1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "compiler/compilerDefinitions.inline.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "gc/shared/tlab_globals.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/interp_masm.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "memory/universe.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/method.inline.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/resolvedFieldEntry.hpp"
  43 #include "oops/resolvedIndyEntry.hpp"
  44 #include "oops/resolvedMethodEntry.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/methodHandles.hpp"
  47 #include "runtime/frame.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  54 
  55 // Address computation: local variables
  56 
  57 static inline Address iaddress(int n) {
  58   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  59 }
  60 
  61 static inline Address laddress(int n) {
  62   return iaddress(n + 1);
  63 }
  64 
  65 static inline Address faddress(int n) {
  66   return iaddress(n);
  67 }
  68 
  69 static inline Address daddress(int n) {
  70   return laddress(n);
  71 }
  72 
  73 static inline Address aaddress(int n) {
  74   return iaddress(n);
  75 }
  76 
  77 static inline Address iaddress(Register r) {
  78   return Address(rlocals, r, Address::lsl(3));
  79 }
  80 
  81 static inline Address laddress(Register r, Register scratch,
  82                                InterpreterMacroAssembler* _masm) {
  83   __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
  84   return Address(scratch, Interpreter::local_offset_in_bytes(1));
  85 }
  86 
  87 static inline Address faddress(Register r) {
  88   return iaddress(r);
  89 }
  90 
  91 static inline Address daddress(Register r, Register scratch,
  92                                InterpreterMacroAssembler* _masm) {
  93   return laddress(r, scratch, _masm);
  94 }
  95 
  96 static inline Address aaddress(Register r) {
  97   return iaddress(r);
  98 }
  99 
 100 static inline Address at_rsp() {
 101   return Address(esp, 0);
 102 }
 103 
 104 // At top of Java expression stack which may be different than esp().  It
 105 // isn't for category 1 objects.
 106 static inline Address at_tos   () {
 107   return Address(esp,  Interpreter::expr_offset_in_bytes(0));
 108 }
 109 
 110 static inline Address at_tos_p1() {
 111   return Address(esp,  Interpreter::expr_offset_in_bytes(1));
 112 }
 113 
 114 static inline Address at_tos_p2() {
 115   return Address(esp,  Interpreter::expr_offset_in_bytes(2));
 116 }
 117 
 118 static inline Address at_tos_p3() {
 119   return Address(esp,  Interpreter::expr_offset_in_bytes(3));
 120 }
 121 
 122 static inline Address at_tos_p4() {
 123   return Address(esp,  Interpreter::expr_offset_in_bytes(4));
 124 }
 125 
 126 static inline Address at_tos_p5() {
 127   return Address(esp,  Interpreter::expr_offset_in_bytes(5));
 128 }
 129 
 130 // Condition conversion
 131 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 132   switch (cc) {
 133   case TemplateTable::equal        : return Assembler::NE;
 134   case TemplateTable::not_equal    : return Assembler::EQ;
 135   case TemplateTable::less         : return Assembler::GE;
 136   case TemplateTable::less_equal   : return Assembler::GT;
 137   case TemplateTable::greater      : return Assembler::LE;
 138   case TemplateTable::greater_equal: return Assembler::LT;
 139   }
 140   ShouldNotReachHere();
 141   return Assembler::EQ;
 142 }
 143 
 144 
 145 // Miscellaneous helper routines
 146 // Store an oop (or null) at the Address described by obj.
 147 // If val == noreg this means store a null
 148 static void do_oop_store(InterpreterMacroAssembler* _masm,
 149                          Address dst,
 150                          Register val,
 151                          DecoratorSet decorators) {
 152   assert(val == noreg || val == r0, "parameter is just for looks");
 153   __ store_heap_oop(dst, val, r10, r11, r3, decorators);
 154 }
 155 
 156 static void do_oop_load(InterpreterMacroAssembler* _masm,
 157                         Address src,
 158                         Register dst,
 159                         DecoratorSet decorators) {
 160   __ load_heap_oop(dst, src, r10, r11, decorators);
 161 }
 162 
 163 Address TemplateTable::at_bcp(int offset) {
 164   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 165   return Address(rbcp, offset);
 166 }
 167 
 168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 169                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 170                                    int byte_no)
 171 {
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {
 176   case Bytecodes::_fast_vputfield:
 177   case Bytecodes::_fast_aputfield:
 178   case Bytecodes::_fast_bputfield:
 179   case Bytecodes::_fast_zputfield:
 180   case Bytecodes::_fast_cputfield:
 181   case Bytecodes::_fast_dputfield:
 182   case Bytecodes::_fast_fputfield:
 183   case Bytecodes::_fast_iputfield:
 184   case Bytecodes::_fast_lputfield:
 185   case Bytecodes::_fast_sputfield:
 186     {
 187       // We skip bytecode quickening for putfield instructions when
 188       // the put_code written to the constant pool cache is zero.
 189       // This is required so that every execution of this instruction
 190       // calls out to InterpreterRuntime::resolve_get_put to do
 191       // additional, required work.
 192       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 193       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 194       __ load_field_entry(temp_reg, bc_reg);
 195       if (byte_no == f1_byte) {
 196         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
 197       } else {
 198         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
 199       }
 200       // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
 201       __ ldarb(temp_reg, temp_reg);
 202       __ movw(bc_reg, bc);
 203       __ cbzw(temp_reg, L_patch_done);  // don't patch
 204     }
 205     break;
 206   default:
 207     assert(byte_no == -1, "sanity");
 208     // the pair bytecodes have already done the load.
 209     if (load_bc_into_bc_reg) {
 210       __ movw(bc_reg, bc);
 211     }
 212   }
 213 
 214   if (JvmtiExport::can_post_breakpoint()) {
 215     Label L_fast_patch;
 216     // if a breakpoint is present we can't rewrite the stream directly
 217     __ load_unsigned_byte(temp_reg, at_bcp(0));
 218     __ cmpw(temp_reg, Bytecodes::_breakpoint);
 219     __ br(Assembler::NE, L_fast_patch);
 220     // Let breakpoint table handling rewrite to quicker bytecode
 221     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
 222     __ b(L_patch_done);
 223     __ bind(L_fast_patch);
 224   }
 225 
 226 #ifdef ASSERT
 227   Label L_okay;
 228   __ load_unsigned_byte(temp_reg, at_bcp(0));
 229   __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
 230   __ br(Assembler::EQ, L_okay);
 231   __ cmpw(temp_reg, bc_reg);
 232   __ br(Assembler::EQ, L_okay);
 233   __ stop("patching the wrong bytecode");
 234   __ bind(L_okay);
 235 #endif
 236 
 237   // patch bytecode
 238   __ strb(bc_reg, at_bcp(0));
 239   __ bind(L_patch_done);
 240 }
 241 
 242 
 243 // Individual instructions
 244 
 245 void TemplateTable::nop() {
 246   transition(vtos, vtos);
 247   // nothing to do
 248 }
 249 
 250 void TemplateTable::shouldnotreachhere() {
 251   transition(vtos, vtos);
 252   __ stop("shouldnotreachhere bytecode");
 253 }
 254 
 255 void TemplateTable::aconst_null()
 256 {
 257   transition(vtos, atos);
 258   __ mov(r0, 0);
 259 }
 260 
 261 void TemplateTable::iconst(int value)
 262 {
 263   transition(vtos, itos);
 264   __ mov(r0, value);
 265 }
 266 
 267 void TemplateTable::lconst(int value)
 268 {
 269   __ mov(r0, value);
 270 }
 271 
 272 void TemplateTable::fconst(int value)
 273 {
 274   transition(vtos, ftos);
 275   switch (value) {
 276   case 0:
 277     __ fmovs(v0, 0.0);
 278     break;
 279   case 1:
 280     __ fmovs(v0, 1.0);
 281     break;
 282   case 2:
 283     __ fmovs(v0, 2.0);
 284     break;
 285   default:
 286     ShouldNotReachHere();
 287     break;
 288   }
 289 }
 290 
 291 void TemplateTable::dconst(int value)
 292 {
 293   transition(vtos, dtos);
 294   switch (value) {
 295   case 0:
 296     __ fmovd(v0, 0.0);
 297     break;
 298   case 1:
 299     __ fmovd(v0, 1.0);
 300     break;
 301   case 2:
 302     __ fmovd(v0, 2.0);
 303     break;
 304   default:
 305     ShouldNotReachHere();
 306     break;
 307   }
 308 }
 309 
 310 void TemplateTable::bipush()
 311 {
 312   transition(vtos, itos);
 313   __ load_signed_byte32(r0, at_bcp(1));
 314 }
 315 
 316 void TemplateTable::sipush()
 317 {
 318   transition(vtos, itos);
 319   __ load_unsigned_short(r0, at_bcp(1));
 320   __ revw(r0, r0);
 321   __ asrw(r0, r0, 16);
 322 }
 323 
 324 void TemplateTable::ldc(LdcType type)
 325 {
 326   transition(vtos, vtos);
 327   Label call_ldc, notFloat, notClass, notInt, Done;
 328 
 329   if (is_ldc_wide(type)) {
 330     __ get_unsigned_2_byte_index_at_bcp(r1, 1);
 331   } else {
 332     __ load_unsigned_byte(r1, at_bcp(1));
 333   }
 334   __ get_cpool_and_tags(r2, r0);
 335 
 336   const int base_offset = ConstantPool::header_size() * wordSize;
 337   const int tags_offset = Array<u1>::base_offset_in_bytes();
 338 
 339   // get type
 340   __ add(r3, r1, tags_offset);
 341   __ lea(r3, Address(r0, r3));
 342   __ ldarb(r3, r3);
 343 
 344   // unresolved class - get the resolved class
 345   __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
 346   __ br(Assembler::EQ, call_ldc);
 347 
 348   // unresolved class in error state - call into runtime to throw the error
 349   // from the first resolution attempt
 350   __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
 351   __ br(Assembler::EQ, call_ldc);
 352 
 353   // resolved class - need to call vm to get java mirror of the class
 354   __ cmp(r3, (u1)JVM_CONSTANT_Class);
 355   __ br(Assembler::NE, notClass);
 356 
 357   __ bind(call_ldc);
 358   __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
 359   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 360   __ push_ptr(r0);
 361   __ verify_oop(r0);
 362   __ b(Done);
 363 
 364   __ bind(notClass);
 365   __ cmp(r3, (u1)JVM_CONSTANT_Float);
 366   __ br(Assembler::NE, notFloat);
 367   // ftos
 368   __ adds(r1, r2, r1, Assembler::LSL, 3);
 369   __ ldrs(v0, Address(r1, base_offset));
 370   __ push_f();
 371   __ b(Done);
 372 
 373   __ bind(notFloat);
 374 
 375   __ cmp(r3, (u1)JVM_CONSTANT_Integer);
 376   __ br(Assembler::NE, notInt);
 377 
 378   // itos
 379   __ adds(r1, r2, r1, Assembler::LSL, 3);
 380   __ ldrw(r0, Address(r1, base_offset));
 381   __ push_i(r0);
 382   __ b(Done);
 383 
 384   __ bind(notInt);
 385   condy_helper(Done);
 386 
 387   __ bind(Done);
 388 }
 389 
 390 // Fast path for caching oop constants.
 391 void TemplateTable::fast_aldc(LdcType type)
 392 {
 393   transition(vtos, atos);
 394 
 395   Register result = r0;
 396   Register tmp = r1;
 397   Register rarg = r2;
 398 
 399   int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
 400 
 401   Label resolved;
 402 
 403   // We are resolved if the resolved reference cache entry contains a
 404   // non-null object (String, MethodType, etc.)
 405   assert_different_registers(result, tmp);
 406   __ get_cache_index_at_bcp(tmp, 1, index_size);
 407   __ load_resolved_reference_at_index(result, tmp);
 408   __ cbnz(result, resolved);
 409 
 410   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 411 
 412   // first time invocation - must resolve first
 413   __ mov(rarg, (int)bytecode());
 414   __ call_VM(result, entry, rarg);
 415 
 416   __ bind(resolved);
 417 
 418   { // Check for the null sentinel.
 419     // If we just called the VM, it already did the mapping for us,
 420     // but it's harmless to retry.
 421     Label notNull;
 422 
 423     // Stash null_sentinel address to get its value later
 424     __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
 425     __ ldr(tmp, Address(rarg));
 426     __ resolve_oop_handle(tmp, r5, rscratch2);
 427     __ cmpoop(result, tmp);
 428     __ br(Assembler::NE, notNull);
 429     __ mov(result, 0);  // null object reference
 430     __ bind(notNull);
 431   }
 432 
 433   if (VerifyOops) {
 434     // Safe to call with 0 result
 435     __ verify_oop(result);
 436   }
 437 }
 438 
 439 void TemplateTable::ldc2_w()
 440 {
 441   transition(vtos, vtos);
 442   Label notDouble, notLong, Done;
 443   __ get_unsigned_2_byte_index_at_bcp(r0, 1);
 444 
 445   __ get_cpool_and_tags(r1, r2);
 446   const int base_offset = ConstantPool::header_size() * wordSize;
 447   const int tags_offset = Array<u1>::base_offset_in_bytes();
 448 
 449   // get type
 450   __ lea(r2, Address(r2, r0, Address::lsl(0)));
 451   __ load_unsigned_byte(r2, Address(r2, tags_offset));
 452   __ cmpw(r2, (int)JVM_CONSTANT_Double);
 453   __ br(Assembler::NE, notDouble);
 454 
 455   // dtos
 456   __ lea (r2, Address(r1, r0, Address::lsl(3)));
 457   __ ldrd(v0, Address(r2, base_offset));
 458   __ push_d();
 459   __ b(Done);
 460 
 461   __ bind(notDouble);
 462   __ cmpw(r2, (int)JVM_CONSTANT_Long);
 463   __ br(Assembler::NE, notLong);
 464 
 465   // ltos
 466   __ lea(r0, Address(r1, r0, Address::lsl(3)));
 467   __ ldr(r0, Address(r0, base_offset));
 468   __ push_l();
 469   __ b(Done);
 470 
 471   __ bind(notLong);
 472   condy_helper(Done);
 473 
 474   __ bind(Done);
 475 }
 476 
 477 void TemplateTable::condy_helper(Label& Done)
 478 {
 479   Register obj = r0;
 480   Register rarg = r1;
 481   Register flags = r2;
 482   Register off = r3;
 483 
 484   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 485 
 486   __ mov(rarg, (int) bytecode());
 487   __ call_VM(obj, entry, rarg);
 488 
 489   __ get_vm_result_2(flags, rthread);
 490 
 491   // VMr = obj = base address to find primitive value to push
 492   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 493   __ mov(off, flags);
 494   __ andw(off, off, ConstantPoolCache::field_index_mask);
 495 
 496   const Address field(obj, off);
 497 
 498   // What sort of thing are we loading?
 499   // x86 uses a shift and mask or wings it with a shift plus assert
 500   // the mask is not needed. aarch64 just uses bitfield extract
 501   __ ubfxw(flags, flags, ConstantPoolCache::tos_state_shift,
 502            ConstantPoolCache::tos_state_bits);
 503 
 504   switch (bytecode()) {
 505     case Bytecodes::_ldc:
 506     case Bytecodes::_ldc_w:
 507       {
 508         // tos in (itos, ftos, stos, btos, ctos, ztos)
 509         Label notInt, notFloat, notShort, notByte, notChar, notBool;
 510         __ cmpw(flags, itos);
 511         __ br(Assembler::NE, notInt);
 512         // itos
 513         __ ldrw(r0, field);
 514         __ push(itos);
 515         __ b(Done);
 516 
 517         __ bind(notInt);
 518         __ cmpw(flags, ftos);
 519         __ br(Assembler::NE, notFloat);
 520         // ftos
 521         __ load_float(field);
 522         __ push(ftos);
 523         __ b(Done);
 524 
 525         __ bind(notFloat);
 526         __ cmpw(flags, stos);
 527         __ br(Assembler::NE, notShort);
 528         // stos
 529         __ load_signed_short(r0, field);
 530         __ push(stos);
 531         __ b(Done);
 532 
 533         __ bind(notShort);
 534         __ cmpw(flags, btos);
 535         __ br(Assembler::NE, notByte);
 536         // btos
 537         __ load_signed_byte(r0, field);
 538         __ push(btos);
 539         __ b(Done);
 540 
 541         __ bind(notByte);
 542         __ cmpw(flags, ctos);
 543         __ br(Assembler::NE, notChar);
 544         // ctos
 545         __ load_unsigned_short(r0, field);
 546         __ push(ctos);
 547         __ b(Done);
 548 
 549         __ bind(notChar);
 550         __ cmpw(flags, ztos);
 551         __ br(Assembler::NE, notBool);
 552         // ztos
 553         __ load_signed_byte(r0, field);
 554         __ push(ztos);
 555         __ b(Done);
 556 
 557         __ bind(notBool);
 558         break;
 559       }
 560 
 561     case Bytecodes::_ldc2_w:
 562       {
 563         Label notLong, notDouble;
 564         __ cmpw(flags, ltos);
 565         __ br(Assembler::NE, notLong);
 566         // ltos
 567         __ ldr(r0, field);
 568         __ push(ltos);
 569         __ b(Done);
 570 
 571         __ bind(notLong);
 572         __ cmpw(flags, dtos);
 573         __ br(Assembler::NE, notDouble);
 574         // dtos
 575         __ load_double(field);
 576         __ push(dtos);
 577         __ b(Done);
 578 
 579        __ bind(notDouble);
 580         break;
 581       }
 582 
 583     default:
 584       ShouldNotReachHere();
 585     }
 586 
 587     __ stop("bad ldc/condy");
 588 }
 589 
 590 void TemplateTable::locals_index(Register reg, int offset)
 591 {
 592   __ ldrb(reg, at_bcp(offset));
 593   __ neg(reg, reg);
 594 }
 595 
 596 void TemplateTable::iload() {
 597   iload_internal();
 598 }
 599 
 600 void TemplateTable::nofast_iload() {
 601   iload_internal(may_not_rewrite);
 602 }
 603 
 604 void TemplateTable::iload_internal(RewriteControl rc) {
 605   transition(vtos, itos);
 606   if (RewriteFrequentPairs && rc == may_rewrite) {
 607     Label rewrite, done;
 608     Register bc = r4;
 609 
 610     // get next bytecode
 611     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 612 
 613     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 614     // last two iloads in a pair.  Comparing against fast_iload means that
 615     // the next bytecode is neither an iload or a caload, and therefore
 616     // an iload pair.
 617     __ cmpw(r1, Bytecodes::_iload);
 618     __ br(Assembler::EQ, done);
 619 
 620     // if _fast_iload rewrite to _fast_iload2
 621     __ cmpw(r1, Bytecodes::_fast_iload);
 622     __ movw(bc, Bytecodes::_fast_iload2);
 623     __ br(Assembler::EQ, rewrite);
 624 
 625     // if _caload rewrite to _fast_icaload
 626     __ cmpw(r1, Bytecodes::_caload);
 627     __ movw(bc, Bytecodes::_fast_icaload);
 628     __ br(Assembler::EQ, rewrite);
 629 
 630     // else rewrite to _fast_iload
 631     __ movw(bc, Bytecodes::_fast_iload);
 632 
 633     // rewrite
 634     // bc: new bytecode
 635     __ bind(rewrite);
 636     patch_bytecode(Bytecodes::_iload, bc, r1, false);
 637     __ bind(done);
 638 
 639   }
 640 
 641   // do iload, get the local value into tos
 642   locals_index(r1);
 643   __ ldr(r0, iaddress(r1));
 644 
 645 }
 646 
 647 void TemplateTable::fast_iload2()
 648 {
 649   transition(vtos, itos);
 650   locals_index(r1);
 651   __ ldr(r0, iaddress(r1));
 652   __ push(itos);
 653   locals_index(r1, 3);
 654   __ ldr(r0, iaddress(r1));
 655 }
 656 
 657 void TemplateTable::fast_iload()
 658 {
 659   transition(vtos, itos);
 660   locals_index(r1);
 661   __ ldr(r0, iaddress(r1));
 662 }
 663 
 664 void TemplateTable::lload()
 665 {
 666   transition(vtos, ltos);
 667   __ ldrb(r1, at_bcp(1));
 668   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 669   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 670 }
 671 
 672 void TemplateTable::fload()
 673 {
 674   transition(vtos, ftos);
 675   locals_index(r1);
 676   // n.b. we use ldrd here because this is a 64 bit slot
 677   // this is comparable to the iload case
 678   __ ldrd(v0, faddress(r1));
 679 }
 680 
 681 void TemplateTable::dload()
 682 {
 683   transition(vtos, dtos);
 684   __ ldrb(r1, at_bcp(1));
 685   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 686   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 687 }
 688 
 689 void TemplateTable::aload()
 690 {
 691   transition(vtos, atos);
 692   locals_index(r1);
 693   __ ldr(r0, iaddress(r1));
 694 }
 695 
 696 void TemplateTable::locals_index_wide(Register reg) {
 697   __ ldrh(reg, at_bcp(2));
 698   __ rev16w(reg, reg);
 699   __ neg(reg, reg);
 700 }
 701 
 702 void TemplateTable::wide_iload() {
 703   transition(vtos, itos);
 704   locals_index_wide(r1);
 705   __ ldr(r0, iaddress(r1));
 706 }
 707 
 708 void TemplateTable::wide_lload()
 709 {
 710   transition(vtos, ltos);
 711   __ ldrh(r1, at_bcp(2));
 712   __ rev16w(r1, r1);
 713   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 714   __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 715 }
 716 
 717 void TemplateTable::wide_fload()
 718 {
 719   transition(vtos, ftos);
 720   locals_index_wide(r1);
 721   // n.b. we use ldrd here because this is a 64 bit slot
 722   // this is comparable to the iload case
 723   __ ldrd(v0, faddress(r1));
 724 }
 725 
 726 void TemplateTable::wide_dload()
 727 {
 728   transition(vtos, dtos);
 729   __ ldrh(r1, at_bcp(2));
 730   __ rev16w(r1, r1);
 731   __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
 732   __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
 733 }
 734 
 735 void TemplateTable::wide_aload()
 736 {
 737   transition(vtos, atos);
 738   locals_index_wide(r1);
 739   __ ldr(r0, aaddress(r1));
 740 }
 741 
 742 void TemplateTable::index_check(Register array, Register index)
 743 {
 744   // destroys r1, rscratch1
 745   // sign extend index for use by indexed load
 746   // __ movl2ptr(index, index);
 747   // check index
 748   Register length = rscratch1;
 749   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 750   __ cmpw(index, length);
 751   if (index != r1) {
 752     // ??? convention: move aberrant index into r1 for exception message
 753     assert(r1 != array, "different registers");
 754     __ mov(r1, index);
 755   }
 756   Label ok;
 757   __ br(Assembler::LO, ok);
 758   // ??? convention: move array into r3 for exception message
 759    __ mov(r3, array);
 760    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 761    __ br(rscratch1);
 762   __ bind(ok);
 763 }
 764 
 765 void TemplateTable::iaload()
 766 {
 767   transition(itos, itos);
 768   __ mov(r1, r0);
 769   __ pop_ptr(r0);
 770   // r0: array
 771   // r1: index
 772   index_check(r0, r1); // leaves index in r1, kills rscratch1
 773   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 774   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 775 }
 776 
 777 void TemplateTable::laload()
 778 {
 779   transition(itos, ltos);
 780   __ mov(r1, r0);
 781   __ pop_ptr(r0);
 782   // r0: array
 783   // r1: index
 784   index_check(r0, r1); // leaves index in r1, kills rscratch1
 785   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
 786   __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 787 }
 788 
 789 void TemplateTable::faload()
 790 {
 791   transition(itos, ftos);
 792   __ mov(r1, r0);
 793   __ pop_ptr(r0);
 794   // r0: array
 795   // r1: index
 796   index_check(r0, r1); // leaves index in r1, kills rscratch1
 797   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
 798   __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 799 }
 800 
 801 void TemplateTable::daload()
 802 {
 803   transition(itos, dtos);
 804   __ mov(r1, r0);
 805   __ pop_ptr(r0);
 806   // r0: array
 807   // r1: index
 808   index_check(r0, r1); // leaves index in r1, kills rscratch1
 809   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 810   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 811 }
 812 
 813 void TemplateTable::aaload()
 814 {
 815   transition(itos, atos);
 816   __ mov(r1, r0);
 817   __ pop_ptr(r0);
 818   // r0: array
 819   // r1: index
 820   index_check(r0, r1); // leaves index in r1, kills rscratch1
 821   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 822   if (UseFlatArray) {
 823     Label is_flat_array, done;
 824 
 825     __ test_flat_array_oop(r0, r8 /*temp*/, is_flat_array);
 826     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 827     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 828 
 829     __ b(done);
 830     __ bind(is_flat_array);
 831     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 832     // Ensure the stores to copy the inline field contents are visible
 833     // before any subsequent store that publishes this reference.
 834     __ membar(Assembler::StoreStore);
 835     __ bind(done);
 836   } else {
 837     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 838     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 839   }
 840   __ profile_element_type(r2, r0, r4);
 841 }
 842 
 843 void TemplateTable::baload()
 844 {
 845   transition(itos, itos);
 846   __ mov(r1, r0);
 847   __ pop_ptr(r0);
 848   // r0: array
 849   // r1: index
 850   index_check(r0, r1); // leaves index in r1, kills rscratch1
 851   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 852   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 853 }
 854 
 855 void TemplateTable::caload()
 856 {
 857   transition(itos, itos);
 858   __ mov(r1, r0);
 859   __ pop_ptr(r0);
 860   // r0: array
 861   // r1: index
 862   index_check(r0, r1); // leaves index in r1, kills rscratch1
 863   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
 864   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 865 }
 866 
 867 // iload followed by caload frequent pair
 868 void TemplateTable::fast_icaload()
 869 {
 870   transition(vtos, itos);
 871   // load index out of locals
 872   locals_index(r2);
 873   __ ldr(r1, iaddress(r2));
 874 
 875   __ pop_ptr(r0);
 876 
 877   // r0: array
 878   // r1: index
 879   index_check(r0, r1); // leaves index in r1, kills rscratch1
 880   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
 881   __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 882 }
 883 
 884 void TemplateTable::saload()
 885 {
 886   transition(itos, itos);
 887   __ mov(r1, r0);
 888   __ pop_ptr(r0);
 889   // r0: array
 890   // r1: index
 891   index_check(r0, r1); // leaves index in r1, kills rscratch1
 892   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
 893   __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
 894 }
 895 
 896 void TemplateTable::iload(int n)
 897 {
 898   transition(vtos, itos);
 899   __ ldr(r0, iaddress(n));
 900 }
 901 
 902 void TemplateTable::lload(int n)
 903 {
 904   transition(vtos, ltos);
 905   __ ldr(r0, laddress(n));
 906 }
 907 
 908 void TemplateTable::fload(int n)
 909 {
 910   transition(vtos, ftos);
 911   __ ldrs(v0, faddress(n));
 912 }
 913 
 914 void TemplateTable::dload(int n)
 915 {
 916   transition(vtos, dtos);
 917   __ ldrd(v0, daddress(n));
 918 }
 919 
 920 void TemplateTable::aload(int n)
 921 {
 922   transition(vtos, atos);
 923   __ ldr(r0, iaddress(n));
 924 }
 925 
 926 void TemplateTable::aload_0() {
 927   aload_0_internal();
 928 }
 929 
 930 void TemplateTable::nofast_aload_0() {
 931   aload_0_internal(may_not_rewrite);
 932 }
 933 
 934 void TemplateTable::aload_0_internal(RewriteControl rc) {
 935   // According to bytecode histograms, the pairs:
 936   //
 937   // _aload_0, _fast_igetfield
 938   // _aload_0, _fast_agetfield
 939   // _aload_0, _fast_fgetfield
 940   //
 941   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 942   // _aload_0 bytecode checks if the next bytecode is either
 943   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 944   // rewrites the current bytecode into a pair bytecode; otherwise it
 945   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 946   // the pair check anymore.
 947   //
 948   // Note: If the next bytecode is _getfield, the rewrite must be
 949   //       delayed, otherwise we may miss an opportunity for a pair.
 950   //
 951   // Also rewrite frequent pairs
 952   //   aload_0, aload_1
 953   //   aload_0, iload_1
 954   // These bytecodes with a small amount of code are most profitable
 955   // to rewrite
 956   if (RewriteFrequentPairs && rc == may_rewrite) {
 957     Label rewrite, done;
 958     const Register bc = r4;
 959 
 960     // get next bytecode
 961     __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 962 
 963     // if _getfield then wait with rewrite
 964     __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
 965     __ br(Assembler::EQ, done);
 966 
 967     // if _igetfield then rewrite to _fast_iaccess_0
 968     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 969     __ cmpw(r1, Bytecodes::_fast_igetfield);
 970     __ movw(bc, Bytecodes::_fast_iaccess_0);
 971     __ br(Assembler::EQ, rewrite);
 972 
 973     // if _agetfield then rewrite to _fast_aaccess_0
 974     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 975     __ cmpw(r1, Bytecodes::_fast_agetfield);
 976     __ movw(bc, Bytecodes::_fast_aaccess_0);
 977     __ br(Assembler::EQ, rewrite);
 978 
 979     // if _fgetfield then rewrite to _fast_faccess_0
 980     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 981     __ cmpw(r1, Bytecodes::_fast_fgetfield);
 982     __ movw(bc, Bytecodes::_fast_faccess_0);
 983     __ br(Assembler::EQ, rewrite);
 984 
 985     // else rewrite to _fast_aload0
 986     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 987     __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
 988 
 989     // rewrite
 990     // bc: new bytecode
 991     __ bind(rewrite);
 992     patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
 993 
 994     __ bind(done);
 995   }
 996 
 997   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 998   aload(0);
 999 }
1000 
1001 void TemplateTable::istore()
1002 {
1003   transition(itos, vtos);
1004   locals_index(r1);
1005   // FIXME: We're being very pernickerty here storing a jint in a
1006   // local with strw, which costs an extra instruction over what we'd
1007   // be able to do with a simple str.  We should just store the whole
1008   // word.
1009   __ lea(rscratch1, iaddress(r1));
1010   __ strw(r0, Address(rscratch1));
1011 }
1012 
1013 void TemplateTable::lstore()
1014 {
1015   transition(ltos, vtos);
1016   locals_index(r1);
1017   __ str(r0, laddress(r1, rscratch1, _masm));
1018 }
1019 
1020 void TemplateTable::fstore() {
1021   transition(ftos, vtos);
1022   locals_index(r1);
1023   __ lea(rscratch1, iaddress(r1));
1024   __ strs(v0, Address(rscratch1));
1025 }
1026 
1027 void TemplateTable::dstore() {
1028   transition(dtos, vtos);
1029   locals_index(r1);
1030   __ strd(v0, daddress(r1, rscratch1, _masm));
1031 }
1032 
1033 void TemplateTable::astore()
1034 {
1035   transition(vtos, vtos);
1036   __ pop_ptr(r0);
1037   locals_index(r1);
1038   __ str(r0, aaddress(r1));
1039 }
1040 
1041 void TemplateTable::wide_istore() {
1042   transition(vtos, vtos);
1043   __ pop_i();
1044   locals_index_wide(r1);
1045   __ lea(rscratch1, iaddress(r1));
1046   __ strw(r0, Address(rscratch1));
1047 }
1048 
1049 void TemplateTable::wide_lstore() {
1050   transition(vtos, vtos);
1051   __ pop_l();
1052   locals_index_wide(r1);
1053   __ str(r0, laddress(r1, rscratch1, _masm));
1054 }
1055 
1056 void TemplateTable::wide_fstore() {
1057   transition(vtos, vtos);
1058   __ pop_f();
1059   locals_index_wide(r1);
1060   __ lea(rscratch1, faddress(r1));
1061   __ strs(v0, rscratch1);
1062 }
1063 
1064 void TemplateTable::wide_dstore() {
1065   transition(vtos, vtos);
1066   __ pop_d();
1067   locals_index_wide(r1);
1068   __ strd(v0, daddress(r1, rscratch1, _masm));
1069 }
1070 
1071 void TemplateTable::wide_astore() {
1072   transition(vtos, vtos);
1073   __ pop_ptr(r0);
1074   locals_index_wide(r1);
1075   __ str(r0, aaddress(r1));
1076 }
1077 
1078 void TemplateTable::iastore() {
1079   transition(itos, vtos);
1080   __ pop_i(r1);
1081   __ pop_ptr(r3);
1082   // r0: value
1083   // r1: index
1084   // r3: array
1085   index_check(r3, r1); // prefer index in r1
1086   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1087   __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1088 }
1089 
1090 void TemplateTable::lastore() {
1091   transition(ltos, vtos);
1092   __ pop_i(r1);
1093   __ pop_ptr(r3);
1094   // r0: value
1095   // r1: index
1096   // r3: array
1097   index_check(r3, r1); // prefer index in r1
1098   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1099   __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1100 }
1101 
1102 void TemplateTable::fastore() {
1103   transition(ftos, vtos);
1104   __ pop_i(r1);
1105   __ pop_ptr(r3);
1106   // v0: value
1107   // r1:  index
1108   // r3:  array
1109   index_check(r3, r1); // prefer index in r1
1110   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1111   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1112 }
1113 
1114 void TemplateTable::dastore() {
1115   transition(dtos, vtos);
1116   __ pop_i(r1);
1117   __ pop_ptr(r3);
1118   // v0: value
1119   // r1:  index
1120   // r3:  array
1121   index_check(r3, r1); // prefer index in r1
1122   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1123   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1124 }
1125 
1126 void TemplateTable::aastore() {
1127   Label is_null, is_flat_array, ok_is_subtype, done;
1128   transition(vtos, vtos);
1129   // stack: ..., array, index, value
1130   __ ldr(r0, at_tos());    // value
1131   __ ldr(r2, at_tos_p1()); // index
1132   __ ldr(r3, at_tos_p2()); // array
1133 
1134   index_check(r3, r2);     // kills r1
1135 
1136   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1137   __ profile_multiple_element_types(r4, r0, r5, r6);
1138 
1139   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1140   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1141   // Be careful not to clobber r4 below
1142 
1143   // do array store check - check for null value first
1144   __ cbz(r0, is_null);
1145 
1146   // Move array class to r5
1147   __ load_klass(r5, r3);
1148 
1149   if (UseFlatArray) {
1150     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1151     __ test_flat_array_layout(r6, is_flat_array);
1152   }
1153 
1154   // Move subklass into r1
1155   __ load_klass(r1, r0);
1156 
1157   // Move array element superklass into r0
1158   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));
1159   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1160 
1161   // Generate subtype check.  Blows r2, r5
1162   // Superklass in r0.  Subklass in r1.
1163 
1164   // is "r1 <: r0" ? (value subclass <: array element superclass)
1165   __ gen_subtype_check(r1, ok_is_subtype, false);
1166 
1167   // Come here on failure
1168   // object is at TOS
1169   __ b(Interpreter::_throw_ArrayStoreException_entry);
1170 
1171   // Come here on success
1172   __ bind(ok_is_subtype);
1173 
1174   // Get the value we will store
1175   __ ldr(r0, at_tos());
1176   // Now store using the appropriate barrier
1177   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1178   __ b(done);
1179 
1180   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1181   __ bind(is_null);
1182   if (EnableValhalla) {
1183     Label is_null_into_value_array_npe, store_null;
1184 
1185     if (UseFlatArray) {
1186       __ test_flat_array_oop(r3, r8, is_flat_array);
1187     }
1188 
1189     // No way to store null in a null-free array
1190     __ test_null_free_array_oop(r3, r8, is_null_into_value_array_npe);
1191     __ b(store_null);
1192 
1193     __ bind(is_null_into_value_array_npe);
1194     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1195 
1196     __ bind(store_null);
1197   }
1198 
1199   // Store a null
1200   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1201   __ b(done);
1202 
1203   if (UseFlatArray) {
1204      Label is_type_ok;
1205     __ bind(is_flat_array); // Store non-null value to flat
1206 
1207     __ ldr(r0, at_tos());    // value
1208     __ ldr(r3, at_tos_p1()); // index
1209     __ ldr(r2, at_tos_p2()); // array
1210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1211   }
1212 
1213   // Pop stack arguments
1214   __ bind(done);
1215   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1216 }
1217 
1218 void TemplateTable::bastore()
1219 {
1220   transition(itos, vtos);
1221   __ pop_i(r1);
1222   __ pop_ptr(r3);
1223   // r0: value
1224   // r1: index
1225   // r3: array
1226   index_check(r3, r1); // prefer index in r1
1227 
1228   // Need to check whether array is boolean or byte
1229   // since both types share the bastore bytecode.
1230   __ load_klass(r2, r3);
1231   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1232   int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1233   Label L_skip;
1234   __ tbz(r2, diffbit_index, L_skip);
1235   __ andw(r0, r0, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1236   __ bind(L_skip);
1237 
1238   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1239   __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1240 }
1241 
1242 void TemplateTable::castore()
1243 {
1244   transition(itos, vtos);
1245   __ pop_i(r1);
1246   __ pop_ptr(r3);
1247   // r0: value
1248   // r1: index
1249   // r3: array
1250   index_check(r3, r1); // prefer index in r1
1251   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1252   __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1253 }
1254 
1255 void TemplateTable::sastore()
1256 {
1257   castore();
1258 }
1259 
1260 void TemplateTable::istore(int n)
1261 {
1262   transition(itos, vtos);
1263   __ str(r0, iaddress(n));
1264 }
1265 
1266 void TemplateTable::lstore(int n)
1267 {
1268   transition(ltos, vtos);
1269   __ str(r0, laddress(n));
1270 }
1271 
1272 void TemplateTable::fstore(int n)
1273 {
1274   transition(ftos, vtos);
1275   __ strs(v0, faddress(n));
1276 }
1277 
1278 void TemplateTable::dstore(int n)
1279 {
1280   transition(dtos, vtos);
1281   __ strd(v0, daddress(n));
1282 }
1283 
1284 void TemplateTable::astore(int n)
1285 {
1286   transition(vtos, vtos);
1287   __ pop_ptr(r0);
1288   __ str(r0, iaddress(n));
1289 }
1290 
1291 void TemplateTable::pop()
1292 {
1293   transition(vtos, vtos);
1294   __ add(esp, esp, Interpreter::stackElementSize);
1295 }
1296 
1297 void TemplateTable::pop2()
1298 {
1299   transition(vtos, vtos);
1300   __ add(esp, esp, 2 * Interpreter::stackElementSize);
1301 }
1302 
1303 void TemplateTable::dup()
1304 {
1305   transition(vtos, vtos);
1306   __ ldr(r0, Address(esp, 0));
1307   __ push(r0);
1308   // stack: ..., a, a
1309 }
1310 
1311 void TemplateTable::dup_x1()
1312 {
1313   transition(vtos, vtos);
1314   // stack: ..., a, b
1315   __ ldr(r0, at_tos());  // load b
1316   __ ldr(r2, at_tos_p1());  // load a
1317   __ str(r0, at_tos_p1());  // store b
1318   __ str(r2, at_tos());  // store a
1319   __ push(r0);                  // push b
1320   // stack: ..., b, a, b
1321 }
1322 
1323 void TemplateTable::dup_x2()
1324 {
1325   transition(vtos, vtos);
1326   // stack: ..., a, b, c
1327   __ ldr(r0, at_tos());  // load c
1328   __ ldr(r2, at_tos_p2());  // load a
1329   __ str(r0, at_tos_p2());  // store c in a
1330   __ push(r0);      // push c
1331   // stack: ..., c, b, c, c
1332   __ ldr(r0, at_tos_p2());  // load b
1333   __ str(r2, at_tos_p2());  // store a in b
1334   // stack: ..., c, a, c, c
1335   __ str(r0, at_tos_p1());  // store b in c
1336   // stack: ..., c, a, b, c
1337 }
1338 
1339 void TemplateTable::dup2()
1340 {
1341   transition(vtos, vtos);
1342   // stack: ..., a, b
1343   __ ldr(r0, at_tos_p1());  // load a
1344   __ push(r0);                  // push a
1345   __ ldr(r0, at_tos_p1());  // load b
1346   __ push(r0);                  // push b
1347   // stack: ..., a, b, a, b
1348 }
1349 
1350 void TemplateTable::dup2_x1()
1351 {
1352   transition(vtos, vtos);
1353   // stack: ..., a, b, c
1354   __ ldr(r2, at_tos());  // load c
1355   __ ldr(r0, at_tos_p1());  // load b
1356   __ push(r0);                  // push b
1357   __ push(r2);                  // push c
1358   // stack: ..., a, b, c, b, c
1359   __ str(r2, at_tos_p3());  // store c in b
1360   // stack: ..., a, c, c, b, c
1361   __ ldr(r2, at_tos_p4());  // load a
1362   __ str(r2, at_tos_p2());  // store a in 2nd c
1363   // stack: ..., a, c, a, b, c
1364   __ str(r0, at_tos_p4());  // store b in a
1365   // stack: ..., b, c, a, b, c
1366 }
1367 
1368 void TemplateTable::dup2_x2()
1369 {
1370   transition(vtos, vtos);
1371   // stack: ..., a, b, c, d
1372   __ ldr(r2, at_tos());  // load d
1373   __ ldr(r0, at_tos_p1());  // load c
1374   __ push(r0)            ;      // push c
1375   __ push(r2);                  // push d
1376   // stack: ..., a, b, c, d, c, d
1377   __ ldr(r0, at_tos_p4());  // load b
1378   __ str(r0, at_tos_p2());  // store b in d
1379   __ str(r2, at_tos_p4());  // store d in b
1380   // stack: ..., a, d, c, b, c, d
1381   __ ldr(r2, at_tos_p5());  // load a
1382   __ ldr(r0, at_tos_p3());  // load c
1383   __ str(r2, at_tos_p3());  // store a in c
1384   __ str(r0, at_tos_p5());  // store c in a
1385   // stack: ..., c, d, a, b, c, d
1386 }
1387 
1388 void TemplateTable::swap()
1389 {
1390   transition(vtos, vtos);
1391   // stack: ..., a, b
1392   __ ldr(r2, at_tos_p1());  // load a
1393   __ ldr(r0, at_tos());  // load b
1394   __ str(r2, at_tos());  // store a in b
1395   __ str(r0, at_tos_p1());  // store b in a
1396   // stack: ..., b, a
1397 }
1398 
1399 void TemplateTable::iop2(Operation op)
1400 {
1401   transition(itos, itos);
1402   // r0 <== r1 op r0
1403   __ pop_i(r1);
1404   switch (op) {
1405   case add  : __ addw(r0, r1, r0); break;
1406   case sub  : __ subw(r0, r1, r0); break;
1407   case mul  : __ mulw(r0, r1, r0); break;
1408   case _and : __ andw(r0, r1, r0); break;
1409   case _or  : __ orrw(r0, r1, r0); break;
1410   case _xor : __ eorw(r0, r1, r0); break;
1411   case shl  : __ lslvw(r0, r1, r0); break;
1412   case shr  : __ asrvw(r0, r1, r0); break;
1413   case ushr : __ lsrvw(r0, r1, r0);break;
1414   default   : ShouldNotReachHere();
1415   }
1416 }
1417 
1418 void TemplateTable::lop2(Operation op)
1419 {
1420   transition(ltos, ltos);
1421   // r0 <== r1 op r0
1422   __ pop_l(r1);
1423   switch (op) {
1424   case add  : __ add(r0, r1, r0); break;
1425   case sub  : __ sub(r0, r1, r0); break;
1426   case mul  : __ mul(r0, r1, r0); break;
1427   case _and : __ andr(r0, r1, r0); break;
1428   case _or  : __ orr(r0, r1, r0); break;
1429   case _xor : __ eor(r0, r1, r0); break;
1430   default   : ShouldNotReachHere();
1431   }
1432 }
1433 
1434 void TemplateTable::idiv()
1435 {
1436   transition(itos, itos);
1437   // explicitly check for div0
1438   Label no_div0;
1439   __ cbnzw(r0, no_div0);
1440   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1441   __ br(rscratch1);
1442   __ bind(no_div0);
1443   __ pop_i(r1);
1444   // r0 <== r1 idiv r0
1445   __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1446 }
1447 
1448 void TemplateTable::irem()
1449 {
1450   transition(itos, itos);
1451   // explicitly check for div0
1452   Label no_div0;
1453   __ cbnzw(r0, no_div0);
1454   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1455   __ br(rscratch1);
1456   __ bind(no_div0);
1457   __ pop_i(r1);
1458   // r0 <== r1 irem r0
1459   __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1460 }
1461 
1462 void TemplateTable::lmul()
1463 {
1464   transition(ltos, ltos);
1465   __ pop_l(r1);
1466   __ mul(r0, r0, r1);
1467 }
1468 
1469 void TemplateTable::ldiv()
1470 {
1471   transition(ltos, ltos);
1472   // explicitly check for div0
1473   Label no_div0;
1474   __ cbnz(r0, no_div0);
1475   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1476   __ br(rscratch1);
1477   __ bind(no_div0);
1478   __ pop_l(r1);
1479   // r0 <== r1 ldiv r0
1480   __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1481 }
1482 
1483 void TemplateTable::lrem()
1484 {
1485   transition(ltos, ltos);
1486   // explicitly check for div0
1487   Label no_div0;
1488   __ cbnz(r0, no_div0);
1489   __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1490   __ br(rscratch1);
1491   __ bind(no_div0);
1492   __ pop_l(r1);
1493   // r0 <== r1 lrem r0
1494   __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1495 }
1496 
1497 void TemplateTable::lshl()
1498 {
1499   transition(itos, ltos);
1500   // shift count is in r0
1501   __ pop_l(r1);
1502   __ lslv(r0, r1, r0);
1503 }
1504 
1505 void TemplateTable::lshr()
1506 {
1507   transition(itos, ltos);
1508   // shift count is in r0
1509   __ pop_l(r1);
1510   __ asrv(r0, r1, r0);
1511 }
1512 
1513 void TemplateTable::lushr()
1514 {
1515   transition(itos, ltos);
1516   // shift count is in r0
1517   __ pop_l(r1);
1518   __ lsrv(r0, r1, r0);
1519 }
1520 
1521 void TemplateTable::fop2(Operation op)
1522 {
1523   transition(ftos, ftos);
1524   switch (op) {
1525   case add:
1526     // n.b. use ldrd because this is a 64 bit slot
1527     __ pop_f(v1);
1528     __ fadds(v0, v1, v0);
1529     break;
1530   case sub:
1531     __ pop_f(v1);
1532     __ fsubs(v0, v1, v0);
1533     break;
1534   case mul:
1535     __ pop_f(v1);
1536     __ fmuls(v0, v1, v0);
1537     break;
1538   case div:
1539     __ pop_f(v1);
1540     __ fdivs(v0, v1, v0);
1541     break;
1542   case rem:
1543     __ fmovs(v1, v0);
1544     __ pop_f(v0);
1545     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1546     break;
1547   default:
1548     ShouldNotReachHere();
1549     break;
1550   }
1551 }
1552 
1553 void TemplateTable::dop2(Operation op)
1554 {
1555   transition(dtos, dtos);
1556   switch (op) {
1557   case add:
1558     // n.b. use ldrd because this is a 64 bit slot
1559     __ pop_d(v1);
1560     __ faddd(v0, v1, v0);
1561     break;
1562   case sub:
1563     __ pop_d(v1);
1564     __ fsubd(v0, v1, v0);
1565     break;
1566   case mul:
1567     __ pop_d(v1);
1568     __ fmuld(v0, v1, v0);
1569     break;
1570   case div:
1571     __ pop_d(v1);
1572     __ fdivd(v0, v1, v0);
1573     break;
1574   case rem:
1575     __ fmovd(v1, v0);
1576     __ pop_d(v0);
1577     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1578     break;
1579   default:
1580     ShouldNotReachHere();
1581     break;
1582   }
1583 }
1584 
1585 void TemplateTable::ineg()
1586 {
1587   transition(itos, itos);
1588   __ negw(r0, r0);
1589 
1590 }
1591 
1592 void TemplateTable::lneg()
1593 {
1594   transition(ltos, ltos);
1595   __ neg(r0, r0);
1596 }
1597 
1598 void TemplateTable::fneg()
1599 {
1600   transition(ftos, ftos);
1601   __ fnegs(v0, v0);
1602 }
1603 
1604 void TemplateTable::dneg()
1605 {
1606   transition(dtos, dtos);
1607   __ fnegd(v0, v0);
1608 }
1609 
1610 void TemplateTable::iinc()
1611 {
1612   transition(vtos, vtos);
1613   __ load_signed_byte(r1, at_bcp(2)); // get constant
1614   locals_index(r2);
1615   __ ldr(r0, iaddress(r2));
1616   __ addw(r0, r0, r1);
1617   __ str(r0, iaddress(r2));
1618 }
1619 
1620 void TemplateTable::wide_iinc()
1621 {
1622   transition(vtos, vtos);
1623   // __ mov(r1, zr);
1624   __ ldrw(r1, at_bcp(2)); // get constant and index
1625   __ rev16(r1, r1);
1626   __ ubfx(r2, r1, 0, 16);
1627   __ neg(r2, r2);
1628   __ sbfx(r1, r1, 16, 16);
1629   __ ldr(r0, iaddress(r2));
1630   __ addw(r0, r0, r1);
1631   __ str(r0, iaddress(r2));
1632 }
1633 
1634 void TemplateTable::convert()
1635 {
1636   // Checking
1637 #ifdef ASSERT
1638   {
1639     TosState tos_in  = ilgl;
1640     TosState tos_out = ilgl;
1641     switch (bytecode()) {
1642     case Bytecodes::_i2l: // fall through
1643     case Bytecodes::_i2f: // fall through
1644     case Bytecodes::_i2d: // fall through
1645     case Bytecodes::_i2b: // fall through
1646     case Bytecodes::_i2c: // fall through
1647     case Bytecodes::_i2s: tos_in = itos; break;
1648     case Bytecodes::_l2i: // fall through
1649     case Bytecodes::_l2f: // fall through
1650     case Bytecodes::_l2d: tos_in = ltos; break;
1651     case Bytecodes::_f2i: // fall through
1652     case Bytecodes::_f2l: // fall through
1653     case Bytecodes::_f2d: tos_in = ftos; break;
1654     case Bytecodes::_d2i: // fall through
1655     case Bytecodes::_d2l: // fall through
1656     case Bytecodes::_d2f: tos_in = dtos; break;
1657     default             : ShouldNotReachHere();
1658     }
1659     switch (bytecode()) {
1660     case Bytecodes::_l2i: // fall through
1661     case Bytecodes::_f2i: // fall through
1662     case Bytecodes::_d2i: // fall through
1663     case Bytecodes::_i2b: // fall through
1664     case Bytecodes::_i2c: // fall through
1665     case Bytecodes::_i2s: tos_out = itos; break;
1666     case Bytecodes::_i2l: // fall through
1667     case Bytecodes::_f2l: // fall through
1668     case Bytecodes::_d2l: tos_out = ltos; break;
1669     case Bytecodes::_i2f: // fall through
1670     case Bytecodes::_l2f: // fall through
1671     case Bytecodes::_d2f: tos_out = ftos; break;
1672     case Bytecodes::_i2d: // fall through
1673     case Bytecodes::_l2d: // fall through
1674     case Bytecodes::_f2d: tos_out = dtos; break;
1675     default             : ShouldNotReachHere();
1676     }
1677     transition(tos_in, tos_out);
1678   }
1679 #endif // ASSERT
1680   // static const int64_t is_nan = 0x8000000000000000L;
1681 
1682   // Conversion
1683   switch (bytecode()) {
1684   case Bytecodes::_i2l:
1685     __ sxtw(r0, r0);
1686     break;
1687   case Bytecodes::_i2f:
1688     __ scvtfws(v0, r0);
1689     break;
1690   case Bytecodes::_i2d:
1691     __ scvtfwd(v0, r0);
1692     break;
1693   case Bytecodes::_i2b:
1694     __ sxtbw(r0, r0);
1695     break;
1696   case Bytecodes::_i2c:
1697     __ uxthw(r0, r0);
1698     break;
1699   case Bytecodes::_i2s:
1700     __ sxthw(r0, r0);
1701     break;
1702   case Bytecodes::_l2i:
1703     __ uxtw(r0, r0);
1704     break;
1705   case Bytecodes::_l2f:
1706     __ scvtfs(v0, r0);
1707     break;
1708   case Bytecodes::_l2d:
1709     __ scvtfd(v0, r0);
1710     break;
1711   case Bytecodes::_f2i:
1712   {
1713     Label L_Okay;
1714     __ clear_fpsr();
1715     __ fcvtzsw(r0, v0);
1716     __ get_fpsr(r1);
1717     __ cbzw(r1, L_Okay);
1718     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1719     __ bind(L_Okay);
1720   }
1721     break;
1722   case Bytecodes::_f2l:
1723   {
1724     Label L_Okay;
1725     __ clear_fpsr();
1726     __ fcvtzs(r0, v0);
1727     __ get_fpsr(r1);
1728     __ cbzw(r1, L_Okay);
1729     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1730     __ bind(L_Okay);
1731   }
1732     break;
1733   case Bytecodes::_f2d:
1734     __ fcvts(v0, v0);
1735     break;
1736   case Bytecodes::_d2i:
1737   {
1738     Label L_Okay;
1739     __ clear_fpsr();
1740     __ fcvtzdw(r0, v0);
1741     __ get_fpsr(r1);
1742     __ cbzw(r1, L_Okay);
1743     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1744     __ bind(L_Okay);
1745   }
1746     break;
1747   case Bytecodes::_d2l:
1748   {
1749     Label L_Okay;
1750     __ clear_fpsr();
1751     __ fcvtzd(r0, v0);
1752     __ get_fpsr(r1);
1753     __ cbzw(r1, L_Okay);
1754     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1755     __ bind(L_Okay);
1756   }
1757     break;
1758   case Bytecodes::_d2f:
1759     __ fcvtd(v0, v0);
1760     break;
1761   default:
1762     ShouldNotReachHere();
1763   }
1764 }
1765 
1766 void TemplateTable::lcmp()
1767 {
1768   transition(ltos, itos);
1769   Label done;
1770   __ pop_l(r1);
1771   __ cmp(r1, r0);
1772   __ mov(r0, (uint64_t)-1L);
1773   __ br(Assembler::LT, done);
1774   // __ mov(r0, 1UL);
1775   // __ csel(r0, r0, zr, Assembler::NE);
1776   // and here is a faster way
1777   __ csinc(r0, zr, zr, Assembler::EQ);
1778   __ bind(done);
1779 }
1780 
1781 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1782 {
1783   Label done;
1784   if (is_float) {
1785     // XXX get rid of pop here, use ... reg, mem32
1786     __ pop_f(v1);
1787     __ fcmps(v1, v0);
1788   } else {
1789     // XXX get rid of pop here, use ... reg, mem64
1790     __ pop_d(v1);
1791     __ fcmpd(v1, v0);
1792   }
1793   if (unordered_result < 0) {
1794     // we want -1 for unordered or less than, 0 for equal and 1 for
1795     // greater than.
1796     __ mov(r0, (uint64_t)-1L);
1797     // for FP LT tests less than or unordered
1798     __ br(Assembler::LT, done);
1799     // install 0 for EQ otherwise 1
1800     __ csinc(r0, zr, zr, Assembler::EQ);
1801   } else {
1802     // we want -1 for less than, 0 for equal and 1 for unordered or
1803     // greater than.
1804     __ mov(r0, 1L);
1805     // for FP HI tests greater than or unordered
1806     __ br(Assembler::HI, done);
1807     // install 0 for EQ otherwise ~0
1808     __ csinv(r0, zr, zr, Assembler::EQ);
1809 
1810   }
1811   __ bind(done);
1812 }
1813 
1814 void TemplateTable::branch(bool is_jsr, bool is_wide)
1815 {
1816   __ profile_taken_branch(r0, r1);
1817   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1818                              InvocationCounter::counter_offset();
1819   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1820                               InvocationCounter::counter_offset();
1821 
1822   // load branch displacement
1823   if (!is_wide) {
1824     __ ldrh(r2, at_bcp(1));
1825     __ rev16(r2, r2);
1826     // sign extend the 16 bit value in r2
1827     __ sbfm(r2, r2, 0, 15);
1828   } else {
1829     __ ldrw(r2, at_bcp(1));
1830     __ revw(r2, r2);
1831     // sign extend the 32 bit value in r2
1832     __ sbfm(r2, r2, 0, 31);
1833   }
1834 
1835   // Handle all the JSR stuff here, then exit.
1836   // It's much shorter and cleaner than intermingling with the non-JSR
1837   // normal-branch stuff occurring below.
1838 
1839   if (is_jsr) {
1840     // Pre-load the next target bytecode into rscratch1
1841     __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1842     // compute return address as bci
1843     __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1844     __ add(rscratch2, rscratch2,
1845            in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1846     __ sub(r1, rbcp, rscratch2);
1847     __ push_i(r1);
1848     // Adjust the bcp by the 16-bit displacement in r2
1849     __ add(rbcp, rbcp, r2);
1850     __ dispatch_only(vtos, /*generate_poll*/true);
1851     return;
1852   }
1853 
1854   // Normal (non-jsr) branch handling
1855 
1856   // Adjust the bcp by the displacement in r2
1857   __ add(rbcp, rbcp, r2);
1858 
1859   assert(UseLoopCounter || !UseOnStackReplacement,
1860          "on-stack-replacement requires loop counters");
1861   Label backedge_counter_overflow;
1862   Label dispatch;
1863   if (UseLoopCounter) {
1864     // increment backedge counter for backward branches
1865     // r0: MDO
1866     // w1: MDO bumped taken-count
1867     // r2: target offset
1868     __ cmp(r2, zr);
1869     __ br(Assembler::GT, dispatch); // count only if backward branch
1870 
1871     // ECN: FIXME: This code smells
1872     // check if MethodCounters exists
1873     Label has_counters;
1874     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1875     __ cbnz(rscratch1, has_counters);
1876     __ push(r0);
1877     __ push(r1);
1878     __ push(r2);
1879     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1880             InterpreterRuntime::build_method_counters), rmethod);
1881     __ pop(r2);
1882     __ pop(r1);
1883     __ pop(r0);
1884     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1885     __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1886     __ bind(has_counters);
1887 
1888     Label no_mdo;
1889     int increment = InvocationCounter::count_increment;
1890     if (ProfileInterpreter) {
1891       // Are we profiling?
1892       __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1893       __ cbz(r1, no_mdo);
1894       // Increment the MDO backedge counter
1895       const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1896                                          in_bytes(InvocationCounter::counter_offset()));
1897       const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1898       __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1899                                  r0, rscratch1, false, Assembler::EQ,
1900                                  UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1901       __ b(dispatch);
1902     }
1903     __ bind(no_mdo);
1904     // Increment backedge counter in MethodCounters*
1905     __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1906     const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1907     __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1908                                r0, rscratch2, false, Assembler::EQ,
1909                                UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1910     __ bind(dispatch);
1911   }
1912 
1913   // Pre-load the next target bytecode into rscratch1
1914   __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1915 
1916   // continue with the bytecode @ target
1917   // rscratch1: target bytecode
1918   // rbcp: target bcp
1919   __ dispatch_only(vtos, /*generate_poll*/true);
1920 
1921   if (UseLoopCounter && UseOnStackReplacement) {
1922     // invocation counter overflow
1923     __ bind(backedge_counter_overflow);
1924     __ neg(r2, r2);
1925     __ add(r2, r2, rbcp);     // branch bcp
1926     // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1927     __ call_VM(noreg,
1928                CAST_FROM_FN_PTR(address,
1929                                 InterpreterRuntime::frequency_counter_overflow),
1930                r2);
1931     __ load_unsigned_byte(r1, Address(rbcp, 0));  // restore target bytecode
1932 
1933     // r0: osr nmethod (osr ok) or null (osr not possible)
1934     // w1: target bytecode
1935     // r2: scratch
1936     __ cbz(r0, dispatch);     // test result -- no osr if null
1937     // nmethod may have been invalidated (VM may block upon call_VM return)
1938     __ ldrb(r2, Address(r0, nmethod::state_offset()));
1939     if (nmethod::in_use != 0)
1940       __ sub(r2, r2, nmethod::in_use);
1941     __ cbnz(r2, dispatch);
1942 
1943     // We have the address of an on stack replacement routine in r0
1944     // We need to prepare to execute the OSR method. First we must
1945     // migrate the locals and monitors off of the stack.
1946 
1947     __ mov(r19, r0);                             // save the nmethod
1948 
1949     call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1950 
1951     // r0 is OSR buffer, move it to expected parameter location
1952     __ mov(j_rarg0, r0);
1953 
1954     // remove activation
1955     // get sender esp
1956     __ ldr(esp,
1957         Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1958     // remove frame anchor
1959     __ leave();
1960     // Ensure compiled code always sees stack at proper alignment
1961     __ andr(sp, esp, -16);
1962 
1963     // and begin the OSR nmethod
1964     __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1965     __ br(rscratch1);
1966   }
1967 }
1968 
1969 
1970 void TemplateTable::if_0cmp(Condition cc)
1971 {
1972   transition(itos, vtos);
1973   // assume branch is more often taken than not (loops use backward branches)
1974   Label not_taken;
1975   if (cc == equal)
1976     __ cbnzw(r0, not_taken);
1977   else if (cc == not_equal)
1978     __ cbzw(r0, not_taken);
1979   else {
1980     __ andsw(zr, r0, r0);
1981     __ br(j_not(cc), not_taken);
1982   }
1983 
1984   branch(false, false);
1985   __ bind(not_taken);
1986   __ profile_not_taken_branch(r0);
1987 }
1988 
1989 void TemplateTable::if_icmp(Condition cc)
1990 {
1991   transition(itos, vtos);
1992   // assume branch is more often taken than not (loops use backward branches)
1993   Label not_taken;
1994   __ pop_i(r1);
1995   __ cmpw(r1, r0, Assembler::LSL);
1996   __ br(j_not(cc), not_taken);
1997   branch(false, false);
1998   __ bind(not_taken);
1999   __ profile_not_taken_branch(r0);
2000 }
2001 
2002 void TemplateTable::if_nullcmp(Condition cc)
2003 {
2004   transition(atos, vtos);
2005   // assume branch is more often taken than not (loops use backward branches)
2006   Label not_taken;
2007   if (cc == equal)
2008     __ cbnz(r0, not_taken);
2009   else
2010     __ cbz(r0, not_taken);
2011   branch(false, false);
2012   __ bind(not_taken);
2013   __ profile_not_taken_branch(r0);
2014 }
2015 
2016 void TemplateTable::if_acmp(Condition cc) {
2017   transition(atos, vtos);
2018   // assume branch is more often taken than not (loops use backward branches)
2019   Label taken, not_taken;
2020   __ pop_ptr(r1);
2021 
2022   __ profile_acmp(r2, r1, r0, r4);
2023 
2024   Register is_inline_type_mask = rscratch1;
2025   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2026 
2027   if (EnableValhalla) {
2028     __ cmp(r1, r0);
2029     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2030 
2031     // might be substitutable, test if either r0 or r1 is null
2032     __ andr(r2, r0, r1);
2033     __ cbz(r2, (cc == equal) ? not_taken : taken);
2034 
2035     // and both are values ?
2036     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2037     __ andr(r2, r2, is_inline_type_mask);
2038     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2039     __ andr(r4, r4, is_inline_type_mask);
2040     __ andr(r2, r2, r4);
2041     __ cmp(r2,  is_inline_type_mask);
2042     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2043 
2044     // same value klass ?
2045     __ load_metadata(r2, r1);
2046     __ load_metadata(r4, r0);
2047     __ cmp(r2, r4);
2048     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2049 
2050     // Know both are the same type, let's test for substitutability...
2051     if (cc == equal) {
2052       invoke_is_substitutable(r0, r1, taken, not_taken);
2053     } else {
2054       invoke_is_substitutable(r0, r1, not_taken, taken);
2055     }
2056     __ stop("Not reachable");
2057   }
2058 
2059   __ cmpoop(r1, r0);
2060   __ br(j_not(cc), not_taken);
2061   __ bind(taken);
2062   branch(false, false);
2063   __ bind(not_taken);
2064   __ profile_not_taken_branch(r0, true);
2065 }
2066 
2067 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2068                                             Label& is_subst, Label& not_subst) {
2069 
2070   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2071   // Restored... r0 answer, jmp to outcome...
2072   __ cbz(r0, not_subst);
2073   __ b(is_subst);
2074 }
2075 
2076 
2077 void TemplateTable::ret() {
2078   transition(vtos, vtos);
2079   locals_index(r1);
2080   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2081   __ profile_ret(r1, r2);
2082   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2083   __ lea(rbcp, Address(rbcp, r1));
2084   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2085   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2086 }
2087 
2088 void TemplateTable::wide_ret() {
2089   transition(vtos, vtos);
2090   locals_index_wide(r1);
2091   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2092   __ profile_ret(r1, r2);
2093   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2094   __ lea(rbcp, Address(rbcp, r1));
2095   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2096   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2097 }
2098 
2099 
2100 void TemplateTable::tableswitch() {
2101   Label default_case, continue_execution;
2102   transition(itos, vtos);
2103   // align rbcp
2104   __ lea(r1, at_bcp(BytesPerInt));
2105   __ andr(r1, r1, -BytesPerInt);
2106   // load lo & hi
2107   __ ldrw(r2, Address(r1, BytesPerInt));
2108   __ ldrw(r3, Address(r1, 2 * BytesPerInt));
2109   __ rev32(r2, r2);
2110   __ rev32(r3, r3);
2111   // check against lo & hi
2112   __ cmpw(r0, r2);
2113   __ br(Assembler::LT, default_case);
2114   __ cmpw(r0, r3);
2115   __ br(Assembler::GT, default_case);
2116   // lookup dispatch offset
2117   __ subw(r0, r0, r2);
2118   __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2119   __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2120   __ profile_switch_case(r0, r1, r2);
2121   // continue execution
2122   __ bind(continue_execution);
2123   __ rev32(r3, r3);
2124   __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2125   __ add(rbcp, rbcp, r3, ext::sxtw);
2126   __ dispatch_only(vtos, /*generate_poll*/true);
2127   // handle default
2128   __ bind(default_case);
2129   __ profile_switch_default(r0);
2130   __ ldrw(r3, Address(r1, 0));
2131   __ b(continue_execution);
2132 }
2133 
2134 void TemplateTable::lookupswitch() {
2135   transition(itos, itos);
2136   __ stop("lookupswitch bytecode should have been rewritten");
2137 }
2138 
2139 void TemplateTable::fast_linearswitch() {
2140   transition(itos, vtos);
2141   Label loop_entry, loop, found, continue_execution;
2142   // bswap r0 so we can avoid bswapping the table entries
2143   __ rev32(r0, r0);
2144   // align rbcp
2145   __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2146                                     // this instruction (change offsets
2147                                     // below)
2148   __ andr(r19, r19, -BytesPerInt);
2149   // set counter
2150   __ ldrw(r1, Address(r19, BytesPerInt));
2151   __ rev32(r1, r1);
2152   __ b(loop_entry);
2153   // table search
2154   __ bind(loop);
2155   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2156   __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2157   __ cmpw(r0, rscratch1);
2158   __ br(Assembler::EQ, found);
2159   __ bind(loop_entry);
2160   __ subs(r1, r1, 1);
2161   __ br(Assembler::PL, loop);
2162   // default case
2163   __ profile_switch_default(r0);
2164   __ ldrw(r3, Address(r19, 0));
2165   __ b(continue_execution);
2166   // entry found -> get offset
2167   __ bind(found);
2168   __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2169   __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2170   __ profile_switch_case(r1, r0, r19);
2171   // continue execution
2172   __ bind(continue_execution);
2173   __ rev32(r3, r3);
2174   __ add(rbcp, rbcp, r3, ext::sxtw);
2175   __ ldrb(rscratch1, Address(rbcp, 0));
2176   __ dispatch_only(vtos, /*generate_poll*/true);
2177 }
2178 
2179 void TemplateTable::fast_binaryswitch() {
2180   transition(itos, vtos);
2181   // Implementation using the following core algorithm:
2182   //
2183   // int binary_search(int key, LookupswitchPair* array, int n) {
2184   //   // Binary search according to "Methodik des Programmierens" by
2185   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2186   //   int i = 0;
2187   //   int j = n;
2188   //   while (i+1 < j) {
2189   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2190   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2191   //     // where a stands for the array and assuming that the (inexisting)
2192   //     // element a[n] is infinitely big.
2193   //     int h = (i + j) >> 1;
2194   //     // i < h < j
2195   //     if (key < array[h].fast_match()) {
2196   //       j = h;
2197   //     } else {
2198   //       i = h;
2199   //     }
2200   //   }
2201   //   // R: a[i] <= key < a[i+1] or Q
2202   //   // (i.e., if key is within array, i is the correct index)
2203   //   return i;
2204   // }
2205 
2206   // Register allocation
2207   const Register key   = r0; // already set (tosca)
2208   const Register array = r1;
2209   const Register i     = r2;
2210   const Register j     = r3;
2211   const Register h     = rscratch1;
2212   const Register temp  = rscratch2;
2213 
2214   // Find array start
2215   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2216                                           // get rid of this
2217                                           // instruction (change
2218                                           // offsets below)
2219   __ andr(array, array, -BytesPerInt);
2220 
2221   // Initialize i & j
2222   __ mov(i, 0);                            // i = 0;
2223   __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2224 
2225   // Convert j into native byteordering
2226   __ rev32(j, j);
2227 
2228   // And start
2229   Label entry;
2230   __ b(entry);
2231 
2232   // binary search loop
2233   {
2234     Label loop;
2235     __ bind(loop);
2236     // int h = (i + j) >> 1;
2237     __ addw(h, i, j);                           // h = i + j;
2238     __ lsrw(h, h, 1);                                   // h = (i + j) >> 1;
2239     // if (key < array[h].fast_match()) {
2240     //   j = h;
2241     // } else {
2242     //   i = h;
2243     // }
2244     // Convert array[h].match to native byte-ordering before compare
2245     __ ldr(temp, Address(array, h, Address::lsl(3)));
2246     __ rev32(temp, temp);
2247     __ cmpw(key, temp);
2248     // j = h if (key <  array[h].fast_match())
2249     __ csel(j, h, j, Assembler::LT);
2250     // i = h if (key >= array[h].fast_match())
2251     __ csel(i, h, i, Assembler::GE);
2252     // while (i+1 < j)
2253     __ bind(entry);
2254     __ addw(h, i, 1);          // i+1
2255     __ cmpw(h, j);             // i+1 < j
2256     __ br(Assembler::LT, loop);
2257   }
2258 
2259   // end of binary search, result index is i (must check again!)
2260   Label default_case;
2261   // Convert array[i].match to native byte-ordering before compare
2262   __ ldr(temp, Address(array, i, Address::lsl(3)));
2263   __ rev32(temp, temp);
2264   __ cmpw(key, temp);
2265   __ br(Assembler::NE, default_case);
2266 
2267   // entry found -> j = offset
2268   __ add(j, array, i, ext::uxtx, 3);
2269   __ ldrw(j, Address(j, BytesPerInt));
2270   __ profile_switch_case(i, key, array);
2271   __ rev32(j, j);
2272   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2273   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2274   __ dispatch_only(vtos, /*generate_poll*/true);
2275 
2276   // default case -> j = default offset
2277   __ bind(default_case);
2278   __ profile_switch_default(i);
2279   __ ldrw(j, Address(array, -2 * BytesPerInt));
2280   __ rev32(j, j);
2281   __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2282   __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2283   __ dispatch_only(vtos, /*generate_poll*/true);
2284 }
2285 
2286 
2287 void TemplateTable::_return(TosState state)
2288 {
2289   transition(state, state);
2290   assert(_desc->calls_vm(),
2291          "inconsistent calls_vm information"); // call in remove_activation
2292 
2293   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2294     assert(state == vtos, "only valid state");
2295 
2296     __ ldr(c_rarg1, aaddress(0));
2297     __ load_klass(r3, c_rarg1);
2298     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2299     Label skip_register_finalizer;
2300     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2301 
2302     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2303 
2304     __ bind(skip_register_finalizer);
2305   }
2306 
2307   // Issue a StoreStore barrier after all stores but before return
2308   // from any constructor for any class with a final field.  We don't
2309   // know if this is a finalizer, so we always do so.
2310   if (_desc->bytecode() == Bytecodes::_return)
2311     __ membar(MacroAssembler::StoreStore);
2312 
2313   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2314     Label no_safepoint;
2315     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2316     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2317     __ push(state);
2318     __ push_cont_fastpath(rthread);
2319     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2320     __ pop_cont_fastpath(rthread);
2321     __ pop(state);
2322     __ bind(no_safepoint);
2323   }
2324 
2325   // Narrow result if state is itos but result type is smaller.
2326   // Need to narrow in the return bytecode rather than in generate_return_entry
2327   // since compiled code callers expect the result to already be narrowed.
2328   if (state == itos) {
2329     __ narrow(r0);
2330   }
2331 
2332   __ remove_activation(state);
2333   __ ret(lr);
2334 }
2335 
2336 // ----------------------------------------------------------------------------
2337 // Volatile variables demand their effects be made known to all CPU's
2338 // in order.  Store buffers on most chips allow reads & writes to
2339 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2340 // without some kind of memory barrier (i.e., it's not sufficient that
2341 // the interpreter does not reorder volatile references, the hardware
2342 // also must not reorder them).
2343 //
2344 // According to the new Java Memory Model (JMM):
2345 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2346 //     writes act as acquire & release, so:
2347 // (2) A read cannot let unrelated NON-volatile memory refs that
2348 //     happen after the read float up to before the read.  It's OK for
2349 //     non-volatile memory refs that happen before the volatile read to
2350 //     float down below it.
2351 // (3) Similar a volatile write cannot let unrelated NON-volatile
2352 //     memory refs that happen BEFORE the write float down to after the
2353 //     write.  It's OK for non-volatile memory refs that happen after the
2354 //     volatile write to float up before it.
2355 //
2356 // We only put in barriers around volatile refs (they are expensive),
2357 // not _between_ memory refs (that would require us to track the
2358 // flavor of the previous memory refs).  Requirements (2) and (3)
2359 // require some barriers before volatile stores and after volatile
2360 // loads.  These nearly cover requirement (1) but miss the
2361 // volatile-store-volatile-load case.  This final case is placed after
2362 // volatile-stores although it could just as well go before
2363 // volatile-loads.
2364 
2365 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2366                                             Register Rcache,
2367                                             Register index) {
2368   const Register temp = r19;
2369   assert_different_registers(Rcache, index, temp);
2370   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2371 
2372   Label resolved, clinit_barrier_slow;
2373 
2374   Bytecodes::Code code = bytecode();
2375   __ load_method_entry(Rcache, index);
2376   switch(byte_no) {
2377     case f1_byte:
2378       __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())));
2379       break;
2380     case f2_byte:
2381       __ lea(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())));
2382       break;
2383   }
2384   // Load-acquire the bytecode to match store-release in InterpreterRuntime
2385   __ ldarb(temp, temp);
2386   __ subs(zr, temp, (int) code);  // have we resolved this bytecode?
2387   __ br(Assembler::EQ, resolved);
2388 
2389   // resolve first time through
2390   // Class initialization barrier slow path lands here as well.
2391   __ bind(clinit_barrier_slow);
2392   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2393   __ mov(temp, (int) code);
2394   __ call_VM(noreg, entry, temp);
2395 
2396   // Update registers with resolved info
2397   __ load_method_entry(Rcache, index);
2398   // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2399   // so all clients ofthis method must be modified accordingly
2400   __ bind(resolved);
2401 
2402   // Class initialization barrier for static methods
2403   if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2404     __ ldr(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2405     __ load_method_holder(temp, temp);
2406     __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow);
2407   }
2408 }
2409 
2410 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2411                                             Register Rcache,
2412                                             Register index) {
2413   const Register temp = r19;
2414   assert_different_registers(Rcache, index, temp);
2415 
2416   Label resolved;
2417 
2418   Bytecodes::Code code = bytecode();
2419   switch (code) {
2420   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2421   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2422   default: break;
2423   }
2424 
2425   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2426   __ load_field_entry(Rcache, index);
2427   if (byte_no == f1_byte) {
2428     __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2429   } else {
2430     __ lea(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2431   }
2432   // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2433   __ ldarb(temp, temp);
2434   __ subs(zr, temp, (int) code);  // have we resolved this bytecode?
2435   __ br(Assembler::EQ, resolved);
2436 
2437   // resolve first time through
2438   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2439   __ mov(temp, (int) code);
2440   __ call_VM(noreg, entry, temp);
2441 
2442   // Update registers with resolved info
2443   __ load_field_entry(Rcache, index);
2444   __ bind(resolved);
2445 }
2446 
2447 void TemplateTable::load_resolved_field_entry(Register obj,
2448                                               Register cache,
2449                                               Register tos_state,
2450                                               Register offset,
2451                                               Register flags,
2452                                               bool is_static = false) {
2453   assert_different_registers(cache, tos_state, flags, offset);
2454 
2455   // Field offset
2456   __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2457 
2458   // Flags
2459   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2460 
2461   // TOS state
2462   if (tos_state != noreg) {
2463     __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2464   }
2465 
2466   // Klass overwrite register
2467   if (is_static) {
2468     __ ldr(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2469     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2470     __ ldr(obj, Address(obj, mirror_offset));
2471     __ resolve_oop_handle(obj, r5, rscratch2);
2472   }
2473 }
2474 
2475 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2476                                                                  Register method,
2477                                                                  Register flags) {
2478 
2479   // setup registers
2480   const Register index = flags;
2481   assert_different_registers(method, cache, flags);
2482 
2483   // determine constant pool cache field offsets
2484   resolve_cache_and_index_for_method(f1_byte, cache, index);
2485   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2486   __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2487 }
2488 
2489 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2490                                                       Register method,
2491                                                       Register ref_index,
2492                                                       Register flags) {
2493   // setup registers
2494   const Register index = ref_index;
2495   assert_different_registers(method, flags);
2496   assert_different_registers(method, cache, index);
2497 
2498   // determine constant pool cache field offsets
2499   resolve_cache_and_index_for_method(f1_byte, cache, index);
2500   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2501 
2502   // maybe push appendix to arguments (just before return address)
2503   Label L_no_push;
2504   __ tbz(flags, ResolvedMethodEntry::has_appendix_shift, L_no_push);
2505   // invokehandle uses an index into the resolved references array
2506   __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2507   // Push the appendix as a trailing parameter.
2508   // This must be done before we get the receiver,
2509   // since the parameter_size includes it.
2510   Register appendix = method;
2511   __ load_resolved_reference_at_index(appendix, ref_index);
2512   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2513   __ bind(L_no_push);
2514 
2515   __ ldr(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2516 }
2517 
2518 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2519                                                          Register klass,
2520                                                          Register method_or_table_index,
2521                                                          Register flags) {
2522   // setup registers
2523   const Register index = method_or_table_index;
2524   assert_different_registers(method_or_table_index, cache, flags);
2525 
2526   // determine constant pool cache field offsets
2527   resolve_cache_and_index_for_method(f1_byte, cache, index);
2528   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2529 
2530   // Invokeinterface can behave in different ways:
2531   // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2532   // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2533   // vtable index is placed in the register.
2534   // Otherwise, the registers will be populated with the klass and method.
2535 
2536   Label NotVirtual; Label NotVFinal; Label Done;
2537   __ tbz(flags, ResolvedMethodEntry::is_forced_virtual_shift, NotVirtual);
2538   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2539   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2540   __ b(Done);
2541 
2542   __ bind(NotVFinal);
2543   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2544   __ b(Done);
2545 
2546   __ bind(NotVirtual);
2547   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2548   __ ldr(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2549   __ bind(Done);
2550 }
2551 
2552 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2553                                                        Register method_or_table_index,
2554                                                        Register flags) {
2555   // setup registers
2556   const Register index = flags;
2557   assert_different_registers(method_or_table_index, cache, flags);
2558 
2559   // determine constant pool cache field offsets
2560   resolve_cache_and_index_for_method(f2_byte, cache, index);
2561   __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2562 
2563   // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2564   Label NotVFinal; Label Done;
2565   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, NotVFinal);
2566   __ ldr(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2567   __ b(Done);
2568 
2569   __ bind(NotVFinal);
2570   __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2571   __ bind(Done);
2572 }
2573 
2574 // The rmethod register is input and overwritten to be the adapter method for the
2575 // indy call. Link Register (lr) is set to the return address for the adapter and
2576 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2577 void TemplateTable::load_invokedynamic_entry(Register method) {
2578   // setup registers
2579   const Register appendix = r0;
2580   const Register cache = r2;
2581   const Register index = r3;
2582   assert_different_registers(method, appendix, cache, index, rcpool);
2583 
2584   __ save_bcp();
2585 
2586   Label resolved;
2587 
2588   __ load_resolved_indy_entry(cache, index);
2589   // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2590   __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2591   __ ldar(method, method);
2592 
2593   // Compare the method to zero
2594   __ cbnz(method, resolved);
2595 
2596   Bytecodes::Code code = bytecode();
2597 
2598   // Call to the interpreter runtime to resolve invokedynamic
2599   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2600   __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2601   __ call_VM(noreg, entry, method);
2602   // Update registers with resolved info
2603   __ load_resolved_indy_entry(cache, index);
2604   // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2605   __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2606   __ ldar(method, method);
2607 
2608 #ifdef ASSERT
2609   __ cbnz(method, resolved);
2610   __ stop("Should be resolved by now");
2611 #endif // ASSERT
2612   __ bind(resolved);
2613 
2614   Label L_no_push;
2615   // Check if there is an appendix
2616   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2617   __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2618 
2619   // Get appendix
2620   __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2621   // Push the appendix as a trailing parameter
2622   // since the parameter_size includes it.
2623   __ push(method);
2624   __ mov(method, index);
2625   __ load_resolved_reference_at_index(appendix, method);
2626   __ verify_oop(appendix);
2627   __ pop(method);
2628   __ push(appendix);  // push appendix (MethodType, CallSite, etc.)
2629   __ bind(L_no_push);
2630 
2631   // compute return type
2632   __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2633   // load return address
2634   // Return address is loaded into link register(lr) and not pushed to the stack
2635   // like x86
2636   {
2637     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2638     __ mov(rscratch1, table_addr);
2639     __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2640   }
2641 }
2642 
2643 // The registers cache and index expected to be set before call.
2644 // Correct values of the cache and index registers are preserved.
2645 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2646                                             bool is_static, bool has_tos) {
2647   // do the JVMTI work here to avoid disturbing the register state below
2648   // We use c_rarg registers here because we want to use the register used in
2649   // the call to the VM
2650   if (JvmtiExport::can_post_field_access()) {
2651     // Check to see if a field access watch has been set before we
2652     // take the time to call into the VM.
2653     Label L1;
2654     assert_different_registers(cache, index, r0);
2655     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2656     __ ldrw(r0, Address(rscratch1));
2657     __ cbzw(r0, L1);
2658 
2659     __ load_field_entry(c_rarg2, index);
2660 
2661     if (is_static) {
2662       __ mov(c_rarg1, zr); // null object reference
2663     } else {
2664       __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2665       __ verify_oop(c_rarg1);
2666     }
2667     // c_rarg1: object pointer or null
2668     // c_rarg2: cache entry pointer
2669     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2670                                        InterpreterRuntime::post_field_access),
2671                c_rarg1, c_rarg2);
2672     __ load_field_entry(cache, index);
2673     __ bind(L1);
2674   }
2675 }
2676 
2677 void TemplateTable::pop_and_check_object(Register r)
2678 {
2679   __ pop_ptr(r);
2680   __ null_check(r);  // for field access must check obj.
2681   __ verify_oop(r);
2682 }
2683 
2684 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2685 {
2686   const Register cache     = r2;
2687   const Register obj       = r4;
2688   const Register klass     = r5;
2689   const Register inline_klass = r7;
2690   const Register field_index = r23;
2691   const Register index     = r3;
2692   const Register tos_state = r3;
2693   const Register off       = r19;
2694   const Register flags     = r6;
2695   const Register bc        = r4; // uses same reg as obj, so don't mix them
2696 
2697   resolve_cache_and_index_for_field(byte_no, cache, index);
2698   jvmti_post_field_access(cache, index, is_static, false);
2699 
2700   // Valhalla extras
2701   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2702   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2703 
2704   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2705 
2706   if (!is_static) {
2707     // obj is on the stack
2708     pop_and_check_object(obj);
2709   }
2710 
2711   // 8179954: We need to make sure that the code generated for
2712   // volatile accesses forms a sequentially-consistent set of
2713   // operations when combined with STLR and LDAR.  Without a leading
2714   // membar it's possible for a simple Dekker test to fail if loads
2715   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2716   // the stores in one method and we interpret the loads in another.
2717   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2718     Label notVolatile;
2719     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2720     __ membar(MacroAssembler::AnyAny);
2721     __ bind(notVolatile);
2722   }
2723 
2724   const Address field(obj, off);
2725 
2726   Label Done, notByte, notBool, notInt, notShort, notChar,
2727               notLong, notFloat, notObj, notDouble;
2728 
2729   assert(btos == 0, "change code, btos != 0");
2730   __ cbnz(tos_state, notByte);
2731 
2732   // Don't rewrite getstatic, only getfield
2733   if (is_static) rc = may_not_rewrite;
2734 
2735   // btos
2736   __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2737   __ push(btos);
2738   // Rewrite bytecode to be faster
2739   if (rc == may_rewrite) {
2740     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2741   }
2742   __ b(Done);
2743 
2744   __ bind(notByte);
2745   __ cmp(tos_state, (u1)ztos);
2746   __ br(Assembler::NE, notBool);
2747 
2748   // ztos (same code as btos)
2749   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2750   __ push(ztos);
2751   // Rewrite bytecode to be faster
2752   if (rc == may_rewrite) {
2753     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2754     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2755   }
2756   __ b(Done);
2757 
2758   __ bind(notBool);
2759   __ cmp(tos_state, (u1)atos);
2760   __ br(Assembler::NE, notObj);
2761   // atos
2762   if (!EnableValhalla) {
2763     do_oop_load(_masm, field, r0, IN_HEAP);
2764     __ push(atos);
2765     if (rc == may_rewrite) {
2766       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2767     }
2768     __ b(Done);
2769   } else { // Valhalla
2770     if (is_static) {
2771       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2772       Label is_null_free_inline_type, uninitialized;
2773       // Issue below if the static field has not been initialized yet
2774       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_null_free_inline_type);
2775         // field is not a null free inline type
2776         __ push(atos);
2777         __ b(Done);
2778       // field is a null free inline type, must not return null even if uninitialized
2779       __ bind(is_null_free_inline_type);
2780         __ cbz(r0, uninitialized);
2781           __ push(atos);
2782           __ b(Done);
2783         __ bind(uninitialized);
2784           Label slow_case, finish;
2785           __ ldrb(rscratch1, Address(klass, InstanceKlass::init_state_offset()));
2786           __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized);
2787           __ br(Assembler::NE, slow_case);
2788           __ get_default_value_oop(klass, off /* temp */, r0);
2789         __ b(finish);
2790         __ bind(slow_case);
2791           __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_inline_type_field), obj, cache);
2792           __ bind(finish);
2793           __ verify_oop(r0);
2794           __ push(atos);
2795           __ b(Done);
2796     } else {
2797       Label is_flat, nonnull, is_inline_type, has_null_marker, rewrite_inline;
2798       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
2799       __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
2800         // Non-inline field case
2801         __ load_heap_oop(r0, field, rscratch1, rscratch2);
2802         __ push(atos);
2803         if (rc == may_rewrite) {
2804           patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2805         }
2806         __ b(Done);
2807       __ bind(is_inline_type);
2808         __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2809          // field is not flat
2810           __ load_heap_oop(r0, field, rscratch1, rscratch2);
2811           __ cbnz(r0, nonnull);
2812             __ get_inline_type_field_klass(klass, field_index, inline_klass);
2813             __ get_default_value_oop(inline_klass, klass /* temp */, r0);
2814           __ bind(nonnull);
2815           __ verify_oop(r0);
2816           __ push(atos);
2817           __ b(rewrite_inline);
2818         __ bind(is_flat);
2819         // field is flat
2820           __ mov(r0, obj);
2821           __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2822           __ verify_oop(r0);
2823           __ push(atos);
2824           __ b(rewrite_inline);
2825         __ bind(has_null_marker);
2826           call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), obj, cache);
2827           __ verify_oop(r0);
2828           __ push(atos);
2829       __ bind(rewrite_inline);
2830       if (rc == may_rewrite) {
2831         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2832       }
2833       __ b(Done);
2834     }
2835   }
2836 
2837   __ bind(notObj);
2838   __ cmp(tos_state, (u1)itos);
2839   __ br(Assembler::NE, notInt);
2840   // itos
2841   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2842   __ push(itos);
2843   // Rewrite bytecode to be faster
2844   if (rc == may_rewrite) {
2845     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2846   }
2847   __ b(Done);
2848 
2849   __ bind(notInt);
2850   __ cmp(tos_state, (u1)ctos);
2851   __ br(Assembler::NE, notChar);
2852   // ctos
2853   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2854   __ push(ctos);
2855   // Rewrite bytecode to be faster
2856   if (rc == may_rewrite) {
2857     patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2858   }
2859   __ b(Done);
2860 
2861   __ bind(notChar);
2862   __ cmp(tos_state, (u1)stos);
2863   __ br(Assembler::NE, notShort);
2864   // stos
2865   __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2866   __ push(stos);
2867   // Rewrite bytecode to be faster
2868   if (rc == may_rewrite) {
2869     patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2870   }
2871   __ b(Done);
2872 
2873   __ bind(notShort);
2874   __ cmp(tos_state, (u1)ltos);
2875   __ br(Assembler::NE, notLong);
2876   // ltos
2877   __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2878   __ push(ltos);
2879   // Rewrite bytecode to be faster
2880   if (rc == may_rewrite) {
2881     patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2882   }
2883   __ b(Done);
2884 
2885   __ bind(notLong);
2886   __ cmp(tos_state, (u1)ftos);
2887   __ br(Assembler::NE, notFloat);
2888   // ftos
2889   __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2890   __ push(ftos);
2891   // Rewrite bytecode to be faster
2892   if (rc == may_rewrite) {
2893     patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2894   }
2895   __ b(Done);
2896 
2897   __ bind(notFloat);
2898 #ifdef ASSERT
2899   __ cmp(tos_state, (u1)dtos);
2900   __ br(Assembler::NE, notDouble);
2901 #endif
2902   // dtos
2903   __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2904   __ push(dtos);
2905   // Rewrite bytecode to be faster
2906   if (rc == may_rewrite) {
2907     patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2908   }
2909 #ifdef ASSERT
2910   __ b(Done);
2911 
2912   __ bind(notDouble);
2913   __ stop("Bad state");
2914 #endif
2915 
2916   __ bind(Done);
2917 
2918   Label notVolatile;
2919   __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2920   __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2921   __ bind(notVolatile);
2922 }
2923 
2924 
2925 void TemplateTable::getfield(int byte_no)
2926 {
2927   getfield_or_static(byte_no, false);
2928 }
2929 
2930 void TemplateTable::nofast_getfield(int byte_no) {
2931   getfield_or_static(byte_no, false, may_not_rewrite);
2932 }
2933 
2934 void TemplateTable::getstatic(int byte_no)
2935 {
2936   getfield_or_static(byte_no, true);
2937 }
2938 
2939 // The registers cache and index expected to be set before call.
2940 // The function may destroy various registers, just not the cache and index registers.
2941 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2942   transition(vtos, vtos);
2943 
2944   if (JvmtiExport::can_post_field_modification()) {
2945     // Check to see if a field modification watch has been set before
2946     // we take the time to call into the VM.
2947     Label L1;
2948     assert_different_registers(cache, index, r0);
2949     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2950     __ ldrw(r0, Address(rscratch1));
2951     __ cbz(r0, L1);
2952 
2953     __ mov(c_rarg2, cache);
2954 
2955     if (is_static) {
2956       // Life is simple.  Null out the object pointer.
2957       __ mov(c_rarg1, zr);
2958     } else {
2959       // Life is harder. The stack holds the value on top, followed by
2960       // the object.  We don't know the size of the value, though; it
2961       // could be one or two words depending on its type. As a result,
2962       // we must find the type to determine where the object is.
2963       __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2964       Label nope2, done, ok;
2965       __ ldr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2966       __ cmpw(c_rarg3, ltos);
2967       __ br(Assembler::EQ, ok);
2968       __ cmpw(c_rarg3, dtos);
2969       __ br(Assembler::NE, nope2);
2970       __ bind(ok);
2971       __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2972       __ bind(nope2);
2973     }
2974     // object (tos)
2975     __ mov(c_rarg3, esp);
2976     // c_rarg1: object pointer set up above (null if static)
2977     // c_rarg2: cache entry pointer
2978     // c_rarg3: jvalue object on the stack
2979     __ call_VM(noreg,
2980                CAST_FROM_FN_PTR(address,
2981                                 InterpreterRuntime::post_field_modification),
2982                c_rarg1, c_rarg2, c_rarg3);
2983     __ load_field_entry(cache, index);
2984     __ bind(L1);
2985   }
2986 }
2987 
2988 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2989   transition(vtos, vtos);
2990 
2991   const Register cache     = r2;
2992   const Register index     = r3;
2993   const Register tos_state = r3;
2994   const Register obj       = r2;
2995   const Register off       = r19;
2996   const Register flags     = r6;
2997   const Register bc        = r4;
2998   const Register inline_klass = r5;
2999 
3000   resolve_cache_and_index_for_field(byte_no, cache, index);
3001   jvmti_post_field_mod(cache, index, is_static);
3002   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
3003 
3004   Label Done;
3005   {
3006     Label notVolatile;
3007     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3008     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3009     __ bind(notVolatile);
3010   }
3011 
3012   // field address
3013   const Address field(obj, off);
3014 
3015   Label notByte, notBool, notInt, notShort, notChar,
3016         notLong, notFloat, notObj, notDouble;
3017 
3018   assert(btos == 0, "change code, btos != 0");
3019   __ cbnz(tos_state, notByte);
3020 
3021   // Don't rewrite putstatic, only putfield
3022   if (is_static) rc = may_not_rewrite;
3023 
3024   // btos
3025   {
3026     __ pop(btos);
3027     if (!is_static) pop_and_check_object(obj);
3028     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3029     if (rc == may_rewrite) {
3030       patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
3031     }
3032     __ b(Done);
3033   }
3034 
3035   __ bind(notByte);
3036   __ cmp(tos_state, (u1)ztos);
3037   __ br(Assembler::NE, notBool);
3038 
3039   // ztos
3040   {
3041     __ pop(ztos);
3042     if (!is_static) pop_and_check_object(obj);
3043     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3044     if (rc == may_rewrite) {
3045       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3046     }
3047     __ b(Done);
3048   }
3049 
3050   __ bind(notBool);
3051   __ cmp(tos_state, (u1)atos);
3052   __ br(Assembler::NE, notObj);
3053 
3054   // atos
3055   {
3056      if (!EnableValhalla) {
3057       __ pop(atos);
3058       if (!is_static) pop_and_check_object(obj);
3059       // Store into the field
3060       do_oop_store(_masm, field, r0, IN_HEAP);
3061       if (rc == may_rewrite) {
3062         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3063       }
3064       __ b(Done);
3065      } else { // Valhalla
3066       __ pop(atos);
3067       if (is_static) {
3068         Label is_inline_type;
3069          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_inline_type);
3070          __ null_check(r0);
3071          __ bind(is_inline_type);
3072          do_oop_store(_masm, field, r0, IN_HEAP);
3073          __ b(Done);
3074       } else {
3075         Label is_inline_type, is_flat, has_null_marker, rewrite_not_inline, rewrite_inline;
3076         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
3077         __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
3078         // Not an inline type
3079         pop_and_check_object(obj);
3080         // Store into the field
3081         do_oop_store(_masm, field, r0, IN_HEAP);
3082         __ bind(rewrite_not_inline);
3083         if (rc == may_rewrite) {
3084           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3085         }
3086         __ b(Done);
3087         // Implementation of the inline type semantic
3088         __ bind(is_inline_type);
3089         __ null_check(r0);
3090         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3091         // field is not flat
3092         pop_and_check_object(obj);
3093         // Store into the field
3094         do_oop_store(_masm, field, r0, IN_HEAP);
3095         __ b(rewrite_inline);
3096         __ bind(is_flat);
3097         __ load_field_entry(cache, index); // reload field entry (cache) because it was erased by tos_state
3098         __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
3099         __ ldr(r2, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3100         __ inline_layout_info(r2, index, r6);
3101         pop_and_check_object(obj);
3102         __ load_klass(inline_klass, r0);
3103         __ data_for_oop(r0, r0, inline_klass);
3104         __ add(obj, obj, off);
3105         // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API)
3106         __ flat_field_copy(IN_HEAP, r0, obj, r6);
3107         __ b(rewrite_inline);
3108         __ bind(has_null_marker);
3109         assert_different_registers(r0, cache, r19);
3110         pop_and_check_object(r19);
3111         __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r19, r0, cache);
3112         __ bind(rewrite_inline);
3113         if (rc == may_rewrite) {
3114           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3115         }
3116         __ b(Done);
3117       }
3118      }  // Valhalla
3119   }
3120 
3121   __ bind(notObj);
3122   __ cmp(tos_state, (u1)itos);
3123   __ br(Assembler::NE, notInt);
3124 
3125   // itos
3126   {
3127     __ pop(itos);
3128     if (!is_static) pop_and_check_object(obj);
3129     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3130     if (rc == may_rewrite) {
3131       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3132     }
3133     __ b(Done);
3134   }
3135 
3136   __ bind(notInt);
3137   __ cmp(tos_state, (u1)ctos);
3138   __ br(Assembler::NE, notChar);
3139 
3140   // ctos
3141   {
3142     __ pop(ctos);
3143     if (!is_static) pop_and_check_object(obj);
3144     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3145     if (rc == may_rewrite) {
3146       patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
3147     }
3148     __ b(Done);
3149   }
3150 
3151   __ bind(notChar);
3152   __ cmp(tos_state, (u1)stos);
3153   __ br(Assembler::NE, notShort);
3154 
3155   // stos
3156   {
3157     __ pop(stos);
3158     if (!is_static) pop_and_check_object(obj);
3159     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3160     if (rc == may_rewrite) {
3161       patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
3162     }
3163     __ b(Done);
3164   }
3165 
3166   __ bind(notShort);
3167   __ cmp(tos_state, (u1)ltos);
3168   __ br(Assembler::NE, notLong);
3169 
3170   // ltos
3171   {
3172     __ pop(ltos);
3173     if (!is_static) pop_and_check_object(obj);
3174     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3175     if (rc == may_rewrite) {
3176       patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
3177     }
3178     __ b(Done);
3179   }
3180 
3181   __ bind(notLong);
3182   __ cmp(tos_state, (u1)ftos);
3183   __ br(Assembler::NE, notFloat);
3184 
3185   // ftos
3186   {
3187     __ pop(ftos);
3188     if (!is_static) pop_and_check_object(obj);
3189     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3190     if (rc == may_rewrite) {
3191       patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
3192     }
3193     __ b(Done);
3194   }
3195 
3196   __ bind(notFloat);
3197 #ifdef ASSERT
3198   __ cmp(tos_state, (u1)dtos);
3199   __ br(Assembler::NE, notDouble);
3200 #endif
3201 
3202   // dtos
3203   {
3204     __ pop(dtos);
3205     if (!is_static) pop_and_check_object(obj);
3206     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3207     if (rc == may_rewrite) {
3208       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3209     }
3210   }
3211 
3212 #ifdef ASSERT
3213   __ b(Done);
3214 
3215   __ bind(notDouble);
3216   __ stop("Bad state");
3217 #endif
3218 
3219   __ bind(Done);
3220 
3221   {
3222     Label notVolatile;
3223     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3224     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3225     __ bind(notVolatile);
3226   }
3227 }
3228 
3229 void TemplateTable::putfield(int byte_no)
3230 {
3231   putfield_or_static(byte_no, false);
3232 }
3233 
3234 void TemplateTable::nofast_putfield(int byte_no) {
3235   putfield_or_static(byte_no, false, may_not_rewrite);
3236 }
3237 
3238 void TemplateTable::putstatic(int byte_no) {
3239   putfield_or_static(byte_no, true);
3240 }
3241 
3242 void TemplateTable::jvmti_post_fast_field_mod() {
3243   if (JvmtiExport::can_post_field_modification()) {
3244     // Check to see if a field modification watch has been set before
3245     // we take the time to call into the VM.
3246     Label L2;
3247     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3248     __ ldrw(c_rarg3, Address(rscratch1));
3249     __ cbzw(c_rarg3, L2);
3250     __ pop_ptr(r19);                  // copy the object pointer from tos
3251     __ verify_oop(r19);
3252     __ push_ptr(r19);                 // put the object pointer back on tos
3253     // Save tos values before call_VM() clobbers them. Since we have
3254     // to do it for every data type, we use the saved values as the
3255     // jvalue object.
3256     switch (bytecode()) {          // load values into the jvalue object
3257     case Bytecodes::_fast_vputfield: //fall through
3258     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3259     case Bytecodes::_fast_bputfield: // fall through
3260     case Bytecodes::_fast_zputfield: // fall through
3261     case Bytecodes::_fast_sputfield: // fall through
3262     case Bytecodes::_fast_cputfield: // fall through
3263     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3264     case Bytecodes::_fast_dputfield: __ push_d(); break;
3265     case Bytecodes::_fast_fputfield: __ push_f(); break;
3266     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3267 
3268     default:
3269       ShouldNotReachHere();
3270     }
3271     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3272     // access constant pool cache entry
3273     __ load_field_entry(c_rarg2, r0);
3274     __ verify_oop(r19);
3275     // r19: object pointer copied above
3276     // c_rarg2: cache entry pointer
3277     // c_rarg3: jvalue object on the stack
3278     __ call_VM(noreg,
3279                CAST_FROM_FN_PTR(address,
3280                                 InterpreterRuntime::post_field_modification),
3281                r19, c_rarg2, c_rarg3);
3282 
3283     switch (bytecode()) {             // restore tos values
3284     case Bytecodes::_fast_vputfield: //fall through
3285     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3286     case Bytecodes::_fast_bputfield: // fall through
3287     case Bytecodes::_fast_zputfield: // fall through
3288     case Bytecodes::_fast_sputfield: // fall through
3289     case Bytecodes::_fast_cputfield: // fall through
3290     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3291     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3292     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3293     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3294     default: break;
3295     }
3296     __ bind(L2);
3297   }
3298 }
3299 
3300 void TemplateTable::fast_storefield(TosState state)
3301 {
3302   transition(state, vtos);
3303 
3304   ByteSize base = ConstantPoolCache::base_offset();
3305 
3306   jvmti_post_fast_field_mod();
3307 
3308   // access constant pool cache
3309   __ load_field_entry(r2, r1);
3310 
3311   // R1: field offset, R2: field holder, R3: flags
3312   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3313 
3314   {
3315     Label notVolatile;
3316     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3317     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3318     __ bind(notVolatile);
3319   }
3320 
3321   Label notVolatile;
3322 
3323   // Get object from stack
3324   pop_and_check_object(r2);
3325 
3326   // field address
3327   const Address field(r2, r1);
3328 
3329   // access field
3330   switch (bytecode()) {
3331   case Bytecodes::_fast_vputfield:
3332    {
3333       Label is_flat, has_null_marker, done;
3334       __ test_field_has_null_marker(r3, noreg /* temp */, has_null_marker);
3335       __ null_check(r0);
3336       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3337       // field is not flat
3338       do_oop_store(_masm, field, r0, IN_HEAP);
3339       __ b(done);
3340       __ bind(is_flat);
3341       // field is flat
3342       __ load_field_entry(r4, r3);
3343       __ load_unsigned_short(r3, Address(r4, in_bytes(ResolvedFieldEntry::field_index_offset())));
3344       __ ldr(r4, Address(r4, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3345       __ inline_layout_info(r4, r3, r5);
3346       __ load_klass(r4, r0);
3347       __ data_for_oop(r0, r0, r4);
3348       __ lea(rscratch1, field);
3349       __ flat_field_copy(IN_HEAP, r0, rscratch1, r5);
3350       __ b(done);
3351       __ bind(has_null_marker);
3352       __ load_field_entry(r4, r1);
3353       __ mov(r1, r2);
3354       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r1, r0, r4);
3355       __ bind(done);
3356     }
3357     break;
3358   case Bytecodes::_fast_aputfield:
3359     do_oop_store(_masm, field, r0, IN_HEAP);
3360     break;
3361   case Bytecodes::_fast_lputfield:
3362     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3363     break;
3364   case Bytecodes::_fast_iputfield:
3365     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3366     break;
3367   case Bytecodes::_fast_zputfield:
3368     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3369     break;
3370   case Bytecodes::_fast_bputfield:
3371     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3372     break;
3373   case Bytecodes::_fast_sputfield:
3374     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3375     break;
3376   case Bytecodes::_fast_cputfield:
3377     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3378     break;
3379   case Bytecodes::_fast_fputfield:
3380     __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3381     break;
3382   case Bytecodes::_fast_dputfield:
3383     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3384     break;
3385   default:
3386     ShouldNotReachHere();
3387   }
3388 
3389   {
3390     Label notVolatile;
3391     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3392     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3393     __ bind(notVolatile);
3394   }
3395 }
3396 
3397 
3398 void TemplateTable::fast_accessfield(TosState state)
3399 {
3400   transition(atos, state);
3401   // Do the JVMTI work here to avoid disturbing the register state below
3402   if (JvmtiExport::can_post_field_access()) {
3403     // Check to see if a field access watch has been set before we
3404     // take the time to call into the VM.
3405     Label L1;
3406     __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3407     __ ldrw(r2, Address(rscratch1));
3408     __ cbzw(r2, L1);
3409     // access constant pool cache entry
3410     __ load_field_entry(c_rarg2, rscratch2);
3411     __ verify_oop(r0);
3412     __ push_ptr(r0);  // save object pointer before call_VM() clobbers it
3413     __ mov(c_rarg1, r0);
3414     // c_rarg1: object pointer copied above
3415     // c_rarg2: cache entry pointer
3416     __ call_VM(noreg,
3417                CAST_FROM_FN_PTR(address,
3418                                 InterpreterRuntime::post_field_access),
3419                c_rarg1, c_rarg2);
3420     __ pop_ptr(r0); // restore object pointer
3421     __ bind(L1);
3422   }
3423 
3424   // access constant pool cache
3425   __ load_field_entry(r2, r1);
3426 
3427   __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3428   __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3429 
3430   // r0: object
3431   __ verify_oop(r0);
3432   __ null_check(r0);
3433   const Address field(r0, r1);
3434 
3435   // 8179954: We need to make sure that the code generated for
3436   // volatile accesses forms a sequentially-consistent set of
3437   // operations when combined with STLR and LDAR.  Without a leading
3438   // membar it's possible for a simple Dekker test to fail if loads
3439   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3440   // the stores in one method and we interpret the loads in another.
3441   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3442     Label notVolatile;
3443     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3444     __ membar(MacroAssembler::AnyAny);
3445     __ bind(notVolatile);
3446   }
3447 
3448   // access field
3449   switch (bytecode()) {
3450   case Bytecodes::_fast_vgetfield:
3451     {
3452       Register index = r4, klass = r5, inline_klass = r6, tmp = r7;
3453       Label is_flat, has_null_marker, nonnull, Done;
3454       __ test_field_has_null_marker(r3, noreg /*temp*/, has_null_marker);
3455       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3456         // field is not flat
3457         __ load_heap_oop(r0, field, rscratch1, rscratch2);
3458         __ cbnz(r0, nonnull);
3459           __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3460           __ ldr(klass, Address(r2, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3461           __ get_inline_type_field_klass(klass, index, inline_klass);
3462           __ get_default_value_oop(inline_klass, tmp /* temp */, r0);
3463         __ bind(nonnull);
3464         __ verify_oop(r0);
3465         __ b(Done);
3466       __ bind(is_flat);
3467       // field is flat
3468         __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3469         __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3470         __ verify_oop(r0);
3471         __ b(Done);
3472       __ bind(has_null_marker);
3473         call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), r0, r2);
3474         __ verify_oop(r0);
3475       __ bind(Done);
3476     }
3477     break;
3478   case Bytecodes::_fast_agetfield:
3479     do_oop_load(_masm, field, r0, IN_HEAP);
3480     __ verify_oop(r0);
3481     break;
3482   case Bytecodes::_fast_lgetfield:
3483     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3484     break;
3485   case Bytecodes::_fast_igetfield:
3486     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3487     break;
3488   case Bytecodes::_fast_bgetfield:
3489     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3490     break;
3491   case Bytecodes::_fast_sgetfield:
3492     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3493     break;
3494   case Bytecodes::_fast_cgetfield:
3495     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3496     break;
3497   case Bytecodes::_fast_fgetfield:
3498     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3499     break;
3500   case Bytecodes::_fast_dgetfield:
3501     __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3502     break;
3503   default:
3504     ShouldNotReachHere();
3505   }
3506   {
3507     Label notVolatile;
3508     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3509     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3510     __ bind(notVolatile);
3511   }
3512 }
3513 
3514 void TemplateTable::fast_xaccess(TosState state)
3515 {
3516   transition(vtos, state);
3517 
3518   // get receiver
3519   __ ldr(r0, aaddress(0));
3520   // access constant pool cache
3521   __ load_field_entry(r2, r3, 2);
3522   __ load_sized_value(r1, Address(r2, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3523 
3524   // 8179954: We need to make sure that the code generated for
3525   // volatile accesses forms a sequentially-consistent set of
3526   // operations when combined with STLR and LDAR.  Without a leading
3527   // membar it's possible for a simple Dekker test to fail if loads
3528   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3529   // the stores in one method and we interpret the loads in another.
3530   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3531     Label notVolatile;
3532     __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3533     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3534     __ membar(MacroAssembler::AnyAny);
3535     __ bind(notVolatile);
3536   }
3537 
3538   // make sure exception is reported in correct bcp range (getfield is
3539   // next instruction)
3540   __ increment(rbcp);
3541   __ null_check(r0);
3542   switch (state) {
3543   case itos:
3544     __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3545     break;
3546   case atos:
3547     do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3548     __ verify_oop(r0);
3549     break;
3550   case ftos:
3551     __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3552     break;
3553   default:
3554     ShouldNotReachHere();
3555   }
3556 
3557   {
3558     Label notVolatile;
3559     __ load_unsigned_byte(r3, Address(r2, in_bytes(ResolvedFieldEntry::flags_offset())));
3560     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3561     __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3562     __ bind(notVolatile);
3563   }
3564 
3565   __ decrement(rbcp);
3566 }
3567 
3568 
3569 
3570 //-----------------------------------------------------------------------------
3571 // Calls
3572 
3573 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3574 
3575   Bytecodes::Code code = bytecode();
3576   const bool load_receiver       = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3577 
3578   // save 'interpreter return address'
3579   __ save_bcp();
3580 
3581   // Load TOS state for later
3582   __ load_unsigned_byte(rscratch2, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3583 
3584   // load receiver if needed (note: no return address pushed yet)
3585   if (load_receiver) {
3586     __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3587     __ add(rscratch1, esp, recv, ext::uxtx, 3);
3588     __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3589     __ verify_oop(recv);
3590   }
3591 
3592   // load return address
3593   {
3594     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3595     __ mov(rscratch1, table_addr);
3596     __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3597   }
3598 }
3599 
3600 
3601 void TemplateTable::invokevirtual_helper(Register index,
3602                                          Register recv,
3603                                          Register flags)
3604 {
3605   // Uses temporary registers r0, r3
3606   assert_different_registers(index, recv, r0, r3);
3607   // Test for an invoke of a final method
3608   Label notFinal;
3609   __ tbz(flags, ResolvedMethodEntry::is_vfinal_shift, notFinal);
3610 
3611   const Register method = index;  // method must be rmethod
3612   assert(method == rmethod,
3613          "Method must be rmethod for interpreter calling convention");
3614 
3615   // do the call - the index is actually the method to call
3616   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3617 
3618   // It's final, need a null check here!
3619   __ null_check(recv);
3620 
3621   // profile this call
3622   __ profile_final_call(r0);
3623   __ profile_arguments_type(r0, method, r4, true);
3624 
3625   __ jump_from_interpreted(method, r0);
3626 
3627   __ bind(notFinal);
3628 
3629   // get receiver klass
3630   __ load_klass(r0, recv);
3631 
3632   // profile this call
3633   __ profile_virtual_call(r0, rlocals, r3);
3634 
3635   // get target Method & entry point
3636   __ lookup_virtual_method(r0, index, method);
3637   __ profile_arguments_type(r3, method, r4, true);
3638   // FIXME -- this looks completely redundant. is it?
3639   // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3640   __ jump_from_interpreted(method, r3);
3641 }
3642 
3643 void TemplateTable::invokevirtual(int byte_no)
3644 {
3645   transition(vtos, vtos);
3646   assert(byte_no == f2_byte, "use this argument");
3647 
3648   load_resolved_method_entry_virtual(r2,      // ResolvedMethodEntry*
3649                                      rmethod, // Method* or itable index
3650                                      r3);     // flags
3651   prepare_invoke(r2, r2); // recv
3652 
3653   // rmethod: index (actually a Method*)
3654   // r2: receiver
3655   // r3: flags
3656 
3657   invokevirtual_helper(rmethod, r2, r3);
3658 }
3659 
3660 void TemplateTable::invokespecial(int byte_no)
3661 {
3662   transition(vtos, vtos);
3663   assert(byte_no == f1_byte, "use this argument");
3664 
3665   load_resolved_method_entry_special_or_static(r2,      // ResolvedMethodEntry*
3666                                                rmethod, // Method*
3667                                                r3);     // flags
3668   prepare_invoke(r2, r2);  // get receiver also for null check
3669   __ verify_oop(r2);
3670   __ null_check(r2);
3671   // do the call
3672   __ profile_call(r0);
3673   __ profile_arguments_type(r0, rmethod, rbcp, false);
3674   __ jump_from_interpreted(rmethod, r0);
3675 }
3676 
3677 void TemplateTable::invokestatic(int byte_no)
3678 {
3679   transition(vtos, vtos);
3680   assert(byte_no == f1_byte, "use this argument");
3681 
3682   load_resolved_method_entry_special_or_static(r2,      // ResolvedMethodEntry*
3683                                                rmethod, // Method*
3684                                                r3);     // flags
3685   prepare_invoke(r2, r2);  // get receiver also for null check
3686 
3687   // do the call
3688   __ profile_call(r0);
3689   __ profile_arguments_type(r0, rmethod, r4, false);
3690   __ jump_from_interpreted(rmethod, r0);
3691 }
3692 
3693 void TemplateTable::fast_invokevfinal(int byte_no)
3694 {
3695   __ call_Unimplemented();
3696 }
3697 
3698 void TemplateTable::invokeinterface(int byte_no) {
3699   transition(vtos, vtos);
3700   assert(byte_no == f1_byte, "use this argument");
3701 
3702   load_resolved_method_entry_interface(r2,      // ResolvedMethodEntry*
3703                                        r0,      // Klass*
3704                                        rmethod, // Method* or itable/vtable index
3705                                        r3);     // flags
3706   prepare_invoke(r2, r2); // receiver
3707 
3708   // r0: interface klass (from f1)
3709   // rmethod: method (from f2)
3710   // r2: receiver
3711   // r3: flags
3712 
3713   // First check for Object case, then private interface method,
3714   // then regular interface method.
3715 
3716   // Special case of invokeinterface called for virtual method of
3717   // java.lang.Object.  See cpCache.cpp for details.
3718   Label notObjectMethod;
3719   __ tbz(r3, ResolvedMethodEntry::is_forced_virtual_shift, notObjectMethod);
3720 
3721   invokevirtual_helper(rmethod, r2, r3);
3722   __ bind(notObjectMethod);
3723 
3724   Label no_such_interface;
3725 
3726   // Check for private method invocation - indicated by vfinal
3727   Label notVFinal;
3728   __ tbz(r3, ResolvedMethodEntry::is_vfinal_shift, notVFinal);
3729 
3730   // Get receiver klass into r3
3731   __ load_klass(r3, r2);
3732 
3733   Label subtype;
3734   __ check_klass_subtype(r3, r0, r4, subtype);
3735   // If we get here the typecheck failed
3736   __ b(no_such_interface);
3737   __ bind(subtype);
3738 
3739   __ profile_final_call(r0);
3740   __ profile_arguments_type(r0, rmethod, r4, true);
3741   __ jump_from_interpreted(rmethod, r0);
3742 
3743   __ bind(notVFinal);
3744 
3745   // Get receiver klass into r3
3746   __ restore_locals();
3747   __ load_klass(r3, r2);
3748 
3749   Label no_such_method;
3750 
3751   // Preserve method for throw_AbstractMethodErrorVerbose.
3752   __ mov(r16, rmethod);
3753   // Receiver subtype check against REFC.
3754   // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3755   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3756                              r3, r0, noreg,
3757                              // outputs: scan temp. reg, scan temp. reg
3758                              rscratch2, r13,
3759                              no_such_interface,
3760                              /*return_method=*/false);
3761 
3762   // profile this call
3763   __ profile_virtual_call(r3, r13, r19);
3764 
3765   // Get declaring interface class from method, and itable index
3766 
3767   __ load_method_holder(r0, rmethod);
3768   __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3769   __ subw(rmethod, rmethod, Method::itable_index_max);
3770   __ negw(rmethod, rmethod);
3771 
3772   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3773   __ mov(rlocals, r3);
3774   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3775                              rlocals, r0, rmethod,
3776                              // outputs: method, scan temp. reg
3777                              rmethod, r13,
3778                              no_such_interface);
3779 
3780   // rmethod,: Method to call
3781   // r2: receiver
3782   // Check for abstract method error
3783   // Note: This should be done more efficiently via a throw_abstract_method_error
3784   //       interpreter entry point and a conditional jump to it in case of a null
3785   //       method.
3786   __ cbz(rmethod, no_such_method);
3787 
3788   __ profile_arguments_type(r3, rmethod, r13, true);
3789 
3790   // do the call
3791   // r2: receiver
3792   // rmethod,: Method
3793   __ jump_from_interpreted(rmethod, r3);
3794   __ should_not_reach_here();
3795 
3796   // exception handling code follows...
3797   // note: must restore interpreter registers to canonical
3798   //       state for exception handling to work correctly!
3799 
3800   __ bind(no_such_method);
3801   // throw exception
3802   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3803   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3804   // Pass arguments for generating a verbose error message.
3805   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3806   // the call_VM checks for exception, so we should never return here.
3807   __ should_not_reach_here();
3808 
3809   __ bind(no_such_interface);
3810   // throw exception
3811   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
3812   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3813   // Pass arguments for generating a verbose error message.
3814   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3815                    InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3816   // the call_VM checks for exception, so we should never return here.
3817   __ should_not_reach_here();
3818   return;
3819 }
3820 
3821 void TemplateTable::invokehandle(int byte_no) {
3822   transition(vtos, vtos);
3823   assert(byte_no == f1_byte, "use this argument");
3824 
3825   load_resolved_method_entry_handle(r2,      // ResolvedMethodEntry*
3826                                     rmethod, // Method*
3827                                     r0,      // Resolved reference
3828                                     r3);     // flags
3829   prepare_invoke(r2, r2);
3830 
3831   __ verify_method_ptr(r2);
3832   __ verify_oop(r2);
3833   __ null_check(r2);
3834 
3835   // FIXME: profile the LambdaForm also
3836 
3837   // r13 is safe to use here as a scratch reg because it is about to
3838   // be clobbered by jump_from_interpreted().
3839   __ profile_final_call(r13);
3840   __ profile_arguments_type(r13, rmethod, r4, true);
3841 
3842   __ jump_from_interpreted(rmethod, r0);
3843 }
3844 
3845 void TemplateTable::invokedynamic(int byte_no) {
3846   transition(vtos, vtos);
3847   assert(byte_no == f1_byte, "use this argument");
3848 
3849   load_invokedynamic_entry(rmethod);
3850 
3851   // r0: CallSite object (from cpool->resolved_references[])
3852   // rmethod: MH.linkToCallSite method
3853 
3854   // Note:  r0_callsite is already pushed
3855 
3856   // %%% should make a type profile for any invokedynamic that takes a ref argument
3857   // profile this call
3858   __ profile_call(rbcp);
3859   __ profile_arguments_type(r3, rmethod, r13, false);
3860 
3861   __ verify_oop(r0);
3862 
3863   __ jump_from_interpreted(rmethod, r0);
3864 }
3865 
3866 
3867 //-----------------------------------------------------------------------------
3868 // Allocation
3869 
3870 void TemplateTable::_new() {
3871   transition(vtos, atos);
3872 
3873   __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3874   Label slow_case;
3875   Label done;
3876   Label initialize_header;
3877 
3878   __ get_cpool_and_tags(r4, r0);
3879   // Make sure the class we're about to instantiate has been resolved.
3880   // This is done before loading InstanceKlass to be consistent with the order
3881   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3882   const int tags_offset = Array<u1>::base_offset_in_bytes();
3883   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3884   __ lea(rscratch1, Address(rscratch1, tags_offset));
3885   __ ldarb(rscratch1, rscratch1);
3886   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3887   __ br(Assembler::NE, slow_case);
3888 
3889   // get InstanceKlass
3890   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3891 
3892   // make sure klass is initialized
3893   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3894   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3895 
3896   __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3897     if (DTraceAllocProbes) {
3898       // Trigger dtrace event for fastpath
3899       __ push(atos); // save the return value
3900       __ call_VM_leaf(
3901            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3902       __ pop(atos); // restore the return value
3903 
3904     }
3905   __ b(done);
3906 
3907   // slow case
3908   __ bind(slow_case);
3909   __ get_constant_pool(c_rarg1);
3910   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3911   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3912   __ verify_oop(r0);
3913 
3914   // continue
3915   __ bind(done);
3916   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3917   __ membar(Assembler::StoreStore);
3918 }
3919 
3920 void TemplateTable::newarray() {
3921   transition(itos, atos);
3922   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3923   __ mov(c_rarg2, r0);
3924   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3925           c_rarg1, c_rarg2);
3926   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3927   __ membar(Assembler::StoreStore);
3928 }
3929 
3930 void TemplateTable::anewarray() {
3931   transition(itos, atos);
3932   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3933   __ get_constant_pool(c_rarg1);
3934   __ mov(c_rarg3, r0);
3935   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3936           c_rarg1, c_rarg2, c_rarg3);
3937   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3938   __ membar(Assembler::StoreStore);
3939 }
3940 
3941 void TemplateTable::arraylength() {
3942   transition(atos, itos);
3943   __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3944 }
3945 
3946 void TemplateTable::checkcast()
3947 {
3948   transition(atos, atos);
3949   Label done, is_null, ok_is_subtype, quicked, resolved;
3950   __ cbz(r0, is_null);
3951 
3952   // Get cpool & tags index
3953   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3954   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3955   // See if bytecode has already been quicked
3956   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3957   __ lea(r1, Address(rscratch1, r19));
3958   __ ldarb(r1, r1);
3959   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3960   __ br(Assembler::EQ, quicked);
3961 
3962   __ push(atos); // save receiver for result, and for GC
3963   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3964   // vm_result_2 has metadata result
3965   __ get_vm_result_2(r0, rthread);
3966   __ pop(r3); // restore receiver
3967   __ b(resolved);
3968 
3969   // Get superklass in r0 and subklass in r3
3970   __ bind(quicked);
3971   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3972   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3973 
3974   __ bind(resolved);
3975   __ load_klass(r19, r3);
3976 
3977   // Generate subtype check.  Blows r2, r5.  Object in r3.
3978   // Superklass in r0.  Subklass in r19.
3979   __ gen_subtype_check(r19, ok_is_subtype);
3980 
3981   // Come here on failure
3982   __ push(r3);
3983   // object is at TOS
3984   __ b(Interpreter::_throw_ClassCastException_entry);
3985 
3986   // Come here on success
3987   __ bind(ok_is_subtype);
3988   __ mov(r0, r3); // Restore object in r3
3989 
3990   __ b(done);
3991   __ bind(is_null);
3992 
3993   // Collect counts on whether this test sees nulls a lot or not.
3994   if (ProfileInterpreter) {
3995     __ profile_null_seen(r2);
3996   }
3997 
3998   __ bind(done);
3999 }
4000 
4001 void TemplateTable::instanceof() {
4002   transition(atos, itos);
4003   Label done, is_null, ok_is_subtype, quicked, resolved;
4004   __ cbz(r0, is_null);
4005 
4006   // Get cpool & tags index
4007   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
4008   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
4009   // See if bytecode has already been quicked
4010   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
4011   __ lea(r1, Address(rscratch1, r19));
4012   __ ldarb(r1, r1);
4013   __ cmp(r1, (u1)JVM_CONSTANT_Class);
4014   __ br(Assembler::EQ, quicked);
4015 
4016   __ push(atos); // save receiver for result, and for GC
4017   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4018   // vm_result_2 has metadata result
4019   __ get_vm_result_2(r0, rthread);
4020   __ pop(r3); // restore receiver
4021   __ verify_oop(r3);
4022   __ load_klass(r3, r3);
4023   __ b(resolved);
4024 
4025   // Get superklass in r0 and subklass in r3
4026   __ bind(quicked);
4027   __ load_klass(r3, r0);
4028   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
4029 
4030   __ bind(resolved);
4031 
4032   // Generate subtype check.  Blows r2, r5
4033   // Superklass in r0.  Subklass in r3.
4034   __ gen_subtype_check(r3, ok_is_subtype);
4035 
4036   // Come here on failure
4037   __ mov(r0, 0);
4038   __ b(done);
4039   // Come here on success
4040   __ bind(ok_is_subtype);
4041   __ mov(r0, 1);
4042 
4043   // Collect counts on whether this test sees nulls a lot or not.
4044   if (ProfileInterpreter) {
4045     __ b(done);
4046     __ bind(is_null);
4047     __ profile_null_seen(r2);
4048   } else {
4049     __ bind(is_null);   // same as 'done'
4050   }
4051   __ bind(done);
4052   // r0 = 0: obj == nullptr or  obj is not an instanceof the specified klass
4053   // r0 = 1: obj != nullptr and obj is     an instanceof the specified klass
4054 }
4055 
4056 //-----------------------------------------------------------------------------
4057 // Breakpoints
4058 void TemplateTable::_breakpoint() {
4059   // Note: We get here even if we are single stepping..
4060   // jbug inists on setting breakpoints at every bytecode
4061   // even if we are in single step mode.
4062 
4063   transition(vtos, vtos);
4064 
4065   // get the unpatched byte code
4066   __ get_method(c_rarg1);
4067   __ call_VM(noreg,
4068              CAST_FROM_FN_PTR(address,
4069                               InterpreterRuntime::get_original_bytecode_at),
4070              c_rarg1, rbcp);
4071   __ mov(r19, r0);
4072 
4073   // post the breakpoint event
4074   __ call_VM(noreg,
4075              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4076              rmethod, rbcp);
4077 
4078   // complete the execution of original bytecode
4079   __ mov(rscratch1, r19);
4080   __ dispatch_only_normal(vtos);
4081 }
4082 
4083 //-----------------------------------------------------------------------------
4084 // Exceptions
4085 
4086 void TemplateTable::athrow() {
4087   transition(atos, vtos);
4088   __ null_check(r0);
4089   __ b(Interpreter::throw_exception_entry());
4090 }
4091 
4092 //-----------------------------------------------------------------------------
4093 // Synchronization
4094 //
4095 // Note: monitorenter & exit are symmetric routines; which is reflected
4096 //       in the assembly code structure as well
4097 //
4098 // Stack layout:
4099 //
4100 // [expressions  ] <--- esp               = expression stack top
4101 // ..
4102 // [expressions  ]
4103 // [monitor entry] <--- monitor block top = expression stack bot
4104 // ..
4105 // [monitor entry]
4106 // [frame data   ] <--- monitor block bot
4107 // ...
4108 // [saved rfp    ] <--- rfp
4109 void TemplateTable::monitorenter()
4110 {
4111   transition(atos, vtos);
4112 
4113   // check for null object
4114   __ null_check(r0);
4115 
4116   Label is_inline_type;
4117   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4118   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4119 
4120   const Address monitor_block_top(
4121         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4122   const Address monitor_block_bot(
4123         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4124   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4125 
4126   Label allocated;
4127 
4128   // initialize entry pointer
4129   __ mov(c_rarg1, zr); // points to free slot or null
4130 
4131   // find a free slot in the monitor block (result in c_rarg1)
4132   {
4133     Label entry, loop, exit;
4134     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4135     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4136     // c_rarg3 points to current entry, starting with top-most entry
4137 
4138     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4139 
4140     __ b(entry);
4141 
4142     __ bind(loop);
4143     // check if current entry is used
4144     // if not used then remember entry in c_rarg1
4145     __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
4146     __ cmp(zr, rscratch1);
4147     __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
4148     // check if current entry is for same object
4149     __ cmp(r0, rscratch1);
4150     // if same object then stop searching
4151     __ br(Assembler::EQ, exit);
4152     // otherwise advance to next entry
4153     __ add(c_rarg3, c_rarg3, entry_size);
4154     __ bind(entry);
4155     // check if bottom reached
4156     __ cmp(c_rarg3, c_rarg2);
4157     // if not at bottom then check this entry
4158     __ br(Assembler::NE, loop);
4159     __ bind(exit);
4160   }
4161 
4162   __ cbnz(c_rarg1, allocated); // check if a slot has been found and
4163                             // if found, continue with that on
4164 
4165   // allocate one if there's no free slot
4166   {
4167     Label entry, loop;
4168     // 1. compute new pointers            // rsp: old expression stack top
4169 
4170     __ check_extended_sp();
4171     __ sub(sp, sp, entry_size);           // make room for the monitor
4172     __ sub(rscratch1, sp, rfp);
4173     __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
4174     __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
4175 
4176     __ ldr(c_rarg1, monitor_block_bot);   // derelativize pointer
4177     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4178     // c_rarg1 points to the old expression stack bottom
4179 
4180     __ sub(esp, esp, entry_size);         // move expression stack top
4181     __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
4182     __ mov(c_rarg3, esp);                 // set start value for copy loop
4183     __ sub(rscratch1, c_rarg1, rfp);      // relativize pointer
4184     __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
4185     __ str(rscratch1, monitor_block_bot);  // set new monitor block bottom
4186 
4187     __ b(entry);
4188     // 2. move expression stack contents
4189     __ bind(loop);
4190     __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
4191                                                    // word from old location
4192     __ str(c_rarg2, Address(c_rarg3, 0));          // and store it at new location
4193     __ add(c_rarg3, c_rarg3, wordSize);            // advance to next word
4194     __ bind(entry);
4195     __ cmp(c_rarg3, c_rarg1);        // check if bottom reached
4196     __ br(Assembler::NE, loop);      // if not at bottom then
4197                                      // copy next word
4198   }
4199 
4200   // call run-time routine
4201   // c_rarg1: points to monitor entry
4202   __ bind(allocated);
4203 
4204   // Increment bcp to point to the next bytecode, so exception
4205   // handling for async. exceptions work correctly.
4206   // The object has already been popped from the stack, so the
4207   // expression stack looks correct.
4208   __ increment(rbcp);
4209 
4210   // store object
4211   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4212   __ lock_object(c_rarg1);
4213 
4214   // check to make sure this monitor doesn't cause stack overflow after locking
4215   __ save_bcp();  // in case of exception
4216   __ generate_stack_overflow_check(0);
4217 
4218   // The bcp has already been incremented. Just need to dispatch to
4219   // next instruction.
4220   __ dispatch_next(vtos);
4221 
4222   __ bind(is_inline_type);
4223   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4224                     InterpreterRuntime::throw_identity_exception), r0);
4225   __ should_not_reach_here();
4226 }
4227 
4228 
4229 void TemplateTable::monitorexit()
4230 {
4231   transition(atos, vtos);
4232 
4233   // check for null object
4234   __ null_check(r0);
4235 
4236   const int is_inline_type_mask = markWord::inline_type_pattern;
4237   Label has_identity;
4238   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4239   __ mov(rscratch2, is_inline_type_mask);
4240   __ andr(rscratch1, rscratch1, rscratch2);
4241   __ cmp(rscratch1, rscratch2);
4242   __ br(Assembler::NE, has_identity);
4243   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4244                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4245   __ should_not_reach_here();
4246   __ bind(has_identity);
4247 
4248   const Address monitor_block_top(
4249         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4250   const Address monitor_block_bot(
4251         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4252   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4253 
4254   Label found;
4255 
4256   // find matching slot
4257   {
4258     Label entry, loop;
4259     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4260     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4261     // c_rarg1 points to current entry, starting with top-most entry
4262 
4263     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4264                                         // of monitor block
4265     __ b(entry);
4266 
4267     __ bind(loop);
4268     // check if current entry is for same object
4269     __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
4270     __ cmp(r0, rscratch1);
4271     // if same object then stop searching
4272     __ br(Assembler::EQ, found);
4273     // otherwise advance to next entry
4274     __ add(c_rarg1, c_rarg1, entry_size);
4275     __ bind(entry);
4276     // check if bottom reached
4277     __ cmp(c_rarg1, c_rarg2);
4278     // if not at bottom then check this entry
4279     __ br(Assembler::NE, loop);
4280   }
4281 
4282   // error handling. Unlocking was not block-structured
4283   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4284                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4285   __ should_not_reach_here();
4286 
4287   // call run-time routine
4288   __ bind(found);
4289   __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
4290   __ unlock_object(c_rarg1);
4291   __ pop_ptr(r0); // discard object
4292 }
4293 
4294 
4295 // Wide instructions
4296 void TemplateTable::wide()
4297 {
4298   __ load_unsigned_byte(r19, at_bcp(1));
4299   __ mov(rscratch1, (address)Interpreter::_wentry_point);
4300   __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
4301   __ br(rscratch1);
4302 }
4303 
4304 
4305 // Multi arrays
4306 void TemplateTable::multianewarray() {
4307   transition(vtos, atos);
4308   __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
4309   // last dim is on top of stack; we want address of first one:
4310   // first_addr = last_addr + (ndims - 1) * wordSize
4311   __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
4312   __ sub(c_rarg1, c_rarg1, wordSize);
4313   call_VM(r0,
4314           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4315           c_rarg1);
4316   __ load_unsigned_byte(r1, at_bcp(3));
4317   __ lea(esp, Address(esp, r1, Address::uxtw(3)));
4318 }