< prev index next >

src/hotspot/cpu/aarch64/templateTable_aarch64.cpp

Print this page

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {

 175   case Bytecodes::_fast_aputfield:
 176   case Bytecodes::_fast_bputfield:
 177   case Bytecodes::_fast_zputfield:
 178   case Bytecodes::_fast_cputfield:
 179   case Bytecodes::_fast_dputfield:
 180   case Bytecodes::_fast_fputfield:
 181   case Bytecodes::_fast_iputfield:
 182   case Bytecodes::_fast_lputfield:
 183   case Bytecodes::_fast_sputfield:
 184     {
 185       // We skip bytecode quickening for putfield instructions when
 186       // the put_code written to the constant pool cache is zero.
 187       // This is required so that every execution of this instruction
 188       // calls out to InterpreterRuntime::resolve_get_put to do
 189       // additional, required work.
 190       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 191       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 192       __ load_field_entry(temp_reg, bc_reg);
 193       if (byte_no == f1_byte) {
 194         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 736   locals_index_wide(r1);
 737   __ ldr(r0, aaddress(r1));
 738 }
 739 
 740 void TemplateTable::index_check(Register array, Register index)
 741 {
 742   // destroys r1, rscratch1
 743   // sign extend index for use by indexed load
 744   // __ movl2ptr(index, index);
 745   // check index
 746   Register length = rscratch1;
 747   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 748   __ cmpw(index, length);
 749   if (index != r1) {
 750     // ??? convention: move aberrant index into r1 for exception message
 751     assert(r1 != array, "different registers");
 752     __ mov(r1, index);
 753   }
 754   Label ok;
 755   __ br(Assembler::LO, ok);
 756     // ??? convention: move array into r3 for exception message
 757   __ mov(r3, array);
 758   __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 759   __ br(rscratch1);
 760   __ bind(ok);
 761 }
 762 
 763 void TemplateTable::iaload()
 764 {
 765   transition(itos, itos);
 766   __ mov(r1, r0);
 767   __ pop_ptr(r0);
 768   // r0: array
 769   // r1: index
 770   index_check(r0, r1); // leaves index in r1, kills rscratch1
 771   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 772   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 773 }
 774 
 775 void TemplateTable::laload()
 776 {
 777   transition(itos, ltos);
 778   __ mov(r1, r0);
 779   __ pop_ptr(r0);

 799 void TemplateTable::daload()
 800 {
 801   transition(itos, dtos);
 802   __ mov(r1, r0);
 803   __ pop_ptr(r0);
 804   // r0: array
 805   // r1: index
 806   index_check(r0, r1); // leaves index in r1, kills rscratch1
 807   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 808   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 809 }
 810 
 811 void TemplateTable::aaload()
 812 {
 813   transition(itos, atos);
 814   __ mov(r1, r0);
 815   __ pop_ptr(r0);
 816   // r0: array
 817   // r1: index
 818   index_check(r0, r1); // leaves index in r1, kills rscratch1
 819   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 820   do_oop_load(_masm,
 821               Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
 822               r0,
 823               IS_ARRAY);















 824 }
 825 
 826 void TemplateTable::baload()
 827 {
 828   transition(itos, itos);
 829   __ mov(r1, r0);
 830   __ pop_ptr(r0);
 831   // r0: array
 832   // r1: index
 833   index_check(r0, r1); // leaves index in r1, kills rscratch1
 834   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 835   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 836 }
 837 
 838 void TemplateTable::caload()
 839 {
 840   transition(itos, itos);
 841   __ mov(r1, r0);
 842   __ pop_ptr(r0);
 843   // r0: array

1090   // r1:  index
1091   // r3:  array
1092   index_check(r3, r1); // prefer index in r1
1093   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1094   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1095 }
1096 
1097 void TemplateTable::dastore() {
1098   transition(dtos, vtos);
1099   __ pop_i(r1);
1100   __ pop_ptr(r3);
1101   // v0: value
1102   // r1:  index
1103   // r3:  array
1104   index_check(r3, r1); // prefer index in r1
1105   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1106   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1107 }
1108 
1109 void TemplateTable::aastore() {
1110   Label is_null, ok_is_subtype, done;
1111   transition(vtos, vtos);
1112   // stack: ..., array, index, value
1113   __ ldr(r0, at_tos());    // value
1114   __ ldr(r2, at_tos_p1()); // index
1115   __ ldr(r3, at_tos_p2()); // array
1116 
1117   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1118 
1119   index_check(r3, r2);     // kills r1




1120   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);


1121 
1122   // do array store check - check for null value first
1123   __ cbz(r0, is_null);
1124 








1125   // Move subklass into r1
1126   __ load_klass(r1, r0);
1127   // Move superklass into r0
1128   __ load_klass(r0, r3);
1129   __ ldr(r0, Address(r0,
1130                      ObjArrayKlass::element_klass_offset()));
1131   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1132 
1133   // Generate subtype check.  Blows r2, r5
1134   // Superklass in r0.  Subklass in r1.
1135   __ gen_subtype_check(r1, ok_is_subtype);


1136 
1137   // Come here on failure
1138   // object is at TOS
1139   __ b(Interpreter::_throw_ArrayStoreException_entry);
1140 
1141   // Come here on success
1142   __ bind(ok_is_subtype);
1143 
1144   // Get the value we will store
1145   __ ldr(r0, at_tos());
1146   // Now store using the appropriate barrier
1147   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1148   __ b(done);
1149 
1150   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1151   __ bind(is_null);
1152   __ profile_null_seen(r2);















1153 
1154   // Store a null
1155   do_oop_store(_masm, element_address, noreg, IS_ARRAY);











1156 
1157   // Pop stack arguments
1158   __ bind(done);
1159   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1160 }
1161 
1162 void TemplateTable::bastore()
1163 {
1164   transition(itos, vtos);
1165   __ pop_i(r1);
1166   __ pop_ptr(r3);
1167   // r0: value
1168   // r1: index
1169   // r3: array
1170   index_check(r3, r1); // prefer index in r1
1171 
1172   // Need to check whether array is boolean or byte
1173   // since both types share the bastore bytecode.
1174   __ load_klass(r2, r3);
1175   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1940   __ br(j_not(cc), not_taken);
1941   branch(false, false);
1942   __ bind(not_taken);
1943   __ profile_not_taken_branch(r0);
1944 }
1945 
1946 void TemplateTable::if_nullcmp(Condition cc)
1947 {
1948   transition(atos, vtos);
1949   // assume branch is more often taken than not (loops use backward branches)
1950   Label not_taken;
1951   if (cc == equal)
1952     __ cbnz(r0, not_taken);
1953   else
1954     __ cbz(r0, not_taken);
1955   branch(false, false);
1956   __ bind(not_taken);
1957   __ profile_not_taken_branch(r0);
1958 }
1959 
1960 void TemplateTable::if_acmp(Condition cc)
1961 {
1962   transition(atos, vtos);
1963   // assume branch is more often taken than not (loops use backward branches)
1964   Label not_taken;
1965   __ pop_ptr(r1);






































1966   __ cmpoop(r1, r0);
1967   __ br(j_not(cc), not_taken);

1968   branch(false, false);
1969   __ bind(not_taken);
1970   __ profile_not_taken_branch(r0);









1971 }
1972 

1973 void TemplateTable::ret() {
1974   transition(vtos, vtos);
1975   locals_index(r1);
1976   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1977   __ profile_ret(r1, r2);
1978   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1979   __ lea(rbcp, Address(rbcp, r1));
1980   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1981   __ dispatch_next(vtos, 0, /*generate_poll*/true);
1982 }
1983 
1984 void TemplateTable::wide_ret() {
1985   transition(vtos, vtos);
1986   locals_index_wide(r1);
1987   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1988   __ profile_ret(r1, r2);
1989   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1990   __ lea(rbcp, Address(rbcp, r1));
1991   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1992   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2562     }
2563     // c_rarg1: object pointer or null
2564     // c_rarg2: cache entry pointer
2565     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2566                                        InterpreterRuntime::post_field_access),
2567                c_rarg1, c_rarg2);
2568     __ load_field_entry(cache, index);
2569     __ bind(L1);
2570   }
2571 }
2572 
2573 void TemplateTable::pop_and_check_object(Register r)
2574 {
2575   __ pop_ptr(r);
2576   __ null_check(r);  // for field access must check obj.
2577   __ verify_oop(r);
2578 }
2579 
2580 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2581 {
2582   const Register cache     = r4;
2583   const Register obj       = r4;



2584   const Register index     = r3;
2585   const Register tos_state = r3;
2586   const Register off       = r19;
2587   const Register flags     = r6;
2588   const Register bc        = r4; // uses same reg as obj, so don't mix them
2589 
2590   resolve_cache_and_index_for_field(byte_no, cache, index);
2591   jvmti_post_field_access(cache, index, is_static, false);





2592   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2593 
2594   if (!is_static) {
2595     // obj is on the stack
2596     pop_and_check_object(obj);
2597   }
2598 
2599   // 8179954: We need to make sure that the code generated for
2600   // volatile accesses forms a sequentially-consistent set of
2601   // operations when combined with STLR and LDAR.  Without a leading
2602   // membar it's possible for a simple Dekker test to fail if loads
2603   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2604   // the stores in one method and we interpret the loads in another.
2605   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2606     Label notVolatile;
2607     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2608     __ membar(MacroAssembler::AnyAny);
2609     __ bind(notVolatile);
2610   }
2611 

2630   __ b(Done);
2631 
2632   __ bind(notByte);
2633   __ cmp(tos_state, (u1)ztos);
2634   __ br(Assembler::NE, notBool);
2635 
2636   // ztos (same code as btos)
2637   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2638   __ push(ztos);
2639   // Rewrite bytecode to be faster
2640   if (rc == may_rewrite) {
2641     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2642     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2643   }
2644   __ b(Done);
2645 
2646   __ bind(notBool);
2647   __ cmp(tos_state, (u1)atos);
2648   __ br(Assembler::NE, notObj);
2649   // atos
2650   do_oop_load(_masm, field, r0, IN_HEAP);
2651   __ push(atos);
2652   if (rc == may_rewrite) {
2653     patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);





































































2654   }
2655   __ b(Done);
2656 
2657   __ bind(notObj);
2658   __ cmp(tos_state, (u1)itos);
2659   __ br(Assembler::NE, notInt);
2660   // itos
2661   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2662   __ push(itos);
2663   // Rewrite bytecode to be faster
2664   if (rc == may_rewrite) {
2665     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2666   }
2667   __ b(Done);
2668 
2669   __ bind(notInt);
2670   __ cmp(tos_state, (u1)ctos);
2671   __ br(Assembler::NE, notChar);
2672   // ctos
2673   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2674   __ push(ctos);
2675   // Rewrite bytecode to be faster

2796     // c_rarg1: object pointer set up above (null if static)
2797     // c_rarg2: cache entry pointer
2798     // c_rarg3: jvalue object on the stack
2799     __ call_VM(noreg,
2800                CAST_FROM_FN_PTR(address,
2801                                 InterpreterRuntime::post_field_modification),
2802                c_rarg1, c_rarg2, c_rarg3);
2803     __ load_field_entry(cache, index);
2804     __ bind(L1);
2805   }
2806 }
2807 
2808 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2809   transition(vtos, vtos);
2810 
2811   const Register cache     = r2;
2812   const Register index     = r3;
2813   const Register tos_state = r3;
2814   const Register obj       = r2;
2815   const Register off       = r19;
2816   const Register flags     = r0;
2817   const Register bc        = r4;

2818 
2819   resolve_cache_and_index_for_field(byte_no, cache, index);
2820   jvmti_post_field_mod(cache, index, is_static);
2821   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2822 
2823   Label Done;
2824   __ mov(r5, flags);
2825 
2826   {
2827     Label notVolatile;
2828     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2829     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2830     __ bind(notVolatile);
2831   }
2832 
2833   // field address
2834   const Address field(obj, off);
2835 
2836   Label notByte, notBool, notInt, notShort, notChar,
2837         notLong, notFloat, notObj, notDouble;
2838 
2839   assert(btos == 0, "change code, btos != 0");
2840   __ cbnz(tos_state, notByte);
2841 
2842   // Don't rewrite putstatic, only putfield
2843   if (is_static) rc = may_not_rewrite;
2844 
2845   // btos
2846   {
2847     __ pop(btos);
2848     if (!is_static) pop_and_check_object(obj);

2857   __ cmp(tos_state, (u1)ztos);
2858   __ br(Assembler::NE, notBool);
2859 
2860   // ztos
2861   {
2862     __ pop(ztos);
2863     if (!is_static) pop_and_check_object(obj);
2864     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2865     if (rc == may_rewrite) {
2866       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2867     }
2868     __ b(Done);
2869   }
2870 
2871   __ bind(notBool);
2872   __ cmp(tos_state, (u1)atos);
2873   __ br(Assembler::NE, notObj);
2874 
2875   // atos
2876   {
2877     __ pop(atos);
2878     if (!is_static) pop_and_check_object(obj);
2879     // Store into the field
2880     do_oop_store(_masm, field, r0, IN_HEAP);
2881     if (rc == may_rewrite) {
2882       patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2883     }
2884     __ b(Done);























































2885   }
2886 
2887   __ bind(notObj);
2888   __ cmp(tos_state, (u1)itos);
2889   __ br(Assembler::NE, notInt);
2890 
2891   // itos
2892   {
2893     __ pop(itos);
2894     if (!is_static) pop_and_check_object(obj);
2895     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2896     if (rc == may_rewrite) {
2897       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2898     }
2899     __ b(Done);
2900   }
2901 
2902   __ bind(notInt);
2903   __ cmp(tos_state, (u1)ctos);
2904   __ br(Assembler::NE, notChar);

2969   {
2970     __ pop(dtos);
2971     if (!is_static) pop_and_check_object(obj);
2972     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2973     if (rc == may_rewrite) {
2974       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2975     }
2976   }
2977 
2978 #ifdef ASSERT
2979   __ b(Done);
2980 
2981   __ bind(notDouble);
2982   __ stop("Bad state");
2983 #endif
2984 
2985   __ bind(Done);
2986 
2987   {
2988     Label notVolatile;
2989     __ tbz(r5, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2990     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2991     __ bind(notVolatile);
2992   }
2993 }
2994 
2995 void TemplateTable::putfield(int byte_no)
2996 {
2997   putfield_or_static(byte_no, false);
2998 }
2999 
3000 void TemplateTable::nofast_putfield(int byte_no) {
3001   putfield_or_static(byte_no, false, may_not_rewrite);
3002 }
3003 
3004 void TemplateTable::putstatic(int byte_no) {
3005   putfield_or_static(byte_no, true);
3006 }
3007 
3008 void TemplateTable::jvmti_post_fast_field_mod() {
3009   if (JvmtiExport::can_post_field_modification()) {
3010     // Check to see if a field modification watch has been set before
3011     // we take the time to call into the VM.
3012     Label L2;
3013     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3014     __ ldrw(c_rarg3, Address(rscratch1));
3015     __ cbzw(c_rarg3, L2);
3016     __ pop_ptr(r19);                  // copy the object pointer from tos
3017     __ verify_oop(r19);
3018     __ push_ptr(r19);                 // put the object pointer back on tos
3019     // Save tos values before call_VM() clobbers them. Since we have
3020     // to do it for every data type, we use the saved values as the
3021     // jvalue object.
3022     switch (bytecode()) {          // load values into the jvalue object

3023     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3024     case Bytecodes::_fast_bputfield: // fall through
3025     case Bytecodes::_fast_zputfield: // fall through
3026     case Bytecodes::_fast_sputfield: // fall through
3027     case Bytecodes::_fast_cputfield: // fall through
3028     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3029     case Bytecodes::_fast_dputfield: __ push_d(); break;
3030     case Bytecodes::_fast_fputfield: __ push_f(); break;
3031     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3032 
3033     default:
3034       ShouldNotReachHere();
3035     }
3036     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3037     // access constant pool cache entry
3038     __ load_field_entry(c_rarg2, r0);
3039     __ verify_oop(r19);
3040     // r19: object pointer copied above
3041     // c_rarg2: cache entry pointer
3042     // c_rarg3: jvalue object on the stack
3043     __ call_VM(noreg,
3044                CAST_FROM_FN_PTR(address,
3045                                 InterpreterRuntime::post_field_modification),
3046                r19, c_rarg2, c_rarg3);
3047 
3048     switch (bytecode()) {             // restore tos values

3049     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3050     case Bytecodes::_fast_bputfield: // fall through
3051     case Bytecodes::_fast_zputfield: // fall through
3052     case Bytecodes::_fast_sputfield: // fall through
3053     case Bytecodes::_fast_cputfield: // fall through
3054     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3055     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3056     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3057     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3058     default: break;
3059     }
3060     __ bind(L2);
3061   }
3062 }
3063 
3064 void TemplateTable::fast_storefield(TosState state)
3065 {
3066   transition(state, vtos);
3067 
3068   ByteSize base = ConstantPoolCache::base_offset();

3075   // R1: field offset, R2: field holder, R3: flags
3076   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3077 
3078   {
3079     Label notVolatile;
3080     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3081     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3082     __ bind(notVolatile);
3083   }
3084 
3085   Label notVolatile;
3086 
3087   // Get object from stack
3088   pop_and_check_object(r2);
3089 
3090   // field address
3091   const Address field(r2, r1);
3092 
3093   // access field
3094   switch (bytecode()) {



























3095   case Bytecodes::_fast_aputfield:
3096     do_oop_store(_masm, field, r0, IN_HEAP);
3097     break;
3098   case Bytecodes::_fast_lputfield:
3099     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3100     break;
3101   case Bytecodes::_fast_iputfield:
3102     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3103     break;
3104   case Bytecodes::_fast_zputfield:
3105     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3106     break;
3107   case Bytecodes::_fast_bputfield:
3108     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3109     break;
3110   case Bytecodes::_fast_sputfield:
3111     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3112     break;
3113   case Bytecodes::_fast_cputfield:
3114     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3167   // r0: object
3168   __ verify_oop(r0);
3169   __ null_check(r0);
3170   const Address field(r0, r1);
3171 
3172   // 8179954: We need to make sure that the code generated for
3173   // volatile accesses forms a sequentially-consistent set of
3174   // operations when combined with STLR and LDAR.  Without a leading
3175   // membar it's possible for a simple Dekker test to fail if loads
3176   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3177   // the stores in one method and we interpret the loads in another.
3178   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3179     Label notVolatile;
3180     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3181     __ membar(MacroAssembler::AnyAny);
3182     __ bind(notVolatile);
3183   }
3184 
3185   // access field
3186   switch (bytecode()) {




























3187   case Bytecodes::_fast_agetfield:
3188     do_oop_load(_masm, field, r0, IN_HEAP);
3189     __ verify_oop(r0);
3190     break;
3191   case Bytecodes::_fast_lgetfield:
3192     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3193     break;
3194   case Bytecodes::_fast_igetfield:
3195     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3196     break;
3197   case Bytecodes::_fast_bgetfield:
3198     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3199     break;
3200   case Bytecodes::_fast_sgetfield:
3201     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3202     break;
3203   case Bytecodes::_fast_cgetfield:
3204     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3205     break;
3206   case Bytecodes::_fast_fgetfield:

3585   Label initialize_header;
3586 
3587   __ get_cpool_and_tags(r4, r0);
3588   // Make sure the class we're about to instantiate has been resolved.
3589   // This is done before loading InstanceKlass to be consistent with the order
3590   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3591   const int tags_offset = Array<u1>::base_offset_in_bytes();
3592   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3593   __ lea(rscratch1, Address(rscratch1, tags_offset));
3594   __ ldarb(rscratch1, rscratch1);
3595   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3596   __ br(Assembler::NE, slow_case);
3597 
3598   // get InstanceKlass
3599   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3600 
3601   // make sure klass is initialized
3602   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3603   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3604 
3605   // get instance_size in InstanceKlass (scaled to a count of bytes)
3606   __ ldrw(r3,
3607           Address(r4,
3608                   Klass::layout_helper_offset()));
3609   // test to see if it is malformed in some way
3610   __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3611 
3612   // Allocate the instance:
3613   //  If TLAB is enabled:
3614   //    Try to allocate in the TLAB.
3615   //    If fails, go to the slow path.
3616   //    Initialize the allocation.
3617   //    Exit.
3618   //
3619   //  Go to slow path.
3620 
3621   if (UseTLAB) {
3622     __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3623 
3624     if (ZeroTLAB) {
3625       // the fields have been already cleared
3626       __ b(initialize_header);
3627     }
3628 
3629     // The object is initialized before the header.  If the object size is
3630     // zero, go directly to the header initialization.
3631     int header_size = oopDesc::header_size() * HeapWordSize;
3632     assert(is_aligned(header_size, BytesPerLong), "oop header size must be 8-byte-aligned");
3633     __ sub(r3, r3, header_size);
3634     __ cbz(r3, initialize_header);
3635 
3636     // Initialize object fields
3637     {
3638       __ add(r2, r0, header_size);
3639       Label loop;
3640       __ bind(loop);
3641       __ str(zr, Address(__ post(r2, BytesPerLong)));
3642       __ sub(r3, r3, BytesPerLong);
3643       __ cbnz(r3, loop);
3644     }
3645 
3646     // initialize object header only.
3647     __ bind(initialize_header);
3648     if (UseCompactObjectHeaders) {
3649       __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset()));
3650       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3651     } else {
3652       __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3653       __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3654       __ store_klass_gap(r0, zr);  // zero klass gap for compressed oops
3655       __ store_klass(r0, r4);      // store klass last
3656     }
3657 
3658     if (DTraceAllocProbes) {
3659       // Trigger dtrace event for fastpath
3660       __ push(atos); // save the return value
3661       __ call_VM_leaf(
3662            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3663       __ pop(atos); // restore the return value
3664 
3665     }
3666     __ b(done);
3667   }
3668 
3669   // slow case
3670   __ bind(slow_case);
3671   __ get_constant_pool(c_rarg1);
3672   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3673   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3674   __ verify_oop(r0);
3675 
3676   // continue
3677   __ bind(done);
3678   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3679   __ membar(Assembler::StoreStore);
3680 }
3681 
3682 void TemplateTable::newarray() {
3683   transition(itos, atos);
3684   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3685   __ mov(c_rarg2, r0);
3686   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3687           c_rarg1, c_rarg2);

3732   __ bind(quicked);
3733   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3734   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3735 
3736   __ bind(resolved);
3737   __ load_klass(r19, r3);
3738 
3739   // Generate subtype check.  Blows r2, r5.  Object in r3.
3740   // Superklass in r0.  Subklass in r19.
3741   __ gen_subtype_check(r19, ok_is_subtype);
3742 
3743   // Come here on failure
3744   __ push(r3);
3745   // object is at TOS
3746   __ b(Interpreter::_throw_ClassCastException_entry);
3747 
3748   // Come here on success
3749   __ bind(ok_is_subtype);
3750   __ mov(r0, r3); // Restore object in r3
3751 



3752   // Collect counts on whether this test sees nulls a lot or not.
3753   if (ProfileInterpreter) {
3754     __ b(done);
3755     __ bind(is_null);
3756     __ profile_null_seen(r2);
3757   } else {
3758     __ bind(is_null);   // same as 'done'
3759   }

3760   __ bind(done);
3761 }
3762 
3763 void TemplateTable::instanceof() {
3764   transition(atos, itos);
3765   Label done, is_null, ok_is_subtype, quicked, resolved;
3766   __ cbz(r0, is_null);
3767 
3768   // Get cpool & tags index
3769   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3770   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3771   // See if bytecode has already been quicked
3772   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3773   __ lea(r1, Address(rscratch1, r19));
3774   __ ldarb(r1, r1);
3775   __ cmp(r1, (u1)JVM_CONSTANT_Class);
3776   __ br(Assembler::EQ, quicked);
3777 
3778   __ push(atos); // save receiver for result, and for GC
3779   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

3858 //       in the assembly code structure as well
3859 //
3860 // Stack layout:
3861 //
3862 // [expressions  ] <--- esp               = expression stack top
3863 // ..
3864 // [expressions  ]
3865 // [monitor entry] <--- monitor block top = expression stack bot
3866 // ..
3867 // [monitor entry]
3868 // [frame data   ] <--- monitor block bot
3869 // ...
3870 // [saved rfp    ] <--- rfp
3871 void TemplateTable::monitorenter()
3872 {
3873   transition(atos, vtos);
3874 
3875   // check for null object
3876   __ null_check(r0);
3877 




3878   const Address monitor_block_top(
3879         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3880   const Address monitor_block_bot(
3881         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3882   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3883 
3884   Label allocated;
3885 
3886   // initialize entry pointer
3887   __ mov(c_rarg1, zr); // points to free slot or null
3888 
3889   // find a free slot in the monitor block (result in c_rarg1)
3890   {
3891     Label entry, loop, exit;
3892     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
3893     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
3894     // c_rarg3 points to current entry, starting with top-most entry
3895 
3896     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3897 

3959   // c_rarg1: points to monitor entry
3960   __ bind(allocated);
3961 
3962   // Increment bcp to point to the next bytecode, so exception
3963   // handling for async. exceptions work correctly.
3964   // The object has already been popped from the stack, so the
3965   // expression stack looks correct.
3966   __ increment(rbcp);
3967 
3968   // store object
3969   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3970   __ lock_object(c_rarg1);
3971 
3972   // check to make sure this monitor doesn't cause stack overflow after locking
3973   __ save_bcp();  // in case of exception
3974   __ generate_stack_overflow_check(0);
3975 
3976   // The bcp has already been incremented. Just need to dispatch to
3977   // next instruction.
3978   __ dispatch_next(vtos);





3979 }
3980 
3981 
3982 void TemplateTable::monitorexit()
3983 {
3984   transition(atos, vtos);
3985 
3986   // check for null object
3987   __ null_check(r0);
3988 












3989   const Address monitor_block_top(
3990         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3991   const Address monitor_block_bot(
3992         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3993   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3994 
3995   Label found;
3996 
3997   // find matching slot
3998   {
3999     Label entry, loop;
4000     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4001     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4002     // c_rarg1 points to current entry, starting with top-most entry
4003 
4004     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4005                                         // of monitor block
4006     __ b(entry);
4007 
4008     __ bind(loop);

 155 static void do_oop_load(InterpreterMacroAssembler* _masm,
 156                         Address src,
 157                         Register dst,
 158                         DecoratorSet decorators) {
 159   __ load_heap_oop(dst, src, r10, r11, decorators);
 160 }
 161 
 162 Address TemplateTable::at_bcp(int offset) {
 163   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 164   return Address(rbcp, offset);
 165 }
 166 
 167 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 168                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 169                                    int byte_no)
 170 {
 171   if (!RewriteBytecodes)  return;
 172   Label L_patch_done;
 173 
 174   switch (bc) {
 175   case Bytecodes::_fast_vputfield:
 176   case Bytecodes::_fast_aputfield:
 177   case Bytecodes::_fast_bputfield:
 178   case Bytecodes::_fast_zputfield:
 179   case Bytecodes::_fast_cputfield:
 180   case Bytecodes::_fast_dputfield:
 181   case Bytecodes::_fast_fputfield:
 182   case Bytecodes::_fast_iputfield:
 183   case Bytecodes::_fast_lputfield:
 184   case Bytecodes::_fast_sputfield:
 185     {
 186       // We skip bytecode quickening for putfield instructions when
 187       // the put_code written to the constant pool cache is zero.
 188       // This is required so that every execution of this instruction
 189       // calls out to InterpreterRuntime::resolve_get_put to do
 190       // additional, required work.
 191       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 192       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 193       __ load_field_entry(temp_reg, bc_reg);
 194       if (byte_no == f1_byte) {
 195         __ lea(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));

 737   locals_index_wide(r1);
 738   __ ldr(r0, aaddress(r1));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index)
 742 {
 743   // destroys r1, rscratch1
 744   // sign extend index for use by indexed load
 745   // __ movl2ptr(index, index);
 746   // check index
 747   Register length = rscratch1;
 748   __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
 749   __ cmpw(index, length);
 750   if (index != r1) {
 751     // ??? convention: move aberrant index into r1 for exception message
 752     assert(r1 != array, "different registers");
 753     __ mov(r1, index);
 754   }
 755   Label ok;
 756   __ br(Assembler::LO, ok);
 757   // ??? convention: move array into r3 for exception message
 758    __ mov(r3, array);
 759    __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 760    __ br(rscratch1);
 761   __ bind(ok);
 762 }
 763 
 764 void TemplateTable::iaload()
 765 {
 766   transition(itos, itos);
 767   __ mov(r1, r0);
 768   __ pop_ptr(r0);
 769   // r0: array
 770   // r1: index
 771   index_check(r0, r1); // leaves index in r1, kills rscratch1
 772   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
 773   __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
 774 }
 775 
 776 void TemplateTable::laload()
 777 {
 778   transition(itos, ltos);
 779   __ mov(r1, r0);
 780   __ pop_ptr(r0);

 800 void TemplateTable::daload()
 801 {
 802   transition(itos, dtos);
 803   __ mov(r1, r0);
 804   __ pop_ptr(r0);
 805   // r0: array
 806   // r1: index
 807   index_check(r0, r1); // leaves index in r1, kills rscratch1
 808   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
 809   __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
 810 }
 811 
 812 void TemplateTable::aaload()
 813 {
 814   transition(itos, atos);
 815   __ mov(r1, r0);
 816   __ pop_ptr(r0);
 817   // r0: array
 818   // r1: index
 819   index_check(r0, r1); // leaves index in r1, kills rscratch1
 820   __ profile_array_type<ArrayLoadData>(r2, r0, r4);
 821   if (UseArrayFlattening) {
 822     Label is_flat_array, done;
 823 
 824     __ test_flat_array_oop(r0, r8 /*temp*/, is_flat_array);
 825     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 826     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 827 
 828     __ b(done);
 829     __ bind(is_flat_array);
 830     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_load), r0, r1);
 831     // Ensure the stores to copy the inline field contents are visible
 832     // before any subsequent store that publishes this reference.
 833     __ membar(Assembler::StoreStore);
 834     __ bind(done);
 835   } else {
 836     __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 837     do_oop_load(_masm, Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), r0, IS_ARRAY);
 838   }
 839   __ profile_element_type(r2, r0, r4);
 840 }
 841 
 842 void TemplateTable::baload()
 843 {
 844   transition(itos, itos);
 845   __ mov(r1, r0);
 846   __ pop_ptr(r0);
 847   // r0: array
 848   // r1: index
 849   index_check(r0, r1); // leaves index in r1, kills rscratch1
 850   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
 851   __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
 852 }
 853 
 854 void TemplateTable::caload()
 855 {
 856   transition(itos, itos);
 857   __ mov(r1, r0);
 858   __ pop_ptr(r0);
 859   // r0: array

1106   // r1:  index
1107   // r3:  array
1108   index_check(r3, r1); // prefer index in r1
1109   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1110   __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1111 }
1112 
1113 void TemplateTable::dastore() {
1114   transition(dtos, vtos);
1115   __ pop_i(r1);
1116   __ pop_ptr(r3);
1117   // v0: value
1118   // r1:  index
1119   // r3:  array
1120   index_check(r3, r1); // prefer index in r1
1121   __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1122   __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1123 }
1124 
1125 void TemplateTable::aastore() {
1126   Label is_null, is_flat_array, ok_is_subtype, done;
1127   transition(vtos, vtos);
1128   // stack: ..., array, index, value
1129   __ ldr(r0, at_tos());    // value
1130   __ ldr(r2, at_tos_p1()); // index
1131   __ ldr(r3, at_tos_p2()); // array
1132 


1133   index_check(r3, r2);     // kills r1
1134 
1135   __ profile_array_type<ArrayStoreData>(r4, r3, r5);
1136   __ profile_multiple_element_types(r4, r0, r5, r6);
1137 
1138   __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1139   Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1140   // Be careful not to clobber r4 below
1141 
1142   // do array store check - check for null value first
1143   __ cbz(r0, is_null);
1144 
1145   // Move array class to r5
1146   __ load_klass(r5, r3);
1147 
1148   if (UseArrayFlattening) {
1149     __ ldrw(r6, Address(r5, Klass::layout_helper_offset()));
1150     __ test_flat_array_layout(r6, is_flat_array);
1151   }
1152 
1153   // Move subklass into r1
1154   __ load_klass(r1, r0);
1155 
1156   // Move array element superklass into r0
1157   __ ldr(r0, Address(r5, ObjArrayKlass::element_klass_offset()));

1158   // Compress array + index*oopSize + 12 into a single register.  Frees r2.
1159 
1160   // Generate subtype check.  Blows r2, r5
1161   // Superklass in r0.  Subklass in r1.
1162 
1163   // is "r1 <: r0" ? (value subclass <: array element superclass)
1164   __ gen_subtype_check(r1, ok_is_subtype, false);
1165 
1166   // Come here on failure
1167   // object is at TOS
1168   __ b(Interpreter::_throw_ArrayStoreException_entry);
1169 
1170   // Come here on success
1171   __ bind(ok_is_subtype);
1172 
1173   // Get the value we will store
1174   __ ldr(r0, at_tos());
1175   // Now store using the appropriate barrier
1176   do_oop_store(_masm, element_address, r0, IS_ARRAY);
1177   __ b(done);
1178 
1179   // Have a null in r0, r3=array, r2=index.  Store null at ary[idx]
1180   __ bind(is_null);
1181   if (EnableValhalla) {
1182     Label is_null_into_value_array_npe, store_null;
1183 
1184     if (UseArrayFlattening) {
1185       __ test_flat_array_oop(r3, r8, is_flat_array);
1186     }
1187 
1188     // No way to store null in a null-free array
1189     __ test_null_free_array_oop(r3, r8, is_null_into_value_array_npe);
1190     __ b(store_null);
1191 
1192     __ bind(is_null_into_value_array_npe);
1193     __ b(ExternalAddress(Interpreter::_throw_NullPointerException_entry));
1194 
1195     __ bind(store_null);
1196   }
1197 
1198   // Store a null
1199   do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1200   __ b(done);
1201 
1202   if (UseArrayFlattening) {
1203      Label is_type_ok;
1204     __ bind(is_flat_array); // Store non-null value to flat
1205 
1206     __ ldr(r0, at_tos());    // value
1207     __ ldr(r3, at_tos_p1()); // index
1208     __ ldr(r2, at_tos_p2()); // array
1209     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::flat_array_store), r0, r2, r3);
1210   }
1211 
1212   // Pop stack arguments
1213   __ bind(done);
1214   __ add(esp, esp, 3 * Interpreter::stackElementSize);
1215 }
1216 
1217 void TemplateTable::bastore()
1218 {
1219   transition(itos, vtos);
1220   __ pop_i(r1);
1221   __ pop_ptr(r3);
1222   // r0: value
1223   // r1: index
1224   // r3: array
1225   index_check(r3, r1); // prefer index in r1
1226 
1227   // Need to check whether array is boolean or byte
1228   // since both types share the bastore bytecode.
1229   __ load_klass(r2, r3);
1230   __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));

1995   __ br(j_not(cc), not_taken);
1996   branch(false, false);
1997   __ bind(not_taken);
1998   __ profile_not_taken_branch(r0);
1999 }
2000 
2001 void TemplateTable::if_nullcmp(Condition cc)
2002 {
2003   transition(atos, vtos);
2004   // assume branch is more often taken than not (loops use backward branches)
2005   Label not_taken;
2006   if (cc == equal)
2007     __ cbnz(r0, not_taken);
2008   else
2009     __ cbz(r0, not_taken);
2010   branch(false, false);
2011   __ bind(not_taken);
2012   __ profile_not_taken_branch(r0);
2013 }
2014 
2015 void TemplateTable::if_acmp(Condition cc) {

2016   transition(atos, vtos);
2017   // assume branch is more often taken than not (loops use backward branches)
2018   Label taken, not_taken;
2019   __ pop_ptr(r1);
2020 
2021   __ profile_acmp(r2, r1, r0, r4);
2022 
2023   Register is_inline_type_mask = rscratch1;
2024   __ mov(is_inline_type_mask, markWord::inline_type_pattern);
2025 
2026   if (EnableValhalla) {
2027     __ cmp(r1, r0);
2028     __ br(Assembler::EQ, (cc == equal) ? taken : not_taken);
2029 
2030     // might be substitutable, test if either r0 or r1 is null
2031     __ andr(r2, r0, r1);
2032     __ cbz(r2, (cc == equal) ? not_taken : taken);
2033 
2034     // and both are values ?
2035     __ ldr(r2, Address(r1, oopDesc::mark_offset_in_bytes()));
2036     __ andr(r2, r2, is_inline_type_mask);
2037     __ ldr(r4, Address(r0, oopDesc::mark_offset_in_bytes()));
2038     __ andr(r4, r4, is_inline_type_mask);
2039     __ andr(r2, r2, r4);
2040     __ cmp(r2,  is_inline_type_mask);
2041     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2042 
2043     // same value klass ?
2044     __ load_metadata(r2, r1);
2045     __ load_metadata(r4, r0);
2046     __ cmp(r2, r4);
2047     __ br(Assembler::NE, (cc == equal) ? not_taken : taken);
2048 
2049     // Know both are the same type, let's test for substitutability...
2050     if (cc == equal) {
2051       invoke_is_substitutable(r0, r1, taken, not_taken);
2052     } else {
2053       invoke_is_substitutable(r0, r1, not_taken, taken);
2054     }
2055     __ stop("Not reachable");
2056   }
2057 
2058   __ cmpoop(r1, r0);
2059   __ br(j_not(cc), not_taken);
2060   __ bind(taken);
2061   branch(false, false);
2062   __ bind(not_taken);
2063   __ profile_not_taken_branch(r0, true);
2064 }
2065 
2066 void TemplateTable::invoke_is_substitutable(Register aobj, Register bobj,
2067                                             Label& is_subst, Label& not_subst) {
2068 
2069   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::is_substitutable), aobj, bobj);
2070   // Restored... r0 answer, jmp to outcome...
2071   __ cbz(r0, not_subst);
2072   __ b(is_subst);
2073 }
2074 
2075 
2076 void TemplateTable::ret() {
2077   transition(vtos, vtos);
2078   locals_index(r1);
2079   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2080   __ profile_ret(r1, r2);
2081   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2082   __ lea(rbcp, Address(rbcp, r1));
2083   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2084   __ dispatch_next(vtos, 0, /*generate_poll*/true);
2085 }
2086 
2087 void TemplateTable::wide_ret() {
2088   transition(vtos, vtos);
2089   locals_index_wide(r1);
2090   __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
2091   __ profile_ret(r1, r2);
2092   __ ldr(rbcp, Address(rmethod, Method::const_offset()));
2093   __ lea(rbcp, Address(rbcp, r1));
2094   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
2095   __ dispatch_next(vtos, 0, /*generate_poll*/true);

2665     }
2666     // c_rarg1: object pointer or null
2667     // c_rarg2: cache entry pointer
2668     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2669                                        InterpreterRuntime::post_field_access),
2670                c_rarg1, c_rarg2);
2671     __ load_field_entry(cache, index);
2672     __ bind(L1);
2673   }
2674 }
2675 
2676 void TemplateTable::pop_and_check_object(Register r)
2677 {
2678   __ pop_ptr(r);
2679   __ null_check(r);  // for field access must check obj.
2680   __ verify_oop(r);
2681 }
2682 
2683 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2684 {
2685   const Register cache     = r2;
2686   const Register obj       = r4;
2687   const Register klass     = r5;
2688   const Register inline_klass = r7;
2689   const Register field_index = r23;
2690   const Register index     = r3;
2691   const Register tos_state = r3;
2692   const Register off       = r19;
2693   const Register flags     = r6;
2694   const Register bc        = r4; // uses same reg as obj, so don't mix them
2695 
2696   resolve_cache_and_index_for_field(byte_no, cache, index);
2697   jvmti_post_field_access(cache, index, is_static, false);
2698 
2699   // Valhalla extras
2700   __ load_unsigned_short(field_index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
2701   __ ldr(klass, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2702 
2703   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2704 
2705   if (!is_static) {
2706     // obj is on the stack
2707     pop_and_check_object(obj);
2708   }
2709 
2710   // 8179954: We need to make sure that the code generated for
2711   // volatile accesses forms a sequentially-consistent set of
2712   // operations when combined with STLR and LDAR.  Without a leading
2713   // membar it's possible for a simple Dekker test to fail if loads
2714   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
2715   // the stores in one method and we interpret the loads in another.
2716   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2717     Label notVolatile;
2718     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
2719     __ membar(MacroAssembler::AnyAny);
2720     __ bind(notVolatile);
2721   }
2722 

2741   __ b(Done);
2742 
2743   __ bind(notByte);
2744   __ cmp(tos_state, (u1)ztos);
2745   __ br(Assembler::NE, notBool);
2746 
2747   // ztos (same code as btos)
2748   __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2749   __ push(ztos);
2750   // Rewrite bytecode to be faster
2751   if (rc == may_rewrite) {
2752     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2753     patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2754   }
2755   __ b(Done);
2756 
2757   __ bind(notBool);
2758   __ cmp(tos_state, (u1)atos);
2759   __ br(Assembler::NE, notObj);
2760   // atos
2761   if (!EnableValhalla) {
2762     do_oop_load(_masm, field, r0, IN_HEAP);
2763     __ push(atos);
2764     if (rc == may_rewrite) {
2765       patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2766     }
2767     __ b(Done);
2768   } else { // Valhalla
2769     if (is_static) {
2770       __ load_heap_oop(r0, field, rscratch1, rscratch2);
2771       Label is_null_free_inline_type, uninitialized;
2772       // Issue below if the static field has not been initialized yet
2773       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_null_free_inline_type);
2774         // field is not a null free inline type
2775         __ push(atos);
2776         __ b(Done);
2777       // field is a null free inline type, must not return null even if uninitialized
2778       __ bind(is_null_free_inline_type);
2779         __ cbz(r0, uninitialized);
2780           __ push(atos);
2781           __ b(Done);
2782         __ bind(uninitialized);
2783           Label slow_case, finish;
2784           __ ldrb(rscratch1, Address(klass, InstanceKlass::init_state_offset()));
2785           __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized);
2786           __ br(Assembler::NE, slow_case);
2787           __ get_default_value_oop(klass, off /* temp */, r0);
2788         __ b(finish);
2789         __ bind(slow_case);
2790           __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_inline_type_field), obj, cache);
2791           __ bind(finish);
2792           __ verify_oop(r0);
2793           __ push(atos);
2794           __ b(Done);
2795     } else {
2796       Label is_flat, nonnull, is_inline_type, has_null_marker, rewrite_inline;
2797       __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
2798       __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
2799         // Non-inline field case
2800         __ load_heap_oop(r0, field, rscratch1, rscratch2);
2801         __ push(atos);
2802         if (rc == may_rewrite) {
2803           patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2804         }
2805         __ b(Done);
2806       __ bind(is_inline_type);
2807         __ test_field_is_flat(flags, noreg /* temp */, is_flat);
2808          // field is not flat
2809           __ load_heap_oop(r0, field, rscratch1, rscratch2);
2810           __ cbnz(r0, nonnull);
2811             __ get_inline_type_field_klass(klass, field_index, inline_klass);
2812             __ get_default_value_oop(inline_klass, klass /* temp */, r0);
2813           __ bind(nonnull);
2814           __ verify_oop(r0);
2815           __ push(atos);
2816           __ b(rewrite_inline);
2817         __ bind(is_flat);
2818         // field is flat
2819           __ mov(r0, obj);
2820           __ read_flat_field(cache, field_index, off, inline_klass /* temp */, r0);
2821           __ verify_oop(r0);
2822           __ push(atos);
2823           __ b(rewrite_inline);
2824         __ bind(has_null_marker);
2825           call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), obj, cache);
2826           __ verify_oop(r0);
2827           __ push(atos);
2828       __ bind(rewrite_inline);
2829       if (rc == may_rewrite) {
2830         patch_bytecode(Bytecodes::_fast_vgetfield, bc, r1);
2831       }
2832       __ b(Done);
2833     }
2834   }

2835 
2836   __ bind(notObj);
2837   __ cmp(tos_state, (u1)itos);
2838   __ br(Assembler::NE, notInt);
2839   // itos
2840   __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2841   __ push(itos);
2842   // Rewrite bytecode to be faster
2843   if (rc == may_rewrite) {
2844     patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2845   }
2846   __ b(Done);
2847 
2848   __ bind(notInt);
2849   __ cmp(tos_state, (u1)ctos);
2850   __ br(Assembler::NE, notChar);
2851   // ctos
2852   __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2853   __ push(ctos);
2854   // Rewrite bytecode to be faster

2975     // c_rarg1: object pointer set up above (null if static)
2976     // c_rarg2: cache entry pointer
2977     // c_rarg3: jvalue object on the stack
2978     __ call_VM(noreg,
2979                CAST_FROM_FN_PTR(address,
2980                                 InterpreterRuntime::post_field_modification),
2981                c_rarg1, c_rarg2, c_rarg3);
2982     __ load_field_entry(cache, index);
2983     __ bind(L1);
2984   }
2985 }
2986 
2987 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2988   transition(vtos, vtos);
2989 
2990   const Register cache     = r2;
2991   const Register index     = r3;
2992   const Register tos_state = r3;
2993   const Register obj       = r2;
2994   const Register off       = r19;
2995   const Register flags     = r6;
2996   const Register bc        = r4;
2997   const Register inline_klass = r5;
2998 
2999   resolve_cache_and_index_for_field(byte_no, cache, index);
3000   jvmti_post_field_mod(cache, index, is_static);
3001   load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
3002 
3003   Label Done;


3004   {
3005     Label notVolatile;
3006     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3007     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3008     __ bind(notVolatile);
3009   }
3010 
3011   // field address
3012   const Address field(obj, off);
3013 
3014   Label notByte, notBool, notInt, notShort, notChar,
3015         notLong, notFloat, notObj, notDouble;
3016 
3017   assert(btos == 0, "change code, btos != 0");
3018   __ cbnz(tos_state, notByte);
3019 
3020   // Don't rewrite putstatic, only putfield
3021   if (is_static) rc = may_not_rewrite;
3022 
3023   // btos
3024   {
3025     __ pop(btos);
3026     if (!is_static) pop_and_check_object(obj);

3035   __ cmp(tos_state, (u1)ztos);
3036   __ br(Assembler::NE, notBool);
3037 
3038   // ztos
3039   {
3040     __ pop(ztos);
3041     if (!is_static) pop_and_check_object(obj);
3042     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3043     if (rc == may_rewrite) {
3044       patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
3045     }
3046     __ b(Done);
3047   }
3048 
3049   __ bind(notBool);
3050   __ cmp(tos_state, (u1)atos);
3051   __ br(Assembler::NE, notObj);
3052 
3053   // atos
3054   {
3055      if (!EnableValhalla) {
3056       __ pop(atos);
3057       if (!is_static) pop_and_check_object(obj);
3058       // Store into the field
3059       do_oop_store(_masm, field, r0, IN_HEAP);
3060       if (rc == may_rewrite) {
3061         patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
3062       }
3063       __ b(Done);
3064      } else { // Valhalla
3065       __ pop(atos);
3066       if (is_static) {
3067         Label is_inline_type;
3068          __ test_field_is_not_null_free_inline_type(flags, noreg /* temp */, is_inline_type);
3069          __ null_check(r0);
3070          __ bind(is_inline_type);
3071          do_oop_store(_masm, field, r0, IN_HEAP);
3072          __ b(Done);
3073       } else {
3074         Label is_inline_type, is_flat, has_null_marker, rewrite_not_inline, rewrite_inline;
3075         __ test_field_is_null_free_inline_type(flags, noreg /*temp*/, is_inline_type);
3076         __ test_field_has_null_marker(flags, noreg /*temp*/, has_null_marker);
3077         // Not an inline type
3078         pop_and_check_object(obj);
3079         // Store into the field
3080         do_oop_store(_masm, field, r0, IN_HEAP);
3081         __ bind(rewrite_not_inline);
3082         if (rc == may_rewrite) {
3083           patch_bytecode(Bytecodes::_fast_aputfield, bc, r19, true, byte_no);
3084         }
3085         __ b(Done);
3086         // Implementation of the inline type semantic
3087         __ bind(is_inline_type);
3088         __ null_check(r0);
3089         __ test_field_is_flat(flags, noreg /*temp*/, is_flat);
3090         // field is not flat
3091         pop_and_check_object(obj);
3092         // Store into the field
3093         do_oop_store(_masm, field, r0, IN_HEAP);
3094         __ b(rewrite_inline);
3095         __ bind(is_flat);
3096         __ load_field_entry(cache, index); // reload field entry (cache) because it was erased by tos_state
3097         __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedFieldEntry::field_index_offset())));
3098         __ ldr(r2, Address(cache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3099         __ inline_layout_info(r2, index, r6);
3100         pop_and_check_object(obj);
3101         __ load_klass(inline_klass, r0);
3102         __ payload_address(r0, r0, inline_klass);
3103         __ add(obj, obj, off);
3104         // because we use InlineLayoutInfo, we need special value access code specialized for fields (arrays will need a different API)
3105         __ flat_field_copy(IN_HEAP, r0, obj, r6);
3106         __ b(rewrite_inline);
3107         __ bind(has_null_marker);
3108         assert_different_registers(r0, cache, r19);
3109         pop_and_check_object(r19);
3110         __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r19, r0, cache);
3111         __ bind(rewrite_inline);
3112         if (rc == may_rewrite) {
3113           patch_bytecode(Bytecodes::_fast_vputfield, bc, r19, true, byte_no);
3114         }
3115         __ b(Done);
3116       }
3117      }  // Valhalla
3118   }
3119 
3120   __ bind(notObj);
3121   __ cmp(tos_state, (u1)itos);
3122   __ br(Assembler::NE, notInt);
3123 
3124   // itos
3125   {
3126     __ pop(itos);
3127     if (!is_static) pop_and_check_object(obj);
3128     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3129     if (rc == may_rewrite) {
3130       patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
3131     }
3132     __ b(Done);
3133   }
3134 
3135   __ bind(notInt);
3136   __ cmp(tos_state, (u1)ctos);
3137   __ br(Assembler::NE, notChar);

3202   {
3203     __ pop(dtos);
3204     if (!is_static) pop_and_check_object(obj);
3205     __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3206     if (rc == may_rewrite) {
3207       patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
3208     }
3209   }
3210 
3211 #ifdef ASSERT
3212   __ b(Done);
3213 
3214   __ bind(notDouble);
3215   __ stop("Bad state");
3216 #endif
3217 
3218   __ bind(Done);
3219 
3220   {
3221     Label notVolatile;
3222     __ tbz(flags, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3223     __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3224     __ bind(notVolatile);
3225   }
3226 }
3227 
3228 void TemplateTable::putfield(int byte_no)
3229 {
3230   putfield_or_static(byte_no, false);
3231 }
3232 
3233 void TemplateTable::nofast_putfield(int byte_no) {
3234   putfield_or_static(byte_no, false, may_not_rewrite);
3235 }
3236 
3237 void TemplateTable::putstatic(int byte_no) {
3238   putfield_or_static(byte_no, true);
3239 }
3240 
3241 void TemplateTable::jvmti_post_fast_field_mod() {
3242   if (JvmtiExport::can_post_field_modification()) {
3243     // Check to see if a field modification watch has been set before
3244     // we take the time to call into the VM.
3245     Label L2;
3246     __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3247     __ ldrw(c_rarg3, Address(rscratch1));
3248     __ cbzw(c_rarg3, L2);
3249     __ pop_ptr(r19);                  // copy the object pointer from tos
3250     __ verify_oop(r19);
3251     __ push_ptr(r19);                 // put the object pointer back on tos
3252     // Save tos values before call_VM() clobbers them. Since we have
3253     // to do it for every data type, we use the saved values as the
3254     // jvalue object.
3255     switch (bytecode()) {          // load values into the jvalue object
3256     case Bytecodes::_fast_vputfield: //fall through
3257     case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
3258     case Bytecodes::_fast_bputfield: // fall through
3259     case Bytecodes::_fast_zputfield: // fall through
3260     case Bytecodes::_fast_sputfield: // fall through
3261     case Bytecodes::_fast_cputfield: // fall through
3262     case Bytecodes::_fast_iputfield: __ push_i(r0); break;
3263     case Bytecodes::_fast_dputfield: __ push_d(); break;
3264     case Bytecodes::_fast_fputfield: __ push_f(); break;
3265     case Bytecodes::_fast_lputfield: __ push_l(r0); break;
3266 
3267     default:
3268       ShouldNotReachHere();
3269     }
3270     __ mov(c_rarg3, esp);             // points to jvalue on the stack
3271     // access constant pool cache entry
3272     __ load_field_entry(c_rarg2, r0);
3273     __ verify_oop(r19);
3274     // r19: object pointer copied above
3275     // c_rarg2: cache entry pointer
3276     // c_rarg3: jvalue object on the stack
3277     __ call_VM(noreg,
3278                CAST_FROM_FN_PTR(address,
3279                                 InterpreterRuntime::post_field_modification),
3280                r19, c_rarg2, c_rarg3);
3281 
3282     switch (bytecode()) {             // restore tos values
3283     case Bytecodes::_fast_vputfield: //fall through
3284     case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
3285     case Bytecodes::_fast_bputfield: // fall through
3286     case Bytecodes::_fast_zputfield: // fall through
3287     case Bytecodes::_fast_sputfield: // fall through
3288     case Bytecodes::_fast_cputfield: // fall through
3289     case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
3290     case Bytecodes::_fast_dputfield: __ pop_d(); break;
3291     case Bytecodes::_fast_fputfield: __ pop_f(); break;
3292     case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
3293     default: break;
3294     }
3295     __ bind(L2);
3296   }
3297 }
3298 
3299 void TemplateTable::fast_storefield(TosState state)
3300 {
3301   transition(state, vtos);
3302 
3303   ByteSize base = ConstantPoolCache::base_offset();

3310   // R1: field offset, R2: field holder, R3: flags
3311   load_resolved_field_entry(r2, r2, noreg, r1, r3);
3312 
3313   {
3314     Label notVolatile;
3315     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3316     __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3317     __ bind(notVolatile);
3318   }
3319 
3320   Label notVolatile;
3321 
3322   // Get object from stack
3323   pop_and_check_object(r2);
3324 
3325   // field address
3326   const Address field(r2, r1);
3327 
3328   // access field
3329   switch (bytecode()) {
3330   case Bytecodes::_fast_vputfield:
3331    {
3332       Label is_flat, has_null_marker, done;
3333       __ test_field_has_null_marker(r3, noreg /* temp */, has_null_marker);
3334       __ null_check(r0);
3335       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3336       // field is not flat
3337       do_oop_store(_masm, field, r0, IN_HEAP);
3338       __ b(done);
3339       __ bind(is_flat);
3340       // field is flat
3341       __ load_field_entry(r4, r3);
3342       __ load_unsigned_short(r3, Address(r4, in_bytes(ResolvedFieldEntry::field_index_offset())));
3343       __ ldr(r4, Address(r4, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3344       __ inline_layout_info(r4, r3, r5);
3345       __ load_klass(r4, r0);
3346       __ payload_address(r0, r0, r4);
3347       __ lea(rscratch1, field);
3348       __ flat_field_copy(IN_HEAP, r0, rscratch1, r5);
3349       __ b(done);
3350       __ bind(has_null_marker);
3351       __ load_field_entry(r4, r1);
3352       __ mov(r1, r2);
3353       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::write_nullable_flat_field), r1, r0, r4);
3354       __ bind(done);
3355     }
3356     break;
3357   case Bytecodes::_fast_aputfield:
3358     do_oop_store(_masm, field, r0, IN_HEAP);
3359     break;
3360   case Bytecodes::_fast_lputfield:
3361     __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3362     break;
3363   case Bytecodes::_fast_iputfield:
3364     __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3365     break;
3366   case Bytecodes::_fast_zputfield:
3367     __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3368     break;
3369   case Bytecodes::_fast_bputfield:
3370     __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3371     break;
3372   case Bytecodes::_fast_sputfield:
3373     __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3374     break;
3375   case Bytecodes::_fast_cputfield:
3376     __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);

3429   // r0: object
3430   __ verify_oop(r0);
3431   __ null_check(r0);
3432   const Address field(r0, r1);
3433 
3434   // 8179954: We need to make sure that the code generated for
3435   // volatile accesses forms a sequentially-consistent set of
3436   // operations when combined with STLR and LDAR.  Without a leading
3437   // membar it's possible for a simple Dekker test to fail if loads
3438   // use LDR;DMB but stores use STLR.  This can happen if C2 compiles
3439   // the stores in one method and we interpret the loads in another.
3440   if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3441     Label notVolatile;
3442     __ tbz(r3, ResolvedFieldEntry::is_volatile_shift, notVolatile);
3443     __ membar(MacroAssembler::AnyAny);
3444     __ bind(notVolatile);
3445   }
3446 
3447   // access field
3448   switch (bytecode()) {
3449   case Bytecodes::_fast_vgetfield:
3450     {
3451       Register index = r4, klass = r5, inline_klass = r6, tmp = r7;
3452       Label is_flat, has_null_marker, nonnull, Done;
3453       __ test_field_has_null_marker(r3, noreg /*temp*/, has_null_marker);
3454       __ test_field_is_flat(r3, noreg /* temp */, is_flat);
3455         // field is not flat
3456         __ load_heap_oop(r0, field, rscratch1, rscratch2);
3457         __ cbnz(r0, nonnull);
3458           __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3459           __ ldr(klass, Address(r2, in_bytes(ResolvedFieldEntry::field_holder_offset())));
3460           __ get_inline_type_field_klass(klass, index, inline_klass);
3461           __ get_default_value_oop(inline_klass, tmp /* temp */, r0);
3462         __ bind(nonnull);
3463         __ verify_oop(r0);
3464         __ b(Done);
3465       __ bind(is_flat);
3466       // field is flat
3467         __ load_unsigned_short(index, Address(r2, in_bytes(ResolvedFieldEntry::field_index_offset())));
3468         __ read_flat_field(r2, index, r1, tmp /* temp */, r0);
3469         __ verify_oop(r0);
3470         __ b(Done);
3471       __ bind(has_null_marker);
3472         call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::read_nullable_flat_field), r0, r2);
3473         __ verify_oop(r0);
3474       __ bind(Done);
3475     }
3476     break;
3477   case Bytecodes::_fast_agetfield:
3478     do_oop_load(_masm, field, r0, IN_HEAP);
3479     __ verify_oop(r0);
3480     break;
3481   case Bytecodes::_fast_lgetfield:
3482     __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3483     break;
3484   case Bytecodes::_fast_igetfield:
3485     __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3486     break;
3487   case Bytecodes::_fast_bgetfield:
3488     __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3489     break;
3490   case Bytecodes::_fast_sgetfield:
3491     __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3492     break;
3493   case Bytecodes::_fast_cgetfield:
3494     __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3495     break;
3496   case Bytecodes::_fast_fgetfield:

3875   Label initialize_header;
3876 
3877   __ get_cpool_and_tags(r4, r0);
3878   // Make sure the class we're about to instantiate has been resolved.
3879   // This is done before loading InstanceKlass to be consistent with the order
3880   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3881   const int tags_offset = Array<u1>::base_offset_in_bytes();
3882   __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3883   __ lea(rscratch1, Address(rscratch1, tags_offset));
3884   __ ldarb(rscratch1, rscratch1);
3885   __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3886   __ br(Assembler::NE, slow_case);
3887 
3888   // get InstanceKlass
3889   __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3890 
3891   // make sure klass is initialized
3892   assert(VM_Version::supports_fast_class_init_checks(), "Optimization requires support for fast class initialization checks");
3893   __ clinit_barrier(r4, rscratch1, nullptr /*L_fast_path*/, &slow_case);
3894 
3895   __ allocate_instance(r4, r0, r3, r1, true, slow_case);




















































3896     if (DTraceAllocProbes) {
3897       // Trigger dtrace event for fastpath
3898       __ push(atos); // save the return value
3899       __ call_VM_leaf(
3900            CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3901       __ pop(atos); // restore the return value
3902 
3903     }
3904   __ b(done);

3905 
3906   // slow case
3907   __ bind(slow_case);
3908   __ get_constant_pool(c_rarg1);
3909   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3910   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3911   __ verify_oop(r0);
3912 
3913   // continue
3914   __ bind(done);
3915   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3916   __ membar(Assembler::StoreStore);
3917 }
3918 
3919 void TemplateTable::newarray() {
3920   transition(itos, atos);
3921   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3922   __ mov(c_rarg2, r0);
3923   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3924           c_rarg1, c_rarg2);

3969   __ bind(quicked);
3970   __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3971   __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3972 
3973   __ bind(resolved);
3974   __ load_klass(r19, r3);
3975 
3976   // Generate subtype check.  Blows r2, r5.  Object in r3.
3977   // Superklass in r0.  Subklass in r19.
3978   __ gen_subtype_check(r19, ok_is_subtype);
3979 
3980   // Come here on failure
3981   __ push(r3);
3982   // object is at TOS
3983   __ b(Interpreter::_throw_ClassCastException_entry);
3984 
3985   // Come here on success
3986   __ bind(ok_is_subtype);
3987   __ mov(r0, r3); // Restore object in r3
3988 
3989   __ b(done);
3990   __ bind(is_null);
3991 
3992   // Collect counts on whether this test sees nulls a lot or not.
3993   if (ProfileInterpreter) {


3994     __ profile_null_seen(r2);


3995   }
3996 
3997   __ bind(done);
3998 }
3999 
4000 void TemplateTable::instanceof() {
4001   transition(atos, itos);
4002   Label done, is_null, ok_is_subtype, quicked, resolved;
4003   __ cbz(r0, is_null);
4004 
4005   // Get cpool & tags index
4006   __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
4007   __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
4008   // See if bytecode has already been quicked
4009   __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
4010   __ lea(r1, Address(rscratch1, r19));
4011   __ ldarb(r1, r1);
4012   __ cmp(r1, (u1)JVM_CONSTANT_Class);
4013   __ br(Assembler::EQ, quicked);
4014 
4015   __ push(atos); // save receiver for result, and for GC
4016   call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));

4095 //       in the assembly code structure as well
4096 //
4097 // Stack layout:
4098 //
4099 // [expressions  ] <--- esp               = expression stack top
4100 // ..
4101 // [expressions  ]
4102 // [monitor entry] <--- monitor block top = expression stack bot
4103 // ..
4104 // [monitor entry]
4105 // [frame data   ] <--- monitor block bot
4106 // ...
4107 // [saved rfp    ] <--- rfp
4108 void TemplateTable::monitorenter()
4109 {
4110   transition(atos, vtos);
4111 
4112   // check for null object
4113   __ null_check(r0);
4114 
4115   Label is_inline_type;
4116   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4117   __ test_markword_is_inline_type(rscratch1, is_inline_type);
4118 
4119   const Address monitor_block_top(
4120         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4121   const Address monitor_block_bot(
4122         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4123   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4124 
4125   Label allocated;
4126 
4127   // initialize entry pointer
4128   __ mov(c_rarg1, zr); // points to free slot or null
4129 
4130   // find a free slot in the monitor block (result in c_rarg1)
4131   {
4132     Label entry, loop, exit;
4133     __ ldr(c_rarg3, monitor_block_top); // derelativize pointer
4134     __ lea(c_rarg3, Address(rfp, c_rarg3, Address::lsl(Interpreter::logStackElementSize)));
4135     // c_rarg3 points to current entry, starting with top-most entry
4136 
4137     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4138 

4200   // c_rarg1: points to monitor entry
4201   __ bind(allocated);
4202 
4203   // Increment bcp to point to the next bytecode, so exception
4204   // handling for async. exceptions work correctly.
4205   // The object has already been popped from the stack, so the
4206   // expression stack looks correct.
4207   __ increment(rbcp);
4208 
4209   // store object
4210   __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
4211   __ lock_object(c_rarg1);
4212 
4213   // check to make sure this monitor doesn't cause stack overflow after locking
4214   __ save_bcp();  // in case of exception
4215   __ generate_stack_overflow_check(0);
4216 
4217   // The bcp has already been incremented. Just need to dispatch to
4218   // next instruction.
4219   __ dispatch_next(vtos);
4220 
4221   __ bind(is_inline_type);
4222   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4223                     InterpreterRuntime::throw_identity_exception), r0);
4224   __ should_not_reach_here();
4225 }
4226 
4227 
4228 void TemplateTable::monitorexit()
4229 {
4230   transition(atos, vtos);
4231 
4232   // check for null object
4233   __ null_check(r0);
4234 
4235   const int is_inline_type_mask = markWord::inline_type_pattern;
4236   Label has_identity;
4237   __ ldr(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
4238   __ mov(rscratch2, is_inline_type_mask);
4239   __ andr(rscratch1, rscratch1, rscratch2);
4240   __ cmp(rscratch1, rscratch2);
4241   __ br(Assembler::NE, has_identity);
4242   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4243                      InterpreterRuntime::throw_illegal_monitor_state_exception));
4244   __ should_not_reach_here();
4245   __ bind(has_identity);
4246 
4247   const Address monitor_block_top(
4248         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4249   const Address monitor_block_bot(
4250         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
4251   const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
4252 
4253   Label found;
4254 
4255   // find matching slot
4256   {
4257     Label entry, loop;
4258     __ ldr(c_rarg1, monitor_block_top); // derelativize pointer
4259     __ lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
4260     // c_rarg1 points to current entry, starting with top-most entry
4261 
4262     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
4263                                         // of monitor block
4264     __ b(entry);
4265 
4266     __ bind(loop);
< prev index next >