< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

   1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.

 156 static void do_oop_load(InterpreterMacroAssembler* _masm,
 157                         Address src,
 158                         Register dst,
 159                         DecoratorSet decorators) {
 160   __ load_heap_oop(dst, src, r10, r11, decorators);
 161 }
 162 
 163 Address TemplateTable::at_bcp(int offset) {
 164   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 165   return Address(rbcp, offset);
 166 }
 167 
 168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 169                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 170                                    int byte_no)
 171 {
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {

 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 737   locals_index_wide(r1);
 738   __ ldr(r0, aaddress(r1));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index)
 742 {
 743   // destroys r1, rscratch1
 744   // sign extend index for use by indexed load
 745   // __ movl2ptr(index, index);
 746   // check index
 747   Register length = rscratch1;
 748   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 749   __ cmpw(index, length);
 750   if (index != r1) {
 751     // ??? convention: move aberrant index into r1 for exception message
 752     assert(r1 != array, "different registers");
 753     __ mov(r1, index);
 754   }
 755   Label ok;
 756   __ br(Assembler::LO, ok);
 757     // ??? convention: move array into r3 for exception message
 758   __ mov(r3, array);
 759   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 760   __ br(rscratch1);
 761   __ bind(ok);
 762 }
 763 
 764 void TemplateTable::iaload()
 765 {
 766   transition(itos, itos);
 767   __ mov(r1, r0);
 768   __ pop_ptr(r0);
 769   // r0: array
 770   // r1: index
 771   index_check(r0, r1); // leaves index in r1, kills rscratch1
 772   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 773   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 774 }
 775 
 776 void TemplateTable::laload()
 777 {
 778   transition(itos, ltos);
 779   __ mov(r1, r0);
 780   __ pop_ptr(r0);

 800 void TemplateTable::daload()
 801 {
 802   transition(itos, dtos);
 803   __ mov(r1, r0);
 804   __ pop_ptr(r0);
 805   // r0: array
 806   // r1: index
 807   index_check(r0, r1); // leaves index in r1, kills rscratch1
 808   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 809   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 810 }
 811 
 812 void TemplateTable::aaload()
 813 {
 814   transition(itos, atos);
 815   __ mov(r1, r0);
 816   __ pop_ptr(r0);
 817   // r0: array
 818   // r1: index
 819   index_check(r0, r1); // leaves index in r1, kills rscratch1
 820   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 821   do_oop_load(_masm,
 822               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 823               r0,
 824               IS_ARRAY);















 825 }
 826 
 827 void TemplateTable::baload()
 828 {
 829   transition(itos, itos);
 830   __ mov(r1, r0);
 831   __ pop_ptr(r0);
 832   // r0: array
 833   // r1: index
 834   index_check(r0, r1); // leaves index in r1, kills rscratch1
 835   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 836   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 837 }
 838 
 839 void TemplateTable::caload()
 840 {
 841   transition(itos, itos);
 842   __ mov(r1, r0);
 843   __ pop_ptr(r0);
 844   // r0: array

1091   // r1:  index
1092   // r3:  array
1093   index_check(r3, r1); // prefer index in r1
1094   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1095   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1096 }
1097 
1098 void TemplateTable::dastore() {
1099   transition(dtos, vtos);
1100   __ pop_i(r1);
1101   __ pop_ptr(r3);
1102   // v0: value
1103   // r1:  index
1104   // r3:  array
1105   index_check(r3, r1); // prefer index in r1
1106   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1107   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1108 }
1109 
1110 void TemplateTable::aastore() {
1111   Label is_null, ok_is_subtype, done;
1112   transition(vtos, vtos);
1113   // stack: ..., array, index, value
1114   __ ldr(r0, at_tos());    // value
1115   __ ldr(r2, at_tos_p1()); // index
1116   __ ldr(r3, at_tos_p2()); // array
1117 
1118   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1119 
1120   index_check(r3, r2);     // kills r1




1121   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1122 
1123   // do array store check - check for null value first
1124   __ cbz(r0, is_null);
1125 








1126   // Move subklass into r1
1127   __ load_klass(r1, r0);
1128   // Move superklass into r0
1129   __ load_klass(r0, r3);
1130   __ ldr(r0, Address(r0,
1131                      ObjArrayKlass::element_klass_offset()));
1132   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1133 
1134   // Generate subtype check.  Blows r2, r5
1135   // Superklass in r0.  Subklass in r1.
1136   __ gen_subtype_check(r1, ok_is_subtype);


1137 
1138   // Come here on failure
1139   // object is at TOS
1140   __ b(Interpreter::_throw_ArrayStoreException_entry);
1141 
1142   // Come here on success
1143   __ bind(ok_is_subtype);
1144 
1145   // Get the value we will store
1146   __ ldr(r0, at_tos());
1147   // Now store using the appropriate barrier
1148   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1149   __ b(done);
1150 
1151   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1152   __ bind(is_null);
1153   __ profile_null_seen(r2);















1154 
1155   // Store a null
1156   do_oop_store(_masm, element_address, noreg, IS_ARRAY);











1157 
1158   // Pop stack arguments
1159   __ bind(done);
1160   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1161 }
1162 
1163 void TemplateTable::bastore()
1164 {
1165   transition(itos, vtos);
1166   __ pop_i(r1);
1167   __ pop_ptr(r3);
1168   // r0: value
1169   // r1: index
1170   // r3: array
1171   index_check(r3, r1); // prefer index in r1
1172 
1173   // Need to check whether array is boolean or byte
1174   // since both types share the bastore bytecode.
1175   __ load_klass(r2, r3);
1176   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1941   __ br(j_not(cc), not_taken);
1942   branch(false, false);
1943   __ bind(not_taken);
1944   __ profile_not_taken_branch(r0);
1945 }
1946 
1947 void TemplateTable::if_nullcmp(Condition cc)
1948 {
1949   transition(atos, vtos);
1950   // assume branch is more often taken than not (loops use backward branches)
1951   Label not_taken;
1952   if (cc == equal)
1953     __ cbnz(r0, not_taken);
1954   else
1955     __ cbz(r0, not_taken);
1956   branch(false, false);
1957   __ bind(not_taken);
1958   __ profile_not_taken_branch(r0);
1959 }
1960 
1961 void TemplateTable::if_acmp(Condition cc)
1962 {
1963   transition(atos, vtos);
1964   // assume branch is more often taken than not (loops use backward branches)
1965   Label not_taken;
1966   __ pop_ptr(r1);






































1967   __ cmpoop(r1, r0);
1968   __ br(j_not(cc), not_taken);

1969   branch(false, false);
1970   __ bind(not_taken);
1971   __ profile_not_taken_branch(r0);









1972 }
1973 

1974 void TemplateTable::ret() {
1975   transition(vtos, vtos);
1976   locals_index(r1);
1977   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1978   __ profile_ret(r1, r2);
1979   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1980   __ lea(rbcp, Address(rbcp, r1));
1981   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1982   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1983 }
1984 
1985 void TemplateTable::wide_ret() {
1986   transition(vtos, vtos);
1987   locals_index_wide(r1);
1988   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1989   __ profile_ret(r1, r2);
1990   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1991   __ lea(rbcp, Address(rbcp, r1));
1992   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1993   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2563     }
2564     // c_rarg1: object pointer or null
2565     // c_rarg2: cache entry pointer
2566     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2567                                        InterpreterRuntime::post_field_access),
2568                c_rarg1, c_rarg2);
2569     __ load_field_entry(cache, index);
2570     __ bind(L1);
2571   }
2572 }
2573 
2574 void TemplateTable::pop_and_check_object(Register r)
2575 {
2576   __ pop_ptr(r);
2577   __ null_check(r);  // for field access must check obj.
2578   __ verify_oop(r);
2579 }
2580 
2581 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2582 {
2583   const Register cache     = r4;
2584   const Register obj       = r4;



2585   const Register index     = r3;
2586   const Register tos_state = r3;
2587   const Register off       = r19;
2588   const Register flags     = r6;
2589   const Register bc        = r4; // uses same reg as obj, so don't mix them
2590 
2591   resolve_cache_and_index_for_field(byte_no, cache, index);
2592   jvmti_post_field_access(cache, index, is_static, false);





2593   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2594 
2595   if (!is_static) {
2596     // obj is on the stack
2597     pop_and_check_object(obj);
2598   }
2599 
2600   // 8179954: We need to make sure that the code generated for
2601   // volatile accesses forms a sequentially-consistent set of
2602   // operations when combined with STLR and LDAR.  Without a leading
2603   // membar it's possible for a simple Dekker test to fail if loads
2604   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2605   // the stores in one method and we interpret the loads in another.
2606   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2607     Label notVolatile;
2608     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2609     __ membar(MacroAssembler::AnyAny);
2610     __ bind(notVolatile);
2611   }
2612 

2631   __ b(Done);
2632 
2633   __ bind(notByte);
2634   __ cmp(tos_state, (u1)ztos);
2635   __ br(Assembler::NE, notBool);
2636 
2637   // ztos (same code as btos)
2638   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2639   __ push(ztos);
2640   // Rewrite bytecode to be faster
2641   if (rc == may_rewrite) {
2642     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2643     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2644   }
2645   __ b(Done);
2646 
2647   __ bind(notBool);
2648   __ cmp(tos_state, (u1)atos);
2649   __ br(Assembler::NE, notObj);
2650   // atos
2651   do_oop_load(_masm, field, r0, IN_HEAP);
2652   __ push(atos);
2653   if (rc == may_rewrite) {
2654     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);





































































2655   }
2656   __ b(Done);
2657 
2658   __ bind(notObj);
2659   __ cmp(tos_state, (u1)itos);
2660   __ br(Assembler::NE, notInt);
2661   // itos
2662   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2663   __ push(itos);
2664   // Rewrite bytecode to be faster
2665   if (rc == may_rewrite) {
2666     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2667   }
2668   __ b(Done);
2669 
2670   __ bind(notInt);
2671   __ cmp(tos_state, (u1)ctos);
2672   __ br(Assembler::NE, notChar);
2673   // ctos
2674   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2675   __ push(ctos);
2676   // Rewrite bytecode to be faster

2797     // c_rarg1: object pointer set up above (null if static)
2798     // c_rarg2: cache entry pointer
2799     // c_rarg3: jvalue object on the stack
2800     __ call_VM(noreg,
2801                CAST_FROM_FN_PTR(address,
2802                                 InterpreterRuntime::post_field_modification),
2803                c_rarg1, c_rarg2, c_rarg3);
2804     __ load_field_entry(cache, index);
2805     __ bind(L1);
2806   }
2807 }
2808 
2809 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2810   transition(vtos, vtos);
2811 
2812   const Register cache     = r2;
2813   const Register index     = r3;
2814   const Register tos_state = r3;
2815   const Register obj       = r2;
2816   const Register off       = r19;
2817   const Register flags     = r0;
2818   const Register bc        = r4;

2819 
2820   resolve_cache_and_index_for_field(byte_no, cache, index);
2821   jvmti_post_field_mod(cache, index, is_static);
2822   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2823 
2824   Label Done;
2825   __ mov(r5, flags);
2826 
2827   {
2828     Label notVolatile;
2829     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2830     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2831     __ bind(notVolatile);
2832   }
2833 
2834   // field address
2835   const Address field(obj, off);
2836 
2837   Label notByte, notBool, notInt, notShort, notChar,
2838         notLong, notFloat, notObj, notDouble;
2839 
2840   assert(btos == 0, "change code, btos != 0");
2841   __ cbnz(tos_state, notByte);
2842 
2843   // Don't rewrite putstatic, only putfield
2844   if (is_static) rc = may_not_rewrite;
2845 
2846   // btos
2847   {
2848     __ pop(btos);
2849     if (!is_static) pop_and_check_object(obj);

2858   __ cmp(tos_state, (u1)ztos);
2859   __ br(Assembler::NE, notBool);
2860 
2861   // ztos
2862   {
2863     __ pop(ztos);
2864     if (!is_static) pop_and_check_object(obj);
2865     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2866     if (rc == may_rewrite) {
2867       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2868     }
2869     __ b(Done);
2870   }
2871 
2872   __ bind(notBool);
2873   __ cmp(tos_state, (u1)atos);
2874   __ br(Assembler::NE, notObj);
2875 
2876   // atos
2877   {
2878     __ pop(atos);
2879     if (!is_static) pop_and_check_object(obj);
2880     // Store into the field
2881     do_oop_store(_masm, field, r0, IN_HEAP);
2882     if (rc == may_rewrite) {
2883       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2884     }
2885     __ b(Done);























































2886   }
2887 
2888   __ bind(notObj);
2889   __ cmp(tos_state, (u1)itos);
2890   __ br(Assembler::NE, notInt);
2891 
2892   // itos
2893   {
2894     __ pop(itos);
2895     if (!is_static) pop_and_check_object(obj);
2896     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2897     if (rc == may_rewrite) {
2898       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2899     }
2900     __ b(Done);
2901   }
2902 
2903   __ bind(notInt);
2904   __ cmp(tos_state, (u1)ctos);
2905   __ br(Assembler::NE, notChar);

2970   {
2971     __ pop(dtos);
2972     if (!is_static) pop_and_check_object(obj);
2973     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2974     if (rc == may_rewrite) {
2975       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2976     }
2977   }
2978 
2979 #ifdef ASSERT
2980   __ b(Done);
2981 
2982   __ bind(notDouble);
2983   __ stop("Bad state");
2984 #endif
2985 
2986   __ bind(Done);
2987 
2988   {
2989     Label notVolatile;
2990     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2991     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2992     __ bind(notVolatile);
2993   }
2994 }
2995 
2996 void TemplateTable::putfield(int byte_no)
2997 {
2998   putfield_or_static(byte_no, false);
2999 }
3000 
3001 void TemplateTable::nofast_putfield(int byte_no) {
3002   putfield_or_static(byte_no, false, may_not_rewrite);
3003 }
3004 
3005 void TemplateTable::putstatic(int byte_no) {
3006   putfield_or_static(byte_no, true);
3007 }
3008 
3009 void TemplateTable::jvmti_post_fast_field_mod() {
3010   if (JvmtiExport::can_post_field_modification()) {
3011     // Check to see if a field modification watch has been set before
3012     // we take the time to call into the VM.
3013     Label L2;
3014     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3015     __ ldrw(c_rarg3, Address(rscratch1));
3016     __ cbzw(c_rarg3, L2);
3017     __ pop_ptr(r19);                  // copy the object pointer from tos
3018     __ verify_oop(r19);
3019     __ push_ptr(r19);                 // put the object pointer back on tos
3020     // Save tos values before call_VM() clobbers them. Since we have
3021     // to do it for every data type, we use the saved values as the
3022     // jvalue object.
3023     switch (bytecode()) {          // load values into the jvalue object

3024     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3025     case Bytecodes::_fast_bputfield: // fall through
3026     case Bytecodes::_fast_zputfield: // fall through
3027     case Bytecodes::_fast_sputfield: // fall through
3028     case Bytecodes::_fast_cputfield: // fall through
3029     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3030     case Bytecodes::_fast_dputfield: __ push_d(); break;
3031     case Bytecodes::_fast_fputfield: __ push_f(); break;
3032     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3033 
3034     default:
3035       ShouldNotReachHere();
3036     }
3037     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3038     // access constant pool cache entry
3039     __ load_field_entry(c_rarg2, r0);
3040     __ verify_oop(r19);
3041     // r19: object pointer copied above
3042     // c_rarg2: cache entry pointer
3043     // c_rarg3: jvalue object on the stack
3044     __ call_VM(noreg,
3045                CAST_FROM_FN_PTR(address,
3046                                 InterpreterRuntime::post_field_modification),
3047                r19, c_rarg2, c_rarg3);
3048 
3049     switch (bytecode()) {             // restore tos values

3050     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3051     case Bytecodes::_fast_bputfield: // fall through
3052     case Bytecodes::_fast_zputfield: // fall through
3053     case Bytecodes::_fast_sputfield: // fall through
3054     case Bytecodes::_fast_cputfield: // fall through
3055     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3056     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3057     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3058     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3059     default: break;
3060     }
3061     __ bind(L2);
3062   }
3063 }
3064 
3065 void TemplateTable::fast_storefield(TosState state)
3066 {
3067   transition(state, vtos);
3068 
3069   ByteSize base = ConstantPoolCache::base_offset();

3076   // R1: field offset, R2: field holder, R3: flags
3077   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3078 
3079   {
3080     Label notVolatile;
3081     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3082     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3083     __ bind(notVolatile);
3084   }
3085 
3086   Label notVolatile;
3087 
3088   // Get object from stack
3089   pop_and_check_object(r2);
3090 
3091   // field address
3092   const Address field(r2, r1);
3093 
3094   // access field
3095   switch (bytecode()) {



























3096   case Bytecodes::_fast_aputfield:
3097     do_oop_store(_masm, field, r0, IN_HEAP);
3098     break;
3099   case Bytecodes::_fast_lputfield:
3100     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3101     break;
3102   case Bytecodes::_fast_iputfield:
3103     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3104     break;
3105   case Bytecodes::_fast_zputfield:
3106     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3107     break;
3108   case Bytecodes::_fast_bputfield:
3109     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3110     break;
3111   case Bytecodes::_fast_sputfield:
3112     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3113     break;
3114   case Bytecodes::_fast_cputfield:
3115     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3168   // r0: object
3169   __ verify_oop(r0);
3170   __ null_check(r0);
3171   const Address field(r0, r1);
3172 
3173   // 8179954: We need to make sure that the code generated for
3174   // volatile accesses forms a sequentially-consistent set of
3175   // operations when combined with STLR and LDAR.  Without a leading
3176   // membar it's possible for a simple Dekker test to fail if loads
3177   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3178   // the stores in one method and we interpret the loads in another.
3179   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3180     Label notVolatile;
3181     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3182     __ membar(MacroAssembler::AnyAny);
3183     __ bind(notVolatile);
3184   }
3185 
3186   // access field
3187   switch (bytecode()) {




























3188   case Bytecodes::_fast_agetfield:
3189     do_oop_load(_masm, field, r0, IN_HEAP);
3190     __ verify_oop(r0);
3191     break;
3192   case Bytecodes::_fast_lgetfield:
3193     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3194     break;
3195   case Bytecodes::_fast_igetfield:
3196     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3197     break;
3198   case Bytecodes::_fast_bgetfield:
3199     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3200     break;
3201   case Bytecodes::_fast_sgetfield:
3202     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3203     break;
3204   case Bytecodes::_fast_cgetfield:
3205     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3206     break;
3207   case Bytecodes::_fast_fgetfield:

3586   Label initialize_header;
3587 
3588   __ get_cpool_and_tags(r4, r0);
3589   // Make sure the class we're about to instantiate has been resolved.
3590   // This is done before loading InstanceKlass to be consistent with the order
3591   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3592   const int tags_offset = Array<u1>::base_offset_in_bytes();
3593   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3594   __ lea(rscratch1, Address(rscratch1, tags_offset));
3595   __ ldarb(rscratch1, rscratch1);
3596   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3597   __ br(Assembler::NE, slow_case);
3598 
3599   // get InstanceKlass
3600   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3601 
3602   // make sure klass is initialized
3603   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3604   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3605 
3606   // get instance_size in InstanceKlass (scaled to a count of bytes)
3607   __ ldrw(r3,
3608           Address(r4,
3609                   Klass::layout_helper_offset()));
3610   // test to see if it is malformed in some way
3611   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3612 
3613   // Allocate the instance:
3614   //  If TLAB is enabled:
3615   //    Try to allocate in the TLAB.
3616   //    If fails, go to the slow path.
3617   //    Initialize the allocation.
3618   //    Exit.
3619   //
3620   //  Go to slow path.
3621 
3622   if (UseTLAB) {
3623     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3624 
3625     if (ZeroTLAB) {
3626       // the fields have been already cleared
3627       __ b(initialize_header);
3628     }
3629 
3630     // The object is initialized before the header.  If the object size is
3631     // zero, go directly to the header initialization.
3632     __ sub(r3, r3, sizeof(oopDesc));
3633     __ cbz(r3, initialize_header);
3634 
3635     // Initialize object fields
3636     {
3637       __ add(r2, r0, sizeof(oopDesc));
3638       Label loop;
3639       __ bind(loop);
3640       __ str(zr, Address(__ post(r2, BytesPerLong)));
3641       __ sub(r3, r3, BytesPerLong);
3642       __ cbnz(r3, loop);
3643     }
3644 
3645     // initialize object header only.
3646     __ bind(initialize_header);
3647     __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3648     __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3649     __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3650     __ store_klass(r0, r4);      // store klass last
3651 
3652     if (DTraceAllocProbes) {
3653       // Trigger dtrace event for fastpath
3654       __ push(atos); // save the return value
3655       __ call_VM_leaf(
3656            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3657       __ pop(atos); // restore the return value
3658 
3659     }
3660     __ b(done);
3661   }
3662 
3663   // slow case
3664   __ bind(slow_case);
3665   __ get_constant_pool(c_rarg1);
3666   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3667   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3668   __ verify_oop(r0);
3669 
3670   // continue
3671   __ bind(done);
3672   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3673   __ membar(Assembler::StoreStore);
3674 }
3675 
3676 void TemplateTable::newarray() {
3677   transition(itos, atos);
3678   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3679   __ mov(c_rarg2, r0);
3680   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3681           c_rarg1, c_rarg2);

3726   __ bind(quicked);
3727   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3728   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3729 
3730   __ bind(resolved);
3731   __ load_klass(r19, r3);
3732 
3733   // Generate subtype check.  Blows r2, r5.  Object in r3.
3734   // Superklass in r0.  Subklass in r19.
3735   __ gen_subtype_check(r19, ok_is_subtype);
3736 
3737   // Come here on failure
3738   __ push(r3);
3739   // object is at TOS
3740   __ b(Interpreter::_throw_ClassCastException_entry);
3741 
3742   // Come here on success
3743   __ bind(ok_is_subtype);
3744   __ mov(r0, r3); // Restore object in r3
3745 



3746   // Collect counts on whether this test sees nulls a lot or not.
3747   if (ProfileInterpreter) {
3748     __ b(done);
3749     __ bind(is_null);
3750     __ profile_null_seen(r2);
3751   } else {
3752     __ bind(is_null);   // same as 'done'
3753   }

3754   __ bind(done);
3755 }
3756 
3757 void TemplateTable::instanceof() {
3758   transition(atos, itos);
3759   Label done, is_null, ok_is_subtype, quicked, resolved;
3760   __ cbz(r0, is_null);
3761 
3762   // Get cpool & tags index
3763   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3764   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3765   // See if bytecode has already been quicked
3766   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3767   __ lea(r1, Address(rscratch1, r19));
3768   __ ldarb(r1, r1);
3769   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3770   __ br(Assembler::EQ, quicked);
3771 
3772   __ push(atos); // save receiver for result, and for GC
3773   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3852 //       in the assembly code structure as well
3853 //
3854 // Stack layout:
3855 //
3856 // [expressions  ] <--- esp               = expression stack top
3857 // ..
3858 // [expressions  ]
3859 // [monitor entry] <--- monitor block top = expression stack bot
3860 // ..
3861 // [monitor entry]
3862 // [frame data   ] <--- monitor block bot
3863 // ...
3864 // [saved rfp    ] <--- rfp
3865 void TemplateTable::monitorenter()
3866 {
3867   transition(atos, vtos);
3868 
3869   // check for null object
3870   __ null_check(r0);
3871 




3872   const Address monitor_block_top(
3873         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3874   const Address monitor_block_bot(
3875         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3876   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3877 
3878   Label allocated;
3879 
3880   // initialize entry pointer
3881   __ mov(c_rarg1, zr); // points to free slot or null
3882 
3883   // find a free slot in the monitor block (result in c_rarg1)
3884   {
3885     Label entry, loop, exit;
3886     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3887     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3888     // c_rarg3 points to current entry, starting with top-most entry
3889 
3890     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3891 

3953   // c_rarg1: points to monitor entry
3954   __ bind(allocated);
3955 
3956   // Increment bcp to point to the next bytecode, so exception
3957   // handling for async. exceptions work correctly.
3958   // The object has already been popped from the stack, so the
3959   // expression stack looks correct.
3960   __ increment(rbcp);
3961 
3962   // store object
3963   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3964   __ lock_object(c_rarg1);
3965 
3966   // check to make sure this monitor doesn't cause stack overflow after locking
3967   __ save_bcp();  // in case of exception
3968   __ generate_stack_overflow_check(0);
3969 
3970   // The bcp has already been incremented. Just need to dispatch to
3971   // next instruction.
3972   __ dispatch_next(vtos);





3973 }
3974 
3975 
3976 void TemplateTable::monitorexit()
3977 {
3978   transition(atos, vtos);
3979 
3980   // check for null object
3981   __ null_check(r0);
3982 












3983   const Address monitor_block_top(
3984         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3985   const Address monitor_block_bot(
3986         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3987   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3988 
3989   Label found;
3990 
3991   // find matching slot
3992   {
3993     Label entry, loop;
3994     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
3995     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
3996     // c_rarg1 points to current entry, starting with top-most entry
3997 
3998     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3999                                         // of monitor block
4000     __ b(entry);
4001 
4002     __ bind(loop);

   1 /*
   2  * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.

 156 static void do_oop_load(InterpreterMacroAssembler* _masm,
 157                         Address src,
 158                         Register dst,
 159                         DecoratorSet decorators) {
 160   __ load_heap_oop(dst, src, r10, r11, decorators);
 161 }
 162 
 163 Address TemplateTable::at_bcp(int offset) {
 164   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 165   return Address(rbcp, offset);
 166 }
 167 
 168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 169                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 170                                    int byte_no)
 171 {
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {
 176   case Bytecodes::_fast_vputfield:
 177   case Bytecodes::_fast_aputfield:
 178   case Bytecodes::_fast_bputfield:
 179   case Bytecodes::_fast_zputfield:
 180   case Bytecodes::_fast_cputfield:
 181   case Bytecodes::_fast_dputfield:
 182   case Bytecodes::_fast_fputfield:
 183   case Bytecodes::_fast_iputfield:
 184   case Bytecodes::_fast_lputfield:
 185   case Bytecodes::_fast_sputfield:
 186     {
 187       // We skip bytecode quickening for putfield instructions when
 188       // the put_code written to the constant pool cache is zero.
 189       // This is required so that every execution of this instruction
 190       // calls out to InterpreterRuntime::resolve_get_put to do
 191       // additional, required work.
 192       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 193       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 194       __ load_field_entry(temp_reg, bc_reg);
 195       if (byte_no == f1_byte) {
 196         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 738   locals_index_wide(r1);
 739   __ ldr(r0, aaddress(r1));
 740 }
 741 
 742 void TemplateTable::index_check(Register array, Register index)
 743 {
 744   // destroys r1, rscratch1
 745   // sign extend index for use by indexed load
 746   // __ movl2ptr(index, index);
 747   // check index
 748   Register length = rscratch1;
 749   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 750   __ cmpw(index, length);
 751   if (index != r1) {
 752     // ??? convention: move aberrant index into r1 for exception message
 753     assert(r1 != array, "different registers");
 754     __ mov(r1, index);
 755   }
 756   Label ok;
 757   __ br(Assembler::LO, ok);
 758   // ??? convention: move array into r3 for exception message
 759    __ mov(r3, array);
 760    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 761    __ br(rscratch1);
 762   __ bind(ok);
 763 }
 764 
 765 void TemplateTable::iaload()
 766 {
 767   transition(itos, itos);
 768   __ mov(r1, r0);
 769   __ pop_ptr(r0);
 770   // r0: array
 771   // r1: index
 772   index_check(r0, r1); // leaves index in r1, kills rscratch1
 773   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 774   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 775 }
 776 
 777 void TemplateTable::laload()
 778 {
 779   transition(itos, ltos);
 780   __ mov(r1, r0);
 781   __ pop_ptr(r0);

 801 void TemplateTable::daload()
 802 {
 803   transition(itos, dtos);
 804   __ mov(r1, r0);
 805   __ pop_ptr(r0);
 806   // r0: array
 807   // r1: index
 808   index_check(r0, r1); // leaves index in r1, kills rscratch1
 809   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 810   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 811 }
 812 
 813 void TemplateTable::aaload()
 814 {
 815   transition(itos, atos);
 816   __ mov(r1, r0);
 817   __ pop_ptr(r0);
 818   // r0: array
 819   // r1: index
 820   index_check(r0, r1); // leaves index in r1, kills rscratch1
 821   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 822   if (UseFlatArray) {
 823     Label is_flat_array, done;
 824 
 825     __ test_flat_array_oop(r0, r8 /*temp*/, is_flat_array);
 826     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 827     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 828 
 829     __ b(done);
 830     __ bind(is_flat_array);
 831     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 832     // Ensure the stores to copy the inline field contents are visible
 833     // before any subsequent store that publishes this reference.
 834     __ membar(Assembler::StoreStore);
 835     __ bind(done);
 836   } else {
 837     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 838     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 839   }
 840   __ profile_element_type(r2, r0, r4);
 841 }
 842 
 843 void TemplateTable::baload()
 844 {
 845   transition(itos, itos);
 846   __ mov(r1, r0);
 847   __ pop_ptr(r0);
 848   // r0: array
 849   // r1: index
 850   index_check(r0, r1); // leaves index in r1, kills rscratch1
 851   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 852   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 853 }
 854 
 855 void TemplateTable::caload()
 856 {
 857   transition(itos, itos);
 858   __ mov(r1, r0);
 859   __ pop_ptr(r0);
 860   // r0: array

1107   // r1:  index
1108   // r3:  array
1109   index_check(r3, r1); // prefer index in r1
1110   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1111   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1112 }
1113 
1114 void TemplateTable::dastore() {
1115   transition(dtos, vtos);
1116   __ pop_i(r1);
1117   __ pop_ptr(r3);
1118   // v0: value
1119   // r1:  index
1120   // r3:  array
1121   index_check(r3, r1); // prefer index in r1
1122   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1123   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1124 }
1125 
1126 void TemplateTable::aastore() {
1127   Label is_null, is_flat_array, ok_is_subtype, done;
1128   transition(vtos, vtos);
1129   // stack: ..., array, index, value
1130   __ ldr(r0, at_tos());    // value
1131   __ ldr(r2, at_tos_p1()); // index
1132   __ ldr(r3, at_tos_p2()); // array
1133 


1134   index_check(r3, r2);     // kills r1
1135 
1136   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1137   __ profile_multiple_element_types(r4, r0, r5, r6);
1138 
1139   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1140   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1141   // Be careful not to clobber r4 below
1142 
1143   // do array store check - check for null value first
1144   __ cbz(r0, is_null);
1145 
1146   // Move array class to r5
1147   __ load_klass(r5, r3);
1148 
1149   if (UseFlatArray) {
1150     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1151     __ test_flat_array_layout(r6, is_flat_array);
1152   }
1153 
1154   // Move subklass into r1
1155   __ load_klass(r1, r0);
1156 
1157   // Move array element superklass into r0
1158   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1159   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1160 
1161   // Generate subtype check.  Blows r2, r5
1162   // Superklass in r0.  Subklass in r1.
1163 
1164   // is "r1 <: r0" ? (value subclass <: array element superclass)
1165   __ gen_subtype_check(r1, ok_is_subtype, false);
1166 
1167   // Come here on failure
1168   // object is at TOS
1169   __ b(Interpreter::_throw_ArrayStoreException_entry);
1170 
1171   // Come here on success
1172   __ bind(ok_is_subtype);
1173 
1174   // Get the value we will store
1175   __ ldr(r0, at_tos());
1176   // Now store using the appropriate barrier
1177   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1178   __ b(done);
1179 
1180   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1181   __ bind(is_null);
1182   if (EnableValhalla) {
1183     Label is_null_into_value_array_npe, store_null;
1184 
1185     if (UseFlatArray) {
1186       __ test_flat_array_oop(r3, r8, is_flat_array);
1187     }
1188 
1189     // No way to store null in a null-free array
1190     __ test_null_free_array_oop(r3, r8, is_null_into_value_array_npe);
1191     __ b(store_null);
1192 
1193     __ bind(is_null_into_value_array_npe);
1194     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1195 
1196     __ bind(store_null);
1197   }
1198 
1199   // Store a null
1200   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1201   __ b(done);
1202 
1203   if (UseFlatArray) {
1204      Label is_type_ok;
1205     __ bind(is_flat_array); // Store non-null value to flat
1206 
1207     __ ldr(r0, at_tos());    // value
1208     __ ldr(r3, at_tos_p1()); // index
1209     __ ldr(r2, at_tos_p2()); // array
1210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1211   }
1212 
1213   // Pop stack arguments
1214   __ bind(done);
1215   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1216 }
1217 
1218 void TemplateTable::bastore()
1219 {
1220   transition(itos, vtos);
1221   __ pop_i(r1);
1222   __ pop_ptr(r3);
1223   // r0: value
1224   // r1: index
1225   // r3: array
1226   index_check(r3, r1); // prefer index in r1
1227 
1228   // Need to check whether array is boolean or byte
1229   // since both types share the bastore bytecode.
1230   __ load_klass(r2, r3);
1231   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1996   __ br(j_not(cc), not_taken);
1997   branch(false, false);
1998   __ bind(not_taken);
1999   __ profile_not_taken_branch(r0);
2000 }
2001 
2002 void TemplateTable::if_nullcmp(Condition cc)
2003 {
2004   transition(atos, vtos);
2005   // assume branch is more often taken than not (loops use backward branches)
2006   Label not_taken;
2007   if (cc == equal)
2008     __ cbnz(r0, not_taken);
2009   else
2010     __ cbz(r0, not_taken);
2011   branch(false, false);
2012   __ bind(not_taken);
2013   __ profile_not_taken_branch(r0);
2014 }
2015 
2016 void TemplateTable::if_acmp(Condition cc) {

2017   transition(atos, vtos);
2018   // assume branch is more often taken than not (loops use backward branches)
2019   Label taken, not_taken;
2020   __ pop_ptr(r1);
2021 
2022   __ profile_acmp(r2, r1, r0, r4);
2023 
2024   Register is_inline_type_mask = rscratch1;
2025   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2026 
2027   if (EnableValhalla) {
2028     __ cmp(r1, r0);
2029     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2030 
2031     // might be substitutable, test if either r0 or r1 is null
2032     __ andr(r2, r0, r1);
2033     __ cbz(r2, (cc == equal) ? not_taken : taken);
2034 
2035     // and both are values ?
2036     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2037     __ andr(r2, r2, is_inline_type_mask);
2038     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2039     __ andr(r4, r4, is_inline_type_mask);
2040     __ andr(r2, r2, r4);
2041     __ cmp(r2,  is_inline_type_mask);
2042     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2043 
2044     // same value klass ?
2045     __ load_metadata(r2, r1);
2046     __ load_metadata(r4, r0);
2047     __ cmp(r2, r4);
2048     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2049 
2050     // Know both are the same type, let's test for substitutability...
2051     if (cc == equal) {
2052       invoke_is_substitutable(r0, r1, taken, not_taken);
2053     } else {
2054       invoke_is_substitutable(r0, r1, not_taken, taken);
2055     }
2056     __ stop("Not reachable");
2057   }
2058 
2059   __ cmpoop(r1, r0);
2060   __ br(j_not(cc), not_taken);
2061   __ bind(taken);
2062   branch(false, false);
2063   __ bind(not_taken);
2064   __ profile_not_taken_branch(r0, true);
2065 }
2066 
2067 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2068                                             Label& is_subst, Label& not_subst) {
2069 
2070   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2071   // Restored... r0 answer, jmp to outcome...
2072   __ cbz(r0, not_subst);
2073   __ b(is_subst);
2074 }
2075 
2076 
2077 void TemplateTable::ret() {
2078   transition(vtos, vtos);
2079   locals_index(r1);
2080   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2081   __ profile_ret(r1, r2);
2082   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2083   __ lea(rbcp, Address(rbcp, r1));
2084   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2085   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2086 }
2087 
2088 void TemplateTable::wide_ret() {
2089   transition(vtos, vtos);
2090   locals_index_wide(r1);
2091   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2092   __ profile_ret(r1, r2);
2093   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2094   __ lea(rbcp, Address(rbcp, r1));
2095   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2096   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2666     }
2667     // c_rarg1: object pointer or null
2668     // c_rarg2: cache entry pointer
2669     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2670                                        InterpreterRuntime::post_field_access),
2671                c_rarg1, c_rarg2);
2672     __ load_field_entry(cache, index);
2673     __ bind(L1);
2674   }
2675 }
2676 
2677 void TemplateTable::pop_and_check_object(Register r)
2678 {
2679   __ pop_ptr(r);
2680   __ null_check(r);  // for field access must check obj.
2681   __ verify_oop(r);
2682 }
2683 
2684 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2685 {
2686   const Register cache     = r2;
2687   const Register obj       = r4;
2688   const Register klass     = r5;
2689   const Register inline_klass = r7;
2690   const Register field_index = r23;
2691   const Register index     = r3;
2692   const Register tos_state = r3;
2693   const Register off       = r19;
2694   const Register flags     = r6;
2695   const Register bc        = r4; // uses same reg as obj, so don't mix them
2696 
2697   resolve_cache_and_index_for_field(byte_no, cache, index);
2698   jvmti_post_field_access(cache, index, is_static, false);
2699 
2700   // Valhalla extras
2701   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2702   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2703 
2704   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2705 
2706   if (!is_static) {
2707     // obj is on the stack
2708     pop_and_check_object(obj);
2709   }
2710 
2711   // 8179954: We need to make sure that the code generated for
2712   // volatile accesses forms a sequentially-consistent set of
2713   // operations when combined with STLR and LDAR.  Without a leading
2714   // membar it's possible for a simple Dekker test to fail if loads
2715   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2716   // the stores in one method and we interpret the loads in another.
2717   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2718     Label notVolatile;
2719     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2720     __ membar(MacroAssembler::AnyAny);
2721     __ bind(notVolatile);
2722   }
2723 

2742   __ b(Done);
2743 
2744   __ bind(notByte);
2745   __ cmp(tos_state, (u1)ztos);
2746   __ br(Assembler::NE, notBool);
2747 
2748   // ztos (same code as btos)
2749   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2750   __ push(ztos);
2751   // Rewrite bytecode to be faster
2752   if (rc == may_rewrite) {
2753     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2754     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2755   }
2756   __ b(Done);
2757 
2758   __ bind(notBool);
2759   __ cmp(tos_state, (u1)atos);
2760   __ br(Assembler::NE, notObj);
2761   // atos
2762   if (!EnableValhalla) {
2763     do_oop_load(_masm, field, r0, IN_HEAP);
2764     __ push(atos);
2765     if (rc == may_rewrite) {
2766       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2767     }
2768     __ b(Done);
2769   } else { // Valhalla
2770     if (is_static) {
2771       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2772       Label is_null_free_inline_type, uninitialized;
2773       // Issue below if the static field has not been initialized yet
2774       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_null_free_inline_type);
2775         // field is not a null free inline type
2776         __ push(atos);
2777         __ b(Done);
2778       // field is a null free inline type, must not return null even if uninitialized
2779       __ bind(is_null_free_inline_type);
2780         __ cbz(r0, uninitialized);
2781           __ push(atos);
2782           __ b(Done);
2783         __ bind(uninitialized);
2784           Label slow_case, finish;
2785           __ ldrb(rscratch1, Address(klass, InstanceKlass::init_state_offset()));
2786           __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized);
2787           __ br(Assembler::NE, slow_case);
2788           __ get_default_value_oop(klass, off /* temp */, r0);
2789         __ b(finish);
2790         __ bind(slow_case);
2791           __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_inline_type_field), obj, cache);
2792           __ bind(finish);
2793           __ verify_oop(r0);
2794           __ push(atos);
2795           __ b(Done);
2796     } else {
2797       Label is_flat, nonnull, is_inline_type, has_null_marker, rewrite_inline;
2798       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
2799       __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
2800         // Non-inline field case
2801         __ load_heap_oop(r0, field, rscratch1, rscratch2);
2802         __ push(atos);
2803         if (rc == may_rewrite) {
2804           patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2805         }
2806         __ b(Done);
2807       __ bind(is_inline_type);
2808         __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2809          // field is not flat
2810           __ load_heap_oop(r0, field, rscratch1, rscratch2);
2811           __ cbnz(r0, nonnull);
2812             __ get_inline_type_field_klass(klass, field_index, inline_klass);
2813             __ get_default_value_oop(inline_klass, klass /* temp */, r0);
2814           __ bind(nonnull);
2815           __ verify_oop(r0);
2816           __ push(atos);
2817           __ b(rewrite_inline);
2818         __ bind(is_flat);
2819         // field is flat
2820           __ mov(r0, obj);
2821           __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2822           __ verify_oop(r0);
2823           __ push(atos);
2824           __ b(rewrite_inline);
2825         __ bind(has_null_marker);
2826           call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), obj, cache);
2827           __ verify_oop(r0);
2828           __ push(atos);
2829       __ bind(rewrite_inline);
2830       if (rc == may_rewrite) {
2831         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2832       }
2833       __ b(Done);
2834     }
2835   }

2836 
2837   __ bind(notObj);
2838   __ cmp(tos_state, (u1)itos);
2839   __ br(Assembler::NE, notInt);
2840   // itos
2841   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2842   __ push(itos);
2843   // Rewrite bytecode to be faster
2844   if (rc == may_rewrite) {
2845     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2846   }
2847   __ b(Done);
2848 
2849   __ bind(notInt);
2850   __ cmp(tos_state, (u1)ctos);
2851   __ br(Assembler::NE, notChar);
2852   // ctos
2853   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2854   __ push(ctos);
2855   // Rewrite bytecode to be faster

2976     // c_rarg1: object pointer set up above (null if static)
2977     // c_rarg2: cache entry pointer
2978     // c_rarg3: jvalue object on the stack
2979     __ call_VM(noreg,
2980                CAST_FROM_FN_PTR(address,
2981                                 InterpreterRuntime::post_field_modification),
2982                c_rarg1, c_rarg2, c_rarg3);
2983     __ load_field_entry(cache, index);
2984     __ bind(L1);
2985   }
2986 }
2987 
2988 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2989   transition(vtos, vtos);
2990 
2991   const Register cache     = r2;
2992   const Register index     = r3;
2993   const Register tos_state = r3;
2994   const Register obj       = r2;
2995   const Register off       = r19;
2996   const Register flags     = r6;
2997   const Register bc        = r4;
2998   const Register inline_klass = r5;
2999 
3000   resolve_cache_and_index_for_field(byte_no, cache, index);
3001   jvmti_post_field_mod(cache, index, is_static);
3002   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
3003 
3004   Label Done;


3005   {
3006     Label notVolatile;
3007     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3008     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3009     __ bind(notVolatile);
3010   }
3011 
3012   // field address
3013   const Address field(obj, off);
3014 
3015   Label notByte, notBool, notInt, notShort, notChar,
3016         notLong, notFloat, notObj, notDouble;
3017 
3018   assert(btos == 0, "change code, btos != 0");
3019   __ cbnz(tos_state, notByte);
3020 
3021   // Don't rewrite putstatic, only putfield
3022   if (is_static) rc = may_not_rewrite;
3023 
3024   // btos
3025   {
3026     __ pop(btos);
3027     if (!is_static) pop_and_check_object(obj);

3036   __ cmp(tos_state, (u1)ztos);
3037   __ br(Assembler::NE, notBool);
3038 
3039   // ztos
3040   {
3041     __ pop(ztos);
3042     if (!is_static) pop_and_check_object(obj);
3043     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3044     if (rc == may_rewrite) {
3045       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3046     }
3047     __ b(Done);
3048   }
3049 
3050   __ bind(notBool);
3051   __ cmp(tos_state, (u1)atos);
3052   __ br(Assembler::NE, notObj);
3053 
3054   // atos
3055   {
3056      if (!EnableValhalla) {
3057       __ pop(atos);
3058       if (!is_static) pop_and_check_object(obj);
3059       // Store into the field
3060       do_oop_store(_masm, field, r0, IN_HEAP);
3061       if (rc == may_rewrite) {
3062         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3063       }
3064       __ b(Done);
3065      } else { // Valhalla
3066       __ pop(atos);
3067       if (is_static) {
3068         Label is_inline_type;
3069          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_inline_type);
3070          __ null_check(r0);
3071          __ bind(is_inline_type);
3072          do_oop_store(_masm, field, r0, IN_HEAP);
3073          __ b(Done);
3074       } else {
3075         Label is_inline_type, is_flat, has_null_marker, rewrite_not_inline, rewrite_inline;
3076         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
3077         __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
3078         // Not an inline type
3079         pop_and_check_object(obj);
3080         // Store into the field
3081         do_oop_store(_masm, field, r0, IN_HEAP);
3082         __ bind(rewrite_not_inline);
3083         if (rc == may_rewrite) {
3084           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3085         }
3086         __ b(Done);
3087         // Implementation of the inline type semantic
3088         __ bind(is_inline_type);
3089         __ null_check(r0);
3090         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3091         // field is not flat
3092         pop_and_check_object(obj);
3093         // Store into the field
3094         do_oop_store(_masm, field, r0, IN_HEAP);
3095         __ b(rewrite_inline);
3096         __ bind(is_flat);
3097         __ load_field_entry(cache, index); // reload field entry (cache) because it was erased by tos_state
3098         __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
3099         __ ldr(r2, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3100         __ inline_layout_info(r2, index, r6);
3101         pop_and_check_object(obj);
3102         __ load_klass(inline_klass, r0);
3103         __ data_for_oop(r0, r0, inline_klass);
3104         __ add(obj, obj, off);
3105         // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API)
3106         __ flat_field_copy(IN_HEAP, r0, obj, r6);
3107         __ b(rewrite_inline);
3108         __ bind(has_null_marker);
3109         assert_different_registers(r0, cache, r19);
3110         pop_and_check_object(r19);
3111         __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r19, r0, cache);
3112         __ bind(rewrite_inline);
3113         if (rc == may_rewrite) {
3114           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3115         }
3116         __ b(Done);
3117       }
3118      }  // Valhalla
3119   }
3120 
3121   __ bind(notObj);
3122   __ cmp(tos_state, (u1)itos);
3123   __ br(Assembler::NE, notInt);
3124 
3125   // itos
3126   {
3127     __ pop(itos);
3128     if (!is_static) pop_and_check_object(obj);
3129     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3130     if (rc == may_rewrite) {
3131       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3132     }
3133     __ b(Done);
3134   }
3135 
3136   __ bind(notInt);
3137   __ cmp(tos_state, (u1)ctos);
3138   __ br(Assembler::NE, notChar);

3203   {
3204     __ pop(dtos);
3205     if (!is_static) pop_and_check_object(obj);
3206     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3207     if (rc == may_rewrite) {
3208       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3209     }
3210   }
3211 
3212 #ifdef ASSERT
3213   __ b(Done);
3214 
3215   __ bind(notDouble);
3216   __ stop("Bad state");
3217 #endif
3218 
3219   __ bind(Done);
3220 
3221   {
3222     Label notVolatile;
3223     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3224     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3225     __ bind(notVolatile);
3226   }
3227 }
3228 
3229 void TemplateTable::putfield(int byte_no)
3230 {
3231   putfield_or_static(byte_no, false);
3232 }
3233 
3234 void TemplateTable::nofast_putfield(int byte_no) {
3235   putfield_or_static(byte_no, false, may_not_rewrite);
3236 }
3237 
3238 void TemplateTable::putstatic(int byte_no) {
3239   putfield_or_static(byte_no, true);
3240 }
3241 
3242 void TemplateTable::jvmti_post_fast_field_mod() {
3243   if (JvmtiExport::can_post_field_modification()) {
3244     // Check to see if a field modification watch has been set before
3245     // we take the time to call into the VM.
3246     Label L2;
3247     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3248     __ ldrw(c_rarg3, Address(rscratch1));
3249     __ cbzw(c_rarg3, L2);
3250     __ pop_ptr(r19);                  // copy the object pointer from tos
3251     __ verify_oop(r19);
3252     __ push_ptr(r19);                 // put the object pointer back on tos
3253     // Save tos values before call_VM() clobbers them. Since we have
3254     // to do it for every data type, we use the saved values as the
3255     // jvalue object.
3256     switch (bytecode()) {          // load values into the jvalue object
3257     case Bytecodes::_fast_vputfield: //fall through
3258     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3259     case Bytecodes::_fast_bputfield: // fall through
3260     case Bytecodes::_fast_zputfield: // fall through
3261     case Bytecodes::_fast_sputfield: // fall through
3262     case Bytecodes::_fast_cputfield: // fall through
3263     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3264     case Bytecodes::_fast_dputfield: __ push_d(); break;
3265     case Bytecodes::_fast_fputfield: __ push_f(); break;
3266     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3267 
3268     default:
3269       ShouldNotReachHere();
3270     }
3271     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3272     // access constant pool cache entry
3273     __ load_field_entry(c_rarg2, r0);
3274     __ verify_oop(r19);
3275     // r19: object pointer copied above
3276     // c_rarg2: cache entry pointer
3277     // c_rarg3: jvalue object on the stack
3278     __ call_VM(noreg,
3279                CAST_FROM_FN_PTR(address,
3280                                 InterpreterRuntime::post_field_modification),
3281                r19, c_rarg2, c_rarg3);
3282 
3283     switch (bytecode()) {             // restore tos values
3284     case Bytecodes::_fast_vputfield: //fall through
3285     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3286     case Bytecodes::_fast_bputfield: // fall through
3287     case Bytecodes::_fast_zputfield: // fall through
3288     case Bytecodes::_fast_sputfield: // fall through
3289     case Bytecodes::_fast_cputfield: // fall through
3290     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3291     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3292     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3293     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3294     default: break;
3295     }
3296     __ bind(L2);
3297   }
3298 }
3299 
3300 void TemplateTable::fast_storefield(TosState state)
3301 {
3302   transition(state, vtos);
3303 
3304   ByteSize base = ConstantPoolCache::base_offset();

3311   // R1: field offset, R2: field holder, R3: flags
3312   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3313 
3314   {
3315     Label notVolatile;
3316     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3317     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3318     __ bind(notVolatile);
3319   }
3320 
3321   Label notVolatile;
3322 
3323   // Get object from stack
3324   pop_and_check_object(r2);
3325 
3326   // field address
3327   const Address field(r2, r1);
3328 
3329   // access field
3330   switch (bytecode()) {
3331   case Bytecodes::_fast_vputfield:
3332    {
3333       Label is_flat, has_null_marker, done;
3334       __ test_field_has_null_marker(r3, noreg /* temp */, has_null_marker);
3335       __ null_check(r0);
3336       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3337       // field is not flat
3338       do_oop_store(_masm, field, r0, IN_HEAP);
3339       __ b(done);
3340       __ bind(is_flat);
3341       // field is flat
3342       __ load_field_entry(r4, r3);
3343       __ load_unsigned_short(r3, Address(r4, in_bytes(ResolvedFieldEntry::field_index_offset())));
3344       __ ldr(r4, Address(r4, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3345       __ inline_layout_info(r4, r3, r5);
3346       __ load_klass(r4, r0);
3347       __ data_for_oop(r0, r0, r4);
3348       __ lea(rscratch1, field);
3349       __ flat_field_copy(IN_HEAP, r0, rscratch1, r5);
3350       __ b(done);
3351       __ bind(has_null_marker);
3352       __ load_field_entry(r4, r1);
3353       __ mov(r1, r2);
3354       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r1, r0, r4);
3355       __ bind(done);
3356     }
3357     break;
3358   case Bytecodes::_fast_aputfield:
3359     do_oop_store(_masm, field, r0, IN_HEAP);
3360     break;
3361   case Bytecodes::_fast_lputfield:
3362     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3363     break;
3364   case Bytecodes::_fast_iputfield:
3365     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3366     break;
3367   case Bytecodes::_fast_zputfield:
3368     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3369     break;
3370   case Bytecodes::_fast_bputfield:
3371     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3372     break;
3373   case Bytecodes::_fast_sputfield:
3374     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3375     break;
3376   case Bytecodes::_fast_cputfield:
3377     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3430   // r0: object
3431   __ verify_oop(r0);
3432   __ null_check(r0);
3433   const Address field(r0, r1);
3434 
3435   // 8179954: We need to make sure that the code generated for
3436   // volatile accesses forms a sequentially-consistent set of
3437   // operations when combined with STLR and LDAR.  Without a leading
3438   // membar it's possible for a simple Dekker test to fail if loads
3439   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3440   // the stores in one method and we interpret the loads in another.
3441   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3442     Label notVolatile;
3443     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3444     __ membar(MacroAssembler::AnyAny);
3445     __ bind(notVolatile);
3446   }
3447 
3448   // access field
3449   switch (bytecode()) {
3450   case Bytecodes::_fast_vgetfield:
3451     {
3452       Register index = r4, klass = r5, inline_klass = r6, tmp = r7;
3453       Label is_flat, has_null_marker, nonnull, Done;
3454       __ test_field_has_null_marker(r3, noreg /*temp*/, has_null_marker);
3455       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3456         // field is not flat
3457         __ load_heap_oop(r0, field, rscratch1, rscratch2);
3458         __ cbnz(r0, nonnull);
3459           __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3460           __ ldr(klass, Address(r2, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3461           __ get_inline_type_field_klass(klass, index, inline_klass);
3462           __ get_default_value_oop(inline_klass, tmp /* temp */, r0);
3463         __ bind(nonnull);
3464         __ verify_oop(r0);
3465         __ b(Done);
3466       __ bind(is_flat);
3467       // field is flat
3468         __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3469         __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3470         __ verify_oop(r0);
3471         __ b(Done);
3472       __ bind(has_null_marker);
3473         call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), r0, r2);
3474         __ verify_oop(r0);
3475       __ bind(Done);
3476     }
3477     break;
3478   case Bytecodes::_fast_agetfield:
3479     do_oop_load(_masm, field, r0, IN_HEAP);
3480     __ verify_oop(r0);
3481     break;
3482   case Bytecodes::_fast_lgetfield:
3483     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3484     break;
3485   case Bytecodes::_fast_igetfield:
3486     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3487     break;
3488   case Bytecodes::_fast_bgetfield:
3489     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3490     break;
3491   case Bytecodes::_fast_sgetfield:
3492     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3493     break;
3494   case Bytecodes::_fast_cgetfield:
3495     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3496     break;
3497   case Bytecodes::_fast_fgetfield:

3876   Label initialize_header;
3877 
3878   __ get_cpool_and_tags(r4, r0);
3879   // Make sure the class we're about to instantiate has been resolved.
3880   // This is done before loading InstanceKlass to be consistent with the order
3881   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3882   const int tags_offset = Array<u1>::base_offset_in_bytes();
3883   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3884   __ lea(rscratch1, Address(rscratch1, tags_offset));
3885   __ ldarb(rscratch1, rscratch1);
3886   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3887   __ br(Assembler::NE, slow_case);
3888 
3889   // get InstanceKlass
3890   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3891 
3892   // make sure klass is initialized
3893   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3894   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3895 
3896   __ allocate_instance(r4, r0, r3, r1, true, slow_case);













































3897     if (DTraceAllocProbes) {
3898       // Trigger dtrace event for fastpath
3899       __ push(atos); // save the return value
3900       __ call_VM_leaf(
3901            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3902       __ pop(atos); // restore the return value
3903 
3904     }
3905   __ b(done);

3906 
3907   // slow case
3908   __ bind(slow_case);
3909   __ get_constant_pool(c_rarg1);
3910   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3911   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3912   __ verify_oop(r0);
3913 
3914   // continue
3915   __ bind(done);
3916   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3917   __ membar(Assembler::StoreStore);
3918 }
3919 
3920 void TemplateTable::newarray() {
3921   transition(itos, atos);
3922   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3923   __ mov(c_rarg2, r0);
3924   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3925           c_rarg1, c_rarg2);

3970   __ bind(quicked);
3971   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3972   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3973 
3974   __ bind(resolved);
3975   __ load_klass(r19, r3);
3976 
3977   // Generate subtype check.  Blows r2, r5.  Object in r3.
3978   // Superklass in r0.  Subklass in r19.
3979   __ gen_subtype_check(r19, ok_is_subtype);
3980 
3981   // Come here on failure
3982   __ push(r3);
3983   // object is at TOS
3984   __ b(Interpreter::_throw_ClassCastException_entry);
3985 
3986   // Come here on success
3987   __ bind(ok_is_subtype);
3988   __ mov(r0, r3); // Restore object in r3
3989 
3990   __ b(done);
3991   __ bind(is_null);
3992 
3993   // Collect counts on whether this test sees nulls a lot or not.
3994   if (ProfileInterpreter) {


3995     __ profile_null_seen(r2);


3996   }
3997 
3998   __ bind(done);
3999 }
4000 
4001 void TemplateTable::instanceof() {
4002   transition(atos, itos);
4003   Label done, is_null, ok_is_subtype, quicked, resolved;
4004   __ cbz(r0, is_null);
4005 
4006   // Get cpool & tags index
4007   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
4008   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
4009   // See if bytecode has already been quicked
4010   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
4011   __ lea(r1, Address(rscratch1, r19));
4012   __ ldarb(r1, r1);
4013   __ cmp(r1, (u1)JVM_CONSTANT_Class);
4014   __ br(Assembler::EQ, quicked);
4015 
4016   __ push(atos); // save receiver for result, and for GC
4017   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4096 //       in the assembly code structure as well
4097 //
4098 // Stack layout:
4099 //
4100 // [expressions  ] <--- esp               = expression stack top
4101 // ..
4102 // [expressions  ]
4103 // [monitor entry] <--- monitor block top = expression stack bot
4104 // ..
4105 // [monitor entry]
4106 // [frame data   ] <--- monitor block bot
4107 // ...
4108 // [saved rfp    ] <--- rfp
4109 void TemplateTable::monitorenter()
4110 {
4111   transition(atos, vtos);
4112 
4113   // check for null object
4114   __ null_check(r0);
4115 
4116   Label is_inline_type;
4117   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4118   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4119 
4120   const Address monitor_block_top(
4121         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4122   const Address monitor_block_bot(
4123         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4124   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4125 
4126   Label allocated;
4127 
4128   // initialize entry pointer
4129   __ mov(c_rarg1, zr); // points to free slot or null
4130 
4131   // find a free slot in the monitor block (result in c_rarg1)
4132   {
4133     Label entry, loop, exit;
4134     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4135     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4136     // c_rarg3 points to current entry, starting with top-most entry
4137 
4138     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4139 

4201   // c_rarg1: points to monitor entry
4202   __ bind(allocated);
4203 
4204   // Increment bcp to point to the next bytecode, so exception
4205   // handling for async. exceptions work correctly.
4206   // The object has already been popped from the stack, so the
4207   // expression stack looks correct.
4208   __ increment(rbcp);
4209 
4210   // store object
4211   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4212   __ lock_object(c_rarg1);
4213 
4214   // check to make sure this monitor doesn't cause stack overflow after locking
4215   __ save_bcp();  // in case of exception
4216   __ generate_stack_overflow_check(0);
4217 
4218   // The bcp has already been incremented. Just need to dispatch to
4219   // next instruction.
4220   __ dispatch_next(vtos);
4221 
4222   __ bind(is_inline_type);
4223   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4224                     InterpreterRuntime::throw_identity_exception), r0);
4225   __ should_not_reach_here();
4226 }
4227 
4228 
4229 void TemplateTable::monitorexit()
4230 {
4231   transition(atos, vtos);
4232 
4233   // check for null object
4234   __ null_check(r0);
4235 
4236   const int is_inline_type_mask = markWord::inline_type_pattern;
4237   Label has_identity;
4238   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4239   __ mov(rscratch2, is_inline_type_mask);
4240   __ andr(rscratch1, rscratch1, rscratch2);
4241   __ cmp(rscratch1, rscratch2);
4242   __ br(Assembler::NE, has_identity);
4243   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4244                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4245   __ should_not_reach_here();
4246   __ bind(has_identity);
4247 
4248   const Address monitor_block_top(
4249         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4250   const Address monitor_block_bot(
4251         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4252   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4253 
4254   Label found;
4255 
4256   // find matching slot
4257   {
4258     Label entry, loop;
4259     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4260     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4261     // c_rarg1 points to current entry, starting with top-most entry
4262 
4263     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4264                                         // of monitor block
4265     __ b(entry);
4266 
4267     __ bind(loop);
< prev index next >