1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_ppc.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "oops/methodCounters.hpp" 34 #include "oops/methodData.hpp" 35 #include "oops/resolvedFieldEntry.hpp" 36 #include "oops/resolvedIndyEntry.hpp" 37 #include "prims/jvmtiExport.hpp" 38 #include "prims/jvmtiThreadState.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/safepointMechanism.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/macros.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 46 // Implementation of InterpreterMacroAssembler. 47 48 // This file specializes the assembler with interpreter-specific macros. 49 50 #ifdef PRODUCT 51 #define BLOCK_COMMENT(str) // nothing 52 #else 53 #define BLOCK_COMMENT(str) block_comment(str) 54 #endif 55 56 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { 57 address exception_entry = Interpreter::throw_NullPointerException_entry(); 58 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 59 } 60 61 void InterpreterMacroAssembler::load_klass_check_null_throw(Register dst, Register src, Register temp_reg) { 62 null_check_throw(src, oopDesc::klass_offset_in_bytes(), temp_reg); 63 load_klass(dst, src); 64 } 65 66 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 67 assert(entry, "Entry must have been generated by now"); 68 if (is_within_range_of_b(entry, pc())) { 69 b(entry); 70 } else { 71 load_const_optimized(Rscratch, entry, R0); 72 mtctr(Rscratch); 73 bctr(); 74 } 75 } 76 77 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 78 Register bytecode = R12_scratch2; 79 if (bcp_incr != 0) { 80 lbzu(bytecode, bcp_incr, R14_bcp); 81 } else { 82 lbz(bytecode, 0, R14_bcp); 83 } 84 85 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll); 86 } 87 88 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 89 // Load current bytecode. 90 Register bytecode = R12_scratch2; 91 lbz(bytecode, 0, R14_bcp); 92 dispatch_Lbyte_code(state, bytecode, table); 93 } 94 95 // Dispatch code executed in the prolog of a bytecode which does not do it's 96 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. 97 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 98 Register bytecode = R12_scratch2; 99 lbz(bytecode, bcp_incr, R14_bcp); 100 101 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); 102 103 sldi(bytecode, bytecode, LogBytesPerWord); 104 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); 105 } 106 107 // Dispatch code executed in the epilog of a bytecode which does not do it's 108 // own dispatch. The dispatch address in R24_dispatch_addr is used for the 109 // dispatch. 110 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { 111 if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } 112 mtctr(R24_dispatch_addr); 113 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 114 } 115 116 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 117 assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); 118 if (JvmtiExport::can_pop_frame()) { 119 Label L; 120 121 // Check the "pending popframe condition" flag in the current thread. 122 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 123 124 // Initiate popframe handling only if it is not already being 125 // processed. If the flag has the popframe_processing bit set, it 126 // means that this code is called *during* popframe handling - we 127 // don't want to reenter. 128 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); 129 beq(CCR0, L); 130 131 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); 132 bne(CCR0, L); 133 134 // Call the Interpreter::remove_activation_preserving_args_entry() 135 // func to get the address of the same-named entrypoint in the 136 // generated interpreter code. 137 #if defined(ABI_ELFv2) 138 call_c(CAST_FROM_FN_PTR(address, 139 Interpreter::remove_activation_preserving_args_entry), 140 relocInfo::none); 141 #else 142 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, 143 Interpreter::remove_activation_preserving_args_entry), 144 relocInfo::none); 145 #endif 146 147 // Jump to Interpreter::_remove_activation_preserving_args_entry. 148 mtctr(R3_RET); 149 bctr(); 150 151 align(32, 12); 152 bind(L); 153 } 154 } 155 156 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 157 const Register Rthr_state_addr = scratch_reg; 158 if (JvmtiExport::can_force_early_return()) { 159 Label Lno_early_ret; 160 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 161 cmpdi(CCR0, Rthr_state_addr, 0); 162 beq(CCR0, Lno_early_ret); 163 164 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); 165 cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending); 166 bne(CCR0, Lno_early_ret); 167 168 // Jump to Interpreter::_earlyret_entry. 169 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); 170 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); 171 mtlr(R3_RET); 172 blr(); 173 174 align(32, 12); 175 bind(Lno_early_ret); 176 } 177 } 178 179 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { 180 const Register RjvmtiState = Rscratch1; 181 const Register Rscratch2 = R0; 182 183 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 184 li(Rscratch2, 0); 185 186 switch (state) { 187 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 188 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 189 break; 190 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 191 break; 192 case btos: // fall through 193 case ztos: // fall through 194 case ctos: // fall through 195 case stos: // fall through 196 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 197 break; 198 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 199 break; 200 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 201 break; 202 case vtos: break; 203 default : ShouldNotReachHere(); 204 } 205 206 // Clean up tos value in the jvmti thread state. 207 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 208 // Set tos state field to illegal value. 209 li(Rscratch2, ilgl); 210 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); 211 } 212 213 // Common code to dispatch and dispatch_only. 214 // Dispatch value in Lbyte_code and increment Lbcp. 215 216 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { 217 address table_base = (address)Interpreter::dispatch_table((TosState)0); 218 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; 219 if (is_simm16(table_offs)) { 220 addi(dst, R25_templateTableBase, (int)table_offs); 221 } else { 222 load_const_optimized(dst, table, R0); 223 } 224 } 225 226 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, 227 address* table, bool generate_poll) { 228 assert_different_registers(bytecode, R11_scratch1); 229 230 // Calc dispatch table address. 231 load_dispatch_table(R11_scratch1, table); 232 233 if (generate_poll) { 234 address *sfpt_tbl = Interpreter::safept_table(state); 235 if (table != sfpt_tbl) { 236 Label dispatch; 237 ld(R0, in_bytes(JavaThread::polling_word_offset()), R16_thread); 238 // Armed page has poll_bit set, if poll bit is cleared just continue. 239 andi_(R0, R0, SafepointMechanism::poll_bit()); 240 beq(CCR0, dispatch); 241 load_dispatch_table(R11_scratch1, sfpt_tbl); 242 align(32, 16); 243 bind(dispatch); 244 } 245 } 246 247 sldi(R12_scratch2, bytecode, LogBytesPerWord); 248 ldx(R11_scratch1, R11_scratch1, R12_scratch2); 249 250 // Jump off! 251 mtctr(R11_scratch1); 252 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 253 } 254 255 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { 256 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); 257 ldx(Rrecv_dst, Rrecv_dst, R15_esp); 258 } 259 260 // helpers for expression stack 261 262 void InterpreterMacroAssembler::pop_i(Register r) { 263 lwzu(r, Interpreter::stackElementSize, R15_esp); 264 } 265 266 void InterpreterMacroAssembler::pop_ptr(Register r) { 267 ldu(r, Interpreter::stackElementSize, R15_esp); 268 } 269 270 void InterpreterMacroAssembler::pop_l(Register r) { 271 ld(r, Interpreter::stackElementSize, R15_esp); 272 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 273 } 274 275 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 276 lfsu(f, Interpreter::stackElementSize, R15_esp); 277 } 278 279 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 280 lfd(f, Interpreter::stackElementSize, R15_esp); 281 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 282 } 283 284 void InterpreterMacroAssembler::push_i(Register r) { 285 stw(r, 0, R15_esp); 286 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 287 } 288 289 void InterpreterMacroAssembler::push_ptr(Register r) { 290 std(r, 0, R15_esp); 291 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 292 } 293 294 void InterpreterMacroAssembler::push_l(Register r) { 295 // Clear unused slot. 296 load_const_optimized(R0, 0L); 297 std(R0, 0, R15_esp); 298 std(r, - Interpreter::stackElementSize, R15_esp); 299 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 300 } 301 302 void InterpreterMacroAssembler::push_f(FloatRegister f) { 303 stfs(f, 0, R15_esp); 304 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 305 } 306 307 void InterpreterMacroAssembler::push_d(FloatRegister f) { 308 stfd(f, - Interpreter::stackElementSize, R15_esp); 309 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 310 } 311 312 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { 313 std(first, 0, R15_esp); 314 std(second, -Interpreter::stackElementSize, R15_esp); 315 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 316 } 317 318 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { 319 if (VM_Version::has_mtfprd()) { 320 mtfprd(d, l); 321 } else { 322 std(l, 0, R15_esp); 323 lfd(d, 0, R15_esp); 324 } 325 } 326 327 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { 328 if (VM_Version::has_mtfprd()) { 329 mffprd(l, d); 330 } else { 331 stfd(d, 0, R15_esp); 332 ld(l, 0, R15_esp); 333 } 334 } 335 336 void InterpreterMacroAssembler::push(TosState state) { 337 switch (state) { 338 case atos: push_ptr(); break; 339 case btos: 340 case ztos: 341 case ctos: 342 case stos: 343 case itos: push_i(); break; 344 case ltos: push_l(); break; 345 case ftos: push_f(); break; 346 case dtos: push_d(); break; 347 case vtos: /* nothing to do */ break; 348 default : ShouldNotReachHere(); 349 } 350 } 351 352 void InterpreterMacroAssembler::pop(TosState state) { 353 switch (state) { 354 case atos: pop_ptr(); break; 355 case btos: 356 case ztos: 357 case ctos: 358 case stos: 359 case itos: pop_i(); break; 360 case ltos: pop_l(); break; 361 case ftos: pop_f(); break; 362 case dtos: pop_d(); break; 363 case vtos: /* nothing to do */ break; 364 default : ShouldNotReachHere(); 365 } 366 verify_oop(R17_tos, state); 367 } 368 369 void InterpreterMacroAssembler::empty_expression_stack() { 370 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); 371 } 372 373 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, 374 Register Rdst, 375 signedOrNot is_signed) { 376 #if defined(VM_LITTLE_ENDIAN) 377 if (bcp_offset) { 378 load_const_optimized(Rdst, bcp_offset); 379 lhbrx(Rdst, R14_bcp, Rdst); 380 } else { 381 lhbrx(Rdst, R14_bcp); 382 } 383 if (is_signed == Signed) { 384 extsh(Rdst, Rdst); 385 } 386 #else 387 // Read Java big endian format. 388 if (is_signed == Signed) { 389 lha(Rdst, bcp_offset, R14_bcp); 390 } else { 391 lhz(Rdst, bcp_offset, R14_bcp); 392 } 393 #endif 394 } 395 396 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, 397 Register Rdst, 398 signedOrNot is_signed) { 399 #if defined(VM_LITTLE_ENDIAN) 400 if (bcp_offset) { 401 load_const_optimized(Rdst, bcp_offset); 402 lwbrx(Rdst, R14_bcp, Rdst); 403 } else { 404 lwbrx(Rdst, R14_bcp); 405 } 406 if (is_signed == Signed) { 407 extsw(Rdst, Rdst); 408 } 409 #else 410 // Read Java big endian format. 411 if (bcp_offset & 3) { // Offset unaligned? 412 load_const_optimized(Rdst, bcp_offset); 413 if (is_signed == Signed) { 414 lwax(Rdst, R14_bcp, Rdst); 415 } else { 416 lwzx(Rdst, R14_bcp, Rdst); 417 } 418 } else { 419 if (is_signed == Signed) { 420 lwa(Rdst, bcp_offset, R14_bcp); 421 } else { 422 lwz(Rdst, bcp_offset, R14_bcp); 423 } 424 } 425 #endif 426 } 427 428 429 // Load the constant pool cache index from the bytecode stream. 430 // 431 // Kills / writes: 432 // - Rdst, Rscratch 433 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, 434 size_t index_size) { 435 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 436 // Cache index is always in the native format, courtesy of Rewriter. 437 if (index_size == sizeof(u2)) { 438 lhz(Rdst, bcp_offset, R14_bcp); 439 } else if (index_size == sizeof(u4)) { 440 if (bcp_offset & 3) { 441 load_const_optimized(Rdst, bcp_offset); 442 lwax(Rdst, R14_bcp, Rdst); 443 } else { 444 lwa(Rdst, bcp_offset, R14_bcp); 445 } 446 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 447 nand(Rdst, Rdst, Rdst); // convert to plain index 448 } else if (index_size == sizeof(u1)) { 449 lbz(Rdst, bcp_offset, R14_bcp); 450 } else { 451 ShouldNotReachHere(); 452 } 453 // Rdst now contains cp cache index. 454 } 455 456 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, 457 size_t index_size) { 458 get_cache_index_at_bcp(cache, bcp_offset, index_size); 459 sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); 460 add(cache, R27_constPoolCache, cache); 461 } 462 463 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) 464 // from (Rsrc)+offset. 465 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, 466 signedOrNot is_signed) { 467 #if defined(VM_LITTLE_ENDIAN) 468 if (offset) { 469 load_const_optimized(Rdst, offset); 470 lwbrx(Rdst, Rdst, Rsrc); 471 } else { 472 lwbrx(Rdst, Rsrc); 473 } 474 if (is_signed == Signed) { 475 extsw(Rdst, Rdst); 476 } 477 #else 478 if (is_signed == Signed) { 479 lwa(Rdst, offset, Rsrc); 480 } else { 481 lwz(Rdst, offset, Rsrc); 482 } 483 #endif 484 } 485 486 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 487 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 488 get_cache_index_at_bcp(index, 1, sizeof(u4)); 489 490 // Get address of invokedynamic array 491 ld_ptr(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()), R27_constPoolCache); 492 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry) 493 sldi(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 494 add(cache, cache, index); 495 } 496 497 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 498 // Get index out of bytecode pointer 499 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 500 // Take shortcut if the size is a power of 2 501 if (is_power_of_2(sizeof(ResolvedFieldEntry))) { 502 // Scale index by power of 2 503 sldi(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); 504 } else { 505 // Scale the index to be the entry index * sizeof(ResolvedFieldEntry) 506 mulli(index, index, sizeof(ResolvedFieldEntry)); 507 } 508 // Get address of field entries array 509 ld_ptr(cache, in_bytes(ConstantPoolCache::field_entries_offset()), R27_constPoolCache); 510 addi(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes()); 511 add(cache, cache, index); 512 } 513 514 // Load object from cpool->resolved_references(index). 515 // Kills: 516 // - index 517 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, 518 Register tmp1, Register tmp2, 519 Label *L_handle_null) { 520 assert_different_registers(result, index, tmp1, tmp2); 521 assert(index->is_nonvolatile(), "needs to survive C-call in resolve_oop_handle"); 522 get_constant_pool(result); 523 524 // Convert from field index to resolved_references() index and from 525 // word index to byte offset. Since this is a java object, it can be compressed. 526 sldi(index, index, LogBytesPerHeapOop); 527 // Load pointer for resolved_references[] objArray. 528 ld(result, ConstantPool::cache_offset(), result); 529 ld(result, ConstantPoolCache::resolved_references_offset(), result); 530 resolve_oop_handle(result, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE); 531 #ifdef ASSERT 532 Label index_ok; 533 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); 534 sldi(R0, R0, LogBytesPerHeapOop); 535 cmpd(CCR0, index, R0); 536 blt(CCR0, index_ok); 537 stop("resolved reference index out of bounds"); 538 bind(index_ok); 539 #endif 540 // Add in the index. 541 add(result, index, result); 542 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, 543 tmp1, tmp2, 544 MacroAssembler::PRESERVATION_NONE, 545 0, L_handle_null); 546 } 547 548 // load cpool->resolved_klass_at(index) 549 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) { 550 // int value = *(Rcpool->int_at_addr(which)); 551 // int resolved_klass_index = extract_low_short_from_int(value); 552 add(Roffset, Rcpool, Roffset); 553 #if defined(VM_LITTLE_ENDIAN) 554 lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index 555 #else 556 lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index 557 #endif 558 559 ld(Rklass, ConstantPool::resolved_klasses_offset(), Rcpool); // Rklass = Rcpool->_resolved_klasses 560 561 sldi(Roffset, Roffset, LogBytesPerWord); 562 addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes()); 563 isync(); // Order load of instance Klass wrt. tags. 564 ldx(Rklass, Rklass, Roffset); 565 } 566 567 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 568 Register cache, 569 Register method) { 570 const int method_offset = in_bytes( 571 ConstantPoolCache::base_offset() + 572 ((byte_no == TemplateTable::f2_byte) 573 ? ConstantPoolCacheEntry::f2_offset() 574 : ConstantPoolCacheEntry::f1_offset())); 575 576 ld(method, method_offset, cache); // get f1 Method* 577 } 578 579 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 580 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. 581 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, 582 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { 583 // Profile the not-null value's klass. 584 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); 585 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 586 profile_typecheck_failed(Rtmp1, Rtmp2); 587 } 588 589 // Separate these two to allow for delay slot in middle. 590 // These are used to do a test and full jump to exception-throwing code. 591 592 // Check that index is in range for array, then shift index by index_shift, 593 // and put arrayOop + shifted_index into res. 594 // Note: res is still shy of address by array offset into object. 595 596 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, 597 int index_shift, Register Rtmp, Register Rres) { 598 // Check that index is in range for array, then shift index by index_shift, 599 // and put arrayOop + shifted_index into res. 600 // Note: res is still shy of address by array offset into object. 601 // Kills: 602 // - Rindex 603 // Writes: 604 // - Rres: Address that corresponds to the array index if check was successful. 605 verify_oop(Rarray); 606 const Register Rlength = R0; 607 const Register RsxtIndex = Rtmp; 608 Label LisNull, LnotOOR; 609 610 // Array nullcheck 611 if (!ImplicitNullChecks) { 612 cmpdi(CCR0, Rarray, 0); 613 beq(CCR0, LisNull); 614 } else { 615 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); 616 } 617 618 // Rindex might contain garbage in upper bits (remember that we don't sign extend 619 // during integer arithmetic operations). So kill them and put value into same register 620 // where ArrayIndexOutOfBounds would expect the index in. 621 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit 622 623 // Index check 624 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); 625 cmplw(CCR0, Rindex, Rlength); 626 sldi(RsxtIndex, RsxtIndex, index_shift); 627 blt(CCR0, LnotOOR); 628 // Index should be in R17_tos, array should be in R4_ARG2. 629 mr_if_needed(R17_tos, Rindex); 630 mr_if_needed(R4_ARG2, Rarray); 631 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 632 mtctr(Rtmp); 633 bctr(); 634 635 if (!ImplicitNullChecks) { 636 bind(LisNull); 637 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); 638 mtctr(Rtmp); 639 bctr(); 640 } 641 642 align(32, 16); 643 bind(LnotOOR); 644 645 // Calc address 646 add(Rres, RsxtIndex, Rarray); 647 } 648 649 void InterpreterMacroAssembler::index_check(Register array, Register index, 650 int index_shift, Register tmp, Register res) { 651 // pop array 652 pop_ptr(array); 653 654 // check array 655 index_check_without_pop(array, index, index_shift, tmp, res); 656 } 657 658 void InterpreterMacroAssembler::get_const(Register Rdst) { 659 ld(Rdst, in_bytes(Method::const_offset()), R19_method); 660 } 661 662 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 663 get_const(Rdst); 664 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); 665 } 666 667 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 668 get_constant_pool(Rdst); 669 ld(Rdst, ConstantPool::cache_offset(), Rdst); 670 } 671 672 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 673 get_constant_pool(Rcpool); 674 ld(Rtags, ConstantPool::tags_offset(), Rcpool); 675 } 676 677 // Unlock if synchronized method. 678 // 679 // Unlock the receiver if this is a synchronized method. 680 // Unlock any Java monitors from synchronized blocks. 681 // 682 // If there are locked Java monitors 683 // If throw_monitor_exception 684 // throws IllegalMonitorStateException 685 // Else if install_monitor_exception 686 // installs IllegalMonitorStateException 687 // Else 688 // no error processing 689 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 690 bool throw_monitor_exception, 691 bool install_monitor_exception) { 692 Label Lunlocked, Lno_unlock; 693 { 694 Register Rdo_not_unlock_flag = R11_scratch1; 695 Register Raccess_flags = R12_scratch2; 696 697 // Check if synchronized method or unlocking prevented by 698 // JavaThread::do_not_unlock_if_synchronized flag. 699 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 700 lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); 701 li(R0, 0); 702 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag 703 704 push(state); 705 706 // Skip if we don't have to unlock. 707 rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0. 708 beq(CCR0, Lunlocked); 709 710 cmpwi(CCR0, Rdo_not_unlock_flag, 0); 711 bne(CCR0, Lno_unlock); 712 } 713 714 // Unlock 715 { 716 Register Rmonitor_base = R11_scratch1; 717 718 Label Lunlock; 719 // If it's still locked, everything is ok, unlock it. 720 ld(Rmonitor_base, 0, R1_SP); 721 addi(Rmonitor_base, Rmonitor_base, 722 -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 723 724 ld(R0, BasicObjectLock::obj_offset(), Rmonitor_base); 725 cmpdi(CCR0, R0, 0); 726 bne(CCR0, Lunlock); 727 728 // If it's already unlocked, throw exception. 729 if (throw_monitor_exception) { 730 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 731 should_not_reach_here(); 732 } else { 733 if (install_monitor_exception) { 734 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 735 b(Lunlocked); 736 } 737 } 738 739 bind(Lunlock); 740 unlock_object(Rmonitor_base); 741 } 742 743 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. 744 bind(Lunlocked); 745 { 746 Label Lexception, Lrestart; 747 Register Rcurrent_obj_addr = R11_scratch1; 748 const int delta = frame::interpreter_frame_monitor_size_in_bytes(); 749 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); 750 751 bind(Lrestart); 752 // Set up search loop: Calc num of iterations. 753 { 754 Register Riterations = R12_scratch2; 755 Register Rmonitor_base = Rcurrent_obj_addr; 756 ld(Rmonitor_base, 0, R1_SP); 757 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base 758 759 subf_(Riterations, R26_monitor, Rmonitor_base); 760 ble(CCR0, Lno_unlock); 761 762 addi(Rcurrent_obj_addr, Rmonitor_base, 763 in_bytes(BasicObjectLock::obj_offset()) - frame::interpreter_frame_monitor_size_in_bytes()); 764 // Check if any monitor is on stack, bail out if not 765 srdi(Riterations, Riterations, exact_log2(delta)); 766 mtctr(Riterations); 767 } 768 769 // The search loop: Look for locked monitors. 770 { 771 const Register Rcurrent_obj = R0; 772 Label Lloop; 773 774 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 775 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 776 bind(Lloop); 777 778 // Check if current entry is used. 779 cmpdi(CCR0, Rcurrent_obj, 0); 780 bne(CCR0, Lexception); 781 // Preload next iteration's compare value. 782 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 783 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 784 bdnz(Lloop); 785 } 786 // Fell through: Everything's unlocked => finish. 787 b(Lno_unlock); 788 789 // An object is still locked => need to throw exception. 790 bind(Lexception); 791 if (throw_monitor_exception) { 792 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 793 should_not_reach_here(); 794 } else { 795 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. 796 // Unlock does not block, so don't have to worry about the frame. 797 Register Rmonitor_addr = R11_scratch1; 798 addi(Rmonitor_addr, Rcurrent_obj_addr, -in_bytes(BasicObjectLock::obj_offset()) + delta); 799 unlock_object(Rmonitor_addr); 800 if (install_monitor_exception) { 801 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 802 } 803 b(Lrestart); 804 } 805 } 806 807 align(32, 12); 808 bind(Lno_unlock); 809 pop(state); 810 } 811 812 // Support function for remove_activation & Co. 813 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, 814 Register Rscratch1, Register Rscratch2) { 815 // Pop interpreter frame. 816 ld(Rscratch1, 0, R1_SP); // *SP 817 ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp 818 ld(Rscratch2, 0, Rscratch1); // **SP 819 if (return_pc!=noreg) { 820 ld(return_pc, _abi0(lr), Rscratch1); // LR 821 } 822 823 // Merge top frames. 824 subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP 825 stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP 826 } 827 828 void InterpreterMacroAssembler::narrow(Register result) { 829 Register ret_type = R11_scratch1; 830 ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 831 lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); 832 833 Label notBool, notByte, notChar, done; 834 835 // common case first 836 cmpwi(CCR0, ret_type, T_INT); 837 beq(CCR0, done); 838 839 cmpwi(CCR0, ret_type, T_BOOLEAN); 840 bne(CCR0, notBool); 841 andi(result, result, 0x1); 842 b(done); 843 844 bind(notBool); 845 cmpwi(CCR0, ret_type, T_BYTE); 846 bne(CCR0, notByte); 847 extsb(result, result); 848 b(done); 849 850 bind(notByte); 851 cmpwi(CCR0, ret_type, T_CHAR); 852 bne(CCR0, notChar); 853 andi(result, result, 0xffff); 854 b(done); 855 856 bind(notChar); 857 // cmpwi(CCR0, ret_type, T_SHORT); // all that's left 858 // bne(CCR0, done); 859 extsh(result, result); 860 861 // Nothing to do for T_INT 862 bind(done); 863 } 864 865 // Remove activation. 866 // 867 // Apply stack watermark barrier. 868 // Unlock the receiver if this is a synchronized method. 869 // Unlock any Java monitors from synchronized blocks. 870 // Remove the activation from the stack. 871 // 872 // If there are locked Java monitors 873 // If throw_monitor_exception 874 // throws IllegalMonitorStateException 875 // Else if install_monitor_exception 876 // installs IllegalMonitorStateException 877 // Else 878 // no error processing 879 void InterpreterMacroAssembler::remove_activation(TosState state, 880 bool throw_monitor_exception, 881 bool install_monitor_exception) { 882 BLOCK_COMMENT("remove_activation {"); 883 884 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 885 // that would normally not be safe to use. Such bad returns into unsafe territory of 886 // the stack, will call InterpreterRuntime::at_unwind. 887 Label slow_path; 888 Label fast_path; 889 safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */); 890 b(fast_path); 891 bind(slow_path); 892 push(state); 893 set_last_Java_frame(R1_SP, noreg); 894 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread); 895 reset_last_Java_frame(); 896 pop(state); 897 align(32); 898 bind(fast_path); 899 900 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 901 902 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 903 notify_method_exit(false, state, NotifyJVMTI, true); 904 905 BLOCK_COMMENT("reserved_stack_check:"); 906 if (StackReservedPages > 0) { 907 // Test if reserved zone needs to be enabled. 908 Label no_reserved_zone_enabling; 909 910 // check if already enabled - if so no re-enabling needed 911 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 912 lwz(R0, in_bytes(JavaThread::stack_guard_state_offset()), R16_thread); 913 cmpwi(CCR0, R0, StackOverflow::stack_guard_enabled); 914 beq_predict_taken(CCR0, no_reserved_zone_enabling); 915 916 // Compare frame pointers. There is no good stack pointer, as with stack 917 // frame compression we can get different SPs when we do calls. A subsequent 918 // call could have a smaller SP, so that this compare succeeds for an 919 // inner call of the method annotated with ReservedStack. 920 ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); 921 ld_ptr(R11_scratch1, _abi0(callers_sp), R1_SP); // Load frame pointer. 922 cmpld(CCR0, R11_scratch1, R0); 923 blt_predict_taken(CCR0, no_reserved_zone_enabling); 924 925 // Enable reserved zone again, throw stack overflow exception. 926 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); 927 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 928 929 should_not_reach_here(); 930 931 bind(no_reserved_zone_enabling); 932 } 933 934 verify_oop(R17_tos, state); 935 936 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 937 mtlr(R0); 938 pop_cont_fastpath(); 939 BLOCK_COMMENT("} remove_activation"); 940 } 941 942 // Lock object 943 // 944 // Registers alive 945 // monitor - Address of the BasicObjectLock to be used for locking, 946 // which must be initialized with the object to lock. 947 // object - Address of the object to be locked. 948 // 949 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 950 if (LockingMode == LM_MONITOR) { 951 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 952 } else { 953 // template code (for LM_LEGACY): 954 // 955 // markWord displaced_header = obj->mark().set_unlocked(); 956 // monitor->lock()->set_displaced_header(displaced_header); 957 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 958 // // We stored the monitor address into the object's mark word. 959 // } else if (THREAD->is_lock_owned((address)displaced_header)) 960 // // Simple recursive case. 961 // monitor->lock()->set_displaced_header(nullptr); 962 // } else { 963 // // Slow path. 964 // InterpreterRuntime::monitorenter(THREAD, monitor); 965 // } 966 967 const Register header = R7_ARG5; 968 const Register object_mark_addr = R8_ARG6; 969 const Register current_header = R9_ARG7; 970 const Register tmp = R10_ARG8; 971 972 Label count_locking, done; 973 Label cas_failed, slow_case; 974 975 assert_different_registers(header, object_mark_addr, current_header, tmp); 976 977 // markWord displaced_header = obj->mark().set_unlocked(); 978 979 // Load markWord from object into header. 980 ld(header, oopDesc::mark_offset_in_bytes(), object); 981 982 if (DiagnoseSyncOnValueBasedClasses != 0) { 983 load_klass(tmp, object); 984 lwz(tmp, in_bytes(Klass::access_flags_offset()), tmp); 985 testbitdi(CCR0, R0, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 986 bne(CCR0, slow_case); 987 } 988 989 if (LockingMode == LM_LIGHTWEIGHT) { 990 fast_lock(object, /* mark word */ header, tmp, slow_case); 991 b(count_locking); 992 } else if (LockingMode == LM_LEGACY) { 993 994 // Set displaced_header to be (markWord of object | UNLOCK_VALUE). 995 ori(header, header, markWord::unlocked_value); 996 997 // monitor->lock()->set_displaced_header(displaced_header); 998 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 999 const int mark_offset = lock_offset + 1000 BasicLock::displaced_header_offset_in_bytes(); 1001 1002 // Initialize the box (Must happen before we update the object mark!). 1003 std(header, mark_offset, monitor); 1004 1005 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1006 1007 // Store stack address of the BasicObjectLock (this is monitor) into object. 1008 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1009 1010 // Must fence, otherwise, preceding store(s) may float below cmpxchg. 1011 // CmpxchgX sets CCR0 to cmpX(current, displaced). 1012 cmpxchgd(/*flag=*/CCR0, 1013 /*current_value=*/current_header, 1014 /*compare_value=*/header, /*exchange_value=*/monitor, 1015 /*where=*/object_mark_addr, 1016 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, 1017 MacroAssembler::cmpxchgx_hint_acquire_lock(), 1018 noreg, 1019 &cas_failed, 1020 /*check without membar and ldarx first*/true); 1021 1022 // If the compare-and-exchange succeeded, then we found an unlocked 1023 // object and we have now locked it. 1024 b(count_locking); 1025 bind(cas_failed); 1026 1027 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1028 // // Simple recursive case. 1029 // monitor->lock()->set_displaced_header(nullptr); 1030 1031 // We did not see an unlocked object so try the fast recursive case. 1032 1033 // Check if owner is self by comparing the value in the markWord of object 1034 // (current_header) with the stack pointer. 1035 sub(current_header, current_header, R1_SP); 1036 1037 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1038 load_const_optimized(tmp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place); 1039 1040 and_(R0/*==0?*/, current_header, tmp); 1041 // If condition is true we are done and hence we can store 0 in the displaced 1042 // header indicating it is a recursive lock. 1043 bne(CCR0, slow_case); 1044 std(R0/*==0!*/, mark_offset, monitor); 1045 b(count_locking); 1046 } 1047 1048 // } else { 1049 // // Slow path. 1050 // InterpreterRuntime::monitorenter(THREAD, monitor); 1051 1052 // None of the above fast optimizations worked so we have to get into the 1053 // slow case of monitor enter. 1054 bind(slow_case); 1055 if (LockingMode == LM_LIGHTWEIGHT) { 1056 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), object); 1057 } else { 1058 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1059 } 1060 b(done); 1061 // } 1062 align(32, 12); 1063 bind(count_locking); 1064 inc_held_monitor_count(current_header /*tmp*/); 1065 bind(done); 1066 } 1067 } 1068 1069 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1070 // 1071 // Registers alive 1072 // monitor - Address of the BasicObjectLock to be used for locking, 1073 // which must be initialized with the object to lock. 1074 // 1075 // Throw IllegalMonitorException if object is not locked by current thread. 1076 void InterpreterMacroAssembler::unlock_object(Register monitor) { 1077 if (LockingMode == LM_MONITOR) { 1078 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1079 } else { 1080 1081 // template code (for LM_LEGACY): 1082 // 1083 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1084 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1085 // monitor->set_obj(nullptr); 1086 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1087 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1088 // monitor->set_obj(nullptr); 1089 // } else { 1090 // // Slow path. 1091 // InterpreterRuntime::monitorexit(monitor); 1092 // } 1093 1094 const Register object = R7_ARG5; 1095 const Register header = R8_ARG6; 1096 const Register object_mark_addr = R9_ARG7; 1097 const Register current_header = R10_ARG8; 1098 1099 Label free_slot; 1100 Label slow_case; 1101 1102 assert_different_registers(object, header, object_mark_addr, current_header); 1103 1104 if (LockingMode != LM_LIGHTWEIGHT) { 1105 // Test first if we are in the fast recursive case. 1106 ld(header, in_bytes(BasicObjectLock::lock_offset()) + 1107 BasicLock::displaced_header_offset_in_bytes(), monitor); 1108 1109 // If the displaced header is zero, we have a recursive unlock. 1110 cmpdi(CCR0, header, 0); 1111 beq(CCR0, free_slot); // recursive unlock 1112 } 1113 1114 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1115 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1116 // monitor->set_obj(nullptr); 1117 1118 // If we still have a lightweight lock, unlock the object and be done. 1119 1120 // The object address from the monitor is in object. 1121 ld(object, in_bytes(BasicObjectLock::obj_offset()), monitor); 1122 1123 if (LockingMode == LM_LIGHTWEIGHT) { 1124 // Check for non-symmetric locking. This is allowed by the spec and the interpreter 1125 // must handle it. 1126 Register tmp = current_header; 1127 // First check for lock-stack underflow. 1128 lwz(tmp, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread); 1129 cmplwi(CCR0, tmp, (unsigned)LockStack::start_offset()); 1130 ble(CCR0, slow_case); 1131 // Then check if the top of the lock-stack matches the unlocked object. 1132 addi(tmp, tmp, -oopSize); 1133 ldx(tmp, tmp, R16_thread); 1134 cmpd(CCR0, tmp, object); 1135 bne(CCR0, slow_case); 1136 1137 ld(header, oopDesc::mark_offset_in_bytes(), object); 1138 andi_(R0, header, markWord::monitor_value); 1139 bne(CCR0, slow_case); 1140 fast_unlock(object, header, slow_case); 1141 } else { 1142 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1143 1144 // We have the displaced header in displaced_header. If the lock is still 1145 // lightweight, it will contain the monitor address and we'll store the 1146 // displaced header back into the object's mark word. 1147 // CmpxchgX sets CCR0 to cmpX(current, monitor). 1148 cmpxchgd(/*flag=*/CCR0, 1149 /*current_value=*/current_header, 1150 /*compare_value=*/monitor, /*exchange_value=*/header, 1151 /*where=*/object_mark_addr, 1152 MacroAssembler::MemBarRel, 1153 MacroAssembler::cmpxchgx_hint_release_lock(), 1154 noreg, 1155 &slow_case); 1156 } 1157 b(free_slot); 1158 1159 // } else { 1160 // // Slow path. 1161 // InterpreterRuntime::monitorexit(monitor); 1162 1163 // The lock has been converted into a heavy lock and hence 1164 // we need to get into the slow case. 1165 bind(slow_case); 1166 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1167 // } 1168 1169 Label done; 1170 b(done); // Monitor register may be overwritten! Runtime has already freed the slot. 1171 1172 // Exchange worked, do monitor->set_obj(nullptr); 1173 align(32, 12); 1174 bind(free_slot); 1175 li(R0, 0); 1176 std(R0, in_bytes(BasicObjectLock::obj_offset()), monitor); 1177 dec_held_monitor_count(current_header /*tmp*/); 1178 bind(done); 1179 } 1180 } 1181 1182 // Load compiled (i2c) or interpreter entry when calling from interpreted and 1183 // do the call. Centralized so that all interpreter calls will do the same actions. 1184 // If jvmti single stepping is on for a thread we must not call compiled code. 1185 // 1186 // Input: 1187 // - Rtarget_method: method to call 1188 // - Rret_addr: return address 1189 // - 2 scratch regs 1190 // 1191 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, 1192 Register Rscratch1, Register Rscratch2) { 1193 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); 1194 // Assume we want to go compiled if available. 1195 const Register Rtarget_addr = Rscratch1; 1196 const Register Rinterp_only = Rscratch2; 1197 1198 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); 1199 1200 if (JvmtiExport::can_post_interpreter_events()) { 1201 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1202 1203 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 1204 // compiled code in threads for which the event is enabled. Check here for 1205 // interp_only_mode if these events CAN be enabled. 1206 Label done; 1207 cmpwi(CCR0, Rinterp_only, 0); 1208 beq(CCR0, done); 1209 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); 1210 align(32, 12); 1211 bind(done); 1212 } 1213 1214 #ifdef ASSERT 1215 { 1216 Label Lok; 1217 cmpdi(CCR0, Rtarget_addr, 0); 1218 bne(CCR0, Lok); 1219 stop("null entry point"); 1220 bind(Lok); 1221 } 1222 #endif // ASSERT 1223 1224 mr(R21_sender_SP, R1_SP); 1225 1226 // Calc a precise SP for the call. The SP value we calculated in 1227 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space 1228 // if esp is not max. Also, the i2c adapter extends the stack space without restoring 1229 // our pre-calced value, so repeating calls via i2c would result in stack overflow. 1230 // Since esp already points to an empty slot, we just have to sub 1 additional slot 1231 // to meet the abi scratch requirements. 1232 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in 1233 // the return entry of the interpreter. 1234 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::top_ijava_frame_abi_size); 1235 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address 1236 resize_frame_absolute(Rscratch2, Rscratch2, R0); 1237 1238 mr_if_needed(R19_method, Rtarget_method); 1239 mtctr(Rtarget_addr); 1240 mtlr(Rret_addr); 1241 1242 save_interpreter_state(Rscratch2); 1243 #ifdef ASSERT 1244 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp 1245 sldi(Rscratch1, Rscratch1, Interpreter::logStackElementSize); 1246 add(Rscratch1, Rscratch1, Rscratch2); // Rscratch2 contains fp 1247 // Compare sender_sp with the derelativized top_frame_sp 1248 cmpd(CCR0, R21_sender_SP, Rscratch1); 1249 asm_assert_eq("top_frame_sp incorrect"); 1250 #endif 1251 1252 bctr(); 1253 } 1254 1255 // Set the method data pointer for the current bcp. 1256 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1257 assert(ProfileInterpreter, "must be profiling interpreter"); 1258 Label get_continue; 1259 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); 1260 test_method_data_pointer(get_continue); 1261 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); 1262 1263 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1264 add(R28_mdx, R28_mdx, R3_RET); 1265 bind(get_continue); 1266 } 1267 1268 // Test ImethodDataPtr. If it is null, continue at the specified label. 1269 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { 1270 assert(ProfileInterpreter, "must be profiling interpreter"); 1271 cmpdi(CCR0, R28_mdx, 0); 1272 beq(CCR0, zero_continue); 1273 } 1274 1275 void InterpreterMacroAssembler::verify_method_data_pointer() { 1276 assert(ProfileInterpreter, "must be profiling interpreter"); 1277 #ifdef ASSERT 1278 Label verify_continue; 1279 test_method_data_pointer(verify_continue); 1280 1281 // If the mdp is valid, it will point to a DataLayout header which is 1282 // consistent with the bcp. The converse is highly probable also. 1283 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); 1284 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); 1285 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1286 add(R11_scratch1, R12_scratch2, R12_scratch2); 1287 cmpd(CCR0, R11_scratch1, R14_bcp); 1288 beq(CCR0, verify_continue); 1289 1290 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); 1291 1292 bind(verify_continue); 1293 #endif 1294 } 1295 1296 // Store a value at some constant offset from the method data pointer. 1297 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { 1298 assert(ProfileInterpreter, "must be profiling interpreter"); 1299 1300 std(value, constant, R28_mdx); 1301 } 1302 1303 // Increment the value at some constant offset from the method data pointer. 1304 void InterpreterMacroAssembler::increment_mdp_data_at(int constant, 1305 Register counter_addr, 1306 Register Rbumped_count, 1307 bool decrement) { 1308 // Locate the counter at a fixed offset from the mdp: 1309 addi(counter_addr, R28_mdx, constant); 1310 increment_mdp_data_at(counter_addr, Rbumped_count, decrement); 1311 } 1312 1313 // Increment the value at some non-fixed (reg + constant) offset from 1314 // the method data pointer. 1315 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, 1316 int constant, 1317 Register scratch, 1318 Register Rbumped_count, 1319 bool decrement) { 1320 // Add the constant to reg to get the offset. 1321 add(scratch, R28_mdx, reg); 1322 // Then calculate the counter address. 1323 addi(scratch, scratch, constant); 1324 increment_mdp_data_at(scratch, Rbumped_count, decrement); 1325 } 1326 1327 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, 1328 Register Rbumped_count, 1329 bool decrement) { 1330 assert(ProfileInterpreter, "must be profiling interpreter"); 1331 1332 // Load the counter. 1333 ld(Rbumped_count, 0, counter_addr); 1334 1335 if (decrement) { 1336 // Decrement the register. Set condition codes. 1337 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); 1338 // Store the decremented counter, if it is still negative. 1339 std(Rbumped_count, 0, counter_addr); 1340 // Note: add/sub overflow check are not ported, since 64 bit 1341 // calculation should never overflow. 1342 } else { 1343 // Increment the register. Set carry flag. 1344 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); 1345 // Store the incremented counter. 1346 std(Rbumped_count, 0, counter_addr); 1347 } 1348 } 1349 1350 // Set a flag value at the current method data pointer position. 1351 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, 1352 Register scratch) { 1353 assert(ProfileInterpreter, "must be profiling interpreter"); 1354 // Load the data header. 1355 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1356 // Set the flag. 1357 ori(scratch, scratch, flag_constant); 1358 // Store the modified header. 1359 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1360 } 1361 1362 // Test the location at some offset from the method data pointer. 1363 // If it is not equal to value, branch to the not_equal_continue Label. 1364 void InterpreterMacroAssembler::test_mdp_data_at(int offset, 1365 Register value, 1366 Label& not_equal_continue, 1367 Register test_out) { 1368 assert(ProfileInterpreter, "must be profiling interpreter"); 1369 1370 ld(test_out, offset, R28_mdx); 1371 cmpd(CCR0, value, test_out); 1372 bne(CCR0, not_equal_continue); 1373 } 1374 1375 // Update the method data pointer by the displacement located at some fixed 1376 // offset from the method data pointer. 1377 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, 1378 Register scratch) { 1379 assert(ProfileInterpreter, "must be profiling interpreter"); 1380 1381 ld(scratch, offset_of_disp, R28_mdx); 1382 add(R28_mdx, scratch, R28_mdx); 1383 } 1384 1385 // Update the method data pointer by the displacement located at the 1386 // offset (reg + offset_of_disp). 1387 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, 1388 int offset_of_disp, 1389 Register scratch) { 1390 assert(ProfileInterpreter, "must be profiling interpreter"); 1391 1392 add(scratch, reg, R28_mdx); 1393 ld(scratch, offset_of_disp, scratch); 1394 add(R28_mdx, scratch, R28_mdx); 1395 } 1396 1397 // Update the method data pointer by a simple constant displacement. 1398 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { 1399 assert(ProfileInterpreter, "must be profiling interpreter"); 1400 addi(R28_mdx, R28_mdx, constant); 1401 } 1402 1403 // Update the method data pointer for a _ret bytecode whose target 1404 // was not among our cached targets. 1405 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, 1406 Register return_bci) { 1407 assert(ProfileInterpreter, "must be profiling interpreter"); 1408 1409 push(state); 1410 assert(return_bci->is_nonvolatile(), "need to protect return_bci"); 1411 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); 1412 pop(state); 1413 } 1414 1415 // Increments the backedge counter. 1416 // Returns backedge counter + invocation counter in Rdst. 1417 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, 1418 const Register Rtmp1, Register Rscratch) { 1419 assert(UseCompiler, "incrementing must be useful"); 1420 assert_different_registers(Rdst, Rtmp1); 1421 const Register invocation_counter = Rtmp1; 1422 const Register counter = Rdst; 1423 // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); 1424 1425 // Load backedge counter. 1426 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1427 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1428 // Load invocation counter. 1429 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + 1430 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1431 1432 // Add the delta to the backedge counter. 1433 addi(counter, counter, InvocationCounter::count_increment); 1434 1435 // Mask the invocation counter. 1436 andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); 1437 1438 // Store new counter value. 1439 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1440 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1441 // Return invocation counter + backedge counter. 1442 add(counter, counter, invocation_counter); 1443 } 1444 1445 // Count a taken branch in the bytecodes. 1446 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { 1447 if (ProfileInterpreter) { 1448 Label profile_continue; 1449 1450 // If no method data exists, go to profile_continue. 1451 test_method_data_pointer(profile_continue); 1452 1453 // We are taking a branch. Increment the taken count. 1454 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); 1455 1456 // The method data pointer needs to be updated to reflect the new target. 1457 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); 1458 bind (profile_continue); 1459 } 1460 } 1461 1462 // Count a not-taken branch in the bytecodes. 1463 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { 1464 if (ProfileInterpreter) { 1465 Label profile_continue; 1466 1467 // If no method data exists, go to profile_continue. 1468 test_method_data_pointer(profile_continue); 1469 1470 // We are taking a branch. Increment the not taken count. 1471 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); 1472 1473 // The method data pointer needs to be updated to correspond to the 1474 // next bytecode. 1475 update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); 1476 bind (profile_continue); 1477 } 1478 } 1479 1480 // Count a non-virtual call in the bytecodes. 1481 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { 1482 if (ProfileInterpreter) { 1483 Label profile_continue; 1484 1485 // If no method data exists, go to profile_continue. 1486 test_method_data_pointer(profile_continue); 1487 1488 // We are making a call. Increment the count. 1489 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1490 1491 // The method data pointer needs to be updated to reflect the new target. 1492 update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); 1493 bind (profile_continue); 1494 } 1495 } 1496 1497 // Count a final call in the bytecodes. 1498 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { 1499 if (ProfileInterpreter) { 1500 Label profile_continue; 1501 1502 // If no method data exists, go to profile_continue. 1503 test_method_data_pointer(profile_continue); 1504 1505 // We are making a call. Increment the count. 1506 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1507 1508 // The method data pointer needs to be updated to reflect the new target. 1509 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1510 bind (profile_continue); 1511 } 1512 } 1513 1514 // Count a virtual call in the bytecodes. 1515 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, 1516 Register Rscratch1, 1517 Register Rscratch2, 1518 bool receiver_can_be_null) { 1519 if (!ProfileInterpreter) { return; } 1520 Label profile_continue; 1521 1522 // If no method data exists, go to profile_continue. 1523 test_method_data_pointer(profile_continue); 1524 1525 Label skip_receiver_profile; 1526 if (receiver_can_be_null) { 1527 Label not_null; 1528 cmpdi(CCR0, Rreceiver, 0); 1529 bne(CCR0, not_null); 1530 // We are making a call. Increment the count for null receiver. 1531 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); 1532 b(skip_receiver_profile); 1533 bind(not_null); 1534 } 1535 1536 // Record the receiver type. 1537 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true); 1538 bind(skip_receiver_profile); 1539 1540 // The method data pointer needs to be updated to reflect the new target. 1541 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1542 bind (profile_continue); 1543 } 1544 1545 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { 1546 if (ProfileInterpreter) { 1547 Label profile_continue; 1548 1549 // If no method data exists, go to profile_continue. 1550 test_method_data_pointer(profile_continue); 1551 1552 int mdp_delta = in_bytes(BitData::bit_data_size()); 1553 if (TypeProfileCasts) { 1554 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1555 1556 // Record the object type. 1557 record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false); 1558 } 1559 1560 // The method data pointer needs to be updated. 1561 update_mdp_by_constant(mdp_delta); 1562 1563 bind (profile_continue); 1564 } 1565 } 1566 1567 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) { 1568 if (ProfileInterpreter && TypeProfileCasts) { 1569 Label profile_continue; 1570 1571 // If no method data exists, go to profile_continue. 1572 test_method_data_pointer(profile_continue); 1573 1574 int count_offset = in_bytes(CounterData::count_offset()); 1575 // Back up the address, since we have already bumped the mdp. 1576 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1577 1578 // *Decrement* the counter. We expect to see zero or small negatives. 1579 increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true); 1580 1581 bind (profile_continue); 1582 } 1583 } 1584 1585 // Count a ret in the bytecodes. 1586 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, 1587 Register scratch1, Register scratch2) { 1588 if (ProfileInterpreter) { 1589 Label profile_continue; 1590 uint row; 1591 1592 // If no method data exists, go to profile_continue. 1593 test_method_data_pointer(profile_continue); 1594 1595 // Update the total ret count. 1596 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); 1597 1598 for (row = 0; row < RetData::row_limit(); row++) { 1599 Label next_test; 1600 1601 // See if return_bci is equal to bci[n]: 1602 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); 1603 1604 // return_bci is equal to bci[n]. Increment the count. 1605 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); 1606 1607 // The method data pointer needs to be updated to reflect the new target. 1608 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); 1609 b(profile_continue); 1610 bind(next_test); 1611 } 1612 1613 update_mdp_for_ret(state, return_bci); 1614 1615 bind (profile_continue); 1616 } 1617 } 1618 1619 // Count the default case of a switch construct. 1620 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { 1621 if (ProfileInterpreter) { 1622 Label profile_continue; 1623 1624 // If no method data exists, go to profile_continue. 1625 test_method_data_pointer(profile_continue); 1626 1627 // Update the default case count 1628 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), 1629 scratch1, scratch2); 1630 1631 // The method data pointer needs to be updated. 1632 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), 1633 scratch1); 1634 1635 bind (profile_continue); 1636 } 1637 } 1638 1639 // Count the index'th case of a switch construct. 1640 void InterpreterMacroAssembler::profile_switch_case(Register index, 1641 Register scratch1, 1642 Register scratch2, 1643 Register scratch3) { 1644 if (ProfileInterpreter) { 1645 assert_different_registers(index, scratch1, scratch2, scratch3); 1646 Label profile_continue; 1647 1648 // If no method data exists, go to profile_continue. 1649 test_method_data_pointer(profile_continue); 1650 1651 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). 1652 li(scratch3, in_bytes(MultiBranchData::case_array_offset())); 1653 1654 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); 1655 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1656 add(scratch1, scratch1, scratch3); 1657 1658 // Update the case count. 1659 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); 1660 1661 // The method data pointer needs to be updated. 1662 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); 1663 1664 bind (profile_continue); 1665 } 1666 } 1667 1668 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { 1669 if (ProfileInterpreter) { 1670 assert_different_registers(Rscratch1, Rscratch2); 1671 Label profile_continue; 1672 1673 // If no method data exists, go to profile_continue. 1674 test_method_data_pointer(profile_continue); 1675 1676 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); 1677 1678 // The method data pointer needs to be updated. 1679 int mdp_delta = in_bytes(BitData::bit_data_size()); 1680 if (TypeProfileCasts) { 1681 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1682 } 1683 update_mdp_by_constant(mdp_delta); 1684 1685 bind (profile_continue); 1686 } 1687 } 1688 1689 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, 1690 Register Rscratch1, Register Rscratch2, 1691 bool is_virtual_call) { 1692 assert(ProfileInterpreter, "must be profiling"); 1693 assert_different_registers(Rreceiver, Rscratch1, Rscratch2); 1694 1695 Label done; 1696 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call); 1697 bind (done); 1698 } 1699 1700 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1701 Register receiver, Register scratch1, Register scratch2, 1702 int start_row, Label& done, bool is_virtual_call) { 1703 if (TypeProfileWidth == 0) { 1704 if (is_virtual_call) { 1705 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1706 } 1707 return; 1708 } 1709 1710 int last_row = VirtualCallData::row_limit() - 1; 1711 assert(start_row <= last_row, "must be work left to do"); 1712 // Test this row for both the receiver and for null. 1713 // Take any of three different outcomes: 1714 // 1. found receiver => increment count and goto done 1715 // 2. found null => keep looking for case 1, maybe allocate this cell 1716 // 3. found something else => keep looking for cases 1 and 2 1717 // Case 3 is handled by a recursive call. 1718 for (int row = start_row; row <= last_row; row++) { 1719 Label next_test; 1720 bool test_for_null_also = (row == start_row); 1721 1722 // See if the receiver is receiver[n]. 1723 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1724 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); 1725 // delayed()->tst(scratch); 1726 1727 // The receiver is receiver[n]. Increment count[n]. 1728 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1729 increment_mdp_data_at(count_offset, scratch1, scratch2); 1730 b(done); 1731 bind(next_test); 1732 1733 if (test_for_null_also) { 1734 Label found_null; 1735 // Failed the equality check on receiver[n]... Test for null. 1736 if (start_row == last_row) { 1737 // The only thing left to do is handle the null case. 1738 if (is_virtual_call) { 1739 // Scratch1 contains test_out from test_mdp_data_at. 1740 cmpdi(CCR0, scratch1, 0); 1741 beq(CCR0, found_null); 1742 // Receiver did not match any saved receiver and there is no empty row for it. 1743 // Increment total counter to indicate polymorphic case. 1744 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1745 b(done); 1746 bind(found_null); 1747 } else { 1748 cmpdi(CCR0, scratch1, 0); 1749 bne(CCR0, done); 1750 } 1751 break; 1752 } 1753 // Since null is rare, make it be the branch-taken case. 1754 cmpdi(CCR0, scratch1, 0); 1755 beq(CCR0, found_null); 1756 1757 // Put all the "Case 3" tests here. 1758 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call); 1759 1760 // Found a null. Keep searching for a matching receiver, 1761 // but remember that this is an empty (unused) slot. 1762 bind(found_null); 1763 } 1764 } 1765 1766 // In the fall-through case, we found no matching receiver, but we 1767 // observed the receiver[start_row] is null. 1768 1769 // Fill in the receiver field and increment the count. 1770 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1771 set_mdp_data_at(recvr_offset, receiver); 1772 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1773 li(scratch1, DataLayout::counter_increment); 1774 set_mdp_data_at(count_offset, scratch1); 1775 if (start_row > 0) { 1776 b(done); 1777 } 1778 } 1779 1780 // Argument and return type profilig. 1781 // kills: tmp, tmp2, R0, CR0, CR1 1782 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, 1783 RegisterOrConstant mdo_addr_offs, 1784 Register tmp, Register tmp2) { 1785 Label do_nothing, do_update; 1786 1787 // tmp2 = obj is allowed 1788 assert_different_registers(obj, mdo_addr_base, tmp, R0); 1789 assert_different_registers(tmp2, mdo_addr_base, tmp, R0); 1790 const Register klass = tmp2; 1791 1792 verify_oop(obj); 1793 1794 ld(tmp, mdo_addr_offs, mdo_addr_base); 1795 1796 // Set null_seen if obj is 0. 1797 cmpdi(CCR0, obj, 0); 1798 ori(R0, tmp, TypeEntries::null_seen); 1799 beq(CCR0, do_update); 1800 1801 load_klass(klass, obj); 1802 1803 clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 1804 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 1805 cmpd(CCR1, R0, klass); 1806 // Klass seen before, nothing to do (regardless of unknown bit). 1807 //beq(CCR1, do_nothing); 1808 1809 andi_(R0, klass, TypeEntries::type_unknown); 1810 // Already unknown. Nothing to do anymore. 1811 //bne(CCR0, do_nothing); 1812 crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 1813 beq(CCR0, do_nothing); 1814 1815 clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 1816 orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1817 beq(CCR0, do_update); // First time here. Set profile type. 1818 1819 // Different than before. Cannot keep accurate profile. 1820 ori(R0, tmp, TypeEntries::type_unknown); 1821 1822 bind(do_update); 1823 // update profile 1824 std(R0, mdo_addr_offs, mdo_addr_base); 1825 1826 align(32, 12); 1827 bind(do_nothing); 1828 } 1829 1830 void InterpreterMacroAssembler::profile_arguments_type(Register callee, 1831 Register tmp1, Register tmp2, 1832 bool is_virtual) { 1833 if (!ProfileInterpreter) { 1834 return; 1835 } 1836 1837 assert_different_registers(callee, tmp1, tmp2, R28_mdx); 1838 1839 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1840 Label profile_continue; 1841 1842 test_method_data_pointer(profile_continue); 1843 1844 int off_to_start = is_virtual ? 1845 in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1846 1847 lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); 1848 cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1849 bne(CCR0, profile_continue); 1850 1851 if (MethodData::profile_arguments()) { 1852 Label done; 1853 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1854 addi(R28_mdx, R28_mdx, off_to_args); 1855 1856 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1857 if (i > 0 || MethodData::profile_return()) { 1858 // If return value type is profiled we may have no argument to profile. 1859 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1860 cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); 1861 addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); 1862 blt(CCR0, done); 1863 } 1864 ld(tmp1, in_bytes(Method::const_offset()), callee); 1865 lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); 1866 // Stack offset o (zero based) from the start of the argument 1867 // list, for n arguments translates into offset n - o - 1 from 1868 // the end of the argument list. But there's an extra slot at 1869 // the top of the stack. So the offset is n - o from Lesp. 1870 ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); 1871 subf(tmp1, tmp2, tmp1); 1872 1873 sldi(tmp1, tmp1, Interpreter::logStackElementSize); 1874 ldx(tmp1, tmp1, R15_esp); 1875 1876 profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); 1877 1878 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1879 addi(R28_mdx, R28_mdx, to_add); 1880 off_to_args += to_add; 1881 } 1882 1883 if (MethodData::profile_return()) { 1884 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1885 addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1886 } 1887 1888 bind(done); 1889 1890 if (MethodData::profile_return()) { 1891 // We're right after the type profile for the last 1892 // argument. tmp1 is the number of cells left in the 1893 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1894 // if there's a return to profile. 1895 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), 1896 "can't move past ret type"); 1897 sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); 1898 add(R28_mdx, tmp1, R28_mdx); 1899 } 1900 } else { 1901 assert(MethodData::profile_return(), "either profile call args or call ret"); 1902 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); 1903 } 1904 1905 // Mdp points right after the end of the 1906 // CallTypeData/VirtualCallTypeData, right after the cells for the 1907 // return value type if there's one. 1908 align(32, 12); 1909 bind(profile_continue); 1910 } 1911 } 1912 1913 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { 1914 assert_different_registers(ret, tmp1, tmp2); 1915 if (ProfileInterpreter && MethodData::profile_return()) { 1916 Label profile_continue; 1917 1918 test_method_data_pointer(profile_continue); 1919 1920 if (MethodData::profile_return_jsr292_only()) { 1921 // If we don't profile all invoke bytecodes we must make sure 1922 // it's a bytecode we indeed profile. We can't go back to the 1923 // beginning of the ProfileData we intend to update to check its 1924 // type because we're right after it and we don't known its 1925 // length. 1926 lbz(tmp1, 0, R14_bcp); 1927 lbz(tmp2, in_bytes(Method::intrinsic_id_offset()), R19_method); 1928 cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic); 1929 cmpwi(CCR1, tmp1, Bytecodes::_invokehandle); 1930 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1931 cmpwi(CCR1, tmp2, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1932 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1933 bne(CCR0, profile_continue); 1934 } 1935 1936 profile_obj_type(ret, R28_mdx, -in_bytes(SingleTypeEntry::size()), tmp1, tmp2); 1937 1938 align(32, 12); 1939 bind(profile_continue); 1940 } 1941 } 1942 1943 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, 1944 Register tmp3, Register tmp4) { 1945 if (ProfileInterpreter && MethodData::profile_parameters()) { 1946 Label profile_continue, done; 1947 1948 test_method_data_pointer(profile_continue); 1949 1950 // Load the offset of the area within the MDO used for 1951 // parameters. If it's negative we're not profiling any parameters. 1952 lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); 1953 cmpwi(CCR0, tmp1, 0); 1954 blt(CCR0, profile_continue); 1955 1956 // Compute a pointer to the area for parameters from the offset 1957 // and move the pointer to the slot for the last 1958 // parameters. Collect profiling from last parameter down. 1959 // mdo start + parameters offset + array length - 1 1960 1961 // Pointer to the parameter area in the MDO. 1962 const Register mdp = tmp1; 1963 add(mdp, tmp1, R28_mdx); 1964 1965 // Offset of the current profile entry to update. 1966 const Register entry_offset = tmp2; 1967 // entry_offset = array len in number of cells 1968 ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); 1969 1970 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1971 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); 1972 1973 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field 1974 addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); 1975 // entry_offset in bytes 1976 sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1977 1978 Label loop; 1979 align(32, 12); 1980 bind(loop); 1981 1982 // Load offset on the stack from the slot for this parameter. 1983 ld(tmp3, entry_offset, mdp); 1984 sldi(tmp3, tmp3, Interpreter::logStackElementSize); 1985 neg(tmp3, tmp3); 1986 // Read the parameter from the local area. 1987 ldx(tmp3, tmp3, R18_locals); 1988 1989 // Make entry_offset now point to the type field for this parameter. 1990 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1991 assert(type_base > off_base, "unexpected"); 1992 addi(entry_offset, entry_offset, type_base - off_base); 1993 1994 // Profile the parameter. 1995 profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); 1996 1997 // Go to next parameter. 1998 int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); 1999 cmpdi(CCR0, entry_offset, off_base + delta); 2000 addi(entry_offset, entry_offset, -delta); 2001 bge(CCR0, loop); 2002 2003 align(32, 12); 2004 bind(profile_continue); 2005 } 2006 } 2007 2008 // Add a InterpMonitorElem to stack (see frame_sparc.hpp). 2009 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { 2010 2011 // Very-local scratch registers. 2012 const Register esp = Rtemp1; 2013 const Register slot = Rtemp2; 2014 2015 // Extracted monitor_size. 2016 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); 2017 assert(Assembler::is_aligned((unsigned int)monitor_size, 2018 (unsigned int)frame::alignment_in_bytes), 2019 "size of a monitor must respect alignment of SP"); 2020 2021 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor 2022 subf(Rtemp2, esp, R1_SP); // esp contains fp 2023 sradi(Rtemp2, Rtemp2, Interpreter::logStackElementSize); 2024 // Store relativized top_frame_sp 2025 std(Rtemp2, _ijava_state_neg(top_frame_sp), esp); // esp contains fp 2026 2027 // Shuffle expression stack down. Recall that stack_base points 2028 // just above the new expression stack bottom. Old_tos and new_tos 2029 // are used to scan thru the old and new expression stacks. 2030 if (!stack_is_empty) { 2031 Label copy_slot, copy_slot_finished; 2032 const Register n_slots = slot; 2033 2034 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). 2035 subf(n_slots, esp, R26_monitor); 2036 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. 2037 assert(LogBytesPerWord == 3, "conflicts assembler instructions"); 2038 beq(CCR0, copy_slot_finished); // Nothing to copy. 2039 2040 mtctr(n_slots); 2041 2042 // loop 2043 bind(copy_slot); 2044 ld(slot, 0, esp); // Move expression stack down. 2045 std(slot, -monitor_size, esp); // distance = monitor_size 2046 addi(esp, esp, BytesPerWord); 2047 bdnz(copy_slot); 2048 2049 bind(copy_slot_finished); 2050 } 2051 2052 addi(R15_esp, R15_esp, -monitor_size); 2053 addi(R26_monitor, R26_monitor, -monitor_size); 2054 2055 // Restart interpreter 2056 } 2057 2058 // ============================================================================ 2059 // Java locals access 2060 2061 // Load a local variable at index in Rindex into register Rdst_value. 2062 // Also puts address of local into Rdst_address as a service. 2063 // Kills: 2064 // - Rdst_value 2065 // - Rdst_address 2066 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { 2067 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2068 subf(Rdst_address, Rdst_address, R18_locals); 2069 lwz(Rdst_value, 0, Rdst_address); 2070 } 2071 2072 // Load a local variable at index in Rindex into register Rdst_value. 2073 // Also puts address of local into Rdst_address as a service. 2074 // Kills: 2075 // - Rdst_value 2076 // - Rdst_address 2077 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { 2078 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2079 subf(Rdst_address, Rdst_address, R18_locals); 2080 ld(Rdst_value, -8, Rdst_address); 2081 } 2082 2083 // Load a local variable at index in Rindex into register Rdst_value. 2084 // Also puts address of local into Rdst_address as a service. 2085 // Input: 2086 // - Rindex: slot nr of local variable 2087 // Kills: 2088 // - Rdst_value 2089 // - Rdst_address 2090 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, 2091 Register Rdst_address, 2092 Register Rindex) { 2093 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2094 subf(Rdst_address, Rdst_address, R18_locals); 2095 ld(Rdst_value, 0, Rdst_address); 2096 } 2097 2098 // Load a local variable at index in Rindex into register Rdst_value. 2099 // Also puts address of local into Rdst_address as a service. 2100 // Kills: 2101 // - Rdst_value 2102 // - Rdst_address 2103 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, 2104 Register Rdst_address, 2105 Register Rindex) { 2106 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2107 subf(Rdst_address, Rdst_address, R18_locals); 2108 lfs(Rdst_value, 0, Rdst_address); 2109 } 2110 2111 // Load a local variable at index in Rindex into register Rdst_value. 2112 // Also puts address of local into Rdst_address as a service. 2113 // Kills: 2114 // - Rdst_value 2115 // - Rdst_address 2116 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, 2117 Register Rdst_address, 2118 Register Rindex) { 2119 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2120 subf(Rdst_address, Rdst_address, R18_locals); 2121 lfd(Rdst_value, -8, Rdst_address); 2122 } 2123 2124 // Store an int value at local variable slot Rindex. 2125 // Kills: 2126 // - Rindex 2127 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { 2128 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2129 subf(Rindex, Rindex, R18_locals); 2130 stw(Rvalue, 0, Rindex); 2131 } 2132 2133 // Store a long value at local variable slot Rindex. 2134 // Kills: 2135 // - Rindex 2136 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { 2137 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2138 subf(Rindex, Rindex, R18_locals); 2139 std(Rvalue, -8, Rindex); 2140 } 2141 2142 // Store an oop value at local variable slot Rindex. 2143 // Kills: 2144 // - Rindex 2145 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { 2146 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2147 subf(Rindex, Rindex, R18_locals); 2148 std(Rvalue, 0, Rindex); 2149 } 2150 2151 // Store an int value at local variable slot Rindex. 2152 // Kills: 2153 // - Rindex 2154 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { 2155 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2156 subf(Rindex, Rindex, R18_locals); 2157 stfs(Rvalue, 0, Rindex); 2158 } 2159 2160 // Store an int value at local variable slot Rindex. 2161 // Kills: 2162 // - Rindex 2163 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { 2164 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2165 subf(Rindex, Rindex, R18_locals); 2166 stfd(Rvalue, -8, Rindex); 2167 } 2168 2169 // Read pending exception from thread and jump to interpreter. 2170 // Throw exception entry if one if pending. Fall through otherwise. 2171 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { 2172 assert_different_registers(Rscratch1, Rscratch2, R3); 2173 Register Rexception = Rscratch1; 2174 Register Rtmp = Rscratch2; 2175 Label Ldone; 2176 // Get pending exception oop. 2177 ld(Rexception, thread_(pending_exception)); 2178 cmpdi(CCR0, Rexception, 0); 2179 beq(CCR0, Ldone); 2180 li(Rtmp, 0); 2181 mr_if_needed(R3, Rexception); 2182 std(Rtmp, thread_(pending_exception)); // Clear exception in thread 2183 if (Interpreter::rethrow_exception_entry() != nullptr) { 2184 // Already got entry address. 2185 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); 2186 } else { 2187 // Dynamically load entry address. 2188 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); 2189 ld(Rtmp, simm16_rest, Rtmp); 2190 } 2191 mtctr(Rtmp); 2192 save_interpreter_state(Rtmp); 2193 bctr(); 2194 2195 align(32, 12); 2196 bind(Ldone); 2197 } 2198 2199 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { 2200 save_interpreter_state(R11_scratch1); 2201 2202 MacroAssembler::call_VM(oop_result, entry_point, false); 2203 2204 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); 2205 2206 check_and_handle_popframe(R11_scratch1); 2207 check_and_handle_earlyret(R11_scratch1); 2208 // Now check exceptions manually. 2209 if (check_exceptions) { 2210 check_and_forward_exception(R11_scratch1, R12_scratch2); 2211 } 2212 } 2213 2214 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2215 Register arg_1, bool check_exceptions) { 2216 // ARG1 is reserved for the thread. 2217 mr_if_needed(R4_ARG2, arg_1); 2218 call_VM(oop_result, entry_point, check_exceptions); 2219 } 2220 2221 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2222 Register arg_1, Register arg_2, 2223 bool check_exceptions) { 2224 // ARG1 is reserved for the thread. 2225 mr_if_needed(R4_ARG2, arg_1); 2226 assert(arg_2 != R4_ARG2, "smashed argument"); 2227 mr_if_needed(R5_ARG3, arg_2); 2228 call_VM(oop_result, entry_point, check_exceptions); 2229 } 2230 2231 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2232 Register arg_1, Register arg_2, Register arg_3, 2233 bool check_exceptions) { 2234 // ARG1 is reserved for the thread. 2235 mr_if_needed(R4_ARG2, arg_1); 2236 assert(arg_2 != R4_ARG2, "smashed argument"); 2237 mr_if_needed(R5_ARG3, arg_2); 2238 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); 2239 mr_if_needed(R6_ARG4, arg_3); 2240 call_VM(oop_result, entry_point, check_exceptions); 2241 } 2242 2243 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { 2244 ld(scratch, 0, R1_SP); 2245 std(R15_esp, _ijava_state_neg(esp), scratch); 2246 std(R14_bcp, _ijava_state_neg(bcp), scratch); 2247 std(R26_monitor, _ijava_state_neg(monitors), scratch); 2248 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } 2249 // Other entries should be unchanged. 2250 } 2251 2252 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only, bool restore_top_frame_sp) { 2253 ld_ptr(scratch, _abi0(callers_sp), R1_SP); // Load frame pointer. 2254 if (restore_top_frame_sp) { 2255 // After thawing the top frame of a continuation we reach here with frame::java_abi. 2256 // therefore we have to restore top_frame_sp before the assertion below. 2257 assert(!bcp_and_mdx_only, "chose other registers"); 2258 Register tfsp = R18_locals; 2259 Register scratch2 = R26_monitor; 2260 ld(tfsp, _ijava_state_neg(top_frame_sp), scratch); 2261 // Derelativize top_frame_sp 2262 sldi(tfsp, tfsp, Interpreter::logStackElementSize); 2263 add(tfsp, tfsp, scratch); 2264 resize_frame_absolute(tfsp, scratch2, R0); 2265 } 2266 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). 2267 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. 2268 if (!bcp_and_mdx_only) { 2269 // Following ones are Metadata. 2270 ld(R19_method, _ijava_state_neg(method), scratch); 2271 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); 2272 // Following ones are stack addresses and don't require reload. 2273 ld(R15_esp, _ijava_state_neg(esp), scratch); 2274 ld(R18_locals, _ijava_state_neg(locals), scratch); 2275 sldi(R18_locals, R18_locals, Interpreter::logStackElementSize); 2276 add(R18_locals, R18_locals, scratch); 2277 ld(R26_monitor, _ijava_state_neg(monitors), scratch); 2278 } 2279 #ifdef ASSERT 2280 { 2281 Label Lok; 2282 subf(R0, R1_SP, scratch); 2283 cmpdi(CCR0, R0, frame::top_ijava_frame_abi_size + frame::ijava_state_size); 2284 bge(CCR0, Lok); 2285 stop("frame too small (restore istate)"); 2286 bind(Lok); 2287 } 2288 #endif 2289 } 2290 2291 void InterpreterMacroAssembler::get_method_counters(Register method, 2292 Register Rcounters, 2293 Label& skip) { 2294 BLOCK_COMMENT("Load and ev. allocate counter object {"); 2295 Label has_counters; 2296 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2297 cmpdi(CCR0, Rcounters, 0); 2298 bne(CCR0, has_counters); 2299 call_VM(noreg, CAST_FROM_FN_PTR(address, 2300 InterpreterRuntime::build_method_counters), method); 2301 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2302 cmpdi(CCR0, Rcounters, 0); 2303 beq(CCR0, skip); // No MethodCounters, OutOfMemory. 2304 BLOCK_COMMENT("} Load and ev. allocate counter object"); 2305 2306 bind(has_counters); 2307 } 2308 2309 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, 2310 Register iv_be_count, 2311 Register Rtmp_r0) { 2312 assert(UseCompiler, "incrementing must be useful"); 2313 Register invocation_count = iv_be_count; 2314 Register backedge_count = Rtmp_r0; 2315 int delta = InvocationCounter::count_increment; 2316 2317 // Load each counter in a register. 2318 // ld(inv_counter, Rtmp); 2319 // ld(be_counter, Rtmp2); 2320 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + 2321 InvocationCounter::counter_offset()); 2322 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + 2323 InvocationCounter::counter_offset()); 2324 2325 BLOCK_COMMENT("Increment profiling counters {"); 2326 2327 // Load the backedge counter. 2328 lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int 2329 // Mask the backedge counter. 2330 andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); 2331 2332 // Load the invocation counter. 2333 lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int 2334 // Add the delta to the invocation counter and store the result. 2335 addi(invocation_count, invocation_count, delta); 2336 // Store value. 2337 stw(invocation_count, inv_counter_offset, Rcounters); 2338 2339 // Add invocation counter + backedge counter. 2340 add(iv_be_count, backedge_count, invocation_count); 2341 2342 // Note that this macro must leave the backedge_count + invocation_count in 2343 // register iv_be_count! 2344 BLOCK_COMMENT("} Increment profiling counters"); 2345 } 2346 2347 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2348 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2349 } 2350 2351 // Local helper function for the verify_oop_or_return_address macro. 2352 static bool verify_return_address(Method* m, int bci) { 2353 #ifndef PRODUCT 2354 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; 2355 // Assume it is a valid return address if it is inside m and is preceded by a jsr. 2356 if (!m->contains(pc)) return false; 2357 address jsr_pc; 2358 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); 2359 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; 2360 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); 2361 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; 2362 #endif // PRODUCT 2363 return false; 2364 } 2365 2366 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2367 if (VerifyFPU) { 2368 unimplemented("verfiyFPU"); 2369 } 2370 } 2371 2372 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { 2373 if (!VerifyOops) return; 2374 2375 // The VM documentation for the astore[_wide] bytecode allows 2376 // the TOS to be not only an oop but also a return address. 2377 Label test; 2378 Label skip; 2379 // See if it is an address (in the current method): 2380 2381 const int log2_bytecode_size_limit = 16; 2382 srdi_(Rtmp, reg, log2_bytecode_size_limit); 2383 bne(CCR0, test); 2384 2385 address fd = CAST_FROM_FN_PTR(address, verify_return_address); 2386 const int nbytes_save = MacroAssembler::num_volatile_regs * 8; 2387 save_volatile_gprs(R1_SP, -nbytes_save); // except R0 2388 save_LR_CR(Rtmp); // Save in old frame. 2389 push_frame_reg_args(nbytes_save, Rtmp); 2390 2391 load_const_optimized(Rtmp, fd, R0); 2392 mr_if_needed(R4_ARG2, reg); 2393 mr(R3_ARG1, R19_method); 2394 call_c(Rtmp); // call C 2395 2396 pop_frame(); 2397 restore_LR_CR(Rtmp); 2398 restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 2399 b(skip); 2400 2401 // Perform a more elaborate out-of-line call. 2402 // Not an address; verify it: 2403 bind(test); 2404 verify_oop(reg); 2405 bind(skip); 2406 } 2407 2408 // Inline assembly for: 2409 // 2410 // if (thread is in interp_only_mode) { 2411 // InterpreterRuntime::post_method_entry(); 2412 // } 2413 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || 2414 // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { 2415 // SharedRuntime::jvmpi_method_entry(method, receiver); 2416 // } 2417 void InterpreterMacroAssembler::notify_method_entry() { 2418 // JVMTI 2419 // Whenever JVMTI puts a thread in interp_only_mode, method 2420 // entry/exit events are sent for that thread to track stack 2421 // depth. If it is possible to enter interp_only_mode we add 2422 // the code to check if the event should be sent. 2423 if (JvmtiExport::can_post_interpreter_events()) { 2424 Label jvmti_post_done; 2425 2426 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2427 cmpwi(CCR0, R0, 0); 2428 beq(CCR0, jvmti_post_done); 2429 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2430 2431 bind(jvmti_post_done); 2432 } 2433 } 2434 2435 // Inline assembly for: 2436 // 2437 // if (thread is in interp_only_mode) { 2438 // // save result 2439 // InterpreterRuntime::post_method_exit(); 2440 // // restore result 2441 // } 2442 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { 2443 // // save result 2444 // SharedRuntime::jvmpi_method_exit(); 2445 // // restore result 2446 // } 2447 // 2448 // Native methods have their result stored in d_tmp and l_tmp. 2449 // Java methods have their result stored in the expression stack. 2450 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, 2451 NotifyMethodExitMode mode, bool check_exceptions) { 2452 // JVMTI 2453 // Whenever JVMTI puts a thread in interp_only_mode, method 2454 // entry/exit events are sent for that thread to track stack 2455 // depth. If it is possible to enter interp_only_mode we add 2456 // the code to check if the event should be sent. 2457 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2458 Label jvmti_post_done; 2459 2460 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2461 cmpwi(CCR0, R0, 0); 2462 beq(CCR0, jvmti_post_done); 2463 if (!is_native_method) { push(state); } // Expose tos to GC. 2464 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), check_exceptions); 2465 if (!is_native_method) { pop(state); } 2466 2467 align(32, 12); 2468 bind(jvmti_post_done); 2469 } 2470 2471 // Dtrace support not implemented. 2472 }