1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_ppc.hpp" 38 #include "oops/compressedOops.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/os.inline.hpp" 42 #include "runtime/safepointMechanism.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/vm_version.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #define __ _masm-> 50 51 52 const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5; 53 54 55 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 56 Unimplemented(); return false; // Currently not used on this platform. 57 } 58 59 60 LIR_Opr LIR_Assembler::receiverOpr() { 61 return FrameMap::R3_oop_opr; 62 } 63 64 65 LIR_Opr LIR_Assembler::osrBufferPointer() { 66 return FrameMap::R3_opr; 67 } 68 69 70 // This specifies the stack pointer decrement needed to build the frame. 71 int LIR_Assembler::initial_frame_size_in_bytes() const { 72 return in_bytes(frame_map()->framesize_in_bytes()); 73 } 74 75 76 // Inline cache check: the inline cached class is in inline_cache_reg; 77 // we fetch the class of the receiver and compare it with the cached class. 78 // If they do not match we jump to slow case. 79 int LIR_Assembler::check_icache() { 80 return __ ic_check(CodeEntryAlignment); 81 } 82 83 void LIR_Assembler::clinit_barrier(ciMethod* method) { 84 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 85 86 Label L_skip_barrier; 87 Register klass = R20; 88 89 metadata2reg(method->holder()->constant_encoding(), klass); 90 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 91 92 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 93 __ mtctr(klass); 94 __ bctr(); 95 96 __ bind(L_skip_barrier); 97 } 98 99 void LIR_Assembler::osr_entry() { 100 // On-stack-replacement entry sequence: 101 // 102 // 1. Create a new compiled activation. 103 // 2. Initialize local variables in the compiled activation. The expression 104 // stack must be empty at the osr_bci; it is not initialized. 105 // 3. Jump to the continuation address in compiled code to resume execution. 106 107 // OSR entry point 108 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 109 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 110 ValueStack* entry_state = osr_entry->end()->state(); 111 int number_of_locks = entry_state->locks_size(); 112 113 // Create a frame for the compiled activation. 114 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 115 116 // OSR buffer is 117 // 118 // locals[nlocals-1..0] 119 // monitors[number_of_locks-1..0] 120 // 121 // Locals is a direct copy of the interpreter frame so in the osr buffer 122 // the first slot in the local array is the last local from the interpreter 123 // and the last slot is local[0] (receiver) from the interpreter. 124 // 125 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 126 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 127 // in the interpreter frame (the method lock if a sync method). 128 129 // Initialize monitors in the compiled activation. 130 // R3: pointer to osr buffer 131 // 132 // All other registers are dead at this point and the locals will be 133 // copied into place by code emitted in the IR. 134 135 Register OSR_buf = osrBufferPointer()->as_register(); 136 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 137 int monitor_offset = BytesPerWord * method()->max_locals() + 138 (2 * BytesPerWord) * (number_of_locks - 1); 139 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 140 // the OSR buffer using 2 word entries: first the lock and then 141 // the oop. 142 for (int i = 0; i < number_of_locks; i++) { 143 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 144 #ifdef ASSERT 145 // Verify the interpreter's monitor has a non-null object. 146 { 147 Label L; 148 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 149 __ cmpdi(CCR0, R0, 0); 150 __ bne(CCR0, L); 151 __ stop("locked object is null"); 152 __ bind(L); 153 } 154 #endif // ASSERT 155 // Copy the lock field into the compiled activation. 156 Address ml = frame_map()->address_for_monitor_lock(i), 157 mo = frame_map()->address_for_monitor_object(i); 158 assert(ml.index() == noreg && mo.index() == noreg, "sanity"); 159 __ ld(R0, slot_offset + 0, OSR_buf); 160 __ std(R0, ml.disp(), ml.base()); 161 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 162 __ std(R0, mo.disp(), mo.base()); 163 } 164 } 165 } 166 167 168 int LIR_Assembler::emit_exception_handler() { 169 // Generate code for the exception handler. 170 address handler_base = __ start_a_stub(exception_handler_size()); 171 172 if (handler_base == nullptr) { 173 // Not enough space left for the handler. 174 bailout("exception handler overflow"); 175 return -1; 176 } 177 178 int offset = code_offset(); 179 address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)); 180 //__ load_const_optimized(R0, entry_point); 181 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point)); 182 __ mtctr(R0); 183 __ bctr(); 184 185 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 186 __ end_a_stub(); 187 188 return offset; 189 } 190 191 192 // Emit the code to remove the frame from the stack in the exception 193 // unwind path. 194 int LIR_Assembler::emit_unwind_handler() { 195 _masm->block_comment("Unwind handler"); 196 197 int offset = code_offset(); 198 bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes(); 199 const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31; 200 201 // Fetch the exception from TLS and clear out exception related thread state. 202 __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 203 __ li(R0, 0); 204 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 205 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 206 207 __ bind(_unwind_handler_entry); 208 __ verify_not_null_oop(Rexception); 209 if (preserve_exception) { __ mr(Rexception_save, Rexception); } 210 211 // Perform needed unlocking 212 MonitorExitStub* stub = nullptr; 213 if (method()->is_synchronized()) { 214 monitor_address(0, FrameMap::R4_opr); 215 stub = new MonitorExitStub(FrameMap::R4_opr, true, 0); 216 if (LockingMode == LM_MONITOR) { 217 __ b(*stub->entry()); 218 } else { 219 __ unlock_object(R5, R6, R4, *stub->entry()); 220 } 221 __ bind(*stub->continuation()); 222 } 223 224 if (compilation()->env()->dtrace_method_probes()) { 225 Unimplemented(); 226 } 227 228 // Dispatch to the unwind logic. 229 address unwind_stub = Runtime1::entry_for(C1StubId::unwind_exception_id); 230 //__ load_const_optimized(R0, unwind_stub); 231 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub)); 232 if (preserve_exception) { __ mr(Rexception, Rexception_save); } 233 __ mtctr(R0); 234 __ bctr(); 235 236 // Emit the slow path assembly. 237 if (stub != nullptr) { 238 stub->emit_code(this); 239 } 240 241 return offset; 242 } 243 244 245 int LIR_Assembler::emit_deopt_handler() { 246 // Generate code for deopt handler. 247 address handler_base = __ start_a_stub(deopt_handler_size()); 248 249 if (handler_base == nullptr) { 250 // Not enough space left for the handler. 251 bailout("deopt handler overflow"); 252 return -1; 253 } 254 255 int offset = code_offset(); 256 __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type); 257 258 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 259 __ end_a_stub(); 260 261 return offset; 262 } 263 264 265 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 266 if (o == nullptr) { 267 __ li(reg, 0); 268 } else { 269 AddressLiteral addrlit = __ constant_oop_address(o); 270 __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg); 271 } 272 } 273 274 275 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 276 // Allocate a new index in table to hold the object once it's been patched. 277 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr); 278 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 279 280 AddressLiteral addrlit((address)nullptr, oop_Relocation::spec(oop_index)); 281 __ load_const(reg, addrlit, R0); 282 283 patching_epilog(patch, lir_patch_normal, reg, info); 284 } 285 286 287 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) { 288 AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation) 289 __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg); 290 } 291 292 293 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 294 // Allocate a new index in table to hold the klass once it's been patched. 295 int index = __ oop_recorder()->allocate_metadata_index(nullptr); 296 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 297 298 AddressLiteral addrlit((address)nullptr, metadata_Relocation::spec(index)); 299 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 300 __ load_const(reg, addrlit, R0); 301 302 patching_epilog(patch, lir_patch_normal, reg, info); 303 } 304 305 306 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 307 const bool is_int = result->is_single_cpu(); 308 Register Rdividend = is_int ? left->as_register() : left->as_register_lo(); 309 Register Rdivisor = noreg; 310 Register Rscratch = temp->as_register(); 311 Register Rresult = is_int ? result->as_register() : result->as_register_lo(); 312 long divisor = -1; 313 314 if (right->is_register()) { 315 Rdivisor = is_int ? right->as_register() : right->as_register_lo(); 316 } else { 317 divisor = is_int ? right->as_constant_ptr()->as_jint() 318 : right->as_constant_ptr()->as_jlong(); 319 } 320 321 assert(Rdividend != Rscratch, ""); 322 assert(Rdivisor != Rscratch, ""); 323 assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv"); 324 325 if (Rdivisor == noreg) { 326 if (divisor == 1) { // stupid, but can happen 327 if (code == lir_idiv) { 328 __ mr_if_needed(Rresult, Rdividend); 329 } else { 330 __ li(Rresult, 0); 331 } 332 333 } else if (is_power_of_2(divisor)) { 334 // Convert division by a power of two into some shifts and logical operations. 335 int log2 = log2i_exact(divisor); 336 337 // Round towards 0. 338 if (divisor == 2) { 339 if (is_int) { 340 __ srwi(Rscratch, Rdividend, 31); 341 } else { 342 __ srdi(Rscratch, Rdividend, 63); 343 } 344 } else { 345 if (is_int) { 346 __ srawi(Rscratch, Rdividend, 31); 347 } else { 348 __ sradi(Rscratch, Rdividend, 63); 349 } 350 __ clrldi(Rscratch, Rscratch, 64-log2); 351 } 352 __ add(Rscratch, Rdividend, Rscratch); 353 354 if (code == lir_idiv) { 355 if (is_int) { 356 __ srawi(Rresult, Rscratch, log2); 357 } else { 358 __ sradi(Rresult, Rscratch, log2); 359 } 360 } else { // lir_irem 361 __ clrrdi(Rscratch, Rscratch, log2); 362 __ sub(Rresult, Rdividend, Rscratch); 363 } 364 365 } else if (divisor == -1) { 366 if (code == lir_idiv) { 367 __ neg(Rresult, Rdividend); 368 } else { 369 __ li(Rresult, 0); 370 } 371 372 } else { 373 __ load_const_optimized(Rscratch, divisor); 374 if (code == lir_idiv) { 375 if (is_int) { 376 __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 377 } else { 378 __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 379 } 380 } else { 381 assert(Rscratch != R0, "need both"); 382 if (is_int) { 383 __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1. 384 __ mullw(Rscratch, R0, Rscratch); 385 } else { 386 __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1. 387 __ mulld(Rscratch, R0, Rscratch); 388 } 389 __ sub(Rresult, Rdividend, Rscratch); 390 } 391 392 } 393 return; 394 } 395 396 Label regular, done; 397 if (is_int) { 398 __ cmpwi(CCR0, Rdivisor, -1); 399 } else { 400 __ cmpdi(CCR0, Rdivisor, -1); 401 } 402 __ bne(CCR0, regular); 403 if (code == lir_idiv) { 404 __ neg(Rresult, Rdividend); 405 __ b(done); 406 __ bind(regular); 407 if (is_int) { 408 __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 409 } else { 410 __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 411 } 412 } else { // lir_irem 413 __ li(Rresult, 0); 414 __ b(done); 415 __ bind(regular); 416 if (is_int) { 417 __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 418 __ mullw(Rscratch, Rscratch, Rdivisor); 419 } else { 420 __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 421 __ mulld(Rscratch, Rscratch, Rdivisor); 422 } 423 __ sub(Rresult, Rdividend, Rscratch); 424 } 425 __ bind(done); 426 } 427 428 429 void LIR_Assembler::emit_op3(LIR_Op3* op) { 430 switch (op->code()) { 431 case lir_idiv: 432 case lir_irem: 433 arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), 434 op->result_opr(), op->info()); 435 break; 436 case lir_fmad: 437 __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), 438 op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); 439 break; 440 case lir_fmaf: 441 __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), 442 op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); 443 break; 444 default: ShouldNotReachHere(); break; 445 } 446 } 447 448 449 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 450 #ifdef ASSERT 451 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 452 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 453 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 454 assert(op->info() == nullptr, "shouldn't have CodeEmitInfo"); 455 #endif 456 457 Label *L = op->label(); 458 if (op->cond() == lir_cond_always) { 459 __ b(*L); 460 } else { 461 Label done; 462 bool is_unordered = false; 463 if (op->code() == lir_cond_float_branch) { 464 assert(op->ublock() != nullptr, "must have unordered successor"); 465 is_unordered = true; 466 } else { 467 assert(op->code() == lir_branch, "just checking"); 468 } 469 470 bool positive = false; 471 Assembler::Condition cond = Assembler::equal; 472 switch (op->cond()) { 473 case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break; 474 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break; 475 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 476 case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 477 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 478 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 479 case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 480 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 481 default: ShouldNotReachHere(); 482 } 483 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 484 int bi = Assembler::bi0(BOOL_RESULT, cond); 485 if (is_unordered) { 486 if (positive) { 487 if (op->ublock() == op->block()) { 488 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L); 489 } 490 } else { 491 if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); } 492 } 493 } 494 __ bc_far_optimized(bo, bi, *L); 495 __ bind(done); 496 } 497 } 498 499 500 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 501 Bytecodes::Code code = op->bytecode(); 502 LIR_Opr src = op->in_opr(), 503 dst = op->result_opr(); 504 505 switch(code) { 506 case Bytecodes::_i2l: { 507 __ extsw(dst->as_register_lo(), src->as_register()); 508 break; 509 } 510 case Bytecodes::_l2i: { 511 __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage 512 break; 513 } 514 case Bytecodes::_i2b: { 515 __ extsb(dst->as_register(), src->as_register()); 516 break; 517 } 518 case Bytecodes::_i2c: { 519 __ clrldi(dst->as_register(), src->as_register(), 64-16); 520 break; 521 } 522 case Bytecodes::_i2s: { 523 __ extsh(dst->as_register(), src->as_register()); 524 break; 525 } 526 case Bytecodes::_i2d: 527 case Bytecodes::_l2d: { 528 bool src_in_memory = !VM_Version::has_mtfprd(); 529 FloatRegister rdst = dst->as_double_reg(); 530 FloatRegister rsrc; 531 if (src_in_memory) { 532 rsrc = src->as_double_reg(); // via mem 533 } else { 534 // move src to dst register 535 if (code == Bytecodes::_i2d) { 536 __ mtfprwa(rdst, src->as_register()); 537 } else { 538 __ mtfprd(rdst, src->as_register_lo()); 539 } 540 rsrc = rdst; 541 } 542 __ fcfid(rdst, rsrc); 543 break; 544 } 545 case Bytecodes::_i2f: 546 case Bytecodes::_l2f: { 547 bool src_in_memory = !VM_Version::has_mtfprd(); 548 FloatRegister rdst = dst->as_float_reg(); 549 FloatRegister rsrc; 550 if (src_in_memory) { 551 rsrc = src->as_double_reg(); // via mem 552 } else { 553 // move src to dst register 554 if (code == Bytecodes::_i2f) { 555 __ mtfprwa(rdst, src->as_register()); 556 } else { 557 __ mtfprd(rdst, src->as_register_lo()); 558 } 559 rsrc = rdst; 560 } 561 if (VM_Version::has_fcfids()) { 562 __ fcfids(rdst, rsrc); 563 } else { 564 assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility"); 565 __ fcfid(rdst, rsrc); 566 __ frsp(rdst, rdst); 567 } 568 break; 569 } 570 case Bytecodes::_f2d: { 571 __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg()); 572 break; 573 } 574 case Bytecodes::_d2f: { 575 __ frsp(dst->as_float_reg(), src->as_double_reg()); 576 break; 577 } 578 case Bytecodes::_d2i: 579 case Bytecodes::_f2i: { 580 bool dst_in_memory = !VM_Version::has_mtfprd(); 581 FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg(); 582 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : Address(); 583 Label L; 584 // Result must be 0 if value is NaN; test by comparing value to itself. 585 __ fcmpu(CCR0, rsrc, rsrc); 586 if (dst_in_memory) { 587 __ li(R0, 0); // 0 in case of NAN 588 __ std(R0, addr.disp(), addr.base()); 589 } else { 590 __ li(dst->as_register(), 0); 591 } 592 __ bso(CCR0, L); 593 __ fctiwz(rsrc, rsrc); // USE_KILL 594 if (dst_in_memory) { 595 __ stfd(rsrc, addr.disp(), addr.base()); 596 } else { 597 __ mffprd(dst->as_register(), rsrc); 598 } 599 __ bind(L); 600 break; 601 } 602 case Bytecodes::_d2l: 603 case Bytecodes::_f2l: { 604 bool dst_in_memory = !VM_Version::has_mtfprd(); 605 FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg(); 606 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : Address(); 607 Label L; 608 // Result must be 0 if value is NaN; test by comparing value to itself. 609 __ fcmpu(CCR0, rsrc, rsrc); 610 if (dst_in_memory) { 611 __ li(R0, 0); // 0 in case of NAN 612 __ std(R0, addr.disp(), addr.base()); 613 } else { 614 __ li(dst->as_register_lo(), 0); 615 } 616 __ bso(CCR0, L); 617 __ fctidz(rsrc, rsrc); // USE_KILL 618 if (dst_in_memory) { 619 __ stfd(rsrc, addr.disp(), addr.base()); 620 } else { 621 __ mffprd(dst->as_register_lo(), rsrc); 622 } 623 __ bind(L); 624 break; 625 } 626 627 default: ShouldNotReachHere(); 628 } 629 } 630 631 632 void LIR_Assembler::align_call(LIR_Code) { 633 // do nothing since all instructions are word aligned on ppc 634 } 635 636 637 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) { 638 int start_offset = __ offset(); 639 // Put the entry point as a constant into the constant pool. 640 const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none); 641 if (entry_point_toc_addr == nullptr) { 642 bailout("const section overflow"); 643 return false; 644 } 645 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 646 647 // Emit the trampoline stub which will be related to the branch-and-link below. 648 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc); 649 if (!stub) { 650 bailout("no space for trampoline stub"); 651 return false; 652 } 653 return true; 654 } 655 656 657 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 658 assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype"); 659 660 bool success = emit_trampoline_stub_for_call(op->addr()); 661 if (!success) { return; } 662 663 __ relocate(rtype); 664 // Note: At this point we do not have the address of the trampoline 665 // stub, and the entry point might be too far away for bl, so __ pc() 666 // serves as dummy and the bl will be patched later. 667 __ code()->set_insts_mark(); 668 __ bl(__ pc()); 669 add_call_info(code_offset(), op->info()); 670 __ post_call_nop(); 671 } 672 673 674 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 675 __ calculate_address_from_global_toc(R2_TOC, __ method_toc()); 676 677 // Virtual call relocation will point to ic load. 678 address virtual_call_meta_addr = __ pc(); 679 // Load a clear inline cache. 680 AddressLiteral empty_ic((address) Universe::non_oop_word()); 681 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC); 682 if (!success) { 683 bailout("const section overflow"); 684 return; 685 } 686 // Call to fixup routine. Fixup routine uses ScopeDesc info 687 // to determine who we intended to call. 688 __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr)); 689 690 success = emit_trampoline_stub_for_call(op->addr(), R2_TOC); 691 if (!success) { return; } 692 693 // Note: At this point we do not have the address of the trampoline 694 // stub, and the entry point might be too far away for bl, so __ pc() 695 // serves as dummy and the bl will be patched later. 696 __ bl(__ pc()); 697 add_call_info(code_offset(), op->info()); 698 __ post_call_nop(); 699 } 700 701 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) { 702 ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info); 703 __ null_check(addr, stub->entry()); 704 append_code_stub(stub); 705 } 706 707 708 // Attention: caller must encode oop if needed 709 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide) { 710 int store_offset; 711 if (!Assembler::is_simm16(offset)) { 712 // For offsets larger than a simm16 we setup the offset. 713 assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case"); 714 __ load_const_optimized(R0, offset); 715 store_offset = store(from_reg, base, R0, type, wide); 716 } else { 717 store_offset = code_offset(); 718 switch (type) { 719 case T_BOOLEAN: // fall through 720 case T_BYTE : __ stb(from_reg->as_register(), offset, base); break; 721 case T_CHAR : 722 case T_SHORT : __ sth(from_reg->as_register(), offset, base); break; 723 case T_INT : __ stw(from_reg->as_register(), offset, base); break; 724 case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break; 725 case T_ADDRESS: 726 case T_METADATA: __ std(from_reg->as_register(), offset, base); break; 727 case T_ARRAY : // fall through 728 case T_OBJECT: 729 { 730 if (UseCompressedOops && !wide) { 731 // Encoding done in caller 732 __ stw(from_reg->as_register(), offset, base); 733 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); 734 } else { 735 __ std(from_reg->as_register(), offset, base); 736 if (VerifyOops) { 737 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 738 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 739 } 740 } 741 break; 742 } 743 case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break; 744 case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break; 745 default : ShouldNotReachHere(); 746 } 747 } 748 return store_offset; 749 } 750 751 752 // Attention: caller must encode oop if needed 753 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { 754 int store_offset = code_offset(); 755 switch (type) { 756 case T_BOOLEAN: // fall through 757 case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break; 758 case T_CHAR : 759 case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break; 760 case T_INT : __ stwx(from_reg->as_register(), base, disp); break; 761 case T_LONG : 762 #ifdef _LP64 763 __ stdx(from_reg->as_register_lo(), base, disp); 764 #else 765 Unimplemented(); 766 #endif 767 break; 768 case T_ADDRESS: 769 __ stdx(from_reg->as_register(), base, disp); 770 break; 771 case T_ARRAY : // fall through 772 case T_OBJECT: 773 { 774 if (UseCompressedOops && !wide) { 775 // Encoding done in caller. 776 __ stwx(from_reg->as_register(), base, disp); 777 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); // kills R0 778 } else { 779 __ stdx(from_reg->as_register(), base, disp); 780 if (VerifyOops) { 781 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 782 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 783 } 784 } 785 break; 786 } 787 case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break; 788 case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break; 789 default : ShouldNotReachHere(); 790 } 791 return store_offset; 792 } 793 794 795 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide) { 796 int load_offset; 797 if (!Assembler::is_simm16(offset)) { 798 // For offsets larger than a simm16 we setup the offset. 799 __ load_const_optimized(R0, offset); 800 load_offset = load(base, R0, to_reg, type, wide); 801 } else { 802 load_offset = code_offset(); 803 switch(type) { 804 case T_BOOLEAN: // fall through 805 case T_BYTE : __ lbz(to_reg->as_register(), offset, base); 806 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 807 case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break; 808 case T_SHORT : __ lha(to_reg->as_register(), offset, base); break; 809 case T_INT : __ lwa(to_reg->as_register(), offset, base); break; 810 case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break; 811 case T_METADATA: __ ld(to_reg->as_register(), offset, base); break; 812 case T_ADDRESS: 813 __ ld(to_reg->as_register(), offset, base); 814 break; 815 case T_ARRAY : // fall through 816 case T_OBJECT: 817 { 818 if (UseCompressedOops && !wide) { 819 __ lwz(to_reg->as_register(), offset, base); 820 __ decode_heap_oop(to_reg->as_register()); 821 } else { 822 __ ld(to_reg->as_register(), offset, base); 823 } 824 break; 825 } 826 case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break; 827 case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break; 828 default : ShouldNotReachHere(); 829 } 830 } 831 return load_offset; 832 } 833 834 835 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { 836 int load_offset = code_offset(); 837 switch(type) { 838 case T_BOOLEAN: // fall through 839 case T_BYTE : __ lbzx(to_reg->as_register(), base, disp); 840 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 841 case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break; 842 case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break; 843 case T_INT : __ lwax(to_reg->as_register(), base, disp); break; 844 case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break; 845 case T_ARRAY : // fall through 846 case T_OBJECT: 847 { 848 if (UseCompressedOops && !wide) { 849 __ lwzx(to_reg->as_register(), base, disp); 850 __ decode_heap_oop(to_reg->as_register()); 851 } else { 852 __ ldx(to_reg->as_register(), base, disp); 853 } 854 break; 855 } 856 case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break; 857 case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break; 858 case T_LONG : 859 #ifdef _LP64 860 __ ldx(to_reg->as_register_lo(), base, disp); 861 #else 862 Unimplemented(); 863 #endif 864 break; 865 default : ShouldNotReachHere(); 866 } 867 return load_offset; 868 } 869 870 871 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 872 LIR_Const* c = src->as_constant_ptr(); 873 Register src_reg = R0; 874 switch (c->type()) { 875 case T_INT: 876 case T_FLOAT: { 877 int value = c->as_jint_bits(); 878 __ load_const_optimized(src_reg, value); 879 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 880 __ stw(src_reg, addr.disp(), addr.base()); 881 break; 882 } 883 case T_ADDRESS: { 884 int value = c->as_jint_bits(); 885 __ load_const_optimized(src_reg, value); 886 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 887 __ std(src_reg, addr.disp(), addr.base()); 888 break; 889 } 890 case T_OBJECT: { 891 jobject2reg(c->as_jobject(), src_reg); 892 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 893 __ std(src_reg, addr.disp(), addr.base()); 894 break; 895 } 896 case T_LONG: 897 case T_DOUBLE: { 898 int value = c->as_jlong_bits(); 899 __ load_const_optimized(src_reg, value); 900 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); 901 __ std(src_reg, addr.disp(), addr.base()); 902 break; 903 } 904 default: 905 Unimplemented(); 906 } 907 } 908 909 910 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 911 LIR_Const* c = src->as_constant_ptr(); 912 LIR_Address* addr = dest->as_address_ptr(); 913 Register base = addr->base()->as_pointer_register(); 914 LIR_Opr tmp = LIR_OprFact::illegalOpr; 915 int offset = -1; 916 // Null check for large offsets in LIRGenerator::do_StoreField. 917 bool needs_explicit_null_check = !ImplicitNullChecks; 918 919 if (info != nullptr && needs_explicit_null_check) { 920 explicit_null_check(base, info); 921 } 922 923 switch (c->type()) { 924 case T_FLOAT: type = T_INT; 925 case T_INT: 926 case T_ADDRESS: { 927 tmp = FrameMap::R0_opr; 928 __ load_const_optimized(tmp->as_register(), c->as_jint_bits()); 929 break; 930 } 931 case T_DOUBLE: type = T_LONG; 932 case T_LONG: { 933 tmp = FrameMap::R0_long_opr; 934 __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits()); 935 break; 936 } 937 case T_OBJECT: { 938 tmp = FrameMap::R0_opr; 939 if (UseCompressedOops && !wide && c->as_jobject() != nullptr) { 940 AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject()); 941 // Don't care about sign extend (will use stw). 942 __ lis(R0, 0); // Will get patched. 943 __ relocate(oop_addr.rspec(), /*compressed format*/ 1); 944 __ ori(R0, R0, 0); // Will get patched. 945 } else { 946 jobject2reg(c->as_jobject(), R0); 947 } 948 break; 949 } 950 default: 951 Unimplemented(); 952 } 953 954 // Handle either reg+reg or reg+disp address. 955 if (addr->index()->is_valid()) { 956 assert(addr->disp() == 0, "must be zero"); 957 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); 958 } else { 959 assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses"); 960 offset = store(tmp, base, addr->disp(), type, wide); 961 } 962 963 if (info != nullptr) { 964 assert(offset != -1, "offset should've been set"); 965 if (!needs_explicit_null_check) { 966 add_debug_info_for_null_check(offset, info); 967 } 968 } 969 } 970 971 972 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 973 LIR_Const* c = src->as_constant_ptr(); 974 LIR_Opr to_reg = dest; 975 976 switch (c->type()) { 977 case T_INT: { 978 assert(patch_code == lir_patch_none, "no patching handled here"); 979 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); 980 break; 981 } 982 case T_ADDRESS: { 983 assert(patch_code == lir_patch_none, "no patching handled here"); 984 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ... 985 break; 986 } 987 case T_LONG: { 988 assert(patch_code == lir_patch_none, "no patching handled here"); 989 __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0); 990 break; 991 } 992 993 case T_OBJECT: { 994 if (patch_code == lir_patch_none) { 995 jobject2reg(c->as_jobject(), to_reg->as_register()); 996 } else { 997 jobject2reg_with_patching(to_reg->as_register(), info); 998 } 999 break; 1000 } 1001 1002 case T_METADATA: 1003 { 1004 if (patch_code == lir_patch_none) { 1005 metadata2reg(c->as_metadata(), to_reg->as_register()); 1006 } else { 1007 klass2reg_with_patching(to_reg->as_register(), info); 1008 } 1009 } 1010 break; 1011 1012 case T_FLOAT: 1013 { 1014 if (to_reg->is_single_fpu()) { 1015 address const_addr = __ float_constant(c->as_jfloat()); 1016 if (const_addr == nullptr) { 1017 bailout("const section overflow"); 1018 break; 1019 } 1020 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1021 __ relocate(rspec); 1022 __ load_const(R0, const_addr); 1023 __ lfsx(to_reg->as_float_reg(), R0); 1024 } else { 1025 assert(to_reg->is_single_cpu(), "Must be a cpu register."); 1026 __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0); 1027 } 1028 } 1029 break; 1030 1031 case T_DOUBLE: 1032 { 1033 if (to_reg->is_double_fpu()) { 1034 address const_addr = __ double_constant(c->as_jdouble()); 1035 if (const_addr == nullptr) { 1036 bailout("const section overflow"); 1037 break; 1038 } 1039 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1040 __ relocate(rspec); 1041 __ load_const(R0, const_addr); 1042 __ lfdx(to_reg->as_double_reg(), R0); 1043 } else { 1044 assert(to_reg->is_double_cpu(), "Must be a long register."); 1045 __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0); 1046 } 1047 } 1048 break; 1049 1050 default: 1051 ShouldNotReachHere(); 1052 } 1053 } 1054 1055 1056 Address LIR_Assembler::as_Address(LIR_Address* addr) { 1057 Unimplemented(); return Address(); 1058 } 1059 1060 1061 inline RegisterOrConstant index_or_disp(LIR_Address* addr) { 1062 if (addr->index()->is_illegal()) { 1063 return (RegisterOrConstant)(addr->disp()); 1064 } else { 1065 return (RegisterOrConstant)(addr->index()->as_pointer_register()); 1066 } 1067 } 1068 1069 1070 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1071 const Register tmp = R0; 1072 switch (type) { 1073 case T_INT: 1074 case T_FLOAT: { 1075 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1076 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1077 __ lwz(tmp, from.disp(), from.base()); 1078 __ stw(tmp, to.disp(), to.base()); 1079 break; 1080 } 1081 case T_ADDRESS: 1082 case T_OBJECT: { 1083 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1084 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1085 __ ld(tmp, from.disp(), from.base()); 1086 __ std(tmp, to.disp(), to.base()); 1087 break; 1088 } 1089 case T_LONG: 1090 case T_DOUBLE: { 1091 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 1092 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 1093 __ ld(tmp, from.disp(), from.base()); 1094 __ std(tmp, to.disp(), to.base()); 1095 break; 1096 } 1097 1098 default: 1099 ShouldNotReachHere(); 1100 } 1101 } 1102 1103 1104 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 1105 Unimplemented(); return Address(); 1106 } 1107 1108 1109 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 1110 Unimplemented(); return Address(); 1111 } 1112 1113 1114 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, 1115 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1116 1117 assert(type != T_METADATA, "load of metadata ptr not supported"); 1118 LIR_Address* addr = src_opr->as_address_ptr(); 1119 LIR_Opr to_reg = dest; 1120 1121 Register src = addr->base()->as_pointer_register(); 1122 Register disp_reg = noreg; 1123 int disp_value = addr->disp(); 1124 bool needs_patching = (patch_code != lir_patch_none); 1125 // null check for large offsets in LIRGenerator::do_LoadField 1126 bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks; 1127 1128 if (info != nullptr && needs_explicit_null_check) { 1129 explicit_null_check(src, info); 1130 } 1131 1132 if (addr->base()->type() == T_OBJECT) { 1133 __ verify_oop(src, FILE_AND_LINE); 1134 } 1135 1136 PatchingStub* patch = nullptr; 1137 if (needs_patching) { 1138 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1139 assert(!to_reg->is_double_cpu() || 1140 patch_code == lir_patch_none || 1141 patch_code == lir_patch_normal, "patching doesn't match register"); 1142 } 1143 1144 if (addr->index()->is_illegal()) { 1145 if (!Assembler::is_simm16(disp_value)) { 1146 if (needs_patching) { 1147 __ load_const32(R0, 0); // patchable int 1148 } else { 1149 __ load_const_optimized(R0, disp_value); 1150 } 1151 disp_reg = R0; 1152 } 1153 } else { 1154 disp_reg = addr->index()->as_pointer_register(); 1155 assert(disp_value == 0, "can't handle 3 operand addresses"); 1156 } 1157 1158 // Remember the offset of the load. The patching_epilog must be done 1159 // before the call to add_debug_info, otherwise the PcDescs don't get 1160 // entered in increasing order. 1161 int offset; 1162 1163 if (disp_reg == noreg) { 1164 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1165 offset = load(src, disp_value, to_reg, type, wide); 1166 } else { 1167 offset = load(src, disp_reg, to_reg, type, wide); 1168 } 1169 1170 if (patch != nullptr) { 1171 patching_epilog(patch, patch_code, src, info); 1172 } 1173 if (info != nullptr && !needs_explicit_null_check) { 1174 add_debug_info_for_null_check(offset, info); 1175 } 1176 } 1177 1178 1179 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1180 Address addr; 1181 if (src->is_single_word()) { 1182 addr = frame_map()->address_for_slot(src->single_stack_ix()); 1183 } else if (src->is_double_word()) { 1184 addr = frame_map()->address_for_double_slot(src->double_stack_ix()); 1185 } 1186 1187 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/); 1188 } 1189 1190 1191 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1192 Address addr; 1193 if (dest->is_single_word()) { 1194 addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1195 } else if (dest->is_double_word()) { 1196 addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1197 } 1198 1199 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/); 1200 } 1201 1202 1203 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1204 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1205 if (from_reg->is_double_fpu()) { 1206 // double to double moves 1207 assert(to_reg->is_double_fpu(), "should match"); 1208 __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg()); 1209 } else { 1210 // float to float moves 1211 assert(to_reg->is_single_fpu(), "should match"); 1212 __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg()); 1213 } 1214 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1215 if (from_reg->is_double_cpu()) { 1216 __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1217 } else if (to_reg->is_double_cpu()) { 1218 // int to int moves 1219 __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register()); 1220 } else { 1221 // int to int moves 1222 __ mr_if_needed(to_reg->as_register(), from_reg->as_register()); 1223 } 1224 } else { 1225 ShouldNotReachHere(); 1226 } 1227 if (is_reference_type(to_reg->type())) { 1228 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1229 } 1230 } 1231 1232 1233 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, 1234 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1235 bool wide) { 1236 assert(type != T_METADATA, "store of metadata ptr not supported"); 1237 LIR_Address* addr = dest->as_address_ptr(); 1238 1239 Register src = addr->base()->as_pointer_register(); 1240 Register disp_reg = noreg; 1241 int disp_value = addr->disp(); 1242 bool needs_patching = (patch_code != lir_patch_none); 1243 bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide && 1244 CompressedOops::mode() != CompressedOops::UnscaledNarrowOop; 1245 bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value); 1246 bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29. 1247 // Null check for large offsets in LIRGenerator::do_StoreField. 1248 bool needs_explicit_null_check = !ImplicitNullChecks || use_R29; 1249 1250 if (info != nullptr && needs_explicit_null_check) { 1251 explicit_null_check(src, info); 1252 } 1253 1254 if (addr->base()->is_oop_register()) { 1255 __ verify_oop(src, FILE_AND_LINE); 1256 } 1257 1258 PatchingStub* patch = nullptr; 1259 if (needs_patching) { 1260 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1261 assert(!from_reg->is_double_cpu() || 1262 patch_code == lir_patch_none || 1263 patch_code == lir_patch_normal, "patching doesn't match register"); 1264 } 1265 1266 if (addr->index()->is_illegal()) { 1267 if (load_disp) { 1268 disp_reg = use_R29 ? R29_TOC : R0; 1269 if (needs_patching) { 1270 __ load_const32(disp_reg, 0); // patchable int 1271 } else { 1272 __ load_const_optimized(disp_reg, disp_value); 1273 } 1274 } 1275 } else { 1276 disp_reg = addr->index()->as_pointer_register(); 1277 assert(disp_value == 0, "can't handle 3 operand addresses"); 1278 } 1279 1280 // remember the offset of the store. The patching_epilog must be done 1281 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1282 // entered in increasing order. 1283 int offset; 1284 1285 if (compress_oop) { 1286 Register co = __ encode_heap_oop(R0, from_reg->as_register()); 1287 from_reg = FrameMap::as_opr(co); 1288 } 1289 1290 if (disp_reg == noreg) { 1291 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1292 offset = store(from_reg, src, disp_value, type, wide); 1293 } else { 1294 offset = store(from_reg, src, disp_reg, type, wide); 1295 } 1296 1297 if (use_R29) { 1298 __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit 1299 } 1300 1301 if (patch != nullptr) { 1302 patching_epilog(patch, patch_code, src, info); 1303 } 1304 1305 if (info != nullptr && !needs_explicit_null_check) { 1306 add_debug_info_for_null_check(offset, info); 1307 } 1308 } 1309 1310 1311 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1312 const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone(). 1313 const Register temp = R12; 1314 1315 // Pop the stack before the safepoint code. 1316 int frame_size = initial_frame_size_in_bytes(); 1317 if (Assembler::is_simm(frame_size, 16)) { 1318 __ addi(R1_SP, R1_SP, frame_size); 1319 } else { 1320 __ pop_frame(); 1321 } 1322 1323 // Restore return pc relative to callers' sp. 1324 __ ld(return_pc, _abi0(lr), R1_SP); 1325 // Move return pc to LR. 1326 __ mtlr(return_pc); 1327 1328 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1329 __ reserved_stack_check(return_pc); 1330 } 1331 1332 // We need to mark the code position where the load from the safepoint 1333 // polling page was emitted as relocInfo::poll_return_type here. 1334 if (!UseSIGTRAP) { 1335 code_stub->set_safepoint_offset(__ offset()); 1336 __ relocate(relocInfo::poll_return_type); 1337 } 1338 __ safepoint_poll(*code_stub->entry(), temp, true /* at_return */, true /* in_nmethod */); 1339 1340 // Return. 1341 __ blr(); 1342 } 1343 1344 1345 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1346 const Register poll_addr = tmp->as_register(); 1347 __ ld(poll_addr, in_bytes(JavaThread::polling_page_offset()), R16_thread); 1348 if (info != nullptr) { 1349 add_debug_info_for_branch(info); 1350 } 1351 int offset = __ offset(); 1352 __ relocate(relocInfo::poll_type); 1353 __ load_from_polling_page(poll_addr); 1354 1355 return offset; 1356 } 1357 1358 1359 void LIR_Assembler::emit_static_call_stub() { 1360 address call_pc = __ pc(); 1361 address stub = __ start_a_stub(static_call_stub_size()); 1362 if (stub == nullptr) { 1363 bailout("static call stub overflow"); 1364 return; 1365 } 1366 1367 // For java_to_interp stubs we use R11_scratch1 as scratch register 1368 // and in call trampoline stubs we use R12_scratch2. This way we 1369 // can distinguish them (see is_NativeCallTrampolineStub_at()). 1370 const Register reg_scratch = R11_scratch1; 1371 1372 // Create a static stub relocation which relates this stub 1373 // with the call instruction at insts_call_instruction_offset in the 1374 // instructions code-section. 1375 int start = __ offset(); 1376 __ relocate(static_stub_Relocation::spec(call_pc)); 1377 1378 // Now, create the stub's code: 1379 // - load the TOC 1380 // - load the inline cache oop from the constant pool 1381 // - load the call target from the constant pool 1382 // - call 1383 __ calculate_address_from_global_toc(reg_scratch, __ method_toc()); 1384 AddressLiteral ic = __ allocate_metadata_address((Metadata *)nullptr); 1385 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true); 1386 1387 if (ReoptimizeCallSequences) { 1388 __ b64_patchable((address)-1, relocInfo::none); 1389 } else { 1390 AddressLiteral a((address)-1); 1391 success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true); 1392 __ mtctr(reg_scratch); 1393 __ bctr(); 1394 } 1395 if (!success) { 1396 bailout("const section overflow"); 1397 return; 1398 } 1399 1400 assert(__ offset() - start <= static_call_stub_size(), "stub too big"); 1401 __ end_a_stub(); 1402 } 1403 1404 1405 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1406 bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual); 1407 if (opr1->is_single_fpu()) { 1408 __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg()); 1409 } else if (opr1->is_double_fpu()) { 1410 __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg()); 1411 } else if (opr1->is_single_cpu()) { 1412 if (opr2->is_constant()) { 1413 switch (opr2->as_constant_ptr()->type()) { 1414 case T_INT: 1415 { 1416 jint con = opr2->as_constant_ptr()->as_jint(); 1417 if (unsigned_comp) { 1418 if (Assembler::is_uimm(con, 16)) { 1419 __ cmplwi(BOOL_RESULT, opr1->as_register(), con); 1420 } else { 1421 __ load_const_optimized(R0, con); 1422 __ cmplw(BOOL_RESULT, opr1->as_register(), R0); 1423 } 1424 } else { 1425 if (Assembler::is_simm(con, 16)) { 1426 __ cmpwi(BOOL_RESULT, opr1->as_register(), con); 1427 } else { 1428 __ load_const_optimized(R0, con); 1429 __ cmpw(BOOL_RESULT, opr1->as_register(), R0); 1430 } 1431 } 1432 } 1433 break; 1434 1435 case T_OBJECT: 1436 // There are only equal/notequal comparisons on objects. 1437 { 1438 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1439 jobject con = opr2->as_constant_ptr()->as_jobject(); 1440 if (con == nullptr) { 1441 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1442 } else { 1443 jobject2reg(con, R0); 1444 __ cmpd(BOOL_RESULT, opr1->as_register(), R0); 1445 } 1446 } 1447 break; 1448 1449 case T_METADATA: 1450 // We only need, for now, comparison with null for metadata. 1451 { 1452 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1453 Metadata* p = opr2->as_constant_ptr()->as_metadata(); 1454 if (p == nullptr) { 1455 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1456 } else { 1457 ShouldNotReachHere(); 1458 } 1459 } 1460 break; 1461 1462 default: 1463 ShouldNotReachHere(); 1464 break; 1465 } 1466 } else { 1467 assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported"); 1468 if (is_reference_type(opr1->type())) { 1469 // There are only equal/notequal comparisons on objects. 1470 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1471 __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1472 } else { 1473 if (unsigned_comp) { 1474 __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1475 } else { 1476 __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1477 } 1478 } 1479 } 1480 } else if (opr1->is_double_cpu()) { 1481 if (opr2->is_constant()) { 1482 jlong con = opr2->as_constant_ptr()->as_jlong(); 1483 if (unsigned_comp) { 1484 if (Assembler::is_uimm(con, 16)) { 1485 __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con); 1486 } else { 1487 __ load_const_optimized(R0, con); 1488 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0); 1489 } 1490 } else { 1491 if (Assembler::is_simm(con, 16)) { 1492 __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con); 1493 } else { 1494 __ load_const_optimized(R0, con); 1495 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0); 1496 } 1497 } 1498 } else if (opr2->is_register()) { 1499 if (unsigned_comp) { 1500 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1501 } else { 1502 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1503 } 1504 } else { 1505 ShouldNotReachHere(); 1506 } 1507 } else { 1508 ShouldNotReachHere(); 1509 } 1510 } 1511 1512 1513 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1514 const Register Rdst = dst->as_register(); 1515 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1516 bool is_unordered_less = (code == lir_ucmp_fd2i); 1517 if (left->is_single_fpu()) { 1518 __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg()); 1519 } else if (left->is_double_fpu()) { 1520 __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg()); 1521 } else { 1522 ShouldNotReachHere(); 1523 } 1524 __ set_cmpu3(Rdst, is_unordered_less); // is_unordered_less ? -1 : 1 1525 } else if (code == lir_cmp_l2i) { 1526 __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo()); 1527 __ set_cmp3(Rdst); // set result as follows: <: -1, =: 0, >: 1 1528 } else { 1529 ShouldNotReachHere(); 1530 } 1531 } 1532 1533 1534 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) { 1535 if (src->is_constant()) { 1536 lasm->const2reg(src, dst, lir_patch_none, nullptr); 1537 } else if (src->is_register()) { 1538 lasm->reg2reg(src, dst); 1539 } else if (src->is_stack()) { 1540 lasm->stack2reg(src, dst, dst->type()); 1541 } else { 1542 ShouldNotReachHere(); 1543 } 1544 } 1545 1546 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1547 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1548 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on ppc"); 1549 1550 if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) { 1551 load_to_reg(this, opr1, result); // Condition doesn't matter. 1552 return; 1553 } 1554 1555 bool positive = false; 1556 Assembler::Condition cond = Assembler::equal; 1557 switch (condition) { 1558 case lir_cond_equal: positive = true ; cond = Assembler::equal ; break; 1559 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break; 1560 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 1561 case lir_cond_belowEqual: 1562 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 1563 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 1564 case lir_cond_aboveEqual: 1565 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 1566 default: ShouldNotReachHere(); 1567 } 1568 1569 // Try to use isel on >=Power7. 1570 if (VM_Version::has_isel() && result->is_cpu_register()) { 1571 bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register(); 1572 const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo(); 1573 1574 // We can use result_reg to load one operand if not already in register. 1575 Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg, 1576 second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg; 1577 1578 if (first != second) { 1579 if (!o1_is_reg) { 1580 load_to_reg(this, opr1, result); 1581 } 1582 1583 if (!o2_is_reg) { 1584 load_to_reg(this, opr2, result); 1585 } 1586 1587 __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second); 1588 return; 1589 } 1590 } // isel 1591 1592 load_to_reg(this, opr1, result); 1593 1594 Label skip; 1595 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1596 int bi = Assembler::bi0(BOOL_RESULT, cond); 1597 __ bc(bo, bi, skip); 1598 1599 load_to_reg(this, opr2, result); 1600 __ bind(skip); 1601 } 1602 1603 1604 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1605 CodeEmitInfo* info, bool pop_fpu_stack) { 1606 assert(info == nullptr, "unused on this code path"); 1607 assert(left->is_register(), "wrong items state"); 1608 assert(dest->is_register(), "wrong items state"); 1609 1610 if (right->is_register()) { 1611 if (dest->is_float_kind()) { 1612 1613 FloatRegister lreg, rreg, res; 1614 if (right->is_single_fpu()) { 1615 lreg = left->as_float_reg(); 1616 rreg = right->as_float_reg(); 1617 res = dest->as_float_reg(); 1618 switch (code) { 1619 case lir_add: __ fadds(res, lreg, rreg); break; 1620 case lir_sub: __ fsubs(res, lreg, rreg); break; 1621 case lir_mul: __ fmuls(res, lreg, rreg); break; 1622 case lir_div: __ fdivs(res, lreg, rreg); break; 1623 default: ShouldNotReachHere(); 1624 } 1625 } else { 1626 lreg = left->as_double_reg(); 1627 rreg = right->as_double_reg(); 1628 res = dest->as_double_reg(); 1629 switch (code) { 1630 case lir_add: __ fadd(res, lreg, rreg); break; 1631 case lir_sub: __ fsub(res, lreg, rreg); break; 1632 case lir_mul: __ fmul(res, lreg, rreg); break; 1633 case lir_div: __ fdiv(res, lreg, rreg); break; 1634 default: ShouldNotReachHere(); 1635 } 1636 } 1637 1638 } else if (dest->is_double_cpu()) { 1639 1640 Register dst_lo = dest->as_register_lo(); 1641 Register op1_lo = left->as_pointer_register(); 1642 Register op2_lo = right->as_pointer_register(); 1643 1644 switch (code) { 1645 case lir_add: __ add(dst_lo, op1_lo, op2_lo); break; 1646 case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break; 1647 case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break; 1648 default: ShouldNotReachHere(); 1649 } 1650 } else { 1651 assert (right->is_single_cpu(), "Just Checking"); 1652 1653 Register lreg = left->as_register(); 1654 Register res = dest->as_register(); 1655 Register rreg = right->as_register(); 1656 switch (code) { 1657 case lir_add: __ add (res, lreg, rreg); break; 1658 case lir_sub: __ sub (res, lreg, rreg); break; 1659 case lir_mul: __ mullw(res, lreg, rreg); break; 1660 default: ShouldNotReachHere(); 1661 } 1662 } 1663 } else { 1664 assert (right->is_constant(), "must be constant"); 1665 1666 if (dest->is_single_cpu()) { 1667 Register lreg = left->as_register(); 1668 Register res = dest->as_register(); 1669 int simm16 = right->as_constant_ptr()->as_jint(); 1670 1671 switch (code) { 1672 case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int 1673 simm16 = -simm16; 1674 case lir_add: if (res == lreg && simm16 == 0) break; 1675 __ addi(res, lreg, simm16); break; 1676 case lir_mul: if (res == lreg && simm16 == 1) break; 1677 __ mulli(res, lreg, simm16); break; 1678 default: ShouldNotReachHere(); 1679 } 1680 } else { 1681 Register lreg = left->as_pointer_register(); 1682 Register res = dest->as_register_lo(); 1683 long con = right->as_constant_ptr()->as_jlong(); 1684 assert(Assembler::is_simm16(con), "must be simm16"); 1685 1686 switch (code) { 1687 case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long 1688 con = -con; 1689 case lir_add: if (res == lreg && con == 0) break; 1690 __ addi(res, lreg, (int)con); break; 1691 case lir_mul: if (res == lreg && con == 1) break; 1692 __ mulli(res, lreg, (int)con); break; 1693 default: ShouldNotReachHere(); 1694 } 1695 } 1696 } 1697 } 1698 1699 1700 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1701 switch (code) { 1702 case lir_sqrt: { 1703 __ fsqrt(dest->as_double_reg(), value->as_double_reg()); 1704 break; 1705 } 1706 case lir_abs: { 1707 __ fabs(dest->as_double_reg(), value->as_double_reg()); 1708 break; 1709 } 1710 default: { 1711 ShouldNotReachHere(); 1712 break; 1713 } 1714 } 1715 } 1716 1717 1718 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { 1719 if (right->is_constant()) { // see do_LogicOp 1720 long uimm; 1721 Register d, l; 1722 if (dest->is_single_cpu()) { 1723 uimm = right->as_constant_ptr()->as_jint(); 1724 d = dest->as_register(); 1725 l = left->as_register(); 1726 } else { 1727 uimm = right->as_constant_ptr()->as_jlong(); 1728 d = dest->as_register_lo(); 1729 l = left->as_register_lo(); 1730 } 1731 long uimms = (unsigned long)uimm >> 16, 1732 uimmss = (unsigned long)uimm >> 32; 1733 1734 switch (code) { 1735 case lir_logic_and: 1736 if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2(uimm)) { 1737 __ andi(d, l, uimm); // special cases 1738 } else if (uimms != 0) { __ andis_(d, l, uimms); } 1739 else { __ andi_(d, l, uimm); } 1740 break; 1741 1742 case lir_logic_or: 1743 if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); } 1744 else { __ ori(d, l, uimm); } 1745 break; 1746 1747 case lir_logic_xor: 1748 if (uimm == -1) { __ nand(d, l, l); } // special case 1749 else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); } 1750 else { __ xori(d, l, uimm); } 1751 break; 1752 1753 default: ShouldNotReachHere(); 1754 } 1755 } else { 1756 assert(right->is_register(), "right should be in register"); 1757 1758 if (dest->is_single_cpu()) { 1759 switch (code) { 1760 case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break; 1761 case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break; 1762 case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break; 1763 default: ShouldNotReachHere(); 1764 } 1765 } else { 1766 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : 1767 left->as_register_lo(); 1768 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : 1769 right->as_register_lo(); 1770 1771 switch (code) { 1772 case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break; 1773 case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break; 1774 case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break; 1775 default: ShouldNotReachHere(); 1776 } 1777 } 1778 } 1779 } 1780 1781 1782 int LIR_Assembler::shift_amount(BasicType t) { 1783 int elem_size = type2aelembytes(t); 1784 switch (elem_size) { 1785 case 1 : return 0; 1786 case 2 : return 1; 1787 case 4 : return 2; 1788 case 8 : return 3; 1789 } 1790 ShouldNotReachHere(); 1791 return -1; 1792 } 1793 1794 1795 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1796 info->add_register_oop(exceptionOop); 1797 1798 // Reuse the debug info from the safepoint poll for the throw op itself. 1799 address pc_for_athrow = __ pc(); 1800 int pc_for_athrow_offset = __ offset(); 1801 //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); 1802 //__ relocate(rspec); 1803 //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0); 1804 __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true); 1805 add_call_info(pc_for_athrow_offset, info); // for exception handler 1806 1807 address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? C1StubId::handle_exception_id 1808 : C1StubId::handle_exception_nofpu_id); 1809 //__ load_const_optimized(R0, stub); 1810 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); 1811 __ mtctr(R0); 1812 __ bctr(); 1813 } 1814 1815 1816 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1817 // Note: Not used with EnableDebuggingOnDemand. 1818 assert(exceptionOop->as_register() == R3, "should match"); 1819 __ b(_unwind_handler_entry); 1820 } 1821 1822 1823 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1824 Register src = op->src()->as_register(); 1825 Register dst = op->dst()->as_register(); 1826 Register src_pos = op->src_pos()->as_register(); 1827 Register dst_pos = op->dst_pos()->as_register(); 1828 Register length = op->length()->as_register(); 1829 Register tmp = op->tmp()->as_register(); 1830 Register tmp2 = R0; 1831 1832 int flags = op->flags(); 1833 ciArrayKlass* default_type = op->expected_type(); 1834 BasicType basic_type = (default_type != nullptr) ? default_type->element_type()->basic_type() : T_ILLEGAL; 1835 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1836 1837 // Set up the arraycopy stub information. 1838 ArrayCopyStub* stub = op->stub(); 1839 1840 // Always do stub if no type information is available. It's ok if 1841 // the known type isn't loaded since the code sanity checks 1842 // in debug mode and the type isn't required when we know the exact type 1843 // also check that the type is an array type. 1844 if (default_type == nullptr) { 1845 assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() && 1846 length->is_nonvolatile(), "must preserve"); 1847 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1848 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 1849 1850 // 3 parms are int. Convert to long. 1851 __ mr(R3_ARG1, src); 1852 __ extsw(R4_ARG2, src_pos); 1853 __ mr(R5_ARG3, dst); 1854 __ extsw(R6_ARG4, dst_pos); 1855 __ extsw(R7_ARG5, length); 1856 1857 #ifndef PRODUCT 1858 if (PrintC1Statistics) { 1859 address counter = (address)&Runtime1::_generic_arraycopystub_cnt; 1860 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 1861 __ lwz(R11_scratch1, simm16_offs, tmp); 1862 __ addi(R11_scratch1, R11_scratch1, 1); 1863 __ stw(R11_scratch1, simm16_offs, tmp); 1864 } 1865 #endif 1866 __ call_c(copyfunc_addr, relocInfo::runtime_call_type); 1867 1868 __ nand(tmp, R3_RET, R3_RET); 1869 __ subf(length, tmp, length); 1870 __ add(src_pos, tmp, src_pos); 1871 __ add(dst_pos, tmp, dst_pos); 1872 1873 __ cmpwi(CCR0, R3_RET, 0); 1874 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry()); 1875 __ bind(*stub->continuation()); 1876 return; 1877 } 1878 1879 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 1880 Label cont, slow, copyfunc; 1881 1882 bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check | 1883 LIR_OpArrayCopy::dst_null_check | 1884 LIR_OpArrayCopy::src_pos_positive_check | 1885 LIR_OpArrayCopy::dst_pos_positive_check | 1886 LIR_OpArrayCopy::length_positive_check); 1887 1888 // Use only one conditional branch for simple checks. 1889 if (simple_check_flag_set) { 1890 ConditionRegister combined_check = CCR1, tmp_check = CCR1; 1891 1892 // Make sure src and dst are non-null. 1893 if (flags & LIR_OpArrayCopy::src_null_check) { 1894 __ cmpdi(combined_check, src, 0); 1895 tmp_check = CCR0; 1896 } 1897 1898 if (flags & LIR_OpArrayCopy::dst_null_check) { 1899 __ cmpdi(tmp_check, dst, 0); 1900 if (tmp_check != combined_check) { 1901 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal); 1902 } 1903 tmp_check = CCR0; 1904 } 1905 1906 // Clear combined_check.eq if not already used. 1907 if (tmp_check == combined_check) { 1908 __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal); 1909 tmp_check = CCR0; 1910 } 1911 1912 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 1913 // Test src_pos register. 1914 __ cmpwi(tmp_check, src_pos, 0); 1915 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1916 } 1917 1918 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 1919 // Test dst_pos register. 1920 __ cmpwi(tmp_check, dst_pos, 0); 1921 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1922 } 1923 1924 if (flags & LIR_OpArrayCopy::length_positive_check) { 1925 // Make sure length isn't negative. 1926 __ cmpwi(tmp_check, length, 0); 1927 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1928 } 1929 1930 __ beq(combined_check, slow); 1931 } 1932 1933 // If the compiler was not able to prove that exact type of the source or the destination 1934 // of the arraycopy is an array type, check at runtime if the source or the destination is 1935 // an instance type. 1936 if (flags & LIR_OpArrayCopy::type_check) { 1937 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 1938 __ load_klass(tmp, dst); 1939 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1940 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1941 __ bge(CCR0, slow); 1942 } 1943 1944 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 1945 __ load_klass(tmp, src); 1946 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1947 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1948 __ bge(CCR0, slow); 1949 } 1950 } 1951 1952 // Higher 32bits must be null. 1953 __ extsw(length, length); 1954 1955 __ extsw(src_pos, src_pos); 1956 if (flags & LIR_OpArrayCopy::src_range_check) { 1957 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src); 1958 __ add(tmp, length, src_pos); 1959 __ cmpld(CCR0, tmp2, tmp); 1960 __ ble(CCR0, slow); 1961 } 1962 1963 __ extsw(dst_pos, dst_pos); 1964 if (flags & LIR_OpArrayCopy::dst_range_check) { 1965 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst); 1966 __ add(tmp, length, dst_pos); 1967 __ cmpld(CCR0, tmp2, tmp); 1968 __ ble(CCR0, slow); 1969 } 1970 1971 int shift = shift_amount(basic_type); 1972 1973 if (!(flags & LIR_OpArrayCopy::type_check)) { 1974 if (stub != nullptr) { 1975 __ b(cont); 1976 __ bind(slow); 1977 __ b(*stub->entry()); 1978 } 1979 } else { 1980 // We don't know the array types are compatible. 1981 if (basic_type != T_OBJECT) { 1982 // Simple test for basic type arrays. 1983 if (UseCompressedClassPointers) { 1984 // We don't need decode because we just need to compare. 1985 __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src); 1986 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1987 __ cmpw(CCR0, tmp, tmp2); 1988 } else { 1989 __ ld(tmp, oopDesc::klass_offset_in_bytes(), src); 1990 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1991 __ cmpd(CCR0, tmp, tmp2); 1992 } 1993 __ beq(CCR0, cont); 1994 } else { 1995 // For object arrays, if src is a sub class of dst then we can 1996 // safely do the copy. 1997 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 1998 1999 const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf 2000 assert_different_registers(tmp, tmp2, sub_klass, super_klass); 2001 2002 __ load_klass(sub_klass, src); 2003 __ load_klass(super_klass, dst); 2004 2005 __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2, 2006 &cont, copyfunc_addr != nullptr ? ©func : &slow, nullptr); 2007 2008 address slow_stc = Runtime1::entry_for(C1StubId::slow_subtype_check_id); 2009 //__ load_const_optimized(tmp, slow_stc, tmp2); 2010 __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false); 2011 __ mtctr(tmp); 2012 __ bctrl(); // sets CR0 2013 __ beq(CCR0, cont); 2014 2015 if (copyfunc_addr != nullptr) { // Use stub if available. 2016 __ bind(copyfunc); 2017 // Src is not a sub class of dst so we have to do a 2018 // per-element check. 2019 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2020 if ((flags & mask) != mask) { 2021 assert(flags & mask, "one of the two should be known to be an object array"); 2022 2023 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2024 __ load_klass(tmp, src); 2025 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2026 __ load_klass(tmp, dst); 2027 } 2028 2029 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 2030 2031 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2032 __ load_const_optimized(tmp, objArray_lh); 2033 __ cmpw(CCR0, tmp, tmp2); 2034 __ bne(CCR0, slow); 2035 } 2036 2037 Register src_ptr = R3_ARG1; 2038 Register dst_ptr = R4_ARG2; 2039 Register len = R5_ARG3; 2040 Register chk_off = R6_ARG4; 2041 Register super_k = R7_ARG5; 2042 2043 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2044 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2045 if (shift == 0) { 2046 __ add(src_ptr, src_pos, src_ptr); 2047 __ add(dst_ptr, dst_pos, dst_ptr); 2048 } else { 2049 __ sldi(tmp, src_pos, shift); 2050 __ sldi(tmp2, dst_pos, shift); 2051 __ add(src_ptr, tmp, src_ptr); 2052 __ add(dst_ptr, tmp2, dst_ptr); 2053 } 2054 2055 __ load_klass(tmp, dst); 2056 __ mr(len, length); 2057 2058 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2059 __ ld(super_k, ek_offset, tmp); 2060 2061 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2062 __ lwz(chk_off, sco_offset, super_k); 2063 2064 __ call_c(copyfunc_addr, relocInfo::runtime_call_type); 2065 2066 #ifndef PRODUCT 2067 if (PrintC1Statistics) { 2068 Label failed; 2069 __ cmpwi(CCR0, R3_RET, 0); 2070 __ bne(CCR0, failed); 2071 address counter = (address)&Runtime1::_arraycopy_checkcast_cnt; 2072 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2073 __ lwz(R11_scratch1, simm16_offs, tmp); 2074 __ addi(R11_scratch1, R11_scratch1, 1); 2075 __ stw(R11_scratch1, simm16_offs, tmp); 2076 __ bind(failed); 2077 } 2078 #endif 2079 2080 __ nand(tmp, R3_RET, R3_RET); 2081 __ cmpwi(CCR0, R3_RET, 0); 2082 __ beq(CCR0, *stub->continuation()); 2083 2084 #ifndef PRODUCT 2085 if (PrintC1Statistics) { 2086 address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt; 2087 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2088 __ lwz(R11_scratch1, simm16_offs, tmp); 2089 __ addi(R11_scratch1, R11_scratch1, 1); 2090 __ stw(R11_scratch1, simm16_offs, tmp); 2091 } 2092 #endif 2093 2094 __ subf(length, tmp, length); 2095 __ add(src_pos, tmp, src_pos); 2096 __ add(dst_pos, tmp, dst_pos); 2097 } 2098 } 2099 __ bind(slow); 2100 __ b(*stub->entry()); 2101 } 2102 __ bind(cont); 2103 2104 #ifdef ASSERT 2105 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2106 // Sanity check the known type with the incoming class. For the 2107 // primitive case the types must match exactly with src.klass and 2108 // dst.klass each exactly matching the default type. For the 2109 // object array case, if no type check is needed then either the 2110 // dst type is exactly the expected type and the src type is a 2111 // subtype which we can't check or src is the same array as dst 2112 // but not necessarily exactly of type default_type. 2113 Label known_ok, halt; 2114 metadata2reg(default_type->constant_encoding(), tmp); 2115 if (UseCompressedClassPointers) { 2116 // Tmp holds the default type. It currently comes uncompressed after the 2117 // load of a constant, so encode it. 2118 __ encode_klass_not_null(tmp); 2119 // Load the raw value of the dst klass, since we will be comparing 2120 // uncompressed values directly. 2121 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2122 __ cmpw(CCR0, tmp, tmp2); 2123 if (basic_type != T_OBJECT) { 2124 __ bne(CCR0, halt); 2125 // Load the raw value of the src klass. 2126 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src); 2127 __ cmpw(CCR0, tmp, tmp2); 2128 __ beq(CCR0, known_ok); 2129 } else { 2130 __ beq(CCR0, known_ok); 2131 __ cmpw(CCR0, src, dst); 2132 __ beq(CCR0, known_ok); 2133 } 2134 } else { 2135 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2136 __ cmpd(CCR0, tmp, tmp2); 2137 if (basic_type != T_OBJECT) { 2138 __ bne(CCR0, halt); 2139 // Load the raw value of the src klass. 2140 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src); 2141 __ cmpd(CCR0, tmp, tmp2); 2142 __ beq(CCR0, known_ok); 2143 } else { 2144 __ beq(CCR0, known_ok); 2145 __ cmpd(CCR0, src, dst); 2146 __ beq(CCR0, known_ok); 2147 } 2148 } 2149 __ bind(halt); 2150 __ stop("incorrect type information in arraycopy"); 2151 __ bind(known_ok); 2152 } 2153 #endif 2154 2155 #ifndef PRODUCT 2156 if (PrintC1Statistics) { 2157 address counter = Runtime1::arraycopy_count_address(basic_type); 2158 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2159 __ lwz(R11_scratch1, simm16_offs, tmp); 2160 __ addi(R11_scratch1, R11_scratch1, 1); 2161 __ stw(R11_scratch1, simm16_offs, tmp); 2162 } 2163 #endif 2164 2165 Register src_ptr = R3_ARG1; 2166 Register dst_ptr = R4_ARG2; 2167 Register len = R5_ARG3; 2168 2169 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2170 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2171 if (shift == 0) { 2172 __ add(src_ptr, src_pos, src_ptr); 2173 __ add(dst_ptr, dst_pos, dst_ptr); 2174 } else { 2175 __ sldi(tmp, src_pos, shift); 2176 __ sldi(tmp2, dst_pos, shift); 2177 __ add(src_ptr, tmp, src_ptr); 2178 __ add(dst_ptr, tmp2, dst_ptr); 2179 } 2180 2181 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2182 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2183 const char *name; 2184 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2185 2186 // Arraycopy stubs takes a length in number of elements, so don't scale it. 2187 __ mr(len, length); 2188 __ call_c(entry, relocInfo::runtime_call_type); 2189 2190 if (stub != nullptr) { 2191 __ bind(*stub->continuation()); 2192 } 2193 } 2194 2195 2196 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2197 if (dest->is_single_cpu()) { 2198 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5); 2199 #ifdef _LP64 2200 if (left->type() == T_OBJECT) { 2201 switch (code) { 2202 case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break; 2203 case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break; 2204 case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break; 2205 default: ShouldNotReachHere(); 2206 } 2207 } else 2208 #endif 2209 switch (code) { 2210 case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2211 case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2212 case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2213 default: ShouldNotReachHere(); 2214 } 2215 } else { 2216 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6); 2217 switch (code) { 2218 case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2219 case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2220 case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2221 default: ShouldNotReachHere(); 2222 } 2223 } 2224 } 2225 2226 2227 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2228 #ifdef _LP64 2229 if (left->type() == T_OBJECT) { 2230 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2231 if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); } 2232 else { 2233 switch (code) { 2234 case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break; 2235 case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break; 2236 case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break; 2237 default: ShouldNotReachHere(); 2238 } 2239 } 2240 return; 2241 } 2242 #endif 2243 2244 if (dest->is_single_cpu()) { 2245 count = count & 0x1F; // Java spec 2246 if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); } 2247 else { 2248 switch (code) { 2249 case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break; 2250 case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break; 2251 case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break; 2252 default: ShouldNotReachHere(); 2253 } 2254 } 2255 } else if (dest->is_double_cpu()) { 2256 count = count & 63; // Java spec 2257 if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); } 2258 else { 2259 switch (code) { 2260 case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2261 case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2262 case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2263 default: ShouldNotReachHere(); 2264 } 2265 } 2266 } else { 2267 ShouldNotReachHere(); 2268 } 2269 } 2270 2271 2272 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2273 if (op->init_check()) { 2274 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2275 explicit_null_check(op->klass()->as_register(), op->stub()->info()); 2276 } else { 2277 add_debug_info_for_null_check_here(op->stub()->info()); 2278 } 2279 __ lbz(op->tmp1()->as_register(), 2280 in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register()); 2281 // acquire barrier included in membar_storestore() which follows the allocation immediately. 2282 __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized); 2283 __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry()); 2284 } 2285 __ allocate_object(op->obj()->as_register(), 2286 op->tmp1()->as_register(), 2287 op->tmp2()->as_register(), 2288 op->tmp3()->as_register(), 2289 op->header_size(), 2290 op->object_size(), 2291 op->klass()->as_register(), 2292 *op->stub()->entry()); 2293 2294 __ bind(*op->stub()->continuation()); 2295 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2296 } 2297 2298 2299 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2300 LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); ) 2301 if (UseSlowPath || 2302 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2303 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2304 __ b(*op->stub()->entry()); 2305 } else { 2306 __ allocate_array(op->obj()->as_register(), 2307 op->len()->as_register(), 2308 op->tmp1()->as_register(), 2309 op->tmp2()->as_register(), 2310 op->tmp3()->as_register(), 2311 arrayOopDesc::base_offset_in_bytes(op->type()), 2312 type2aelembytes(op->type()), 2313 op->klass()->as_register(), 2314 *op->stub()->entry(), 2315 op->zero_array()); 2316 } 2317 __ bind(*op->stub()->continuation()); 2318 } 2319 2320 2321 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, 2322 ciMethodData *md, ciProfileData *data, 2323 Register recv, Register tmp1, Label* update_done) { 2324 uint i; 2325 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2326 Label next_test; 2327 // See if the receiver is receiver[n]. 2328 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2329 __ verify_klass_ptr(tmp1); 2330 __ cmpd(CCR0, recv, tmp1); 2331 __ bne(CCR0, next_test); 2332 2333 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2334 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2335 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2336 __ b(*update_done); 2337 2338 __ bind(next_test); 2339 } 2340 2341 // Didn't find receiver; find next empty slot and fill it in. 2342 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2343 Label next_test; 2344 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2345 __ cmpdi(CCR0, tmp1, 0); 2346 __ bne(CCR0, next_test); 2347 __ li(tmp1, DataLayout::counter_increment); 2348 __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2349 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2350 __ b(*update_done); 2351 2352 __ bind(next_test); 2353 } 2354 } 2355 2356 2357 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2358 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2359 md = method->method_data_or_null(); 2360 assert(md != nullptr, "Sanity"); 2361 data = md->bci_to_data(bci); 2362 assert(data != nullptr, "need data for checkcast"); 2363 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2364 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { 2365 // The offset is large so bias the mdo by the base of the slot so 2366 // that the ld can use simm16s to reference the slots of the data. 2367 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); 2368 } 2369 } 2370 2371 2372 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2373 const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub). 2374 Register k_RInfo = op->tmp1()->as_register(); 2375 Register klass_RInfo = op->tmp2()->as_register(); 2376 Register Rtmp1 = op->tmp3()->as_register(); 2377 Register dst = op->result_opr()->as_register(); 2378 ciKlass* k = op->klass(); 2379 bool should_profile = op->should_profile(); 2380 // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps. 2381 bool reg_conflict = false; 2382 if (obj == k_RInfo) { 2383 k_RInfo = dst; 2384 reg_conflict = true; 2385 } else if (obj == klass_RInfo) { 2386 klass_RInfo = dst; 2387 reg_conflict = true; 2388 } else if (obj == Rtmp1) { 2389 Rtmp1 = dst; 2390 reg_conflict = true; 2391 } 2392 assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1); 2393 2394 ciMethodData* md = nullptr; 2395 ciProfileData* data = nullptr; 2396 int mdo_offset_bias = 0; 2397 if (should_profile) { 2398 ciMethod* method = op->profiled_method(); 2399 assert(method != nullptr, "Should have method"); 2400 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2401 2402 Register mdo = k_RInfo; 2403 Register data_val = Rtmp1; 2404 Label not_null; 2405 metadata2reg(md->constant_encoding(), mdo); 2406 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2407 __ cmpdi(CCR0, obj, 0); 2408 __ bne(CCR0, not_null); 2409 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2410 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2411 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2412 __ b(*obj_is_null); 2413 __ bind(not_null); 2414 2415 Label update_done; 2416 Register recv = klass_RInfo; 2417 __ load_klass(recv, obj); 2418 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, &update_done); 2419 const int slot_offset = md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias; 2420 __ ld(Rtmp1, slot_offset, mdo); 2421 __ addi(Rtmp1, Rtmp1, DataLayout::counter_increment); 2422 __ std(Rtmp1, slot_offset, mdo); 2423 __ bind(update_done); 2424 } else { 2425 __ cmpdi(CCR0, obj, 0); 2426 __ beq(CCR0, *obj_is_null); 2427 } 2428 2429 // get object class 2430 __ load_klass(klass_RInfo, obj); 2431 2432 if (k->is_loaded()) { 2433 metadata2reg(k->constant_encoding(), k_RInfo); 2434 } else { 2435 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2436 } 2437 2438 if (op->fast_check()) { 2439 assert_different_registers(klass_RInfo, k_RInfo); 2440 __ cmpd(CCR0, k_RInfo, klass_RInfo); 2441 __ beq(CCR0, *success); 2442 // Fall through to failure case. 2443 } else { 2444 bool need_slow_path = true; 2445 if (k->is_loaded()) { 2446 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) { 2447 need_slow_path = false; 2448 } 2449 // Perform the fast part of the checking logic. 2450 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success : nullptr), 2451 failure, nullptr, RegisterOrConstant(k->super_check_offset())); 2452 } else { 2453 // Perform the fast part of the checking logic. 2454 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success, failure); 2455 } 2456 if (!need_slow_path) { 2457 __ b(*success); 2458 } else { 2459 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2460 address entry = Runtime1::entry_for(C1StubId::slow_subtype_check_id); 2461 // Stub needs fixed registers (tmp1-3). 2462 Register original_k_RInfo = op->tmp1()->as_register(); 2463 Register original_klass_RInfo = op->tmp2()->as_register(); 2464 Register original_Rtmp1 = op->tmp3()->as_register(); 2465 bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast); 2466 if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); } 2467 __ mr_if_needed(original_k_RInfo, k_RInfo); 2468 __ mr_if_needed(original_klass_RInfo, klass_RInfo); 2469 if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); } 2470 //__ load_const_optimized(original_Rtmp1, entry, R0); 2471 __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false); 2472 __ mtctr(original_Rtmp1); 2473 __ bctrl(); // sets CR0 2474 if (keep_obj_alive) { __ mr(obj, dst); } 2475 __ beq(CCR0, *success); 2476 // Fall through to failure case. 2477 } 2478 } 2479 2480 __ bind(*failure); 2481 } 2482 2483 2484 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2485 LIR_Code code = op->code(); 2486 if (code == lir_store_check) { 2487 Register value = op->object()->as_register(); 2488 Register array = op->array()->as_register(); 2489 Register k_RInfo = op->tmp1()->as_register(); 2490 Register klass_RInfo = op->tmp2()->as_register(); 2491 Register Rtmp1 = op->tmp3()->as_register(); 2492 bool should_profile = op->should_profile(); 2493 2494 __ verify_oop(value, FILE_AND_LINE); 2495 CodeStub* stub = op->stub(); 2496 // Check if it needs to be profiled. 2497 ciMethodData* md = nullptr; 2498 ciProfileData* data = nullptr; 2499 int mdo_offset_bias = 0; 2500 if (should_profile) { 2501 ciMethod* method = op->profiled_method(); 2502 assert(method != nullptr, "Should have method"); 2503 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2504 } 2505 2506 Label done; 2507 2508 if (should_profile) { 2509 Label not_null; 2510 Register mdo = k_RInfo; 2511 Register data_val = Rtmp1; 2512 metadata2reg(md->constant_encoding(), mdo); 2513 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2514 __ cmpdi(CCR0, value, 0); 2515 __ bne(CCR0, not_null); 2516 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2517 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2518 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2519 __ b(done); 2520 __ bind(not_null); 2521 2522 Label update_done; 2523 Register recv = klass_RInfo; 2524 __ load_klass(recv, value); 2525 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, &update_done); 2526 const int slot_offset = md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias; 2527 __ ld(Rtmp1, slot_offset, mdo); 2528 __ addi(Rtmp1, Rtmp1, DataLayout::counter_increment); 2529 __ std(Rtmp1, slot_offset, mdo); 2530 __ bind(update_done); 2531 } else { 2532 __ cmpdi(CCR0, value, 0); 2533 __ beq(CCR0, done); 2534 } 2535 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2536 explicit_null_check(array, op->info_for_exception()); 2537 } else { 2538 add_debug_info_for_null_check_here(op->info_for_exception()); 2539 } 2540 __ load_klass(k_RInfo, array); 2541 __ load_klass(klass_RInfo, value); 2542 2543 Label failure; 2544 2545 // Get instance klass. 2546 __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo); 2547 // Perform the fast part of the checking logic. 2548 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, &done, &failure, nullptr); 2549 2550 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2551 const address slow_path = Runtime1::entry_for(C1StubId::slow_subtype_check_id); 2552 //__ load_const_optimized(R0, slow_path); 2553 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path)); 2554 __ mtctr(R0); 2555 __ bctrl(); // sets CR0 2556 __ beq(CCR0, done); 2557 2558 __ bind(failure); 2559 __ b(*stub->entry()); 2560 __ align(32, 12); 2561 __ bind(done); 2562 2563 } else if (code == lir_checkcast) { 2564 Label success, failure; 2565 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); 2566 __ b(*op->stub()->entry()); 2567 __ align(32, 12); 2568 __ bind(success); 2569 __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register()); 2570 } else if (code == lir_instanceof) { 2571 Register dst = op->result_opr()->as_register(); 2572 Label success, failure, done; 2573 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure); 2574 __ li(dst, 0); 2575 __ b(done); 2576 __ align(32, 12); 2577 __ bind(success); 2578 __ li(dst, 1); 2579 __ bind(done); 2580 } else { 2581 ShouldNotReachHere(); 2582 } 2583 } 2584 2585 2586 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2587 Register addr = op->addr()->as_pointer_register(); 2588 Register cmp_value = noreg, new_value = noreg; 2589 bool is_64bit = false; 2590 2591 if (op->code() == lir_cas_long) { 2592 cmp_value = op->cmp_value()->as_register_lo(); 2593 new_value = op->new_value()->as_register_lo(); 2594 is_64bit = true; 2595 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2596 cmp_value = op->cmp_value()->as_register(); 2597 new_value = op->new_value()->as_register(); 2598 if (op->code() == lir_cas_obj) { 2599 if (UseCompressedOops) { 2600 Register t1 = op->tmp1()->as_register(); 2601 Register t2 = op->tmp2()->as_register(); 2602 cmp_value = __ encode_heap_oop(t1, cmp_value); 2603 new_value = __ encode_heap_oop(t2, new_value); 2604 } else { 2605 is_64bit = true; 2606 } 2607 } 2608 } else { 2609 Unimplemented(); 2610 } 2611 2612 // There might be a volatile load before this Unsafe CAS. 2613 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2614 __ sync(); 2615 } else { 2616 __ lwsync(); 2617 } 2618 2619 if (is_64bit) { 2620 __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2621 MacroAssembler::MemBarNone, 2622 MacroAssembler::cmpxchgx_hint_atomic_update(), 2623 noreg, nullptr, /*check without ldarx first*/true); 2624 } else { 2625 __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2626 MacroAssembler::MemBarNone, 2627 MacroAssembler::cmpxchgx_hint_atomic_update(), 2628 noreg, nullptr, /*check without ldarx first*/true); 2629 } 2630 2631 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2632 __ isync(); 2633 } else { 2634 __ sync(); 2635 } 2636 } 2637 2638 void LIR_Assembler::breakpoint() { 2639 __ illtrap(); 2640 } 2641 2642 2643 void LIR_Assembler::push(LIR_Opr opr) { 2644 Unimplemented(); 2645 } 2646 2647 void LIR_Assembler::pop(LIR_Opr opr) { 2648 Unimplemented(); 2649 } 2650 2651 2652 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2653 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); 2654 Register dst = dst_opr->as_register(); 2655 Register reg = mon_addr.base(); 2656 int offset = mon_addr.disp(); 2657 // Compute pointer to BasicLock. 2658 __ add_const_optimized(dst, reg, offset); 2659 } 2660 2661 2662 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2663 Register obj = op->obj_opr()->as_register(); 2664 Register hdr = op->hdr_opr()->as_register(); 2665 Register lock = op->lock_opr()->as_register(); 2666 2667 // Obj may not be an oop. 2668 if (op->code() == lir_lock) { 2669 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); 2670 if (LockingMode != LM_MONITOR) { 2671 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2672 // Add debug info for NullPointerException only if one is possible. 2673 if (op->info() != nullptr) { 2674 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2675 explicit_null_check(obj, op->info()); 2676 } else { 2677 add_debug_info_for_null_check_here(op->info()); 2678 } 2679 } 2680 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); 2681 } else { 2682 // always do slow locking 2683 // note: The slow locking code could be inlined here, however if we use 2684 // slow locking, speed doesn't matter anyway and this solution is 2685 // simpler and requires less duplicated code - additionally, the 2686 // slow locking code is the same in either case which simplifies 2687 // debugging. 2688 if (op->info() != nullptr) { 2689 add_debug_info_for_null_check_here(op->info()); 2690 __ null_check(obj); 2691 } 2692 __ b(*op->stub()->entry()); 2693 } 2694 } else { 2695 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); 2696 if (LockingMode != LM_MONITOR) { 2697 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2698 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2699 } else { 2700 // always do slow unlocking 2701 // note: The slow unlocking code could be inlined here, however if we use 2702 // slow unlocking, speed doesn't matter anyway and this solution is 2703 // simpler and requires less duplicated code - additionally, the 2704 // slow unlocking code is the same in either case which simplifies 2705 // debugging. 2706 __ b(*op->stub()->entry()); 2707 } 2708 } 2709 __ bind(*op->stub()->continuation()); 2710 } 2711 2712 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2713 Register obj = op->obj()->as_pointer_register(); 2714 Register result = op->result_opr()->as_pointer_register(); 2715 2716 CodeEmitInfo* info = op->info(); 2717 if (info != nullptr) { 2718 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2719 explicit_null_check(obj, info); 2720 } else { 2721 add_debug_info_for_null_check_here(info); 2722 } 2723 } 2724 2725 if (UseCompressedClassPointers) { 2726 __ lwz(result, oopDesc::klass_offset_in_bytes(), obj); 2727 __ decode_klass_not_null(result); 2728 } else { 2729 __ ld(result, oopDesc::klass_offset_in_bytes(), obj); 2730 } 2731 } 2732 2733 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2734 ciMethod* method = op->profiled_method(); 2735 int bci = op->profiled_bci(); 2736 ciMethod* callee = op->profiled_callee(); 2737 2738 // Update counter for all call types. 2739 ciMethodData* md = method->method_data_or_null(); 2740 assert(md != nullptr, "Sanity"); 2741 ciProfileData* data = md->bci_to_data(bci); 2742 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2743 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2744 Register mdo = op->mdo()->as_register(); 2745 #ifdef _LP64 2746 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2747 Register tmp1 = op->tmp1()->as_register_lo(); 2748 #else 2749 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); 2750 Register tmp1 = op->tmp1()->as_register(); 2751 #endif 2752 metadata2reg(md->constant_encoding(), mdo); 2753 int mdo_offset_bias = 0; 2754 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) + 2755 data->size_in_bytes())) { 2756 // The offset is large so bias the mdo by the base of the slot so 2757 // that the ld can use simm16s to reference the slots of the data. 2758 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); 2759 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2760 } 2761 2762 // Perform additional virtual call profiling for invokevirtual and 2763 // invokeinterface bytecodes 2764 if (op->should_profile_receiver_type()) { 2765 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2766 Register recv = op->recv()->as_register(); 2767 assert_different_registers(mdo, tmp1, recv); 2768 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2769 ciKlass* known_klass = op->known_holder(); 2770 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2771 // We know the type that will be seen at this call site; we can 2772 // statically update the MethodData* rather than needing to do 2773 // dynamic tests on the receiver type. 2774 2775 // NOTE: we should probably put a lock around this search to 2776 // avoid collisions by concurrent compilations. 2777 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2778 uint i; 2779 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2780 ciKlass* receiver = vc_data->receiver(i); 2781 if (known_klass->equals(receiver)) { 2782 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2783 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2784 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2785 return; 2786 } 2787 } 2788 2789 // Receiver type not found in profile data; select an empty slot. 2790 2791 // Note that this is less efficient than it should be because it 2792 // always does a write to the receiver part of the 2793 // VirtualCallData rather than just the first time. 2794 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2795 ciKlass* receiver = vc_data->receiver(i); 2796 if (receiver == nullptr) { 2797 metadata2reg(known_klass->constant_encoding(), tmp1); 2798 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo); 2799 2800 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2801 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2802 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2803 return; 2804 } 2805 } 2806 } else { 2807 __ load_klass(recv, recv); 2808 Label update_done; 2809 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); 2810 // Receiver did not match any saved receiver and there is no empty row for it. 2811 // Increment total counter to indicate polymorphic case. 2812 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2813 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2814 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2815 2816 __ bind(update_done); 2817 } 2818 } else { 2819 // Static call 2820 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2821 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2822 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2823 } 2824 } 2825 2826 2827 void LIR_Assembler::align_backward_branch_target() { 2828 __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary. 2829 } 2830 2831 2832 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2833 Unimplemented(); 2834 } 2835 2836 2837 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2838 // tmp must be unused 2839 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2840 assert(left->is_register(), "can only handle registers"); 2841 2842 if (left->is_single_cpu()) { 2843 __ neg(dest->as_register(), left->as_register()); 2844 } else if (left->is_single_fpu()) { 2845 __ fneg(dest->as_float_reg(), left->as_float_reg()); 2846 } else if (left->is_double_fpu()) { 2847 __ fneg(dest->as_double_reg(), left->as_double_reg()); 2848 } else { 2849 assert (left->is_double_cpu(), "Must be a long"); 2850 __ neg(dest->as_register_lo(), left->as_register_lo()); 2851 } 2852 } 2853 2854 2855 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2856 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2857 // Stubs: Called via rt_call, but dest is a stub address (no function descriptor). 2858 if (dest == Runtime1::entry_for(C1StubId::register_finalizer_id) || 2859 dest == Runtime1::entry_for(C1StubId::new_multi_array_id )) { 2860 //__ load_const_optimized(R0, dest); 2861 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest)); 2862 __ mtctr(R0); 2863 __ bctrl(); 2864 assert(info != nullptr, "sanity"); 2865 add_call_info_here(info); 2866 __ post_call_nop(); 2867 return; 2868 } 2869 2870 __ call_c(dest, relocInfo::runtime_call_type); 2871 if (info != nullptr) { 2872 add_call_info_here(info); 2873 } 2874 assert(__ last_calls_return_pc() == __ pc(), "pcn not at return pc"); 2875 __ post_call_nop(); 2876 } 2877 2878 2879 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2880 ShouldNotReachHere(); // Not needed on _LP64. 2881 } 2882 2883 void LIR_Assembler::membar() { 2884 __ fence(); 2885 } 2886 2887 void LIR_Assembler::membar_acquire() { 2888 __ acquire(); 2889 } 2890 2891 void LIR_Assembler::membar_release() { 2892 __ release(); 2893 } 2894 2895 void LIR_Assembler::membar_loadload() { 2896 __ membar(Assembler::LoadLoad); 2897 } 2898 2899 void LIR_Assembler::membar_storestore() { 2900 __ membar(Assembler::StoreStore); 2901 } 2902 2903 void LIR_Assembler::membar_loadstore() { 2904 __ membar(Assembler::LoadStore); 2905 } 2906 2907 void LIR_Assembler::membar_storeload() { 2908 __ membar(Assembler::StoreLoad); 2909 } 2910 2911 void LIR_Assembler::on_spin_wait() { 2912 Unimplemented(); 2913 } 2914 2915 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2916 LIR_Address* addr = addr_opr->as_address_ptr(); 2917 assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform"); 2918 2919 if (addr->index()->is_illegal()) { 2920 if (patch_code != lir_patch_none) { 2921 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id); 2922 __ load_const32(R0, 0); // patchable int 2923 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), R0); 2924 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 2925 } else { 2926 __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp()); 2927 } 2928 } else { 2929 assert(patch_code == lir_patch_none, "Patch code not supported"); 2930 assert(addr->disp() == 0, "can't have both: index and disp"); 2931 __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register()); 2932 } 2933 } 2934 2935 2936 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2937 ShouldNotReachHere(); 2938 } 2939 2940 2941 #ifdef ASSERT 2942 // Emit run-time assertion. 2943 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2944 Unimplemented(); 2945 } 2946 #endif 2947 2948 2949 void LIR_Assembler::peephole(LIR_List* lir) { 2950 // Optimize instruction pairs before emitting. 2951 LIR_OpList* inst = lir->instructions_list(); 2952 for (int i = 1; i < inst->length(); i++) { 2953 LIR_Op* op = inst->at(i); 2954 2955 // 2 register-register-moves 2956 if (op->code() == lir_move) { 2957 LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(), 2958 res2 = ((LIR_Op1*)op)->result_opr(); 2959 if (in2->is_register() && res2->is_register()) { 2960 LIR_Op* prev = inst->at(i - 1); 2961 if (prev && prev->code() == lir_move) { 2962 LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(), 2963 res1 = ((LIR_Op1*)prev)->result_opr(); 2964 if (in1->is_same_register(res2) && in2->is_same_register(res1)) { 2965 inst->remove_at(i); 2966 } 2967 } 2968 } 2969 } 2970 2971 } 2972 return; 2973 } 2974 2975 2976 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2977 const LIR_Address *addr = src->as_address_ptr(); 2978 assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!"); 2979 const Register Rptr = addr->base()->as_pointer_register(), 2980 Rtmp = tmp->as_register(); 2981 Register Robj = noreg; 2982 if (data->is_oop()) { 2983 if (UseCompressedOops) { 2984 Robj = __ encode_heap_oop(Rtmp, data->as_register()); 2985 } else { 2986 Robj = data->as_register(); 2987 if (Robj == dest->as_register()) { // May happen with ZGC. 2988 __ mr(Rtmp, Robj); 2989 Robj = Rtmp; 2990 } 2991 } 2992 } 2993 2994 // There might be a volatile load before this Unsafe OP. 2995 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2996 __ sync(); 2997 } else { 2998 __ lwsync(); 2999 } 3000 3001 Label Lretry; 3002 __ bind(Lretry); 3003 3004 if (data->type() == T_INT) { 3005 const Register Rold = dest->as_register(), 3006 Rsrc = data->as_register(); 3007 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3008 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3009 if (code == lir_xadd) { 3010 __ add(Rtmp, Rsrc, Rold); 3011 __ stwcx_(Rtmp, Rptr); 3012 } else { 3013 __ stwcx_(Rsrc, Rptr); 3014 } 3015 } else if (data->is_oop()) { 3016 assert(code == lir_xchg, "xadd for oops"); 3017 const Register Rold = dest->as_register(); 3018 assert_different_registers(Rptr, Rold, Robj); 3019 if (UseCompressedOops) { 3020 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3021 __ stwcx_(Robj, Rptr); 3022 } else { 3023 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3024 __ stdcx_(Robj, Rptr); 3025 } 3026 } else if (data->type() == T_LONG) { 3027 const Register Rold = dest->as_register_lo(), 3028 Rsrc = data->as_register_lo(); 3029 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3030 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3031 if (code == lir_xadd) { 3032 __ add(Rtmp, Rsrc, Rold); 3033 __ stdcx_(Rtmp, Rptr); 3034 } else { 3035 __ stdcx_(Rsrc, Rptr); 3036 } 3037 } else { 3038 ShouldNotReachHere(); 3039 } 3040 3041 if (UseStaticBranchPredictionInCompareAndSwapPPC64) { 3042 __ bne_predict_not_taken(CCR0, Lretry); 3043 } else { 3044 __ bne( CCR0, Lretry); 3045 } 3046 3047 if (UseCompressedOops && data->is_oop()) { 3048 __ decode_heap_oop(dest->as_register()); 3049 } 3050 3051 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 3052 __ isync(); 3053 } else { 3054 __ sync(); 3055 } 3056 } 3057 3058 3059 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3060 Register obj = op->obj()->as_register(); 3061 Register tmp = op->tmp()->as_pointer_register(); 3062 LIR_Address* mdo_addr = op->mdp()->as_address_ptr(); 3063 ciKlass* exact_klass = op->exact_klass(); 3064 intptr_t current_klass = op->current_klass(); 3065 bool not_null = op->not_null(); 3066 bool no_conflict = op->no_conflict(); 3067 3068 Label Lupdate, Ldo_update, Ldone; 3069 3070 bool do_null = !not_null; 3071 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3072 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3073 3074 assert(do_null || do_update, "why are we here?"); 3075 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3076 3077 __ verify_oop(obj, FILE_AND_LINE); 3078 3079 if (do_null) { 3080 if (!TypeEntries::was_null_seen(current_klass)) { 3081 __ cmpdi(CCR0, obj, 0); 3082 __ bne(CCR0, Lupdate); 3083 __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3084 __ ori(R0, R0, TypeEntries::null_seen); 3085 if (do_update) { 3086 __ b(Ldo_update); 3087 } else { 3088 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3089 } 3090 } else { 3091 if (do_update) { 3092 __ cmpdi(CCR0, obj, 0); 3093 __ beq(CCR0, Ldone); 3094 } 3095 } 3096 #ifdef ASSERT 3097 } else { 3098 __ cmpdi(CCR0, obj, 0); 3099 __ bne(CCR0, Lupdate); 3100 __ stop("unexpected null obj"); 3101 #endif 3102 } 3103 3104 __ bind(Lupdate); 3105 if (do_update) { 3106 Label Lnext; 3107 const Register klass = R29_TOC; // kill and reload 3108 bool klass_reg_used = false; 3109 #ifdef ASSERT 3110 if (exact_klass != nullptr) { 3111 Label ok; 3112 klass_reg_used = true; 3113 __ load_klass(klass, obj); 3114 metadata2reg(exact_klass->constant_encoding(), R0); 3115 __ cmpd(CCR0, klass, R0); 3116 __ beq(CCR0, ok); 3117 __ stop("exact klass and actual klass differ"); 3118 __ bind(ok); 3119 } 3120 #endif 3121 3122 if (!no_conflict) { 3123 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3124 klass_reg_used = true; 3125 if (exact_klass != nullptr) { 3126 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3127 metadata2reg(exact_klass->constant_encoding(), klass); 3128 } else { 3129 __ load_klass(klass, obj); 3130 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj 3131 } 3132 3133 // Like InterpreterMacroAssembler::profile_obj_type 3134 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3135 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3136 __ cmpd(CCR1, R0, klass); 3137 // Klass seen before, nothing to do (regardless of unknown bit). 3138 //beq(CCR1, do_nothing); 3139 3140 __ andi_(R0, tmp, TypeEntries::type_unknown); 3141 // Already unknown. Nothing to do anymore. 3142 //bne(CCR0, do_nothing); 3143 __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 3144 __ beq(CCR0, Lnext); 3145 3146 if (TypeEntries::is_type_none(current_klass)) { 3147 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3148 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3149 __ beq(CCR0, Ldo_update); // First time here. Set profile type. 3150 } 3151 3152 } else { 3153 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3154 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3155 3156 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3157 __ andi_(R0, tmp, TypeEntries::type_unknown); 3158 // Already unknown. Nothing to do anymore. 3159 __ bne(CCR0, Lnext); 3160 } 3161 3162 // Different than before. Cannot keep accurate profile. 3163 __ ori(R0, tmp, TypeEntries::type_unknown); 3164 } else { 3165 // There's a single possible klass at this profile point 3166 assert(exact_klass != nullptr, "should be"); 3167 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3168 3169 if (TypeEntries::is_type_none(current_klass)) { 3170 klass_reg_used = true; 3171 metadata2reg(exact_klass->constant_encoding(), klass); 3172 3173 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3174 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3175 __ cmpd(CCR1, R0, klass); 3176 // Klass seen before, nothing to do (regardless of unknown bit). 3177 __ beq(CCR1, Lnext); 3178 #ifdef ASSERT 3179 { 3180 Label ok; 3181 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3182 __ beq(CCR0, ok); // First time here. 3183 3184 __ stop("unexpected profiling mismatch"); 3185 __ bind(ok); 3186 } 3187 #endif 3188 // First time here. Set profile type. 3189 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3190 } else { 3191 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3192 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3193 3194 // Already unknown. Nothing to do anymore. 3195 __ andi_(R0, tmp, TypeEntries::type_unknown); 3196 __ bne(CCR0, Lnext); 3197 3198 // Different than before. Cannot keep accurate profile. 3199 __ ori(R0, tmp, TypeEntries::type_unknown); 3200 } 3201 } 3202 3203 __ bind(Ldo_update); 3204 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3205 3206 __ bind(Lnext); 3207 if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit 3208 } 3209 __ bind(Ldone); 3210 } 3211 3212 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 3213 Unimplemented(); 3214 } 3215 3216 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3217 assert(op->crc()->is_single_cpu(), "crc must be register"); 3218 assert(op->val()->is_single_cpu(), "byte value must be register"); 3219 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3220 Register crc = op->crc()->as_register(); 3221 Register val = op->val()->as_register(); 3222 Register res = op->result_opr()->as_register(); 3223 3224 assert_different_registers(val, crc, res); 3225 3226 __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0); 3227 __ kernel_crc32_singleByteReg(crc, val, res, true); 3228 __ mr(res, crc); 3229 } 3230 3231 #undef __