1 /* 2 * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2025 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_Compilation.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "gc/shared/collectedHeap.hpp" 35 #include "memory/universe.hpp" 36 #include "nativeInst_ppc.hpp" 37 #include "oops/compressedOops.hpp" 38 #include "oops/objArrayKlass.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/os.inline.hpp" 41 #include "runtime/safepointMechanism.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/vm_version.hpp" 45 #include "utilities/macros.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 #define __ _masm-> 49 50 51 const ConditionRegister LIR_Assembler::BOOL_RESULT = CR5; 52 53 54 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 55 Unimplemented(); return false; // Currently not used on this platform. 56 } 57 58 59 LIR_Opr LIR_Assembler::receiverOpr() { 60 return FrameMap::R3_oop_opr; 61 } 62 63 64 LIR_Opr LIR_Assembler::osrBufferPointer() { 65 return FrameMap::R3_opr; 66 } 67 68 69 // This specifies the stack pointer decrement needed to build the frame. 70 int LIR_Assembler::initial_frame_size_in_bytes() const { 71 return in_bytes(frame_map()->framesize_in_bytes()); 72 } 73 74 75 // Inline cache check: the inline cached class is in inline_cache_reg; 76 // we fetch the class of the receiver and compare it with the cached class. 77 // If they do not match we jump to slow case. 78 int LIR_Assembler::check_icache() { 79 return __ ic_check(CodeEntryAlignment); 80 } 81 82 void LIR_Assembler::clinit_barrier(ciMethod* method) { 83 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 84 85 Label L_skip_barrier; 86 Register klass = R20; 87 88 metadata2reg(method->holder()->constant_encoding(), klass); 89 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 90 91 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 92 __ mtctr(klass); 93 __ bctr(); 94 95 __ bind(L_skip_barrier); 96 } 97 98 void LIR_Assembler::osr_entry() { 99 // On-stack-replacement entry sequence: 100 // 101 // 1. Create a new compiled activation. 102 // 2. Initialize local variables in the compiled activation. The expression 103 // stack must be empty at the osr_bci; it is not initialized. 104 // 3. Jump to the continuation address in compiled code to resume execution. 105 106 // OSR entry point 107 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 108 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 109 ValueStack* entry_state = osr_entry->end()->state(); 110 int number_of_locks = entry_state->locks_size(); 111 112 // Create a frame for the compiled activation. 113 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 114 115 // OSR buffer is 116 // 117 // locals[nlocals-1..0] 118 // monitors[number_of_locks-1..0] 119 // 120 // Locals is a direct copy of the interpreter frame so in the osr buffer 121 // the first slot in the local array is the last local from the interpreter 122 // and the last slot is local[0] (receiver) from the interpreter. 123 // 124 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 125 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 126 // in the interpreter frame (the method lock if a sync method). 127 128 // Initialize monitors in the compiled activation. 129 // R3: pointer to osr buffer 130 // 131 // All other registers are dead at this point and the locals will be 132 // copied into place by code emitted in the IR. 133 134 Register OSR_buf = osrBufferPointer()->as_register(); 135 { 136 assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 137 138 const int locals_space = BytesPerWord * method()->max_locals(); 139 int monitor_offset = locals_space + (2 * BytesPerWord) * (number_of_locks - 1); 140 bool use_OSR_bias = false; 141 142 if (!Assembler::is_simm16(monitor_offset + BytesPerWord) && number_of_locks > 0) { 143 // Offsets too large for ld instructions. Use bias. 144 __ add_const_optimized(OSR_buf, OSR_buf, locals_space); 145 monitor_offset -= locals_space; 146 use_OSR_bias = true; 147 } 148 149 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 150 // the OSR buffer using 2 word entries: first the lock and then 151 // the oop. 152 for (int i = 0; i < number_of_locks; i++) { 153 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 154 #ifdef ASSERT 155 // Verify the interpreter's monitor has a non-null object. 156 { 157 Label L; 158 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 159 __ cmpdi(CR0, R0, 0); 160 __ bne(CR0, L); 161 __ stop("locked object is null"); 162 __ bind(L); 163 } 164 #endif // ASSERT 165 // Copy the lock field into the compiled activation. 166 Address ml = frame_map()->address_for_monitor_lock(i), 167 mo = frame_map()->address_for_monitor_object(i); 168 assert(ml.index() == noreg && mo.index() == noreg, "sanity"); 169 __ ld(R0, slot_offset + 0, OSR_buf); 170 __ std(R0, ml); 171 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 172 __ std(R0, mo); 173 } 174 175 if (use_OSR_bias) { 176 // Restore. 177 __ sub_const_optimized(OSR_buf, OSR_buf, locals_space); 178 } 179 } 180 } 181 182 183 int LIR_Assembler::emit_exception_handler() { 184 // Generate code for the exception handler. 185 address handler_base = __ start_a_stub(exception_handler_size()); 186 187 if (handler_base == nullptr) { 188 // Not enough space left for the handler. 189 bailout("exception handler overflow"); 190 return -1; 191 } 192 193 int offset = code_offset(); 194 address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(C1StubId::handle_exception_from_callee_id)); 195 //__ load_const_optimized(R0, entry_point); 196 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point)); 197 __ mtctr(R0); 198 __ bctr(); 199 200 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 201 __ end_a_stub(); 202 203 return offset; 204 } 205 206 207 // Emit the code to remove the frame from the stack in the exception 208 // unwind path. 209 int LIR_Assembler::emit_unwind_handler() { 210 _masm->block_comment("Unwind handler"); 211 212 int offset = code_offset(); 213 bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes(); 214 const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31; 215 216 // Fetch the exception from TLS and clear out exception related thread state. 217 __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 218 __ li(R0, 0); 219 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 220 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 221 222 __ bind(_unwind_handler_entry); 223 __ verify_not_null_oop(Rexception); 224 if (preserve_exception) { __ mr(Rexception_save, Rexception); } 225 226 // Perform needed unlocking 227 MonitorExitStub* stub = nullptr; 228 if (method()->is_synchronized()) { 229 monitor_address(0, FrameMap::R4_opr); 230 stub = new MonitorExitStub(FrameMap::R4_opr, true, 0); 231 if (LockingMode == LM_MONITOR) { 232 __ b(*stub->entry()); 233 } else { 234 __ unlock_object(R5, R6, R4, *stub->entry()); 235 } 236 __ bind(*stub->continuation()); 237 } 238 239 if (compilation()->env()->dtrace_method_probes()) { 240 Unimplemented(); 241 } 242 243 // Dispatch to the unwind logic. 244 address unwind_stub = Runtime1::entry_for(C1StubId::unwind_exception_id); 245 //__ load_const_optimized(R0, unwind_stub); 246 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub)); 247 if (preserve_exception) { __ mr(Rexception, Rexception_save); } 248 __ mtctr(R0); 249 __ bctr(); 250 251 // Emit the slow path assembly. 252 if (stub != nullptr) { 253 stub->emit_code(this); 254 } 255 256 return offset; 257 } 258 259 260 int LIR_Assembler::emit_deopt_handler() { 261 // Generate code for deopt handler. 262 address handler_base = __ start_a_stub(deopt_handler_size()); 263 264 if (handler_base == nullptr) { 265 // Not enough space left for the handler. 266 bailout("deopt handler overflow"); 267 return -1; 268 } 269 270 int offset = code_offset(); 271 __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type); 272 273 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 274 __ end_a_stub(); 275 276 return offset; 277 } 278 279 280 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 281 if (o == nullptr) { 282 __ li(reg, 0); 283 } else { 284 AddressLiteral addrlit = __ constant_oop_address(o); 285 __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg); 286 } 287 } 288 289 290 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 291 // Allocate a new index in table to hold the object once it's been patched. 292 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr); 293 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 294 295 AddressLiteral addrlit((address)nullptr, oop_Relocation::spec(oop_index)); 296 __ load_const(reg, addrlit, R0); 297 298 patching_epilog(patch, lir_patch_normal, reg, info); 299 } 300 301 302 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) { 303 AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation) 304 __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg); 305 } 306 307 308 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 309 // Allocate a new index in table to hold the klass once it's been patched. 310 int index = __ oop_recorder()->allocate_metadata_index(nullptr); 311 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 312 313 AddressLiteral addrlit((address)nullptr, metadata_Relocation::spec(index)); 314 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 315 __ load_const(reg, addrlit, R0); 316 317 patching_epilog(patch, lir_patch_normal, reg, info); 318 } 319 320 321 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 322 const bool is_int = result->is_single_cpu(); 323 Register Rdividend = is_int ? left->as_register() : left->as_register_lo(); 324 Register Rdivisor = noreg; 325 Register Rscratch = temp->as_register(); 326 Register Rresult = is_int ? result->as_register() : result->as_register_lo(); 327 long divisor = -1; 328 329 if (right->is_register()) { 330 Rdivisor = is_int ? right->as_register() : right->as_register_lo(); 331 } else { 332 divisor = is_int ? right->as_constant_ptr()->as_jint() 333 : right->as_constant_ptr()->as_jlong(); 334 } 335 336 assert(Rdividend != Rscratch, ""); 337 assert(Rdivisor != Rscratch, ""); 338 assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv"); 339 340 if (Rdivisor == noreg) { 341 if (divisor == 1) { // stupid, but can happen 342 if (code == lir_idiv) { 343 __ mr_if_needed(Rresult, Rdividend); 344 } else { 345 __ li(Rresult, 0); 346 } 347 348 } else if (is_power_of_2(divisor)) { 349 // Convert division by a power of two into some shifts and logical operations. 350 int log2 = log2i_exact(divisor); 351 352 // Round towards 0. 353 if (divisor == 2) { 354 if (is_int) { 355 __ srwi(Rscratch, Rdividend, 31); 356 } else { 357 __ srdi(Rscratch, Rdividend, 63); 358 } 359 } else { 360 if (is_int) { 361 __ srawi(Rscratch, Rdividend, 31); 362 } else { 363 __ sradi(Rscratch, Rdividend, 63); 364 } 365 __ clrldi(Rscratch, Rscratch, 64-log2); 366 } 367 __ add(Rscratch, Rdividend, Rscratch); 368 369 if (code == lir_idiv) { 370 if (is_int) { 371 __ srawi(Rresult, Rscratch, log2); 372 } else { 373 __ sradi(Rresult, Rscratch, log2); 374 } 375 } else { // lir_irem 376 __ clrrdi(Rscratch, Rscratch, log2); 377 __ sub(Rresult, Rdividend, Rscratch); 378 } 379 380 } else if (divisor == -1) { 381 if (code == lir_idiv) { 382 __ neg(Rresult, Rdividend); 383 } else { 384 __ li(Rresult, 0); 385 } 386 387 } else { 388 __ load_const_optimized(Rscratch, divisor); 389 if (code == lir_idiv) { 390 if (is_int) { 391 __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 392 } else { 393 __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 394 } 395 } else { 396 assert(Rscratch != R0, "need both"); 397 if (is_int) { 398 __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1. 399 __ mullw(Rscratch, R0, Rscratch); 400 } else { 401 __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1. 402 __ mulld(Rscratch, R0, Rscratch); 403 } 404 __ sub(Rresult, Rdividend, Rscratch); 405 } 406 407 } 408 return; 409 } 410 411 Label regular, done; 412 if (is_int) { 413 __ cmpwi(CR0, Rdivisor, -1); 414 } else { 415 __ cmpdi(CR0, Rdivisor, -1); 416 } 417 __ bne(CR0, regular); 418 if (code == lir_idiv) { 419 __ neg(Rresult, Rdividend); 420 __ b(done); 421 __ bind(regular); 422 if (is_int) { 423 __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 424 } else { 425 __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 426 } 427 } else { // lir_irem 428 __ li(Rresult, 0); 429 __ b(done); 430 __ bind(regular); 431 if (is_int) { 432 __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 433 __ mullw(Rscratch, Rscratch, Rdivisor); 434 } else { 435 __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 436 __ mulld(Rscratch, Rscratch, Rdivisor); 437 } 438 __ sub(Rresult, Rdividend, Rscratch); 439 } 440 __ bind(done); 441 } 442 443 444 void LIR_Assembler::emit_op3(LIR_Op3* op) { 445 switch (op->code()) { 446 case lir_idiv: 447 case lir_irem: 448 arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), 449 op->result_opr(), op->info()); 450 break; 451 case lir_fmad: 452 __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), 453 op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); 454 break; 455 case lir_fmaf: 456 __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), 457 op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); 458 break; 459 default: ShouldNotReachHere(); break; 460 } 461 } 462 463 464 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 465 #ifdef ASSERT 466 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 467 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 468 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 469 assert(op->info() == nullptr, "shouldn't have CodeEmitInfo"); 470 #endif 471 472 Label *L = op->label(); 473 if (op->cond() == lir_cond_always) { 474 __ b(*L); 475 } else { 476 Label done; 477 bool is_unordered = false; 478 if (op->code() == lir_cond_float_branch) { 479 assert(op->ublock() != nullptr, "must have unordered successor"); 480 is_unordered = true; 481 } else { 482 assert(op->code() == lir_branch, "just checking"); 483 } 484 485 bool positive = false; 486 Assembler::Condition cond = Assembler::equal; 487 switch (op->cond()) { 488 case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break; 489 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break; 490 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 491 case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 492 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 493 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 494 case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 495 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 496 default: ShouldNotReachHere(); 497 } 498 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 499 int bi = Assembler::bi0(BOOL_RESULT, cond); 500 if (is_unordered) { 501 if (positive) { 502 if (op->ublock() == op->block()) { 503 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L); 504 } 505 } else { 506 if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); } 507 } 508 } 509 __ bc_far_optimized(bo, bi, *L); 510 __ bind(done); 511 } 512 } 513 514 515 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 516 Bytecodes::Code code = op->bytecode(); 517 LIR_Opr src = op->in_opr(), 518 dst = op->result_opr(); 519 520 switch(code) { 521 case Bytecodes::_i2l: { 522 __ extsw(dst->as_register_lo(), src->as_register()); 523 break; 524 } 525 case Bytecodes::_l2i: { 526 __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage 527 break; 528 } 529 case Bytecodes::_i2b: { 530 __ extsb(dst->as_register(), src->as_register()); 531 break; 532 } 533 case Bytecodes::_i2c: { 534 __ clrldi(dst->as_register(), src->as_register(), 64-16); 535 break; 536 } 537 case Bytecodes::_i2s: { 538 __ extsh(dst->as_register(), src->as_register()); 539 break; 540 } 541 case Bytecodes::_i2d:{ 542 FloatRegister rdst = dst->as_double_reg(); 543 // move src to dst register 544 __ mtfprwa(rdst, src->as_register()); 545 __ fcfid(rdst, rdst); 546 break; 547 } 548 case Bytecodes::_l2d: { 549 FloatRegister rdst = dst->as_double_reg(); 550 // move src to dst register 551 __ mtfprd(rdst, src->as_register_lo()); 552 __ fcfid(rdst, rdst); 553 break; 554 } 555 case Bytecodes::_i2f:{ 556 FloatRegister rdst = dst->as_float_reg(); 557 // move src to dst register 558 __ mtfprwa(rdst, src->as_register()); 559 __ fcfids(rdst, rdst); 560 break; 561 } 562 case Bytecodes::_l2f: { 563 FloatRegister rdst = dst->as_float_reg(); 564 // move src to dst register 565 __ mtfprd(rdst, src->as_register_lo()); 566 __ fcfids(rdst, rdst); 567 break; 568 } 569 case Bytecodes::_f2d: { 570 __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg()); 571 break; 572 } 573 case Bytecodes::_d2f: { 574 __ frsp(dst->as_float_reg(), src->as_double_reg()); 575 break; 576 } 577 case Bytecodes::_d2i: 578 case Bytecodes::_f2i: { 579 FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg(); 580 Label L; 581 // Result must be 0 if value is NaN; test by comparing value to itself. 582 __ fcmpu(CR0, rsrc, rsrc); 583 __ li(dst->as_register(), 0); 584 __ bso(CR0, L); 585 __ fctiwz(rsrc, rsrc); // USE_KILL 586 __ mffprd(dst->as_register(), rsrc); 587 __ bind(L); 588 break; 589 } 590 case Bytecodes::_d2l: 591 case Bytecodes::_f2l: { 592 FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg(); 593 Label L; 594 // Result must be 0 if value is NaN; test by comparing value to itself. 595 __ fcmpu(CR0, rsrc, rsrc); 596 __ li(dst->as_register_lo(), 0); 597 __ bso(CR0, L); 598 __ fctidz(rsrc, rsrc); // USE_KILL 599 __ mffprd(dst->as_register_lo(), rsrc); 600 __ bind(L); 601 break; 602 } 603 604 default: ShouldNotReachHere(); 605 } 606 } 607 608 609 void LIR_Assembler::align_call(LIR_Code) { 610 // do nothing since all instructions are word aligned on ppc 611 } 612 613 614 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) { 615 int start_offset = __ offset(); 616 // Put the entry point as a constant into the constant pool. 617 const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none); 618 if (entry_point_toc_addr == nullptr) { 619 bailout("const section overflow"); 620 return false; 621 } 622 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 623 624 // Emit the trampoline stub which will be related to the branch-and-link below. 625 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc); 626 if (!stub) { 627 bailout("no space for trampoline stub"); 628 return false; 629 } 630 return true; 631 } 632 633 634 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 635 assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype"); 636 637 bool success = emit_trampoline_stub_for_call(op->addr()); 638 if (!success) { return; } 639 640 __ relocate(rtype); 641 // Note: At this point we do not have the address of the trampoline 642 // stub, and the entry point might be too far away for bl, so __ pc() 643 // serves as dummy and the bl will be patched later. 644 __ code()->set_insts_mark(); 645 __ bl(__ pc()); 646 add_call_info(code_offset(), op->info()); 647 __ post_call_nop(); 648 } 649 650 651 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 652 __ calculate_address_from_global_toc(R2_TOC, __ method_toc()); 653 654 // Virtual call relocation will point to ic load. 655 address virtual_call_meta_addr = __ pc(); 656 // Load a clear inline cache. 657 AddressLiteral empty_ic((address) Universe::non_oop_word()); 658 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC); 659 if (!success) { 660 bailout("const section overflow"); 661 return; 662 } 663 // Call to fixup routine. Fixup routine uses ScopeDesc info 664 // to determine who we intended to call. 665 __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr)); 666 667 success = emit_trampoline_stub_for_call(op->addr(), R2_TOC); 668 if (!success) { return; } 669 670 // Note: At this point we do not have the address of the trampoline 671 // stub, and the entry point might be too far away for bl, so __ pc() 672 // serves as dummy and the bl will be patched later. 673 __ bl(__ pc()); 674 add_call_info(code_offset(), op->info()); 675 __ post_call_nop(); 676 } 677 678 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) { 679 ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info); 680 __ null_check(addr, stub->entry()); 681 append_code_stub(stub); 682 } 683 684 685 // Attention: caller must encode oop if needed 686 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide) { 687 int store_offset; 688 if (!Assembler::is_simm16(offset)) { 689 // For offsets larger than a simm16 we setup the offset. 690 assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case"); 691 __ load_const_optimized(R0, offset); 692 store_offset = store(from_reg, base, R0, type, wide); 693 } else { 694 store_offset = code_offset(); 695 switch (type) { 696 case T_BOOLEAN: // fall through 697 case T_BYTE : __ stb(from_reg->as_register(), offset, base); break; 698 case T_CHAR : 699 case T_SHORT : __ sth(from_reg->as_register(), offset, base); break; 700 case T_INT : __ stw(from_reg->as_register(), offset, base); break; 701 case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break; 702 case T_ADDRESS: 703 case T_METADATA: __ std(from_reg->as_register(), offset, base); break; 704 case T_ARRAY : // fall through 705 case T_OBJECT: 706 { 707 if (UseCompressedOops && !wide) { 708 // Encoding done in caller 709 __ stw(from_reg->as_register(), offset, base); 710 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); 711 } else { 712 __ std(from_reg->as_register(), offset, base); 713 if (VerifyOops) { 714 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 715 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 716 } 717 } 718 break; 719 } 720 case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break; 721 case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break; 722 default : ShouldNotReachHere(); 723 } 724 } 725 return store_offset; 726 } 727 728 729 // Attention: caller must encode oop if needed 730 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { 731 int store_offset = code_offset(); 732 switch (type) { 733 case T_BOOLEAN: // fall through 734 case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break; 735 case T_CHAR : 736 case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break; 737 case T_INT : __ stwx(from_reg->as_register(), base, disp); break; 738 case T_LONG : 739 #ifdef _LP64 740 __ stdx(from_reg->as_register_lo(), base, disp); 741 #else 742 Unimplemented(); 743 #endif 744 break; 745 case T_ADDRESS: 746 __ stdx(from_reg->as_register(), base, disp); 747 break; 748 case T_ARRAY : // fall through 749 case T_OBJECT: 750 { 751 if (UseCompressedOops && !wide) { 752 // Encoding done in caller. 753 __ stwx(from_reg->as_register(), base, disp); 754 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); // kills R0 755 } else { 756 __ stdx(from_reg->as_register(), base, disp); 757 if (VerifyOops) { 758 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 759 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 760 } 761 } 762 break; 763 } 764 case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break; 765 case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break; 766 default : ShouldNotReachHere(); 767 } 768 return store_offset; 769 } 770 771 772 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide) { 773 int load_offset; 774 if (!Assembler::is_simm16(offset)) { 775 // For offsets larger than a simm16 we setup the offset. 776 __ load_const_optimized(R0, offset); 777 load_offset = load(base, R0, to_reg, type, wide); 778 } else { 779 load_offset = code_offset(); 780 switch(type) { 781 case T_BOOLEAN: // fall through 782 case T_BYTE : __ lbz(to_reg->as_register(), offset, base); 783 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 784 case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break; 785 case T_SHORT : __ lha(to_reg->as_register(), offset, base); break; 786 case T_INT : __ lwa(to_reg->as_register(), offset, base); break; 787 case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break; 788 case T_METADATA: __ ld(to_reg->as_register(), offset, base); break; 789 case T_ADDRESS: 790 __ ld(to_reg->as_register(), offset, base); 791 break; 792 case T_ARRAY : // fall through 793 case T_OBJECT: 794 { 795 if (UseCompressedOops && !wide) { 796 __ lwz(to_reg->as_register(), offset, base); 797 __ decode_heap_oop(to_reg->as_register()); 798 } else { 799 __ ld(to_reg->as_register(), offset, base); 800 } 801 break; 802 } 803 case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break; 804 case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break; 805 default : ShouldNotReachHere(); 806 } 807 } 808 return load_offset; 809 } 810 811 812 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { 813 int load_offset = code_offset(); 814 switch(type) { 815 case T_BOOLEAN: // fall through 816 case T_BYTE : __ lbzx(to_reg->as_register(), base, disp); 817 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 818 case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break; 819 case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break; 820 case T_INT : __ lwax(to_reg->as_register(), base, disp); break; 821 case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break; 822 case T_ARRAY : // fall through 823 case T_OBJECT: 824 { 825 if (UseCompressedOops && !wide) { 826 __ lwzx(to_reg->as_register(), base, disp); 827 __ decode_heap_oop(to_reg->as_register()); 828 } else { 829 __ ldx(to_reg->as_register(), base, disp); 830 } 831 break; 832 } 833 case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break; 834 case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break; 835 case T_LONG : 836 #ifdef _LP64 837 __ ldx(to_reg->as_register_lo(), base, disp); 838 #else 839 Unimplemented(); 840 #endif 841 break; 842 default : ShouldNotReachHere(); 843 } 844 return load_offset; 845 } 846 847 848 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 849 LIR_Const* c = src->as_constant_ptr(); 850 Register src_reg = R0; 851 switch (c->type()) { 852 case T_INT: 853 case T_FLOAT: { 854 int value = c->as_jint_bits(); 855 __ load_const_optimized(src_reg, value); 856 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 857 __ stw(src_reg, addr); 858 break; 859 } 860 case T_ADDRESS: { 861 int value = c->as_jint_bits(); 862 __ load_const_optimized(src_reg, value); 863 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 864 __ std(src_reg, addr); 865 break; 866 } 867 case T_OBJECT: { 868 jobject2reg(c->as_jobject(), src_reg); 869 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 870 __ std(src_reg, addr); 871 break; 872 } 873 case T_LONG: 874 case T_DOUBLE: { 875 int value = c->as_jlong_bits(); 876 __ load_const_optimized(src_reg, value); 877 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); 878 __ std(src_reg, addr); 879 break; 880 } 881 default: 882 Unimplemented(); 883 } 884 } 885 886 887 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 888 LIR_Const* c = src->as_constant_ptr(); 889 LIR_Address* addr = dest->as_address_ptr(); 890 Register base = addr->base()->as_pointer_register(); 891 LIR_Opr tmp = LIR_OprFact::illegalOpr; 892 int offset = -1; 893 // Null check for large offsets in LIRGenerator::do_StoreField. 894 bool needs_explicit_null_check = !ImplicitNullChecks; 895 896 if (info != nullptr && needs_explicit_null_check) { 897 explicit_null_check(base, info); 898 } 899 900 switch (c->type()) { 901 case T_FLOAT: type = T_INT; 902 case T_INT: 903 case T_ADDRESS: { 904 tmp = FrameMap::R0_opr; 905 __ load_const_optimized(tmp->as_register(), c->as_jint_bits()); 906 break; 907 } 908 case T_DOUBLE: type = T_LONG; 909 case T_LONG: { 910 tmp = FrameMap::R0_long_opr; 911 __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits()); 912 break; 913 } 914 case T_OBJECT: { 915 tmp = FrameMap::R0_opr; 916 if (UseCompressedOops && !wide && c->as_jobject() != nullptr) { 917 AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject()); 918 // Don't care about sign extend (will use stw). 919 __ lis(R0, 0); // Will get patched. 920 __ relocate(oop_addr.rspec(), /*compressed format*/ 1); 921 __ ori(R0, R0, 0); // Will get patched. 922 } else { 923 jobject2reg(c->as_jobject(), R0); 924 } 925 break; 926 } 927 default: 928 Unimplemented(); 929 } 930 931 // Handle either reg+reg or reg+disp address. 932 if (addr->index()->is_valid()) { 933 assert(addr->disp() == 0, "must be zero"); 934 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); 935 } else { 936 assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses"); 937 offset = store(tmp, base, addr->disp(), type, wide); 938 } 939 940 if (info != nullptr) { 941 assert(offset != -1, "offset should've been set"); 942 if (!needs_explicit_null_check) { 943 add_debug_info_for_null_check(offset, info); 944 } 945 } 946 } 947 948 949 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 950 LIR_Const* c = src->as_constant_ptr(); 951 LIR_Opr to_reg = dest; 952 953 switch (c->type()) { 954 case T_INT: { 955 assert(patch_code == lir_patch_none, "no patching handled here"); 956 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); 957 break; 958 } 959 case T_ADDRESS: { 960 assert(patch_code == lir_patch_none, "no patching handled here"); 961 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ... 962 break; 963 } 964 case T_LONG: { 965 assert(patch_code == lir_patch_none, "no patching handled here"); 966 __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0); 967 break; 968 } 969 970 case T_OBJECT: { 971 if (patch_code == lir_patch_none) { 972 jobject2reg(c->as_jobject(), to_reg->as_register()); 973 } else { 974 jobject2reg_with_patching(to_reg->as_register(), info); 975 } 976 break; 977 } 978 979 case T_METADATA: 980 { 981 if (patch_code == lir_patch_none) { 982 metadata2reg(c->as_metadata(), to_reg->as_register()); 983 } else { 984 klass2reg_with_patching(to_reg->as_register(), info); 985 } 986 } 987 break; 988 989 case T_FLOAT: 990 { 991 if (to_reg->is_single_fpu()) { 992 address const_addr = __ float_constant(c->as_jfloat()); 993 if (const_addr == nullptr) { 994 bailout("const section overflow"); 995 break; 996 } 997 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 998 __ relocate(rspec); 999 __ load_const(R0, const_addr); 1000 __ lfsx(to_reg->as_float_reg(), R0); 1001 } else { 1002 assert(to_reg->is_single_cpu(), "Must be a cpu register."); 1003 __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0); 1004 } 1005 } 1006 break; 1007 1008 case T_DOUBLE: 1009 { 1010 if (to_reg->is_double_fpu()) { 1011 address const_addr = __ double_constant(c->as_jdouble()); 1012 if (const_addr == nullptr) { 1013 bailout("const section overflow"); 1014 break; 1015 } 1016 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1017 __ relocate(rspec); 1018 __ load_const(R0, const_addr); 1019 __ lfdx(to_reg->as_double_reg(), R0); 1020 } else { 1021 assert(to_reg->is_double_cpu(), "Must be a long register."); 1022 __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0); 1023 } 1024 } 1025 break; 1026 1027 default: 1028 ShouldNotReachHere(); 1029 } 1030 } 1031 1032 1033 Address LIR_Assembler::as_Address(LIR_Address* addr) { 1034 Unimplemented(); return Address(); 1035 } 1036 1037 1038 inline RegisterOrConstant index_or_disp(LIR_Address* addr) { 1039 if (addr->index()->is_illegal()) { 1040 return (RegisterOrConstant)(addr->disp()); 1041 } else { 1042 return (RegisterOrConstant)(addr->index()->as_pointer_register()); 1043 } 1044 } 1045 1046 1047 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1048 const Register tmp = R0; 1049 switch (type) { 1050 case T_INT: 1051 case T_FLOAT: { 1052 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1053 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1054 __ lwz(tmp, from); 1055 __ stw(tmp, to); 1056 break; 1057 } 1058 case T_ADDRESS: 1059 case T_OBJECT: { 1060 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1061 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1062 __ ld(tmp, from); 1063 __ std(tmp, to); 1064 break; 1065 } 1066 case T_LONG: 1067 case T_DOUBLE: { 1068 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 1069 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 1070 __ ld(tmp, from); 1071 __ std(tmp, to); 1072 break; 1073 } 1074 1075 default: 1076 ShouldNotReachHere(); 1077 } 1078 } 1079 1080 1081 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 1082 Unimplemented(); return Address(); 1083 } 1084 1085 1086 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 1087 Unimplemented(); return Address(); 1088 } 1089 1090 1091 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, 1092 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1093 1094 assert(type != T_METADATA, "load of metadata ptr not supported"); 1095 LIR_Address* addr = src_opr->as_address_ptr(); 1096 LIR_Opr to_reg = dest; 1097 1098 Register src = addr->base()->as_pointer_register(); 1099 Register disp_reg = noreg; 1100 int disp_value = addr->disp(); 1101 bool needs_patching = (patch_code != lir_patch_none); 1102 // null check for large offsets in LIRGenerator::do_LoadField 1103 bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks; 1104 1105 if (info != nullptr && needs_explicit_null_check) { 1106 explicit_null_check(src, info); 1107 } 1108 1109 if (addr->base()->type() == T_OBJECT) { 1110 __ verify_oop(src, FILE_AND_LINE); 1111 } 1112 1113 PatchingStub* patch = nullptr; 1114 if (needs_patching) { 1115 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1116 assert(!to_reg->is_double_cpu() || 1117 patch_code == lir_patch_none || 1118 patch_code == lir_patch_normal, "patching doesn't match register"); 1119 } 1120 1121 if (addr->index()->is_illegal()) { 1122 if (!Assembler::is_simm16(disp_value)) { 1123 if (needs_patching) { 1124 __ load_const32(R0, 0); // patchable int 1125 } else { 1126 __ load_const_optimized(R0, disp_value); 1127 } 1128 disp_reg = R0; 1129 } 1130 } else { 1131 disp_reg = addr->index()->as_pointer_register(); 1132 assert(disp_value == 0, "can't handle 3 operand addresses"); 1133 } 1134 1135 // Remember the offset of the load. The patching_epilog must be done 1136 // before the call to add_debug_info, otherwise the PcDescs don't get 1137 // entered in increasing order. 1138 int offset; 1139 1140 if (disp_reg == noreg) { 1141 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1142 offset = load(src, disp_value, to_reg, type, wide); 1143 } else { 1144 offset = load(src, disp_reg, to_reg, type, wide); 1145 } 1146 1147 if (patch != nullptr) { 1148 patching_epilog(patch, patch_code, src, info); 1149 } 1150 if (info != nullptr && !needs_explicit_null_check) { 1151 add_debug_info_for_null_check(offset, info); 1152 } 1153 } 1154 1155 1156 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1157 Address addr; 1158 if (src->is_single_word()) { 1159 addr = frame_map()->address_for_slot(src->single_stack_ix()); 1160 } else if (src->is_double_word()) { 1161 addr = frame_map()->address_for_double_slot(src->double_stack_ix()); 1162 } 1163 1164 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/); 1165 } 1166 1167 1168 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type) { 1169 Address addr; 1170 if (dest->is_single_word()) { 1171 addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1172 } else if (dest->is_double_word()) { 1173 addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1174 } 1175 1176 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/); 1177 } 1178 1179 1180 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1181 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1182 if (from_reg->is_double_fpu()) { 1183 // double to double moves 1184 assert(to_reg->is_double_fpu(), "should match"); 1185 __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg()); 1186 } else { 1187 // float to float moves 1188 assert(to_reg->is_single_fpu(), "should match"); 1189 __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg()); 1190 } 1191 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1192 if (from_reg->is_double_cpu()) { 1193 __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1194 } else if (to_reg->is_double_cpu()) { 1195 // int to int moves 1196 __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register()); 1197 } else { 1198 // int to int moves 1199 __ mr_if_needed(to_reg->as_register(), from_reg->as_register()); 1200 } 1201 } else { 1202 ShouldNotReachHere(); 1203 } 1204 if (is_reference_type(to_reg->type())) { 1205 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1206 } 1207 } 1208 1209 1210 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, 1211 LIR_PatchCode patch_code, CodeEmitInfo* info, 1212 bool wide) { 1213 assert(type != T_METADATA, "store of metadata ptr not supported"); 1214 LIR_Address* addr = dest->as_address_ptr(); 1215 1216 Register src = addr->base()->as_pointer_register(); 1217 Register disp_reg = noreg; 1218 int disp_value = addr->disp(); 1219 bool needs_patching = (patch_code != lir_patch_none); 1220 bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide && 1221 CompressedOops::mode() != CompressedOops::UnscaledNarrowOop; 1222 bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value); 1223 bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29. 1224 // Null check for large offsets in LIRGenerator::do_StoreField. 1225 bool needs_explicit_null_check = !ImplicitNullChecks || use_R29; 1226 1227 if (info != nullptr && needs_explicit_null_check) { 1228 explicit_null_check(src, info); 1229 } 1230 1231 if (addr->base()->is_oop_register()) { 1232 __ verify_oop(src, FILE_AND_LINE); 1233 } 1234 1235 PatchingStub* patch = nullptr; 1236 if (needs_patching) { 1237 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1238 assert(!from_reg->is_double_cpu() || 1239 patch_code == lir_patch_none || 1240 patch_code == lir_patch_normal, "patching doesn't match register"); 1241 } 1242 1243 if (addr->index()->is_illegal()) { 1244 if (load_disp) { 1245 disp_reg = use_R29 ? R29_TOC : R0; 1246 if (needs_patching) { 1247 __ load_const32(disp_reg, 0); // patchable int 1248 } else { 1249 __ load_const_optimized(disp_reg, disp_value); 1250 } 1251 } 1252 } else { 1253 disp_reg = addr->index()->as_pointer_register(); 1254 assert(disp_value == 0, "can't handle 3 operand addresses"); 1255 } 1256 1257 // remember the offset of the store. The patching_epilog must be done 1258 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1259 // entered in increasing order. 1260 int offset; 1261 1262 if (compress_oop) { 1263 Register co = __ encode_heap_oop(R0, from_reg->as_register()); 1264 from_reg = FrameMap::as_opr(co); 1265 } 1266 1267 if (disp_reg == noreg) { 1268 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1269 offset = store(from_reg, src, disp_value, type, wide); 1270 } else { 1271 offset = store(from_reg, src, disp_reg, type, wide); 1272 } 1273 1274 if (use_R29) { 1275 __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit 1276 } 1277 1278 if (patch != nullptr) { 1279 patching_epilog(patch, patch_code, src, info); 1280 } 1281 1282 if (info != nullptr && !needs_explicit_null_check) { 1283 add_debug_info_for_null_check(offset, info); 1284 } 1285 } 1286 1287 1288 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1289 const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone(). 1290 const Register temp = R12; 1291 1292 // Pop the stack before the safepoint code. 1293 int frame_size = initial_frame_size_in_bytes(); 1294 if (Assembler::is_simm(frame_size, 16)) { 1295 __ addi(R1_SP, R1_SP, frame_size); 1296 } else { 1297 __ pop_frame(); 1298 } 1299 1300 // Restore return pc relative to callers' sp. 1301 __ ld(return_pc, _abi0(lr), R1_SP); 1302 // Move return pc to LR. 1303 __ mtlr(return_pc); 1304 1305 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1306 __ reserved_stack_check(return_pc); 1307 } 1308 1309 // We need to mark the code position where the load from the safepoint 1310 // polling page was emitted as relocInfo::poll_return_type here. 1311 if (!UseSIGTRAP) { 1312 code_stub->set_safepoint_offset(__ offset()); 1313 __ relocate(relocInfo::poll_return_type); 1314 } 1315 __ safepoint_poll(*code_stub->entry(), temp, true /* at_return */, true /* in_nmethod */); 1316 1317 // Return. 1318 __ blr(); 1319 } 1320 1321 1322 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1323 const Register poll_addr = tmp->as_register(); 1324 __ ld(poll_addr, in_bytes(JavaThread::polling_page_offset()), R16_thread); 1325 if (info != nullptr) { 1326 add_debug_info_for_branch(info); 1327 } 1328 int offset = __ offset(); 1329 __ relocate(relocInfo::poll_type); 1330 __ load_from_polling_page(poll_addr); 1331 1332 return offset; 1333 } 1334 1335 1336 void LIR_Assembler::emit_static_call_stub() { 1337 address call_pc = __ pc(); 1338 address stub = __ start_a_stub(static_call_stub_size()); 1339 if (stub == nullptr) { 1340 bailout("static call stub overflow"); 1341 return; 1342 } 1343 1344 // For java_to_interp stubs we use R11_scratch1 as scratch register 1345 // and in call trampoline stubs we use R12_scratch2. This way we 1346 // can distinguish them (see is_NativeCallTrampolineStub_at()). 1347 const Register reg_scratch = R11_scratch1; 1348 1349 // Create a static stub relocation which relates this stub 1350 // with the call instruction at insts_call_instruction_offset in the 1351 // instructions code-section. 1352 int start = __ offset(); 1353 __ relocate(static_stub_Relocation::spec(call_pc)); 1354 1355 // Now, create the stub's code: 1356 // - load the TOC 1357 // - load the inline cache oop from the constant pool 1358 // - load the call target from the constant pool 1359 // - call 1360 __ calculate_address_from_global_toc(reg_scratch, __ method_toc()); 1361 AddressLiteral ic = __ allocate_metadata_address((Metadata *)nullptr); 1362 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true); 1363 1364 if (ReoptimizeCallSequences) { 1365 __ b64_patchable((address)-1, relocInfo::none); 1366 } else { 1367 AddressLiteral a((address)-1); 1368 success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true); 1369 __ mtctr(reg_scratch); 1370 __ bctr(); 1371 } 1372 if (!success) { 1373 bailout("const section overflow"); 1374 return; 1375 } 1376 1377 assert(__ offset() - start <= static_call_stub_size(), "stub too big"); 1378 __ end_a_stub(); 1379 } 1380 1381 1382 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1383 bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual); 1384 if (opr1->is_single_fpu()) { 1385 __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg()); 1386 } else if (opr1->is_double_fpu()) { 1387 __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg()); 1388 } else if (opr1->is_single_cpu()) { 1389 if (opr2->is_constant()) { 1390 switch (opr2->as_constant_ptr()->type()) { 1391 case T_INT: 1392 { 1393 jint con = opr2->as_constant_ptr()->as_jint(); 1394 if (unsigned_comp) { 1395 if (Assembler::is_uimm(con, 16)) { 1396 __ cmplwi(BOOL_RESULT, opr1->as_register(), con); 1397 } else { 1398 __ load_const_optimized(R0, con); 1399 __ cmplw(BOOL_RESULT, opr1->as_register(), R0); 1400 } 1401 } else { 1402 if (Assembler::is_simm(con, 16)) { 1403 __ cmpwi(BOOL_RESULT, opr1->as_register(), con); 1404 } else { 1405 __ load_const_optimized(R0, con); 1406 __ cmpw(BOOL_RESULT, opr1->as_register(), R0); 1407 } 1408 } 1409 } 1410 break; 1411 1412 case T_OBJECT: 1413 // There are only equal/notequal comparisons on objects. 1414 { 1415 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1416 jobject con = opr2->as_constant_ptr()->as_jobject(); 1417 if (con == nullptr) { 1418 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1419 } else { 1420 jobject2reg(con, R0); 1421 __ cmpd(BOOL_RESULT, opr1->as_register(), R0); 1422 } 1423 } 1424 break; 1425 1426 case T_METADATA: 1427 // We only need, for now, comparison with null for metadata. 1428 { 1429 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1430 Metadata* p = opr2->as_constant_ptr()->as_metadata(); 1431 if (p == nullptr) { 1432 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1433 } else { 1434 ShouldNotReachHere(); 1435 } 1436 } 1437 break; 1438 1439 default: 1440 ShouldNotReachHere(); 1441 break; 1442 } 1443 } else { 1444 assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported"); 1445 if (is_reference_type(opr1->type())) { 1446 // There are only equal/notequal comparisons on objects. 1447 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1448 __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1449 } else { 1450 if (unsigned_comp) { 1451 __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1452 } else { 1453 __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1454 } 1455 } 1456 } 1457 } else if (opr1->is_double_cpu()) { 1458 if (opr2->is_constant()) { 1459 jlong con = opr2->as_constant_ptr()->as_jlong(); 1460 if (unsigned_comp) { 1461 if (Assembler::is_uimm(con, 16)) { 1462 __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con); 1463 } else { 1464 __ load_const_optimized(R0, con); 1465 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0); 1466 } 1467 } else { 1468 if (Assembler::is_simm(con, 16)) { 1469 __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con); 1470 } else { 1471 __ load_const_optimized(R0, con); 1472 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0); 1473 } 1474 } 1475 } else if (opr2->is_register()) { 1476 if (unsigned_comp) { 1477 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1478 } else { 1479 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1480 } 1481 } else { 1482 ShouldNotReachHere(); 1483 } 1484 } else { 1485 ShouldNotReachHere(); 1486 } 1487 } 1488 1489 1490 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1491 const Register Rdst = dst->as_register(); 1492 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1493 bool is_unordered_less = (code == lir_ucmp_fd2i); 1494 if (left->is_single_fpu()) { 1495 __ fcmpu(CR0, left->as_float_reg(), right->as_float_reg()); 1496 } else if (left->is_double_fpu()) { 1497 __ fcmpu(CR0, left->as_double_reg(), right->as_double_reg()); 1498 } else { 1499 ShouldNotReachHere(); 1500 } 1501 __ set_cmpu3(Rdst, is_unordered_less); // is_unordered_less ? -1 : 1 1502 } else if (code == lir_cmp_l2i) { 1503 __ cmpd(CR0, left->as_register_lo(), right->as_register_lo()); 1504 __ set_cmp3(Rdst); // set result as follows: <: -1, =: 0, >: 1 1505 } else { 1506 ShouldNotReachHere(); 1507 } 1508 } 1509 1510 1511 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) { 1512 if (src->is_constant()) { 1513 lasm->const2reg(src, dst, lir_patch_none, nullptr); 1514 } else if (src->is_register()) { 1515 lasm->reg2reg(src, dst); 1516 } else if (src->is_stack()) { 1517 lasm->stack2reg(src, dst, dst->type()); 1518 } else { 1519 ShouldNotReachHere(); 1520 } 1521 } 1522 1523 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1524 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1525 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on ppc"); 1526 1527 if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) { 1528 load_to_reg(this, opr1, result); // Condition doesn't matter. 1529 return; 1530 } 1531 1532 bool positive = false; 1533 Assembler::Condition cond = Assembler::equal; 1534 switch (condition) { 1535 case lir_cond_equal: positive = true ; cond = Assembler::equal ; break; 1536 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break; 1537 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 1538 case lir_cond_belowEqual: 1539 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 1540 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 1541 case lir_cond_aboveEqual: 1542 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 1543 default: ShouldNotReachHere(); 1544 } 1545 1546 if (result->is_cpu_register()) { 1547 bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register(); 1548 const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo(); 1549 1550 // We can use result_reg to load one operand if not already in register. 1551 Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg, 1552 second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg; 1553 1554 if (first != second) { 1555 if (!o1_is_reg) { 1556 load_to_reg(this, opr1, result); 1557 } 1558 1559 if (!o2_is_reg) { 1560 load_to_reg(this, opr2, result); 1561 } 1562 1563 __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second); 1564 return; 1565 } 1566 } // isel 1567 1568 load_to_reg(this, opr1, result); 1569 1570 Label skip; 1571 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1572 int bi = Assembler::bi0(BOOL_RESULT, cond); 1573 __ bc(bo, bi, skip); 1574 1575 load_to_reg(this, opr2, result); 1576 __ bind(skip); 1577 } 1578 1579 1580 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1581 CodeEmitInfo* info) { 1582 assert(info == nullptr, "unused on this code path"); 1583 assert(left->is_register(), "wrong items state"); 1584 assert(dest->is_register(), "wrong items state"); 1585 1586 if (right->is_register()) { 1587 if (dest->is_float_kind()) { 1588 1589 FloatRegister lreg, rreg, res; 1590 if (right->is_single_fpu()) { 1591 lreg = left->as_float_reg(); 1592 rreg = right->as_float_reg(); 1593 res = dest->as_float_reg(); 1594 switch (code) { 1595 case lir_add: __ fadds(res, lreg, rreg); break; 1596 case lir_sub: __ fsubs(res, lreg, rreg); break; 1597 case lir_mul: __ fmuls(res, lreg, rreg); break; 1598 case lir_div: __ fdivs(res, lreg, rreg); break; 1599 default: ShouldNotReachHere(); 1600 } 1601 } else { 1602 lreg = left->as_double_reg(); 1603 rreg = right->as_double_reg(); 1604 res = dest->as_double_reg(); 1605 switch (code) { 1606 case lir_add: __ fadd(res, lreg, rreg); break; 1607 case lir_sub: __ fsub(res, lreg, rreg); break; 1608 case lir_mul: __ fmul(res, lreg, rreg); break; 1609 case lir_div: __ fdiv(res, lreg, rreg); break; 1610 default: ShouldNotReachHere(); 1611 } 1612 } 1613 1614 } else if (dest->is_double_cpu()) { 1615 1616 Register dst_lo = dest->as_register_lo(); 1617 Register op1_lo = left->as_pointer_register(); 1618 Register op2_lo = right->as_pointer_register(); 1619 1620 switch (code) { 1621 case lir_add: __ add(dst_lo, op1_lo, op2_lo); break; 1622 case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break; 1623 case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break; 1624 default: ShouldNotReachHere(); 1625 } 1626 } else { 1627 assert (right->is_single_cpu(), "Just Checking"); 1628 1629 Register lreg = left->as_register(); 1630 Register res = dest->as_register(); 1631 Register rreg = right->as_register(); 1632 switch (code) { 1633 case lir_add: __ add (res, lreg, rreg); break; 1634 case lir_sub: __ sub (res, lreg, rreg); break; 1635 case lir_mul: __ mullw(res, lreg, rreg); break; 1636 default: ShouldNotReachHere(); 1637 } 1638 } 1639 } else { 1640 assert (right->is_constant(), "must be constant"); 1641 1642 if (dest->is_single_cpu()) { 1643 Register lreg = left->as_register(); 1644 Register res = dest->as_register(); 1645 int simm16 = right->as_constant_ptr()->as_jint(); 1646 1647 switch (code) { 1648 case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int 1649 simm16 = -simm16; 1650 case lir_add: if (res == lreg && simm16 == 0) break; 1651 __ addi(res, lreg, simm16); break; 1652 case lir_mul: if (res == lreg && simm16 == 1) break; 1653 __ mulli(res, lreg, simm16); break; 1654 default: ShouldNotReachHere(); 1655 } 1656 } else { 1657 Register lreg = left->as_pointer_register(); 1658 Register res = dest->as_register_lo(); 1659 long con = right->as_constant_ptr()->as_jlong(); 1660 assert(Assembler::is_simm16(con), "must be simm16"); 1661 1662 switch (code) { 1663 case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long 1664 con = -con; 1665 case lir_add: if (res == lreg && con == 0) break; 1666 __ addi(res, lreg, (int)con); break; 1667 case lir_mul: if (res == lreg && con == 1) break; 1668 __ mulli(res, lreg, (int)con); break; 1669 default: ShouldNotReachHere(); 1670 } 1671 } 1672 } 1673 } 1674 1675 1676 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 1677 switch (code) { 1678 case lir_sqrt: { 1679 __ fsqrt(dest->as_double_reg(), value->as_double_reg()); 1680 break; 1681 } 1682 case lir_abs: { 1683 __ fabs(dest->as_double_reg(), value->as_double_reg()); 1684 break; 1685 } 1686 case lir_f2hf: { 1687 __ f2hf(dest.as_register(), value.as_float_reg(), tmp.as_float_reg()); 1688 break; 1689 } 1690 case lir_hf2f: { 1691 __ hf2f(dest->as_float_reg(), value.as_register()); 1692 break; 1693 } 1694 default: { 1695 ShouldNotReachHere(); 1696 break; 1697 } 1698 } 1699 } 1700 1701 1702 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { 1703 if (right->is_constant()) { // see do_LogicOp 1704 long uimm; 1705 Register d, l; 1706 if (dest->is_single_cpu()) { 1707 uimm = right->as_constant_ptr()->as_jint(); 1708 d = dest->as_register(); 1709 l = left->as_register(); 1710 } else { 1711 uimm = right->as_constant_ptr()->as_jlong(); 1712 d = dest->as_register_lo(); 1713 l = left->as_register_lo(); 1714 } 1715 long uimms = (unsigned long)uimm >> 16, 1716 uimmss = (unsigned long)uimm >> 32; 1717 1718 switch (code) { 1719 case lir_logic_and: 1720 if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2(uimm)) { 1721 __ andi(d, l, uimm); // special cases 1722 } else if (uimms != 0) { __ andis_(d, l, uimms); } 1723 else { __ andi_(d, l, uimm); } 1724 break; 1725 1726 case lir_logic_or: 1727 if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); } 1728 else { __ ori(d, l, uimm); } 1729 break; 1730 1731 case lir_logic_xor: 1732 if (uimm == -1) { __ nand(d, l, l); } // special case 1733 else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); } 1734 else { __ xori(d, l, uimm); } 1735 break; 1736 1737 default: ShouldNotReachHere(); 1738 } 1739 } else { 1740 assert(right->is_register(), "right should be in register"); 1741 1742 if (dest->is_single_cpu()) { 1743 switch (code) { 1744 case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break; 1745 case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break; 1746 case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break; 1747 default: ShouldNotReachHere(); 1748 } 1749 } else { 1750 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : 1751 left->as_register_lo(); 1752 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : 1753 right->as_register_lo(); 1754 1755 switch (code) { 1756 case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break; 1757 case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break; 1758 case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break; 1759 default: ShouldNotReachHere(); 1760 } 1761 } 1762 } 1763 } 1764 1765 1766 int LIR_Assembler::shift_amount(BasicType t) { 1767 int elem_size = type2aelembytes(t); 1768 switch (elem_size) { 1769 case 1 : return 0; 1770 case 2 : return 1; 1771 case 4 : return 2; 1772 case 8 : return 3; 1773 } 1774 ShouldNotReachHere(); 1775 return -1; 1776 } 1777 1778 1779 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1780 info->add_register_oop(exceptionOop); 1781 1782 // Reuse the debug info from the safepoint poll for the throw op itself. 1783 address pc_for_athrow = __ pc(); 1784 int pc_for_athrow_offset = __ offset(); 1785 //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); 1786 //__ relocate(rspec); 1787 //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0); 1788 __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true); 1789 add_call_info(pc_for_athrow_offset, info); // for exception handler 1790 1791 address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? C1StubId::handle_exception_id 1792 : C1StubId::handle_exception_nofpu_id); 1793 //__ load_const_optimized(R0, stub); 1794 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); 1795 __ mtctr(R0); 1796 __ bctr(); 1797 } 1798 1799 1800 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1801 // Note: Not used with EnableDebuggingOnDemand. 1802 assert(exceptionOop->as_register() == R3, "should match"); 1803 __ b(_unwind_handler_entry); 1804 } 1805 1806 1807 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1808 Register src = op->src()->as_register(); 1809 Register dst = op->dst()->as_register(); 1810 Register src_pos = op->src_pos()->as_register(); 1811 Register dst_pos = op->dst_pos()->as_register(); 1812 Register length = op->length()->as_register(); 1813 Register tmp = op->tmp()->as_register(); 1814 Register tmp2 = R0; 1815 1816 int flags = op->flags(); 1817 ciArrayKlass* default_type = op->expected_type(); 1818 BasicType basic_type = (default_type != nullptr) ? default_type->element_type()->basic_type() : T_ILLEGAL; 1819 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1820 1821 // Set up the arraycopy stub information. 1822 ArrayCopyStub* stub = op->stub(); 1823 1824 // Always do stub if no type information is available. It's ok if 1825 // the known type isn't loaded since the code sanity checks 1826 // in debug mode and the type isn't required when we know the exact type 1827 // also check that the type is an array type. 1828 if (default_type == nullptr) { 1829 assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() && 1830 length->is_nonvolatile(), "must preserve"); 1831 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1832 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 1833 1834 // 3 parms are int. Convert to long. 1835 __ mr(R3_ARG1, src); 1836 __ extsw(R4_ARG2, src_pos); 1837 __ mr(R5_ARG3, dst); 1838 __ extsw(R6_ARG4, dst_pos); 1839 __ extsw(R7_ARG5, length); 1840 1841 #ifndef PRODUCT 1842 if (PrintC1Statistics) { 1843 address counter = (address)&Runtime1::_generic_arraycopystub_cnt; 1844 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 1845 __ lwz(R11_scratch1, simm16_offs, tmp); 1846 __ addi(R11_scratch1, R11_scratch1, 1); 1847 __ stw(R11_scratch1, simm16_offs, tmp); 1848 } 1849 #endif 1850 __ call_c(copyfunc_addr, relocInfo::runtime_call_type); 1851 1852 __ nand(tmp, R3_RET, R3_RET); 1853 __ subf(length, tmp, length); 1854 __ add(src_pos, tmp, src_pos); 1855 __ add(dst_pos, tmp, dst_pos); 1856 1857 __ cmpwi(CR0, R3_RET, 0); 1858 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CR0, Assembler::less), *stub->entry()); 1859 __ bind(*stub->continuation()); 1860 return; 1861 } 1862 1863 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 1864 Label cont, slow, copyfunc; 1865 1866 bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check | 1867 LIR_OpArrayCopy::dst_null_check | 1868 LIR_OpArrayCopy::src_pos_positive_check | 1869 LIR_OpArrayCopy::dst_pos_positive_check | 1870 LIR_OpArrayCopy::length_positive_check); 1871 1872 // Use only one conditional branch for simple checks. 1873 if (simple_check_flag_set) { 1874 ConditionRegister combined_check = CR1, tmp_check = CR1; 1875 1876 // Make sure src and dst are non-null. 1877 if (flags & LIR_OpArrayCopy::src_null_check) { 1878 __ cmpdi(combined_check, src, 0); 1879 tmp_check = CR0; 1880 } 1881 1882 if (flags & LIR_OpArrayCopy::dst_null_check) { 1883 __ cmpdi(tmp_check, dst, 0); 1884 if (tmp_check != combined_check) { 1885 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal); 1886 } 1887 tmp_check = CR0; 1888 } 1889 1890 // Clear combined_check.eq if not already used. 1891 if (tmp_check == combined_check) { 1892 __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal); 1893 tmp_check = CR0; 1894 } 1895 1896 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 1897 // Test src_pos register. 1898 __ cmpwi(tmp_check, src_pos, 0); 1899 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1900 } 1901 1902 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 1903 // Test dst_pos register. 1904 __ cmpwi(tmp_check, dst_pos, 0); 1905 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1906 } 1907 1908 if (flags & LIR_OpArrayCopy::length_positive_check) { 1909 // Make sure length isn't negative. 1910 __ cmpwi(tmp_check, length, 0); 1911 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1912 } 1913 1914 __ beq(combined_check, slow); 1915 } 1916 1917 // If the compiler was not able to prove that exact type of the source or the destination 1918 // of the arraycopy is an array type, check at runtime if the source or the destination is 1919 // an instance type. 1920 if (flags & LIR_OpArrayCopy::type_check) { 1921 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 1922 __ load_klass(tmp, dst); 1923 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1924 __ cmpwi(CR0, tmp2, Klass::_lh_neutral_value); 1925 __ bge(CR0, slow); 1926 } 1927 1928 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 1929 __ load_klass(tmp, src); 1930 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1931 __ cmpwi(CR0, tmp2, Klass::_lh_neutral_value); 1932 __ bge(CR0, slow); 1933 } 1934 } 1935 1936 // Higher 32bits must be null. 1937 __ extsw(length, length); 1938 1939 __ extsw(src_pos, src_pos); 1940 if (flags & LIR_OpArrayCopy::src_range_check) { 1941 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src); 1942 __ add(tmp, length, src_pos); 1943 __ cmpld(CR0, tmp2, tmp); 1944 __ ble(CR0, slow); 1945 } 1946 1947 __ extsw(dst_pos, dst_pos); 1948 if (flags & LIR_OpArrayCopy::dst_range_check) { 1949 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst); 1950 __ add(tmp, length, dst_pos); 1951 __ cmpld(CR0, tmp2, tmp); 1952 __ ble(CR0, slow); 1953 } 1954 1955 int shift = shift_amount(basic_type); 1956 1957 if (!(flags & LIR_OpArrayCopy::type_check)) { 1958 if (stub != nullptr) { 1959 __ b(cont); 1960 __ bind(slow); 1961 __ b(*stub->entry()); 1962 } 1963 } else { 1964 // We don't know the array types are compatible. 1965 if (basic_type != T_OBJECT) { 1966 // Simple test for basic type arrays. 1967 __ cmp_klasses_from_objects(CR0, src, dst, tmp, tmp2); 1968 __ beq(CR0, cont); 1969 } else { 1970 // For object arrays, if src is a sub class of dst then we can 1971 // safely do the copy. 1972 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 1973 1974 const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf 1975 assert_different_registers(tmp, tmp2, sub_klass, super_klass); 1976 1977 __ load_klass(sub_klass, src); 1978 __ load_klass(super_klass, dst); 1979 1980 __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2, 1981 &cont, copyfunc_addr != nullptr ? ©func : &slow, nullptr); 1982 1983 address slow_stc = Runtime1::entry_for(C1StubId::slow_subtype_check_id); 1984 //__ load_const_optimized(tmp, slow_stc, tmp2); 1985 __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false); 1986 __ mtctr(tmp); 1987 __ bctrl(); // sets CR0 1988 __ beq(CR0, cont); 1989 1990 if (copyfunc_addr != nullptr) { // Use stub if available. 1991 __ bind(copyfunc); 1992 // Src is not a sub class of dst so we have to do a 1993 // per-element check. 1994 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 1995 if ((flags & mask) != mask) { 1996 assert(flags & mask, "one of the two should be known to be an object array"); 1997 1998 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 1999 __ load_klass(tmp, src); 2000 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2001 __ load_klass(tmp, dst); 2002 } 2003 2004 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 2005 2006 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2007 __ load_const_optimized(tmp, objArray_lh); 2008 __ cmpw(CR0, tmp, tmp2); 2009 __ bne(CR0, slow); 2010 } 2011 2012 Register src_ptr = R3_ARG1; 2013 Register dst_ptr = R4_ARG2; 2014 Register len = R5_ARG3; 2015 Register chk_off = R6_ARG4; 2016 Register super_k = R7_ARG5; 2017 2018 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2019 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2020 if (shift == 0) { 2021 __ add(src_ptr, src_pos, src_ptr); 2022 __ add(dst_ptr, dst_pos, dst_ptr); 2023 } else { 2024 __ sldi(tmp, src_pos, shift); 2025 __ sldi(tmp2, dst_pos, shift); 2026 __ add(src_ptr, tmp, src_ptr); 2027 __ add(dst_ptr, tmp2, dst_ptr); 2028 } 2029 2030 __ load_klass(tmp, dst); 2031 __ mr(len, length); 2032 2033 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2034 __ ld(super_k, ek_offset, tmp); 2035 2036 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2037 __ lwz(chk_off, sco_offset, super_k); 2038 2039 __ call_c(copyfunc_addr, relocInfo::runtime_call_type); 2040 2041 #ifndef PRODUCT 2042 if (PrintC1Statistics) { 2043 Label failed; 2044 __ cmpwi(CR0, R3_RET, 0); 2045 __ bne(CR0, failed); 2046 address counter = (address)&Runtime1::_arraycopy_checkcast_cnt; 2047 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2048 __ lwz(R11_scratch1, simm16_offs, tmp); 2049 __ addi(R11_scratch1, R11_scratch1, 1); 2050 __ stw(R11_scratch1, simm16_offs, tmp); 2051 __ bind(failed); 2052 } 2053 #endif 2054 2055 __ nand(tmp, R3_RET, R3_RET); 2056 __ cmpwi(CR0, R3_RET, 0); 2057 __ beq(CR0, *stub->continuation()); 2058 2059 #ifndef PRODUCT 2060 if (PrintC1Statistics) { 2061 address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt; 2062 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2063 __ lwz(R11_scratch1, simm16_offs, tmp); 2064 __ addi(R11_scratch1, R11_scratch1, 1); 2065 __ stw(R11_scratch1, simm16_offs, tmp); 2066 } 2067 #endif 2068 2069 __ subf(length, tmp, length); 2070 __ add(src_pos, tmp, src_pos); 2071 __ add(dst_pos, tmp, dst_pos); 2072 } 2073 } 2074 __ bind(slow); 2075 __ b(*stub->entry()); 2076 } 2077 __ bind(cont); 2078 2079 #ifdef ASSERT 2080 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2081 // Sanity check the known type with the incoming class. For the 2082 // primitive case the types must match exactly with src.klass and 2083 // dst.klass each exactly matching the default type. For the 2084 // object array case, if no type check is needed then either the 2085 // dst type is exactly the expected type and the src type is a 2086 // subtype which we can't check or src is the same array as dst 2087 // but not necessarily exactly of type default_type. 2088 Label known_ok, halt; 2089 metadata2reg(default_type->constant_encoding(), tmp); 2090 __ cmp_klass(CR0, dst, tmp, R11_scratch1, R12_scratch2); 2091 if (basic_type != T_OBJECT) { 2092 __ bne(CR0, halt); 2093 __ cmp_klass(CR0, src, tmp, R11_scratch1, R12_scratch2); 2094 __ beq(CR0, known_ok); 2095 } else { 2096 __ beq(CR0, known_ok); 2097 __ cmpw(CR0, src, dst); 2098 __ beq(CR0, known_ok); 2099 } 2100 __ bind(halt); 2101 __ stop("incorrect type information in arraycopy"); 2102 __ bind(known_ok); 2103 } 2104 #endif 2105 2106 #ifndef PRODUCT 2107 if (PrintC1Statistics) { 2108 address counter = Runtime1::arraycopy_count_address(basic_type); 2109 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2110 __ lwz(R11_scratch1, simm16_offs, tmp); 2111 __ addi(R11_scratch1, R11_scratch1, 1); 2112 __ stw(R11_scratch1, simm16_offs, tmp); 2113 } 2114 #endif 2115 2116 Register src_ptr = R3_ARG1; 2117 Register dst_ptr = R4_ARG2; 2118 Register len = R5_ARG3; 2119 2120 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2121 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2122 if (shift == 0) { 2123 __ add(src_ptr, src_pos, src_ptr); 2124 __ add(dst_ptr, dst_pos, dst_ptr); 2125 } else { 2126 __ sldi(tmp, src_pos, shift); 2127 __ sldi(tmp2, dst_pos, shift); 2128 __ add(src_ptr, tmp, src_ptr); 2129 __ add(dst_ptr, tmp2, dst_ptr); 2130 } 2131 2132 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2133 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2134 const char *name; 2135 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2136 2137 // Arraycopy stubs takes a length in number of elements, so don't scale it. 2138 __ mr(len, length); 2139 __ call_c(entry, relocInfo::runtime_call_type); 2140 2141 if (stub != nullptr) { 2142 __ bind(*stub->continuation()); 2143 } 2144 } 2145 2146 2147 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2148 if (dest->is_single_cpu()) { 2149 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5); 2150 #ifdef _LP64 2151 if (left->type() == T_OBJECT) { 2152 switch (code) { 2153 case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break; 2154 case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break; 2155 case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break; 2156 default: ShouldNotReachHere(); 2157 } 2158 } else 2159 #endif 2160 switch (code) { 2161 case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2162 case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2163 case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2164 default: ShouldNotReachHere(); 2165 } 2166 } else { 2167 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6); 2168 switch (code) { 2169 case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2170 case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2171 case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2172 default: ShouldNotReachHere(); 2173 } 2174 } 2175 } 2176 2177 2178 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2179 #ifdef _LP64 2180 if (left->type() == T_OBJECT) { 2181 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2182 if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); } 2183 else { 2184 switch (code) { 2185 case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break; 2186 case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break; 2187 case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break; 2188 default: ShouldNotReachHere(); 2189 } 2190 } 2191 return; 2192 } 2193 #endif 2194 2195 if (dest->is_single_cpu()) { 2196 count = count & 0x1F; // Java spec 2197 if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); } 2198 else { 2199 switch (code) { 2200 case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break; 2201 case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break; 2202 case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break; 2203 default: ShouldNotReachHere(); 2204 } 2205 } 2206 } else if (dest->is_double_cpu()) { 2207 count = count & 63; // Java spec 2208 if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); } 2209 else { 2210 switch (code) { 2211 case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2212 case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2213 case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2214 default: ShouldNotReachHere(); 2215 } 2216 } 2217 } else { 2218 ShouldNotReachHere(); 2219 } 2220 } 2221 2222 2223 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2224 if (op->init_check()) { 2225 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2226 explicit_null_check(op->klass()->as_register(), op->stub()->info()); 2227 } else { 2228 add_debug_info_for_null_check_here(op->stub()->info()); 2229 } 2230 __ lbz(op->tmp1()->as_register(), 2231 in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register()); 2232 // acquire barrier included in membar_storestore() which follows the allocation immediately. 2233 __ cmpwi(CR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized); 2234 __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CR0, Assembler::equal), *op->stub()->entry()); 2235 } 2236 __ allocate_object(op->obj()->as_register(), 2237 op->tmp1()->as_register(), 2238 op->tmp2()->as_register(), 2239 op->tmp3()->as_register(), 2240 op->header_size(), 2241 op->object_size(), 2242 op->klass()->as_register(), 2243 *op->stub()->entry()); 2244 2245 __ bind(*op->stub()->continuation()); 2246 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2247 } 2248 2249 2250 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2251 LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); ) 2252 if (UseSlowPath || 2253 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2254 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2255 __ b(*op->stub()->entry()); 2256 } else { 2257 __ allocate_array(op->obj()->as_register(), 2258 op->len()->as_register(), 2259 op->tmp1()->as_register(), 2260 op->tmp2()->as_register(), 2261 op->tmp3()->as_register(), 2262 arrayOopDesc::base_offset_in_bytes(op->type()), 2263 type2aelembytes(op->type()), 2264 op->klass()->as_register(), 2265 *op->stub()->entry(), 2266 op->zero_array()); 2267 } 2268 __ bind(*op->stub()->continuation()); 2269 } 2270 2271 2272 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, 2273 ciMethodData *md, ciProfileData *data, 2274 Register recv, Register tmp1, Label* update_done) { 2275 uint i; 2276 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2277 Label next_test; 2278 // See if the receiver is receiver[n]. 2279 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2280 __ verify_klass_ptr(tmp1); 2281 __ cmpd(CR0, recv, tmp1); 2282 __ bne(CR0, next_test); 2283 2284 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2285 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2286 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2287 __ b(*update_done); 2288 2289 __ bind(next_test); 2290 } 2291 2292 // Didn't find receiver; find next empty slot and fill it in. 2293 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2294 Label next_test; 2295 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2296 __ cmpdi(CR0, tmp1, 0); 2297 __ bne(CR0, next_test); 2298 __ li(tmp1, DataLayout::counter_increment); 2299 __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2300 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2301 __ b(*update_done); 2302 2303 __ bind(next_test); 2304 } 2305 } 2306 2307 2308 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2309 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2310 md = method->method_data_or_null(); 2311 assert(md != nullptr, "Sanity"); 2312 data = md->bci_to_data(bci); 2313 assert(data != nullptr, "need data for checkcast"); 2314 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2315 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { 2316 // The offset is large so bias the mdo by the base of the slot so 2317 // that the ld can use simm16s to reference the slots of the data. 2318 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); 2319 } 2320 } 2321 2322 2323 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2324 const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub). 2325 Register k_RInfo = op->tmp1()->as_register(); 2326 Register klass_RInfo = op->tmp2()->as_register(); 2327 Register Rtmp1 = op->tmp3()->as_register(); 2328 Register dst = op->result_opr()->as_register(); 2329 ciKlass* k = op->klass(); 2330 bool should_profile = op->should_profile(); 2331 // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps. 2332 bool reg_conflict = false; 2333 if (obj == k_RInfo) { 2334 k_RInfo = dst; 2335 reg_conflict = true; 2336 } else if (obj == klass_RInfo) { 2337 klass_RInfo = dst; 2338 reg_conflict = true; 2339 } else if (obj == Rtmp1) { 2340 Rtmp1 = dst; 2341 reg_conflict = true; 2342 } 2343 assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1); 2344 2345 ciMethodData* md = nullptr; 2346 ciProfileData* data = nullptr; 2347 int mdo_offset_bias = 0; 2348 if (should_profile) { 2349 ciMethod* method = op->profiled_method(); 2350 assert(method != nullptr, "Should have method"); 2351 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2352 2353 Register mdo = k_RInfo; 2354 Register data_val = Rtmp1; 2355 Label not_null; 2356 metadata2reg(md->constant_encoding(), mdo); 2357 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2358 __ cmpdi(CR0, obj, 0); 2359 __ bne(CR0, not_null); 2360 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2361 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2362 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2363 __ b(*obj_is_null); 2364 __ bind(not_null); 2365 2366 Label update_done; 2367 Register recv = klass_RInfo; 2368 __ load_klass(recv, obj); 2369 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, &update_done); 2370 const int slot_offset = md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias; 2371 __ ld(Rtmp1, slot_offset, mdo); 2372 __ addi(Rtmp1, Rtmp1, DataLayout::counter_increment); 2373 __ std(Rtmp1, slot_offset, mdo); 2374 __ bind(update_done); 2375 } else { 2376 __ cmpdi(CR0, obj, 0); 2377 __ beq(CR0, *obj_is_null); 2378 } 2379 2380 // get object class 2381 __ load_klass(klass_RInfo, obj); 2382 2383 if (k->is_loaded()) { 2384 metadata2reg(k->constant_encoding(), k_RInfo); 2385 } else { 2386 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2387 } 2388 2389 if (op->fast_check()) { 2390 assert_different_registers(klass_RInfo, k_RInfo); 2391 __ cmpd(CR0, k_RInfo, klass_RInfo); 2392 __ beq(CR0, *success); 2393 // Fall through to failure case. 2394 } else { 2395 bool need_slow_path = true; 2396 if (k->is_loaded()) { 2397 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) { 2398 need_slow_path = false; 2399 } 2400 // Perform the fast part of the checking logic. 2401 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success : nullptr), 2402 failure, nullptr, RegisterOrConstant(k->super_check_offset())); 2403 } else { 2404 // Perform the fast part of the checking logic. 2405 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success, failure); 2406 } 2407 if (!need_slow_path) { 2408 __ b(*success); 2409 } else { 2410 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2411 address entry = Runtime1::entry_for(C1StubId::slow_subtype_check_id); 2412 // Stub needs fixed registers (tmp1-3). 2413 Register original_k_RInfo = op->tmp1()->as_register(); 2414 Register original_klass_RInfo = op->tmp2()->as_register(); 2415 Register original_Rtmp1 = op->tmp3()->as_register(); 2416 bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast); 2417 if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); } 2418 __ mr_if_needed(original_k_RInfo, k_RInfo); 2419 __ mr_if_needed(original_klass_RInfo, klass_RInfo); 2420 if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); } 2421 //__ load_const_optimized(original_Rtmp1, entry, R0); 2422 __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false); 2423 __ mtctr(original_Rtmp1); 2424 __ bctrl(); // sets CR0 2425 if (keep_obj_alive) { __ mr(obj, dst); } 2426 __ beq(CR0, *success); 2427 // Fall through to failure case. 2428 } 2429 } 2430 2431 __ bind(*failure); 2432 } 2433 2434 2435 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2436 LIR_Code code = op->code(); 2437 if (code == lir_store_check) { 2438 Register value = op->object()->as_register(); 2439 Register array = op->array()->as_register(); 2440 Register k_RInfo = op->tmp1()->as_register(); 2441 Register klass_RInfo = op->tmp2()->as_register(); 2442 Register Rtmp1 = op->tmp3()->as_register(); 2443 bool should_profile = op->should_profile(); 2444 2445 __ verify_oop(value, FILE_AND_LINE); 2446 CodeStub* stub = op->stub(); 2447 // Check if it needs to be profiled. 2448 ciMethodData* md = nullptr; 2449 ciProfileData* data = nullptr; 2450 int mdo_offset_bias = 0; 2451 if (should_profile) { 2452 ciMethod* method = op->profiled_method(); 2453 assert(method != nullptr, "Should have method"); 2454 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2455 } 2456 2457 Label done; 2458 2459 if (should_profile) { 2460 Label not_null; 2461 Register mdo = k_RInfo; 2462 Register data_val = Rtmp1; 2463 metadata2reg(md->constant_encoding(), mdo); 2464 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2465 __ cmpdi(CR0, value, 0); 2466 __ bne(CR0, not_null); 2467 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2468 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2469 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2470 __ b(done); 2471 __ bind(not_null); 2472 2473 Label update_done; 2474 Register recv = klass_RInfo; 2475 __ load_klass(recv, value); 2476 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, &update_done); 2477 const int slot_offset = md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias; 2478 __ ld(Rtmp1, slot_offset, mdo); 2479 __ addi(Rtmp1, Rtmp1, DataLayout::counter_increment); 2480 __ std(Rtmp1, slot_offset, mdo); 2481 __ bind(update_done); 2482 } else { 2483 __ cmpdi(CR0, value, 0); 2484 __ beq(CR0, done); 2485 } 2486 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2487 explicit_null_check(array, op->info_for_exception()); 2488 } else { 2489 add_debug_info_for_null_check_here(op->info_for_exception()); 2490 } 2491 __ load_klass(k_RInfo, array); 2492 __ load_klass(klass_RInfo, value); 2493 2494 Label failure; 2495 2496 // Get instance klass. 2497 __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo); 2498 // Perform the fast part of the checking logic. 2499 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, &done, &failure, nullptr); 2500 2501 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2502 const address slow_path = Runtime1::entry_for(C1StubId::slow_subtype_check_id); 2503 //__ load_const_optimized(R0, slow_path); 2504 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path)); 2505 __ mtctr(R0); 2506 __ bctrl(); // sets CR0 2507 __ beq(CR0, done); 2508 2509 __ bind(failure); 2510 __ b(*stub->entry()); 2511 __ align(32, 12); 2512 __ bind(done); 2513 2514 } else if (code == lir_checkcast) { 2515 Label success, failure; 2516 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); 2517 __ b(*op->stub()->entry()); 2518 __ align(32, 12); 2519 __ bind(success); 2520 __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register()); 2521 } else if (code == lir_instanceof) { 2522 Register dst = op->result_opr()->as_register(); 2523 Label success, failure, done; 2524 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure); 2525 __ li(dst, 0); 2526 __ b(done); 2527 __ align(32, 12); 2528 __ bind(success); 2529 __ li(dst, 1); 2530 __ bind(done); 2531 } else { 2532 ShouldNotReachHere(); 2533 } 2534 } 2535 2536 2537 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2538 Register addr = op->addr()->as_pointer_register(); 2539 Register cmp_value = noreg, new_value = noreg; 2540 bool is_64bit = false; 2541 2542 if (op->code() == lir_cas_long) { 2543 cmp_value = op->cmp_value()->as_register_lo(); 2544 new_value = op->new_value()->as_register_lo(); 2545 is_64bit = true; 2546 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2547 cmp_value = op->cmp_value()->as_register(); 2548 new_value = op->new_value()->as_register(); 2549 if (op->code() == lir_cas_obj) { 2550 if (UseCompressedOops) { 2551 Register t1 = op->tmp1()->as_register(); 2552 Register t2 = op->tmp2()->as_register(); 2553 cmp_value = __ encode_heap_oop(t1, cmp_value); 2554 new_value = __ encode_heap_oop(t2, new_value); 2555 } else { 2556 is_64bit = true; 2557 } 2558 } 2559 } else { 2560 Unimplemented(); 2561 } 2562 2563 // There might be a volatile load before this Unsafe CAS. 2564 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2565 __ sync(); 2566 } else { 2567 __ lwsync(); 2568 } 2569 2570 if (is_64bit) { 2571 __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2572 MacroAssembler::MemBarNone, 2573 MacroAssembler::cmpxchgx_hint_atomic_update(), 2574 noreg, nullptr, /*check without ldarx first*/true); 2575 } else { 2576 __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2577 MacroAssembler::MemBarNone, 2578 MacroAssembler::cmpxchgx_hint_atomic_update(), 2579 noreg, nullptr, /*check without ldarx first*/true); 2580 } 2581 2582 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2583 __ isync(); 2584 } else { 2585 __ sync(); 2586 } 2587 } 2588 2589 void LIR_Assembler::breakpoint() { 2590 __ illtrap(); 2591 } 2592 2593 2594 void LIR_Assembler::push(LIR_Opr opr) { 2595 Unimplemented(); 2596 } 2597 2598 void LIR_Assembler::pop(LIR_Opr opr) { 2599 Unimplemented(); 2600 } 2601 2602 2603 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2604 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); 2605 Register dst = dst_opr->as_register(); 2606 Register reg = mon_addr.base(); 2607 int offset = mon_addr.disp(); 2608 // Compute pointer to BasicLock. 2609 __ add_const_optimized(dst, reg, offset); 2610 } 2611 2612 2613 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2614 Register obj = op->obj_opr()->as_register(); 2615 Register hdr = op->hdr_opr()->as_register(); 2616 Register lock = op->lock_opr()->as_register(); 2617 2618 // Obj may not be an oop. 2619 if (op->code() == lir_lock) { 2620 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); 2621 if (LockingMode != LM_MONITOR) { 2622 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2623 // Add debug info for NullPointerException only if one is possible. 2624 if (op->info() != nullptr) { 2625 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2626 explicit_null_check(obj, op->info()); 2627 } else { 2628 add_debug_info_for_null_check_here(op->info()); 2629 } 2630 } 2631 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); 2632 } else { 2633 // always do slow locking 2634 // note: The slow locking code could be inlined here, however if we use 2635 // slow locking, speed doesn't matter anyway and this solution is 2636 // simpler and requires less duplicated code - additionally, the 2637 // slow locking code is the same in either case which simplifies 2638 // debugging. 2639 if (op->info() != nullptr) { 2640 add_debug_info_for_null_check_here(op->info()); 2641 __ null_check(obj); 2642 } 2643 __ b(*op->stub()->entry()); 2644 } 2645 } else { 2646 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); 2647 if (LockingMode != LM_MONITOR) { 2648 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2649 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2650 } else { 2651 // always do slow unlocking 2652 // note: The slow unlocking code could be inlined here, however if we use 2653 // slow unlocking, speed doesn't matter anyway and this solution is 2654 // simpler and requires less duplicated code - additionally, the 2655 // slow unlocking code is the same in either case which simplifies 2656 // debugging. 2657 __ b(*op->stub()->entry()); 2658 } 2659 } 2660 __ bind(*op->stub()->continuation()); 2661 } 2662 2663 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2664 Register obj = op->obj()->as_pointer_register(); 2665 Register result = op->result_opr()->as_pointer_register(); 2666 2667 CodeEmitInfo* info = op->info(); 2668 if (info != nullptr) { 2669 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2670 explicit_null_check(obj, info); 2671 } else { 2672 add_debug_info_for_null_check_here(info); 2673 } 2674 } 2675 2676 __ load_klass(result, obj); 2677 } 2678 2679 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2680 ciMethod* method = op->profiled_method(); 2681 int bci = op->profiled_bci(); 2682 ciMethod* callee = op->profiled_callee(); 2683 2684 // Update counter for all call types. 2685 ciMethodData* md = method->method_data_or_null(); 2686 assert(md != nullptr, "Sanity"); 2687 ciProfileData* data = md->bci_to_data(bci); 2688 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2689 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2690 Register mdo = op->mdo()->as_register(); 2691 #ifdef _LP64 2692 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2693 Register tmp1 = op->tmp1()->as_register_lo(); 2694 #else 2695 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); 2696 Register tmp1 = op->tmp1()->as_register(); 2697 #endif 2698 metadata2reg(md->constant_encoding(), mdo); 2699 int mdo_offset_bias = 0; 2700 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) + 2701 data->size_in_bytes())) { 2702 // The offset is large so bias the mdo by the base of the slot so 2703 // that the ld can use simm16s to reference the slots of the data. 2704 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); 2705 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2706 } 2707 2708 // Perform additional virtual call profiling for invokevirtual and 2709 // invokeinterface bytecodes 2710 if (op->should_profile_receiver_type()) { 2711 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2712 Register recv = op->recv()->as_register(); 2713 assert_different_registers(mdo, tmp1, recv); 2714 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2715 ciKlass* known_klass = op->known_holder(); 2716 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2717 // We know the type that will be seen at this call site; we can 2718 // statically update the MethodData* rather than needing to do 2719 // dynamic tests on the receiver type. 2720 2721 // NOTE: we should probably put a lock around this search to 2722 // avoid collisions by concurrent compilations. 2723 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2724 uint i; 2725 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2726 ciKlass* receiver = vc_data->receiver(i); 2727 if (known_klass->equals(receiver)) { 2728 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2729 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2730 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2731 return; 2732 } 2733 } 2734 2735 // Receiver type not found in profile data; select an empty slot. 2736 2737 // Note that this is less efficient than it should be because it 2738 // always does a write to the receiver part of the 2739 // VirtualCallData rather than just the first time. 2740 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2741 ciKlass* receiver = vc_data->receiver(i); 2742 if (receiver == nullptr) { 2743 metadata2reg(known_klass->constant_encoding(), tmp1); 2744 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo); 2745 2746 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2747 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2748 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2749 return; 2750 } 2751 } 2752 } else { 2753 __ load_klass(recv, recv); 2754 Label update_done; 2755 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); 2756 // Receiver did not match any saved receiver and there is no empty row for it. 2757 // Increment total counter to indicate polymorphic case. 2758 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2759 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2760 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2761 2762 __ bind(update_done); 2763 } 2764 } else { 2765 // Static call 2766 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2767 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2768 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2769 } 2770 } 2771 2772 2773 void LIR_Assembler::align_backward_branch_target() { 2774 __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary. 2775 } 2776 2777 2778 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2779 Unimplemented(); 2780 } 2781 2782 2783 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2784 // tmp must be unused 2785 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2786 assert(left->is_register(), "can only handle registers"); 2787 2788 if (left->is_single_cpu()) { 2789 __ neg(dest->as_register(), left->as_register()); 2790 } else if (left->is_single_fpu()) { 2791 __ fneg(dest->as_float_reg(), left->as_float_reg()); 2792 } else if (left->is_double_fpu()) { 2793 __ fneg(dest->as_double_reg(), left->as_double_reg()); 2794 } else { 2795 assert (left->is_double_cpu(), "Must be a long"); 2796 __ neg(dest->as_register_lo(), left->as_register_lo()); 2797 } 2798 } 2799 2800 2801 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2802 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2803 // Stubs: Called via rt_call, but dest is a stub address (no FunctionDescriptor). 2804 if (dest == Runtime1::entry_for(C1StubId::register_finalizer_id) || 2805 dest == Runtime1::entry_for(C1StubId::new_multi_array_id ) || 2806 dest == Runtime1::entry_for(C1StubId::is_instance_of_id )) { 2807 assert(CodeCache::contains(dest), "simplified call is only for special C1 stubs"); 2808 //__ load_const_optimized(R0, dest); 2809 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest)); 2810 __ mtctr(R0); 2811 __ bctrl(); 2812 if (info != nullptr) { 2813 add_call_info_here(info); 2814 __ post_call_nop(); 2815 } 2816 return; 2817 } 2818 2819 __ call_c(dest, relocInfo::runtime_call_type); 2820 assert(__ last_calls_return_pc() == __ pc(), "pcn not at return pc"); 2821 if (info != nullptr) { 2822 add_call_info_here(info); 2823 __ post_call_nop(); 2824 } 2825 } 2826 2827 2828 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2829 ShouldNotReachHere(); // Not needed on _LP64. 2830 } 2831 2832 void LIR_Assembler::membar() { 2833 __ fence(); 2834 } 2835 2836 void LIR_Assembler::membar_acquire() { 2837 __ acquire(); 2838 } 2839 2840 void LIR_Assembler::membar_release() { 2841 __ release(); 2842 } 2843 2844 void LIR_Assembler::membar_loadload() { 2845 __ membar(Assembler::LoadLoad); 2846 } 2847 2848 void LIR_Assembler::membar_storestore() { 2849 __ membar(Assembler::StoreStore); 2850 } 2851 2852 void LIR_Assembler::membar_loadstore() { 2853 __ membar(Assembler::LoadStore); 2854 } 2855 2856 void LIR_Assembler::membar_storeload() { 2857 __ membar(Assembler::StoreLoad); 2858 } 2859 2860 void LIR_Assembler::on_spin_wait() { 2861 Unimplemented(); 2862 } 2863 2864 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2865 LIR_Address* addr = addr_opr->as_address_ptr(); 2866 assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform"); 2867 2868 if (addr->index()->is_illegal()) { 2869 if (patch_code != lir_patch_none) { 2870 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id); 2871 __ load_const32(R0, 0); // patchable int 2872 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), R0); 2873 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 2874 } else { 2875 __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp()); 2876 } 2877 } else { 2878 assert(patch_code == lir_patch_none, "Patch code not supported"); 2879 assert(addr->disp() == 0, "can't have both: index and disp"); 2880 __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register()); 2881 } 2882 } 2883 2884 2885 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2886 ShouldNotReachHere(); 2887 } 2888 2889 2890 #ifdef ASSERT 2891 // Emit run-time assertion. 2892 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2893 Unimplemented(); 2894 } 2895 #endif 2896 2897 2898 void LIR_Assembler::peephole(LIR_List* lir) { 2899 // Optimize instruction pairs before emitting. 2900 LIR_OpList* inst = lir->instructions_list(); 2901 for (int i = 1; i < inst->length(); i++) { 2902 LIR_Op* op = inst->at(i); 2903 2904 // 2 register-register-moves 2905 if (op->code() == lir_move) { 2906 LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(), 2907 res2 = ((LIR_Op1*)op)->result_opr(); 2908 if (in2->is_register() && res2->is_register()) { 2909 LIR_Op* prev = inst->at(i - 1); 2910 if (prev && prev->code() == lir_move) { 2911 LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(), 2912 res1 = ((LIR_Op1*)prev)->result_opr(); 2913 if (in1->is_same_register(res2) && in2->is_same_register(res1)) { 2914 inst->remove_at(i); 2915 } 2916 } 2917 } 2918 } 2919 2920 } 2921 return; 2922 } 2923 2924 2925 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2926 const LIR_Address *addr = src->as_address_ptr(); 2927 assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!"); 2928 const Register Rptr = addr->base()->as_pointer_register(), 2929 Rtmp = tmp->as_register(); 2930 Register Robj = noreg; 2931 if (data->is_oop()) { 2932 if (UseCompressedOops) { 2933 Robj = __ encode_heap_oop(Rtmp, data->as_register()); 2934 } else { 2935 Robj = data->as_register(); 2936 if (Robj == dest->as_register()) { // May happen with ZGC. 2937 __ mr(Rtmp, Robj); 2938 Robj = Rtmp; 2939 } 2940 } 2941 } 2942 2943 // There might be a volatile load before this Unsafe OP. 2944 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2945 __ sync(); 2946 } else { 2947 __ lwsync(); 2948 } 2949 2950 Label Lretry; 2951 __ bind(Lretry); 2952 2953 if (data->type() == T_INT) { 2954 const Register Rold = dest->as_register(), 2955 Rsrc = data->as_register(); 2956 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 2957 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 2958 if (code == lir_xadd) { 2959 __ add(Rtmp, Rsrc, Rold); 2960 __ stwcx_(Rtmp, Rptr); 2961 } else { 2962 __ stwcx_(Rsrc, Rptr); 2963 } 2964 } else if (data->is_oop()) { 2965 assert(code == lir_xchg, "xadd for oops"); 2966 const Register Rold = dest->as_register(); 2967 assert_different_registers(Rptr, Rold, Robj); 2968 if (UseCompressedOops) { 2969 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 2970 __ stwcx_(Robj, Rptr); 2971 } else { 2972 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 2973 __ stdcx_(Robj, Rptr); 2974 } 2975 } else if (data->type() == T_LONG) { 2976 const Register Rold = dest->as_register_lo(), 2977 Rsrc = data->as_register_lo(); 2978 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 2979 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 2980 if (code == lir_xadd) { 2981 __ add(Rtmp, Rsrc, Rold); 2982 __ stdcx_(Rtmp, Rptr); 2983 } else { 2984 __ stdcx_(Rsrc, Rptr); 2985 } 2986 } else { 2987 ShouldNotReachHere(); 2988 } 2989 2990 if (UseStaticBranchPredictionInCompareAndSwapPPC64) { 2991 __ bne_predict_not_taken(CR0, Lretry); 2992 } else { 2993 __ bne( CR0, Lretry); 2994 } 2995 2996 if (UseCompressedOops && data->is_oop()) { 2997 __ decode_heap_oop(dest->as_register()); 2998 } 2999 3000 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 3001 __ isync(); 3002 } else { 3003 __ sync(); 3004 } 3005 } 3006 3007 3008 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3009 Register obj = op->obj()->as_register(); 3010 Register tmp = op->tmp()->as_pointer_register(); 3011 LIR_Address* mdo_addr = op->mdp()->as_address_ptr(); 3012 ciKlass* exact_klass = op->exact_klass(); 3013 intptr_t current_klass = op->current_klass(); 3014 bool not_null = op->not_null(); 3015 bool no_conflict = op->no_conflict(); 3016 3017 Label Lupdate, Ldo_update, Ldone; 3018 3019 bool do_null = !not_null; 3020 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3021 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3022 3023 assert(do_null || do_update, "why are we here?"); 3024 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3025 3026 __ verify_oop(obj, FILE_AND_LINE); 3027 3028 if (do_null) { 3029 if (!TypeEntries::was_null_seen(current_klass)) { 3030 __ cmpdi(CR0, obj, 0); 3031 __ bne(CR0, Lupdate); 3032 __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3033 __ ori(R0, R0, TypeEntries::null_seen); 3034 if (do_update) { 3035 __ b(Ldo_update); 3036 } else { 3037 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3038 } 3039 } else { 3040 if (do_update) { 3041 __ cmpdi(CR0, obj, 0); 3042 __ beq(CR0, Ldone); 3043 } 3044 } 3045 #ifdef ASSERT 3046 } else { 3047 __ cmpdi(CR0, obj, 0); 3048 __ bne(CR0, Lupdate); 3049 __ stop("unexpected null obj"); 3050 #endif 3051 } 3052 3053 __ bind(Lupdate); 3054 if (do_update) { 3055 Label Lnext; 3056 const Register klass = R29_TOC; // kill and reload 3057 bool klass_reg_used = false; 3058 #ifdef ASSERT 3059 if (exact_klass != nullptr) { 3060 Label ok; 3061 klass_reg_used = true; 3062 __ load_klass(klass, obj); 3063 metadata2reg(exact_klass->constant_encoding(), R0); 3064 __ cmpd(CR0, klass, R0); 3065 __ beq(CR0, ok); 3066 __ stop("exact klass and actual klass differ"); 3067 __ bind(ok); 3068 } 3069 #endif 3070 3071 if (!no_conflict) { 3072 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3073 klass_reg_used = true; 3074 if (exact_klass != nullptr) { 3075 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3076 metadata2reg(exact_klass->constant_encoding(), klass); 3077 } else { 3078 __ load_klass(klass, obj); 3079 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj 3080 } 3081 3082 // Like InterpreterMacroAssembler::profile_obj_type 3083 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3084 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3085 __ cmpd(CR1, R0, klass); 3086 // Klass seen before, nothing to do (regardless of unknown bit). 3087 //beq(CR1, do_nothing); 3088 3089 __ andi_(R0, tmp, TypeEntries::type_unknown); 3090 // Already unknown. Nothing to do anymore. 3091 //bne(CR0, do_nothing); 3092 __ crorc(CR0, Assembler::equal, CR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 3093 __ beq(CR0, Lnext); 3094 3095 if (TypeEntries::is_type_none(current_klass)) { 3096 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3097 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3098 __ beq(CR0, Ldo_update); // First time here. Set profile type. 3099 } 3100 3101 } else { 3102 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3103 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3104 3105 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3106 __ andi_(R0, tmp, TypeEntries::type_unknown); 3107 // Already unknown. Nothing to do anymore. 3108 __ bne(CR0, Lnext); 3109 } 3110 3111 // Different than before. Cannot keep accurate profile. 3112 __ ori(R0, tmp, TypeEntries::type_unknown); 3113 } else { 3114 // There's a single possible klass at this profile point 3115 assert(exact_klass != nullptr, "should be"); 3116 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3117 3118 if (TypeEntries::is_type_none(current_klass)) { 3119 klass_reg_used = true; 3120 metadata2reg(exact_klass->constant_encoding(), klass); 3121 3122 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3123 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3124 __ cmpd(CR1, R0, klass); 3125 // Klass seen before, nothing to do (regardless of unknown bit). 3126 __ beq(CR1, Lnext); 3127 #ifdef ASSERT 3128 { 3129 Label ok; 3130 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3131 __ beq(CR0, ok); // First time here. 3132 3133 __ stop("unexpected profiling mismatch"); 3134 __ bind(ok); 3135 } 3136 #endif 3137 // First time here. Set profile type. 3138 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3139 } else { 3140 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3141 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3142 3143 // Already unknown. Nothing to do anymore. 3144 __ andi_(R0, tmp, TypeEntries::type_unknown); 3145 __ bne(CR0, Lnext); 3146 3147 // Different than before. Cannot keep accurate profile. 3148 __ ori(R0, tmp, TypeEntries::type_unknown); 3149 } 3150 } 3151 3152 __ bind(Ldo_update); 3153 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3154 3155 __ bind(Lnext); 3156 if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit 3157 } 3158 __ bind(Ldone); 3159 } 3160 3161 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) { 3162 Unimplemented(); 3163 } 3164 3165 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3166 assert(op->crc()->is_single_cpu(), "crc must be register"); 3167 assert(op->val()->is_single_cpu(), "byte value must be register"); 3168 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3169 Register crc = op->crc()->as_register(); 3170 Register val = op->val()->as_register(); 3171 Register res = op->result_opr()->as_register(); 3172 3173 assert_different_registers(val, crc, res); 3174 3175 __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0); 3176 __ kernel_crc32_singleByteReg(crc, val, res, true); 3177 __ mr(res, crc); 3178 } 3179 3180 #undef __