< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   assert_different_registers(bc_reg, temp_reg);
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {

 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 740   locals_index_wide(r1);
 741   __ ldr(r0, aaddress(r1));
 742 }
 743 
 744 void TemplateTable::index_check(Register array, Register index)
 745 {
 746   // destroys r1, rscratch1
 747   // sign extend index for use by indexed load
 748   // __ movl2ptr(index, index);
 749   // check index
 750   Register length = rscratch1;
 751   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 752   __ cmpw(index, length);
 753   if (index != r1) {
 754     // ??? convention: move aberrant index into r1 for exception message
 755     assert(r1 != array, "different registers");
 756     __ mov(r1, index);
 757   }
 758   Label ok;
 759   __ br(Assembler::LO, ok);
 760     // ??? convention: move array into r3 for exception message
 761   __ mov(r3, array);
 762   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 763   __ br(rscratch1);
 764   __ bind(ok);
 765 }
 766 
 767 void TemplateTable::iaload()
 768 {
 769   transition(itos, itos);
 770   __ mov(r1, r0);
 771   __ pop_ptr(r0);
 772   // r0: array
 773   // r1: index
 774   index_check(r0, r1); // leaves index in r1, kills rscratch1
 775   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 776   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 777 }
 778 
 779 void TemplateTable::laload()
 780 {
 781   transition(itos, ltos);
 782   __ mov(r1, r0);
 783   __ pop_ptr(r0);

 803 void TemplateTable::daload()
 804 {
 805   transition(itos, dtos);
 806   __ mov(r1, r0);
 807   __ pop_ptr(r0);
 808   // r0: array
 809   // r1: index
 810   index_check(r0, r1); // leaves index in r1, kills rscratch1
 811   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 812   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 813 }
 814 
 815 void TemplateTable::aaload()
 816 {
 817   transition(itos, atos);
 818   __ mov(r1, r0);
 819   __ pop_ptr(r0);
 820   // r0: array
 821   // r1: index
 822   index_check(r0, r1); // leaves index in r1, kills rscratch1
 823   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 824   do_oop_load(_masm,
 825               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 826               r0,
 827               IS_ARRAY);















 828 }
 829 
 830 void TemplateTable::baload()
 831 {
 832   transition(itos, itos);
 833   __ mov(r1, r0);
 834   __ pop_ptr(r0);
 835   // r0: array
 836   // r1: index
 837   index_check(r0, r1); // leaves index in r1, kills rscratch1
 838   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 839   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 840 }
 841 
 842 void TemplateTable::caload()
 843 {
 844   transition(itos, itos);
 845   __ mov(r1, r0);
 846   __ pop_ptr(r0);
 847   // r0: array

1094   // r1:  index
1095   // r3:  array
1096   index_check(r3, r1); // prefer index in r1
1097   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1098   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1099 }
1100 
1101 void TemplateTable::dastore() {
1102   transition(dtos, vtos);
1103   __ pop_i(r1);
1104   __ pop_ptr(r3);
1105   // v0: value
1106   // r1:  index
1107   // r3:  array
1108   index_check(r3, r1); // prefer index in r1
1109   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1110   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1111 }
1112 
1113 void TemplateTable::aastore() {
1114   Label is_null, ok_is_subtype, done;
1115   transition(vtos, vtos);
1116   // stack: ..., array, index, value
1117   __ ldr(r0, at_tos());    // value
1118   __ ldr(r2, at_tos_p1()); // index
1119   __ ldr(r3, at_tos_p2()); // array
1120 
1121   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1122 
1123   index_check(r3, r2);     // kills r1




1124   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1125 
1126   // do array store check - check for null value first
1127   __ cbz(r0, is_null);
1128 








1129   // Move subklass into r1
1130   __ load_klass(r1, r0);
1131   // Move superklass into r0
1132   __ load_klass(r0, r3);
1133   __ ldr(r0, Address(r0,
1134                      ObjArrayKlass::element_klass_offset()));
1135   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1136 
1137   // Generate subtype check.  Blows r2, r5
1138   // Superklass in r0.  Subklass in r1.
1139   __ gen_subtype_check(r1, ok_is_subtype);


1140 
1141   // Come here on failure
1142   // object is at TOS
1143   __ b(Interpreter::_throw_ArrayStoreException_entry);
1144 
1145   // Come here on success
1146   __ bind(ok_is_subtype);
1147 
1148   // Get the value we will store
1149   __ ldr(r0, at_tos());
1150   // Now store using the appropriate barrier
1151   // Clobbers: r10, r11, r3
1152   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1153   __ b(done);
1154 
1155   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1156   __ bind(is_null);
1157   __ profile_null_seen(r2);















1158 
1159   // Store a null
1160   // Clobbers: r10, r11, r3
1161   do_oop_store(_masm, element_address, noreg, IS_ARRAY);











1162 
1163   // Pop stack arguments
1164   __ bind(done);
1165   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1166 }
1167 
1168 void TemplateTable::bastore()
1169 {
1170   transition(itos, vtos);
1171   __ pop_i(r1);
1172   __ pop_ptr(r3);
1173   // r0: value
1174   // r1: index
1175   // r3: array
1176   index_check(r3, r1); // prefer index in r1
1177 
1178   // Need to check whether array is boolean or byte
1179   // since both types share the bastore bytecode.
1180   __ load_klass(r2, r3);
1181   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1948   __ br(j_not(cc), not_taken);
1949   branch(false, false);
1950   __ bind(not_taken);
1951   __ profile_not_taken_branch(r0);
1952 }
1953 
1954 void TemplateTable::if_nullcmp(Condition cc)
1955 {
1956   transition(atos, vtos);
1957   // assume branch is more often taken than not (loops use backward branches)
1958   Label not_taken;
1959   if (cc == equal)
1960     __ cbnz(r0, not_taken);
1961   else
1962     __ cbz(r0, not_taken);
1963   branch(false, false);
1964   __ bind(not_taken);
1965   __ profile_not_taken_branch(r0);
1966 }
1967 
1968 void TemplateTable::if_acmp(Condition cc)
1969 {
1970   transition(atos, vtos);
1971   // assume branch is more often taken than not (loops use backward branches)
1972   Label not_taken;
1973   __ pop_ptr(r1);






































1974   __ cmpoop(r1, r0);
1975   __ br(j_not(cc), not_taken);

1976   branch(false, false);
1977   __ bind(not_taken);
1978   __ profile_not_taken_branch(r0);









1979 }
1980 

1981 void TemplateTable::ret() {
1982   transition(vtos, vtos);
1983   locals_index(r1);
1984   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1985   __ profile_ret(r1, r2);
1986   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1987   __ lea(rbcp, Address(rbcp, r1));
1988   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1989   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1990 }
1991 
1992 void TemplateTable::wide_ret() {
1993   transition(vtos, vtos);
1994   locals_index_wide(r1);
1995   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1996   __ profile_ret(r1, r2);
1997   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1998   __ lea(rbcp, Address(rbcp, r1));
1999   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2000   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2194   assert(_desc->calls_vm(),
2195          "inconsistent calls_vm information"); // call in remove_activation
2196 
2197   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2198     assert(state == vtos, "only valid state");
2199 
2200     __ ldr(c_rarg1, aaddress(0));
2201     __ load_klass(r3, c_rarg1);
2202     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2203     Label skip_register_finalizer;
2204     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2205 
2206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2207 
2208     __ bind(skip_register_finalizer);
2209   }
2210 
2211   // Issue a StoreStore barrier after all stores but before return
2212   // from any constructor for any class with a final field.  We don't
2213   // know if this is a finalizer, so we always do so.
2214   if (_desc->bytecode() == Bytecodes::_return)

2215     __ membar(MacroAssembler::StoreStore);
2216 
2217   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2218     Label no_safepoint;
2219     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2220     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2221     __ push(state);
2222     __ push_cont_fastpath(rthread);
2223     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2224     __ pop_cont_fastpath(rthread);
2225     __ pop(state);
2226     __ bind(no_safepoint);
2227   }
2228 
2229   // Narrow result if state is itos but result type is smaller.
2230   // Need to narrow in the return bytecode rather than in generate_return_entry
2231   // since compiled code callers expect the result to already be narrowed.
2232   if (state == itos) {
2233     __ narrow(r0);
2234   }

2585     }
2586     // c_rarg1: object pointer or null
2587     // c_rarg2: cache entry pointer
2588     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2589                                        InterpreterRuntime::post_field_access),
2590                c_rarg1, c_rarg2);
2591     __ load_field_entry(cache, index);
2592     __ bind(L1);
2593   }
2594 }
2595 
2596 void TemplateTable::pop_and_check_object(Register r)
2597 {
2598   __ pop_ptr(r);
2599   __ null_check(r);  // for field access must check obj.
2600   __ verify_oop(r);
2601 }
2602 
2603 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2604 {
2605   const Register cache     = r4;
2606   const Register obj       = r4;



2607   const Register index     = r3;
2608   const Register tos_state = r3;
2609   const Register off       = r19;
2610   const Register flags     = r6;
2611   const Register bc        = r4; // uses same reg as obj, so don't mix them
2612 
2613   resolve_cache_and_index_for_field(byte_no, cache, index);
2614   jvmti_post_field_access(cache, index, is_static, false);





2615   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2616 
2617   if (!is_static) {
2618     // obj is on the stack
2619     pop_and_check_object(obj);
2620   }
2621 
2622   // 8179954: We need to make sure that the code generated for
2623   // volatile accesses forms a sequentially-consistent set of
2624   // operations when combined with STLR and LDAR.  Without a leading
2625   // membar it's possible for a simple Dekker test to fail if loads
2626   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2627   // the stores in one method and we interpret the loads in another.
2628   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2629     Label notVolatile;
2630     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2631     __ membar(MacroAssembler::AnyAny);
2632     __ bind(notVolatile);
2633   }
2634 

2653   __ b(Done);
2654 
2655   __ bind(notByte);
2656   __ cmp(tos_state, (u1)ztos);
2657   __ br(Assembler::NE, notBool);
2658 
2659   // ztos (same code as btos)
2660   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2661   __ push(ztos);
2662   // Rewrite bytecode to be faster
2663   if (rc == may_rewrite) {
2664     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2665     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2666   }
2667   __ b(Done);
2668 
2669   __ bind(notBool);
2670   __ cmp(tos_state, (u1)atos);
2671   __ br(Assembler::NE, notObj);
2672   // atos
2673   do_oop_load(_masm, field, r0, IN_HEAP);
2674   __ push(atos);
2675   if (rc == may_rewrite) {
2676     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);





























2677   }
2678   __ b(Done);
2679 
2680   __ bind(notObj);
2681   __ cmp(tos_state, (u1)itos);
2682   __ br(Assembler::NE, notInt);
2683   // itos
2684   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2685   __ push(itos);
2686   // Rewrite bytecode to be faster
2687   if (rc == may_rewrite) {
2688     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2689   }
2690   __ b(Done);
2691 
2692   __ bind(notInt);
2693   __ cmp(tos_state, (u1)ctos);
2694   __ br(Assembler::NE, notChar);
2695   // ctos
2696   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2697   __ push(ctos);
2698   // Rewrite bytecode to be faster

2819     // c_rarg1: object pointer set up above (null if static)
2820     // c_rarg2: cache entry pointer
2821     // c_rarg3: jvalue object on the stack
2822     __ call_VM(noreg,
2823                CAST_FROM_FN_PTR(address,
2824                                 InterpreterRuntime::post_field_modification),
2825                c_rarg1, c_rarg2, c_rarg3);
2826     __ load_field_entry(cache, index);
2827     __ bind(L1);
2828   }
2829 }
2830 
2831 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2832   transition(vtos, vtos);
2833 
2834   const Register cache     = r2;
2835   const Register index     = r3;
2836   const Register tos_state = r3;
2837   const Register obj       = r2;
2838   const Register off       = r19;
2839   const Register flags     = r0;
2840   const Register bc        = r4;

2841 
2842   resolve_cache_and_index_for_field(byte_no, cache, index);
2843   jvmti_post_field_mod(cache, index, is_static);
2844   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2845 
2846   Label Done;
2847   __ mov(r5, flags);
2848 
2849   {
2850     Label notVolatile;
2851     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2852     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2853     __ bind(notVolatile);
2854   }
2855 
2856   // field address
2857   const Address field(obj, off);
2858 
2859   Label notByte, notBool, notInt, notShort, notChar,
2860         notLong, notFloat, notObj, notDouble;
2861 
2862   assert(btos == 0, "change code, btos != 0");
2863   __ cbnz(tos_state, notByte);
2864 
2865   // Don't rewrite putstatic, only putfield
2866   if (is_static) rc = may_not_rewrite;
2867 
2868   // btos
2869   {
2870     __ pop(btos);
2871     if (!is_static) pop_and_check_object(obj);

2880   __ cmp(tos_state, (u1)ztos);
2881   __ br(Assembler::NE, notBool);
2882 
2883   // ztos
2884   {
2885     __ pop(ztos);
2886     if (!is_static) pop_and_check_object(obj);
2887     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2888     if (rc == may_rewrite) {
2889       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2890     }
2891     __ b(Done);
2892   }
2893 
2894   __ bind(notBool);
2895   __ cmp(tos_state, (u1)atos);
2896   __ br(Assembler::NE, notObj);
2897 
2898   // atos
2899   {
2900     __ pop(atos);
2901     if (!is_static) pop_and_check_object(obj);
2902     // Store into the field
2903     // Clobbers: r10, r11, r3
2904     do_oop_store(_masm, field, r0, IN_HEAP);
2905     if (rc == may_rewrite) {
2906       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2907     }
2908     __ b(Done);








































2909   }
2910 
2911   __ bind(notObj);
2912   __ cmp(tos_state, (u1)itos);
2913   __ br(Assembler::NE, notInt);
2914 
2915   // itos
2916   {
2917     __ pop(itos);
2918     if (!is_static) pop_and_check_object(obj);
2919     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2920     if (rc == may_rewrite) {
2921       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2922     }
2923     __ b(Done);
2924   }
2925 
2926   __ bind(notInt);
2927   __ cmp(tos_state, (u1)ctos);
2928   __ br(Assembler::NE, notChar);

2993   {
2994     __ pop(dtos);
2995     if (!is_static) pop_and_check_object(obj);
2996     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2997     if (rc == may_rewrite) {
2998       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2999     }
3000   }
3001 
3002 #ifdef ASSERT
3003   __ b(Done);
3004 
3005   __ bind(notDouble);
3006   __ stop("Bad state");
3007 #endif
3008 
3009   __ bind(Done);
3010 
3011   {
3012     Label notVolatile;
3013     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3014     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3015     __ bind(notVolatile);
3016   }
3017 }
3018 
3019 void TemplateTable::putfield(int byte_no)
3020 {
3021   putfield_or_static(byte_no, false);
3022 }
3023 
3024 void TemplateTable::nofast_putfield(int byte_no) {
3025   putfield_or_static(byte_no, false, may_not_rewrite);
3026 }
3027 
3028 void TemplateTable::putstatic(int byte_no) {
3029   putfield_or_static(byte_no, true);
3030 }
3031 
3032 void TemplateTable::jvmti_post_fast_field_mod() {
3033   if (JvmtiExport::can_post_field_modification()) {
3034     // Check to see if a field modification watch has been set before
3035     // we take the time to call into the VM.
3036     Label L2;
3037     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3038     __ ldrw(c_rarg3, Address(rscratch1));
3039     __ cbzw(c_rarg3, L2);
3040     __ pop_ptr(r19);                  // copy the object pointer from tos
3041     __ verify_oop(r19);
3042     __ push_ptr(r19);                 // put the object pointer back on tos
3043     // Save tos values before call_VM() clobbers them. Since we have
3044     // to do it for every data type, we use the saved values as the
3045     // jvalue object.
3046     switch (bytecode()) {          // load values into the jvalue object

3047     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3048     case Bytecodes::_fast_bputfield: // fall through
3049     case Bytecodes::_fast_zputfield: // fall through
3050     case Bytecodes::_fast_sputfield: // fall through
3051     case Bytecodes::_fast_cputfield: // fall through
3052     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3053     case Bytecodes::_fast_dputfield: __ push_d(); break;
3054     case Bytecodes::_fast_fputfield: __ push_f(); break;
3055     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3056 
3057     default:
3058       ShouldNotReachHere();
3059     }
3060     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3061     // access constant pool cache entry
3062     __ load_field_entry(c_rarg2, r0);
3063     __ verify_oop(r19);
3064     // r19: object pointer copied above
3065     // c_rarg2: cache entry pointer
3066     // c_rarg3: jvalue object on the stack
3067     __ call_VM(noreg,
3068                CAST_FROM_FN_PTR(address,
3069                                 InterpreterRuntime::post_field_modification),
3070                r19, c_rarg2, c_rarg3);
3071 
3072     switch (bytecode()) {             // restore tos values

3073     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3074     case Bytecodes::_fast_bputfield: // fall through
3075     case Bytecodes::_fast_zputfield: // fall through
3076     case Bytecodes::_fast_sputfield: // fall through
3077     case Bytecodes::_fast_cputfield: // fall through
3078     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3079     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3080     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3081     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3082     default: break;
3083     }
3084     __ bind(L2);
3085   }
3086 }
3087 
3088 void TemplateTable::fast_storefield(TosState state)
3089 {
3090   transition(state, vtos);
3091 
3092   ByteSize base = ConstantPoolCache::base_offset();

3100   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3101   __ verify_field_offset(r1);
3102 
3103   {
3104     Label notVolatile;
3105     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3106     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3107     __ bind(notVolatile);
3108   }
3109 
3110   Label notVolatile;
3111 
3112   // Get object from stack
3113   pop_and_check_object(r2);
3114 
3115   // field address
3116   const Address field(r2, r1);
3117 
3118   // access field
3119   switch (bytecode()) {
















3120   case Bytecodes::_fast_aputfield:
3121     // Clobbers: r10, r11, r3
3122     do_oop_store(_masm, field, r0, IN_HEAP);
3123     break;
3124   case Bytecodes::_fast_lputfield:
3125     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3126     break;
3127   case Bytecodes::_fast_iputfield:
3128     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3129     break;
3130   case Bytecodes::_fast_zputfield:
3131     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3132     break;
3133   case Bytecodes::_fast_bputfield:
3134     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3135     break;
3136   case Bytecodes::_fast_sputfield:
3137     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3138     break;
3139   case Bytecodes::_fast_cputfield:

3195   // r0: object
3196   __ verify_oop(r0);
3197   __ null_check(r0);
3198   const Address field(r0, r1);
3199 
3200   // 8179954: We need to make sure that the code generated for
3201   // volatile accesses forms a sequentially-consistent set of
3202   // operations when combined with STLR and LDAR.  Without a leading
3203   // membar it's possible for a simple Dekker test to fail if loads
3204   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3205   // the stores in one method and we interpret the loads in another.
3206   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3207     Label notVolatile;
3208     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3209     __ membar(MacroAssembler::AnyAny);
3210     __ bind(notVolatile);
3211   }
3212 
3213   // access field
3214   switch (bytecode()) {









3215   case Bytecodes::_fast_agetfield:
3216     do_oop_load(_masm, field, r0, IN_HEAP);
3217     __ verify_oop(r0);
3218     break;
3219   case Bytecodes::_fast_lgetfield:
3220     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3221     break;
3222   case Bytecodes::_fast_igetfield:
3223     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3224     break;
3225   case Bytecodes::_fast_bgetfield:
3226     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3227     break;
3228   case Bytecodes::_fast_sgetfield:
3229     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3230     break;
3231   case Bytecodes::_fast_cgetfield:
3232     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3233     break;
3234   case Bytecodes::_fast_fgetfield:

3615   Label initialize_header;
3616 
3617   __ get_cpool_and_tags(r4, r0);
3618   // Make sure the class we're about to instantiate has been resolved.
3619   // This is done before loading InstanceKlass to be consistent with the order
3620   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3621   const int tags_offset = Array<u1>::base_offset_in_bytes();
3622   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3623   __ lea(rscratch1, Address(rscratch1, tags_offset));
3624   __ ldarb(rscratch1, rscratch1);
3625   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3626   __ br(Assembler::NE, slow_case);
3627 
3628   // get InstanceKlass
3629   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3630 
3631   // make sure klass is initialized
3632   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3633   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3634 
3635   // get instance_size in InstanceKlass (scaled to a count of bytes)
3636   __ ldrw(r3,
3637           Address(r4,
3638                   Klass::layout_helper_offset()));
3639   // test to see if it is malformed in some way
3640   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3641 
3642   // Allocate the instance:
3643   //  If TLAB is enabled:
3644   //    Try to allocate in the TLAB.
3645   //    If fails, go to the slow path.
3646   //    Initialize the allocation.
3647   //    Exit.
3648   //
3649   //  Go to slow path.
3650 
3651   if (UseTLAB) {
3652     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3653 
3654     if (ZeroTLAB) {
3655       // the fields have been already cleared
3656       __ b(initialize_header);
3657     }
3658 
3659     // The object is initialized before the header.  If the object size is
3660     // zero, go directly to the header initialization.
3661     int header_size = oopDesc::header_size() * HeapWordSize;
3662     assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3663     __ sub(r3, r3, header_size);
3664     __ cbz(r3, initialize_header);
3665 
3666     // Initialize object fields
3667     {
3668       __ add(r2, r0, header_size);
3669       Label loop;
3670       __ bind(loop);
3671       __ str(zr, Address(__ post(r2, BytesPerLong)));
3672       __ sub(r3, r3, BytesPerLong);
3673       __ cbnz(r3, loop);
3674     }
3675 
3676     // initialize object header only.
3677     __ bind(initialize_header);
3678     if (UseCompactObjectHeaders) {
3679       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3680       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3681     } else {
3682       __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3683       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3684       __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3685       __ store_klass(r0, r4);      // store klass last
3686     }
3687 
3688     if (DTraceAllocProbes) {
3689       // Trigger dtrace event for fastpath
3690       __ push(atos); // save the return value
3691       __ call_VM_leaf(
3692            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3693       __ pop(atos); // restore the return value
3694 
3695     }
3696     __ b(done);
3697   }
3698 
3699   // slow case
3700   __ bind(slow_case);
3701   __ get_constant_pool(c_rarg1);
3702   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3703   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3704   __ verify_oop(r0);
3705 
3706   // continue
3707   __ bind(done);
3708   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3709   __ membar(Assembler::StoreStore);
3710 }
3711 
3712 void TemplateTable::newarray() {
3713   transition(itos, atos);
3714   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3715   __ mov(c_rarg2, r0);
3716   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3717           c_rarg1, c_rarg2);

3761   __ bind(quicked);
3762   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3763   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3764 
3765   __ bind(resolved);
3766   __ load_klass(r19, r3);
3767 
3768   // Generate subtype check.  Blows r2, r5.  Object in r3.
3769   // Superklass in r0.  Subklass in r19.
3770   __ gen_subtype_check(r19, ok_is_subtype);
3771 
3772   // Come here on failure
3773   __ push(r3);
3774   // object is at TOS
3775   __ b(Interpreter::_throw_ClassCastException_entry);
3776 
3777   // Come here on success
3778   __ bind(ok_is_subtype);
3779   __ mov(r0, r3); // Restore object in r3
3780 



3781   // Collect counts on whether this test sees nulls a lot or not.
3782   if (ProfileInterpreter) {
3783     __ b(done);
3784     __ bind(is_null);
3785     __ profile_null_seen(r2);
3786   } else {
3787     __ bind(is_null);   // same as 'done'
3788   }

3789   __ bind(done);
3790 }
3791 
3792 void TemplateTable::instanceof() {
3793   transition(atos, itos);
3794   Label done, is_null, ok_is_subtype, quicked, resolved;
3795   __ cbz(r0, is_null);
3796 
3797   // Get cpool & tags index
3798   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3799   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3800   // See if bytecode has already been quicked
3801   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3802   __ lea(r1, Address(rscratch1, r19));
3803   __ ldarb(r1, r1);
3804   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3805   __ br(Assembler::EQ, quicked);
3806 
3807   __ push(atos); // save receiver for result, and for GC
3808   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3886 //       in the assembly code structure as well
3887 //
3888 // Stack layout:
3889 //
3890 // [expressions  ] <--- esp               = expression stack top
3891 // ..
3892 // [expressions  ]
3893 // [monitor entry] <--- monitor block top = expression stack bot
3894 // ..
3895 // [monitor entry]
3896 // [frame data   ] <--- monitor block bot
3897 // ...
3898 // [saved rfp    ] <--- rfp
3899 void TemplateTable::monitorenter()
3900 {
3901   transition(atos, vtos);
3902 
3903   // check for null object
3904   __ null_check(r0);
3905 




3906   const Address monitor_block_top(
3907         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3908   const Address monitor_block_bot(
3909         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3910   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3911 
3912   Label allocated;
3913 
3914   // initialize entry pointer
3915   __ mov(c_rarg1, zr); // points to free slot or null
3916 
3917   // find a free slot in the monitor block (result in c_rarg1)
3918   {
3919     Label entry, loop, exit;
3920     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3921     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3922     // c_rarg3 points to current entry, starting with top-most entry
3923 
3924     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3925 

3987   // c_rarg1: points to monitor entry
3988   __ bind(allocated);
3989 
3990   // Increment bcp to point to the next bytecode, so exception
3991   // handling for async. exceptions work correctly.
3992   // The object has already been popped from the stack, so the
3993   // expression stack looks correct.
3994   __ increment(rbcp);
3995 
3996   // store object
3997   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3998   __ lock_object(c_rarg1);
3999 
4000   // check to make sure this monitor doesn't cause stack overflow after locking
4001   __ save_bcp();  // in case of exception
4002   __ generate_stack_overflow_check(0);
4003 
4004   // The bcp has already been incremented. Just need to dispatch to
4005   // next instruction.
4006   __ dispatch_next(vtos);





4007 }
4008 
4009 
4010 void TemplateTable::monitorexit()
4011 {
4012   transition(atos, vtos);
4013 
4014   // check for null object
4015   __ null_check(r0);
4016 












4017   const Address monitor_block_top(
4018         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4019   const Address monitor_block_bot(
4020         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4021   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4022 
4023   Label found;
4024 
4025   // find matching slot
4026   {
4027     Label entry, loop;
4028     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4029     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4030     // c_rarg1 points to current entry, starting with top-most entry
4031 
4032     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4033                                         // of monitor block
4034     __ b(entry);
4035 
4036     __ bind(loop);

 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   assert_different_registers(bc_reg, temp_reg);
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {
 176   case Bytecodes::_fast_vputfield:
 177   case Bytecodes::_fast_aputfield:
 178   case Bytecodes::_fast_bputfield:
 179   case Bytecodes::_fast_zputfield:
 180   case Bytecodes::_fast_cputfield:
 181   case Bytecodes::_fast_dputfield:
 182   case Bytecodes::_fast_fputfield:
 183   case Bytecodes::_fast_iputfield:
 184   case Bytecodes::_fast_lputfield:
 185   case Bytecodes::_fast_sputfield:
 186     {
 187       // We skip bytecode quickening for putfield instructions when
 188       // the put_code written to the constant pool cache is zero.
 189       // This is required so that every execution of this instruction
 190       // calls out to InterpreterRuntime::resolve_get_put to do
 191       // additional, required work.
 192       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 193       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 194       __ load_field_entry(temp_reg, bc_reg);
 195       if (byte_no == f1_byte) {
 196         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 741   locals_index_wide(r1);
 742   __ ldr(r0, aaddress(r1));
 743 }
 744 
 745 void TemplateTable::index_check(Register array, Register index)
 746 {
 747   // destroys r1, rscratch1
 748   // sign extend index for use by indexed load
 749   // __ movl2ptr(index, index);
 750   // check index
 751   Register length = rscratch1;
 752   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 753   __ cmpw(index, length);
 754   if (index != r1) {
 755     // ??? convention: move aberrant index into r1 for exception message
 756     assert(r1 != array, "different registers");
 757     __ mov(r1, index);
 758   }
 759   Label ok;
 760   __ br(Assembler::LO, ok);
 761   // ??? convention: move array into r3 for exception message
 762    __ mov(r3, array);
 763    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 764    __ br(rscratch1);
 765   __ bind(ok);
 766 }
 767 
 768 void TemplateTable::iaload()
 769 {
 770   transition(itos, itos);
 771   __ mov(r1, r0);
 772   __ pop_ptr(r0);
 773   // r0: array
 774   // r1: index
 775   index_check(r0, r1); // leaves index in r1, kills rscratch1
 776   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 777   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 778 }
 779 
 780 void TemplateTable::laload()
 781 {
 782   transition(itos, ltos);
 783   __ mov(r1, r0);
 784   __ pop_ptr(r0);

 804 void TemplateTable::daload()
 805 {
 806   transition(itos, dtos);
 807   __ mov(r1, r0);
 808   __ pop_ptr(r0);
 809   // r0: array
 810   // r1: index
 811   index_check(r0, r1); // leaves index in r1, kills rscratch1
 812   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 813   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 814 }
 815 
 816 void TemplateTable::aaload()
 817 {
 818   transition(itos, atos);
 819   __ mov(r1, r0);
 820   __ pop_ptr(r0);
 821   // r0: array
 822   // r1: index
 823   index_check(r0, r1); // leaves index in r1, kills rscratch1
 824   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 825   if (UseArrayFlattening) {
 826     Label is_flat_array, done;
 827 
 828     __ test_flat_array_oop(r0, rscratch1 /*temp*/, is_flat_array);
 829     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 830     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 831 
 832     __ b(done);
 833     __ bind(is_flat_array);
 834     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 835     // Ensure the stores to copy the inline field contents are visible
 836     // before any subsequent store that publishes this reference.
 837     __ membar(Assembler::StoreStore);
 838     __ bind(done);
 839   } else {
 840     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 841     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 842   }
 843   __ profile_element_type(r2, r0, r4);
 844 }
 845 
 846 void TemplateTable::baload()
 847 {
 848   transition(itos, itos);
 849   __ mov(r1, r0);
 850   __ pop_ptr(r0);
 851   // r0: array
 852   // r1: index
 853   index_check(r0, r1); // leaves index in r1, kills rscratch1
 854   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 855   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 856 }
 857 
 858 void TemplateTable::caload()
 859 {
 860   transition(itos, itos);
 861   __ mov(r1, r0);
 862   __ pop_ptr(r0);
 863   // r0: array

1110   // r1:  index
1111   // r3:  array
1112   index_check(r3, r1); // prefer index in r1
1113   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1114   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1115 }
1116 
1117 void TemplateTable::dastore() {
1118   transition(dtos, vtos);
1119   __ pop_i(r1);
1120   __ pop_ptr(r3);
1121   // v0: value
1122   // r1:  index
1123   // r3:  array
1124   index_check(r3, r1); // prefer index in r1
1125   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1126   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1127 }
1128 
1129 void TemplateTable::aastore() {
1130   Label is_null, is_flat_array, ok_is_subtype, done;
1131   transition(vtos, vtos);
1132   // stack: ..., array, index, value
1133   __ ldr(r0, at_tos());    // value
1134   __ ldr(r2, at_tos_p1()); // index
1135   __ ldr(r3, at_tos_p2()); // array
1136 


1137   index_check(r3, r2);     // kills r1
1138 
1139   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1140   __ profile_multiple_element_types(r4, r0, r5, r6);
1141 
1142   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1143   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1144   // Be careful not to clobber r4 below
1145 
1146   // do array store check - check for null value first
1147   __ cbz(r0, is_null);
1148 
1149   // Move array class to r5
1150   __ load_klass(r5, r3);
1151 
1152   if (UseArrayFlattening) {
1153     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1154     __ test_flat_array_layout(r6, is_flat_array);
1155   }
1156 
1157   // Move subklass into r1
1158   __ load_klass(r1, r0);
1159 
1160   // Move array element superklass into r0
1161   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1162   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1163 
1164   // Generate subtype check.  Blows r2, r5
1165   // Superklass in r0.  Subklass in r1.
1166 
1167   // is "r1 <: r0" ? (value subclass <: array element superclass)
1168   __ gen_subtype_check(r1, ok_is_subtype, false);
1169 
1170   // Come here on failure
1171   // object is at TOS
1172   __ b(Interpreter::_throw_ArrayStoreException_entry);
1173 
1174   // Come here on success
1175   __ bind(ok_is_subtype);
1176 
1177   // Get the value we will store
1178   __ ldr(r0, at_tos());
1179   // Now store using the appropriate barrier
1180   // Clobbers: r10, r11, r3
1181   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1182   __ b(done);
1183 
1184   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1185   __ bind(is_null);
1186   if (EnableValhalla) {
1187     Label is_null_into_value_array_npe, store_null;
1188 
1189     if (UseArrayFlattening) {
1190       __ test_flat_array_oop(r3, rscratch1, is_flat_array);
1191     }
1192 
1193     // No way to store null in a null-free array
1194     __ test_null_free_array_oop(r3, rscratch1, is_null_into_value_array_npe);
1195     __ b(store_null);
1196 
1197     __ bind(is_null_into_value_array_npe);
1198     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1199 
1200     __ bind(store_null);
1201   }
1202 
1203   // Store a null
1204   // Clobbers: r10, r11, r3
1205   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1206   __ b(done);
1207 
1208   if (UseArrayFlattening) {
1209      Label is_type_ok;
1210     __ bind(is_flat_array); // Store non-null value to flat
1211 
1212     __ ldr(r0, at_tos());    // value
1213     __ ldr(r3, at_tos_p1()); // index
1214     __ ldr(r2, at_tos_p2()); // array
1215     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1216   }
1217 
1218   // Pop stack arguments
1219   __ bind(done);
1220   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1221 }
1222 
1223 void TemplateTable::bastore()
1224 {
1225   transition(itos, vtos);
1226   __ pop_i(r1);
1227   __ pop_ptr(r3);
1228   // r0: value
1229   // r1: index
1230   // r3: array
1231   index_check(r3, r1); // prefer index in r1
1232 
1233   // Need to check whether array is boolean or byte
1234   // since both types share the bastore bytecode.
1235   __ load_klass(r2, r3);
1236   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

2003   __ br(j_not(cc), not_taken);
2004   branch(false, false);
2005   __ bind(not_taken);
2006   __ profile_not_taken_branch(r0);
2007 }
2008 
2009 void TemplateTable::if_nullcmp(Condition cc)
2010 {
2011   transition(atos, vtos);
2012   // assume branch is more often taken than not (loops use backward branches)
2013   Label not_taken;
2014   if (cc == equal)
2015     __ cbnz(r0, not_taken);
2016   else
2017     __ cbz(r0, not_taken);
2018   branch(false, false);
2019   __ bind(not_taken);
2020   __ profile_not_taken_branch(r0);
2021 }
2022 
2023 void TemplateTable::if_acmp(Condition cc) {

2024   transition(atos, vtos);
2025   // assume branch is more often taken than not (loops use backward branches)
2026   Label taken, not_taken;
2027   __ pop_ptr(r1);
2028 
2029   __ profile_acmp(r2, r1, r0, r4);
2030 
2031   Register is_inline_type_mask = rscratch1;
2032   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2033 
2034   if (EnableValhalla) {
2035     __ cmp(r1, r0);
2036     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2037 
2038     // might be substitutable, test if either r0 or r1 is null
2039     __ andr(r2, r0, r1);
2040     __ cbz(r2, (cc == equal) ? not_taken : taken);
2041 
2042     // and both are values ?
2043     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2044     __ andr(r2, r2, is_inline_type_mask);
2045     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2046     __ andr(r4, r4, is_inline_type_mask);
2047     __ andr(r2, r2, r4);
2048     __ cmp(r2,  is_inline_type_mask);
2049     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2050 
2051     // same value klass ?
2052     __ load_metadata(r2, r1);
2053     __ load_metadata(r4, r0);
2054     __ cmp(r2, r4);
2055     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2056 
2057     // Know both are the same type, let's test for substitutability...
2058     if (cc == equal) {
2059       invoke_is_substitutable(r0, r1, taken, not_taken);
2060     } else {
2061       invoke_is_substitutable(r0, r1, not_taken, taken);
2062     }
2063     __ stop("Not reachable");
2064   }
2065 
2066   __ cmpoop(r1, r0);
2067   __ br(j_not(cc), not_taken);
2068   __ bind(taken);
2069   branch(false, false);
2070   __ bind(not_taken);
2071   __ profile_not_taken_branch(r0, true);
2072 }
2073 
2074 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2075                                             Label& is_subst, Label& not_subst) {
2076 
2077   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2078   // Restored... r0 answer, jmp to outcome...
2079   __ cbz(r0, not_subst);
2080   __ b(is_subst);
2081 }
2082 
2083 
2084 void TemplateTable::ret() {
2085   transition(vtos, vtos);
2086   locals_index(r1);
2087   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2088   __ profile_ret(r1, r2);
2089   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2090   __ lea(rbcp, Address(rbcp, r1));
2091   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2092   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2093 }
2094 
2095 void TemplateTable::wide_ret() {
2096   transition(vtos, vtos);
2097   locals_index_wide(r1);
2098   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2099   __ profile_ret(r1, r2);
2100   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2101   __ lea(rbcp, Address(rbcp, r1));
2102   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2103   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2297   assert(_desc->calls_vm(),
2298          "inconsistent calls_vm information"); // call in remove_activation
2299 
2300   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2301     assert(state == vtos, "only valid state");
2302 
2303     __ ldr(c_rarg1, aaddress(0));
2304     __ load_klass(r3, c_rarg1);
2305     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2306     Label skip_register_finalizer;
2307     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2308 
2309     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2310 
2311     __ bind(skip_register_finalizer);
2312   }
2313 
2314   // Issue a StoreStore barrier after all stores but before return
2315   // from any constructor for any class with a final field.  We don't
2316   // know if this is a finalizer, so we always do so.
2317   if (_desc->bytecode() == Bytecodes::_return
2318       || _desc->bytecode() == Bytecodes::_return_register_finalizer)
2319     __ membar(MacroAssembler::StoreStore);
2320 
2321   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2322     Label no_safepoint;
2323     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2324     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2325     __ push(state);
2326     __ push_cont_fastpath(rthread);
2327     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2328     __ pop_cont_fastpath(rthread);
2329     __ pop(state);
2330     __ bind(no_safepoint);
2331   }
2332 
2333   // Narrow result if state is itos but result type is smaller.
2334   // Need to narrow in the return bytecode rather than in generate_return_entry
2335   // since compiled code callers expect the result to already be narrowed.
2336   if (state == itos) {
2337     __ narrow(r0);
2338   }

2689     }
2690     // c_rarg1: object pointer or null
2691     // c_rarg2: cache entry pointer
2692     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2693                                        InterpreterRuntime::post_field_access),
2694                c_rarg1, c_rarg2);
2695     __ load_field_entry(cache, index);
2696     __ bind(L1);
2697   }
2698 }
2699 
2700 void TemplateTable::pop_and_check_object(Register r)
2701 {
2702   __ pop_ptr(r);
2703   __ null_check(r);  // for field access must check obj.
2704   __ verify_oop(r);
2705 }
2706 
2707 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2708 {
2709   const Register cache     = r2;
2710   const Register obj       = r4;
2711   const Register klass     = r5;
2712   const Register inline_klass = r7;
2713   const Register field_index = r23;
2714   const Register index     = r3;
2715   const Register tos_state = r3;
2716   const Register off       = r19;
2717   const Register flags     = r6;
2718   const Register bc        = r4; // uses same reg as obj, so don't mix them
2719 
2720   resolve_cache_and_index_for_field(byte_no, cache, index);
2721   jvmti_post_field_access(cache, index, is_static, false);
2722 
2723   // Valhalla extras
2724   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2725   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2726 
2727   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2728 
2729   if (!is_static) {
2730     // obj is on the stack
2731     pop_and_check_object(obj);
2732   }
2733 
2734   // 8179954: We need to make sure that the code generated for
2735   // volatile accesses forms a sequentially-consistent set of
2736   // operations when combined with STLR and LDAR.  Without a leading
2737   // membar it's possible for a simple Dekker test to fail if loads
2738   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2739   // the stores in one method and we interpret the loads in another.
2740   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2741     Label notVolatile;
2742     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2743     __ membar(MacroAssembler::AnyAny);
2744     __ bind(notVolatile);
2745   }
2746 

2765   __ b(Done);
2766 
2767   __ bind(notByte);
2768   __ cmp(tos_state, (u1)ztos);
2769   __ br(Assembler::NE, notBool);
2770 
2771   // ztos (same code as btos)
2772   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2773   __ push(ztos);
2774   // Rewrite bytecode to be faster
2775   if (rc == may_rewrite) {
2776     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2777     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2778   }
2779   __ b(Done);
2780 
2781   __ bind(notBool);
2782   __ cmp(tos_state, (u1)atos);
2783   __ br(Assembler::NE, notObj);
2784   // atos
2785   if (!EnableValhalla) {
2786     do_oop_load(_masm, field, r0, IN_HEAP);
2787     __ push(atos);
2788     if (rc == may_rewrite) {
2789       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2790     }
2791     __ b(Done);
2792   } else { // Valhalla
2793     if (is_static) {
2794       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2795       __ push(atos);
2796       __ b(Done);
2797     } else {
2798       Label is_flat, rewrite_inline;
2799       __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
2800       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2801       __ push(atos);
2802       if (rc == may_rewrite) {
2803         patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2804       }
2805       __ b(Done);
2806       __ bind(is_flat);
2807         // field is flat (null-free or nullable with a null-marker)
2808         __ mov(r0, obj);
2809         __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2810         __ verify_oop(r0);
2811         __ push(atos);
2812       __ bind(rewrite_inline);
2813       if (rc == may_rewrite) {
2814         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2815       }
2816       __ b(Done);
2817     }
2818   }

2819 
2820   __ bind(notObj);
2821   __ cmp(tos_state, (u1)itos);
2822   __ br(Assembler::NE, notInt);
2823   // itos
2824   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2825   __ push(itos);
2826   // Rewrite bytecode to be faster
2827   if (rc == may_rewrite) {
2828     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2829   }
2830   __ b(Done);
2831 
2832   __ bind(notInt);
2833   __ cmp(tos_state, (u1)ctos);
2834   __ br(Assembler::NE, notChar);
2835   // ctos
2836   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2837   __ push(ctos);
2838   // Rewrite bytecode to be faster

2959     // c_rarg1: object pointer set up above (null if static)
2960     // c_rarg2: cache entry pointer
2961     // c_rarg3: jvalue object on the stack
2962     __ call_VM(noreg,
2963                CAST_FROM_FN_PTR(address,
2964                                 InterpreterRuntime::post_field_modification),
2965                c_rarg1, c_rarg2, c_rarg3);
2966     __ load_field_entry(cache, index);
2967     __ bind(L1);
2968   }
2969 }
2970 
2971 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2972   transition(vtos, vtos);
2973 
2974   const Register cache     = r2;
2975   const Register index     = r3;
2976   const Register tos_state = r3;
2977   const Register obj       = r2;
2978   const Register off       = r19;
2979   const Register flags     = r6;
2980   const Register bc        = r4;
2981   const Register inline_klass = r5;
2982 
2983   resolve_cache_and_index_for_field(byte_no, cache, index);
2984   jvmti_post_field_mod(cache, index, is_static);
2985   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2986 
2987   Label Done;


2988   {
2989     Label notVolatile;
2990     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2991     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2992     __ bind(notVolatile);
2993   }
2994 
2995   // field address
2996   const Address field(obj, off);
2997 
2998   Label notByte, notBool, notInt, notShort, notChar,
2999         notLong, notFloat, notObj, notDouble;
3000 
3001   assert(btos == 0, "change code, btos != 0");
3002   __ cbnz(tos_state, notByte);
3003 
3004   // Don't rewrite putstatic, only putfield
3005   if (is_static) rc = may_not_rewrite;
3006 
3007   // btos
3008   {
3009     __ pop(btos);
3010     if (!is_static) pop_and_check_object(obj);

3019   __ cmp(tos_state, (u1)ztos);
3020   __ br(Assembler::NE, notBool);
3021 
3022   // ztos
3023   {
3024     __ pop(ztos);
3025     if (!is_static) pop_and_check_object(obj);
3026     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3027     if (rc == may_rewrite) {
3028       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3029     }
3030     __ b(Done);
3031   }
3032 
3033   __ bind(notBool);
3034   __ cmp(tos_state, (u1)atos);
3035   __ br(Assembler::NE, notObj);
3036 
3037   // atos
3038   {
3039      if (!EnableValhalla) {
3040       __ pop(atos);
3041       if (!is_static) pop_and_check_object(obj);
3042       // Store into the field
3043       // Clobbers: r10, r11, r3
3044       do_oop_store(_masm, field, r0, IN_HEAP);
3045       if (rc == may_rewrite) {
3046         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3047       }
3048       __ b(Done);
3049      } else { // Valhalla
3050       __ pop(atos);
3051       if (is_static) {
3052         Label is_nullable;
3053          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_nullable);
3054          __ null_check(r0);  // FIXME JDK-8341120
3055          __ bind(is_nullable);
3056          do_oop_store(_masm, field, r0, IN_HEAP);
3057          __ b(Done);
3058       } else {
3059         Label null_free_reference, is_flat, rewrite_inline;
3060         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3061         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, null_free_reference);
3062         pop_and_check_object(obj);
3063         // Store into the field
3064         // Clobbers: r10, r11, r3
3065         do_oop_store(_masm, field, r0, IN_HEAP);
3066         if (rc == may_rewrite) {
3067           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3068         }
3069         __ b(Done);
3070         // Implementation of the inline type semantic
3071         __ bind(null_free_reference);
3072         __ null_check(r0);  // FIXME JDK-8341120
3073         pop_and_check_object(obj);
3074         // Store into the field
3075         // Clobbers: r10, r11, r3
3076         do_oop_store(_masm, field, r0, IN_HEAP);
3077         __ b(rewrite_inline);
3078         __ bind(is_flat);
3079         pop_and_check_object(r7);
3080         __ write_flat_field(cache, off, r3, r6, r7);
3081         __ bind(rewrite_inline);
3082         if (rc == may_rewrite) {
3083           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3084         }
3085         __ b(Done);
3086       }
3087      }  // Valhalla
3088   }
3089 
3090   __ bind(notObj);
3091   __ cmp(tos_state, (u1)itos);
3092   __ br(Assembler::NE, notInt);
3093 
3094   // itos
3095   {
3096     __ pop(itos);
3097     if (!is_static) pop_and_check_object(obj);
3098     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3099     if (rc == may_rewrite) {
3100       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3101     }
3102     __ b(Done);
3103   }
3104 
3105   __ bind(notInt);
3106   __ cmp(tos_state, (u1)ctos);
3107   __ br(Assembler::NE, notChar);

3172   {
3173     __ pop(dtos);
3174     if (!is_static) pop_and_check_object(obj);
3175     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3176     if (rc == may_rewrite) {
3177       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3178     }
3179   }
3180 
3181 #ifdef ASSERT
3182   __ b(Done);
3183 
3184   __ bind(notDouble);
3185   __ stop("Bad state");
3186 #endif
3187 
3188   __ bind(Done);
3189 
3190   {
3191     Label notVolatile;
3192     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3193     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3194     __ bind(notVolatile);
3195   }
3196 }
3197 
3198 void TemplateTable::putfield(int byte_no)
3199 {
3200   putfield_or_static(byte_no, false);
3201 }
3202 
3203 void TemplateTable::nofast_putfield(int byte_no) {
3204   putfield_or_static(byte_no, false, may_not_rewrite);
3205 }
3206 
3207 void TemplateTable::putstatic(int byte_no) {
3208   putfield_or_static(byte_no, true);
3209 }
3210 
3211 void TemplateTable::jvmti_post_fast_field_mod() {
3212   if (JvmtiExport::can_post_field_modification()) {
3213     // Check to see if a field modification watch has been set before
3214     // we take the time to call into the VM.
3215     Label L2;
3216     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3217     __ ldrw(c_rarg3, Address(rscratch1));
3218     __ cbzw(c_rarg3, L2);
3219     __ pop_ptr(r19);                  // copy the object pointer from tos
3220     __ verify_oop(r19);
3221     __ push_ptr(r19);                 // put the object pointer back on tos
3222     // Save tos values before call_VM() clobbers them. Since we have
3223     // to do it for every data type, we use the saved values as the
3224     // jvalue object.
3225     switch (bytecode()) {          // load values into the jvalue object
3226     case Bytecodes::_fast_vputfield: //fall through
3227     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3228     case Bytecodes::_fast_bputfield: // fall through
3229     case Bytecodes::_fast_zputfield: // fall through
3230     case Bytecodes::_fast_sputfield: // fall through
3231     case Bytecodes::_fast_cputfield: // fall through
3232     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3233     case Bytecodes::_fast_dputfield: __ push_d(); break;
3234     case Bytecodes::_fast_fputfield: __ push_f(); break;
3235     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3236 
3237     default:
3238       ShouldNotReachHere();
3239     }
3240     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3241     // access constant pool cache entry
3242     __ load_field_entry(c_rarg2, r0);
3243     __ verify_oop(r19);
3244     // r19: object pointer copied above
3245     // c_rarg2: cache entry pointer
3246     // c_rarg3: jvalue object on the stack
3247     __ call_VM(noreg,
3248                CAST_FROM_FN_PTR(address,
3249                                 InterpreterRuntime::post_field_modification),
3250                r19, c_rarg2, c_rarg3);
3251 
3252     switch (bytecode()) {             // restore tos values
3253     case Bytecodes::_fast_vputfield: //fall through
3254     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3255     case Bytecodes::_fast_bputfield: // fall through
3256     case Bytecodes::_fast_zputfield: // fall through
3257     case Bytecodes::_fast_sputfield: // fall through
3258     case Bytecodes::_fast_cputfield: // fall through
3259     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3260     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3261     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3262     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3263     default: break;
3264     }
3265     __ bind(L2);
3266   }
3267 }
3268 
3269 void TemplateTable::fast_storefield(TosState state)
3270 {
3271   transition(state, vtos);
3272 
3273   ByteSize base = ConstantPoolCache::base_offset();

3281   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3282   __ verify_field_offset(r1);
3283 
3284   {
3285     Label notVolatile;
3286     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3287     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3288     __ bind(notVolatile);
3289   }
3290 
3291   Label notVolatile;
3292 
3293   // Get object from stack
3294   pop_and_check_object(r2);
3295 
3296   // field address
3297   const Address field(r2, r1);
3298 
3299   // access field
3300   switch (bytecode()) {
3301   case Bytecodes::_fast_vputfield:
3302     {
3303       Label is_flat, has_null_marker, done;
3304       __ test_field_is_flat(r5, noreg /* temp */, is_flat);
3305       __ null_check(r0);
3306       do_oop_store(_masm, field, r0, IN_HEAP);
3307       __ b(done);
3308       __ bind(is_flat);
3309       __ load_field_entry(r4, r5);
3310       // Re-shuffle registers because of VM calls calling convention
3311       __ mov(r19, r1);
3312       __ mov(r7, r2);
3313       __ write_flat_field(r4, r19, r6, r8, r7);
3314       __ bind(done);
3315     }
3316     break;
3317   case Bytecodes::_fast_aputfield:
3318     // Clobbers: r10, r11, r3
3319     do_oop_store(_masm, field, r0, IN_HEAP);
3320     break;
3321   case Bytecodes::_fast_lputfield:
3322     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3323     break;
3324   case Bytecodes::_fast_iputfield:
3325     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3326     break;
3327   case Bytecodes::_fast_zputfield:
3328     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3329     break;
3330   case Bytecodes::_fast_bputfield:
3331     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3332     break;
3333   case Bytecodes::_fast_sputfield:
3334     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3335     break;
3336   case Bytecodes::_fast_cputfield:

3392   // r0: object
3393   __ verify_oop(r0);
3394   __ null_check(r0);
3395   const Address field(r0, r1);
3396 
3397   // 8179954: We need to make sure that the code generated for
3398   // volatile accesses forms a sequentially-consistent set of
3399   // operations when combined with STLR and LDAR.  Without a leading
3400   // membar it's possible for a simple Dekker test to fail if loads
3401   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3402   // the stores in one method and we interpret the loads in another.
3403   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3404     Label notVolatile;
3405     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3406     __ membar(MacroAssembler::AnyAny);
3407     __ bind(notVolatile);
3408   }
3409 
3410   // access field
3411   switch (bytecode()) {
3412   case Bytecodes::_fast_vgetfield:
3413     {
3414       Register index = r4, tmp = r7;
3415       // field is flat
3416       __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3417       __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3418       __ verify_oop(r0);
3419     }
3420     break;
3421   case Bytecodes::_fast_agetfield:
3422     do_oop_load(_masm, field, r0, IN_HEAP);
3423     __ verify_oop(r0);
3424     break;
3425   case Bytecodes::_fast_lgetfield:
3426     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3427     break;
3428   case Bytecodes::_fast_igetfield:
3429     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3430     break;
3431   case Bytecodes::_fast_bgetfield:
3432     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3433     break;
3434   case Bytecodes::_fast_sgetfield:
3435     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3436     break;
3437   case Bytecodes::_fast_cgetfield:
3438     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3439     break;
3440   case Bytecodes::_fast_fgetfield:

3821   Label initialize_header;
3822 
3823   __ get_cpool_and_tags(r4, r0);
3824   // Make sure the class we're about to instantiate has been resolved.
3825   // This is done before loading InstanceKlass to be consistent with the order
3826   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3827   const int tags_offset = Array<u1>::base_offset_in_bytes();
3828   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3829   __ lea(rscratch1, Address(rscratch1, tags_offset));
3830   __ ldarb(rscratch1, rscratch1);
3831   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3832   __ br(Assembler::NE, slow_case);
3833 
3834   // get InstanceKlass
3835   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3836 
3837   // make sure klass is initialized
3838   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3839   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3840 
3841   __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3842   __ b(done);





























































3843 
3844   // slow case
3845   __ bind(slow_case);
3846   __ get_constant_pool(c_rarg1);
3847   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3848   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3849   __ verify_oop(r0);
3850 
3851   // continue
3852   __ bind(done);
3853   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3854   __ membar(Assembler::StoreStore);
3855 }
3856 
3857 void TemplateTable::newarray() {
3858   transition(itos, atos);
3859   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3860   __ mov(c_rarg2, r0);
3861   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3862           c_rarg1, c_rarg2);

3906   __ bind(quicked);
3907   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3908   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3909 
3910   __ bind(resolved);
3911   __ load_klass(r19, r3);
3912 
3913   // Generate subtype check.  Blows r2, r5.  Object in r3.
3914   // Superklass in r0.  Subklass in r19.
3915   __ gen_subtype_check(r19, ok_is_subtype);
3916 
3917   // Come here on failure
3918   __ push(r3);
3919   // object is at TOS
3920   __ b(Interpreter::_throw_ClassCastException_entry);
3921 
3922   // Come here on success
3923   __ bind(ok_is_subtype);
3924   __ mov(r0, r3); // Restore object in r3
3925 
3926   __ b(done);
3927   __ bind(is_null);
3928 
3929   // Collect counts on whether this test sees nulls a lot or not.
3930   if (ProfileInterpreter) {


3931     __ profile_null_seen(r2);


3932   }
3933 
3934   __ bind(done);
3935 }
3936 
3937 void TemplateTable::instanceof() {
3938   transition(atos, itos);
3939   Label done, is_null, ok_is_subtype, quicked, resolved;
3940   __ cbz(r0, is_null);
3941 
3942   // Get cpool & tags index
3943   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3944   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3945   // See if bytecode has already been quicked
3946   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3947   __ lea(r1, Address(rscratch1, r19));
3948   __ ldarb(r1, r1);
3949   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3950   __ br(Assembler::EQ, quicked);
3951 
3952   __ push(atos); // save receiver for result, and for GC
3953   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4031 //       in the assembly code structure as well
4032 //
4033 // Stack layout:
4034 //
4035 // [expressions  ] <--- esp               = expression stack top
4036 // ..
4037 // [expressions  ]
4038 // [monitor entry] <--- monitor block top = expression stack bot
4039 // ..
4040 // [monitor entry]
4041 // [frame data   ] <--- monitor block bot
4042 // ...
4043 // [saved rfp    ] <--- rfp
4044 void TemplateTable::monitorenter()
4045 {
4046   transition(atos, vtos);
4047 
4048   // check for null object
4049   __ null_check(r0);
4050 
4051   Label is_inline_type;
4052   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4053   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4054 
4055   const Address monitor_block_top(
4056         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4057   const Address monitor_block_bot(
4058         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4059   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4060 
4061   Label allocated;
4062 
4063   // initialize entry pointer
4064   __ mov(c_rarg1, zr); // points to free slot or null
4065 
4066   // find a free slot in the monitor block (result in c_rarg1)
4067   {
4068     Label entry, loop, exit;
4069     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4070     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4071     // c_rarg3 points to current entry, starting with top-most entry
4072 
4073     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4074 

4136   // c_rarg1: points to monitor entry
4137   __ bind(allocated);
4138 
4139   // Increment bcp to point to the next bytecode, so exception
4140   // handling for async. exceptions work correctly.
4141   // The object has already been popped from the stack, so the
4142   // expression stack looks correct.
4143   __ increment(rbcp);
4144 
4145   // store object
4146   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4147   __ lock_object(c_rarg1);
4148 
4149   // check to make sure this monitor doesn't cause stack overflow after locking
4150   __ save_bcp();  // in case of exception
4151   __ generate_stack_overflow_check(0);
4152 
4153   // The bcp has already been incremented. Just need to dispatch to
4154   // next instruction.
4155   __ dispatch_next(vtos);
4156 
4157   __ bind(is_inline_type);
4158   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4159                     InterpreterRuntime::throw_identity_exception), r0);
4160   __ should_not_reach_here();
4161 }
4162 
4163 
4164 void TemplateTable::monitorexit()
4165 {
4166   transition(atos, vtos);
4167 
4168   // check for null object
4169   __ null_check(r0);
4170 
4171   const int is_inline_type_mask = markWord::inline_type_pattern;
4172   Label has_identity;
4173   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4174   __ mov(rscratch2, is_inline_type_mask);
4175   __ andr(rscratch1, rscratch1, rscratch2);
4176   __ cmp(rscratch1, rscratch2);
4177   __ br(Assembler::NE, has_identity);
4178   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4179                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4180   __ should_not_reach_here();
4181   __ bind(has_identity);
4182 
4183   const Address monitor_block_top(
4184         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4185   const Address monitor_block_bot(
4186         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4187   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4188 
4189   Label found;
4190 
4191   // find matching slot
4192   {
4193     Label entry, loop;
4194     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4195     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4196     // c_rarg1 points to current entry, starting with top-most entry
4197 
4198     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4199                                         // of monitor block
4200     __ b(entry);
4201 
4202     __ bind(loop);
< prev index next >