpreter) { 853 Label method_data_continue; 854 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 855 __ cbz(rscratch1, method_data_continue); 856 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 857 __ bind(method_data_continue); 858 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 859 } else { 860 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 861 } 862 863 __ protect_return_address(); 864 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 865 __ lea(rfp, Address(sp, 10 * wordSize)); 866 867 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 868 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 869 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset())); 870 __ sub(rscratch1, rlocals, rfp); 871 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp(); 872 // Store relativized rlocals, see frame::interpreter_frame_locals(). 873 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize)); 874 875 // set sender sp 876 // leave last_sp as null 877 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 878 879 // Get mirror 880 __ load_mirror(r10, rmethod, r5, rscratch2); 881 if (! native_call) { 882 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 883 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 884 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 885 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 886 __ andr(rscratch1, rscratch1, -16); 887 // Store extended SP and mirror 888 __ stp(r10, rscratch1, Address(sp, 4 * wordSize)); 889 // Move SP out of the way 890 __ mov(sp, rscratch1); 891 } else { 892 // Make sure there is room for the exception oop pushed in case method throws 893 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 894 __ sub(rscratch1, sp, 2 * wordSize); 895 __ stp(r10, rscratch1, Address(sp, 4 * wordSize)); 896 __ mov(sp, rscratch1); 897 } 898 } 899 900 // End of helpers 901 902 // Various method entries 903 //------------------------------------------------------------------------------------------------------------------------ 904 // 905 // 906 907 // Method entry for java.lang.ref.Reference.get. 908 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 909 // Code: _aload_0, _getfield, _areturn 910 // parameter size = 1 911 // 912 // The code that gets generated by this routine is split into 2 parts: 913 // 1. The "intrinsified" code for G1 (or any SATB based GC), 914 // 2. The slow path - which is an expansion of the regular method entry. 915 // 916 // Notes:- 917 // * In the G1 code we do not check whether we need to block for 918 // a safepoint. If G1 is enabled then we must execute the specialized 919 // code for Reference.get (except when the Reference object is null) 920 // so that we can log the value in the referent field with an SATB 921 // update buffer. 922 // If the code for the getfield template is modified so that the 923 // G1 pre-barrier code is executed when the current method is 924 // Reference.get() then going through the normal method entry 925 // will be fine. 926 // * The G1 code can, however, check the receiver object (the instance 927 // of java.lang.Reference) and jump to the slow path if null. If the 928 // Reference object is null then we obviously cannot fetch the referent 929 // and so we don't need to call the G1 pre-barrier. Thus we can use the 930 // regular method entry code to generate the NPE. 931 // 932 // This code is based on generate_accessor_entry. 933 // 934 // rmethod: Method* 935 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 936 937 // LR is live. It must be saved around calls. 938 939 address entry = __ pc(); 940 941 const int referent_offset = java_lang_ref_Reference::referent_offset(); 942 943 Label slow_path; 944 const Register local_0 = c_rarg0; 945 // Check if local 0 != null 946 // If the receiver is null then it is OK to jump to the slow path. 947 __ ldr(local_0, Address(esp, 0)); 948 __ cbz(local_0, slow_path); 949 950 // Load the value of the referent field. 951 const Address field_address(local_0, referent_offset); 952 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 953 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 954 955 // areturn 956 __ andr(sp, r19_sender_sp, -16); // done with stack 957 __ ret(lr); 958 959 // generate a vanilla interpreter entry as the slow path 960 __ bind(slow_path); 961 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 962 return entry; 963 964 } 965 966 /** 967 * Method entry for static native methods: 968 * int java.util.zip.CRC32.update(int crc, int b) 969 */ 970 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 971 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 972 address entry = __ pc(); 973 974 // rmethod: Method* 975 // r19_sender_sp: senderSP must preserved for slow path 976 // esp: args 977 978 Label slow_path; 979 // If we need a safepoint check, generate full interpreter entry. 980 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 981 982 // We don't generate local frame and don't align stack because 983 // we call stub code and there is no safepoint on this path. 984 985 // Load parameters 986 const Register crc = c_rarg0; // crc 987 const Register val = c_rarg1; // source java byte value 988 const Register tbl = c_rarg2; // scratch 989 990 // Arguments are reversed on java expression stack 991 __ ldrw(val, Address(esp, 0)); // byte value 992 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 993 994 uint64_t offset; 995 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 996 __ add(tbl, tbl, offset); 997 998 __ mvnw(crc, crc); // ~crc 999 __ update_byte_crc32(crc, val, tbl); 1000 __ mvnw(crc, crc); // ~crc 1001 1002 // result in c_rarg0 1003 1004 __ andr(sp, r19_sender_sp, -16); 1005 __ ret(lr); 1006 1007 // generate a vanilla native entry as the slow path 1008 __ bind(slow_path); 1009 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1010 return entry; 1011 } 1012 1013 /** 1014 * Method entry for static native methods: 1015 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1016 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1017 */ 1018 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1019 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1020 address entry = __ pc(); 1021 1022 // rmethod,: Method* 1023 // r19_sender_sp: senderSP must preserved for slow path 1024 1025 Label slow_path; 1026 // If we need a safepoint check, generate full interpreter entry. 1027 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1028 1029 // We don't generate local frame and don't align stack because 1030 // we call stub code and there is no safepoint on this path. 1031 1032 // Load parameters 1033 const Register crc = c_rarg0; // crc 1034 const Register buf = c_rarg1; // source java byte array address 1035 const Register len = c_rarg2; // length 1036 const Register off = len; // offset (never overlaps with 'len') 1037 1038 // Arguments are reversed on java expression stack 1039 // Calculate address of start element 1040 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1041 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1042 __ ldrw(off, Address(esp, wordSize)); // offset 1043 __ add(buf, buf, off); // + offset 1044 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1045 } else { 1046 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1047 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1048 __ ldrw(off, Address(esp, wordSize)); // offset 1049 __ add(buf, buf, off); // + offset 1050 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1051 } 1052 // Can now load 'len' since we're finished with 'off' 1053 __ ldrw(len, Address(esp, 0x0)); // Length 1054 1055 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1056 1057 // We are frameless so we can just jump to the stub. 1058 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1059 1060 // generate a vanilla native entry as the slow path 1061 __ bind(slow_path); 1062 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1063 return entry; 1064 } 1065 1066 /** 1067 * Method entry for intrinsic-candidate (non-native) methods: 1068 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1069 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1070 * Unlike CRC32, CRC32C does not have any methods marked as native 1071 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1072 */ 1073 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1074 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1075 address entry = __ pc(); 1076 1077 // Prepare jump to stub using parameters from the stack 1078 const Register crc = c_rarg0; // initial crc 1079 const Register buf = c_rarg1; // source java byte array address 1080 const Register len = c_rarg2; // len argument to the kernel 1081 1082 const Register end = len; // index of last element to process 1083 const Register off = crc; // offset 1084 1085 __ ldrw(end, Address(esp)); // int end 1086 __ ldrw(off, Address(esp, wordSize)); // int offset 1087 __ sub(len, end, off); 1088 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1089 __ add(buf, buf, off); // + offset 1090 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1091 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1092 } else { 1093 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1094 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1095 } 1096 1097 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1098 1099 // Jump to the stub. 1100 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1101 1102 return entry; 1103 } 1104 1105 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1106 // See more discussion in stackOverflow.hpp. 1107 1108 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1109 const int page_size = (int)os::vm_page_size(); 1110 const int n_shadow_pages = shadow_zone_size / page_size; 1111 1112 #ifdef ASSERT 1113 Label L_good_limit; 1114 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1115 __ cbnz(rscratch1, L_good_limit); 1116 __ stop("shadow zone safe limit is not initialized"); 1117 __ bind(L_good_limit); 1118 1119 Label L_good_watermark; 1120 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1121 __ cbnz(rscratch1, L_good_watermark); 1122 __ stop("shadow zone growth watermark is not initialized"); 1123 __ bind(L_good_watermark); 1124 #endif 1125 1126 Label L_done; 1127 1128 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1129 __ cmp(sp, rscratch1); 1130 __ br(Assembler::HI, L_done); 1131 1132 for (int p = 1; p <= n_shadow_pages; p++) { 1133 __ sub(rscratch2, sp, p*page_size); 1134 __ str(zr, Address(rscratch2)); 1135 } 1136 1137 // Record the new watermark, but only if the update is above the safe limit. 1138 // Otherwise, the next time around the check above would pass the safe limit. 1139 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1140 __ cmp(sp, rscratch1); 1141 __ br(Assembler::LS, L_done); 1142 __ mov(rscratch1, sp); 1143 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1144 1145 __ bind(L_done); 1146 } 1147 1148 // Interpreter stub for calling a native method. (asm interpreter) 1149 // This sets up a somewhat different looking stack for calling the 1150 // native method than the typical interpreter frame setup. 1151 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1152 // determine code generation flags 1153 bool inc_counter = UseCompiler || CountCompiledCalls; 1154 1155 // r1: Method* 1156 // rscratch1: sender sp 1157 1158 address entry_point = __ pc(); 1159 1160 const Address constMethod (rmethod, Method::const_offset()); 1161 const Address access_flags (rmethod, Method::access_flags_offset()); 1162 const Address size_of_parameters(r2, ConstMethod:: 1163 size_of_parameters_offset()); 1164 1165 // get parameter size (always needed) 1166 __ ldr(r2, constMethod); 1167 __ load_unsigned_short(r2, size_of_parameters); 1168 1169 // Native calls don't need the stack size check since they have no 1170 // expression stack and the arguments are already on the stack and 1171 // we only add a handful of words to the stack. 1172 1173 // rmethod: Method* 1174 // r2: size of parameters 1175 // rscratch1: sender sp 1176 1177 // for natives the size of locals is zero 1178 1179 // compute beginning of parameters (rlocals) 1180 __ add(rlocals, esp, r2, ext::uxtx, 3); 1181 __ add(rlocals, rlocals, -wordSize); 1182 1183 // Pull SP back to minimum size: this avoids holes in the stack 1184 __ andr(sp, esp, -16); 1185 1186 // initialize fixed part of activation frame 1187 generate_fixed_frame(true); 1188 1189 // make sure method is native & not abstract 1190 #ifdef ASSERT 1191 __ ldrw(r0, access_flags); 1192 { 1193 Label L; 1194 __ tst(r0, JVM_ACC_NATIVE); 1195 __ br(Assembler::NE, L); 1196 __ stop("tried to execute non-native method as native"); 1197 __ bind(L); 1198 } 1199 { 1200 Label L; 1201 __ tst(r0, JVM_ACC_ABSTRACT); 1202 __ br(Assembler::EQ, L); 1203 __ stop("tried to execute abstract method in interpreter"); 1204 __ bind(L); 1205 } 1206 #endif 1207 1208 // Since at this point in the method invocation the exception 1209 // handler would try to exit the monitor of synchronized methods 1210 // which hasn't been entered yet, we set the thread local variable 1211 // _do_not_unlock_if_synchronized to true. The remove_activation 1212 // will check this flag. 1213 1214 const Address do_not_unlock_if_synchronized(rthread, 1215 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1216 __ mov(rscratch2, true); 1217 __ strb(rscratch2, do_not_unlock_if_synchronized); 1218 1219 // increment invocation count & check for overflow 1220 Label invocation_counter_overflow; 1221 if (inc_counter) { 1222 generate_counter_incr(&invocation_counter_overflow); 1223 } 1224 1225 Label continue_after_compile; 1226 __ bind(continue_after_compile); 1227 1228 bang_stack_shadow_pages(true); 1229 1230 // reset the _do_not_unlock_if_synchronized flag 1231 __ strb(zr, do_not_unlock_if_synchronized); 1232 1233 // check for synchronized methods 1234 // Must happen AFTER invocation_counter check and stack overflow check, 1235 // so method is not locked if overflows. 1236 if (synchronized) { 1237 lock_method(); 1238 } else { 1239 // no synchronization necessary 1240 #ifdef ASSERT 1241 { 1242 Label L; 1243 __ ldrw(r0, access_flags); 1244 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1245 __ br(Assembler::EQ, L); 1246 __ stop("method needs synchronization"); 1247 __ bind(L); 1248 } 1249 #endif 1250 } 1251 1252 // start execution 1253 #ifdef ASSERT 1254 { 1255 Label L; 1256 const Address monitor_block_top(rfp, 1257 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1258 __ ldr(rscratch1, monitor_block_top); 1259 __ cmp(esp, rscratch1); 1260 __ br(Assembler::EQ, L); 1261 __ stop("broken stack frame setup in interpreter 1"); 1262 __ bind(L); 1263 } 1264 #endif 1265 1266 // jvmti support 1267 __ notify_method_entry(); 1268 1269 // work registers 1270 const Register t = r17; 1271 const Register result_handler = r19; 1272 1273 // allocate space for parameters 1274 __ ldr(t, Address(rmethod, Method::const_offset())); 1275 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1276 1277 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1278 __ andr(sp, rscratch1, -16); 1279 __ mov(esp, rscratch1); 1280 1281 // get signature handler 1282 { 1283 Label L; 1284 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1285 __ cbnz(t, L); 1286 __ call_VM(noreg, 1287 CAST_FROM_FN_PTR(address, 1288 InterpreterRuntime::prepare_native_call), 1289 rmethod); 1290 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1291 __ bind(L); 1292 } 1293 1294 // call signature handler 1295 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1296 "adjust this code"); 1297 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1298 "adjust this code"); 1299 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1300 "adjust this code"); 1301 1302 // The generated handlers do not touch rmethod (the method). 1303 // However, large signatures cannot be cached and are generated 1304 // each time here. The slow-path generator can do a GC on return, 1305 // so we must reload it after the call. 1306 __ blr(t); 1307 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1308 1309 1310 // result handler is in r0 1311 // set result handler 1312 __ mov(result_handler, r0); 1313 // pass mirror handle if static call 1314 { 1315 Label L; 1316 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1317 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1318 // get mirror 1319 __ load_mirror(t, rmethod, r10, rscratch2); 1320 // copy mirror into activation frame 1321 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1322 // pass handle to mirror 1323 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1324 __ bind(L); 1325 } 1326 1327 // get native function entry point in r10 1328 { 1329 Label L; 1330 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1331 address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1332 __ mov(rscratch2, unsatisfied); 1333 __ ldr(rscratch2, rscratch2); 1334 __ cmp(r10, rscratch2); 1335 __ br(Assembler::NE, L); 1336 __ call_VM(noreg, 1337 CAST_FROM_FN_PTR(address, 1338 InterpreterRuntime::prepare_native_call), 1339 rmethod); 1340 __ get_method(rmethod); 1341 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1342 __ bind(L); 1343 } 1344 1345 // pass JNIEnv 1346 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1347 1348 // Set the last Java PC in the frame anchor to be the return address from 1349 // the call to the native method: this will allow the debugger to 1350 // generate an accurate stack trace. 1351 Label native_return; 1352 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1353 1354 // change thread state 1355 #ifdef ASSERT 1356 { 1357 Label L; 1358 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1359 __ cmp(t, (u1)_thread_in_Java); 1360 __ br(Assembler::EQ, L); 1361 __ stop("Wrong thread state in native stub"); 1362 __ bind(L); 1363 } 1364 #endif 1365 1366 // Change state to native 1367 __ mov(rscratch1, _thread_in_native); 1368 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1369 __ stlrw(rscratch1, rscratch2); 1370 1371 // Call the native method. 1372 __ blr(r10); 1373 __ bind(native_return); 1374 __ get_method(rmethod); 1375 // result potentially in r0 or v0 1376 1377 // make room for the pushes we're about to do 1378 __ sub(rscratch1, esp, 4 * wordSize); 1379 __ andr(sp, rscratch1, -16); 1380 1381 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1382 // in order to extract the result of a method call. If the order of these 1383 // pushes change or anything else is added to the stack then the code in 1384 // interpreter_frame_result must also change. 1385 __ push(dtos); 1386 __ push(ltos); 1387 1388 __ verify_sve_vector_length(); 1389 1390 // change thread state 1391 __ mov(rscratch1, _thread_in_native_trans); 1392 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1393 __ stlrw(rscratch1, rscratch2); 1394 1395 // Force this write out before the read below 1396 if (!UseSystemMemoryBarrier) { 1397 __ dmb(Assembler::ISH); 1398 } 1399 1400 // check for safepoint operation in progress and/or pending suspend requests 1401 { 1402 Label L, Continue; 1403 1404 // We need an acquire here to ensure that any subsequent load of the 1405 // global SafepointSynchronize::_state flag is ordered after this load 1406 // of the thread-local polling word. We don't want this poll to 1407 // return false (i.e. not safepointing) and a later poll of the global 1408 // SafepointSynchronize::_state spuriously to return true. 1409 // 1410 // This is to avoid a race when we're in a native->Java transition 1411 // racing the code which wakes up from a safepoint. 1412 __ safepoint_poll(L, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1413 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1414 __ cbz(rscratch2, Continue); 1415 __ bind(L); 1416 1417 // Don't use call_VM as it will see a possible pending exception 1418 // and forward it and never return here preventing us from 1419 // clearing _last_native_pc down below. So we do a runtime call by 1420 // hand. 1421 // 1422 __ mov(c_rarg0, rthread); 1423 __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1424 __ blr(rscratch2); 1425 __ get_method(rmethod); 1426 __ reinit_heapbase(); 1427 __ bind(Continue); 1428 } 1429 1430 // change thread state 1431 __ mov(rscratch1, _thread_in_Java); 1432 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1433 __ stlrw(rscratch1, rscratch2); 1434 1435 // reset_last_Java_frame 1436 __ reset_last_Java_frame(true); 1437 1438 if (CheckJNICalls) { 1439 // clear_pending_jni_exception_check 1440 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1441 } 1442 1443 // reset handle block 1444 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1445 __ str(zr, Address(t, JNIHandleBlock::top_offset())); 1446 1447 // If result is an oop unbox and store it in frame where gc will see it 1448 // and result handler will pick it up 1449 1450 { 1451 Label no_oop; 1452 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1453 __ cmp(t, result_handler); 1454 __ br(Assembler::NE, no_oop); 1455 // Unbox oop result, e.g. JNIHandles::resolve result. 1456 __ pop(ltos); 1457 __ resolve_jobject(r0, t, rscratch2); 1458 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1459 // keep stack depth as expected by pushing oop which will eventually be discarded 1460 __ push(ltos); 1461 __ bind(no_oop); 1462 } 1463 1464 { 1465 Label no_reguard; 1466 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1467 __ ldrw(rscratch1, Address(rscratch1)); 1468 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1469 __ br(Assembler::NE, no_reguard); 1470 1471 __ push_call_clobbered_registers(); 1472 __ mov(c_rarg0, rthread); 1473 __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1474 __ blr(rscratch2); 1475 __ pop_call_clobbered_registers(); 1476 1477 __ bind(no_reguard); 1478 } 1479 1480 // The method register is junk from after the thread_in_native transition 1481 // until here. Also can't call_VM until the bcp has been 1482 // restored. Need bcp for throwing exception below so get it now. 1483 __ get_method(rmethod); 1484 1485 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1486 // rbcp == code_base() 1487 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1488 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1489 // handle exceptions (exception handling will handle unlocking!) 1490 { 1491 Label L; 1492 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1493 __ cbz(rscratch1, L); 1494 // Note: At some point we may want to unify this with the code 1495 // used in call_VM_base(); i.e., we should use the 1496 // StubRoutines::forward_exception code. For now this doesn't work 1497 // here because the rsp is not correctly set at this point. 1498 __ MacroAssembler::call_VM(noreg, 1499 CAST_FROM_FN_PTR(address, 1500 InterpreterRuntime::throw_pending_exception)); 1501 __ should_not_reach_here(); 1502 __ bind(L); 1503 } 1504 1505 // do unlocking if necessary 1506 { 1507 Label L; 1508 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1509 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1510 // the code below should be shared with interpreter macro 1511 // assembler implementation 1512 { 1513 Label unlock; 1514 // BasicObjectLock will be first in list, since this is a 1515 // synchronized method. However, need to check that the object 1516 // has not been unlocked by an explicit monitorexit bytecode. 1517 1518 // monitor expect in c_rarg1 for slow unlock path 1519 __ lea (c_rarg1, Address(rfp, // address of first monitor 1520 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1521 wordSize - sizeof(BasicObjectLock)))); 1522 1523 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset())); 1524 __ cbnz(t, unlock); 1525 1526 // Entry already unlocked, need to throw exception 1527 __ MacroAssembler::call_VM(noreg, 1528 CAST_FROM_FN_PTR(address, 1529 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1530 __ should_not_reach_here(); 1531 1532 __ bind(unlock); 1533 __ unlock_object(c_rarg1); 1534 } 1535 __ bind(L); 1536 } 1537 1538 // jvmti support 1539 // Note: This must happen _after_ handling/throwing any exceptions since 1540 // the exception handler code notifies the runtime of method exits 1541 // too. If this happens before, method entry/exit notifications are 1542 // not properly paired (was bug - gri 11/22/99). 1543 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1544 1545 // restore potential result in r0:d0, call result handler to 1546 // restore potential result in ST0 & handle result 1547 1548 __ pop(ltos); 1549 __ pop(dtos); 1550 1551 __ blr(result_handler); 1552 1553 // remove activation 1554 __ ldr(esp, Address(rfp, 1555 frame::interpreter_frame_sender_sp_offset * 1556 wordSize)); // get sender sp 1557 // remove frame anchor 1558 __ leave(); 1559 1560 // restore sender sp 1561 __ mov(sp, esp); 1562 1563 __ ret(lr); 1564 1565 if (inc_counter) { 1566 // Handle overflow of counter and compile method 1567 __ bind(invocation_counter_overflow); 1568 generate_counter_overflow(continue_after_compile); 1569 } 1570 1571 return entry_point; 1572 } 1573 1574 // 1575 // Generic interpreted method entry to (asm) interpreter 1576 // 1577 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1578 // determine code generation flags 1579 bool inc_counter = UseCompiler || CountCompiledCalls; 1580 1581 // rscratch1: sender sp 1582 address entry_point = __ pc(); 1583 1584 const Address constMethod(rmethod, Method::const_offset()); 1585 const Address access_flags(rmethod, Method::access_flags_offset()); 1586 const Address size_of_parameters(r3, 1587 ConstMethod::size_of_parameters_offset()); 1588 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1589 1590 // get parameter size (always needed) 1591 // need to load the const method first 1592 __ ldr(r3, constMethod); 1593 __ load_unsigned_short(r2, size_of_parameters); 1594 1595 // r2: size of parameters 1596 1597 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1598 __ sub(r3, r3, r2); // r3 = no. of additional locals 1599 1600 // see if we've got enough room on the stack for locals plus overhead. 1601 generate_stack_overflow_check(); 1602 1603 // compute beginning of parameters (rlocals) 1604 __ add(rlocals, esp, r2, ext::uxtx, 3); 1605 __ sub(rlocals, rlocals, wordSize); 1606 1607 __ mov(rscratch1, esp); 1608 1609 // r3 - # of additional locals 1610 // allocate space for locals 1611 // explicitly initialize locals 1612 // Initializing memory allocated for locals in the same direction as 1613 // the stack grows to ensure page initialization order according 1614 // to windows-aarch64 stack page growth requirement (see 1615 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1616 { 1617 Label exit, loop; 1618 __ ands(zr, r3, r3); 1619 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1620 __ bind(loop); 1621 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1622 __ sub(r3, r3, 1); // until everything initialized 1623 __ cbnz(r3, loop); 1624 __ bind(exit); 1625 } 1626 1627 // Padding between locals and fixed part of activation frame to ensure 1628 // SP is always 16-byte aligned. 1629 __ andr(sp, rscratch1, -16); 1630 1631 // And the base dispatch table 1632 __ get_dispatch(); 1633 1634 // initialize fixed part of activation frame 1635 generate_fixed_frame(false); 1636 1637 // make sure method is not native & not abstract 1638 #ifdef ASSERT 1639 __ ldrw(r0, access_flags); 1640 { 1641 Label L; 1642 __ tst(r0, JVM_ACC_NATIVE); 1643 __ br(Assembler::EQ, L); 1644 __ stop("tried to execute native method as non-native"); 1645 __ bind(L); 1646 } 1647 { 1648 Label L; 1649 __ tst(r0, JVM_ACC_ABSTRACT); 1650 __ br(Assembler::EQ, L); 1651 __ stop("tried to execute abstract method in interpreter"); 1652 __ bind(L); 1653 } 1654 #endif 1655 1656 // Since at this point in the method invocation the exception 1657 // handler would try to exit the monitor of synchronized methods 1658 // which hasn't been entered yet, we set the thread local variable 1659 // _do_not_unlock_if_synchronized to true. The remove_activation 1660 // will check this flag. 1661 1662 const Address do_not_unlock_if_synchronized(rthread, 1663 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1664 __ mov(rscratch2, true); 1665 __ strb(rscratch2, do_not_unlock_if_synchronized); 1666 1667 Register mdp = r3; 1668 __ profile_parameters_type(mdp, r1, r2); 1669 1670 // increment invocation count & check for overflow 1671 Label invocation_counter_overflow; 1672 if (inc_counter) { 1673 generate_counter_incr(&invocation_counter_overflow); 1674 } 1675 1676 Label continue_after_compile; 1677 __ bind(continue_after_compile); 1678 1679 bang_stack_shadow_pages(false); 1680 1681 // reset the _do_not_unlock_if_synchronized flag 1682 __ strb(zr, do_not_unlock_if_synchronized); 1683 1684 // check for synchronized methods 1685 // Must happen AFTER invocation_counter check and stack overflow check, 1686 // so method is not locked if overflows. 1687 if (synchronized) { 1688 // Allocate monitor and lock method 1689 lock_method(); 1690 } else { 1691 // no synchronization necessary 1692 #ifdef ASSERT 1693 { 1694 Label L; 1695 __ ldrw(r0, access_flags); 1696 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1697 __ br(Assembler::EQ, L); 1698 __ stop("method needs synchronization"); 1699 __ bind(L); 1700 } 1701 #endif 1702 } 1703 1704 // start execution 1705 #ifdef ASSERT 1706 { 1707 Label L; 1708 const Address monitor_block_top (rfp, 1709 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1710 __ ldr(rscratch1, monitor_block_top); 1711 __ cmp(esp, rscratch1); 1712 __ br(Assembler::EQ, L); 1713 __ stop("broken stack frame setup in interpreter 2"); 1714 __ bind(L); 1715 } 1716 #endif 1717 1718 // jvmti support 1719 __ notify_method_entry(); 1720 1721 __ dispatch_next(vtos); 1722 1723 // invocation counter overflow 1724 if (inc_counter) { 1725 // Handle overflow of counter and compile method 1726 __ bind(invocation_counter_overflow); 1727 generate_counter_overflow(continue_after_compile); 1728 } 1729 1730 return entry_point; 1731 } 1732 1733 // Method entry for java.lang.Thread.currentThread 1734 address TemplateInterpreterGenerator::generate_currentThread() { 1735 address entry_point = __ pc(); 1736 1737 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1738 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1739 __ ret(lr); 1740 1741 return entry_point; 1742 } 1743 1744 // Not supported 1745 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 1746 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 1747 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 1748 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 1749 1750 //----------------------------------------------------------------------------- 1751 // Exceptions 1752 1753 void TemplateInterpreterGenerator::generate_throw_exception() { 1754 // Entry point in previous activation (i.e., if the caller was 1755 // interpreted) 1756 Interpreter::_rethrow_exception_entry = __ pc(); 1757 // Restore sp to interpreter_frame_last_sp even though we are going 1758 // to empty the expression stack for the exception processing. 1759 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1760 // r0: exception 1761 // r3: return address/pc that threw exception 1762 __ restore_bcp(); // rbcp points to call/send 1763 __ restore_locals(); 1764 __ restore_constant_pool_cache(); 1765 __ reinit_heapbase(); // restore rheapbase as heapbase. 1766 __ get_dispatch(); 1767 1768 // Entry point for exceptions thrown within interpreter code 1769 Interpreter::_throw_exception_entry = __ pc(); 1770 // If we came here via a NullPointerException on the receiver of a 1771 // method, rmethod may be corrupt. 1772 __ get_method(rmethod); 1773 // expression stack is undefined here 1774 // r0: exception 1775 // rbcp: exception bcp 1776 __ verify_oop(r0); 1777 __ mov(c_rarg1, r0); 1778 1779 // expression stack must be empty before entering the VM in case of 1780 // an exception 1781 __ empty_expression_stack(); 1782 // find exception handler address and preserve exception oop 1783 __ call_VM(r3, 1784 CAST_FROM_FN_PTR(address, 1785 InterpreterRuntime::exception_handler_for_exception), 1786 c_rarg1); 1787 1788 // Restore machine SP 1789 __ restore_sp_after_call(); 1790 1791 // r0: exception handler entry point 1792 // r3: preserved exception oop 1793 // rbcp: bcp for exception handler 1794 __ push_ptr(r3); // push exception which is now the only value on the stack 1795 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1796 1797 // If the exception is not handled in the current frame the frame is 1798 // removed and the exception is rethrown (i.e. exception 1799 // continuation is _rethrow_exception). 1800 // 1801 // Note: At this point the bci is still the bxi for the instruction 1802 // which caused the exception and the expression stack is 1803 // empty. Thus, for any VM calls at this point, GC will find a legal 1804 // oop map (with empty expression stack). 1805 1806 // 1807 // JVMTI PopFrame support 1808 // 1809 1810 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1811 __ empty_expression_stack(); 1812 // Set the popframe_processing bit in pending_popframe_condition 1813 // indicating that we are currently handling popframe, so that 1814 // call_VMs that may happen later do not trigger new popframe 1815 // handling cycles. 1816 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1817 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1818 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1819 1820 { 1821 // Check to see whether we are returning to a deoptimized frame. 1822 // (The PopFrame call ensures that the caller of the popped frame is 1823 // either interpreted or compiled and deoptimizes it if compiled.) 1824 // In this case, we can't call dispatch_next() after the frame is 1825 // popped, but instead must save the incoming arguments and restore 1826 // them after deoptimization has occurred. 1827 // 1828 // Note that we don't compare the return PC against the 1829 // deoptimization blob's unpack entry because of the presence of 1830 // adapter frames in C2. 1831 Label caller_not_deoptimized; 1832 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1833 // This is a return address, so requires authenticating for PAC. 1834 __ authenticate_return_address(c_rarg1, rscratch1); 1835 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1836 InterpreterRuntime::interpreter_contains), c_rarg1); 1837 __ cbnz(r0, caller_not_deoptimized); 1838 1839 // Compute size of arguments for saving when returning to 1840 // deoptimized caller 1841 __ get_method(r0); 1842 __ ldr(r0, Address(r0, Method::const_offset())); 1843 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1844 size_of_parameters_offset()))); 1845 __ lsl(r0, r0, Interpreter::logStackElementSize); 1846 __ restore_locals(); // XXX do we need this? 1847 __ sub(rlocals, rlocals, r0); 1848 __ add(rlocals, rlocals, wordSize); 1849 // Save these arguments 1850 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1851 Deoptimization:: 1852 popframe_preserve_args), 1853 rthread, r0, rlocals); 1854 1855 __ remove_activation(vtos, 1856 /* throw_monitor_exception */ false, 1857 /* install_monitor_exception */ false, 1858 /* notify_jvmdi */ false); 1859 1860 // Inform deoptimization that it is responsible for restoring 1861 // these arguments 1862 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1863 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1864 1865 // Continue in deoptimization handler 1866 __ ret(lr); 1867 1868 __ bind(caller_not_deoptimized); 1869 } 1870 1871 __ remove_activation(vtos, 1872 /* throw_monitor_exception */ false, 1873 /* install_monitor_exception */ false, 1874 /* notify_jvmdi */ false); 1875 1876 // Restore the last_sp and null it out 1877 __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1878 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1879 1880 __ restore_bcp(); 1881 __ restore_locals(); 1882 __ restore_constant_pool_cache(); 1883 __ get_method(rmethod); 1884 __ get_dispatch(); 1885 1886 // The method data pointer was incremented already during 1887 // call profiling. We have to restore the mdp for the current bcp. 1888 if (ProfileInterpreter) { 1889 __ set_method_data_pointer_for_bcp(); 1890 } 1891 1892 // Clear the popframe condition flag 1893 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1894 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1895 1896 #if INCLUDE_JVMTI 1897 { 1898 Label L_done; 1899 1900 __ ldrb(rscratch1, Address(rbcp, 0)); 1901 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1902 __ br(Assembler::NE, L_done); 1903 1904 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1905 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1906 1907 __ ldr(c_rarg0, Address(rlocals, 0)); 1908 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1909 1910 __ cbz(r0, L_done); 1911 1912 __ str(r0, Address(esp, 0)); 1913 __ bind(L_done); 1914 } 1915 #endif // INCLUDE_JVMTI 1916 1917 // Restore machine SP 1918 __ restore_sp_after_call(); 1919 1920 __ dispatch_next(vtos); 1921 // end of PopFrame support 1922 1923 Interpreter::_remove_activation_entry = __ pc(); 1924 1925 // preserve exception over this code sequence 1926 __ pop_ptr(r0); 1927 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1928 // remove the activation (without doing throws on illegalMonitorExceptions) 1929 __ remove_activation(vtos, false, true, false); 1930 // restore exception 1931 __ get_vm_result(r0, rthread); 1932 1933 // In between activations - previous activation type unknown yet 1934 // compute continuation point - the continuation point expects the 1935 // following registers set up: 1936 // 1937 // r0: exception 1938 // lr: return address/pc that threw exception 1939 // esp: expression stack of caller 1940 // rfp: fp of caller 1941 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 1942 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1943 SharedRuntime::exception_handler_for_return_address), 1944 rthread, lr); 1945 __ mov(r1, r0); // save exception handler 1946 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 1947 // We might be returning to a deopt handler that expects r3 to 1948 // contain the exception pc 1949 __ mov(r3, lr); 1950 // Note that an "issuing PC" is actually the next PC after the call 1951 __ br(r1); // jump to exception 1952 // handler of caller 1953 } 1954 1955 1956 // 1957 // JVMTI ForceEarlyReturn support 1958 // 1959 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1960 address entry = __ pc(); 1961 1962 __ restore_bcp(); 1963 __ restore_locals(); 1964 __ empty_expression_stack(); 1965 __ load_earlyret_value(state); 1966 1967 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 1968 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 1969 1970 // Clear the earlyret state 1971 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 1972 __ str(zr, cond_addr); 1973 1974 __ remove_activation(state, 1975 false, /* throw_monitor_exception */ 1976 false, /* install_monitor_exception */ 1977 true); /* notify_jvmdi */ 1978 __ ret(lr); 1979 1980 return entry; 1981 } // end of ForceEarlyReturn support 1982 1983 1984 1985 //----------------------------------------------------------------------------- 1986 // Helper for vtos entry point generation 1987 1988 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 1989 address& bep, 1990 address& cep, 1991 address& sep, 1992 address& aep, 1993 address& iep, 1994 address& lep, 1995 address& fep, 1996 address& dep, 1997 address& vep) { 1998 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1999 Label L; 2000 aep = __ pc(); __ push_ptr(); __ b(L); 2001 fep = __ pc(); __ push_f(); __ b(L); 2002 dep = __ pc(); __ push_d(); __ b(L); 2003 lep = __ pc(); __ push_l(); __ b(L); 2004 bep = cep = sep = 2005 iep = __ pc(); __ push_i(); 2006 vep = __ pc(); 2007 __ bind(L); 2008 generate_and_dispatch(t); 2009 } 2010 2011 //----------------------------------------------------------------------------- 2012 2013 // Non-product code 2014 #ifndef PRODUCT 2015 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2016 address entry = __ pc(); 2017 2018 __ protect_return_address(); 2019 __ push(lr); 2020 __ push(state); 2021 __ push(RegSet::range(r0, r15), sp); 2022 __ mov(c_rarg2, r0); // Pass itos 2023 __ call_VM(noreg, 2024 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2025 c_rarg1, c_rarg2, c_rarg3); 2026 __ pop(RegSet::range(r0, r15), sp); 2027 __ pop(state); 2028 __ pop(lr); 2029 __ authenticate_return_address(); 2030 __ ret(lr); // return from result handler 2031 2032 return entry; 2033 } 2034 2035 void TemplateInterpreterGenerator::count_bytecode() { 2036 __ mov(r10, (address) &BytecodeCounter::_counter_value); 2037 __ atomic_addw(noreg, 1, r10); 2038 } 2039 2040 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2041 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 2042 __ atomic_addw(noreg, 1, r10); 2043 } 2044 2045 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2046 // Calculate new index for counter: 2047 // _index = (_index >> log2_number_of_codes) | 2048 // (bytecode << log2_number_of_codes); 2049 Register index_addr = rscratch1; 2050 Register index = rscratch2; 2051 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2052 __ ldrw(index, index_addr); 2053 __ mov(r10, 2054 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2055 __ orrw(index, r10, index, Assembler::LSR, 2056 BytecodePairHistogram::log2_number_of_codes); 2057 __ strw(index, index_addr); 2058 2059 // Bump bucket contents: 2060 // _counters[_index] ++; 2061 Register counter_addr = rscratch1; 2062 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2063 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2064 __ atomic_addw(noreg, 1, counter_addr); 2065 } 2066 2067 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2068 // Call a little run-time stub to avoid blow-up for each bytecode. 2069 // The run-time runtime saves the right registers, depending on 2070 // the tosca in-state for the given template. 2071 2072 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2073 "entry must have been generated"); 2074 __ bl(Interpreter::trace_code(t->tos_in())); 2075 __ reinit_heapbase(); 2076 } 2077 2078 2079 void TemplateInterpreterGenerator::stop_interpreter_at() { 2080 Label L; 2081 __ push(rscratch1); 2082 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2083 __ ldr(rscratch1, Address(rscratch1)); 2084 __ mov(rscratch2, StopInterpreterAt); 2085 __ cmpw(rscratch1, rscratch2); 2086 __ br(Assembler::NE, L); 2087 __ brk(0); 2088 __ bind(L); 2089 __ pop(rscratch1); 2090 } 2091 2092 #endif // !PRODUCT