1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "compiler/compilerDefinitions.inline.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "gc/shared/tlab_globals.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateTable.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/resolvedFieldEntry.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  53 
  54 // Address computation: local variables
  55 
  56 static inline Address iaddress(int n) {
  57   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  58 }
  59 
  60 static inline Address laddress(int n) {
  61   return iaddress(n + 1);
  62 }
  63 
  64 static inline Address faddress(int n) {
  65   return iaddress(n);
  66 }
  67 
  68 static inline Address daddress(int n) {
  69   return laddress(n);
  70 }
  71 
  72 static inline Address aaddress(int n) {
  73   return iaddress(n);
  74 }
  75 
  76 static inline Address iaddress(Register r) {
  77   return Address(rlocals, r, Address::lsl(3));
  78 }
  79 
  80 static inline Address laddress(Register r, Register scratch,
  81                                InterpreterMacroAssembler* _masm) {
  82   __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
  83   return Address(scratch, Interpreter::local_offset_in_bytes(1));
  84 }
  85 
  86 static inline Address faddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address daddress(Register r, Register scratch,
  91                                InterpreterMacroAssembler* _masm) {
  92   return laddress(r, scratch, _masm);
  93 }
  94 
  95 static inline Address aaddress(Register r) {
  96   return iaddress(r);
  97 }
  98 
  99 static inline Address at_rsp() {
 100   return Address(esp, 0);
 101 }
 102 
 103 // At top of Java expression stack which may be different than esp().  It
 104 // isn't for category 1 objects.
 105 static inline Address at_tos   () {
 106   return Address(esp,  Interpreter::expr_offset_in_bytes(0));
 107 }
 108 
 109 static inline Address at_tos_p1() {
 110   return Address(esp,  Interpreter::expr_offset_in_bytes(1));
 111 }
 112 
 113 static inline Address at_tos_p2() {
 114   return Address(esp,  Interpreter::expr_offset_in_bytes(2));
 115 }
 116 
 117 static inline Address at_tos_p3() {
 118   return Address(esp,  Interpreter::expr_offset_in_bytes(3));
 119 }
 120 
 121 static inline Address at_tos_p4() {
 122   return Address(esp,  Interpreter::expr_offset_in_bytes(4));
 123 }
 124 
 125 static inline Address at_tos_p5() {
 126   return Address(esp,  Interpreter::expr_offset_in_bytes(5));
 127 }
 128 
 129 // Condition conversion
 130 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 131   switch (cc) {
 132   case TemplateTable::equal        : return Assembler::NE;
 133   case TemplateTable::not_equal    : return Assembler::EQ;
 134   case TemplateTable::less         : return Assembler::GE;
 135   case TemplateTable::less_equal   : return Assembler::GT;
 136   case TemplateTable::greater      : return Assembler::LE;
 137   case TemplateTable::greater_equal: return Assembler::LT;
 138   }
 139   ShouldNotReachHere();
 140   return Assembler::EQ;
 141 }
 142 
 143 
 144 // Miscellaneous helper routines
 145 // Store an oop (or null) at the Address described by obj.
 146 // If val == noreg this means store a null
 147 static void do_oop_store(InterpreterMacroAssembler* _masm,
 148                          Address dst,
 149                          Register val,
 150                          DecoratorSet decorators) {
 151   assert(val == noreg || val == r0, "parameter is just for looks");
 152   __ store_heap_oop(dst, val, r10, r11, r3, decorators);
 153 }
 154 
 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   assert_different_registers(bc_reg, temp_reg);
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {
 176   case Bytecodes::_fast_vputfield:
 177   case Bytecodes::_fast_aputfield:
 178   case Bytecodes::_fast_bputfield:
 179   case Bytecodes::_fast_zputfield:
 180   case Bytecodes::_fast_cputfield:
 181   case Bytecodes::_fast_dputfield:
 182   case Bytecodes::_fast_fputfield:
 183   case Bytecodes::_fast_iputfield:
 184   case Bytecodes::_fast_lputfield:
 185   case Bytecodes::_fast_sputfield:
 186     {
 187       // We skip bytecode quickening for putfield instructions when
 188       // the put_code written to the constant pool cache is zero.
 189       // This is required so that every execution of this instruction
 190       // calls out to InterpreterRuntime::resolve_get_put to do
 191       // additional, required work.
 192       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 193       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 194       __ load_field_entry(temp_reg, bc_reg);
 195       if (byte_no == f1_byte) {
 196         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
 197       } else {
 198         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
 199       }
 200       // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
 201       __ ldarb(temp_reg, temp_reg);
 202       __ movw(bc_reg, bc);
 203       __ cbzw(temp_reg, L_patch_done);  // don't patch
 204     }
 205     break;
 206   default:
 207     assert(byte_no == -1, "sanity");
 208     // the pair bytecodes have already done the load.
 209     if (load_bc_into_bc_reg) {
 210       __ movw(bc_reg, bc);
 211     }
 212   }
 213 
 214   if (JvmtiExport::can_post_breakpoint()) {
 215     Label L_fast_patch;
 216     // if a breakpoint is present we can't rewrite the stream directly
 217     __ load_unsigned_byte(temp_reg, at_bcp(0));
 218     __ cmpw(temp_reg, Bytecodes::_breakpoint);
 219     __ br(Assembler::NE, L_fast_patch);
 220     // Let breakpoint table handling rewrite to quicker bytecode
 221     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
 222     __ b(L_patch_done);
 223     __ bind(L_fast_patch);
 224   }
 225 
 226 #ifdef ASSERT
 227   Label L_okay;
 228   __ load_unsigned_byte(temp_reg, at_bcp(0));
 229   __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
 230   __ br(Assembler::EQ, L_okay);
 231   __ cmpw(temp_reg, bc_reg);
 232   __ br(Assembler::EQ, L_okay);
 233   __ stop("patching the wrong bytecode");
 234   __ bind(L_okay);
 235 #endif
 236   // Patch bytecode with release store to coordinate with ResolvedFieldEntry loads
 237   // in fast bytecode codelets. load_field_entry has a memory barrier that gains
 238   // the needed ordering, together with control dependency on entering the fast codelet
 239   // itself.
 240   __ lea(temp_reg, at_bcp(0));
 241   __ stlrb(bc_reg, temp_reg);
 242   __ bind(L_patch_done);
 243 }
 244 
 245 
 246 // Individual instructions
 247 
 248 void TemplateTable::nop() {
 249   transition(vtos, vtos);
 250   // nothing to do
 251 }
 252 
 253 void TemplateTable::shouldnotreachhere() {
 254   transition(vtos, vtos);
 255   __ stop("shouldnotreachhere bytecode");
 256 }
 257 
 258 void TemplateTable::aconst_null()
 259 {
 260   transition(vtos, atos);
 261   __ mov(r0, 0);
 262 }
 263 
 264 void TemplateTable::iconst(int value)
 265 {
 266   transition(vtos, itos);
 267   __ mov(r0, value);
 268 }
 269 
 270 void TemplateTable::lconst(int value)
 271 {
 272   __ mov(r0, value);
 273 }
 274 
 275 void TemplateTable::fconst(int value)
 276 {
 277   transition(vtos, ftos);
 278   switch (value) {
 279   case 0:
 280     __ fmovs(v0, 0.0);
 281     break;
 282   case 1:
 283     __ fmovs(v0, 1.0);
 284     break;
 285   case 2:
 286     __ fmovs(v0, 2.0);
 287     break;
 288   default:
 289     ShouldNotReachHere();
 290     break;
 291   }
 292 }
 293 
 294 void TemplateTable::dconst(int value)
 295 {
 296   transition(vtos, dtos);
 297   switch (value) {
 298   case 0:
 299     __ fmovd(v0, 0.0);
 300     break;
 301   case 1:
 302     __ fmovd(v0, 1.0);
 303     break;
 304   case 2:
 305     __ fmovd(v0, 2.0);
 306     break;
 307   default:
 308     ShouldNotReachHere();
 309     break;
 310   }
 311 }
 312 
 313 void TemplateTable::bipush()
 314 {
 315   transition(vtos, itos);
 316   __ load_signed_byte32(r0, at_bcp(1));
 317 }
 318 
 319 void TemplateTable::sipush()
 320 {
 321   transition(vtos, itos);
 322   __ load_unsigned_short(r0, at_bcp(1));
 323   __ revw(r0, r0);
 324   __ asrw(r0, r0, 16);
 325 }
 326 
 327 void TemplateTable::ldc(LdcType type)
 328 {
 329   transition(vtos, vtos);
 330   Label call_ldc, notFloat, notClass, notInt, Done;
 331 
 332   if (is_ldc_wide(type)) {
 333     __ get_unsigned_2_byte_index_at_bcp(r1, 1);
 334   } else {
 335     __ load_unsigned_byte(r1, at_bcp(1));
 336   }
 337   __ get_cpool_and_tags(r2, r0);
 338 
 339   const int base_offset = ConstantPool::header_size() * wordSize;
 340   const int tags_offset = Array<u1>::base_offset_in_bytes();
 341 
 342   // get type
 343   __ add(r3, r1, tags_offset);
 344   __ lea(r3, Address(r0, r3));
 345   __ ldarb(r3, r3);
 346 
 347   // unresolved class - get the resolved class
 348   __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
 349   __ br(Assembler::EQ, call_ldc);
 350 
 351   // unresolved class in error state - call into runtime to throw the error
 352   // from the first resolution attempt
 353   __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
 354   __ br(Assembler::EQ, call_ldc);
 355 
 356   // resolved class - need to call vm to get java mirror of the class
 357   __ cmp(r3, (u1)JVM_CONSTANT_Class);
 358   __ br(Assembler::NE, notClass);
 359 
 360   __ bind(call_ldc);
 361   __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
 362   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 363   __ push_ptr(r0);
 364   __ verify_oop(r0);
 365   __ b(Done);
 366 
 367   __ bind(notClass);
 368   __ cmp(r3, (u1)JVM_CONSTANT_Float);
 369   __ br(Assembler::NE, notFloat);
 370   // ftos
 371   __ adds(r1, r2, r1, Assembler::LSL, 3);
 372   __ ldrs(v0, Address(r1, base_offset));
 373   __ push_f();
 374   __ b(Done);
 375 
 376   __ bind(notFloat);
 377 
 378   __ cmp(r3, (u1)JVM_CONSTANT_Integer);
 379   __ br(Assembler::NE, notInt);
 380 
 381   // itos
 382   __ adds(r1, r2, r1, Assembler::LSL, 3);
 383   __ ldrw(r0, Address(r1, base_offset));
 384   __ push_i(r0);
 385   __ b(Done);
 386 
 387   __ bind(notInt);
 388   condy_helper(Done);
 389 
 390   __ bind(Done);
 391 }
 392 
 393 // Fast path for caching oop constants.
 394 void TemplateTable::fast_aldc(LdcType type)
 395 {
 396   transition(vtos, atos);
 397 
 398   Register result = r0;
 399   Register tmp = r1;
 400   Register rarg = r2;
 401 
 402   int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
 403 
 404   Label resolved;
 405 
 406   // We are resolved if the resolved reference cache entry contains a
 407   // non-null object (String, MethodType, etc.)
 408   assert_different_registers(result, tmp);
 409   __ get_cache_index_at_bcp(tmp, 1, index_size);
 410   __ load_resolved_reference_at_index(result, tmp);
 411   __ cbnz(result, resolved);
 412 
 413   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 414 
 415   // first time invocation - must resolve first
 416   __ mov(rarg, (int)bytecode());
 417   __ call_VM(result, entry, rarg);
 418 
 419   __ bind(resolved);
 420 
 421   { // Check for the null sentinel.
 422     // If we just called the VM, it already did the mapping for us,
 423     // but it's harmless to retry.
 424     Label notNull;
 425 
 426     // Stash null_sentinel address to get its value later
 427     __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
 428     __ ldr(tmp, Address(rarg));
 429     __ resolve_oop_handle(tmp, r5, rscratch2);
 430     __ cmpoop(result, tmp);
 431     __ br(Assembler::NE, notNull);
 432     __ mov(result, 0);  // null object reference
 433     __ bind(notNull);
 434   }
 435 
 436   if (VerifyOops) {
 437     // Safe to call with 0 result
 438     __ verify_oop(result);
 439   }
 440 }
 441 
 442 void TemplateTable::ldc2_w()
 443 {
 444   transition(vtos, vtos);
 445   Label notDouble, notLong, Done;
 446   __ get_unsigned_2_byte_index_at_bcp(r0, 1);
 447 
 448   __ get_cpool_and_tags(r1, r2);
 449   const int base_offset = ConstantPool::header_size() * wordSize;
 450   const int tags_offset = Array<u1>::base_offset_in_bytes();
 451 
 452   // get type
 453   __ lea(r2, Address(r2, r0, Address::lsl(0)));
 454   __ load_unsigned_byte(r2, Address(r2, tags_offset));
 455   __ cmpw(r2, (int)JVM_CONSTANT_Double);
 456   __ br(Assembler::NE, notDouble);
 457 
 458   // dtos
 459   __ lea (r2, Address(r1, r0, Address::lsl(3)));
 460   __ ldrd(v0, Address(r2, base_offset));
 461   __ push_d();
 462   __ b(Done);
 463 
 464   __ bind(notDouble);
 465   __ cmpw(r2, (int)JVM_CONSTANT_Long);
 466   __ br(Assembler::NE, notLong);
 467 
 468   // ltos
 469   __ lea(r0, Address(r1, r0, Address::lsl(3)));
 470   __ ldr(r0, Address(r0, base_offset));
 471   __ push_l();
 472   __ b(Done);
 473 
 474   __ bind(notLong);
 475   condy_helper(Done);
 476 
 477   __ bind(Done);
 478 }
 479 
 480 void TemplateTable::condy_helper(Label& Done)
 481 {
 482   Register obj = r0;
 483   Register rarg = r1;
 484   Register flags = r2;
 485   Register off = r3;
 486 
 487   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 488 
 489   __ mov(rarg, (int) bytecode());
 490   __ call_VM(obj, entry, rarg);
 491 
 492   __ get_vm_result_metadata(flags, rthread);
 493 
 494   // VMr = obj = base address to find primitive value to push
 495   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 496   __ mov(off, flags);
 497   __ andw(off, off, ConstantPoolCache::field_index_mask);
 498 
 499   const Address field(obj, off);
 500 
 501   // What sort of thing are we loading?
 502   // x86 uses a shift and mask or wings it with a shift plus assert
 503   // the mask is not needed. aarch64 just uses bitfield extract
 504   __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
 505            ConstantPoolCache::tos_state_bits);
 506 
 507   switch (bytecode()) {
 508     case Bytecodes::_ldc:
 509     case Bytecodes::_ldc_w:
 510       {
 511         // tos in (itos, ftos, stos, btos, ctos, ztos)
 512         Label notInt, notFloat, notShort, notByte, notChar, notBool;
 513         __ cmpw(flags, itos);
 514         __ br(Assembler::NE, notInt);
 515         // itos
 516         __ ldrw(r0, field);
 517         __ push(itos);
 518         __ b(Done);
 519 
 520         __ bind(notInt);
 521         __ cmpw(flags, ftos);
 522         __ br(Assembler::NE, notFloat);
 523         // ftos
 524         __ load_float(field);
 525         __ push(ftos);
 526         __ b(Done);
 527 
 528         __ bind(notFloat);
 529         __ cmpw(flags, stos);
 530         __ br(Assembler::NE, notShort);
 531         // stos
 532         __ load_signed_short(r0, field);
 533         __ push(stos);
 534         __ b(Done);
 535 
 536         __ bind(notShort);
 537         __ cmpw(flags, btos);
 538         __ br(Assembler::NE, notByte);
 539         // btos
 540         __ load_signed_byte(r0, field);
 541         __ push(btos);
 542         __ b(Done);
 543 
 544         __ bind(notByte);
 545         __ cmpw(flags, ctos);
 546         __ br(Assembler::NE, notChar);
 547         // ctos
 548         __ load_unsigned_short(r0, field);
 549         __ push(ctos);
 550         __ b(Done);
 551 
 552         __ bind(notChar);
 553         __ cmpw(flags, ztos);
 554         __ br(Assembler::NE, notBool);
 555         // ztos
 556         __ load_signed_byte(r0, field);
 557         __ push(ztos);
 558         __ b(Done);
 559 
 560         __ bind(notBool);
 561         break;
 562       }
 563 
 564     case Bytecodes::_ldc2_w:
 565       {
 566         Label notLong, notDouble;
 567         __ cmpw(flags, ltos);
 568         __ br(Assembler::NE, notLong);
 569         // ltos
 570         __ ldr(r0, field);
 571         __ push(ltos);
 572         __ b(Done);
 573 
 574         __ bind(notLong);
 575         __ cmpw(flags, dtos);
 576         __ br(Assembler::NE, notDouble);
 577         // dtos
 578         __ load_double(field);
 579         __ push(dtos);
 580         __ b(Done);
 581 
 582        __ bind(notDouble);
 583         break;
 584       }
 585 
 586     default:
 587       ShouldNotReachHere();
 588     }
 589 
 590     __ stop("bad ldc/condy");
 591 }
 592 
 593 void TemplateTable::locals_index(Register reg, int offset)
 594 {
 595   __ ldrb(reg, at_bcp(offset));
 596   __ neg(reg, reg);
 597 }
 598 
 599 void TemplateTable::iload() {
 600   iload_internal();
 601 }
 602 
 603 void TemplateTable::nofast_iload() {
 604   iload_internal(may_not_rewrite);
 605 }
 606 
 607 void TemplateTable::iload_internal(RewriteControl rc) {
 608   transition(vtos, itos);
 609   if (RewriteFrequentPairs && rc == may_rewrite) {
 610     Label rewrite, done;
 611     Register bc = r4;
 612 
 613     // get next bytecode
 614     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 615 
 616     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 617     // last two iloads in a pair.  Comparing against fast_iload means that
 618     // the next bytecode is neither an iload or a caload, and therefore
 619     // an iload pair.
 620     __ cmpw(r1, Bytecodes::_iload);
 621     __ br(Assembler::EQ, done);
 622 
 623     // if _fast_iload rewrite to _fast_iload2
 624     __ cmpw(r1, Bytecodes::_fast_iload);
 625     __ movw(bc, Bytecodes::_fast_iload2);
 626     __ br(Assembler::EQ, rewrite);
 627 
 628     // if _caload rewrite to _fast_icaload
 629     __ cmpw(r1, Bytecodes::_caload);
 630     __ movw(bc, Bytecodes::_fast_icaload);
 631     __ br(Assembler::EQ, rewrite);
 632 
 633     // else rewrite to _fast_iload
 634     __ movw(bc, Bytecodes::_fast_iload);
 635 
 636     // rewrite
 637     // bc: new bytecode
 638     __ bind(rewrite);
 639     patch_bytecode(Bytecodes::_iload, bc, r1, false);
 640     __ bind(done);
 641 
 642   }
 643 
 644   // do iload, get the local value into tos
 645   locals_index(r1);
 646   __ ldr(r0, iaddress(r1));
 647 
 648 }
 649 
 650 void TemplateTable::fast_iload2()
 651 {
 652   transition(vtos, itos);
 653   locals_index(r1);
 654   __ ldr(r0, iaddress(r1));
 655   __ push(itos);
 656   locals_index(r1, 3);
 657   __ ldr(r0, iaddress(r1));
 658 }
 659 
 660 void TemplateTable::fast_iload()
 661 {
 662   transition(vtos, itos);
 663   locals_index(r1);
 664   __ ldr(r0, iaddress(r1));
 665 }
 666 
 667 void TemplateTable::lload()
 668 {
 669   transition(vtos, ltos);
 670   __ ldrb(r1, at_bcp(1));
 671   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 672   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 673 }
 674 
 675 void TemplateTable::fload()
 676 {
 677   transition(vtos, ftos);
 678   locals_index(r1);
 679   // n.b. we use ldrd here because this is a 64 bit slot
 680   // this is comparable to the iload case
 681   __ ldrd(v0, faddress(r1));
 682 }
 683 
 684 void TemplateTable::dload()
 685 {
 686   transition(vtos, dtos);
 687   __ ldrb(r1, at_bcp(1));
 688   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 689   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 690 }
 691 
 692 void TemplateTable::aload()
 693 {
 694   transition(vtos, atos);
 695   locals_index(r1);
 696   __ ldr(r0, iaddress(r1));
 697 }
 698 
 699 void TemplateTable::locals_index_wide(Register reg) {
 700   __ ldrh(reg, at_bcp(2));
 701   __ rev16w(reg, reg);
 702   __ neg(reg, reg);
 703 }
 704 
 705 void TemplateTable::wide_iload() {
 706   transition(vtos, itos);
 707   locals_index_wide(r1);
 708   __ ldr(r0, iaddress(r1));
 709 }
 710 
 711 void TemplateTable::wide_lload()
 712 {
 713   transition(vtos, ltos);
 714   __ ldrh(r1, at_bcp(2));
 715   __ rev16w(r1, r1);
 716   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 717   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 718 }
 719 
 720 void TemplateTable::wide_fload()
 721 {
 722   transition(vtos, ftos);
 723   locals_index_wide(r1);
 724   // n.b. we use ldrd here because this is a 64 bit slot
 725   // this is comparable to the iload case
 726   __ ldrd(v0, faddress(r1));
 727 }
 728 
 729 void TemplateTable::wide_dload()
 730 {
 731   transition(vtos, dtos);
 732   __ ldrh(r1, at_bcp(2));
 733   __ rev16w(r1, r1);
 734   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 735   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 736 }
 737 
 738 void TemplateTable::wide_aload()
 739 {
 740   transition(vtos, atos);
 741   locals_index_wide(r1);
 742   __ ldr(r0, aaddress(r1));
 743 }
 744 
 745 void TemplateTable::index_check(Register array, Register index)
 746 {
 747   // destroys r1, rscratch1
 748   // sign extend index for use by indexed load
 749   // __ movl2ptr(index, index);
 750   // check index
 751   Register length = rscratch1;
 752   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 753   __ cmpw(index, length);
 754   if (index != r1) {
 755     // ??? convention: move aberrant index into r1 for exception message
 756     assert(r1 != array, "different registers");
 757     __ mov(r1, index);
 758   }
 759   Label ok;
 760   __ br(Assembler::LO, ok);
 761   // ??? convention: move array into r3 for exception message
 762    __ mov(r3, array);
 763    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 764    __ br(rscratch1);
 765   __ bind(ok);
 766 }
 767 
 768 void TemplateTable::iaload()
 769 {
 770   transition(itos, itos);
 771   __ mov(r1, r0);
 772   __ pop_ptr(r0);
 773   // r0: array
 774   // r1: index
 775   index_check(r0, r1); // leaves index in r1, kills rscratch1
 776   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 777   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 778 }
 779 
 780 void TemplateTable::laload()
 781 {
 782   transition(itos, ltos);
 783   __ mov(r1, r0);
 784   __ pop_ptr(r0);
 785   // r0: array
 786   // r1: index
 787   index_check(r0, r1); // leaves index in r1, kills rscratch1
 788   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
 789   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 790 }
 791 
 792 void TemplateTable::faload()
 793 {
 794   transition(itos, ftos);
 795   __ mov(r1, r0);
 796   __ pop_ptr(r0);
 797   // r0: array
 798   // r1: index
 799   index_check(r0, r1); // leaves index in r1, kills rscratch1
 800   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
 801   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 802 }
 803 
 804 void TemplateTable::daload()
 805 {
 806   transition(itos, dtos);
 807   __ mov(r1, r0);
 808   __ pop_ptr(r0);
 809   // r0: array
 810   // r1: index
 811   index_check(r0, r1); // leaves index in r1, kills rscratch1
 812   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 813   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 814 }
 815 
 816 void TemplateTable::aaload()
 817 {
 818   transition(itos, atos);
 819   __ mov(r1, r0);
 820   __ pop_ptr(r0);
 821   // r0: array
 822   // r1: index
 823   index_check(r0, r1); // leaves index in r1, kills rscratch1
 824   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 825   if (UseArrayFlattening) {
 826     Label is_flat_array, done;
 827 
 828     __ test_flat_array_oop(r0, rscratch1 /*temp*/, is_flat_array);
 829     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 830     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 831 
 832     __ b(done);
 833     __ bind(is_flat_array);
 834     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 835     // Ensure the stores to copy the inline field contents are visible
 836     // before any subsequent store that publishes this reference.
 837     __ membar(Assembler::StoreStore);
 838     __ bind(done);
 839   } else {
 840     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 841     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 842   }
 843   __ profile_element_type(r2, r0, r4);
 844 }
 845 
 846 void TemplateTable::baload()
 847 {
 848   transition(itos, itos);
 849   __ mov(r1, r0);
 850   __ pop_ptr(r0);
 851   // r0: array
 852   // r1: index
 853   index_check(r0, r1); // leaves index in r1, kills rscratch1
 854   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 855   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 856 }
 857 
 858 void TemplateTable::caload()
 859 {
 860   transition(itos, itos);
 861   __ mov(r1, r0);
 862   __ pop_ptr(r0);
 863   // r0: array
 864   // r1: index
 865   index_check(r0, r1); // leaves index in r1, kills rscratch1
 866   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
 867   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 868 }
 869 
 870 // iload followed by caload frequent pair
 871 void TemplateTable::fast_icaload()
 872 {
 873   transition(vtos, itos);
 874   // load index out of locals
 875   locals_index(r2);
 876   __ ldr(r1, iaddress(r2));
 877 
 878   __ pop_ptr(r0);
 879 
 880   // r0: array
 881   // r1: index
 882   index_check(r0, r1); // leaves index in r1, kills rscratch1
 883   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
 884   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 885 }
 886 
 887 void TemplateTable::saload()
 888 {
 889   transition(itos, itos);
 890   __ mov(r1, r0);
 891   __ pop_ptr(r0);
 892   // r0: array
 893   // r1: index
 894   index_check(r0, r1); // leaves index in r1, kills rscratch1
 895   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
 896   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 897 }
 898 
 899 void TemplateTable::iload(int n)
 900 {
 901   transition(vtos, itos);
 902   __ ldr(r0, iaddress(n));
 903 }
 904 
 905 void TemplateTable::lload(int n)
 906 {
 907   transition(vtos, ltos);
 908   __ ldr(r0, laddress(n));
 909 }
 910 
 911 void TemplateTable::fload(int n)
 912 {
 913   transition(vtos, ftos);
 914   __ ldrs(v0, faddress(n));
 915 }
 916 
 917 void TemplateTable::dload(int n)
 918 {
 919   transition(vtos, dtos);
 920   __ ldrd(v0, daddress(n));
 921 }
 922 
 923 void TemplateTable::aload(int n)
 924 {
 925   transition(vtos, atos);
 926   __ ldr(r0, iaddress(n));
 927 }
 928 
 929 void TemplateTable::aload_0() {
 930   aload_0_internal();
 931 }
 932 
 933 void TemplateTable::nofast_aload_0() {
 934   aload_0_internal(may_not_rewrite);
 935 }
 936 
 937 void TemplateTable::aload_0_internal(RewriteControl rc) {
 938   // According to bytecode histograms, the pairs:
 939   //
 940   // _aload_0, _fast_igetfield
 941   // _aload_0, _fast_agetfield
 942   // _aload_0, _fast_fgetfield
 943   //
 944   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 945   // _aload_0 bytecode checks if the next bytecode is either
 946   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 947   // rewrites the current bytecode into a pair bytecode; otherwise it
 948   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 949   // the pair check anymore.
 950   //
 951   // Note: If the next bytecode is _getfield, the rewrite must be
 952   //       delayed, otherwise we may miss an opportunity for a pair.
 953   //
 954   // Also rewrite frequent pairs
 955   //   aload_0, aload_1
 956   //   aload_0, iload_1
 957   // These bytecodes with a small amount of code are most profitable
 958   // to rewrite
 959   if (RewriteFrequentPairs && rc == may_rewrite) {
 960     Label rewrite, done;
 961     const Register bc = r4;
 962 
 963     // get next bytecode
 964     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 965 
 966     // if _getfield then wait with rewrite
 967     __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
 968     __ br(Assembler::EQ, done);
 969 
 970     // if _igetfield then rewrite to _fast_iaccess_0
 971     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 972     __ cmpw(r1, Bytecodes::_fast_igetfield);
 973     __ movw(bc, Bytecodes::_fast_iaccess_0);
 974     __ br(Assembler::EQ, rewrite);
 975 
 976     // if _agetfield then rewrite to _fast_aaccess_0
 977     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 978     __ cmpw(r1, Bytecodes::_fast_agetfield);
 979     __ movw(bc, Bytecodes::_fast_aaccess_0);
 980     __ br(Assembler::EQ, rewrite);
 981 
 982     // if _fgetfield then rewrite to _fast_faccess_0
 983     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 984     __ cmpw(r1, Bytecodes::_fast_fgetfield);
 985     __ movw(bc, Bytecodes::_fast_faccess_0);
 986     __ br(Assembler::EQ, rewrite);
 987 
 988     // else rewrite to _fast_aload0
 989     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 990     __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
 991 
 992     // rewrite
 993     // bc: new bytecode
 994     __ bind(rewrite);
 995     patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
 996 
 997     __ bind(done);
 998   }
 999 
1000   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
1001   aload(0);
1002 }
1003 
1004 void TemplateTable::istore()
1005 {
1006   transition(itos, vtos);
1007   locals_index(r1);
1008   // FIXME: We're being very pernickerty here storing a jint in a
1009   // local with strw, which costs an extra instruction over what we'd
1010   // be able to do with a simple str.  We should just store the whole
1011   // word.
1012   __ lea(rscratch1, iaddress(r1));
1013   __ strw(r0, Address(rscratch1));
1014 }
1015 
1016 void TemplateTable::lstore()
1017 {
1018   transition(ltos, vtos);
1019   locals_index(r1);
1020   __ str(r0, laddress(r1, rscratch1, _masm));
1021 }
1022 
1023 void TemplateTable::fstore() {
1024   transition(ftos, vtos);
1025   locals_index(r1);
1026   __ lea(rscratch1, iaddress(r1));
1027   __ strs(v0, Address(rscratch1));
1028 }
1029 
1030 void TemplateTable::dstore() {
1031   transition(dtos, vtos);
1032   locals_index(r1);
1033   __ strd(v0, daddress(r1, rscratch1, _masm));
1034 }
1035 
1036 void TemplateTable::astore()
1037 {
1038   transition(vtos, vtos);
1039   __ pop_ptr(r0);
1040   locals_index(r1);
1041   __ str(r0, aaddress(r1));
1042 }
1043 
1044 void TemplateTable::wide_istore() {
1045   transition(vtos, vtos);
1046   __ pop_i();
1047   locals_index_wide(r1);
1048   __ lea(rscratch1, iaddress(r1));
1049   __ strw(r0, Address(rscratch1));
1050 }
1051 
1052 void TemplateTable::wide_lstore() {
1053   transition(vtos, vtos);
1054   __ pop_l();
1055   locals_index_wide(r1);
1056   __ str(r0, laddress(r1, rscratch1, _masm));
1057 }
1058 
1059 void TemplateTable::wide_fstore() {
1060   transition(vtos, vtos);
1061   __ pop_f();
1062   locals_index_wide(r1);
1063   __ lea(rscratch1, faddress(r1));
1064   __ strs(v0, rscratch1);
1065 }
1066 
1067 void TemplateTable::wide_dstore() {
1068   transition(vtos, vtos);
1069   __ pop_d();
1070   locals_index_wide(r1);
1071   __ strd(v0, daddress(r1, rscratch1, _masm));
1072 }
1073 
1074 void TemplateTable::wide_astore() {
1075   transition(vtos, vtos);
1076   __ pop_ptr(r0);
1077   locals_index_wide(r1);
1078   __ str(r0, aaddress(r1));
1079 }
1080 
1081 void TemplateTable::iastore() {
1082   transition(itos, vtos);
1083   __ pop_i(r1);
1084   __ pop_ptr(r3);
1085   // r0: value
1086   // r1: index
1087   // r3: array
1088   index_check(r3, r1); // prefer index in r1
1089   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1090   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1091 }
1092 
1093 void TemplateTable::lastore() {
1094   transition(ltos, vtos);
1095   __ pop_i(r1);
1096   __ pop_ptr(r3);
1097   // r0: value
1098   // r1: index
1099   // r3: array
1100   index_check(r3, r1); // prefer index in r1
1101   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1102   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1103 }
1104 
1105 void TemplateTable::fastore() {
1106   transition(ftos, vtos);
1107   __ pop_i(r1);
1108   __ pop_ptr(r3);
1109   // v0: value
1110   // r1:  index
1111   // r3:  array
1112   index_check(r3, r1); // prefer index in r1
1113   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1114   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1115 }
1116 
1117 void TemplateTable::dastore() {
1118   transition(dtos, vtos);
1119   __ pop_i(r1);
1120   __ pop_ptr(r3);
1121   // v0: value
1122   // r1:  index
1123   // r3:  array
1124   index_check(r3, r1); // prefer index in r1
1125   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1126   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1127 }
1128 
1129 void TemplateTable::aastore() {
1130   Label is_null, is_flat_array, ok_is_subtype, done;
1131   transition(vtos, vtos);
1132   // stack: ..., array, index, value
1133   __ ldr(r0, at_tos());    // value
1134   __ ldr(r2, at_tos_p1()); // index
1135   __ ldr(r3, at_tos_p2()); // array
1136 
1137   index_check(r3, r2);     // kills r1
1138 
1139   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1140   __ profile_multiple_element_types(r4, r0, r5, r6);
1141 
1142   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1143   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1144   // Be careful not to clobber r4 below
1145 
1146   // do array store check - check for null value first
1147   __ cbz(r0, is_null);
1148 
1149   // Move array class to r5
1150   __ load_klass(r5, r3);
1151 
1152   if (UseArrayFlattening) {
1153     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1154     __ test_flat_array_layout(r6, is_flat_array);
1155   }
1156 
1157   // Move subklass into r1
1158   __ load_klass(r1, r0);
1159 
1160   // Move array element superklass into r0
1161   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));
1162   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1163 
1164   // Generate subtype check.  Blows r2, r5
1165   // Superklass in r0.  Subklass in r1.
1166 
1167   // is "r1 <: r0" ? (value subclass <: array element superclass)
1168   __ gen_subtype_check(r1, ok_is_subtype, false);
1169 
1170   // Come here on failure
1171   // object is at TOS
1172   __ b(Interpreter::_throw_ArrayStoreException_entry);
1173 
1174   // Come here on success
1175   __ bind(ok_is_subtype);
1176 
1177   // Get the value we will store
1178   __ ldr(r0, at_tos());
1179   // Now store using the appropriate barrier
1180   // Clobbers: r10, r11, r3
1181   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1182   __ b(done);
1183 
1184   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1185   __ bind(is_null);
1186   if (EnableValhalla) {
1187     Label is_null_into_value_array_npe, store_null;
1188 
1189     if (UseArrayFlattening) {
1190       __ test_flat_array_oop(r3, rscratch1, is_flat_array);
1191     }
1192 
1193     // No way to store null in a null-free array
1194     __ test_null_free_array_oop(r3, rscratch1, is_null_into_value_array_npe);
1195     __ b(store_null);
1196 
1197     __ bind(is_null_into_value_array_npe);
1198     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1199 
1200     __ bind(store_null);
1201   }
1202 
1203   // Store a null
1204   // Clobbers: r10, r11, r3
1205   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1206   __ b(done);
1207 
1208   if (UseArrayFlattening) {
1209      Label is_type_ok;
1210     __ bind(is_flat_array); // Store non-null value to flat
1211 
1212     __ ldr(r0, at_tos());    // value
1213     __ ldr(r3, at_tos_p1()); // index
1214     __ ldr(r2, at_tos_p2()); // array
1215     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1216   }
1217 
1218   // Pop stack arguments
1219   __ bind(done);
1220   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1221 }
1222 
1223 void TemplateTable::bastore()
1224 {
1225   transition(itos, vtos);
1226   __ pop_i(r1);
1227   __ pop_ptr(r3);
1228   // r0: value
1229   // r1: index
1230   // r3: array
1231   index_check(r3, r1); // prefer index in r1
1232 
1233   // Need to check whether array is boolean or byte
1234   // since both types share the bastore bytecode.
1235   __ load_klass(r2, r3);
1236   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1237   int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1238   Label L_skip;
1239   __ tbz(r2, diffbit_index, L_skip);
1240   __ andw(r0, r0, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1241   __ bind(L_skip);
1242 
1243   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1244   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1245 }
1246 
1247 void TemplateTable::castore()
1248 {
1249   transition(itos, vtos);
1250   __ pop_i(r1);
1251   __ pop_ptr(r3);
1252   // r0: value
1253   // r1: index
1254   // r3: array
1255   index_check(r3, r1); // prefer index in r1
1256   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1257   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1258 }
1259 
1260 void TemplateTable::sastore()
1261 {
1262   castore();
1263 }
1264 
1265 void TemplateTable::istore(int n)
1266 {
1267   transition(itos, vtos);
1268   __ str(r0, iaddress(n));
1269 }
1270 
1271 void TemplateTable::lstore(int n)
1272 {
1273   transition(ltos, vtos);
1274   __ str(r0, laddress(n));
1275 }
1276 
1277 void TemplateTable::fstore(int n)
1278 {
1279   transition(ftos, vtos);
1280   __ strs(v0, faddress(n));
1281 }
1282 
1283 void TemplateTable::dstore(int n)
1284 {
1285   transition(dtos, vtos);
1286   __ strd(v0, daddress(n));
1287 }
1288 
1289 void TemplateTable::astore(int n)
1290 {
1291   transition(vtos, vtos);
1292   __ pop_ptr(r0);
1293   __ str(r0, iaddress(n));
1294 }
1295 
1296 void TemplateTable::pop()
1297 {
1298   transition(vtos, vtos);
1299   __ add(esp, esp, Interpreter::stackElementSize);
1300 }
1301 
1302 void TemplateTable::pop2()
1303 {
1304   transition(vtos, vtos);
1305   __ add(esp, esp, 2 * Interpreter::stackElementSize);
1306 }
1307 
1308 void TemplateTable::dup()
1309 {
1310   transition(vtos, vtos);
1311   __ ldr(r0, Address(esp, 0));
1312   __ push(r0);
1313   // stack: ..., a, a
1314 }
1315 
1316 void TemplateTable::dup_x1()
1317 {
1318   transition(vtos, vtos);
1319   // stack: ..., a, b
1320   __ ldr(r0, at_tos());  // load b
1321   __ ldr(r2, at_tos_p1());  // load a
1322   __ str(r0, at_tos_p1());  // store b
1323   __ str(r2, at_tos());  // store a
1324   __ push(r0);                  // push b
1325   // stack: ..., b, a, b
1326 }
1327 
1328 void TemplateTable::dup_x2()
1329 {
1330   transition(vtos, vtos);
1331   // stack: ..., a, b, c
1332   __ ldr(r0, at_tos());  // load c
1333   __ ldr(r2, at_tos_p2());  // load a
1334   __ str(r0, at_tos_p2());  // store c in a
1335   __ push(r0);      // push c
1336   // stack: ..., c, b, c, c
1337   __ ldr(r0, at_tos_p2());  // load b
1338   __ str(r2, at_tos_p2());  // store a in b
1339   // stack: ..., c, a, c, c
1340   __ str(r0, at_tos_p1());  // store b in c
1341   // stack: ..., c, a, b, c
1342 }
1343 
1344 void TemplateTable::dup2()
1345 {
1346   transition(vtos, vtos);
1347   // stack: ..., a, b
1348   __ ldr(r0, at_tos_p1());  // load a
1349   __ push(r0);                  // push a
1350   __ ldr(r0, at_tos_p1());  // load b
1351   __ push(r0);                  // push b
1352   // stack: ..., a, b, a, b
1353 }
1354 
1355 void TemplateTable::dup2_x1()
1356 {
1357   transition(vtos, vtos);
1358   // stack: ..., a, b, c
1359   __ ldr(r2, at_tos());  // load c
1360   __ ldr(r0, at_tos_p1());  // load b
1361   __ push(r0);                  // push b
1362   __ push(r2);                  // push c
1363   // stack: ..., a, b, c, b, c
1364   __ str(r2, at_tos_p3());  // store c in b
1365   // stack: ..., a, c, c, b, c
1366   __ ldr(r2, at_tos_p4());  // load a
1367   __ str(r2, at_tos_p2());  // store a in 2nd c
1368   // stack: ..., a, c, a, b, c
1369   __ str(r0, at_tos_p4());  // store b in a
1370   // stack: ..., b, c, a, b, c
1371 }
1372 
1373 void TemplateTable::dup2_x2()
1374 {
1375   transition(vtos, vtos);
1376   // stack: ..., a, b, c, d
1377   __ ldr(r2, at_tos());  // load d
1378   __ ldr(r0, at_tos_p1());  // load c
1379   __ push(r0)            ;      // push c
1380   __ push(r2);                  // push d
1381   // stack: ..., a, b, c, d, c, d
1382   __ ldr(r0, at_tos_p4());  // load b
1383   __ str(r0, at_tos_p2());  // store b in d
1384   __ str(r2, at_tos_p4());  // store d in b
1385   // stack: ..., a, d, c, b, c, d
1386   __ ldr(r2, at_tos_p5());  // load a
1387   __ ldr(r0, at_tos_p3());  // load c
1388   __ str(r2, at_tos_p3());  // store a in c
1389   __ str(r0, at_tos_p5());  // store c in a
1390   // stack: ..., c, d, a, b, c, d
1391 }
1392 
1393 void TemplateTable::swap()
1394 {
1395   transition(vtos, vtos);
1396   // stack: ..., a, b
1397   __ ldr(r2, at_tos_p1());  // load a
1398   __ ldr(r0, at_tos());  // load b
1399   __ str(r2, at_tos());  // store a in b
1400   __ str(r0, at_tos_p1());  // store b in a
1401   // stack: ..., b, a
1402 }
1403 
1404 void TemplateTable::iop2(Operation op)
1405 {
1406   transition(itos, itos);
1407   // r0 <== r1 op r0
1408   __ pop_i(r1);
1409   switch (op) {
1410   case add  : __ addw(r0, r1, r0); break;
1411   case sub  : __ subw(r0, r1, r0); break;
1412   case mul  : __ mulw(r0, r1, r0); break;
1413   case _and : __ andw(r0, r1, r0); break;
1414   case _or  : __ orrw(r0, r1, r0); break;
1415   case _xor : __ eorw(r0, r1, r0); break;
1416   case shl  : __ lslvw(r0, r1, r0); break;
1417   case shr  : __ asrvw(r0, r1, r0); break;
1418   case ushr : __ lsrvw(r0, r1, r0);break;
1419   default   : ShouldNotReachHere();
1420   }
1421 }
1422 
1423 void TemplateTable::lop2(Operation op)
1424 {
1425   transition(ltos, ltos);
1426   // r0 <== r1 op r0
1427   __ pop_l(r1);
1428   switch (op) {
1429   case add  : __ add(r0, r1, r0); break;
1430   case sub  : __ sub(r0, r1, r0); break;
1431   case mul  : __ mul(r0, r1, r0); break;
1432   case _and : __ andr(r0, r1, r0); break;
1433   case _or  : __ orr(r0, r1, r0); break;
1434   case _xor : __ eor(r0, r1, r0); break;
1435   default   : ShouldNotReachHere();
1436   }
1437 }
1438 
1439 void TemplateTable::idiv()
1440 {
1441   transition(itos, itos);
1442   // explicitly check for div0
1443   Label no_div0;
1444   __ cbnzw(r0, no_div0);
1445   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1446   __ br(rscratch1);
1447   __ bind(no_div0);
1448   __ pop_i(r1);
1449   // r0 <== r1 idiv r0
1450   __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1451 }
1452 
1453 void TemplateTable::irem()
1454 {
1455   transition(itos, itos);
1456   // explicitly check for div0
1457   Label no_div0;
1458   __ cbnzw(r0, no_div0);
1459   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1460   __ br(rscratch1);
1461   __ bind(no_div0);
1462   __ pop_i(r1);
1463   // r0 <== r1 irem r0
1464   __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1465 }
1466 
1467 void TemplateTable::lmul()
1468 {
1469   transition(ltos, ltos);
1470   __ pop_l(r1);
1471   __ mul(r0, r0, r1);
1472 }
1473 
1474 void TemplateTable::ldiv()
1475 {
1476   transition(ltos, ltos);
1477   // explicitly check for div0
1478   Label no_div0;
1479   __ cbnz(r0, no_div0);
1480   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1481   __ br(rscratch1);
1482   __ bind(no_div0);
1483   __ pop_l(r1);
1484   // r0 <== r1 ldiv r0
1485   __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1486 }
1487 
1488 void TemplateTable::lrem()
1489 {
1490   transition(ltos, ltos);
1491   // explicitly check for div0
1492   Label no_div0;
1493   __ cbnz(r0, no_div0);
1494   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1495   __ br(rscratch1);
1496   __ bind(no_div0);
1497   __ pop_l(r1);
1498   // r0 <== r1 lrem r0
1499   __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1500 }
1501 
1502 void TemplateTable::lshl()
1503 {
1504   transition(itos, ltos);
1505   // shift count is in r0
1506   __ pop_l(r1);
1507   __ lslv(r0, r1, r0);
1508 }
1509 
1510 void TemplateTable::lshr()
1511 {
1512   transition(itos, ltos);
1513   // shift count is in r0
1514   __ pop_l(r1);
1515   __ asrv(r0, r1, r0);
1516 }
1517 
1518 void TemplateTable::lushr()
1519 {
1520   transition(itos, ltos);
1521   // shift count is in r0
1522   __ pop_l(r1);
1523   __ lsrv(r0, r1, r0);
1524 }
1525 
1526 void TemplateTable::fop2(Operation op)
1527 {
1528   transition(ftos, ftos);
1529   switch (op) {
1530   case add:
1531     // n.b. use ldrd because this is a 64 bit slot
1532     __ pop_f(v1);
1533     __ fadds(v0, v1, v0);
1534     break;
1535   case sub:
1536     __ pop_f(v1);
1537     __ fsubs(v0, v1, v0);
1538     break;
1539   case mul:
1540     __ pop_f(v1);
1541     __ fmuls(v0, v1, v0);
1542     break;
1543   case div:
1544     __ pop_f(v1);
1545     __ fdivs(v0, v1, v0);
1546     break;
1547   case rem:
1548     __ fmovs(v1, v0);
1549     __ pop_f(v0);
1550     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1551     break;
1552   default:
1553     ShouldNotReachHere();
1554     break;
1555   }
1556 }
1557 
1558 void TemplateTable::dop2(Operation op)
1559 {
1560   transition(dtos, dtos);
1561   switch (op) {
1562   case add:
1563     // n.b. use ldrd because this is a 64 bit slot
1564     __ pop_d(v1);
1565     __ faddd(v0, v1, v0);
1566     break;
1567   case sub:
1568     __ pop_d(v1);
1569     __ fsubd(v0, v1, v0);
1570     break;
1571   case mul:
1572     __ pop_d(v1);
1573     __ fmuld(v0, v1, v0);
1574     break;
1575   case div:
1576     __ pop_d(v1);
1577     __ fdivd(v0, v1, v0);
1578     break;
1579   case rem:
1580     __ fmovd(v1, v0);
1581     __ pop_d(v0);
1582     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1583     break;
1584   default:
1585     ShouldNotReachHere();
1586     break;
1587   }
1588 }
1589 
1590 void TemplateTable::ineg()
1591 {
1592   transition(itos, itos);
1593   __ negw(r0, r0);
1594 
1595 }
1596 
1597 void TemplateTable::lneg()
1598 {
1599   transition(ltos, ltos);
1600   __ neg(r0, r0);
1601 }
1602 
1603 void TemplateTable::fneg()
1604 {
1605   transition(ftos, ftos);
1606   __ fnegs(v0, v0);
1607 }
1608 
1609 void TemplateTable::dneg()
1610 {
1611   transition(dtos, dtos);
1612   __ fnegd(v0, v0);
1613 }
1614 
1615 void TemplateTable::iinc()
1616 {
1617   transition(vtos, vtos);
1618   __ load_signed_byte(r1, at_bcp(2)); // get constant
1619   locals_index(r2);
1620   __ ldr(r0, iaddress(r2));
1621   __ addw(r0, r0, r1);
1622   __ str(r0, iaddress(r2));
1623 }
1624 
1625 void TemplateTable::wide_iinc()
1626 {
1627   transition(vtos, vtos);
1628   // __ mov(r1, zr);
1629   __ ldrw(r1, at_bcp(2)); // get constant and index
1630   __ rev16(r1, r1);
1631   __ ubfx(r2, r1, 0, 16);
1632   __ neg(r2, r2);
1633   __ sbfx(r1, r1, 16, 16);
1634   __ ldr(r0, iaddress(r2));
1635   __ addw(r0, r0, r1);
1636   __ str(r0, iaddress(r2));
1637 }
1638 
1639 void TemplateTable::convert()
1640 {
1641   // Checking
1642 #ifdef ASSERT
1643   {
1644     TosState tos_in  = ilgl;
1645     TosState tos_out = ilgl;
1646     switch (bytecode()) {
1647     case Bytecodes::_i2l: // fall through
1648     case Bytecodes::_i2f: // fall through
1649     case Bytecodes::_i2d: // fall through
1650     case Bytecodes::_i2b: // fall through
1651     case Bytecodes::_i2c: // fall through
1652     case Bytecodes::_i2s: tos_in = itos; break;
1653     case Bytecodes::_l2i: // fall through
1654     case Bytecodes::_l2f: // fall through
1655     case Bytecodes::_l2d: tos_in = ltos; break;
1656     case Bytecodes::_f2i: // fall through
1657     case Bytecodes::_f2l: // fall through
1658     case Bytecodes::_f2d: tos_in = ftos; break;
1659     case Bytecodes::_d2i: // fall through
1660     case Bytecodes::_d2l: // fall through
1661     case Bytecodes::_d2f: tos_in = dtos; break;
1662     default             : ShouldNotReachHere();
1663     }
1664     switch (bytecode()) {
1665     case Bytecodes::_l2i: // fall through
1666     case Bytecodes::_f2i: // fall through
1667     case Bytecodes::_d2i: // fall through
1668     case Bytecodes::_i2b: // fall through
1669     case Bytecodes::_i2c: // fall through
1670     case Bytecodes::_i2s: tos_out = itos; break;
1671     case Bytecodes::_i2l: // fall through
1672     case Bytecodes::_f2l: // fall through
1673     case Bytecodes::_d2l: tos_out = ltos; break;
1674     case Bytecodes::_i2f: // fall through
1675     case Bytecodes::_l2f: // fall through
1676     case Bytecodes::_d2f: tos_out = ftos; break;
1677     case Bytecodes::_i2d: // fall through
1678     case Bytecodes::_l2d: // fall through
1679     case Bytecodes::_f2d: tos_out = dtos; break;
1680     default             : ShouldNotReachHere();
1681     }
1682     transition(tos_in, tos_out);
1683   }
1684 #endif // ASSERT
1685   // static const int64_t is_nan = 0x8000000000000000L;
1686 
1687   // Conversion
1688   switch (bytecode()) {
1689   case Bytecodes::_i2l:
1690     __ sxtw(r0, r0);
1691     break;
1692   case Bytecodes::_i2f:
1693     __ scvtfws(v0, r0);
1694     break;
1695   case Bytecodes::_i2d:
1696     __ scvtfwd(v0, r0);
1697     break;
1698   case Bytecodes::_i2b:
1699     __ sxtbw(r0, r0);
1700     break;
1701   case Bytecodes::_i2c:
1702     __ uxthw(r0, r0);
1703     break;
1704   case Bytecodes::_i2s:
1705     __ sxthw(r0, r0);
1706     break;
1707   case Bytecodes::_l2i:
1708     __ uxtw(r0, r0);
1709     break;
1710   case Bytecodes::_l2f:
1711     __ scvtfs(v0, r0);
1712     break;
1713   case Bytecodes::_l2d:
1714     __ scvtfd(v0, r0);
1715     break;
1716   case Bytecodes::_f2i:
1717   {
1718     Label L_Okay;
1719     __ clear_fpsr();
1720     __ fcvtzsw(r0, v0);
1721     __ get_fpsr(r1);
1722     __ cbzw(r1, L_Okay);
1723     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1724     __ bind(L_Okay);
1725   }
1726     break;
1727   case Bytecodes::_f2l:
1728   {
1729     Label L_Okay;
1730     __ clear_fpsr();
1731     __ fcvtzs(r0, v0);
1732     __ get_fpsr(r1);
1733     __ cbzw(r1, L_Okay);
1734     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1735     __ bind(L_Okay);
1736   }
1737     break;
1738   case Bytecodes::_f2d:
1739     __ fcvts(v0, v0);
1740     break;
1741   case Bytecodes::_d2i:
1742   {
1743     Label L_Okay;
1744     __ clear_fpsr();
1745     __ fcvtzdw(r0, v0);
1746     __ get_fpsr(r1);
1747     __ cbzw(r1, L_Okay);
1748     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1749     __ bind(L_Okay);
1750   }
1751     break;
1752   case Bytecodes::_d2l:
1753   {
1754     Label L_Okay;
1755     __ clear_fpsr();
1756     __ fcvtzd(r0, v0);
1757     __ get_fpsr(r1);
1758     __ cbzw(r1, L_Okay);
1759     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1760     __ bind(L_Okay);
1761   }
1762     break;
1763   case Bytecodes::_d2f:
1764     __ fcvtd(v0, v0);
1765     break;
1766   default:
1767     ShouldNotReachHere();
1768   }
1769 }
1770 
1771 void TemplateTable::lcmp()
1772 {
1773   transition(ltos, itos);
1774   Label done;
1775   __ pop_l(r1);
1776   __ cmp(r1, r0);
1777   __ mov(r0, (uint64_t)-1L);
1778   __ br(Assembler::LT, done);
1779   // __ mov(r0, 1UL);
1780   // __ csel(r0, r0, zr, Assembler::NE);
1781   // and here is a faster way
1782   __ csinc(r0, zr, zr, Assembler::EQ);
1783   __ bind(done);
1784 }
1785 
1786 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1787 {
1788   Label done;
1789   if (is_float) {
1790     // XXX get rid of pop here, use ... reg, mem32
1791     __ pop_f(v1);
1792     __ fcmps(v1, v0);
1793   } else {
1794     // XXX get rid of pop here, use ... reg, mem64
1795     __ pop_d(v1);
1796     __ fcmpd(v1, v0);
1797   }
1798   if (unordered_result < 0) {
1799     // we want -1 for unordered or less than, 0 for equal and 1 for
1800     // greater than.
1801     __ mov(r0, (uint64_t)-1L);
1802     // for FP LT tests less than or unordered
1803     __ br(Assembler::LT, done);
1804     // install 0 for EQ otherwise 1
1805     __ csinc(r0, zr, zr, Assembler::EQ);
1806   } else {
1807     // we want -1 for less than, 0 for equal and 1 for unordered or
1808     // greater than.
1809     __ mov(r0, 1L);
1810     // for FP HI tests greater than or unordered
1811     __ br(Assembler::HI, done);
1812     // install 0 for EQ otherwise ~0
1813     __ csinv(r0, zr, zr, Assembler::EQ);
1814 
1815   }
1816   __ bind(done);
1817 }
1818 
1819 void TemplateTable::branch(bool is_jsr, bool is_wide)
1820 {
1821   __ profile_taken_branch(r0);
1822   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1823                              InvocationCounter::counter_offset();
1824   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1825                               InvocationCounter::counter_offset();
1826 
1827   // load branch displacement
1828   if (!is_wide) {
1829     __ ldrh(r2, at_bcp(1));
1830     __ rev16(r2, r2);
1831     // sign extend the 16 bit value in r2
1832     __ sbfm(r2, r2, 0, 15);
1833   } else {
1834     __ ldrw(r2, at_bcp(1));
1835     __ revw(r2, r2);
1836     // sign extend the 32 bit value in r2
1837     __ sbfm(r2, r2, 0, 31);
1838   }
1839 
1840   // Handle all the JSR stuff here, then exit.
1841   // It's much shorter and cleaner than intermingling with the non-JSR
1842   // normal-branch stuff occurring below.
1843 
1844   if (is_jsr) {
1845     // Pre-load the next target bytecode into rscratch1
1846     __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1847     // compute return address as bci
1848     __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1849     __ add(rscratch2, rscratch2,
1850            in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1851     __ sub(r1, rbcp, rscratch2);
1852     __ push_i(r1);
1853     // Adjust the bcp by the 16-bit displacement in r2
1854     __ add(rbcp, rbcp, r2);
1855     __ dispatch_only(vtos, /*generate_poll*/true);
1856     return;
1857   }
1858 
1859   // Normal (non-jsr) branch handling
1860 
1861   // Adjust the bcp by the displacement in r2
1862   __ add(rbcp, rbcp, r2);
1863 
1864   assert(UseLoopCounter || !UseOnStackReplacement,
1865          "on-stack-replacement requires loop counters");
1866   Label backedge_counter_overflow;
1867   Label dispatch;
1868   if (UseLoopCounter) {
1869     // increment backedge counter for backward branches
1870     // r0: MDO
1871     // r2: target offset
1872     __ cmp(r2, zr);
1873     __ br(Assembler::GT, dispatch); // count only if backward branch
1874 
1875     // ECN: FIXME: This code smells
1876     // check if MethodCounters exists
1877     Label has_counters;
1878     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1879     __ cbnz(rscratch1, has_counters);
1880     __ push(r0);
1881     __ push(r2);
1882     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1883             InterpreterRuntime::build_method_counters), rmethod);
1884     __ pop(r2);
1885     __ pop(r0);
1886     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1887     __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1888     __ bind(has_counters);
1889 
1890     Label no_mdo;
1891     int increment = InvocationCounter::count_increment;
1892     if (ProfileInterpreter) {
1893       // Are we profiling?
1894       __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1895       __ cbz(r1, no_mdo);
1896       // Increment the MDO backedge counter
1897       const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1898                                          in_bytes(InvocationCounter::counter_offset()));
1899       const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1900       __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1901                                  r0, rscratch1, false, Assembler::EQ,
1902                                  UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1903       __ b(dispatch);
1904     }
1905     __ bind(no_mdo);
1906     // Increment backedge counter in MethodCounters*
1907     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1908     const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1909     __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1910                                r0, rscratch2, false, Assembler::EQ,
1911                                UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1912     __ bind(dispatch);
1913   }
1914 
1915   // Pre-load the next target bytecode into rscratch1
1916   __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1917 
1918   // continue with the bytecode @ target
1919   // rscratch1: target bytecode
1920   // rbcp: target bcp
1921   __ dispatch_only(vtos, /*generate_poll*/true);
1922 
1923   if (UseLoopCounter && UseOnStackReplacement) {
1924     // invocation counter overflow
1925     __ bind(backedge_counter_overflow);
1926     __ neg(r2, r2);
1927     __ add(r2, r2, rbcp);     // branch bcp
1928     // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1929     __ call_VM(noreg,
1930                CAST_FROM_FN_PTR(address,
1931                                 InterpreterRuntime::frequency_counter_overflow),
1932                r2);
1933     __ load_unsigned_byte(r1, Address(rbcp, 0));  // restore target bytecode
1934 
1935     // r0: osr nmethod (osr ok) or null (osr not possible)
1936     // w1: target bytecode
1937     // r2: scratch
1938     __ cbz(r0, dispatch);     // test result -- no osr if null
1939     // nmethod may have been invalidated (VM may block upon call_VM return)
1940     __ ldrb(r2, Address(r0, nmethod::state_offset()));
1941     if (nmethod::in_use != 0)
1942       __ sub(r2, r2, nmethod::in_use);
1943     __ cbnz(r2, dispatch);
1944 
1945     // We have the address of an on stack replacement routine in r0
1946     // We need to prepare to execute the OSR method. First we must
1947     // migrate the locals and monitors off of the stack.
1948 
1949     __ mov(r19, r0);                             // save the nmethod
1950 
1951     JFR_ONLY(__ enter_jfr_critical_section();)
1952 
1953     call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1954 
1955     // r0 is OSR buffer, move it to expected parameter location
1956     __ mov(j_rarg0, r0);
1957 
1958     // remove activation
1959     // get sender esp
1960     __ ldr(esp,
1961         Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1962     // remove frame anchor
1963     __ leave();
1964 
1965     JFR_ONLY(__ leave_jfr_critical_section();)
1966 
1967     // Ensure compiled code always sees stack at proper alignment
1968     __ andr(sp, esp, -16);
1969 
1970     // and begin the OSR nmethod
1971     __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1972     __ br(rscratch1);
1973   }
1974 }
1975 
1976 
1977 void TemplateTable::if_0cmp(Condition cc)
1978 {
1979   transition(itos, vtos);
1980   // assume branch is more often taken than not (loops use backward branches)
1981   Label not_taken;
1982   if (cc == equal)
1983     __ cbnzw(r0, not_taken);
1984   else if (cc == not_equal)
1985     __ cbzw(r0, not_taken);
1986   else {
1987     __ andsw(zr, r0, r0);
1988     __ br(j_not(cc), not_taken);
1989   }
1990 
1991   branch(false, false);
1992   __ bind(not_taken);
1993   __ profile_not_taken_branch(r0);
1994 }
1995 
1996 void TemplateTable::if_icmp(Condition cc)
1997 {
1998   transition(itos, vtos);
1999   // assume branch is more often taken than not (loops use backward branches)
2000   Label not_taken;
2001   __ pop_i(r1);
2002   __ cmpw(r1, r0, Assembler::LSL);
2003   __ br(j_not(cc), not_taken);
2004   branch(false, false);
2005   __ bind(not_taken);
2006   __ profile_not_taken_branch(r0);
2007 }
2008 
2009 void TemplateTable::if_nullcmp(Condition cc)
2010 {
2011   transition(atos, vtos);
2012   // assume branch is more often taken than not (loops use backward branches)
2013   Label not_taken;
2014   if (cc == equal)
2015     __ cbnz(r0, not_taken);
2016   else
2017     __ cbz(r0, not_taken);
2018   branch(false, false);
2019   __ bind(not_taken);
2020   __ profile_not_taken_branch(r0);
2021 }
2022 
2023 void TemplateTable::if_acmp(Condition cc) {
2024   transition(atos, vtos);
2025   // assume branch is more often taken than not (loops use backward branches)
2026   Label taken, not_taken;
2027   __ pop_ptr(r1);
2028 
2029   __ profile_acmp(r2, r1, r0, r4);
2030 
2031   Register is_inline_type_mask = rscratch1;
2032   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2033 
2034   if (EnableValhalla) {
2035     __ cmp(r1, r0);
2036     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2037 
2038     // might be substitutable, test if either r0 or r1 is null
2039     __ andr(r2, r0, r1);
2040     __ cbz(r2, (cc == equal) ? not_taken : taken);
2041 
2042     // and both are values ?
2043     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2044     __ andr(r2, r2, is_inline_type_mask);
2045     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2046     __ andr(r4, r4, is_inline_type_mask);
2047     __ andr(r2, r2, r4);
2048     __ cmp(r2,  is_inline_type_mask);
2049     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2050 
2051     // same value klass ?
2052     __ load_metadata(r2, r1);
2053     __ load_metadata(r4, r0);
2054     __ cmp(r2, r4);
2055     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2056 
2057     // Know both are the same type, let's test for substitutability...
2058     if (cc == equal) {
2059       invoke_is_substitutable(r0, r1, taken, not_taken);
2060     } else {
2061       invoke_is_substitutable(r0, r1, not_taken, taken);
2062     }
2063     __ stop("Not reachable");
2064   }
2065 
2066   __ cmpoop(r1, r0);
2067   __ br(j_not(cc), not_taken);
2068   __ bind(taken);
2069   branch(false, false);
2070   __ bind(not_taken);
2071   __ profile_not_taken_branch(r0, true);
2072 }
2073 
2074 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2075                                             Label& is_subst, Label& not_subst) {
2076 
2077   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2078   // Restored... r0 answer, jmp to outcome...
2079   __ cbz(r0, not_subst);
2080   __ b(is_subst);
2081 }
2082 
2083 
2084 void TemplateTable::ret() {
2085   transition(vtos, vtos);
2086   locals_index(r1);
2087   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2088   __ profile_ret(r1, r2);
2089   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2090   __ lea(rbcp, Address(rbcp, r1));
2091   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2092   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2093 }
2094 
2095 void TemplateTable::wide_ret() {
2096   transition(vtos, vtos);
2097   locals_index_wide(r1);
2098   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2099   __ profile_ret(r1, r2);
2100   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2101   __ lea(rbcp, Address(rbcp, r1));
2102   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2103   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2104 }
2105 
2106 
2107 void TemplateTable::tableswitch() {
2108   Label default_case, continue_execution;
2109   transition(itos, vtos);
2110   // align rbcp
2111   __ lea(r1, at_bcp(BytesPerInt));
2112   __ andr(r1, r1, -BytesPerInt);
2113   // load lo & hi
2114   __ ldrw(r2, Address(r1, BytesPerInt));
2115   __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2116   __ rev32(r2, r2);
2117   __ rev32(r3, r3);
2118   // check against lo & hi
2119   __ cmpw(r0, r2);
2120   __ br(Assembler::LT, default_case);
2121   __ cmpw(r0, r3);
2122   __ br(Assembler::GT, default_case);
2123   // lookup dispatch offset
2124   __ subw(r0, r0, r2);
2125   __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2126   __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2127   __ profile_switch_case(r0, r1, r2);
2128   // continue execution
2129   __ bind(continue_execution);
2130   __ rev32(r3, r3);
2131   __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2132   __ add(rbcp, rbcp, r3, ext::sxtw);
2133   __ dispatch_only(vtos, /*generate_poll*/true);
2134   // handle default
2135   __ bind(default_case);
2136   __ profile_switch_default(r0);
2137   __ ldrw(r3, Address(r1, 0));
2138   __ b(continue_execution);
2139 }
2140 
2141 void TemplateTable::lookupswitch() {
2142   transition(itos, itos);
2143   __ stop("lookupswitch bytecode should have been rewritten");
2144 }
2145 
2146 void TemplateTable::fast_linearswitch() {
2147   transition(itos, vtos);
2148   Label loop_entry, loop, found, continue_execution;
2149   // bswap r0 so we can avoid bswapping the table entries
2150   __ rev32(r0, r0);
2151   // align rbcp
2152   __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2153                                     // this instruction (change offsets
2154                                     // below)
2155   __ andr(r19, r19, -BytesPerInt);
2156   // set counter
2157   __ ldrw(r1, Address(r19, BytesPerInt));
2158   __ rev32(r1, r1);
2159   __ b(loop_entry);
2160   // table search
2161   __ bind(loop);
2162   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2163   __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2164   __ cmpw(r0, rscratch1);
2165   __ br(Assembler::EQ, found);
2166   __ bind(loop_entry);
2167   __ subs(r1, r1, 1);
2168   __ br(Assembler::PL, loop);
2169   // default case
2170   __ profile_switch_default(r0);
2171   __ ldrw(r3, Address(r19, 0));
2172   __ b(continue_execution);
2173   // entry found -> get offset
2174   __ bind(found);
2175   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2176   __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2177   __ profile_switch_case(r1, r0, r19);
2178   // continue execution
2179   __ bind(continue_execution);
2180   __ rev32(r3, r3);
2181   __ add(rbcp, rbcp, r3, ext::sxtw);
2182   __ ldrb(rscratch1, Address(rbcp, 0));
2183   __ dispatch_only(vtos, /*generate_poll*/true);
2184 }
2185 
2186 void TemplateTable::fast_binaryswitch() {
2187   transition(itos, vtos);
2188   // Implementation using the following core algorithm:
2189   //
2190   // int binary_search(int key, LookupswitchPair* array, int n) {
2191   //   // Binary search according to "Methodik des Programmierens" by
2192   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2193   //   int i = 0;
2194   //   int j = n;
2195   //   while (i+1 < j) {
2196   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2197   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2198   //     // where a stands for the array and assuming that the (inexisting)
2199   //     // element a[n] is infinitely big.
2200   //     int h = (i + j) >> 1;
2201   //     // i < h < j
2202   //     if (key < array[h].fast_match()) {
2203   //       j = h;
2204   //     } else {
2205   //       i = h;
2206   //     }
2207   //   }
2208   //   // R: a[i] <= key < a[i+1] or Q
2209   //   // (i.e., if key is within array, i is the correct index)
2210   //   return i;
2211   // }
2212 
2213   // Register allocation
2214   const Register key   = r0; // already set (tosca)
2215   const Register array = r1;
2216   const Register i     = r2;
2217   const Register j     = r3;
2218   const Register h     = rscratch1;
2219   const Register temp  = rscratch2;
2220 
2221   // Find array start
2222   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2223                                           // get rid of this
2224                                           // instruction (change
2225                                           // offsets below)
2226   __ andr(array, array, -BytesPerInt);
2227 
2228   // Initialize i & j
2229   __ mov(i, 0);                            // i = 0;
2230   __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2231 
2232   // Convert j into native byteordering
2233   __ rev32(j, j);
2234 
2235   // And start
2236   Label entry;
2237   __ b(entry);
2238 
2239   // binary search loop
2240   {
2241     Label loop;
2242     __ bind(loop);
2243     // int h = (i + j) >> 1;
2244     __ addw(h, i, j);                           // h = i + j;
2245     __ lsrw(h, h, 1);                                   // h = (i + j) >> 1;
2246     // if (key < array[h].fast_match()) {
2247     //   j = h;
2248     // } else {
2249     //   i = h;
2250     // }
2251     // Convert array[h].match to native byte-ordering before compare
2252     __ ldr(temp, Address(array, h, Address::lsl(3)));
2253     __ rev32(temp, temp);
2254     __ cmpw(key, temp);
2255     // j = h if (key <  array[h].fast_match())
2256     __ csel(j, h, j, Assembler::LT);
2257     // i = h if (key >= array[h].fast_match())
2258     __ csel(i, h, i, Assembler::GE);
2259     // while (i+1 < j)
2260     __ bind(entry);
2261     __ addw(h, i, 1);          // i+1
2262     __ cmpw(h, j);             // i+1 < j
2263     __ br(Assembler::LT, loop);
2264   }
2265 
2266   // end of binary search, result index is i (must check again!)
2267   Label default_case;
2268   // Convert array[i].match to native byte-ordering before compare
2269   __ ldr(temp, Address(array, i, Address::lsl(3)));
2270   __ rev32(temp, temp);
2271   __ cmpw(key, temp);
2272   __ br(Assembler::NE, default_case);
2273 
2274   // entry found -> j = offset
2275   __ add(j, array, i, ext::uxtx, 3);
2276   __ ldrw(j, Address(j, BytesPerInt));
2277   __ profile_switch_case(i, key, array);
2278   __ rev32(j, j);
2279   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2280   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2281   __ dispatch_only(vtos, /*generate_poll*/true);
2282 
2283   // default case -> j = default offset
2284   __ bind(default_case);
2285   __ profile_switch_default(i);
2286   __ ldrw(j, Address(array, -2 * BytesPerInt));
2287   __ rev32(j, j);
2288   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2289   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2290   __ dispatch_only(vtos, /*generate_poll*/true);
2291 }
2292 
2293 
2294 void TemplateTable::_return(TosState state)
2295 {
2296   transition(state, state);
2297   assert(_desc->calls_vm(),
2298          "inconsistent calls_vm information"); // call in remove_activation
2299 
2300   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2301     assert(state == vtos, "only valid state");
2302 
2303     __ ldr(c_rarg1, aaddress(0));
2304     __ load_klass(r3, c_rarg1);
2305     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2306     Label skip_register_finalizer;
2307     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2308 
2309     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2310 
2311     __ bind(skip_register_finalizer);
2312   }
2313 
2314   // Issue a StoreStore barrier after all stores but before return
2315   // from any constructor for any class with a final field.  We don't
2316   // know if this is a finalizer, so we always do so.
2317   if (_desc->bytecode() == Bytecodes::_return
2318       || _desc->bytecode() == Bytecodes::_return_register_finalizer)
2319     __ membar(MacroAssembler::StoreStore);
2320 
2321   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2322     Label no_safepoint;
2323     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2324     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2325     __ push(state);
2326     __ push_cont_fastpath(rthread);
2327     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2328     __ pop_cont_fastpath(rthread);
2329     __ pop(state);
2330     __ bind(no_safepoint);
2331   }
2332 
2333   // Narrow result if state is itos but result type is smaller.
2334   // Need to narrow in the return bytecode rather than in generate_return_entry
2335   // since compiled code callers expect the result to already be narrowed.
2336   if (state == itos) {
2337     __ narrow(r0);
2338   }
2339 
2340   __ remove_activation(state);
2341   __ ret(lr);
2342 }
2343 
2344 // ----------------------------------------------------------------------------
2345 // Volatile variables demand their effects be made known to all CPU's
2346 // in order.  Store buffers on most chips allow reads & writes to
2347 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2348 // without some kind of memory barrier (i.e., it's not sufficient that
2349 // the interpreter does not reorder volatile references, the hardware
2350 // also must not reorder them).
2351 //
2352 // According to the new Java Memory Model (JMM):
2353 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2354 //     writes act as acquire & release, so:
2355 // (2) A read cannot let unrelated NON-volatile memory refs that
2356 //     happen after the read float up to before the read.  It's OK for
2357 //     non-volatile memory refs that happen before the volatile read to
2358 //     float down below it.
2359 // (3) Similar a volatile write cannot let unrelated NON-volatile
2360 //     memory refs that happen BEFORE the write float down to after the
2361 //     write.  It's OK for non-volatile memory refs that happen after the
2362 //     volatile write to float up before it.
2363 //
2364 // We only put in barriers around volatile refs (they are expensive),
2365 // not _between_ memory refs (that would require us to track the
2366 // flavor of the previous memory refs).  Requirements (2) and (3)
2367 // require some barriers before volatile stores and after volatile
2368 // loads.  These nearly cover requirement (1) but miss the
2369 // volatile-store-volatile-load case.  This final case is placed after
2370 // volatile-stores although it could just as well go before
2371 // volatile-loads.
2372 
2373 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2374                                             Register Rcache,
2375                                             Register index) {
2376   const Register temp = r19;
2377   assert_different_registers(Rcache, index, temp);
2378   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2379 
2380   Label L_clinit_barrier_slow, L_done;
2381 
2382   Bytecodes::Code code = bytecode();
2383   __ load_method_entry(Rcache, index);
2384   switch(byte_no) {
2385     case f1_byte:
2386       __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2387       break;
2388     case f2_byte:
2389       __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2390       break;
2391   }
2392   // Load-acquire the bytecode to match store-release in InterpreterRuntime
2393   __ ldarb(temp, temp);
2394   __ subs(zr, temp, (int) code);  // have we resolved this bytecode?
2395 
2396   // Class initialization barrier for static methods
2397   if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2398     __ br(Assembler::NE, L_clinit_barrier_slow);
2399     __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2400     __ load_method_holder(temp, temp);
2401     __ clinit_barrier(temp, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2402     __ bind(L_clinit_barrier_slow);
2403   } else {
2404     __ br(Assembler::EQ, L_done);
2405   }
2406 
2407   // resolve first time through
2408   // Class initialization barrier slow path lands here as well.
2409   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2410   __ mov(temp, (int) code);
2411   __ call_VM(noreg, entry, temp);
2412 
2413   // Update registers with resolved info
2414   __ load_method_entry(Rcache, index);
2415   // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2416   // so all clients ofthis method must be modified accordingly
2417   __ bind(L_done);
2418 }
2419 
2420 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2421                                             Register Rcache,
2422                                             Register index) {
2423   const Register temp = r19;
2424   assert_different_registers(Rcache, index, temp);
2425 
2426   Label L_clinit_barrier_slow, L_done;
2427 
2428   Bytecodes::Code code = bytecode();
2429   switch (code) {
2430   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2431   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2432   default: break;
2433   }
2434 
2435   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2436   __ load_field_entry(Rcache, index);
2437   if (byte_no == f1_byte) {
2438     __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2439   } else {
2440     __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2441   }
2442   // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2443   __ ldarb(temp, temp);
2444   __ subs(zr, temp, (int) code);  // have we resolved this bytecode?
2445 
2446   // Class initialization barrier for static fields
2447   if (VM_Version::supports_fast_class_init_checks() &&
2448       (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
2449     const Register field_holder = temp;
2450 
2451     __ br(Assembler::NE, L_clinit_barrier_slow);
2452     __ ldr(field_holder, Address(Rcache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2453     __ clinit_barrier(field_holder, rscratch1, &L_done, /*L_slow_path*/ nullptr);
2454     __ bind(L_clinit_barrier_slow);
2455   } else {
2456     __ br(Assembler::EQ, L_done);
2457   }
2458 
2459   // resolve first time through
2460   // Class initialization barrier slow path lands here as well.
2461   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2462   __ mov(temp, (int) code);
2463   __ call_VM(noreg, entry, temp);
2464 
2465   // Update registers with resolved info
2466   __ load_field_entry(Rcache, index);
2467   __ bind(L_done);
2468 }
2469 
2470 void TemplateTable::load_resolved_field_entry(Register obj,
2471                                               Register cache,
2472                                               Register tos_state,
2473                                               Register offset,
2474                                               Register flags,
2475                                               bool is_static = false) {
2476   assert_different_registers(cache, tos_state, flags, offset);
2477 
2478   // Field offset
2479   __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2480 
2481   // Flags
2482   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2483 
2484   // TOS state
2485   if (tos_state != noreg) {
2486     __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2487   }
2488 
2489   // Klass overwrite register
2490   if (is_static) {
2491     __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2492     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2493     __ ldr(obj, Address(obj, mirror_offset));
2494     __ resolve_oop_handle(obj, r5, rscratch2);
2495   }
2496 }
2497 
2498 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2499                                                                  Register method,
2500                                                                  Register flags) {
2501 
2502   // setup registers
2503   const Register index = flags;
2504   assert_different_registers(method, cache, flags);
2505 
2506   // determine constant pool cache field offsets
2507   resolve_cache_and_index_for_method(f1_byte, cache, index);
2508   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2509   __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2510 }
2511 
2512 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2513                                                       Register method,
2514                                                       Register ref_index,
2515                                                       Register flags) {
2516   // setup registers
2517   const Register index = ref_index;
2518   assert_different_registers(method, flags);
2519   assert_different_registers(method, cache, index);
2520 
2521   // determine constant pool cache field offsets
2522   resolve_cache_and_index_for_method(f1_byte, cache, index);
2523   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2524 
2525   // maybe push appendix to arguments (just before return address)
2526   Label L_no_push;
2527   __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2528   // invokehandle uses an index into the resolved references array
2529   __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2530   // Push the appendix as a trailing parameter.
2531   // This must be done before we get the receiver,
2532   // since the parameter_size includes it.
2533   Register appendix = method;
2534   __ load_resolved_reference_at_index(appendix, ref_index);
2535   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2536   __ bind(L_no_push);
2537 
2538   __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2539 }
2540 
2541 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2542                                                          Register klass,
2543                                                          Register method_or_table_index,
2544                                                          Register flags) {
2545   // setup registers
2546   const Register index = method_or_table_index;
2547   assert_different_registers(method_or_table_index, cache, flags);
2548 
2549   // determine constant pool cache field offsets
2550   resolve_cache_and_index_for_method(f1_byte, cache, index);
2551   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2552 
2553   // Invokeinterface can behave in different ways:
2554   // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2555   // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2556   // vtable index is placed in the register.
2557   // Otherwise, the registers will be populated with the klass and method.
2558 
2559   Label NotVirtual; Label NotVFinal; Label Done;
2560   __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2561   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2562   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2563   __ b(Done);
2564 
2565   __ bind(NotVFinal);
2566   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2567   __ b(Done);
2568 
2569   __ bind(NotVirtual);
2570   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2571   __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2572   __ bind(Done);
2573 }
2574 
2575 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2576                                                        Register method_or_table_index,
2577                                                        Register flags) {
2578   // setup registers
2579   const Register index = flags;
2580   assert_different_registers(method_or_table_index, cache, flags);
2581 
2582   // determine constant pool cache field offsets
2583   resolve_cache_and_index_for_method(f2_byte, cache, index);
2584   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2585 
2586   // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2587   Label NotVFinal; Label Done;
2588   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2589   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2590   __ b(Done);
2591 
2592   __ bind(NotVFinal);
2593   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2594   __ bind(Done);
2595 }
2596 
2597 // The rmethod register is input and overwritten to be the adapter method for the
2598 // indy call. Link Register (lr) is set to the return address for the adapter and
2599 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2600 void TemplateTable::load_invokedynamic_entry(Register method) {
2601   // setup registers
2602   const Register appendix = r0;
2603   const Register cache = r2;
2604   const Register index = r3;
2605   assert_different_registers(method, appendix, cache, index, rcpool);
2606 
2607   __ save_bcp();
2608 
2609   Label resolved;
2610 
2611   __ load_resolved_indy_entry(cache, index);
2612   // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2613   __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2614   __ ldar(method, method);
2615 
2616   // Compare the method to zero
2617   __ cbnz(method, resolved);
2618 
2619   Bytecodes::Code code = bytecode();
2620 
2621   // Call to the interpreter runtime to resolve invokedynamic
2622   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2623   __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2624   __ call_VM(noreg, entry, method);
2625   // Update registers with resolved info
2626   __ load_resolved_indy_entry(cache, index);
2627   // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2628   __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2629   __ ldar(method, method);
2630 
2631 #ifdef ASSERT
2632   __ cbnz(method, resolved);
2633   __ stop("Should be resolved by now");
2634 #endif // ASSERT
2635   __ bind(resolved);
2636 
2637   Label L_no_push;
2638   // Check if there is an appendix
2639   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2640   __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2641 
2642   // Get appendix
2643   __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2644   // Push the appendix as a trailing parameter
2645   // since the parameter_size includes it.
2646   __ push(method);
2647   __ mov(method, index);
2648   __ load_resolved_reference_at_index(appendix, method);
2649   __ verify_oop(appendix);
2650   __ pop(method);
2651   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2652   __ bind(L_no_push);
2653 
2654   // compute return type
2655   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2656   // load return address
2657   // Return address is loaded into link register(lr) and not pushed to the stack
2658   // like x86
2659   {
2660     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2661     __ mov(rscratch1, table_addr);
2662     __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2663   }
2664 }
2665 
2666 // The registers cache and index expected to be set before call.
2667 // Correct values of the cache and index registers are preserved.
2668 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2669                                             bool is_static, bool has_tos) {
2670   // do the JVMTI work here to avoid disturbing the register state below
2671   // We use c_rarg registers here because we want to use the register used in
2672   // the call to the VM
2673   if (JvmtiExport::can_post_field_access()) {
2674     // Check to see if a field access watch has been set before we
2675     // take the time to call into the VM.
2676     Label L1;
2677     assert_different_registers(cache, index, r0);
2678     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2679     __ ldrw(r0, Address(rscratch1));
2680     __ cbzw(r0, L1);
2681 
2682     __ load_field_entry(c_rarg2, index);
2683 
2684     if (is_static) {
2685       __ mov(c_rarg1, zr); // null object reference
2686     } else {
2687       __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2688       __ verify_oop(c_rarg1);
2689     }
2690     // c_rarg1: object pointer or null
2691     // c_rarg2: cache entry pointer
2692     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2693                                        InterpreterRuntime::post_field_access),
2694                c_rarg1, c_rarg2);
2695     __ load_field_entry(cache, index);
2696     __ bind(L1);
2697   }
2698 }
2699 
2700 void TemplateTable::pop_and_check_object(Register r)
2701 {
2702   __ pop_ptr(r);
2703   __ null_check(r);  // for field access must check obj.
2704   __ verify_oop(r);
2705 }
2706 
2707 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2708 {
2709   const Register cache     = r2;
2710   const Register obj       = r4;
2711   const Register klass     = r5;
2712   const Register inline_klass = r7;
2713   const Register field_index = r23;
2714   const Register index     = r3;
2715   const Register tos_state = r3;
2716   const Register off       = r19;
2717   const Register flags     = r6;
2718   const Register bc        = r4; // uses same reg as obj, so don't mix them
2719 
2720   resolve_cache_and_index_for_field(byte_no, cache, index);
2721   jvmti_post_field_access(cache, index, is_static, false);
2722 
2723   // Valhalla extras
2724   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2725   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2726 
2727   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2728 
2729   if (!is_static) {
2730     // obj is on the stack
2731     pop_and_check_object(obj);
2732   }
2733 
2734   // 8179954: We need to make sure that the code generated for
2735   // volatile accesses forms a sequentially-consistent set of
2736   // operations when combined with STLR and LDAR.  Without a leading
2737   // membar it's possible for a simple Dekker test to fail if loads
2738   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2739   // the stores in one method and we interpret the loads in another.
2740   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2741     Label notVolatile;
2742     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2743     __ membar(MacroAssembler::AnyAny);
2744     __ bind(notVolatile);
2745   }
2746 
2747   const Address field(obj, off);
2748 
2749   Label Done, notByte, notBool, notInt, notShort, notChar,
2750               notLong, notFloat, notObj, notDouble;
2751 
2752   assert(btos == 0, "change code, btos != 0");
2753   __ cbnz(tos_state, notByte);
2754 
2755   // Don't rewrite getstatic, only getfield
2756   if (is_static) rc = may_not_rewrite;
2757 
2758   // btos
2759   __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2760   __ push(btos);
2761   // Rewrite bytecode to be faster
2762   if (rc == may_rewrite) {
2763     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2764   }
2765   __ b(Done);
2766 
2767   __ bind(notByte);
2768   __ cmp(tos_state, (u1)ztos);
2769   __ br(Assembler::NE, notBool);
2770 
2771   // ztos (same code as btos)
2772   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2773   __ push(ztos);
2774   // Rewrite bytecode to be faster
2775   if (rc == may_rewrite) {
2776     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2777     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2778   }
2779   __ b(Done);
2780 
2781   __ bind(notBool);
2782   __ cmp(tos_state, (u1)atos);
2783   __ br(Assembler::NE, notObj);
2784   // atos
2785   if (!EnableValhalla) {
2786     do_oop_load(_masm, field, r0, IN_HEAP);
2787     __ push(atos);
2788     if (rc == may_rewrite) {
2789       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2790     }
2791     __ b(Done);
2792   } else { // Valhalla
2793     if (is_static) {
2794       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2795       __ push(atos);
2796       __ b(Done);
2797     } else {
2798       Label is_flat, rewrite_inline;
2799       __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
2800       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2801       __ push(atos);
2802       if (rc == may_rewrite) {
2803         patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2804       }
2805       __ b(Done);
2806       __ bind(is_flat);
2807         // field is flat (null-free or nullable with a null-marker)
2808         __ mov(r0, obj);
2809         __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2810         __ verify_oop(r0);
2811         __ push(atos);
2812       __ bind(rewrite_inline);
2813       if (rc == may_rewrite) {
2814         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2815       }
2816       __ b(Done);
2817     }
2818   }
2819 
2820   __ bind(notObj);
2821   __ cmp(tos_state, (u1)itos);
2822   __ br(Assembler::NE, notInt);
2823   // itos
2824   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2825   __ push(itos);
2826   // Rewrite bytecode to be faster
2827   if (rc == may_rewrite) {
2828     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2829   }
2830   __ b(Done);
2831 
2832   __ bind(notInt);
2833   __ cmp(tos_state, (u1)ctos);
2834   __ br(Assembler::NE, notChar);
2835   // ctos
2836   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2837   __ push(ctos);
2838   // Rewrite bytecode to be faster
2839   if (rc == may_rewrite) {
2840     patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2841   }
2842   __ b(Done);
2843 
2844   __ bind(notChar);
2845   __ cmp(tos_state, (u1)stos);
2846   __ br(Assembler::NE, notShort);
2847   // stos
2848   __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2849   __ push(stos);
2850   // Rewrite bytecode to be faster
2851   if (rc == may_rewrite) {
2852     patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2853   }
2854   __ b(Done);
2855 
2856   __ bind(notShort);
2857   __ cmp(tos_state, (u1)ltos);
2858   __ br(Assembler::NE, notLong);
2859   // ltos
2860   __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2861   __ push(ltos);
2862   // Rewrite bytecode to be faster
2863   if (rc == may_rewrite) {
2864     patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2865   }
2866   __ b(Done);
2867 
2868   __ bind(notLong);
2869   __ cmp(tos_state, (u1)ftos);
2870   __ br(Assembler::NE, notFloat);
2871   // ftos
2872   __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2873   __ push(ftos);
2874   // Rewrite bytecode to be faster
2875   if (rc == may_rewrite) {
2876     patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2877   }
2878   __ b(Done);
2879 
2880   __ bind(notFloat);
2881 #ifdef ASSERT
2882   __ cmp(tos_state, (u1)dtos);
2883   __ br(Assembler::NE, notDouble);
2884 #endif
2885   // dtos
2886   __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2887   __ push(dtos);
2888   // Rewrite bytecode to be faster
2889   if (rc == may_rewrite) {
2890     patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2891   }
2892 #ifdef ASSERT
2893   __ b(Done);
2894 
2895   __ bind(notDouble);
2896   __ stop("Bad state");
2897 #endif
2898 
2899   __ bind(Done);
2900 
2901   Label notVolatile;
2902   __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2903   __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2904   __ bind(notVolatile);
2905 }
2906 
2907 
2908 void TemplateTable::getfield(int byte_no)
2909 {
2910   getfield_or_static(byte_no, false);
2911 }
2912 
2913 void TemplateTable::nofast_getfield(int byte_no) {
2914   getfield_or_static(byte_no, false, may_not_rewrite);
2915 }
2916 
2917 void TemplateTable::getstatic(int byte_no)
2918 {
2919   getfield_or_static(byte_no, true);
2920 }
2921 
2922 // The registers cache and index expected to be set before call.
2923 // The function may destroy various registers, just not the cache and index registers.
2924 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2925   transition(vtos, vtos);
2926 
2927   if (JvmtiExport::can_post_field_modification()) {
2928     // Check to see if a field modification watch has been set before
2929     // we take the time to call into the VM.
2930     Label L1;
2931     assert_different_registers(cache, index, r0);
2932     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2933     __ ldrw(r0, Address(rscratch1));
2934     __ cbz(r0, L1);
2935 
2936     __ mov(c_rarg2, cache);
2937 
2938     if (is_static) {
2939       // Life is simple.  Null out the object pointer.
2940       __ mov(c_rarg1, zr);
2941     } else {
2942       // Life is harder. The stack holds the value on top, followed by
2943       // the object.  We don't know the size of the value, though; it
2944       // could be one or two words depending on its type. As a result,
2945       // we must find the type to determine where the object is.
2946       __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2947       Label nope2, done, ok;
2948       __ ldr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2949       __ cmpw(c_rarg3, ltos);
2950       __ br(Assembler::EQ, ok);
2951       __ cmpw(c_rarg3, dtos);
2952       __ br(Assembler::NE, nope2);
2953       __ bind(ok);
2954       __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2955       __ bind(nope2);
2956     }
2957     // object (tos)
2958     __ mov(c_rarg3, esp);
2959     // c_rarg1: object pointer set up above (null if static)
2960     // c_rarg2: cache entry pointer
2961     // c_rarg3: jvalue object on the stack
2962     __ call_VM(noreg,
2963                CAST_FROM_FN_PTR(address,
2964                                 InterpreterRuntime::post_field_modification),
2965                c_rarg1, c_rarg2, c_rarg3);
2966     __ load_field_entry(cache, index);
2967     __ bind(L1);
2968   }
2969 }
2970 
2971 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2972   transition(vtos, vtos);
2973 
2974   const Register cache     = r2;
2975   const Register index     = r3;
2976   const Register tos_state = r3;
2977   const Register obj       = r2;
2978   const Register off       = r19;
2979   const Register flags     = r6;
2980   const Register bc        = r4;
2981   const Register inline_klass = r5;
2982 
2983   resolve_cache_and_index_for_field(byte_no, cache, index);
2984   jvmti_post_field_mod(cache, index, is_static);
2985   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2986 
2987   Label Done;
2988   {
2989     Label notVolatile;
2990     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2991     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2992     __ bind(notVolatile);
2993   }
2994 
2995   // field address
2996   const Address field(obj, off);
2997 
2998   Label notByte, notBool, notInt, notShort, notChar,
2999         notLong, notFloat, notObj, notDouble;
3000 
3001   assert(btos == 0, "change code, btos != 0");
3002   __ cbnz(tos_state, notByte);
3003 
3004   // Don't rewrite putstatic, only putfield
3005   if (is_static) rc = may_not_rewrite;
3006 
3007   // btos
3008   {
3009     __ pop(btos);
3010     if (!is_static) pop_and_check_object(obj);
3011     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3012     if (rc == may_rewrite) {
3013       patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
3014     }
3015     __ b(Done);
3016   }
3017 
3018   __ bind(notByte);
3019   __ cmp(tos_state, (u1)ztos);
3020   __ br(Assembler::NE, notBool);
3021 
3022   // ztos
3023   {
3024     __ pop(ztos);
3025     if (!is_static) pop_and_check_object(obj);
3026     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3027     if (rc == may_rewrite) {
3028       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3029     }
3030     __ b(Done);
3031   }
3032 
3033   __ bind(notBool);
3034   __ cmp(tos_state, (u1)atos);
3035   __ br(Assembler::NE, notObj);
3036 
3037   // atos
3038   {
3039      if (!EnableValhalla) {
3040       __ pop(atos);
3041       if (!is_static) pop_and_check_object(obj);
3042       // Store into the field
3043       // Clobbers: r10, r11, r3
3044       do_oop_store(_masm, field, r0, IN_HEAP);
3045       if (rc == may_rewrite) {
3046         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3047       }
3048       __ b(Done);
3049      } else { // Valhalla
3050       __ pop(atos);
3051       if (is_static) {
3052         Label is_nullable;
3053          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_nullable);
3054          __ null_check(r0);  // FIXME JDK-8341120
3055          __ bind(is_nullable);
3056          do_oop_store(_masm, field, r0, IN_HEAP);
3057          __ b(Done);
3058       } else {
3059         Label null_free_reference, is_flat, rewrite_inline;
3060         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3061         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, null_free_reference);
3062         pop_and_check_object(obj);
3063         // Store into the field
3064         // Clobbers: r10, r11, r3
3065         do_oop_store(_masm, field, r0, IN_HEAP);
3066         if (rc == may_rewrite) {
3067           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3068         }
3069         __ b(Done);
3070         // Implementation of the inline type semantic
3071         __ bind(null_free_reference);
3072         __ null_check(r0);  // FIXME JDK-8341120
3073         pop_and_check_object(obj);
3074         // Store into the field
3075         // Clobbers: r10, r11, r3
3076         do_oop_store(_masm, field, r0, IN_HEAP);
3077         __ b(rewrite_inline);
3078         __ bind(is_flat);
3079         pop_and_check_object(r7);
3080         __ write_flat_field(cache, off, r3, r6, r7);
3081         __ bind(rewrite_inline);
3082         if (rc == may_rewrite) {
3083           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3084         }
3085         __ b(Done);
3086       }
3087      }  // Valhalla
3088   }
3089 
3090   __ bind(notObj);
3091   __ cmp(tos_state, (u1)itos);
3092   __ br(Assembler::NE, notInt);
3093 
3094   // itos
3095   {
3096     __ pop(itos);
3097     if (!is_static) pop_and_check_object(obj);
3098     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3099     if (rc == may_rewrite) {
3100       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3101     }
3102     __ b(Done);
3103   }
3104 
3105   __ bind(notInt);
3106   __ cmp(tos_state, (u1)ctos);
3107   __ br(Assembler::NE, notChar);
3108 
3109   // ctos
3110   {
3111     __ pop(ctos);
3112     if (!is_static) pop_and_check_object(obj);
3113     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3114     if (rc == may_rewrite) {
3115       patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
3116     }
3117     __ b(Done);
3118   }
3119 
3120   __ bind(notChar);
3121   __ cmp(tos_state, (u1)stos);
3122   __ br(Assembler::NE, notShort);
3123 
3124   // stos
3125   {
3126     __ pop(stos);
3127     if (!is_static) pop_and_check_object(obj);
3128     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3129     if (rc == may_rewrite) {
3130       patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
3131     }
3132     __ b(Done);
3133   }
3134 
3135   __ bind(notShort);
3136   __ cmp(tos_state, (u1)ltos);
3137   __ br(Assembler::NE, notLong);
3138 
3139   // ltos
3140   {
3141     __ pop(ltos);
3142     if (!is_static) pop_and_check_object(obj);
3143     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3144     if (rc == may_rewrite) {
3145       patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
3146     }
3147     __ b(Done);
3148   }
3149 
3150   __ bind(notLong);
3151   __ cmp(tos_state, (u1)ftos);
3152   __ br(Assembler::NE, notFloat);
3153 
3154   // ftos
3155   {
3156     __ pop(ftos);
3157     if (!is_static) pop_and_check_object(obj);
3158     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3159     if (rc == may_rewrite) {
3160       patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
3161     }
3162     __ b(Done);
3163   }
3164 
3165   __ bind(notFloat);
3166 #ifdef ASSERT
3167   __ cmp(tos_state, (u1)dtos);
3168   __ br(Assembler::NE, notDouble);
3169 #endif
3170 
3171   // dtos
3172   {
3173     __ pop(dtos);
3174     if (!is_static) pop_and_check_object(obj);
3175     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3176     if (rc == may_rewrite) {
3177       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3178     }
3179   }
3180 
3181 #ifdef ASSERT
3182   __ b(Done);
3183 
3184   __ bind(notDouble);
3185   __ stop("Bad state");
3186 #endif
3187 
3188   __ bind(Done);
3189 
3190   {
3191     Label notVolatile;
3192     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3193     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3194     __ bind(notVolatile);
3195   }
3196 }
3197 
3198 void TemplateTable::putfield(int byte_no)
3199 {
3200   putfield_or_static(byte_no, false);
3201 }
3202 
3203 void TemplateTable::nofast_putfield(int byte_no) {
3204   putfield_or_static(byte_no, false, may_not_rewrite);
3205 }
3206 
3207 void TemplateTable::putstatic(int byte_no) {
3208   putfield_or_static(byte_no, true);
3209 }
3210 
3211 void TemplateTable::jvmti_post_fast_field_mod() {
3212   if (JvmtiExport::can_post_field_modification()) {
3213     // Check to see if a field modification watch has been set before
3214     // we take the time to call into the VM.
3215     Label L2;
3216     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3217     __ ldrw(c_rarg3, Address(rscratch1));
3218     __ cbzw(c_rarg3, L2);
3219     __ pop_ptr(r19);                  // copy the object pointer from tos
3220     __ verify_oop(r19);
3221     __ push_ptr(r19);                 // put the object pointer back on tos
3222     // Save tos values before call_VM() clobbers them. Since we have
3223     // to do it for every data type, we use the saved values as the
3224     // jvalue object.
3225     switch (bytecode()) {          // load values into the jvalue object
3226     case Bytecodes::_fast_vputfield: //fall through
3227     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3228     case Bytecodes::_fast_bputfield: // fall through
3229     case Bytecodes::_fast_zputfield: // fall through
3230     case Bytecodes::_fast_sputfield: // fall through
3231     case Bytecodes::_fast_cputfield: // fall through
3232     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3233     case Bytecodes::_fast_dputfield: __ push_d(); break;
3234     case Bytecodes::_fast_fputfield: __ push_f(); break;
3235     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3236 
3237     default:
3238       ShouldNotReachHere();
3239     }
3240     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3241     // access constant pool cache entry
3242     __ load_field_entry(c_rarg2, r0);
3243     __ verify_oop(r19);
3244     // r19: object pointer copied above
3245     // c_rarg2: cache entry pointer
3246     // c_rarg3: jvalue object on the stack
3247     __ call_VM(noreg,
3248                CAST_FROM_FN_PTR(address,
3249                                 InterpreterRuntime::post_field_modification),
3250                r19, c_rarg2, c_rarg3);
3251 
3252     switch (bytecode()) {             // restore tos values
3253     case Bytecodes::_fast_vputfield: //fall through
3254     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3255     case Bytecodes::_fast_bputfield: // fall through
3256     case Bytecodes::_fast_zputfield: // fall through
3257     case Bytecodes::_fast_sputfield: // fall through
3258     case Bytecodes::_fast_cputfield: // fall through
3259     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3260     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3261     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3262     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3263     default: break;
3264     }
3265     __ bind(L2);
3266   }
3267 }
3268 
3269 void TemplateTable::fast_storefield(TosState state)
3270 {
3271   transition(state, vtos);
3272 
3273   ByteSize base = ConstantPoolCache::base_offset();
3274 
3275   jvmti_post_fast_field_mod();
3276 
3277   // access constant pool cache
3278   __ load_field_entry(r2, r1);
3279 
3280   // R1: field offset, R2: field holder, R5: flags
3281   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3282   __ verify_field_offset(r1);
3283 
3284   {
3285     Label notVolatile;
3286     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3287     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3288     __ bind(notVolatile);
3289   }
3290 
3291   Label notVolatile;
3292 
3293   // Get object from stack
3294   pop_and_check_object(r2);
3295 
3296   // field address
3297   const Address field(r2, r1);
3298 
3299   // access field
3300   switch (bytecode()) {
3301   case Bytecodes::_fast_vputfield:
3302     {
3303       Label is_flat, has_null_marker, done;
3304       __ test_field_is_flat(r5, noreg /* temp */, is_flat);
3305       __ null_check(r0);
3306       do_oop_store(_masm, field, r0, IN_HEAP);
3307       __ b(done);
3308       __ bind(is_flat);
3309       __ load_field_entry(r4, r5);
3310       // Re-shuffle registers because of VM calls calling convention
3311       __ mov(r19, r1);
3312       __ mov(r7, r2);
3313       __ write_flat_field(r4, r19, r6, r8, r7);
3314       __ bind(done);
3315     }
3316     break;
3317   case Bytecodes::_fast_aputfield:
3318     // Clobbers: r10, r11, r3
3319     do_oop_store(_masm, field, r0, IN_HEAP);
3320     break;
3321   case Bytecodes::_fast_lputfield:
3322     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3323     break;
3324   case Bytecodes::_fast_iputfield:
3325     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3326     break;
3327   case Bytecodes::_fast_zputfield:
3328     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3329     break;
3330   case Bytecodes::_fast_bputfield:
3331     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3332     break;
3333   case Bytecodes::_fast_sputfield:
3334     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3335     break;
3336   case Bytecodes::_fast_cputfield:
3337     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3338     break;
3339   case Bytecodes::_fast_fputfield:
3340     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3341     break;
3342   case Bytecodes::_fast_dputfield:
3343     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3344     break;
3345   default:
3346     ShouldNotReachHere();
3347   }
3348 
3349   {
3350     Label notVolatile;
3351     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3352     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3353     __ bind(notVolatile);
3354   }
3355 }
3356 
3357 
3358 void TemplateTable::fast_accessfield(TosState state)
3359 {
3360   transition(atos, state);
3361   // Do the JVMTI work here to avoid disturbing the register state below
3362   if (JvmtiExport::can_post_field_access()) {
3363     // Check to see if a field access watch has been set before we
3364     // take the time to call into the VM.
3365     Label L1;
3366     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3367     __ ldrw(r2, Address(rscratch1));
3368     __ cbzw(r2, L1);
3369     // access constant pool cache entry
3370     __ load_field_entry(c_rarg2, rscratch2);
3371     __ verify_oop(r0);
3372     __ push_ptr(r0);  // save object pointer before call_VM() clobbers it
3373     __ mov(c_rarg1, r0);
3374     // c_rarg1: object pointer copied above
3375     // c_rarg2: cache entry pointer
3376     __ call_VM(noreg,
3377                CAST_FROM_FN_PTR(address,
3378                                 InterpreterRuntime::post_field_access),
3379                c_rarg1, c_rarg2);
3380     __ pop_ptr(r0); // restore object pointer
3381     __ bind(L1);
3382   }
3383 
3384   // access constant pool cache
3385   __ load_field_entry(r2, r1);
3386 
3387   __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3388   __ verify_field_offset(r1);
3389 
3390   __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3391 
3392   // r0: object
3393   __ verify_oop(r0);
3394   __ null_check(r0);
3395   const Address field(r0, r1);
3396 
3397   // 8179954: We need to make sure that the code generated for
3398   // volatile accesses forms a sequentially-consistent set of
3399   // operations when combined with STLR and LDAR.  Without a leading
3400   // membar it's possible for a simple Dekker test to fail if loads
3401   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3402   // the stores in one method and we interpret the loads in another.
3403   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3404     Label notVolatile;
3405     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3406     __ membar(MacroAssembler::AnyAny);
3407     __ bind(notVolatile);
3408   }
3409 
3410   // access field
3411   switch (bytecode()) {
3412   case Bytecodes::_fast_vgetfield:
3413     {
3414       Register index = r4, tmp = r7;
3415       // field is flat
3416       __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3417       __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3418       __ verify_oop(r0);
3419     }
3420     break;
3421   case Bytecodes::_fast_agetfield:
3422     do_oop_load(_masm, field, r0, IN_HEAP);
3423     __ verify_oop(r0);
3424     break;
3425   case Bytecodes::_fast_lgetfield:
3426     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3427     break;
3428   case Bytecodes::_fast_igetfield:
3429     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3430     break;
3431   case Bytecodes::_fast_bgetfield:
3432     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3433     break;
3434   case Bytecodes::_fast_sgetfield:
3435     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3436     break;
3437   case Bytecodes::_fast_cgetfield:
3438     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3439     break;
3440   case Bytecodes::_fast_fgetfield:
3441     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3442     break;
3443   case Bytecodes::_fast_dgetfield:
3444     __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3445     break;
3446   default:
3447     ShouldNotReachHere();
3448   }
3449   {
3450     Label notVolatile;
3451     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3452     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3453     __ bind(notVolatile);
3454   }
3455 }
3456 
3457 void TemplateTable::fast_xaccess(TosState state)
3458 {
3459   transition(vtos, state);
3460 
3461   // get receiver
3462   __ ldr(r0, aaddress(0));
3463   // access constant pool cache
3464   __ load_field_entry(r2, r3, 2);
3465 
3466   __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3467   __ verify_field_offset(r1);
3468 
3469   // 8179954: We need to make sure that the code generated for
3470   // volatile accesses forms a sequentially-consistent set of
3471   // operations when combined with STLR and LDAR.  Without a leading
3472   // membar it's possible for a simple Dekker test to fail if loads
3473   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3474   // the stores in one method and we interpret the loads in another.
3475   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3476     Label notVolatile;
3477     __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3478     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3479     __ membar(MacroAssembler::AnyAny);
3480     __ bind(notVolatile);
3481   }
3482 
3483   // make sure exception is reported in correct bcp range (getfield is
3484   // next instruction)
3485   __ increment(rbcp);
3486   __ null_check(r0);
3487   switch (state) {
3488   case itos:
3489     __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3490     break;
3491   case atos:
3492     do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3493     __ verify_oop(r0);
3494     break;
3495   case ftos:
3496     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3497     break;
3498   default:
3499     ShouldNotReachHere();
3500   }
3501 
3502   {
3503     Label notVolatile;
3504     __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3505     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3506     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3507     __ bind(notVolatile);
3508   }
3509 
3510   __ decrement(rbcp);
3511 }
3512 
3513 
3514 
3515 //-----------------------------------------------------------------------------
3516 // Calls
3517 
3518 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3519 
3520   Bytecodes::Code code = bytecode();
3521   const bool load_receiver       = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3522 
3523   // save 'interpreter return address'
3524   __ save_bcp();
3525 
3526   // Load TOS state for later
3527   __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3528 
3529   // load receiver if needed (note: no return address pushed yet)
3530   if (load_receiver) {
3531     __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3532     __ add(rscratch1, esp, recv, ext::uxtx, 3);
3533     __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3534     __ verify_oop(recv);
3535   }
3536 
3537   // load return address
3538   {
3539     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3540     __ mov(rscratch1, table_addr);
3541     __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3542   }
3543 }
3544 
3545 
3546 void TemplateTable::invokevirtual_helper(Register index,
3547                                          Register recv,
3548                                          Register flags)
3549 {
3550   // Uses temporary registers r0, r3
3551   assert_different_registers(index, recv, r0, r3);
3552   // Test for an invoke of a final method
3553   Label notFinal;
3554   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3555 
3556   const Register method = index;  // method must be rmethod
3557   assert(method == rmethod,
3558          "Method must be rmethod for interpreter calling convention");
3559 
3560   // do the call - the index is actually the method to call
3561   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3562 
3563   // It's final, need a null check here!
3564   __ null_check(recv);
3565 
3566   // profile this call
3567   __ profile_final_call(r0);
3568   __ profile_arguments_type(r0, method, r4, true);
3569 
3570   __ jump_from_interpreted(method, r0);
3571 
3572   __ bind(notFinal);
3573 
3574   // get receiver klass
3575   __ load_klass(r0, recv);
3576 
3577   // profile this call
3578   __ profile_virtual_call(r0, rlocals, r3);
3579 
3580   // get target Method & entry point
3581   __ lookup_virtual_method(r0, index, method);
3582   __ profile_arguments_type(r3, method, r4, true);
3583   // FIXME -- this looks completely redundant. is it?
3584   // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3585   __ jump_from_interpreted(method, r3);
3586 }
3587 
3588 void TemplateTable::invokevirtual(int byte_no)
3589 {
3590   transition(vtos, vtos);
3591   assert(byte_no == f2_byte, "use this argument");
3592 
3593   load_resolved_method_entry_virtual(r2,      // ResolvedMethodEntry*
3594                                      rmethod, // Method* or itable index
3595                                      r3);     // flags
3596   prepare_invoke(r2, r2); // recv
3597 
3598   // rmethod: index (actually a Method*)
3599   // r2: receiver
3600   // r3: flags
3601 
3602   invokevirtual_helper(rmethod, r2, r3);
3603 }
3604 
3605 void TemplateTable::invokespecial(int byte_no)
3606 {
3607   transition(vtos, vtos);
3608   assert(byte_no == f1_byte, "use this argument");
3609 
3610   load_resolved_method_entry_special_or_static(r2,      // ResolvedMethodEntry*
3611                                                rmethod, // Method*
3612                                                r3);     // flags
3613   prepare_invoke(r2, r2);  // get receiver also for null check
3614   __ verify_oop(r2);
3615   __ null_check(r2);
3616   // do the call
3617   __ profile_call(r0);
3618   __ profile_arguments_type(r0, rmethod, rbcp, false);
3619   __ jump_from_interpreted(rmethod, r0);
3620 }
3621 
3622 void TemplateTable::invokestatic(int byte_no)
3623 {
3624   transition(vtos, vtos);
3625   assert(byte_no == f1_byte, "use this argument");
3626 
3627   load_resolved_method_entry_special_or_static(r2,      // ResolvedMethodEntry*
3628                                                rmethod, // Method*
3629                                                r3);     // flags
3630   prepare_invoke(r2, r2);  // get receiver also for null check
3631 
3632   // do the call
3633   __ profile_call(r0);
3634   __ profile_arguments_type(r0, rmethod, r4, false);
3635   __ jump_from_interpreted(rmethod, r0);
3636 }
3637 
3638 void TemplateTable::fast_invokevfinal(int byte_no)
3639 {
3640   __ call_Unimplemented();
3641 }
3642 
3643 void TemplateTable::invokeinterface(int byte_no) {
3644   transition(vtos, vtos);
3645   assert(byte_no == f1_byte, "use this argument");
3646 
3647   load_resolved_method_entry_interface(r2,      // ResolvedMethodEntry*
3648                                        r0,      // Klass*
3649                                        rmethod, // Method* or itable/vtable index
3650                                        r3);     // flags
3651   prepare_invoke(r2, r2); // receiver
3652 
3653   // r0: interface klass (from f1)
3654   // rmethod: method (from f2)
3655   // r2: receiver
3656   // r3: flags
3657 
3658   // First check for Object case, then private interface method,
3659   // then regular interface method.
3660 
3661   // Special case of invokeinterface called for virtual method of
3662   // java.lang.Object.  See cpCache.cpp for details.
3663   Label notObjectMethod;
3664   __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3665 
3666   invokevirtual_helper(rmethod, r2, r3);
3667   __ bind(notObjectMethod);
3668 
3669   Label no_such_interface;
3670 
3671   // Check for private method invocation - indicated by vfinal
3672   Label notVFinal;
3673   __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3674 
3675   // Get receiver klass into r3
3676   __ load_klass(r3, r2);
3677 
3678   Label subtype;
3679   __ check_klass_subtype(r3, r0, r4, subtype);
3680   // If we get here the typecheck failed
3681   __ b(no_such_interface);
3682   __ bind(subtype);
3683 
3684   __ profile_final_call(r0);
3685   __ profile_arguments_type(r0, rmethod, r4, true);
3686   __ jump_from_interpreted(rmethod, r0);
3687 
3688   __ bind(notVFinal);
3689 
3690   // Get receiver klass into r3
3691   __ restore_locals();
3692   __ load_klass(r3, r2);
3693 
3694   Label no_such_method;
3695 
3696   // Preserve method for throw_AbstractMethodErrorVerbose.
3697   __ mov(r16, rmethod);
3698   // Receiver subtype check against REFC.
3699   // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3700   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3701                              r3, r0, noreg,
3702                              // outputs: scan temp. reg, scan temp. reg
3703                              rscratch2, r13,
3704                              no_such_interface,
3705                              /*return_method=*/false);
3706 
3707   // profile this call
3708   __ profile_virtual_call(r3, r13, r19);
3709 
3710   // Get declaring interface class from method, and itable index
3711 
3712   __ load_method_holder(r0, rmethod);
3713   __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3714   __ subw(rmethod, rmethod, Method::itable_index_max);
3715   __ negw(rmethod, rmethod);
3716 
3717   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3718   __ mov(rlocals, r3);
3719   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3720                              rlocals, r0, rmethod,
3721                              // outputs: method, scan temp. reg
3722                              rmethod, r13,
3723                              no_such_interface);
3724 
3725   // rmethod,: Method to call
3726   // r2: receiver
3727   // Check for abstract method error
3728   // Note: This should be done more efficiently via a throw_abstract_method_error
3729   //       interpreter entry point and a conditional jump to it in case of a null
3730   //       method.
3731   __ cbz(rmethod, no_such_method);
3732 
3733   __ profile_arguments_type(r3, rmethod, r13, true);
3734 
3735   // do the call
3736   // r2: receiver
3737   // rmethod,: Method
3738   __ jump_from_interpreted(rmethod, r3);
3739   __ should_not_reach_here();
3740 
3741   // exception handling code follows...
3742   // note: must restore interpreter registers to canonical
3743   //       state for exception handling to work correctly!
3744 
3745   __ bind(no_such_method);
3746   // throw exception
3747   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3748   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3749   // Pass arguments for generating a verbose error message.
3750   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3751   // the call_VM checks for exception, so we should never return here.
3752   __ should_not_reach_here();
3753 
3754   __ bind(no_such_interface);
3755   // throw exception
3756   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3757   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3758   // Pass arguments for generating a verbose error message.
3759   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3760                    InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3761   // the call_VM checks for exception, so we should never return here.
3762   __ should_not_reach_here();
3763   return;
3764 }
3765 
3766 void TemplateTable::invokehandle(int byte_no) {
3767   transition(vtos, vtos);
3768   assert(byte_no == f1_byte, "use this argument");
3769 
3770   load_resolved_method_entry_handle(r2,      // ResolvedMethodEntry*
3771                                     rmethod, // Method*
3772                                     r0,      // Resolved reference
3773                                     r3);     // flags
3774   prepare_invoke(r2, r2);
3775 
3776   __ verify_method_ptr(r2);
3777   __ verify_oop(r2);
3778   __ null_check(r2);
3779 
3780   // FIXME: profile the LambdaForm also
3781 
3782   // r13 is safe to use here as a scratch reg because it is about to
3783   // be clobbered by jump_from_interpreted().
3784   __ profile_final_call(r13);
3785   __ profile_arguments_type(r13, rmethod, r4, true);
3786 
3787   __ jump_from_interpreted(rmethod, r0);
3788 }
3789 
3790 void TemplateTable::invokedynamic(int byte_no) {
3791   transition(vtos, vtos);
3792   assert(byte_no == f1_byte, "use this argument");
3793 
3794   load_invokedynamic_entry(rmethod);
3795 
3796   // r0: CallSite object (from cpool->resolved_references[])
3797   // rmethod: MH.linkToCallSite method
3798 
3799   // Note:  r0_callsite is already pushed
3800 
3801   // %%% should make a type profile for any invokedynamic that takes a ref argument
3802   // profile this call
3803   __ profile_call(rbcp);
3804   __ profile_arguments_type(r3, rmethod, r13, false);
3805 
3806   __ verify_oop(r0);
3807 
3808   __ jump_from_interpreted(rmethod, r0);
3809 }
3810 
3811 
3812 //-----------------------------------------------------------------------------
3813 // Allocation
3814 
3815 void TemplateTable::_new() {
3816   transition(vtos, atos);
3817 
3818   __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3819   Label slow_case;
3820   Label done;
3821   Label initialize_header;
3822 
3823   __ get_cpool_and_tags(r4, r0);
3824   // Make sure the class we're about to instantiate has been resolved.
3825   // This is done before loading InstanceKlass to be consistent with the order
3826   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3827   const int tags_offset = Array<u1>::base_offset_in_bytes();
3828   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3829   __ lea(rscratch1, Address(rscratch1, tags_offset));
3830   __ ldarb(rscratch1, rscratch1);
3831   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3832   __ br(Assembler::NE, slow_case);
3833 
3834   // get InstanceKlass
3835   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3836 
3837   // make sure klass is initialized
3838   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3839   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3840 
3841   __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3842   __ b(done);
3843 
3844   // slow case
3845   __ bind(slow_case);
3846   __ get_constant_pool(c_rarg1);
3847   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3848   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3849   __ verify_oop(r0);
3850 
3851   // continue
3852   __ bind(done);
3853   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3854   __ membar(Assembler::StoreStore);
3855 }
3856 
3857 void TemplateTable::newarray() {
3858   transition(itos, atos);
3859   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3860   __ mov(c_rarg2, r0);
3861   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3862           c_rarg1, c_rarg2);
3863   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3864   __ membar(Assembler::StoreStore);
3865 }
3866 
3867 void TemplateTable::anewarray() {
3868   transition(itos, atos);
3869   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3870   __ get_constant_pool(c_rarg1);
3871   __ mov(c_rarg3, r0);
3872   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3873           c_rarg1, c_rarg2, c_rarg3);
3874   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3875   __ membar(Assembler::StoreStore);
3876 }
3877 
3878 void TemplateTable::arraylength() {
3879   transition(atos, itos);
3880   __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3881 }
3882 
3883 void TemplateTable::checkcast()
3884 {
3885   transition(atos, atos);
3886   Label done, is_null, ok_is_subtype, quicked, resolved;
3887   __ cbz(r0, is_null);
3888 
3889   // Get cpool & tags index
3890   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3891   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3892   // See if bytecode has already been quicked
3893   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3894   __ lea(r1, Address(rscratch1, r19));
3895   __ ldarb(r1, r1);
3896   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3897   __ br(Assembler::EQ, quicked);
3898 
3899   __ push(atos); // save receiver for result, and for GC
3900   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3901   __ get_vm_result_metadata(r0, rthread);
3902   __ pop(r3); // restore receiver
3903   __ b(resolved);
3904 
3905   // Get superklass in r0 and subklass in r3
3906   __ bind(quicked);
3907   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3908   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3909 
3910   __ bind(resolved);
3911   __ load_klass(r19, r3);
3912 
3913   // Generate subtype check.  Blows r2, r5.  Object in r3.
3914   // Superklass in r0.  Subklass in r19.
3915   __ gen_subtype_check(r19, ok_is_subtype);
3916 
3917   // Come here on failure
3918   __ push(r3);
3919   // object is at TOS
3920   __ b(Interpreter::_throw_ClassCastException_entry);
3921 
3922   // Come here on success
3923   __ bind(ok_is_subtype);
3924   __ mov(r0, r3); // Restore object in r3
3925 
3926   __ b(done);
3927   __ bind(is_null);
3928 
3929   // Collect counts on whether this test sees nulls a lot or not.
3930   if (ProfileInterpreter) {
3931     __ profile_null_seen(r2);
3932   }
3933 
3934   __ bind(done);
3935 }
3936 
3937 void TemplateTable::instanceof() {
3938   transition(atos, itos);
3939   Label done, is_null, ok_is_subtype, quicked, resolved;
3940   __ cbz(r0, is_null);
3941 
3942   // Get cpool & tags index
3943   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3944   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3945   // See if bytecode has already been quicked
3946   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3947   __ lea(r1, Address(rscratch1, r19));
3948   __ ldarb(r1, r1);
3949   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3950   __ br(Assembler::EQ, quicked);
3951 
3952   __ push(atos); // save receiver for result, and for GC
3953   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3954   __ get_vm_result_metadata(r0, rthread);
3955   __ pop(r3); // restore receiver
3956   __ verify_oop(r3);
3957   __ load_klass(r3, r3);
3958   __ b(resolved);
3959 
3960   // Get superklass in r0 and subklass in r3
3961   __ bind(quicked);
3962   __ load_klass(r3, r0);
3963   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3964 
3965   __ bind(resolved);
3966 
3967   // Generate subtype check.  Blows r2, r5
3968   // Superklass in r0.  Subklass in r3.
3969   __ gen_subtype_check(r3, ok_is_subtype);
3970 
3971   // Come here on failure
3972   __ mov(r0, 0);
3973   __ b(done);
3974   // Come here on success
3975   __ bind(ok_is_subtype);
3976   __ mov(r0, 1);
3977 
3978   // Collect counts on whether this test sees nulls a lot or not.
3979   if (ProfileInterpreter) {
3980     __ b(done);
3981     __ bind(is_null);
3982     __ profile_null_seen(r2);
3983   } else {
3984     __ bind(is_null);   // same as 'done'
3985   }
3986   __ bind(done);
3987   // r0 = 0: obj == nullptr or  obj is not an instanceof the specified klass
3988   // r0 = 1: obj != nullptr and obj is     an instanceof the specified klass
3989 }
3990 
3991 //-----------------------------------------------------------------------------
3992 // Breakpoints
3993 void TemplateTable::_breakpoint() {
3994   // Note: We get here even if we are single stepping..
3995   // jbug inists on setting breakpoints at every bytecode
3996   // even if we are in single step mode.
3997 
3998   transition(vtos, vtos);
3999 
4000   // get the unpatched byte code
4001   __ get_method(c_rarg1);
4002   __ call_VM(noreg,
4003              CAST_FROM_FN_PTR(address,
4004                               InterpreterRuntime::get_original_bytecode_at),
4005              c_rarg1, rbcp);
4006   __ mov(r19, r0);
4007 
4008   // post the breakpoint event
4009   __ call_VM(noreg,
4010              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4011              rmethod, rbcp);
4012 
4013   // complete the execution of original bytecode
4014   __ mov(rscratch1, r19);
4015   __ dispatch_only_normal(vtos);
4016 }
4017 
4018 //-----------------------------------------------------------------------------
4019 // Exceptions
4020 
4021 void TemplateTable::athrow() {
4022   transition(atos, vtos);
4023   __ null_check(r0);
4024   __ b(Interpreter::throw_exception_entry());
4025 }
4026 
4027 //-----------------------------------------------------------------------------
4028 // Synchronization
4029 //
4030 // Note: monitorenter & exit are symmetric routines; which is reflected
4031 //       in the assembly code structure as well
4032 //
4033 // Stack layout:
4034 //
4035 // [expressions  ] <--- esp               = expression stack top
4036 // ..
4037 // [expressions  ]
4038 // [monitor entry] <--- monitor block top = expression stack bot
4039 // ..
4040 // [monitor entry]
4041 // [frame data   ] <--- monitor block bot
4042 // ...
4043 // [saved rfp    ] <--- rfp
4044 void TemplateTable::monitorenter()
4045 {
4046   transition(atos, vtos);
4047 
4048   // check for null object
4049   __ null_check(r0);
4050 
4051   Label is_inline_type;
4052   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4053   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4054 
4055   const Address monitor_block_top(
4056         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4057   const Address monitor_block_bot(
4058         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4059   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4060 
4061   Label allocated;
4062 
4063   // initialize entry pointer
4064   __ mov(c_rarg1, zr); // points to free slot or null
4065 
4066   // find a free slot in the monitor block (result in c_rarg1)
4067   {
4068     Label entry, loop, exit;
4069     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4070     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4071     // c_rarg3 points to current entry, starting with top-most entry
4072 
4073     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4074 
4075     __ b(entry);
4076 
4077     __ bind(loop);
4078     // check if current entry is used
4079     // if not used then remember entry in c_rarg1
4080     __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
4081     __ cmp(zr, rscratch1);
4082     __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
4083     // check if current entry is for same object
4084     __ cmp(r0, rscratch1);
4085     // if same object then stop searching
4086     __ br(Assembler::EQ, exit);
4087     // otherwise advance to next entry
4088     __ add(c_rarg3, c_rarg3, entry_size);
4089     __ bind(entry);
4090     // check if bottom reached
4091     __ cmp(c_rarg3, c_rarg2);
4092     // if not at bottom then check this entry
4093     __ br(Assembler::NE, loop);
4094     __ bind(exit);
4095   }
4096 
4097   __ cbnz(c_rarg1, allocated); // check if a slot has been found and
4098                             // if found, continue with that on
4099 
4100   // allocate one if there's no free slot
4101   {
4102     Label entry, loop;
4103     // 1. compute new pointers            // rsp: old expression stack top
4104 
4105     __ check_extended_sp();
4106     __ sub(sp, sp, entry_size);           // make room for the monitor
4107     __ sub(rscratch1, sp, rfp);
4108     __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
4109     __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
4110 
4111     __ ldr(c_rarg1, monitor_block_bot);   // derelativize pointer
4112     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4113     // c_rarg1 points to the old expression stack bottom
4114 
4115     __ sub(esp, esp, entry_size);         // move expression stack top
4116     __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
4117     __ mov(c_rarg3, esp);                 // set start value for copy loop
4118     __ sub(rscratch1, c_rarg1, rfp);      // relativize pointer
4119     __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
4120     __ str(rscratch1, monitor_block_bot);  // set new monitor block bottom
4121 
4122     __ b(entry);
4123     // 2. move expression stack contents
4124     __ bind(loop);
4125     __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
4126                                                    // word from old location
4127     __ str(c_rarg2, Address(c_rarg3, 0));          // and store it at new location
4128     __ add(c_rarg3, c_rarg3, wordSize);            // advance to next word
4129     __ bind(entry);
4130     __ cmp(c_rarg3, c_rarg1);        // check if bottom reached
4131     __ br(Assembler::NE, loop);      // if not at bottom then
4132                                      // copy next word
4133   }
4134 
4135   // call run-time routine
4136   // c_rarg1: points to monitor entry
4137   __ bind(allocated);
4138 
4139   // Increment bcp to point to the next bytecode, so exception
4140   // handling for async. exceptions work correctly.
4141   // The object has already been popped from the stack, so the
4142   // expression stack looks correct.
4143   __ increment(rbcp);
4144 
4145   // store object
4146   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4147   __ lock_object(c_rarg1);
4148 
4149   // check to make sure this monitor doesn't cause stack overflow after locking
4150   __ save_bcp();  // in case of exception
4151   __ generate_stack_overflow_check(0);
4152 
4153   // The bcp has already been incremented. Just need to dispatch to
4154   // next instruction.
4155   __ dispatch_next(vtos);
4156 
4157   __ bind(is_inline_type);
4158   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4159                     InterpreterRuntime::throw_identity_exception), r0);
4160   __ should_not_reach_here();
4161 }
4162 
4163 
4164 void TemplateTable::monitorexit()
4165 {
4166   transition(atos, vtos);
4167 
4168   // check for null object
4169   __ null_check(r0);
4170 
4171   const int is_inline_type_mask = markWord::inline_type_pattern;
4172   Label has_identity;
4173   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4174   __ mov(rscratch2, is_inline_type_mask);
4175   __ andr(rscratch1, rscratch1, rscratch2);
4176   __ cmp(rscratch1, rscratch2);
4177   __ br(Assembler::NE, has_identity);
4178   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4179                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4180   __ should_not_reach_here();
4181   __ bind(has_identity);
4182 
4183   const Address monitor_block_top(
4184         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4185   const Address monitor_block_bot(
4186         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4187   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4188 
4189   Label found;
4190 
4191   // find matching slot
4192   {
4193     Label entry, loop;
4194     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4195     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4196     // c_rarg1 points to current entry, starting with top-most entry
4197 
4198     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4199                                         // of monitor block
4200     __ b(entry);
4201 
4202     __ bind(loop);
4203     // check if current entry is for same object
4204     __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4205     __ cmp(r0, rscratch1);
4206     // if same object then stop searching
4207     __ br(Assembler::EQ, found);
4208     // otherwise advance to next entry
4209     __ add(c_rarg1, c_rarg1, entry_size);
4210     __ bind(entry);
4211     // check if bottom reached
4212     __ cmp(c_rarg1, c_rarg2);
4213     // if not at bottom then check this entry
4214     __ br(Assembler::NE, loop);
4215   }
4216 
4217   // error handling. Unlocking was not block-structured
4218   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4219                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4220   __ should_not_reach_here();
4221 
4222   // call run-time routine
4223   __ bind(found);
4224   __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4225   __ unlock_object(c_rarg1);
4226   __ pop_ptr(r0); // discard object
4227 }
4228 
4229 
4230 // Wide instructions
4231 void TemplateTable::wide()
4232 {
4233   __ load_unsigned_byte(r19, at_bcp(1));
4234   __ mov(rscratch1, (address)Interpreter::_wentry_point);
4235   __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4236   __ br(rscratch1);
4237 }
4238 
4239 
4240 // Multi arrays
4241 void TemplateTable::multianewarray() {
4242   transition(vtos, atos);
4243   __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4244   // last dim is on top of stack; we want address of first one:
4245   // first_addr = last_addr + (ndims - 1) * wordSize
4246   __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4247   __ sub(c_rarg1, c_rarg1, wordSize);
4248   call_VM(r0,
4249           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4250           c_rarg1);
4251   __ load_unsigned_byte(r1, at_bcp(3));
4252   __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4253 }