1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedIndyEntry.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/synchronizer.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 50 #define __ _masm-> 51 52 // Address computation: local variables 53 54 static inline Address iaddress(int n) { 55 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 56 } 57 58 static inline Address laddress(int n) { 59 return iaddress(n + 1); 60 } 61 62 static inline Address faddress(int n) { 63 return iaddress(n); 64 } 65 66 static inline Address daddress(int n) { 67 return laddress(n); 68 } 69 70 static inline Address aaddress(int n) { 71 return iaddress(n); 72 } 73 74 static inline Address iaddress(Register r) { 75 return Address(rlocals, r, Address::lsl(3)); 76 } 77 78 static inline Address laddress(Register r, Register scratch, 79 InterpreterMacroAssembler* _masm) { 80 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 81 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 82 } 83 84 static inline Address faddress(Register r) { 85 return iaddress(r); 86 } 87 88 static inline Address daddress(Register r, Register scratch, 89 InterpreterMacroAssembler* _masm) { 90 return laddress(r, scratch, _masm); 91 } 92 93 static inline Address aaddress(Register r) { 94 return iaddress(r); 95 } 96 97 static inline Address at_rsp() { 98 return Address(esp, 0); 99 } 100 101 // At top of Java expression stack which may be different than esp(). It 102 // isn't for category 1 objects. 103 static inline Address at_tos () { 104 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 105 } 106 107 static inline Address at_tos_p1() { 108 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 109 } 110 111 static inline Address at_tos_p2() { 112 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 113 } 114 115 static inline Address at_tos_p3() { 116 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 117 } 118 119 static inline Address at_tos_p4() { 120 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 121 } 122 123 static inline Address at_tos_p5() { 124 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 125 } 126 127 // Condition conversion 128 static Assembler::Condition j_not(TemplateTable::Condition cc) { 129 switch (cc) { 130 case TemplateTable::equal : return Assembler::NE; 131 case TemplateTable::not_equal : return Assembler::EQ; 132 case TemplateTable::less : return Assembler::GE; 133 case TemplateTable::less_equal : return Assembler::GT; 134 case TemplateTable::greater : return Assembler::LE; 135 case TemplateTable::greater_equal: return Assembler::LT; 136 } 137 ShouldNotReachHere(); 138 return Assembler::EQ; 139 } 140 141 142 // Miscellaneous helper routines 143 // Store an oop (or null) at the Address described by obj. 144 // If val == noreg this means store a null 145 static void do_oop_store(InterpreterMacroAssembler* _masm, 146 Address dst, 147 Register val, 148 DecoratorSet decorators) { 149 assert(val == noreg || val == r0, "parameter is just for looks"); 150 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 151 } 152 153 static void do_oop_load(InterpreterMacroAssembler* _masm, 154 Address src, 155 Register dst, 156 DecoratorSet decorators) { 157 __ load_heap_oop(dst, src, r10, r11, decorators); 158 } 159 160 Address TemplateTable::at_bcp(int offset) { 161 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 162 return Address(rbcp, offset); 163 } 164 165 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 166 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 167 int byte_no) 168 { 169 if (!RewriteBytecodes) return; 170 Label L_patch_done; 171 172 switch (bc) { 173 case Bytecodes::_fast_qputfield: 174 case Bytecodes::_fast_aputfield: 175 case Bytecodes::_fast_bputfield: 176 case Bytecodes::_fast_zputfield: 177 case Bytecodes::_fast_cputfield: 178 case Bytecodes::_fast_dputfield: 179 case Bytecodes::_fast_fputfield: 180 case Bytecodes::_fast_iputfield: 181 case Bytecodes::_fast_lputfield: 182 case Bytecodes::_fast_sputfield: 183 { 184 // We skip bytecode quickening for putfield instructions when 185 // the put_code written to the constant pool cache is zero. 186 // This is required so that every execution of this instruction 187 // calls out to InterpreterRuntime::resolve_get_put to do 188 // additional, required work. 189 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 190 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 191 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 192 __ movw(bc_reg, bc); 193 __ cbzw(temp_reg, L_patch_done); // don't patch 194 } 195 break; 196 default: 197 assert(byte_no == -1, "sanity"); 198 // the pair bytecodes have already done the load. 199 if (load_bc_into_bc_reg) { 200 __ movw(bc_reg, bc); 201 } 202 } 203 204 if (JvmtiExport::can_post_breakpoint()) { 205 Label L_fast_patch; 206 // if a breakpoint is present we can't rewrite the stream directly 207 __ load_unsigned_byte(temp_reg, at_bcp(0)); 208 __ cmpw(temp_reg, Bytecodes::_breakpoint); 209 __ br(Assembler::NE, L_fast_patch); 210 // Let breakpoint table handling rewrite to quicker bytecode 211 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 212 __ b(L_patch_done); 213 __ bind(L_fast_patch); 214 } 215 216 #ifdef ASSERT 217 Label L_okay; 218 __ load_unsigned_byte(temp_reg, at_bcp(0)); 219 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 220 __ br(Assembler::EQ, L_okay); 221 __ cmpw(temp_reg, bc_reg); 222 __ br(Assembler::EQ, L_okay); 223 __ stop("patching the wrong bytecode"); 224 __ bind(L_okay); 225 #endif 226 227 // patch bytecode 228 __ strb(bc_reg, at_bcp(0)); 229 __ bind(L_patch_done); 230 } 231 232 233 // Individual instructions 234 235 void TemplateTable::nop() { 236 transition(vtos, vtos); 237 // nothing to do 238 } 239 240 void TemplateTable::shouldnotreachhere() { 241 transition(vtos, vtos); 242 __ stop("shouldnotreachhere bytecode"); 243 } 244 245 void TemplateTable::aconst_null() 246 { 247 transition(vtos, atos); 248 __ mov(r0, 0); 249 } 250 251 void TemplateTable::iconst(int value) 252 { 253 transition(vtos, itos); 254 __ mov(r0, value); 255 } 256 257 void TemplateTable::lconst(int value) 258 { 259 __ mov(r0, value); 260 } 261 262 void TemplateTable::fconst(int value) 263 { 264 transition(vtos, ftos); 265 switch (value) { 266 case 0: 267 __ fmovs(v0, 0.0); 268 break; 269 case 1: 270 __ fmovs(v0, 1.0); 271 break; 272 case 2: 273 __ fmovs(v0, 2.0); 274 break; 275 default: 276 ShouldNotReachHere(); 277 break; 278 } 279 } 280 281 void TemplateTable::dconst(int value) 282 { 283 transition(vtos, dtos); 284 switch (value) { 285 case 0: 286 __ fmovd(v0, 0.0); 287 break; 288 case 1: 289 __ fmovd(v0, 1.0); 290 break; 291 case 2: 292 __ fmovd(v0, 2.0); 293 break; 294 default: 295 ShouldNotReachHere(); 296 break; 297 } 298 } 299 300 void TemplateTable::bipush() 301 { 302 transition(vtos, itos); 303 __ load_signed_byte32(r0, at_bcp(1)); 304 } 305 306 void TemplateTable::sipush() 307 { 308 transition(vtos, itos); 309 __ load_unsigned_short(r0, at_bcp(1)); 310 __ revw(r0, r0); 311 __ asrw(r0, r0, 16); 312 } 313 314 void TemplateTable::ldc(LdcType type) 315 { 316 transition(vtos, vtos); 317 Label call_ldc, notFloat, notClass, notInt, Done; 318 319 if (is_ldc_wide(type)) { 320 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 321 } else { 322 __ load_unsigned_byte(r1, at_bcp(1)); 323 } 324 __ get_cpool_and_tags(r2, r0); 325 326 const int base_offset = ConstantPool::header_size() * wordSize; 327 const int tags_offset = Array<u1>::base_offset_in_bytes(); 328 329 // get type 330 __ add(r3, r1, tags_offset); 331 __ lea(r3, Address(r0, r3)); 332 __ ldarb(r3, r3); 333 __ andr(r3, r3, ~JVM_CONSTANT_QDescBit); 334 335 // unresolved class - get the resolved class 336 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 337 __ br(Assembler::EQ, call_ldc); 338 339 // unresolved class in error state - call into runtime to throw the error 340 // from the first resolution attempt 341 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 342 __ br(Assembler::EQ, call_ldc); 343 344 // resolved class - need to call vm to get java mirror of the class 345 __ cmp(r3, (u1)JVM_CONSTANT_Class); 346 __ br(Assembler::NE, notClass); 347 348 __ bind(call_ldc); 349 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 350 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 351 __ push_ptr(r0); 352 __ verify_oop(r0); 353 __ b(Done); 354 355 __ bind(notClass); 356 __ cmp(r3, (u1)JVM_CONSTANT_Float); 357 __ br(Assembler::NE, notFloat); 358 // ftos 359 __ adds(r1, r2, r1, Assembler::LSL, 3); 360 __ ldrs(v0, Address(r1, base_offset)); 361 __ push_f(); 362 __ b(Done); 363 364 __ bind(notFloat); 365 366 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 367 __ br(Assembler::NE, notInt); 368 369 // itos 370 __ adds(r1, r2, r1, Assembler::LSL, 3); 371 __ ldrw(r0, Address(r1, base_offset)); 372 __ push_i(r0); 373 __ b(Done); 374 375 __ bind(notInt); 376 condy_helper(Done); 377 378 __ bind(Done); 379 } 380 381 // Fast path for caching oop constants. 382 void TemplateTable::fast_aldc(LdcType type) 383 { 384 transition(vtos, atos); 385 386 Register result = r0; 387 Register tmp = r1; 388 Register rarg = r2; 389 390 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 391 392 Label resolved; 393 394 // We are resolved if the resolved reference cache entry contains a 395 // non-null object (String, MethodType, etc.) 396 assert_different_registers(result, tmp); 397 __ get_cache_index_at_bcp(tmp, 1, index_size); 398 __ load_resolved_reference_at_index(result, tmp); 399 __ cbnz(result, resolved); 400 401 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 402 403 // first time invocation - must resolve first 404 __ mov(rarg, (int)bytecode()); 405 __ call_VM(result, entry, rarg); 406 407 __ bind(resolved); 408 409 { // Check for the null sentinel. 410 // If we just called the VM, it already did the mapping for us, 411 // but it's harmless to retry. 412 Label notNull; 413 414 // Stash null_sentinel address to get its value later 415 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 416 __ ldr(tmp, Address(rarg)); 417 __ resolve_oop_handle(tmp, r5, rscratch2); 418 __ cmpoop(result, tmp); 419 __ br(Assembler::NE, notNull); 420 __ mov(result, 0); // null object reference 421 __ bind(notNull); 422 } 423 424 if (VerifyOops) { 425 // Safe to call with 0 result 426 __ verify_oop(result); 427 } 428 } 429 430 void TemplateTable::ldc2_w() 431 { 432 transition(vtos, vtos); 433 Label notDouble, notLong, Done; 434 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 435 436 __ get_cpool_and_tags(r1, r2); 437 const int base_offset = ConstantPool::header_size() * wordSize; 438 const int tags_offset = Array<u1>::base_offset_in_bytes(); 439 440 // get type 441 __ lea(r2, Address(r2, r0, Address::lsl(0))); 442 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 443 __ cmpw(r2, (int)JVM_CONSTANT_Double); 444 __ br(Assembler::NE, notDouble); 445 446 // dtos 447 __ lea (r2, Address(r1, r0, Address::lsl(3))); 448 __ ldrd(v0, Address(r2, base_offset)); 449 __ push_d(); 450 __ b(Done); 451 452 __ bind(notDouble); 453 __ cmpw(r2, (int)JVM_CONSTANT_Long); 454 __ br(Assembler::NE, notLong); 455 456 // ltos 457 __ lea(r0, Address(r1, r0, Address::lsl(3))); 458 __ ldr(r0, Address(r0, base_offset)); 459 __ push_l(); 460 __ b(Done); 461 462 __ bind(notLong); 463 condy_helper(Done); 464 465 __ bind(Done); 466 } 467 468 void TemplateTable::condy_helper(Label& Done) 469 { 470 Register obj = r0; 471 Register rarg = r1; 472 Register flags = r2; 473 Register off = r3; 474 475 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 476 477 __ mov(rarg, (int) bytecode()); 478 __ call_VM(obj, entry, rarg); 479 480 __ get_vm_result_2(flags, rthread); 481 482 // VMr = obj = base address to find primitive value to push 483 // VMr2 = flags = (tos, off) using format of CPCE::_flags 484 __ mov(off, flags); 485 __ andw(off, off, ConstantPoolCacheEntry::field_index_mask); 486 487 const Address field(obj, off); 488 489 // What sort of thing are we loading? 490 // x86 uses a shift and mask or wings it with a shift plus assert 491 // the mask is not needed. aarch64 just uses bitfield extract 492 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, 493 ConstantPoolCacheEntry::tos_state_bits); 494 495 switch (bytecode()) { 496 case Bytecodes::_ldc: 497 case Bytecodes::_ldc_w: 498 { 499 // tos in (itos, ftos, stos, btos, ctos, ztos) 500 Label notInt, notFloat, notShort, notByte, notChar, notBool; 501 __ cmpw(flags, itos); 502 __ br(Assembler::NE, notInt); 503 // itos 504 __ ldrw(r0, field); 505 __ push(itos); 506 __ b(Done); 507 508 __ bind(notInt); 509 __ cmpw(flags, ftos); 510 __ br(Assembler::NE, notFloat); 511 // ftos 512 __ load_float(field); 513 __ push(ftos); 514 __ b(Done); 515 516 __ bind(notFloat); 517 __ cmpw(flags, stos); 518 __ br(Assembler::NE, notShort); 519 // stos 520 __ load_signed_short(r0, field); 521 __ push(stos); 522 __ b(Done); 523 524 __ bind(notShort); 525 __ cmpw(flags, btos); 526 __ br(Assembler::NE, notByte); 527 // btos 528 __ load_signed_byte(r0, field); 529 __ push(btos); 530 __ b(Done); 531 532 __ bind(notByte); 533 __ cmpw(flags, ctos); 534 __ br(Assembler::NE, notChar); 535 // ctos 536 __ load_unsigned_short(r0, field); 537 __ push(ctos); 538 __ b(Done); 539 540 __ bind(notChar); 541 __ cmpw(flags, ztos); 542 __ br(Assembler::NE, notBool); 543 // ztos 544 __ load_signed_byte(r0, field); 545 __ push(ztos); 546 __ b(Done); 547 548 __ bind(notBool); 549 break; 550 } 551 552 case Bytecodes::_ldc2_w: 553 { 554 Label notLong, notDouble; 555 __ cmpw(flags, ltos); 556 __ br(Assembler::NE, notLong); 557 // ltos 558 __ ldr(r0, field); 559 __ push(ltos); 560 __ b(Done); 561 562 __ bind(notLong); 563 __ cmpw(flags, dtos); 564 __ br(Assembler::NE, notDouble); 565 // dtos 566 __ load_double(field); 567 __ push(dtos); 568 __ b(Done); 569 570 __ bind(notDouble); 571 break; 572 } 573 574 default: 575 ShouldNotReachHere(); 576 } 577 578 __ stop("bad ldc/condy"); 579 } 580 581 void TemplateTable::locals_index(Register reg, int offset) 582 { 583 __ ldrb(reg, at_bcp(offset)); 584 __ neg(reg, reg); 585 } 586 587 void TemplateTable::iload() { 588 iload_internal(); 589 } 590 591 void TemplateTable::nofast_iload() { 592 iload_internal(may_not_rewrite); 593 } 594 595 void TemplateTable::iload_internal(RewriteControl rc) { 596 transition(vtos, itos); 597 if (RewriteFrequentPairs && rc == may_rewrite) { 598 Label rewrite, done; 599 Register bc = r4; 600 601 // get next bytecode 602 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 603 604 // if _iload, wait to rewrite to iload2. We only want to rewrite the 605 // last two iloads in a pair. Comparing against fast_iload means that 606 // the next bytecode is neither an iload or a caload, and therefore 607 // an iload pair. 608 __ cmpw(r1, Bytecodes::_iload); 609 __ br(Assembler::EQ, done); 610 611 // if _fast_iload rewrite to _fast_iload2 612 __ cmpw(r1, Bytecodes::_fast_iload); 613 __ movw(bc, Bytecodes::_fast_iload2); 614 __ br(Assembler::EQ, rewrite); 615 616 // if _caload rewrite to _fast_icaload 617 __ cmpw(r1, Bytecodes::_caload); 618 __ movw(bc, Bytecodes::_fast_icaload); 619 __ br(Assembler::EQ, rewrite); 620 621 // else rewrite to _fast_iload 622 __ movw(bc, Bytecodes::_fast_iload); 623 624 // rewrite 625 // bc: new bytecode 626 __ bind(rewrite); 627 patch_bytecode(Bytecodes::_iload, bc, r1, false); 628 __ bind(done); 629 630 } 631 632 // do iload, get the local value into tos 633 locals_index(r1); 634 __ ldr(r0, iaddress(r1)); 635 636 } 637 638 void TemplateTable::fast_iload2() 639 { 640 transition(vtos, itos); 641 locals_index(r1); 642 __ ldr(r0, iaddress(r1)); 643 __ push(itos); 644 locals_index(r1, 3); 645 __ ldr(r0, iaddress(r1)); 646 } 647 648 void TemplateTable::fast_iload() 649 { 650 transition(vtos, itos); 651 locals_index(r1); 652 __ ldr(r0, iaddress(r1)); 653 } 654 655 void TemplateTable::lload() 656 { 657 transition(vtos, ltos); 658 __ ldrb(r1, at_bcp(1)); 659 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 660 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 661 } 662 663 void TemplateTable::fload() 664 { 665 transition(vtos, ftos); 666 locals_index(r1); 667 // n.b. we use ldrd here because this is a 64 bit slot 668 // this is comparable to the iload case 669 __ ldrd(v0, faddress(r1)); 670 } 671 672 void TemplateTable::dload() 673 { 674 transition(vtos, dtos); 675 __ ldrb(r1, at_bcp(1)); 676 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 677 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 678 } 679 680 void TemplateTable::aload() 681 { 682 transition(vtos, atos); 683 locals_index(r1); 684 __ ldr(r0, iaddress(r1)); 685 } 686 687 void TemplateTable::locals_index_wide(Register reg) { 688 __ ldrh(reg, at_bcp(2)); 689 __ rev16w(reg, reg); 690 __ neg(reg, reg); 691 } 692 693 void TemplateTable::wide_iload() { 694 transition(vtos, itos); 695 locals_index_wide(r1); 696 __ ldr(r0, iaddress(r1)); 697 } 698 699 void TemplateTable::wide_lload() 700 { 701 transition(vtos, ltos); 702 __ ldrh(r1, at_bcp(2)); 703 __ rev16w(r1, r1); 704 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 705 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 706 } 707 708 void TemplateTable::wide_fload() 709 { 710 transition(vtos, ftos); 711 locals_index_wide(r1); 712 // n.b. we use ldrd here because this is a 64 bit slot 713 // this is comparable to the iload case 714 __ ldrd(v0, faddress(r1)); 715 } 716 717 void TemplateTable::wide_dload() 718 { 719 transition(vtos, dtos); 720 __ ldrh(r1, at_bcp(2)); 721 __ rev16w(r1, r1); 722 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 723 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 724 } 725 726 void TemplateTable::wide_aload() 727 { 728 transition(vtos, atos); 729 locals_index_wide(r1); 730 __ ldr(r0, aaddress(r1)); 731 } 732 733 void TemplateTable::index_check(Register array, Register index) 734 { 735 // destroys r1, rscratch1 736 // sign extend index for use by indexed load 737 // __ movl2ptr(index, index); 738 // check index 739 Register length = rscratch1; 740 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 741 __ cmpw(index, length); 742 if (index != r1) { 743 // ??? convention: move aberrant index into r1 for exception message 744 assert(r1 != array, "different registers"); 745 __ mov(r1, index); 746 } 747 Label ok; 748 __ br(Assembler::LO, ok); 749 // ??? convention: move array into r3 for exception message 750 __ mov(r3, array); 751 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 752 __ br(rscratch1); 753 __ bind(ok); 754 } 755 756 void TemplateTable::iaload() 757 { 758 transition(itos, itos); 759 __ mov(r1, r0); 760 __ pop_ptr(r0); 761 // r0: array 762 // r1: index 763 index_check(r0, r1); // leaves index in r1, kills rscratch1 764 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 765 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 766 } 767 768 void TemplateTable::laload() 769 { 770 transition(itos, ltos); 771 __ mov(r1, r0); 772 __ pop_ptr(r0); 773 // r0: array 774 // r1: index 775 index_check(r0, r1); // leaves index in r1, kills rscratch1 776 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 777 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 778 } 779 780 void TemplateTable::faload() 781 { 782 transition(itos, ftos); 783 __ mov(r1, r0); 784 __ pop_ptr(r0); 785 // r0: array 786 // r1: index 787 index_check(r0, r1); // leaves index in r1, kills rscratch1 788 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 789 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 790 } 791 792 void TemplateTable::daload() 793 { 794 transition(itos, dtos); 795 __ mov(r1, r0); 796 __ pop_ptr(r0); 797 // r0: array 798 // r1: index 799 index_check(r0, r1); // leaves index in r1, kills rscratch1 800 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 801 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 802 } 803 804 void TemplateTable::aaload() 805 { 806 transition(itos, atos); 807 __ mov(r1, r0); 808 __ pop_ptr(r0); 809 // r0: array 810 // r1: index 811 index_check(r0, r1); // leaves index in r1, kills rscratch1 812 __ profile_array(r2, r0, r4); 813 if (UseFlatArray) { 814 Label is_flat_array, done; 815 816 __ test_flat_array_oop(r0, r8 /*temp*/, is_flat_array); 817 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 818 do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY); 819 820 __ b(done); 821 __ bind(is_flat_array); 822 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), r0, r1); 823 __ bind(done); 824 } else { 825 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 826 do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY); 827 } 828 __ profile_element(r2, r0, r4); 829 } 830 831 void TemplateTable::baload() 832 { 833 transition(itos, itos); 834 __ mov(r1, r0); 835 __ pop_ptr(r0); 836 // r0: array 837 // r1: index 838 index_check(r0, r1); // leaves index in r1, kills rscratch1 839 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 840 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 841 } 842 843 void TemplateTable::caload() 844 { 845 transition(itos, itos); 846 __ mov(r1, r0); 847 __ pop_ptr(r0); 848 // r0: array 849 // r1: index 850 index_check(r0, r1); // leaves index in r1, kills rscratch1 851 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 852 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 853 } 854 855 // iload followed by caload frequent pair 856 void TemplateTable::fast_icaload() 857 { 858 transition(vtos, itos); 859 // load index out of locals 860 locals_index(r2); 861 __ ldr(r1, iaddress(r2)); 862 863 __ pop_ptr(r0); 864 865 // r0: array 866 // r1: index 867 index_check(r0, r1); // leaves index in r1, kills rscratch1 868 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 869 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 870 } 871 872 void TemplateTable::saload() 873 { 874 transition(itos, itos); 875 __ mov(r1, r0); 876 __ pop_ptr(r0); 877 // r0: array 878 // r1: index 879 index_check(r0, r1); // leaves index in r1, kills rscratch1 880 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 881 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 882 } 883 884 void TemplateTable::iload(int n) 885 { 886 transition(vtos, itos); 887 __ ldr(r0, iaddress(n)); 888 } 889 890 void TemplateTable::lload(int n) 891 { 892 transition(vtos, ltos); 893 __ ldr(r0, laddress(n)); 894 } 895 896 void TemplateTable::fload(int n) 897 { 898 transition(vtos, ftos); 899 __ ldrs(v0, faddress(n)); 900 } 901 902 void TemplateTable::dload(int n) 903 { 904 transition(vtos, dtos); 905 __ ldrd(v0, daddress(n)); 906 } 907 908 void TemplateTable::aload(int n) 909 { 910 transition(vtos, atos); 911 __ ldr(r0, iaddress(n)); 912 } 913 914 void TemplateTable::aload_0() { 915 aload_0_internal(); 916 } 917 918 void TemplateTable::nofast_aload_0() { 919 aload_0_internal(may_not_rewrite); 920 } 921 922 void TemplateTable::aload_0_internal(RewriteControl rc) { 923 // According to bytecode histograms, the pairs: 924 // 925 // _aload_0, _fast_igetfield 926 // _aload_0, _fast_agetfield 927 // _aload_0, _fast_fgetfield 928 // 929 // occur frequently. If RewriteFrequentPairs is set, the (slow) 930 // _aload_0 bytecode checks if the next bytecode is either 931 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 932 // rewrites the current bytecode into a pair bytecode; otherwise it 933 // rewrites the current bytecode into _fast_aload_0 that doesn't do 934 // the pair check anymore. 935 // 936 // Note: If the next bytecode is _getfield, the rewrite must be 937 // delayed, otherwise we may miss an opportunity for a pair. 938 // 939 // Also rewrite frequent pairs 940 // aload_0, aload_1 941 // aload_0, iload_1 942 // These bytecodes with a small amount of code are most profitable 943 // to rewrite 944 if (RewriteFrequentPairs && rc == may_rewrite) { 945 Label rewrite, done; 946 const Register bc = r4; 947 948 // get next bytecode 949 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 950 951 // if _getfield then wait with rewrite 952 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 953 __ br(Assembler::EQ, done); 954 955 // if _igetfield then rewrite to _fast_iaccess_0 956 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 957 __ cmpw(r1, Bytecodes::_fast_igetfield); 958 __ movw(bc, Bytecodes::_fast_iaccess_0); 959 __ br(Assembler::EQ, rewrite); 960 961 // if _agetfield then rewrite to _fast_aaccess_0 962 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 963 __ cmpw(r1, Bytecodes::_fast_agetfield); 964 __ movw(bc, Bytecodes::_fast_aaccess_0); 965 __ br(Assembler::EQ, rewrite); 966 967 // if _fgetfield then rewrite to _fast_faccess_0 968 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 969 __ cmpw(r1, Bytecodes::_fast_fgetfield); 970 __ movw(bc, Bytecodes::_fast_faccess_0); 971 __ br(Assembler::EQ, rewrite); 972 973 // else rewrite to _fast_aload0 974 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 975 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 976 977 // rewrite 978 // bc: new bytecode 979 __ bind(rewrite); 980 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 981 982 __ bind(done); 983 } 984 985 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 986 aload(0); 987 } 988 989 void TemplateTable::istore() 990 { 991 transition(itos, vtos); 992 locals_index(r1); 993 // FIXME: We're being very pernickerty here storing a jint in a 994 // local with strw, which costs an extra instruction over what we'd 995 // be able to do with a simple str. We should just store the whole 996 // word. 997 __ lea(rscratch1, iaddress(r1)); 998 __ strw(r0, Address(rscratch1)); 999 } 1000 1001 void TemplateTable::lstore() 1002 { 1003 transition(ltos, vtos); 1004 locals_index(r1); 1005 __ str(r0, laddress(r1, rscratch1, _masm)); 1006 } 1007 1008 void TemplateTable::fstore() { 1009 transition(ftos, vtos); 1010 locals_index(r1); 1011 __ lea(rscratch1, iaddress(r1)); 1012 __ strs(v0, Address(rscratch1)); 1013 } 1014 1015 void TemplateTable::dstore() { 1016 transition(dtos, vtos); 1017 locals_index(r1); 1018 __ strd(v0, daddress(r1, rscratch1, _masm)); 1019 } 1020 1021 void TemplateTable::astore() 1022 { 1023 transition(vtos, vtos); 1024 __ pop_ptr(r0); 1025 locals_index(r1); 1026 __ str(r0, aaddress(r1)); 1027 } 1028 1029 void TemplateTable::wide_istore() { 1030 transition(vtos, vtos); 1031 __ pop_i(); 1032 locals_index_wide(r1); 1033 __ lea(rscratch1, iaddress(r1)); 1034 __ strw(r0, Address(rscratch1)); 1035 } 1036 1037 void TemplateTable::wide_lstore() { 1038 transition(vtos, vtos); 1039 __ pop_l(); 1040 locals_index_wide(r1); 1041 __ str(r0, laddress(r1, rscratch1, _masm)); 1042 } 1043 1044 void TemplateTable::wide_fstore() { 1045 transition(vtos, vtos); 1046 __ pop_f(); 1047 locals_index_wide(r1); 1048 __ lea(rscratch1, faddress(r1)); 1049 __ strs(v0, rscratch1); 1050 } 1051 1052 void TemplateTable::wide_dstore() { 1053 transition(vtos, vtos); 1054 __ pop_d(); 1055 locals_index_wide(r1); 1056 __ strd(v0, daddress(r1, rscratch1, _masm)); 1057 } 1058 1059 void TemplateTable::wide_astore() { 1060 transition(vtos, vtos); 1061 __ pop_ptr(r0); 1062 locals_index_wide(r1); 1063 __ str(r0, aaddress(r1)); 1064 } 1065 1066 void TemplateTable::iastore() { 1067 transition(itos, vtos); 1068 __ pop_i(r1); 1069 __ pop_ptr(r3); 1070 // r0: value 1071 // r1: index 1072 // r3: array 1073 index_check(r3, r1); // prefer index in r1 1074 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1075 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1076 } 1077 1078 void TemplateTable::lastore() { 1079 transition(ltos, vtos); 1080 __ pop_i(r1); 1081 __ pop_ptr(r3); 1082 // r0: value 1083 // r1: index 1084 // r3: array 1085 index_check(r3, r1); // prefer index in r1 1086 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1087 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1088 } 1089 1090 void TemplateTable::fastore() { 1091 transition(ftos, vtos); 1092 __ pop_i(r1); 1093 __ pop_ptr(r3); 1094 // v0: value 1095 // r1: index 1096 // r3: array 1097 index_check(r3, r1); // prefer index in r1 1098 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1099 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1100 } 1101 1102 void TemplateTable::dastore() { 1103 transition(dtos, vtos); 1104 __ pop_i(r1); 1105 __ pop_ptr(r3); 1106 // v0: value 1107 // r1: index 1108 // r3: array 1109 index_check(r3, r1); // prefer index in r1 1110 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1111 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1112 } 1113 1114 void TemplateTable::aastore() { 1115 Label is_null, is_flat_array, ok_is_subtype, done; 1116 transition(vtos, vtos); 1117 // stack: ..., array, index, value 1118 __ ldr(r0, at_tos()); // value 1119 __ ldr(r2, at_tos_p1()); // index 1120 __ ldr(r3, at_tos_p2()); // array 1121 1122 index_check(r3, r2); // kills r1 1123 1124 __ profile_array(r4, r3, r5); 1125 __ profile_element(r4, r0, r5); 1126 1127 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1128 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1129 // Be careful not to clobber r4 below 1130 1131 // do array store check - check for null value first 1132 __ cbz(r0, is_null); 1133 1134 // Move array class to r5 1135 __ load_klass(r5, r3); 1136 1137 if (UseFlatArray) { 1138 __ ldrw(r6, Address(r5, Klass::layout_helper_offset())); 1139 __ test_flat_array_layout(r6, is_flat_array); 1140 } 1141 1142 // Move subklass into r1 1143 __ load_klass(r1, r0); 1144 1145 // Move array element superklass into r0 1146 __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset())); 1147 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1148 1149 // Generate subtype check. Blows r2, r5 1150 // Superklass in r0. Subklass in r1. 1151 1152 // is "r1 <: r0" ? (value subclass <: array element superclass) 1153 __ gen_subtype_check(r1, ok_is_subtype, false); 1154 1155 // Come here on failure 1156 // object is at TOS 1157 __ b(Interpreter::_throw_ArrayStoreException_entry); 1158 1159 // Come here on success 1160 __ bind(ok_is_subtype); 1161 1162 // Get the value we will store 1163 __ ldr(r0, at_tos()); 1164 // Now store using the appropriate barrier 1165 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1166 __ b(done); 1167 1168 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1169 __ bind(is_null); 1170 if (EnablePrimitiveClasses) { 1171 Label is_null_into_value_array_npe, store_null; 1172 1173 // No way to store null in flat null-free array 1174 __ test_null_free_array_oop(r3, r8, is_null_into_value_array_npe); 1175 __ b(store_null); 1176 1177 __ bind(is_null_into_value_array_npe); 1178 __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry)); 1179 1180 __ bind(store_null); 1181 } 1182 1183 // Store a null 1184 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1185 __ b(done); 1186 1187 if (UseFlatArray) { 1188 Label is_type_ok; 1189 __ bind(is_flat_array); // Store non-null value to flat 1190 1191 // Simplistic type check... 1192 // r0 - value, r2 - index, r3 - array. 1193 1194 // Profile the not-null value's klass. 1195 // Load value class 1196 __ load_klass(r1, r0); 1197 1198 // Move element klass into r7 1199 __ ldr(r7, Address(r5, ArrayKlass::element_klass_offset())); 1200 1201 // flat value array needs exact type match 1202 // is "r1 == r7" (value subclass == array element superclass) 1203 1204 __ cmp(r7, r1); 1205 __ br(Assembler::EQ, is_type_ok); 1206 1207 __ b(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1208 1209 __ bind(is_type_ok); 1210 // r1: value's klass 1211 // r3: array 1212 // r5: array klass 1213 __ test_klass_is_empty_inline_type(r1, r7, done); 1214 1215 // calc dst for copy 1216 __ ldrw(r7, at_tos_p1()); // index 1217 __ data_for_value_array_index(r3, r5, r7, r7); 1218 1219 // ...and src for copy 1220 __ ldr(r6, at_tos()); // value 1221 __ data_for_oop(r6, r6, r1); 1222 1223 __ mov(r4, r1); // Shuffle arguments to avoid conflict with c_rarg1 1224 __ access_value_copy(IN_HEAP, r6, r7, r4); 1225 } 1226 1227 // Pop stack arguments 1228 __ bind(done); 1229 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1230 } 1231 1232 void TemplateTable::bastore() 1233 { 1234 transition(itos, vtos); 1235 __ pop_i(r1); 1236 __ pop_ptr(r3); 1237 // r0: value 1238 // r1: index 1239 // r3: array 1240 index_check(r3, r1); // prefer index in r1 1241 1242 // Need to check whether array is boolean or byte 1243 // since both types share the bastore bytecode. 1244 __ load_klass(r2, r3); 1245 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1246 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1247 Label L_skip; 1248 __ tbz(r2, diffbit_index, L_skip); 1249 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1250 __ bind(L_skip); 1251 1252 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1253 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1254 } 1255 1256 void TemplateTable::castore() 1257 { 1258 transition(itos, vtos); 1259 __ pop_i(r1); 1260 __ pop_ptr(r3); 1261 // r0: value 1262 // r1: index 1263 // r3: array 1264 index_check(r3, r1); // prefer index in r1 1265 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1266 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1267 } 1268 1269 void TemplateTable::sastore() 1270 { 1271 castore(); 1272 } 1273 1274 void TemplateTable::istore(int n) 1275 { 1276 transition(itos, vtos); 1277 __ str(r0, iaddress(n)); 1278 } 1279 1280 void TemplateTable::lstore(int n) 1281 { 1282 transition(ltos, vtos); 1283 __ str(r0, laddress(n)); 1284 } 1285 1286 void TemplateTable::fstore(int n) 1287 { 1288 transition(ftos, vtos); 1289 __ strs(v0, faddress(n)); 1290 } 1291 1292 void TemplateTable::dstore(int n) 1293 { 1294 transition(dtos, vtos); 1295 __ strd(v0, daddress(n)); 1296 } 1297 1298 void TemplateTable::astore(int n) 1299 { 1300 transition(vtos, vtos); 1301 __ pop_ptr(r0); 1302 __ str(r0, iaddress(n)); 1303 } 1304 1305 void TemplateTable::pop() 1306 { 1307 transition(vtos, vtos); 1308 __ add(esp, esp, Interpreter::stackElementSize); 1309 } 1310 1311 void TemplateTable::pop2() 1312 { 1313 transition(vtos, vtos); 1314 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1315 } 1316 1317 void TemplateTable::dup() 1318 { 1319 transition(vtos, vtos); 1320 __ ldr(r0, Address(esp, 0)); 1321 __ push(r0); 1322 // stack: ..., a, a 1323 } 1324 1325 void TemplateTable::dup_x1() 1326 { 1327 transition(vtos, vtos); 1328 // stack: ..., a, b 1329 __ ldr(r0, at_tos()); // load b 1330 __ ldr(r2, at_tos_p1()); // load a 1331 __ str(r0, at_tos_p1()); // store b 1332 __ str(r2, at_tos()); // store a 1333 __ push(r0); // push b 1334 // stack: ..., b, a, b 1335 } 1336 1337 void TemplateTable::dup_x2() 1338 { 1339 transition(vtos, vtos); 1340 // stack: ..., a, b, c 1341 __ ldr(r0, at_tos()); // load c 1342 __ ldr(r2, at_tos_p2()); // load a 1343 __ str(r0, at_tos_p2()); // store c in a 1344 __ push(r0); // push c 1345 // stack: ..., c, b, c, c 1346 __ ldr(r0, at_tos_p2()); // load b 1347 __ str(r2, at_tos_p2()); // store a in b 1348 // stack: ..., c, a, c, c 1349 __ str(r0, at_tos_p1()); // store b in c 1350 // stack: ..., c, a, b, c 1351 } 1352 1353 void TemplateTable::dup2() 1354 { 1355 transition(vtos, vtos); 1356 // stack: ..., a, b 1357 __ ldr(r0, at_tos_p1()); // load a 1358 __ push(r0); // push a 1359 __ ldr(r0, at_tos_p1()); // load b 1360 __ push(r0); // push b 1361 // stack: ..., a, b, a, b 1362 } 1363 1364 void TemplateTable::dup2_x1() 1365 { 1366 transition(vtos, vtos); 1367 // stack: ..., a, b, c 1368 __ ldr(r2, at_tos()); // load c 1369 __ ldr(r0, at_tos_p1()); // load b 1370 __ push(r0); // push b 1371 __ push(r2); // push c 1372 // stack: ..., a, b, c, b, c 1373 __ str(r2, at_tos_p3()); // store c in b 1374 // stack: ..., a, c, c, b, c 1375 __ ldr(r2, at_tos_p4()); // load a 1376 __ str(r2, at_tos_p2()); // store a in 2nd c 1377 // stack: ..., a, c, a, b, c 1378 __ str(r0, at_tos_p4()); // store b in a 1379 // stack: ..., b, c, a, b, c 1380 } 1381 1382 void TemplateTable::dup2_x2() 1383 { 1384 transition(vtos, vtos); 1385 // stack: ..., a, b, c, d 1386 __ ldr(r2, at_tos()); // load d 1387 __ ldr(r0, at_tos_p1()); // load c 1388 __ push(r0) ; // push c 1389 __ push(r2); // push d 1390 // stack: ..., a, b, c, d, c, d 1391 __ ldr(r0, at_tos_p4()); // load b 1392 __ str(r0, at_tos_p2()); // store b in d 1393 __ str(r2, at_tos_p4()); // store d in b 1394 // stack: ..., a, d, c, b, c, d 1395 __ ldr(r2, at_tos_p5()); // load a 1396 __ ldr(r0, at_tos_p3()); // load c 1397 __ str(r2, at_tos_p3()); // store a in c 1398 __ str(r0, at_tos_p5()); // store c in a 1399 // stack: ..., c, d, a, b, c, d 1400 } 1401 1402 void TemplateTable::swap() 1403 { 1404 transition(vtos, vtos); 1405 // stack: ..., a, b 1406 __ ldr(r2, at_tos_p1()); // load a 1407 __ ldr(r0, at_tos()); // load b 1408 __ str(r2, at_tos()); // store a in b 1409 __ str(r0, at_tos_p1()); // store b in a 1410 // stack: ..., b, a 1411 } 1412 1413 void TemplateTable::iop2(Operation op) 1414 { 1415 transition(itos, itos); 1416 // r0 <== r1 op r0 1417 __ pop_i(r1); 1418 switch (op) { 1419 case add : __ addw(r0, r1, r0); break; 1420 case sub : __ subw(r0, r1, r0); break; 1421 case mul : __ mulw(r0, r1, r0); break; 1422 case _and : __ andw(r0, r1, r0); break; 1423 case _or : __ orrw(r0, r1, r0); break; 1424 case _xor : __ eorw(r0, r1, r0); break; 1425 case shl : __ lslvw(r0, r1, r0); break; 1426 case shr : __ asrvw(r0, r1, r0); break; 1427 case ushr : __ lsrvw(r0, r1, r0);break; 1428 default : ShouldNotReachHere(); 1429 } 1430 } 1431 1432 void TemplateTable::lop2(Operation op) 1433 { 1434 transition(ltos, ltos); 1435 // r0 <== r1 op r0 1436 __ pop_l(r1); 1437 switch (op) { 1438 case add : __ add(r0, r1, r0); break; 1439 case sub : __ sub(r0, r1, r0); break; 1440 case mul : __ mul(r0, r1, r0); break; 1441 case _and : __ andr(r0, r1, r0); break; 1442 case _or : __ orr(r0, r1, r0); break; 1443 case _xor : __ eor(r0, r1, r0); break; 1444 default : ShouldNotReachHere(); 1445 } 1446 } 1447 1448 void TemplateTable::idiv() 1449 { 1450 transition(itos, itos); 1451 // explicitly check for div0 1452 Label no_div0; 1453 __ cbnzw(r0, no_div0); 1454 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1455 __ br(rscratch1); 1456 __ bind(no_div0); 1457 __ pop_i(r1); 1458 // r0 <== r1 idiv r0 1459 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1460 } 1461 1462 void TemplateTable::irem() 1463 { 1464 transition(itos, itos); 1465 // explicitly check for div0 1466 Label no_div0; 1467 __ cbnzw(r0, no_div0); 1468 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1469 __ br(rscratch1); 1470 __ bind(no_div0); 1471 __ pop_i(r1); 1472 // r0 <== r1 irem r0 1473 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1474 } 1475 1476 void TemplateTable::lmul() 1477 { 1478 transition(ltos, ltos); 1479 __ pop_l(r1); 1480 __ mul(r0, r0, r1); 1481 } 1482 1483 void TemplateTable::ldiv() 1484 { 1485 transition(ltos, ltos); 1486 // explicitly check for div0 1487 Label no_div0; 1488 __ cbnz(r0, no_div0); 1489 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1490 __ br(rscratch1); 1491 __ bind(no_div0); 1492 __ pop_l(r1); 1493 // r0 <== r1 ldiv r0 1494 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1495 } 1496 1497 void TemplateTable::lrem() 1498 { 1499 transition(ltos, ltos); 1500 // explicitly check for div0 1501 Label no_div0; 1502 __ cbnz(r0, no_div0); 1503 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1504 __ br(rscratch1); 1505 __ bind(no_div0); 1506 __ pop_l(r1); 1507 // r0 <== r1 lrem r0 1508 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1509 } 1510 1511 void TemplateTable::lshl() 1512 { 1513 transition(itos, ltos); 1514 // shift count is in r0 1515 __ pop_l(r1); 1516 __ lslv(r0, r1, r0); 1517 } 1518 1519 void TemplateTable::lshr() 1520 { 1521 transition(itos, ltos); 1522 // shift count is in r0 1523 __ pop_l(r1); 1524 __ asrv(r0, r1, r0); 1525 } 1526 1527 void TemplateTable::lushr() 1528 { 1529 transition(itos, ltos); 1530 // shift count is in r0 1531 __ pop_l(r1); 1532 __ lsrv(r0, r1, r0); 1533 } 1534 1535 void TemplateTable::fop2(Operation op) 1536 { 1537 transition(ftos, ftos); 1538 switch (op) { 1539 case add: 1540 // n.b. use ldrd because this is a 64 bit slot 1541 __ pop_f(v1); 1542 __ fadds(v0, v1, v0); 1543 break; 1544 case sub: 1545 __ pop_f(v1); 1546 __ fsubs(v0, v1, v0); 1547 break; 1548 case mul: 1549 __ pop_f(v1); 1550 __ fmuls(v0, v1, v0); 1551 break; 1552 case div: 1553 __ pop_f(v1); 1554 __ fdivs(v0, v1, v0); 1555 break; 1556 case rem: 1557 __ fmovs(v1, v0); 1558 __ pop_f(v0); 1559 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1560 break; 1561 default: 1562 ShouldNotReachHere(); 1563 break; 1564 } 1565 } 1566 1567 void TemplateTable::dop2(Operation op) 1568 { 1569 transition(dtos, dtos); 1570 switch (op) { 1571 case add: 1572 // n.b. use ldrd because this is a 64 bit slot 1573 __ pop_d(v1); 1574 __ faddd(v0, v1, v0); 1575 break; 1576 case sub: 1577 __ pop_d(v1); 1578 __ fsubd(v0, v1, v0); 1579 break; 1580 case mul: 1581 __ pop_d(v1); 1582 __ fmuld(v0, v1, v0); 1583 break; 1584 case div: 1585 __ pop_d(v1); 1586 __ fdivd(v0, v1, v0); 1587 break; 1588 case rem: 1589 __ fmovd(v1, v0); 1590 __ pop_d(v0); 1591 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1592 break; 1593 default: 1594 ShouldNotReachHere(); 1595 break; 1596 } 1597 } 1598 1599 void TemplateTable::ineg() 1600 { 1601 transition(itos, itos); 1602 __ negw(r0, r0); 1603 1604 } 1605 1606 void TemplateTable::lneg() 1607 { 1608 transition(ltos, ltos); 1609 __ neg(r0, r0); 1610 } 1611 1612 void TemplateTable::fneg() 1613 { 1614 transition(ftos, ftos); 1615 __ fnegs(v0, v0); 1616 } 1617 1618 void TemplateTable::dneg() 1619 { 1620 transition(dtos, dtos); 1621 __ fnegd(v0, v0); 1622 } 1623 1624 void TemplateTable::iinc() 1625 { 1626 transition(vtos, vtos); 1627 __ load_signed_byte(r1, at_bcp(2)); // get constant 1628 locals_index(r2); 1629 __ ldr(r0, iaddress(r2)); 1630 __ addw(r0, r0, r1); 1631 __ str(r0, iaddress(r2)); 1632 } 1633 1634 void TemplateTable::wide_iinc() 1635 { 1636 transition(vtos, vtos); 1637 // __ mov(r1, zr); 1638 __ ldrw(r1, at_bcp(2)); // get constant and index 1639 __ rev16(r1, r1); 1640 __ ubfx(r2, r1, 0, 16); 1641 __ neg(r2, r2); 1642 __ sbfx(r1, r1, 16, 16); 1643 __ ldr(r0, iaddress(r2)); 1644 __ addw(r0, r0, r1); 1645 __ str(r0, iaddress(r2)); 1646 } 1647 1648 void TemplateTable::convert() 1649 { 1650 // Checking 1651 #ifdef ASSERT 1652 { 1653 TosState tos_in = ilgl; 1654 TosState tos_out = ilgl; 1655 switch (bytecode()) { 1656 case Bytecodes::_i2l: // fall through 1657 case Bytecodes::_i2f: // fall through 1658 case Bytecodes::_i2d: // fall through 1659 case Bytecodes::_i2b: // fall through 1660 case Bytecodes::_i2c: // fall through 1661 case Bytecodes::_i2s: tos_in = itos; break; 1662 case Bytecodes::_l2i: // fall through 1663 case Bytecodes::_l2f: // fall through 1664 case Bytecodes::_l2d: tos_in = ltos; break; 1665 case Bytecodes::_f2i: // fall through 1666 case Bytecodes::_f2l: // fall through 1667 case Bytecodes::_f2d: tos_in = ftos; break; 1668 case Bytecodes::_d2i: // fall through 1669 case Bytecodes::_d2l: // fall through 1670 case Bytecodes::_d2f: tos_in = dtos; break; 1671 default : ShouldNotReachHere(); 1672 } 1673 switch (bytecode()) { 1674 case Bytecodes::_l2i: // fall through 1675 case Bytecodes::_f2i: // fall through 1676 case Bytecodes::_d2i: // fall through 1677 case Bytecodes::_i2b: // fall through 1678 case Bytecodes::_i2c: // fall through 1679 case Bytecodes::_i2s: tos_out = itos; break; 1680 case Bytecodes::_i2l: // fall through 1681 case Bytecodes::_f2l: // fall through 1682 case Bytecodes::_d2l: tos_out = ltos; break; 1683 case Bytecodes::_i2f: // fall through 1684 case Bytecodes::_l2f: // fall through 1685 case Bytecodes::_d2f: tos_out = ftos; break; 1686 case Bytecodes::_i2d: // fall through 1687 case Bytecodes::_l2d: // fall through 1688 case Bytecodes::_f2d: tos_out = dtos; break; 1689 default : ShouldNotReachHere(); 1690 } 1691 transition(tos_in, tos_out); 1692 } 1693 #endif // ASSERT 1694 // static const int64_t is_nan = 0x8000000000000000L; 1695 1696 // Conversion 1697 switch (bytecode()) { 1698 case Bytecodes::_i2l: 1699 __ sxtw(r0, r0); 1700 break; 1701 case Bytecodes::_i2f: 1702 __ scvtfws(v0, r0); 1703 break; 1704 case Bytecodes::_i2d: 1705 __ scvtfwd(v0, r0); 1706 break; 1707 case Bytecodes::_i2b: 1708 __ sxtbw(r0, r0); 1709 break; 1710 case Bytecodes::_i2c: 1711 __ uxthw(r0, r0); 1712 break; 1713 case Bytecodes::_i2s: 1714 __ sxthw(r0, r0); 1715 break; 1716 case Bytecodes::_l2i: 1717 __ uxtw(r0, r0); 1718 break; 1719 case Bytecodes::_l2f: 1720 __ scvtfs(v0, r0); 1721 break; 1722 case Bytecodes::_l2d: 1723 __ scvtfd(v0, r0); 1724 break; 1725 case Bytecodes::_f2i: 1726 { 1727 Label L_Okay; 1728 __ clear_fpsr(); 1729 __ fcvtzsw(r0, v0); 1730 __ get_fpsr(r1); 1731 __ cbzw(r1, L_Okay); 1732 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1733 __ bind(L_Okay); 1734 } 1735 break; 1736 case Bytecodes::_f2l: 1737 { 1738 Label L_Okay; 1739 __ clear_fpsr(); 1740 __ fcvtzs(r0, v0); 1741 __ get_fpsr(r1); 1742 __ cbzw(r1, L_Okay); 1743 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1744 __ bind(L_Okay); 1745 } 1746 break; 1747 case Bytecodes::_f2d: 1748 __ fcvts(v0, v0); 1749 break; 1750 case Bytecodes::_d2i: 1751 { 1752 Label L_Okay; 1753 __ clear_fpsr(); 1754 __ fcvtzdw(r0, v0); 1755 __ get_fpsr(r1); 1756 __ cbzw(r1, L_Okay); 1757 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1758 __ bind(L_Okay); 1759 } 1760 break; 1761 case Bytecodes::_d2l: 1762 { 1763 Label L_Okay; 1764 __ clear_fpsr(); 1765 __ fcvtzd(r0, v0); 1766 __ get_fpsr(r1); 1767 __ cbzw(r1, L_Okay); 1768 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1769 __ bind(L_Okay); 1770 } 1771 break; 1772 case Bytecodes::_d2f: 1773 __ fcvtd(v0, v0); 1774 break; 1775 default: 1776 ShouldNotReachHere(); 1777 } 1778 } 1779 1780 void TemplateTable::lcmp() 1781 { 1782 transition(ltos, itos); 1783 Label done; 1784 __ pop_l(r1); 1785 __ cmp(r1, r0); 1786 __ mov(r0, (uint64_t)-1L); 1787 __ br(Assembler::LT, done); 1788 // __ mov(r0, 1UL); 1789 // __ csel(r0, r0, zr, Assembler::NE); 1790 // and here is a faster way 1791 __ csinc(r0, zr, zr, Assembler::EQ); 1792 __ bind(done); 1793 } 1794 1795 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1796 { 1797 Label done; 1798 if (is_float) { 1799 // XXX get rid of pop here, use ... reg, mem32 1800 __ pop_f(v1); 1801 __ fcmps(v1, v0); 1802 } else { 1803 // XXX get rid of pop here, use ... reg, mem64 1804 __ pop_d(v1); 1805 __ fcmpd(v1, v0); 1806 } 1807 if (unordered_result < 0) { 1808 // we want -1 for unordered or less than, 0 for equal and 1 for 1809 // greater than. 1810 __ mov(r0, (uint64_t)-1L); 1811 // for FP LT tests less than or unordered 1812 __ br(Assembler::LT, done); 1813 // install 0 for EQ otherwise 1 1814 __ csinc(r0, zr, zr, Assembler::EQ); 1815 } else { 1816 // we want -1 for less than, 0 for equal and 1 for unordered or 1817 // greater than. 1818 __ mov(r0, 1L); 1819 // for FP HI tests greater than or unordered 1820 __ br(Assembler::HI, done); 1821 // install 0 for EQ otherwise ~0 1822 __ csinv(r0, zr, zr, Assembler::EQ); 1823 1824 } 1825 __ bind(done); 1826 } 1827 1828 void TemplateTable::branch(bool is_jsr, bool is_wide) 1829 { 1830 __ profile_taken_branch(r0, r1); 1831 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1832 InvocationCounter::counter_offset(); 1833 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1834 InvocationCounter::counter_offset(); 1835 1836 // load branch displacement 1837 if (!is_wide) { 1838 __ ldrh(r2, at_bcp(1)); 1839 __ rev16(r2, r2); 1840 // sign extend the 16 bit value in r2 1841 __ sbfm(r2, r2, 0, 15); 1842 } else { 1843 __ ldrw(r2, at_bcp(1)); 1844 __ revw(r2, r2); 1845 // sign extend the 32 bit value in r2 1846 __ sbfm(r2, r2, 0, 31); 1847 } 1848 1849 // Handle all the JSR stuff here, then exit. 1850 // It's much shorter and cleaner than intermingling with the non-JSR 1851 // normal-branch stuff occurring below. 1852 1853 if (is_jsr) { 1854 // Pre-load the next target bytecode into rscratch1 1855 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1856 // compute return address as bci 1857 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1858 __ add(rscratch2, rscratch2, 1859 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1860 __ sub(r1, rbcp, rscratch2); 1861 __ push_i(r1); 1862 // Adjust the bcp by the 16-bit displacement in r2 1863 __ add(rbcp, rbcp, r2); 1864 __ dispatch_only(vtos, /*generate_poll*/true); 1865 return; 1866 } 1867 1868 // Normal (non-jsr) branch handling 1869 1870 // Adjust the bcp by the displacement in r2 1871 __ add(rbcp, rbcp, r2); 1872 1873 assert(UseLoopCounter || !UseOnStackReplacement, 1874 "on-stack-replacement requires loop counters"); 1875 Label backedge_counter_overflow; 1876 Label dispatch; 1877 if (UseLoopCounter) { 1878 // increment backedge counter for backward branches 1879 // r0: MDO 1880 // w1: MDO bumped taken-count 1881 // r2: target offset 1882 __ cmp(r2, zr); 1883 __ br(Assembler::GT, dispatch); // count only if backward branch 1884 1885 // ECN: FIXME: This code smells 1886 // check if MethodCounters exists 1887 Label has_counters; 1888 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1889 __ cbnz(rscratch1, has_counters); 1890 __ push(r0); 1891 __ push(r1); 1892 __ push(r2); 1893 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1894 InterpreterRuntime::build_method_counters), rmethod); 1895 __ pop(r2); 1896 __ pop(r1); 1897 __ pop(r0); 1898 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1899 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1900 __ bind(has_counters); 1901 1902 Label no_mdo; 1903 int increment = InvocationCounter::count_increment; 1904 if (ProfileInterpreter) { 1905 // Are we profiling? 1906 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1907 __ cbz(r1, no_mdo); 1908 // Increment the MDO backedge counter 1909 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1910 in_bytes(InvocationCounter::counter_offset())); 1911 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1912 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1913 r0, rscratch1, false, Assembler::EQ, 1914 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1915 __ b(dispatch); 1916 } 1917 __ bind(no_mdo); 1918 // Increment backedge counter in MethodCounters* 1919 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1920 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1921 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1922 r0, rscratch2, false, Assembler::EQ, 1923 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1924 __ bind(dispatch); 1925 } 1926 1927 // Pre-load the next target bytecode into rscratch1 1928 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1929 1930 // continue with the bytecode @ target 1931 // rscratch1: target bytecode 1932 // rbcp: target bcp 1933 __ dispatch_only(vtos, /*generate_poll*/true); 1934 1935 if (UseLoopCounter && UseOnStackReplacement) { 1936 // invocation counter overflow 1937 __ bind(backedge_counter_overflow); 1938 __ neg(r2, r2); 1939 __ add(r2, r2, rbcp); // branch bcp 1940 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1941 __ call_VM(noreg, 1942 CAST_FROM_FN_PTR(address, 1943 InterpreterRuntime::frequency_counter_overflow), 1944 r2); 1945 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1946 1947 // r0: osr nmethod (osr ok) or null (osr not possible) 1948 // w1: target bytecode 1949 // r2: scratch 1950 __ cbz(r0, dispatch); // test result -- no osr if null 1951 // nmethod may have been invalidated (VM may block upon call_VM return) 1952 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1953 if (nmethod::in_use != 0) 1954 __ sub(r2, r2, nmethod::in_use); 1955 __ cbnz(r2, dispatch); 1956 1957 // We have the address of an on stack replacement routine in r0 1958 // We need to prepare to execute the OSR method. First we must 1959 // migrate the locals and monitors off of the stack. 1960 1961 __ mov(r19, r0); // save the nmethod 1962 1963 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1964 1965 // r0 is OSR buffer, move it to expected parameter location 1966 __ mov(j_rarg0, r0); 1967 1968 // remove activation 1969 // get sender esp 1970 __ ldr(esp, 1971 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1972 // remove frame anchor 1973 __ leave(); 1974 // Ensure compiled code always sees stack at proper alignment 1975 __ andr(sp, esp, -16); 1976 1977 // and begin the OSR nmethod 1978 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1979 __ br(rscratch1); 1980 } 1981 } 1982 1983 1984 void TemplateTable::if_0cmp(Condition cc) 1985 { 1986 transition(itos, vtos); 1987 // assume branch is more often taken than not (loops use backward branches) 1988 Label not_taken; 1989 if (cc == equal) 1990 __ cbnzw(r0, not_taken); 1991 else if (cc == not_equal) 1992 __ cbzw(r0, not_taken); 1993 else { 1994 __ andsw(zr, r0, r0); 1995 __ br(j_not(cc), not_taken); 1996 } 1997 1998 branch(false, false); 1999 __ bind(not_taken); 2000 __ profile_not_taken_branch(r0); 2001 } 2002 2003 void TemplateTable::if_icmp(Condition cc) 2004 { 2005 transition(itos, vtos); 2006 // assume branch is more often taken than not (loops use backward branches) 2007 Label not_taken; 2008 __ pop_i(r1); 2009 __ cmpw(r1, r0, Assembler::LSL); 2010 __ br(j_not(cc), not_taken); 2011 branch(false, false); 2012 __ bind(not_taken); 2013 __ profile_not_taken_branch(r0); 2014 } 2015 2016 void TemplateTable::if_nullcmp(Condition cc) 2017 { 2018 transition(atos, vtos); 2019 // assume branch is more often taken than not (loops use backward branches) 2020 Label not_taken; 2021 if (cc == equal) 2022 __ cbnz(r0, not_taken); 2023 else 2024 __ cbz(r0, not_taken); 2025 branch(false, false); 2026 __ bind(not_taken); 2027 __ profile_not_taken_branch(r0); 2028 } 2029 2030 void TemplateTable::if_acmp(Condition cc) { 2031 transition(atos, vtos); 2032 // assume branch is more often taken than not (loops use backward branches) 2033 Label taken, not_taken; 2034 __ pop_ptr(r1); 2035 2036 __ profile_acmp(r2, r1, r0, r4); 2037 2038 Register is_inline_type_mask = rscratch1; 2039 __ mov(is_inline_type_mask, markWord::inline_type_pattern); 2040 2041 if (EnableValhalla) { 2042 __ cmp(r1, r0); 2043 __ br(Assembler::EQ, (cc == equal) ? taken : not_taken); 2044 2045 // might be substitutable, test if either r0 or r1 is null 2046 __ andr(r2, r0, r1); 2047 __ cbz(r2, (cc == equal) ? not_taken : taken); 2048 2049 // and both are values ? 2050 __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes())); 2051 __ andr(r2, r2, is_inline_type_mask); 2052 __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes())); 2053 __ andr(r4, r4, is_inline_type_mask); 2054 __ andr(r2, r2, r4); 2055 __ cmp(r2, is_inline_type_mask); 2056 __ br(Assembler::NE, (cc == equal) ? not_taken : taken); 2057 2058 // same value klass ? 2059 __ load_metadata(r2, r1); 2060 __ load_metadata(r4, r0); 2061 __ cmp(r2, r4); 2062 __ br(Assembler::NE, (cc == equal) ? not_taken : taken); 2063 2064 // Know both are the same type, let's test for substitutability... 2065 if (cc == equal) { 2066 invoke_is_substitutable(r0, r1, taken, not_taken); 2067 } else { 2068 invoke_is_substitutable(r0, r1, not_taken, taken); 2069 } 2070 __ stop("Not reachable"); 2071 } 2072 2073 __ cmpoop(r1, r0); 2074 __ br(j_not(cc), not_taken); 2075 __ bind(taken); 2076 branch(false, false); 2077 __ bind(not_taken); 2078 __ profile_not_taken_branch(r0, true); 2079 } 2080 2081 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj, 2082 Label& is_subst, Label& not_subst) { 2083 2084 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj); 2085 // Restored... r0 answer, jmp to outcome... 2086 __ cbz(r0, not_subst); 2087 __ b(is_subst); 2088 } 2089 2090 2091 void TemplateTable::ret() { 2092 transition(vtos, vtos); 2093 locals_index(r1); 2094 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 2095 __ profile_ret(r1, r2); 2096 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 2097 __ lea(rbcp, Address(rbcp, r1)); 2098 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 2099 __ dispatch_next(vtos, 0, /*generate_poll*/true); 2100 } 2101 2102 void TemplateTable::wide_ret() { 2103 transition(vtos, vtos); 2104 locals_index_wide(r1); 2105 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 2106 __ profile_ret(r1, r2); 2107 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 2108 __ lea(rbcp, Address(rbcp, r1)); 2109 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 2110 __ dispatch_next(vtos, 0, /*generate_poll*/true); 2111 } 2112 2113 2114 void TemplateTable::tableswitch() { 2115 Label default_case, continue_execution; 2116 transition(itos, vtos); 2117 // align rbcp 2118 __ lea(r1, at_bcp(BytesPerInt)); 2119 __ andr(r1, r1, -BytesPerInt); 2120 // load lo & hi 2121 __ ldrw(r2, Address(r1, BytesPerInt)); 2122 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2123 __ rev32(r2, r2); 2124 __ rev32(r3, r3); 2125 // check against lo & hi 2126 __ cmpw(r0, r2); 2127 __ br(Assembler::LT, default_case); 2128 __ cmpw(r0, r3); 2129 __ br(Assembler::GT, default_case); 2130 // lookup dispatch offset 2131 __ subw(r0, r0, r2); 2132 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2133 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2134 __ profile_switch_case(r0, r1, r2); 2135 // continue execution 2136 __ bind(continue_execution); 2137 __ rev32(r3, r3); 2138 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2139 __ add(rbcp, rbcp, r3, ext::sxtw); 2140 __ dispatch_only(vtos, /*generate_poll*/true); 2141 // handle default 2142 __ bind(default_case); 2143 __ profile_switch_default(r0); 2144 __ ldrw(r3, Address(r1, 0)); 2145 __ b(continue_execution); 2146 } 2147 2148 void TemplateTable::lookupswitch() { 2149 transition(itos, itos); 2150 __ stop("lookupswitch bytecode should have been rewritten"); 2151 } 2152 2153 void TemplateTable::fast_linearswitch() { 2154 transition(itos, vtos); 2155 Label loop_entry, loop, found, continue_execution; 2156 // bswap r0 so we can avoid bswapping the table entries 2157 __ rev32(r0, r0); 2158 // align rbcp 2159 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2160 // this instruction (change offsets 2161 // below) 2162 __ andr(r19, r19, -BytesPerInt); 2163 // set counter 2164 __ ldrw(r1, Address(r19, BytesPerInt)); 2165 __ rev32(r1, r1); 2166 __ b(loop_entry); 2167 // table search 2168 __ bind(loop); 2169 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2170 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2171 __ cmpw(r0, rscratch1); 2172 __ br(Assembler::EQ, found); 2173 __ bind(loop_entry); 2174 __ subs(r1, r1, 1); 2175 __ br(Assembler::PL, loop); 2176 // default case 2177 __ profile_switch_default(r0); 2178 __ ldrw(r3, Address(r19, 0)); 2179 __ b(continue_execution); 2180 // entry found -> get offset 2181 __ bind(found); 2182 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2183 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2184 __ profile_switch_case(r1, r0, r19); 2185 // continue execution 2186 __ bind(continue_execution); 2187 __ rev32(r3, r3); 2188 __ add(rbcp, rbcp, r3, ext::sxtw); 2189 __ ldrb(rscratch1, Address(rbcp, 0)); 2190 __ dispatch_only(vtos, /*generate_poll*/true); 2191 } 2192 2193 void TemplateTable::fast_binaryswitch() { 2194 transition(itos, vtos); 2195 // Implementation using the following core algorithm: 2196 // 2197 // int binary_search(int key, LookupswitchPair* array, int n) { 2198 // // Binary search according to "Methodik des Programmierens" by 2199 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2200 // int i = 0; 2201 // int j = n; 2202 // while (i+1 < j) { 2203 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2204 // // with Q: for all i: 0 <= i < n: key < a[i] 2205 // // where a stands for the array and assuming that the (inexisting) 2206 // // element a[n] is infinitely big. 2207 // int h = (i + j) >> 1; 2208 // // i < h < j 2209 // if (key < array[h].fast_match()) { 2210 // j = h; 2211 // } else { 2212 // i = h; 2213 // } 2214 // } 2215 // // R: a[i] <= key < a[i+1] or Q 2216 // // (i.e., if key is within array, i is the correct index) 2217 // return i; 2218 // } 2219 2220 // Register allocation 2221 const Register key = r0; // already set (tosca) 2222 const Register array = r1; 2223 const Register i = r2; 2224 const Register j = r3; 2225 const Register h = rscratch1; 2226 const Register temp = rscratch2; 2227 2228 // Find array start 2229 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2230 // get rid of this 2231 // instruction (change 2232 // offsets below) 2233 __ andr(array, array, -BytesPerInt); 2234 2235 // Initialize i & j 2236 __ mov(i, 0); // i = 0; 2237 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2238 2239 // Convert j into native byteordering 2240 __ rev32(j, j); 2241 2242 // And start 2243 Label entry; 2244 __ b(entry); 2245 2246 // binary search loop 2247 { 2248 Label loop; 2249 __ bind(loop); 2250 // int h = (i + j) >> 1; 2251 __ addw(h, i, j); // h = i + j; 2252 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2253 // if (key < array[h].fast_match()) { 2254 // j = h; 2255 // } else { 2256 // i = h; 2257 // } 2258 // Convert array[h].match to native byte-ordering before compare 2259 __ ldr(temp, Address(array, h, Address::lsl(3))); 2260 __ rev32(temp, temp); 2261 __ cmpw(key, temp); 2262 // j = h if (key < array[h].fast_match()) 2263 __ csel(j, h, j, Assembler::LT); 2264 // i = h if (key >= array[h].fast_match()) 2265 __ csel(i, h, i, Assembler::GE); 2266 // while (i+1 < j) 2267 __ bind(entry); 2268 __ addw(h, i, 1); // i+1 2269 __ cmpw(h, j); // i+1 < j 2270 __ br(Assembler::LT, loop); 2271 } 2272 2273 // end of binary search, result index is i (must check again!) 2274 Label default_case; 2275 // Convert array[i].match to native byte-ordering before compare 2276 __ ldr(temp, Address(array, i, Address::lsl(3))); 2277 __ rev32(temp, temp); 2278 __ cmpw(key, temp); 2279 __ br(Assembler::NE, default_case); 2280 2281 // entry found -> j = offset 2282 __ add(j, array, i, ext::uxtx, 3); 2283 __ ldrw(j, Address(j, BytesPerInt)); 2284 __ profile_switch_case(i, key, array); 2285 __ rev32(j, j); 2286 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2287 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2288 __ dispatch_only(vtos, /*generate_poll*/true); 2289 2290 // default case -> j = default offset 2291 __ bind(default_case); 2292 __ profile_switch_default(i); 2293 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2294 __ rev32(j, j); 2295 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2296 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2297 __ dispatch_only(vtos, /*generate_poll*/true); 2298 } 2299 2300 2301 void TemplateTable::_return(TosState state) 2302 { 2303 transition(state, state); 2304 assert(_desc->calls_vm(), 2305 "inconsistent calls_vm information"); // call in remove_activation 2306 2307 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2308 assert(state == vtos, "only valid state"); 2309 2310 __ ldr(c_rarg1, aaddress(0)); 2311 __ load_klass(r3, c_rarg1); 2312 __ ldrw(r3, Address(r3, Klass::access_flags_offset())); 2313 Label skip_register_finalizer; 2314 __ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer); 2315 2316 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2317 2318 __ bind(skip_register_finalizer); 2319 } 2320 2321 // Issue a StoreStore barrier after all stores but before return 2322 // from any constructor for any class with a final field. We don't 2323 // know if this is a finalizer, so we always do so. 2324 if (_desc->bytecode() == Bytecodes::_return) 2325 __ membar(MacroAssembler::StoreStore); 2326 2327 // Narrow result if state is itos but result type is smaller. 2328 // Need to narrow in the return bytecode rather than in generate_return_entry 2329 // since compiled code callers expect the result to already be narrowed. 2330 if (state == itos) { 2331 __ narrow(r0); 2332 } 2333 2334 __ remove_activation(state); 2335 __ ret(lr); 2336 } 2337 2338 // ---------------------------------------------------------------------------- 2339 // Volatile variables demand their effects be made known to all CPU's 2340 // in order. Store buffers on most chips allow reads & writes to 2341 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2342 // without some kind of memory barrier (i.e., it's not sufficient that 2343 // the interpreter does not reorder volatile references, the hardware 2344 // also must not reorder them). 2345 // 2346 // According to the new Java Memory Model (JMM): 2347 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2348 // writes act as acquire & release, so: 2349 // (2) A read cannot let unrelated NON-volatile memory refs that 2350 // happen after the read float up to before the read. It's OK for 2351 // non-volatile memory refs that happen before the volatile read to 2352 // float down below it. 2353 // (3) Similar a volatile write cannot let unrelated NON-volatile 2354 // memory refs that happen BEFORE the write float down to after the 2355 // write. It's OK for non-volatile memory refs that happen after the 2356 // volatile write to float up before it. 2357 // 2358 // We only put in barriers around volatile refs (they are expensive), 2359 // not _between_ memory refs (that would require us to track the 2360 // flavor of the previous memory refs). Requirements (2) and (3) 2361 // require some barriers before volatile stores and after volatile 2362 // loads. These nearly cover requirement (1) but miss the 2363 // volatile-store-volatile-load case. This final case is placed after 2364 // volatile-stores although it could just as well go before 2365 // volatile-loads. 2366 2367 void TemplateTable::resolve_cache_and_index(int byte_no, 2368 Register Rcache, 2369 Register index, 2370 size_t index_size) { 2371 const Register temp = r19; 2372 assert_different_registers(Rcache, index, temp); 2373 2374 Label resolved, clinit_barrier_slow; 2375 2376 Bytecodes::Code code = bytecode(); 2377 switch (code) { 2378 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2379 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2380 default: break; 2381 } 2382 2383 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2384 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2385 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2386 __ br(Assembler::EQ, resolved); 2387 2388 // resolve first time through 2389 // Class initialization barrier slow path lands here as well. 2390 __ bind(clinit_barrier_slow); 2391 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2392 __ mov(temp, (int) code); 2393 __ call_VM(noreg, entry, temp); 2394 2395 // Update registers with resolved info 2396 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2397 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2398 // so all clients ofthis method must be modified accordingly 2399 __ bind(resolved); 2400 2401 // Class initialization barrier for static methods 2402 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2403 __ load_resolved_method_at_index(byte_no, temp, Rcache); 2404 __ load_method_holder(temp, temp); 2405 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2406 } 2407 } 2408 2409 // The Rcache and index registers must be set before call 2410 // n.b unlike x86 cache already includes the index offset 2411 void TemplateTable::load_field_cp_cache_entry(Register obj, 2412 Register cache, 2413 Register index, 2414 Register off, 2415 Register flags, 2416 bool is_static = false) { 2417 assert_different_registers(cache, index, flags, off); 2418 2419 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2420 // Field offset 2421 __ ldr(off, Address(cache, in_bytes(cp_base_offset + 2422 ConstantPoolCacheEntry::f2_offset()))); 2423 // Flags 2424 __ ldrw(flags, Address(cache, in_bytes(cp_base_offset + 2425 ConstantPoolCacheEntry::flags_offset()))); 2426 2427 // klass overwrite register 2428 if (is_static) { 2429 __ ldr(obj, Address(cache, in_bytes(cp_base_offset + 2430 ConstantPoolCacheEntry::f1_offset()))); 2431 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2432 __ ldr(obj, Address(obj, mirror_offset)); 2433 __ resolve_oop_handle(obj, r5, rscratch2); 2434 } 2435 } 2436 2437 // The rmethod register is input and overwritten to be the adapter method for the 2438 // indy call. Link Register (lr) is set to the return address for the adapter and 2439 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2440 void TemplateTable::load_invokedynamic_entry(Register method) { 2441 // setup registers 2442 const Register appendix = r0; 2443 const Register cache = r2; 2444 const Register index = r3; 2445 assert_different_registers(method, appendix, cache, index, rcpool); 2446 2447 __ save_bcp(); 2448 2449 Label resolved; 2450 2451 __ load_resolved_indy_entry(cache, index); 2452 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2453 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2454 __ ldar(method, method); 2455 2456 // Compare the method to zero 2457 __ cbnz(method, resolved); 2458 2459 Bytecodes::Code code = bytecode(); 2460 2461 // Call to the interpreter runtime to resolve invokedynamic 2462 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2463 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2464 __ call_VM(noreg, entry, method); 2465 // Update registers with resolved info 2466 __ load_resolved_indy_entry(cache, index); 2467 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2468 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2469 __ ldar(method, method); 2470 2471 #ifdef ASSERT 2472 __ cbnz(method, resolved); 2473 __ stop("Should be resolved by now"); 2474 #endif // ASSERT 2475 __ bind(resolved); 2476 2477 Label L_no_push; 2478 // Check if there is an appendix 2479 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2480 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2481 2482 // Get appendix 2483 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2484 // Push the appendix as a trailing parameter 2485 // since the parameter_size includes it. 2486 __ push(method); 2487 __ mov(method, index); 2488 __ load_resolved_reference_at_index(appendix, method); 2489 __ verify_oop(appendix); 2490 __ pop(method); 2491 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2492 __ bind(L_no_push); 2493 2494 // compute return type 2495 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2496 // load return address 2497 // Return address is loaded into link register(lr) and not pushed to the stack 2498 // like x86 2499 { 2500 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2501 __ mov(rscratch1, table_addr); 2502 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2503 } 2504 } 2505 2506 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2507 Register method, 2508 Register itable_index, 2509 Register flags, 2510 bool is_invokevirtual, 2511 bool is_invokevfinal, /*unused*/ 2512 bool is_invokedynamic /*unused*/) { 2513 // setup registers 2514 const Register cache = rscratch2; 2515 const Register index = r4; 2516 assert_different_registers(method, flags); 2517 assert_different_registers(method, cache, index); 2518 assert_different_registers(itable_index, flags); 2519 assert_different_registers(itable_index, cache, index); 2520 // determine constant pool cache field offsets 2521 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2522 const int method_offset = in_bytes( 2523 ConstantPoolCache::base_offset() + 2524 (is_invokevirtual 2525 ? ConstantPoolCacheEntry::f2_offset() 2526 : ConstantPoolCacheEntry::f1_offset())); 2527 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2528 ConstantPoolCacheEntry::flags_offset()); 2529 // access constant pool cache fields 2530 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2531 ConstantPoolCacheEntry::f2_offset()); 2532 2533 size_t index_size = sizeof(u2); 2534 resolve_cache_and_index(byte_no, cache, index, index_size); 2535 __ ldr(method, Address(cache, method_offset)); 2536 2537 if (itable_index != noreg) { 2538 __ ldr(itable_index, Address(cache, index_offset)); 2539 } 2540 __ ldrw(flags, Address(cache, flags_offset)); 2541 } 2542 2543 2544 // The registers cache and index expected to be set before call. 2545 // Correct values of the cache and index registers are preserved. 2546 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2547 bool is_static, bool has_tos) { 2548 // do the JVMTI work here to avoid disturbing the register state below 2549 // We use c_rarg registers here because we want to use the register used in 2550 // the call to the VM 2551 if (JvmtiExport::can_post_field_access()) { 2552 // Check to see if a field access watch has been set before we 2553 // take the time to call into the VM. 2554 Label L1; 2555 assert_different_registers(cache, index, r0); 2556 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2557 __ ldrw(r0, Address(rscratch1)); 2558 __ cbzw(r0, L1); 2559 2560 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2561 __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); 2562 2563 if (is_static) { 2564 __ mov(c_rarg1, zr); // null object reference 2565 } else { 2566 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2567 __ verify_oop(c_rarg1); 2568 } 2569 // c_rarg1: object pointer or null 2570 // c_rarg2: cache entry pointer 2571 // c_rarg3: jvalue object on the stack 2572 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2573 InterpreterRuntime::post_field_access), 2574 c_rarg1, c_rarg2, c_rarg3); 2575 __ get_cache_and_index_at_bcp(cache, index, 1); 2576 __ bind(L1); 2577 } 2578 } 2579 2580 void TemplateTable::pop_and_check_object(Register r) 2581 { 2582 __ pop_ptr(r); 2583 __ null_check(r); // for field access must check obj. 2584 __ verify_oop(r); 2585 } 2586 2587 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2588 { 2589 const Register cache = r2; 2590 const Register index = r3; 2591 const Register obj = r4; 2592 const Register klass = r5; 2593 const Register inline_klass = r7; 2594 const Register off = r19; 2595 const Register flags = r0; 2596 const Register raw_flags = r6; 2597 const Register bc = r4; // uses same reg as obj, so don't mix them 2598 2599 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2600 jvmti_post_field_access(cache, index, is_static, false); 2601 load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); 2602 2603 if (!is_static) { 2604 // obj is on the stack 2605 pop_and_check_object(obj); 2606 } 2607 2608 // 8179954: We need to make sure that the code generated for 2609 // volatile accesses forms a sequentially-consistent set of 2610 // operations when combined with STLR and LDAR. Without a leading 2611 // membar it's possible for a simple Dekker test to fail if loads 2612 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2613 // the stores in one method and we interpret the loads in another. 2614 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2615 Label notVolatile; 2616 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2617 __ membar(MacroAssembler::AnyAny); 2618 __ bind(notVolatile); 2619 } 2620 2621 const Address field(obj, off); 2622 2623 Label Done, notByte, notBool, notInt, notShort, notChar, 2624 notLong, notFloat, notObj, notDouble; 2625 2626 if (!is_static) { 2627 __ ldr(klass, Address(cache, in_bytes(ConstantPoolCache::base_offset() + 2628 ConstantPoolCacheEntry::f1_offset()))); 2629 } 2630 2631 // x86 uses a shift and mask or wings it with a shift plus assert 2632 // the mask is not needed. aarch64 just uses bitfield extract 2633 __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 2634 2635 assert(btos == 0, "change code, btos != 0"); 2636 __ cbnz(flags, notByte); 2637 2638 // Don't rewrite getstatic, only getfield 2639 if (is_static) rc = may_not_rewrite; 2640 2641 // btos 2642 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2643 __ push(btos); 2644 // Rewrite bytecode to be faster 2645 if (rc == may_rewrite) { 2646 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2647 } 2648 __ b(Done); 2649 2650 __ bind(notByte); 2651 __ cmp(flags, (u1)ztos); 2652 __ br(Assembler::NE, notBool); 2653 2654 // ztos (same code as btos) 2655 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2656 __ push(ztos); 2657 // Rewrite bytecode to be faster 2658 if (rc == may_rewrite) { 2659 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2660 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2661 } 2662 __ b(Done); 2663 2664 __ bind(notBool); 2665 __ cmp(flags, (u1)atos); 2666 __ br(Assembler::NE, notObj); 2667 // atos 2668 if (!EnablePrimitiveClasses) { 2669 do_oop_load(_masm, field, r0, IN_HEAP); 2670 __ push(atos); 2671 if (rc == may_rewrite) { 2672 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2673 } 2674 __ b(Done); 2675 } else { // Valhalla 2676 if (is_static) { 2677 __ load_heap_oop(r0, field, rscratch1, rscratch2); 2678 Label is_null_free_inline_type, uninitialized; 2679 // Issue below if the static field has not been initialized yet 2680 __ test_field_is_null_free_inline_type(raw_flags, noreg /*temp*/, is_null_free_inline_type); 2681 // field is not a null free inline type 2682 __ push(atos); 2683 __ b(Done); 2684 // field is a null free inline type, must not return null even if uninitialized 2685 __ bind(is_null_free_inline_type); 2686 __ cbz(r0, uninitialized); 2687 __ push(atos); 2688 __ b(Done); 2689 __ bind(uninitialized); 2690 __ andw(raw_flags, raw_flags, ConstantPoolCacheEntry::field_index_mask); 2691 Label slow_case, finish; 2692 __ ldrb(rscratch1, Address(cache, InstanceKlass::init_state_offset())); 2693 __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized); 2694 __ br(Assembler::NE, slow_case); 2695 __ get_default_value_oop(klass, off /* temp */, r0); 2696 __ b(finish); 2697 __ bind(slow_case); 2698 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_inline_type_field), obj, raw_flags); 2699 __ bind(finish); 2700 __ verify_oop(r0); 2701 __ push(atos); 2702 __ b(Done); 2703 } else { 2704 Label is_flat, nonnull, is_inline_type, rewrite_inline; 2705 __ test_field_is_null_free_inline_type(raw_flags, noreg /*temp*/, is_inline_type); 2706 // Non-inline field case 2707 __ load_heap_oop(r0, field, rscratch1, rscratch2); 2708 __ push(atos); 2709 if (rc == may_rewrite) { 2710 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2711 } 2712 __ b(Done); 2713 __ bind(is_inline_type); 2714 __ test_field_is_flat(raw_flags, noreg /* temp */, is_flat); 2715 // field is not flat 2716 __ load_heap_oop(r0, field, rscratch1, rscratch2); 2717 __ cbnz(r0, nonnull); 2718 __ andw(raw_flags, raw_flags, ConstantPoolCacheEntry::field_index_mask); 2719 __ get_inline_type_field_klass(klass, raw_flags, inline_klass); 2720 __ get_default_value_oop(inline_klass, klass /* temp */, r0); 2721 __ bind(nonnull); 2722 __ verify_oop(r0); 2723 __ push(atos); 2724 __ b(rewrite_inline); 2725 __ bind(is_flat); 2726 // field is flat 2727 __ andw(raw_flags, raw_flags, ConstantPoolCacheEntry::field_index_mask); 2728 __ mov(r0, obj); 2729 __ read_flat_field(klass, raw_flags, off, inline_klass /* temp */, r0); 2730 __ verify_oop(r0); 2731 __ push(atos); 2732 __ bind(rewrite_inline); 2733 if (rc == may_rewrite) { 2734 patch_bytecode(Bytecodes::_fast_qgetfield, bc, r1); 2735 } 2736 __ b(Done); 2737 } 2738 } 2739 2740 __ bind(notObj); 2741 __ cmp(flags, (u1)itos); 2742 __ br(Assembler::NE, notInt); 2743 // itos 2744 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2745 __ push(itos); 2746 // Rewrite bytecode to be faster 2747 if (rc == may_rewrite) { 2748 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2749 } 2750 __ b(Done); 2751 2752 __ bind(notInt); 2753 __ cmp(flags, (u1)ctos); 2754 __ br(Assembler::NE, notChar); 2755 // ctos 2756 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2757 __ push(ctos); 2758 // Rewrite bytecode to be faster 2759 if (rc == may_rewrite) { 2760 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2761 } 2762 __ b(Done); 2763 2764 __ bind(notChar); 2765 __ cmp(flags, (u1)stos); 2766 __ br(Assembler::NE, notShort); 2767 // stos 2768 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2769 __ push(stos); 2770 // Rewrite bytecode to be faster 2771 if (rc == may_rewrite) { 2772 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2773 } 2774 __ b(Done); 2775 2776 __ bind(notShort); 2777 __ cmp(flags, (u1)ltos); 2778 __ br(Assembler::NE, notLong); 2779 // ltos 2780 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2781 __ push(ltos); 2782 // Rewrite bytecode to be faster 2783 if (rc == may_rewrite) { 2784 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2785 } 2786 __ b(Done); 2787 2788 __ bind(notLong); 2789 __ cmp(flags, (u1)ftos); 2790 __ br(Assembler::NE, notFloat); 2791 // ftos 2792 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2793 __ push(ftos); 2794 // Rewrite bytecode to be faster 2795 if (rc == may_rewrite) { 2796 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2797 } 2798 __ b(Done); 2799 2800 __ bind(notFloat); 2801 #ifdef ASSERT 2802 __ cmp(flags, (u1)dtos); 2803 __ br(Assembler::NE, notDouble); 2804 #endif 2805 // dtos 2806 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2807 __ push(dtos); 2808 // Rewrite bytecode to be faster 2809 if (rc == may_rewrite) { 2810 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2811 } 2812 #ifdef ASSERT 2813 __ b(Done); 2814 2815 __ bind(notDouble); 2816 __ stop("Bad state"); 2817 #endif 2818 2819 __ bind(Done); 2820 2821 Label notVolatile; 2822 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2823 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2824 __ bind(notVolatile); 2825 } 2826 2827 2828 void TemplateTable::getfield(int byte_no) 2829 { 2830 getfield_or_static(byte_no, false); 2831 } 2832 2833 void TemplateTable::nofast_getfield(int byte_no) { 2834 getfield_or_static(byte_no, false, may_not_rewrite); 2835 } 2836 2837 void TemplateTable::getstatic(int byte_no) 2838 { 2839 getfield_or_static(byte_no, true); 2840 } 2841 2842 // The registers cache and index expected to be set before call. 2843 // The function may destroy various registers, just not the cache and index registers. 2844 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2845 transition(vtos, vtos); 2846 2847 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2848 2849 if (JvmtiExport::can_post_field_modification()) { 2850 // Check to see if a field modification watch has been set before 2851 // we take the time to call into the VM. 2852 Label L1; 2853 assert_different_registers(cache, index, r0); 2854 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2855 __ ldrw(r0, Address(rscratch1)); 2856 __ cbz(r0, L1); 2857 2858 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2859 2860 if (is_static) { 2861 // Life is simple. Null out the object pointer. 2862 __ mov(c_rarg1, zr); 2863 } else { 2864 // Life is harder. The stack holds the value on top, followed by 2865 // the object. We don't know the size of the value, though; it 2866 // could be one or two words depending on its type. As a result, 2867 // we must find the type to determine where the object is. 2868 __ ldrw(c_rarg3, Address(c_rarg2, 2869 in_bytes(cp_base_offset + 2870 ConstantPoolCacheEntry::flags_offset()))); 2871 __ lsr(c_rarg3, c_rarg3, 2872 ConstantPoolCacheEntry::tos_state_shift); 2873 ConstantPoolCacheEntry::verify_tos_state_shift(); 2874 Label nope2, done, ok; 2875 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2876 __ cmpw(c_rarg3, ltos); 2877 __ br(Assembler::EQ, ok); 2878 __ cmpw(c_rarg3, dtos); 2879 __ br(Assembler::NE, nope2); 2880 __ bind(ok); 2881 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2882 __ bind(nope2); 2883 } 2884 // cache entry pointer 2885 __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); 2886 // object (tos) 2887 __ mov(c_rarg3, esp); 2888 // c_rarg1: object pointer set up above (null if static) 2889 // c_rarg2: cache entry pointer 2890 // c_rarg3: jvalue object on the stack 2891 __ call_VM(noreg, 2892 CAST_FROM_FN_PTR(address, 2893 InterpreterRuntime::post_field_modification), 2894 c_rarg1, c_rarg2, c_rarg3); 2895 __ get_cache_and_index_at_bcp(cache, index, 1); 2896 __ bind(L1); 2897 } 2898 } 2899 2900 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2901 transition(vtos, vtos); 2902 2903 const Register cache = r2; 2904 const Register index = r3; 2905 const Register obj = r2; 2906 const Register off = r19; 2907 const Register flags = r0; 2908 const Register flags2 = r6; 2909 const Register bc = r4; 2910 const Register inline_klass = r5; 2911 2912 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2913 jvmti_post_field_mod(cache, index, is_static); 2914 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2915 2916 Label Done; 2917 __ mov(r5, flags); 2918 2919 { 2920 Label notVolatile; 2921 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2922 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2923 __ bind(notVolatile); 2924 } 2925 2926 // field address 2927 const Address field(obj, off); 2928 2929 Label notByte, notBool, notInt, notShort, notChar, 2930 notLong, notFloat, notObj, notDouble; 2931 2932 __ mov(flags2, flags); 2933 2934 // x86 uses a shift and mask or wings it with a shift plus assert 2935 // the mask is not needed. aarch64 just uses bitfield extract 2936 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 2937 2938 assert(btos == 0, "change code, btos != 0"); 2939 __ cbnz(flags, notByte); 2940 2941 // Don't rewrite putstatic, only putfield 2942 if (is_static) rc = may_not_rewrite; 2943 2944 // btos 2945 { 2946 __ pop(btos); 2947 if (!is_static) pop_and_check_object(obj); 2948 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2949 if (rc == may_rewrite) { 2950 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2951 } 2952 __ b(Done); 2953 } 2954 2955 __ bind(notByte); 2956 __ cmp(flags, (u1)ztos); 2957 __ br(Assembler::NE, notBool); 2958 2959 // ztos 2960 { 2961 __ pop(ztos); 2962 if (!is_static) pop_and_check_object(obj); 2963 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2964 if (rc == may_rewrite) { 2965 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2966 } 2967 __ b(Done); 2968 } 2969 2970 __ bind(notBool); 2971 __ cmp(flags, (u1)atos); 2972 __ br(Assembler::NE, notObj); 2973 2974 // atos 2975 { 2976 if (!EnablePrimitiveClasses) { 2977 __ pop(atos); 2978 if (!is_static) pop_and_check_object(obj); 2979 // Store into the field 2980 do_oop_store(_masm, field, r0, IN_HEAP); 2981 if (rc == may_rewrite) { 2982 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2983 } 2984 __ b(Done); 2985 } else { // Valhalla 2986 __ pop(atos); 2987 if (is_static) { 2988 Label is_inline_type; 2989 __ test_field_is_not_null_free_inline_type(flags2, noreg /* temp */, is_inline_type); 2990 __ null_check(r0); 2991 __ bind(is_inline_type); 2992 do_oop_store(_masm, field, r0, IN_HEAP); 2993 __ b(Done); 2994 } else { 2995 Label is_inline_type, is_flat, rewrite_not_inline, rewrite_inline; 2996 __ test_field_is_null_free_inline_type(flags2, noreg /*temp*/, is_inline_type); 2997 // Not an inline type 2998 pop_and_check_object(obj); 2999 // Store into the field 3000 do_oop_store(_masm, field, r0, IN_HEAP); 3001 __ bind(rewrite_not_inline); 3002 if (rc == may_rewrite) { 3003 patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no); 3004 } 3005 __ b(Done); 3006 // Implementation of the inline type semantic 3007 __ bind(is_inline_type); 3008 __ null_check(r0); 3009 __ test_field_is_flat(flags2, noreg /*temp*/, is_flat); 3010 // field is not flat 3011 pop_and_check_object(obj); 3012 // Store into the field 3013 do_oop_store(_masm, field, r0, IN_HEAP); 3014 __ b(rewrite_inline); 3015 __ bind(is_flat); 3016 // field is flat 3017 pop_and_check_object(obj); 3018 assert_different_registers(r0, inline_klass, obj, off); 3019 __ load_klass(inline_klass, r0); 3020 __ data_for_oop(r0, r0, inline_klass); 3021 __ add(obj, obj, off); 3022 __ access_value_copy(IN_HEAP, r0, obj, inline_klass); 3023 __ bind(rewrite_inline); 3024 if (rc == may_rewrite) { 3025 patch_bytecode(Bytecodes::_fast_qputfield, bc, r19, true, byte_no); 3026 } 3027 __ b(Done); 3028 } 3029 } // Valhalla 3030 } 3031 3032 __ bind(notObj); 3033 __ cmp(flags, (u1)itos); 3034 __ br(Assembler::NE, notInt); 3035 3036 // itos 3037 { 3038 __ pop(itos); 3039 if (!is_static) pop_and_check_object(obj); 3040 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3041 if (rc == may_rewrite) { 3042 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 3043 } 3044 __ b(Done); 3045 } 3046 3047 __ bind(notInt); 3048 __ cmp(flags, (u1)ctos); 3049 __ br(Assembler::NE, notChar); 3050 3051 // ctos 3052 { 3053 __ pop(ctos); 3054 if (!is_static) pop_and_check_object(obj); 3055 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3056 if (rc == may_rewrite) { 3057 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 3058 } 3059 __ b(Done); 3060 } 3061 3062 __ bind(notChar); 3063 __ cmp(flags, (u1)stos); 3064 __ br(Assembler::NE, notShort); 3065 3066 // stos 3067 { 3068 __ pop(stos); 3069 if (!is_static) pop_and_check_object(obj); 3070 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3071 if (rc == may_rewrite) { 3072 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 3073 } 3074 __ b(Done); 3075 } 3076 3077 __ bind(notShort); 3078 __ cmp(flags, (u1)ltos); 3079 __ br(Assembler::NE, notLong); 3080 3081 // ltos 3082 { 3083 __ pop(ltos); 3084 if (!is_static) pop_and_check_object(obj); 3085 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3086 if (rc == may_rewrite) { 3087 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 3088 } 3089 __ b(Done); 3090 } 3091 3092 __ bind(notLong); 3093 __ cmp(flags, (u1)ftos); 3094 __ br(Assembler::NE, notFloat); 3095 3096 // ftos 3097 { 3098 __ pop(ftos); 3099 if (!is_static) pop_and_check_object(obj); 3100 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3101 if (rc == may_rewrite) { 3102 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 3103 } 3104 __ b(Done); 3105 } 3106 3107 __ bind(notFloat); 3108 #ifdef ASSERT 3109 __ cmp(flags, (u1)dtos); 3110 __ br(Assembler::NE, notDouble); 3111 #endif 3112 3113 // dtos 3114 { 3115 __ pop(dtos); 3116 if (!is_static) pop_and_check_object(obj); 3117 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3118 if (rc == may_rewrite) { 3119 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 3120 } 3121 } 3122 3123 #ifdef ASSERT 3124 __ b(Done); 3125 3126 __ bind(notDouble); 3127 __ stop("Bad state"); 3128 #endif 3129 3130 __ bind(Done); 3131 3132 { 3133 Label notVolatile; 3134 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3135 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3136 __ bind(notVolatile); 3137 } 3138 } 3139 3140 void TemplateTable::putfield(int byte_no) 3141 { 3142 putfield_or_static(byte_no, false); 3143 } 3144 3145 void TemplateTable::nofast_putfield(int byte_no) { 3146 putfield_or_static(byte_no, false, may_not_rewrite); 3147 } 3148 3149 void TemplateTable::putstatic(int byte_no) { 3150 putfield_or_static(byte_no, true); 3151 } 3152 3153 void TemplateTable::jvmti_post_fast_field_mod() 3154 { 3155 if (JvmtiExport::can_post_field_modification()) { 3156 // Check to see if a field modification watch has been set before 3157 // we take the time to call into the VM. 3158 Label L2; 3159 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3160 __ ldrw(c_rarg3, Address(rscratch1)); 3161 __ cbzw(c_rarg3, L2); 3162 __ pop_ptr(r19); // copy the object pointer from tos 3163 __ verify_oop(r19); 3164 __ push_ptr(r19); // put the object pointer back on tos 3165 // Save tos values before call_VM() clobbers them. Since we have 3166 // to do it for every data type, we use the saved values as the 3167 // jvalue object. 3168 switch (bytecode()) { // load values into the jvalue object 3169 case Bytecodes::_fast_qputfield: //fall through 3170 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 3171 case Bytecodes::_fast_bputfield: // fall through 3172 case Bytecodes::_fast_zputfield: // fall through 3173 case Bytecodes::_fast_sputfield: // fall through 3174 case Bytecodes::_fast_cputfield: // fall through 3175 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 3176 case Bytecodes::_fast_dputfield: __ push_d(); break; 3177 case Bytecodes::_fast_fputfield: __ push_f(); break; 3178 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 3179 3180 default: 3181 ShouldNotReachHere(); 3182 } 3183 __ mov(c_rarg3, esp); // points to jvalue on the stack 3184 // access constant pool cache entry 3185 __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1); 3186 __ verify_oop(r19); 3187 // r19: object pointer copied above 3188 // c_rarg2: cache entry pointer 3189 // c_rarg3: jvalue object on the stack 3190 __ call_VM(noreg, 3191 CAST_FROM_FN_PTR(address, 3192 InterpreterRuntime::post_field_modification), 3193 r19, c_rarg2, c_rarg3); 3194 3195 switch (bytecode()) { // restore tos values 3196 case Bytecodes::_fast_qputfield: //fall through 3197 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 3198 case Bytecodes::_fast_bputfield: // fall through 3199 case Bytecodes::_fast_zputfield: // fall through 3200 case Bytecodes::_fast_sputfield: // fall through 3201 case Bytecodes::_fast_cputfield: // fall through 3202 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 3203 case Bytecodes::_fast_dputfield: __ pop_d(); break; 3204 case Bytecodes::_fast_fputfield: __ pop_f(); break; 3205 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 3206 default: break; 3207 } 3208 __ bind(L2); 3209 } 3210 } 3211 3212 void TemplateTable::fast_storefield(TosState state) 3213 { 3214 transition(state, vtos); 3215 3216 ByteSize base = ConstantPoolCache::base_offset(); 3217 3218 jvmti_post_fast_field_mod(); 3219 3220 // access constant pool cache 3221 __ get_cache_and_index_at_bcp(r2, r1, 1); 3222 3223 // Must prevent reordering of the following cp cache loads with bytecode load 3224 __ membar(MacroAssembler::LoadLoad); 3225 3226 // test for volatile with r3 3227 __ ldrw(r3, Address(r2, in_bytes(base + 3228 ConstantPoolCacheEntry::flags_offset()))); 3229 3230 // replace index with field offset from cache entry 3231 __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3232 3233 { 3234 Label notVolatile; 3235 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3236 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3237 __ bind(notVolatile); 3238 } 3239 3240 Label notVolatile; 3241 3242 // Get object from stack 3243 pop_and_check_object(r2); 3244 3245 // field address 3246 const Address field(r2, r1); 3247 3248 // access field 3249 switch (bytecode()) { 3250 case Bytecodes::_fast_qputfield: //fall through 3251 { 3252 Label is_flat, done; 3253 __ null_check(r0); 3254 __ test_field_is_flat(r3, noreg /* temp */, is_flat); 3255 // field is not flat 3256 do_oop_store(_masm, field, r0, IN_HEAP); 3257 __ b(done); 3258 __ bind(is_flat); 3259 // field is flat 3260 __ load_klass(r4, r0); 3261 __ data_for_oop(r0, r0, r4); 3262 __ lea(rscratch1, field); 3263 __ access_value_copy(IN_HEAP, r0, rscratch1, r4); 3264 __ bind(done); 3265 } 3266 break; 3267 case Bytecodes::_fast_aputfield: 3268 do_oop_store(_masm, field, r0, IN_HEAP); 3269 break; 3270 case Bytecodes::_fast_lputfield: 3271 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3272 break; 3273 case Bytecodes::_fast_iputfield: 3274 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3275 break; 3276 case Bytecodes::_fast_zputfield: 3277 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3278 break; 3279 case Bytecodes::_fast_bputfield: 3280 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3281 break; 3282 case Bytecodes::_fast_sputfield: 3283 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3284 break; 3285 case Bytecodes::_fast_cputfield: 3286 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3287 break; 3288 case Bytecodes::_fast_fputfield: 3289 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3290 break; 3291 case Bytecodes::_fast_dputfield: 3292 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3293 break; 3294 default: 3295 ShouldNotReachHere(); 3296 } 3297 3298 { 3299 Label notVolatile; 3300 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3301 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3302 __ bind(notVolatile); 3303 } 3304 } 3305 3306 3307 void TemplateTable::fast_accessfield(TosState state) 3308 { 3309 transition(atos, state); 3310 // Do the JVMTI work here to avoid disturbing the register state below 3311 if (JvmtiExport::can_post_field_access()) { 3312 // Check to see if a field access watch has been set before we 3313 // take the time to call into the VM. 3314 Label L1; 3315 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3316 __ ldrw(r2, Address(rscratch1)); 3317 __ cbzw(r2, L1); 3318 // access constant pool cache entry 3319 __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1); 3320 __ verify_oop(r0); 3321 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3322 __ mov(c_rarg1, r0); 3323 // c_rarg1: object pointer copied above 3324 // c_rarg2: cache entry pointer 3325 __ call_VM(noreg, 3326 CAST_FROM_FN_PTR(address, 3327 InterpreterRuntime::post_field_access), 3328 c_rarg1, c_rarg2); 3329 __ pop_ptr(r0); // restore object pointer 3330 __ bind(L1); 3331 } 3332 3333 // access constant pool cache 3334 __ get_cache_and_index_at_bcp(r2, r1, 1); 3335 3336 // Must prevent reordering of the following cp cache loads with bytecode load 3337 __ membar(MacroAssembler::LoadLoad); 3338 3339 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3340 ConstantPoolCacheEntry::f2_offset()))); 3341 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3342 ConstantPoolCacheEntry::flags_offset()))); 3343 3344 // r0: object 3345 __ verify_oop(r0); 3346 __ null_check(r0); 3347 const Address field(r0, r1); 3348 3349 // 8179954: We need to make sure that the code generated for 3350 // volatile accesses forms a sequentially-consistent set of 3351 // operations when combined with STLR and LDAR. Without a leading 3352 // membar it's possible for a simple Dekker test to fail if loads 3353 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3354 // the stores in one method and we interpret the loads in another. 3355 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3356 Label notVolatile; 3357 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3358 __ membar(MacroAssembler::AnyAny); 3359 __ bind(notVolatile); 3360 } 3361 3362 // access field 3363 switch (bytecode()) { 3364 case Bytecodes::_fast_qgetfield: 3365 { 3366 Register index = r4, klass = r5, inline_klass = r6, tmp = r7; 3367 Label is_flat, nonnull, Done; 3368 __ test_field_is_flat(r3, noreg /* temp */, is_flat); 3369 // field is not flat 3370 __ load_heap_oop(r0, field, rscratch1, rscratch2); 3371 __ cbnz(r0, nonnull); 3372 __ andw(index, r3, ConstantPoolCacheEntry::field_index_mask); 3373 __ ldr(klass, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3374 ConstantPoolCacheEntry::f1_offset()))); 3375 __ get_inline_type_field_klass(klass, index, inline_klass); 3376 __ get_default_value_oop(inline_klass, tmp /* temp */, r0); 3377 __ bind(nonnull); 3378 __ verify_oop(r0); 3379 __ b(Done); 3380 __ bind(is_flat); 3381 // field is flat 3382 __ andw(index, r3, ConstantPoolCacheEntry::field_index_mask); 3383 __ ldr(klass, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3384 ConstantPoolCacheEntry::f1_offset()))); 3385 __ read_flat_field(klass, index, r1, tmp /* temp */, r0); 3386 __ verify_oop(r0); 3387 __ bind(Done); 3388 } 3389 break; 3390 case Bytecodes::_fast_agetfield: 3391 do_oop_load(_masm, field, r0, IN_HEAP); 3392 __ verify_oop(r0); 3393 break; 3394 case Bytecodes::_fast_lgetfield: 3395 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3396 break; 3397 case Bytecodes::_fast_igetfield: 3398 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3399 break; 3400 case Bytecodes::_fast_bgetfield: 3401 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3402 break; 3403 case Bytecodes::_fast_sgetfield: 3404 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3405 break; 3406 case Bytecodes::_fast_cgetfield: 3407 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3408 break; 3409 case Bytecodes::_fast_fgetfield: 3410 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3411 break; 3412 case Bytecodes::_fast_dgetfield: 3413 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3414 break; 3415 default: 3416 ShouldNotReachHere(); 3417 } 3418 { 3419 Label notVolatile; 3420 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3421 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3422 __ bind(notVolatile); 3423 } 3424 } 3425 3426 void TemplateTable::fast_xaccess(TosState state) 3427 { 3428 transition(vtos, state); 3429 3430 // get receiver 3431 __ ldr(r0, aaddress(0)); 3432 // access constant pool cache 3433 __ get_cache_and_index_at_bcp(r2, r3, 2); 3434 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3435 ConstantPoolCacheEntry::f2_offset()))); 3436 3437 // 8179954: We need to make sure that the code generated for 3438 // volatile accesses forms a sequentially-consistent set of 3439 // operations when combined with STLR and LDAR. Without a leading 3440 // membar it's possible for a simple Dekker test to fail if loads 3441 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3442 // the stores in one method and we interpret the loads in another. 3443 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3444 Label notVolatile; 3445 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3446 ConstantPoolCacheEntry::flags_offset()))); 3447 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3448 __ membar(MacroAssembler::AnyAny); 3449 __ bind(notVolatile); 3450 } 3451 3452 // make sure exception is reported in correct bcp range (getfield is 3453 // next instruction) 3454 __ increment(rbcp); 3455 __ null_check(r0); 3456 switch (state) { 3457 case itos: 3458 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3459 break; 3460 case atos: 3461 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3462 __ verify_oop(r0); 3463 break; 3464 case ftos: 3465 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3466 break; 3467 default: 3468 ShouldNotReachHere(); 3469 } 3470 3471 { 3472 Label notVolatile; 3473 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3474 ConstantPoolCacheEntry::flags_offset()))); 3475 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3476 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3477 __ bind(notVolatile); 3478 } 3479 3480 __ decrement(rbcp); 3481 } 3482 3483 3484 3485 //----------------------------------------------------------------------------- 3486 // Calls 3487 3488 void TemplateTable::prepare_invoke(int byte_no, 3489 Register method, // linked method (or i-klass) 3490 Register index, // itable index, MethodType, etc. 3491 Register recv, // if caller wants to see it 3492 Register flags // if caller wants to test it 3493 ) { 3494 // determine flags 3495 Bytecodes::Code code = bytecode(); 3496 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3497 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3498 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3499 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3500 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3501 const bool load_receiver = (recv != noreg); 3502 const bool save_flags = (flags != noreg); 3503 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3504 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3505 assert(flags == noreg || flags == r3, ""); 3506 assert(recv == noreg || recv == r2, ""); 3507 3508 // setup registers & access constant pool cache 3509 if (recv == noreg) recv = r2; 3510 if (flags == noreg) flags = r3; 3511 assert_different_registers(method, index, recv, flags); 3512 3513 // save 'interpreter return address' 3514 __ save_bcp(); 3515 3516 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3517 3518 // maybe push appendix to arguments (just before return address) 3519 if (is_invokehandle) { 3520 Label L_no_push; 3521 __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push); 3522 // Push the appendix as a trailing parameter. 3523 // This must be done before we get the receiver, 3524 // since the parameter_size includes it. 3525 __ push(r19); 3526 __ mov(r19, index); 3527 __ load_resolved_reference_at_index(index, r19); 3528 __ pop(r19); 3529 __ push(index); // push appendix (MethodType, CallSite, etc.) 3530 __ bind(L_no_push); 3531 } 3532 3533 // load receiver if needed (note: no return address pushed yet) 3534 if (load_receiver) { 3535 __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); 3536 // FIXME -- is this actually correct? looks like it should be 2 3537 // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3538 // const int receiver_is_at_end = -1; // back off one slot to get receiver 3539 // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3540 // __ movptr(recv, recv_addr); 3541 __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here? 3542 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3543 __ verify_oop(recv); 3544 } 3545 3546 // compute return type 3547 // x86 uses a shift and mask or wings it with a shift plus assert 3548 // the mask is not needed. aarch64 just uses bitfield extract 3549 __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 3550 // load return address 3551 { 3552 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3553 __ mov(rscratch1, table_addr); 3554 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3555 } 3556 } 3557 3558 3559 void TemplateTable::invokevirtual_helper(Register index, 3560 Register recv, 3561 Register flags) 3562 { 3563 // Uses temporary registers r0, r3 3564 assert_different_registers(index, recv, r0, r3); 3565 // Test for an invoke of a final method 3566 Label notFinal; 3567 __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal); 3568 3569 const Register method = index; // method must be rmethod 3570 assert(method == rmethod, 3571 "Method must be rmethod for interpreter calling convention"); 3572 3573 // do the call - the index is actually the method to call 3574 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3575 3576 // It's final, need a null check here! 3577 __ null_check(recv); 3578 3579 // profile this call 3580 __ profile_final_call(r0); 3581 __ profile_arguments_type(r0, method, r4, true); 3582 3583 __ jump_from_interpreted(method, r0); 3584 3585 __ bind(notFinal); 3586 3587 // get receiver klass 3588 __ load_klass(r0, recv); 3589 3590 // profile this call 3591 __ profile_virtual_call(r0, rlocals, r3); 3592 3593 // get target Method & entry point 3594 __ lookup_virtual_method(r0, index, method); 3595 __ profile_arguments_type(r3, method, r4, true); 3596 // FIXME -- this looks completely redundant. is it? 3597 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3598 __ jump_from_interpreted(method, r3); 3599 } 3600 3601 void TemplateTable::invokevirtual(int byte_no) 3602 { 3603 transition(vtos, vtos); 3604 assert(byte_no == f2_byte, "use this argument"); 3605 3606 prepare_invoke(byte_no, rmethod, noreg, r2, r3); 3607 3608 // rmethod: index (actually a Method*) 3609 // r2: receiver 3610 // r3: flags 3611 3612 invokevirtual_helper(rmethod, r2, r3); 3613 } 3614 3615 void TemplateTable::invokespecial(int byte_no) 3616 { 3617 transition(vtos, vtos); 3618 assert(byte_no == f1_byte, "use this argument"); 3619 3620 prepare_invoke(byte_no, rmethod, noreg, // get f1 Method* 3621 r2); // get receiver also for null check 3622 __ verify_oop(r2); 3623 __ null_check(r2); 3624 // do the call 3625 __ profile_call(r0); 3626 __ profile_arguments_type(r0, rmethod, rbcp, false); 3627 __ jump_from_interpreted(rmethod, r0); 3628 } 3629 3630 void TemplateTable::invokestatic(int byte_no) 3631 { 3632 transition(vtos, vtos); 3633 assert(byte_no == f1_byte, "use this argument"); 3634 3635 prepare_invoke(byte_no, rmethod); // get f1 Method* 3636 // do the call 3637 __ profile_call(r0); 3638 __ profile_arguments_type(r0, rmethod, r4, false); 3639 __ jump_from_interpreted(rmethod, r0); 3640 } 3641 3642 void TemplateTable::fast_invokevfinal(int byte_no) 3643 { 3644 __ call_Unimplemented(); 3645 } 3646 3647 void TemplateTable::invokeinterface(int byte_no) { 3648 transition(vtos, vtos); 3649 assert(byte_no == f1_byte, "use this argument"); 3650 3651 prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method* 3652 r2, r3); // recv, flags 3653 3654 // r0: interface klass (from f1) 3655 // rmethod: method (from f2) 3656 // r2: receiver 3657 // r3: flags 3658 3659 // First check for Object case, then private interface method, 3660 // then regular interface method. 3661 3662 // Special case of invokeinterface called for virtual method of 3663 // java.lang.Object. See cpCache.cpp for details. 3664 Label notObjectMethod; 3665 __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notObjectMethod); 3666 3667 invokevirtual_helper(rmethod, r2, r3); 3668 __ bind(notObjectMethod); 3669 3670 Label no_such_interface; 3671 3672 // Check for private method invocation - indicated by vfinal 3673 Label notVFinal; 3674 __ tbz(r3, ConstantPoolCacheEntry::is_vfinal_shift, notVFinal); 3675 3676 // Get receiver klass into r3 3677 __ load_klass(r3, r2); 3678 3679 Label subtype; 3680 __ check_klass_subtype(r3, r0, r4, subtype); 3681 // If we get here the typecheck failed 3682 __ b(no_such_interface); 3683 __ bind(subtype); 3684 3685 __ profile_final_call(r0); 3686 __ profile_arguments_type(r0, rmethod, r4, true); 3687 __ jump_from_interpreted(rmethod, r0); 3688 3689 __ bind(notVFinal); 3690 3691 // Get receiver klass into r3 3692 __ restore_locals(); 3693 __ load_klass(r3, r2); 3694 3695 Label no_such_method; 3696 3697 // Preserve method for throw_AbstractMethodErrorVerbose. 3698 __ mov(r16, rmethod); 3699 // Receiver subtype check against REFC. 3700 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3701 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3702 r3, r0, noreg, 3703 // outputs: scan temp. reg, scan temp. reg 3704 rscratch2, r13, 3705 no_such_interface, 3706 /*return_method=*/false); 3707 3708 // profile this call 3709 __ profile_virtual_call(r3, r13, r19); 3710 3711 // Get declaring interface class from method, and itable index 3712 3713 __ load_method_holder(r0, rmethod); 3714 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3715 __ subw(rmethod, rmethod, Method::itable_index_max); 3716 __ negw(rmethod, rmethod); 3717 3718 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3719 __ mov(rlocals, r3); 3720 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3721 rlocals, r0, rmethod, 3722 // outputs: method, scan temp. reg 3723 rmethod, r13, 3724 no_such_interface); 3725 3726 // rmethod,: Method to call 3727 // r2: receiver 3728 // Check for abstract method error 3729 // Note: This should be done more efficiently via a throw_abstract_method_error 3730 // interpreter entry point and a conditional jump to it in case of a null 3731 // method. 3732 __ cbz(rmethod, no_such_method); 3733 3734 __ profile_arguments_type(r3, rmethod, r13, true); 3735 3736 // do the call 3737 // r2: receiver 3738 // rmethod,: Method 3739 __ jump_from_interpreted(rmethod, r3); 3740 __ should_not_reach_here(); 3741 3742 // exception handling code follows... 3743 // note: must restore interpreter registers to canonical 3744 // state for exception handling to work correctly! 3745 3746 __ bind(no_such_method); 3747 // throw exception 3748 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3749 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3750 // Pass arguments for generating a verbose error message. 3751 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3752 // the call_VM checks for exception, so we should never return here. 3753 __ should_not_reach_here(); 3754 3755 __ bind(no_such_interface); 3756 // throw exception 3757 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3758 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3759 // Pass arguments for generating a verbose error message. 3760 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3761 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3762 // the call_VM checks for exception, so we should never return here. 3763 __ should_not_reach_here(); 3764 return; 3765 } 3766 3767 void TemplateTable::invokehandle(int byte_no) { 3768 transition(vtos, vtos); 3769 assert(byte_no == f1_byte, "use this argument"); 3770 3771 prepare_invoke(byte_no, rmethod, r0, r2); 3772 __ verify_method_ptr(r2); 3773 __ verify_oop(r2); 3774 __ null_check(r2); 3775 3776 // FIXME: profile the LambdaForm also 3777 3778 // r13 is safe to use here as a scratch reg because it is about to 3779 // be clobbered by jump_from_interpreted(). 3780 __ profile_final_call(r13); 3781 __ profile_arguments_type(r13, rmethod, r4, true); 3782 3783 __ jump_from_interpreted(rmethod, r0); 3784 } 3785 3786 void TemplateTable::invokedynamic(int byte_no) { 3787 transition(vtos, vtos); 3788 assert(byte_no == f1_byte, "use this argument"); 3789 3790 load_invokedynamic_entry(rmethod); 3791 3792 // r0: CallSite object (from cpool->resolved_references[]) 3793 // rmethod: MH.linkToCallSite method (from f2) 3794 3795 // Note: r0_callsite is already pushed by prepare_invoke 3796 3797 // %%% should make a type profile for any invokedynamic that takes a ref argument 3798 // profile this call 3799 __ profile_call(rbcp); 3800 __ profile_arguments_type(r3, rmethod, r13, false); 3801 3802 __ verify_oop(r0); 3803 3804 __ jump_from_interpreted(rmethod, r0); 3805 } 3806 3807 3808 //----------------------------------------------------------------------------- 3809 // Allocation 3810 3811 void TemplateTable::_new() { 3812 transition(vtos, atos); 3813 3814 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3815 Label slow_case; 3816 Label done; 3817 Label is_not_value; 3818 Label initialize_header; 3819 3820 __ get_cpool_and_tags(r4, r0); 3821 // Make sure the class we're about to instantiate has been resolved. 3822 // This is done before loading InstanceKlass to be consistent with the order 3823 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3824 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3825 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3826 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3827 __ ldarb(rscratch1, rscratch1); 3828 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3829 __ br(Assembler::NE, slow_case); 3830 3831 // get InstanceKlass 3832 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3833 3834 __ ldrb(rscratch1, Address(r4, InstanceKlass::kind_offset())); 3835 __ cmp(rscratch1, (u1)Klass::InlineKlassKind); 3836 __ br(Assembler::NE, is_not_value); 3837 3838 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_InstantiationError)); 3839 3840 __ bind(is_not_value); 3841 3842 // make sure klass is initialized & doesn't have finalizer 3843 // make sure klass is fully initialized 3844 __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset())); 3845 __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized); 3846 __ br(Assembler::NE, slow_case); 3847 3848 __ allocate_instance(r4, r0, r3, r1, true, slow_case); 3849 __ b(done); 3850 3851 // slow case 3852 __ bind(slow_case); 3853 __ get_constant_pool(c_rarg1); 3854 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3855 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3856 __ verify_oop(r0); 3857 3858 // continue 3859 __ bind(done); 3860 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3861 __ membar(Assembler::StoreStore); 3862 } 3863 3864 void TemplateTable::aconst_init() { 3865 transition(vtos, atos); 3866 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3867 __ get_constant_pool(c_rarg1); 3868 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::aconst_init), 3869 c_rarg1, c_rarg2); 3870 __ verify_oop(r0); 3871 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3872 __ membar(Assembler::StoreStore); 3873 } 3874 3875 void TemplateTable::withfield() { 3876 transition(vtos, atos); 3877 resolve_cache_and_index(f2_byte, c_rarg1 /*cache*/, c_rarg2 /*index*/, sizeof(u2)); 3878 3879 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3880 3881 // n.b. unlike x86 cache is now rcpool plus the indexed offset 3882 __ lea(c_rarg1, Address(c_rarg1, in_bytes(cp_base_offset))); 3883 3884 __ lea(c_rarg2, at_tos()); 3885 call_VM(r1, CAST_FROM_FN_PTR(address, InterpreterRuntime::withfield), c_rarg1, c_rarg2); 3886 // new value type is returned in r1 3887 // stack adjustment is returned in r0 3888 __ verify_oop(r1); 3889 __ add(esp, esp, r0); 3890 __ mov(r0, r1); 3891 } 3892 3893 void TemplateTable::newarray() { 3894 transition(itos, atos); 3895 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3896 __ mov(c_rarg2, r0); 3897 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3898 c_rarg1, c_rarg2); 3899 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3900 __ membar(Assembler::StoreStore); 3901 } 3902 3903 void TemplateTable::anewarray() { 3904 transition(itos, atos); 3905 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3906 __ get_constant_pool(c_rarg1); 3907 __ mov(c_rarg3, r0); 3908 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3909 c_rarg1, c_rarg2, c_rarg3); 3910 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3911 __ membar(Assembler::StoreStore); 3912 } 3913 3914 void TemplateTable::arraylength() { 3915 transition(atos, itos); 3916 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3917 } 3918 3919 void TemplateTable::checkcast() 3920 { 3921 transition(atos, atos); 3922 Label done, is_null, ok_is_subtype, quicked, resolved; 3923 __ cbz(r0, is_null); 3924 3925 // Get cpool & tags index 3926 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3927 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3928 // See if bytecode has already been quicked 3929 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3930 __ lea(r1, Address(rscratch1, r19)); 3931 __ ldarb(r1, r1); 3932 __ andr(r1, r1, ~JVM_CONSTANT_QDescBit); 3933 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3934 __ br(Assembler::EQ, quicked); 3935 3936 __ push(atos); // save receiver for result, and for GC 3937 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3938 // vm_result_2 has metadata result 3939 __ get_vm_result_2(r0, rthread); 3940 __ pop(r3); // restore receiver 3941 __ b(resolved); 3942 3943 // Get superklass in r0 and subklass in r3 3944 __ bind(quicked); 3945 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3946 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3947 3948 __ bind(resolved); 3949 __ load_klass(r19, r3); 3950 3951 // Generate subtype check. Blows r2, r5. Object in r3. 3952 // Superklass in r0. Subklass in r19. 3953 __ gen_subtype_check(r19, ok_is_subtype); 3954 3955 // Come here on failure 3956 __ push(r3); 3957 // object is at TOS 3958 __ b(Interpreter::_throw_ClassCastException_entry); 3959 3960 // Come here on success 3961 __ bind(ok_is_subtype); 3962 __ mov(r0, r3); // Restore object in r3 3963 3964 __ b(done); 3965 __ bind(is_null); 3966 3967 // Collect counts on whether this test sees nulls a lot or not. 3968 if (ProfileInterpreter) { 3969 __ profile_null_seen(r2); 3970 } 3971 3972 if (EnablePrimitiveClasses) { 3973 // Get cpool & tags index 3974 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3975 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3976 // See if bytecode has already been quicked 3977 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3978 __ lea(r1, Address(rscratch1, r19)); 3979 __ ldarb(r1, r1); 3980 // See if CP entry is a Q-descriptor 3981 __ andr (r1, r1, JVM_CONSTANT_QDescBit); 3982 __ cmp(r1, (u1) JVM_CONSTANT_QDescBit); 3983 __ br(Assembler::NE, done); 3984 __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry)); 3985 } 3986 3987 __ bind(done); 3988 } 3989 3990 void TemplateTable::instanceof() { 3991 transition(atos, itos); 3992 Label done, is_null, ok_is_subtype, quicked, resolved; 3993 __ cbz(r0, is_null); 3994 3995 // Get cpool & tags index 3996 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3997 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3998 // See if bytecode has already been quicked 3999 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 4000 __ lea(r1, Address(rscratch1, r19)); 4001 __ ldarb(r1, r1); 4002 __ andr(r1, r1, ~JVM_CONSTANT_QDescBit); 4003 __ cmp(r1, (u1)JVM_CONSTANT_Class); 4004 __ br(Assembler::EQ, quicked); 4005 4006 __ push(atos); // save receiver for result, and for GC 4007 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4008 // vm_result_2 has metadata result 4009 __ get_vm_result_2(r0, rthread); 4010 __ pop(r3); // restore receiver 4011 __ verify_oop(r3); 4012 __ load_klass(r3, r3); 4013 __ b(resolved); 4014 4015 // Get superklass in r0 and subklass in r3 4016 __ bind(quicked); 4017 __ load_klass(r3, r0); 4018 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 4019 4020 __ bind(resolved); 4021 4022 // Generate subtype check. Blows r2, r5 4023 // Superklass in r0. Subklass in r3. 4024 __ gen_subtype_check(r3, ok_is_subtype); 4025 4026 // Come here on failure 4027 __ mov(r0, 0); 4028 __ b(done); 4029 // Come here on success 4030 __ bind(ok_is_subtype); 4031 __ mov(r0, 1); 4032 4033 // Collect counts on whether this test sees nulls a lot or not. 4034 if (ProfileInterpreter) { 4035 __ b(done); 4036 __ bind(is_null); 4037 __ profile_null_seen(r2); 4038 } else { 4039 __ bind(is_null); // same as 'done' 4040 } 4041 __ bind(done); 4042 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 4043 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 4044 } 4045 4046 //----------------------------------------------------------------------------- 4047 // Breakpoints 4048 void TemplateTable::_breakpoint() { 4049 // Note: We get here even if we are single stepping.. 4050 // jbug inists on setting breakpoints at every bytecode 4051 // even if we are in single step mode. 4052 4053 transition(vtos, vtos); 4054 4055 // get the unpatched byte code 4056 __ get_method(c_rarg1); 4057 __ call_VM(noreg, 4058 CAST_FROM_FN_PTR(address, 4059 InterpreterRuntime::get_original_bytecode_at), 4060 c_rarg1, rbcp); 4061 __ mov(r19, r0); 4062 4063 // post the breakpoint event 4064 __ call_VM(noreg, 4065 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4066 rmethod, rbcp); 4067 4068 // complete the execution of original bytecode 4069 __ mov(rscratch1, r19); 4070 __ dispatch_only_normal(vtos); 4071 } 4072 4073 //----------------------------------------------------------------------------- 4074 // Exceptions 4075 4076 void TemplateTable::athrow() { 4077 transition(atos, vtos); 4078 __ null_check(r0); 4079 __ b(Interpreter::throw_exception_entry()); 4080 } 4081 4082 //----------------------------------------------------------------------------- 4083 // Synchronization 4084 // 4085 // Note: monitorenter & exit are symmetric routines; which is reflected 4086 // in the assembly code structure as well 4087 // 4088 // Stack layout: 4089 // 4090 // [expressions ] <--- esp = expression stack top 4091 // .. 4092 // [expressions ] 4093 // [monitor entry] <--- monitor block top = expression stack bot 4094 // .. 4095 // [monitor entry] 4096 // [frame data ] <--- monitor block bot 4097 // ... 4098 // [saved rfp ] <--- rfp 4099 void TemplateTable::monitorenter() 4100 { 4101 transition(atos, vtos); 4102 4103 // check for null object 4104 __ null_check(r0); 4105 4106 Label is_inline_type; 4107 __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 4108 __ test_markword_is_inline_type(rscratch1, is_inline_type); 4109 4110 const Address monitor_block_top( 4111 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4112 const Address monitor_block_bot( 4113 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 4114 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4115 4116 Label allocated; 4117 4118 // initialize entry pointer 4119 __ mov(c_rarg1, zr); // points to free slot or null 4120 4121 // find a free slot in the monitor block (result in c_rarg1) 4122 { 4123 Label entry, loop, exit; 4124 __ ldr(c_rarg3, monitor_block_top); // points to current entry, 4125 // starting with top-most entry 4126 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4127 4128 __ b(entry); 4129 4130 __ bind(loop); 4131 // check if current entry is used 4132 // if not used then remember entry in c_rarg1 4133 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 4134 __ cmp(zr, rscratch1); 4135 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 4136 // check if current entry is for same object 4137 __ cmp(r0, rscratch1); 4138 // if same object then stop searching 4139 __ br(Assembler::EQ, exit); 4140 // otherwise advance to next entry 4141 __ add(c_rarg3, c_rarg3, entry_size); 4142 __ bind(entry); 4143 // check if bottom reached 4144 __ cmp(c_rarg3, c_rarg2); 4145 // if not at bottom then check this entry 4146 __ br(Assembler::NE, loop); 4147 __ bind(exit); 4148 } 4149 4150 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 4151 // if found, continue with that on 4152 4153 // allocate one if there's no free slot 4154 { 4155 Label entry, loop; 4156 // 1. compute new pointers // rsp: old expression stack top 4157 4158 __ check_extended_sp(); 4159 __ sub(sp, sp, entry_size); // make room for the monitor 4160 __ mov(rscratch1, sp); 4161 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 4162 4163 __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 4164 __ sub(esp, esp, entry_size); // move expression stack top 4165 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 4166 __ mov(c_rarg3, esp); // set start value for copy loop 4167 __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom 4168 4169 __ b(entry); 4170 // 2. move expression stack contents 4171 __ bind(loop); 4172 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 4173 // word from old location 4174 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 4175 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 4176 __ bind(entry); 4177 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 4178 __ br(Assembler::NE, loop); // if not at bottom then 4179 // copy next word 4180 } 4181 4182 // call run-time routine 4183 // c_rarg1: points to monitor entry 4184 __ bind(allocated); 4185 4186 // Increment bcp to point to the next bytecode, so exception 4187 // handling for async. exceptions work correctly. 4188 // The object has already been popped from the stack, so the 4189 // expression stack looks correct. 4190 __ increment(rbcp); 4191 4192 // store object 4193 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 4194 __ lock_object(c_rarg1); 4195 4196 // check to make sure this monitor doesn't cause stack overflow after locking 4197 __ save_bcp(); // in case of exception 4198 __ generate_stack_overflow_check(0); 4199 4200 // The bcp has already been incremented. Just need to dispatch to 4201 // next instruction. 4202 __ dispatch_next(vtos); 4203 4204 __ bind(is_inline_type); 4205 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4206 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4207 __ should_not_reach_here(); 4208 } 4209 4210 4211 void TemplateTable::monitorexit() 4212 { 4213 transition(atos, vtos); 4214 4215 // check for null object 4216 __ null_check(r0); 4217 4218 const int is_inline_type_mask = markWord::inline_type_pattern; 4219 Label has_identity; 4220 __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 4221 __ mov(rscratch2, is_inline_type_mask); 4222 __ andr(rscratch1, rscratch1, rscratch2); 4223 __ cmp(rscratch1, rscratch2); 4224 __ br(Assembler::NE, has_identity); 4225 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4226 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4227 __ should_not_reach_here(); 4228 __ bind(has_identity); 4229 4230 const Address monitor_block_top( 4231 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4232 const Address monitor_block_bot( 4233 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 4234 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4235 4236 Label found; 4237 4238 // find matching slot 4239 { 4240 Label entry, loop; 4241 __ ldr(c_rarg1, monitor_block_top); // points to current entry, 4242 // starting with top-most entry 4243 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 4244 // of monitor block 4245 __ b(entry); 4246 4247 __ bind(loop); 4248 // check if current entry is for same object 4249 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 4250 __ cmp(r0, rscratch1); 4251 // if same object then stop searching 4252 __ br(Assembler::EQ, found); 4253 // otherwise advance to next entry 4254 __ add(c_rarg1, c_rarg1, entry_size); 4255 __ bind(entry); 4256 // check if bottom reached 4257 __ cmp(c_rarg1, c_rarg2); 4258 // if not at bottom then check this entry 4259 __ br(Assembler::NE, loop); 4260 } 4261 4262 // error handling. Unlocking was not block-structured 4263 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4264 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4265 __ should_not_reach_here(); 4266 4267 // call run-time routine 4268 __ bind(found); 4269 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 4270 __ unlock_object(c_rarg1); 4271 __ pop_ptr(r0); // discard object 4272 } 4273 4274 4275 // Wide instructions 4276 void TemplateTable::wide() 4277 { 4278 __ load_unsigned_byte(r19, at_bcp(1)); 4279 __ mov(rscratch1, (address)Interpreter::_wentry_point); 4280 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 4281 __ br(rscratch1); 4282 } 4283 4284 4285 // Multi arrays 4286 void TemplateTable::multianewarray() { 4287 transition(vtos, atos); 4288 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 4289 // last dim is on top of stack; we want address of first one: 4290 // first_addr = last_addr + (ndims - 1) * wordSize 4291 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 4292 __ sub(c_rarg1, c_rarg1, wordSize); 4293 call_VM(r0, 4294 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 4295 c_rarg1); 4296 __ load_unsigned_byte(r1, at_bcp(3)); 4297 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 4298 }