< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {

 175   case Bytecodes::_fast_aputfield:
 176   case Bytecodes::_fast_bputfield:
 177   case Bytecodes::_fast_zputfield:
 178   case Bytecodes::_fast_cputfield:
 179   case Bytecodes::_fast_dputfield:
 180   case Bytecodes::_fast_fputfield:
 181   case Bytecodes::_fast_iputfield:
 182   case Bytecodes::_fast_lputfield:
 183   case Bytecodes::_fast_sputfield:
 184     {
 185       // We skip bytecode quickening for putfield instructions when
 186       // the put_code written to the constant pool cache is zero.
 187       // This is required so that every execution of this instruction
 188       // calls out to InterpreterRuntime::resolve_get_put to do
 189       // additional, required work.
 190       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 191       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 192       __ load_field_entry(temp_reg, bc_reg);
 193       if (byte_no == f1_byte) {
 194         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 736   locals_index_wide(r1);
 737   __ ldr(r0, aaddress(r1));
 738 }
 739 
 740 void TemplateTable::index_check(Register array, Register index)
 741 {
 742   // destroys r1, rscratch1
 743   // sign extend index for use by indexed load
 744   // __ movl2ptr(index, index);
 745   // check index
 746   Register length = rscratch1;
 747   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 748   __ cmpw(index, length);
 749   if (index != r1) {
 750     // ??? convention: move aberrant index into r1 for exception message
 751     assert(r1 != array, "different registers");
 752     __ mov(r1, index);
 753   }
 754   Label ok;
 755   __ br(Assembler::LO, ok);
 756     // ??? convention: move array into r3 for exception message
 757   __ mov(r3, array);
 758   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 759   __ br(rscratch1);
 760   __ bind(ok);
 761 }
 762 
 763 void TemplateTable::iaload()
 764 {
 765   transition(itos, itos);
 766   __ mov(r1, r0);
 767   __ pop_ptr(r0);
 768   // r0: array
 769   // r1: index
 770   index_check(r0, r1); // leaves index in r1, kills rscratch1
 771   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 772   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 773 }
 774 
 775 void TemplateTable::laload()
 776 {
 777   transition(itos, ltos);
 778   __ mov(r1, r0);
 779   __ pop_ptr(r0);

 799 void TemplateTable::daload()
 800 {
 801   transition(itos, dtos);
 802   __ mov(r1, r0);
 803   __ pop_ptr(r0);
 804   // r0: array
 805   // r1: index
 806   index_check(r0, r1); // leaves index in r1, kills rscratch1
 807   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 808   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 809 }
 810 
 811 void TemplateTable::aaload()
 812 {
 813   transition(itos, atos);
 814   __ mov(r1, r0);
 815   __ pop_ptr(r0);
 816   // r0: array
 817   // r1: index
 818   index_check(r0, r1); // leaves index in r1, kills rscratch1
 819   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 820   do_oop_load(_masm,
 821               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 822               r0,
 823               IS_ARRAY);















 824 }
 825 
 826 void TemplateTable::baload()
 827 {
 828   transition(itos, itos);
 829   __ mov(r1, r0);
 830   __ pop_ptr(r0);
 831   // r0: array
 832   // r1: index
 833   index_check(r0, r1); // leaves index in r1, kills rscratch1
 834   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 835   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 836 }
 837 
 838 void TemplateTable::caload()
 839 {
 840   transition(itos, itos);
 841   __ mov(r1, r0);
 842   __ pop_ptr(r0);
 843   // r0: array

1090   // r1:  index
1091   // r3:  array
1092   index_check(r3, r1); // prefer index in r1
1093   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1094   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1095 }
1096 
1097 void TemplateTable::dastore() {
1098   transition(dtos, vtos);
1099   __ pop_i(r1);
1100   __ pop_ptr(r3);
1101   // v0: value
1102   // r1:  index
1103   // r3:  array
1104   index_check(r3, r1); // prefer index in r1
1105   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1106   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1107 }
1108 
1109 void TemplateTable::aastore() {
1110   Label is_null, ok_is_subtype, done;
1111   transition(vtos, vtos);
1112   // stack: ..., array, index, value
1113   __ ldr(r0, at_tos());    // value
1114   __ ldr(r2, at_tos_p1()); // index
1115   __ ldr(r3, at_tos_p2()); // array
1116 
1117   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1118 
1119   index_check(r3, r2);     // kills r1




1120   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1121 
1122   // do array store check - check for null value first
1123   __ cbz(r0, is_null);
1124 








1125   // Move subklass into r1
1126   __ load_klass(r1, r0);
1127   // Move superklass into r0
1128   __ load_klass(r0, r3);
1129   __ ldr(r0, Address(r0,
1130                      ObjArrayKlass::element_klass_offset()));
1131   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1132 
1133   // Generate subtype check.  Blows r2, r5
1134   // Superklass in r0.  Subklass in r1.
1135   __ gen_subtype_check(r1, ok_is_subtype);


1136 
1137   // Come here on failure
1138   // object is at TOS
1139   __ b(Interpreter::_throw_ArrayStoreException_entry);
1140 
1141   // Come here on success
1142   __ bind(ok_is_subtype);
1143 
1144   // Get the value we will store
1145   __ ldr(r0, at_tos());
1146   // Now store using the appropriate barrier
1147   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1148   __ b(done);
1149 
1150   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1151   __ bind(is_null);
1152   __ profile_null_seen(r2);











1153 
1154   // Store a null
1155   do_oop_store(_masm, element_address, noreg, IS_ARRAY);









































1156 
1157   // Pop stack arguments
1158   __ bind(done);
1159   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1160 }
1161 
1162 void TemplateTable::bastore()
1163 {
1164   transition(itos, vtos);
1165   __ pop_i(r1);
1166   __ pop_ptr(r3);
1167   // r0: value
1168   // r1: index
1169   // r3: array
1170   index_check(r3, r1); // prefer index in r1
1171 
1172   // Need to check whether array is boolean or byte
1173   // since both types share the bastore bytecode.
1174   __ load_klass(r2, r3);
1175   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1940   __ br(j_not(cc), not_taken);
1941   branch(false, false);
1942   __ bind(not_taken);
1943   __ profile_not_taken_branch(r0);
1944 }
1945 
1946 void TemplateTable::if_nullcmp(Condition cc)
1947 {
1948   transition(atos, vtos);
1949   // assume branch is more often taken than not (loops use backward branches)
1950   Label not_taken;
1951   if (cc == equal)
1952     __ cbnz(r0, not_taken);
1953   else
1954     __ cbz(r0, not_taken);
1955   branch(false, false);
1956   __ bind(not_taken);
1957   __ profile_not_taken_branch(r0);
1958 }
1959 
1960 void TemplateTable::if_acmp(Condition cc)
1961 {
1962   transition(atos, vtos);
1963   // assume branch is more often taken than not (loops use backward branches)
1964   Label not_taken;
1965   __ pop_ptr(r1);






































1966   __ cmpoop(r1, r0);
1967   __ br(j_not(cc), not_taken);

1968   branch(false, false);
1969   __ bind(not_taken);
1970   __ profile_not_taken_branch(r0);









1971 }
1972 

1973 void TemplateTable::ret() {
1974   transition(vtos, vtos);
1975   locals_index(r1);
1976   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1977   __ profile_ret(r1, r2);
1978   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1979   __ lea(rbcp, Address(rbcp, r1));
1980   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1981   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1982 }
1983 
1984 void TemplateTable::wide_ret() {
1985   transition(vtos, vtos);
1986   locals_index_wide(r1);
1987   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1988   __ profile_ret(r1, r2);
1989   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1990   __ lea(rbcp, Address(rbcp, r1));
1991   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1992   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2560     }
2561     // c_rarg1: object pointer or null
2562     // c_rarg2: cache entry pointer
2563     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2564                                        InterpreterRuntime::post_field_access),
2565                c_rarg1, c_rarg2);
2566     __ load_field_entry(cache, index);
2567     __ bind(L1);
2568   }
2569 }
2570 
2571 void TemplateTable::pop_and_check_object(Register r)
2572 {
2573   __ pop_ptr(r);
2574   __ null_check(r);  // for field access must check obj.
2575   __ verify_oop(r);
2576 }
2577 
2578 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2579 {
2580   const Register cache     = r4;
2581   const Register obj       = r4;



2582   const Register index     = r3;
2583   const Register tos_state = r3;
2584   const Register off       = r19;
2585   const Register flags     = r6;
2586   const Register bc        = r4; // uses same reg as obj, so don't mix them
2587 
2588   resolve_cache_and_index_for_field(byte_no, cache, index);
2589   jvmti_post_field_access(cache, index, is_static, false);





2590   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2591 
2592   if (!is_static) {
2593     // obj is on the stack
2594     pop_and_check_object(obj);
2595   }
2596 
2597   // 8179954: We need to make sure that the code generated for
2598   // volatile accesses forms a sequentially-consistent set of
2599   // operations when combined with STLR and LDAR.  Without a leading
2600   // membar it's possible for a simple Dekker test to fail if loads
2601   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2602   // the stores in one method and we interpret the loads in another.
2603   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2604     Label notVolatile;
2605     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2606     __ membar(MacroAssembler::AnyAny);
2607     __ bind(notVolatile);
2608   }
2609 

2628   __ b(Done);
2629 
2630   __ bind(notByte);
2631   __ cmp(tos_state, (u1)ztos);
2632   __ br(Assembler::NE, notBool);
2633 
2634   // ztos (same code as btos)
2635   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2636   __ push(ztos);
2637   // Rewrite bytecode to be faster
2638   if (rc == may_rewrite) {
2639     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2640     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2641   }
2642   __ b(Done);
2643 
2644   __ bind(notBool);
2645   __ cmp(tos_state, (u1)atos);
2646   __ br(Assembler::NE, notObj);
2647   // atos
2648   do_oop_load(_masm, field, r0, IN_HEAP);
2649   __ push(atos);
2650   if (rc == may_rewrite) {
2651     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);





































































2652   }
2653   __ b(Done);
2654 
2655   __ bind(notObj);
2656   __ cmp(tos_state, (u1)itos);
2657   __ br(Assembler::NE, notInt);
2658   // itos
2659   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2660   __ push(itos);
2661   // Rewrite bytecode to be faster
2662   if (rc == may_rewrite) {
2663     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2664   }
2665   __ b(Done);
2666 
2667   __ bind(notInt);
2668   __ cmp(tos_state, (u1)ctos);
2669   __ br(Assembler::NE, notChar);
2670   // ctos
2671   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2672   __ push(ctos);
2673   // Rewrite bytecode to be faster

2794     // c_rarg1: object pointer set up above (null if static)
2795     // c_rarg2: cache entry pointer
2796     // c_rarg3: jvalue object on the stack
2797     __ call_VM(noreg,
2798                CAST_FROM_FN_PTR(address,
2799                                 InterpreterRuntime::post_field_modification),
2800                c_rarg1, c_rarg2, c_rarg3);
2801     __ load_field_entry(cache, index);
2802     __ bind(L1);
2803   }
2804 }
2805 
2806 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2807   transition(vtos, vtos);
2808 
2809   const Register cache     = r2;
2810   const Register index     = r3;
2811   const Register tos_state = r3;
2812   const Register obj       = r2;
2813   const Register off       = r19;
2814   const Register flags     = r0;
2815   const Register bc        = r4;

2816 
2817   resolve_cache_and_index_for_field(byte_no, cache, index);
2818   jvmti_post_field_mod(cache, index, is_static);
2819   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2820 
2821   Label Done;
2822   __ mov(r5, flags);
2823 
2824   {
2825     Label notVolatile;
2826     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2827     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2828     __ bind(notVolatile);
2829   }
2830 
2831   // field address
2832   const Address field(obj, off);
2833 
2834   Label notByte, notBool, notInt, notShort, notChar,
2835         notLong, notFloat, notObj, notDouble;
2836 
2837   assert(btos == 0, "change code, btos != 0");
2838   __ cbnz(tos_state, notByte);
2839 
2840   // Don't rewrite putstatic, only putfield
2841   if (is_static) rc = may_not_rewrite;
2842 
2843   // btos
2844   {
2845     __ pop(btos);
2846     if (!is_static) pop_and_check_object(obj);

2855   __ cmp(tos_state, (u1)ztos);
2856   __ br(Assembler::NE, notBool);
2857 
2858   // ztos
2859   {
2860     __ pop(ztos);
2861     if (!is_static) pop_and_check_object(obj);
2862     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2863     if (rc == may_rewrite) {
2864       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2865     }
2866     __ b(Done);
2867   }
2868 
2869   __ bind(notBool);
2870   __ cmp(tos_state, (u1)atos);
2871   __ br(Assembler::NE, notObj);
2872 
2873   // atos
2874   {
2875     __ pop(atos);
2876     if (!is_static) pop_and_check_object(obj);
2877     // Store into the field
2878     do_oop_store(_masm, field, r0, IN_HEAP);
2879     if (rc == may_rewrite) {
2880       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2881     }
2882     __ b(Done);




















































2883   }
2884 
2885   __ bind(notObj);
2886   __ cmp(tos_state, (u1)itos);
2887   __ br(Assembler::NE, notInt);
2888 
2889   // itos
2890   {
2891     __ pop(itos);
2892     if (!is_static) pop_and_check_object(obj);
2893     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2894     if (rc == may_rewrite) {
2895       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2896     }
2897     __ b(Done);
2898   }
2899 
2900   __ bind(notInt);
2901   __ cmp(tos_state, (u1)ctos);
2902   __ br(Assembler::NE, notChar);

2967   {
2968     __ pop(dtos);
2969     if (!is_static) pop_and_check_object(obj);
2970     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2971     if (rc == may_rewrite) {
2972       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2973     }
2974   }
2975 
2976 #ifdef ASSERT
2977   __ b(Done);
2978 
2979   __ bind(notDouble);
2980   __ stop("Bad state");
2981 #endif
2982 
2983   __ bind(Done);
2984 
2985   {
2986     Label notVolatile;
2987     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2988     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2989     __ bind(notVolatile);
2990   }
2991 }
2992 
2993 void TemplateTable::putfield(int byte_no)
2994 {
2995   putfield_or_static(byte_no, false);
2996 }
2997 
2998 void TemplateTable::nofast_putfield(int byte_no) {
2999   putfield_or_static(byte_no, false, may_not_rewrite);
3000 }
3001 
3002 void TemplateTable::putstatic(int byte_no) {
3003   putfield_or_static(byte_no, true);
3004 }
3005 
3006 void TemplateTable::jvmti_post_fast_field_mod() {
3007   if (JvmtiExport::can_post_field_modification()) {
3008     // Check to see if a field modification watch has been set before
3009     // we take the time to call into the VM.
3010     Label L2;
3011     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3012     __ ldrw(c_rarg3, Address(rscratch1));
3013     __ cbzw(c_rarg3, L2);
3014     __ pop_ptr(r19);                  // copy the object pointer from tos
3015     __ verify_oop(r19);
3016     __ push_ptr(r19);                 // put the object pointer back on tos
3017     // Save tos values before call_VM() clobbers them. Since we have
3018     // to do it for every data type, we use the saved values as the
3019     // jvalue object.
3020     switch (bytecode()) {          // load values into the jvalue object

3021     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3022     case Bytecodes::_fast_bputfield: // fall through
3023     case Bytecodes::_fast_zputfield: // fall through
3024     case Bytecodes::_fast_sputfield: // fall through
3025     case Bytecodes::_fast_cputfield: // fall through
3026     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3027     case Bytecodes::_fast_dputfield: __ push_d(); break;
3028     case Bytecodes::_fast_fputfield: __ push_f(); break;
3029     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3030 
3031     default:
3032       ShouldNotReachHere();
3033     }
3034     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3035     // access constant pool cache entry
3036     __ load_field_entry(c_rarg2, r0);
3037     __ verify_oop(r19);
3038     // r19: object pointer copied above
3039     // c_rarg2: cache entry pointer
3040     // c_rarg3: jvalue object on the stack
3041     __ call_VM(noreg,
3042                CAST_FROM_FN_PTR(address,
3043                                 InterpreterRuntime::post_field_modification),
3044                r19, c_rarg2, c_rarg3);
3045 
3046     switch (bytecode()) {             // restore tos values

3047     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3048     case Bytecodes::_fast_bputfield: // fall through
3049     case Bytecodes::_fast_zputfield: // fall through
3050     case Bytecodes::_fast_sputfield: // fall through
3051     case Bytecodes::_fast_cputfield: // fall through
3052     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3053     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3054     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3055     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3056     default: break;
3057     }
3058     __ bind(L2);
3059   }
3060 }
3061 
3062 void TemplateTable::fast_storefield(TosState state)
3063 {
3064   transition(state, vtos);
3065 
3066   ByteSize base = ConstantPoolCache::base_offset();

3077   // Must prevent reordering of the following cp cache loads with bytecode load
3078   __ membar(MacroAssembler::LoadLoad);
3079 
3080   {
3081     Label notVolatile;
3082     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3083     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3084     __ bind(notVolatile);
3085   }
3086 
3087   Label notVolatile;
3088 
3089   // Get object from stack
3090   pop_and_check_object(r2);
3091 
3092   // field address
3093   const Address field(r2, r1);
3094 
3095   // access field
3096   switch (bytecode()) {























3097   case Bytecodes::_fast_aputfield:
3098     do_oop_store(_masm, field, r0, IN_HEAP);
3099     break;
3100   case Bytecodes::_fast_lputfield:
3101     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3102     break;
3103   case Bytecodes::_fast_iputfield:
3104     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3105     break;
3106   case Bytecodes::_fast_zputfield:
3107     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3108     break;
3109   case Bytecodes::_fast_bputfield:
3110     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3111     break;
3112   case Bytecodes::_fast_sputfield:
3113     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3114     break;
3115   case Bytecodes::_fast_cputfield:
3116     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3172   // r0: object
3173   __ verify_oop(r0);
3174   __ null_check(r0);
3175   const Address field(r0, r1);
3176 
3177   // 8179954: We need to make sure that the code generated for
3178   // volatile accesses forms a sequentially-consistent set of
3179   // operations when combined with STLR and LDAR.  Without a leading
3180   // membar it's possible for a simple Dekker test to fail if loads
3181   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3182   // the stores in one method and we interpret the loads in another.
3183   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3184     Label notVolatile;
3185     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3186     __ membar(MacroAssembler::AnyAny);
3187     __ bind(notVolatile);
3188   }
3189 
3190   // access field
3191   switch (bytecode()) {





























3192   case Bytecodes::_fast_agetfield:
3193     do_oop_load(_masm, field, r0, IN_HEAP);
3194     __ verify_oop(r0);
3195     break;
3196   case Bytecodes::_fast_lgetfield:
3197     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3198     break;
3199   case Bytecodes::_fast_igetfield:
3200     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3201     break;
3202   case Bytecodes::_fast_bgetfield:
3203     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3204     break;
3205   case Bytecodes::_fast_sgetfield:
3206     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3207     break;
3208   case Bytecodes::_fast_cgetfield:
3209     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3210     break;
3211   case Bytecodes::_fast_fgetfield:

3590   Label initialize_header;
3591 
3592   __ get_cpool_and_tags(r4, r0);
3593   // Make sure the class we're about to instantiate has been resolved.
3594   // This is done before loading InstanceKlass to be consistent with the order
3595   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3596   const int tags_offset = Array<u1>::base_offset_in_bytes();
3597   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3598   __ lea(rscratch1, Address(rscratch1, tags_offset));
3599   __ ldarb(rscratch1, rscratch1);
3600   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3601   __ br(Assembler::NE, slow_case);
3602 
3603   // get InstanceKlass
3604   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3605 
3606   // make sure klass is initialized
3607   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3608   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3609 
3610   // get instance_size in InstanceKlass (scaled to a count of bytes)
3611   __ ldrw(r3,
3612           Address(r4,
3613                   Klass::layout_helper_offset()));
3614   // test to see if it has a finalizer or is malformed in some way
3615   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3616 
3617   // Allocate the instance:
3618   //  If TLAB is enabled:
3619   //    Try to allocate in the TLAB.
3620   //    If fails, go to the slow path.
3621   //    Initialize the allocation.
3622   //    Exit.
3623   //
3624   //  Go to slow path.
3625 
3626   if (UseTLAB) {
3627     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3628 
3629     if (ZeroTLAB) {
3630       // the fields have been already cleared
3631       __ b(initialize_header);
3632     }
3633 
3634     // The object is initialized before the header.  If the object size is
3635     // zero, go directly to the header initialization.
3636     __ sub(r3, r3, sizeof(oopDesc));
3637     __ cbz(r3, initialize_header);
3638 
3639     // Initialize object fields
3640     {
3641       __ add(r2, r0, sizeof(oopDesc));
3642       Label loop;
3643       __ bind(loop);
3644       __ str(zr, Address(__ post(r2, BytesPerLong)));
3645       __ sub(r3, r3, BytesPerLong);
3646       __ cbnz(r3, loop);
3647     }
3648 
3649     // initialize object header only.
3650     __ bind(initialize_header);
3651     __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3652     __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3653     __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3654     __ store_klass(r0, r4);      // store klass last
3655 
3656     {
3657       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3658       // Trigger dtrace event for fastpath
3659       __ push(atos); // save the return value
3660       __ call_VM_leaf(
3661            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3662       __ pop(atos); // restore the return value
3663 
3664     }
3665     __ b(done);
3666   }
3667 
3668   // slow case
3669   __ bind(slow_case);
3670   __ get_constant_pool(c_rarg1);
3671   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3672   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3673   __ verify_oop(r0);
3674 
3675   // continue
3676   __ bind(done);
3677   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3678   __ membar(Assembler::StoreStore);
3679 }
3680 
3681 void TemplateTable::newarray() {
3682   transition(itos, atos);
3683   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3684   __ mov(c_rarg2, r0);
3685   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3686           c_rarg1, c_rarg2);

3731   __ bind(quicked);
3732   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3733   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3734 
3735   __ bind(resolved);
3736   __ load_klass(r19, r3);
3737 
3738   // Generate subtype check.  Blows r2, r5.  Object in r3.
3739   // Superklass in r0.  Subklass in r19.
3740   __ gen_subtype_check(r19, ok_is_subtype);
3741 
3742   // Come here on failure
3743   __ push(r3);
3744   // object is at TOS
3745   __ b(Interpreter::_throw_ClassCastException_entry);
3746 
3747   // Come here on success
3748   __ bind(ok_is_subtype);
3749   __ mov(r0, r3); // Restore object in r3
3750 



3751   // Collect counts on whether this test sees nulls a lot or not.
3752   if (ProfileInterpreter) {
3753     __ b(done);
3754     __ bind(is_null);
3755     __ profile_null_seen(r2);
3756   } else {
3757     __ bind(is_null);   // same as 'done'
3758   }

3759   __ bind(done);
3760 }
3761 
3762 void TemplateTable::instanceof() {
3763   transition(atos, itos);
3764   Label done, is_null, ok_is_subtype, quicked, resolved;
3765   __ cbz(r0, is_null);
3766 
3767   // Get cpool & tags index
3768   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3769   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3770   // See if bytecode has already been quicked
3771   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3772   __ lea(r1, Address(rscratch1, r19));
3773   __ ldarb(r1, r1);
3774   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3775   __ br(Assembler::EQ, quicked);
3776 
3777   __ push(atos); // save receiver for result, and for GC
3778   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3857 //       in the assembly code structure as well
3858 //
3859 // Stack layout:
3860 //
3861 // [expressions  ] <--- esp               = expression stack top
3862 // ..
3863 // [expressions  ]
3864 // [monitor entry] <--- monitor block top = expression stack bot
3865 // ..
3866 // [monitor entry]
3867 // [frame data   ] <--- monitor block bot
3868 // ...
3869 // [saved rfp    ] <--- rfp
3870 void TemplateTable::monitorenter()
3871 {
3872   transition(atos, vtos);
3873 
3874   // check for null object
3875   __ null_check(r0);
3876 




3877   const Address monitor_block_top(
3878         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3879   const Address monitor_block_bot(
3880         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3881   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3882 
3883   Label allocated;
3884 
3885   // initialize entry pointer
3886   __ mov(c_rarg1, zr); // points to free slot or null
3887 
3888   // find a free slot in the monitor block (result in c_rarg1)
3889   {
3890     Label entry, loop, exit;
3891     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3892     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3893     // c_rarg3 points to current entry, starting with top-most entry
3894 
3895     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3896 

3958   // c_rarg1: points to monitor entry
3959   __ bind(allocated);
3960 
3961   // Increment bcp to point to the next bytecode, so exception
3962   // handling for async. exceptions work correctly.
3963   // The object has already been popped from the stack, so the
3964   // expression stack looks correct.
3965   __ increment(rbcp);
3966 
3967   // store object
3968   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3969   __ lock_object(c_rarg1);
3970 
3971   // check to make sure this monitor doesn't cause stack overflow after locking
3972   __ save_bcp();  // in case of exception
3973   __ generate_stack_overflow_check(0);
3974 
3975   // The bcp has already been incremented. Just need to dispatch to
3976   // next instruction.
3977   __ dispatch_next(vtos);





3978 }
3979 
3980 
3981 void TemplateTable::monitorexit()
3982 {
3983   transition(atos, vtos);
3984 
3985   // check for null object
3986   __ null_check(r0);
3987 












3988   const Address monitor_block_top(
3989         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3990   const Address monitor_block_bot(
3991         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3992   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3993 
3994   Label found;
3995 
3996   // find matching slot
3997   {
3998     Label entry, loop;
3999     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4000     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4001     // c_rarg1 points to current entry, starting with top-most entry
4002 
4003     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4004                                         // of monitor block
4005     __ b(entry);
4006 
4007     __ bind(loop);

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {
 175   case Bytecodes::_fast_vputfield:
 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 737   locals_index_wide(r1);
 738   __ ldr(r0, aaddress(r1));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index)
 742 {
 743   // destroys r1, rscratch1
 744   // sign extend index for use by indexed load
 745   // __ movl2ptr(index, index);
 746   // check index
 747   Register length = rscratch1;
 748   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 749   __ cmpw(index, length);
 750   if (index != r1) {
 751     // ??? convention: move aberrant index into r1 for exception message
 752     assert(r1 != array, "different registers");
 753     __ mov(r1, index);
 754   }
 755   Label ok;
 756   __ br(Assembler::LO, ok);
 757   // ??? convention: move array into r3 for exception message
 758    __ mov(r3, array);
 759    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 760    __ br(rscratch1);
 761   __ bind(ok);
 762 }
 763 
 764 void TemplateTable::iaload()
 765 {
 766   transition(itos, itos);
 767   __ mov(r1, r0);
 768   __ pop_ptr(r0);
 769   // r0: array
 770   // r1: index
 771   index_check(r0, r1); // leaves index in r1, kills rscratch1
 772   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 773   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 774 }
 775 
 776 void TemplateTable::laload()
 777 {
 778   transition(itos, ltos);
 779   __ mov(r1, r0);
 780   __ pop_ptr(r0);

 800 void TemplateTable::daload()
 801 {
 802   transition(itos, dtos);
 803   __ mov(r1, r0);
 804   __ pop_ptr(r0);
 805   // r0: array
 806   // r1: index
 807   index_check(r0, r1); // leaves index in r1, kills rscratch1
 808   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 809   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 810 }
 811 
 812 void TemplateTable::aaload()
 813 {
 814   transition(itos, atos);
 815   __ mov(r1, r0);
 816   __ pop_ptr(r0);
 817   // r0: array
 818   // r1: index
 819   index_check(r0, r1); // leaves index in r1, kills rscratch1
 820   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 821   if (UseFlatArray) {
 822     Label is_flat_array, done;
 823 
 824     __ test_flat_array_oop(r0, r8 /*temp*/, is_flat_array);
 825     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 826     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 827 
 828     __ b(done);
 829     __ bind(is_flat_array);
 830     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load), r0, r1);
 831     // Ensure the stores to copy the inline field contents are visible
 832     // before any subsequent store that publishes this reference.
 833     __ membar(Assembler::StoreStore);
 834     __ bind(done);
 835   } else {
 836     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 837     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 838   }
 839   __ profile_element_type(r2, r0, r4);
 840 }
 841 
 842 void TemplateTable::baload()
 843 {
 844   transition(itos, itos);
 845   __ mov(r1, r0);
 846   __ pop_ptr(r0);
 847   // r0: array
 848   // r1: index
 849   index_check(r0, r1); // leaves index in r1, kills rscratch1
 850   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 851   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 852 }
 853 
 854 void TemplateTable::caload()
 855 {
 856   transition(itos, itos);
 857   __ mov(r1, r0);
 858   __ pop_ptr(r0);
 859   // r0: array

1106   // r1:  index
1107   // r3:  array
1108   index_check(r3, r1); // prefer index in r1
1109   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1110   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1111 }
1112 
1113 void TemplateTable::dastore() {
1114   transition(dtos, vtos);
1115   __ pop_i(r1);
1116   __ pop_ptr(r3);
1117   // v0: value
1118   // r1:  index
1119   // r3:  array
1120   index_check(r3, r1); // prefer index in r1
1121   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1122   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1123 }
1124 
1125 void TemplateTable::aastore() {
1126   Label is_null, is_flat_array, ok_is_subtype, done;
1127   transition(vtos, vtos);
1128   // stack: ..., array, index, value
1129   __ ldr(r0, at_tos());    // value
1130   __ ldr(r2, at_tos_p1()); // index
1131   __ ldr(r3, at_tos_p2()); // array
1132 


1133   index_check(r3, r2);     // kills r1
1134 
1135   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1136   __ profile_multiple_element_types(r4, r0, r5, r6);
1137 
1138   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1139   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1140   // Be careful not to clobber r4 below
1141 
1142   // do array store check - check for null value first
1143   __ cbz(r0, is_null);
1144 
1145   // Move array class to r5
1146   __ load_klass(r5, r3);
1147 
1148   if (UseFlatArray) {
1149     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1150     __ test_flat_array_layout(r6, is_flat_array);
1151   }
1152 
1153   // Move subklass into r1
1154   __ load_klass(r1, r0);
1155 
1156   // Move array element superklass into r0
1157   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1158   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1159 
1160   // Generate subtype check.  Blows r2, r5
1161   // Superklass in r0.  Subklass in r1.
1162 
1163   // is "r1 <: r0" ? (value subclass <: array element superclass)
1164   __ gen_subtype_check(r1, ok_is_subtype, false);
1165 
1166   // Come here on failure
1167   // object is at TOS
1168   __ b(Interpreter::_throw_ArrayStoreException_entry);
1169 
1170   // Come here on success
1171   __ bind(ok_is_subtype);
1172 
1173   // Get the value we will store
1174   __ ldr(r0, at_tos());
1175   // Now store using the appropriate barrier
1176   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1177   __ b(done);
1178 
1179   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1180   __ bind(is_null);
1181   if (EnableValhalla) {
1182     Label is_null_into_value_array_npe, store_null;
1183 
1184     // No way to store null in flat null-free array
1185     __ test_null_free_array_oop(r3, r8, is_null_into_value_array_npe);
1186     __ b(store_null);
1187 
1188     __ bind(is_null_into_value_array_npe);
1189     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1190 
1191     __ bind(store_null);
1192   }
1193 
1194   // Store a null
1195   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1196   __ b(done);
1197 
1198   if (UseFlatArray) {
1199      Label is_type_ok;
1200     __ bind(is_flat_array); // Store non-null value to flat
1201 
1202     // Simplistic type check...
1203     // r0 - value, r2 - index, r3 - array.
1204 
1205     // Profile the not-null value's klass.
1206     // Load value class
1207      __ load_klass(r1, r0);
1208 
1209     // Move element klass into r7
1210      __ ldr(r7, Address(r5, ArrayKlass::element_klass_offset()));
1211 
1212     // flat value array needs exact type match
1213     // is "r1 == r7" (value subclass == array element superclass)
1214 
1215      __ cmp(r7, r1);
1216      __ br(Assembler::EQ, is_type_ok);
1217 
1218      __ b(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1219 
1220      __ bind(is_type_ok);
1221     // r1: value's klass
1222     // r3: array
1223     // r5: array klass
1224     __ test_klass_is_empty_inline_type(r1, r7, done);
1225 
1226     // calc dst for copy
1227     __ ldrw(r7, at_tos_p1()); // index
1228     __ data_for_value_array_index(r3, r5, r7, r7);
1229 
1230     // ...and src for copy
1231     __ ldr(r6, at_tos());  // value
1232     __ data_for_oop(r6, r6, r1);
1233 
1234     __ mov(r4, r1);  // Shuffle arguments to avoid conflict with c_rarg1
1235     __ access_value_copy(IN_HEAP, r6, r7, r4);
1236   }
1237 
1238   // Pop stack arguments
1239   __ bind(done);
1240   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1241 }
1242 
1243 void TemplateTable::bastore()
1244 {
1245   transition(itos, vtos);
1246   __ pop_i(r1);
1247   __ pop_ptr(r3);
1248   // r0: value
1249   // r1: index
1250   // r3: array
1251   index_check(r3, r1); // prefer index in r1
1252 
1253   // Need to check whether array is boolean or byte
1254   // since both types share the bastore bytecode.
1255   __ load_klass(r2, r3);
1256   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

2021   __ br(j_not(cc), not_taken);
2022   branch(false, false);
2023   __ bind(not_taken);
2024   __ profile_not_taken_branch(r0);
2025 }
2026 
2027 void TemplateTable::if_nullcmp(Condition cc)
2028 {
2029   transition(atos, vtos);
2030   // assume branch is more often taken than not (loops use backward branches)
2031   Label not_taken;
2032   if (cc == equal)
2033     __ cbnz(r0, not_taken);
2034   else
2035     __ cbz(r0, not_taken);
2036   branch(false, false);
2037   __ bind(not_taken);
2038   __ profile_not_taken_branch(r0);
2039 }
2040 
2041 void TemplateTable::if_acmp(Condition cc) {

2042   transition(atos, vtos);
2043   // assume branch is more often taken than not (loops use backward branches)
2044   Label taken, not_taken;
2045   __ pop_ptr(r1);
2046 
2047   __ profile_acmp(r2, r1, r0, r4);
2048 
2049   Register is_inline_type_mask = rscratch1;
2050   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2051 
2052   if (EnableValhalla) {
2053     __ cmp(r1, r0);
2054     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2055 
2056     // might be substitutable, test if either r0 or r1 is null
2057     __ andr(r2, r0, r1);
2058     __ cbz(r2, (cc == equal) ? not_taken : taken);
2059 
2060     // and both are values ?
2061     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2062     __ andr(r2, r2, is_inline_type_mask);
2063     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2064     __ andr(r4, r4, is_inline_type_mask);
2065     __ andr(r2, r2, r4);
2066     __ cmp(r2,  is_inline_type_mask);
2067     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2068 
2069     // same value klass ?
2070     __ load_metadata(r2, r1);
2071     __ load_metadata(r4, r0);
2072     __ cmp(r2, r4);
2073     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2074 
2075     // Know both are the same type, let's test for substitutability...
2076     if (cc == equal) {
2077       invoke_is_substitutable(r0, r1, taken, not_taken);
2078     } else {
2079       invoke_is_substitutable(r0, r1, not_taken, taken);
2080     }
2081     __ stop("Not reachable");
2082   }
2083 
2084   __ cmpoop(r1, r0);
2085   __ br(j_not(cc), not_taken);
2086   __ bind(taken);
2087   branch(false, false);
2088   __ bind(not_taken);
2089   __ profile_not_taken_branch(r0, true);
2090 }
2091 
2092 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2093                                             Label& is_subst, Label& not_subst) {
2094 
2095   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2096   // Restored... r0 answer, jmp to outcome...
2097   __ cbz(r0, not_subst);
2098   __ b(is_subst);
2099 }
2100 
2101 
2102 void TemplateTable::ret() {
2103   transition(vtos, vtos);
2104   locals_index(r1);
2105   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2106   __ profile_ret(r1, r2);
2107   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2108   __ lea(rbcp, Address(rbcp, r1));
2109   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2110   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2111 }
2112 
2113 void TemplateTable::wide_ret() {
2114   transition(vtos, vtos);
2115   locals_index_wide(r1);
2116   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2117   __ profile_ret(r1, r2);
2118   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2119   __ lea(rbcp, Address(rbcp, r1));
2120   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2121   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2689     }
2690     // c_rarg1: object pointer or null
2691     // c_rarg2: cache entry pointer
2692     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2693                                        InterpreterRuntime::post_field_access),
2694                c_rarg1, c_rarg2);
2695     __ load_field_entry(cache, index);
2696     __ bind(L1);
2697   }
2698 }
2699 
2700 void TemplateTable::pop_and_check_object(Register r)
2701 {
2702   __ pop_ptr(r);
2703   __ null_check(r);  // for field access must check obj.
2704   __ verify_oop(r);
2705 }
2706 
2707 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2708 {
2709   const Register cache     = r2;
2710   const Register obj       = r4;
2711   const Register klass     = r5;
2712   const Register inline_klass = r7;
2713   const Register field_index = r23;
2714   const Register index     = r3;
2715   const Register tos_state = r3;
2716   const Register off       = r19;
2717   const Register flags     = r6;
2718   const Register bc        = r4; // uses same reg as obj, so don't mix them
2719 
2720   resolve_cache_and_index_for_field(byte_no, cache, index);
2721   jvmti_post_field_access(cache, index, is_static, false);
2722 
2723   // Valhalla extras
2724   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2725   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2726 
2727   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2728 
2729   if (!is_static) {
2730     // obj is on the stack
2731     pop_and_check_object(obj);
2732   }
2733 
2734   // 8179954: We need to make sure that the code generated for
2735   // volatile accesses forms a sequentially-consistent set of
2736   // operations when combined with STLR and LDAR.  Without a leading
2737   // membar it's possible for a simple Dekker test to fail if loads
2738   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2739   // the stores in one method and we interpret the loads in another.
2740   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2741     Label notVolatile;
2742     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2743     __ membar(MacroAssembler::AnyAny);
2744     __ bind(notVolatile);
2745   }
2746 

2765   __ b(Done);
2766 
2767   __ bind(notByte);
2768   __ cmp(tos_state, (u1)ztos);
2769   __ br(Assembler::NE, notBool);
2770 
2771   // ztos (same code as btos)
2772   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2773   __ push(ztos);
2774   // Rewrite bytecode to be faster
2775   if (rc == may_rewrite) {
2776     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2777     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2778   }
2779   __ b(Done);
2780 
2781   __ bind(notBool);
2782   __ cmp(tos_state, (u1)atos);
2783   __ br(Assembler::NE, notObj);
2784   // atos
2785   if (!EnableValhalla) {
2786     do_oop_load(_masm, field, r0, IN_HEAP);
2787     __ push(atos);
2788     if (rc == may_rewrite) {
2789       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2790     }
2791     __ b(Done);
2792   } else { // Valhalla
2793     if (is_static) {
2794       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2795       Label is_null_free_inline_type, uninitialized;
2796       // Issue below if the static field has not been initialized yet
2797       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_null_free_inline_type);
2798         // field is not a null free inline type
2799         __ push(atos);
2800         __ b(Done);
2801       // field is a null free inline type, must not return null even if uninitialized
2802       __ bind(is_null_free_inline_type);
2803         __ cbz(r0, uninitialized);
2804           __ push(atos);
2805           __ b(Done);
2806         __ bind(uninitialized);
2807           Label slow_case, finish;
2808           __ ldrb(rscratch1, Address(klass, InstanceKlass::init_state_offset()));
2809           __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized);
2810           __ br(Assembler::NE, slow_case);
2811           __ get_default_value_oop(klass, off /* temp */, r0);
2812         __ b(finish);
2813         __ bind(slow_case);
2814           __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_inline_type_field), obj, cache);
2815           __ bind(finish);
2816           __ verify_oop(r0);
2817           __ push(atos);
2818           __ b(Done);
2819     } else {
2820       Label is_flat, nonnull, is_inline_type, has_null_marker, rewrite_inline;
2821       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
2822       __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
2823         // Non-inline field case
2824         __ load_heap_oop(r0, field, rscratch1, rscratch2);
2825         __ push(atos);
2826         if (rc == may_rewrite) {
2827           patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2828         }
2829         __ b(Done);
2830       __ bind(is_inline_type);
2831         __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2832          // field is not flat
2833           __ load_heap_oop(r0, field, rscratch1, rscratch2);
2834           __ cbnz(r0, nonnull);
2835             __ get_inline_type_field_klass(klass, field_index, inline_klass);
2836             __ get_default_value_oop(inline_klass, klass /* temp */, r0);
2837           __ bind(nonnull);
2838           __ verify_oop(r0);
2839           __ push(atos);
2840           __ b(rewrite_inline);
2841         __ bind(is_flat);
2842         // field is flat
2843           __ mov(r0, obj);
2844           __ read_flat_field(klass, field_index, off, inline_klass /* temp */, r0);
2845           __ verify_oop(r0);
2846           __ push(atos);
2847           __ b(rewrite_inline);
2848         __ bind(has_null_marker);
2849           call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), obj, cache);
2850           __ verify_oop(r0);
2851           __ push(atos);
2852       __ bind(rewrite_inline);
2853       if (rc == may_rewrite) {
2854         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2855       }
2856       __ b(Done);
2857     }
2858   }

2859 
2860   __ bind(notObj);
2861   __ cmp(tos_state, (u1)itos);
2862   __ br(Assembler::NE, notInt);
2863   // itos
2864   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2865   __ push(itos);
2866   // Rewrite bytecode to be faster
2867   if (rc == may_rewrite) {
2868     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2869   }
2870   __ b(Done);
2871 
2872   __ bind(notInt);
2873   __ cmp(tos_state, (u1)ctos);
2874   __ br(Assembler::NE, notChar);
2875   // ctos
2876   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2877   __ push(ctos);
2878   // Rewrite bytecode to be faster

2999     // c_rarg1: object pointer set up above (null if static)
3000     // c_rarg2: cache entry pointer
3001     // c_rarg3: jvalue object on the stack
3002     __ call_VM(noreg,
3003                CAST_FROM_FN_PTR(address,
3004                                 InterpreterRuntime::post_field_modification),
3005                c_rarg1, c_rarg2, c_rarg3);
3006     __ load_field_entry(cache, index);
3007     __ bind(L1);
3008   }
3009 }
3010 
3011 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3012   transition(vtos, vtos);
3013 
3014   const Register cache     = r2;
3015   const Register index     = r3;
3016   const Register tos_state = r3;
3017   const Register obj       = r2;
3018   const Register off       = r19;
3019   const Register flags     = r6;
3020   const Register bc        = r4;
3021   const Register inline_klass = r5;
3022 
3023   resolve_cache_and_index_for_field(byte_no, cache, index);
3024   jvmti_post_field_mod(cache, index, is_static);
3025   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
3026 
3027   Label Done;


3028   {
3029     Label notVolatile;
3030     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3031     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3032     __ bind(notVolatile);
3033   }
3034 
3035   // field address
3036   const Address field(obj, off);
3037 
3038   Label notByte, notBool, notInt, notShort, notChar,
3039         notLong, notFloat, notObj, notDouble;
3040 
3041   assert(btos == 0, "change code, btos != 0");
3042   __ cbnz(tos_state, notByte);
3043 
3044   // Don't rewrite putstatic, only putfield
3045   if (is_static) rc = may_not_rewrite;
3046 
3047   // btos
3048   {
3049     __ pop(btos);
3050     if (!is_static) pop_and_check_object(obj);

3059   __ cmp(tos_state, (u1)ztos);
3060   __ br(Assembler::NE, notBool);
3061 
3062   // ztos
3063   {
3064     __ pop(ztos);
3065     if (!is_static) pop_and_check_object(obj);
3066     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3067     if (rc == may_rewrite) {
3068       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3069     }
3070     __ b(Done);
3071   }
3072 
3073   __ bind(notBool);
3074   __ cmp(tos_state, (u1)atos);
3075   __ br(Assembler::NE, notObj);
3076 
3077   // atos
3078   {
3079      if (!EnableValhalla) {
3080       __ pop(atos);
3081       if (!is_static) pop_and_check_object(obj);
3082       // Store into the field
3083       do_oop_store(_masm, field, r0, IN_HEAP);
3084       if (rc == may_rewrite) {
3085         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3086       }
3087       __ b(Done);
3088      } else { // Valhalla
3089       __ pop(atos);
3090       if (is_static) {
3091         Label is_inline_type;
3092          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_inline_type);
3093          __ null_check(r0);
3094          __ bind(is_inline_type);
3095          do_oop_store(_masm, field, r0, IN_HEAP);
3096          __ b(Done);
3097       } else {
3098         Label is_inline_type, is_flat, has_null_marker, rewrite_not_inline, rewrite_inline;
3099         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
3100         __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
3101         // Not an inline type
3102         pop_and_check_object(obj);
3103         // Store into the field
3104         do_oop_store(_masm, field, r0, IN_HEAP);
3105         __ bind(rewrite_not_inline);
3106         if (rc == may_rewrite) {
3107           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3108         }
3109         __ b(Done);
3110         // Implementation of the inline type semantic
3111         __ bind(is_inline_type);
3112         __ null_check(r0);
3113         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3114         // field is not flat
3115         pop_and_check_object(obj);
3116         // Store into the field
3117         do_oop_store(_masm, field, r0, IN_HEAP);
3118         __ b(rewrite_inline);
3119         __ bind(is_flat);
3120         // field is flat
3121         pop_and_check_object(obj);
3122         assert_different_registers(r0, inline_klass, obj, off);
3123         __ load_klass(inline_klass, r0);
3124         __ data_for_oop(r0, r0, inline_klass);
3125         __ add(obj, obj, off);
3126         __ access_value_copy(IN_HEAP, r0, obj, inline_klass);
3127         __ b(rewrite_inline);
3128         __ bind(has_null_marker);
3129         assert_different_registers(r0, cache, r19);
3130         pop_and_check_object(r19);
3131         __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r19, r0, cache);
3132         __ bind(rewrite_inline);
3133         if (rc == may_rewrite) {
3134           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3135         }
3136         __ b(Done);
3137       }
3138      }  // Valhalla
3139   }
3140 
3141   __ bind(notObj);
3142   __ cmp(tos_state, (u1)itos);
3143   __ br(Assembler::NE, notInt);
3144 
3145   // itos
3146   {
3147     __ pop(itos);
3148     if (!is_static) pop_and_check_object(obj);
3149     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3150     if (rc == may_rewrite) {
3151       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3152     }
3153     __ b(Done);
3154   }
3155 
3156   __ bind(notInt);
3157   __ cmp(tos_state, (u1)ctos);
3158   __ br(Assembler::NE, notChar);

3223   {
3224     __ pop(dtos);
3225     if (!is_static) pop_and_check_object(obj);
3226     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3227     if (rc == may_rewrite) {
3228       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3229     }
3230   }
3231 
3232 #ifdef ASSERT
3233   __ b(Done);
3234 
3235   __ bind(notDouble);
3236   __ stop("Bad state");
3237 #endif
3238 
3239   __ bind(Done);
3240 
3241   {
3242     Label notVolatile;
3243     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3244     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3245     __ bind(notVolatile);
3246   }
3247 }
3248 
3249 void TemplateTable::putfield(int byte_no)
3250 {
3251   putfield_or_static(byte_no, false);
3252 }
3253 
3254 void TemplateTable::nofast_putfield(int byte_no) {
3255   putfield_or_static(byte_no, false, may_not_rewrite);
3256 }
3257 
3258 void TemplateTable::putstatic(int byte_no) {
3259   putfield_or_static(byte_no, true);
3260 }
3261 
3262 void TemplateTable::jvmti_post_fast_field_mod() {
3263   if (JvmtiExport::can_post_field_modification()) {
3264     // Check to see if a field modification watch has been set before
3265     // we take the time to call into the VM.
3266     Label L2;
3267     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3268     __ ldrw(c_rarg3, Address(rscratch1));
3269     __ cbzw(c_rarg3, L2);
3270     __ pop_ptr(r19);                  // copy the object pointer from tos
3271     __ verify_oop(r19);
3272     __ push_ptr(r19);                 // put the object pointer back on tos
3273     // Save tos values before call_VM() clobbers them. Since we have
3274     // to do it for every data type, we use the saved values as the
3275     // jvalue object.
3276     switch (bytecode()) {          // load values into the jvalue object
3277     case Bytecodes::_fast_vputfield: //fall through
3278     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3279     case Bytecodes::_fast_bputfield: // fall through
3280     case Bytecodes::_fast_zputfield: // fall through
3281     case Bytecodes::_fast_sputfield: // fall through
3282     case Bytecodes::_fast_cputfield: // fall through
3283     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3284     case Bytecodes::_fast_dputfield: __ push_d(); break;
3285     case Bytecodes::_fast_fputfield: __ push_f(); break;
3286     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3287 
3288     default:
3289       ShouldNotReachHere();
3290     }
3291     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3292     // access constant pool cache entry
3293     __ load_field_entry(c_rarg2, r0);
3294     __ verify_oop(r19);
3295     // r19: object pointer copied above
3296     // c_rarg2: cache entry pointer
3297     // c_rarg3: jvalue object on the stack
3298     __ call_VM(noreg,
3299                CAST_FROM_FN_PTR(address,
3300                                 InterpreterRuntime::post_field_modification),
3301                r19, c_rarg2, c_rarg3);
3302 
3303     switch (bytecode()) {             // restore tos values
3304     case Bytecodes::_fast_vputfield: //fall through
3305     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3306     case Bytecodes::_fast_bputfield: // fall through
3307     case Bytecodes::_fast_zputfield: // fall through
3308     case Bytecodes::_fast_sputfield: // fall through
3309     case Bytecodes::_fast_cputfield: // fall through
3310     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3311     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3312     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3313     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3314     default: break;
3315     }
3316     __ bind(L2);
3317   }
3318 }
3319 
3320 void TemplateTable::fast_storefield(TosState state)
3321 {
3322   transition(state, vtos);
3323 
3324   ByteSize base = ConstantPoolCache::base_offset();

3335   // Must prevent reordering of the following cp cache loads with bytecode load
3336   __ membar(MacroAssembler::LoadLoad);
3337 
3338   {
3339     Label notVolatile;
3340     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3341     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3342     __ bind(notVolatile);
3343   }
3344 
3345   Label notVolatile;
3346 
3347   // Get object from stack
3348   pop_and_check_object(r2);
3349 
3350   // field address
3351   const Address field(r2, r1);
3352 
3353   // access field
3354   switch (bytecode()) {
3355   case Bytecodes::_fast_vputfield:
3356    {
3357       Label is_flat, has_null_marker, done;
3358       __ test_field_has_null_marker(r3, noreg /* temp */, has_null_marker);
3359       __ null_check(r0);
3360       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3361       // field is not flat
3362       do_oop_store(_masm, field, r0, IN_HEAP);
3363       __ b(done);
3364       __ bind(is_flat);
3365       // field is flat
3366       __ load_klass(r4, r0);
3367       __ data_for_oop(r0, r0, r4);
3368       __ lea(rscratch1, field);
3369       __ access_value_copy(IN_HEAP, r0, rscratch1, r4);
3370       __ b(done);
3371       __ bind(has_null_marker);
3372       __ load_field_entry(r4, r1);
3373       __ mov(r1, r2);
3374       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r1, r0, r4);
3375       __ bind(done);
3376     }
3377     break;
3378   case Bytecodes::_fast_aputfield:
3379     do_oop_store(_masm, field, r0, IN_HEAP);
3380     break;
3381   case Bytecodes::_fast_lputfield:
3382     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3383     break;
3384   case Bytecodes::_fast_iputfield:
3385     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3386     break;
3387   case Bytecodes::_fast_zputfield:
3388     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3389     break;
3390   case Bytecodes::_fast_bputfield:
3391     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3392     break;
3393   case Bytecodes::_fast_sputfield:
3394     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3395     break;
3396   case Bytecodes::_fast_cputfield:
3397     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3453   // r0: object
3454   __ verify_oop(r0);
3455   __ null_check(r0);
3456   const Address field(r0, r1);
3457 
3458   // 8179954: We need to make sure that the code generated for
3459   // volatile accesses forms a sequentially-consistent set of
3460   // operations when combined with STLR and LDAR.  Without a leading
3461   // membar it's possible for a simple Dekker test to fail if loads
3462   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3463   // the stores in one method and we interpret the loads in another.
3464   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3465     Label notVolatile;
3466     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3467     __ membar(MacroAssembler::AnyAny);
3468     __ bind(notVolatile);
3469   }
3470 
3471   // access field
3472   switch (bytecode()) {
3473   case Bytecodes::_fast_vgetfield:
3474     {
3475       Register index = r4, klass = r5, inline_klass = r6, tmp = r7;
3476       Label is_flat, has_null_marker, nonnull, Done;
3477       __ test_field_has_null_marker(r3, noreg /*temp*/, has_null_marker);
3478       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3479         // field is not flat
3480         __ load_heap_oop(r0, field, rscratch1, rscratch2);
3481         __ cbnz(r0, nonnull);
3482           __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3483           __ ldr(klass, Address(r2, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3484           __ get_inline_type_field_klass(klass, index, inline_klass);
3485           __ get_default_value_oop(inline_klass, tmp /* temp */, r0);
3486         __ bind(nonnull);
3487         __ verify_oop(r0);
3488         __ b(Done);
3489       __ bind(is_flat);
3490       // field is flat
3491         __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3492         __ ldr(klass, Address(r2, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3493         __ read_flat_field(klass, index, r1, tmp /* temp */, r0);
3494         __ verify_oop(r0);
3495         __ b(Done);
3496       __ bind(has_null_marker);
3497         call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), r0, r2);
3498         __ verify_oop(r0);
3499       __ bind(Done);
3500     }
3501     break;
3502   case Bytecodes::_fast_agetfield:
3503     do_oop_load(_masm, field, r0, IN_HEAP);
3504     __ verify_oop(r0);
3505     break;
3506   case Bytecodes::_fast_lgetfield:
3507     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3508     break;
3509   case Bytecodes::_fast_igetfield:
3510     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3511     break;
3512   case Bytecodes::_fast_bgetfield:
3513     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3514     break;
3515   case Bytecodes::_fast_sgetfield:
3516     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3517     break;
3518   case Bytecodes::_fast_cgetfield:
3519     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3520     break;
3521   case Bytecodes::_fast_fgetfield:

3900   Label initialize_header;
3901 
3902   __ get_cpool_and_tags(r4, r0);
3903   // Make sure the class we're about to instantiate has been resolved.
3904   // This is done before loading InstanceKlass to be consistent with the order
3905   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3906   const int tags_offset = Array<u1>::base_offset_in_bytes();
3907   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3908   __ lea(rscratch1, Address(rscratch1, tags_offset));
3909   __ ldarb(rscratch1, rscratch1);
3910   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3911   __ br(Assembler::NE, slow_case);
3912 
3913   // get InstanceKlass
3914   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3915 
3916   // make sure klass is initialized
3917   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3918   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3919 
3920   __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3921   __ b(done);























































3922 
3923   // slow case
3924   __ bind(slow_case);
3925   __ get_constant_pool(c_rarg1);
3926   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3927   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3928   __ verify_oop(r0);
3929 
3930   // continue
3931   __ bind(done);
3932   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3933   __ membar(Assembler::StoreStore);
3934 }
3935 
3936 void TemplateTable::newarray() {
3937   transition(itos, atos);
3938   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3939   __ mov(c_rarg2, r0);
3940   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3941           c_rarg1, c_rarg2);

3986   __ bind(quicked);
3987   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3988   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3989 
3990   __ bind(resolved);
3991   __ load_klass(r19, r3);
3992 
3993   // Generate subtype check.  Blows r2, r5.  Object in r3.
3994   // Superklass in r0.  Subklass in r19.
3995   __ gen_subtype_check(r19, ok_is_subtype);
3996 
3997   // Come here on failure
3998   __ push(r3);
3999   // object is at TOS
4000   __ b(Interpreter::_throw_ClassCastException_entry);
4001 
4002   // Come here on success
4003   __ bind(ok_is_subtype);
4004   __ mov(r0, r3); // Restore object in r3
4005 
4006   __ b(done);
4007   __ bind(is_null);
4008 
4009   // Collect counts on whether this test sees nulls a lot or not.
4010   if (ProfileInterpreter) {


4011     __ profile_null_seen(r2);


4012   }
4013 
4014   __ bind(done);
4015 }
4016 
4017 void TemplateTable::instanceof() {
4018   transition(atos, itos);
4019   Label done, is_null, ok_is_subtype, quicked, resolved;
4020   __ cbz(r0, is_null);
4021 
4022   // Get cpool & tags index
4023   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
4024   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
4025   // See if bytecode has already been quicked
4026   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
4027   __ lea(r1, Address(rscratch1, r19));
4028   __ ldarb(r1, r1);
4029   __ cmp(r1, (u1)JVM_CONSTANT_Class);
4030   __ br(Assembler::EQ, quicked);
4031 
4032   __ push(atos); // save receiver for result, and for GC
4033   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4112 //       in the assembly code structure as well
4113 //
4114 // Stack layout:
4115 //
4116 // [expressions  ] <--- esp               = expression stack top
4117 // ..
4118 // [expressions  ]
4119 // [monitor entry] <--- monitor block top = expression stack bot
4120 // ..
4121 // [monitor entry]
4122 // [frame data   ] <--- monitor block bot
4123 // ...
4124 // [saved rfp    ] <--- rfp
4125 void TemplateTable::monitorenter()
4126 {
4127   transition(atos, vtos);
4128 
4129   // check for null object
4130   __ null_check(r0);
4131 
4132   Label is_inline_type;
4133   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4134   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4135 
4136   const Address monitor_block_top(
4137         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4138   const Address monitor_block_bot(
4139         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4140   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4141 
4142   Label allocated;
4143 
4144   // initialize entry pointer
4145   __ mov(c_rarg1, zr); // points to free slot or null
4146 
4147   // find a free slot in the monitor block (result in c_rarg1)
4148   {
4149     Label entry, loop, exit;
4150     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4151     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4152     // c_rarg3 points to current entry, starting with top-most entry
4153 
4154     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4155 

4217   // c_rarg1: points to monitor entry
4218   __ bind(allocated);
4219 
4220   // Increment bcp to point to the next bytecode, so exception
4221   // handling for async. exceptions work correctly.
4222   // The object has already been popped from the stack, so the
4223   // expression stack looks correct.
4224   __ increment(rbcp);
4225 
4226   // store object
4227   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4228   __ lock_object(c_rarg1);
4229 
4230   // check to make sure this monitor doesn't cause stack overflow after locking
4231   __ save_bcp();  // in case of exception
4232   __ generate_stack_overflow_check(0);
4233 
4234   // The bcp has already been incremented. Just need to dispatch to
4235   // next instruction.
4236   __ dispatch_next(vtos);
4237 
4238   __ bind(is_inline_type);
4239   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4240                     InterpreterRuntime::throw_identity_exception), r0);
4241   __ should_not_reach_here();
4242 }
4243 
4244 
4245 void TemplateTable::monitorexit()
4246 {
4247   transition(atos, vtos);
4248 
4249   // check for null object
4250   __ null_check(r0);
4251 
4252   const int is_inline_type_mask = markWord::inline_type_pattern;
4253   Label has_identity;
4254   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4255   __ mov(rscratch2, is_inline_type_mask);
4256   __ andr(rscratch1, rscratch1, rscratch2);
4257   __ cmp(rscratch1, rscratch2);
4258   __ br(Assembler::NE, has_identity);
4259   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4260                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4261   __ should_not_reach_here();
4262   __ bind(has_identity);
4263 
4264   const Address monitor_block_top(
4265         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4266   const Address monitor_block_bot(
4267         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4268   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4269 
4270   Label found;
4271 
4272   // find matching slot
4273   {
4274     Label entry, loop;
4275     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4276     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4277     // c_rarg1 points to current entry, starting with top-most entry
4278 
4279     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4280                                         // of monitor block
4281     __ b(entry);
4282 
4283     __ bind(loop);
< prev index next >