< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {

 175   case Bytecodes::_fast_aputfield:
 176   case Bytecodes::_fast_bputfield:
 177   case Bytecodes::_fast_zputfield:
 178   case Bytecodes::_fast_cputfield:
 179   case Bytecodes::_fast_dputfield:
 180   case Bytecodes::_fast_fputfield:
 181   case Bytecodes::_fast_iputfield:
 182   case Bytecodes::_fast_lputfield:
 183   case Bytecodes::_fast_sputfield:
 184     {
 185       // We skip bytecode quickening for putfield instructions when
 186       // the put_code written to the constant pool cache is zero.
 187       // This is required so that every execution of this instruction
 188       // calls out to InterpreterRuntime::resolve_get_put to do
 189       // additional, required work.
 190       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 191       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 192       __ load_field_entry(temp_reg, bc_reg);
 193       if (byte_no == f1_byte) {
 194         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 736   locals_index_wide(r1);
 737   __ ldr(r0, aaddress(r1));
 738 }
 739 
 740 void TemplateTable::index_check(Register array, Register index)
 741 {
 742   // destroys r1, rscratch1
 743   // sign extend index for use by indexed load
 744   // __ movl2ptr(index, index);
 745   // check index
 746   Register length = rscratch1;
 747   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 748   __ cmpw(index, length);
 749   if (index != r1) {
 750     // ??? convention: move aberrant index into r1 for exception message
 751     assert(r1 != array, "different registers");
 752     __ mov(r1, index);
 753   }
 754   Label ok;
 755   __ br(Assembler::LO, ok);
 756     // ??? convention: move array into r3 for exception message
 757   __ mov(r3, array);
 758   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 759   __ br(rscratch1);
 760   __ bind(ok);
 761 }
 762 
 763 void TemplateTable::iaload()
 764 {
 765   transition(itos, itos);
 766   __ mov(r1, r0);
 767   __ pop_ptr(r0);
 768   // r0: array
 769   // r1: index
 770   index_check(r0, r1); // leaves index in r1, kills rscratch1
 771   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 772   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 773 }
 774 
 775 void TemplateTable::laload()
 776 {
 777   transition(itos, ltos);
 778   __ mov(r1, r0);
 779   __ pop_ptr(r0);

 799 void TemplateTable::daload()
 800 {
 801   transition(itos, dtos);
 802   __ mov(r1, r0);
 803   __ pop_ptr(r0);
 804   // r0: array
 805   // r1: index
 806   index_check(r0, r1); // leaves index in r1, kills rscratch1
 807   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 808   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 809 }
 810 
 811 void TemplateTable::aaload()
 812 {
 813   transition(itos, atos);
 814   __ mov(r1, r0);
 815   __ pop_ptr(r0);
 816   // r0: array
 817   // r1: index
 818   index_check(r0, r1); // leaves index in r1, kills rscratch1
 819   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 820   do_oop_load(_masm,
 821               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 822               r0,
 823               IS_ARRAY);















 824 }
 825 
 826 void TemplateTable::baload()
 827 {
 828   transition(itos, itos);
 829   __ mov(r1, r0);
 830   __ pop_ptr(r0);
 831   // r0: array
 832   // r1: index
 833   index_check(r0, r1); // leaves index in r1, kills rscratch1
 834   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 835   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 836 }
 837 
 838 void TemplateTable::caload()
 839 {
 840   transition(itos, itos);
 841   __ mov(r1, r0);
 842   __ pop_ptr(r0);
 843   // r0: array

1090   // r1:  index
1091   // r3:  array
1092   index_check(r3, r1); // prefer index in r1
1093   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1094   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1095 }
1096 
1097 void TemplateTable::dastore() {
1098   transition(dtos, vtos);
1099   __ pop_i(r1);
1100   __ pop_ptr(r3);
1101   // v0: value
1102   // r1:  index
1103   // r3:  array
1104   index_check(r3, r1); // prefer index in r1
1105   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1106   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1107 }
1108 
1109 void TemplateTable::aastore() {
1110   Label is_null, ok_is_subtype, done;
1111   transition(vtos, vtos);
1112   // stack: ..., array, index, value
1113   __ ldr(r0, at_tos());    // value
1114   __ ldr(r2, at_tos_p1()); // index
1115   __ ldr(r3, at_tos_p2()); // array
1116 
1117   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1118 
1119   index_check(r3, r2);     // kills r1




1120   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1121 
1122   // do array store check - check for null value first
1123   __ cbz(r0, is_null);
1124 








1125   // Move subklass into r1
1126   __ load_klass(r1, r0);
1127   // Move superklass into r0
1128   __ load_klass(r0, r3);
1129   __ ldr(r0, Address(r0,
1130                      ObjArrayKlass::element_klass_offset()));
1131   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1132 
1133   // Generate subtype check.  Blows r2, r5
1134   // Superklass in r0.  Subklass in r1.
1135   __ gen_subtype_check(r1, ok_is_subtype);


1136 
1137   // Come here on failure
1138   // object is at TOS
1139   __ b(Interpreter::_throw_ArrayStoreException_entry);
1140 
1141   // Come here on success
1142   __ bind(ok_is_subtype);
1143 
1144   // Get the value we will store
1145   __ ldr(r0, at_tos());
1146   // Now store using the appropriate barrier
1147   // Clobbers: r10, r11, r3
1148   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1149   __ b(done);
1150 
1151   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1152   __ bind(is_null);
1153   __ profile_null_seen(r2);















1154 
1155   // Store a null
1156   // Clobbers: r10, r11, r3
1157   do_oop_store(_masm, element_address, noreg, IS_ARRAY);











1158 
1159   // Pop stack arguments
1160   __ bind(done);
1161   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1162 }
1163 
1164 void TemplateTable::bastore()
1165 {
1166   transition(itos, vtos);
1167   __ pop_i(r1);
1168   __ pop_ptr(r3);
1169   // r0: value
1170   // r1: index
1171   // r3: array
1172   index_check(r3, r1); // prefer index in r1
1173 
1174   // Need to check whether array is boolean or byte
1175   // since both types share the bastore bytecode.
1176   __ load_klass(r2, r3);
1177   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1944   __ br(j_not(cc), not_taken);
1945   branch(false, false);
1946   __ bind(not_taken);
1947   __ profile_not_taken_branch(r0);
1948 }
1949 
1950 void TemplateTable::if_nullcmp(Condition cc)
1951 {
1952   transition(atos, vtos);
1953   // assume branch is more often taken than not (loops use backward branches)
1954   Label not_taken;
1955   if (cc == equal)
1956     __ cbnz(r0, not_taken);
1957   else
1958     __ cbz(r0, not_taken);
1959   branch(false, false);
1960   __ bind(not_taken);
1961   __ profile_not_taken_branch(r0);
1962 }
1963 
1964 void TemplateTable::if_acmp(Condition cc)
1965 {
1966   transition(atos, vtos);
1967   // assume branch is more often taken than not (loops use backward branches)
1968   Label not_taken;
1969   __ pop_ptr(r1);






































1970   __ cmpoop(r1, r0);
1971   __ br(j_not(cc), not_taken);

1972   branch(false, false);
1973   __ bind(not_taken);
1974   __ profile_not_taken_branch(r0);









1975 }
1976 

1977 void TemplateTable::ret() {
1978   transition(vtos, vtos);
1979   locals_index(r1);
1980   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1981   __ profile_ret(r1, r2);
1982   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1983   __ lea(rbcp, Address(rbcp, r1));
1984   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1985   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1986 }
1987 
1988 void TemplateTable::wide_ret() {
1989   transition(vtos, vtos);
1990   locals_index_wide(r1);
1991   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1992   __ profile_ret(r1, r2);
1993   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1994   __ lea(rbcp, Address(rbcp, r1));
1995   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1996   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2190   assert(_desc->calls_vm(),
2191          "inconsistent calls_vm information"); // call in remove_activation
2192 
2193   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2194     assert(state == vtos, "only valid state");
2195 
2196     __ ldr(c_rarg1, aaddress(0));
2197     __ load_klass(r3, c_rarg1);
2198     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2199     Label skip_register_finalizer;
2200     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2201 
2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2203 
2204     __ bind(skip_register_finalizer);
2205   }
2206 
2207   // Issue a StoreStore barrier after all stores but before return
2208   // from any constructor for any class with a final field.  We don't
2209   // know if this is a finalizer, so we always do so.
2210   if (_desc->bytecode() == Bytecodes::_return)

2211     __ membar(MacroAssembler::StoreStore);
2212 
2213   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2214     Label no_safepoint;
2215     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2216     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2217     __ push(state);
2218     __ push_cont_fastpath(rthread);
2219     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2220     __ pop_cont_fastpath(rthread);
2221     __ pop(state);
2222     __ bind(no_safepoint);
2223   }
2224 
2225   // Narrow result if state is itos but result type is smaller.
2226   // Need to narrow in the return bytecode rather than in generate_return_entry
2227   // since compiled code callers expect the result to already be narrowed.
2228   if (state == itos) {
2229     __ narrow(r0);
2230   }

2566     }
2567     // c_rarg1: object pointer or null
2568     // c_rarg2: cache entry pointer
2569     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2570                                        InterpreterRuntime::post_field_access),
2571                c_rarg1, c_rarg2);
2572     __ load_field_entry(cache, index);
2573     __ bind(L1);
2574   }
2575 }
2576 
2577 void TemplateTable::pop_and_check_object(Register r)
2578 {
2579   __ pop_ptr(r);
2580   __ null_check(r);  // for field access must check obj.
2581   __ verify_oop(r);
2582 }
2583 
2584 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2585 {
2586   const Register cache     = r4;
2587   const Register obj       = r4;



2588   const Register index     = r3;
2589   const Register tos_state = r3;
2590   const Register off       = r19;
2591   const Register flags     = r6;
2592   const Register bc        = r4; // uses same reg as obj, so don't mix them
2593 
2594   resolve_cache_and_index_for_field(byte_no, cache, index);
2595   jvmti_post_field_access(cache, index, is_static, false);





2596   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2597 
2598   if (!is_static) {
2599     // obj is on the stack
2600     pop_and_check_object(obj);
2601   }
2602 
2603   // 8179954: We need to make sure that the code generated for
2604   // volatile accesses forms a sequentially-consistent set of
2605   // operations when combined with STLR and LDAR.  Without a leading
2606   // membar it's possible for a simple Dekker test to fail if loads
2607   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2608   // the stores in one method and we interpret the loads in another.
2609   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2610     Label notVolatile;
2611     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2612     __ membar(MacroAssembler::AnyAny);
2613     __ bind(notVolatile);
2614   }
2615 

2634   __ b(Done);
2635 
2636   __ bind(notByte);
2637   __ cmp(tos_state, (u1)ztos);
2638   __ br(Assembler::NE, notBool);
2639 
2640   // ztos (same code as btos)
2641   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2642   __ push(ztos);
2643   // Rewrite bytecode to be faster
2644   if (rc == may_rewrite) {
2645     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2646     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2647   }
2648   __ b(Done);
2649 
2650   __ bind(notBool);
2651   __ cmp(tos_state, (u1)atos);
2652   __ br(Assembler::NE, notObj);
2653   // atos
2654   do_oop_load(_masm, field, r0, IN_HEAP);
2655   __ push(atos);
2656   if (rc == may_rewrite) {
2657     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);





























2658   }
2659   __ b(Done);
2660 
2661   __ bind(notObj);
2662   __ cmp(tos_state, (u1)itos);
2663   __ br(Assembler::NE, notInt);
2664   // itos
2665   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2666   __ push(itos);
2667   // Rewrite bytecode to be faster
2668   if (rc == may_rewrite) {
2669     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2670   }
2671   __ b(Done);
2672 
2673   __ bind(notInt);
2674   __ cmp(tos_state, (u1)ctos);
2675   __ br(Assembler::NE, notChar);
2676   // ctos
2677   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2678   __ push(ctos);
2679   // Rewrite bytecode to be faster

2800     // c_rarg1: object pointer set up above (null if static)
2801     // c_rarg2: cache entry pointer
2802     // c_rarg3: jvalue object on the stack
2803     __ call_VM(noreg,
2804                CAST_FROM_FN_PTR(address,
2805                                 InterpreterRuntime::post_field_modification),
2806                c_rarg1, c_rarg2, c_rarg3);
2807     __ load_field_entry(cache, index);
2808     __ bind(L1);
2809   }
2810 }
2811 
2812 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2813   transition(vtos, vtos);
2814 
2815   const Register cache     = r2;
2816   const Register index     = r3;
2817   const Register tos_state = r3;
2818   const Register obj       = r2;
2819   const Register off       = r19;
2820   const Register flags     = r0;
2821   const Register bc        = r4;

2822 
2823   resolve_cache_and_index_for_field(byte_no, cache, index);
2824   jvmti_post_field_mod(cache, index, is_static);
2825   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2826 
2827   Label Done;
2828   __ mov(r5, flags);
2829 
2830   {
2831     Label notVolatile;
2832     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2833     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2834     __ bind(notVolatile);
2835   }
2836 
2837   // field address
2838   const Address field(obj, off);
2839 
2840   Label notByte, notBool, notInt, notShort, notChar,
2841         notLong, notFloat, notObj, notDouble;
2842 
2843   assert(btos == 0, "change code, btos != 0");
2844   __ cbnz(tos_state, notByte);
2845 
2846   // Don't rewrite putstatic, only putfield
2847   if (is_static) rc = may_not_rewrite;
2848 
2849   // btos
2850   {
2851     __ pop(btos);
2852     if (!is_static) pop_and_check_object(obj);

2861   __ cmp(tos_state, (u1)ztos);
2862   __ br(Assembler::NE, notBool);
2863 
2864   // ztos
2865   {
2866     __ pop(ztos);
2867     if (!is_static) pop_and_check_object(obj);
2868     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2869     if (rc == may_rewrite) {
2870       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2871     }
2872     __ b(Done);
2873   }
2874 
2875   __ bind(notBool);
2876   __ cmp(tos_state, (u1)atos);
2877   __ br(Assembler::NE, notObj);
2878 
2879   // atos
2880   {
2881     __ pop(atos);
2882     if (!is_static) pop_and_check_object(obj);
2883     // Store into the field
2884     // Clobbers: r10, r11, r3
2885     do_oop_store(_masm, field, r0, IN_HEAP);
2886     if (rc == may_rewrite) {
2887       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2888     }
2889     __ b(Done);








































2890   }
2891 
2892   __ bind(notObj);
2893   __ cmp(tos_state, (u1)itos);
2894   __ br(Assembler::NE, notInt);
2895 
2896   // itos
2897   {
2898     __ pop(itos);
2899     if (!is_static) pop_and_check_object(obj);
2900     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2901     if (rc == may_rewrite) {
2902       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2903     }
2904     __ b(Done);
2905   }
2906 
2907   __ bind(notInt);
2908   __ cmp(tos_state, (u1)ctos);
2909   __ br(Assembler::NE, notChar);

2974   {
2975     __ pop(dtos);
2976     if (!is_static) pop_and_check_object(obj);
2977     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2978     if (rc == may_rewrite) {
2979       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2980     }
2981   }
2982 
2983 #ifdef ASSERT
2984   __ b(Done);
2985 
2986   __ bind(notDouble);
2987   __ stop("Bad state");
2988 #endif
2989 
2990   __ bind(Done);
2991 
2992   {
2993     Label notVolatile;
2994     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2995     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2996     __ bind(notVolatile);
2997   }
2998 }
2999 
3000 void TemplateTable::putfield(int byte_no)
3001 {
3002   putfield_or_static(byte_no, false);
3003 }
3004 
3005 void TemplateTable::nofast_putfield(int byte_no) {
3006   putfield_or_static(byte_no, false, may_not_rewrite);
3007 }
3008 
3009 void TemplateTable::putstatic(int byte_no) {
3010   putfield_or_static(byte_no, true);
3011 }
3012 
3013 void TemplateTable::jvmti_post_fast_field_mod() {
3014   if (JvmtiExport::can_post_field_modification()) {
3015     // Check to see if a field modification watch has been set before
3016     // we take the time to call into the VM.
3017     Label L2;
3018     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3019     __ ldrw(c_rarg3, Address(rscratch1));
3020     __ cbzw(c_rarg3, L2);
3021     __ pop_ptr(r19);                  // copy the object pointer from tos
3022     __ verify_oop(r19);
3023     __ push_ptr(r19);                 // put the object pointer back on tos
3024     // Save tos values before call_VM() clobbers them. Since we have
3025     // to do it for every data type, we use the saved values as the
3026     // jvalue object.
3027     switch (bytecode()) {          // load values into the jvalue object

3028     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3029     case Bytecodes::_fast_bputfield: // fall through
3030     case Bytecodes::_fast_zputfield: // fall through
3031     case Bytecodes::_fast_sputfield: // fall through
3032     case Bytecodes::_fast_cputfield: // fall through
3033     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3034     case Bytecodes::_fast_dputfield: __ push_d(); break;
3035     case Bytecodes::_fast_fputfield: __ push_f(); break;
3036     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3037 
3038     default:
3039       ShouldNotReachHere();
3040     }
3041     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3042     // access constant pool cache entry
3043     __ load_field_entry(c_rarg2, r0);
3044     __ verify_oop(r19);
3045     // r19: object pointer copied above
3046     // c_rarg2: cache entry pointer
3047     // c_rarg3: jvalue object on the stack
3048     __ call_VM(noreg,
3049                CAST_FROM_FN_PTR(address,
3050                                 InterpreterRuntime::post_field_modification),
3051                r19, c_rarg2, c_rarg3);
3052 
3053     switch (bytecode()) {             // restore tos values

3054     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3055     case Bytecodes::_fast_bputfield: // fall through
3056     case Bytecodes::_fast_zputfield: // fall through
3057     case Bytecodes::_fast_sputfield: // fall through
3058     case Bytecodes::_fast_cputfield: // fall through
3059     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3060     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3061     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3062     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3063     default: break;
3064     }
3065     __ bind(L2);
3066   }
3067 }
3068 
3069 void TemplateTable::fast_storefield(TosState state)
3070 {
3071   transition(state, vtos);
3072 
3073   ByteSize base = ConstantPoolCache::base_offset();

3080   // R1: field offset, R2: field holder, R5: flags
3081   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3082 
3083   {
3084     Label notVolatile;
3085     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3086     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3087     __ bind(notVolatile);
3088   }
3089 
3090   Label notVolatile;
3091 
3092   // Get object from stack
3093   pop_and_check_object(r2);
3094 
3095   // field address
3096   const Address field(r2, r1);
3097 
3098   // access field
3099   switch (bytecode()) {
















3100   case Bytecodes::_fast_aputfield:
3101     // Clobbers: r10, r11, r3
3102     do_oop_store(_masm, field, r0, IN_HEAP);
3103     break;
3104   case Bytecodes::_fast_lputfield:
3105     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3106     break;
3107   case Bytecodes::_fast_iputfield:
3108     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3109     break;
3110   case Bytecodes::_fast_zputfield:
3111     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3112     break;
3113   case Bytecodes::_fast_bputfield:
3114     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3115     break;
3116   case Bytecodes::_fast_sputfield:
3117     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3118     break;
3119   case Bytecodes::_fast_cputfield:

3173   // r0: object
3174   __ verify_oop(r0);
3175   __ null_check(r0);
3176   const Address field(r0, r1);
3177 
3178   // 8179954: We need to make sure that the code generated for
3179   // volatile accesses forms a sequentially-consistent set of
3180   // operations when combined with STLR and LDAR.  Without a leading
3181   // membar it's possible for a simple Dekker test to fail if loads
3182   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3183   // the stores in one method and we interpret the loads in another.
3184   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3185     Label notVolatile;
3186     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3187     __ membar(MacroAssembler::AnyAny);
3188     __ bind(notVolatile);
3189   }
3190 
3191   // access field
3192   switch (bytecode()) {









3193   case Bytecodes::_fast_agetfield:
3194     do_oop_load(_masm, field, r0, IN_HEAP);
3195     __ verify_oop(r0);
3196     break;
3197   case Bytecodes::_fast_lgetfield:
3198     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3199     break;
3200   case Bytecodes::_fast_igetfield:
3201     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3202     break;
3203   case Bytecodes::_fast_bgetfield:
3204     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3205     break;
3206   case Bytecodes::_fast_sgetfield:
3207     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3208     break;
3209   case Bytecodes::_fast_cgetfield:
3210     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3211     break;
3212   case Bytecodes::_fast_fgetfield:

3591   Label initialize_header;
3592 
3593   __ get_cpool_and_tags(r4, r0);
3594   // Make sure the class we're about to instantiate has been resolved.
3595   // This is done before loading InstanceKlass to be consistent with the order
3596   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3597   const int tags_offset = Array<u1>::base_offset_in_bytes();
3598   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3599   __ lea(rscratch1, Address(rscratch1, tags_offset));
3600   __ ldarb(rscratch1, rscratch1);
3601   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3602   __ br(Assembler::NE, slow_case);
3603 
3604   // get InstanceKlass
3605   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3606 
3607   // make sure klass is initialized
3608   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3609   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3610 
3611   // get instance_size in InstanceKlass (scaled to a count of bytes)
3612   __ ldrw(r3,
3613           Address(r4,
3614                   Klass::layout_helper_offset()));
3615   // test to see if it is malformed in some way
3616   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3617 
3618   // Allocate the instance:
3619   //  If TLAB is enabled:
3620   //    Try to allocate in the TLAB.
3621   //    If fails, go to the slow path.
3622   //    Initialize the allocation.
3623   //    Exit.
3624   //
3625   //  Go to slow path.
3626 
3627   if (UseTLAB) {
3628     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3629 
3630     if (ZeroTLAB) {
3631       // the fields have been already cleared
3632       __ b(initialize_header);
3633     }
3634 
3635     // The object is initialized before the header.  If the object size is
3636     // zero, go directly to the header initialization.
3637     int header_size = oopDesc::header_size() * HeapWordSize;
3638     assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3639     __ sub(r3, r3, header_size);
3640     __ cbz(r3, initialize_header);
3641 
3642     // Initialize object fields
3643     {
3644       __ add(r2, r0, header_size);
3645       Label loop;
3646       __ bind(loop);
3647       __ str(zr, Address(__ post(r2, BytesPerLong)));
3648       __ sub(r3, r3, BytesPerLong);
3649       __ cbnz(r3, loop);
3650     }
3651 
3652     // initialize object header only.
3653     __ bind(initialize_header);
3654     if (UseCompactObjectHeaders) {
3655       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3656       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3657     } else {
3658       __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3659       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3660       __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3661       __ store_klass(r0, r4);      // store klass last
3662     }
3663 
3664     if (DTraceAllocProbes) {
3665       // Trigger dtrace event for fastpath
3666       __ push(atos); // save the return value
3667       __ call_VM_leaf(
3668            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3669       __ pop(atos); // restore the return value
3670 
3671     }
3672     __ b(done);
3673   }
3674 
3675   // slow case
3676   __ bind(slow_case);
3677   __ get_constant_pool(c_rarg1);
3678   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3679   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3680   __ verify_oop(r0);
3681 
3682   // continue
3683   __ bind(done);
3684   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3685   __ membar(Assembler::StoreStore);
3686 }
3687 
3688 void TemplateTable::newarray() {
3689   transition(itos, atos);
3690   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3691   __ mov(c_rarg2, r0);
3692   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3693           c_rarg1, c_rarg2);

3737   __ bind(quicked);
3738   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3739   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3740 
3741   __ bind(resolved);
3742   __ load_klass(r19, r3);
3743 
3744   // Generate subtype check.  Blows r2, r5.  Object in r3.
3745   // Superklass in r0.  Subklass in r19.
3746   __ gen_subtype_check(r19, ok_is_subtype);
3747 
3748   // Come here on failure
3749   __ push(r3);
3750   // object is at TOS
3751   __ b(Interpreter::_throw_ClassCastException_entry);
3752 
3753   // Come here on success
3754   __ bind(ok_is_subtype);
3755   __ mov(r0, r3); // Restore object in r3
3756 



3757   // Collect counts on whether this test sees nulls a lot or not.
3758   if (ProfileInterpreter) {
3759     __ b(done);
3760     __ bind(is_null);
3761     __ profile_null_seen(r2);
3762   } else {
3763     __ bind(is_null);   // same as 'done'
3764   }

3765   __ bind(done);
3766 }
3767 
3768 void TemplateTable::instanceof() {
3769   transition(atos, itos);
3770   Label done, is_null, ok_is_subtype, quicked, resolved;
3771   __ cbz(r0, is_null);
3772 
3773   // Get cpool & tags index
3774   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3775   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3776   // See if bytecode has already been quicked
3777   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3778   __ lea(r1, Address(rscratch1, r19));
3779   __ ldarb(r1, r1);
3780   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3781   __ br(Assembler::EQ, quicked);
3782 
3783   __ push(atos); // save receiver for result, and for GC
3784   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3862 //       in the assembly code structure as well
3863 //
3864 // Stack layout:
3865 //
3866 // [expressions  ] <--- esp               = expression stack top
3867 // ..
3868 // [expressions  ]
3869 // [monitor entry] <--- monitor block top = expression stack bot
3870 // ..
3871 // [monitor entry]
3872 // [frame data   ] <--- monitor block bot
3873 // ...
3874 // [saved rfp    ] <--- rfp
3875 void TemplateTable::monitorenter()
3876 {
3877   transition(atos, vtos);
3878 
3879   // check for null object
3880   __ null_check(r0);
3881 




3882   const Address monitor_block_top(
3883         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3884   const Address monitor_block_bot(
3885         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3886   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3887 
3888   Label allocated;
3889 
3890   // initialize entry pointer
3891   __ mov(c_rarg1, zr); // points to free slot or null
3892 
3893   // find a free slot in the monitor block (result in c_rarg1)
3894   {
3895     Label entry, loop, exit;
3896     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3897     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3898     // c_rarg3 points to current entry, starting with top-most entry
3899 
3900     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3901 

3963   // c_rarg1: points to monitor entry
3964   __ bind(allocated);
3965 
3966   // Increment bcp to point to the next bytecode, so exception
3967   // handling for async. exceptions work correctly.
3968   // The object has already been popped from the stack, so the
3969   // expression stack looks correct.
3970   __ increment(rbcp);
3971 
3972   // store object
3973   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3974   __ lock_object(c_rarg1);
3975 
3976   // check to make sure this monitor doesn't cause stack overflow after locking
3977   __ save_bcp();  // in case of exception
3978   __ generate_stack_overflow_check(0);
3979 
3980   // The bcp has already been incremented. Just need to dispatch to
3981   // next instruction.
3982   __ dispatch_next(vtos);





3983 }
3984 
3985 
3986 void TemplateTable::monitorexit()
3987 {
3988   transition(atos, vtos);
3989 
3990   // check for null object
3991   __ null_check(r0);
3992 












3993   const Address monitor_block_top(
3994         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3995   const Address monitor_block_bot(
3996         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3997   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3998 
3999   Label found;
4000 
4001   // find matching slot
4002   {
4003     Label entry, loop;
4004     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4005     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4006     // c_rarg1 points to current entry, starting with top-most entry
4007 
4008     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4009                                         // of monitor block
4010     __ b(entry);
4011 
4012     __ bind(loop);

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {
 175   case Bytecodes::_fast_vputfield:
 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 737   locals_index_wide(r1);
 738   __ ldr(r0, aaddress(r1));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index)
 742 {
 743   // destroys r1, rscratch1
 744   // sign extend index for use by indexed load
 745   // __ movl2ptr(index, index);
 746   // check index
 747   Register length = rscratch1;
 748   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 749   __ cmpw(index, length);
 750   if (index != r1) {
 751     // ??? convention: move aberrant index into r1 for exception message
 752     assert(r1 != array, "different registers");
 753     __ mov(r1, index);
 754   }
 755   Label ok;
 756   __ br(Assembler::LO, ok);
 757   // ??? convention: move array into r3 for exception message
 758    __ mov(r3, array);
 759    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 760    __ br(rscratch1);
 761   __ bind(ok);
 762 }
 763 
 764 void TemplateTable::iaload()
 765 {
 766   transition(itos, itos);
 767   __ mov(r1, r0);
 768   __ pop_ptr(r0);
 769   // r0: array
 770   // r1: index
 771   index_check(r0, r1); // leaves index in r1, kills rscratch1
 772   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 773   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 774 }
 775 
 776 void TemplateTable::laload()
 777 {
 778   transition(itos, ltos);
 779   __ mov(r1, r0);
 780   __ pop_ptr(r0);

 800 void TemplateTable::daload()
 801 {
 802   transition(itos, dtos);
 803   __ mov(r1, r0);
 804   __ pop_ptr(r0);
 805   // r0: array
 806   // r1: index
 807   index_check(r0, r1); // leaves index in r1, kills rscratch1
 808   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 809   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 810 }
 811 
 812 void TemplateTable::aaload()
 813 {
 814   transition(itos, atos);
 815   __ mov(r1, r0);
 816   __ pop_ptr(r0);
 817   // r0: array
 818   // r1: index
 819   index_check(r0, r1); // leaves index in r1, kills rscratch1
 820   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 821   if (UseArrayFlattening) {
 822     Label is_flat_array, done;
 823 
 824     __ test_flat_array_oop(r0, rscratch1 /*temp*/, is_flat_array);
 825     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 826     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 827 
 828     __ b(done);
 829     __ bind(is_flat_array);
 830     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 831     // Ensure the stores to copy the inline field contents are visible
 832     // before any subsequent store that publishes this reference.
 833     __ membar(Assembler::StoreStore);
 834     __ bind(done);
 835   } else {
 836     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 837     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 838   }
 839   __ profile_element_type(r2, r0, r4);
 840 }
 841 
 842 void TemplateTable::baload()
 843 {
 844   transition(itos, itos);
 845   __ mov(r1, r0);
 846   __ pop_ptr(r0);
 847   // r0: array
 848   // r1: index
 849   index_check(r0, r1); // leaves index in r1, kills rscratch1
 850   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 851   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 852 }
 853 
 854 void TemplateTable::caload()
 855 {
 856   transition(itos, itos);
 857   __ mov(r1, r0);
 858   __ pop_ptr(r0);
 859   // r0: array

1106   // r1:  index
1107   // r3:  array
1108   index_check(r3, r1); // prefer index in r1
1109   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1110   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1111 }
1112 
1113 void TemplateTable::dastore() {
1114   transition(dtos, vtos);
1115   __ pop_i(r1);
1116   __ pop_ptr(r3);
1117   // v0: value
1118   // r1:  index
1119   // r3:  array
1120   index_check(r3, r1); // prefer index in r1
1121   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1122   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1123 }
1124 
1125 void TemplateTable::aastore() {
1126   Label is_null, is_flat_array, ok_is_subtype, done;
1127   transition(vtos, vtos);
1128   // stack: ..., array, index, value
1129   __ ldr(r0, at_tos());    // value
1130   __ ldr(r2, at_tos_p1()); // index
1131   __ ldr(r3, at_tos_p2()); // array
1132 


1133   index_check(r3, r2);     // kills r1
1134 
1135   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1136   __ profile_multiple_element_types(r4, r0, r5, r6);
1137 
1138   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1139   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1140   // Be careful not to clobber r4 below
1141 
1142   // do array store check - check for null value first
1143   __ cbz(r0, is_null);
1144 
1145   // Move array class to r5
1146   __ load_klass(r5, r3);
1147 
1148   if (UseArrayFlattening) {
1149     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1150     __ test_flat_array_layout(r6, is_flat_array);
1151   }
1152 
1153   // Move subklass into r1
1154   __ load_klass(r1, r0);
1155 
1156   // Move array element superklass into r0
1157   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1158   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1159 
1160   // Generate subtype check.  Blows r2, r5
1161   // Superklass in r0.  Subklass in r1.
1162 
1163   // is "r1 <: r0" ? (value subclass <: array element superclass)
1164   __ gen_subtype_check(r1, ok_is_subtype, false);
1165 
1166   // Come here on failure
1167   // object is at TOS
1168   __ b(Interpreter::_throw_ArrayStoreException_entry);
1169 
1170   // Come here on success
1171   __ bind(ok_is_subtype);
1172 
1173   // Get the value we will store
1174   __ ldr(r0, at_tos());
1175   // Now store using the appropriate barrier
1176   // Clobbers: r10, r11, r3
1177   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1178   __ b(done);
1179 
1180   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1181   __ bind(is_null);
1182   if (EnableValhalla) {
1183     Label is_null_into_value_array_npe, store_null;
1184 
1185     if (UseArrayFlattening) {
1186       __ test_flat_array_oop(r3, rscratch1, is_flat_array);
1187     }
1188 
1189     // No way to store null in a null-free array
1190     __ test_null_free_array_oop(r3, rscratch1, is_null_into_value_array_npe);
1191     __ b(store_null);
1192 
1193     __ bind(is_null_into_value_array_npe);
1194     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1195 
1196     __ bind(store_null);
1197   }
1198 
1199   // Store a null
1200   // Clobbers: r10, r11, r3
1201   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1202   __ b(done);
1203 
1204   if (UseArrayFlattening) {
1205      Label is_type_ok;
1206     __ bind(is_flat_array); // Store non-null value to flat
1207 
1208     __ ldr(r0, at_tos());    // value
1209     __ ldr(r3, at_tos_p1()); // index
1210     __ ldr(r2, at_tos_p2()); // array
1211     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1212   }
1213 
1214   // Pop stack arguments
1215   __ bind(done);
1216   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1217 }
1218 
1219 void TemplateTable::bastore()
1220 {
1221   transition(itos, vtos);
1222   __ pop_i(r1);
1223   __ pop_ptr(r3);
1224   // r0: value
1225   // r1: index
1226   // r3: array
1227   index_check(r3, r1); // prefer index in r1
1228 
1229   // Need to check whether array is boolean or byte
1230   // since both types share the bastore bytecode.
1231   __ load_klass(r2, r3);
1232   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1999   __ br(j_not(cc), not_taken);
2000   branch(false, false);
2001   __ bind(not_taken);
2002   __ profile_not_taken_branch(r0);
2003 }
2004 
2005 void TemplateTable::if_nullcmp(Condition cc)
2006 {
2007   transition(atos, vtos);
2008   // assume branch is more often taken than not (loops use backward branches)
2009   Label not_taken;
2010   if (cc == equal)
2011     __ cbnz(r0, not_taken);
2012   else
2013     __ cbz(r0, not_taken);
2014   branch(false, false);
2015   __ bind(not_taken);
2016   __ profile_not_taken_branch(r0);
2017 }
2018 
2019 void TemplateTable::if_acmp(Condition cc) {

2020   transition(atos, vtos);
2021   // assume branch is more often taken than not (loops use backward branches)
2022   Label taken, not_taken;
2023   __ pop_ptr(r1);
2024 
2025   __ profile_acmp(r2, r1, r0, r4);
2026 
2027   Register is_inline_type_mask = rscratch1;
2028   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2029 
2030   if (EnableValhalla) {
2031     __ cmp(r1, r0);
2032     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2033 
2034     // might be substitutable, test if either r0 or r1 is null
2035     __ andr(r2, r0, r1);
2036     __ cbz(r2, (cc == equal) ? not_taken : taken);
2037 
2038     // and both are values ?
2039     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2040     __ andr(r2, r2, is_inline_type_mask);
2041     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2042     __ andr(r4, r4, is_inline_type_mask);
2043     __ andr(r2, r2, r4);
2044     __ cmp(r2,  is_inline_type_mask);
2045     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2046 
2047     // same value klass ?
2048     __ load_metadata(r2, r1);
2049     __ load_metadata(r4, r0);
2050     __ cmp(r2, r4);
2051     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2052 
2053     // Know both are the same type, let's test for substitutability...
2054     if (cc == equal) {
2055       invoke_is_substitutable(r0, r1, taken, not_taken);
2056     } else {
2057       invoke_is_substitutable(r0, r1, not_taken, taken);
2058     }
2059     __ stop("Not reachable");
2060   }
2061 
2062   __ cmpoop(r1, r0);
2063   __ br(j_not(cc), not_taken);
2064   __ bind(taken);
2065   branch(false, false);
2066   __ bind(not_taken);
2067   __ profile_not_taken_branch(r0, true);
2068 }
2069 
2070 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2071                                             Label& is_subst, Label& not_subst) {
2072 
2073   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2074   // Restored... r0 answer, jmp to outcome...
2075   __ cbz(r0, not_subst);
2076   __ b(is_subst);
2077 }
2078 
2079 
2080 void TemplateTable::ret() {
2081   transition(vtos, vtos);
2082   locals_index(r1);
2083   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2084   __ profile_ret(r1, r2);
2085   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2086   __ lea(rbcp, Address(rbcp, r1));
2087   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2088   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2089 }
2090 
2091 void TemplateTable::wide_ret() {
2092   transition(vtos, vtos);
2093   locals_index_wide(r1);
2094   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2095   __ profile_ret(r1, r2);
2096   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2097   __ lea(rbcp, Address(rbcp, r1));
2098   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2099   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2293   assert(_desc->calls_vm(),
2294          "inconsistent calls_vm information"); // call in remove_activation
2295 
2296   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2297     assert(state == vtos, "only valid state");
2298 
2299     __ ldr(c_rarg1, aaddress(0));
2300     __ load_klass(r3, c_rarg1);
2301     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2302     Label skip_register_finalizer;
2303     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2304 
2305     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2306 
2307     __ bind(skip_register_finalizer);
2308   }
2309 
2310   // Issue a StoreStore barrier after all stores but before return
2311   // from any constructor for any class with a final field.  We don't
2312   // know if this is a finalizer, so we always do so.
2313   if (_desc->bytecode() == Bytecodes::_return
2314       || _desc->bytecode() == Bytecodes::_return_register_finalizer)
2315     __ membar(MacroAssembler::StoreStore);
2316 
2317   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2318     Label no_safepoint;
2319     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2320     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2321     __ push(state);
2322     __ push_cont_fastpath(rthread);
2323     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2324     __ pop_cont_fastpath(rthread);
2325     __ pop(state);
2326     __ bind(no_safepoint);
2327   }
2328 
2329   // Narrow result if state is itos but result type is smaller.
2330   // Need to narrow in the return bytecode rather than in generate_return_entry
2331   // since compiled code callers expect the result to already be narrowed.
2332   if (state == itos) {
2333     __ narrow(r0);
2334   }

2670     }
2671     // c_rarg1: object pointer or null
2672     // c_rarg2: cache entry pointer
2673     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2674                                        InterpreterRuntime::post_field_access),
2675                c_rarg1, c_rarg2);
2676     __ load_field_entry(cache, index);
2677     __ bind(L1);
2678   }
2679 }
2680 
2681 void TemplateTable::pop_and_check_object(Register r)
2682 {
2683   __ pop_ptr(r);
2684   __ null_check(r);  // for field access must check obj.
2685   __ verify_oop(r);
2686 }
2687 
2688 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2689 {
2690   const Register cache     = r2;
2691   const Register obj       = r4;
2692   const Register klass     = r5;
2693   const Register inline_klass = r7;
2694   const Register field_index = r23;
2695   const Register index     = r3;
2696   const Register tos_state = r3;
2697   const Register off       = r19;
2698   const Register flags     = r6;
2699   const Register bc        = r4; // uses same reg as obj, so don't mix them
2700 
2701   resolve_cache_and_index_for_field(byte_no, cache, index);
2702   jvmti_post_field_access(cache, index, is_static, false);
2703 
2704   // Valhalla extras
2705   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2706   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2707 
2708   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2709 
2710   if (!is_static) {
2711     // obj is on the stack
2712     pop_and_check_object(obj);
2713   }
2714 
2715   // 8179954: We need to make sure that the code generated for
2716   // volatile accesses forms a sequentially-consistent set of
2717   // operations when combined with STLR and LDAR.  Without a leading
2718   // membar it's possible for a simple Dekker test to fail if loads
2719   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2720   // the stores in one method and we interpret the loads in another.
2721   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2722     Label notVolatile;
2723     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2724     __ membar(MacroAssembler::AnyAny);
2725     __ bind(notVolatile);
2726   }
2727 

2746   __ b(Done);
2747 
2748   __ bind(notByte);
2749   __ cmp(tos_state, (u1)ztos);
2750   __ br(Assembler::NE, notBool);
2751 
2752   // ztos (same code as btos)
2753   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2754   __ push(ztos);
2755   // Rewrite bytecode to be faster
2756   if (rc == may_rewrite) {
2757     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2758     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2759   }
2760   __ b(Done);
2761 
2762   __ bind(notBool);
2763   __ cmp(tos_state, (u1)atos);
2764   __ br(Assembler::NE, notObj);
2765   // atos
2766   if (!EnableValhalla) {
2767     do_oop_load(_masm, field, r0, IN_HEAP);
2768     __ push(atos);
2769     if (rc == may_rewrite) {
2770       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2771     }
2772     __ b(Done);
2773   } else { // Valhalla
2774     if (is_static) {
2775       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2776       __ push(atos);
2777       __ b(Done);
2778     } else {
2779       Label is_flat, rewrite_inline;
2780       __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
2781       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2782       __ push(atos);
2783       if (rc == may_rewrite) {
2784         patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2785       }
2786       __ b(Done);
2787       __ bind(is_flat);
2788         // field is flat (null-free or nullable with a null-marker)
2789         __ mov(r0, obj);
2790         __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2791         __ verify_oop(r0);
2792         __ push(atos);
2793       __ bind(rewrite_inline);
2794       if (rc == may_rewrite) {
2795         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2796       }
2797       __ b(Done);
2798     }
2799   }

2800 
2801   __ bind(notObj);
2802   __ cmp(tos_state, (u1)itos);
2803   __ br(Assembler::NE, notInt);
2804   // itos
2805   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2806   __ push(itos);
2807   // Rewrite bytecode to be faster
2808   if (rc == may_rewrite) {
2809     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2810   }
2811   __ b(Done);
2812 
2813   __ bind(notInt);
2814   __ cmp(tos_state, (u1)ctos);
2815   __ br(Assembler::NE, notChar);
2816   // ctos
2817   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2818   __ push(ctos);
2819   // Rewrite bytecode to be faster

2940     // c_rarg1: object pointer set up above (null if static)
2941     // c_rarg2: cache entry pointer
2942     // c_rarg3: jvalue object on the stack
2943     __ call_VM(noreg,
2944                CAST_FROM_FN_PTR(address,
2945                                 InterpreterRuntime::post_field_modification),
2946                c_rarg1, c_rarg2, c_rarg3);
2947     __ load_field_entry(cache, index);
2948     __ bind(L1);
2949   }
2950 }
2951 
2952 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2953   transition(vtos, vtos);
2954 
2955   const Register cache     = r2;
2956   const Register index     = r3;
2957   const Register tos_state = r3;
2958   const Register obj       = r2;
2959   const Register off       = r19;
2960   const Register flags     = r6;
2961   const Register bc        = r4;
2962   const Register inline_klass = r5;
2963 
2964   resolve_cache_and_index_for_field(byte_no, cache, index);
2965   jvmti_post_field_mod(cache, index, is_static);
2966   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2967 
2968   Label Done;


2969   {
2970     Label notVolatile;
2971     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2972     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2973     __ bind(notVolatile);
2974   }
2975 
2976   // field address
2977   const Address field(obj, off);
2978 
2979   Label notByte, notBool, notInt, notShort, notChar,
2980         notLong, notFloat, notObj, notDouble;
2981 
2982   assert(btos == 0, "change code, btos != 0");
2983   __ cbnz(tos_state, notByte);
2984 
2985   // Don't rewrite putstatic, only putfield
2986   if (is_static) rc = may_not_rewrite;
2987 
2988   // btos
2989   {
2990     __ pop(btos);
2991     if (!is_static) pop_and_check_object(obj);

3000   __ cmp(tos_state, (u1)ztos);
3001   __ br(Assembler::NE, notBool);
3002 
3003   // ztos
3004   {
3005     __ pop(ztos);
3006     if (!is_static) pop_and_check_object(obj);
3007     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3008     if (rc == may_rewrite) {
3009       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3010     }
3011     __ b(Done);
3012   }
3013 
3014   __ bind(notBool);
3015   __ cmp(tos_state, (u1)atos);
3016   __ br(Assembler::NE, notObj);
3017 
3018   // atos
3019   {
3020      if (!EnableValhalla) {
3021       __ pop(atos);
3022       if (!is_static) pop_and_check_object(obj);
3023       // Store into the field
3024       // Clobbers: r10, r11, r3
3025       do_oop_store(_masm, field, r0, IN_HEAP);
3026       if (rc == may_rewrite) {
3027         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3028       }
3029       __ b(Done);
3030      } else { // Valhalla
3031       __ pop(atos);
3032       if (is_static) {
3033         Label is_nullable;
3034          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_nullable);
3035          __ null_check(r0);  // FIXME JDK-8341120
3036          __ bind(is_nullable);
3037          do_oop_store(_masm, field, r0, IN_HEAP);
3038          __ b(Done);
3039       } else {
3040         Label null_free_reference, is_flat, rewrite_inline;
3041         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3042         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, null_free_reference);
3043         pop_and_check_object(obj);
3044         // Store into the field
3045         // Clobbers: r10, r11, r3
3046         do_oop_store(_masm, field, r0, IN_HEAP);
3047         if (rc == may_rewrite) {
3048           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3049         }
3050         __ b(Done);
3051         // Implementation of the inline type semantic
3052         __ bind(null_free_reference);
3053         __ null_check(r0);  // FIXME JDK-8341120
3054         pop_and_check_object(obj);
3055         // Store into the field
3056         // Clobbers: r10, r11, r3
3057         do_oop_store(_masm, field, r0, IN_HEAP);
3058         __ b(rewrite_inline);
3059         __ bind(is_flat);
3060         pop_and_check_object(r7);
3061         __ write_flat_field(cache, off, r3, r6, r7);
3062         __ bind(rewrite_inline);
3063         if (rc == may_rewrite) {
3064           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3065         }
3066         __ b(Done);
3067       }
3068      }  // Valhalla
3069   }
3070 
3071   __ bind(notObj);
3072   __ cmp(tos_state, (u1)itos);
3073   __ br(Assembler::NE, notInt);
3074 
3075   // itos
3076   {
3077     __ pop(itos);
3078     if (!is_static) pop_and_check_object(obj);
3079     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3080     if (rc == may_rewrite) {
3081       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3082     }
3083     __ b(Done);
3084   }
3085 
3086   __ bind(notInt);
3087   __ cmp(tos_state, (u1)ctos);
3088   __ br(Assembler::NE, notChar);

3153   {
3154     __ pop(dtos);
3155     if (!is_static) pop_and_check_object(obj);
3156     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3157     if (rc == may_rewrite) {
3158       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3159     }
3160   }
3161 
3162 #ifdef ASSERT
3163   __ b(Done);
3164 
3165   __ bind(notDouble);
3166   __ stop("Bad state");
3167 #endif
3168 
3169   __ bind(Done);
3170 
3171   {
3172     Label notVolatile;
3173     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3174     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3175     __ bind(notVolatile);
3176   }
3177 }
3178 
3179 void TemplateTable::putfield(int byte_no)
3180 {
3181   putfield_or_static(byte_no, false);
3182 }
3183 
3184 void TemplateTable::nofast_putfield(int byte_no) {
3185   putfield_or_static(byte_no, false, may_not_rewrite);
3186 }
3187 
3188 void TemplateTable::putstatic(int byte_no) {
3189   putfield_or_static(byte_no, true);
3190 }
3191 
3192 void TemplateTable::jvmti_post_fast_field_mod() {
3193   if (JvmtiExport::can_post_field_modification()) {
3194     // Check to see if a field modification watch has been set before
3195     // we take the time to call into the VM.
3196     Label L2;
3197     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3198     __ ldrw(c_rarg3, Address(rscratch1));
3199     __ cbzw(c_rarg3, L2);
3200     __ pop_ptr(r19);                  // copy the object pointer from tos
3201     __ verify_oop(r19);
3202     __ push_ptr(r19);                 // put the object pointer back on tos
3203     // Save tos values before call_VM() clobbers them. Since we have
3204     // to do it for every data type, we use the saved values as the
3205     // jvalue object.
3206     switch (bytecode()) {          // load values into the jvalue object
3207     case Bytecodes::_fast_vputfield: //fall through
3208     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3209     case Bytecodes::_fast_bputfield: // fall through
3210     case Bytecodes::_fast_zputfield: // fall through
3211     case Bytecodes::_fast_sputfield: // fall through
3212     case Bytecodes::_fast_cputfield: // fall through
3213     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3214     case Bytecodes::_fast_dputfield: __ push_d(); break;
3215     case Bytecodes::_fast_fputfield: __ push_f(); break;
3216     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3217 
3218     default:
3219       ShouldNotReachHere();
3220     }
3221     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3222     // access constant pool cache entry
3223     __ load_field_entry(c_rarg2, r0);
3224     __ verify_oop(r19);
3225     // r19: object pointer copied above
3226     // c_rarg2: cache entry pointer
3227     // c_rarg3: jvalue object on the stack
3228     __ call_VM(noreg,
3229                CAST_FROM_FN_PTR(address,
3230                                 InterpreterRuntime::post_field_modification),
3231                r19, c_rarg2, c_rarg3);
3232 
3233     switch (bytecode()) {             // restore tos values
3234     case Bytecodes::_fast_vputfield: //fall through
3235     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3236     case Bytecodes::_fast_bputfield: // fall through
3237     case Bytecodes::_fast_zputfield: // fall through
3238     case Bytecodes::_fast_sputfield: // fall through
3239     case Bytecodes::_fast_cputfield: // fall through
3240     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3241     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3242     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3243     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3244     default: break;
3245     }
3246     __ bind(L2);
3247   }
3248 }
3249 
3250 void TemplateTable::fast_storefield(TosState state)
3251 {
3252   transition(state, vtos);
3253 
3254   ByteSize base = ConstantPoolCache::base_offset();

3261   // R1: field offset, R2: field holder, R5: flags
3262   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3263 
3264   {
3265     Label notVolatile;
3266     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3267     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3268     __ bind(notVolatile);
3269   }
3270 
3271   Label notVolatile;
3272 
3273   // Get object from stack
3274   pop_and_check_object(r2);
3275 
3276   // field address
3277   const Address field(r2, r1);
3278 
3279   // access field
3280   switch (bytecode()) {
3281   case Bytecodes::_fast_vputfield:
3282     {
3283       Label is_flat, has_null_marker, done;
3284       __ test_field_is_flat(r5, noreg /* temp */, is_flat);
3285       __ null_check(r0);
3286       do_oop_store(_masm, field, r0, IN_HEAP);
3287       __ b(done);
3288       __ bind(is_flat);
3289       __ load_field_entry(r4, r5);
3290       // Re-shuffle registers because of VM calls calling convention
3291       __ mov(r19, r1);
3292       __ mov(r7, r2);
3293       __ write_flat_field(r4, r19, r6, r8, r7);
3294       __ bind(done);
3295     }
3296     break;
3297   case Bytecodes::_fast_aputfield:
3298     // Clobbers: r10, r11, r3
3299     do_oop_store(_masm, field, r0, IN_HEAP);
3300     break;
3301   case Bytecodes::_fast_lputfield:
3302     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3303     break;
3304   case Bytecodes::_fast_iputfield:
3305     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3306     break;
3307   case Bytecodes::_fast_zputfield:
3308     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3309     break;
3310   case Bytecodes::_fast_bputfield:
3311     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3312     break;
3313   case Bytecodes::_fast_sputfield:
3314     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3315     break;
3316   case Bytecodes::_fast_cputfield:

3370   // r0: object
3371   __ verify_oop(r0);
3372   __ null_check(r0);
3373   const Address field(r0, r1);
3374 
3375   // 8179954: We need to make sure that the code generated for
3376   // volatile accesses forms a sequentially-consistent set of
3377   // operations when combined with STLR and LDAR.  Without a leading
3378   // membar it's possible for a simple Dekker test to fail if loads
3379   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3380   // the stores in one method and we interpret the loads in another.
3381   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3382     Label notVolatile;
3383     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3384     __ membar(MacroAssembler::AnyAny);
3385     __ bind(notVolatile);
3386   }
3387 
3388   // access field
3389   switch (bytecode()) {
3390   case Bytecodes::_fast_vgetfield:
3391     {
3392       Register index = r4, tmp = r7;
3393       // field is flat
3394       __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3395       __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3396       __ verify_oop(r0);
3397     }
3398     break;
3399   case Bytecodes::_fast_agetfield:
3400     do_oop_load(_masm, field, r0, IN_HEAP);
3401     __ verify_oop(r0);
3402     break;
3403   case Bytecodes::_fast_lgetfield:
3404     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3405     break;
3406   case Bytecodes::_fast_igetfield:
3407     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3408     break;
3409   case Bytecodes::_fast_bgetfield:
3410     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3411     break;
3412   case Bytecodes::_fast_sgetfield:
3413     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3414     break;
3415   case Bytecodes::_fast_cgetfield:
3416     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3417     break;
3418   case Bytecodes::_fast_fgetfield:

3797   Label initialize_header;
3798 
3799   __ get_cpool_and_tags(r4, r0);
3800   // Make sure the class we're about to instantiate has been resolved.
3801   // This is done before loading InstanceKlass to be consistent with the order
3802   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3803   const int tags_offset = Array<u1>::base_offset_in_bytes();
3804   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3805   __ lea(rscratch1, Address(rscratch1, tags_offset));
3806   __ ldarb(rscratch1, rscratch1);
3807   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3808   __ br(Assembler::NE, slow_case);
3809 
3810   // get InstanceKlass
3811   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3812 
3813   // make sure klass is initialized
3814   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3815   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3816 
3817   __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3818   __ b(done);





























































3819 
3820   // slow case
3821   __ bind(slow_case);
3822   __ get_constant_pool(c_rarg1);
3823   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3824   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3825   __ verify_oop(r0);
3826 
3827   // continue
3828   __ bind(done);
3829   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3830   __ membar(Assembler::StoreStore);
3831 }
3832 
3833 void TemplateTable::newarray() {
3834   transition(itos, atos);
3835   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3836   __ mov(c_rarg2, r0);
3837   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3838           c_rarg1, c_rarg2);

3882   __ bind(quicked);
3883   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3884   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3885 
3886   __ bind(resolved);
3887   __ load_klass(r19, r3);
3888 
3889   // Generate subtype check.  Blows r2, r5.  Object in r3.
3890   // Superklass in r0.  Subklass in r19.
3891   __ gen_subtype_check(r19, ok_is_subtype);
3892 
3893   // Come here on failure
3894   __ push(r3);
3895   // object is at TOS
3896   __ b(Interpreter::_throw_ClassCastException_entry);
3897 
3898   // Come here on success
3899   __ bind(ok_is_subtype);
3900   __ mov(r0, r3); // Restore object in r3
3901 
3902   __ b(done);
3903   __ bind(is_null);
3904 
3905   // Collect counts on whether this test sees nulls a lot or not.
3906   if (ProfileInterpreter) {


3907     __ profile_null_seen(r2);


3908   }
3909 
3910   __ bind(done);
3911 }
3912 
3913 void TemplateTable::instanceof() {
3914   transition(atos, itos);
3915   Label done, is_null, ok_is_subtype, quicked, resolved;
3916   __ cbz(r0, is_null);
3917 
3918   // Get cpool & tags index
3919   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3920   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3921   // See if bytecode has already been quicked
3922   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3923   __ lea(r1, Address(rscratch1, r19));
3924   __ ldarb(r1, r1);
3925   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3926   __ br(Assembler::EQ, quicked);
3927 
3928   __ push(atos); // save receiver for result, and for GC
3929   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4007 //       in the assembly code structure as well
4008 //
4009 // Stack layout:
4010 //
4011 // [expressions  ] <--- esp               = expression stack top
4012 // ..
4013 // [expressions  ]
4014 // [monitor entry] <--- monitor block top = expression stack bot
4015 // ..
4016 // [monitor entry]
4017 // [frame data   ] <--- monitor block bot
4018 // ...
4019 // [saved rfp    ] <--- rfp
4020 void TemplateTable::monitorenter()
4021 {
4022   transition(atos, vtos);
4023 
4024   // check for null object
4025   __ null_check(r0);
4026 
4027   Label is_inline_type;
4028   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4029   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4030 
4031   const Address monitor_block_top(
4032         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4033   const Address monitor_block_bot(
4034         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4035   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4036 
4037   Label allocated;
4038 
4039   // initialize entry pointer
4040   __ mov(c_rarg1, zr); // points to free slot or null
4041 
4042   // find a free slot in the monitor block (result in c_rarg1)
4043   {
4044     Label entry, loop, exit;
4045     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4046     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4047     // c_rarg3 points to current entry, starting with top-most entry
4048 
4049     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4050 

4112   // c_rarg1: points to monitor entry
4113   __ bind(allocated);
4114 
4115   // Increment bcp to point to the next bytecode, so exception
4116   // handling for async. exceptions work correctly.
4117   // The object has already been popped from the stack, so the
4118   // expression stack looks correct.
4119   __ increment(rbcp);
4120 
4121   // store object
4122   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4123   __ lock_object(c_rarg1);
4124 
4125   // check to make sure this monitor doesn't cause stack overflow after locking
4126   __ save_bcp();  // in case of exception
4127   __ generate_stack_overflow_check(0);
4128 
4129   // The bcp has already been incremented. Just need to dispatch to
4130   // next instruction.
4131   __ dispatch_next(vtos);
4132 
4133   __ bind(is_inline_type);
4134   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4135                     InterpreterRuntime::throw_identity_exception), r0);
4136   __ should_not_reach_here();
4137 }
4138 
4139 
4140 void TemplateTable::monitorexit()
4141 {
4142   transition(atos, vtos);
4143 
4144   // check for null object
4145   __ null_check(r0);
4146 
4147   const int is_inline_type_mask = markWord::inline_type_pattern;
4148   Label has_identity;
4149   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4150   __ mov(rscratch2, is_inline_type_mask);
4151   __ andr(rscratch1, rscratch1, rscratch2);
4152   __ cmp(rscratch1, rscratch2);
4153   __ br(Assembler::NE, has_identity);
4154   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4155                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4156   __ should_not_reach_here();
4157   __ bind(has_identity);
4158 
4159   const Address monitor_block_top(
4160         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4161   const Address monitor_block_bot(
4162         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4163   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4164 
4165   Label found;
4166 
4167   // find matching slot
4168   {
4169     Label entry, loop;
4170     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4171     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4172     // c_rarg1 points to current entry, starting with top-most entry
4173 
4174     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4175                                         // of monitor block
4176     __ b(entry);
4177 
4178     __ bind(loop);
< prev index next >