1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_ppc.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "oops/methodCounters.hpp" 34 #include "oops/methodData.hpp" 35 #include "oops/resolvedFieldEntry.hpp" 36 #include "oops/resolvedIndyEntry.hpp" 37 #include "oops/resolvedMethodEntry.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/jvmtiThreadState.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/vm_version.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 // Implementation of InterpreterMacroAssembler. 48 49 // This file specializes the assembler with interpreter-specific macros. 50 51 #ifdef PRODUCT 52 #define BLOCK_COMMENT(str) // nothing 53 #else 54 #define BLOCK_COMMENT(str) block_comment(str) 55 #endif 56 57 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { 58 address exception_entry = Interpreter::throw_NullPointerException_entry(); 59 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 60 } 61 62 void InterpreterMacroAssembler::load_klass_check_null_throw(Register dst, Register src, Register temp_reg) { 63 null_check_throw(src, oopDesc::klass_offset_in_bytes(), temp_reg); 64 load_klass(dst, src); 65 } 66 67 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 68 assert(entry, "Entry must have been generated by now"); 69 if (is_within_range_of_b(entry, pc())) { 70 b(entry); 71 } else { 72 load_const_optimized(Rscratch, entry, R0); 73 mtctr(Rscratch); 74 bctr(); 75 } 76 } 77 78 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 79 Register bytecode = R12_scratch2; 80 if (bcp_incr != 0) { 81 lbzu(bytecode, bcp_incr, R14_bcp); 82 } else { 83 lbz(bytecode, 0, R14_bcp); 84 } 85 86 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll); 87 } 88 89 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 90 // Load current bytecode. 91 Register bytecode = R12_scratch2; 92 lbz(bytecode, 0, R14_bcp); 93 dispatch_Lbyte_code(state, bytecode, table); 94 } 95 96 // Dispatch code executed in the prolog of a bytecode which does not do it's 97 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. 98 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 99 Register bytecode = R12_scratch2; 100 lbz(bytecode, bcp_incr, R14_bcp); 101 102 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); 103 104 sldi(bytecode, bytecode, LogBytesPerWord); 105 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); 106 } 107 108 // Dispatch code executed in the epilog of a bytecode which does not do it's 109 // own dispatch. The dispatch address in R24_dispatch_addr is used for the 110 // dispatch. 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { 112 if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } 113 mtctr(R24_dispatch_addr); 114 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 115 } 116 117 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 118 assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); 119 if (JvmtiExport::can_pop_frame()) { 120 Label L; 121 122 // Check the "pending popframe condition" flag in the current thread. 123 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 124 125 // Initiate popframe handling only if it is not already being 126 // processed. If the flag has the popframe_processing bit set, it 127 // means that this code is called *during* popframe handling - we 128 // don't want to reenter. 129 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); 130 beq(CCR0, L); 131 132 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); 133 bne(CCR0, L); 134 135 // Call the Interpreter::remove_activation_preserving_args_entry() 136 // func to get the address of the same-named entrypoint in the 137 // generated interpreter code. 138 #if defined(ABI_ELFv2) 139 call_c(CAST_FROM_FN_PTR(address, 140 Interpreter::remove_activation_preserving_args_entry), 141 relocInfo::none); 142 #else 143 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, 144 Interpreter::remove_activation_preserving_args_entry), 145 relocInfo::none); 146 #endif 147 148 // Jump to Interpreter::_remove_activation_preserving_args_entry. 149 mtctr(R3_RET); 150 bctr(); 151 152 align(32, 12); 153 bind(L); 154 } 155 } 156 157 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 158 const Register Rthr_state_addr = scratch_reg; 159 if (JvmtiExport::can_force_early_return()) { 160 Label Lno_early_ret; 161 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 162 cmpdi(CCR0, Rthr_state_addr, 0); 163 beq(CCR0, Lno_early_ret); 164 165 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); 166 cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending); 167 bne(CCR0, Lno_early_ret); 168 169 // Jump to Interpreter::_earlyret_entry. 170 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); 171 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); 172 mtlr(R3_RET); 173 blr(); 174 175 align(32, 12); 176 bind(Lno_early_ret); 177 } 178 } 179 180 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { 181 const Register RjvmtiState = Rscratch1; 182 const Register Rscratch2 = R0; 183 184 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 185 li(Rscratch2, 0); 186 187 switch (state) { 188 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 189 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 190 break; 191 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 192 break; 193 case btos: // fall through 194 case ztos: // fall through 195 case ctos: // fall through 196 case stos: // fall through 197 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 198 break; 199 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 200 break; 201 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 202 break; 203 case vtos: break; 204 default : ShouldNotReachHere(); 205 } 206 207 // Clean up tos value in the jvmti thread state. 208 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 209 // Set tos state field to illegal value. 210 li(Rscratch2, ilgl); 211 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); 212 } 213 214 // Common code to dispatch and dispatch_only. 215 // Dispatch value in Lbyte_code and increment Lbcp. 216 217 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { 218 address table_base = (address)Interpreter::dispatch_table((TosState)0); 219 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; 220 if (is_simm16(table_offs)) { 221 addi(dst, R25_templateTableBase, (int)table_offs); 222 } else { 223 load_const_optimized(dst, table, R0); 224 } 225 } 226 227 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, 228 address* table, bool generate_poll) { 229 assert_different_registers(bytecode, R11_scratch1); 230 231 // Calc dispatch table address. 232 load_dispatch_table(R11_scratch1, table); 233 234 if (generate_poll) { 235 address *sfpt_tbl = Interpreter::safept_table(state); 236 if (table != sfpt_tbl) { 237 Label dispatch; 238 ld(R0, in_bytes(JavaThread::polling_word_offset()), R16_thread); 239 // Armed page has poll_bit set, if poll bit is cleared just continue. 240 andi_(R0, R0, SafepointMechanism::poll_bit()); 241 beq(CCR0, dispatch); 242 load_dispatch_table(R11_scratch1, sfpt_tbl); 243 align(32, 16); 244 bind(dispatch); 245 } 246 } 247 248 sldi(R12_scratch2, bytecode, LogBytesPerWord); 249 ldx(R11_scratch1, R11_scratch1, R12_scratch2); 250 251 // Jump off! 252 mtctr(R11_scratch1); 253 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 254 } 255 256 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { 257 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); 258 ldx(Rrecv_dst, Rrecv_dst, R15_esp); 259 } 260 261 // helpers for expression stack 262 263 void InterpreterMacroAssembler::pop_i(Register r) { 264 lwzu(r, Interpreter::stackElementSize, R15_esp); 265 } 266 267 void InterpreterMacroAssembler::pop_ptr(Register r) { 268 ldu(r, Interpreter::stackElementSize, R15_esp); 269 } 270 271 void InterpreterMacroAssembler::pop_l(Register r) { 272 ld(r, Interpreter::stackElementSize, R15_esp); 273 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 274 } 275 276 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 277 lfsu(f, Interpreter::stackElementSize, R15_esp); 278 } 279 280 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 281 lfd(f, Interpreter::stackElementSize, R15_esp); 282 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 283 } 284 285 void InterpreterMacroAssembler::push_i(Register r) { 286 stw(r, 0, R15_esp); 287 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 288 } 289 290 void InterpreterMacroAssembler::push_ptr(Register r) { 291 std(r, 0, R15_esp); 292 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 293 } 294 295 void InterpreterMacroAssembler::push_l(Register r) { 296 // Clear unused slot. 297 load_const_optimized(R0, 0L); 298 std(R0, 0, R15_esp); 299 std(r, - Interpreter::stackElementSize, R15_esp); 300 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 301 } 302 303 void InterpreterMacroAssembler::push_f(FloatRegister f) { 304 stfs(f, 0, R15_esp); 305 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 306 } 307 308 void InterpreterMacroAssembler::push_d(FloatRegister f) { 309 stfd(f, - Interpreter::stackElementSize, R15_esp); 310 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 311 } 312 313 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { 314 std(first, 0, R15_esp); 315 std(second, -Interpreter::stackElementSize, R15_esp); 316 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 317 } 318 319 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { 320 if (VM_Version::has_mtfprd()) { 321 mtfprd(d, l); 322 } else { 323 std(l, 0, R15_esp); 324 lfd(d, 0, R15_esp); 325 } 326 } 327 328 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { 329 if (VM_Version::has_mtfprd()) { 330 mffprd(l, d); 331 } else { 332 stfd(d, 0, R15_esp); 333 ld(l, 0, R15_esp); 334 } 335 } 336 337 void InterpreterMacroAssembler::push(TosState state) { 338 switch (state) { 339 case atos: push_ptr(); break; 340 case btos: 341 case ztos: 342 case ctos: 343 case stos: 344 case itos: push_i(); break; 345 case ltos: push_l(); break; 346 case ftos: push_f(); break; 347 case dtos: push_d(); break; 348 case vtos: /* nothing to do */ break; 349 default : ShouldNotReachHere(); 350 } 351 } 352 353 void InterpreterMacroAssembler::pop(TosState state) { 354 switch (state) { 355 case atos: pop_ptr(); break; 356 case btos: 357 case ztos: 358 case ctos: 359 case stos: 360 case itos: pop_i(); break; 361 case ltos: pop_l(); break; 362 case ftos: pop_f(); break; 363 case dtos: pop_d(); break; 364 case vtos: /* nothing to do */ break; 365 default : ShouldNotReachHere(); 366 } 367 verify_oop(R17_tos, state); 368 } 369 370 void InterpreterMacroAssembler::empty_expression_stack() { 371 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); 372 } 373 374 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, 375 Register Rdst, 376 signedOrNot is_signed) { 377 #if defined(VM_LITTLE_ENDIAN) 378 if (bcp_offset) { 379 load_const_optimized(Rdst, bcp_offset); 380 lhbrx(Rdst, R14_bcp, Rdst); 381 } else { 382 lhbrx(Rdst, R14_bcp); 383 } 384 if (is_signed == Signed) { 385 extsh(Rdst, Rdst); 386 } 387 #else 388 // Read Java big endian format. 389 if (is_signed == Signed) { 390 lha(Rdst, bcp_offset, R14_bcp); 391 } else { 392 lhz(Rdst, bcp_offset, R14_bcp); 393 } 394 #endif 395 } 396 397 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, 398 Register Rdst, 399 signedOrNot is_signed) { 400 #if defined(VM_LITTLE_ENDIAN) 401 if (bcp_offset) { 402 load_const_optimized(Rdst, bcp_offset); 403 lwbrx(Rdst, R14_bcp, Rdst); 404 } else { 405 lwbrx(Rdst, R14_bcp); 406 } 407 if (is_signed == Signed) { 408 extsw(Rdst, Rdst); 409 } 410 #else 411 // Read Java big endian format. 412 if (bcp_offset & 3) { // Offset unaligned? 413 load_const_optimized(Rdst, bcp_offset); 414 if (is_signed == Signed) { 415 lwax(Rdst, R14_bcp, Rdst); 416 } else { 417 lwzx(Rdst, R14_bcp, Rdst); 418 } 419 } else { 420 if (is_signed == Signed) { 421 lwa(Rdst, bcp_offset, R14_bcp); 422 } else { 423 lwz(Rdst, bcp_offset, R14_bcp); 424 } 425 } 426 #endif 427 } 428 429 430 // Load the constant pool cache index from the bytecode stream. 431 // 432 // Kills / writes: 433 // - Rdst, Rscratch 434 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, 435 size_t index_size) { 436 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 437 // Cache index is always in the native format, courtesy of Rewriter. 438 if (index_size == sizeof(u2)) { 439 lhz(Rdst, bcp_offset, R14_bcp); 440 } else if (index_size == sizeof(u4)) { 441 if (bcp_offset & 3) { 442 load_const_optimized(Rdst, bcp_offset); 443 lwax(Rdst, R14_bcp, Rdst); 444 } else { 445 lwa(Rdst, bcp_offset, R14_bcp); 446 } 447 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 448 nand(Rdst, Rdst, Rdst); // convert to plain index 449 } else if (index_size == sizeof(u1)) { 450 lbz(Rdst, bcp_offset, R14_bcp); 451 } else { 452 ShouldNotReachHere(); 453 } 454 // Rdst now contains cp cache index. 455 } 456 457 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) 458 // from (Rsrc)+offset. 459 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, 460 signedOrNot is_signed) { 461 #if defined(VM_LITTLE_ENDIAN) 462 if (offset) { 463 load_const_optimized(Rdst, offset); 464 lwbrx(Rdst, Rdst, Rsrc); 465 } else { 466 lwbrx(Rdst, Rsrc); 467 } 468 if (is_signed == Signed) { 469 extsw(Rdst, Rdst); 470 } 471 #else 472 if (is_signed == Signed) { 473 lwa(Rdst, offset, Rsrc); 474 } else { 475 lwz(Rdst, offset, Rsrc); 476 } 477 #endif 478 } 479 480 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 481 // Get index out of bytecode pointer 482 get_cache_index_at_bcp(index, 1, sizeof(u4)); 483 484 // Get address of invokedynamic array 485 ld_ptr(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()), R27_constPoolCache); 486 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 487 sldi(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 488 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 489 add(cache, cache, index); 490 } 491 492 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 493 // Get index out of bytecode pointer 494 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 495 // Take shortcut if the size is a power of 2 496 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 497 // Scale index by power of 2 498 sldi(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); 499 } else { 500 // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 501 mulli(index, index, sizeof(ResolvedFieldEntry)); 502 } 503 // Get address of field entries array 504 ld_ptr(cache, in_bytes(ConstantPoolCache::field_entries_offset()), R27_constPoolCache); 505 addi(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 506 add(cache, cache, index); 507 } 508 509 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 510 // Get index out of bytecode pointer 511 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 512 // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 513 mulli(index, index, sizeof(ResolvedMethodEntry)); 514 515 // Get address of field entries array 516 ld_ptr(cache, ConstantPoolCache::method_entries_offset(), R27_constPoolCache); 517 addi(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 518 add(cache, cache, index); // method_entries + base_offset + scaled index 519 } 520 521 // Load object from cpool->resolved_references(index). 522 // Kills: 523 // - index 524 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, 525 Register tmp1, Register tmp2, 526 Label *L_handle_null) { 527 assert_different_registers(result, index, tmp1, tmp2); 528 assert(index->is_nonvolatile(), "needs to survive C-call in resolve_oop_handle"); 529 get_constant_pool(result); 530 531 // Convert from field index to resolved_references() index and from 532 // word index to byte offset. Since this is a java object, it can be compressed. 533 sldi(index, index, LogBytesPerHeapOop); 534 // Load pointer for resolved_references[] objArray. 535 ld(result, ConstantPool::cache_offset(), result); 536 ld(result, ConstantPoolCache::resolved_references_offset(), result); 537 resolve_oop_handle(result, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE); 538 #ifdef ASSERT 539 Label index_ok; 540 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); 541 sldi(R0, R0, LogBytesPerHeapOop); 542 cmpd(CCR0, index, R0); 543 blt(CCR0, index_ok); 544 stop("resolved reference index out of bounds"); 545 bind(index_ok); 546 #endif 547 // Add in the index. 548 add(result, index, result); 549 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, 550 tmp1, tmp2, 551 MacroAssembler::PRESERVATION_NONE, 552 0, L_handle_null); 553 } 554 555 // load cpool->resolved_klass_at(index) 556 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) { 557 // int value = *(Rcpool->int_at_addr(which)); 558 // int resolved_klass_index = extract_low_short_from_int(value); 559 add(Roffset, Rcpool, Roffset); 560 #if defined(VM_LITTLE_ENDIAN) 561 lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index 562 #else 563 lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index 564 #endif 565 566 ld(Rklass, ConstantPool::resolved_klasses_offset(), Rcpool); // Rklass = Rcpool->_resolved_klasses 567 568 sldi(Roffset, Roffset, LogBytesPerWord); 569 addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes()); 570 isync(); // Order load of instance Klass wrt. tags. 571 ldx(Rklass, Rklass, Roffset); 572 } 573 574 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 575 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. 576 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, 577 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { 578 // Profile the not-null value's klass. 579 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); 580 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 581 } 582 583 // Separate these two to allow for delay slot in middle. 584 // These are used to do a test and full jump to exception-throwing code. 585 586 // Check that index is in range for array, then shift index by index_shift, 587 // and put arrayOop + shifted_index into res. 588 // Note: res is still shy of address by array offset into object. 589 590 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, 591 int index_shift, Register Rtmp, Register Rres) { 592 // Check that index is in range for array, then shift index by index_shift, 593 // and put arrayOop + shifted_index into res. 594 // Note: res is still shy of address by array offset into object. 595 // Kills: 596 // - Rindex 597 // Writes: 598 // - Rres: Address that corresponds to the array index if check was successful. 599 verify_oop(Rarray); 600 const Register Rlength = R0; 601 const Register RsxtIndex = Rtmp; 602 Label LisNull, LnotOOR; 603 604 // Array nullcheck 605 if (!ImplicitNullChecks) { 606 cmpdi(CCR0, Rarray, 0); 607 beq(CCR0, LisNull); 608 } else { 609 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); 610 } 611 612 // Rindex might contain garbage in upper bits (remember that we don't sign extend 613 // during integer arithmetic operations). So kill them and put value into same register 614 // where ArrayIndexOutOfBounds would expect the index in. 615 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit 616 617 // Index check 618 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); 619 cmplw(CCR0, Rindex, Rlength); 620 sldi(RsxtIndex, RsxtIndex, index_shift); 621 blt(CCR0, LnotOOR); 622 // Index should be in R17_tos, array should be in R4_ARG2. 623 mr_if_needed(R17_tos, Rindex); 624 mr_if_needed(R4_ARG2, Rarray); 625 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 626 mtctr(Rtmp); 627 bctr(); 628 629 if (!ImplicitNullChecks) { 630 bind(LisNull); 631 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); 632 mtctr(Rtmp); 633 bctr(); 634 } 635 636 align(32, 16); 637 bind(LnotOOR); 638 639 // Calc address 640 add(Rres, RsxtIndex, Rarray); 641 } 642 643 void InterpreterMacroAssembler::index_check(Register array, Register index, 644 int index_shift, Register tmp, Register res) { 645 // pop array 646 pop_ptr(array); 647 648 // check array 649 index_check_without_pop(array, index, index_shift, tmp, res); 650 } 651 652 void InterpreterMacroAssembler::get_const(Register Rdst) { 653 ld(Rdst, in_bytes(Method::const_offset()), R19_method); 654 } 655 656 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 657 get_const(Rdst); 658 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); 659 } 660 661 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 662 get_constant_pool(Rdst); 663 ld(Rdst, ConstantPool::cache_offset(), Rdst); 664 } 665 666 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 667 get_constant_pool(Rcpool); 668 ld(Rtags, ConstantPool::tags_offset(), Rcpool); 669 } 670 671 // Unlock if synchronized method. 672 // 673 // Unlock the receiver if this is a synchronized method. 674 // Unlock any Java monitors from synchronized blocks. 675 // 676 // If there are locked Java monitors 677 // If throw_monitor_exception 678 // throws IllegalMonitorStateException 679 // Else if install_monitor_exception 680 // installs IllegalMonitorStateException 681 // Else 682 // no error processing 683 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 684 bool throw_monitor_exception, 685 bool install_monitor_exception) { 686 Label Lunlocked, Lno_unlock; 687 { 688 Register Rdo_not_unlock_flag = R11_scratch1; 689 Register Raccess_flags = R12_scratch2; 690 691 // Check if synchronized method or unlocking prevented by 692 // JavaThread::do_not_unlock_if_synchronized flag. 693 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 694 lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); 695 li(R0, 0); 696 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag 697 698 push(state); 699 700 // Skip if we don't have to unlock. 701 rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0. 702 beq(CCR0, Lunlocked); 703 704 cmpwi(CCR0, Rdo_not_unlock_flag, 0); 705 bne(CCR0, Lno_unlock); 706 } 707 708 // Unlock 709 { 710 Register Rmonitor_base = R11_scratch1; 711 712 Label Lunlock; 713 // If it's still locked, everything is ok, unlock it. 714 ld(Rmonitor_base, 0, R1_SP); 715 addi(Rmonitor_base, Rmonitor_base, 716 -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 717 718 ld(R0, BasicObjectLock::obj_offset(), Rmonitor_base); 719 cmpdi(CCR0, R0, 0); 720 bne(CCR0, Lunlock); 721 722 // If it's already unlocked, throw exception. 723 if (throw_monitor_exception) { 724 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 725 should_not_reach_here(); 726 } else { 727 if (install_monitor_exception) { 728 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 729 b(Lunlocked); 730 } 731 } 732 733 bind(Lunlock); 734 unlock_object(Rmonitor_base); 735 } 736 737 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. 738 bind(Lunlocked); 739 { 740 Label Lexception, Lrestart; 741 Register Rcurrent_obj_addr = R11_scratch1; 742 const int delta = frame::interpreter_frame_monitor_size_in_bytes(); 743 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); 744 745 bind(Lrestart); 746 // Set up search loop: Calc num of iterations. 747 { 748 Register Riterations = R12_scratch2; 749 Register Rmonitor_base = Rcurrent_obj_addr; 750 ld(Rmonitor_base, 0, R1_SP); 751 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base 752 753 subf_(Riterations, R26_monitor, Rmonitor_base); 754 ble(CCR0, Lno_unlock); 755 756 addi(Rcurrent_obj_addr, Rmonitor_base, 757 in_bytes(BasicObjectLock::obj_offset()) - frame::interpreter_frame_monitor_size_in_bytes()); 758 // Check if any monitor is on stack, bail out if not 759 srdi(Riterations, Riterations, exact_log2(delta)); 760 mtctr(Riterations); 761 } 762 763 // The search loop: Look for locked monitors. 764 { 765 const Register Rcurrent_obj = R0; 766 Label Lloop; 767 768 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 769 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 770 bind(Lloop); 771 772 // Check if current entry is used. 773 cmpdi(CCR0, Rcurrent_obj, 0); 774 bne(CCR0, Lexception); 775 // Preload next iteration's compare value. 776 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 777 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 778 bdnz(Lloop); 779 } 780 // Fell through: Everything's unlocked => finish. 781 b(Lno_unlock); 782 783 // An object is still locked => need to throw exception. 784 bind(Lexception); 785 if (throw_monitor_exception) { 786 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 787 should_not_reach_here(); 788 } else { 789 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. 790 // Unlock does not block, so don't have to worry about the frame. 791 Register Rmonitor_addr = R11_scratch1; 792 addi(Rmonitor_addr, Rcurrent_obj_addr, -in_bytes(BasicObjectLock::obj_offset()) + delta); 793 unlock_object(Rmonitor_addr); 794 if (install_monitor_exception) { 795 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 796 } 797 b(Lrestart); 798 } 799 } 800 801 align(32, 12); 802 bind(Lno_unlock); 803 pop(state); 804 } 805 806 // Support function for remove_activation & Co. 807 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, 808 Register Rscratch1, Register Rscratch2) { 809 // Pop interpreter frame. 810 ld(Rscratch1, 0, R1_SP); // *SP 811 ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp 812 ld(Rscratch2, 0, Rscratch1); // **SP 813 if (return_pc!=noreg) { 814 ld(return_pc, _abi0(lr), Rscratch1); // LR 815 } 816 817 // Merge top frames. 818 subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP 819 stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP 820 } 821 822 void InterpreterMacroAssembler::narrow(Register result) { 823 Register ret_type = R11_scratch1; 824 ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 825 lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); 826 827 Label notBool, notByte, notChar, done; 828 829 // common case first 830 cmpwi(CCR0, ret_type, T_INT); 831 beq(CCR0, done); 832 833 cmpwi(CCR0, ret_type, T_BOOLEAN); 834 bne(CCR0, notBool); 835 andi(result, result, 0x1); 836 b(done); 837 838 bind(notBool); 839 cmpwi(CCR0, ret_type, T_BYTE); 840 bne(CCR0, notByte); 841 extsb(result, result); 842 b(done); 843 844 bind(notByte); 845 cmpwi(CCR0, ret_type, T_CHAR); 846 bne(CCR0, notChar); 847 andi(result, result, 0xffff); 848 b(done); 849 850 bind(notChar); 851 // cmpwi(CCR0, ret_type, T_SHORT); // all that's left 852 // bne(CCR0, done); 853 extsh(result, result); 854 855 // Nothing to do for T_INT 856 bind(done); 857 } 858 859 // Remove activation. 860 // 861 // Apply stack watermark barrier. 862 // Unlock the receiver if this is a synchronized method. 863 // Unlock any Java monitors from synchronized blocks. 864 // Remove the activation from the stack. 865 // 866 // If there are locked Java monitors 867 // If throw_monitor_exception 868 // throws IllegalMonitorStateException 869 // Else if install_monitor_exception 870 // installs IllegalMonitorStateException 871 // Else 872 // no error processing 873 void InterpreterMacroAssembler::remove_activation(TosState state, 874 bool throw_monitor_exception, 875 bool install_monitor_exception) { 876 BLOCK_COMMENT("remove_activation {"); 877 878 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 879 // that would normally not be safe to use. Such bad returns into unsafe territory of 880 // the stack, will call InterpreterRuntime::at_unwind. 881 Label slow_path; 882 Label fast_path; 883 safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */); 884 b(fast_path); 885 bind(slow_path); 886 push(state); 887 set_last_Java_frame(R1_SP, noreg); 888 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread); 889 reset_last_Java_frame(); 890 pop(state); 891 align(32); 892 bind(fast_path); 893 894 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 895 896 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 897 notify_method_exit(false, state, NotifyJVMTI, true); 898 899 BLOCK_COMMENT("reserved_stack_check:"); 900 if (StackReservedPages > 0) { 901 // Test if reserved zone needs to be enabled. 902 Label no_reserved_zone_enabling; 903 904 // check if already enabled - if so no re-enabling needed 905 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 906 lwz(R0, in_bytes(JavaThread::stack_guard_state_offset()), R16_thread); 907 cmpwi(CCR0, R0, StackOverflow::stack_guard_enabled); 908 beq_predict_taken(CCR0, no_reserved_zone_enabling); 909 910 // Compare frame pointers. There is no good stack pointer, as with stack 911 // frame compression we can get different SPs when we do calls. A subsequent 912 // call could have a smaller SP, so that this compare succeeds for an 913 // inner call of the method annotated with ReservedStack. 914 ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); 915 ld_ptr(R11_scratch1, _abi0(callers_sp), R1_SP); // Load frame pointer. 916 cmpld(CCR0, R11_scratch1, R0); 917 blt_predict_taken(CCR0, no_reserved_zone_enabling); 918 919 // Enable reserved zone again, throw stack overflow exception. 920 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); 921 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 922 923 should_not_reach_here(); 924 925 bind(no_reserved_zone_enabling); 926 } 927 928 verify_oop(R17_tos, state); 929 930 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 931 mtlr(R0); 932 pop_cont_fastpath(); 933 BLOCK_COMMENT("} remove_activation"); 934 } 935 936 // Lock object 937 // 938 // Registers alive 939 // monitor - Address of the BasicObjectLock to be used for locking, 940 // which must be initialized with the object to lock. 941 // object - Address of the object to be locked. 942 // 943 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 944 if (LockingMode == LM_MONITOR) { 945 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 946 } else { 947 // template code (for LM_LEGACY): 948 // 949 // markWord displaced_header = obj->mark().set_unlocked(); 950 // monitor->lock()->set_displaced_header(displaced_header); 951 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 952 // // We stored the monitor address into the object's mark word. 953 // } else if (THREAD->is_lock_owned((address)displaced_header)) 954 // // Simple recursive case. 955 // monitor->lock()->set_displaced_header(nullptr); 956 // } else { 957 // // Slow path. 958 // InterpreterRuntime::monitorenter(THREAD, monitor); 959 // } 960 961 const Register header = R7_ARG5; 962 const Register object_mark_addr = R8_ARG6; 963 const Register current_header = R9_ARG7; 964 const Register tmp = R10_ARG8; 965 966 Label count_locking, done; 967 Label cas_failed, slow_case; 968 969 assert_different_registers(header, object_mark_addr, current_header, tmp); 970 971 // markWord displaced_header = obj->mark().set_unlocked(); 972 973 if (DiagnoseSyncOnValueBasedClasses != 0) { 974 load_klass(tmp, object); 975 lwz(tmp, in_bytes(Klass::access_flags_offset()), tmp); 976 testbitdi(CCR0, R0, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 977 bne(CCR0, slow_case); 978 } 979 980 if (LockingMode == LM_LIGHTWEIGHT) { 981 lightweight_lock(object, header, tmp, slow_case); 982 b(count_locking); 983 } else if (LockingMode == LM_LEGACY) { 984 // Load markWord from object into header. 985 ld(header, oopDesc::mark_offset_in_bytes(), object); 986 987 // Set displaced_header to be (markWord of object | UNLOCK_VALUE). 988 ori(header, header, markWord::unlocked_value); 989 990 // monitor->lock()->set_displaced_header(displaced_header); 991 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 992 const int mark_offset = lock_offset + 993 BasicLock::displaced_header_offset_in_bytes(); 994 995 // Initialize the box (Must happen before we update the object mark!). 996 std(header, mark_offset, monitor); 997 998 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 999 1000 // Store stack address of the BasicObjectLock (this is monitor) into object. 1001 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1002 1003 // Must fence, otherwise, preceding store(s) may float below cmpxchg. 1004 // CmpxchgX sets CCR0 to cmpX(current, displaced). 1005 cmpxchgd(/*flag=*/CCR0, 1006 /*current_value=*/current_header, 1007 /*compare_value=*/header, /*exchange_value=*/monitor, 1008 /*where=*/object_mark_addr, 1009 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, 1010 MacroAssembler::cmpxchgx_hint_acquire_lock(), 1011 noreg, 1012 &cas_failed, 1013 /*check without membar and ldarx first*/true); 1014 1015 // If the compare-and-exchange succeeded, then we found an unlocked 1016 // object and we have now locked it. 1017 b(count_locking); 1018 bind(cas_failed); 1019 1020 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1021 // // Simple recursive case. 1022 // monitor->lock()->set_displaced_header(nullptr); 1023 1024 // We did not see an unlocked object so try the fast recursive case. 1025 1026 // Check if owner is self by comparing the value in the markWord of object 1027 // (current_header) with the stack pointer. 1028 sub(current_header, current_header, R1_SP); 1029 1030 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1031 load_const_optimized(tmp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place); 1032 1033 and_(R0/*==0?*/, current_header, tmp); 1034 // If condition is true we are done and hence we can store 0 in the displaced 1035 // header indicating it is a recursive lock. 1036 bne(CCR0, slow_case); 1037 std(R0/*==0!*/, mark_offset, monitor); 1038 b(count_locking); 1039 } 1040 1041 // } else { 1042 // // Slow path. 1043 // InterpreterRuntime::monitorenter(THREAD, monitor); 1044 1045 // None of the above fast optimizations worked so we have to get into the 1046 // slow case of monitor enter. 1047 bind(slow_case); 1048 if (LockingMode == LM_LIGHTWEIGHT) { 1049 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), object); 1050 } else { 1051 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1052 } 1053 b(done); 1054 // } 1055 align(32, 12); 1056 bind(count_locking); 1057 inc_held_monitor_count(current_header /*tmp*/); 1058 bind(done); 1059 } 1060 } 1061 1062 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1063 // 1064 // Registers alive 1065 // monitor - Address of the BasicObjectLock to be used for locking, 1066 // which must be initialized with the object to lock. 1067 // 1068 // Throw IllegalMonitorException if object is not locked by current thread. 1069 void InterpreterMacroAssembler::unlock_object(Register monitor) { 1070 if (LockingMode == LM_MONITOR) { 1071 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1072 } else { 1073 1074 // template code (for LM_LEGACY): 1075 // 1076 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1077 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1078 // monitor->set_obj(nullptr); 1079 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1080 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1081 // monitor->set_obj(nullptr); 1082 // } else { 1083 // // Slow path. 1084 // InterpreterRuntime::monitorexit(monitor); 1085 // } 1086 1087 const Register object = R7_ARG5; 1088 const Register header = R8_ARG6; 1089 const Register object_mark_addr = R9_ARG7; 1090 const Register current_header = R10_ARG8; 1091 1092 Label free_slot; 1093 Label slow_case; 1094 1095 assert_different_registers(object, header, object_mark_addr, current_header); 1096 1097 if (LockingMode != LM_LIGHTWEIGHT) { 1098 // Test first if we are in the fast recursive case. 1099 ld(header, in_bytes(BasicObjectLock::lock_offset()) + 1100 BasicLock::displaced_header_offset_in_bytes(), monitor); 1101 1102 // If the displaced header is zero, we have a recursive unlock. 1103 cmpdi(CCR0, header, 0); 1104 beq(CCR0, free_slot); // recursive unlock 1105 } 1106 1107 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1108 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1109 // monitor->set_obj(nullptr); 1110 1111 // If we still have a lightweight lock, unlock the object and be done. 1112 1113 // The object address from the monitor is in object. 1114 ld(object, in_bytes(BasicObjectLock::obj_offset()), monitor); 1115 1116 if (LockingMode == LM_LIGHTWEIGHT) { 1117 lightweight_unlock(object, header, slow_case); 1118 } else { 1119 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1120 1121 // We have the displaced header in displaced_header. If the lock is still 1122 // lightweight, it will contain the monitor address and we'll store the 1123 // displaced header back into the object's mark word. 1124 // CmpxchgX sets CCR0 to cmpX(current, monitor). 1125 cmpxchgd(/*flag=*/CCR0, 1126 /*current_value=*/current_header, 1127 /*compare_value=*/monitor, /*exchange_value=*/header, 1128 /*where=*/object_mark_addr, 1129 MacroAssembler::MemBarRel, 1130 MacroAssembler::cmpxchgx_hint_release_lock(), 1131 noreg, 1132 &slow_case); 1133 } 1134 b(free_slot); 1135 1136 // } else { 1137 // // Slow path. 1138 // InterpreterRuntime::monitorexit(monitor); 1139 1140 // The lock has been converted into a heavy lock and hence 1141 // we need to get into the slow case. 1142 bind(slow_case); 1143 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1144 // } 1145 1146 Label done; 1147 b(done); // Monitor register may be overwritten! Runtime has already freed the slot. 1148 1149 // Exchange worked, do monitor->set_obj(nullptr); 1150 align(32, 12); 1151 bind(free_slot); 1152 li(R0, 0); 1153 std(R0, in_bytes(BasicObjectLock::obj_offset()), monitor); 1154 dec_held_monitor_count(current_header /*tmp*/); 1155 bind(done); 1156 } 1157 } 1158 1159 // Load compiled (i2c) or interpreter entry when calling from interpreted and 1160 // do the call. Centralized so that all interpreter calls will do the same actions. 1161 // If jvmti single stepping is on for a thread we must not call compiled code. 1162 // 1163 // Input: 1164 // - Rtarget_method: method to call 1165 // - Rret_addr: return address 1166 // - 2 scratch regs 1167 // 1168 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, 1169 Register Rscratch1, Register Rscratch2) { 1170 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); 1171 // Assume we want to go compiled if available. 1172 const Register Rtarget_addr = Rscratch1; 1173 const Register Rinterp_only = Rscratch2; 1174 1175 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); 1176 1177 if (JvmtiExport::can_post_interpreter_events()) { 1178 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1179 1180 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 1181 // compiled code in threads for which the event is enabled. Check here for 1182 // interp_only_mode if these events CAN be enabled. 1183 Label done; 1184 cmpwi(CCR0, Rinterp_only, 0); 1185 beq(CCR0, done); 1186 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); 1187 align(32, 12); 1188 bind(done); 1189 } 1190 1191 #ifdef ASSERT 1192 { 1193 Label Lok; 1194 cmpdi(CCR0, Rtarget_addr, 0); 1195 bne(CCR0, Lok); 1196 stop("null entry point"); 1197 bind(Lok); 1198 } 1199 #endif // ASSERT 1200 1201 mr(R21_sender_SP, R1_SP); 1202 1203 // Calc a precise SP for the call. The SP value we calculated in 1204 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space 1205 // if esp is not max. Also, the i2c adapter extends the stack space without restoring 1206 // our pre-calced value, so repeating calls via i2c would result in stack overflow. 1207 // Since esp already points to an empty slot, we just have to sub 1 additional slot 1208 // to meet the abi scratch requirements. 1209 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in 1210 // the return entry of the interpreter. 1211 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::top_ijava_frame_abi_size); 1212 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address 1213 resize_frame_absolute(Rscratch2, Rscratch2, R0); 1214 1215 mr_if_needed(R19_method, Rtarget_method); 1216 mtctr(Rtarget_addr); 1217 mtlr(Rret_addr); 1218 1219 save_interpreter_state(Rscratch2); 1220 #ifdef ASSERT 1221 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp 1222 sldi(Rscratch1, Rscratch1, Interpreter::logStackElementSize); 1223 add(Rscratch1, Rscratch1, Rscratch2); // Rscratch2 contains fp 1224 // Compare sender_sp with the derelativized top_frame_sp 1225 cmpd(CCR0, R21_sender_SP, Rscratch1); 1226 asm_assert_eq("top_frame_sp incorrect"); 1227 #endif 1228 1229 bctr(); 1230 } 1231 1232 // Set the method data pointer for the current bcp. 1233 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1234 assert(ProfileInterpreter, "must be profiling interpreter"); 1235 Label get_continue; 1236 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); 1237 test_method_data_pointer(get_continue); 1238 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); 1239 1240 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1241 add(R28_mdx, R28_mdx, R3_RET); 1242 bind(get_continue); 1243 } 1244 1245 // Test ImethodDataPtr. If it is null, continue at the specified label. 1246 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { 1247 assert(ProfileInterpreter, "must be profiling interpreter"); 1248 cmpdi(CCR0, R28_mdx, 0); 1249 beq(CCR0, zero_continue); 1250 } 1251 1252 void InterpreterMacroAssembler::verify_method_data_pointer() { 1253 assert(ProfileInterpreter, "must be profiling interpreter"); 1254 #ifdef ASSERT 1255 Label verify_continue; 1256 test_method_data_pointer(verify_continue); 1257 1258 // If the mdp is valid, it will point to a DataLayout header which is 1259 // consistent with the bcp. The converse is highly probable also. 1260 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); 1261 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); 1262 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1263 add(R11_scratch1, R12_scratch2, R12_scratch2); 1264 cmpd(CCR0, R11_scratch1, R14_bcp); 1265 beq(CCR0, verify_continue); 1266 1267 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); 1268 1269 bind(verify_continue); 1270 #endif 1271 } 1272 1273 // Store a value at some constant offset from the method data pointer. 1274 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { 1275 assert(ProfileInterpreter, "must be profiling interpreter"); 1276 1277 std(value, constant, R28_mdx); 1278 } 1279 1280 // Increment the value at some constant offset from the method data pointer. 1281 void InterpreterMacroAssembler::increment_mdp_data_at(int constant, 1282 Register counter_addr, 1283 Register Rbumped_count, 1284 bool decrement) { 1285 // Locate the counter at a fixed offset from the mdp: 1286 addi(counter_addr, R28_mdx, constant); 1287 increment_mdp_data_at(counter_addr, Rbumped_count, decrement); 1288 } 1289 1290 // Increment the value at some non-fixed (reg + constant) offset from 1291 // the method data pointer. 1292 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, 1293 int constant, 1294 Register scratch, 1295 Register Rbumped_count, 1296 bool decrement) { 1297 // Add the constant to reg to get the offset. 1298 add(scratch, R28_mdx, reg); 1299 // Then calculate the counter address. 1300 addi(scratch, scratch, constant); 1301 increment_mdp_data_at(scratch, Rbumped_count, decrement); 1302 } 1303 1304 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, 1305 Register Rbumped_count, 1306 bool decrement) { 1307 assert(ProfileInterpreter, "must be profiling interpreter"); 1308 1309 // Load the counter. 1310 ld(Rbumped_count, 0, counter_addr); 1311 1312 if (decrement) { 1313 // Decrement the register. Set condition codes. 1314 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); 1315 // Store the decremented counter, if it is still negative. 1316 std(Rbumped_count, 0, counter_addr); 1317 // Note: add/sub overflow check are not ported, since 64 bit 1318 // calculation should never overflow. 1319 } else { 1320 // Increment the register. Set carry flag. 1321 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); 1322 // Store the incremented counter. 1323 std(Rbumped_count, 0, counter_addr); 1324 } 1325 } 1326 1327 // Set a flag value at the current method data pointer position. 1328 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, 1329 Register scratch) { 1330 assert(ProfileInterpreter, "must be profiling interpreter"); 1331 // Load the data header. 1332 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1333 // Set the flag. 1334 ori(scratch, scratch, flag_constant); 1335 // Store the modified header. 1336 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1337 } 1338 1339 // Test the location at some offset from the method data pointer. 1340 // If it is not equal to value, branch to the not_equal_continue Label. 1341 void InterpreterMacroAssembler::test_mdp_data_at(int offset, 1342 Register value, 1343 Label& not_equal_continue, 1344 Register test_out) { 1345 assert(ProfileInterpreter, "must be profiling interpreter"); 1346 1347 ld(test_out, offset, R28_mdx); 1348 cmpd(CCR0, value, test_out); 1349 bne(CCR0, not_equal_continue); 1350 } 1351 1352 // Update the method data pointer by the displacement located at some fixed 1353 // offset from the method data pointer. 1354 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, 1355 Register scratch) { 1356 assert(ProfileInterpreter, "must be profiling interpreter"); 1357 1358 ld(scratch, offset_of_disp, R28_mdx); 1359 add(R28_mdx, scratch, R28_mdx); 1360 } 1361 1362 // Update the method data pointer by the displacement located at the 1363 // offset (reg + offset_of_disp). 1364 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, 1365 int offset_of_disp, 1366 Register scratch) { 1367 assert(ProfileInterpreter, "must be profiling interpreter"); 1368 1369 add(scratch, reg, R28_mdx); 1370 ld(scratch, offset_of_disp, scratch); 1371 add(R28_mdx, scratch, R28_mdx); 1372 } 1373 1374 // Update the method data pointer by a simple constant displacement. 1375 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { 1376 assert(ProfileInterpreter, "must be profiling interpreter"); 1377 addi(R28_mdx, R28_mdx, constant); 1378 } 1379 1380 // Update the method data pointer for a _ret bytecode whose target 1381 // was not among our cached targets. 1382 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, 1383 Register return_bci) { 1384 assert(ProfileInterpreter, "must be profiling interpreter"); 1385 1386 push(state); 1387 assert(return_bci->is_nonvolatile(), "need to protect return_bci"); 1388 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); 1389 pop(state); 1390 } 1391 1392 // Increments the backedge counter. 1393 // Returns backedge counter + invocation counter in Rdst. 1394 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, 1395 const Register Rtmp1, Register Rscratch) { 1396 assert(UseCompiler, "incrementing must be useful"); 1397 assert_different_registers(Rdst, Rtmp1); 1398 const Register invocation_counter = Rtmp1; 1399 const Register counter = Rdst; 1400 // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); 1401 1402 // Load backedge counter. 1403 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1404 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1405 // Load invocation counter. 1406 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + 1407 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1408 1409 // Add the delta to the backedge counter. 1410 addi(counter, counter, InvocationCounter::count_increment); 1411 1412 // Mask the invocation counter. 1413 andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); 1414 1415 // Store new counter value. 1416 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1417 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1418 // Return invocation counter + backedge counter. 1419 add(counter, counter, invocation_counter); 1420 } 1421 1422 // Count a taken branch in the bytecodes. 1423 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { 1424 if (ProfileInterpreter) { 1425 Label profile_continue; 1426 1427 // If no method data exists, go to profile_continue. 1428 test_method_data_pointer(profile_continue); 1429 1430 // We are taking a branch. Increment the taken count. 1431 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); 1432 1433 // The method data pointer needs to be updated to reflect the new target. 1434 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); 1435 bind (profile_continue); 1436 } 1437 } 1438 1439 // Count a not-taken branch in the bytecodes. 1440 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { 1441 if (ProfileInterpreter) { 1442 Label profile_continue; 1443 1444 // If no method data exists, go to profile_continue. 1445 test_method_data_pointer(profile_continue); 1446 1447 // We are taking a branch. Increment the not taken count. 1448 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); 1449 1450 // The method data pointer needs to be updated to correspond to the 1451 // next bytecode. 1452 update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); 1453 bind (profile_continue); 1454 } 1455 } 1456 1457 // Count a non-virtual call in the bytecodes. 1458 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { 1459 if (ProfileInterpreter) { 1460 Label profile_continue; 1461 1462 // If no method data exists, go to profile_continue. 1463 test_method_data_pointer(profile_continue); 1464 1465 // We are making a call. Increment the count. 1466 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1467 1468 // The method data pointer needs to be updated to reflect the new target. 1469 update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); 1470 bind (profile_continue); 1471 } 1472 } 1473 1474 // Count a final call in the bytecodes. 1475 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { 1476 if (ProfileInterpreter) { 1477 Label profile_continue; 1478 1479 // If no method data exists, go to profile_continue. 1480 test_method_data_pointer(profile_continue); 1481 1482 // We are making a call. Increment the count. 1483 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1484 1485 // The method data pointer needs to be updated to reflect the new target. 1486 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1487 bind (profile_continue); 1488 } 1489 } 1490 1491 // Count a virtual call in the bytecodes. 1492 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, 1493 Register Rscratch1, 1494 Register Rscratch2, 1495 bool receiver_can_be_null) { 1496 if (!ProfileInterpreter) { return; } 1497 Label profile_continue; 1498 1499 // If no method data exists, go to profile_continue. 1500 test_method_data_pointer(profile_continue); 1501 1502 Label skip_receiver_profile; 1503 if (receiver_can_be_null) { 1504 Label not_null; 1505 cmpdi(CCR0, Rreceiver, 0); 1506 bne(CCR0, not_null); 1507 // We are making a call. Increment the count for null receiver. 1508 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); 1509 b(skip_receiver_profile); 1510 bind(not_null); 1511 } 1512 1513 // Record the receiver type. 1514 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2); 1515 bind(skip_receiver_profile); 1516 1517 // The method data pointer needs to be updated to reflect the new target. 1518 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1519 bind (profile_continue); 1520 } 1521 1522 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { 1523 if (ProfileInterpreter) { 1524 Label profile_continue; 1525 1526 // If no method data exists, go to profile_continue. 1527 test_method_data_pointer(profile_continue); 1528 1529 int mdp_delta = in_bytes(BitData::bit_data_size()); 1530 if (TypeProfileCasts) { 1531 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1532 1533 // Record the object type. 1534 record_klass_in_profile(Rklass, Rscratch1, Rscratch2); 1535 } 1536 1537 // The method data pointer needs to be updated. 1538 update_mdp_by_constant(mdp_delta); 1539 1540 bind (profile_continue); 1541 } 1542 } 1543 1544 // Count a ret in the bytecodes. 1545 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, 1546 Register scratch1, Register scratch2) { 1547 if (ProfileInterpreter) { 1548 Label profile_continue; 1549 uint row; 1550 1551 // If no method data exists, go to profile_continue. 1552 test_method_data_pointer(profile_continue); 1553 1554 // Update the total ret count. 1555 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); 1556 1557 for (row = 0; row < RetData::row_limit(); row++) { 1558 Label next_test; 1559 1560 // See if return_bci is equal to bci[n]: 1561 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); 1562 1563 // return_bci is equal to bci[n]. Increment the count. 1564 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); 1565 1566 // The method data pointer needs to be updated to reflect the new target. 1567 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); 1568 b(profile_continue); 1569 bind(next_test); 1570 } 1571 1572 update_mdp_for_ret(state, return_bci); 1573 1574 bind (profile_continue); 1575 } 1576 } 1577 1578 // Count the default case of a switch construct. 1579 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { 1580 if (ProfileInterpreter) { 1581 Label profile_continue; 1582 1583 // If no method data exists, go to profile_continue. 1584 test_method_data_pointer(profile_continue); 1585 1586 // Update the default case count 1587 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), 1588 scratch1, scratch2); 1589 1590 // The method data pointer needs to be updated. 1591 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), 1592 scratch1); 1593 1594 bind (profile_continue); 1595 } 1596 } 1597 1598 // Count the index'th case of a switch construct. 1599 void InterpreterMacroAssembler::profile_switch_case(Register index, 1600 Register scratch1, 1601 Register scratch2, 1602 Register scratch3) { 1603 if (ProfileInterpreter) { 1604 assert_different_registers(index, scratch1, scratch2, scratch3); 1605 Label profile_continue; 1606 1607 // If no method data exists, go to profile_continue. 1608 test_method_data_pointer(profile_continue); 1609 1610 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). 1611 li(scratch3, in_bytes(MultiBranchData::case_array_offset())); 1612 1613 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); 1614 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1615 add(scratch1, scratch1, scratch3); 1616 1617 // Update the case count. 1618 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); 1619 1620 // The method data pointer needs to be updated. 1621 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); 1622 1623 bind (profile_continue); 1624 } 1625 } 1626 1627 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { 1628 if (ProfileInterpreter) { 1629 assert_different_registers(Rscratch1, Rscratch2); 1630 Label profile_continue; 1631 1632 // If no method data exists, go to profile_continue. 1633 test_method_data_pointer(profile_continue); 1634 1635 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); 1636 1637 // The method data pointer needs to be updated. 1638 int mdp_delta = in_bytes(BitData::bit_data_size()); 1639 if (TypeProfileCasts) { 1640 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1641 } 1642 update_mdp_by_constant(mdp_delta); 1643 1644 bind (profile_continue); 1645 } 1646 } 1647 1648 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, 1649 Register Rscratch1, Register Rscratch2) { 1650 assert(ProfileInterpreter, "must be profiling"); 1651 assert_different_registers(Rreceiver, Rscratch1, Rscratch2); 1652 1653 Label done; 1654 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done); 1655 bind (done); 1656 } 1657 1658 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1659 Register receiver, Register scratch1, Register scratch2, 1660 int start_row, Label& done) { 1661 if (TypeProfileWidth == 0) { 1662 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1663 return; 1664 } 1665 1666 int last_row = VirtualCallData::row_limit() - 1; 1667 assert(start_row <= last_row, "must be work left to do"); 1668 // Test this row for both the receiver and for null. 1669 // Take any of three different outcomes: 1670 // 1. found receiver => increment count and goto done 1671 // 2. found null => keep looking for case 1, maybe allocate this cell 1672 // 3. found something else => keep looking for cases 1 and 2 1673 // Case 3 is handled by a recursive call. 1674 for (int row = start_row; row <= last_row; row++) { 1675 Label next_test; 1676 bool test_for_null_also = (row == start_row); 1677 1678 // See if the receiver is receiver[n]. 1679 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1680 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); 1681 // delayed()->tst(scratch); 1682 1683 // The receiver is receiver[n]. Increment count[n]. 1684 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1685 increment_mdp_data_at(count_offset, scratch1, scratch2); 1686 b(done); 1687 bind(next_test); 1688 1689 if (test_for_null_also) { 1690 Label found_null; 1691 // Failed the equality check on receiver[n]... Test for null. 1692 if (start_row == last_row) { 1693 // The only thing left to do is handle the null case. 1694 // Scratch1 contains test_out from test_mdp_data_at. 1695 cmpdi(CCR0, scratch1, 0); 1696 beq(CCR0, found_null); 1697 // Receiver did not match any saved receiver and there is no empty row for it. 1698 // Increment total counter to indicate polymorphic case. 1699 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1700 b(done); 1701 bind(found_null); 1702 break; 1703 } 1704 // Since null is rare, make it be the branch-taken case. 1705 cmpdi(CCR0, scratch1, 0); 1706 beq(CCR0, found_null); 1707 1708 // Put all the "Case 3" tests here. 1709 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done); 1710 1711 // Found a null. Keep searching for a matching receiver, 1712 // but remember that this is an empty (unused) slot. 1713 bind(found_null); 1714 } 1715 } 1716 1717 // In the fall-through case, we found no matching receiver, but we 1718 // observed the receiver[start_row] is null. 1719 1720 // Fill in the receiver field and increment the count. 1721 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1722 set_mdp_data_at(recvr_offset, receiver); 1723 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1724 li(scratch1, DataLayout::counter_increment); 1725 set_mdp_data_at(count_offset, scratch1); 1726 if (start_row > 0) { 1727 b(done); 1728 } 1729 } 1730 1731 // Argument and return type profilig. 1732 // kills: tmp, tmp2, R0, CR0, CR1 1733 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, 1734 RegisterOrConstant mdo_addr_offs, 1735 Register tmp, Register tmp2) { 1736 Label do_nothing, do_update; 1737 1738 // tmp2 = obj is allowed 1739 assert_different_registers(obj, mdo_addr_base, tmp, R0); 1740 assert_different_registers(tmp2, mdo_addr_base, tmp, R0); 1741 const Register klass = tmp2; 1742 1743 verify_oop(obj); 1744 1745 ld(tmp, mdo_addr_offs, mdo_addr_base); 1746 1747 // Set null_seen if obj is 0. 1748 cmpdi(CCR0, obj, 0); 1749 ori(R0, tmp, TypeEntries::null_seen); 1750 beq(CCR0, do_update); 1751 1752 load_klass(klass, obj); 1753 1754 clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 1755 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 1756 cmpd(CCR1, R0, klass); 1757 // Klass seen before, nothing to do (regardless of unknown bit). 1758 //beq(CCR1, do_nothing); 1759 1760 andi_(R0, tmp, TypeEntries::type_unknown); 1761 // Already unknown. Nothing to do anymore. 1762 //bne(CCR0, do_nothing); 1763 crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 1764 beq(CCR0, do_nothing); 1765 1766 clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 1767 orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1768 beq(CCR0, do_update); // First time here. Set profile type. 1769 1770 // Different than before. Cannot keep accurate profile. 1771 ori(R0, tmp, TypeEntries::type_unknown); 1772 1773 bind(do_update); 1774 // update profile 1775 std(R0, mdo_addr_offs, mdo_addr_base); 1776 1777 align(32, 12); 1778 bind(do_nothing); 1779 } 1780 1781 void InterpreterMacroAssembler::profile_arguments_type(Register callee, 1782 Register tmp1, Register tmp2, 1783 bool is_virtual) { 1784 if (!ProfileInterpreter) { 1785 return; 1786 } 1787 1788 assert_different_registers(callee, tmp1, tmp2, R28_mdx); 1789 1790 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1791 Label profile_continue; 1792 1793 test_method_data_pointer(profile_continue); 1794 1795 int off_to_start = is_virtual ? 1796 in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1797 1798 lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); 1799 cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1800 bne(CCR0, profile_continue); 1801 1802 if (MethodData::profile_arguments()) { 1803 Label done; 1804 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1805 addi(R28_mdx, R28_mdx, off_to_args); 1806 1807 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1808 if (i > 0 || MethodData::profile_return()) { 1809 // If return value type is profiled we may have no argument to profile. 1810 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1811 cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); 1812 addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); 1813 blt(CCR0, done); 1814 } 1815 ld(tmp1, in_bytes(Method::const_offset()), callee); 1816 lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); 1817 // Stack offset o (zero based) from the start of the argument 1818 // list, for n arguments translates into offset n - o - 1 from 1819 // the end of the argument list. But there's an extra slot at 1820 // the top of the stack. So the offset is n - o from Lesp. 1821 ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); 1822 subf(tmp1, tmp2, tmp1); 1823 1824 sldi(tmp1, tmp1, Interpreter::logStackElementSize); 1825 ldx(tmp1, tmp1, R15_esp); 1826 1827 profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); 1828 1829 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1830 addi(R28_mdx, R28_mdx, to_add); 1831 off_to_args += to_add; 1832 } 1833 1834 if (MethodData::profile_return()) { 1835 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1836 addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1837 } 1838 1839 bind(done); 1840 1841 if (MethodData::profile_return()) { 1842 // We're right after the type profile for the last 1843 // argument. tmp1 is the number of cells left in the 1844 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1845 // if there's a return to profile. 1846 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), 1847 "can't move past ret type"); 1848 sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); 1849 add(R28_mdx, tmp1, R28_mdx); 1850 } 1851 } else { 1852 assert(MethodData::profile_return(), "either profile call args or call ret"); 1853 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); 1854 } 1855 1856 // Mdp points right after the end of the 1857 // CallTypeData/VirtualCallTypeData, right after the cells for the 1858 // return value type if there's one. 1859 align(32, 12); 1860 bind(profile_continue); 1861 } 1862 } 1863 1864 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { 1865 assert_different_registers(ret, tmp1, tmp2); 1866 if (ProfileInterpreter && MethodData::profile_return()) { 1867 Label profile_continue; 1868 1869 test_method_data_pointer(profile_continue); 1870 1871 if (MethodData::profile_return_jsr292_only()) { 1872 // If we don't profile all invoke bytecodes we must make sure 1873 // it's a bytecode we indeed profile. We can't go back to the 1874 // beginning of the ProfileData we intend to update to check its 1875 // type because we're right after it and we don't known its 1876 // length. 1877 lbz(tmp1, 0, R14_bcp); 1878 lbz(tmp2, in_bytes(Method::intrinsic_id_offset()), R19_method); 1879 cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic); 1880 cmpwi(CCR1, tmp1, Bytecodes::_invokehandle); 1881 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1882 cmpwi(CCR1, tmp2, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1883 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1884 bne(CCR0, profile_continue); 1885 } 1886 1887 profile_obj_type(ret, R28_mdx, -in_bytes(SingleTypeEntry::size()), tmp1, tmp2); 1888 1889 align(32, 12); 1890 bind(profile_continue); 1891 } 1892 } 1893 1894 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, 1895 Register tmp3, Register tmp4) { 1896 if (ProfileInterpreter && MethodData::profile_parameters()) { 1897 Label profile_continue, done; 1898 1899 test_method_data_pointer(profile_continue); 1900 1901 // Load the offset of the area within the MDO used for 1902 // parameters. If it's negative we're not profiling any parameters. 1903 lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); 1904 cmpwi(CCR0, tmp1, 0); 1905 blt(CCR0, profile_continue); 1906 1907 // Compute a pointer to the area for parameters from the offset 1908 // and move the pointer to the slot for the last 1909 // parameters. Collect profiling from last parameter down. 1910 // mdo start + parameters offset + array length - 1 1911 1912 // Pointer to the parameter area in the MDO. 1913 const Register mdp = tmp1; 1914 add(mdp, tmp1, R28_mdx); 1915 1916 // Offset of the current profile entry to update. 1917 const Register entry_offset = tmp2; 1918 // entry_offset = array len in number of cells 1919 ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); 1920 1921 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1922 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); 1923 1924 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field 1925 addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); 1926 // entry_offset in bytes 1927 sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1928 1929 Label loop; 1930 align(32, 12); 1931 bind(loop); 1932 1933 // Load offset on the stack from the slot for this parameter. 1934 ld(tmp3, entry_offset, mdp); 1935 sldi(tmp3, tmp3, Interpreter::logStackElementSize); 1936 neg(tmp3, tmp3); 1937 // Read the parameter from the local area. 1938 ldx(tmp3, tmp3, R18_locals); 1939 1940 // Make entry_offset now point to the type field for this parameter. 1941 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1942 assert(type_base > off_base, "unexpected"); 1943 addi(entry_offset, entry_offset, type_base - off_base); 1944 1945 // Profile the parameter. 1946 profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); 1947 1948 // Go to next parameter. 1949 int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); 1950 cmpdi(CCR0, entry_offset, off_base + delta); 1951 addi(entry_offset, entry_offset, -delta); 1952 bge(CCR0, loop); 1953 1954 align(32, 12); 1955 bind(profile_continue); 1956 } 1957 } 1958 1959 // Add a monitor (see frame_ppc.hpp). 1960 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { 1961 1962 // Very-local scratch registers. 1963 const Register esp = Rtemp1; 1964 const Register slot = Rtemp2; 1965 1966 // Extracted monitor_size. 1967 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); 1968 assert(Assembler::is_aligned((unsigned int)monitor_size, 1969 (unsigned int)frame::alignment_in_bytes), 1970 "size of a monitor must respect alignment of SP"); 1971 1972 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor 1973 subf(Rtemp2, esp, R1_SP); // esp contains fp 1974 sradi(Rtemp2, Rtemp2, Interpreter::logStackElementSize); 1975 // Store relativized top_frame_sp 1976 std(Rtemp2, _ijava_state_neg(top_frame_sp), esp); // esp contains fp 1977 1978 // Shuffle expression stack down. Recall that stack_base points 1979 // just above the new expression stack bottom. Old_tos and new_tos 1980 // are used to scan thru the old and new expression stacks. 1981 if (!stack_is_empty) { 1982 Label copy_slot, copy_slot_finished; 1983 const Register n_slots = slot; 1984 1985 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). 1986 subf(n_slots, esp, R26_monitor); 1987 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. 1988 assert(LogBytesPerWord == 3, "conflicts assembler instructions"); 1989 beq(CCR0, copy_slot_finished); // Nothing to copy. 1990 1991 mtctr(n_slots); 1992 1993 // loop 1994 bind(copy_slot); 1995 ld(slot, 0, esp); // Move expression stack down. 1996 std(slot, -monitor_size, esp); // distance = monitor_size 1997 addi(esp, esp, BytesPerWord); 1998 bdnz(copy_slot); 1999 2000 bind(copy_slot_finished); 2001 } 2002 2003 addi(R15_esp, R15_esp, -monitor_size); 2004 addi(R26_monitor, R26_monitor, -monitor_size); 2005 2006 // Restart interpreter 2007 } 2008 2009 // ============================================================================ 2010 // Java locals access 2011 2012 // Load a local variable at index in Rindex into register Rdst_value. 2013 // Also puts address of local into Rdst_address as a service. 2014 // Kills: 2015 // - Rdst_value 2016 // - Rdst_address 2017 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { 2018 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2019 subf(Rdst_address, Rdst_address, R18_locals); 2020 lwz(Rdst_value, 0, Rdst_address); 2021 } 2022 2023 // Load a local variable at index in Rindex into register Rdst_value. 2024 // Also puts address of local into Rdst_address as a service. 2025 // Kills: 2026 // - Rdst_value 2027 // - Rdst_address 2028 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { 2029 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2030 subf(Rdst_address, Rdst_address, R18_locals); 2031 ld(Rdst_value, -8, Rdst_address); 2032 } 2033 2034 // Load a local variable at index in Rindex into register Rdst_value. 2035 // Also puts address of local into Rdst_address as a service. 2036 // Input: 2037 // - Rindex: slot nr of local variable 2038 // Kills: 2039 // - Rdst_value 2040 // - Rdst_address 2041 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, 2042 Register Rdst_address, 2043 Register Rindex) { 2044 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2045 subf(Rdst_address, Rdst_address, R18_locals); 2046 ld(Rdst_value, 0, Rdst_address); 2047 } 2048 2049 // Load a local variable at index in Rindex into register Rdst_value. 2050 // Also puts address of local into Rdst_address as a service. 2051 // Kills: 2052 // - Rdst_value 2053 // - Rdst_address 2054 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, 2055 Register Rdst_address, 2056 Register Rindex) { 2057 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2058 subf(Rdst_address, Rdst_address, R18_locals); 2059 lfs(Rdst_value, 0, Rdst_address); 2060 } 2061 2062 // Load a local variable at index in Rindex into register Rdst_value. 2063 // Also puts address of local into Rdst_address as a service. 2064 // Kills: 2065 // - Rdst_value 2066 // - Rdst_address 2067 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, 2068 Register Rdst_address, 2069 Register Rindex) { 2070 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2071 subf(Rdst_address, Rdst_address, R18_locals); 2072 lfd(Rdst_value, -8, Rdst_address); 2073 } 2074 2075 // Store an int value at local variable slot Rindex. 2076 // Kills: 2077 // - Rindex 2078 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { 2079 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2080 subf(Rindex, Rindex, R18_locals); 2081 stw(Rvalue, 0, Rindex); 2082 } 2083 2084 // Store a long value at local variable slot Rindex. 2085 // Kills: 2086 // - Rindex 2087 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { 2088 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2089 subf(Rindex, Rindex, R18_locals); 2090 std(Rvalue, -8, Rindex); 2091 } 2092 2093 // Store an oop value at local variable slot Rindex. 2094 // Kills: 2095 // - Rindex 2096 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { 2097 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2098 subf(Rindex, Rindex, R18_locals); 2099 std(Rvalue, 0, Rindex); 2100 } 2101 2102 // Store an int value at local variable slot Rindex. 2103 // Kills: 2104 // - Rindex 2105 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { 2106 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2107 subf(Rindex, Rindex, R18_locals); 2108 stfs(Rvalue, 0, Rindex); 2109 } 2110 2111 // Store an int value at local variable slot Rindex. 2112 // Kills: 2113 // - Rindex 2114 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { 2115 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2116 subf(Rindex, Rindex, R18_locals); 2117 stfd(Rvalue, -8, Rindex); 2118 } 2119 2120 // Read pending exception from thread and jump to interpreter. 2121 // Throw exception entry if one if pending. Fall through otherwise. 2122 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { 2123 assert_different_registers(Rscratch1, Rscratch2, R3); 2124 Register Rexception = Rscratch1; 2125 Register Rtmp = Rscratch2; 2126 Label Ldone; 2127 // Get pending exception oop. 2128 ld(Rexception, thread_(pending_exception)); 2129 cmpdi(CCR0, Rexception, 0); 2130 beq(CCR0, Ldone); 2131 li(Rtmp, 0); 2132 mr_if_needed(R3, Rexception); 2133 std(Rtmp, thread_(pending_exception)); // Clear exception in thread 2134 if (Interpreter::rethrow_exception_entry() != nullptr) { 2135 // Already got entry address. 2136 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); 2137 } else { 2138 // Dynamically load entry address. 2139 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); 2140 ld(Rtmp, simm16_rest, Rtmp); 2141 } 2142 mtctr(Rtmp); 2143 save_interpreter_state(Rtmp); 2144 bctr(); 2145 2146 align(32, 12); 2147 bind(Ldone); 2148 } 2149 2150 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { 2151 save_interpreter_state(R11_scratch1); 2152 2153 MacroAssembler::call_VM(oop_result, entry_point, false); 2154 2155 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); 2156 2157 check_and_handle_popframe(R11_scratch1); 2158 check_and_handle_earlyret(R11_scratch1); 2159 // Now check exceptions manually. 2160 if (check_exceptions) { 2161 check_and_forward_exception(R11_scratch1, R12_scratch2); 2162 } 2163 } 2164 2165 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2166 Register arg_1, bool check_exceptions) { 2167 // ARG1 is reserved for the thread. 2168 mr_if_needed(R4_ARG2, arg_1); 2169 call_VM(oop_result, entry_point, check_exceptions); 2170 } 2171 2172 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2173 Register arg_1, Register arg_2, 2174 bool check_exceptions) { 2175 // ARG1 is reserved for the thread. 2176 mr_if_needed(R4_ARG2, arg_1); 2177 assert(arg_2 != R4_ARG2, "smashed argument"); 2178 mr_if_needed(R5_ARG3, arg_2); 2179 call_VM(oop_result, entry_point, check_exceptions); 2180 } 2181 2182 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2183 Register arg_1, Register arg_2, Register arg_3, 2184 bool check_exceptions) { 2185 // ARG1 is reserved for the thread. 2186 mr_if_needed(R4_ARG2, arg_1); 2187 assert(arg_2 != R4_ARG2, "smashed argument"); 2188 mr_if_needed(R5_ARG3, arg_2); 2189 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); 2190 mr_if_needed(R6_ARG4, arg_3); 2191 call_VM(oop_result, entry_point, check_exceptions); 2192 } 2193 2194 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { 2195 ld(scratch, 0, R1_SP); 2196 subf(R0, scratch, R15_esp); 2197 sradi(R0, R0, Interpreter::logStackElementSize); 2198 std(R0, _ijava_state_neg(esp), scratch); 2199 std(R14_bcp, _ijava_state_neg(bcp), scratch); 2200 subf(R0, scratch, R26_monitor); 2201 sradi(R0, R0, Interpreter::logStackElementSize); 2202 std(R0, _ijava_state_neg(monitors), scratch); 2203 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } 2204 // Other entries should be unchanged. 2205 } 2206 2207 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only, bool restore_top_frame_sp) { 2208 ld_ptr(scratch, _abi0(callers_sp), R1_SP); // Load frame pointer. 2209 if (restore_top_frame_sp) { 2210 // After thawing the top frame of a continuation we reach here with frame::java_abi. 2211 // therefore we have to restore top_frame_sp before the assertion below. 2212 assert(!bcp_and_mdx_only, "chose other registers"); 2213 Register tfsp = R18_locals; 2214 Register scratch2 = R26_monitor; 2215 ld(tfsp, _ijava_state_neg(top_frame_sp), scratch); 2216 // Derelativize top_frame_sp 2217 sldi(tfsp, tfsp, Interpreter::logStackElementSize); 2218 add(tfsp, tfsp, scratch); 2219 resize_frame_absolute(tfsp, scratch2, R0); 2220 } 2221 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). 2222 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. 2223 if (!bcp_and_mdx_only) { 2224 // Following ones are Metadata. 2225 ld(R19_method, _ijava_state_neg(method), scratch); 2226 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); 2227 // Following ones are stack addresses and don't require reload. 2228 // Derelativize esp 2229 ld(R15_esp, _ijava_state_neg(esp), scratch); 2230 sldi(R15_esp, R15_esp, Interpreter::logStackElementSize); 2231 add(R15_esp, R15_esp, scratch); 2232 ld(R18_locals, _ijava_state_neg(locals), scratch); 2233 sldi(R18_locals, R18_locals, Interpreter::logStackElementSize); 2234 add(R18_locals, R18_locals, scratch); 2235 ld(R26_monitor, _ijava_state_neg(monitors), scratch); 2236 // Derelativize monitors 2237 sldi(R26_monitor, R26_monitor, Interpreter::logStackElementSize); 2238 add(R26_monitor, R26_monitor, scratch); 2239 } 2240 #ifdef ASSERT 2241 { 2242 Label Lok; 2243 subf(R0, R1_SP, scratch); 2244 cmpdi(CCR0, R0, frame::top_ijava_frame_abi_size + frame::ijava_state_size); 2245 bge(CCR0, Lok); 2246 stop("frame too small (restore istate)"); 2247 bind(Lok); 2248 } 2249 #endif 2250 } 2251 2252 void InterpreterMacroAssembler::get_method_counters(Register method, 2253 Register Rcounters, 2254 Label& skip) { 2255 BLOCK_COMMENT("Load and ev. allocate counter object {"); 2256 Label has_counters; 2257 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2258 cmpdi(CCR0, Rcounters, 0); 2259 bne(CCR0, has_counters); 2260 call_VM(noreg, CAST_FROM_FN_PTR(address, 2261 InterpreterRuntime::build_method_counters), method); 2262 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2263 cmpdi(CCR0, Rcounters, 0); 2264 beq(CCR0, skip); // No MethodCounters, OutOfMemory. 2265 BLOCK_COMMENT("} Load and ev. allocate counter object"); 2266 2267 bind(has_counters); 2268 } 2269 2270 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, 2271 Register iv_be_count, 2272 Register Rtmp_r0) { 2273 assert(UseCompiler, "incrementing must be useful"); 2274 Register invocation_count = iv_be_count; 2275 Register backedge_count = Rtmp_r0; 2276 int delta = InvocationCounter::count_increment; 2277 2278 // Load each counter in a register. 2279 // ld(inv_counter, Rtmp); 2280 // ld(be_counter, Rtmp2); 2281 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + 2282 InvocationCounter::counter_offset()); 2283 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + 2284 InvocationCounter::counter_offset()); 2285 2286 BLOCK_COMMENT("Increment profiling counters {"); 2287 2288 // Load the backedge counter. 2289 lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int 2290 // Mask the backedge counter. 2291 andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); 2292 2293 // Load the invocation counter. 2294 lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int 2295 // Add the delta to the invocation counter and store the result. 2296 addi(invocation_count, invocation_count, delta); 2297 // Store value. 2298 stw(invocation_count, inv_counter_offset, Rcounters); 2299 2300 // Add invocation counter + backedge counter. 2301 add(iv_be_count, backedge_count, invocation_count); 2302 2303 // Note that this macro must leave the backedge_count + invocation_count in 2304 // register iv_be_count! 2305 BLOCK_COMMENT("} Increment profiling counters"); 2306 } 2307 2308 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2309 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2310 } 2311 2312 // Local helper function for the verify_oop_or_return_address macro. 2313 static bool verify_return_address(Method* m, int bci) { 2314 #ifndef PRODUCT 2315 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; 2316 // Assume it is a valid return address if it is inside m and is preceded by a jsr. 2317 if (!m->contains(pc)) return false; 2318 address jsr_pc; 2319 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); 2320 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; 2321 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); 2322 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; 2323 #endif // PRODUCT 2324 return false; 2325 } 2326 2327 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2328 if (VerifyFPU) { 2329 unimplemented("verfiyFPU"); 2330 } 2331 } 2332 2333 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { 2334 if (!VerifyOops) return; 2335 2336 // The VM documentation for the astore[_wide] bytecode allows 2337 // the TOS to be not only an oop but also a return address. 2338 Label test; 2339 Label skip; 2340 // See if it is an address (in the current method): 2341 2342 const int log2_bytecode_size_limit = 16; 2343 srdi_(Rtmp, reg, log2_bytecode_size_limit); 2344 bne(CCR0, test); 2345 2346 address fd = CAST_FROM_FN_PTR(address, verify_return_address); 2347 const int nbytes_save = MacroAssembler::num_volatile_regs * 8; 2348 save_volatile_gprs(R1_SP, -nbytes_save); // except R0 2349 save_LR_CR(Rtmp); // Save in old frame. 2350 push_frame_reg_args(nbytes_save, Rtmp); 2351 2352 load_const_optimized(Rtmp, fd, R0); 2353 mr_if_needed(R4_ARG2, reg); 2354 mr(R3_ARG1, R19_method); 2355 call_c(Rtmp); // call C 2356 2357 pop_frame(); 2358 restore_LR_CR(Rtmp); 2359 restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 2360 b(skip); 2361 2362 // Perform a more elaborate out-of-line call. 2363 // Not an address; verify it: 2364 bind(test); 2365 verify_oop(reg); 2366 bind(skip); 2367 } 2368 2369 // Inline assembly for: 2370 // 2371 // if (thread is in interp_only_mode) { 2372 // InterpreterRuntime::post_method_entry(); 2373 // } 2374 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || 2375 // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { 2376 // SharedRuntime::jvmpi_method_entry(method, receiver); 2377 // } 2378 void InterpreterMacroAssembler::notify_method_entry() { 2379 // JVMTI 2380 // Whenever JVMTI puts a thread in interp_only_mode, method 2381 // entry/exit events are sent for that thread to track stack 2382 // depth. If it is possible to enter interp_only_mode we add 2383 // the code to check if the event should be sent. 2384 if (JvmtiExport::can_post_interpreter_events()) { 2385 Label jvmti_post_done; 2386 2387 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2388 cmpwi(CCR0, R0, 0); 2389 beq(CCR0, jvmti_post_done); 2390 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2391 2392 bind(jvmti_post_done); 2393 } 2394 } 2395 2396 // Inline assembly for: 2397 // 2398 // if (thread is in interp_only_mode) { 2399 // // save result 2400 // InterpreterRuntime::post_method_exit(); 2401 // // restore result 2402 // } 2403 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { 2404 // // save result 2405 // SharedRuntime::jvmpi_method_exit(); 2406 // // restore result 2407 // } 2408 // 2409 // Native methods have their result stored in d_tmp and l_tmp. 2410 // Java methods have their result stored in the expression stack. 2411 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, 2412 NotifyMethodExitMode mode, bool check_exceptions) { 2413 // JVMTI 2414 // Whenever JVMTI puts a thread in interp_only_mode, method 2415 // entry/exit events are sent for that thread to track stack 2416 // depth. If it is possible to enter interp_only_mode we add 2417 // the code to check if the event should be sent. 2418 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2419 Label jvmti_post_done; 2420 2421 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2422 cmpwi(CCR0, R0, 0); 2423 beq(CCR0, jvmti_post_done); 2424 if (!is_native_method) { push(state); } // Expose tos to GC. 2425 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), check_exceptions); 2426 if (!is_native_method) { pop(state); } 2427 2428 align(32, 12); 2429 bind(jvmti_post_done); 2430 } 2431 2432 // Dtrace support not implemented. 2433 }