1 /*
2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2025 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_LIRAssembler.hpp"
29 #include "c1/c1_MacroAssembler.hpp"
30 #include "c1/c1_Runtime1.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "gc/shared/collectedHeap.hpp"
35 #include "memory/universe.hpp"
36 #include "nativeInst_ppc.hpp"
37 #include "oops/compressedOops.hpp"
38 #include "oops/objArrayKlass.hpp"
39 #include "runtime/frame.inline.hpp"
40 #include "runtime/os.inline.hpp"
41 #include "runtime/safepointMechanism.inline.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "runtime/stubRoutines.hpp"
44 #include "runtime/vm_version.hpp"
45 #include "utilities/macros.hpp"
46 #include "utilities/powerOfTwo.hpp"
47
48 #define __ _masm->
49
50
51 const ConditionRegister LIR_Assembler::BOOL_RESULT = CR5;
52
53
54 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
55 Unimplemented(); return false; // Currently not used on this platform.
56 }
57
58
59 LIR_Opr LIR_Assembler::receiverOpr() {
60 return FrameMap::R3_oop_opr;
61 }
62
63
64 LIR_Opr LIR_Assembler::osrBufferPointer() {
65 return FrameMap::R3_opr;
66 }
67
68
69 // This specifies the stack pointer decrement needed to build the frame.
70 int LIR_Assembler::initial_frame_size_in_bytes() const {
71 return in_bytes(frame_map()->framesize_in_bytes());
72 }
73
74
75 // Inline cache check: the inline cached class is in inline_cache_reg;
76 // we fetch the class of the receiver and compare it with the cached class.
77 // If they do not match we jump to slow case.
78 int LIR_Assembler::check_icache() {
79 return __ ic_check(CodeEntryAlignment);
80 }
81
82 void LIR_Assembler::clinit_barrier(ciMethod* method) {
83 assert(!method->holder()->is_not_initialized(), "initialization should have been started");
84
85 Label L_skip_barrier;
86 Register klass = R20;
87
88 metadata2reg(method->holder()->constant_encoding(), klass);
89 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
90
91 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
92 __ mtctr(klass);
93 __ bctr();
94
95 __ bind(L_skip_barrier);
96 }
97
98 void LIR_Assembler::osr_entry() {
99 // On-stack-replacement entry sequence:
100 //
101 // 1. Create a new compiled activation.
102 // 2. Initialize local variables in the compiled activation. The expression
103 // stack must be empty at the osr_bci; it is not initialized.
104 // 3. Jump to the continuation address in compiled code to resume execution.
105
106 // OSR entry point
107 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
108 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
109 ValueStack* entry_state = osr_entry->end()->state();
110 int number_of_locks = entry_state->locks_size();
111
112 // Create a frame for the compiled activation.
113 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
114
115 // OSR buffer is
116 //
117 // locals[nlocals-1..0]
118 // monitors[number_of_locks-1..0]
119 //
120 // Locals is a direct copy of the interpreter frame so in the osr buffer
121 // the first slot in the local array is the last local from the interpreter
122 // and the last slot is local[0] (receiver) from the interpreter.
123 //
124 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
125 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
126 // in the interpreter frame (the method lock if a sync method).
127
128 // Initialize monitors in the compiled activation.
129 // R3: pointer to osr buffer
130 //
131 // All other registers are dead at this point and the locals will be
132 // copied into place by code emitted in the IR.
133
134 Register OSR_buf = osrBufferPointer()->as_register();
135 {
136 assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
137
138 const int locals_space = BytesPerWord * method()->max_locals();
139 int monitor_offset = locals_space + (2 * BytesPerWord) * (number_of_locks - 1);
140 bool use_OSR_bias = false;
141
142 if (!Assembler::is_simm16(monitor_offset + BytesPerWord) && number_of_locks > 0) {
143 // Offsets too large for ld instructions. Use bias.
144 __ add_const_optimized(OSR_buf, OSR_buf, locals_space);
145 monitor_offset -= locals_space;
146 use_OSR_bias = true;
147 }
148
149 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
150 // the OSR buffer using 2 word entries: first the lock and then
151 // the oop.
152 for (int i = 0; i < number_of_locks; i++) {
153 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
154 #ifdef ASSERT
155 // Verify the interpreter's monitor has a non-null object.
156 {
157 Label L;
158 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
159 __ cmpdi(CR0, R0, 0);
160 __ bne(CR0, L);
161 __ stop("locked object is null");
162 __ bind(L);
163 }
164 #endif // ASSERT
165 // Copy the lock field into the compiled activation.
166 Address ml = frame_map()->address_for_monitor_lock(i),
167 mo = frame_map()->address_for_monitor_object(i);
168 assert(ml.index() == noreg && mo.index() == noreg, "sanity");
169 __ ld(R0, slot_offset + 0, OSR_buf);
170 __ std(R0, ml);
171 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
172 __ std(R0, mo);
173 }
174
175 if (use_OSR_bias) {
176 // Restore.
177 __ sub_const_optimized(OSR_buf, OSR_buf, locals_space);
178 }
179 }
180 }
181
182
183 int LIR_Assembler::emit_exception_handler() {
184 // Generate code for the exception handler.
185 address handler_base = __ start_a_stub(exception_handler_size());
186
187 if (handler_base == nullptr) {
188 // Not enough space left for the handler.
189 bailout("exception handler overflow");
190 return -1;
191 }
192
193 int offset = code_offset();
194 address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(StubId::c1_handle_exception_from_callee_id));
195 //__ load_const_optimized(R0, entry_point);
196 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point));
197 __ mtctr(R0);
198 __ bctr();
199
200 guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
201 __ end_a_stub();
202
203 return offset;
204 }
205
206
207 // Emit the code to remove the frame from the stack in the exception
208 // unwind path.
209 int LIR_Assembler::emit_unwind_handler() {
210 _masm->block_comment("Unwind handler");
211
212 int offset = code_offset();
213 bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes();
214 const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31;
215
216 // Fetch the exception from TLS and clear out exception related thread state.
217 __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
218 __ li(R0, 0);
219 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
220 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
221
222 __ bind(_unwind_handler_entry);
223 __ verify_not_null_oop(Rexception);
224 if (preserve_exception) { __ mr(Rexception_save, Rexception); }
225
226 // Perform needed unlocking
227 MonitorExitStub* stub = nullptr;
228 if (method()->is_synchronized()) {
229 monitor_address(0, FrameMap::R4_opr);
230 stub = new MonitorExitStub(FrameMap::R4_opr, 0);
231 __ unlock_object(R5, R6, R4, *stub->entry());
232 __ bind(*stub->continuation());
233 }
234
235 if (compilation()->env()->dtrace_method_probes()) {
236 Unimplemented();
237 }
238
239 // Dispatch to the unwind logic.
240 address unwind_stub = Runtime1::entry_for(StubId::c1_unwind_exception_id);
241 //__ load_const_optimized(R0, unwind_stub);
242 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub));
243 if (preserve_exception) { __ mr(Rexception, Rexception_save); }
244 __ mtctr(R0);
245 __ bctr();
246
247 // Emit the slow path assembly.
248 if (stub != nullptr) {
249 stub->emit_code(this);
250 }
251
252 return offset;
253 }
254
255
256 int LIR_Assembler::emit_deopt_handler() {
257 // Generate code for deopt handler.
258 address handler_base = __ start_a_stub(deopt_handler_size());
259
260 if (handler_base == nullptr) {
261 // Not enough space left for the handler.
262 bailout("deopt handler overflow");
263 return -1;
264 }
265
266 int offset = code_offset();
267 __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type);
268
269 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
270 __ end_a_stub();
271
272 return offset;
273 }
274
275
276 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
277 if (o == nullptr) {
278 __ li(reg, 0);
279 } else {
280 AddressLiteral addrlit = __ constant_oop_address(o);
281 __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg);
282 }
283 }
284
285
286 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
287 // Allocate a new index in table to hold the object once it's been patched.
288 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr);
289 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
290
291 AddressLiteral addrlit((address)nullptr, oop_Relocation::spec(oop_index));
292 __ load_const(reg, addrlit, R0);
293
294 patching_epilog(patch, lir_patch_normal, reg, info);
295 }
296
297
298 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
299 AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation)
300 __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg);
301 }
302
303
304 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
305 // Allocate a new index in table to hold the klass once it's been patched.
306 int index = __ oop_recorder()->allocate_metadata_index(nullptr);
307 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
308
309 AddressLiteral addrlit((address)nullptr, metadata_Relocation::spec(index));
310 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
311 __ load_const(reg, addrlit, R0);
312
313 patching_epilog(patch, lir_patch_normal, reg, info);
314 }
315
316
317 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
318 const bool is_int = result->is_single_cpu();
319 Register Rdividend = is_int ? left->as_register() : left->as_register_lo();
320 Register Rdivisor = noreg;
321 Register Rscratch = temp->as_register();
322 Register Rresult = is_int ? result->as_register() : result->as_register_lo();
323 long divisor = -1;
324
325 if (right->is_register()) {
326 Rdivisor = is_int ? right->as_register() : right->as_register_lo();
327 } else {
328 divisor = is_int ? right->as_constant_ptr()->as_jint()
329 : right->as_constant_ptr()->as_jlong();
330 }
331
332 assert(Rdividend != Rscratch, "");
333 assert(Rdivisor != Rscratch, "");
334 assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv");
335
336 if (Rdivisor == noreg) {
337 if (divisor == 1) { // stupid, but can happen
338 if (code == lir_idiv) {
339 __ mr_if_needed(Rresult, Rdividend);
340 } else {
341 __ li(Rresult, 0);
342 }
343
344 } else if (is_power_of_2(divisor)) {
345 // Convert division by a power of two into some shifts and logical operations.
346 int log2 = log2i_exact(divisor);
347
348 // Round towards 0.
349 if (divisor == 2) {
350 if (is_int) {
351 __ srwi(Rscratch, Rdividend, 31);
352 } else {
353 __ srdi(Rscratch, Rdividend, 63);
354 }
355 } else {
356 if (is_int) {
357 __ srawi(Rscratch, Rdividend, 31);
358 } else {
359 __ sradi(Rscratch, Rdividend, 63);
360 }
361 __ clrldi(Rscratch, Rscratch, 64-log2);
362 }
363 __ add(Rscratch, Rdividend, Rscratch);
364
365 if (code == lir_idiv) {
366 if (is_int) {
367 __ srawi(Rresult, Rscratch, log2);
368 } else {
369 __ sradi(Rresult, Rscratch, log2);
370 }
371 } else { // lir_irem
372 __ clrrdi(Rscratch, Rscratch, log2);
373 __ sub(Rresult, Rdividend, Rscratch);
374 }
375
376 } else if (divisor == -1) {
377 if (code == lir_idiv) {
378 __ neg(Rresult, Rdividend);
379 } else {
380 __ li(Rresult, 0);
381 }
382
383 } else {
384 __ load_const_optimized(Rscratch, divisor);
385 if (code == lir_idiv) {
386 if (is_int) {
387 __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
388 } else {
389 __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
390 }
391 } else {
392 assert(Rscratch != R0, "need both");
393 if (is_int) {
394 __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1.
395 __ mullw(Rscratch, R0, Rscratch);
396 } else {
397 __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1.
398 __ mulld(Rscratch, R0, Rscratch);
399 }
400 __ sub(Rresult, Rdividend, Rscratch);
401 }
402
403 }
404 return;
405 }
406
407 Label regular, done;
408 if (is_int) {
409 __ cmpwi(CR0, Rdivisor, -1);
410 } else {
411 __ cmpdi(CR0, Rdivisor, -1);
412 }
413 __ bne(CR0, regular);
414 if (code == lir_idiv) {
415 __ neg(Rresult, Rdividend);
416 __ b(done);
417 __ bind(regular);
418 if (is_int) {
419 __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
420 } else {
421 __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
422 }
423 } else { // lir_irem
424 __ li(Rresult, 0);
425 __ b(done);
426 __ bind(regular);
427 if (is_int) {
428 __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
429 __ mullw(Rscratch, Rscratch, Rdivisor);
430 } else {
431 __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
432 __ mulld(Rscratch, Rscratch, Rdivisor);
433 }
434 __ sub(Rresult, Rdividend, Rscratch);
435 }
436 __ bind(done);
437 }
438
439
440 void LIR_Assembler::emit_op3(LIR_Op3* op) {
441 switch (op->code()) {
442 case lir_idiv:
443 case lir_irem:
444 arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(),
445 op->result_opr(), op->info());
446 break;
447 case lir_fmad:
448 __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(),
449 op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg());
450 break;
451 case lir_fmaf:
452 __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(),
453 op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg());
454 break;
455 default: ShouldNotReachHere(); break;
456 }
457 }
458
459
460 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
461 #ifdef ASSERT
462 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
463 if (op->block() != nullptr) _branch_target_blocks.append(op->block());
464 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
465 assert(op->info() == nullptr, "shouldn't have CodeEmitInfo");
466 #endif
467
468 Label *L = op->label();
469 if (op->cond() == lir_cond_always) {
470 __ b(*L);
471 } else {
472 Label done;
473 bool is_unordered = false;
474 if (op->code() == lir_cond_float_branch) {
475 assert(op->ublock() != nullptr, "must have unordered successor");
476 is_unordered = true;
477 } else {
478 assert(op->code() == lir_branch, "just checking");
479 }
480
481 bool positive = false;
482 Assembler::Condition cond = Assembler::equal;
483 switch (op->cond()) {
484 case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break;
485 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break;
486 case lir_cond_less: positive = true ; cond = Assembler::less ; break;
487 case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru
488 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break;
489 case lir_cond_greater: positive = true ; cond = Assembler::greater; break;
490 case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru
491 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break;
492 default: ShouldNotReachHere();
493 }
494 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
495 int bi = Assembler::bi0(BOOL_RESULT, cond);
496 if (is_unordered) {
497 if (positive) {
498 if (op->ublock() == op->block()) {
499 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L);
500 }
501 } else {
502 if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); }
503 }
504 }
505 __ bc_far_optimized(bo, bi, *L);
506 __ bind(done);
507 }
508 }
509
510
511 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
512 Bytecodes::Code code = op->bytecode();
513 LIR_Opr src = op->in_opr(),
514 dst = op->result_opr();
515
516 switch(code) {
517 case Bytecodes::_i2l: {
518 __ extsw(dst->as_register_lo(), src->as_register());
519 break;
520 }
521 case Bytecodes::_l2i: {
522 __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage
523 break;
524 }
525 case Bytecodes::_i2b: {
526 __ extsb(dst->as_register(), src->as_register());
527 break;
528 }
529 case Bytecodes::_i2c: {
530 __ clrldi(dst->as_register(), src->as_register(), 64-16);
531 break;
532 }
533 case Bytecodes::_i2s: {
534 __ extsh(dst->as_register(), src->as_register());
535 break;
536 }
537 case Bytecodes::_i2d:{
538 FloatRegister rdst = dst->as_double_reg();
539 // move src to dst register
540 __ mtfprwa(rdst, src->as_register());
541 __ fcfid(rdst, rdst);
542 break;
543 }
544 case Bytecodes::_l2d: {
545 FloatRegister rdst = dst->as_double_reg();
546 // move src to dst register
547 __ mtfprd(rdst, src->as_register_lo());
548 __ fcfid(rdst, rdst);
549 break;
550 }
551 case Bytecodes::_i2f:{
552 FloatRegister rdst = dst->as_float_reg();
553 // move src to dst register
554 __ mtfprwa(rdst, src->as_register());
555 __ fcfids(rdst, rdst);
556 break;
557 }
558 case Bytecodes::_l2f: {
559 FloatRegister rdst = dst->as_float_reg();
560 // move src to dst register
561 __ mtfprd(rdst, src->as_register_lo());
562 __ fcfids(rdst, rdst);
563 break;
564 }
565 case Bytecodes::_f2d: {
566 __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg());
567 break;
568 }
569 case Bytecodes::_d2f: {
570 __ frsp(dst->as_float_reg(), src->as_double_reg());
571 break;
572 }
573 case Bytecodes::_d2i:
574 case Bytecodes::_f2i: {
575 FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg();
576 Label L;
577 // Result must be 0 if value is NaN; test by comparing value to itself.
578 __ fcmpu(CR0, rsrc, rsrc);
579 __ li(dst->as_register(), 0);
580 __ bso(CR0, L);
581 __ fctiwz(rsrc, rsrc); // USE_KILL
582 __ mffprd(dst->as_register(), rsrc);
583 __ bind(L);
584 break;
585 }
586 case Bytecodes::_d2l:
587 case Bytecodes::_f2l: {
588 FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg();
589 Label L;
590 // Result must be 0 if value is NaN; test by comparing value to itself.
591 __ fcmpu(CR0, rsrc, rsrc);
592 __ li(dst->as_register_lo(), 0);
593 __ bso(CR0, L);
594 __ fctidz(rsrc, rsrc); // USE_KILL
595 __ mffprd(dst->as_register_lo(), rsrc);
596 __ bind(L);
597 break;
598 }
599
600 default: ShouldNotReachHere();
601 }
602 }
603
604
605 void LIR_Assembler::align_call(LIR_Code) {
606 // do nothing since all instructions are word aligned on ppc
607 }
608
609
610 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) {
611 int start_offset = __ offset();
612 // Put the entry point as a constant into the constant pool.
613 const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none);
614 if (entry_point_toc_addr == nullptr) {
615 bailout("const section overflow");
616 return false;
617 }
618 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
619
620 // Emit the trampoline stub which will be related to the branch-and-link below.
621 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc);
622 if (!stub) {
623 bailout("no space for trampoline stub");
624 return false;
625 }
626 return true;
627 }
628
629
630 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
631 assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype");
632
633 bool success = emit_trampoline_stub_for_call(op->addr());
634 if (!success) { return; }
635
636 __ relocate(rtype);
637 // Note: At this point we do not have the address of the trampoline
638 // stub, and the entry point might be too far away for bl, so __ pc()
639 // serves as dummy and the bl will be patched later.
640 __ code()->set_insts_mark();
641 __ bl(__ pc());
642 add_call_info(code_offset(), op->info());
643 __ post_call_nop();
644 }
645
646
647 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
648 __ calculate_address_from_global_toc(R2_TOC, __ method_toc());
649
650 // Virtual call relocation will point to ic load.
651 address virtual_call_meta_addr = __ pc();
652 // Load a clear inline cache.
653 AddressLiteral empty_ic((address) Universe::non_oop_word());
654 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC);
655 if (!success) {
656 bailout("const section overflow");
657 return;
658 }
659 // Call to fixup routine. Fixup routine uses ScopeDesc info
660 // to determine who we intended to call.
661 __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
662
663 success = emit_trampoline_stub_for_call(op->addr(), R2_TOC);
664 if (!success) { return; }
665
666 // Note: At this point we do not have the address of the trampoline
667 // stub, and the entry point might be too far away for bl, so __ pc()
668 // serves as dummy and the bl will be patched later.
669 __ bl(__ pc());
670 add_call_info(code_offset(), op->info());
671 __ post_call_nop();
672 }
673
674 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) {
675 ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info);
676 __ null_check(addr, stub->entry());
677 append_code_stub(stub);
678 }
679
680
681 // Attention: caller must encode oop if needed
682 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide) {
683 int store_offset;
684 if (!Assembler::is_simm16(offset)) {
685 // For offsets larger than a simm16 we setup the offset.
686 assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case");
687 __ load_const_optimized(R0, offset);
688 store_offset = store(from_reg, base, R0, type, wide);
689 } else {
690 store_offset = code_offset();
691 switch (type) {
692 case T_BOOLEAN: // fall through
693 case T_BYTE : __ stb(from_reg->as_register(), offset, base); break;
694 case T_CHAR :
695 case T_SHORT : __ sth(from_reg->as_register(), offset, base); break;
696 case T_INT : __ stw(from_reg->as_register(), offset, base); break;
697 case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break;
698 case T_ADDRESS:
699 case T_METADATA: __ std(from_reg->as_register(), offset, base); break;
700 case T_ARRAY : // fall through
701 case T_OBJECT:
702 {
703 if (UseCompressedOops && !wide) {
704 // Encoding done in caller
705 __ stw(from_reg->as_register(), offset, base);
706 __ verify_coop(from_reg->as_register(), FILE_AND_LINE);
707 } else {
708 __ std(from_reg->as_register(), offset, base);
709 if (VerifyOops) {
710 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
711 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0
712 }
713 }
714 break;
715 }
716 case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break;
717 case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break;
718 default : ShouldNotReachHere();
719 }
720 }
721 return store_offset;
722 }
723
724
725 // Attention: caller must encode oop if needed
726 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
727 int store_offset = code_offset();
728 switch (type) {
729 case T_BOOLEAN: // fall through
730 case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break;
731 case T_CHAR :
732 case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break;
733 case T_INT : __ stwx(from_reg->as_register(), base, disp); break;
734 case T_LONG :
735 #ifdef _LP64
736 __ stdx(from_reg->as_register_lo(), base, disp);
737 #else
738 Unimplemented();
739 #endif
740 break;
741 case T_ADDRESS:
742 __ stdx(from_reg->as_register(), base, disp);
743 break;
744 case T_ARRAY : // fall through
745 case T_OBJECT:
746 {
747 if (UseCompressedOops && !wide) {
748 // Encoding done in caller.
749 __ stwx(from_reg->as_register(), base, disp);
750 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); // kills R0
751 } else {
752 __ stdx(from_reg->as_register(), base, disp);
753 if (VerifyOops) {
754 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
755 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0
756 }
757 }
758 break;
759 }
760 case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break;
761 case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break;
762 default : ShouldNotReachHere();
763 }
764 return store_offset;
765 }
766
767
768 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide) {
769 int load_offset;
770 if (!Assembler::is_simm16(offset)) {
771 // For offsets larger than a simm16 we setup the offset.
772 __ load_const_optimized(R0, offset);
773 load_offset = load(base, R0, to_reg, type, wide);
774 } else {
775 load_offset = code_offset();
776 switch(type) {
777 case T_BOOLEAN: // fall through
778 case T_BYTE : __ lbz(to_reg->as_register(), offset, base);
779 __ extsb(to_reg->as_register(), to_reg->as_register()); break;
780 case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break;
781 case T_SHORT : __ lha(to_reg->as_register(), offset, base); break;
782 case T_INT : __ lwa(to_reg->as_register(), offset, base); break;
783 case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break;
784 case T_METADATA: __ ld(to_reg->as_register(), offset, base); break;
785 case T_ADDRESS:
786 __ ld(to_reg->as_register(), offset, base);
787 break;
788 case T_ARRAY : // fall through
789 case T_OBJECT:
790 {
791 if (UseCompressedOops && !wide) {
792 __ lwz(to_reg->as_register(), offset, base);
793 __ decode_heap_oop(to_reg->as_register());
794 } else {
795 __ ld(to_reg->as_register(), offset, base);
796 }
797 break;
798 }
799 case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break;
800 case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break;
801 default : ShouldNotReachHere();
802 }
803 }
804 return load_offset;
805 }
806
807
808 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
809 int load_offset = code_offset();
810 switch(type) {
811 case T_BOOLEAN: // fall through
812 case T_BYTE : __ lbzx(to_reg->as_register(), base, disp);
813 __ extsb(to_reg->as_register(), to_reg->as_register()); break;
814 case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break;
815 case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break;
816 case T_INT : __ lwax(to_reg->as_register(), base, disp); break;
817 case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break;
818 case T_ARRAY : // fall through
819 case T_OBJECT:
820 {
821 if (UseCompressedOops && !wide) {
822 __ lwzx(to_reg->as_register(), base, disp);
823 __ decode_heap_oop(to_reg->as_register());
824 } else {
825 __ ldx(to_reg->as_register(), base, disp);
826 }
827 break;
828 }
829 case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break;
830 case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break;
831 case T_LONG :
832 #ifdef _LP64
833 __ ldx(to_reg->as_register_lo(), base, disp);
834 #else
835 Unimplemented();
836 #endif
837 break;
838 default : ShouldNotReachHere();
839 }
840 return load_offset;
841 }
842
843
844 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
845 LIR_Const* c = src->as_constant_ptr();
846 Register src_reg = R0;
847 switch (c->type()) {
848 case T_INT:
849 case T_FLOAT: {
850 int value = c->as_jint_bits();
851 __ load_const_optimized(src_reg, value);
852 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
853 __ stw(src_reg, addr);
854 break;
855 }
856 case T_ADDRESS: {
857 int value = c->as_jint_bits();
858 __ load_const_optimized(src_reg, value);
859 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
860 __ std(src_reg, addr);
861 break;
862 }
863 case T_OBJECT: {
864 jobject2reg(c->as_jobject(), src_reg);
865 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
866 __ std(src_reg, addr);
867 break;
868 }
869 case T_LONG:
870 case T_DOUBLE: {
871 int value = c->as_jlong_bits();
872 __ load_const_optimized(src_reg, value);
873 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
874 __ std(src_reg, addr);
875 break;
876 }
877 default:
878 Unimplemented();
879 }
880 }
881
882
883 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
884 LIR_Const* c = src->as_constant_ptr();
885 LIR_Address* addr = dest->as_address_ptr();
886 Register base = addr->base()->as_pointer_register();
887 LIR_Opr tmp = LIR_OprFact::illegalOpr;
888 int offset = -1;
889 // Null check for large offsets in LIRGenerator::do_StoreField.
890 bool needs_explicit_null_check = !ImplicitNullChecks;
891
892 if (info != nullptr && needs_explicit_null_check) {
893 explicit_null_check(base, info);
894 }
895
896 switch (c->type()) {
897 case T_FLOAT: type = T_INT;
898 case T_INT:
899 case T_ADDRESS: {
900 tmp = FrameMap::R0_opr;
901 __ load_const_optimized(tmp->as_register(), c->as_jint_bits());
902 break;
903 }
904 case T_DOUBLE: type = T_LONG;
905 case T_LONG: {
906 tmp = FrameMap::R0_long_opr;
907 __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits());
908 break;
909 }
910 case T_OBJECT: {
911 tmp = FrameMap::R0_opr;
912 if (UseCompressedOops && !wide && c->as_jobject() != nullptr) {
913 AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject());
914 // Don't care about sign extend (will use stw).
915 __ lis(R0, 0); // Will get patched.
916 __ relocate(oop_addr.rspec(), /*compressed format*/ 1);
917 __ ori(R0, R0, 0); // Will get patched.
918 } else {
919 jobject2reg(c->as_jobject(), R0);
920 }
921 break;
922 }
923 default:
924 Unimplemented();
925 }
926
927 // Handle either reg+reg or reg+disp address.
928 if (addr->index()->is_valid()) {
929 assert(addr->disp() == 0, "must be zero");
930 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
931 } else {
932 assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses");
933 offset = store(tmp, base, addr->disp(), type, wide);
934 }
935
936 if (info != nullptr) {
937 assert(offset != -1, "offset should've been set");
938 if (!needs_explicit_null_check) {
939 add_debug_info_for_null_check(offset, info);
940 }
941 }
942 }
943
944
945 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
946 LIR_Const* c = src->as_constant_ptr();
947 LIR_Opr to_reg = dest;
948
949 switch (c->type()) {
950 case T_INT: {
951 assert(patch_code == lir_patch_none, "no patching handled here");
952 __ load_const_optimized(dest->as_register(), c->as_jint(), R0);
953 break;
954 }
955 case T_ADDRESS: {
956 assert(patch_code == lir_patch_none, "no patching handled here");
957 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ...
958 break;
959 }
960 case T_LONG: {
961 assert(patch_code == lir_patch_none, "no patching handled here");
962 __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0);
963 break;
964 }
965
966 case T_OBJECT: {
967 if (patch_code == lir_patch_none) {
968 jobject2reg(c->as_jobject(), to_reg->as_register());
969 } else {
970 jobject2reg_with_patching(to_reg->as_register(), info);
971 }
972 break;
973 }
974
975 case T_METADATA:
976 {
977 if (patch_code == lir_patch_none) {
978 metadata2reg(c->as_metadata(), to_reg->as_register());
979 } else {
980 klass2reg_with_patching(to_reg->as_register(), info);
981 }
982 }
983 break;
984
985 case T_FLOAT:
986 {
987 if (to_reg->is_single_fpu()) {
988 address const_addr = __ float_constant(c->as_jfloat());
989 if (const_addr == nullptr) {
990 bailout("const section overflow");
991 break;
992 }
993 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
994 __ relocate(rspec);
995 __ load_const(R0, const_addr);
996 __ lfsx(to_reg->as_float_reg(), R0);
997 } else {
998 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
999 __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0);
1000 }
1001 }
1002 break;
1003
1004 case T_DOUBLE:
1005 {
1006 if (to_reg->is_double_fpu()) {
1007 address const_addr = __ double_constant(c->as_jdouble());
1008 if (const_addr == nullptr) {
1009 bailout("const section overflow");
1010 break;
1011 }
1012 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1013 __ relocate(rspec);
1014 __ load_const(R0, const_addr);
1015 __ lfdx(to_reg->as_double_reg(), R0);
1016 } else {
1017 assert(to_reg->is_double_cpu(), "Must be a long register.");
1018 __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0);
1019 }
1020 }
1021 break;
1022
1023 default:
1024 ShouldNotReachHere();
1025 }
1026 }
1027
1028
1029 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1030 Unimplemented(); return Address();
1031 }
1032
1033
1034 inline RegisterOrConstant index_or_disp(LIR_Address* addr) {
1035 if (addr->index()->is_illegal()) {
1036 return (RegisterOrConstant)(addr->disp());
1037 } else {
1038 return (RegisterOrConstant)(addr->index()->as_pointer_register());
1039 }
1040 }
1041
1042
1043 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1044 const Register tmp = R0;
1045 switch (type) {
1046 case T_INT:
1047 case T_FLOAT: {
1048 Address from = frame_map()->address_for_slot(src->single_stack_ix());
1049 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
1050 __ lwz(tmp, from);
1051 __ stw(tmp, to);
1052 break;
1053 }
1054 case T_ADDRESS:
1055 case T_OBJECT: {
1056 Address from = frame_map()->address_for_slot(src->single_stack_ix());
1057 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
1058 __ ld(tmp, from);
1059 __ std(tmp, to);
1060 break;
1061 }
1062 case T_LONG:
1063 case T_DOUBLE: {
1064 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1065 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
1066 __ ld(tmp, from);
1067 __ std(tmp, to);
1068 break;
1069 }
1070
1071 default:
1072 ShouldNotReachHere();
1073 }
1074 }
1075
1076
1077 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1078 Unimplemented(); return Address();
1079 }
1080
1081
1082 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1083 Unimplemented(); return Address();
1084 }
1085
1086
1087 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1088 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1089
1090 assert(type != T_METADATA, "load of metadata ptr not supported");
1091 LIR_Address* addr = src_opr->as_address_ptr();
1092 LIR_Opr to_reg = dest;
1093
1094 Register src = addr->base()->as_pointer_register();
1095 Register disp_reg = noreg;
1096 int disp_value = addr->disp();
1097 bool needs_patching = (patch_code != lir_patch_none);
1098 // null check for large offsets in LIRGenerator::do_LoadField
1099 bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks;
1100
1101 if (info != nullptr && needs_explicit_null_check) {
1102 explicit_null_check(src, info);
1103 }
1104
1105 if (addr->base()->type() == T_OBJECT) {
1106 __ verify_oop(src, FILE_AND_LINE);
1107 }
1108
1109 PatchingStub* patch = nullptr;
1110 if (needs_patching) {
1111 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1112 assert(!to_reg->is_double_cpu() ||
1113 patch_code == lir_patch_none ||
1114 patch_code == lir_patch_normal, "patching doesn't match register");
1115 }
1116
1117 if (addr->index()->is_illegal()) {
1118 if (!Assembler::is_simm16(disp_value)) {
1119 if (needs_patching) {
1120 __ load_const32(R0, 0); // patchable int
1121 } else {
1122 __ load_const_optimized(R0, disp_value);
1123 }
1124 disp_reg = R0;
1125 }
1126 } else {
1127 disp_reg = addr->index()->as_pointer_register();
1128 assert(disp_value == 0, "can't handle 3 operand addresses");
1129 }
1130
1131 // Remember the offset of the load. The patching_epilog must be done
1132 // before the call to add_debug_info, otherwise the PcDescs don't get
1133 // entered in increasing order.
1134 int offset;
1135
1136 if (disp_reg == noreg) {
1137 assert(Assembler::is_simm16(disp_value), "should have set this up");
1138 offset = load(src, disp_value, to_reg, type, wide);
1139 } else {
1140 offset = load(src, disp_reg, to_reg, type, wide);
1141 }
1142
1143 if (patch != nullptr) {
1144 patching_epilog(patch, patch_code, src, info);
1145 }
1146 if (info != nullptr && !needs_explicit_null_check) {
1147 add_debug_info_for_null_check(offset, info);
1148 }
1149 }
1150
1151
1152 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1153 Address addr;
1154 if (src->is_single_word()) {
1155 addr = frame_map()->address_for_slot(src->single_stack_ix());
1156 } else if (src->is_double_word()) {
1157 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1158 }
1159
1160 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/);
1161 }
1162
1163
1164 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type) {
1165 Address addr;
1166 if (dest->is_single_word()) {
1167 addr = frame_map()->address_for_slot(dest->single_stack_ix());
1168 } else if (dest->is_double_word()) {
1169 addr = frame_map()->address_for_slot(dest->double_stack_ix());
1170 }
1171
1172 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/);
1173 }
1174
1175
1176 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1177 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1178 if (from_reg->is_double_fpu()) {
1179 // double to double moves
1180 assert(to_reg->is_double_fpu(), "should match");
1181 __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg());
1182 } else {
1183 // float to float moves
1184 assert(to_reg->is_single_fpu(), "should match");
1185 __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg());
1186 }
1187 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1188 if (from_reg->is_double_cpu()) {
1189 __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1190 } else if (to_reg->is_double_cpu()) {
1191 // int to int moves
1192 __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register());
1193 } else {
1194 // int to int moves
1195 __ mr_if_needed(to_reg->as_register(), from_reg->as_register());
1196 }
1197 } else {
1198 ShouldNotReachHere();
1199 }
1200 if (is_reference_type(to_reg->type())) {
1201 __ verify_oop(to_reg->as_register(), FILE_AND_LINE);
1202 }
1203 }
1204
1205
1206 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1207 LIR_PatchCode patch_code, CodeEmitInfo* info,
1208 bool wide) {
1209 assert(type != T_METADATA, "store of metadata ptr not supported");
1210 LIR_Address* addr = dest->as_address_ptr();
1211
1212 Register src = addr->base()->as_pointer_register();
1213 Register disp_reg = noreg;
1214 int disp_value = addr->disp();
1215 bool needs_patching = (patch_code != lir_patch_none);
1216 bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide &&
1217 CompressedOops::mode() != CompressedOops::UnscaledNarrowOop;
1218 bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value);
1219 bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29.
1220 // Null check for large offsets in LIRGenerator::do_StoreField.
1221 bool needs_explicit_null_check = !ImplicitNullChecks || use_R29;
1222
1223 if (info != nullptr && needs_explicit_null_check) {
1224 explicit_null_check(src, info);
1225 }
1226
1227 if (addr->base()->is_oop_register()) {
1228 __ verify_oop(src, FILE_AND_LINE);
1229 }
1230
1231 PatchingStub* patch = nullptr;
1232 if (needs_patching) {
1233 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1234 assert(!from_reg->is_double_cpu() ||
1235 patch_code == lir_patch_none ||
1236 patch_code == lir_patch_normal, "patching doesn't match register");
1237 }
1238
1239 if (addr->index()->is_illegal()) {
1240 if (load_disp) {
1241 disp_reg = use_R29 ? R29_TOC : R0;
1242 if (needs_patching) {
1243 __ load_const32(disp_reg, 0); // patchable int
1244 } else {
1245 __ load_const_optimized(disp_reg, disp_value);
1246 }
1247 }
1248 } else {
1249 disp_reg = addr->index()->as_pointer_register();
1250 assert(disp_value == 0, "can't handle 3 operand addresses");
1251 }
1252
1253 // remember the offset of the store. The patching_epilog must be done
1254 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1255 // entered in increasing order.
1256 int offset;
1257
1258 if (compress_oop) {
1259 Register co = __ encode_heap_oop(R0, from_reg->as_register());
1260 from_reg = FrameMap::as_opr(co);
1261 }
1262
1263 if (disp_reg == noreg) {
1264 assert(Assembler::is_simm16(disp_value), "should have set this up");
1265 offset = store(from_reg, src, disp_value, type, wide);
1266 } else {
1267 offset = store(from_reg, src, disp_reg, type, wide);
1268 }
1269
1270 if (use_R29) {
1271 __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit
1272 }
1273
1274 if (patch != nullptr) {
1275 patching_epilog(patch, patch_code, src, info);
1276 }
1277
1278 if (info != nullptr && !needs_explicit_null_check) {
1279 add_debug_info_for_null_check(offset, info);
1280 }
1281 }
1282
1283
1284 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
1285 const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone().
1286 const Register temp = R12;
1287
1288 // Pop the stack before the safepoint code.
1289 int frame_size = initial_frame_size_in_bytes();
1290 if (Assembler::is_simm(frame_size, 16)) {
1291 __ addi(R1_SP, R1_SP, frame_size);
1292 } else {
1293 __ pop_frame();
1294 }
1295
1296 // Restore return pc relative to callers' sp.
1297 __ ld(return_pc, _abi0(lr), R1_SP);
1298 // Move return pc to LR.
1299 __ mtlr(return_pc);
1300
1301 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1302 __ reserved_stack_check(return_pc);
1303 }
1304
1305 // We need to mark the code position where the load from the safepoint
1306 // polling page was emitted as relocInfo::poll_return_type here.
1307 if (!UseSIGTRAP) {
1308 code_stub->set_safepoint_offset(__ offset());
1309 __ relocate(relocInfo::poll_return_type);
1310 }
1311 __ safepoint_poll(*code_stub->entry(), temp, true /* at_return */, true /* in_nmethod */);
1312
1313 // Return.
1314 __ blr();
1315 }
1316
1317
1318 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1319 const Register poll_addr = tmp->as_register();
1320 __ ld(poll_addr, in_bytes(JavaThread::polling_page_offset()), R16_thread);
1321 if (info != nullptr) {
1322 add_debug_info_for_branch(info);
1323 }
1324 int offset = __ offset();
1325 __ relocate(relocInfo::poll_type);
1326 __ load_from_polling_page(poll_addr);
1327
1328 return offset;
1329 }
1330
1331
1332 void LIR_Assembler::emit_static_call_stub() {
1333 address call_pc = __ pc();
1334 address stub = __ start_a_stub(static_call_stub_size());
1335 if (stub == nullptr) {
1336 bailout("static call stub overflow");
1337 return;
1338 }
1339
1340 // For java_to_interp stubs we use R11_scratch1 as scratch register
1341 // and in call trampoline stubs we use R12_scratch2. This way we
1342 // can distinguish them (see is_NativeCallTrampolineStub_at()).
1343 const Register reg_scratch = R11_scratch1;
1344
1345 // Create a static stub relocation which relates this stub
1346 // with the call instruction at insts_call_instruction_offset in the
1347 // instructions code-section.
1348 int start = __ offset();
1349 __ relocate(static_stub_Relocation::spec(call_pc));
1350
1351 // Now, create the stub's code:
1352 // - load the TOC
1353 // - load the inline cache oop from the constant pool
1354 // - load the call target from the constant pool
1355 // - call
1356 __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1357 AddressLiteral ic = __ allocate_metadata_address((Metadata *)nullptr);
1358 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true);
1359
1360 if (ReoptimizeCallSequences) {
1361 __ b64_patchable((address)-1, relocInfo::none);
1362 } else {
1363 AddressLiteral a((address)-1);
1364 success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true);
1365 __ mtctr(reg_scratch);
1366 __ bctr();
1367 }
1368 if (!success) {
1369 bailout("const section overflow");
1370 return;
1371 }
1372
1373 assert(__ offset() - start <= static_call_stub_size(), "stub too big");
1374 __ end_a_stub();
1375 }
1376
1377
1378 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1379 bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual);
1380 if (opr1->is_single_fpu()) {
1381 __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg());
1382 } else if (opr1->is_double_fpu()) {
1383 __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg());
1384 } else if (opr1->is_single_cpu()) {
1385 if (opr2->is_constant()) {
1386 switch (opr2->as_constant_ptr()->type()) {
1387 case T_INT:
1388 {
1389 jint con = opr2->as_constant_ptr()->as_jint();
1390 if (unsigned_comp) {
1391 if (Assembler::is_uimm(con, 16)) {
1392 __ cmplwi(BOOL_RESULT, opr1->as_register(), con);
1393 } else {
1394 __ load_const_optimized(R0, con);
1395 __ cmplw(BOOL_RESULT, opr1->as_register(), R0);
1396 }
1397 } else {
1398 if (Assembler::is_simm(con, 16)) {
1399 __ cmpwi(BOOL_RESULT, opr1->as_register(), con);
1400 } else {
1401 __ load_const_optimized(R0, con);
1402 __ cmpw(BOOL_RESULT, opr1->as_register(), R0);
1403 }
1404 }
1405 }
1406 break;
1407
1408 case T_OBJECT:
1409 // There are only equal/notequal comparisons on objects.
1410 {
1411 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1412 jobject con = opr2->as_constant_ptr()->as_jobject();
1413 if (con == nullptr) {
1414 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
1415 } else {
1416 jobject2reg(con, R0);
1417 __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
1418 }
1419 }
1420 break;
1421
1422 case T_METADATA:
1423 // We only need, for now, comparison with null for metadata.
1424 {
1425 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1426 Metadata* p = opr2->as_constant_ptr()->as_metadata();
1427 if (p == nullptr) {
1428 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
1429 } else {
1430 ShouldNotReachHere();
1431 }
1432 }
1433 break;
1434
1435 default:
1436 ShouldNotReachHere();
1437 break;
1438 }
1439 } else {
1440 assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported");
1441 if (is_reference_type(opr1->type())) {
1442 // There are only equal/notequal comparisons on objects.
1443 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1444 __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1445 } else {
1446 if (unsigned_comp) {
1447 __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1448 } else {
1449 __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1450 }
1451 }
1452 }
1453 } else if (opr1->is_double_cpu()) {
1454 if (opr2->is_constant()) {
1455 jlong con = opr2->as_constant_ptr()->as_jlong();
1456 if (unsigned_comp) {
1457 if (Assembler::is_uimm(con, 16)) {
1458 __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con);
1459 } else {
1460 __ load_const_optimized(R0, con);
1461 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0);
1462 }
1463 } else {
1464 if (Assembler::is_simm(con, 16)) {
1465 __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con);
1466 } else {
1467 __ load_const_optimized(R0, con);
1468 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0);
1469 }
1470 }
1471 } else if (opr2->is_register()) {
1472 if (unsigned_comp) {
1473 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1474 } else {
1475 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1476 }
1477 } else {
1478 ShouldNotReachHere();
1479 }
1480 } else {
1481 ShouldNotReachHere();
1482 }
1483 }
1484
1485
1486 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1487 const Register Rdst = dst->as_register();
1488 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1489 bool is_unordered_less = (code == lir_ucmp_fd2i);
1490 if (left->is_single_fpu()) {
1491 __ fcmpu(CR0, left->as_float_reg(), right->as_float_reg());
1492 } else if (left->is_double_fpu()) {
1493 __ fcmpu(CR0, left->as_double_reg(), right->as_double_reg());
1494 } else {
1495 ShouldNotReachHere();
1496 }
1497 __ set_cmpu3(Rdst, is_unordered_less); // is_unordered_less ? -1 : 1
1498 } else if (code == lir_cmp_l2i) {
1499 __ cmpd(CR0, left->as_register_lo(), right->as_register_lo());
1500 __ set_cmp3(Rdst); // set result as follows: <: -1, =: 0, >: 1
1501 } else {
1502 ShouldNotReachHere();
1503 }
1504 }
1505
1506
1507 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) {
1508 if (src->is_constant()) {
1509 lasm->const2reg(src, dst, lir_patch_none, nullptr);
1510 } else if (src->is_register()) {
1511 lasm->reg2reg(src, dst);
1512 } else if (src->is_stack()) {
1513 lasm->stack2reg(src, dst, dst->type());
1514 } else {
1515 ShouldNotReachHere();
1516 }
1517 }
1518
1519 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1520 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1521 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on ppc");
1522
1523 if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) {
1524 load_to_reg(this, opr1, result); // Condition doesn't matter.
1525 return;
1526 }
1527
1528 bool positive = false;
1529 Assembler::Condition cond = Assembler::equal;
1530 switch (condition) {
1531 case lir_cond_equal: positive = true ; cond = Assembler::equal ; break;
1532 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break;
1533 case lir_cond_less: positive = true ; cond = Assembler::less ; break;
1534 case lir_cond_belowEqual:
1535 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break;
1536 case lir_cond_greater: positive = true ; cond = Assembler::greater; break;
1537 case lir_cond_aboveEqual:
1538 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break;
1539 default: ShouldNotReachHere();
1540 }
1541
1542 if (result->is_cpu_register()) {
1543 bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register();
1544 const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo();
1545
1546 // We can use result_reg to load one operand if not already in register.
1547 Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg,
1548 second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg;
1549
1550 if (first != second) {
1551 if (!o1_is_reg) {
1552 load_to_reg(this, opr1, result);
1553 }
1554
1555 if (!o2_is_reg) {
1556 load_to_reg(this, opr2, result);
1557 }
1558
1559 __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second);
1560 return;
1561 }
1562 } // isel
1563
1564 load_to_reg(this, opr1, result);
1565
1566 Label skip;
1567 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1568 int bi = Assembler::bi0(BOOL_RESULT, cond);
1569 __ bc(bo, bi, skip);
1570
1571 load_to_reg(this, opr2, result);
1572 __ bind(skip);
1573 }
1574
1575
1576 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1577 CodeEmitInfo* info) {
1578 assert(info == nullptr, "unused on this code path");
1579 assert(left->is_register(), "wrong items state");
1580 assert(dest->is_register(), "wrong items state");
1581
1582 if (right->is_register()) {
1583 if (dest->is_float_kind()) {
1584
1585 FloatRegister lreg, rreg, res;
1586 if (right->is_single_fpu()) {
1587 lreg = left->as_float_reg();
1588 rreg = right->as_float_reg();
1589 res = dest->as_float_reg();
1590 switch (code) {
1591 case lir_add: __ fadds(res, lreg, rreg); break;
1592 case lir_sub: __ fsubs(res, lreg, rreg); break;
1593 case lir_mul: __ fmuls(res, lreg, rreg); break;
1594 case lir_div: __ fdivs(res, lreg, rreg); break;
1595 default: ShouldNotReachHere();
1596 }
1597 } else {
1598 lreg = left->as_double_reg();
1599 rreg = right->as_double_reg();
1600 res = dest->as_double_reg();
1601 switch (code) {
1602 case lir_add: __ fadd(res, lreg, rreg); break;
1603 case lir_sub: __ fsub(res, lreg, rreg); break;
1604 case lir_mul: __ fmul(res, lreg, rreg); break;
1605 case lir_div: __ fdiv(res, lreg, rreg); break;
1606 default: ShouldNotReachHere();
1607 }
1608 }
1609
1610 } else if (dest->is_double_cpu()) {
1611
1612 Register dst_lo = dest->as_register_lo();
1613 Register op1_lo = left->as_pointer_register();
1614 Register op2_lo = right->as_pointer_register();
1615
1616 switch (code) {
1617 case lir_add: __ add(dst_lo, op1_lo, op2_lo); break;
1618 case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break;
1619 case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break;
1620 default: ShouldNotReachHere();
1621 }
1622 } else {
1623 assert (right->is_single_cpu(), "Just Checking");
1624
1625 Register lreg = left->as_register();
1626 Register res = dest->as_register();
1627 Register rreg = right->as_register();
1628 switch (code) {
1629 case lir_add: __ add (res, lreg, rreg); break;
1630 case lir_sub: __ sub (res, lreg, rreg); break;
1631 case lir_mul: __ mullw(res, lreg, rreg); break;
1632 default: ShouldNotReachHere();
1633 }
1634 }
1635 } else {
1636 assert (right->is_constant(), "must be constant");
1637
1638 if (dest->is_single_cpu()) {
1639 Register lreg = left->as_register();
1640 Register res = dest->as_register();
1641 int simm16 = right->as_constant_ptr()->as_jint();
1642
1643 switch (code) {
1644 case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int
1645 simm16 = -simm16;
1646 case lir_add: if (res == lreg && simm16 == 0) break;
1647 __ addi(res, lreg, simm16); break;
1648 case lir_mul: if (res == lreg && simm16 == 1) break;
1649 __ mulli(res, lreg, simm16); break;
1650 default: ShouldNotReachHere();
1651 }
1652 } else {
1653 Register lreg = left->as_pointer_register();
1654 Register res = dest->as_register_lo();
1655 long con = right->as_constant_ptr()->as_jlong();
1656 assert(Assembler::is_simm16(con), "must be simm16");
1657
1658 switch (code) {
1659 case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long
1660 con = -con;
1661 case lir_add: if (res == lreg && con == 0) break;
1662 __ addi(res, lreg, (int)con); break;
1663 case lir_mul: if (res == lreg && con == 1) break;
1664 __ mulli(res, lreg, (int)con); break;
1665 default: ShouldNotReachHere();
1666 }
1667 }
1668 }
1669 }
1670
1671
1672 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1673 switch (code) {
1674 case lir_sqrt: {
1675 __ fsqrt(dest->as_double_reg(), value->as_double_reg());
1676 break;
1677 }
1678 case lir_abs: {
1679 __ fabs(dest->as_double_reg(), value->as_double_reg());
1680 break;
1681 }
1682 case lir_f2hf: {
1683 __ f2hf(dest.as_register(), value.as_float_reg(), tmp.as_float_reg());
1684 break;
1685 }
1686 case lir_hf2f: {
1687 __ hf2f(dest->as_float_reg(), value.as_register());
1688 break;
1689 }
1690 default: {
1691 ShouldNotReachHere();
1692 break;
1693 }
1694 }
1695 }
1696
1697
1698 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1699 if (right->is_constant()) { // see do_LogicOp
1700 long uimm;
1701 Register d, l;
1702 if (dest->is_single_cpu()) {
1703 uimm = right->as_constant_ptr()->as_jint();
1704 d = dest->as_register();
1705 l = left->as_register();
1706 } else {
1707 uimm = right->as_constant_ptr()->as_jlong();
1708 d = dest->as_register_lo();
1709 l = left->as_register_lo();
1710 }
1711 long uimms = (unsigned long)uimm >> 16,
1712 uimmss = (unsigned long)uimm >> 32;
1713
1714 switch (code) {
1715 case lir_logic_and:
1716 if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2(uimm)) {
1717 __ andi(d, l, uimm); // special cases
1718 } else if (uimms != 0) { __ andis_(d, l, uimms); }
1719 else { __ andi_(d, l, uimm); }
1720 break;
1721
1722 case lir_logic_or:
1723 if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); }
1724 else { __ ori(d, l, uimm); }
1725 break;
1726
1727 case lir_logic_xor:
1728 if (uimm == -1) { __ nand(d, l, l); } // special case
1729 else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); }
1730 else { __ xori(d, l, uimm); }
1731 break;
1732
1733 default: ShouldNotReachHere();
1734 }
1735 } else {
1736 assert(right->is_register(), "right should be in register");
1737
1738 if (dest->is_single_cpu()) {
1739 switch (code) {
1740 case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break;
1741 case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break;
1742 case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break;
1743 default: ShouldNotReachHere();
1744 }
1745 } else {
1746 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1747 left->as_register_lo();
1748 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1749 right->as_register_lo();
1750
1751 switch (code) {
1752 case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break;
1753 case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break;
1754 case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break;
1755 default: ShouldNotReachHere();
1756 }
1757 }
1758 }
1759 }
1760
1761
1762 int LIR_Assembler::shift_amount(BasicType t) {
1763 int elem_size = type2aelembytes(t);
1764 switch (elem_size) {
1765 case 1 : return 0;
1766 case 2 : return 1;
1767 case 4 : return 2;
1768 case 8 : return 3;
1769 }
1770 ShouldNotReachHere();
1771 return -1;
1772 }
1773
1774
1775 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1776 info->add_register_oop(exceptionOop);
1777
1778 // Reuse the debug info from the safepoint poll for the throw op itself.
1779 address pc_for_athrow = __ pc();
1780 int pc_for_athrow_offset = __ offset();
1781 //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1782 //__ relocate(rspec);
1783 //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0);
1784 __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true);
1785 add_call_info(pc_for_athrow_offset, info); // for exception handler
1786
1787 address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? StubId::c1_handle_exception_id
1788 : StubId::c1_handle_exception_nofpu_id);
1789 //__ load_const_optimized(R0, stub);
1790 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
1791 __ mtctr(R0);
1792 __ bctr();
1793 }
1794
1795
1796 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1797 // Note: Not used with EnableDebuggingOnDemand.
1798 assert(exceptionOop->as_register() == R3, "should match");
1799 __ b(_unwind_handler_entry);
1800 }
1801
1802
1803 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1804 Register src = op->src()->as_register();
1805 Register dst = op->dst()->as_register();
1806 Register src_pos = op->src_pos()->as_register();
1807 Register dst_pos = op->dst_pos()->as_register();
1808 Register length = op->length()->as_register();
1809 Register tmp = op->tmp()->as_register();
1810 Register tmp2 = R0;
1811
1812 int flags = op->flags();
1813 ciArrayKlass* default_type = op->expected_type();
1814 BasicType basic_type = (default_type != nullptr) ? default_type->element_type()->basic_type() : T_ILLEGAL;
1815 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1816
1817 // Set up the arraycopy stub information.
1818 ArrayCopyStub* stub = op->stub();
1819
1820 // Always do stub if no type information is available. It's ok if
1821 // the known type isn't loaded since the code sanity checks
1822 // in debug mode and the type isn't required when we know the exact type
1823 // also check that the type is an array type.
1824 if (default_type == nullptr) {
1825 assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() &&
1826 length->is_nonvolatile(), "must preserve");
1827 address copyfunc_addr = StubRoutines::generic_arraycopy();
1828 assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
1829
1830 // 3 parms are int. Convert to long.
1831 __ mr(R3_ARG1, src);
1832 __ extsw(R4_ARG2, src_pos);
1833 __ mr(R5_ARG3, dst);
1834 __ extsw(R6_ARG4, dst_pos);
1835 __ extsw(R7_ARG5, length);
1836
1837 #ifndef PRODUCT
1838 if (PrintC1Statistics) {
1839 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1840 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
1841 __ lwz(R11_scratch1, simm16_offs, tmp);
1842 __ addi(R11_scratch1, R11_scratch1, 1);
1843 __ stw(R11_scratch1, simm16_offs, tmp);
1844 }
1845 #endif
1846 __ call_c(copyfunc_addr, relocInfo::runtime_call_type);
1847
1848 __ nand(tmp, R3_RET, R3_RET);
1849 __ subf(length, tmp, length);
1850 __ add(src_pos, tmp, src_pos);
1851 __ add(dst_pos, tmp, dst_pos);
1852
1853 __ cmpwi(CR0, R3_RET, 0);
1854 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CR0, Assembler::less), *stub->entry());
1855 __ bind(*stub->continuation());
1856 return;
1857 }
1858
1859 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
1860 Label cont, slow, copyfunc;
1861
1862 bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check |
1863 LIR_OpArrayCopy::dst_null_check |
1864 LIR_OpArrayCopy::src_pos_positive_check |
1865 LIR_OpArrayCopy::dst_pos_positive_check |
1866 LIR_OpArrayCopy::length_positive_check);
1867
1868 // Use only one conditional branch for simple checks.
1869 if (simple_check_flag_set) {
1870 ConditionRegister combined_check = CR1, tmp_check = CR1;
1871
1872 // Make sure src and dst are non-null.
1873 if (flags & LIR_OpArrayCopy::src_null_check) {
1874 __ cmpdi(combined_check, src, 0);
1875 tmp_check = CR0;
1876 }
1877
1878 if (flags & LIR_OpArrayCopy::dst_null_check) {
1879 __ cmpdi(tmp_check, dst, 0);
1880 if (tmp_check != combined_check) {
1881 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal);
1882 }
1883 tmp_check = CR0;
1884 }
1885
1886 // Clear combined_check.eq if not already used.
1887 if (tmp_check == combined_check) {
1888 __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal);
1889 tmp_check = CR0;
1890 }
1891
1892 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1893 // Test src_pos register.
1894 __ cmpwi(tmp_check, src_pos, 0);
1895 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1896 }
1897
1898 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1899 // Test dst_pos register.
1900 __ cmpwi(tmp_check, dst_pos, 0);
1901 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1902 }
1903
1904 if (flags & LIR_OpArrayCopy::length_positive_check) {
1905 // Make sure length isn't negative.
1906 __ cmpwi(tmp_check, length, 0);
1907 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1908 }
1909
1910 __ beq(combined_check, slow);
1911 }
1912
1913 // If the compiler was not able to prove that exact type of the source or the destination
1914 // of the arraycopy is an array type, check at runtime if the source or the destination is
1915 // an instance type.
1916 if (flags & LIR_OpArrayCopy::type_check) {
1917 if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
1918 __ load_klass(tmp, dst);
1919 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1920 __ cmpwi(CR0, tmp2, Klass::_lh_neutral_value);
1921 __ bge(CR0, slow);
1922 }
1923
1924 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
1925 __ load_klass(tmp, src);
1926 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1927 __ cmpwi(CR0, tmp2, Klass::_lh_neutral_value);
1928 __ bge(CR0, slow);
1929 }
1930 }
1931
1932 // Higher 32bits must be null.
1933 __ extsw(length, length);
1934
1935 __ extsw(src_pos, src_pos);
1936 if (flags & LIR_OpArrayCopy::src_range_check) {
1937 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src);
1938 __ add(tmp, length, src_pos);
1939 __ cmpld(CR0, tmp2, tmp);
1940 __ ble(CR0, slow);
1941 }
1942
1943 __ extsw(dst_pos, dst_pos);
1944 if (flags & LIR_OpArrayCopy::dst_range_check) {
1945 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst);
1946 __ add(tmp, length, dst_pos);
1947 __ cmpld(CR0, tmp2, tmp);
1948 __ ble(CR0, slow);
1949 }
1950
1951 int shift = shift_amount(basic_type);
1952
1953 if (!(flags & LIR_OpArrayCopy::type_check)) {
1954 if (stub != nullptr) {
1955 __ b(cont);
1956 __ bind(slow);
1957 __ b(*stub->entry());
1958 }
1959 } else {
1960 // We don't know the array types are compatible.
1961 if (basic_type != T_OBJECT) {
1962 // Simple test for basic type arrays.
1963 __ cmp_klasses_from_objects(CR0, src, dst, tmp, tmp2);
1964 __ beq(CR0, cont);
1965 } else {
1966 // For object arrays, if src is a sub class of dst then we can
1967 // safely do the copy.
1968 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
1969
1970 const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf
1971 assert_different_registers(tmp, tmp2, sub_klass, super_klass);
1972
1973 __ load_klass(sub_klass, src);
1974 __ load_klass(super_klass, dst);
1975
1976 __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2,
1977 &cont, copyfunc_addr != nullptr ? ©func : &slow, nullptr);
1978
1979 address slow_stc = Runtime1::entry_for(StubId::c1_slow_subtype_check_id);
1980 //__ load_const_optimized(tmp, slow_stc, tmp2);
1981 __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false);
1982 __ mtctr(tmp);
1983 __ bctrl(); // sets CR0
1984 __ beq(CR0, cont);
1985
1986 if (copyfunc_addr != nullptr) { // Use stub if available.
1987 __ bind(copyfunc);
1988 // Src is not a sub class of dst so we have to do a
1989 // per-element check.
1990 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
1991 if ((flags & mask) != mask) {
1992 assert(flags & mask, "one of the two should be known to be an object array");
1993
1994 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
1995 __ load_klass(tmp, src);
1996 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
1997 __ load_klass(tmp, dst);
1998 }
1999
2000 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
2001
2002 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2003 __ load_const_optimized(tmp, objArray_lh);
2004 __ cmpw(CR0, tmp, tmp2);
2005 __ bne(CR0, slow);
2006 }
2007
2008 Register src_ptr = R3_ARG1;
2009 Register dst_ptr = R4_ARG2;
2010 Register len = R5_ARG3;
2011 Register chk_off = R6_ARG4;
2012 Register super_k = R7_ARG5;
2013
2014 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2015 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2016 if (shift == 0) {
2017 __ add(src_ptr, src_pos, src_ptr);
2018 __ add(dst_ptr, dst_pos, dst_ptr);
2019 } else {
2020 __ sldi(tmp, src_pos, shift);
2021 __ sldi(tmp2, dst_pos, shift);
2022 __ add(src_ptr, tmp, src_ptr);
2023 __ add(dst_ptr, tmp2, dst_ptr);
2024 }
2025
2026 __ load_klass(tmp, dst);
2027 __ mr(len, length);
2028
2029 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2030 __ ld(super_k, ek_offset, tmp);
2031
2032 int sco_offset = in_bytes(Klass::super_check_offset_offset());
2033 __ lwz(chk_off, sco_offset, super_k);
2034
2035 __ call_c(copyfunc_addr, relocInfo::runtime_call_type);
2036
2037 #ifndef PRODUCT
2038 if (PrintC1Statistics) {
2039 Label failed;
2040 __ cmpwi(CR0, R3_RET, 0);
2041 __ bne(CR0, failed);
2042 address counter = (address)&Runtime1::_arraycopy_checkcast_cnt;
2043 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2044 __ lwz(R11_scratch1, simm16_offs, tmp);
2045 __ addi(R11_scratch1, R11_scratch1, 1);
2046 __ stw(R11_scratch1, simm16_offs, tmp);
2047 __ bind(failed);
2048 }
2049 #endif
2050
2051 __ nand(tmp, R3_RET, R3_RET);
2052 __ cmpwi(CR0, R3_RET, 0);
2053 __ beq(CR0, *stub->continuation());
2054
2055 #ifndef PRODUCT
2056 if (PrintC1Statistics) {
2057 address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt;
2058 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2059 __ lwz(R11_scratch1, simm16_offs, tmp);
2060 __ addi(R11_scratch1, R11_scratch1, 1);
2061 __ stw(R11_scratch1, simm16_offs, tmp);
2062 }
2063 #endif
2064
2065 __ subf(length, tmp, length);
2066 __ add(src_pos, tmp, src_pos);
2067 __ add(dst_pos, tmp, dst_pos);
2068 }
2069 }
2070 __ bind(slow);
2071 __ b(*stub->entry());
2072 }
2073 __ bind(cont);
2074
2075 #ifdef ASSERT
2076 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2077 // Sanity check the known type with the incoming class. For the
2078 // primitive case the types must match exactly with src.klass and
2079 // dst.klass each exactly matching the default type. For the
2080 // object array case, if no type check is needed then either the
2081 // dst type is exactly the expected type and the src type is a
2082 // subtype which we can't check or src is the same array as dst
2083 // but not necessarily exactly of type default_type.
2084 Label known_ok, halt;
2085 metadata2reg(default_type->constant_encoding(), tmp);
2086 __ cmp_klass(CR0, dst, tmp, R11_scratch1, R12_scratch2);
2087 if (basic_type != T_OBJECT) {
2088 __ bne(CR0, halt);
2089 __ cmp_klass(CR0, src, tmp, R11_scratch1, R12_scratch2);
2090 __ beq(CR0, known_ok);
2091 } else {
2092 __ beq(CR0, known_ok);
2093 __ cmpw(CR0, src, dst);
2094 __ beq(CR0, known_ok);
2095 }
2096 __ bind(halt);
2097 __ stop("incorrect type information in arraycopy");
2098 __ bind(known_ok);
2099 }
2100 #endif
2101
2102 #ifndef PRODUCT
2103 if (PrintC1Statistics) {
2104 address counter = Runtime1::arraycopy_count_address(basic_type);
2105 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2106 __ lwz(R11_scratch1, simm16_offs, tmp);
2107 __ addi(R11_scratch1, R11_scratch1, 1);
2108 __ stw(R11_scratch1, simm16_offs, tmp);
2109 }
2110 #endif
2111
2112 Register src_ptr = R3_ARG1;
2113 Register dst_ptr = R4_ARG2;
2114 Register len = R5_ARG3;
2115
2116 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2117 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2118 if (shift == 0) {
2119 __ add(src_ptr, src_pos, src_ptr);
2120 __ add(dst_ptr, dst_pos, dst_ptr);
2121 } else {
2122 __ sldi(tmp, src_pos, shift);
2123 __ sldi(tmp2, dst_pos, shift);
2124 __ add(src_ptr, tmp, src_ptr);
2125 __ add(dst_ptr, tmp2, dst_ptr);
2126 }
2127
2128 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2129 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2130 const char *name;
2131 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2132
2133 // Arraycopy stubs takes a length in number of elements, so don't scale it.
2134 __ mr(len, length);
2135 __ call_c(entry, relocInfo::runtime_call_type);
2136
2137 if (stub != nullptr) {
2138 __ bind(*stub->continuation());
2139 }
2140 }
2141
2142
2143 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2144 if (dest->is_single_cpu()) {
2145 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5);
2146 #ifdef _LP64
2147 if (left->type() == T_OBJECT) {
2148 switch (code) {
2149 case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break;
2150 case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break;
2151 case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break;
2152 default: ShouldNotReachHere();
2153 }
2154 } else
2155 #endif
2156 switch (code) {
2157 case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2158 case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2159 case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2160 default: ShouldNotReachHere();
2161 }
2162 } else {
2163 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6);
2164 switch (code) {
2165 case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2166 case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2167 case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2168 default: ShouldNotReachHere();
2169 }
2170 }
2171 }
2172
2173
2174 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2175 #ifdef _LP64
2176 if (left->type() == T_OBJECT) {
2177 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t).
2178 if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); }
2179 else {
2180 switch (code) {
2181 case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break;
2182 case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break;
2183 case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break;
2184 default: ShouldNotReachHere();
2185 }
2186 }
2187 return;
2188 }
2189 #endif
2190
2191 if (dest->is_single_cpu()) {
2192 count = count & 0x1F; // Java spec
2193 if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); }
2194 else {
2195 switch (code) {
2196 case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break;
2197 case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break;
2198 case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break;
2199 default: ShouldNotReachHere();
2200 }
2201 }
2202 } else if (dest->is_double_cpu()) {
2203 count = count & 63; // Java spec
2204 if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); }
2205 else {
2206 switch (code) {
2207 case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2208 case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2209 case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2210 default: ShouldNotReachHere();
2211 }
2212 }
2213 } else {
2214 ShouldNotReachHere();
2215 }
2216 }
2217
2218
2219 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2220 if (op->init_check()) {
2221 if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2222 explicit_null_check(op->klass()->as_register(), op->stub()->info());
2223 } else {
2224 add_debug_info_for_null_check_here(op->stub()->info());
2225 }
2226 __ lbz(op->tmp1()->as_register(),
2227 in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register());
2228 // acquire barrier included in membar_storestore() which follows the allocation immediately.
2229 __ cmpwi(CR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2230 __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CR0, Assembler::equal), *op->stub()->entry());
2231 }
2232 __ allocate_object(op->obj()->as_register(),
2233 op->tmp1()->as_register(),
2234 op->tmp2()->as_register(),
2235 op->tmp3()->as_register(),
2236 op->header_size(),
2237 op->object_size(),
2238 op->klass()->as_register(),
2239 *op->stub()->entry());
2240
2241 __ bind(*op->stub()->continuation());
2242 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE);
2243 }
2244
2245
2246 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2247 LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); )
2248 if (UseSlowPath ||
2249 (!UseFastNewObjectArray && (is_reference_type(op->type()))) ||
2250 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) {
2251 __ b(*op->stub()->entry());
2252 } else {
2253 __ allocate_array(op->obj()->as_register(),
2254 op->len()->as_register(),
2255 op->tmp1()->as_register(),
2256 op->tmp2()->as_register(),
2257 op->tmp3()->as_register(),
2258 arrayOopDesc::base_offset_in_bytes(op->type()),
2259 type2aelembytes(op->type()),
2260 op->klass()->as_register(),
2261 *op->stub()->entry(),
2262 op->zero_array());
2263 }
2264 __ bind(*op->stub()->continuation());
2265 }
2266
2267
2268 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2269 ciMethodData *md, ciProfileData *data,
2270 Register recv, Register tmp1, Label* update_done) {
2271 uint i;
2272 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2273 Label next_test;
2274 // See if the receiver is receiver[n].
2275 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2276 __ verify_klass_ptr(tmp1);
2277 __ cmpd(CR0, recv, tmp1);
2278 __ bne(CR0, next_test);
2279
2280 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2281 __ addi(tmp1, tmp1, DataLayout::counter_increment);
2282 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2283 __ b(*update_done);
2284
2285 __ bind(next_test);
2286 }
2287
2288 // Didn't find receiver; find next empty slot and fill it in.
2289 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2290 Label next_test;
2291 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2292 __ cmpdi(CR0, tmp1, 0);
2293 __ bne(CR0, next_test);
2294 __ li(tmp1, DataLayout::counter_increment);
2295 __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2296 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2297 __ b(*update_done);
2298
2299 __ bind(next_test);
2300 }
2301 }
2302
2303
2304 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2305 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2306 md = method->method_data_or_null();
2307 assert(md != nullptr, "Sanity");
2308 data = md->bci_to_data(bci);
2309 assert(data != nullptr, "need data for checkcast");
2310 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2311 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2312 // The offset is large so bias the mdo by the base of the slot so
2313 // that the ld can use simm16s to reference the slots of the data.
2314 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2315 }
2316 }
2317
2318
2319 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2320 const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub).
2321 Register k_RInfo = op->tmp1()->as_register();
2322 Register klass_RInfo = op->tmp2()->as_register();
2323 Register Rtmp1 = op->tmp3()->as_register();
2324 Register dst = op->result_opr()->as_register();
2325 ciKlass* k = op->klass();
2326 bool should_profile = op->should_profile();
2327 // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps.
2328 bool reg_conflict = false;
2329 if (obj == k_RInfo) {
2330 k_RInfo = dst;
2331 reg_conflict = true;
2332 } else if (obj == klass_RInfo) {
2333 klass_RInfo = dst;
2334 reg_conflict = true;
2335 } else if (obj == Rtmp1) {
2336 Rtmp1 = dst;
2337 reg_conflict = true;
2338 }
2339 assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1);
2340
2341 ciMethodData* md = nullptr;
2342 ciProfileData* data = nullptr;
2343 int mdo_offset_bias = 0;
2344 if (should_profile) {
2345 ciMethod* method = op->profiled_method();
2346 assert(method != nullptr, "Should have method");
2347 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2348
2349 Register mdo = k_RInfo;
2350 Register data_val = Rtmp1;
2351 Label not_null;
2352 metadata2reg(md->constant_encoding(), mdo);
2353 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2354 __ cmpdi(CR0, obj, 0);
2355 __ bne(CR0, not_null);
2356 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2357 __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2358 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2359 __ b(*obj_is_null);
2360 __ bind(not_null);
2361
2362 Label update_done;
2363 Register recv = klass_RInfo;
2364 __ load_klass(recv, obj);
2365 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, &update_done);
2366 const int slot_offset = md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias;
2367 __ ld(Rtmp1, slot_offset, mdo);
2368 __ addi(Rtmp1, Rtmp1, DataLayout::counter_increment);
2369 __ std(Rtmp1, slot_offset, mdo);
2370 __ bind(update_done);
2371 } else {
2372 __ cmpdi(CR0, obj, 0);
2373 __ beq(CR0, *obj_is_null);
2374 }
2375
2376 // get object class
2377 __ load_klass(klass_RInfo, obj);
2378
2379 if (k->is_loaded()) {
2380 metadata2reg(k->constant_encoding(), k_RInfo);
2381 } else {
2382 klass2reg_with_patching(k_RInfo, op->info_for_patch());
2383 }
2384
2385 if (op->fast_check()) {
2386 assert_different_registers(klass_RInfo, k_RInfo);
2387 __ cmpd(CR0, k_RInfo, klass_RInfo);
2388 __ beq(CR0, *success);
2389 // Fall through to failure case.
2390 } else {
2391 bool need_slow_path = true;
2392 if (k->is_loaded()) {
2393 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) {
2394 need_slow_path = false;
2395 }
2396 // Perform the fast part of the checking logic.
2397 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success : nullptr),
2398 failure, nullptr, RegisterOrConstant(k->super_check_offset()));
2399 } else {
2400 // Perform the fast part of the checking logic.
2401 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success, failure);
2402 }
2403 if (!need_slow_path) {
2404 __ b(*success);
2405 } else {
2406 // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2407 address entry = Runtime1::entry_for(StubId::c1_slow_subtype_check_id);
2408 // Stub needs fixed registers (tmp1-3).
2409 Register original_k_RInfo = op->tmp1()->as_register();
2410 Register original_klass_RInfo = op->tmp2()->as_register();
2411 Register original_Rtmp1 = op->tmp3()->as_register();
2412 bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast);
2413 if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); }
2414 __ mr_if_needed(original_k_RInfo, k_RInfo);
2415 __ mr_if_needed(original_klass_RInfo, klass_RInfo);
2416 if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); }
2417 //__ load_const_optimized(original_Rtmp1, entry, R0);
2418 __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false);
2419 __ mtctr(original_Rtmp1);
2420 __ bctrl(); // sets CR0
2421 if (keep_obj_alive) { __ mr(obj, dst); }
2422 __ beq(CR0, *success);
2423 // Fall through to failure case.
2424 }
2425 }
2426
2427 __ bind(*failure);
2428 }
2429
2430
2431 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2432 LIR_Code code = op->code();
2433 if (code == lir_store_check) {
2434 Register value = op->object()->as_register();
2435 Register array = op->array()->as_register();
2436 Register k_RInfo = op->tmp1()->as_register();
2437 Register klass_RInfo = op->tmp2()->as_register();
2438 Register Rtmp1 = op->tmp3()->as_register();
2439 bool should_profile = op->should_profile();
2440
2441 __ verify_oop(value, FILE_AND_LINE);
2442 CodeStub* stub = op->stub();
2443 // Check if it needs to be profiled.
2444 ciMethodData* md = nullptr;
2445 ciProfileData* data = nullptr;
2446 int mdo_offset_bias = 0;
2447 if (should_profile) {
2448 ciMethod* method = op->profiled_method();
2449 assert(method != nullptr, "Should have method");
2450 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2451 }
2452
2453 Label done;
2454
2455 if (should_profile) {
2456 Label not_null;
2457 Register mdo = k_RInfo;
2458 Register data_val = Rtmp1;
2459 metadata2reg(md->constant_encoding(), mdo);
2460 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2461 __ cmpdi(CR0, value, 0);
2462 __ bne(CR0, not_null);
2463 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2464 __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2465 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2466 __ b(done);
2467 __ bind(not_null);
2468
2469 Label update_done;
2470 Register recv = klass_RInfo;
2471 __ load_klass(recv, value);
2472 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, &update_done);
2473 const int slot_offset = md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias;
2474 __ ld(Rtmp1, slot_offset, mdo);
2475 __ addi(Rtmp1, Rtmp1, DataLayout::counter_increment);
2476 __ std(Rtmp1, slot_offset, mdo);
2477 __ bind(update_done);
2478 } else {
2479 __ cmpdi(CR0, value, 0);
2480 __ beq(CR0, done);
2481 }
2482 if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2483 explicit_null_check(array, op->info_for_exception());
2484 } else {
2485 add_debug_info_for_null_check_here(op->info_for_exception());
2486 }
2487 __ load_klass(k_RInfo, array);
2488 __ load_klass(klass_RInfo, value);
2489
2490 Label failure;
2491
2492 // Get instance klass.
2493 __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo);
2494 // Perform the fast part of the checking logic.
2495 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, &done, &failure, nullptr);
2496
2497 // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2498 const address slow_path = Runtime1::entry_for(StubId::c1_slow_subtype_check_id);
2499 //__ load_const_optimized(R0, slow_path);
2500 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path));
2501 __ mtctr(R0);
2502 __ bctrl(); // sets CR0
2503 __ beq(CR0, done);
2504
2505 __ bind(failure);
2506 __ b(*stub->entry());
2507 __ align(32, 12);
2508 __ bind(done);
2509
2510 } else if (code == lir_checkcast) {
2511 Label success, failure;
2512 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success);
2513 __ b(*op->stub()->entry());
2514 __ align(32, 12);
2515 __ bind(success);
2516 __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register());
2517 } else if (code == lir_instanceof) {
2518 Register dst = op->result_opr()->as_register();
2519 Label success, failure, done;
2520 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure);
2521 __ li(dst, 0);
2522 __ b(done);
2523 __ align(32, 12);
2524 __ bind(success);
2525 __ li(dst, 1);
2526 __ bind(done);
2527 } else {
2528 ShouldNotReachHere();
2529 }
2530 }
2531
2532
2533 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2534 Register addr = op->addr()->as_pointer_register();
2535 Register cmp_value = noreg, new_value = noreg;
2536 bool is_64bit = false;
2537
2538 if (op->code() == lir_cas_long) {
2539 cmp_value = op->cmp_value()->as_register_lo();
2540 new_value = op->new_value()->as_register_lo();
2541 is_64bit = true;
2542 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2543 cmp_value = op->cmp_value()->as_register();
2544 new_value = op->new_value()->as_register();
2545 if (op->code() == lir_cas_obj) {
2546 if (UseCompressedOops) {
2547 Register t1 = op->tmp1()->as_register();
2548 Register t2 = op->tmp2()->as_register();
2549 cmp_value = __ encode_heap_oop(t1, cmp_value);
2550 new_value = __ encode_heap_oop(t2, new_value);
2551 } else {
2552 is_64bit = true;
2553 }
2554 }
2555 } else {
2556 Unimplemented();
2557 }
2558
2559 // There might be a volatile load before this Unsafe CAS.
2560 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2561 __ sync();
2562 } else {
2563 __ lwsync();
2564 }
2565
2566 if (is_64bit) {
2567 __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2568 MacroAssembler::MemBarNone,
2569 MacroAssembler::cmpxchgx_hint_atomic_update(),
2570 noreg, nullptr, /*check without ldarx first*/true);
2571 } else {
2572 __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2573 MacroAssembler::MemBarNone,
2574 MacroAssembler::cmpxchgx_hint_atomic_update(),
2575 noreg, nullptr, /*check without ldarx first*/true);
2576 }
2577
2578 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2579 __ isync();
2580 } else {
2581 __ sync();
2582 }
2583 }
2584
2585 void LIR_Assembler::breakpoint() {
2586 __ illtrap();
2587 }
2588
2589
2590 void LIR_Assembler::push(LIR_Opr opr) {
2591 Unimplemented();
2592 }
2593
2594 void LIR_Assembler::pop(LIR_Opr opr) {
2595 Unimplemented();
2596 }
2597
2598
2599 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2600 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2601 Register dst = dst_opr->as_register();
2602 Register reg = mon_addr.base();
2603 int offset = mon_addr.disp();
2604 // Compute pointer to BasicLock.
2605 __ add_const_optimized(dst, reg, offset);
2606 }
2607
2608
2609 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2610 Register obj = op->obj_opr()->as_register();
2611 Register hdr = op->hdr_opr()->as_register();
2612 Register lock = op->lock_opr()->as_register();
2613
2614 // Obj may not be an oop.
2615 if (op->code() == lir_lock) {
2616 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2617 // Add debug info for NullPointerException only if one is possible.
2618 if (op->info() != nullptr) {
2619 if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2620 explicit_null_check(obj, op->info());
2621 } else {
2622 add_debug_info_for_null_check_here(op->info());
2623 }
2624 }
2625 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2626 } else {
2627 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2628 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2629 }
2630 __ bind(*op->stub()->continuation());
2631 }
2632
2633 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2634 Register obj = op->obj()->as_pointer_register();
2635 Register result = op->result_opr()->as_pointer_register();
2636
2637 CodeEmitInfo* info = op->info();
2638 if (info != nullptr) {
2639 if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2640 explicit_null_check(obj, info);
2641 } else {
2642 add_debug_info_for_null_check_here(info);
2643 }
2644 }
2645
2646 __ load_klass(result, obj);
2647 }
2648
2649 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2650 ciMethod* method = op->profiled_method();
2651 int bci = op->profiled_bci();
2652 ciMethod* callee = op->profiled_callee();
2653
2654 // Update counter for all call types.
2655 ciMethodData* md = method->method_data_or_null();
2656 assert(md != nullptr, "Sanity");
2657 ciProfileData* data = md->bci_to_data(bci);
2658 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2659 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
2660 Register mdo = op->mdo()->as_register();
2661 #ifdef _LP64
2662 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2663 Register tmp1 = op->tmp1()->as_register_lo();
2664 #else
2665 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2666 Register tmp1 = op->tmp1()->as_register();
2667 #endif
2668 metadata2reg(md->constant_encoding(), mdo);
2669 int mdo_offset_bias = 0;
2670 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2671 data->size_in_bytes())) {
2672 // The offset is large so bias the mdo by the base of the slot so
2673 // that the ld can use simm16s to reference the slots of the data.
2674 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2675 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2676 }
2677
2678 // Perform additional virtual call profiling for invokevirtual and
2679 // invokeinterface bytecodes
2680 if (op->should_profile_receiver_type()) {
2681 assert(op->recv()->is_single_cpu(), "recv must be allocated");
2682 Register recv = op->recv()->as_register();
2683 assert_different_registers(mdo, tmp1, recv);
2684 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2685 ciKlass* known_klass = op->known_holder();
2686 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2687 // We know the type that will be seen at this call site; we can
2688 // statically update the MethodData* rather than needing to do
2689 // dynamic tests on the receiver type.
2690
2691 // NOTE: we should probably put a lock around this search to
2692 // avoid collisions by concurrent compilations.
2693 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2694 uint i;
2695 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2696 ciKlass* receiver = vc_data->receiver(i);
2697 if (known_klass->equals(receiver)) {
2698 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2699 __ addi(tmp1, tmp1, DataLayout::counter_increment);
2700 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2701 return;
2702 }
2703 }
2704
2705 // Receiver type not found in profile data; select an empty slot.
2706
2707 // Note that this is less efficient than it should be because it
2708 // always does a write to the receiver part of the
2709 // VirtualCallData rather than just the first time.
2710 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2711 ciKlass* receiver = vc_data->receiver(i);
2712 if (receiver == nullptr) {
2713 metadata2reg(known_klass->constant_encoding(), tmp1);
2714 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo);
2715
2716 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2717 __ addi(tmp1, tmp1, DataLayout::counter_increment);
2718 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2719 return;
2720 }
2721 }
2722 } else {
2723 __ load_klass(recv, recv);
2724 Label update_done;
2725 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2726 // Receiver did not match any saved receiver and there is no empty row for it.
2727 // Increment total counter to indicate polymorphic case.
2728 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2729 __ addi(tmp1, tmp1, DataLayout::counter_increment);
2730 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2731
2732 __ bind(update_done);
2733 }
2734 } else {
2735 // Static call
2736 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2737 __ addi(tmp1, tmp1, DataLayout::counter_increment);
2738 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2739 }
2740 }
2741
2742
2743 void LIR_Assembler::align_backward_branch_target() {
2744 __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary.
2745 }
2746
2747
2748 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2749 // tmp must be unused
2750 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2751 assert(left->is_register(), "can only handle registers");
2752
2753 if (left->is_single_cpu()) {
2754 __ neg(dest->as_register(), left->as_register());
2755 } else if (left->is_single_fpu()) {
2756 __ fneg(dest->as_float_reg(), left->as_float_reg());
2757 } else if (left->is_double_fpu()) {
2758 __ fneg(dest->as_double_reg(), left->as_double_reg());
2759 } else {
2760 assert (left->is_double_cpu(), "Must be a long");
2761 __ neg(dest->as_register_lo(), left->as_register_lo());
2762 }
2763 }
2764
2765
2766 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2767 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2768 // Stubs: Called via rt_call, but dest is a stub address (no FunctionDescriptor).
2769 if (dest == Runtime1::entry_for(StubId::c1_register_finalizer_id) ||
2770 dest == Runtime1::entry_for(StubId::c1_new_multi_array_id ) ||
2771 dest == Runtime1::entry_for(StubId::c1_is_instance_of_id )) {
2772 assert(CodeCache::contains(dest), "simplified call is only for special C1 stubs");
2773 //__ load_const_optimized(R0, dest);
2774 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest));
2775 __ mtctr(R0);
2776 __ bctrl();
2777 if (info != nullptr) {
2778 add_call_info_here(info);
2779 __ post_call_nop();
2780 }
2781 return;
2782 }
2783
2784 __ call_c(dest, relocInfo::runtime_call_type);
2785 assert(__ last_calls_return_pc() == __ pc(), "pcn not at return pc");
2786 if (info != nullptr) {
2787 add_call_info_here(info);
2788 __ post_call_nop();
2789 }
2790 }
2791
2792
2793 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2794 ShouldNotReachHere(); // Not needed on _LP64.
2795 }
2796
2797 void LIR_Assembler::membar() {
2798 __ fence();
2799 }
2800
2801 void LIR_Assembler::membar_acquire() {
2802 __ acquire();
2803 }
2804
2805 void LIR_Assembler::membar_release() {
2806 __ release();
2807 }
2808
2809 void LIR_Assembler::membar_loadload() {
2810 __ membar(Assembler::LoadLoad);
2811 }
2812
2813 void LIR_Assembler::membar_storestore() {
2814 __ membar(Assembler::StoreStore);
2815 }
2816
2817 void LIR_Assembler::membar_loadstore() {
2818 __ membar(Assembler::LoadStore);
2819 }
2820
2821 void LIR_Assembler::membar_storeload() {
2822 __ membar(Assembler::StoreLoad);
2823 }
2824
2825 void LIR_Assembler::on_spin_wait() {
2826 Unimplemented();
2827 }
2828
2829 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2830 LIR_Address* addr = addr_opr->as_address_ptr();
2831 assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform");
2832
2833 if (addr->index()->is_illegal()) {
2834 if (patch_code != lir_patch_none) {
2835 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id);
2836 __ load_const32(R0, 0); // patchable int
2837 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), R0);
2838 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
2839 } else {
2840 __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp());
2841 }
2842 } else {
2843 assert(patch_code == lir_patch_none, "Patch code not supported");
2844 assert(addr->disp() == 0, "can't have both: index and disp");
2845 __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register());
2846 }
2847 }
2848
2849
2850 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2851 ShouldNotReachHere();
2852 }
2853
2854
2855 #ifdef ASSERT
2856 // Emit run-time assertion.
2857 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2858 Unimplemented();
2859 }
2860 #endif
2861
2862
2863 void LIR_Assembler::peephole(LIR_List* lir) {
2864 // Optimize instruction pairs before emitting.
2865 LIR_OpList* inst = lir->instructions_list();
2866 for (int i = 1; i < inst->length(); i++) {
2867 LIR_Op* op = inst->at(i);
2868
2869 // 2 register-register-moves
2870 if (op->code() == lir_move) {
2871 LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(),
2872 res2 = ((LIR_Op1*)op)->result_opr();
2873 if (in2->is_register() && res2->is_register()) {
2874 LIR_Op* prev = inst->at(i - 1);
2875 if (prev && prev->code() == lir_move) {
2876 LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(),
2877 res1 = ((LIR_Op1*)prev)->result_opr();
2878 if (in1->is_same_register(res2) && in2->is_same_register(res1)) {
2879 inst->remove_at(i);
2880 }
2881 }
2882 }
2883 }
2884
2885 }
2886 return;
2887 }
2888
2889
2890 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2891 const LIR_Address *addr = src->as_address_ptr();
2892 assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!");
2893 const Register Rptr = addr->base()->as_pointer_register(),
2894 Rtmp = tmp->as_register();
2895 Register Robj = noreg;
2896 if (data->is_oop()) {
2897 if (UseCompressedOops) {
2898 Robj = __ encode_heap_oop(Rtmp, data->as_register());
2899 } else {
2900 Robj = data->as_register();
2901 if (Robj == dest->as_register()) { // May happen with ZGC.
2902 __ mr(Rtmp, Robj);
2903 Robj = Rtmp;
2904 }
2905 }
2906 }
2907
2908 // There might be a volatile load before this Unsafe OP.
2909 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2910 __ sync();
2911 } else {
2912 __ lwsync();
2913 }
2914
2915 Label Lretry;
2916 __ bind(Lretry);
2917
2918 if (data->type() == T_INT) {
2919 const Register Rold = dest->as_register(),
2920 Rsrc = data->as_register();
2921 assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
2922 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2923 if (code == lir_xadd) {
2924 __ add(Rtmp, Rsrc, Rold);
2925 __ stwcx_(Rtmp, Rptr);
2926 } else {
2927 __ stwcx_(Rsrc, Rptr);
2928 }
2929 } else if (data->is_oop()) {
2930 assert(code == lir_xchg, "xadd for oops");
2931 const Register Rold = dest->as_register();
2932 assert_different_registers(Rptr, Rold, Robj);
2933 if (UseCompressedOops) {
2934 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2935 __ stwcx_(Robj, Rptr);
2936 } else {
2937 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2938 __ stdcx_(Robj, Rptr);
2939 }
2940 } else if (data->type() == T_LONG) {
2941 const Register Rold = dest->as_register_lo(),
2942 Rsrc = data->as_register_lo();
2943 assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
2944 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
2945 if (code == lir_xadd) {
2946 __ add(Rtmp, Rsrc, Rold);
2947 __ stdcx_(Rtmp, Rptr);
2948 } else {
2949 __ stdcx_(Rsrc, Rptr);
2950 }
2951 } else {
2952 ShouldNotReachHere();
2953 }
2954
2955 if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2956 __ bne_predict_not_taken(CR0, Lretry);
2957 } else {
2958 __ bne( CR0, Lretry);
2959 }
2960
2961 if (UseCompressedOops && data->is_oop()) {
2962 __ decode_heap_oop(dest->as_register());
2963 }
2964
2965 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2966 __ isync();
2967 } else {
2968 __ sync();
2969 }
2970 }
2971
2972
2973 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2974 Register obj = op->obj()->as_register();
2975 Register tmp = op->tmp()->as_pointer_register();
2976 LIR_Address* mdo_addr = op->mdp()->as_address_ptr();
2977 ciKlass* exact_klass = op->exact_klass();
2978 intptr_t current_klass = op->current_klass();
2979 bool not_null = op->not_null();
2980 bool no_conflict = op->no_conflict();
2981
2982 Label Lupdate, Ldo_update, Ldone;
2983
2984 bool do_null = !not_null;
2985 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2986 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2987
2988 assert(do_null || do_update, "why are we here?");
2989 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2990
2991 __ verify_oop(obj, FILE_AND_LINE);
2992
2993 if (do_null) {
2994 if (!TypeEntries::was_null_seen(current_klass)) {
2995 __ cmpdi(CR0, obj, 0);
2996 __ bne(CR0, Lupdate);
2997 __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
2998 __ ori(R0, R0, TypeEntries::null_seen);
2999 if (do_update) {
3000 __ b(Ldo_update);
3001 } else {
3002 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3003 }
3004 } else {
3005 if (do_update) {
3006 __ cmpdi(CR0, obj, 0);
3007 __ beq(CR0, Ldone);
3008 }
3009 }
3010 #ifdef ASSERT
3011 } else {
3012 __ cmpdi(CR0, obj, 0);
3013 __ bne(CR0, Lupdate);
3014 __ stop("unexpected null obj");
3015 #endif
3016 }
3017
3018 __ bind(Lupdate);
3019 if (do_update) {
3020 Label Lnext;
3021 const Register klass = R29_TOC; // kill and reload
3022 bool klass_reg_used = false;
3023 #ifdef ASSERT
3024 if (exact_klass != nullptr) {
3025 Label ok;
3026 klass_reg_used = true;
3027 __ load_klass(klass, obj);
3028 metadata2reg(exact_klass->constant_encoding(), R0);
3029 __ cmpd(CR0, klass, R0);
3030 __ beq(CR0, ok);
3031 __ stop("exact klass and actual klass differ");
3032 __ bind(ok);
3033 }
3034 #endif
3035
3036 if (!no_conflict) {
3037 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3038 klass_reg_used = true;
3039 if (exact_klass != nullptr) {
3040 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3041 metadata2reg(exact_klass->constant_encoding(), klass);
3042 } else {
3043 __ load_klass(klass, obj);
3044 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj
3045 }
3046
3047 // Like InterpreterMacroAssembler::profile_obj_type
3048 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3049 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3050 __ cmpd(CR1, R0, klass);
3051 // Klass seen before, nothing to do (regardless of unknown bit).
3052 //beq(CR1, do_nothing);
3053
3054 __ andi_(R0, tmp, TypeEntries::type_unknown);
3055 // Already unknown. Nothing to do anymore.
3056 //bne(CR0, do_nothing);
3057 __ crorc(CR0, Assembler::equal, CR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
3058 __ beq(CR0, Lnext);
3059
3060 if (TypeEntries::is_type_none(current_klass)) {
3061 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3062 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3063 __ beq(CR0, Ldo_update); // First time here. Set profile type.
3064 }
3065
3066 } else {
3067 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3068 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3069
3070 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3071 __ andi_(R0, tmp, TypeEntries::type_unknown);
3072 // Already unknown. Nothing to do anymore.
3073 __ bne(CR0, Lnext);
3074 }
3075
3076 // Different than before. Cannot keep accurate profile.
3077 __ ori(R0, tmp, TypeEntries::type_unknown);
3078 } else {
3079 // There's a single possible klass at this profile point
3080 assert(exact_klass != nullptr, "should be");
3081 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3082
3083 if (TypeEntries::is_type_none(current_klass)) {
3084 klass_reg_used = true;
3085 metadata2reg(exact_klass->constant_encoding(), klass);
3086
3087 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3088 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3089 __ cmpd(CR1, R0, klass);
3090 // Klass seen before, nothing to do (regardless of unknown bit).
3091 __ beq(CR1, Lnext);
3092 #ifdef ASSERT
3093 {
3094 Label ok;
3095 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3096 __ beq(CR0, ok); // First time here.
3097
3098 __ stop("unexpected profiling mismatch");
3099 __ bind(ok);
3100 }
3101 #endif
3102 // First time here. Set profile type.
3103 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3104 } else {
3105 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3106 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3107
3108 // Already unknown. Nothing to do anymore.
3109 __ andi_(R0, tmp, TypeEntries::type_unknown);
3110 __ bne(CR0, Lnext);
3111
3112 // Different than before. Cannot keep accurate profile.
3113 __ ori(R0, tmp, TypeEntries::type_unknown);
3114 }
3115 }
3116
3117 __ bind(Ldo_update);
3118 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3119
3120 __ bind(Lnext);
3121 if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit
3122 }
3123 __ bind(Ldone);
3124 }
3125
3126
3127 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3128 assert(op->crc()->is_single_cpu(), "crc must be register");
3129 assert(op->val()->is_single_cpu(), "byte value must be register");
3130 assert(op->result_opr()->is_single_cpu(), "result must be register");
3131 Register crc = op->crc()->as_register();
3132 Register val = op->val()->as_register();
3133 Register res = op->result_opr()->as_register();
3134
3135 assert_different_registers(val, crc, res);
3136
3137 __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0);
3138 __ kernel_crc32_singleByteReg(crc, val, res, true);
3139 __ mr(res, crc);
3140 }
3141
3142 #undef __