1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2025 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 27 #include "asm/macroAssembler.inline.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "interp_masm_ppc.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "oops/methodCounters.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/resolvedFieldEntry.hpp" 35 #include "oops/resolvedIndyEntry.hpp" 36 #include "oops/resolvedMethodEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/safepointMechanism.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/macros.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler. 47 48 // This file specializes the assembler with interpreter-specific macros. 49 50 #ifdef PRODUCT 51 #define BLOCK_COMMENT(str) // nothing 52 #else 53 #define BLOCK_COMMENT(str) block_comment(str) 54 #endif 55 56 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { 57 address exception_entry = Interpreter::throw_NullPointerException_entry(); 58 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 59 } 60 61 void InterpreterMacroAssembler::load_klass_check_null_throw(Register dst, Register src, Register temp_reg) { 62 null_check_throw(src, oopDesc::klass_offset_in_bytes(), temp_reg); 63 load_klass(dst, src); 64 } 65 66 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 67 assert(entry, "Entry must have been generated by now"); 68 if (is_within_range_of_b(entry, pc())) { 69 b(entry); 70 } else { 71 load_const_optimized(Rscratch, entry, R0); 72 mtctr(Rscratch); 73 bctr(); 74 } 75 } 76 77 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 78 Register bytecode = R12_scratch2; 79 if (bcp_incr != 0) { 80 lbzu(bytecode, bcp_incr, R14_bcp); 81 } else { 82 lbz(bytecode, 0, R14_bcp); 83 } 84 85 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll); 86 } 87 88 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 89 // Load current bytecode. 90 Register bytecode = R12_scratch2; 91 lbz(bytecode, 0, R14_bcp); 92 dispatch_Lbyte_code(state, bytecode, table); 93 } 94 95 // Dispatch code executed in the prolog of a bytecode which does not do it's 96 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. 97 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 98 Register bytecode = R12_scratch2; 99 lbz(bytecode, bcp_incr, R14_bcp); 100 101 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); 102 103 sldi(bytecode, bytecode, LogBytesPerWord); 104 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); 105 } 106 107 // Dispatch code executed in the epilog of a bytecode which does not do it's 108 // own dispatch. The dispatch address in R24_dispatch_addr is used for the 109 // dispatch. 110 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { 111 if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } 112 mtctr(R24_dispatch_addr); 113 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 114 } 115 116 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 117 assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); 118 if (JvmtiExport::can_pop_frame()) { 119 Label L; 120 121 // Check the "pending popframe condition" flag in the current thread. 122 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 123 124 // Initiate popframe handling only if it is not already being 125 // processed. If the flag has the popframe_processing bit set, it 126 // means that this code is called *during* popframe handling - we 127 // don't want to reenter. 128 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); 129 beq(CR0, L); 130 131 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); 132 bne(CR0, L); 133 134 // Call the Interpreter::remove_activation_preserving_args_entry() 135 // func to get the address of the same-named entrypoint in the 136 // generated interpreter code. 137 call_c(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 138 139 // Jump to Interpreter::_remove_activation_preserving_args_entry. 140 mtctr(R3_RET); 141 bctr(); 142 143 align(32, 12); 144 bind(L); 145 } 146 } 147 148 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 149 const Register Rthr_state_addr = scratch_reg; 150 if (JvmtiExport::can_force_early_return()) { 151 Label Lno_early_ret; 152 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 153 cmpdi(CR0, Rthr_state_addr, 0); 154 beq(CR0, Lno_early_ret); 155 156 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); 157 cmpwi(CR0, R0, JvmtiThreadState::earlyret_pending); 158 bne(CR0, Lno_early_ret); 159 160 // Jump to Interpreter::_earlyret_entry. 161 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); 162 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); 163 mtlr(R3_RET); 164 blr(); 165 166 align(32, 12); 167 bind(Lno_early_ret); 168 } 169 } 170 171 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { 172 const Register RjvmtiState = Rscratch1; 173 const Register Rscratch2 = R0; 174 175 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 176 li(Rscratch2, 0); 177 178 switch (state) { 179 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 180 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 181 break; 182 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 183 break; 184 case btos: // fall through 185 case ztos: // fall through 186 case ctos: // fall through 187 case stos: // fall through 188 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 189 break; 190 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 191 break; 192 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 193 break; 194 case vtos: break; 195 default : ShouldNotReachHere(); 196 } 197 198 // Clean up tos value in the jvmti thread state. 199 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 200 // Set tos state field to illegal value. 201 li(Rscratch2, ilgl); 202 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); 203 } 204 205 // Common code to dispatch and dispatch_only. 206 // Dispatch value in Lbyte_code and increment Lbcp. 207 208 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { 209 address table_base = (address)Interpreter::dispatch_table((TosState)0); 210 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; 211 if (is_simm16(table_offs)) { 212 addi(dst, R25_templateTableBase, (int)table_offs); 213 } else { 214 load_const_optimized(dst, table, R0); 215 } 216 } 217 218 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, 219 address* table, bool generate_poll) { 220 assert_different_registers(bytecode, R11_scratch1); 221 222 // Calc dispatch table address. 223 load_dispatch_table(R11_scratch1, table); 224 225 if (generate_poll) { 226 address *sfpt_tbl = Interpreter::safept_table(state); 227 if (table != sfpt_tbl) { 228 Label dispatch; 229 ld(R0, in_bytes(JavaThread::polling_word_offset()), R16_thread); 230 // Armed page has poll_bit set, if poll bit is cleared just continue. 231 andi_(R0, R0, SafepointMechanism::poll_bit()); 232 beq(CR0, dispatch); 233 load_dispatch_table(R11_scratch1, sfpt_tbl); 234 align(32, 16); 235 bind(dispatch); 236 } 237 } 238 239 sldi(R12_scratch2, bytecode, LogBytesPerWord); 240 ldx(R11_scratch1, R11_scratch1, R12_scratch2); 241 242 // Jump off! 243 mtctr(R11_scratch1); 244 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 245 } 246 247 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { 248 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); 249 ldx(Rrecv_dst, Rrecv_dst, R15_esp); 250 } 251 252 // helpers for expression stack 253 254 void InterpreterMacroAssembler::pop_i(Register r) { 255 lwzu(r, Interpreter::stackElementSize, R15_esp); 256 } 257 258 void InterpreterMacroAssembler::pop_ptr(Register r) { 259 ldu(r, Interpreter::stackElementSize, R15_esp); 260 } 261 262 void InterpreterMacroAssembler::pop_l(Register r) { 263 ld(r, Interpreter::stackElementSize, R15_esp); 264 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 265 } 266 267 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 268 lfsu(f, Interpreter::stackElementSize, R15_esp); 269 } 270 271 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 272 lfd(f, Interpreter::stackElementSize, R15_esp); 273 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 274 } 275 276 void InterpreterMacroAssembler::push_i(Register r) { 277 stw(r, 0, R15_esp); 278 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 279 } 280 281 void InterpreterMacroAssembler::push_ptr(Register r) { 282 std(r, 0, R15_esp); 283 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 284 } 285 286 void InterpreterMacroAssembler::push_l(Register r) { 287 // Clear unused slot. 288 load_const_optimized(R0, 0L); 289 std(R0, 0, R15_esp); 290 std(r, - Interpreter::stackElementSize, R15_esp); 291 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 292 } 293 294 void InterpreterMacroAssembler::push_f(FloatRegister f) { 295 stfs(f, 0, R15_esp); 296 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 297 } 298 299 void InterpreterMacroAssembler::push_d(FloatRegister f) { 300 stfd(f, - Interpreter::stackElementSize, R15_esp); 301 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 302 } 303 304 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { 305 std(first, 0, R15_esp); 306 std(second, -Interpreter::stackElementSize, R15_esp); 307 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 308 } 309 310 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { 311 mtfprd(d, l); 312 } 313 314 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { 315 mffprd(l, d); 316 } 317 318 void InterpreterMacroAssembler::push(TosState state) { 319 switch (state) { 320 case atos: push_ptr(); break; 321 case btos: 322 case ztos: 323 case ctos: 324 case stos: 325 case itos: push_i(); break; 326 case ltos: push_l(); break; 327 case ftos: push_f(); break; 328 case dtos: push_d(); break; 329 case vtos: /* nothing to do */ break; 330 default : ShouldNotReachHere(); 331 } 332 } 333 334 void InterpreterMacroAssembler::pop(TosState state) { 335 switch (state) { 336 case atos: pop_ptr(); break; 337 case btos: 338 case ztos: 339 case ctos: 340 case stos: 341 case itos: pop_i(); break; 342 case ltos: pop_l(); break; 343 case ftos: pop_f(); break; 344 case dtos: pop_d(); break; 345 case vtos: /* nothing to do */ break; 346 default : ShouldNotReachHere(); 347 } 348 verify_oop(R17_tos, state); 349 } 350 351 void InterpreterMacroAssembler::empty_expression_stack() { 352 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); 353 } 354 355 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, 356 Register Rdst, 357 signedOrNot is_signed) { 358 #if defined(VM_LITTLE_ENDIAN) 359 if (bcp_offset) { 360 load_const_optimized(Rdst, bcp_offset); 361 lhbrx(Rdst, R14_bcp, Rdst); 362 } else { 363 lhbrx(Rdst, R14_bcp); 364 } 365 if (is_signed == Signed) { 366 extsh(Rdst, Rdst); 367 } 368 #else 369 // Read Java big endian format. 370 if (is_signed == Signed) { 371 lha(Rdst, bcp_offset, R14_bcp); 372 } else { 373 lhz(Rdst, bcp_offset, R14_bcp); 374 } 375 #endif 376 } 377 378 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, 379 Register Rdst, 380 signedOrNot is_signed) { 381 #if defined(VM_LITTLE_ENDIAN) 382 if (bcp_offset) { 383 load_const_optimized(Rdst, bcp_offset); 384 lwbrx(Rdst, R14_bcp, Rdst); 385 } else { 386 lwbrx(Rdst, R14_bcp); 387 } 388 if (is_signed == Signed) { 389 extsw(Rdst, Rdst); 390 } 391 #else 392 // Read Java big endian format. 393 if (bcp_offset & 3) { // Offset unaligned? 394 load_const_optimized(Rdst, bcp_offset); 395 if (is_signed == Signed) { 396 lwax(Rdst, R14_bcp, Rdst); 397 } else { 398 lwzx(Rdst, R14_bcp, Rdst); 399 } 400 } else { 401 if (is_signed == Signed) { 402 lwa(Rdst, bcp_offset, R14_bcp); 403 } else { 404 lwz(Rdst, bcp_offset, R14_bcp); 405 } 406 } 407 #endif 408 } 409 410 411 // Load the constant pool cache index from the bytecode stream. 412 // 413 // Kills / writes: 414 // - Rdst, Rscratch 415 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, 416 size_t index_size) { 417 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 418 // Cache index is always in the native format, courtesy of Rewriter. 419 if (index_size == sizeof(u2)) { 420 lhz(Rdst, bcp_offset, R14_bcp); 421 } else if (index_size == sizeof(u4)) { 422 if (bcp_offset & 3) { 423 load_const_optimized(Rdst, bcp_offset); 424 lwax(Rdst, R14_bcp, Rdst); 425 } else { 426 lwa(Rdst, bcp_offset, R14_bcp); 427 } 428 } else if (index_size == sizeof(u1)) { 429 lbz(Rdst, bcp_offset, R14_bcp); 430 } else { 431 ShouldNotReachHere(); 432 } 433 // Rdst now contains cp cache index. 434 } 435 436 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) 437 // from (Rsrc)+offset. 438 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, 439 signedOrNot is_signed) { 440 #if defined(VM_LITTLE_ENDIAN) 441 if (offset) { 442 load_const_optimized(Rdst, offset); 443 lwbrx(Rdst, Rdst, Rsrc); 444 } else { 445 lwbrx(Rdst, Rsrc); 446 } 447 if (is_signed == Signed) { 448 extsw(Rdst, Rdst); 449 } 450 #else 451 if (is_signed == Signed) { 452 lwa(Rdst, offset, Rsrc); 453 } else { 454 lwz(Rdst, offset, Rsrc); 455 } 456 #endif 457 } 458 459 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 460 // Get index out of bytecode pointer 461 get_cache_index_at_bcp(index, 1, sizeof(u4)); 462 463 // Get address of invokedynamic array 464 ld_ptr(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()), R27_constPoolCache); 465 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 466 sldi(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 467 addi(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 468 add(cache, cache, index); 469 } 470 471 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 472 // Get index out of bytecode pointer 473 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 474 // Take shortcut if the size is a power of 2 475 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 476 // Scale index by power of 2 477 sldi(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); 478 } else { 479 // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 480 mulli(index, index, sizeof(ResolvedFieldEntry)); 481 } 482 // Get address of field entries array 483 ld_ptr(cache, in_bytes(ConstantPoolCache::field_entries_offset()), R27_constPoolCache); 484 addi(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 485 add(cache, cache, index); 486 } 487 488 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 489 // Get index out of bytecode pointer 490 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 491 // Scale the index to be the entry index * sizeof(ResolvedMethodEntry) 492 mulli(index, index, sizeof(ResolvedMethodEntry)); 493 494 // Get address of field entries array 495 ld_ptr(cache, ConstantPoolCache::method_entries_offset(), R27_constPoolCache); 496 addi(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes()); 497 add(cache, cache, index); // method_entries + base_offset + scaled index 498 } 499 500 // Load object from cpool->resolved_references(index). 501 // Kills: 502 // - index 503 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, 504 Register tmp1, Register tmp2, 505 Label *L_handle_null) { 506 assert_different_registers(result, index, tmp1, tmp2); 507 assert(index->is_nonvolatile(), "needs to survive C-call in resolve_oop_handle"); 508 get_constant_pool(result); 509 510 // Convert from field index to resolved_references() index and from 511 // word index to byte offset. Since this is a java object, it can be compressed. 512 sldi(index, index, LogBytesPerHeapOop); 513 // Load pointer for resolved_references[] objArray. 514 ld(result, ConstantPool::cache_offset(), result); 515 ld(result, ConstantPoolCache::resolved_references_offset(), result); 516 resolve_oop_handle(result, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE); 517 #ifdef ASSERT 518 Label index_ok; 519 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); 520 sldi(R0, R0, LogBytesPerHeapOop); 521 cmpd(CR0, index, R0); 522 blt(CR0, index_ok); 523 stop("resolved reference index out of bounds"); 524 bind(index_ok); 525 #endif 526 // Add in the index. 527 add(result, index, result); 528 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, 529 tmp1, tmp2, 530 MacroAssembler::PRESERVATION_NONE, 531 0, L_handle_null); 532 } 533 534 // load cpool->resolved_klass_at(index) 535 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) { 536 // int value = *(Rcpool->int_at_addr(which)); 537 // int resolved_klass_index = extract_low_short_from_int(value); 538 add(Roffset, Rcpool, Roffset); 539 #if defined(VM_LITTLE_ENDIAN) 540 lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index 541 #else 542 lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index 543 #endif 544 545 ld(Rklass, ConstantPool::resolved_klasses_offset(), Rcpool); // Rklass = Rcpool->_resolved_klasses 546 547 sldi(Roffset, Roffset, LogBytesPerWord); 548 addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes()); 549 isync(); // Order load of instance Klass wrt. tags. 550 ldx(Rklass, Rklass, Roffset); 551 } 552 553 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 554 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. 555 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, 556 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { 557 // Profile the not-null value's klass. 558 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); 559 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 560 } 561 562 // Separate these two to allow for delay slot in middle. 563 // These are used to do a test and full jump to exception-throwing code. 564 565 // Check that index is in range for array, then shift index by index_shift, 566 // and put arrayOop + shifted_index into res. 567 // Note: res is still shy of address by array offset into object. 568 569 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, 570 int index_shift, Register Rtmp, Register Rres) { 571 // Check that index is in range for array, then shift index by index_shift, 572 // and put arrayOop + shifted_index into res. 573 // Note: res is still shy of address by array offset into object. 574 // Kills: 575 // - Rindex 576 // Writes: 577 // - Rres: Address that corresponds to the array index if check was successful. 578 verify_oop(Rarray); 579 const Register Rlength = R0; 580 const Register RsxtIndex = Rtmp; 581 Label LisNull, LnotOOR; 582 583 // Array nullcheck 584 if (!ImplicitNullChecks) { 585 cmpdi(CR0, Rarray, 0); 586 beq(CR0, LisNull); 587 } else { 588 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); 589 } 590 591 // Rindex might contain garbage in upper bits (remember that we don't sign extend 592 // during integer arithmetic operations). So kill them and put value into same register 593 // where ArrayIndexOutOfBounds would expect the index in. 594 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit 595 596 // Index check 597 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); 598 cmplw(CR0, Rindex, Rlength); 599 sldi(RsxtIndex, RsxtIndex, index_shift); 600 blt(CR0, LnotOOR); 601 // Index should be in R17_tos, array should be in R4_ARG2. 602 mr_if_needed(R17_tos, Rindex); 603 mr_if_needed(R4_ARG2, Rarray); 604 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 605 mtctr(Rtmp); 606 bctr(); 607 608 if (!ImplicitNullChecks) { 609 bind(LisNull); 610 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); 611 mtctr(Rtmp); 612 bctr(); 613 } 614 615 align(32, 16); 616 bind(LnotOOR); 617 618 // Calc address 619 add(Rres, RsxtIndex, Rarray); 620 } 621 622 void InterpreterMacroAssembler::index_check(Register array, Register index, 623 int index_shift, Register tmp, Register res) { 624 // pop array 625 pop_ptr(array); 626 627 // check array 628 index_check_without_pop(array, index, index_shift, tmp, res); 629 } 630 631 void InterpreterMacroAssembler::get_const(Register Rdst) { 632 ld(Rdst, in_bytes(Method::const_offset()), R19_method); 633 } 634 635 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 636 get_const(Rdst); 637 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); 638 } 639 640 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 641 get_constant_pool(Rdst); 642 ld(Rdst, ConstantPool::cache_offset(), Rdst); 643 } 644 645 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 646 get_constant_pool(Rcpool); 647 ld(Rtags, ConstantPool::tags_offset(), Rcpool); 648 } 649 650 // Unlock if synchronized method. 651 // 652 // Unlock the receiver if this is a synchronized method. 653 // Unlock any Java monitors from synchronized blocks. 654 // 655 // If there are locked Java monitors 656 // If throw_monitor_exception 657 // throws IllegalMonitorStateException 658 // Else if install_monitor_exception 659 // installs IllegalMonitorStateException 660 // Else 661 // no error processing 662 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 663 bool throw_monitor_exception, 664 bool install_monitor_exception) { 665 Label Lunlocked, Lno_unlock; 666 { 667 Register Rdo_not_unlock_flag = R11_scratch1; 668 Register Raccess_flags = R12_scratch2; 669 670 // Check if synchronized method or unlocking prevented by 671 // JavaThread::do_not_unlock_if_synchronized flag. 672 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 673 lhz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); 674 li(R0, 0); 675 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag 676 677 push(state); 678 679 // Skip if we don't have to unlock. 680 testbitdi(CR0, R0, Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT); 681 beq(CR0, Lunlocked); 682 683 cmpwi(CR0, Rdo_not_unlock_flag, 0); 684 bne(CR0, Lno_unlock); 685 } 686 687 // Unlock 688 { 689 Register Rmonitor_base = R11_scratch1; 690 691 Label Lunlock; 692 // If it's still locked, everything is ok, unlock it. 693 ld(Rmonitor_base, 0, R1_SP); 694 addi(Rmonitor_base, Rmonitor_base, 695 -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 696 697 ld(R0, BasicObjectLock::obj_offset(), Rmonitor_base); 698 cmpdi(CR0, R0, 0); 699 bne(CR0, Lunlock); 700 701 // If it's already unlocked, throw exception. 702 if (throw_monitor_exception) { 703 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 704 should_not_reach_here(); 705 } else { 706 if (install_monitor_exception) { 707 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 708 b(Lunlocked); 709 } 710 } 711 712 bind(Lunlock); 713 unlock_object(Rmonitor_base); 714 } 715 716 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. 717 bind(Lunlocked); 718 { 719 Label Lexception, Lrestart; 720 Register Rcurrent_obj_addr = R11_scratch1; 721 const int delta = frame::interpreter_frame_monitor_size_in_bytes(); 722 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); 723 724 bind(Lrestart); 725 // Set up search loop: Calc num of iterations. 726 { 727 Register Riterations = R12_scratch2; 728 Register Rmonitor_base = Rcurrent_obj_addr; 729 ld(Rmonitor_base, 0, R1_SP); 730 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base 731 732 subf_(Riterations, R26_monitor, Rmonitor_base); 733 ble(CR0, Lno_unlock); 734 735 addi(Rcurrent_obj_addr, Rmonitor_base, 736 in_bytes(BasicObjectLock::obj_offset()) - frame::interpreter_frame_monitor_size_in_bytes()); 737 // Check if any monitor is on stack, bail out if not 738 srdi(Riterations, Riterations, exact_log2(delta)); 739 mtctr(Riterations); 740 } 741 742 // The search loop: Look for locked monitors. 743 { 744 const Register Rcurrent_obj = R0; 745 Label Lloop; 746 747 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 748 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 749 bind(Lloop); 750 751 // Check if current entry is used. 752 cmpdi(CR0, Rcurrent_obj, 0); 753 bne(CR0, Lexception); 754 // Preload next iteration's compare value. 755 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 756 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 757 bdnz(Lloop); 758 } 759 // Fell through: Everything's unlocked => finish. 760 b(Lno_unlock); 761 762 // An object is still locked => need to throw exception. 763 bind(Lexception); 764 if (throw_monitor_exception) { 765 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 766 should_not_reach_here(); 767 } else { 768 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. 769 // Unlock does not block, so don't have to worry about the frame. 770 Register Rmonitor_addr = R11_scratch1; 771 addi(Rmonitor_addr, Rcurrent_obj_addr, -in_bytes(BasicObjectLock::obj_offset()) + delta); 772 unlock_object(Rmonitor_addr); 773 if (install_monitor_exception) { 774 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 775 } 776 b(Lrestart); 777 } 778 } 779 780 align(32, 12); 781 bind(Lno_unlock); 782 pop(state); 783 } 784 785 // Support function for remove_activation & Co. 786 void InterpreterMacroAssembler::load_fp(Register fp) { 787 ld(fp, _abi0(callers_sp), R1_SP); // *SP 788 } 789 790 void InterpreterMacroAssembler::remove_top_frame_given_fp(Register fp, Register sender_sp, Register sender_fp, 791 Register return_pc, Register temp) { 792 assert_different_registers(sender_sp, sender_fp, return_pc, temp); 793 ld(sender_sp, _ijava_state_neg(sender_sp), fp); 794 ld(sender_fp, _abi0(callers_sp), fp); // **SP 795 if (return_pc != noreg) { 796 ld(return_pc, _abi0(lr), fp); // last usage of fp, register can be reused 797 } 798 subf(temp, R1_SP, sender_sp); // sender_sp - SP 799 stdux(sender_fp, R1_SP, temp); // atomically set *(SP = sender_sp) = sender_fp 800 } 801 802 void InterpreterMacroAssembler::merge_frames(Register sender_sp, Register return_pc, 803 Register temp1, Register temp2) { 804 Register fp = temp1, sender_fp = temp2; 805 load_fp(fp); 806 remove_top_frame_given_fp(fp, sender_sp, sender_fp, return_pc, /* temp */ fp); 807 } 808 809 void InterpreterMacroAssembler::narrow(Register result) { 810 Register ret_type = R11_scratch1; 811 ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 812 lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); 813 814 Label notBool, notByte, notChar, done; 815 816 // common case first 817 cmpwi(CR0, ret_type, T_INT); 818 beq(CR0, done); 819 820 cmpwi(CR0, ret_type, T_BOOLEAN); 821 bne(CR0, notBool); 822 andi(result, result, 0x1); 823 b(done); 824 825 bind(notBool); 826 cmpwi(CR0, ret_type, T_BYTE); 827 bne(CR0, notByte); 828 extsb(result, result); 829 b(done); 830 831 bind(notByte); 832 cmpwi(CR0, ret_type, T_CHAR); 833 bne(CR0, notChar); 834 andi(result, result, 0xffff); 835 b(done); 836 837 bind(notChar); 838 // cmpwi(CR0, ret_type, T_SHORT); // all that's left 839 // bne(CR0, done); 840 extsh(result, result); 841 842 // Nothing to do for T_INT 843 bind(done); 844 } 845 846 // Remove activation. 847 // 848 // Apply stack watermark barrier. 849 // Unlock the receiver if this is a synchronized method. 850 // Unlock any Java monitors from synchronized blocks. 851 // Remove the activation from the stack. 852 // 853 // If there are locked Java monitors 854 // If throw_monitor_exception 855 // throws IllegalMonitorStateException 856 // Else if install_monitor_exception 857 // installs IllegalMonitorStateException 858 // Else 859 // no error processing 860 void InterpreterMacroAssembler::remove_activation(TosState state, 861 bool throw_monitor_exception, 862 bool install_monitor_exception) { 863 BLOCK_COMMENT("remove_activation {"); 864 865 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 866 867 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 868 // that would normally not be safe to use. Such bad returns into unsafe territory of 869 // the stack, will call InterpreterRuntime::at_unwind. 870 Label slow_path, fast_path; 871 Register fp = R22_tmp2; 872 load_fp(fp); 873 874 JFR_ONLY(enter_jfr_critical_section();) 875 safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */); 876 b(fast_path); 877 bind(slow_path); 878 push(state); 879 set_last_Java_frame(R1_SP, noreg); 880 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread); 881 reset_last_Java_frame(); 882 pop(state); 883 align(32); 884 bind(fast_path); 885 886 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 887 notify_method_exit(false, state, NotifyJVMTI, true); 888 889 BLOCK_COMMENT("reserved_stack_check:"); 890 if (StackReservedPages > 0) { 891 // Test if reserved zone needs to be enabled. 892 Label no_reserved_zone_enabling; 893 894 // check if already enabled - if so no re-enabling needed 895 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 896 lwz(R0, in_bytes(JavaThread::stack_guard_state_offset()), R16_thread); 897 cmpwi(CR0, R0, StackOverflow::stack_guard_enabled); 898 beq_predict_taken(CR0, no_reserved_zone_enabling); 899 900 // Compare frame pointers. There is no good stack pointer, as with stack 901 // frame compression we can get different SPs when we do calls. A subsequent 902 // call could have a smaller SP, so that this compare succeeds for an 903 // inner call of the method annotated with ReservedStack. 904 ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); 905 cmpld(CR0, fp, R0); 906 blt_predict_taken(CR0, no_reserved_zone_enabling); 907 908 JFR_ONLY(leave_jfr_critical_section();) 909 910 // Enable reserved zone again, throw stack overflow exception. 911 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); 912 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 913 914 should_not_reach_here(); 915 916 bind(no_reserved_zone_enabling); 917 } 918 919 verify_oop(R17_tos, state); 920 921 remove_top_frame_given_fp(fp, R21_sender_SP, R23_tmp3, /*return_pc*/ R0, R11_scratch1); 922 mtlr(R0); 923 pop_cont_fastpath(); 924 JFR_ONLY(leave_jfr_critical_section();) 925 926 BLOCK_COMMENT("} remove_activation"); 927 } 928 929 #if INCLUDE_JFR 930 void InterpreterMacroAssembler::enter_jfr_critical_section() { 931 li(R0, 1); 932 stb(R0, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR), R16_thread); 933 } 934 935 void InterpreterMacroAssembler::leave_jfr_critical_section() { 936 li(R0, 0); 937 stb(R0, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR), R16_thread); 938 } 939 #endif // INCLUDE_JFR 940 941 // Lock object 942 // 943 // Registers alive 944 // monitor - Address of the BasicObjectLock to be used for locking, 945 // which must be initialized with the object to lock. 946 // object - Address of the object to be locked. 947 // 948 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 949 if (LockingMode == LM_MONITOR) { 950 call_VM_preemptable(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 951 } else { 952 // template code (for LM_LEGACY): 953 // 954 // markWord displaced_header = obj->mark().set_unlocked(); 955 // monitor->lock()->set_displaced_header(displaced_header); 956 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 957 // // We stored the monitor address into the object's mark word. 958 // } else if (THREAD->is_lock_owned((address)displaced_header)) 959 // // Simple recursive case. 960 // monitor->lock()->set_displaced_header(nullptr); 961 // } else { 962 // // Slow path. 963 // InterpreterRuntime::monitorenter(THREAD, monitor); 964 // } 965 966 const Register header = R7_ARG5; 967 const Register object_mark_addr = R8_ARG6; 968 const Register current_header = R9_ARG7; 969 const Register tmp = R10_ARG8; 970 971 Label count_locking, done, slow_case, cas_failed; 972 973 assert_different_registers(header, object_mark_addr, current_header, tmp); 974 975 // markWord displaced_header = obj->mark().set_unlocked(); 976 977 if (LockingMode == LM_LIGHTWEIGHT) { 978 lightweight_lock(monitor, object, header, tmp, slow_case); 979 b(done); 980 } else if (LockingMode == LM_LEGACY) { 981 982 if (DiagnoseSyncOnValueBasedClasses != 0) { 983 load_klass(tmp, object); 984 lbz(tmp, in_bytes(Klass::misc_flags_offset()), tmp); 985 testbitdi(CR0, R0, tmp, exact_log2(KlassFlags::_misc_is_value_based_class)); 986 bne(CR0, slow_case); 987 } 988 989 // Load markWord from object into header. 990 ld(header, oopDesc::mark_offset_in_bytes(), object); 991 992 // Set displaced_header to be (markWord of object | UNLOCK_VALUE). 993 ori(header, header, markWord::unlocked_value); 994 995 // monitor->lock()->set_displaced_header(displaced_header); 996 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 997 const int mark_offset = lock_offset + 998 BasicLock::displaced_header_offset_in_bytes(); 999 1000 // Initialize the box (Must happen before we update the object mark!). 1001 std(header, mark_offset, monitor); 1002 1003 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1004 1005 // Store stack address of the BasicObjectLock (this is monitor) into object. 1006 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1007 1008 // Must fence, otherwise, preceding store(s) may float below cmpxchg. 1009 // CmpxchgX sets CR0 to cmpX(current, displaced). 1010 cmpxchgd(/*flag=*/CR0, 1011 /*current_value=*/current_header, 1012 /*compare_value=*/header, /*exchange_value=*/monitor, 1013 /*where=*/object_mark_addr, 1014 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, 1015 MacroAssembler::cmpxchgx_hint_acquire_lock(), 1016 noreg, 1017 &cas_failed, 1018 /*check without membar and ldarx first*/true); 1019 1020 // If the compare-and-exchange succeeded, then we found an unlocked 1021 // object and we have now locked it. 1022 b(count_locking); 1023 bind(cas_failed); 1024 1025 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1026 // // Simple recursive case. 1027 // monitor->lock()->set_displaced_header(nullptr); 1028 1029 // We did not see an unlocked object so try the fast recursive case. 1030 1031 // Check if owner is self by comparing the value in the markWord of object 1032 // (current_header) with the stack pointer. 1033 sub(current_header, current_header, R1_SP); 1034 1035 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1036 load_const_optimized(tmp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place); 1037 1038 and_(R0/*==0?*/, current_header, tmp); 1039 // If condition is true we are done and hence we can store 0 in the displaced 1040 // header indicating it is a recursive lock. 1041 bne(CR0, slow_case); 1042 std(R0/*==0!*/, mark_offset, monitor); 1043 b(count_locking); 1044 } 1045 1046 // } else { 1047 // // Slow path. 1048 // InterpreterRuntime::monitorenter(THREAD, monitor); 1049 1050 // None of the above fast optimizations worked so we have to get into the 1051 // slow case of monitor enter. 1052 bind(slow_case); 1053 call_VM_preemptable(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1054 // } 1055 1056 if (LockingMode == LM_LEGACY) { 1057 b(done); 1058 align(32, 12); 1059 bind(count_locking); 1060 inc_held_monitor_count(current_header /*tmp*/); 1061 } 1062 bind(done); 1063 } 1064 } 1065 1066 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1067 // 1068 // Registers alive 1069 // monitor - Address of the BasicObjectLock to be used for locking, 1070 // which must be initialized with the object to lock. 1071 // 1072 // Throw IllegalMonitorException if object is not locked by current thread. 1073 void InterpreterMacroAssembler::unlock_object(Register monitor) { 1074 if (LockingMode == LM_MONITOR) { 1075 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1076 } else { 1077 1078 // template code (for LM_LEGACY): 1079 // 1080 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1081 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1082 // monitor->set_obj(nullptr); 1083 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1084 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1085 // monitor->set_obj(nullptr); 1086 // } else { 1087 // // Slow path. 1088 // InterpreterRuntime::monitorexit(monitor); 1089 // } 1090 1091 const Register object = R7_ARG5; 1092 const Register header = R8_ARG6; 1093 const Register object_mark_addr = R9_ARG7; 1094 const Register current_header = R10_ARG8; 1095 1096 Label free_slot; 1097 Label slow_case; 1098 1099 assert_different_registers(object, header, object_mark_addr, current_header); 1100 1101 if (LockingMode != LM_LIGHTWEIGHT) { 1102 // Test first if we are in the fast recursive case. 1103 ld(header, in_bytes(BasicObjectLock::lock_offset()) + 1104 BasicLock::displaced_header_offset_in_bytes(), monitor); 1105 1106 // If the displaced header is zero, we have a recursive unlock. 1107 cmpdi(CR0, header, 0); 1108 beq(CR0, free_slot); // recursive unlock 1109 } 1110 1111 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1112 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1113 // monitor->set_obj(nullptr); 1114 1115 // If we still have a lightweight lock, unlock the object and be done. 1116 1117 // The object address from the monitor is in object. 1118 ld(object, in_bytes(BasicObjectLock::obj_offset()), monitor); 1119 1120 if (LockingMode == LM_LIGHTWEIGHT) { 1121 lightweight_unlock(object, header, slow_case); 1122 } else { 1123 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1124 1125 // We have the displaced header in displaced_header. If the lock is still 1126 // lightweight, it will contain the monitor address and we'll store the 1127 // displaced header back into the object's mark word. 1128 // CmpxchgX sets CR0 to cmpX(current, monitor). 1129 cmpxchgd(/*flag=*/CR0, 1130 /*current_value=*/current_header, 1131 /*compare_value=*/monitor, /*exchange_value=*/header, 1132 /*where=*/object_mark_addr, 1133 MacroAssembler::MemBarRel, 1134 MacroAssembler::cmpxchgx_hint_release_lock(), 1135 noreg, 1136 &slow_case); 1137 } 1138 b(free_slot); 1139 1140 // } else { 1141 // // Slow path. 1142 // InterpreterRuntime::monitorexit(monitor); 1143 1144 // The lock has been converted into a heavy lock and hence 1145 // we need to get into the slow case. 1146 bind(slow_case); 1147 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1148 // } 1149 1150 Label done; 1151 b(done); // Monitor register may be overwritten! Runtime has already freed the slot. 1152 1153 // Exchange worked, do monitor->set_obj(nullptr); 1154 align(32, 12); 1155 bind(free_slot); 1156 li(R0, 0); 1157 std(R0, in_bytes(BasicObjectLock::obj_offset()), monitor); 1158 if (LockingMode == LM_LEGACY) { 1159 dec_held_monitor_count(current_header /*tmp*/); 1160 } 1161 bind(done); 1162 } 1163 } 1164 1165 // Load compiled (i2c) or interpreter entry when calling from interpreted and 1166 // do the call. Centralized so that all interpreter calls will do the same actions. 1167 // If jvmti single stepping is on for a thread we must not call compiled code. 1168 // 1169 // Input: 1170 // - Rtarget_method: method to call 1171 // - Rret_addr: return address 1172 // - 2 scratch regs 1173 // 1174 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, 1175 Register Rscratch1, Register Rscratch2) { 1176 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); 1177 // Assume we want to go compiled if available. 1178 const Register Rtarget_addr = Rscratch1; 1179 const Register Rinterp_only = Rscratch2; 1180 1181 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); 1182 1183 if (JvmtiExport::can_post_interpreter_events()) { 1184 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1185 1186 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 1187 // compiled code in threads for which the event is enabled. Check here for 1188 // interp_only_mode if these events CAN be enabled. 1189 Label done; 1190 cmpwi(CR0, Rinterp_only, 0); 1191 beq(CR0, done); 1192 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); 1193 align(32, 12); 1194 bind(done); 1195 } 1196 1197 #ifdef ASSERT 1198 { 1199 Label Lok; 1200 cmpdi(CR0, Rtarget_addr, 0); 1201 bne(CR0, Lok); 1202 stop("null entry point"); 1203 bind(Lok); 1204 } 1205 #endif // ASSERT 1206 1207 mr(R21_sender_SP, R1_SP); 1208 1209 // Calc a precise SP for the call. The SP value we calculated in 1210 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space 1211 // if esp is not max. Also, the i2c adapter extends the stack space without restoring 1212 // our pre-calced value, so repeating calls via i2c would result in stack overflow. 1213 // Since esp already points to an empty slot, we just have to sub 1 additional slot 1214 // to meet the abi scratch requirements. 1215 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in 1216 // the return entry of the interpreter. 1217 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::top_ijava_frame_abi_size); 1218 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address 1219 resize_frame_absolute(Rscratch2, Rscratch2, R0); 1220 1221 mr_if_needed(R19_method, Rtarget_method); 1222 mtctr(Rtarget_addr); 1223 mtlr(Rret_addr); 1224 1225 save_interpreter_state(Rscratch2); 1226 #ifdef ASSERT 1227 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp 1228 sldi(Rscratch1, Rscratch1, Interpreter::logStackElementSize); 1229 add(Rscratch1, Rscratch1, Rscratch2); // Rscratch2 contains fp 1230 // Compare sender_sp with the derelativized top_frame_sp 1231 cmpd(CR0, R21_sender_SP, Rscratch1); 1232 asm_assert_eq("top_frame_sp incorrect"); 1233 #endif 1234 1235 bctr(); 1236 } 1237 1238 // Set the method data pointer for the current bcp. 1239 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1240 assert(ProfileInterpreter, "must be profiling interpreter"); 1241 Label get_continue; 1242 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); 1243 test_method_data_pointer(get_continue); 1244 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); 1245 1246 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1247 add(R28_mdx, R28_mdx, R3_RET); 1248 bind(get_continue); 1249 } 1250 1251 // Test ImethodDataPtr. If it is null, continue at the specified label. 1252 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { 1253 assert(ProfileInterpreter, "must be profiling interpreter"); 1254 cmpdi(CR0, R28_mdx, 0); 1255 beq(CR0, zero_continue); 1256 } 1257 1258 void InterpreterMacroAssembler::verify_method_data_pointer() { 1259 assert(ProfileInterpreter, "must be profiling interpreter"); 1260 #ifdef ASSERT 1261 Label verify_continue; 1262 test_method_data_pointer(verify_continue); 1263 1264 // If the mdp is valid, it will point to a DataLayout header which is 1265 // consistent with the bcp. The converse is highly probable also. 1266 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); 1267 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); 1268 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1269 add(R11_scratch1, R12_scratch2, R12_scratch2); 1270 cmpd(CR0, R11_scratch1, R14_bcp); 1271 beq(CR0, verify_continue); 1272 1273 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); 1274 1275 bind(verify_continue); 1276 #endif 1277 } 1278 1279 // Store a value at some constant offset from the method data pointer. 1280 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { 1281 assert(ProfileInterpreter, "must be profiling interpreter"); 1282 1283 std(value, constant, R28_mdx); 1284 } 1285 1286 // Increment the value at some constant offset from the method data pointer. 1287 void InterpreterMacroAssembler::increment_mdp_data_at(int constant, 1288 Register counter_addr, 1289 Register Rbumped_count, 1290 bool decrement) { 1291 // Locate the counter at a fixed offset from the mdp: 1292 addi(counter_addr, R28_mdx, constant); 1293 increment_mdp_data_at(counter_addr, Rbumped_count, decrement); 1294 } 1295 1296 // Increment the value at some non-fixed (reg + constant) offset from 1297 // the method data pointer. 1298 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, 1299 int constant, 1300 Register scratch, 1301 Register Rbumped_count, 1302 bool decrement) { 1303 // Add the constant to reg to get the offset. 1304 add(scratch, R28_mdx, reg); 1305 // Then calculate the counter address. 1306 addi(scratch, scratch, constant); 1307 increment_mdp_data_at(scratch, Rbumped_count, decrement); 1308 } 1309 1310 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, 1311 Register Rbumped_count, 1312 bool decrement) { 1313 assert(ProfileInterpreter, "must be profiling interpreter"); 1314 1315 // Load the counter. 1316 ld(Rbumped_count, 0, counter_addr); 1317 1318 if (decrement) { 1319 // Decrement the register. Set condition codes. 1320 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); 1321 // Store the decremented counter, if it is still negative. 1322 std(Rbumped_count, 0, counter_addr); 1323 // Note: add/sub overflow check are not ported, since 64 bit 1324 // calculation should never overflow. 1325 } else { 1326 // Increment the register. Set carry flag. 1327 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); 1328 // Store the incremented counter. 1329 std(Rbumped_count, 0, counter_addr); 1330 } 1331 } 1332 1333 // Set a flag value at the current method data pointer position. 1334 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, 1335 Register scratch) { 1336 assert(ProfileInterpreter, "must be profiling interpreter"); 1337 // Load the data header. 1338 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1339 // Set the flag. 1340 ori(scratch, scratch, flag_constant); 1341 // Store the modified header. 1342 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1343 } 1344 1345 // Test the location at some offset from the method data pointer. 1346 // If it is not equal to value, branch to the not_equal_continue Label. 1347 void InterpreterMacroAssembler::test_mdp_data_at(int offset, 1348 Register value, 1349 Label& not_equal_continue, 1350 Register test_out) { 1351 assert(ProfileInterpreter, "must be profiling interpreter"); 1352 1353 ld(test_out, offset, R28_mdx); 1354 cmpd(CR0, value, test_out); 1355 bne(CR0, not_equal_continue); 1356 } 1357 1358 // Update the method data pointer by the displacement located at some fixed 1359 // offset from the method data pointer. 1360 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, 1361 Register scratch) { 1362 assert(ProfileInterpreter, "must be profiling interpreter"); 1363 1364 ld(scratch, offset_of_disp, R28_mdx); 1365 add(R28_mdx, scratch, R28_mdx); 1366 } 1367 1368 // Update the method data pointer by the displacement located at the 1369 // offset (reg + offset_of_disp). 1370 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, 1371 int offset_of_disp, 1372 Register scratch) { 1373 assert(ProfileInterpreter, "must be profiling interpreter"); 1374 1375 add(scratch, reg, R28_mdx); 1376 ld(scratch, offset_of_disp, scratch); 1377 add(R28_mdx, scratch, R28_mdx); 1378 } 1379 1380 // Update the method data pointer by a simple constant displacement. 1381 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { 1382 assert(ProfileInterpreter, "must be profiling interpreter"); 1383 addi(R28_mdx, R28_mdx, constant); 1384 } 1385 1386 // Update the method data pointer for a _ret bytecode whose target 1387 // was not among our cached targets. 1388 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, 1389 Register return_bci) { 1390 assert(ProfileInterpreter, "must be profiling interpreter"); 1391 1392 push(state); 1393 assert(return_bci->is_nonvolatile(), "need to protect return_bci"); 1394 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); 1395 pop(state); 1396 } 1397 1398 // Increments the backedge counter. 1399 // Returns backedge counter + invocation counter in Rdst. 1400 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, 1401 const Register Rtmp1, Register Rscratch) { 1402 assert(UseCompiler, "incrementing must be useful"); 1403 assert_different_registers(Rdst, Rtmp1); 1404 const Register invocation_counter = Rtmp1; 1405 const Register counter = Rdst; 1406 // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); 1407 1408 // Load backedge counter. 1409 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1410 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1411 // Load invocation counter. 1412 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + 1413 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1414 1415 // Add the delta to the backedge counter. 1416 addi(counter, counter, InvocationCounter::count_increment); 1417 1418 // Mask the invocation counter. 1419 andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); 1420 1421 // Store new counter value. 1422 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1423 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1424 // Return invocation counter + backedge counter. 1425 add(counter, counter, invocation_counter); 1426 } 1427 1428 // Count a taken branch in the bytecodes. 1429 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { 1430 if (ProfileInterpreter) { 1431 Label profile_continue; 1432 1433 // If no method data exists, go to profile_continue. 1434 test_method_data_pointer(profile_continue); 1435 1436 // We are taking a branch. Increment the taken count. 1437 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); 1438 1439 // The method data pointer needs to be updated to reflect the new target. 1440 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); 1441 bind (profile_continue); 1442 } 1443 } 1444 1445 // Count a not-taken branch in the bytecodes. 1446 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { 1447 if (ProfileInterpreter) { 1448 Label profile_continue; 1449 1450 // If no method data exists, go to profile_continue. 1451 test_method_data_pointer(profile_continue); 1452 1453 // We are taking a branch. Increment the not taken count. 1454 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); 1455 1456 // The method data pointer needs to be updated to correspond to the 1457 // next bytecode. 1458 update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); 1459 bind (profile_continue); 1460 } 1461 } 1462 1463 // Count a non-virtual call in the bytecodes. 1464 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { 1465 if (ProfileInterpreter) { 1466 Label profile_continue; 1467 1468 // If no method data exists, go to profile_continue. 1469 test_method_data_pointer(profile_continue); 1470 1471 // We are making a call. Increment the count. 1472 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1473 1474 // The method data pointer needs to be updated to reflect the new target. 1475 update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); 1476 bind (profile_continue); 1477 } 1478 } 1479 1480 // Count a final call in the bytecodes. 1481 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { 1482 if (ProfileInterpreter) { 1483 Label profile_continue; 1484 1485 // If no method data exists, go to profile_continue. 1486 test_method_data_pointer(profile_continue); 1487 1488 // We are making a call. Increment the count. 1489 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1490 1491 // The method data pointer needs to be updated to reflect the new target. 1492 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1493 bind (profile_continue); 1494 } 1495 } 1496 1497 // Count a virtual call in the bytecodes. 1498 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, 1499 Register Rscratch1, 1500 Register Rscratch2, 1501 bool receiver_can_be_null) { 1502 if (!ProfileInterpreter) { return; } 1503 Label profile_continue; 1504 1505 // If no method data exists, go to profile_continue. 1506 test_method_data_pointer(profile_continue); 1507 1508 Label skip_receiver_profile; 1509 if (receiver_can_be_null) { 1510 Label not_null; 1511 cmpdi(CR0, Rreceiver, 0); 1512 bne(CR0, not_null); 1513 // We are making a call. Increment the count for null receiver. 1514 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); 1515 b(skip_receiver_profile); 1516 bind(not_null); 1517 } 1518 1519 // Record the receiver type. 1520 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2); 1521 bind(skip_receiver_profile); 1522 1523 // The method data pointer needs to be updated to reflect the new target. 1524 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1525 bind (profile_continue); 1526 } 1527 1528 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { 1529 if (ProfileInterpreter) { 1530 Label profile_continue; 1531 1532 // If no method data exists, go to profile_continue. 1533 test_method_data_pointer(profile_continue); 1534 1535 int mdp_delta = in_bytes(BitData::bit_data_size()); 1536 if (TypeProfileCasts) { 1537 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1538 1539 // Record the object type. 1540 record_klass_in_profile(Rklass, Rscratch1, Rscratch2); 1541 } 1542 1543 // The method data pointer needs to be updated. 1544 update_mdp_by_constant(mdp_delta); 1545 1546 bind (profile_continue); 1547 } 1548 } 1549 1550 // Count a ret in the bytecodes. 1551 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, 1552 Register scratch1, Register scratch2) { 1553 if (ProfileInterpreter) { 1554 Label profile_continue; 1555 uint row; 1556 1557 // If no method data exists, go to profile_continue. 1558 test_method_data_pointer(profile_continue); 1559 1560 // Update the total ret count. 1561 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); 1562 1563 for (row = 0; row < RetData::row_limit(); row++) { 1564 Label next_test; 1565 1566 // See if return_bci is equal to bci[n]: 1567 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); 1568 1569 // return_bci is equal to bci[n]. Increment the count. 1570 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); 1571 1572 // The method data pointer needs to be updated to reflect the new target. 1573 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); 1574 b(profile_continue); 1575 bind(next_test); 1576 } 1577 1578 update_mdp_for_ret(state, return_bci); 1579 1580 bind (profile_continue); 1581 } 1582 } 1583 1584 // Count the default case of a switch construct. 1585 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { 1586 if (ProfileInterpreter) { 1587 Label profile_continue; 1588 1589 // If no method data exists, go to profile_continue. 1590 test_method_data_pointer(profile_continue); 1591 1592 // Update the default case count 1593 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), 1594 scratch1, scratch2); 1595 1596 // The method data pointer needs to be updated. 1597 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), 1598 scratch1); 1599 1600 bind (profile_continue); 1601 } 1602 } 1603 1604 // Count the index'th case of a switch construct. 1605 void InterpreterMacroAssembler::profile_switch_case(Register index, 1606 Register scratch1, 1607 Register scratch2, 1608 Register scratch3) { 1609 if (ProfileInterpreter) { 1610 assert_different_registers(index, scratch1, scratch2, scratch3); 1611 Label profile_continue; 1612 1613 // If no method data exists, go to profile_continue. 1614 test_method_data_pointer(profile_continue); 1615 1616 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). 1617 li(scratch3, in_bytes(MultiBranchData::case_array_offset())); 1618 1619 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); 1620 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1621 add(scratch1, scratch1, scratch3); 1622 1623 // Update the case count. 1624 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); 1625 1626 // The method data pointer needs to be updated. 1627 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); 1628 1629 bind (profile_continue); 1630 } 1631 } 1632 1633 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { 1634 if (ProfileInterpreter) { 1635 assert_different_registers(Rscratch1, Rscratch2); 1636 Label profile_continue; 1637 1638 // If no method data exists, go to profile_continue. 1639 test_method_data_pointer(profile_continue); 1640 1641 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); 1642 1643 // The method data pointer needs to be updated. 1644 int mdp_delta = in_bytes(BitData::bit_data_size()); 1645 if (TypeProfileCasts) { 1646 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1647 } 1648 update_mdp_by_constant(mdp_delta); 1649 1650 bind (profile_continue); 1651 } 1652 } 1653 1654 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, 1655 Register Rscratch1, Register Rscratch2) { 1656 assert(ProfileInterpreter, "must be profiling"); 1657 assert_different_registers(Rreceiver, Rscratch1, Rscratch2); 1658 1659 Label done; 1660 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done); 1661 bind (done); 1662 } 1663 1664 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1665 Register receiver, Register scratch1, Register scratch2, 1666 int start_row, Label& done) { 1667 if (TypeProfileWidth == 0) { 1668 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1669 return; 1670 } 1671 1672 int last_row = VirtualCallData::row_limit() - 1; 1673 assert(start_row <= last_row, "must be work left to do"); 1674 // Test this row for both the receiver and for null. 1675 // Take any of three different outcomes: 1676 // 1. found receiver => increment count and goto done 1677 // 2. found null => keep looking for case 1, maybe allocate this cell 1678 // 3. found something else => keep looking for cases 1 and 2 1679 // Case 3 is handled by a recursive call. 1680 for (int row = start_row; row <= last_row; row++) { 1681 Label next_test; 1682 bool test_for_null_also = (row == start_row); 1683 1684 // See if the receiver is receiver[n]. 1685 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1686 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); 1687 // delayed()->tst(scratch); 1688 1689 // The receiver is receiver[n]. Increment count[n]. 1690 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1691 increment_mdp_data_at(count_offset, scratch1, scratch2); 1692 b(done); 1693 bind(next_test); 1694 1695 if (test_for_null_also) { 1696 Label found_null; 1697 // Failed the equality check on receiver[n]... Test for null. 1698 if (start_row == last_row) { 1699 // The only thing left to do is handle the null case. 1700 // Scratch1 contains test_out from test_mdp_data_at. 1701 cmpdi(CR0, scratch1, 0); 1702 beq(CR0, found_null); 1703 // Receiver did not match any saved receiver and there is no empty row for it. 1704 // Increment total counter to indicate polymorphic case. 1705 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1706 b(done); 1707 bind(found_null); 1708 break; 1709 } 1710 // Since null is rare, make it be the branch-taken case. 1711 cmpdi(CR0, scratch1, 0); 1712 beq(CR0, found_null); 1713 1714 // Put all the "Case 3" tests here. 1715 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done); 1716 1717 // Found a null. Keep searching for a matching receiver, 1718 // but remember that this is an empty (unused) slot. 1719 bind(found_null); 1720 } 1721 } 1722 1723 // In the fall-through case, we found no matching receiver, but we 1724 // observed the receiver[start_row] is null. 1725 1726 // Fill in the receiver field and increment the count. 1727 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1728 set_mdp_data_at(recvr_offset, receiver); 1729 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1730 li(scratch1, DataLayout::counter_increment); 1731 set_mdp_data_at(count_offset, scratch1); 1732 if (start_row > 0) { 1733 b(done); 1734 } 1735 } 1736 1737 // Argument and return type profilig. 1738 // kills: tmp, tmp2, R0, CR0, CR1 1739 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, 1740 RegisterOrConstant mdo_addr_offs, 1741 Register tmp, Register tmp2) { 1742 Label do_nothing, do_update; 1743 1744 // tmp2 = obj is allowed 1745 assert_different_registers(obj, mdo_addr_base, tmp, R0); 1746 assert_different_registers(tmp2, mdo_addr_base, tmp, R0); 1747 const Register klass = tmp2; 1748 1749 verify_oop(obj); 1750 1751 ld(tmp, mdo_addr_offs, mdo_addr_base); 1752 1753 // Set null_seen if obj is 0. 1754 cmpdi(CR0, obj, 0); 1755 ori(R0, tmp, TypeEntries::null_seen); 1756 beq(CR0, do_update); 1757 1758 load_klass(klass, obj); 1759 1760 clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 1761 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 1762 cmpd(CR1, R0, klass); 1763 // Klass seen before, nothing to do (regardless of unknown bit). 1764 //beq(CR1, do_nothing); 1765 1766 andi_(R0, tmp, TypeEntries::type_unknown); 1767 // Already unknown. Nothing to do anymore. 1768 //bne(CR0, do_nothing); 1769 crorc(CR0, Assembler::equal, CR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 1770 beq(CR0, do_nothing); 1771 1772 clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 1773 orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1774 beq(CR0, do_update); // First time here. Set profile type. 1775 1776 // Different than before. Cannot keep accurate profile. 1777 ori(R0, tmp, TypeEntries::type_unknown); 1778 1779 bind(do_update); 1780 // update profile 1781 std(R0, mdo_addr_offs, mdo_addr_base); 1782 1783 align(32, 12); 1784 bind(do_nothing); 1785 } 1786 1787 void InterpreterMacroAssembler::profile_arguments_type(Register callee, 1788 Register tmp1, Register tmp2, 1789 bool is_virtual) { 1790 if (!ProfileInterpreter) { 1791 return; 1792 } 1793 1794 assert_different_registers(callee, tmp1, tmp2, R28_mdx); 1795 1796 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1797 Label profile_continue; 1798 1799 test_method_data_pointer(profile_continue); 1800 1801 int off_to_start = is_virtual ? 1802 in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1803 1804 lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); 1805 cmpwi(CR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1806 bne(CR0, profile_continue); 1807 1808 if (MethodData::profile_arguments()) { 1809 Label done; 1810 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1811 addi(R28_mdx, R28_mdx, off_to_args); 1812 1813 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1814 if (i > 0 || MethodData::profile_return()) { 1815 // If return value type is profiled we may have no argument to profile. 1816 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1817 cmpdi(CR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); 1818 addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); 1819 blt(CR0, done); 1820 } 1821 ld(tmp1, in_bytes(Method::const_offset()), callee); 1822 lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); 1823 // Stack offset o (zero based) from the start of the argument 1824 // list, for n arguments translates into offset n - o - 1 from 1825 // the end of the argument list. But there's an extra slot at 1826 // the top of the stack. So the offset is n - o from Lesp. 1827 ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); 1828 subf(tmp1, tmp2, tmp1); 1829 1830 sldi(tmp1, tmp1, Interpreter::logStackElementSize); 1831 ldx(tmp1, tmp1, R15_esp); 1832 1833 profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); 1834 1835 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1836 addi(R28_mdx, R28_mdx, to_add); 1837 off_to_args += to_add; 1838 } 1839 1840 if (MethodData::profile_return()) { 1841 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1842 addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1843 } 1844 1845 bind(done); 1846 1847 if (MethodData::profile_return()) { 1848 // We're right after the type profile for the last 1849 // argument. tmp1 is the number of cells left in the 1850 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1851 // if there's a return to profile. 1852 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), 1853 "can't move past ret type"); 1854 sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); 1855 add(R28_mdx, tmp1, R28_mdx); 1856 } 1857 } else { 1858 assert(MethodData::profile_return(), "either profile call args or call ret"); 1859 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); 1860 } 1861 1862 // Mdp points right after the end of the 1863 // CallTypeData/VirtualCallTypeData, right after the cells for the 1864 // return value type if there's one. 1865 align(32, 12); 1866 bind(profile_continue); 1867 } 1868 } 1869 1870 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { 1871 assert_different_registers(ret, tmp1, tmp2); 1872 if (ProfileInterpreter && MethodData::profile_return()) { 1873 Label profile_continue; 1874 1875 test_method_data_pointer(profile_continue); 1876 1877 if (MethodData::profile_return_jsr292_only()) { 1878 // If we don't profile all invoke bytecodes we must make sure 1879 // it's a bytecode we indeed profile. We can't go back to the 1880 // beginning of the ProfileData we intend to update to check its 1881 // type because we're right after it and we don't known its 1882 // length. 1883 lbz(tmp1, 0, R14_bcp); 1884 lbz(tmp2, in_bytes(Method::intrinsic_id_offset()), R19_method); 1885 cmpwi(CR0, tmp1, Bytecodes::_invokedynamic); 1886 cmpwi(CR1, tmp1, Bytecodes::_invokehandle); 1887 cror(CR0, Assembler::equal, CR1, Assembler::equal); 1888 cmpwi(CR1, tmp2, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1889 cror(CR0, Assembler::equal, CR1, Assembler::equal); 1890 bne(CR0, profile_continue); 1891 } 1892 1893 profile_obj_type(ret, R28_mdx, -in_bytes(SingleTypeEntry::size()), tmp1, tmp2); 1894 1895 align(32, 12); 1896 bind(profile_continue); 1897 } 1898 } 1899 1900 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, 1901 Register tmp3, Register tmp4) { 1902 if (ProfileInterpreter && MethodData::profile_parameters()) { 1903 Label profile_continue, done; 1904 1905 test_method_data_pointer(profile_continue); 1906 1907 // Load the offset of the area within the MDO used for 1908 // parameters. If it's negative we're not profiling any parameters. 1909 lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); 1910 cmpwi(CR0, tmp1, 0); 1911 blt(CR0, profile_continue); 1912 1913 // Compute a pointer to the area for parameters from the offset 1914 // and move the pointer to the slot for the last 1915 // parameters. Collect profiling from last parameter down. 1916 // mdo start + parameters offset + array length - 1 1917 1918 // Pointer to the parameter area in the MDO. 1919 const Register mdp = tmp1; 1920 add(mdp, tmp1, R28_mdx); 1921 1922 // Offset of the current profile entry to update. 1923 const Register entry_offset = tmp2; 1924 // entry_offset = array len in number of cells 1925 ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); 1926 1927 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1928 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); 1929 1930 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field 1931 addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); 1932 // entry_offset in bytes 1933 sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1934 1935 Label loop; 1936 align(32, 12); 1937 bind(loop); 1938 1939 // Load offset on the stack from the slot for this parameter. 1940 ld(tmp3, entry_offset, mdp); 1941 sldi(tmp3, tmp3, Interpreter::logStackElementSize); 1942 neg(tmp3, tmp3); 1943 // Read the parameter from the local area. 1944 ldx(tmp3, tmp3, R18_locals); 1945 1946 // Make entry_offset now point to the type field for this parameter. 1947 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1948 assert(type_base > off_base, "unexpected"); 1949 addi(entry_offset, entry_offset, type_base - off_base); 1950 1951 // Profile the parameter. 1952 profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); 1953 1954 // Go to next parameter. 1955 int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); 1956 cmpdi(CR0, entry_offset, off_base + delta); 1957 addi(entry_offset, entry_offset, -delta); 1958 bge(CR0, loop); 1959 1960 align(32, 12); 1961 bind(profile_continue); 1962 } 1963 } 1964 1965 // Add a monitor (see frame_ppc.hpp). 1966 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { 1967 1968 // Very-local scratch registers. 1969 const Register esp = Rtemp1; 1970 const Register slot = Rtemp2; 1971 1972 // Extracted monitor_size. 1973 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); 1974 assert(Assembler::is_aligned((unsigned int)monitor_size, 1975 (unsigned int)frame::alignment_in_bytes), 1976 "size of a monitor must respect alignment of SP"); 1977 1978 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor 1979 subf(Rtemp2, esp, R1_SP); // esp contains fp 1980 sradi(Rtemp2, Rtemp2, Interpreter::logStackElementSize); 1981 // Store relativized top_frame_sp 1982 std(Rtemp2, _ijava_state_neg(top_frame_sp), esp); // esp contains fp 1983 1984 // Shuffle expression stack down. Recall that stack_base points 1985 // just above the new expression stack bottom. Old_tos and new_tos 1986 // are used to scan thru the old and new expression stacks. 1987 if (!stack_is_empty) { 1988 Label copy_slot, copy_slot_finished; 1989 const Register n_slots = slot; 1990 1991 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). 1992 subf(n_slots, esp, R26_monitor); 1993 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. 1994 assert(LogBytesPerWord == 3, "conflicts assembler instructions"); 1995 beq(CR0, copy_slot_finished); // Nothing to copy. 1996 1997 mtctr(n_slots); 1998 1999 // loop 2000 bind(copy_slot); 2001 ld(slot, 0, esp); // Move expression stack down. 2002 std(slot, -monitor_size, esp); // distance = monitor_size 2003 addi(esp, esp, BytesPerWord); 2004 bdnz(copy_slot); 2005 2006 bind(copy_slot_finished); 2007 } 2008 2009 addi(R15_esp, R15_esp, -monitor_size); 2010 addi(R26_monitor, R26_monitor, -monitor_size); 2011 2012 // Restart interpreter 2013 } 2014 2015 // ============================================================================ 2016 // Java locals access 2017 2018 // Load a local variable at index in Rindex into register Rdst_value. 2019 // Also puts address of local into Rdst_address as a service. 2020 // Kills: 2021 // - Rdst_value 2022 // - Rdst_address 2023 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { 2024 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2025 subf(Rdst_address, Rdst_address, R18_locals); 2026 lwz(Rdst_value, 0, Rdst_address); 2027 } 2028 2029 // Load a local variable at index in Rindex into register Rdst_value. 2030 // Also puts address of local into Rdst_address as a service. 2031 // Kills: 2032 // - Rdst_value 2033 // - Rdst_address 2034 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { 2035 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2036 subf(Rdst_address, Rdst_address, R18_locals); 2037 ld(Rdst_value, -8, Rdst_address); 2038 } 2039 2040 // Load a local variable at index in Rindex into register Rdst_value. 2041 // Also puts address of local into Rdst_address as a service. 2042 // Input: 2043 // - Rindex: slot nr of local variable 2044 // Kills: 2045 // - Rdst_value 2046 // - Rdst_address 2047 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, 2048 Register Rdst_address, 2049 Register Rindex) { 2050 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2051 subf(Rdst_address, Rdst_address, R18_locals); 2052 ld(Rdst_value, 0, Rdst_address); 2053 } 2054 2055 // Load a local variable at index in Rindex into register Rdst_value. 2056 // Also puts address of local into Rdst_address as a service. 2057 // Kills: 2058 // - Rdst_value 2059 // - Rdst_address 2060 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, 2061 Register Rdst_address, 2062 Register Rindex) { 2063 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2064 subf(Rdst_address, Rdst_address, R18_locals); 2065 lfs(Rdst_value, 0, Rdst_address); 2066 } 2067 2068 // Load a local variable at index in Rindex into register Rdst_value. 2069 // Also puts address of local into Rdst_address as a service. 2070 // Kills: 2071 // - Rdst_value 2072 // - Rdst_address 2073 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, 2074 Register Rdst_address, 2075 Register Rindex) { 2076 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2077 subf(Rdst_address, Rdst_address, R18_locals); 2078 lfd(Rdst_value, -8, Rdst_address); 2079 } 2080 2081 // Store an int value at local variable slot Rindex. 2082 // Kills: 2083 // - Rindex 2084 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { 2085 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2086 subf(Rindex, Rindex, R18_locals); 2087 stw(Rvalue, 0, Rindex); 2088 } 2089 2090 // Store a long value at local variable slot Rindex. 2091 // Kills: 2092 // - Rindex 2093 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { 2094 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2095 subf(Rindex, Rindex, R18_locals); 2096 std(Rvalue, -8, Rindex); 2097 } 2098 2099 // Store an oop value at local variable slot Rindex. 2100 // Kills: 2101 // - Rindex 2102 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { 2103 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2104 subf(Rindex, Rindex, R18_locals); 2105 std(Rvalue, 0, Rindex); 2106 } 2107 2108 // Store an int value at local variable slot Rindex. 2109 // Kills: 2110 // - Rindex 2111 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { 2112 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2113 subf(Rindex, Rindex, R18_locals); 2114 stfs(Rvalue, 0, Rindex); 2115 } 2116 2117 // Store an int value at local variable slot Rindex. 2118 // Kills: 2119 // - Rindex 2120 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { 2121 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2122 subf(Rindex, Rindex, R18_locals); 2123 stfd(Rvalue, -8, Rindex); 2124 } 2125 2126 // Read pending exception from thread and jump to interpreter. 2127 // Throw exception entry if one if pending. Fall through otherwise. 2128 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { 2129 assert_different_registers(Rscratch1, Rscratch2, R3); 2130 Register Rexception = Rscratch1; 2131 Register Rtmp = Rscratch2; 2132 Label Ldone; 2133 // Get pending exception oop. 2134 ld(Rexception, thread_(pending_exception)); 2135 cmpdi(CR0, Rexception, 0); 2136 beq(CR0, Ldone); 2137 li(Rtmp, 0); 2138 mr_if_needed(R3, Rexception); 2139 std(Rtmp, thread_(pending_exception)); // Clear exception in thread 2140 if (Interpreter::rethrow_exception_entry() != nullptr) { 2141 // Already got entry address. 2142 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); 2143 } else { 2144 // Dynamically load entry address. 2145 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); 2146 ld(Rtmp, simm16_rest, Rtmp); 2147 } 2148 mtctr(Rtmp); 2149 save_interpreter_state(Rtmp); 2150 bctr(); 2151 2152 align(32, 12); 2153 bind(Ldone); 2154 } 2155 2156 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions, Label* last_java_pc) { 2157 save_interpreter_state(R11_scratch1); 2158 2159 MacroAssembler::call_VM(oop_result, entry_point, false /*check_exceptions*/, last_java_pc); 2160 2161 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); 2162 2163 check_and_handle_popframe(R11_scratch1); 2164 check_and_handle_earlyret(R11_scratch1); 2165 // Now check exceptions manually. 2166 if (check_exceptions) { 2167 check_and_forward_exception(R11_scratch1, R12_scratch2); 2168 } 2169 } 2170 2171 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2172 Register arg_1, bool check_exceptions) { 2173 // ARG1 is reserved for the thread. 2174 mr_if_needed(R4_ARG2, arg_1); 2175 call_VM(oop_result, entry_point, check_exceptions); 2176 } 2177 2178 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result, address entry_point, 2179 Register arg_1, bool check_exceptions) { 2180 if (!Continuations::enabled()) { 2181 call_VM(oop_result, entry_point, arg_1, check_exceptions); 2182 return; 2183 } 2184 2185 Label resume_pc, not_preempted; 2186 2187 DEBUG_ONLY(ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread)); 2188 DEBUG_ONLY(cmpdi(CR0, R0, 0)); 2189 asm_assert_eq("Should not have alternate return address set"); 2190 2191 // Preserve 2 registers 2192 assert(nonvolatile_accross_vthread_preemtion(R31) && nonvolatile_accross_vthread_preemtion(R22), ""); 2193 ld(R3_ARG1, _abi0(callers_sp), R1_SP); // load FP 2194 std(R31, _ijava_state_neg(lresult), R3_ARG1); 2195 std(R22, _ijava_state_neg(fresult), R3_ARG1); 2196 2197 // We set resume_pc as last java pc. It will be saved if the vthread gets preempted. 2198 // Later execution will continue right there. 2199 mr_if_needed(R4_ARG2, arg_1); 2200 push_cont_fastpath(); 2201 call_VM(oop_result, entry_point, false /*check_exceptions*/, &resume_pc /* last_java_pc */); 2202 pop_cont_fastpath(); 2203 2204 // Jump to handler if the call was preempted 2205 ld(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread); 2206 cmpdi(CR0, R0, 0); 2207 beq(CR0, not_preempted); 2208 mtlr(R0); 2209 li(R0, 0); 2210 std(R0, in_bytes(JavaThread::preempt_alternate_return_offset()), R16_thread); 2211 blr(); 2212 2213 bind(resume_pc); // Location to resume execution 2214 restore_after_resume(noreg /* fp */); 2215 bind(not_preempted); 2216 } 2217 2218 void InterpreterMacroAssembler::restore_after_resume(Register fp) { 2219 if (!Continuations::enabled()) return; 2220 2221 const address resume_adapter = TemplateInterpreter::cont_resume_interpreter_adapter(); 2222 add_const_optimized(R31, R29_TOC, MacroAssembler::offset_to_global_toc(resume_adapter)); 2223 mtctr(R31); 2224 bctrl(); 2225 // Restore registers that are preserved across vthread preemption 2226 assert(nonvolatile_accross_vthread_preemtion(R31) && nonvolatile_accross_vthread_preemtion(R22), ""); 2227 ld(R3_ARG1, _abi0(callers_sp), R1_SP); // load FP 2228 ld(R31, _ijava_state_neg(lresult), R3_ARG1); 2229 ld(R22, _ijava_state_neg(fresult), R3_ARG1); 2230 #ifdef ASSERT 2231 // Assert FP is in R11_scratch1 (see generate_cont_resume_interpreter_adapter()) 2232 { 2233 Label ok; 2234 ld(R12_scratch2, 0, R1_SP); // load fp 2235 cmpd(CR0, R12_scratch2, R11_scratch1); 2236 beq(CR0, ok); 2237 stop(FILE_AND_LINE ": FP is expected in R11_scratch1"); 2238 bind(ok); 2239 } 2240 #endif 2241 if (fp != noreg && fp != R11_scratch1) { 2242 mr(fp, R11_scratch1); 2243 } 2244 } 2245 2246 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2247 Register arg_1, Register arg_2, 2248 bool check_exceptions) { 2249 // ARG1 is reserved for the thread. 2250 mr_if_needed(R4_ARG2, arg_1); 2251 assert(arg_2 != R4_ARG2, "smashed argument"); 2252 mr_if_needed(R5_ARG3, arg_2); 2253 call_VM(oop_result, entry_point, check_exceptions); 2254 } 2255 2256 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2257 Register arg_1, Register arg_2, Register arg_3, 2258 bool check_exceptions) { 2259 // ARG1 is reserved for the thread. 2260 mr_if_needed(R4_ARG2, arg_1); 2261 assert(arg_2 != R4_ARG2, "smashed argument"); 2262 mr_if_needed(R5_ARG3, arg_2); 2263 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); 2264 mr_if_needed(R6_ARG4, arg_3); 2265 call_VM(oop_result, entry_point, check_exceptions); 2266 } 2267 2268 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { 2269 ld(scratch, 0, R1_SP); 2270 subf(R0, scratch, R15_esp); 2271 sradi(R0, R0, Interpreter::logStackElementSize); 2272 std(R0, _ijava_state_neg(esp), scratch); 2273 std(R14_bcp, _ijava_state_neg(bcp), scratch); 2274 subf(R0, scratch, R26_monitor); 2275 sradi(R0, R0, Interpreter::logStackElementSize); 2276 std(R0, _ijava_state_neg(monitors), scratch); 2277 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } 2278 // Other entries should be unchanged. 2279 } 2280 2281 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only, bool restore_top_frame_sp) { 2282 ld_ptr(scratch, _abi0(callers_sp), R1_SP); // Load frame pointer. 2283 if (restore_top_frame_sp) { 2284 // After thawing the top frame of a continuation we reach here with frame::java_abi. 2285 // therefore we have to restore top_frame_sp before the assertion below. 2286 assert(!bcp_and_mdx_only, "chose other registers"); 2287 Register tfsp = R18_locals; 2288 Register scratch2 = R26_monitor; 2289 ld(tfsp, _ijava_state_neg(top_frame_sp), scratch); 2290 // Derelativize top_frame_sp 2291 sldi(tfsp, tfsp, Interpreter::logStackElementSize); 2292 add(tfsp, tfsp, scratch); 2293 resize_frame_absolute(tfsp, scratch2, R0); 2294 } 2295 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). 2296 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. 2297 if (!bcp_and_mdx_only) { 2298 // Following ones are Metadata. 2299 ld(R19_method, _ijava_state_neg(method), scratch); 2300 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); 2301 // Following ones are stack addresses and don't require reload. 2302 // Derelativize esp 2303 ld(R15_esp, _ijava_state_neg(esp), scratch); 2304 sldi(R15_esp, R15_esp, Interpreter::logStackElementSize); 2305 add(R15_esp, R15_esp, scratch); 2306 ld(R18_locals, _ijava_state_neg(locals), scratch); 2307 sldi(R18_locals, R18_locals, Interpreter::logStackElementSize); 2308 add(R18_locals, R18_locals, scratch); 2309 ld(R26_monitor, _ijava_state_neg(monitors), scratch); 2310 // Derelativize monitors 2311 sldi(R26_monitor, R26_monitor, Interpreter::logStackElementSize); 2312 add(R26_monitor, R26_monitor, scratch); 2313 } 2314 #ifdef ASSERT 2315 { 2316 Label Lok; 2317 subf(R0, R1_SP, scratch); 2318 cmpdi(CR0, R0, frame::top_ijava_frame_abi_size + frame::ijava_state_size); 2319 bge(CR0, Lok); 2320 stop("frame too small (restore istate)"); 2321 bind(Lok); 2322 } 2323 #endif 2324 } 2325 2326 void InterpreterMacroAssembler::get_method_counters(Register method, 2327 Register Rcounters, 2328 Label& skip) { 2329 BLOCK_COMMENT("Load and ev. allocate counter object {"); 2330 Label has_counters; 2331 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2332 cmpdi(CR0, Rcounters, 0); 2333 bne(CR0, has_counters); 2334 call_VM(noreg, CAST_FROM_FN_PTR(address, 2335 InterpreterRuntime::build_method_counters), method); 2336 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2337 cmpdi(CR0, Rcounters, 0); 2338 beq(CR0, skip); // No MethodCounters, OutOfMemory. 2339 BLOCK_COMMENT("} Load and ev. allocate counter object"); 2340 2341 bind(has_counters); 2342 } 2343 2344 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, 2345 Register iv_be_count, 2346 Register Rtmp_r0) { 2347 assert(UseCompiler, "incrementing must be useful"); 2348 Register invocation_count = iv_be_count; 2349 Register backedge_count = Rtmp_r0; 2350 int delta = InvocationCounter::count_increment; 2351 2352 // Load each counter in a register. 2353 // ld(inv_counter, Rtmp); 2354 // ld(be_counter, Rtmp2); 2355 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + 2356 InvocationCounter::counter_offset()); 2357 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + 2358 InvocationCounter::counter_offset()); 2359 2360 BLOCK_COMMENT("Increment profiling counters {"); 2361 2362 // Load the backedge counter. 2363 lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int 2364 // Mask the backedge counter. 2365 andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); 2366 2367 // Load the invocation counter. 2368 lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int 2369 // Add the delta to the invocation counter and store the result. 2370 addi(invocation_count, invocation_count, delta); 2371 // Store value. 2372 stw(invocation_count, inv_counter_offset, Rcounters); 2373 2374 // Add invocation counter + backedge counter. 2375 add(iv_be_count, backedge_count, invocation_count); 2376 2377 // Note that this macro must leave the backedge_count + invocation_count in 2378 // register iv_be_count! 2379 BLOCK_COMMENT("} Increment profiling counters"); 2380 } 2381 2382 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2383 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2384 } 2385 2386 // Local helper function for the verify_oop_or_return_address macro. 2387 static bool verify_return_address(Method* m, int bci) { 2388 #ifndef PRODUCT 2389 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; 2390 // Assume it is a valid return address if it is inside m and is preceded by a jsr. 2391 if (!m->contains(pc)) return false; 2392 address jsr_pc; 2393 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); 2394 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; 2395 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); 2396 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; 2397 #endif // PRODUCT 2398 return false; 2399 } 2400 2401 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { 2402 if (!VerifyOops) return; 2403 2404 // The VM documentation for the astore[_wide] bytecode allows 2405 // the TOS to be not only an oop but also a return address. 2406 Label test; 2407 Label skip; 2408 // See if it is an address (in the current method): 2409 2410 const int log2_bytecode_size_limit = 16; 2411 srdi_(Rtmp, reg, log2_bytecode_size_limit); 2412 bne(CR0, test); 2413 2414 address fd = CAST_FROM_FN_PTR(address, verify_return_address); 2415 const int nbytes_save = MacroAssembler::num_volatile_regs * 8; 2416 save_volatile_gprs(R1_SP, -nbytes_save); // except R0 2417 save_LR_CR(Rtmp); // Save in old frame. 2418 push_frame_reg_args(nbytes_save, Rtmp); 2419 2420 load_const_optimized(Rtmp, fd, R0); 2421 mr_if_needed(R4_ARG2, reg); 2422 mr(R3_ARG1, R19_method); 2423 call_c(Rtmp); // call C 2424 2425 pop_frame(); 2426 restore_LR_CR(Rtmp); 2427 restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 2428 b(skip); 2429 2430 // Perform a more elaborate out-of-line call. 2431 // Not an address; verify it: 2432 bind(test); 2433 verify_oop(reg); 2434 bind(skip); 2435 } 2436 2437 // Inline assembly for: 2438 // 2439 // if (thread is in interp_only_mode) { 2440 // InterpreterRuntime::post_method_entry(); 2441 // } 2442 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || 2443 // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { 2444 // SharedRuntime::jvmpi_method_entry(method, receiver); 2445 // } 2446 void InterpreterMacroAssembler::notify_method_entry() { 2447 // JVMTI 2448 // Whenever JVMTI puts a thread in interp_only_mode, method 2449 // entry/exit events are sent for that thread to track stack 2450 // depth. If it is possible to enter interp_only_mode we add 2451 // the code to check if the event should be sent. 2452 if (JvmtiExport::can_post_interpreter_events()) { 2453 Label jvmti_post_done; 2454 2455 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2456 cmpwi(CR0, R0, 0); 2457 beq(CR0, jvmti_post_done); 2458 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2459 2460 bind(jvmti_post_done); 2461 } 2462 } 2463 2464 // Inline assembly for: 2465 // 2466 // if (thread is in interp_only_mode) { 2467 // // save result 2468 // InterpreterRuntime::post_method_exit(); 2469 // // restore result 2470 // } 2471 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { 2472 // // save result 2473 // SharedRuntime::jvmpi_method_exit(); 2474 // // restore result 2475 // } 2476 // 2477 // Native methods have their result stored in d_tmp and l_tmp. 2478 // Java methods have their result stored in the expression stack. 2479 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, 2480 NotifyMethodExitMode mode, bool check_exceptions) { 2481 // JVMTI 2482 // Whenever JVMTI puts a thread in interp_only_mode, method 2483 // entry/exit events are sent for that thread to track stack 2484 // depth. If it is possible to enter interp_only_mode we add 2485 // the code to check if the event should be sent. 2486 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2487 Label jvmti_post_done; 2488 2489 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2490 cmpwi(CR0, R0, 0); 2491 beq(CR0, jvmti_post_done); 2492 if (!is_native_method) { push(state); } // Expose tos to GC. 2493 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), check_exceptions); 2494 if (!is_native_method) { pop(state); } 2495 2496 align(32, 12); 2497 bind(jvmti_post_done); 2498 } 2499 2500 // Dtrace support not implemented. 2501 }