1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "compiler/compilerDefinitions.inline.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/method.inline.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedFieldEntry.hpp"
42 #include "oops/resolvedIndyEntry.hpp"
43 #include "oops/resolvedMethodEntry.hpp"
44 #include "prims/jvmtiExport.hpp"
45 #include "prims/methodHandles.hpp"
46 #include "runtime/arguments.hpp"
47 #include "runtime/frame.inline.hpp"
48 #include "runtime/sharedRuntime.hpp"
49 #include "runtime/stubRoutines.hpp"
50 #include "runtime/synchronizer.hpp"
51 #include "utilities/powerOfTwo.hpp"
52
53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
54
55 // Address computation: local variables
56
57 static inline Address iaddress(int n) {
58 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
59 }
60
61 static inline Address laddress(int n) {
62 return iaddress(n + 1);
63 }
64
65 static inline Address faddress(int n) {
66 return iaddress(n);
67 }
68
69 static inline Address daddress(int n) {
70 return laddress(n);
71 }
72
73 static inline Address aaddress(int n) {
74 return iaddress(n);
75 }
76
77 static inline Address iaddress(Register r) {
78 return Address(rlocals, r, Address::lsl(3));
79 }
80
81 static inline Address laddress(Register r, Register scratch,
82 InterpreterMacroAssembler* _masm) {
83 __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
84 return Address(scratch, Interpreter::local_offset_in_bytes(1));
85 }
86
87 static inline Address faddress(Register r) {
88 return iaddress(r);
89 }
90
91 static inline Address daddress(Register r, Register scratch,
92 InterpreterMacroAssembler* _masm) {
93 return laddress(r, scratch, _masm);
94 }
95
96 static inline Address aaddress(Register r) {
97 return iaddress(r);
98 }
99
100 static inline Address at_rsp() {
101 return Address(esp, 0);
102 }
103
104 // At top of Java expression stack which may be different than esp(). It
105 // isn't for category 1 objects.
106 static inline Address at_tos () {
107 return Address(esp, Interpreter::expr_offset_in_bytes(0));
108 }
109
110 static inline Address at_tos_p1() {
111 return Address(esp, Interpreter::expr_offset_in_bytes(1));
112 }
113
114 static inline Address at_tos_p2() {
115 return Address(esp, Interpreter::expr_offset_in_bytes(2));
116 }
117
118 static inline Address at_tos_p3() {
119 return Address(esp, Interpreter::expr_offset_in_bytes(3));
120 }
121
122 static inline Address at_tos_p4() {
123 return Address(esp, Interpreter::expr_offset_in_bytes(4));
124 }
125
126 static inline Address at_tos_p5() {
127 return Address(esp, Interpreter::expr_offset_in_bytes(5));
128 }
129
130 // Condition conversion
131 static Assembler::Condition j_not(TemplateTable::Condition cc) {
132 switch (cc) {
133 case TemplateTable::equal : return Assembler::NE;
134 case TemplateTable::not_equal : return Assembler::EQ;
135 case TemplateTable::less : return Assembler::GE;
136 case TemplateTable::less_equal : return Assembler::GT;
137 case TemplateTable::greater : return Assembler::LE;
138 case TemplateTable::greater_equal: return Assembler::LT;
139 }
140 ShouldNotReachHere();
141 return Assembler::EQ;
142 }
143
144
145 // Miscellaneous helper routines
146 // Store an oop (or null) at the Address described by obj.
147 // If val == noreg this means store a null
148 static void do_oop_store(InterpreterMacroAssembler* _masm,
149 Address dst,
150 Register val,
151 DecoratorSet decorators) {
152 assert(val == noreg || val == r0, "parameter is just for looks");
153 __ store_heap_oop(dst, val, r10, r11, r3, decorators);
154 }
155
156 static void do_oop_load(InterpreterMacroAssembler* _masm,
157 Address src,
158 Register dst,
159 DecoratorSet decorators) {
160 __ load_heap_oop(dst, src, r10, r11, decorators);
161 }
162
163 Address TemplateTable::at_bcp(int offset) {
164 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
165 return Address(rbcp, offset);
166 }
167
168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
169 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
170 int byte_no)
171 {
172 assert_different_registers(bc_reg, temp_reg);
173 if (!RewriteBytecodes) return;
174 Label L_patch_done;
175
176 switch (bc) {
177 case Bytecodes::_fast_vputfield:
178 case Bytecodes::_fast_aputfield:
179 case Bytecodes::_fast_bputfield:
180 case Bytecodes::_fast_zputfield:
181 case Bytecodes::_fast_cputfield:
182 case Bytecodes::_fast_dputfield:
183 case Bytecodes::_fast_fputfield:
184 case Bytecodes::_fast_iputfield:
185 case Bytecodes::_fast_lputfield:
186 case Bytecodes::_fast_sputfield:
187 {
188 // We skip bytecode quickening for putfield instructions when
189 // the put_code written to the constant pool cache is zero.
190 // This is required so that every execution of this instruction
191 // calls out to InterpreterRuntime::resolve_get_put to do
192 // additional, required work.
193 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
194 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
195 __ load_field_entry(temp_reg, bc_reg);
196 if (byte_no == f1_byte) {
197 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
198 } else {
199 __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
200 }
201 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
202 __ ldarb(temp_reg, temp_reg);
203 __ movw(bc_reg, bc);
204 __ cbzw(temp_reg, L_patch_done); // don't patch
205 }
206 break;
207 default:
208 assert(byte_no == -1, "sanity");
209 // the pair bytecodes have already done the load.
210 if (load_bc_into_bc_reg) {
211 __ movw(bc_reg, bc);
212 }
213 }
214
215 if (JvmtiExport::can_post_breakpoint()) {
216 Label L_fast_patch;
217 // if a breakpoint is present we can't rewrite the stream directly
218 __ load_unsigned_byte(temp_reg, at_bcp(0));
219 __ cmpw(temp_reg, Bytecodes::_breakpoint);
220 __ br(Assembler::NE, L_fast_patch);
221 // Let breakpoint table handling rewrite to quicker bytecode
222 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
223 __ b(L_patch_done);
224 __ bind(L_fast_patch);
225 }
226
227 #ifdef ASSERT
228 Label L_okay;
229 __ load_unsigned_byte(temp_reg, at_bcp(0));
230 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
231 __ br(Assembler::EQ, L_okay);
232 __ cmpw(temp_reg, bc_reg);
233 __ br(Assembler::EQ, L_okay);
234 __ stop("patching the wrong bytecode");
235 __ bind(L_okay);
236 #endif
237 // Patch bytecode with release store to coordinate with ResolvedFieldEntry loads
238 // in fast bytecode codelets. load_field_entry has a memory barrier that gains
239 // the needed ordering, together with control dependency on entering the fast codelet
240 // itself.
241 __ lea(temp_reg, at_bcp(0));
242 __ stlrb(bc_reg, temp_reg);
243 __ bind(L_patch_done);
244 }
245
246
247 // Individual instructions
248
249 void TemplateTable::nop() {
250 transition(vtos, vtos);
251 // nothing to do
252 }
253
254 void TemplateTable::shouldnotreachhere() {
255 transition(vtos, vtos);
256 __ stop("shouldnotreachhere bytecode");
257 }
258
259 void TemplateTable::aconst_null()
260 {
261 transition(vtos, atos);
262 __ mov(r0, 0);
263 }
264
265 void TemplateTable::iconst(int value)
266 {
267 transition(vtos, itos);
268 __ mov(r0, value);
269 }
270
271 void TemplateTable::lconst(int value)
272 {
273 __ mov(r0, value);
274 }
275
276 void TemplateTable::fconst(int value)
277 {
278 transition(vtos, ftos);
279 switch (value) {
280 case 0:
281 __ fmovs(v0, 0.0);
282 break;
283 case 1:
284 __ fmovs(v0, 1.0);
285 break;
286 case 2:
287 __ fmovs(v0, 2.0);
288 break;
289 default:
290 ShouldNotReachHere();
291 break;
292 }
293 }
294
295 void TemplateTable::dconst(int value)
296 {
297 transition(vtos, dtos);
298 switch (value) {
299 case 0:
300 __ fmovd(v0, 0.0);
301 break;
302 case 1:
303 __ fmovd(v0, 1.0);
304 break;
305 case 2:
306 __ fmovd(v0, 2.0);
307 break;
308 default:
309 ShouldNotReachHere();
310 break;
311 }
312 }
313
314 void TemplateTable::bipush()
315 {
316 transition(vtos, itos);
317 __ load_signed_byte32(r0, at_bcp(1));
318 }
319
320 void TemplateTable::sipush()
321 {
322 transition(vtos, itos);
323 __ load_unsigned_short(r0, at_bcp(1));
324 __ revw(r0, r0);
325 __ asrw(r0, r0, 16);
326 }
327
328 void TemplateTable::ldc(LdcType type)
329 {
330 transition(vtos, vtos);
331 Label call_ldc, notFloat, notClass, notInt, Done;
332
333 if (is_ldc_wide(type)) {
334 __ get_unsigned_2_byte_index_at_bcp(r1, 1);
335 } else {
336 __ load_unsigned_byte(r1, at_bcp(1));
337 }
338 __ get_cpool_and_tags(r2, r0);
339
340 const int base_offset = ConstantPool::header_size() * wordSize;
341 const int tags_offset = Array<u1>::base_offset_in_bytes();
342
343 // get type
344 __ add(r3, r1, tags_offset);
345 __ lea(r3, Address(r0, r3));
346 __ ldarb(r3, r3);
347
348 // unresolved class - get the resolved class
349 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
350 __ br(Assembler::EQ, call_ldc);
351
352 // unresolved class in error state - call into runtime to throw the error
353 // from the first resolution attempt
354 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
355 __ br(Assembler::EQ, call_ldc);
356
357 // resolved class - need to call vm to get java mirror of the class
358 __ cmp(r3, (u1)JVM_CONSTANT_Class);
359 __ br(Assembler::NE, notClass);
360
361 __ bind(call_ldc);
362 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
363 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
364 __ push_ptr(r0);
365 __ verify_oop(r0);
366 __ b(Done);
367
368 __ bind(notClass);
369 __ cmp(r3, (u1)JVM_CONSTANT_Float);
370 __ br(Assembler::NE, notFloat);
371 // ftos
372 __ adds(r1, r2, r1, Assembler::LSL, 3);
373 __ ldrs(v0, Address(r1, base_offset));
374 __ push_f();
375 __ b(Done);
376
377 __ bind(notFloat);
378
379 __ cmp(r3, (u1)JVM_CONSTANT_Integer);
380 __ br(Assembler::NE, notInt);
381
382 // itos
383 __ adds(r1, r2, r1, Assembler::LSL, 3);
384 __ ldrw(r0, Address(r1, base_offset));
385 __ push_i(r0);
386 __ b(Done);
387
388 __ bind(notInt);
389 condy_helper(Done);
390
391 __ bind(Done);
392 }
393
394 // Fast path for caching oop constants.
395 void TemplateTable::fast_aldc(LdcType type)
396 {
397 transition(vtos, atos);
398
399 Register result = r0;
400 Register tmp = r1;
401 Register rarg = r2;
402
403 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
404
405 Label resolved;
406
407 // We are resolved if the resolved reference cache entry contains a
408 // non-null object (String, MethodType, etc.)
409 assert_different_registers(result, tmp);
410 __ get_cache_index_at_bcp(tmp, 1, index_size);
411 __ load_resolved_reference_at_index(result, tmp);
412 __ cbnz(result, resolved);
413
414 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
415
416 // first time invocation - must resolve first
417 __ mov(rarg, (int)bytecode());
418 __ call_VM(result, entry, rarg);
419
420 __ bind(resolved);
421
422 { // Check for the null sentinel.
423 // If we just called the VM, it already did the mapping for us,
424 // but it's harmless to retry.
425 Label notNull;
426
427 // Stash null_sentinel address to get its value later
428 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
429 __ ldr(tmp, Address(rarg));
430 __ resolve_oop_handle(tmp, r5, rscratch2);
431 __ cmpoop(result, tmp);
432 __ br(Assembler::NE, notNull);
433 __ mov(result, 0); // null object reference
434 __ bind(notNull);
435 }
436
437 if (VerifyOops) {
438 // Safe to call with 0 result
439 __ verify_oop(result);
440 }
441 }
442
443 void TemplateTable::ldc2_w()
444 {
445 transition(vtos, vtos);
446 Label notDouble, notLong, Done;
447 __ get_unsigned_2_byte_index_at_bcp(r0, 1);
448
449 __ get_cpool_and_tags(r1, r2);
450 const int base_offset = ConstantPool::header_size() * wordSize;
451 const int tags_offset = Array<u1>::base_offset_in_bytes();
452
453 // get type
454 __ lea(r2, Address(r2, r0, Address::lsl(0)));
455 __ load_unsigned_byte(r2, Address(r2, tags_offset));
456 __ cmpw(r2, (int)JVM_CONSTANT_Double);
457 __ br(Assembler::NE, notDouble);
458
459 // dtos
460 __ lea (r2, Address(r1, r0, Address::lsl(3)));
461 __ ldrd(v0, Address(r2, base_offset));
462 __ push_d();
463 __ b(Done);
464
465 __ bind(notDouble);
466 __ cmpw(r2, (int)JVM_CONSTANT_Long);
467 __ br(Assembler::NE, notLong);
468
469 // ltos
470 __ lea(r0, Address(r1, r0, Address::lsl(3)));
471 __ ldr(r0, Address(r0, base_offset));
472 __ push_l();
473 __ b(Done);
474
475 __ bind(notLong);
476 condy_helper(Done);
477
478 __ bind(Done);
479 }
480
481 void TemplateTable::condy_helper(Label& Done)
482 {
483 Register obj = r0;
484 Register rarg = r1;
485 Register flags = r2;
486 Register off = r3;
487
488 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
489
490 __ mov(rarg, (int) bytecode());
491 __ call_VM(obj, entry, rarg);
492
493 __ get_vm_result_metadata(flags, rthread);
494
495 // VMr = obj = base address to find primitive value to push
496 // VMr2 = flags = (tos, off) using format of CPCE::_flags
497 __ mov(off, flags);
498 __ andw(off, off, ConstantPoolCache::field_index_mask);
499
500 const Address field(obj, off);
501
502 // What sort of thing are we loading?
503 // x86 uses a shift and mask or wings it with a shift plus assert
504 // the mask is not needed. aarch64 just uses bitfield extract
505 __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
506 ConstantPoolCache::tos_state_bits);
507
508 switch (bytecode()) {
509 case Bytecodes::_ldc:
510 case Bytecodes::_ldc_w:
511 {
512 // tos in (itos, ftos, stos, btos, ctos, ztos)
513 Label notInt, notFloat, notShort, notByte, notChar, notBool;
514 __ cmpw(flags, itos);
515 __ br(Assembler::NE, notInt);
516 // itos
517 __ ldrw(r0, field);
518 __ push(itos);
519 __ b(Done);
520
521 __ bind(notInt);
522 __ cmpw(flags, ftos);
523 __ br(Assembler::NE, notFloat);
524 // ftos
525 __ load_float(field);
526 __ push(ftos);
527 __ b(Done);
528
529 __ bind(notFloat);
530 __ cmpw(flags, stos);
531 __ br(Assembler::NE, notShort);
532 // stos
533 __ load_signed_short(r0, field);
534 __ push(stos);
535 __ b(Done);
536
537 __ bind(notShort);
538 __ cmpw(flags, btos);
539 __ br(Assembler::NE, notByte);
540 // btos
541 __ load_signed_byte(r0, field);
542 __ push(btos);
543 __ b(Done);
544
545 __ bind(notByte);
546 __ cmpw(flags, ctos);
547 __ br(Assembler::NE, notChar);
548 // ctos
549 __ load_unsigned_short(r0, field);
550 __ push(ctos);
551 __ b(Done);
552
553 __ bind(notChar);
554 __ cmpw(flags, ztos);
555 __ br(Assembler::NE, notBool);
556 // ztos
557 __ load_signed_byte(r0, field);
558 __ push(ztos);
559 __ b(Done);
560
561 __ bind(notBool);
562 break;
563 }
564
565 case Bytecodes::_ldc2_w:
566 {
567 Label notLong, notDouble;
568 __ cmpw(flags, ltos);
569 __ br(Assembler::NE, notLong);
570 // ltos
571 __ ldr(r0, field);
572 __ push(ltos);
573 __ b(Done);
574
575 __ bind(notLong);
576 __ cmpw(flags, dtos);
577 __ br(Assembler::NE, notDouble);
578 // dtos
579 __ load_double(field);
580 __ push(dtos);
581 __ b(Done);
582
583 __ bind(notDouble);
584 break;
585 }
586
587 default:
588 ShouldNotReachHere();
589 }
590
591 __ stop("bad ldc/condy");
592 }
593
594 void TemplateTable::locals_index(Register reg, int offset)
595 {
596 __ ldrb(reg, at_bcp(offset));
597 __ neg(reg, reg);
598 }
599
600 void TemplateTable::iload() {
601 iload_internal();
602 }
603
604 void TemplateTable::nofast_iload() {
605 iload_internal(may_not_rewrite);
606 }
607
608 void TemplateTable::iload_internal(RewriteControl rc) {
609 transition(vtos, itos);
610 if (RewriteFrequentPairs && rc == may_rewrite) {
611 Label rewrite, done;
612 Register bc = r4;
613
614 // get next bytecode
615 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
616
617 // if _iload, wait to rewrite to iload2. We only want to rewrite the
618 // last two iloads in a pair. Comparing against fast_iload means that
619 // the next bytecode is neither an iload or a caload, and therefore
620 // an iload pair.
621 __ cmpw(r1, Bytecodes::_iload);
622 __ br(Assembler::EQ, done);
623
624 // if _fast_iload rewrite to _fast_iload2
625 __ cmpw(r1, Bytecodes::_fast_iload);
626 __ movw(bc, Bytecodes::_fast_iload2);
627 __ br(Assembler::EQ, rewrite);
628
629 // if _caload rewrite to _fast_icaload
630 __ cmpw(r1, Bytecodes::_caload);
631 __ movw(bc, Bytecodes::_fast_icaload);
632 __ br(Assembler::EQ, rewrite);
633
634 // else rewrite to _fast_iload
635 __ movw(bc, Bytecodes::_fast_iload);
636
637 // rewrite
638 // bc: new bytecode
639 __ bind(rewrite);
640 patch_bytecode(Bytecodes::_iload, bc, r1, false);
641 __ bind(done);
642
643 }
644
645 // do iload, get the local value into tos
646 locals_index(r1);
647 __ ldr(r0, iaddress(r1));
648
649 }
650
651 void TemplateTable::fast_iload2()
652 {
653 transition(vtos, itos);
654 locals_index(r1);
655 __ ldr(r0, iaddress(r1));
656 __ push(itos);
657 locals_index(r1, 3);
658 __ ldr(r0, iaddress(r1));
659 }
660
661 void TemplateTable::fast_iload()
662 {
663 transition(vtos, itos);
664 locals_index(r1);
665 __ ldr(r0, iaddress(r1));
666 }
667
668 void TemplateTable::lload()
669 {
670 transition(vtos, ltos);
671 __ ldrb(r1, at_bcp(1));
672 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
673 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
674 }
675
676 void TemplateTable::fload()
677 {
678 transition(vtos, ftos);
679 locals_index(r1);
680 // n.b. we use ldrd here because this is a 64 bit slot
681 // this is comparable to the iload case
682 __ ldrd(v0, faddress(r1));
683 }
684
685 void TemplateTable::dload()
686 {
687 transition(vtos, dtos);
688 __ ldrb(r1, at_bcp(1));
689 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
690 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
691 }
692
693 void TemplateTable::aload()
694 {
695 transition(vtos, atos);
696 locals_index(r1);
697 __ ldr(r0, iaddress(r1));
698 }
699
700 void TemplateTable::locals_index_wide(Register reg) {
701 __ ldrh(reg, at_bcp(2));
702 __ rev16w(reg, reg);
703 __ neg(reg, reg);
704 }
705
706 void TemplateTable::wide_iload() {
707 transition(vtos, itos);
708 locals_index_wide(r1);
709 __ ldr(r0, iaddress(r1));
710 }
711
712 void TemplateTable::wide_lload()
713 {
714 transition(vtos, ltos);
715 __ ldrh(r1, at_bcp(2));
716 __ rev16w(r1, r1);
717 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
718 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
719 }
720
721 void TemplateTable::wide_fload()
722 {
723 transition(vtos, ftos);
724 locals_index_wide(r1);
725 // n.b. we use ldrd here because this is a 64 bit slot
726 // this is comparable to the iload case
727 __ ldrd(v0, faddress(r1));
728 }
729
730 void TemplateTable::wide_dload()
731 {
732 transition(vtos, dtos);
733 __ ldrh(r1, at_bcp(2));
734 __ rev16w(r1, r1);
735 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
736 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
737 }
738
739 void TemplateTable::wide_aload()
740 {
741 transition(vtos, atos);
742 locals_index_wide(r1);
743 __ ldr(r0, aaddress(r1));
744 }
745
746 void TemplateTable::index_check(Register array, Register index)
747 {
748 // destroys r1, rscratch1
749 // sign extend index for use by indexed load
750 // __ movl2ptr(index, index);
751 // check index
752 Register length = rscratch1;
753 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
754 __ cmpw(index, length);
755 if (index != r1) {
756 // ??? convention: move aberrant index into r1 for exception message
757 assert(r1 != array, "different registers");
758 __ mov(r1, index);
759 }
760 Label ok;
761 __ br(Assembler::LO, ok);
762 // ??? convention: move array into r3 for exception message
763 __ mov(r3, array);
764 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
765 __ br(rscratch1);
766 __ bind(ok);
767 }
768
769 void TemplateTable::iaload()
770 {
771 transition(itos, itos);
772 __ mov(r1, r0);
773 __ pop_ptr(r0);
774 // r0: array
775 // r1: index
776 index_check(r0, r1); // leaves index in r1, kills rscratch1
777 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
778 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
779 }
780
781 void TemplateTable::laload()
782 {
783 transition(itos, ltos);
784 __ mov(r1, r0);
785 __ pop_ptr(r0);
786 // r0: array
787 // r1: index
788 index_check(r0, r1); // leaves index in r1, kills rscratch1
789 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
790 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
791 }
792
793 void TemplateTable::faload()
794 {
795 transition(itos, ftos);
796 __ mov(r1, r0);
797 __ pop_ptr(r0);
798 // r0: array
799 // r1: index
800 index_check(r0, r1); // leaves index in r1, kills rscratch1
801 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
802 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
803 }
804
805 void TemplateTable::daload()
806 {
807 transition(itos, dtos);
808 __ mov(r1, r0);
809 __ pop_ptr(r0);
810 // r0: array
811 // r1: index
812 index_check(r0, r1); // leaves index in r1, kills rscratch1
813 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
814 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
815 }
816
817 void TemplateTable::aaload()
818 {
819 transition(itos, atos);
820 __ mov(r1, r0);
821 __ pop_ptr(r0);
822 // r0: array
823 // r1: index
824 index_check(r0, r1); // leaves index in r1, kills rscratch1
825 __ profile_array_type<ArrayLoadData>(r2, r0, r4);
826 if (UseArrayFlattening) {
827 Label is_flat_array, done;
828
829 __ test_flat_array_oop(r0, rscratch1 /*temp*/, is_flat_array);
830 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
831 do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
832
833 __ b(done);
834 __ bind(is_flat_array);
835 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
836 // Ensure the stores to copy the inline field contents are visible
837 // before any subsequent store that publishes this reference.
838 __ membar(Assembler::StoreStore);
839 __ bind(done);
840 } else {
841 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
842 do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
843 }
844 __ profile_element_type(r2, r0, r4);
845 }
846
847 void TemplateTable::baload()
848 {
849 transition(itos, itos);
850 __ mov(r1, r0);
851 __ pop_ptr(r0);
852 // r0: array
853 // r1: index
854 index_check(r0, r1); // leaves index in r1, kills rscratch1
855 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
856 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
857 }
858
859 void TemplateTable::caload()
860 {
861 transition(itos, itos);
862 __ mov(r1, r0);
863 __ pop_ptr(r0);
864 // r0: array
865 // r1: index
866 index_check(r0, r1); // leaves index in r1, kills rscratch1
867 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
868 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
869 }
870
871 // iload followed by caload frequent pair
872 void TemplateTable::fast_icaload()
873 {
874 transition(vtos, itos);
875 // load index out of locals
876 locals_index(r2);
877 __ ldr(r1, iaddress(r2));
878
879 __ pop_ptr(r0);
880
881 // r0: array
882 // r1: index
883 index_check(r0, r1); // leaves index in r1, kills rscratch1
884 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
885 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
886 }
887
888 void TemplateTable::saload()
889 {
890 transition(itos, itos);
891 __ mov(r1, r0);
892 __ pop_ptr(r0);
893 // r0: array
894 // r1: index
895 index_check(r0, r1); // leaves index in r1, kills rscratch1
896 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
897 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
898 }
899
900 void TemplateTable::iload(int n)
901 {
902 transition(vtos, itos);
903 __ ldr(r0, iaddress(n));
904 }
905
906 void TemplateTable::lload(int n)
907 {
908 transition(vtos, ltos);
909 __ ldr(r0, laddress(n));
910 }
911
912 void TemplateTable::fload(int n)
913 {
914 transition(vtos, ftos);
915 __ ldrs(v0, faddress(n));
916 }
917
918 void TemplateTable::dload(int n)
919 {
920 transition(vtos, dtos);
921 __ ldrd(v0, daddress(n));
922 }
923
924 void TemplateTable::aload(int n)
925 {
926 transition(vtos, atos);
927 __ ldr(r0, iaddress(n));
928 }
929
930 void TemplateTable::aload_0() {
931 aload_0_internal();
932 }
933
934 void TemplateTable::nofast_aload_0() {
935 aload_0_internal(may_not_rewrite);
936 }
937
938 void TemplateTable::aload_0_internal(RewriteControl rc) {
939 // According to bytecode histograms, the pairs:
940 //
941 // _aload_0, _fast_igetfield
942 // _aload_0, _fast_agetfield
943 // _aload_0, _fast_fgetfield
944 //
945 // occur frequently. If RewriteFrequentPairs is set, the (slow)
946 // _aload_0 bytecode checks if the next bytecode is either
947 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
948 // rewrites the current bytecode into a pair bytecode; otherwise it
949 // rewrites the current bytecode into _fast_aload_0 that doesn't do
950 // the pair check anymore.
951 //
952 // Note: If the next bytecode is _getfield, the rewrite must be
953 // delayed, otherwise we may miss an opportunity for a pair.
954 //
955 // Also rewrite frequent pairs
956 // aload_0, aload_1
957 // aload_0, iload_1
958 // These bytecodes with a small amount of code are most profitable
959 // to rewrite
960 if (RewriteFrequentPairs && rc == may_rewrite) {
961 Label rewrite, done;
962 const Register bc = r4;
963
964 // get next bytecode
965 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
966
967 // if _getfield then wait with rewrite
968 __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
969 __ br(Assembler::EQ, done);
970
971 // if _igetfield then rewrite to _fast_iaccess_0
972 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
973 __ cmpw(r1, Bytecodes::_fast_igetfield);
974 __ movw(bc, Bytecodes::_fast_iaccess_0);
975 __ br(Assembler::EQ, rewrite);
976
977 // if _agetfield then rewrite to _fast_aaccess_0
978 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
979 __ cmpw(r1, Bytecodes::_fast_agetfield);
980 __ movw(bc, Bytecodes::_fast_aaccess_0);
981 __ br(Assembler::EQ, rewrite);
982
983 // if _fgetfield then rewrite to _fast_faccess_0
984 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
985 __ cmpw(r1, Bytecodes::_fast_fgetfield);
986 __ movw(bc, Bytecodes::_fast_faccess_0);
987 __ br(Assembler::EQ, rewrite);
988
989 // else rewrite to _fast_aload0
990 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
991 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
992
993 // rewrite
994 // bc: new bytecode
995 __ bind(rewrite);
996 patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
997
998 __ bind(done);
999 }
1000
1001 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
1002 aload(0);
1003 }
1004
1005 void TemplateTable::istore()
1006 {
1007 transition(itos, vtos);
1008 locals_index(r1);
1009 // FIXME: We're being very pernickerty here storing a jint in a
1010 // local with strw, which costs an extra instruction over what we'd
1011 // be able to do with a simple str. We should just store the whole
1012 // word.
1013 __ lea(rscratch1, iaddress(r1));
1014 __ strw(r0, Address(rscratch1));
1015 }
1016
1017 void TemplateTable::lstore()
1018 {
1019 transition(ltos, vtos);
1020 locals_index(r1);
1021 __ str(r0, laddress(r1, rscratch1, _masm));
1022 }
1023
1024 void TemplateTable::fstore() {
1025 transition(ftos, vtos);
1026 locals_index(r1);
1027 __ lea(rscratch1, iaddress(r1));
1028 __ strs(v0, Address(rscratch1));
1029 }
1030
1031 void TemplateTable::dstore() {
1032 transition(dtos, vtos);
1033 locals_index(r1);
1034 __ strd(v0, daddress(r1, rscratch1, _masm));
1035 }
1036
1037 void TemplateTable::astore()
1038 {
1039 transition(vtos, vtos);
1040 __ pop_ptr(r0);
1041 locals_index(r1);
1042 __ str(r0, aaddress(r1));
1043 }
1044
1045 void TemplateTable::wide_istore() {
1046 transition(vtos, vtos);
1047 __ pop_i();
1048 locals_index_wide(r1);
1049 __ lea(rscratch1, iaddress(r1));
1050 __ strw(r0, Address(rscratch1));
1051 }
1052
1053 void TemplateTable::wide_lstore() {
1054 transition(vtos, vtos);
1055 __ pop_l();
1056 locals_index_wide(r1);
1057 __ str(r0, laddress(r1, rscratch1, _masm));
1058 }
1059
1060 void TemplateTable::wide_fstore() {
1061 transition(vtos, vtos);
1062 __ pop_f();
1063 locals_index_wide(r1);
1064 __ lea(rscratch1, faddress(r1));
1065 __ strs(v0, rscratch1);
1066 }
1067
1068 void TemplateTable::wide_dstore() {
1069 transition(vtos, vtos);
1070 __ pop_d();
1071 locals_index_wide(r1);
1072 __ strd(v0, daddress(r1, rscratch1, _masm));
1073 }
1074
1075 void TemplateTable::wide_astore() {
1076 transition(vtos, vtos);
1077 __ pop_ptr(r0);
1078 locals_index_wide(r1);
1079 __ str(r0, aaddress(r1));
1080 }
1081
1082 void TemplateTable::iastore() {
1083 transition(itos, vtos);
1084 __ pop_i(r1);
1085 __ pop_ptr(r3);
1086 // r0: value
1087 // r1: index
1088 // r3: array
1089 index_check(r3, r1); // prefer index in r1
1090 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1091 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1092 }
1093
1094 void TemplateTable::lastore() {
1095 transition(ltos, vtos);
1096 __ pop_i(r1);
1097 __ pop_ptr(r3);
1098 // r0: value
1099 // r1: index
1100 // r3: array
1101 index_check(r3, r1); // prefer index in r1
1102 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1103 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1104 }
1105
1106 void TemplateTable::fastore() {
1107 transition(ftos, vtos);
1108 __ pop_i(r1);
1109 __ pop_ptr(r3);
1110 // v0: value
1111 // r1: index
1112 // r3: array
1113 index_check(r3, r1); // prefer index in r1
1114 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1115 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1116 }
1117
1118 void TemplateTable::dastore() {
1119 transition(dtos, vtos);
1120 __ pop_i(r1);
1121 __ pop_ptr(r3);
1122 // v0: value
1123 // r1: index
1124 // r3: array
1125 index_check(r3, r1); // prefer index in r1
1126 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1127 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1128 }
1129
1130 void TemplateTable::aastore() {
1131 Label is_null, is_flat_array, ok_is_subtype, done;
1132 transition(vtos, vtos);
1133 // stack: ..., array, index, value
1134 __ ldr(r0, at_tos()); // value
1135 __ ldr(r2, at_tos_p1()); // index
1136 __ ldr(r3, at_tos_p2()); // array
1137
1138 index_check(r3, r2); // kills r1
1139
1140 __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1141 __ profile_multiple_element_types(r4, r0, r5, r6);
1142
1143 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1144 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1145 // Be careful not to clobber r4 below
1146
1147 // do array store check - check for null value first
1148 __ cbz(r0, is_null);
1149
1150 // Move array class to r5
1151 __ load_klass(r5, r3);
1152
1153 if (UseArrayFlattening) {
1154 __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1155 __ test_flat_array_layout(r6, is_flat_array);
1156 }
1157
1158 // Move subklass into r1
1159 __ load_klass(r1, r0);
1160
1161 // Move array element superklass into r0
1162 __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));
1163 // Compress array + index*oopSize + 12 into a single register. Frees r2.
1164
1165 // Generate subtype check. Blows r2, r5
1166 // Superklass in r0. Subklass in r1.
1167
1168 // is "r1 <: r0" ? (value subclass <: array element superclass)
1169 __ gen_subtype_check(r1, ok_is_subtype, false);
1170
1171 // Come here on failure
1172 // object is at TOS
1173 __ b(Interpreter::_throw_ArrayStoreException_entry);
1174
1175 // Come here on success
1176 __ bind(ok_is_subtype);
1177
1178 // Get the value we will store
1179 __ ldr(r0, at_tos());
1180 // Now store using the appropriate barrier
1181 // Clobbers: r10, r11, r3
1182 do_oop_store(_masm, element_address, r0, IS_ARRAY);
1183 __ b(done);
1184
1185 // Have a null in r0, r3=array, r2=index. Store null at ary[idx]
1186 __ bind(is_null);
1187 if (Arguments::is_valhalla_enabled()) {
1188 Label is_null_into_value_array_npe, store_null;
1189
1190 if (UseArrayFlattening) {
1191 __ test_flat_array_oop(r3, rscratch1, is_flat_array);
1192 }
1193
1194 // No way to store null in a null-free array
1195 __ test_null_free_array_oop(r3, rscratch1, is_null_into_value_array_npe);
1196 __ b(store_null);
1197
1198 __ bind(is_null_into_value_array_npe);
1199 __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1200
1201 __ bind(store_null);
1202 }
1203
1204 // Store a null
1205 // Clobbers: r10, r11, r3
1206 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1207 __ b(done);
1208
1209 if (UseArrayFlattening) {
1210 Label is_type_ok;
1211 __ bind(is_flat_array); // Store non-null value to flat
1212
1213 __ ldr(r0, at_tos()); // value
1214 __ ldr(r3, at_tos_p1()); // index
1215 __ ldr(r2, at_tos_p2()); // array
1216 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1217 }
1218
1219 // Pop stack arguments
1220 __ bind(done);
1221 __ add(esp, esp, 3 * Interpreter::stackElementSize);
1222 }
1223
1224 void TemplateTable::bastore()
1225 {
1226 transition(itos, vtos);
1227 __ pop_i(r1);
1228 __ pop_ptr(r3);
1229 // r0: value
1230 // r1: index
1231 // r3: array
1232 index_check(r3, r1); // prefer index in r1
1233
1234 // Need to check whether array is boolean or byte
1235 // since both types share the bastore bytecode.
1236 __ load_klass(r2, r3);
1237 __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1238 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1239 Label L_skip;
1240 __ tbz(r2, diffbit_index, L_skip);
1241 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1242 __ bind(L_skip);
1243
1244 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1245 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1246 }
1247
1248 void TemplateTable::castore()
1249 {
1250 transition(itos, vtos);
1251 __ pop_i(r1);
1252 __ pop_ptr(r3);
1253 // r0: value
1254 // r1: index
1255 // r3: array
1256 index_check(r3, r1); // prefer index in r1
1257 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1258 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1259 }
1260
1261 void TemplateTable::sastore()
1262 {
1263 castore();
1264 }
1265
1266 void TemplateTable::istore(int n)
1267 {
1268 transition(itos, vtos);
1269 __ str(r0, iaddress(n));
1270 }
1271
1272 void TemplateTable::lstore(int n)
1273 {
1274 transition(ltos, vtos);
1275 __ str(r0, laddress(n));
1276 }
1277
1278 void TemplateTable::fstore(int n)
1279 {
1280 transition(ftos, vtos);
1281 __ strs(v0, faddress(n));
1282 }
1283
1284 void TemplateTable::dstore(int n)
1285 {
1286 transition(dtos, vtos);
1287 __ strd(v0, daddress(n));
1288 }
1289
1290 void TemplateTable::astore(int n)
1291 {
1292 transition(vtos, vtos);
1293 __ pop_ptr(r0);
1294 __ str(r0, iaddress(n));
1295 }
1296
1297 void TemplateTable::pop()
1298 {
1299 transition(vtos, vtos);
1300 __ add(esp, esp, Interpreter::stackElementSize);
1301 }
1302
1303 void TemplateTable::pop2()
1304 {
1305 transition(vtos, vtos);
1306 __ add(esp, esp, 2 * Interpreter::stackElementSize);
1307 }
1308
1309 void TemplateTable::dup()
1310 {
1311 transition(vtos, vtos);
1312 __ ldr(r0, Address(esp, 0));
1313 __ push(r0);
1314 // stack: ..., a, a
1315 }
1316
1317 void TemplateTable::dup_x1()
1318 {
1319 transition(vtos, vtos);
1320 // stack: ..., a, b
1321 __ ldr(r0, at_tos()); // load b
1322 __ ldr(r2, at_tos_p1()); // load a
1323 __ str(r0, at_tos_p1()); // store b
1324 __ str(r2, at_tos()); // store a
1325 __ push(r0); // push b
1326 // stack: ..., b, a, b
1327 }
1328
1329 void TemplateTable::dup_x2()
1330 {
1331 transition(vtos, vtos);
1332 // stack: ..., a, b, c
1333 __ ldr(r0, at_tos()); // load c
1334 __ ldr(r2, at_tos_p2()); // load a
1335 __ str(r0, at_tos_p2()); // store c in a
1336 __ push(r0); // push c
1337 // stack: ..., c, b, c, c
1338 __ ldr(r0, at_tos_p2()); // load b
1339 __ str(r2, at_tos_p2()); // store a in b
1340 // stack: ..., c, a, c, c
1341 __ str(r0, at_tos_p1()); // store b in c
1342 // stack: ..., c, a, b, c
1343 }
1344
1345 void TemplateTable::dup2()
1346 {
1347 transition(vtos, vtos);
1348 // stack: ..., a, b
1349 __ ldr(r0, at_tos_p1()); // load a
1350 __ push(r0); // push a
1351 __ ldr(r0, at_tos_p1()); // load b
1352 __ push(r0); // push b
1353 // stack: ..., a, b, a, b
1354 }
1355
1356 void TemplateTable::dup2_x1()
1357 {
1358 transition(vtos, vtos);
1359 // stack: ..., a, b, c
1360 __ ldr(r2, at_tos()); // load c
1361 __ ldr(r0, at_tos_p1()); // load b
1362 __ push(r0); // push b
1363 __ push(r2); // push c
1364 // stack: ..., a, b, c, b, c
1365 __ str(r2, at_tos_p3()); // store c in b
1366 // stack: ..., a, c, c, b, c
1367 __ ldr(r2, at_tos_p4()); // load a
1368 __ str(r2, at_tos_p2()); // store a in 2nd c
1369 // stack: ..., a, c, a, b, c
1370 __ str(r0, at_tos_p4()); // store b in a
1371 // stack: ..., b, c, a, b, c
1372 }
1373
1374 void TemplateTable::dup2_x2()
1375 {
1376 transition(vtos, vtos);
1377 // stack: ..., a, b, c, d
1378 __ ldr(r2, at_tos()); // load d
1379 __ ldr(r0, at_tos_p1()); // load c
1380 __ push(r0) ; // push c
1381 __ push(r2); // push d
1382 // stack: ..., a, b, c, d, c, d
1383 __ ldr(r0, at_tos_p4()); // load b
1384 __ str(r0, at_tos_p2()); // store b in d
1385 __ str(r2, at_tos_p4()); // store d in b
1386 // stack: ..., a, d, c, b, c, d
1387 __ ldr(r2, at_tos_p5()); // load a
1388 __ ldr(r0, at_tos_p3()); // load c
1389 __ str(r2, at_tos_p3()); // store a in c
1390 __ str(r0, at_tos_p5()); // store c in a
1391 // stack: ..., c, d, a, b, c, d
1392 }
1393
1394 void TemplateTable::swap()
1395 {
1396 transition(vtos, vtos);
1397 // stack: ..., a, b
1398 __ ldr(r2, at_tos_p1()); // load a
1399 __ ldr(r0, at_tos()); // load b
1400 __ str(r2, at_tos()); // store a in b
1401 __ str(r0, at_tos_p1()); // store b in a
1402 // stack: ..., b, a
1403 }
1404
1405 void TemplateTable::iop2(Operation op)
1406 {
1407 transition(itos, itos);
1408 // r0 <== r1 op r0
1409 __ pop_i(r1);
1410 switch (op) {
1411 case add : __ addw(r0, r1, r0); break;
1412 case sub : __ subw(r0, r1, r0); break;
1413 case mul : __ mulw(r0, r1, r0); break;
1414 case _and : __ andw(r0, r1, r0); break;
1415 case _or : __ orrw(r0, r1, r0); break;
1416 case _xor : __ eorw(r0, r1, r0); break;
1417 case shl : __ lslvw(r0, r1, r0); break;
1418 case shr : __ asrvw(r0, r1, r0); break;
1419 case ushr : __ lsrvw(r0, r1, r0);break;
1420 default : ShouldNotReachHere();
1421 }
1422 }
1423
1424 void TemplateTable::lop2(Operation op)
1425 {
1426 transition(ltos, ltos);
1427 // r0 <== r1 op r0
1428 __ pop_l(r1);
1429 switch (op) {
1430 case add : __ add(r0, r1, r0); break;
1431 case sub : __ sub(r0, r1, r0); break;
1432 case mul : __ mul(r0, r1, r0); break;
1433 case _and : __ andr(r0, r1, r0); break;
1434 case _or : __ orr(r0, r1, r0); break;
1435 case _xor : __ eor(r0, r1, r0); break;
1436 default : ShouldNotReachHere();
1437 }
1438 }
1439
1440 void TemplateTable::idiv()
1441 {
1442 transition(itos, itos);
1443 // explicitly check for div0
1444 Label no_div0;
1445 __ cbnzw(r0, no_div0);
1446 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1447 __ br(rscratch1);
1448 __ bind(no_div0);
1449 __ pop_i(r1);
1450 // r0 <== r1 idiv r0
1451 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1452 }
1453
1454 void TemplateTable::irem()
1455 {
1456 transition(itos, itos);
1457 // explicitly check for div0
1458 Label no_div0;
1459 __ cbnzw(r0, no_div0);
1460 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1461 __ br(rscratch1);
1462 __ bind(no_div0);
1463 __ pop_i(r1);
1464 // r0 <== r1 irem r0
1465 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1466 }
1467
1468 void TemplateTable::lmul()
1469 {
1470 transition(ltos, ltos);
1471 __ pop_l(r1);
1472 __ mul(r0, r0, r1);
1473 }
1474
1475 void TemplateTable::ldiv()
1476 {
1477 transition(ltos, ltos);
1478 // explicitly check for div0
1479 Label no_div0;
1480 __ cbnz(r0, no_div0);
1481 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1482 __ br(rscratch1);
1483 __ bind(no_div0);
1484 __ pop_l(r1);
1485 // r0 <== r1 ldiv r0
1486 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1487 }
1488
1489 void TemplateTable::lrem()
1490 {
1491 transition(ltos, ltos);
1492 // explicitly check for div0
1493 Label no_div0;
1494 __ cbnz(r0, no_div0);
1495 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1496 __ br(rscratch1);
1497 __ bind(no_div0);
1498 __ pop_l(r1);
1499 // r0 <== r1 lrem r0
1500 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1501 }
1502
1503 void TemplateTable::lshl()
1504 {
1505 transition(itos, ltos);
1506 // shift count is in r0
1507 __ pop_l(r1);
1508 __ lslv(r0, r1, r0);
1509 }
1510
1511 void TemplateTable::lshr()
1512 {
1513 transition(itos, ltos);
1514 // shift count is in r0
1515 __ pop_l(r1);
1516 __ asrv(r0, r1, r0);
1517 }
1518
1519 void TemplateTable::lushr()
1520 {
1521 transition(itos, ltos);
1522 // shift count is in r0
1523 __ pop_l(r1);
1524 __ lsrv(r0, r1, r0);
1525 }
1526
1527 void TemplateTable::fop2(Operation op)
1528 {
1529 transition(ftos, ftos);
1530 switch (op) {
1531 case add:
1532 // n.b. use ldrd because this is a 64 bit slot
1533 __ pop_f(v1);
1534 __ fadds(v0, v1, v0);
1535 break;
1536 case sub:
1537 __ pop_f(v1);
1538 __ fsubs(v0, v1, v0);
1539 break;
1540 case mul:
1541 __ pop_f(v1);
1542 __ fmuls(v0, v1, v0);
1543 break;
1544 case div:
1545 __ pop_f(v1);
1546 __ fdivs(v0, v1, v0);
1547 break;
1548 case rem:
1549 __ fmovs(v1, v0);
1550 __ pop_f(v0);
1551 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1552 break;
1553 default:
1554 ShouldNotReachHere();
1555 break;
1556 }
1557 }
1558
1559 void TemplateTable::dop2(Operation op)
1560 {
1561 transition(dtos, dtos);
1562 switch (op) {
1563 case add:
1564 // n.b. use ldrd because this is a 64 bit slot
1565 __ pop_d(v1);
1566 __ faddd(v0, v1, v0);
1567 break;
1568 case sub:
1569 __ pop_d(v1);
1570 __ fsubd(v0, v1, v0);
1571 break;
1572 case mul:
1573 __ pop_d(v1);
1574 __ fmuld(v0, v1, v0);
1575 break;
1576 case div:
1577 __ pop_d(v1);
1578 __ fdivd(v0, v1, v0);
1579 break;
1580 case rem:
1581 __ fmovd(v1, v0);
1582 __ pop_d(v0);
1583 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1584 break;
1585 default:
1586 ShouldNotReachHere();
1587 break;
1588 }
1589 }
1590
1591 void TemplateTable::ineg()
1592 {
1593 transition(itos, itos);
1594 __ negw(r0, r0);
1595
1596 }
1597
1598 void TemplateTable::lneg()
1599 {
1600 transition(ltos, ltos);
1601 __ neg(r0, r0);
1602 }
1603
1604 void TemplateTable::fneg()
1605 {
1606 transition(ftos, ftos);
1607 __ fnegs(v0, v0);
1608 }
1609
1610 void TemplateTable::dneg()
1611 {
1612 transition(dtos, dtos);
1613 __ fnegd(v0, v0);
1614 }
1615
1616 void TemplateTable::iinc()
1617 {
1618 transition(vtos, vtos);
1619 __ load_signed_byte(r1, at_bcp(2)); // get constant
1620 locals_index(r2);
1621 __ ldr(r0, iaddress(r2));
1622 __ addw(r0, r0, r1);
1623 __ str(r0, iaddress(r2));
1624 }
1625
1626 void TemplateTable::wide_iinc()
1627 {
1628 transition(vtos, vtos);
1629 // __ mov(r1, zr);
1630 __ ldrw(r1, at_bcp(2)); // get constant and index
1631 __ rev16(r1, r1);
1632 __ ubfx(r2, r1, 0, 16);
1633 __ neg(r2, r2);
1634 __ sbfx(r1, r1, 16, 16);
1635 __ ldr(r0, iaddress(r2));
1636 __ addw(r0, r0, r1);
1637 __ str(r0, iaddress(r2));
1638 }
1639
1640 void TemplateTable::convert()
1641 {
1642 // Checking
1643 #ifdef ASSERT
1644 {
1645 TosState tos_in = ilgl;
1646 TosState tos_out = ilgl;
1647 switch (bytecode()) {
1648 case Bytecodes::_i2l: // fall through
1649 case Bytecodes::_i2f: // fall through
1650 case Bytecodes::_i2d: // fall through
1651 case Bytecodes::_i2b: // fall through
1652 case Bytecodes::_i2c: // fall through
1653 case Bytecodes::_i2s: tos_in = itos; break;
1654 case Bytecodes::_l2i: // fall through
1655 case Bytecodes::_l2f: // fall through
1656 case Bytecodes::_l2d: tos_in = ltos; break;
1657 case Bytecodes::_f2i: // fall through
1658 case Bytecodes::_f2l: // fall through
1659 case Bytecodes::_f2d: tos_in = ftos; break;
1660 case Bytecodes::_d2i: // fall through
1661 case Bytecodes::_d2l: // fall through
1662 case Bytecodes::_d2f: tos_in = dtos; break;
1663 default : ShouldNotReachHere();
1664 }
1665 switch (bytecode()) {
1666 case Bytecodes::_l2i: // fall through
1667 case Bytecodes::_f2i: // fall through
1668 case Bytecodes::_d2i: // fall through
1669 case Bytecodes::_i2b: // fall through
1670 case Bytecodes::_i2c: // fall through
1671 case Bytecodes::_i2s: tos_out = itos; break;
1672 case Bytecodes::_i2l: // fall through
1673 case Bytecodes::_f2l: // fall through
1674 case Bytecodes::_d2l: tos_out = ltos; break;
1675 case Bytecodes::_i2f: // fall through
1676 case Bytecodes::_l2f: // fall through
1677 case Bytecodes::_d2f: tos_out = ftos; break;
1678 case Bytecodes::_i2d: // fall through
1679 case Bytecodes::_l2d: // fall through
1680 case Bytecodes::_f2d: tos_out = dtos; break;
1681 default : ShouldNotReachHere();
1682 }
1683 transition(tos_in, tos_out);
1684 }
1685 #endif // ASSERT
1686 // static const int64_t is_nan = 0x8000000000000000L;
1687
1688 // Conversion
1689 switch (bytecode()) {
1690 case Bytecodes::_i2l:
1691 __ sxtw(r0, r0);
1692 break;
1693 case Bytecodes::_i2f:
1694 __ scvtfws(v0, r0);
1695 break;
1696 case Bytecodes::_i2d:
1697 __ scvtfwd(v0, r0);
1698 break;
1699 case Bytecodes::_i2b:
1700 __ sxtbw(r0, r0);
1701 break;
1702 case Bytecodes::_i2c:
1703 __ uxthw(r0, r0);
1704 break;
1705 case Bytecodes::_i2s:
1706 __ sxthw(r0, r0);
1707 break;
1708 case Bytecodes::_l2i:
1709 __ uxtw(r0, r0);
1710 break;
1711 case Bytecodes::_l2f:
1712 __ scvtfs(v0, r0);
1713 break;
1714 case Bytecodes::_l2d:
1715 __ scvtfd(v0, r0);
1716 break;
1717 case Bytecodes::_f2i:
1718 {
1719 Label L_Okay;
1720 __ clear_fpsr();
1721 __ fcvtzsw(r0, v0);
1722 __ get_fpsr(r1);
1723 __ cbzw(r1, L_Okay);
1724 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1725 __ bind(L_Okay);
1726 }
1727 break;
1728 case Bytecodes::_f2l:
1729 {
1730 Label L_Okay;
1731 __ clear_fpsr();
1732 __ fcvtzs(r0, v0);
1733 __ get_fpsr(r1);
1734 __ cbzw(r1, L_Okay);
1735 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1736 __ bind(L_Okay);
1737 }
1738 break;
1739 case Bytecodes::_f2d:
1740 __ fcvts(v0, v0);
1741 break;
1742 case Bytecodes::_d2i:
1743 {
1744 Label L_Okay;
1745 __ clear_fpsr();
1746 __ fcvtzdw(r0, v0);
1747 __ get_fpsr(r1);
1748 __ cbzw(r1, L_Okay);
1749 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1750 __ bind(L_Okay);
1751 }
1752 break;
1753 case Bytecodes::_d2l:
1754 {
1755 Label L_Okay;
1756 __ clear_fpsr();
1757 __ fcvtzd(r0, v0);
1758 __ get_fpsr(r1);
1759 __ cbzw(r1, L_Okay);
1760 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1761 __ bind(L_Okay);
1762 }
1763 break;
1764 case Bytecodes::_d2f:
1765 __ fcvtd(v0, v0);
1766 break;
1767 default:
1768 ShouldNotReachHere();
1769 }
1770 }
1771
1772 void TemplateTable::lcmp()
1773 {
1774 transition(ltos, itos);
1775 Label done;
1776 __ pop_l(r1);
1777 __ cmp(r1, r0);
1778 __ mov(r0, (uint64_t)-1L);
1779 __ br(Assembler::LT, done);
1780 // __ mov(r0, 1UL);
1781 // __ csel(r0, r0, zr, Assembler::NE);
1782 // and here is a faster way
1783 __ csinc(r0, zr, zr, Assembler::EQ);
1784 __ bind(done);
1785 }
1786
1787 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1788 {
1789 Label done;
1790 if (is_float) {
1791 // XXX get rid of pop here, use ... reg, mem32
1792 __ pop_f(v1);
1793 __ fcmps(v1, v0);
1794 } else {
1795 // XXX get rid of pop here, use ... reg, mem64
1796 __ pop_d(v1);
1797 __ fcmpd(v1, v0);
1798 }
1799 if (unordered_result < 0) {
1800 // we want -1 for unordered or less than, 0 for equal and 1 for
1801 // greater than.
1802 __ mov(r0, (uint64_t)-1L);
1803 // for FP LT tests less than or unordered
1804 __ br(Assembler::LT, done);
1805 // install 0 for EQ otherwise 1
1806 __ csinc(r0, zr, zr, Assembler::EQ);
1807 } else {
1808 // we want -1 for less than, 0 for equal and 1 for unordered or
1809 // greater than.
1810 __ mov(r0, 1L);
1811 // for FP HI tests greater than or unordered
1812 __ br(Assembler::HI, done);
1813 // install 0 for EQ otherwise ~0
1814 __ csinv(r0, zr, zr, Assembler::EQ);
1815
1816 }
1817 __ bind(done);
1818 }
1819
1820 void TemplateTable::branch(bool is_jsr, bool is_wide)
1821 {
1822 __ profile_taken_branch(r0);
1823 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1824 InvocationCounter::counter_offset();
1825 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1826 InvocationCounter::counter_offset();
1827
1828 // load branch displacement
1829 if (!is_wide) {
1830 __ ldrh(r2, at_bcp(1));
1831 __ rev16(r2, r2);
1832 // sign extend the 16 bit value in r2
1833 __ sbfm(r2, r2, 0, 15);
1834 } else {
1835 __ ldrw(r2, at_bcp(1));
1836 __ revw(r2, r2);
1837 // sign extend the 32 bit value in r2
1838 __ sbfm(r2, r2, 0, 31);
1839 }
1840
1841 // Handle all the JSR stuff here, then exit.
1842 // It's much shorter and cleaner than intermingling with the non-JSR
1843 // normal-branch stuff occurring below.
1844
1845 if (is_jsr) {
1846 // Pre-load the next target bytecode into rscratch1
1847 __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1848 // compute return address as bci
1849 __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1850 __ add(rscratch2, rscratch2,
1851 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1852 __ sub(r1, rbcp, rscratch2);
1853 __ push_i(r1);
1854 // Adjust the bcp by the 16-bit displacement in r2
1855 __ add(rbcp, rbcp, r2);
1856 __ dispatch_only(vtos, /*generate_poll*/true);
1857 return;
1858 }
1859
1860 // Normal (non-jsr) branch handling
1861
1862 // Adjust the bcp by the displacement in r2
1863 __ add(rbcp, rbcp, r2);
1864
1865 assert(UseLoopCounter || !UseOnStackReplacement,
1866 "on-stack-replacement requires loop counters");
1867 Label backedge_counter_overflow;
1868 Label dispatch;
1869 if (UseLoopCounter) {
1870 // increment backedge counter for backward branches
1871 // r0: MDO
1872 // r2: target offset
1873 __ cmp(r2, zr);
1874 __ br(Assembler::GT, dispatch); // count only if backward branch
1875
1876 // ECN: FIXME: This code smells
1877 // check if MethodCounters exists
1878 Label has_counters;
1879 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1880 __ cbnz(rscratch1, has_counters);
1881 __ push(r0);
1882 __ push(r2);
1883 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1884 InterpreterRuntime::build_method_counters), rmethod);
1885 __ pop(r2);
1886 __ pop(r0);
1887 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1888 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1889 __ bind(has_counters);
1890
1891 Label no_mdo;
1892 int increment = InvocationCounter::count_increment;
1893 if (ProfileInterpreter) {
1894 // Are we profiling?
1895 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1896 __ cbz(r1, no_mdo);
1897 // Increment the MDO backedge counter
1898 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1899 in_bytes(InvocationCounter::counter_offset()));
1900 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1901 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1902 r0, rscratch1, false, Assembler::EQ,
1903 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1904 __ b(dispatch);
1905 }
1906 __ bind(no_mdo);
1907 // Increment backedge counter in MethodCounters*
1908 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1909 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1910 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1911 r0, rscratch2, false, Assembler::EQ,
1912 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1913 __ bind(dispatch);
1914 }
1915
1916 // Pre-load the next target bytecode into rscratch1
1917 __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1918
1919 // continue with the bytecode @ target
1920 // rscratch1: target bytecode
1921 // rbcp: target bcp
1922 __ dispatch_only(vtos, /*generate_poll*/true);
1923
1924 if (UseLoopCounter && UseOnStackReplacement) {
1925 // invocation counter overflow
1926 __ bind(backedge_counter_overflow);
1927 __ neg(r2, r2);
1928 __ add(r2, r2, rbcp); // branch bcp
1929 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1930 __ call_VM(noreg,
1931 CAST_FROM_FN_PTR(address,
1932 InterpreterRuntime::frequency_counter_overflow),
1933 r2);
1934 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
1935
1936 // r0: osr nmethod (osr ok) or null (osr not possible)
1937 // w1: target bytecode
1938 // r2: scratch
1939 __ cbz(r0, dispatch); // test result -- no osr if null
1940 // nmethod may have been invalidated (VM may block upon call_VM return)
1941 __ ldrb(r2, Address(r0, nmethod::state_offset()));
1942 if (nmethod::in_use != 0)
1943 __ sub(r2, r2, nmethod::in_use);
1944 __ cbnz(r2, dispatch);
1945
1946 // We have the address of an on stack replacement routine in r0
1947 // We need to prepare to execute the OSR method. First we must
1948 // migrate the locals and monitors off of the stack.
1949
1950 __ mov(r19, r0); // save the nmethod
1951
1952 JFR_ONLY(__ enter_jfr_critical_section();)
1953
1954 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1955
1956 // r0 is OSR buffer, move it to expected parameter location
1957 __ mov(j_rarg0, r0);
1958
1959 // remove activation
1960 // get sender esp
1961 __ ldr(esp,
1962 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1963 // remove frame anchor
1964 __ leave();
1965
1966 JFR_ONLY(__ leave_jfr_critical_section();)
1967
1968 // Ensure compiled code always sees stack at proper alignment
1969 __ andr(sp, esp, -16);
1970
1971 // and begin the OSR nmethod
1972 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1973 __ br(rscratch1);
1974 }
1975 }
1976
1977
1978 void TemplateTable::if_0cmp(Condition cc)
1979 {
1980 transition(itos, vtos);
1981 // assume branch is more often taken than not (loops use backward branches)
1982 Label not_taken;
1983 if (cc == equal)
1984 __ cbnzw(r0, not_taken);
1985 else if (cc == not_equal)
1986 __ cbzw(r0, not_taken);
1987 else {
1988 __ andsw(zr, r0, r0);
1989 __ br(j_not(cc), not_taken);
1990 }
1991
1992 branch(false, false);
1993 __ bind(not_taken);
1994 __ profile_not_taken_branch(r0);
1995 }
1996
1997 void TemplateTable::if_icmp(Condition cc)
1998 {
1999 transition(itos, vtos);
2000 // assume branch is more often taken than not (loops use backward branches)
2001 Label not_taken;
2002 __ pop_i(r1);
2003 __ cmpw(r1, r0, Assembler::LSL);
2004 __ br(j_not(cc), not_taken);
2005 branch(false, false);
2006 __ bind(not_taken);
2007 __ profile_not_taken_branch(r0);
2008 }
2009
2010 void TemplateTable::if_nullcmp(Condition cc)
2011 {
2012 transition(atos, vtos);
2013 // assume branch is more often taken than not (loops use backward branches)
2014 Label not_taken;
2015 if (cc == equal)
2016 __ cbnz(r0, not_taken);
2017 else
2018 __ cbz(r0, not_taken);
2019 branch(false, false);
2020 __ bind(not_taken);
2021 __ profile_not_taken_branch(r0);
2022 }
2023
2024 void TemplateTable::if_acmp(Condition cc) {
2025 transition(atos, vtos);
2026 // assume branch is more often taken than not (loops use backward branches)
2027 Label taken, not_taken;
2028 __ pop_ptr(r1);
2029
2030 __ profile_acmp(r2, r1, r0, r4);
2031
2032 Register is_inline_type_mask = rscratch1;
2033 __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2034
2035 if (Arguments::is_valhalla_enabled()) {
2036 __ cmp(r1, r0);
2037 __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2038
2039 // might be substitutable, test if either r0 or r1 is null
2040 __ andr(r2, r0, r1);
2041 __ cbz(r2, (cc == equal) ? not_taken : taken);
2042
2043 // and both are values ?
2044 __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2045 __ andr(r2, r2, is_inline_type_mask);
2046 __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2047 __ andr(r4, r4, is_inline_type_mask);
2048 __ andr(r2, r2, r4);
2049 __ cmp(r2, is_inline_type_mask);
2050 __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2051
2052 // same value klass ?
2053 __ load_metadata(r2, r1);
2054 __ load_metadata(r4, r0);
2055 __ cmp(r2, r4);
2056 __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2057
2058 // Know both are the same type, let's test for substitutability...
2059 if (cc == equal) {
2060 invoke_is_substitutable(r0, r1, taken, not_taken);
2061 } else {
2062 invoke_is_substitutable(r0, r1, not_taken, taken);
2063 }
2064 __ stop("Not reachable");
2065 }
2066
2067 __ cmpoop(r1, r0);
2068 __ br(j_not(cc), not_taken);
2069 __ bind(taken);
2070 branch(false, false);
2071 __ bind(not_taken);
2072 __ profile_not_taken_branch(r0, true);
2073 }
2074
2075 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2076 Label& is_subst, Label& not_subst) {
2077
2078 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2079 // Restored... r0 answer, jmp to outcome...
2080 __ cbz(r0, not_subst);
2081 __ b(is_subst);
2082 }
2083
2084
2085 void TemplateTable::ret() {
2086 transition(vtos, vtos);
2087 locals_index(r1);
2088 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2089 __ profile_ret(r1, r2);
2090 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2091 __ lea(rbcp, Address(rbcp, r1));
2092 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2093 __ dispatch_next(vtos, 0, /*generate_poll*/true);
2094 }
2095
2096 void TemplateTable::wide_ret() {
2097 transition(vtos, vtos);
2098 locals_index_wide(r1);
2099 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2100 __ profile_ret(r1, r2);
2101 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2102 __ lea(rbcp, Address(rbcp, r1));
2103 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2104 __ dispatch_next(vtos, 0, /*generate_poll*/true);
2105 }
2106
2107
2108 void TemplateTable::tableswitch() {
2109 Label default_case, continue_execution;
2110 transition(itos, vtos);
2111 // align rbcp
2112 __ lea(r1, at_bcp(BytesPerInt));
2113 __ andr(r1, r1, -BytesPerInt);
2114 // load lo & hi
2115 __ ldrw(r2, Address(r1, BytesPerInt));
2116 __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2117 __ rev32(r2, r2);
2118 __ rev32(r3, r3);
2119 // check against lo & hi
2120 __ cmpw(r0, r2);
2121 __ br(Assembler::LT, default_case);
2122 __ cmpw(r0, r3);
2123 __ br(Assembler::GT, default_case);
2124 // lookup dispatch offset
2125 __ subw(r0, r0, r2);
2126 __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2127 __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2128 __ profile_switch_case(r0, r1, r2);
2129 // continue execution
2130 __ bind(continue_execution);
2131 __ rev32(r3, r3);
2132 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2133 __ add(rbcp, rbcp, r3, ext::sxtw);
2134 __ dispatch_only(vtos, /*generate_poll*/true);
2135 // handle default
2136 __ bind(default_case);
2137 __ profile_switch_default(r0);
2138 __ ldrw(r3, Address(r1, 0));
2139 __ b(continue_execution);
2140 }
2141
2142 void TemplateTable::lookupswitch() {
2143 transition(itos, itos);
2144 __ stop("lookupswitch bytecode should have been rewritten");
2145 }
2146
2147 void TemplateTable::fast_linearswitch() {
2148 transition(itos, vtos);
2149 Label loop_entry, loop, found, continue_execution;
2150 // bswap r0 so we can avoid bswapping the table entries
2151 __ rev32(r0, r0);
2152 // align rbcp
2153 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2154 // this instruction (change offsets
2155 // below)
2156 __ andr(r19, r19, -BytesPerInt);
2157 // set counter
2158 __ ldrw(r1, Address(r19, BytesPerInt));
2159 __ rev32(r1, r1);
2160 __ b(loop_entry);
2161 // table search
2162 __ bind(loop);
2163 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2164 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2165 __ cmpw(r0, rscratch1);
2166 __ br(Assembler::EQ, found);
2167 __ bind(loop_entry);
2168 __ subs(r1, r1, 1);
2169 __ br(Assembler::PL, loop);
2170 // default case
2171 __ profile_switch_default(r0);
2172 __ ldrw(r3, Address(r19, 0));
2173 __ b(continue_execution);
2174 // entry found -> get offset
2175 __ bind(found);
2176 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2177 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2178 __ profile_switch_case(r1, r0, r19);
2179 // continue execution
2180 __ bind(continue_execution);
2181 __ rev32(r3, r3);
2182 __ add(rbcp, rbcp, r3, ext::sxtw);
2183 __ ldrb(rscratch1, Address(rbcp, 0));
2184 __ dispatch_only(vtos, /*generate_poll*/true);
2185 }
2186
2187 void TemplateTable::fast_binaryswitch() {
2188 transition(itos, vtos);
2189 // Implementation using the following core algorithm:
2190 //
2191 // int binary_search(int key, LookupswitchPair* array, int n) {
2192 // // Binary search according to "Methodik des Programmierens" by
2193 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2194 // int i = 0;
2195 // int j = n;
2196 // while (i+1 < j) {
2197 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2198 // // with Q: for all i: 0 <= i < n: key < a[i]
2199 // // where a stands for the array and assuming that the (inexisting)
2200 // // element a[n] is infinitely big.
2201 // int h = (i + j) >> 1;
2202 // // i < h < j
2203 // if (key < array[h].fast_match()) {
2204 // j = h;
2205 // } else {
2206 // i = h;
2207 // }
2208 // }
2209 // // R: a[i] <= key < a[i+1] or Q
2210 // // (i.e., if key is within array, i is the correct index)
2211 // return i;
2212 // }
2213
2214 // Register allocation
2215 const Register key = r0; // already set (tosca)
2216 const Register array = r1;
2217 const Register i = r2;
2218 const Register j = r3;
2219 const Register h = rscratch1;
2220 const Register temp = rscratch2;
2221
2222 // Find array start
2223 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2224 // get rid of this
2225 // instruction (change
2226 // offsets below)
2227 __ andr(array, array, -BytesPerInt);
2228
2229 // Initialize i & j
2230 __ mov(i, 0); // i = 0;
2231 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2232
2233 // Convert j into native byteordering
2234 __ rev32(j, j);
2235
2236 // And start
2237 Label entry;
2238 __ b(entry);
2239
2240 // binary search loop
2241 {
2242 Label loop;
2243 __ bind(loop);
2244 // int h = (i + j) >> 1;
2245 __ addw(h, i, j); // h = i + j;
2246 __ lsrw(h, h, 1); // h = (i + j) >> 1;
2247 // if (key < array[h].fast_match()) {
2248 // j = h;
2249 // } else {
2250 // i = h;
2251 // }
2252 // Convert array[h].match to native byte-ordering before compare
2253 __ ldr(temp, Address(array, h, Address::lsl(3)));
2254 __ rev32(temp, temp);
2255 __ cmpw(key, temp);
2256 // j = h if (key < array[h].fast_match())
2257 __ csel(j, h, j, Assembler::LT);
2258 // i = h if (key >= array[h].fast_match())
2259 __ csel(i, h, i, Assembler::GE);
2260 // while (i+1 < j)
2261 __ bind(entry);
2262 __ addw(h, i, 1); // i+1
2263 __ cmpw(h, j); // i+1 < j
2264 __ br(Assembler::LT, loop);
2265 }
2266
2267 // end of binary search, result index is i (must check again!)
2268 Label default_case;
2269 // Convert array[i].match to native byte-ordering before compare
2270 __ ldr(temp, Address(array, i, Address::lsl(3)));
2271 __ rev32(temp, temp);
2272 __ cmpw(key, temp);
2273 __ br(Assembler::NE, default_case);
2274
2275 // entry found -> j = offset
2276 __ add(j, array, i, ext::uxtx, 3);
2277 __ ldrw(j, Address(j, BytesPerInt));
2278 __ profile_switch_case(i, key, array);
2279 __ rev32(j, j);
2280 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2281 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2282 __ dispatch_only(vtos, /*generate_poll*/true);
2283
2284 // default case -> j = default offset
2285 __ bind(default_case);
2286 __ profile_switch_default(i);
2287 __ ldrw(j, Address(array, -2 * BytesPerInt));
2288 __ rev32(j, j);
2289 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2290 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2291 __ dispatch_only(vtos, /*generate_poll*/true);
2292 }
2293
2294
2295 void TemplateTable::_return(TosState state)
2296 {
2297 transition(state, state);
2298 assert(_desc->calls_vm(),
2299 "inconsistent calls_vm information"); // call in remove_activation
2300
2301 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2302 assert(state == vtos, "only valid state");
2303
2304 __ ldr(c_rarg1, aaddress(0));
2305 __ load_klass(r3, c_rarg1);
2306 __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2307 Label skip_register_finalizer;
2308 __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2309
2310 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2311
2312 __ bind(skip_register_finalizer);
2313 }
2314
2315 // Issue a StoreStore barrier after all stores but before return
2316 // from any constructor for any class with a final field. We don't
2317 // know if this is a finalizer, so we always do so.
2318 if (_desc->bytecode() == Bytecodes::_return
2319 || _desc->bytecode() == Bytecodes::_return_register_finalizer)
2320 __ membar(MacroAssembler::StoreStore);
2321
2322 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2323 Label no_safepoint;
2324 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2325 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2326 __ push(state);
2327 __ push_cont_fastpath(rthread);
2328 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2329 __ pop_cont_fastpath(rthread);
2330 __ pop(state);
2331 __ bind(no_safepoint);
2332 }
2333
2334 // Narrow result if state is itos but result type is smaller.
2335 // Need to narrow in the return bytecode rather than in generate_return_entry
2336 // since compiled code callers expect the result to already be narrowed.
2337 if (state == itos) {
2338 __ narrow(r0);
2339 }
2340
2341 __ remove_activation(state);
2342 __ ret(lr);
2343 }
2344
2345 // ----------------------------------------------------------------------------
2346 // Volatile variables demand their effects be made known to all CPU's
2347 // in order. Store buffers on most chips allow reads & writes to
2348 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2349 // without some kind of memory barrier (i.e., it's not sufficient that
2350 // the interpreter does not reorder volatile references, the hardware
2351 // also must not reorder them).
2352 //
2353 // According to the new Java Memory Model (JMM):
2354 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2355 // writes act as acquire & release, so:
2356 // (2) A read cannot let unrelated NON-volatile memory refs that
2357 // happen after the read float up to before the read. It's OK for
2358 // non-volatile memory refs that happen before the volatile read to
2359 // float down below it.
2360 // (3) Similar a volatile write cannot let unrelated NON-volatile
2361 // memory refs that happen BEFORE the write float down to after the
2362 // write. It's OK for non-volatile memory refs that happen after the
2363 // volatile write to float up before it.
2364 //
2365 // We only put in barriers around volatile refs (they are expensive),
2366 // not _between_ memory refs (that would require us to track the
2367 // flavor of the previous memory refs). Requirements (2) and (3)
2368 // require some barriers before volatile stores and after volatile
2369 // loads. These nearly cover requirement (1) but miss the
2370 // volatile-store-volatile-load case. This final case is placed after
2371 // volatile-stores although it could just as well go before
2372 // volatile-loads.
2373
2374 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2375 Register Rcache,
2376 Register index) {
2377 const Register temp = r19;
2378 assert_different_registers(Rcache, index, temp);
2379 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2380
2381 Label L_clinit_barrier_slow, L_done;
2382
2383 Bytecodes::Code code = bytecode();
2384 __ load_method_entry(Rcache, index);
2385 switch(byte_no) {
2386 case f1_byte:
2387 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2388 break;
2389 case f2_byte:
2390 __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2391 break;
2392 }
2393 // Load-acquire the bytecode to match store-release in InterpreterRuntime
2394 __ ldarb(temp, temp);
2395 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2396
2397 // Class initialization barrier for static methods
2398 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2399 __ br(Assembler::NE, L_clinit_barrier_slow);
2400 __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2401 __ load_method_holder(temp, temp);
2402 __ clinit_barrier(temp, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2403 __ bind(L_clinit_barrier_slow);
2404 } else {
2405 __ br(Assembler::EQ, L_done);
2406 }
2407
2408 // resolve first time through
2409 // Class initialization barrier slow path lands here as well.
2410 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2411 __ mov(temp, (int) code);
2412 __ call_VM_preemptable(noreg, entry, temp);
2413
2414 // Update registers with resolved info
2415 __ load_method_entry(Rcache, index);
2416 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2417 // so all clients ofthis method must be modified accordingly
2418 __ bind(L_done);
2419 }
2420
2421 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2422 Register Rcache,
2423 Register index) {
2424 const Register temp = r19;
2425 assert_different_registers(Rcache, index, temp);
2426
2427 Label L_clinit_barrier_slow, L_done;
2428
2429 Bytecodes::Code code = bytecode();
2430 switch (code) {
2431 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2432 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2433 default: break;
2434 }
2435
2436 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2437 __ load_field_entry(Rcache, index);
2438 if (byte_no == f1_byte) {
2439 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2440 } else {
2441 __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2442 }
2443 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2444 __ ldarb(temp, temp);
2445 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2446
2447 // Class initialization barrier for static fields
2448 if (VM_Version::supports_fast_class_init_checks() &&
2449 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
2450 const Register field_holder = temp;
2451
2452 __ br(Assembler::NE, L_clinit_barrier_slow);
2453 __ ldr(field_holder, Address(Rcache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2454 __ clinit_barrier(field_holder, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2455 __ bind(L_clinit_barrier_slow);
2456 } else {
2457 __ br(Assembler::EQ, L_done);
2458 }
2459
2460 // resolve first time through
2461 // Class initialization barrier slow path lands here as well.
2462 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2463 __ mov(temp, (int) code);
2464 __ call_VM_preemptable(noreg, entry, temp);
2465
2466 // Update registers with resolved info
2467 __ load_field_entry(Rcache, index);
2468 __ bind(L_done);
2469 }
2470
2471 void TemplateTable::load_resolved_field_entry(Register obj,
2472 Register cache,
2473 Register tos_state,
2474 Register offset,
2475 Register flags,
2476 bool is_static = false) {
2477 assert_different_registers(cache, tos_state, flags, offset);
2478
2479 // Field offset
2480 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2481
2482 // Flags
2483 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2484
2485 // TOS state
2486 if (tos_state != noreg) {
2487 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2488 }
2489
2490 // Klass overwrite register
2491 if (is_static) {
2492 __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2493 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2494 __ ldr(obj, Address(obj, mirror_offset));
2495 __ resolve_oop_handle(obj, r5, rscratch2);
2496 }
2497 }
2498
2499 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2500 Register method,
2501 Register flags) {
2502
2503 // setup registers
2504 const Register index = flags;
2505 assert_different_registers(method, cache, flags);
2506
2507 // determine constant pool cache field offsets
2508 resolve_cache_and_index_for_method(f1_byte, cache, index);
2509 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2510 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2511 }
2512
2513 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2514 Register method,
2515 Register ref_index,
2516 Register flags) {
2517 // setup registers
2518 const Register index = ref_index;
2519 assert_different_registers(method, flags);
2520 assert_different_registers(method, cache, index);
2521
2522 // determine constant pool cache field offsets
2523 resolve_cache_and_index_for_method(f1_byte, cache, index);
2524 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2525
2526 // maybe push appendix to arguments (just before return address)
2527 Label L_no_push;
2528 __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2529 // invokehandle uses an index into the resolved references array
2530 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2531 // Push the appendix as a trailing parameter.
2532 // This must be done before we get the receiver,
2533 // since the parameter_size includes it.
2534 Register appendix = method;
2535 __ load_resolved_reference_at_index(appendix, ref_index);
2536 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2537 __ bind(L_no_push);
2538
2539 __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2540 }
2541
2542 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2543 Register klass,
2544 Register method_or_table_index,
2545 Register flags) {
2546 // setup registers
2547 const Register index = method_or_table_index;
2548 assert_different_registers(method_or_table_index, cache, flags);
2549
2550 // determine constant pool cache field offsets
2551 resolve_cache_and_index_for_method(f1_byte, cache, index);
2552 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2553
2554 // Invokeinterface can behave in different ways:
2555 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2556 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2557 // vtable index is placed in the register.
2558 // Otherwise, the registers will be populated with the klass and method.
2559
2560 Label NotVirtual; Label NotVFinal; Label Done;
2561 __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2562 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2563 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2564 __ b(Done);
2565
2566 __ bind(NotVFinal);
2567 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2568 __ b(Done);
2569
2570 __ bind(NotVirtual);
2571 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2572 __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2573 __ bind(Done);
2574 }
2575
2576 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2577 Register method_or_table_index,
2578 Register flags) {
2579 // setup registers
2580 const Register index = flags;
2581 assert_different_registers(method_or_table_index, cache, flags);
2582
2583 // determine constant pool cache field offsets
2584 resolve_cache_and_index_for_method(f2_byte, cache, index);
2585 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2586
2587 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2588 Label NotVFinal; Label Done;
2589 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2590 __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2591 __ b(Done);
2592
2593 __ bind(NotVFinal);
2594 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2595 __ bind(Done);
2596 }
2597
2598 // The rmethod register is input and overwritten to be the adapter method for the
2599 // indy call. Link Register (lr) is set to the return address for the adapter and
2600 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2601 void TemplateTable::load_invokedynamic_entry(Register method) {
2602 // setup registers
2603 const Register appendix = r0;
2604 const Register cache = r2;
2605 const Register index = r3;
2606 assert_different_registers(method, appendix, cache, index, rcpool);
2607
2608 __ save_bcp();
2609
2610 Label resolved;
2611
2612 __ load_resolved_indy_entry(cache, index);
2613 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2614 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2615 __ ldar(method, method);
2616
2617 // Compare the method to zero
2618 __ cbnz(method, resolved);
2619
2620 Bytecodes::Code code = bytecode();
2621
2622 // Call to the interpreter runtime to resolve invokedynamic
2623 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2624 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2625 __ call_VM(noreg, entry, method);
2626 // Update registers with resolved info
2627 __ load_resolved_indy_entry(cache, index);
2628 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2629 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2630 __ ldar(method, method);
2631
2632 #ifdef ASSERT
2633 __ cbnz(method, resolved);
2634 __ stop("Should be resolved by now");
2635 #endif // ASSERT
2636 __ bind(resolved);
2637
2638 Label L_no_push;
2639 // Check if there is an appendix
2640 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2641 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2642
2643 // Get appendix
2644 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2645 // Push the appendix as a trailing parameter
2646 // since the parameter_size includes it.
2647 __ push(method);
2648 __ mov(method, index);
2649 __ load_resolved_reference_at_index(appendix, method);
2650 __ verify_oop(appendix);
2651 __ pop(method);
2652 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2653 __ bind(L_no_push);
2654
2655 // compute return type
2656 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2657 // load return address
2658 // Return address is loaded into link register(lr) and not pushed to the stack
2659 // like x86
2660 {
2661 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2662 __ mov(rscratch1, table_addr);
2663 __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2664 }
2665 }
2666
2667 // The registers cache and index expected to be set before call.
2668 // Correct values of the cache and index registers are preserved.
2669 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2670 bool is_static, bool has_tos) {
2671 // do the JVMTI work here to avoid disturbing the register state below
2672 // We use c_rarg registers here because we want to use the register used in
2673 // the call to the VM
2674 if (JvmtiExport::can_post_field_access()) {
2675 // Check to see if a field access watch has been set before we
2676 // take the time to call into the VM.
2677 Label L1;
2678 assert_different_registers(cache, index, r0);
2679 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2680 __ ldrw(r0, Address(rscratch1));
2681 __ cbzw(r0, L1);
2682
2683 __ load_field_entry(c_rarg2, index);
2684
2685 if (is_static) {
2686 __ mov(c_rarg1, zr); // null object reference
2687 } else {
2688 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2689 __ verify_oop(c_rarg1);
2690 }
2691 // c_rarg1: object pointer or null
2692 // c_rarg2: cache entry pointer
2693 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2694 InterpreterRuntime::post_field_access),
2695 c_rarg1, c_rarg2);
2696 __ load_field_entry(cache, index);
2697 __ bind(L1);
2698 }
2699 }
2700
2701 void TemplateTable::pop_and_check_object(Register r)
2702 {
2703 __ pop_ptr(r);
2704 __ null_check(r); // for field access must check obj.
2705 __ verify_oop(r);
2706 }
2707
2708 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2709 {
2710 const Register cache = r2;
2711 const Register obj = r4;
2712 const Register klass = r5;
2713 const Register inline_klass = r7;
2714 const Register field_index = r23;
2715 const Register index = r3;
2716 const Register tos_state = r3;
2717 const Register off = r19;
2718 const Register flags = r6;
2719 const Register bc = r4; // uses same reg as obj, so don't mix them
2720
2721 resolve_cache_and_index_for_field(byte_no, cache, index);
2722 jvmti_post_field_access(cache, index, is_static, false);
2723
2724 // Valhalla extras
2725 __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2726 __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2727
2728 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2729
2730 if (!is_static) {
2731 // obj is on the stack
2732 pop_and_check_object(obj);
2733 }
2734
2735 // 8179954: We need to make sure that the code generated for
2736 // volatile accesses forms a sequentially-consistent set of
2737 // operations when combined with STLR and LDAR. Without a leading
2738 // membar it's possible for a simple Dekker test to fail if loads
2739 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
2740 // the stores in one method and we interpret the loads in another.
2741 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2742 Label notVolatile;
2743 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2744 __ membar(MacroAssembler::AnyAny);
2745 __ bind(notVolatile);
2746 }
2747
2748 const Address field(obj, off);
2749
2750 Label Done, notByte, notBool, notInt, notShort, notChar,
2751 notLong, notFloat, notObj, notDouble;
2752
2753 assert(btos == 0, "change code, btos != 0");
2754 __ cbnz(tos_state, notByte);
2755
2756 // Don't rewrite getstatic, only getfield
2757 if (is_static) rc = may_not_rewrite;
2758
2759 // btos
2760 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2761 __ push(btos);
2762 // Rewrite bytecode to be faster
2763 if (rc == may_rewrite) {
2764 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2765 }
2766 __ b(Done);
2767
2768 __ bind(notByte);
2769 __ cmp(tos_state, (u1)ztos);
2770 __ br(Assembler::NE, notBool);
2771
2772 // ztos (same code as btos)
2773 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2774 __ push(ztos);
2775 // Rewrite bytecode to be faster
2776 if (rc == may_rewrite) {
2777 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2778 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2779 }
2780 __ b(Done);
2781
2782 __ bind(notBool);
2783 __ cmp(tos_state, (u1)atos);
2784 __ br(Assembler::NE, notObj);
2785 // atos
2786 if (!Arguments::is_valhalla_enabled()) {
2787 do_oop_load(_masm, field, r0, IN_HEAP);
2788 __ push(atos);
2789 if (rc == may_rewrite) {
2790 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2791 }
2792 __ b(Done);
2793 } else { // Valhalla
2794 if (is_static) {
2795 __ load_heap_oop(r0, field, rscratch1, rscratch2);
2796 __ push(atos);
2797 __ b(Done);
2798 } else {
2799 Label is_flat;
2800 __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2801 __ load_heap_oop(r0, field, rscratch1, rscratch2);
2802 __ push(atos);
2803 if (rc == may_rewrite) {
2804 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2805 }
2806 __ b(Done);
2807 __ bind(is_flat);
2808 // field is flat (null-free or nullable with a null-marker)
2809 __ mov(r0, obj);
2810 __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2811 __ verify_oop(r0);
2812 __ push(atos);
2813 if (rc == may_rewrite) {
2814 patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2815 }
2816 __ b(Done);
2817 }
2818 }
2819
2820 __ bind(notObj);
2821 __ cmp(tos_state, (u1)itos);
2822 __ br(Assembler::NE, notInt);
2823 // itos
2824 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2825 __ push(itos);
2826 // Rewrite bytecode to be faster
2827 if (rc == may_rewrite) {
2828 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2829 }
2830 __ b(Done);
2831
2832 __ bind(notInt);
2833 __ cmp(tos_state, (u1)ctos);
2834 __ br(Assembler::NE, notChar);
2835 // ctos
2836 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2837 __ push(ctos);
2838 // Rewrite bytecode to be faster
2839 if (rc == may_rewrite) {
2840 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2841 }
2842 __ b(Done);
2843
2844 __ bind(notChar);
2845 __ cmp(tos_state, (u1)stos);
2846 __ br(Assembler::NE, notShort);
2847 // stos
2848 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2849 __ push(stos);
2850 // Rewrite bytecode to be faster
2851 if (rc == may_rewrite) {
2852 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2853 }
2854 __ b(Done);
2855
2856 __ bind(notShort);
2857 __ cmp(tos_state, (u1)ltos);
2858 __ br(Assembler::NE, notLong);
2859 // ltos
2860 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2861 __ push(ltos);
2862 // Rewrite bytecode to be faster
2863 if (rc == may_rewrite) {
2864 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2865 }
2866 __ b(Done);
2867
2868 __ bind(notLong);
2869 __ cmp(tos_state, (u1)ftos);
2870 __ br(Assembler::NE, notFloat);
2871 // ftos
2872 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2873 __ push(ftos);
2874 // Rewrite bytecode to be faster
2875 if (rc == may_rewrite) {
2876 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2877 }
2878 __ b(Done);
2879
2880 __ bind(notFloat);
2881 #ifdef ASSERT
2882 __ cmp(tos_state, (u1)dtos);
2883 __ br(Assembler::NE, notDouble);
2884 #endif
2885 // dtos
2886 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2887 __ push(dtos);
2888 // Rewrite bytecode to be faster
2889 if (rc == may_rewrite) {
2890 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2891 }
2892 #ifdef ASSERT
2893 __ b(Done);
2894
2895 __ bind(notDouble);
2896 __ stop("Bad state");
2897 #endif
2898
2899 __ bind(Done);
2900
2901 Label notVolatile;
2902 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2903 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2904 __ bind(notVolatile);
2905 }
2906
2907
2908 void TemplateTable::getfield(int byte_no)
2909 {
2910 getfield_or_static(byte_no, false);
2911 }
2912
2913 void TemplateTable::nofast_getfield(int byte_no) {
2914 getfield_or_static(byte_no, false, may_not_rewrite);
2915 }
2916
2917 void TemplateTable::getstatic(int byte_no)
2918 {
2919 getfield_or_static(byte_no, true);
2920 }
2921
2922 // The registers cache and index expected to be set before call.
2923 // The function may destroy various registers, just not the cache and index registers.
2924 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2925 transition(vtos, vtos);
2926
2927 if (JvmtiExport::can_post_field_modification()) {
2928 // Check to see if a field modification watch has been set before
2929 // we take the time to call into the VM.
2930 Label L1;
2931 assert_different_registers(cache, index, r0);
2932 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2933 __ ldrw(r0, Address(rscratch1));
2934 __ cbz(r0, L1);
2935
2936 __ mov(c_rarg2, cache);
2937
2938 if (is_static) {
2939 // Life is simple. Null out the object pointer.
2940 __ mov(c_rarg1, zr);
2941 } else {
2942 // Life is harder. The stack holds the value on top, followed by
2943 // the object. We don't know the size of the value, though; it
2944 // could be one or two words depending on its type. As a result,
2945 // we must find the type to determine where the object is.
2946 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2947 Label nope2, done, ok;
2948 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2949 __ cmpw(c_rarg3, ltos);
2950 __ br(Assembler::EQ, ok);
2951 __ cmpw(c_rarg3, dtos);
2952 __ br(Assembler::NE, nope2);
2953 __ bind(ok);
2954 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2955 __ bind(nope2);
2956 }
2957 // object (tos)
2958 __ mov(c_rarg3, esp);
2959 // c_rarg1: object pointer set up above (null if static)
2960 // c_rarg2: cache entry pointer
2961 // c_rarg3: jvalue object on the stack
2962 __ call_VM(noreg,
2963 CAST_FROM_FN_PTR(address,
2964 InterpreterRuntime::post_field_modification),
2965 c_rarg1, c_rarg2, c_rarg3);
2966 __ load_field_entry(cache, index);
2967 __ bind(L1);
2968 }
2969 }
2970
2971 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2972 transition(vtos, vtos);
2973
2974 const Register cache = r2;
2975 const Register index = r3;
2976 const Register tos_state = r3;
2977 const Register obj = r2;
2978 const Register off = r19;
2979 const Register flags = r6;
2980 const Register bc = r4;
2981
2982 resolve_cache_and_index_for_field(byte_no, cache, index);
2983 jvmti_post_field_mod(cache, index, is_static);
2984 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2985
2986 Label Done;
2987 {
2988 Label notVolatile;
2989 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2990 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2991 __ bind(notVolatile);
2992 }
2993
2994 // field address
2995 const Address field(obj, off);
2996
2997 Label notByte, notBool, notInt, notShort, notChar,
2998 notLong, notFloat, notObj, notDouble;
2999
3000 assert(btos == 0, "change code, btos != 0");
3001 __ cbnz(tos_state, notByte);
3002
3003 // Don't rewrite putstatic, only putfield
3004 if (is_static) rc = may_not_rewrite;
3005
3006 // btos
3007 {
3008 __ pop(btos);
3009 if (!is_static) pop_and_check_object(obj);
3010 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3011 if (rc == may_rewrite) {
3012 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
3013 }
3014 __ b(Done);
3015 }
3016
3017 __ bind(notByte);
3018 __ cmp(tos_state, (u1)ztos);
3019 __ br(Assembler::NE, notBool);
3020
3021 // ztos
3022 {
3023 __ pop(ztos);
3024 if (!is_static) pop_and_check_object(obj);
3025 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3026 if (rc == may_rewrite) {
3027 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3028 }
3029 __ b(Done);
3030 }
3031
3032 __ bind(notBool);
3033 __ cmp(tos_state, (u1)atos);
3034 __ br(Assembler::NE, notObj);
3035
3036 // atos
3037 {
3038 if (!Arguments::is_valhalla_enabled()) {
3039 __ pop(atos);
3040 if (!is_static) pop_and_check_object(obj);
3041 // Store into the field
3042 // Clobbers: r10, r11, r3
3043 do_oop_store(_masm, field, r0, IN_HEAP);
3044 if (rc == may_rewrite) {
3045 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3046 }
3047 __ b(Done);
3048 } else { // Valhalla
3049 __ pop(atos);
3050 if (is_static) {
3051 Label is_nullable;
3052 __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_nullable);
3053 __ null_check(r0); // FIXME JDK-8341120
3054 __ bind(is_nullable);
3055 do_oop_store(_masm, field, r0, IN_HEAP);
3056 __ b(Done);
3057 } else {
3058 Label null_free_reference, is_flat, rewrite_inline;
3059 __ test_field_is_flat(flags, noreg /* temp */, is_flat);
3060 __ test_field_is_null_free_inline_type(flags, noreg /* temp */, null_free_reference);
3061 pop_and_check_object(obj);
3062 // Store into the field
3063 // Clobbers: r10, r11, r3
3064 do_oop_store(_masm, field, r0, IN_HEAP);
3065 if (rc == may_rewrite) {
3066 patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3067 }
3068 __ b(Done);
3069 // Implementation of the inline type semantic
3070 __ bind(null_free_reference);
3071 __ null_check(r0); // FIXME JDK-8341120
3072 pop_and_check_object(obj);
3073 // Store into the field
3074 // Clobbers: r10, r11, r3
3075 do_oop_store(_masm, field, r0, IN_HEAP);
3076 __ b(rewrite_inline);
3077 __ bind(is_flat);
3078 pop_and_check_object(r7);
3079 __ write_flat_field(cache, off, index, flags, r7);
3080 __ bind(rewrite_inline);
3081 if (rc == may_rewrite) {
3082 patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3083 }
3084 __ b(Done);
3085 }
3086 } // Valhalla
3087 }
3088
3089 __ bind(notObj);
3090 __ cmp(tos_state, (u1)itos);
3091 __ br(Assembler::NE, notInt);
3092
3093 // itos
3094 {
3095 __ pop(itos);
3096 if (!is_static) pop_and_check_object(obj);
3097 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3098 if (rc == may_rewrite) {
3099 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3100 }
3101 __ b(Done);
3102 }
3103
3104 __ bind(notInt);
3105 __ cmp(tos_state, (u1)ctos);
3106 __ br(Assembler::NE, notChar);
3107
3108 // ctos
3109 {
3110 __ pop(ctos);
3111 if (!is_static) pop_and_check_object(obj);
3112 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3113 if (rc == may_rewrite) {
3114 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
3115 }
3116 __ b(Done);
3117 }
3118
3119 __ bind(notChar);
3120 __ cmp(tos_state, (u1)stos);
3121 __ br(Assembler::NE, notShort);
3122
3123 // stos
3124 {
3125 __ pop(stos);
3126 if (!is_static) pop_and_check_object(obj);
3127 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3128 if (rc == may_rewrite) {
3129 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
3130 }
3131 __ b(Done);
3132 }
3133
3134 __ bind(notShort);
3135 __ cmp(tos_state, (u1)ltos);
3136 __ br(Assembler::NE, notLong);
3137
3138 // ltos
3139 {
3140 __ pop(ltos);
3141 if (!is_static) pop_and_check_object(obj);
3142 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3143 if (rc == may_rewrite) {
3144 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
3145 }
3146 __ b(Done);
3147 }
3148
3149 __ bind(notLong);
3150 __ cmp(tos_state, (u1)ftos);
3151 __ br(Assembler::NE, notFloat);
3152
3153 // ftos
3154 {
3155 __ pop(ftos);
3156 if (!is_static) pop_and_check_object(obj);
3157 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3158 if (rc == may_rewrite) {
3159 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
3160 }
3161 __ b(Done);
3162 }
3163
3164 __ bind(notFloat);
3165 #ifdef ASSERT
3166 __ cmp(tos_state, (u1)dtos);
3167 __ br(Assembler::NE, notDouble);
3168 #endif
3169
3170 // dtos
3171 {
3172 __ pop(dtos);
3173 if (!is_static) pop_and_check_object(obj);
3174 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3175 if (rc == may_rewrite) {
3176 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3177 }
3178 }
3179
3180 #ifdef ASSERT
3181 __ b(Done);
3182
3183 __ bind(notDouble);
3184 __ stop("Bad state");
3185 #endif
3186
3187 __ bind(Done);
3188
3189 {
3190 Label notVolatile;
3191 __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3192 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3193 __ bind(notVolatile);
3194 }
3195 }
3196
3197 void TemplateTable::putfield(int byte_no)
3198 {
3199 putfield_or_static(byte_no, false);
3200 }
3201
3202 void TemplateTable::nofast_putfield(int byte_no) {
3203 putfield_or_static(byte_no, false, may_not_rewrite);
3204 }
3205
3206 void TemplateTable::putstatic(int byte_no) {
3207 putfield_or_static(byte_no, true);
3208 }
3209
3210 void TemplateTable::jvmti_post_fast_field_mod() {
3211 if (JvmtiExport::can_post_field_modification()) {
3212 // Check to see if a field modification watch has been set before
3213 // we take the time to call into the VM.
3214 Label L2;
3215 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3216 __ ldrw(c_rarg3, Address(rscratch1));
3217 __ cbzw(c_rarg3, L2);
3218 __ pop_ptr(r19); // copy the object pointer from tos
3219 __ verify_oop(r19);
3220 __ push_ptr(r19); // put the object pointer back on tos
3221 // Save tos values before call_VM() clobbers them. Since we have
3222 // to do it for every data type, we use the saved values as the
3223 // jvalue object.
3224 switch (bytecode()) { // load values into the jvalue object
3225 case Bytecodes::_fast_vputfield: // fall through
3226 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3227 case Bytecodes::_fast_bputfield: // fall through
3228 case Bytecodes::_fast_zputfield: // fall through
3229 case Bytecodes::_fast_sputfield: // fall through
3230 case Bytecodes::_fast_cputfield: // fall through
3231 case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3232 case Bytecodes::_fast_dputfield: __ push_d(); break;
3233 case Bytecodes::_fast_fputfield: __ push_f(); break;
3234 case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3235
3236 default:
3237 ShouldNotReachHere();
3238 }
3239 __ mov(c_rarg3, esp); // points to jvalue on the stack
3240 // access constant pool cache entry
3241 __ load_field_entry(c_rarg2, r0);
3242 __ verify_oop(r19);
3243 // r19: object pointer copied above
3244 // c_rarg2: cache entry pointer
3245 // c_rarg3: jvalue object on the stack
3246 __ call_VM(noreg,
3247 CAST_FROM_FN_PTR(address,
3248 InterpreterRuntime::post_field_modification),
3249 r19, c_rarg2, c_rarg3);
3250
3251 switch (bytecode()) { // restore tos values
3252 case Bytecodes::_fast_vputfield: // fall through
3253 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3254 case Bytecodes::_fast_bputfield: // fall through
3255 case Bytecodes::_fast_zputfield: // fall through
3256 case Bytecodes::_fast_sputfield: // fall through
3257 case Bytecodes::_fast_cputfield: // fall through
3258 case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3259 case Bytecodes::_fast_dputfield: __ pop_d(); break;
3260 case Bytecodes::_fast_fputfield: __ pop_f(); break;
3261 case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3262 default: break;
3263 }
3264 __ bind(L2);
3265 }
3266 }
3267
3268 void TemplateTable::fast_storefield(TosState state)
3269 {
3270 transition(state, vtos);
3271
3272 ByteSize base = ConstantPoolCache::base_offset();
3273
3274 jvmti_post_fast_field_mod();
3275
3276 // access constant pool cache
3277 __ load_field_entry(r2, r1);
3278
3279 // R1: field offset, R2: field holder, R5: flags
3280 load_resolved_field_entry(r2, r2, noreg, r1, r5);
3281 __ verify_field_offset(r1);
3282
3283 {
3284 Label notVolatile;
3285 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3286 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3287 __ bind(notVolatile);
3288 }
3289
3290 Label notVolatile;
3291
3292 // Get object from stack
3293 pop_and_check_object(r2);
3294
3295 // field address
3296 const Address field(r2, r1);
3297
3298 // access field
3299 switch (bytecode()) {
3300 case Bytecodes::_fast_vputfield:
3301 {
3302 Label is_flat, done;
3303 __ test_field_is_flat(r5, noreg /* temp */, is_flat);
3304 __ null_check(r0);
3305 do_oop_store(_masm, field, r0, IN_HEAP);
3306 __ b(done);
3307 __ bind(is_flat);
3308 __ load_field_entry(r4, r5);
3309 // Re-shuffle registers because of VM calls calling convention
3310 __ mov(r19, r1);
3311 __ mov(r7, r2);
3312 __ write_flat_field(r4, r19, r6, r8, r7);
3313 __ bind(done);
3314 }
3315 break;
3316 case Bytecodes::_fast_aputfield:
3317 // Clobbers: r10, r11, r3
3318 do_oop_store(_masm, field, r0, IN_HEAP);
3319 break;
3320 case Bytecodes::_fast_lputfield:
3321 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3322 break;
3323 case Bytecodes::_fast_iputfield:
3324 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3325 break;
3326 case Bytecodes::_fast_zputfield:
3327 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3328 break;
3329 case Bytecodes::_fast_bputfield:
3330 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3331 break;
3332 case Bytecodes::_fast_sputfield:
3333 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3334 break;
3335 case Bytecodes::_fast_cputfield:
3336 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3337 break;
3338 case Bytecodes::_fast_fputfield:
3339 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3340 break;
3341 case Bytecodes::_fast_dputfield:
3342 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3343 break;
3344 default:
3345 ShouldNotReachHere();
3346 }
3347
3348 {
3349 Label notVolatile;
3350 __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3351 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3352 __ bind(notVolatile);
3353 }
3354 }
3355
3356
3357 void TemplateTable::fast_accessfield(TosState state)
3358 {
3359 transition(atos, state);
3360 // Do the JVMTI work here to avoid disturbing the register state below
3361 if (JvmtiExport::can_post_field_access()) {
3362 // Check to see if a field access watch has been set before we
3363 // take the time to call into the VM.
3364 Label L1;
3365 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3366 __ ldrw(r2, Address(rscratch1));
3367 __ cbzw(r2, L1);
3368 // access constant pool cache entry
3369 __ load_field_entry(c_rarg2, rscratch2);
3370 __ verify_oop(r0);
3371 __ push_ptr(r0); // save object pointer before call_VM() clobbers it
3372 __ mov(c_rarg1, r0);
3373 // c_rarg1: object pointer copied above
3374 // c_rarg2: cache entry pointer
3375 __ call_VM(noreg,
3376 CAST_FROM_FN_PTR(address,
3377 InterpreterRuntime::post_field_access),
3378 c_rarg1, c_rarg2);
3379 __ pop_ptr(r0); // restore object pointer
3380 __ bind(L1);
3381 }
3382
3383 // access constant pool cache
3384 __ load_field_entry(r2, r1);
3385
3386 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3387 __ verify_field_offset(r1);
3388
3389 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3390
3391 // r0: object
3392 __ verify_oop(r0);
3393 __ null_check(r0);
3394 const Address field(r0, r1);
3395
3396 // 8179954: We need to make sure that the code generated for
3397 // volatile accesses forms a sequentially-consistent set of
3398 // operations when combined with STLR and LDAR. Without a leading
3399 // membar it's possible for a simple Dekker test to fail if loads
3400 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3401 // the stores in one method and we interpret the loads in another.
3402 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3403 Label notVolatile;
3404 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3405 __ membar(MacroAssembler::AnyAny);
3406 __ bind(notVolatile);
3407 }
3408
3409 // access field
3410 switch (bytecode()) {
3411 case Bytecodes::_fast_vgetfield:
3412 {
3413 Register index = r4, tmp = r7;
3414 // field is flat
3415 __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3416 __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3417 __ verify_oop(r0);
3418 }
3419 break;
3420 case Bytecodes::_fast_agetfield:
3421 do_oop_load(_masm, field, r0, IN_HEAP);
3422 __ verify_oop(r0);
3423 break;
3424 case Bytecodes::_fast_lgetfield:
3425 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3426 break;
3427 case Bytecodes::_fast_igetfield:
3428 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3429 break;
3430 case Bytecodes::_fast_bgetfield:
3431 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3432 break;
3433 case Bytecodes::_fast_sgetfield:
3434 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3435 break;
3436 case Bytecodes::_fast_cgetfield:
3437 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3438 break;
3439 case Bytecodes::_fast_fgetfield:
3440 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3441 break;
3442 case Bytecodes::_fast_dgetfield:
3443 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3444 break;
3445 default:
3446 ShouldNotReachHere();
3447 }
3448 {
3449 Label notVolatile;
3450 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3451 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3452 __ bind(notVolatile);
3453 }
3454 }
3455
3456 void TemplateTable::fast_xaccess(TosState state)
3457 {
3458 transition(vtos, state);
3459
3460 // get receiver
3461 __ ldr(r0, aaddress(0));
3462 // access constant pool cache
3463 __ load_field_entry(r2, r3, 2);
3464
3465 __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3466 __ verify_field_offset(r1);
3467
3468 // 8179954: We need to make sure that the code generated for
3469 // volatile accesses forms a sequentially-consistent set of
3470 // operations when combined with STLR and LDAR. Without a leading
3471 // membar it's possible for a simple Dekker test to fail if loads
3472 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3473 // the stores in one method and we interpret the loads in another.
3474 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3475 Label notVolatile;
3476 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3477 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3478 __ membar(MacroAssembler::AnyAny);
3479 __ bind(notVolatile);
3480 }
3481
3482 // make sure exception is reported in correct bcp range (getfield is
3483 // next instruction)
3484 __ increment(rbcp);
3485 __ null_check(r0);
3486 switch (state) {
3487 case itos:
3488 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3489 break;
3490 case atos:
3491 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3492 __ verify_oop(r0);
3493 break;
3494 case ftos:
3495 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3496 break;
3497 default:
3498 ShouldNotReachHere();
3499 }
3500
3501 {
3502 Label notVolatile;
3503 __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3504 __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3505 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3506 __ bind(notVolatile);
3507 }
3508
3509 __ decrement(rbcp);
3510 }
3511
3512
3513
3514 //-----------------------------------------------------------------------------
3515 // Calls
3516
3517 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3518
3519 Bytecodes::Code code = bytecode();
3520 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3521
3522 // save 'interpreter return address'
3523 __ save_bcp();
3524
3525 // Load TOS state for later
3526 __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3527
3528 // load receiver if needed (note: no return address pushed yet)
3529 if (load_receiver) {
3530 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3531 __ add(rscratch1, esp, recv, ext::uxtx, 3);
3532 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3533 __ verify_oop(recv);
3534 }
3535
3536 // load return address
3537 {
3538 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3539 __ mov(rscratch1, table_addr);
3540 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3541 }
3542 }
3543
3544
3545 void TemplateTable::invokevirtual_helper(Register index,
3546 Register recv,
3547 Register flags)
3548 {
3549 // Uses temporary registers r0, r3
3550 assert_different_registers(index, recv, r0, r3);
3551 // Test for an invoke of a final method
3552 Label notFinal;
3553 __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3554
3555 const Register method = index; // method must be rmethod
3556 assert(method == rmethod,
3557 "Method must be rmethod for interpreter calling convention");
3558
3559 // do the call - the index is actually the method to call
3560 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3561
3562 // It's final, need a null check here!
3563 __ null_check(recv);
3564
3565 // profile this call
3566 __ profile_final_call(r0);
3567 __ profile_arguments_type(r0, method, r4, true);
3568
3569 __ jump_from_interpreted(method, r0);
3570
3571 __ bind(notFinal);
3572
3573 // get receiver klass
3574 __ load_klass(r0, recv);
3575
3576 // profile this call
3577 __ profile_virtual_call(r0, rlocals, r3);
3578
3579 // get target Method & entry point
3580 __ lookup_virtual_method(r0, index, method);
3581 __ profile_arguments_type(r3, method, r4, true);
3582 // FIXME -- this looks completely redundant. is it?
3583 // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3584 __ jump_from_interpreted(method, r3);
3585 }
3586
3587 void TemplateTable::invokevirtual(int byte_no)
3588 {
3589 transition(vtos, vtos);
3590 assert(byte_no == f2_byte, "use this argument");
3591
3592 load_resolved_method_entry_virtual(r2, // ResolvedMethodEntry*
3593 rmethod, // Method* or itable index
3594 r3); // flags
3595 prepare_invoke(r2, r2); // recv
3596
3597 // rmethod: index (actually a Method*)
3598 // r2: receiver
3599 // r3: flags
3600
3601 invokevirtual_helper(rmethod, r2, r3);
3602 }
3603
3604 void TemplateTable::invokespecial(int byte_no)
3605 {
3606 transition(vtos, vtos);
3607 assert(byte_no == f1_byte, "use this argument");
3608
3609 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3610 rmethod, // Method*
3611 r3); // flags
3612 prepare_invoke(r2, r2); // get receiver also for null check
3613 __ verify_oop(r2);
3614 __ null_check(r2);
3615 // do the call
3616 __ profile_call(r0);
3617 __ profile_arguments_type(r0, rmethod, rbcp, false);
3618 __ jump_from_interpreted(rmethod, r0);
3619 }
3620
3621 void TemplateTable::invokestatic(int byte_no)
3622 {
3623 transition(vtos, vtos);
3624 assert(byte_no == f1_byte, "use this argument");
3625
3626 load_resolved_method_entry_special_or_static(r2, // ResolvedMethodEntry*
3627 rmethod, // Method*
3628 r3); // flags
3629 prepare_invoke(r2, r2); // get receiver also for null check
3630
3631 // do the call
3632 __ profile_call(r0);
3633 __ profile_arguments_type(r0, rmethod, r4, false);
3634 __ jump_from_interpreted(rmethod, r0);
3635 }
3636
3637 void TemplateTable::fast_invokevfinal(int byte_no)
3638 {
3639 __ call_Unimplemented();
3640 }
3641
3642 void TemplateTable::invokeinterface(int byte_no) {
3643 transition(vtos, vtos);
3644 assert(byte_no == f1_byte, "use this argument");
3645
3646 load_resolved_method_entry_interface(r2, // ResolvedMethodEntry*
3647 r0, // Klass*
3648 rmethod, // Method* or itable/vtable index
3649 r3); // flags
3650 prepare_invoke(r2, r2); // receiver
3651
3652 // r0: interface klass (from f1)
3653 // rmethod: method (from f2)
3654 // r2: receiver
3655 // r3: flags
3656
3657 // First check for Object case, then private interface method,
3658 // then regular interface method.
3659
3660 // Special case of invokeinterface called for virtual method of
3661 // java.lang.Object. See cpCache.cpp for details.
3662 Label notObjectMethod;
3663 __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3664
3665 invokevirtual_helper(rmethod, r2, r3);
3666 __ bind(notObjectMethod);
3667
3668 Label no_such_interface;
3669
3670 // Check for private method invocation - indicated by vfinal
3671 Label notVFinal;
3672 __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3673
3674 // Get receiver klass into r3
3675 __ load_klass(r3, r2);
3676
3677 Label subtype;
3678 __ check_klass_subtype(r3, r0, r4, subtype);
3679 // If we get here the typecheck failed
3680 __ b(no_such_interface);
3681 __ bind(subtype);
3682
3683 __ profile_final_call(r0);
3684 __ profile_arguments_type(r0, rmethod, r4, true);
3685 __ jump_from_interpreted(rmethod, r0);
3686
3687 __ bind(notVFinal);
3688
3689 // Get receiver klass into r3
3690 __ restore_locals();
3691 __ load_klass(r3, r2);
3692
3693 Label no_such_method;
3694
3695 // Preserve method for throw_AbstractMethodErrorVerbose.
3696 __ mov(r16, rmethod);
3697 // Receiver subtype check against REFC.
3698 // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3699 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3700 r3, r0, noreg,
3701 // outputs: scan temp. reg, scan temp. reg
3702 rscratch2, r13,
3703 no_such_interface,
3704 /*return_method=*/false);
3705
3706 // profile this call
3707 __ profile_virtual_call(r3, r13, r19);
3708
3709 // Get declaring interface class from method, and itable index
3710
3711 __ load_method_holder(r0, rmethod);
3712 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3713 __ subw(rmethod, rmethod, Method::itable_index_max);
3714 __ negw(rmethod, rmethod);
3715
3716 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3717 __ mov(rlocals, r3);
3718 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3719 rlocals, r0, rmethod,
3720 // outputs: method, scan temp. reg
3721 rmethod, r13,
3722 no_such_interface);
3723
3724 // rmethod,: Method to call
3725 // r2: receiver
3726 // Check for abstract method error
3727 // Note: This should be done more efficiently via a throw_abstract_method_error
3728 // interpreter entry point and a conditional jump to it in case of a null
3729 // method.
3730 __ cbz(rmethod, no_such_method);
3731
3732 __ profile_arguments_type(r3, rmethod, r13, true);
3733
3734 // do the call
3735 // r2: receiver
3736 // rmethod,: Method
3737 __ jump_from_interpreted(rmethod, r3);
3738 __ should_not_reach_here();
3739
3740 // exception handling code follows...
3741 // note: must restore interpreter registers to canonical
3742 // state for exception handling to work correctly!
3743
3744 __ bind(no_such_method);
3745 // throw exception
3746 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3747 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3748 // Pass arguments for generating a verbose error message.
3749 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3750 // the call_VM checks for exception, so we should never return here.
3751 __ should_not_reach_here();
3752
3753 __ bind(no_such_interface);
3754 // throw exception
3755 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3756 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3757 // Pass arguments for generating a verbose error message.
3758 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3759 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3760 // the call_VM checks for exception, so we should never return here.
3761 __ should_not_reach_here();
3762 return;
3763 }
3764
3765 void TemplateTable::invokehandle(int byte_no) {
3766 transition(vtos, vtos);
3767 assert(byte_no == f1_byte, "use this argument");
3768
3769 load_resolved_method_entry_handle(r2, // ResolvedMethodEntry*
3770 rmethod, // Method*
3771 r0, // Resolved reference
3772 r3); // flags
3773 prepare_invoke(r2, r2);
3774
3775 __ verify_method_ptr(r2);
3776 __ verify_oop(r2);
3777 __ null_check(r2);
3778
3779 // FIXME: profile the LambdaForm also
3780
3781 // r13 is safe to use here as a scratch reg because it is about to
3782 // be clobbered by jump_from_interpreted().
3783 __ profile_final_call(r13);
3784 __ profile_arguments_type(r13, rmethod, r4, true);
3785
3786 __ jump_from_interpreted(rmethod, r0);
3787 }
3788
3789 void TemplateTable::invokedynamic(int byte_no) {
3790 transition(vtos, vtos);
3791 assert(byte_no == f1_byte, "use this argument");
3792
3793 load_invokedynamic_entry(rmethod);
3794
3795 // r0: CallSite object (from cpool->resolved_references[])
3796 // rmethod: MH.linkToCallSite method
3797
3798 // Note: r0_callsite is already pushed
3799
3800 // %%% should make a type profile for any invokedynamic that takes a ref argument
3801 // profile this call
3802 __ profile_call(rbcp);
3803 __ profile_arguments_type(r3, rmethod, r13, false);
3804
3805 __ verify_oop(r0);
3806
3807 __ jump_from_interpreted(rmethod, r0);
3808 }
3809
3810
3811 //-----------------------------------------------------------------------------
3812 // Allocation
3813
3814 void TemplateTable::_new() {
3815 transition(vtos, atos);
3816
3817 __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3818 Label slow_case;
3819 Label done;
3820 Label initialize_header;
3821
3822 __ get_cpool_and_tags(r4, r0);
3823 // Make sure the class we're about to instantiate has been resolved.
3824 // This is done before loading InstanceKlass to be consistent with the order
3825 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3826 const int tags_offset = Array<u1>::base_offset_in_bytes();
3827 __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3828 __ lea(rscratch1, Address(rscratch1, tags_offset));
3829 __ ldarb(rscratch1, rscratch1);
3830 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3831 __ br(Assembler::NE, slow_case);
3832
3833 // get InstanceKlass
3834 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3835
3836 // make sure klass is initialized
3837 assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3838 __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3839
3840 __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3841 __ b(done);
3842
3843 // slow case
3844 __ bind(slow_case);
3845 __ get_constant_pool(c_rarg1);
3846 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3847 __ call_VM_preemptable(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3848 __ verify_oop(r0);
3849
3850 // continue
3851 __ bind(done);
3852 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3853 __ membar(Assembler::StoreStore);
3854 }
3855
3856 void TemplateTable::newarray() {
3857 transition(itos, atos);
3858 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3859 __ mov(c_rarg2, r0);
3860 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3861 c_rarg1, c_rarg2);
3862 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3863 __ membar(Assembler::StoreStore);
3864 }
3865
3866 void TemplateTable::anewarray() {
3867 transition(itos, atos);
3868 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3869 __ get_constant_pool(c_rarg1);
3870 __ mov(c_rarg3, r0);
3871 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3872 c_rarg1, c_rarg2, c_rarg3);
3873 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3874 __ membar(Assembler::StoreStore);
3875 }
3876
3877 void TemplateTable::arraylength() {
3878 transition(atos, itos);
3879 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3880 }
3881
3882 void TemplateTable::checkcast()
3883 {
3884 transition(atos, atos);
3885 Label done, is_null, ok_is_subtype, quicked, resolved;
3886 __ cbz(r0, is_null);
3887
3888 // Get cpool & tags index
3889 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3890 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3891 // See if bytecode has already been quicked
3892 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3893 __ lea(r1, Address(rscratch1, r19));
3894 __ ldarb(r1, r1);
3895 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3896 __ br(Assembler::EQ, quicked);
3897
3898 __ push(atos); // save receiver for result, and for GC
3899 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3900 __ get_vm_result_metadata(r0, rthread);
3901 __ pop(r3); // restore receiver
3902 __ b(resolved);
3903
3904 // Get superklass in r0 and subklass in r3
3905 __ bind(quicked);
3906 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3907 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3908
3909 __ bind(resolved);
3910 __ load_klass(r19, r3);
3911
3912 // Generate subtype check. Blows r2, r5. Object in r3.
3913 // Superklass in r0. Subklass in r19.
3914 __ gen_subtype_check(r19, ok_is_subtype);
3915
3916 // Come here on failure
3917 __ push(r3);
3918 // object is at TOS
3919 __ b(Interpreter::_throw_ClassCastException_entry);
3920
3921 // Come here on success
3922 __ bind(ok_is_subtype);
3923 __ mov(r0, r3); // Restore object in r3
3924
3925 __ b(done);
3926 __ bind(is_null);
3927
3928 // Collect counts on whether this test sees nulls a lot or not.
3929 if (ProfileInterpreter) {
3930 __ profile_null_seen(r2);
3931 }
3932
3933 __ bind(done);
3934 }
3935
3936 void TemplateTable::instanceof() {
3937 transition(atos, itos);
3938 Label done, is_null, ok_is_subtype, quicked, resolved;
3939 __ cbz(r0, is_null);
3940
3941 // Get cpool & tags index
3942 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3943 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3944 // See if bytecode has already been quicked
3945 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3946 __ lea(r1, Address(rscratch1, r19));
3947 __ ldarb(r1, r1);
3948 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3949 __ br(Assembler::EQ, quicked);
3950
3951 __ push(atos); // save receiver for result, and for GC
3952 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3953 __ get_vm_result_metadata(r0, rthread);
3954 __ pop(r3); // restore receiver
3955 __ verify_oop(r3);
3956 __ load_klass(r3, r3);
3957 __ b(resolved);
3958
3959 // Get superklass in r0 and subklass in r3
3960 __ bind(quicked);
3961 __ load_klass(r3, r0);
3962 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3963
3964 __ bind(resolved);
3965
3966 // Generate subtype check. Blows r2, r5
3967 // Superklass in r0. Subklass in r3.
3968 __ gen_subtype_check(r3, ok_is_subtype);
3969
3970 // Come here on failure
3971 __ mov(r0, 0);
3972 __ b(done);
3973 // Come here on success
3974 __ bind(ok_is_subtype);
3975 __ mov(r0, 1);
3976
3977 // Collect counts on whether this test sees nulls a lot or not.
3978 if (ProfileInterpreter) {
3979 __ b(done);
3980 __ bind(is_null);
3981 __ profile_null_seen(r2);
3982 } else {
3983 __ bind(is_null); // same as 'done'
3984 }
3985 __ bind(done);
3986 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass
3987 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass
3988 }
3989
3990 //-----------------------------------------------------------------------------
3991 // Breakpoints
3992 void TemplateTable::_breakpoint() {
3993 // Note: We get here even if we are single stepping..
3994 // jbug inists on setting breakpoints at every bytecode
3995 // even if we are in single step mode.
3996
3997 transition(vtos, vtos);
3998
3999 // get the unpatched byte code
4000 __ get_method(c_rarg1);
4001 __ call_VM(noreg,
4002 CAST_FROM_FN_PTR(address,
4003 InterpreterRuntime::get_original_bytecode_at),
4004 c_rarg1, rbcp);
4005 __ mov(r19, r0);
4006
4007 // post the breakpoint event
4008 __ call_VM(noreg,
4009 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4010 rmethod, rbcp);
4011
4012 // complete the execution of original bytecode
4013 __ mov(rscratch1, r19);
4014 __ dispatch_only_normal(vtos);
4015 }
4016
4017 //-----------------------------------------------------------------------------
4018 // Exceptions
4019
4020 void TemplateTable::athrow() {
4021 transition(atos, vtos);
4022 __ null_check(r0);
4023 __ b(Interpreter::throw_exception_entry());
4024 }
4025
4026 //-----------------------------------------------------------------------------
4027 // Synchronization
4028 //
4029 // Note: monitorenter & exit are symmetric routines; which is reflected
4030 // in the assembly code structure as well
4031 //
4032 // Stack layout:
4033 //
4034 // [expressions ] <--- esp = expression stack top
4035 // ..
4036 // [expressions ]
4037 // [monitor entry] <--- monitor block top = expression stack bot
4038 // ..
4039 // [monitor entry]
4040 // [frame data ] <--- monitor block bot
4041 // ...
4042 // [saved rfp ] <--- rfp
4043 void TemplateTable::monitorenter()
4044 {
4045 transition(atos, vtos);
4046
4047 // check for null object
4048 __ null_check(r0);
4049
4050 Label is_inline_type;
4051 __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4052 __ test_markword_is_inline_type(rscratch1, is_inline_type);
4053
4054 const Address monitor_block_top(
4055 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4056 const Address monitor_block_bot(
4057 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4058 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4059
4060 Label allocated;
4061
4062 // initialize entry pointer
4063 __ mov(c_rarg1, zr); // points to free slot or null
4064
4065 // find a free slot in the monitor block (result in c_rarg1)
4066 {
4067 Label entry, loop, exit;
4068 __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4069 __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4070 // c_rarg3 points to current entry, starting with top-most entry
4071
4072 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4073
4074 __ b(entry);
4075
4076 __ bind(loop);
4077 // check if current entry is used
4078 // if not used then remember entry in c_rarg1
4079 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
4080 __ cmp(zr, rscratch1);
4081 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
4082 // check if current entry is for same object
4083 __ cmp(r0, rscratch1);
4084 // if same object then stop searching
4085 __ br(Assembler::EQ, exit);
4086 // otherwise advance to next entry
4087 __ add(c_rarg3, c_rarg3, entry_size);
4088 __ bind(entry);
4089 // check if bottom reached
4090 __ cmp(c_rarg3, c_rarg2);
4091 // if not at bottom then check this entry
4092 __ br(Assembler::NE, loop);
4093 __ bind(exit);
4094 }
4095
4096 __ cbnz(c_rarg1, allocated); // check if a slot has been found and
4097 // if found, continue with that on
4098
4099 // allocate one if there's no free slot
4100 {
4101 Label entry, loop;
4102 // 1. compute new pointers // rsp: old expression stack top
4103
4104 __ check_extended_sp();
4105 __ sub(sp, sp, entry_size); // make room for the monitor
4106 __ sub(rscratch1, sp, rfp);
4107 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
4108 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
4109
4110 __ ldr(c_rarg1, monitor_block_bot); // derelativize pointer
4111 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4112 // c_rarg1 points to the old expression stack bottom
4113
4114 __ sub(esp, esp, entry_size); // move expression stack top
4115 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
4116 __ mov(c_rarg3, esp); // set start value for copy loop
4117 __ sub(rscratch1, c_rarg1, rfp); // relativize pointer
4118 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
4119 __ str(rscratch1, monitor_block_bot); // set new monitor block bottom
4120
4121 __ b(entry);
4122 // 2. move expression stack contents
4123 __ bind(loop);
4124 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
4125 // word from old location
4126 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
4127 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word
4128 __ bind(entry);
4129 __ cmp(c_rarg3, c_rarg1); // check if bottom reached
4130 __ br(Assembler::NE, loop); // if not at bottom then
4131 // copy next word
4132 }
4133
4134 // call run-time routine
4135 // c_rarg1: points to monitor entry
4136 __ bind(allocated);
4137
4138 // Increment bcp to point to the next bytecode, so exception
4139 // handling for async. exceptions work correctly.
4140 // The object has already been popped from the stack, so the
4141 // expression stack looks correct.
4142 __ increment(rbcp);
4143
4144 // store object
4145 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4146 __ lock_object(c_rarg1);
4147
4148 // check to make sure this monitor doesn't cause stack overflow after locking
4149 __ save_bcp(); // in case of exception
4150 __ generate_stack_overflow_check(0);
4151
4152 // The bcp has already been incremented. Just need to dispatch to
4153 // next instruction.
4154 __ dispatch_next(vtos);
4155
4156 __ bind(is_inline_type);
4157 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4158 InterpreterRuntime::throw_identity_exception), r0);
4159 __ should_not_reach_here();
4160 }
4161
4162
4163 void TemplateTable::monitorexit()
4164 {
4165 transition(atos, vtos);
4166
4167 // check for null object
4168 __ null_check(r0);
4169
4170 const int is_inline_type_mask = markWord::inline_type_pattern;
4171 Label has_identity;
4172 __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4173 __ mov(rscratch2, is_inline_type_mask);
4174 __ andr(rscratch1, rscratch1, rscratch2);
4175 __ cmp(rscratch1, rscratch2);
4176 __ br(Assembler::NE, has_identity);
4177 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4178 InterpreterRuntime::throw_illegal_monitor_state_exception));
4179 __ should_not_reach_here();
4180 __ bind(has_identity);
4181
4182 const Address monitor_block_top(
4183 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4184 const Address monitor_block_bot(
4185 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4186 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4187
4188 Label found;
4189
4190 // find matching slot
4191 {
4192 Label entry, loop;
4193 __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4194 __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4195 // c_rarg1 points to current entry, starting with top-most entry
4196
4197 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4198 // of monitor block
4199 __ b(entry);
4200
4201 __ bind(loop);
4202 // check if current entry is for same object
4203 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4204 __ cmp(r0, rscratch1);
4205 // if same object then stop searching
4206 __ br(Assembler::EQ, found);
4207 // otherwise advance to next entry
4208 __ add(c_rarg1, c_rarg1, entry_size);
4209 __ bind(entry);
4210 // check if bottom reached
4211 __ cmp(c_rarg1, c_rarg2);
4212 // if not at bottom then check this entry
4213 __ br(Assembler::NE, loop);
4214 }
4215
4216 // error handling. Unlocking was not block-structured
4217 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4218 InterpreterRuntime::throw_illegal_monitor_state_exception));
4219 __ should_not_reach_here();
4220
4221 // call run-time routine
4222 __ bind(found);
4223 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4224 __ unlock_object(c_rarg1);
4225 __ pop_ptr(r0); // discard object
4226 }
4227
4228
4229 // Wide instructions
4230 void TemplateTable::wide()
4231 {
4232 __ load_unsigned_byte(r19, at_bcp(1));
4233 __ mov(rscratch1, (address)Interpreter::_wentry_point);
4234 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4235 __ br(rscratch1);
4236 }
4237
4238
4239 // Multi arrays
4240 void TemplateTable::multianewarray() {
4241 transition(vtos, atos);
4242 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4243 // last dim is on top of stack; we want address of first one:
4244 // first_addr = last_addr + (ndims - 1) * wordSize
4245 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4246 __ sub(c_rarg1, c_rarg1, wordSize);
4247 call_VM(r0,
4248 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4249 c_rarg1);
4250 __ load_unsigned_byte(r1, at_bcp(3));
4251 __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4252 }