< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "compiler/compilerDefinitions.inline.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "gc/shared/tlab_globals.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateTable.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/resolvedFieldEntry.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/methodHandles.hpp"

  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  53 
  54 // Address computation: local variables
  55 
  56 static inline Address iaddress(int n) {
  57   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  58 }
  59 
  60 static inline Address laddress(int n) {
  61   return iaddress(n + 1);
  62 }
  63 
  64 static inline Address faddress(int n) {
  65   return iaddress(n);

 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   assert_different_registers(bc_reg, temp_reg);
 172   if (!RewriteBytecodes)  return;
 173   Label L_patch_done;
 174 
 175   switch (bc) {

 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 740   locals_index_wide(r1);
 741   __ ldr(r0, aaddress(r1));
 742 }
 743 
 744 void TemplateTable::index_check(Register array, Register index)
 745 {
 746   // destroys r1, rscratch1
 747   // sign extend index for use by indexed load
 748   // __ movl2ptr(index, index);
 749   // check index
 750   Register length = rscratch1;
 751   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 752   __ cmpw(index, length);
 753   if (index != r1) {
 754     // ??? convention: move aberrant index into r1 for exception message
 755     assert(r1 != array, "different registers");
 756     __ mov(r1, index);
 757   }
 758   Label ok;
 759   __ br(Assembler::LO, ok);
 760     // ??? convention: move array into r3 for exception message
 761   __ mov(r3, array);
 762   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 763   __ br(rscratch1);
 764   __ bind(ok);
 765 }
 766 
 767 void TemplateTable::iaload()
 768 {
 769   transition(itos, itos);
 770   __ mov(r1, r0);
 771   __ pop_ptr(r0);
 772   // r0: array
 773   // r1: index
 774   index_check(r0, r1); // leaves index in r1, kills rscratch1
 775   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 776   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 777 }
 778 
 779 void TemplateTable::laload()
 780 {
 781   transition(itos, ltos);
 782   __ mov(r1, r0);
 783   __ pop_ptr(r0);

 803 void TemplateTable::daload()
 804 {
 805   transition(itos, dtos);
 806   __ mov(r1, r0);
 807   __ pop_ptr(r0);
 808   // r0: array
 809   // r1: index
 810   index_check(r0, r1); // leaves index in r1, kills rscratch1
 811   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 812   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 813 }
 814 
 815 void TemplateTable::aaload()
 816 {
 817   transition(itos, atos);
 818   __ mov(r1, r0);
 819   __ pop_ptr(r0);
 820   // r0: array
 821   // r1: index
 822   index_check(r0, r1); // leaves index in r1, kills rscratch1
 823   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 824   do_oop_load(_masm,
 825               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 826               r0,
 827               IS_ARRAY);















 828 }
 829 
 830 void TemplateTable::baload()
 831 {
 832   transition(itos, itos);
 833   __ mov(r1, r0);
 834   __ pop_ptr(r0);
 835   // r0: array
 836   // r1: index
 837   index_check(r0, r1); // leaves index in r1, kills rscratch1
 838   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 839   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 840 }
 841 
 842 void TemplateTable::caload()
 843 {
 844   transition(itos, itos);
 845   __ mov(r1, r0);
 846   __ pop_ptr(r0);
 847   // r0: array

1094   // r1:  index
1095   // r3:  array
1096   index_check(r3, r1); // prefer index in r1
1097   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1098   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1099 }
1100 
1101 void TemplateTable::dastore() {
1102   transition(dtos, vtos);
1103   __ pop_i(r1);
1104   __ pop_ptr(r3);
1105   // v0: value
1106   // r1:  index
1107   // r3:  array
1108   index_check(r3, r1); // prefer index in r1
1109   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1110   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1111 }
1112 
1113 void TemplateTable::aastore() {
1114   Label is_null, ok_is_subtype, done;
1115   transition(vtos, vtos);
1116   // stack: ..., array, index, value
1117   __ ldr(r0, at_tos());    // value
1118   __ ldr(r2, at_tos_p1()); // index
1119   __ ldr(r3, at_tos_p2()); // array
1120 
1121   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1122 
1123   index_check(r3, r2);     // kills r1




1124   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1125 
1126   // do array store check - check for null value first
1127   __ cbz(r0, is_null);
1128 








1129   // Move subklass into r1
1130   __ load_klass(r1, r0);
1131   // Move superklass into r0
1132   __ load_klass(r0, r3);
1133   __ ldr(r0, Address(r0,
1134                      ObjArrayKlass::element_klass_offset()));
1135   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1136 
1137   // Generate subtype check.  Blows r2, r5
1138   // Superklass in r0.  Subklass in r1.
1139   __ gen_subtype_check(r1, ok_is_subtype);


1140 
1141   // Come here on failure
1142   // object is at TOS
1143   __ b(Interpreter::_throw_ArrayStoreException_entry);
1144 
1145   // Come here on success
1146   __ bind(ok_is_subtype);
1147 
1148   // Get the value we will store
1149   __ ldr(r0, at_tos());
1150   // Now store using the appropriate barrier
1151   // Clobbers: r10, r11, r3
1152   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1153   __ b(done);
1154 
1155   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1156   __ bind(is_null);
1157   __ profile_null_seen(r2);















1158 
1159   // Store a null
1160   // Clobbers: r10, r11, r3
1161   do_oop_store(_masm, element_address, noreg, IS_ARRAY);











1162 
1163   // Pop stack arguments
1164   __ bind(done);
1165   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1166 }
1167 
1168 void TemplateTable::bastore()
1169 {
1170   transition(itos, vtos);
1171   __ pop_i(r1);
1172   __ pop_ptr(r3);
1173   // r0: value
1174   // r1: index
1175   // r3: array
1176   index_check(r3, r1); // prefer index in r1
1177 
1178   // Need to check whether array is boolean or byte
1179   // since both types share the bastore bytecode.
1180   __ load_klass(r2, r3);
1181   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1948   __ br(j_not(cc), not_taken);
1949   branch(false, false);
1950   __ bind(not_taken);
1951   __ profile_not_taken_branch(r0);
1952 }
1953 
1954 void TemplateTable::if_nullcmp(Condition cc)
1955 {
1956   transition(atos, vtos);
1957   // assume branch is more often taken than not (loops use backward branches)
1958   Label not_taken;
1959   if (cc == equal)
1960     __ cbnz(r0, not_taken);
1961   else
1962     __ cbz(r0, not_taken);
1963   branch(false, false);
1964   __ bind(not_taken);
1965   __ profile_not_taken_branch(r0);
1966 }
1967 
1968 void TemplateTable::if_acmp(Condition cc)
1969 {
1970   transition(atos, vtos);
1971   // assume branch is more often taken than not (loops use backward branches)
1972   Label not_taken;
1973   __ pop_ptr(r1);






































1974   __ cmpoop(r1, r0);
1975   __ br(j_not(cc), not_taken);

1976   branch(false, false);
1977   __ bind(not_taken);
1978   __ profile_not_taken_branch(r0);
1979 }
1980 










1981 void TemplateTable::ret() {
1982   transition(vtos, vtos);
1983   locals_index(r1);
1984   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1985   __ profile_ret(r1, r2);
1986   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1987   __ lea(rbcp, Address(rbcp, r1));
1988   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1989   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1990 }
1991 
1992 void TemplateTable::wide_ret() {
1993   transition(vtos, vtos);
1994   locals_index_wide(r1);
1995   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1996   __ profile_ret(r1, r2);
1997   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1998   __ lea(rbcp, Address(rbcp, r1));
1999   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2000   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2194   assert(_desc->calls_vm(),
2195          "inconsistent calls_vm information"); // call in remove_activation
2196 
2197   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2198     assert(state == vtos, "only valid state");
2199 
2200     __ ldr(c_rarg1, aaddress(0));
2201     __ load_klass(r3, c_rarg1);
2202     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2203     Label skip_register_finalizer;
2204     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2205 
2206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2207 
2208     __ bind(skip_register_finalizer);
2209   }
2210 
2211   // Issue a StoreStore barrier after all stores but before return
2212   // from any constructor for any class with a final field.  We don't
2213   // know if this is a finalizer, so we always do so.
2214   if (_desc->bytecode() == Bytecodes::_return)

2215     __ membar(MacroAssembler::StoreStore);
2216 
2217   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2218     Label no_safepoint;
2219     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2220     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2221     __ push(state);
2222     __ push_cont_fastpath(rthread);
2223     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2224     __ pop_cont_fastpath(rthread);
2225     __ pop(state);
2226     __ bind(no_safepoint);
2227   }
2228 
2229   // Narrow result if state is itos but result type is smaller.
2230   // Need to narrow in the return bytecode rather than in generate_return_entry
2231   // since compiled code callers expect the result to already be narrowed.
2232   if (state == itos) {
2233     __ narrow(r0);
2234   }

2585     }
2586     // c_rarg1: object pointer or null
2587     // c_rarg2: cache entry pointer
2588     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2589                                        InterpreterRuntime::post_field_access),
2590                c_rarg1, c_rarg2);
2591     __ load_field_entry(cache, index);
2592     __ bind(L1);
2593   }
2594 }
2595 
2596 void TemplateTable::pop_and_check_object(Register r)
2597 {
2598   __ pop_ptr(r);
2599   __ null_check(r);  // for field access must check obj.
2600   __ verify_oop(r);
2601 }
2602 
2603 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2604 {
2605   const Register cache     = r4;
2606   const Register obj       = r4;



2607   const Register index     = r3;
2608   const Register tos_state = r3;
2609   const Register off       = r19;
2610   const Register flags     = r6;
2611   const Register bc        = r4; // uses same reg as obj, so don't mix them
2612 
2613   resolve_cache_and_index_for_field(byte_no, cache, index);
2614   jvmti_post_field_access(cache, index, is_static, false);





2615   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2616 
2617   if (!is_static) {
2618     // obj is on the stack
2619     pop_and_check_object(obj);
2620   }
2621 
2622   // 8179954: We need to make sure that the code generated for
2623   // volatile accesses forms a sequentially-consistent set of
2624   // operations when combined with STLR and LDAR.  Without a leading
2625   // membar it's possible for a simple Dekker test to fail if loads
2626   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2627   // the stores in one method and we interpret the loads in another.
2628   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2629     Label notVolatile;
2630     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2631     __ membar(MacroAssembler::AnyAny);
2632     __ bind(notVolatile);
2633   }
2634 

2653   __ b(Done);
2654 
2655   __ bind(notByte);
2656   __ cmp(tos_state, (u1)ztos);
2657   __ br(Assembler::NE, notBool);
2658 
2659   // ztos (same code as btos)
2660   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2661   __ push(ztos);
2662   // Rewrite bytecode to be faster
2663   if (rc == may_rewrite) {
2664     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2665     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2666   }
2667   __ b(Done);
2668 
2669   __ bind(notBool);
2670   __ cmp(tos_state, (u1)atos);
2671   __ br(Assembler::NE, notObj);
2672   // atos
2673   do_oop_load(_masm, field, r0, IN_HEAP);
2674   __ push(atos);
2675   if (rc == may_rewrite) {
2676     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);




























2677   }
2678   __ b(Done);
2679 
2680   __ bind(notObj);
2681   __ cmp(tos_state, (u1)itos);
2682   __ br(Assembler::NE, notInt);
2683   // itos
2684   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2685   __ push(itos);
2686   // Rewrite bytecode to be faster
2687   if (rc == may_rewrite) {
2688     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2689   }
2690   __ b(Done);
2691 
2692   __ bind(notInt);
2693   __ cmp(tos_state, (u1)ctos);
2694   __ br(Assembler::NE, notChar);
2695   // ctos
2696   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2697   __ push(ctos);
2698   // Rewrite bytecode to be faster

2819     // c_rarg1: object pointer set up above (null if static)
2820     // c_rarg2: cache entry pointer
2821     // c_rarg3: jvalue object on the stack
2822     __ call_VM(noreg,
2823                CAST_FROM_FN_PTR(address,
2824                                 InterpreterRuntime::post_field_modification),
2825                c_rarg1, c_rarg2, c_rarg3);
2826     __ load_field_entry(cache, index);
2827     __ bind(L1);
2828   }
2829 }
2830 
2831 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2832   transition(vtos, vtos);
2833 
2834   const Register cache     = r2;
2835   const Register index     = r3;
2836   const Register tos_state = r3;
2837   const Register obj       = r2;
2838   const Register off       = r19;
2839   const Register flags     = r0;
2840   const Register bc        = r4;
2841 
2842   resolve_cache_and_index_for_field(byte_no, cache, index);
2843   jvmti_post_field_mod(cache, index, is_static);
2844   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2845 
2846   Label Done;
2847   __ mov(r5, flags);
2848 
2849   {
2850     Label notVolatile;
2851     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2852     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2853     __ bind(notVolatile);
2854   }
2855 
2856   // field address
2857   const Address field(obj, off);
2858 
2859   Label notByte, notBool, notInt, notShort, notChar,
2860         notLong, notFloat, notObj, notDouble;
2861 
2862   assert(btos == 0, "change code, btos != 0");
2863   __ cbnz(tos_state, notByte);
2864 
2865   // Don't rewrite putstatic, only putfield
2866   if (is_static) rc = may_not_rewrite;
2867 
2868   // btos
2869   {
2870     __ pop(btos);
2871     if (!is_static) pop_and_check_object(obj);

2880   __ cmp(tos_state, (u1)ztos);
2881   __ br(Assembler::NE, notBool);
2882 
2883   // ztos
2884   {
2885     __ pop(ztos);
2886     if (!is_static) pop_and_check_object(obj);
2887     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2888     if (rc == may_rewrite) {
2889       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2890     }
2891     __ b(Done);
2892   }
2893 
2894   __ bind(notBool);
2895   __ cmp(tos_state, (u1)atos);
2896   __ br(Assembler::NE, notObj);
2897 
2898   // atos
2899   {
2900     __ pop(atos);
2901     if (!is_static) pop_and_check_object(obj);
2902     // Store into the field
2903     // Clobbers: r10, r11, r3
2904     do_oop_store(_masm, field, r0, IN_HEAP);
2905     if (rc == may_rewrite) {
2906       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2907     }
2908     __ b(Done);








































2909   }
2910 
2911   __ bind(notObj);
2912   __ cmp(tos_state, (u1)itos);
2913   __ br(Assembler::NE, notInt);
2914 
2915   // itos
2916   {
2917     __ pop(itos);
2918     if (!is_static) pop_and_check_object(obj);
2919     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2920     if (rc == may_rewrite) {
2921       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2922     }
2923     __ b(Done);
2924   }
2925 
2926   __ bind(notInt);
2927   __ cmp(tos_state, (u1)ctos);
2928   __ br(Assembler::NE, notChar);

2993   {
2994     __ pop(dtos);
2995     if (!is_static) pop_and_check_object(obj);
2996     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2997     if (rc == may_rewrite) {
2998       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2999     }
3000   }
3001 
3002 #ifdef ASSERT
3003   __ b(Done);
3004 
3005   __ bind(notDouble);
3006   __ stop("Bad state");
3007 #endif
3008 
3009   __ bind(Done);
3010 
3011   {
3012     Label notVolatile;
3013     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3014     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3015     __ bind(notVolatile);
3016   }
3017 }
3018 
3019 void TemplateTable::putfield(int byte_no)
3020 {
3021   putfield_or_static(byte_no, false);
3022 }
3023 
3024 void TemplateTable::nofast_putfield(int byte_no) {
3025   putfield_or_static(byte_no, false, may_not_rewrite);
3026 }
3027 
3028 void TemplateTable::putstatic(int byte_no) {
3029   putfield_or_static(byte_no, true);
3030 }
3031 
3032 void TemplateTable::jvmti_post_fast_field_mod() {
3033   if (JvmtiExport::can_post_field_modification()) {
3034     // Check to see if a field modification watch has been set before
3035     // we take the time to call into the VM.
3036     Label L2;
3037     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3038     __ ldrw(c_rarg3, Address(rscratch1));
3039     __ cbzw(c_rarg3, L2);
3040     __ pop_ptr(r19);                  // copy the object pointer from tos
3041     __ verify_oop(r19);
3042     __ push_ptr(r19);                 // put the object pointer back on tos
3043     // Save tos values before call_VM() clobbers them. Since we have
3044     // to do it for every data type, we use the saved values as the
3045     // jvalue object.
3046     switch (bytecode()) {          // load values into the jvalue object

3047     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3048     case Bytecodes::_fast_bputfield: // fall through
3049     case Bytecodes::_fast_zputfield: // fall through
3050     case Bytecodes::_fast_sputfield: // fall through
3051     case Bytecodes::_fast_cputfield: // fall through
3052     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3053     case Bytecodes::_fast_dputfield: __ push_d(); break;
3054     case Bytecodes::_fast_fputfield: __ push_f(); break;
3055     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3056 
3057     default:
3058       ShouldNotReachHere();
3059     }
3060     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3061     // access constant pool cache entry
3062     __ load_field_entry(c_rarg2, r0);
3063     __ verify_oop(r19);
3064     // r19: object pointer copied above
3065     // c_rarg2: cache entry pointer
3066     // c_rarg3: jvalue object on the stack
3067     __ call_VM(noreg,
3068                CAST_FROM_FN_PTR(address,
3069                                 InterpreterRuntime::post_field_modification),
3070                r19, c_rarg2, c_rarg3);
3071 
3072     switch (bytecode()) {             // restore tos values

3073     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3074     case Bytecodes::_fast_bputfield: // fall through
3075     case Bytecodes::_fast_zputfield: // fall through
3076     case Bytecodes::_fast_sputfield: // fall through
3077     case Bytecodes::_fast_cputfield: // fall through
3078     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3079     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3080     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3081     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3082     default: break;
3083     }
3084     __ bind(L2);
3085   }
3086 }
3087 
3088 void TemplateTable::fast_storefield(TosState state)
3089 {
3090   transition(state, vtos);
3091 
3092   ByteSize base = ConstantPoolCache::base_offset();

3100   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3101   __ verify_field_offset(r1);
3102 
3103   {
3104     Label notVolatile;
3105     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3106     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3107     __ bind(notVolatile);
3108   }
3109 
3110   Label notVolatile;
3111 
3112   // Get object from stack
3113   pop_and_check_object(r2);
3114 
3115   // field address
3116   const Address field(r2, r1);
3117 
3118   // access field
3119   switch (bytecode()) {
















3120   case Bytecodes::_fast_aputfield:
3121     // Clobbers: r10, r11, r3
3122     do_oop_store(_masm, field, r0, IN_HEAP);
3123     break;
3124   case Bytecodes::_fast_lputfield:
3125     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3126     break;
3127   case Bytecodes::_fast_iputfield:
3128     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3129     break;
3130   case Bytecodes::_fast_zputfield:
3131     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3132     break;
3133   case Bytecodes::_fast_bputfield:
3134     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3135     break;
3136   case Bytecodes::_fast_sputfield:
3137     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3138     break;
3139   case Bytecodes::_fast_cputfield:

3195   // r0: object
3196   __ verify_oop(r0);
3197   __ null_check(r0);
3198   const Address field(r0, r1);
3199 
3200   // 8179954: We need to make sure that the code generated for
3201   // volatile accesses forms a sequentially-consistent set of
3202   // operations when combined with STLR and LDAR.  Without a leading
3203   // membar it's possible for a simple Dekker test to fail if loads
3204   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3205   // the stores in one method and we interpret the loads in another.
3206   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3207     Label notVolatile;
3208     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3209     __ membar(MacroAssembler::AnyAny);
3210     __ bind(notVolatile);
3211   }
3212 
3213   // access field
3214   switch (bytecode()) {









3215   case Bytecodes::_fast_agetfield:
3216     do_oop_load(_masm, field, r0, IN_HEAP);
3217     __ verify_oop(r0);
3218     break;
3219   case Bytecodes::_fast_lgetfield:
3220     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3221     break;
3222   case Bytecodes::_fast_igetfield:
3223     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3224     break;
3225   case Bytecodes::_fast_bgetfield:
3226     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3227     break;
3228   case Bytecodes::_fast_sgetfield:
3229     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3230     break;
3231   case Bytecodes::_fast_cgetfield:
3232     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3233     break;
3234   case Bytecodes::_fast_fgetfield:

3615   Label initialize_header;
3616 
3617   __ get_cpool_and_tags(r4, r0);
3618   // Make sure the class we're about to instantiate has been resolved.
3619   // This is done before loading InstanceKlass to be consistent with the order
3620   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3621   const int tags_offset = Array<u1>::base_offset_in_bytes();
3622   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3623   __ lea(rscratch1, Address(rscratch1, tags_offset));
3624   __ ldarb(rscratch1, rscratch1);
3625   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3626   __ br(Assembler::NE, slow_case);
3627 
3628   // get InstanceKlass
3629   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3630 
3631   // make sure klass is initialized
3632   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3633   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3634 
3635   // get instance_size in InstanceKlass (scaled to a count of bytes)
3636   __ ldrw(r3,
3637           Address(r4,
3638                   Klass::layout_helper_offset()));
3639   // test to see if it is malformed in some way
3640   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3641 
3642   // Allocate the instance:
3643   //  If TLAB is enabled:
3644   //    Try to allocate in the TLAB.
3645   //    If fails, go to the slow path.
3646   //    Initialize the allocation.
3647   //    Exit.
3648   //
3649   //  Go to slow path.
3650 
3651   if (UseTLAB) {
3652     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3653 
3654     if (ZeroTLAB) {
3655       // the fields have been already cleared
3656       __ b(initialize_header);
3657     }
3658 
3659     // The object is initialized before the header.  If the object size is
3660     // zero, go directly to the header initialization.
3661     int header_size = oopDesc::header_size() * HeapWordSize;
3662     assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3663     __ sub(r3, r3, header_size);
3664     __ cbz(r3, initialize_header);
3665 
3666     // Initialize object fields
3667     {
3668       __ add(r2, r0, header_size);
3669       Label loop;
3670       __ bind(loop);
3671       __ str(zr, Address(__ post(r2, BytesPerLong)));
3672       __ sub(r3, r3, BytesPerLong);
3673       __ cbnz(r3, loop);
3674     }
3675 
3676     // initialize object header only.
3677     __ bind(initialize_header);
3678     if (UseCompactObjectHeaders) {
3679       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3680       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3681     } else {
3682       __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3683       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3684       __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3685       __ store_klass(r0, r4);      // store klass last
3686     }
3687 
3688     if (DTraceAllocProbes) {
3689       // Trigger dtrace event for fastpath
3690       __ push(atos); // save the return value
3691       __ call_VM_leaf(
3692            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3693       __ pop(atos); // restore the return value
3694 
3695     }
3696     __ b(done);
3697   }
3698 
3699   // slow case
3700   __ bind(slow_case);
3701   __ get_constant_pool(c_rarg1);
3702   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3703   __ call_VM_preemptable(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3704   __ verify_oop(r0);
3705 
3706   // continue
3707   __ bind(done);
3708   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3709   __ membar(Assembler::StoreStore);
3710 }
3711 
3712 void TemplateTable::newarray() {
3713   transition(itos, atos);
3714   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3715   __ mov(c_rarg2, r0);
3716   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3717           c_rarg1, c_rarg2);

3761   __ bind(quicked);
3762   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3763   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3764 
3765   __ bind(resolved);
3766   __ load_klass(r19, r3);
3767 
3768   // Generate subtype check.  Blows r2, r5.  Object in r3.
3769   // Superklass in r0.  Subklass in r19.
3770   __ gen_subtype_check(r19, ok_is_subtype);
3771 
3772   // Come here on failure
3773   __ push(r3);
3774   // object is at TOS
3775   __ b(Interpreter::_throw_ClassCastException_entry);
3776 
3777   // Come here on success
3778   __ bind(ok_is_subtype);
3779   __ mov(r0, r3); // Restore object in r3
3780 



3781   // Collect counts on whether this test sees nulls a lot or not.
3782   if (ProfileInterpreter) {
3783     __ b(done);
3784     __ bind(is_null);
3785     __ profile_null_seen(r2);
3786   } else {
3787     __ bind(is_null);   // same as 'done'
3788   }

3789   __ bind(done);
3790 }
3791 
3792 void TemplateTable::instanceof() {
3793   transition(atos, itos);
3794   Label done, is_null, ok_is_subtype, quicked, resolved;
3795   __ cbz(r0, is_null);
3796 
3797   // Get cpool & tags index
3798   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3799   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3800   // See if bytecode has already been quicked
3801   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3802   __ lea(r1, Address(rscratch1, r19));
3803   __ ldarb(r1, r1);
3804   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3805   __ br(Assembler::EQ, quicked);
3806 
3807   __ push(atos); // save receiver for result, and for GC
3808   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3886 //       in the assembly code structure as well
3887 //
3888 // Stack layout:
3889 //
3890 // [expressions  ] <--- esp               = expression stack top
3891 // ..
3892 // [expressions  ]
3893 // [monitor entry] <--- monitor block top = expression stack bot
3894 // ..
3895 // [monitor entry]
3896 // [frame data   ] <--- monitor block bot
3897 // ...
3898 // [saved rfp    ] <--- rfp
3899 void TemplateTable::monitorenter()
3900 {
3901   transition(atos, vtos);
3902 
3903   // check for null object
3904   __ null_check(r0);
3905 




3906   const Address monitor_block_top(
3907         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3908   const Address monitor_block_bot(
3909         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3910   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3911 
3912   Label allocated;
3913 
3914   // initialize entry pointer
3915   __ mov(c_rarg1, zr); // points to free slot or null
3916 
3917   // find a free slot in the monitor block (result in c_rarg1)
3918   {
3919     Label entry, loop, exit;
3920     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3921     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3922     // c_rarg3 points to current entry, starting with top-most entry
3923 
3924     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3925 

3987   // c_rarg1: points to monitor entry
3988   __ bind(allocated);
3989 
3990   // Increment bcp to point to the next bytecode, so exception
3991   // handling for async. exceptions work correctly.
3992   // The object has already been popped from the stack, so the
3993   // expression stack looks correct.
3994   __ increment(rbcp);
3995 
3996   // store object
3997   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3998   __ lock_object(c_rarg1);
3999 
4000   // check to make sure this monitor doesn't cause stack overflow after locking
4001   __ save_bcp();  // in case of exception
4002   __ generate_stack_overflow_check(0);
4003 
4004   // The bcp has already been incremented. Just need to dispatch to
4005   // next instruction.
4006   __ dispatch_next(vtos);





4007 }
4008 
4009 
4010 void TemplateTable::monitorexit()
4011 {
4012   transition(atos, vtos);
4013 
4014   // check for null object
4015   __ null_check(r0);
4016 












4017   const Address monitor_block_top(
4018         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4019   const Address monitor_block_bot(
4020         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4021   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4022 
4023   Label found;
4024 
4025   // find matching slot
4026   {
4027     Label entry, loop;
4028     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4029     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4030     // c_rarg1 points to current entry, starting with top-most entry
4031 
4032     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4033                                         // of monitor block
4034     __ b(entry);
4035 
4036     __ bind(loop);

  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "compiler/compilerDefinitions.inline.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "gc/shared/tlab_globals.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "interpreter/templateTable.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.inline.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/resolvedFieldEntry.hpp"
  42 #include "oops/resolvedIndyEntry.hpp"
  43 #include "oops/resolvedMethodEntry.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/frame.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
  54 
  55 // Address computation: local variables
  56 
  57 static inline Address iaddress(int n) {
  58   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  59 }
  60 
  61 static inline Address laddress(int n) {
  62   return iaddress(n + 1);
  63 }
  64 
  65 static inline Address faddress(int n) {
  66   return iaddress(n);

 157                         Address src,
 158                         Register dst,
 159                         DecoratorSet decorators) {
 160   __ load_heap_oop(dst, src, r10, r11, decorators);
 161 }
 162 
 163 Address TemplateTable::at_bcp(int offset) {
 164   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 165   return Address(rbcp, offset);
 166 }
 167 
 168 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 169                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 170                                    int byte_no)
 171 {
 172   assert_different_registers(bc_reg, temp_reg);
 173   if (!RewriteBytecodes)  return;
 174   Label L_patch_done;
 175 
 176   switch (bc) {
 177   case Bytecodes::_fast_vputfield:
 178   case Bytecodes::_fast_aputfield:
 179   case Bytecodes::_fast_bputfield:
 180   case Bytecodes::_fast_zputfield:
 181   case Bytecodes::_fast_cputfield:
 182   case Bytecodes::_fast_dputfield:
 183   case Bytecodes::_fast_fputfield:
 184   case Bytecodes::_fast_iputfield:
 185   case Bytecodes::_fast_lputfield:
 186   case Bytecodes::_fast_sputfield:
 187     {
 188       // We skip bytecode quickening for putfield instructions when
 189       // the put_code written to the constant pool cache is zero.
 190       // This is required so that every execution of this instruction
 191       // calls out to InterpreterRuntime::resolve_get_put to do
 192       // additional, required work.
 193       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 194       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 195       __ load_field_entry(temp_reg, bc_reg);
 196       if (byte_no == f1_byte) {
 197         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 742   locals_index_wide(r1);
 743   __ ldr(r0, aaddress(r1));
 744 }
 745 
 746 void TemplateTable::index_check(Register array, Register index)
 747 {
 748   // destroys r1, rscratch1
 749   // sign extend index for use by indexed load
 750   // __ movl2ptr(index, index);
 751   // check index
 752   Register length = rscratch1;
 753   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 754   __ cmpw(index, length);
 755   if (index != r1) {
 756     // ??? convention: move aberrant index into r1 for exception message
 757     assert(r1 != array, "different registers");
 758     __ mov(r1, index);
 759   }
 760   Label ok;
 761   __ br(Assembler::LO, ok);
 762   // ??? convention: move array into r3 for exception message
 763    __ mov(r3, array);
 764    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 765    __ br(rscratch1);
 766   __ bind(ok);
 767 }
 768 
 769 void TemplateTable::iaload()
 770 {
 771   transition(itos, itos);
 772   __ mov(r1, r0);
 773   __ pop_ptr(r0);
 774   // r0: array
 775   // r1: index
 776   index_check(r0, r1); // leaves index in r1, kills rscratch1
 777   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 778   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 779 }
 780 
 781 void TemplateTable::laload()
 782 {
 783   transition(itos, ltos);
 784   __ mov(r1, r0);
 785   __ pop_ptr(r0);

 805 void TemplateTable::daload()
 806 {
 807   transition(itos, dtos);
 808   __ mov(r1, r0);
 809   __ pop_ptr(r0);
 810   // r0: array
 811   // r1: index
 812   index_check(r0, r1); // leaves index in r1, kills rscratch1
 813   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 814   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 815 }
 816 
 817 void TemplateTable::aaload()
 818 {
 819   transition(itos, atos);
 820   __ mov(r1, r0);
 821   __ pop_ptr(r0);
 822   // r0: array
 823   // r1: index
 824   index_check(r0, r1); // leaves index in r1, kills rscratch1
 825   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 826   if (UseArrayFlattening) {
 827     Label is_flat_array, done;
 828 
 829     __ test_flat_array_oop(r0, rscratch1 /*temp*/, is_flat_array);
 830     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 831     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 832 
 833     __ b(done);
 834     __ bind(is_flat_array);
 835     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 836     // Ensure the stores to copy the inline field contents are visible
 837     // before any subsequent store that publishes this reference.
 838     __ membar(Assembler::StoreStore);
 839     __ bind(done);
 840   } else {
 841     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 842     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 843   }
 844   __ profile_element_type(r2, r0, r4);
 845 }
 846 
 847 void TemplateTable::baload()
 848 {
 849   transition(itos, itos);
 850   __ mov(r1, r0);
 851   __ pop_ptr(r0);
 852   // r0: array
 853   // r1: index
 854   index_check(r0, r1); // leaves index in r1, kills rscratch1
 855   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 856   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 857 }
 858 
 859 void TemplateTable::caload()
 860 {
 861   transition(itos, itos);
 862   __ mov(r1, r0);
 863   __ pop_ptr(r0);
 864   // r0: array

1111   // r1:  index
1112   // r3:  array
1113   index_check(r3, r1); // prefer index in r1
1114   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1115   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1116 }
1117 
1118 void TemplateTable::dastore() {
1119   transition(dtos, vtos);
1120   __ pop_i(r1);
1121   __ pop_ptr(r3);
1122   // v0: value
1123   // r1:  index
1124   // r3:  array
1125   index_check(r3, r1); // prefer index in r1
1126   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1127   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1128 }
1129 
1130 void TemplateTable::aastore() {
1131   Label is_null, is_flat_array, ok_is_subtype, done;
1132   transition(vtos, vtos);
1133   // stack: ..., array, index, value
1134   __ ldr(r0, at_tos());    // value
1135   __ ldr(r2, at_tos_p1()); // index
1136   __ ldr(r3, at_tos_p2()); // array
1137 


1138   index_check(r3, r2);     // kills r1
1139 
1140   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1141   __ profile_multiple_element_types(r4, r0, r5, r6);
1142 
1143   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1144   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1145   // Be careful not to clobber r4 below
1146 
1147   // do array store check - check for null value first
1148   __ cbz(r0, is_null);
1149 
1150   // Move array class to r5
1151   __ load_klass(r5, r3);
1152 
1153   if (UseArrayFlattening) {
1154     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1155     __ test_flat_array_layout(r6, is_flat_array);
1156   }
1157 
1158   // Move subklass into r1
1159   __ load_klass(r1, r0);
1160 
1161   // Move array element superklass into r0
1162   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1163   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1164 
1165   // Generate subtype check.  Blows r2, r5
1166   // Superklass in r0.  Subklass in r1.
1167 
1168   // is "r1 <: r0" ? (value subclass <: array element superclass)
1169   __ gen_subtype_check(r1, ok_is_subtype, false);
1170 
1171   // Come here on failure
1172   // object is at TOS
1173   __ b(Interpreter::_throw_ArrayStoreException_entry);
1174 
1175   // Come here on success
1176   __ bind(ok_is_subtype);
1177 
1178   // Get the value we will store
1179   __ ldr(r0, at_tos());
1180   // Now store using the appropriate barrier
1181   // Clobbers: r10, r11, r3
1182   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1183   __ b(done);
1184 
1185   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1186   __ bind(is_null);
1187   if (Arguments::is_valhalla_enabled()) {
1188     Label is_null_into_value_array_npe, store_null;
1189 
1190     if (UseArrayFlattening) {
1191       __ test_flat_array_oop(r3, rscratch1, is_flat_array);
1192     }
1193 
1194     // No way to store null in a null-free array
1195     __ test_null_free_array_oop(r3, rscratch1, is_null_into_value_array_npe);
1196     __ b(store_null);
1197 
1198     __ bind(is_null_into_value_array_npe);
1199     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1200 
1201     __ bind(store_null);
1202   }
1203 
1204   // Store a null
1205   // Clobbers: r10, r11, r3
1206   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1207   __ b(done);
1208 
1209   if (UseArrayFlattening) {
1210      Label is_type_ok;
1211     __ bind(is_flat_array); // Store non-null value to flat
1212 
1213     __ ldr(r0, at_tos());    // value
1214     __ ldr(r3, at_tos_p1()); // index
1215     __ ldr(r2, at_tos_p2()); // array
1216     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1217   }
1218 
1219   // Pop stack arguments
1220   __ bind(done);
1221   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1222 }
1223 
1224 void TemplateTable::bastore()
1225 {
1226   transition(itos, vtos);
1227   __ pop_i(r1);
1228   __ pop_ptr(r3);
1229   // r0: value
1230   // r1: index
1231   // r3: array
1232   index_check(r3, r1); // prefer index in r1
1233 
1234   // Need to check whether array is boolean or byte
1235   // since both types share the bastore bytecode.
1236   __ load_klass(r2, r3);
1237   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

2004   __ br(j_not(cc), not_taken);
2005   branch(false, false);
2006   __ bind(not_taken);
2007   __ profile_not_taken_branch(r0);
2008 }
2009 
2010 void TemplateTable::if_nullcmp(Condition cc)
2011 {
2012   transition(atos, vtos);
2013   // assume branch is more often taken than not (loops use backward branches)
2014   Label not_taken;
2015   if (cc == equal)
2016     __ cbnz(r0, not_taken);
2017   else
2018     __ cbz(r0, not_taken);
2019   branch(false, false);
2020   __ bind(not_taken);
2021   __ profile_not_taken_branch(r0);
2022 }
2023 
2024 void TemplateTable::if_acmp(Condition cc) {

2025   transition(atos, vtos);
2026   // assume branch is more often taken than not (loops use backward branches)
2027   Label taken, not_taken;
2028   __ pop_ptr(r1);
2029 
2030   __ profile_acmp(r2, r1, r0, r4);
2031 
2032   Register is_inline_type_mask = rscratch1;
2033   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2034 
2035   if (Arguments::is_valhalla_enabled()) {
2036     __ cmp(r1, r0);
2037     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2038 
2039     // might be substitutable, test if either r0 or r1 is null
2040     __ andr(r2, r0, r1);
2041     __ cbz(r2, (cc == equal) ? not_taken : taken);
2042 
2043     // and both are values ?
2044     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2045     __ andr(r2, r2, is_inline_type_mask);
2046     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2047     __ andr(r4, r4, is_inline_type_mask);
2048     __ andr(r2, r2, r4);
2049     __ cmp(r2,  is_inline_type_mask);
2050     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2051 
2052     // same value klass ?
2053     __ load_metadata(r2, r1);
2054     __ load_metadata(r4, r0);
2055     __ cmp(r2, r4);
2056     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2057 
2058     // Know both are the same type, let's test for substitutability...
2059     if (cc == equal) {
2060       invoke_is_substitutable(r0, r1, taken, not_taken);
2061     } else {
2062       invoke_is_substitutable(r0, r1, not_taken, taken);
2063     }
2064     __ stop("Not reachable");
2065   }
2066 
2067   __ cmpoop(r1, r0);
2068   __ br(j_not(cc), not_taken);
2069   __ bind(taken);
2070   branch(false, false);
2071   __ bind(not_taken);
2072   __ profile_not_taken_branch(r0, true);
2073 }
2074 
2075 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2076                                             Label& is_subst, Label& not_subst) {
2077 
2078   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2079   // Restored... r0 answer, jmp to outcome...
2080   __ cbz(r0, not_subst);
2081   __ b(is_subst);
2082 }
2083 
2084 
2085 void TemplateTable::ret() {
2086   transition(vtos, vtos);
2087   locals_index(r1);
2088   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2089   __ profile_ret(r1, r2);
2090   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2091   __ lea(rbcp, Address(rbcp, r1));
2092   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2093   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2094 }
2095 
2096 void TemplateTable::wide_ret() {
2097   transition(vtos, vtos);
2098   locals_index_wide(r1);
2099   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2100   __ profile_ret(r1, r2);
2101   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2102   __ lea(rbcp, Address(rbcp, r1));
2103   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2104   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2298   assert(_desc->calls_vm(),
2299          "inconsistent calls_vm information"); // call in remove_activation
2300 
2301   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2302     assert(state == vtos, "only valid state");
2303 
2304     __ ldr(c_rarg1, aaddress(0));
2305     __ load_klass(r3, c_rarg1);
2306     __ ldrb(r3, Address(r3, Klass::misc_flags_offset()));
2307     Label skip_register_finalizer;
2308     __ tbz(r3, exact_log2(KlassFlags::_misc_has_finalizer), skip_register_finalizer);
2309 
2310     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2311 
2312     __ bind(skip_register_finalizer);
2313   }
2314 
2315   // Issue a StoreStore barrier after all stores but before return
2316   // from any constructor for any class with a final field.  We don't
2317   // know if this is a finalizer, so we always do so.
2318   if (_desc->bytecode() == Bytecodes::_return
2319       || _desc->bytecode() == Bytecodes::_return_register_finalizer)
2320     __ membar(MacroAssembler::StoreStore);
2321 
2322   if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2323     Label no_safepoint;
2324     __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
2325     __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), no_safepoint);
2326     __ push(state);
2327     __ push_cont_fastpath(rthread);
2328     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2329     __ pop_cont_fastpath(rthread);
2330     __ pop(state);
2331     __ bind(no_safepoint);
2332   }
2333 
2334   // Narrow result if state is itos but result type is smaller.
2335   // Need to narrow in the return bytecode rather than in generate_return_entry
2336   // since compiled code callers expect the result to already be narrowed.
2337   if (state == itos) {
2338     __ narrow(r0);
2339   }

2690     }
2691     // c_rarg1: object pointer or null
2692     // c_rarg2: cache entry pointer
2693     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2694                                        InterpreterRuntime::post_field_access),
2695                c_rarg1, c_rarg2);
2696     __ load_field_entry(cache, index);
2697     __ bind(L1);
2698   }
2699 }
2700 
2701 void TemplateTable::pop_and_check_object(Register r)
2702 {
2703   __ pop_ptr(r);
2704   __ null_check(r);  // for field access must check obj.
2705   __ verify_oop(r);
2706 }
2707 
2708 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2709 {
2710   const Register cache     = r2;
2711   const Register obj       = r4;
2712   const Register klass     = r5;
2713   const Register inline_klass = r7;
2714   const Register field_index = r23;
2715   const Register index     = r3;
2716   const Register tos_state = r3;
2717   const Register off       = r19;
2718   const Register flags     = r6;
2719   const Register bc        = r4; // uses same reg as obj, so don't mix them
2720 
2721   resolve_cache_and_index_for_field(byte_no, cache, index);
2722   jvmti_post_field_access(cache, index, is_static, false);
2723 
2724   // Valhalla extras
2725   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2726   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2727 
2728   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2729 
2730   if (!is_static) {
2731     // obj is on the stack
2732     pop_and_check_object(obj);
2733   }
2734 
2735   // 8179954: We need to make sure that the code generated for
2736   // volatile accesses forms a sequentially-consistent set of
2737   // operations when combined with STLR and LDAR.  Without a leading
2738   // membar it's possible for a simple Dekker test to fail if loads
2739   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2740   // the stores in one method and we interpret the loads in another.
2741   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2742     Label notVolatile;
2743     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2744     __ membar(MacroAssembler::AnyAny);
2745     __ bind(notVolatile);
2746   }
2747 

2766   __ b(Done);
2767 
2768   __ bind(notByte);
2769   __ cmp(tos_state, (u1)ztos);
2770   __ br(Assembler::NE, notBool);
2771 
2772   // ztos (same code as btos)
2773   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2774   __ push(ztos);
2775   // Rewrite bytecode to be faster
2776   if (rc == may_rewrite) {
2777     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2778     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2779   }
2780   __ b(Done);
2781 
2782   __ bind(notBool);
2783   __ cmp(tos_state, (u1)atos);
2784   __ br(Assembler::NE, notObj);
2785   // atos
2786   if (!Arguments::is_valhalla_enabled()) {
2787     do_oop_load(_masm, field, r0, IN_HEAP);
2788     __ push(atos);
2789     if (rc == may_rewrite) {
2790       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2791     }
2792     __ b(Done);
2793   } else { // Valhalla
2794     if (is_static) {
2795       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2796       __ push(atos);
2797       __ b(Done);
2798     } else {
2799       Label is_flat;
2800       __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2801       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2802       __ push(atos);
2803       if (rc == may_rewrite) {
2804         patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2805       }
2806       __ b(Done);
2807       __ bind(is_flat);
2808       // field is flat (null-free or nullable with a null-marker)
2809       __ mov(r0, obj);
2810       __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2811       __ verify_oop(r0);
2812       __ push(atos);
2813       if (rc == may_rewrite) {
2814         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2815       }
2816       __ b(Done);
2817     }
2818   }

2819 
2820   __ bind(notObj);
2821   __ cmp(tos_state, (u1)itos);
2822   __ br(Assembler::NE, notInt);
2823   // itos
2824   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2825   __ push(itos);
2826   // Rewrite bytecode to be faster
2827   if (rc == may_rewrite) {
2828     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2829   }
2830   __ b(Done);
2831 
2832   __ bind(notInt);
2833   __ cmp(tos_state, (u1)ctos);
2834   __ br(Assembler::NE, notChar);
2835   // ctos
2836   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2837   __ push(ctos);
2838   // Rewrite bytecode to be faster

2959     // c_rarg1: object pointer set up above (null if static)
2960     // c_rarg2: cache entry pointer
2961     // c_rarg3: jvalue object on the stack
2962     __ call_VM(noreg,
2963                CAST_FROM_FN_PTR(address,
2964                                 InterpreterRuntime::post_field_modification),
2965                c_rarg1, c_rarg2, c_rarg3);
2966     __ load_field_entry(cache, index);
2967     __ bind(L1);
2968   }
2969 }
2970 
2971 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2972   transition(vtos, vtos);
2973 
2974   const Register cache     = r2;
2975   const Register index     = r3;
2976   const Register tos_state = r3;
2977   const Register obj       = r2;
2978   const Register off       = r19;
2979   const Register flags     = r6;
2980   const Register bc        = r4;
2981 
2982   resolve_cache_and_index_for_field(byte_no, cache, index);
2983   jvmti_post_field_mod(cache, index, is_static);
2984   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2985 
2986   Label Done;


2987   {
2988     Label notVolatile;
2989     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2990     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2991     __ bind(notVolatile);
2992   }
2993 
2994   // field address
2995   const Address field(obj, off);
2996 
2997   Label notByte, notBool, notInt, notShort, notChar,
2998         notLong, notFloat, notObj, notDouble;
2999 
3000   assert(btos == 0, "change code, btos != 0");
3001   __ cbnz(tos_state, notByte);
3002 
3003   // Don't rewrite putstatic, only putfield
3004   if (is_static) rc = may_not_rewrite;
3005 
3006   // btos
3007   {
3008     __ pop(btos);
3009     if (!is_static) pop_and_check_object(obj);

3018   __ cmp(tos_state, (u1)ztos);
3019   __ br(Assembler::NE, notBool);
3020 
3021   // ztos
3022   {
3023     __ pop(ztos);
3024     if (!is_static) pop_and_check_object(obj);
3025     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3026     if (rc == may_rewrite) {
3027       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3028     }
3029     __ b(Done);
3030   }
3031 
3032   __ bind(notBool);
3033   __ cmp(tos_state, (u1)atos);
3034   __ br(Assembler::NE, notObj);
3035 
3036   // atos
3037   {
3038     if (!Arguments::is_valhalla_enabled()) {
3039       __ pop(atos);
3040       if (!is_static) pop_and_check_object(obj);
3041       // Store into the field
3042       // Clobbers: r10, r11, r3
3043       do_oop_store(_masm, field, r0, IN_HEAP);
3044       if (rc == may_rewrite) {
3045         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3046       }
3047       __ b(Done);
3048     } else { // Valhalla
3049       __ pop(atos);
3050       if (is_static) {
3051         Label is_nullable;
3052         __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_nullable);
3053         __ null_check(r0);  // FIXME JDK-8341120
3054         __ bind(is_nullable);
3055         do_oop_store(_masm, field, r0, IN_HEAP);
3056         __ b(Done);
3057       } else {
3058         Label null_free_reference, is_flat, rewrite_inline;
3059         __ test_field_is_flat(flags, noreg /* temp */, is_flat);
3060         __ test_field_is_null_free_inline_type(flags, noreg /* temp */, null_free_reference);
3061         pop_and_check_object(obj);
3062         // Store into the field
3063         // Clobbers: r10, r11, r3
3064         do_oop_store(_masm, field, r0, IN_HEAP);
3065         if (rc == may_rewrite) {
3066           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3067         }
3068         __ b(Done);
3069         // Implementation of the inline type semantic
3070         __ bind(null_free_reference);
3071         __ null_check(r0);  // FIXME JDK-8341120
3072         pop_and_check_object(obj);
3073         // Store into the field
3074         // Clobbers: r10, r11, r3
3075         do_oop_store(_masm, field, r0, IN_HEAP);
3076         __ b(rewrite_inline);
3077         __ bind(is_flat);
3078         pop_and_check_object(r7);
3079         __ write_flat_field(cache, off, index, flags, r7);
3080         __ bind(rewrite_inline);
3081         if (rc == may_rewrite) {
3082           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3083         }
3084         __ b(Done);
3085       }
3086     } // Valhalla
3087   }
3088 
3089   __ bind(notObj);
3090   __ cmp(tos_state, (u1)itos);
3091   __ br(Assembler::NE, notInt);
3092 
3093   // itos
3094   {
3095     __ pop(itos);
3096     if (!is_static) pop_and_check_object(obj);
3097     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3098     if (rc == may_rewrite) {
3099       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3100     }
3101     __ b(Done);
3102   }
3103 
3104   __ bind(notInt);
3105   __ cmp(tos_state, (u1)ctos);
3106   __ br(Assembler::NE, notChar);

3171   {
3172     __ pop(dtos);
3173     if (!is_static) pop_and_check_object(obj);
3174     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3175     if (rc == may_rewrite) {
3176       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3177     }
3178   }
3179 
3180 #ifdef ASSERT
3181   __ b(Done);
3182 
3183   __ bind(notDouble);
3184   __ stop("Bad state");
3185 #endif
3186 
3187   __ bind(Done);
3188 
3189   {
3190     Label notVolatile;
3191     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3192     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3193     __ bind(notVolatile);
3194   }
3195 }
3196 
3197 void TemplateTable::putfield(int byte_no)
3198 {
3199   putfield_or_static(byte_no, false);
3200 }
3201 
3202 void TemplateTable::nofast_putfield(int byte_no) {
3203   putfield_or_static(byte_no, false, may_not_rewrite);
3204 }
3205 
3206 void TemplateTable::putstatic(int byte_no) {
3207   putfield_or_static(byte_no, true);
3208 }
3209 
3210 void TemplateTable::jvmti_post_fast_field_mod() {
3211   if (JvmtiExport::can_post_field_modification()) {
3212     // Check to see if a field modification watch has been set before
3213     // we take the time to call into the VM.
3214     Label L2;
3215     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3216     __ ldrw(c_rarg3, Address(rscratch1));
3217     __ cbzw(c_rarg3, L2);
3218     __ pop_ptr(r19);                  // copy the object pointer from tos
3219     __ verify_oop(r19);
3220     __ push_ptr(r19);                 // put the object pointer back on tos
3221     // Save tos values before call_VM() clobbers them. Since we have
3222     // to do it for every data type, we use the saved values as the
3223     // jvalue object.
3224     switch (bytecode()) {          // load values into the jvalue object
3225     case Bytecodes::_fast_vputfield: // fall through
3226     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3227     case Bytecodes::_fast_bputfield: // fall through
3228     case Bytecodes::_fast_zputfield: // fall through
3229     case Bytecodes::_fast_sputfield: // fall through
3230     case Bytecodes::_fast_cputfield: // fall through
3231     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3232     case Bytecodes::_fast_dputfield: __ push_d(); break;
3233     case Bytecodes::_fast_fputfield: __ push_f(); break;
3234     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3235 
3236     default:
3237       ShouldNotReachHere();
3238     }
3239     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3240     // access constant pool cache entry
3241     __ load_field_entry(c_rarg2, r0);
3242     __ verify_oop(r19);
3243     // r19: object pointer copied above
3244     // c_rarg2: cache entry pointer
3245     // c_rarg3: jvalue object on the stack
3246     __ call_VM(noreg,
3247                CAST_FROM_FN_PTR(address,
3248                                 InterpreterRuntime::post_field_modification),
3249                r19, c_rarg2, c_rarg3);
3250 
3251     switch (bytecode()) {             // restore tos values
3252     case Bytecodes::_fast_vputfield: // fall through
3253     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3254     case Bytecodes::_fast_bputfield: // fall through
3255     case Bytecodes::_fast_zputfield: // fall through
3256     case Bytecodes::_fast_sputfield: // fall through
3257     case Bytecodes::_fast_cputfield: // fall through
3258     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3259     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3260     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3261     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3262     default: break;
3263     }
3264     __ bind(L2);
3265   }
3266 }
3267 
3268 void TemplateTable::fast_storefield(TosState state)
3269 {
3270   transition(state, vtos);
3271 
3272   ByteSize base = ConstantPoolCache::base_offset();

3280   load_resolved_field_entry(r2, r2, noreg, r1, r5);
3281   __ verify_field_offset(r1);
3282 
3283   {
3284     Label notVolatile;
3285     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3286     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3287     __ bind(notVolatile);
3288   }
3289 
3290   Label notVolatile;
3291 
3292   // Get object from stack
3293   pop_and_check_object(r2);
3294 
3295   // field address
3296   const Address field(r2, r1);
3297 
3298   // access field
3299   switch (bytecode()) {
3300   case Bytecodes::_fast_vputfield:
3301     {
3302       Label is_flat, done;
3303       __ test_field_is_flat(r5, noreg /* temp */, is_flat);
3304       __ null_check(r0);
3305       do_oop_store(_masm, field, r0, IN_HEAP);
3306       __ b(done);
3307       __ bind(is_flat);
3308       __ load_field_entry(r4, r5);
3309       // Re-shuffle registers because of VM calls calling convention
3310       __ mov(r19, r1);
3311       __ mov(r7, r2);
3312       __ write_flat_field(r4, r19, r6, r8, r7);
3313       __ bind(done);
3314     }
3315     break;
3316   case Bytecodes::_fast_aputfield:
3317     // Clobbers: r10, r11, r3
3318     do_oop_store(_masm, field, r0, IN_HEAP);
3319     break;
3320   case Bytecodes::_fast_lputfield:
3321     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3322     break;
3323   case Bytecodes::_fast_iputfield:
3324     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3325     break;
3326   case Bytecodes::_fast_zputfield:
3327     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3328     break;
3329   case Bytecodes::_fast_bputfield:
3330     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3331     break;
3332   case Bytecodes::_fast_sputfield:
3333     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3334     break;
3335   case Bytecodes::_fast_cputfield:

3391   // r0: object
3392   __ verify_oop(r0);
3393   __ null_check(r0);
3394   const Address field(r0, r1);
3395 
3396   // 8179954: We need to make sure that the code generated for
3397   // volatile accesses forms a sequentially-consistent set of
3398   // operations when combined with STLR and LDAR.  Without a leading
3399   // membar it's possible for a simple Dekker test to fail if loads
3400   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3401   // the stores in one method and we interpret the loads in another.
3402   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3403     Label notVolatile;
3404     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3405     __ membar(MacroAssembler::AnyAny);
3406     __ bind(notVolatile);
3407   }
3408 
3409   // access field
3410   switch (bytecode()) {
3411   case Bytecodes::_fast_vgetfield:
3412     {
3413       Register index = r4, tmp = r7;
3414       // field is flat
3415       __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3416       __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3417       __ verify_oop(r0);
3418     }
3419     break;
3420   case Bytecodes::_fast_agetfield:
3421     do_oop_load(_masm, field, r0, IN_HEAP);
3422     __ verify_oop(r0);
3423     break;
3424   case Bytecodes::_fast_lgetfield:
3425     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3426     break;
3427   case Bytecodes::_fast_igetfield:
3428     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3429     break;
3430   case Bytecodes::_fast_bgetfield:
3431     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3432     break;
3433   case Bytecodes::_fast_sgetfield:
3434     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3435     break;
3436   case Bytecodes::_fast_cgetfield:
3437     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3438     break;
3439   case Bytecodes::_fast_fgetfield:

3820   Label initialize_header;
3821 
3822   __ get_cpool_and_tags(r4, r0);
3823   // Make sure the class we're about to instantiate has been resolved.
3824   // This is done before loading InstanceKlass to be consistent with the order
3825   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3826   const int tags_offset = Array<u1>::base_offset_in_bytes();
3827   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3828   __ lea(rscratch1, Address(rscratch1, tags_offset));
3829   __ ldarb(rscratch1, rscratch1);
3830   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3831   __ br(Assembler::NE, slow_case);
3832 
3833   // get InstanceKlass
3834   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3835 
3836   // make sure klass is initialized
3837   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3838   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3839 
3840   __ allocate_instance(r4, r0, r3, r1, true, slow_case);
3841   __ b(done);





























































3842 
3843   // slow case
3844   __ bind(slow_case);
3845   __ get_constant_pool(c_rarg1);
3846   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3847   __ call_VM_preemptable(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3848   __ verify_oop(r0);
3849 
3850   // continue
3851   __ bind(done);
3852   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3853   __ membar(Assembler::StoreStore);
3854 }
3855 
3856 void TemplateTable::newarray() {
3857   transition(itos, atos);
3858   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3859   __ mov(c_rarg2, r0);
3860   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3861           c_rarg1, c_rarg2);

3905   __ bind(quicked);
3906   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3907   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3908 
3909   __ bind(resolved);
3910   __ load_klass(r19, r3);
3911 
3912   // Generate subtype check.  Blows r2, r5.  Object in r3.
3913   // Superklass in r0.  Subklass in r19.
3914   __ gen_subtype_check(r19, ok_is_subtype);
3915 
3916   // Come here on failure
3917   __ push(r3);
3918   // object is at TOS
3919   __ b(Interpreter::_throw_ClassCastException_entry);
3920 
3921   // Come here on success
3922   __ bind(ok_is_subtype);
3923   __ mov(r0, r3); // Restore object in r3
3924 
3925   __ b(done);
3926   __ bind(is_null);
3927 
3928   // Collect counts on whether this test sees nulls a lot or not.
3929   if (ProfileInterpreter) {


3930     __ profile_null_seen(r2);


3931   }
3932 
3933   __ bind(done);
3934 }
3935 
3936 void TemplateTable::instanceof() {
3937   transition(atos, itos);
3938   Label done, is_null, ok_is_subtype, quicked, resolved;
3939   __ cbz(r0, is_null);
3940 
3941   // Get cpool & tags index
3942   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3943   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3944   // See if bytecode has already been quicked
3945   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3946   __ lea(r1, Address(rscratch1, r19));
3947   __ ldarb(r1, r1);
3948   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3949   __ br(Assembler::EQ, quicked);
3950 
3951   __ push(atos); // save receiver for result, and for GC
3952   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4030 //       in the assembly code structure as well
4031 //
4032 // Stack layout:
4033 //
4034 // [expressions  ] <--- esp               = expression stack top
4035 // ..
4036 // [expressions  ]
4037 // [monitor entry] <--- monitor block top = expression stack bot
4038 // ..
4039 // [monitor entry]
4040 // [frame data   ] <--- monitor block bot
4041 // ...
4042 // [saved rfp    ] <--- rfp
4043 void TemplateTable::monitorenter()
4044 {
4045   transition(atos, vtos);
4046 
4047   // check for null object
4048   __ null_check(r0);
4049 
4050   Label is_inline_type;
4051   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4052   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4053 
4054   const Address monitor_block_top(
4055         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4056   const Address monitor_block_bot(
4057         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4058   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4059 
4060   Label allocated;
4061 
4062   // initialize entry pointer
4063   __ mov(c_rarg1, zr); // points to free slot or null
4064 
4065   // find a free slot in the monitor block (result in c_rarg1)
4066   {
4067     Label entry, loop, exit;
4068     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4069     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4070     // c_rarg3 points to current entry, starting with top-most entry
4071 
4072     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4073 

4135   // c_rarg1: points to monitor entry
4136   __ bind(allocated);
4137 
4138   // Increment bcp to point to the next bytecode, so exception
4139   // handling for async. exceptions work correctly.
4140   // The object has already been popped from the stack, so the
4141   // expression stack looks correct.
4142   __ increment(rbcp);
4143 
4144   // store object
4145   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4146   __ lock_object(c_rarg1);
4147 
4148   // check to make sure this monitor doesn't cause stack overflow after locking
4149   __ save_bcp();  // in case of exception
4150   __ generate_stack_overflow_check(0);
4151 
4152   // The bcp has already been incremented. Just need to dispatch to
4153   // next instruction.
4154   __ dispatch_next(vtos);
4155 
4156   __ bind(is_inline_type);
4157   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4158                     InterpreterRuntime::throw_identity_exception), r0);
4159   __ should_not_reach_here();
4160 }
4161 
4162 
4163 void TemplateTable::monitorexit()
4164 {
4165   transition(atos, vtos);
4166 
4167   // check for null object
4168   __ null_check(r0);
4169 
4170   const int is_inline_type_mask = markWord::inline_type_pattern;
4171   Label has_identity;
4172   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4173   __ mov(rscratch2, is_inline_type_mask);
4174   __ andr(rscratch1, rscratch1, rscratch2);
4175   __ cmp(rscratch1, rscratch2);
4176   __ br(Assembler::NE, has_identity);
4177   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4178                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4179   __ should_not_reach_here();
4180   __ bind(has_identity);
4181 
4182   const Address monitor_block_top(
4183         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4184   const Address monitor_block_bot(
4185         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4186   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4187 
4188   Label found;
4189 
4190   // find matching slot
4191   {
4192     Label entry, loop;
4193     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4194     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4195     // c_rarg1 points to current entry, starting with top-most entry
4196 
4197     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4198                                         // of monitor block
4199     __ b(entry);
4200 
4201     __ bind(loop);
< prev index next >