1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/disassembler.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/method.inline.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "oops/resolvedFieldEntry.hpp" 42 #include "oops/resolvedIndyEntry.hpp" 43 #include "oops/resolvedMethodEntry.hpp" 44 #include "prims/jvmtiExport.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/frame.inline.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/synchronizer.hpp" 50 #include "utilities/powerOfTwo.hpp" 51 52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 53 54 // Address computation: local variables 55 56 static inline Address iaddress(int n) { 57 return Address(xlocals, Interpreter::local_offset_in_bytes(n)); 58 } 59 60 static inline Address laddress(int n) { 61 return iaddress(n + 1); 62 } 63 64 static inline Address faddress(int n) { 65 return iaddress(n); 66 } 67 68 static inline Address daddress(int n) { 69 return laddress(n); 70 } 71 72 static inline Address aaddress(int n) { 73 return iaddress(n); 74 } 75 76 static inline Address iaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 77 _masm->shadd(temp, r, xlocals, temp, 3); 78 return Address(temp, 0); 79 } 80 81 static inline Address laddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 82 _masm->shadd(temp, r, xlocals, temp, 3); 83 return Address(temp, Interpreter::local_offset_in_bytes(1));; 84 } 85 86 static inline Address faddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 87 return iaddress(r, temp, _masm); 88 } 89 90 static inline Address daddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 91 return laddress(r, temp, _masm); 92 } 93 94 static inline Address aaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 95 return iaddress(r, temp, _masm); 96 } 97 98 static inline Address at_rsp() { 99 return Address(esp, 0); 100 } 101 102 // At top of Java expression stack which may be different than esp(). It 103 // isn't for category 1 objects. 104 static inline Address at_tos () { 105 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 106 } 107 108 static inline Address at_tos_p1() { 109 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 110 } 111 112 static inline Address at_tos_p2() { 113 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 114 } 115 116 static inline Address at_tos_p3() { 117 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 118 } 119 120 static inline Address at_tos_p4() { 121 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 122 } 123 124 static inline Address at_tos_p5() { 125 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 126 } 127 128 Address TemplateTable::at_bcp(int offset) { 129 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 130 return Address(xbcp, offset); 131 } 132 133 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 134 Register temp_reg, bool load_bc_into_bc_reg /*=true*/, 135 int byte_no) { 136 if (!RewriteBytecodes) { return; } 137 Label L_patch_done; 138 139 switch (bc) { 140 case Bytecodes::_fast_aputfield: // fall through 141 case Bytecodes::_fast_bputfield: // fall through 142 case Bytecodes::_fast_zputfield: // fall through 143 case Bytecodes::_fast_cputfield: // fall through 144 case Bytecodes::_fast_dputfield: // fall through 145 case Bytecodes::_fast_fputfield: // fall through 146 case Bytecodes::_fast_iputfield: // fall through 147 case Bytecodes::_fast_lputfield: // fall through 148 case Bytecodes::_fast_sputfield: { 149 // We skip bytecode quickening for putfield instructions when 150 // the put_code written to the constant pool cache is zero. 151 // This is required so that every execution of this instruction 152 // calls out to InterpreterRuntime::resolve_get_put to do 153 // additional, required work. 154 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 155 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 156 __ load_field_entry(temp_reg, bc_reg); 157 if (byte_no == f1_byte) { 158 __ la(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset()))); 159 } else { 160 __ la(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset()))); 161 } 162 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 163 __ lbu(temp_reg, Address(temp_reg, 0)); 164 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 165 __ mv(bc_reg, bc); 166 __ beqz(temp_reg, L_patch_done); 167 break; 168 } 169 default: 170 assert(byte_no == -1, "sanity"); 171 // the pair bytecodes have already done the load. 172 if (load_bc_into_bc_reg) { 173 __ mv(bc_reg, bc); 174 } 175 } 176 177 if (JvmtiExport::can_post_breakpoint()) { 178 Label L_fast_patch; 179 // if a breakpoint is present we can't rewrite the stream directly 180 __ load_unsigned_byte(temp_reg, at_bcp(0)); 181 __ subi(temp_reg, temp_reg, Bytecodes::_breakpoint); // temp_reg is temporary register. 182 __ bnez(temp_reg, L_fast_patch); 183 // Let breakpoint table handling rewrite to quicker bytecode 184 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), xmethod, xbcp, bc_reg); 185 __ j(L_patch_done); 186 __ bind(L_fast_patch); 187 } 188 189 #ifdef ASSERT 190 Label L_okay; 191 __ load_unsigned_byte(temp_reg, at_bcp(0)); 192 __ beq(temp_reg, bc_reg, L_okay); 193 __ subi(temp_reg, temp_reg, (int)Bytecodes::java_code(bc)); 194 __ beqz(temp_reg, L_okay); 195 __ stop("patching the wrong bytecode"); 196 __ bind(L_okay); 197 #endif 198 199 // patch bytecode 200 __ sb(bc_reg, at_bcp(0)); 201 __ bind(L_patch_done); 202 } 203 204 // Individual instructions 205 206 void TemplateTable::nop() { 207 transition(vtos, vtos); 208 // nothing to do 209 } 210 211 void TemplateTable::shouldnotreachhere() { 212 transition(vtos, vtos); 213 __ stop("should not reach here bytecode"); 214 } 215 216 void TemplateTable::aconst_null() { 217 transition(vtos, atos); 218 __ mv(x10, zr); 219 } 220 221 void TemplateTable::iconst(int value) { 222 transition(vtos, itos); 223 __ mv(x10, value); 224 } 225 226 void TemplateTable::lconst(int value) { 227 transition(vtos, ltos); 228 __ mv(x10, value); 229 } 230 231 void TemplateTable::fconst(int value) { 232 transition(vtos, ftos); 233 static float fBuf[2] = {1.0, 2.0}; 234 __ mv(t0, (intptr_t)fBuf); 235 switch (value) { 236 case 0: 237 __ fmv_w_x(f10, zr); 238 break; 239 case 1: 240 __ flw(f10, Address(t0, 0)); 241 break; 242 case 2: 243 __ flw(f10, Address(t0, sizeof(float))); 244 break; 245 default: 246 ShouldNotReachHere(); 247 } 248 } 249 250 void TemplateTable::dconst(int value) { 251 transition(vtos, dtos); 252 static double dBuf[2] = {1.0, 2.0}; 253 __ mv(t0, (intptr_t)dBuf); 254 switch (value) { 255 case 0: 256 __ fmv_d_x(f10, zr); 257 break; 258 case 1: 259 __ fld(f10, Address(t0, 0)); 260 break; 261 case 2: 262 __ fld(f10, Address(t0, sizeof(double))); 263 break; 264 default: 265 ShouldNotReachHere(); 266 } 267 } 268 269 void TemplateTable::bipush() { 270 transition(vtos, itos); 271 __ load_signed_byte(x10, at_bcp(1)); 272 } 273 274 void TemplateTable::sipush() { 275 transition(vtos, itos); 276 __ load_signed_byte(x10, at_bcp(1)); 277 __ load_unsigned_byte(t1, at_bcp(2)); 278 __ slli(x10, x10, 8); 279 __ add(x10, x10, t1); 280 } 281 282 void TemplateTable::ldc(LdcType type) { 283 transition(vtos, vtos); 284 Label call_ldc, notFloat, notClass, notInt, Done; 285 286 if (is_ldc_wide(type)) { 287 __ get_unsigned_2_byte_index_at_bcp(x11, 1); 288 } else { 289 __ load_unsigned_byte(x11, at_bcp(1)); 290 } 291 __ get_cpool_and_tags(x12, x10); 292 293 const int base_offset = ConstantPool::header_size() * wordSize; 294 const int tags_offset = Array<u1>::base_offset_in_bytes(); 295 296 // get type 297 __ addi(x13, x11, tags_offset); 298 __ add(x13, x10, x13); 299 __ lbu(x13, Address(x13, 0)); 300 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 301 302 // unresolved class - get the resolved class 303 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClass); 304 __ beq(x13, t1, call_ldc); 305 306 // unresolved class in error state - call into runtime to throw the error 307 // from the first resolution attempt 308 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClassInError); 309 __ beq(x13, t1, call_ldc); 310 311 // resolved class - need to call vm to get java mirror of the class 312 __ mv(t1, (u1)JVM_CONSTANT_Class); 313 __ bne(x13, t1, notClass); 314 315 __ bind(call_ldc); 316 __ mv(c_rarg1, is_ldc_wide(type) ? 1 : 0); 317 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 318 __ push_ptr(x10); 319 __ verify_oop(x10); 320 __ j(Done); 321 322 __ bind(notClass); 323 __ mv(t1, (u1)JVM_CONSTANT_Float); 324 __ bne(x13, t1, notFloat); 325 326 // ftos 327 __ shadd(x11, x11, x12, x11, 3); 328 __ flw(f10, Address(x11, base_offset)); 329 __ push_f(f10); 330 __ j(Done); 331 332 __ bind(notFloat); 333 334 __ mv(t1, (u1)JVM_CONSTANT_Integer); 335 __ bne(x13, t1, notInt); 336 337 // itos 338 __ shadd(x11, x11, x12, x11, 3); 339 __ lw(x10, Address(x11, base_offset)); 340 __ push_i(x10); 341 __ j(Done); 342 343 __ bind(notInt); 344 condy_helper(Done); 345 346 __ bind(Done); 347 } 348 349 // Fast path for caching oop constants. 350 void TemplateTable::fast_aldc(LdcType type) { 351 transition(vtos, atos); 352 353 const Register result = x10; 354 const Register tmp = x11; 355 const Register rarg = x12; 356 357 const int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 358 359 Label resolved; 360 361 // We are resolved if the resolved reference cache entry contains a 362 // non-null object (String, MethodType, etc.) 363 assert_different_registers(result, tmp); 364 // register result is trashed by next load, let's use it as temporary register 365 __ get_cache_index_at_bcp(tmp, result, 1, index_size); 366 __ load_resolved_reference_at_index(result, tmp); 367 __ bnez(result, resolved); 368 369 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 370 371 // first time invocation - must resolve first 372 __ mv(rarg, (int)bytecode()); 373 __ call_VM(result, entry, rarg); 374 375 __ bind(resolved); 376 377 { // Check for the null sentinel. 378 // If we just called the VM, it already did the mapping for us, 379 // but it's harmless to retry. 380 Label notNull; 381 382 // Stash null_sentinel address to get its value later 383 int32_t offset = 0; 384 __ mv(rarg, Universe::the_null_sentinel_addr(), offset); 385 __ ld(tmp, Address(rarg, offset)); 386 __ resolve_oop_handle(tmp, x15, t1); 387 __ bne(result, tmp, notNull); 388 __ mv(result, zr); // null object reference 389 __ bind(notNull); 390 } 391 392 if (VerifyOops) { 393 // Safe to call with 0 result 394 __ verify_oop(result); 395 } 396 } 397 398 void TemplateTable::ldc2_w() { 399 transition(vtos, vtos); 400 Label notDouble, notLong, Done; 401 __ get_unsigned_2_byte_index_at_bcp(x10, 1); 402 403 __ get_cpool_and_tags(x11, x12); 404 const int base_offset = ConstantPool::header_size() * wordSize; 405 const int tags_offset = Array<u1>::base_offset_in_bytes(); 406 407 // get type 408 __ add(x12, x12, x10); 409 __ load_unsigned_byte(x12, Address(x12, tags_offset)); 410 __ mv(t1, JVM_CONSTANT_Double); 411 __ bne(x12, t1, notDouble); 412 413 // dtos 414 __ shadd(x12, x10, x11, x12, 3); 415 __ fld(f10, Address(x12, base_offset)); 416 __ push_d(f10); 417 __ j(Done); 418 419 __ bind(notDouble); 420 __ mv(t1, (int)JVM_CONSTANT_Long); 421 __ bne(x12, t1, notLong); 422 423 // ltos 424 __ shadd(x10, x10, x11, x10, 3); 425 __ ld(x10, Address(x10, base_offset)); 426 __ push_l(x10); 427 __ j(Done); 428 429 __ bind(notLong); 430 condy_helper(Done); 431 __ bind(Done); 432 } 433 434 void TemplateTable::condy_helper(Label& Done) { 435 const Register obj = x10; 436 const Register rarg = x11; 437 const Register flags = x12; 438 const Register off = x13; 439 440 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 441 442 __ mv(rarg, (int) bytecode()); 443 __ call_VM(obj, entry, rarg); 444 445 __ get_vm_result_metadata(flags, xthread); 446 447 // VMr = obj = base address to find primitive value to push 448 // VMr2 = flags = (tos, off) using format of CPCE::_flags 449 __ mv(off, flags); 450 __ mv(t0, ConstantPoolCache::field_index_mask); 451 __ andrw(off, off, t0); 452 453 __ add(off, obj, off); 454 const Address field(off, 0); // base + R---->base + offset 455 456 __ slli(flags, flags, XLEN - (ConstantPoolCache::tos_state_shift + ConstantPoolCache::tos_state_bits)); 457 __ srli(flags, flags, XLEN - ConstantPoolCache::tos_state_bits); // (1 << 5) - 4 --> 28~31==> flags:0~3 458 459 switch (bytecode()) { 460 case Bytecodes::_ldc: // fall through 461 case Bytecodes::_ldc_w: { 462 // tos in (itos, ftos, stos, btos, ctos, ztos) 463 Label notInt, notFloat, notShort, notByte, notChar, notBool; 464 __ mv(t1, itos); 465 __ bne(flags, t1, notInt); 466 // itos 467 __ lw(x10, field); 468 __ push(itos); 469 __ j(Done); 470 471 __ bind(notInt); 472 __ mv(t1, ftos); 473 __ bne(flags, t1, notFloat); 474 // ftos 475 __ load_float(field); 476 __ push(ftos); 477 __ j(Done); 478 479 __ bind(notFloat); 480 __ mv(t1, stos); 481 __ bne(flags, t1, notShort); 482 // stos 483 __ load_signed_short(x10, field); 484 __ push(stos); 485 __ j(Done); 486 487 __ bind(notShort); 488 __ mv(t1, btos); 489 __ bne(flags, t1, notByte); 490 // btos 491 __ load_signed_byte(x10, field); 492 __ push(btos); 493 __ j(Done); 494 495 __ bind(notByte); 496 __ mv(t1, ctos); 497 __ bne(flags, t1, notChar); 498 // ctos 499 __ load_unsigned_short(x10, field); 500 __ push(ctos); 501 __ j(Done); 502 503 __ bind(notChar); 504 __ mv(t1, ztos); 505 __ bne(flags, t1, notBool); 506 // ztos 507 __ load_signed_byte(x10, field); 508 __ push(ztos); 509 __ j(Done); 510 511 __ bind(notBool); 512 break; 513 } 514 515 case Bytecodes::_ldc2_w: { 516 Label notLong, notDouble; 517 __ mv(t1, ltos); 518 __ bne(flags, t1, notLong); 519 // ltos 520 __ ld(x10, field); 521 __ push(ltos); 522 __ j(Done); 523 524 __ bind(notLong); 525 __ mv(t1, dtos); 526 __ bne(flags, t1, notDouble); 527 // dtos 528 __ load_double(field); 529 __ push(dtos); 530 __ j(Done); 531 532 __ bind(notDouble); 533 break; 534 } 535 536 default: 537 ShouldNotReachHere(); 538 } 539 540 __ stop("bad ldc/condy"); 541 } 542 543 void TemplateTable::locals_index(Register reg, int offset) { 544 __ lbu(reg, at_bcp(offset)); 545 __ neg(reg, reg); 546 } 547 548 void TemplateTable::iload() { 549 iload_internal(); 550 } 551 552 void TemplateTable::nofast_iload() { 553 iload_internal(may_not_rewrite); 554 } 555 556 void TemplateTable::iload_internal(RewriteControl rc) { 557 transition(vtos, itos); 558 if (RewriteFrequentPairs && rc == may_rewrite) { 559 Label rewrite, done; 560 const Register bc = x14; 561 562 // get next bytecode 563 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 564 565 // if _iload, wait to rewrite to iload2. We only want to rewrite the 566 // last two iloads in a pair. Comparing against fast_iload means that 567 // the next bytecode is neither an iload or a caload, and therefore 568 // an iload pair. 569 __ mv(t1, Bytecodes::_iload); 570 __ beq(x11, t1, done); 571 572 // if _fast_iload rewrite to _fast_iload2 573 __ mv(t1, Bytecodes::_fast_iload); 574 __ mv(bc, Bytecodes::_fast_iload2); 575 __ beq(x11, t1, rewrite); 576 577 // if _caload rewrite to _fast_icaload 578 __ mv(t1, Bytecodes::_caload); 579 __ mv(bc, Bytecodes::_fast_icaload); 580 __ beq(x11, t1, rewrite); 581 582 // else rewrite to _fast_iload 583 __ mv(bc, Bytecodes::_fast_iload); 584 585 // rewrite 586 // bc: new bytecode 587 __ bind(rewrite); 588 patch_bytecode(Bytecodes::_iload, bc, x11, false); 589 __ bind(done); 590 591 } 592 593 // do iload, get the local value into tos 594 locals_index(x11); 595 __ lw(x10, iaddress(x11, x10, _masm)); 596 } 597 598 void TemplateTable::fast_iload2() { 599 transition(vtos, itos); 600 locals_index(x11); 601 __ lw(x10, iaddress(x11, x10, _masm)); 602 __ push(itos); 603 locals_index(x11, 3); 604 __ lw(x10, iaddress(x11, x10, _masm)); 605 } 606 607 void TemplateTable::fast_iload() { 608 transition(vtos, itos); 609 locals_index(x11); 610 __ lw(x10, iaddress(x11, x10, _masm)); 611 } 612 613 void TemplateTable::lload() { 614 transition(vtos, ltos); 615 __ lbu(x11, at_bcp(1)); 616 __ slli(x11, x11, LogBytesPerWord); 617 __ sub(x11, xlocals, x11); 618 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1))); 619 } 620 621 void TemplateTable::fload() { 622 transition(vtos, ftos); 623 locals_index(x11); 624 __ flw(f10, faddress(x11, t0, _masm)); 625 } 626 627 void TemplateTable::dload() { 628 transition(vtos, dtos); 629 __ lbu(x11, at_bcp(1)); 630 __ slli(x11, x11, LogBytesPerWord); 631 __ sub(x11, xlocals, x11); 632 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1))); 633 } 634 635 void TemplateTable::aload() { 636 transition(vtos, atos); 637 locals_index(x11); 638 __ ld(x10, iaddress(x11, x10, _masm)); 639 } 640 641 void TemplateTable::locals_index_wide(Register reg) { 642 assert_different_registers(reg, t1); 643 // Convert the 16-bit value into native byte-ordering and zero-extend 644 __ lbu(reg, at_bcp(2)); 645 __ lbu(t1, at_bcp(3)); 646 __ slli(reg, reg, 8); 647 __ orr(reg, reg, t1); 648 __ neg(reg, reg); 649 } 650 651 void TemplateTable::wide_iload() { 652 transition(vtos, itos); 653 locals_index_wide(x11); 654 __ lw(x10, iaddress(x11, t0, _masm)); 655 } 656 657 void TemplateTable::wide_lload() { 658 transition(vtos, ltos); 659 // Convert the 16-bit value into native byte-ordering and zero-extend 660 __ lbu(x11, at_bcp(2)); 661 __ lbu(t1, at_bcp(3)); 662 __ slli(x11, x11, 8); 663 __ orr(x11, x11, t1); 664 665 __ slli(x11, x11, LogBytesPerWord); 666 __ sub(x11, xlocals, x11); 667 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1))); 668 } 669 670 void TemplateTable::wide_fload() { 671 transition(vtos, ftos); 672 locals_index_wide(x11); 673 __ flw(f10, faddress(x11, t0, _masm)); 674 } 675 676 void TemplateTable::wide_dload() { 677 transition(vtos, dtos); 678 // Convert the 16-bit value into native byte-ordering and zero-extend 679 __ lbu(x11, at_bcp(2)); 680 __ lbu(t1, at_bcp(3)); 681 __ slli(x11, x11, 8); 682 __ orr(x11, x11, t1); 683 684 __ slli(x11, x11, LogBytesPerWord); 685 __ sub(x11, xlocals, x11); 686 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1))); 687 } 688 689 void TemplateTable::wide_aload() { 690 transition(vtos, atos); 691 locals_index_wide(x11); 692 __ ld(x10, aaddress(x11, t0, _masm)); 693 } 694 695 void TemplateTable::index_check(Register array, Register index) { 696 // destroys x11, t0, t1 697 // sign extend index for use by indexed load 698 // check index 699 const Register length = t0; 700 __ lwu(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 701 if (index != x11) { 702 assert(x11 != array, "different registers"); 703 __ mv(x11, index); 704 } 705 Label ok; 706 __ sext(index, index, 32); 707 __ bltu(index, length, ok); 708 __ mv(x13, array); 709 __ mv(t1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 710 __ jr(t1); 711 __ bind(ok); 712 } 713 714 void TemplateTable::iaload() { 715 transition(itos, itos); 716 __ mv(x11, x10); 717 __ pop_ptr(x10); 718 // x10: array 719 // x11: index 720 index_check(x10, x11); // leaves index in x11 721 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 722 __ shadd(x10, x11, x10, t0, 2); 723 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 724 __ sext(x10, x10, 32); 725 } 726 727 void TemplateTable::laload() { 728 transition(itos, ltos); 729 __ mv(x11, x10); 730 __ pop_ptr(x10); 731 // x10: array 732 // x11: index 733 index_check(x10, x11); // leaves index in x11 734 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 735 __ shadd(x10, x11, x10, t0, 3); 736 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 737 } 738 739 void TemplateTable::faload() { 740 transition(itos, ftos); 741 __ mv(x11, x10); 742 __ pop_ptr(x10); 743 // x10: array 744 // x11: index 745 index_check(x10, x11); // leaves index in x11 746 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 747 __ shadd(x10, x11, x10, t0, 2); 748 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 749 } 750 751 void TemplateTable::daload() { 752 transition(itos, dtos); 753 __ mv(x11, x10); 754 __ pop_ptr(x10); 755 // x10: array 756 // x11: index 757 index_check(x10, x11); // leaves index in x11 758 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 759 __ shadd(x10, x11, x10, t0, 3); 760 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 761 } 762 763 void TemplateTable::aaload() { 764 transition(itos, atos); 765 __ mv(x11, x10); 766 __ pop_ptr(x10); 767 // x10: array 768 // x11: index 769 index_check(x10, x11); // leaves index in x11 770 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 771 __ shadd(x10, x11, x10, t0, LogBytesPerHeapOop); 772 __ load_heap_oop(x10, Address(x10), x28, x29, IS_ARRAY); 773 } 774 775 void TemplateTable::baload() { 776 transition(itos, itos); 777 __ mv(x11, x10); 778 __ pop_ptr(x10); 779 // x10: array 780 // x11: index 781 index_check(x10, x11); // leaves index in x11 782 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 783 __ shadd(x10, x11, x10, t0, 0); 784 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 785 } 786 787 void TemplateTable::caload() { 788 transition(itos, itos); 789 __ mv(x11, x10); 790 __ pop_ptr(x10); 791 // x10: array 792 // x11: index 793 index_check(x10, x11); // leaves index in x11 794 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 795 __ shadd(x10, x11, x10, t0, 1); 796 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 797 } 798 799 // iload followed by caload frequent pair 800 void TemplateTable::fast_icaload() { 801 transition(vtos, itos); 802 // load index out of locals 803 locals_index(x12); 804 __ lw(x11, iaddress(x12, x11, _masm)); 805 __ pop_ptr(x10); 806 807 // x10: array 808 // x11: index 809 index_check(x10, x11); // leaves index in x11, kills t0 810 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); // addi, max imm is 2^11 811 __ shadd(x10, x11, x10, t0, 1); 812 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 813 } 814 815 void TemplateTable::saload() { 816 transition(itos, itos); 817 __ mv(x11, x10); 818 __ pop_ptr(x10); 819 // x10: array 820 // x11: index 821 index_check(x10, x11); // leaves index in x11, kills t0 822 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 823 __ shadd(x10, x11, x10, t0, 1); 824 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 825 } 826 827 void TemplateTable::iload(int n) { 828 transition(vtos, itos); 829 __ lw(x10, iaddress(n)); 830 } 831 832 void TemplateTable::lload(int n) { 833 transition(vtos, ltos); 834 __ ld(x10, laddress(n)); 835 } 836 837 void TemplateTable::fload(int n) { 838 transition(vtos, ftos); 839 __ flw(f10, faddress(n)); 840 } 841 842 void TemplateTable::dload(int n) { 843 transition(vtos, dtos); 844 __ fld(f10, daddress(n)); 845 } 846 847 void TemplateTable::aload(int n) { 848 transition(vtos, atos); 849 __ ld(x10, iaddress(n)); 850 } 851 852 void TemplateTable::aload_0() { 853 aload_0_internal(); 854 } 855 856 void TemplateTable::nofast_aload_0() { 857 aload_0_internal(may_not_rewrite); 858 } 859 860 void TemplateTable::aload_0_internal(RewriteControl rc) { 861 // According to bytecode histograms, the pairs: 862 // 863 // _aload_0, _fast_igetfield 864 // _aload_0, _fast_agetfield 865 // _aload_0, _fast_fgetfield 866 // 867 // occur frequently. If RewriteFrequentPairs is set, the (slow) 868 // _aload_0 bytecode checks if the next bytecode is either 869 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 870 // rewrites the current bytecode into a pair bytecode; otherwise it 871 // rewrites the current bytecode into _fast_aload_0 that doesn't do 872 // the pair check anymore. 873 // 874 // Note: If the next bytecode is _getfield, the rewrite must be 875 // delayed, otherwise we may miss an opportunity for a pair. 876 // 877 // Also rewrite frequent pairs 878 // aload_0, aload_1 879 // aload_0, iload_1 880 // These bytecodes with a small amount of code are most profitable 881 // to rewrite 882 if (RewriteFrequentPairs && rc == may_rewrite) { 883 Label rewrite, done; 884 const Register bc = x14; 885 886 // get next bytecode 887 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 888 889 // if _getfield then wait with rewrite 890 __ mv(t1, Bytecodes::Bytecodes::_getfield); 891 __ beq(x11, t1, done); 892 893 // if _igetfield then rewrite to _fast_iaccess_0 894 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 895 __ mv(t1, Bytecodes::_fast_igetfield); 896 __ mv(bc, Bytecodes::_fast_iaccess_0); 897 __ beq(x11, t1, rewrite); 898 899 // if _agetfield then rewrite to _fast_aaccess_0 900 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 901 __ mv(t1, Bytecodes::_fast_agetfield); 902 __ mv(bc, Bytecodes::_fast_aaccess_0); 903 __ beq(x11, t1, rewrite); 904 905 // if _fgetfield then rewrite to _fast_faccess_0 906 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 907 __ mv(t1, Bytecodes::_fast_fgetfield); 908 __ mv(bc, Bytecodes::_fast_faccess_0); 909 __ beq(x11, t1, rewrite); 910 911 // else rewrite to _fast_aload0 912 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 913 __ mv(bc, Bytecodes::Bytecodes::_fast_aload_0); 914 915 // rewrite 916 // bc: new bytecode 917 __ bind(rewrite); 918 patch_bytecode(Bytecodes::_aload_0, bc, x11, false); 919 920 __ bind(done); 921 } 922 923 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 924 aload(0); 925 } 926 927 void TemplateTable::istore() { 928 transition(itos, vtos); 929 locals_index(x11); 930 __ sw(x10, iaddress(x11, t0, _masm)); 931 } 932 933 void TemplateTable::lstore() { 934 transition(ltos, vtos); 935 locals_index(x11); 936 __ sd(x10, laddress(x11, t0, _masm)); 937 } 938 939 void TemplateTable::fstore() { 940 transition(ftos, vtos); 941 locals_index(x11); 942 __ fsw(f10, iaddress(x11, t0, _masm)); 943 } 944 945 void TemplateTable::dstore() { 946 transition(dtos, vtos); 947 locals_index(x11); 948 __ fsd(f10, daddress(x11, t0, _masm)); 949 } 950 951 void TemplateTable::astore() { 952 transition(vtos, vtos); 953 __ pop_ptr(x10); 954 locals_index(x11); 955 __ sd(x10, aaddress(x11, t0, _masm)); 956 } 957 958 void TemplateTable::wide_istore() { 959 transition(vtos, vtos); 960 __ pop_i(); 961 locals_index_wide(x11); 962 __ sw(x10, iaddress(x11, t0, _masm)); 963 } 964 965 void TemplateTable::wide_lstore() { 966 transition(vtos, vtos); 967 __ pop_l(); 968 locals_index_wide(x11); 969 __ sd(x10, laddress(x11, t0, _masm)); 970 } 971 972 void TemplateTable::wide_fstore() { 973 transition(vtos, vtos); 974 __ pop_f(); 975 locals_index_wide(x11); 976 __ fsw(f10, faddress(x11, t0, _masm)); 977 } 978 979 void TemplateTable::wide_dstore() { 980 transition(vtos, vtos); 981 __ pop_d(); 982 locals_index_wide(x11); 983 __ fsd(f10, daddress(x11, t0, _masm)); 984 } 985 986 void TemplateTable::wide_astore() { 987 transition(vtos, vtos); 988 __ pop_ptr(x10); 989 locals_index_wide(x11); 990 __ sd(x10, aaddress(x11, t0, _masm)); 991 } 992 993 void TemplateTable::iastore() { 994 transition(itos, vtos); 995 __ pop_i(x11); 996 __ pop_ptr(x13); 997 // x10: value 998 // x11: index 999 // x13: array 1000 index_check(x13, x11); // prefer index in x11 1001 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1002 __ shadd(t0, x11, x13, t0, 2); 1003 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg); 1004 } 1005 1006 void TemplateTable::lastore() { 1007 transition(ltos, vtos); 1008 __ pop_i(x11); 1009 __ pop_ptr(x13); 1010 // x10: value 1011 // x11: index 1012 // x13: array 1013 index_check(x13, x11); // prefer index in x11 1014 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1015 __ shadd(t0, x11, x13, t0, 3); 1016 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg); 1017 } 1018 1019 void TemplateTable::fastore() { 1020 transition(ftos, vtos); 1021 __ pop_i(x11); 1022 __ pop_ptr(x13); 1023 // f10: value 1024 // x11: index 1025 // x13: array 1026 index_check(x13, x11); // prefer index in x11 1027 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1028 __ shadd(t0, x11, x13, t0, 2); 1029 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* ftos */, noreg, noreg, noreg); 1030 } 1031 1032 void TemplateTable::dastore() { 1033 transition(dtos, vtos); 1034 __ pop_i(x11); 1035 __ pop_ptr(x13); 1036 // f10: value 1037 // x11: index 1038 // x13: array 1039 index_check(x13, x11); // prefer index in x11 1040 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1041 __ shadd(t0, x11, x13, t0, 3); 1042 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* dtos */, noreg, noreg, noreg); 1043 } 1044 1045 void TemplateTable::aastore() { 1046 Label is_null, ok_is_subtype, done; 1047 transition(vtos, vtos); 1048 // stack: ..., array, index, value 1049 __ ld(x10, at_tos()); // value 1050 __ ld(x12, at_tos_p1()); // index 1051 __ ld(x13, at_tos_p2()); // array 1052 1053 index_check(x13, x12); // kills x11 1054 __ addi(x14, x12, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1055 __ shadd(x14, x14, x13, x14, LogBytesPerHeapOop); 1056 1057 Address element_address(x14, 0); 1058 1059 // do array store check - check for null value first 1060 __ beqz(x10, is_null); 1061 1062 // Move subklass into x11 1063 __ load_klass(x11, x10); 1064 // Move superklass into x10 1065 __ load_klass(x10, x13); 1066 __ ld(x10, Address(x10, 1067 ObjArrayKlass::element_klass_offset())); 1068 // Compress array + index * oopSize + 12 into a single register. Frees x12. 1069 1070 // Generate subtype check. Blows x12, x15 1071 // Superklass in x10. Subklass in x11. 1072 __ gen_subtype_check(x11, ok_is_subtype); 1073 1074 // Come here on failure 1075 // object is at TOS 1076 __ j(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry)); 1077 1078 // Come here on success 1079 __ bind(ok_is_subtype); 1080 1081 // Get the value we will store 1082 __ ld(x10, at_tos()); 1083 // Now store using the appropriate barrier 1084 __ store_heap_oop(element_address, x10, x28, x29, x13, IS_ARRAY); 1085 __ j(done); 1086 1087 // Have a null in x10, x13=array, x12=index. Store null at ary[idx] 1088 __ bind(is_null); 1089 __ profile_null_seen(x12); 1090 1091 // Store a null 1092 __ store_heap_oop(element_address, noreg, x28, x29, x13, IS_ARRAY); 1093 1094 // Pop stack arguments 1095 __ bind(done); 1096 __ addi(esp, esp, 3 * Interpreter::stackElementSize); 1097 } 1098 1099 void TemplateTable::bastore() { 1100 transition(itos, vtos); 1101 __ pop_i(x11); 1102 __ pop_ptr(x13); 1103 // x10: value 1104 // x11: index 1105 // x13: array 1106 index_check(x13, x11); // prefer index in x11 1107 1108 // Need to check whether array is boolean or byte 1109 // since both types share the bastore bytecode. 1110 __ load_klass(x12, x13); 1111 __ lwu(x12, Address(x12, Klass::layout_helper_offset())); 1112 Label L_skip; 1113 __ test_bit(t0, x12, exact_log2(Klass::layout_helper_boolean_diffbit())); 1114 __ beqz(t0, L_skip); 1115 __ andi(x10, x10, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1116 __ bind(L_skip); 1117 1118 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1119 1120 __ add(x11, x13, x11); 1121 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(x11, 0), x10, noreg, noreg, noreg); 1122 } 1123 1124 void TemplateTable::castore() { 1125 transition(itos, vtos); 1126 __ pop_i(x11); 1127 __ pop_ptr(x13); 1128 // x10: value 1129 // x11: index 1130 // x13: array 1131 index_check(x13, x11); // prefer index in x11 1132 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1133 __ shadd(t0, x11, x13, t0, 1); 1134 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg); 1135 } 1136 1137 void TemplateTable::sastore() { 1138 castore(); 1139 } 1140 1141 void TemplateTable::istore(int n) { 1142 transition(itos, vtos); 1143 __ sd(x10, iaddress(n)); 1144 } 1145 1146 void TemplateTable::lstore(int n) { 1147 transition(ltos, vtos); 1148 __ sd(x10, laddress(n)); 1149 } 1150 1151 void TemplateTable::fstore(int n) { 1152 transition(ftos, vtos); 1153 __ fsw(f10, faddress(n)); 1154 } 1155 1156 void TemplateTable::dstore(int n) { 1157 transition(dtos, vtos); 1158 __ fsd(f10, daddress(n)); 1159 } 1160 1161 void TemplateTable::astore(int n) { 1162 transition(vtos, vtos); 1163 __ pop_ptr(x10); 1164 __ sd(x10, iaddress(n)); 1165 } 1166 1167 void TemplateTable::pop() { 1168 transition(vtos, vtos); 1169 __ addi(esp, esp, Interpreter::stackElementSize); 1170 } 1171 1172 void TemplateTable::pop2() { 1173 transition(vtos, vtos); 1174 __ addi(esp, esp, 2 * Interpreter::stackElementSize); 1175 } 1176 1177 void TemplateTable::dup() { 1178 transition(vtos, vtos); 1179 __ ld(x10, Address(esp, 0)); 1180 __ push_reg(x10); 1181 // stack: ..., a, a 1182 } 1183 1184 void TemplateTable::dup_x1() { 1185 transition(vtos, vtos); 1186 // stack: ..., a, b 1187 __ ld(x10, at_tos()); // load b 1188 __ ld(x12, at_tos_p1()); // load a 1189 __ sd(x10, at_tos_p1()); // store b 1190 __ sd(x12, at_tos()); // store a 1191 __ push_reg(x10); // push b 1192 // stack: ..., b, a, b 1193 } 1194 1195 void TemplateTable::dup_x2() { 1196 transition(vtos, vtos); 1197 // stack: ..., a, b, c 1198 __ ld(x10, at_tos()); // load c 1199 __ ld(x12, at_tos_p2()); // load a 1200 __ sd(x10, at_tos_p2()); // store c in a 1201 __ push_reg(x10); // push c 1202 // stack: ..., c, b, c, c 1203 __ ld(x10, at_tos_p2()); // load b 1204 __ sd(x12, at_tos_p2()); // store a in b 1205 // stack: ..., c, a, c, c 1206 __ sd(x10, at_tos_p1()); // store b in c 1207 // stack: ..., c, a, b, c 1208 } 1209 1210 void TemplateTable::dup2() { 1211 transition(vtos, vtos); 1212 // stack: ..., a, b 1213 __ ld(x10, at_tos_p1()); // load a 1214 __ push_reg(x10); // push a 1215 __ ld(x10, at_tos_p1()); // load b 1216 __ push_reg(x10); // push b 1217 // stack: ..., a, b, a, b 1218 } 1219 1220 void TemplateTable::dup2_x1() { 1221 transition(vtos, vtos); 1222 // stack: ..., a, b, c 1223 __ ld(x12, at_tos()); // load c 1224 __ ld(x10, at_tos_p1()); // load b 1225 __ push_reg(x10); // push b 1226 __ push_reg(x12); // push c 1227 // stack: ..., a, b, c, b, c 1228 __ sd(x12, at_tos_p3()); // store c in b 1229 // stack: ..., a, c, c, b, c 1230 __ ld(x12, at_tos_p4()); // load a 1231 __ sd(x12, at_tos_p2()); // store a in 2nd c 1232 // stack: ..., a, c, a, b, c 1233 __ sd(x10, at_tos_p4()); // store b in a 1234 // stack: ..., b, c, a, b, c 1235 } 1236 1237 void TemplateTable::dup2_x2() { 1238 transition(vtos, vtos); 1239 // stack: ..., a, b, c, d 1240 __ ld(x12, at_tos()); // load d 1241 __ ld(x10, at_tos_p1()); // load c 1242 __ push_reg(x10); // push c 1243 __ push_reg(x12); // push d 1244 // stack: ..., a, b, c, d, c, d 1245 __ ld(x10, at_tos_p4()); // load b 1246 __ sd(x10, at_tos_p2()); // store b in d 1247 __ sd(x12, at_tos_p4()); // store d in b 1248 // stack: ..., a, d, c, b, c, d 1249 __ ld(x12, at_tos_p5()); // load a 1250 __ ld(x10, at_tos_p3()); // load c 1251 __ sd(x12, at_tos_p3()); // store a in c 1252 __ sd(x10, at_tos_p5()); // store c in a 1253 // stack: ..., c, d, a, b, c, d 1254 } 1255 1256 void TemplateTable::swap() { 1257 transition(vtos, vtos); 1258 // stack: ..., a, b 1259 __ ld(x12, at_tos_p1()); // load a 1260 __ ld(x10, at_tos()); // load b 1261 __ sd(x12, at_tos()); // store a in b 1262 __ sd(x10, at_tos_p1()); // store b in a 1263 // stack: ..., b, a 1264 } 1265 1266 void TemplateTable::iop2(Operation op) { 1267 transition(itos, itos); 1268 // x10 <== x11 op x10 1269 __ pop_i(x11); 1270 switch (op) { 1271 case add : __ addw(x10, x11, x10); break; 1272 case sub : __ subw(x10, x11, x10); break; 1273 case mul : __ mulw(x10, x11, x10); break; 1274 case _and : __ andrw(x10, x11, x10); break; 1275 case _or : __ orrw(x10, x11, x10); break; 1276 case _xor : __ xorrw(x10, x11, x10); break; 1277 case shl : __ sllw(x10, x11, x10); break; 1278 case shr : __ sraw(x10, x11, x10); break; 1279 case ushr : __ srlw(x10, x11, x10); break; 1280 default : ShouldNotReachHere(); 1281 } 1282 } 1283 1284 void TemplateTable::lop2(Operation op) { 1285 transition(ltos, ltos); 1286 // x10 <== x11 op x10 1287 __ pop_l(x11); 1288 switch (op) { 1289 case add : __ add(x10, x11, x10); break; 1290 case sub : __ sub(x10, x11, x10); break; 1291 case mul : __ mul(x10, x11, x10); break; 1292 case _and : __ andr(x10, x11, x10); break; 1293 case _or : __ orr(x10, x11, x10); break; 1294 case _xor : __ xorr(x10, x11, x10); break; 1295 default : ShouldNotReachHere(); 1296 } 1297 } 1298 1299 void TemplateTable::idiv() { 1300 transition(itos, itos); 1301 // explicitly check for div0 1302 Label no_div0; 1303 __ bnez(x10, no_div0); 1304 __ mv(t1, Interpreter::_throw_ArithmeticException_entry); 1305 __ jr(t1); 1306 __ bind(no_div0); 1307 __ pop_i(x11); 1308 // x10 <== x11 idiv x10 1309 __ divw(x10, x11, x10); 1310 } 1311 1312 void TemplateTable::irem() { 1313 transition(itos, itos); 1314 // explicitly check for div0 1315 Label no_div0; 1316 __ bnez(x10, no_div0); 1317 __ mv(t1, Interpreter::_throw_ArithmeticException_entry); 1318 __ jr(t1); 1319 __ bind(no_div0); 1320 __ pop_i(x11); 1321 // x10 <== x11 irem x10 1322 __ remw(x10, x11, x10); 1323 } 1324 1325 void TemplateTable::lmul() { 1326 transition(ltos, ltos); 1327 __ pop_l(x11); 1328 __ mul(x10, x10, x11); 1329 } 1330 1331 void TemplateTable::ldiv() { 1332 transition(ltos, ltos); 1333 // explicitly check for div0 1334 Label no_div0; 1335 __ bnez(x10, no_div0); 1336 __ mv(t1, Interpreter::_throw_ArithmeticException_entry); 1337 __ jr(t1); 1338 __ bind(no_div0); 1339 __ pop_l(x11); 1340 // x10 <== x11 ldiv x10 1341 __ div(x10, x11, x10); 1342 } 1343 1344 void TemplateTable::lrem() { 1345 transition(ltos, ltos); 1346 // explicitly check for div0 1347 Label no_div0; 1348 __ bnez(x10, no_div0); 1349 __ mv(t1, Interpreter::_throw_ArithmeticException_entry); 1350 __ jr(t1); 1351 __ bind(no_div0); 1352 __ pop_l(x11); 1353 // x10 <== x11 lrem x10 1354 __ rem(x10, x11, x10); 1355 } 1356 1357 void TemplateTable::lshl() { 1358 transition(itos, ltos); 1359 // shift count is in x10 1360 __ pop_l(x11); 1361 __ sll(x10, x11, x10); 1362 } 1363 1364 void TemplateTable::lshr() { 1365 transition(itos, ltos); 1366 // shift count is in x10 1367 __ pop_l(x11); 1368 __ sra(x10, x11, x10); 1369 } 1370 1371 void TemplateTable::lushr() { 1372 transition(itos, ltos); 1373 // shift count is in x10 1374 __ pop_l(x11); 1375 __ srl(x10, x11, x10); 1376 } 1377 1378 void TemplateTable::fop2(Operation op) { 1379 transition(ftos, ftos); 1380 switch (op) { 1381 case add: 1382 __ pop_f(f11); 1383 __ fadd_s(f10, f11, f10); 1384 break; 1385 case sub: 1386 __ pop_f(f11); 1387 __ fsub_s(f10, f11, f10); 1388 break; 1389 case mul: 1390 __ pop_f(f11); 1391 __ fmul_s(f10, f11, f10); 1392 break; 1393 case div: 1394 __ pop_f(f11); 1395 __ fdiv_s(f10, f11, f10); 1396 break; 1397 case rem: 1398 __ fmv_s(f11, f10); 1399 __ pop_f(f10); 1400 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1401 break; 1402 default: 1403 ShouldNotReachHere(); 1404 } 1405 } 1406 1407 void TemplateTable::dop2(Operation op) { 1408 transition(dtos, dtos); 1409 switch (op) { 1410 case add: 1411 __ pop_d(f11); 1412 __ fadd_d(f10, f11, f10); 1413 break; 1414 case sub: 1415 __ pop_d(f11); 1416 __ fsub_d(f10, f11, f10); 1417 break; 1418 case mul: 1419 __ pop_d(f11); 1420 __ fmul_d(f10, f11, f10); 1421 break; 1422 case div: 1423 __ pop_d(f11); 1424 __ fdiv_d(f10, f11, f10); 1425 break; 1426 case rem: 1427 __ fmv_d(f11, f10); 1428 __ pop_d(f10); 1429 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1430 break; 1431 default: 1432 ShouldNotReachHere(); 1433 } 1434 } 1435 1436 void TemplateTable::ineg() { 1437 transition(itos, itos); 1438 __ negw(x10, x10); 1439 } 1440 1441 void TemplateTable::lneg() { 1442 transition(ltos, ltos); 1443 __ neg(x10, x10); 1444 } 1445 1446 void TemplateTable::fneg() { 1447 transition(ftos, ftos); 1448 __ fneg_s(f10, f10); 1449 } 1450 1451 void TemplateTable::dneg() { 1452 transition(dtos, dtos); 1453 __ fneg_d(f10, f10); 1454 } 1455 1456 void TemplateTable::iinc() { 1457 transition(vtos, vtos); 1458 __ load_signed_byte(x11, at_bcp(2)); // get constant 1459 locals_index(x12); 1460 __ ld(x10, iaddress(x12, x10, _masm)); 1461 __ addw(x10, x10, x11); 1462 __ sd(x10, iaddress(x12, t0, _masm)); 1463 } 1464 1465 void TemplateTable::wide_iinc() { 1466 transition(vtos, vtos); 1467 // get constant 1468 // Convert the 16-bit value into native byte-ordering and sign-extend 1469 __ lb(x11, at_bcp(4)); 1470 __ lbu(t1, at_bcp(5)); 1471 __ slli(x11, x11, 8); 1472 __ orr(x11, x11, t1); 1473 1474 locals_index_wide(x12); 1475 __ ld(x10, iaddress(x12, t0, _masm)); 1476 __ addw(x10, x10, x11); 1477 __ sd(x10, iaddress(x12, t0, _masm)); 1478 } 1479 1480 void TemplateTable::convert() { 1481 // Checking 1482 #ifdef ASSERT 1483 { 1484 TosState tos_in = ilgl; 1485 TosState tos_out = ilgl; 1486 switch (bytecode()) { 1487 case Bytecodes::_i2l: // fall through 1488 case Bytecodes::_i2f: // fall through 1489 case Bytecodes::_i2d: // fall through 1490 case Bytecodes::_i2b: // fall through 1491 case Bytecodes::_i2c: // fall through 1492 case Bytecodes::_i2s: tos_in = itos; break; 1493 case Bytecodes::_l2i: // fall through 1494 case Bytecodes::_l2f: // fall through 1495 case Bytecodes::_l2d: tos_in = ltos; break; 1496 case Bytecodes::_f2i: // fall through 1497 case Bytecodes::_f2l: // fall through 1498 case Bytecodes::_f2d: tos_in = ftos; break; 1499 case Bytecodes::_d2i: // fall through 1500 case Bytecodes::_d2l: // fall through 1501 case Bytecodes::_d2f: tos_in = dtos; break; 1502 default : ShouldNotReachHere(); 1503 } 1504 switch (bytecode()) { 1505 case Bytecodes::_l2i: // fall through 1506 case Bytecodes::_f2i: // fall through 1507 case Bytecodes::_d2i: // fall through 1508 case Bytecodes::_i2b: // fall through 1509 case Bytecodes::_i2c: // fall through 1510 case Bytecodes::_i2s: tos_out = itos; break; 1511 case Bytecodes::_i2l: // fall through 1512 case Bytecodes::_f2l: // fall through 1513 case Bytecodes::_d2l: tos_out = ltos; break; 1514 case Bytecodes::_i2f: // fall through 1515 case Bytecodes::_l2f: // fall through 1516 case Bytecodes::_d2f: tos_out = ftos; break; 1517 case Bytecodes::_i2d: // fall through 1518 case Bytecodes::_l2d: // fall through 1519 case Bytecodes::_f2d: tos_out = dtos; break; 1520 default : ShouldNotReachHere(); 1521 } 1522 transition(tos_in, tos_out); 1523 } 1524 #endif // ASSERT 1525 1526 // Conversion 1527 switch (bytecode()) { 1528 case Bytecodes::_i2l: 1529 __ sext(x10, x10, 32); 1530 break; 1531 case Bytecodes::_i2f: 1532 __ fcvt_s_w(f10, x10); 1533 break; 1534 case Bytecodes::_i2d: 1535 __ fcvt_d_w(f10, x10); 1536 break; 1537 case Bytecodes::_i2b: 1538 __ sext(x10, x10, 8); 1539 break; 1540 case Bytecodes::_i2c: 1541 __ zext(x10, x10, 16); 1542 break; 1543 case Bytecodes::_i2s: 1544 __ sext(x10, x10, 16); 1545 break; 1546 case Bytecodes::_l2i: 1547 __ sext(x10, x10, 32); 1548 break; 1549 case Bytecodes::_l2f: 1550 __ fcvt_s_l(f10, x10); 1551 break; 1552 case Bytecodes::_l2d: 1553 __ fcvt_d_l(f10, x10); 1554 break; 1555 case Bytecodes::_f2i: 1556 __ fcvt_w_s_safe(x10, f10); 1557 break; 1558 case Bytecodes::_f2l: 1559 __ fcvt_l_s_safe(x10, f10); 1560 break; 1561 case Bytecodes::_f2d: 1562 __ fcvt_d_s(f10, f10); 1563 break; 1564 case Bytecodes::_d2i: 1565 __ fcvt_w_d_safe(x10, f10); 1566 break; 1567 case Bytecodes::_d2l: 1568 __ fcvt_l_d_safe(x10, f10); 1569 break; 1570 case Bytecodes::_d2f: 1571 __ fcvt_s_d(f10, f10); 1572 break; 1573 default: 1574 ShouldNotReachHere(); 1575 } 1576 } 1577 1578 void TemplateTable::lcmp() { 1579 transition(ltos, itos); 1580 __ pop_l(x11); 1581 __ cmp_l2i(t0, x11, x10); 1582 __ mv(x10, t0); 1583 } 1584 1585 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1586 // For instruction feq, flt and fle, the result is 0 if either operand is NaN 1587 if (is_float) { 1588 __ pop_f(f11); 1589 // if unordered_result < 0: 1590 // we want -1 for unordered or less than, 0 for equal and 1 for 1591 // greater than. 1592 // else: 1593 // we want -1 for less than, 0 for equal and 1 for unordered or 1594 // greater than. 1595 // f11 primary, f10 secondary 1596 __ float_compare(x10, f11, f10, unordered_result); 1597 } else { 1598 __ pop_d(f11); 1599 // if unordered_result < 0: 1600 // we want -1 for unordered or less than, 0 for equal and 1 for 1601 // greater than. 1602 // else: 1603 // we want -1 for less than, 0 for equal and 1 for unordered or 1604 // greater than. 1605 // f11 primary, f10 secondary 1606 __ double_compare(x10, f11, f10, unordered_result); 1607 } 1608 } 1609 1610 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1611 __ profile_taken_branch(x10); 1612 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1613 InvocationCounter::counter_offset(); 1614 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1615 InvocationCounter::counter_offset(); 1616 1617 // load branch displacement 1618 if (!is_wide) { 1619 // Convert the 16-bit value into native byte-ordering and sign-extend 1620 __ lb(x12, at_bcp(1)); 1621 __ lbu(t1, at_bcp(2)); 1622 __ slli(x12, x12, 8); 1623 __ orr(x12, x12, t1); 1624 } else { 1625 __ lwu(x12, at_bcp(1)); 1626 __ revbw(x12, x12); 1627 } 1628 1629 // Handle all the JSR stuff here, then exit. 1630 // It's much shorter and cleaner than intermingling with the non-JSR 1631 // normal-branch stuff occurring below. 1632 1633 if (is_jsr) { 1634 // compute return address as bci 1635 __ ld(t1, Address(xmethod, Method::const_offset())); 1636 __ add(t1, t1, 1637 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1638 __ sub(x11, xbcp, t1); 1639 __ push_i(x11); 1640 // Adjust the bcp by the 16-bit displacement in x12 1641 __ add(xbcp, xbcp, x12); 1642 __ load_unsigned_byte(t0, Address(xbcp, 0)); 1643 // load the next target bytecode into t0, it is the argument of dispatch_only 1644 __ dispatch_only(vtos, /*generate_poll*/true); 1645 return; 1646 } 1647 1648 // Normal (non-jsr) branch handling 1649 1650 // Adjust the bcp by the displacement in x12 1651 __ add(xbcp, xbcp, x12); 1652 1653 assert(UseLoopCounter || !UseOnStackReplacement, 1654 "on-stack-replacement requires loop counters"); 1655 Label backedge_counter_overflow; 1656 Label dispatch; 1657 if (UseLoopCounter) { 1658 // increment backedge counter for backward branches 1659 // x10: MDO 1660 // x12: target offset 1661 __ bgtz(x12, dispatch); // count only if backward branch 1662 1663 // check if MethodCounters exists 1664 Label has_counters; 1665 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1666 __ bnez(t0, has_counters); 1667 __ push_reg(x10); 1668 __ push_reg(x12); 1669 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1670 InterpreterRuntime::build_method_counters), xmethod); 1671 __ pop_reg(x12); 1672 __ pop_reg(x10); 1673 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1674 __ beqz(t0, dispatch); // No MethodCounters allocated, OutOfMemory 1675 __ bind(has_counters); 1676 1677 Label no_mdo; 1678 int increment = InvocationCounter::count_increment; 1679 if (ProfileInterpreter) { 1680 // Are we profiling? 1681 __ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 1682 __ beqz(x11, no_mdo); 1683 // Increment the MDO backedge counter 1684 const Address mdo_backedge_counter(x11, in_bytes(MethodData::backedge_counter_offset()) + 1685 in_bytes(InvocationCounter::counter_offset())); 1686 const Address mask(x11, in_bytes(MethodData::backedge_mask_offset())); 1687 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1688 x10, t0, false, 1689 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1690 __ j(dispatch); 1691 } 1692 __ bind(no_mdo); 1693 // Increment backedge counter in MethodCounters* 1694 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1695 const Address mask(t0, in_bytes(MethodCounters::backedge_mask_offset())); 1696 __ increment_mask_and_jump(Address(t0, be_offset), increment, mask, 1697 x10, t1, false, 1698 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1699 __ bind(dispatch); 1700 } 1701 1702 // Pre-load the next target bytecode into t0 1703 __ load_unsigned_byte(t0, Address(xbcp, 0)); 1704 1705 // continue with the bytecode @ target 1706 // t0: target bytecode 1707 // xbcp: target bcp 1708 __ dispatch_only(vtos, /*generate_poll*/true); 1709 1710 if (UseLoopCounter && UseOnStackReplacement) { 1711 // invocation counter overflow 1712 __ bind(backedge_counter_overflow); 1713 __ neg(x12, x12); 1714 __ add(x12, x12, xbcp); // branch xbcp 1715 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1716 __ call_VM(noreg, 1717 CAST_FROM_FN_PTR(address, 1718 InterpreterRuntime::frequency_counter_overflow), 1719 x12); 1720 __ load_unsigned_byte(x11, Address(xbcp, 0)); // restore target bytecode 1721 1722 // x10: osr nmethod (osr ok) or null (osr not possible) 1723 // w11: target bytecode 1724 // x12: temporary 1725 __ beqz(x10, dispatch); // test result -- no osr if null 1726 // nmethod may have been invalidated (VM may block upon call_VM return) 1727 __ lbu(x12, Address(x10, nmethod::state_offset())); 1728 if (nmethod::in_use != 0) { 1729 __ sub(x12, x12, nmethod::in_use); 1730 } 1731 __ bnez(x12, dispatch); 1732 1733 // We have the address of an on stack replacement routine in x10 1734 // We need to prepare to execute the OSR method. First we must 1735 // migrate the locals and monitors off of the stack. 1736 1737 __ mv(x9, x10); // save the nmethod 1738 1739 JFR_ONLY(__ enter_jfr_critical_section();) 1740 1741 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1742 1743 // x10 is OSR buffer, move it to expected parameter location 1744 __ mv(j_rarg0, x10); 1745 1746 // remove activation 1747 // get sender esp 1748 __ ld(esp, 1749 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1750 // remove frame anchor 1751 __ leave(); 1752 1753 JFR_ONLY(__ leave_jfr_critical_section();) 1754 1755 // Ensure compiled code always sees stack at proper alignment 1756 __ andi(sp, esp, -16); 1757 1758 // and begin the OSR nmethod 1759 __ ld(t1, Address(x9, nmethod::osr_entry_point_offset())); 1760 __ jr(t1); 1761 } 1762 } 1763 1764 void TemplateTable::if_0cmp(Condition cc) { 1765 transition(itos, vtos); 1766 // assume branch is more often taken than not (loops use backward branches) 1767 Label not_taken; 1768 1769 __ sext(x10, x10, 32); 1770 switch (cc) { 1771 case equal: 1772 __ bnez(x10, not_taken); 1773 break; 1774 case not_equal: 1775 __ beqz(x10, not_taken); 1776 break; 1777 case less: 1778 __ bgez(x10, not_taken); 1779 break; 1780 case less_equal: 1781 __ bgtz(x10, not_taken); 1782 break; 1783 case greater: 1784 __ blez(x10, not_taken); 1785 break; 1786 case greater_equal: 1787 __ bltz(x10, not_taken); 1788 break; 1789 default: 1790 break; 1791 } 1792 1793 branch(false, false); 1794 __ bind(not_taken); 1795 __ profile_not_taken_branch(x10); 1796 } 1797 1798 void TemplateTable::if_icmp(Condition cc) { 1799 transition(itos, vtos); 1800 // assume branch is more often taken than not (loops use backward branches) 1801 Label not_taken; 1802 __ pop_i(x11); 1803 __ sext(x10, x10, 32); 1804 switch (cc) { 1805 case equal: 1806 __ bne(x11, x10, not_taken); 1807 break; 1808 case not_equal: 1809 __ beq(x11, x10, not_taken); 1810 break; 1811 case less: 1812 __ bge(x11, x10, not_taken); 1813 break; 1814 case less_equal: 1815 __ bgt(x11, x10, not_taken); 1816 break; 1817 case greater: 1818 __ ble(x11, x10, not_taken); 1819 break; 1820 case greater_equal: 1821 __ blt(x11, x10, not_taken); 1822 break; 1823 default: 1824 break; 1825 } 1826 1827 branch(false, false); 1828 __ bind(not_taken); 1829 __ profile_not_taken_branch(x10); 1830 } 1831 1832 void TemplateTable::if_nullcmp(Condition cc) { 1833 transition(atos, vtos); 1834 // assume branch is more often taken than not (loops use backward branches) 1835 Label not_taken; 1836 if (cc == equal) { 1837 __ bnez(x10, not_taken); 1838 } else { 1839 __ beqz(x10, not_taken); 1840 } 1841 branch(false, false); 1842 __ bind(not_taken); 1843 __ profile_not_taken_branch(x10); 1844 } 1845 1846 void TemplateTable::if_acmp(Condition cc) { 1847 transition(atos, vtos); 1848 // assume branch is more often taken than not (loops use backward branches) 1849 Label not_taken; 1850 __ pop_ptr(x11); 1851 1852 if (cc == equal) { 1853 __ bne(x11, x10, not_taken); 1854 } else if (cc == not_equal) { 1855 __ beq(x11, x10, not_taken); 1856 } 1857 branch(false, false); 1858 __ bind(not_taken); 1859 __ profile_not_taken_branch(x10); 1860 } 1861 1862 void TemplateTable::ret() { 1863 transition(vtos, vtos); 1864 locals_index(x11); 1865 __ ld(x11, aaddress(x11, t1, _masm)); // get return bci, compute return bcp 1866 __ profile_ret(x11, x12); 1867 __ ld(xbcp, Address(xmethod, Method::const_offset())); 1868 __ add(xbcp, xbcp, x11); 1869 __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); 1870 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1871 } 1872 1873 void TemplateTable::wide_ret() { 1874 transition(vtos, vtos); 1875 locals_index_wide(x11); 1876 __ ld(x11, aaddress(x11, t0, _masm)); // get return bci, compute return bcp 1877 __ profile_ret(x11, x12); 1878 __ ld(xbcp, Address(xmethod, Method::const_offset())); 1879 __ add(xbcp, xbcp, x11); 1880 __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); 1881 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1882 } 1883 1884 void TemplateTable::tableswitch() { 1885 Label default_case, continue_execution; 1886 transition(itos, vtos); 1887 // align xbcp 1888 __ la(x11, at_bcp(BytesPerInt)); 1889 __ andi(x11, x11, -BytesPerInt); 1890 // load lo & hi 1891 __ lwu(x12, Address(x11, BytesPerInt)); 1892 __ lwu(x13, Address(x11, 2 * BytesPerInt)); 1893 __ revbw(x12, x12); 1894 __ revbw(x13, x13); 1895 // check against lo & hi 1896 __ blt(x10, x12, default_case); 1897 __ bgt(x10, x13, default_case); 1898 // lookup dispatch offset 1899 __ subw(x10, x10, x12); 1900 __ shadd(x13, x10, x11, t0, 2); 1901 __ lwu(x13, Address(x13, 3 * BytesPerInt)); 1902 __ profile_switch_case(x10, x11, x12); 1903 // continue execution 1904 __ bind(continue_execution); 1905 __ revbw(x13, x13); 1906 __ add(xbcp, xbcp, x13); 1907 __ load_unsigned_byte(t0, Address(xbcp)); 1908 __ dispatch_only(vtos, /*generate_poll*/true); 1909 // handle default 1910 __ bind(default_case); 1911 __ profile_switch_default(x10); 1912 __ lwu(x13, Address(x11, 0)); 1913 __ j(continue_execution); 1914 } 1915 1916 void TemplateTable::lookupswitch() { 1917 transition(itos, itos); 1918 __ stop("lookupswitch bytecode should have been rewritten"); 1919 } 1920 1921 void TemplateTable::fast_linearswitch() { 1922 transition(itos, vtos); 1923 Label loop_entry, loop, found, continue_execution; 1924 // bswap x10 so we can avoid bswapping the table entries 1925 __ revbw(x10, x10); 1926 // align xbcp 1927 __ la(x9, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1928 // this instruction (change offsets 1929 // below) 1930 __ andi(x9, x9, -BytesPerInt); 1931 // set counter 1932 __ lwu(x11, Address(x9, BytesPerInt)); 1933 // Convert the 32-bit npairs (number of pairs) into native byte-ordering 1934 // We can use sign-extension here because npairs must be greater than or 1935 // equal to 0 per JVM spec on 'lookupswitch' bytecode. 1936 __ revbw(x11, x11); 1937 __ j(loop_entry); 1938 // table search 1939 __ bind(loop); 1940 __ shadd(t0, x11, x9, t0, 3); 1941 __ lw(t0, Address(t0, 2 * BytesPerInt)); 1942 __ beq(x10, t0, found); 1943 __ bind(loop_entry); 1944 __ subi(x11, x11, 1); 1945 __ bgez(x11, loop); 1946 // default case 1947 __ profile_switch_default(x10); 1948 __ lwu(x13, Address(x9, 0)); 1949 __ j(continue_execution); 1950 // entry found -> get offset 1951 __ bind(found); 1952 __ shadd(t0, x11, x9, t0, 3); 1953 __ lwu(x13, Address(t0, 3 * BytesPerInt)); 1954 __ profile_switch_case(x11, x10, x9); 1955 // continue execution 1956 __ bind(continue_execution); 1957 __ revbw(x13, x13); 1958 __ add(xbcp, xbcp, x13); 1959 __ lbu(t0, Address(xbcp, 0)); 1960 __ dispatch_only(vtos, /*generate_poll*/true); 1961 } 1962 1963 void TemplateTable::fast_binaryswitch() { 1964 transition(itos, vtos); 1965 // Implementation using the following core algorithm: 1966 // 1967 // int binary_search(int key, LookupswitchPair* array, int n) 1968 // binary_search start: 1969 // #Binary search according to "Methodik des Programmierens" by 1970 // # Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1971 // int i = 0; 1972 // int j = n; 1973 // while (i + 1 < j) do 1974 // # invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1975 // # with Q: for all i: 0 <= i < n: key < a[i] 1976 // # where a stands for the array and assuming that the (inexisting) 1977 // # element a[n] is infinitely big. 1978 // int h = (i + j) >> 1 1979 // # i < h < j 1980 // if (key < array[h].fast_match()) 1981 // then [j = h] 1982 // else [i = h] 1983 // end 1984 // # R: a[i] <= key < a[i+1] or Q 1985 // # (i.e., if key is within array, i is the correct index) 1986 // return i 1987 // binary_search end 1988 1989 1990 // Register allocation 1991 const Register key = x10; // already set (tosca) 1992 const Register array = x11; 1993 const Register i = x12; 1994 const Register j = x13; 1995 const Register h = x14; 1996 const Register temp = x15; 1997 1998 // Find array start 1999 __ la(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2000 // get rid of this 2001 // instruction (change 2002 // offsets below) 2003 __ andi(array, array, -BytesPerInt); 2004 2005 // Initialize i & j 2006 __ mv(i, zr); // i = 0 2007 __ lwu(j, Address(array, -BytesPerInt)); // j = length(array) 2008 2009 // Convert the 32-bit npairs (number of pairs) into native byte-ordering 2010 // We can use sign-extension here because npairs must be greater than or 2011 // equal to 0 per JVM spec on 'lookupswitch' bytecode. 2012 __ revbw(j, j); 2013 2014 // And start 2015 Label entry; 2016 __ j(entry); 2017 2018 // binary search loop 2019 { 2020 Label loop; 2021 __ bind(loop); 2022 __ addw(h, i, j); // h = i + j 2023 __ srliw(h, h, 1); // h = (i + j) >> 1 2024 // if [key < array[h].fast_match()] 2025 // then [j = h] 2026 // else [i = h] 2027 // Convert array[h].match to native byte-ordering before compare 2028 __ shadd(temp, h, array, temp, 3); 2029 __ lwu(temp, Address(temp, 0)); 2030 __ revbw(temp, temp); 2031 2032 Label L_done, L_greater; 2033 __ bge(key, temp, L_greater); 2034 // if [key < array[h].fast_match()] then j = h 2035 __ mv(j, h); 2036 __ j(L_done); 2037 __ bind(L_greater); 2038 // if [key >= array[h].fast_match()] then i = h 2039 __ mv(i, h); 2040 __ bind(L_done); 2041 2042 // while [i + 1 < j] 2043 __ bind(entry); 2044 __ addiw(h, i, 1); // i + 1 2045 __ blt(h, j, loop); // i + 1 < j 2046 } 2047 2048 // end of binary search, result index is i (must check again!) 2049 Label default_case; 2050 // Convert array[i].match to native byte-ordering before compare 2051 __ shadd(temp, i, array, temp, 3); 2052 __ lwu(temp, Address(temp, 0)); 2053 __ revbw(temp, temp); 2054 __ bne(key, temp, default_case); 2055 2056 // entry found -> j = offset 2057 __ shadd(temp, i, array, temp, 3); 2058 __ lwu(j, Address(temp, BytesPerInt)); 2059 __ profile_switch_case(i, key, array); 2060 __ revbw(j, j); 2061 2062 __ add(temp, xbcp, j); 2063 __ load_unsigned_byte(t0, Address(temp, 0)); 2064 2065 __ add(xbcp, xbcp, j); 2066 __ la(xbcp, Address(xbcp, 0)); 2067 __ dispatch_only(vtos, /*generate_poll*/true); 2068 2069 // default case -> j = default offset 2070 __ bind(default_case); 2071 __ profile_switch_default(i); 2072 __ lwu(j, Address(array, -2 * BytesPerInt)); 2073 __ revbw(j, j); 2074 2075 __ add(temp, xbcp, j); 2076 __ load_unsigned_byte(t0, Address(temp, 0)); 2077 2078 __ add(xbcp, xbcp, j); 2079 __ la(xbcp, Address(xbcp, 0)); 2080 __ dispatch_only(vtos, /*generate_poll*/true); 2081 } 2082 2083 void TemplateTable::_return(TosState state) { 2084 transition(state, state); 2085 assert(_desc->calls_vm(), 2086 "inconsistent calls_vm information"); // call in remove_activation 2087 2088 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2089 assert(state == vtos, "only valid state"); 2090 2091 __ ld(c_rarg1, aaddress(0)); 2092 __ load_klass(x13, c_rarg1); 2093 __ lbu(x13, Address(x13, Klass::misc_flags_offset())); 2094 Label skip_register_finalizer; 2095 __ test_bit(t0, x13, exact_log2(KlassFlags::_misc_has_finalizer)); 2096 __ beqz(t0, skip_register_finalizer); 2097 2098 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2099 2100 __ bind(skip_register_finalizer); 2101 } 2102 2103 // Issue a StoreStore barrier after all stores but before return 2104 // from any constructor for any class with a final field. We don't 2105 // know if this is a finalizer, so we always do so. 2106 if (_desc->bytecode() == Bytecodes::_return 2107 || _desc->bytecode() == Bytecodes::_return_register_finalizer) { 2108 __ membar(MacroAssembler::StoreStore); 2109 } 2110 2111 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2112 Label no_safepoint; 2113 __ ld(t0, Address(xthread, JavaThread::polling_word_offset())); 2114 __ test_bit(t0, t0, exact_log2(SafepointMechanism::poll_bit())); 2115 __ beqz(t0, no_safepoint); 2116 __ push(state); 2117 __ push_cont_fastpath(xthread); 2118 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); 2119 __ pop_cont_fastpath(xthread); 2120 __ pop(state); 2121 __ bind(no_safepoint); 2122 } 2123 2124 // Narrow result if state is itos but result type is smaller. 2125 // Need to narrow in the return bytecode rather than in generate_return_entry 2126 // since compiled code callers expect the result to already be narrowed. 2127 if (state == itos) { 2128 __ narrow(x10); 2129 } 2130 2131 __ remove_activation(state); 2132 __ ret(); 2133 } 2134 2135 2136 // ---------------------------------------------------------------------------- 2137 // Volatile variables demand their effects be made known to all CPU's 2138 // in order. Store buffers on most chips allow reads & writes to 2139 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2140 // without some kind of memory barrier (i.e., it's not sufficient that 2141 // the interpreter does not reorder volatile references, the hardware 2142 // also must not reorder them). 2143 // 2144 // According to the new Java Memory Model (JMM): 2145 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2146 // writes act as acquire & release, so: 2147 // (2) A read cannot let unrelated NON-volatile memory refs that 2148 // happen after the read float up to before the read. It's OK for 2149 // non-volatile memory refs that happen before the volatile read to 2150 // float down below it. 2151 // (3) Similar a volatile write cannot let unrelated NON-volatile 2152 // memory refs that happen BEFORE the write float down to after the 2153 // write. It's OK for non-volatile memory refs that happen after the 2154 // volatile write to float up before it. 2155 // 2156 // We only put in barriers around volatile refs (they are expensive), 2157 // not _between_ memory refs (that would require us to track the 2158 // flavor of the previous memory refs). Requirements (2) and (3) 2159 // require some barriers before volatile stores and after volatile 2160 // loads. These nearly cover requirement (1) but miss the 2161 // volatile-store-volatile-load case. This final case is placed after 2162 // volatile-stores although it could just as well go before 2163 // volatile-loads. 2164 2165 void TemplateTable::resolve_cache_and_index_for_method(int byte_no, 2166 Register Rcache, 2167 Register index) { 2168 const Register temp = x9; // s1 2169 assert_different_registers(Rcache, index, temp); 2170 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2171 2172 Label resolved, clinit_barrier_slow; 2173 2174 Bytecodes::Code code = bytecode(); 2175 __ load_method_entry(Rcache, index); 2176 switch(byte_no) { 2177 case f1_byte: 2178 __ add(temp, Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset())); 2179 break; 2180 case f2_byte: 2181 __ add(temp, Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset())); 2182 break; 2183 } 2184 // Load-acquire the bytecode to match store-release in InterpreterRuntime 2185 __ lbu(temp, Address(temp, 0)); 2186 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2187 2188 __ mv(t0, (int) code); 2189 __ beq(temp, t0, resolved); // have we resolved this bytecode? 2190 2191 // resolve first time through 2192 // Class initialization barrier slow path lands here as well. 2193 __ bind(clinit_barrier_slow); 2194 2195 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2196 __ mv(temp, (int) code); 2197 __ call_VM(noreg, entry, temp); 2198 2199 // Update registers with resolved info 2200 __ load_method_entry(Rcache, index); 2201 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2202 // so all clients ofthis method must be modified accordingly 2203 __ bind(resolved); 2204 2205 // Class initialization barrier for static methods 2206 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2207 __ ld(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset()))); 2208 __ load_method_holder(temp, temp); 2209 __ clinit_barrier(temp, t0, nullptr, &clinit_barrier_slow); 2210 } 2211 } 2212 2213 void TemplateTable::resolve_cache_and_index_for_field(int byte_no, 2214 Register Rcache, 2215 Register index) { 2216 const Register temp = x9; 2217 assert_different_registers(Rcache, index, temp); 2218 2219 Label resolved; 2220 2221 Bytecodes::Code code = bytecode(); 2222 switch (code) { 2223 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2224 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2225 default: break; 2226 } 2227 2228 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2229 __ load_field_entry(Rcache, index); 2230 if (byte_no == f1_byte) { 2231 __ la(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset()))); 2232 } else { 2233 __ la(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset()))); 2234 } 2235 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in() 2236 __ lbu(temp, Address(temp, 0)); 2237 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2238 __ mv(t0, (int) code); // have we resolved this bytecode? 2239 __ beq(temp, t0, resolved); 2240 2241 // resolve first time through 2242 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2243 __ mv(temp, (int) code); 2244 __ call_VM(noreg, entry, temp); 2245 2246 // Update registers with resolved info 2247 __ load_field_entry(Rcache, index); 2248 __ bind(resolved); 2249 } 2250 2251 void TemplateTable::load_resolved_field_entry(Register obj, 2252 Register cache, 2253 Register tos_state, 2254 Register offset, 2255 Register flags, 2256 bool is_static = false) { 2257 assert_different_registers(cache, tos_state, flags, offset); 2258 2259 // Field offset 2260 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 2261 2262 // Flags 2263 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset()))); 2264 2265 // TOS state 2266 if (tos_state != noreg) { 2267 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset()))); 2268 } 2269 2270 // Klass overwrite register 2271 if (is_static) { 2272 __ ld(obj, Address(cache, ResolvedFieldEntry::field_holder_offset())); 2273 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2274 __ ld(obj, Address(obj, mirror_offset)); 2275 __ resolve_oop_handle(obj, x15, t1); 2276 } 2277 } 2278 2279 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache, 2280 Register method, 2281 Register flags) { 2282 2283 // setup registers 2284 const Register index = flags; 2285 assert_different_registers(method, cache, flags); 2286 2287 // determine constant pool cache field offsets 2288 resolve_cache_and_index_for_method(f1_byte, cache, index); 2289 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2290 __ ld(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2291 } 2292 2293 void TemplateTable::load_resolved_method_entry_handle(Register cache, 2294 Register method, 2295 Register ref_index, 2296 Register flags) { 2297 // setup registers 2298 const Register index = ref_index; 2299 assert_different_registers(method, flags); 2300 assert_different_registers(method, cache, index); 2301 2302 // determine constant pool cache field offsets 2303 resolve_cache_and_index_for_method(f1_byte, cache, index); 2304 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2305 2306 // maybe push appendix to arguments (just before return address) 2307 Label L_no_push; 2308 __ test_bit(t0, flags, ResolvedMethodEntry::has_appendix_shift); 2309 __ beqz(t0, L_no_push); 2310 // invokehandle uses an index into the resolved references array 2311 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset()))); 2312 // Push the appendix as a trailing parameter. 2313 // This must be done before we get the receiver, 2314 // since the parameter_size includes it. 2315 Register appendix = method; 2316 __ load_resolved_reference_at_index(appendix, ref_index); 2317 __ push_reg(appendix); // push appendix (MethodType, CallSite, etc.) 2318 __ bind(L_no_push); 2319 2320 __ ld(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2321 } 2322 2323 void TemplateTable::load_resolved_method_entry_interface(Register cache, 2324 Register klass, 2325 Register method_or_table_index, 2326 Register flags) { 2327 // setup registers 2328 const Register index = method_or_table_index; 2329 assert_different_registers(method_or_table_index, cache, flags); 2330 2331 // determine constant pool cache field offsets 2332 resolve_cache_and_index_for_method(f1_byte, cache, index); 2333 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2334 2335 // Invokeinterface can behave in different ways: 2336 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will 2337 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or 2338 // vtable index is placed in the register. 2339 // Otherwise, the registers will be populated with the klass and method. 2340 2341 Label NotVirtual; Label NotVFinal; Label Done; 2342 __ test_bit(t0, flags, ResolvedMethodEntry::is_forced_virtual_shift); 2343 __ beqz(t0, NotVirtual); 2344 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift); 2345 __ beqz(t0, NotVFinal); 2346 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2347 __ j(Done); 2348 2349 __ bind(NotVFinal); 2350 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2351 __ j(Done); 2352 2353 __ bind(NotVirtual); 2354 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2355 __ ld(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset()))); 2356 __ bind(Done); 2357 } 2358 2359 void TemplateTable::load_resolved_method_entry_virtual(Register cache, 2360 Register method_or_table_index, 2361 Register flags) { 2362 // setup registers 2363 const Register index = flags; 2364 assert_different_registers(method_or_table_index, cache, flags); 2365 2366 // determine constant pool cache field offsets 2367 resolve_cache_and_index_for_method(f2_byte, cache, index); 2368 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset()))); 2369 2370 // method_or_table_index can either be an itable index or a method depending on the virtual final flag 2371 Label NotVFinal; Label Done; 2372 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift); 2373 __ beqz(t0, NotVFinal); 2374 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset()))); 2375 __ j(Done); 2376 2377 __ bind(NotVFinal); 2378 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset()))); 2379 __ bind(Done); 2380 } 2381 2382 // The xmethod register is input and overwritten to be the adapter method for the 2383 // indy call. Return address (ra) is set to the return address for the adapter and 2384 // an appendix may be pushed to the stack. Registers x10-x13 are clobbered. 2385 void TemplateTable::load_invokedynamic_entry(Register method) { 2386 // setup registers 2387 const Register appendix = x10; 2388 const Register cache = x12; 2389 const Register index = x13; 2390 assert_different_registers(method, appendix, cache, index, xcpool); 2391 2392 __ save_bcp(); 2393 2394 Label resolved; 2395 2396 __ load_resolved_indy_entry(cache, index); 2397 __ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2398 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2399 2400 // Compare the method to zero 2401 __ bnez(method, resolved); 2402 2403 Bytecodes::Code code = bytecode(); 2404 2405 // Call to the interpreter runtime to resolve invokedynamic 2406 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2407 __ mv(method, code); // this is essentially Bytecodes::_invokedynamic 2408 __ call_VM(noreg, entry, method); 2409 // Update registers with resolved info 2410 __ load_resolved_indy_entry(cache, index); 2411 __ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2412 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2413 2414 #ifdef ASSERT 2415 __ bnez(method, resolved); 2416 __ stop("Should be resolved by now"); 2417 #endif // ASSERT 2418 __ bind(resolved); 2419 2420 Label L_no_push; 2421 // Check if there is an appendix 2422 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2423 __ test_bit(t0, index, ResolvedIndyEntry::has_appendix_shift); 2424 __ beqz(t0, L_no_push); 2425 2426 // Get appendix 2427 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2428 // Push the appendix as a trailing parameter 2429 // since the parameter_size includes it. 2430 __ push_reg(method); 2431 __ mv(method, index); 2432 __ load_resolved_reference_at_index(appendix, method); 2433 __ verify_oop(appendix); 2434 __ pop_reg(method); 2435 __ push_reg(appendix); // push appendix (MethodType, CallSite, etc.) 2436 __ bind(L_no_push); 2437 2438 // compute return type 2439 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2440 // load return address 2441 // Return address is loaded into ra and not pushed to the stack like x86 2442 { 2443 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2444 __ mv(t0, table_addr); 2445 __ shadd(t0, index, t0, index, 3); 2446 __ ld(ra, Address(t0, 0)); 2447 } 2448 } 2449 2450 // The registers cache and index expected to be set before call. 2451 // Correct values of the cache and index registers are preserved. 2452 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2453 bool is_static, bool has_tos) { 2454 // do the JVMTI work here to avoid disturbing the register state below 2455 // We use c_rarg registers here because we want to use the register used in 2456 // the call to the VM 2457 if (JvmtiExport::can_post_field_access()) { 2458 // Check to see if a field access watch has been set before we 2459 // take the time to call into the VM. 2460 Label L1; 2461 assert_different_registers(cache, index, x10); 2462 __ lwu(x10, ExternalAddress(JvmtiExport::get_field_access_count_addr())); 2463 __ beqz(x10, L1); 2464 2465 __ load_field_entry(c_rarg2, index); 2466 2467 if (is_static) { 2468 __ mv(c_rarg1, zr); // null object reference 2469 } else { 2470 __ ld(c_rarg1, at_tos()); // get object pointer without popping it 2471 __ verify_oop(c_rarg1); 2472 } 2473 // c_rarg1: object pointer or null 2474 // c_rarg2: cache entry pointer 2475 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2476 InterpreterRuntime::post_field_access), 2477 c_rarg1, c_rarg2); 2478 __ load_field_entry(cache, index); 2479 __ bind(L1); 2480 } 2481 } 2482 2483 void TemplateTable::pop_and_check_object(Register r) { 2484 __ pop_ptr(r); 2485 __ null_check(r); // for field access must check obj. 2486 __ verify_oop(r); 2487 } 2488 2489 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2490 const Register cache = x14; 2491 const Register obj = x14; 2492 const Register index = x13; 2493 const Register tos_state = x13; 2494 const Register off = x9; 2495 const Register flags = x16; 2496 const Register bc = x14; // uses same reg as obj, so don't mix them 2497 2498 resolve_cache_and_index_for_field(byte_no, cache, index); 2499 jvmti_post_field_access(cache, index, is_static, false); 2500 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2501 2502 if (!is_static) { 2503 // obj is on the stack 2504 pop_and_check_object(obj); 2505 } 2506 2507 __ add(off, obj, off); 2508 const Address field(off); 2509 2510 Label Done, notByte, notBool, notInt, notShort, notChar, 2511 notLong, notFloat, notObj, notDouble; 2512 2513 assert(btos == 0, "change code, btos != 0"); 2514 __ bnez(tos_state, notByte); 2515 2516 // Don't rewrite getstatic, only getfield 2517 if (is_static) { 2518 rc = may_not_rewrite; 2519 } 2520 2521 // btos 2522 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg); 2523 __ push(btos); 2524 // Rewrite bytecode to be faster 2525 if (rc == may_rewrite) { 2526 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11); 2527 } 2528 __ j(Done); 2529 2530 __ bind(notByte); 2531 __ subi(t0, tos_state, (u1)ztos); 2532 __ bnez(t0, notBool); 2533 2534 // ztos (same code as btos) 2535 __ access_load_at(T_BOOLEAN, IN_HEAP, x10, field, noreg, noreg); 2536 __ push(ztos); 2537 // Rewrite bytecode to be faster 2538 if (rc == may_rewrite) { 2539 // uses btos rewriting, no truncating to t/f bit is needed for getfield 2540 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11); 2541 } 2542 __ j(Done); 2543 2544 __ bind(notBool); 2545 __ subi(t0, tos_state, (u1)atos); 2546 __ bnez(t0, notObj); 2547 // atos 2548 __ load_heap_oop(x10, field, x28, x29, IN_HEAP); 2549 __ push(atos); 2550 if (rc == may_rewrite) { 2551 patch_bytecode(Bytecodes::_fast_agetfield, bc, x11); 2552 } 2553 __ j(Done); 2554 2555 __ bind(notObj); 2556 __ subi(t0, tos_state, (u1)itos); 2557 __ bnez(t0, notInt); 2558 // itos 2559 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg); 2560 __ sext(x10, x10, 32); 2561 __ push(itos); 2562 // Rewrite bytecode to be faster 2563 if (rc == may_rewrite) { 2564 patch_bytecode(Bytecodes::_fast_igetfield, bc, x11); 2565 } 2566 __ j(Done); 2567 2568 __ bind(notInt); 2569 __ subi(t0, tos_state, (u1)ctos); 2570 __ bnez(t0, notChar); 2571 // ctos 2572 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg); 2573 __ push(ctos); 2574 // Rewrite bytecode to be faster 2575 if (rc == may_rewrite) { 2576 patch_bytecode(Bytecodes::_fast_cgetfield, bc, x11); 2577 } 2578 __ j(Done); 2579 2580 __ bind(notChar); 2581 __ subi(t0, tos_state, (u1)stos); 2582 __ bnez(t0, notShort); 2583 // stos 2584 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg); 2585 __ push(stos); 2586 // Rewrite bytecode to be faster 2587 if (rc == may_rewrite) { 2588 patch_bytecode(Bytecodes::_fast_sgetfield, bc, x11); 2589 } 2590 __ j(Done); 2591 2592 __ bind(notShort); 2593 __ subi(t0, tos_state, (u1)ltos); 2594 __ bnez(t0, notLong); 2595 // ltos 2596 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg); 2597 __ push(ltos); 2598 // Rewrite bytecode to be faster 2599 if (rc == may_rewrite) { 2600 patch_bytecode(Bytecodes::_fast_lgetfield, bc, x11); 2601 } 2602 __ j(Done); 2603 2604 __ bind(notLong); 2605 __ subi(t0, tos_state, (u1)ftos); 2606 __ bnez(t0, notFloat); 2607 // ftos 2608 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2609 __ push(ftos); 2610 // Rewrite bytecode to be faster 2611 if (rc == may_rewrite) { 2612 patch_bytecode(Bytecodes::_fast_fgetfield, bc, x11); 2613 } 2614 __ j(Done); 2615 2616 __ bind(notFloat); 2617 #ifdef ASSERT 2618 __ subi(t0, tos_state, (u1)dtos); 2619 __ bnez(t0, notDouble); 2620 #endif 2621 // dtos 2622 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2623 __ push(dtos); 2624 // Rewrite bytecode to be faster 2625 if (rc == may_rewrite) { 2626 patch_bytecode(Bytecodes::_fast_dgetfield, bc, x11); 2627 } 2628 #ifdef ASSERT 2629 __ j(Done); 2630 2631 __ bind(notDouble); 2632 __ stop("Bad state"); 2633 #endif 2634 2635 __ bind(Done); 2636 2637 Label notVolatile; 2638 __ test_bit(t0, flags, ResolvedFieldEntry::is_volatile_shift); 2639 __ beqz(t0, notVolatile); 2640 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2641 __ bind(notVolatile); 2642 } 2643 2644 void TemplateTable::getfield(int byte_no) { 2645 getfield_or_static(byte_no, false); 2646 } 2647 2648 void TemplateTable::nofast_getfield(int byte_no) { 2649 getfield_or_static(byte_no, false, may_not_rewrite); 2650 } 2651 2652 void TemplateTable::getstatic(int byte_no) 2653 { 2654 getfield_or_static(byte_no, true); 2655 } 2656 2657 // The registers cache and index expected to be set before call. 2658 // The function may destroy various registers, just not the cache and index registers. 2659 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2660 transition(vtos, vtos); 2661 2662 if (JvmtiExport::can_post_field_modification()) { 2663 // Check to see if a field modification watch has been set before 2664 // we take the time to call into the VM. 2665 Label L1; 2666 assert_different_registers(cache, index, x10); 2667 __ lwu(x10, ExternalAddress(JvmtiExport::get_field_modification_count_addr())); 2668 __ beqz(x10, L1); 2669 2670 __ mv(c_rarg2, cache); 2671 2672 if (is_static) { 2673 // Life is simple. Null out the object pointer. 2674 __ mv(c_rarg1, zr); 2675 } else { 2676 // Life is harder. The stack holds the value on top, followed by 2677 // the object. We don't know the size of the value, though; it 2678 // could be one or two words depending on its type. As a result, 2679 // we must find the type to determine where the object is. 2680 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset()))); 2681 Label nope2, done, ok; 2682 __ ld(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2683 __ subi(t0, c_rarg3, (u1)ltos); 2684 __ beqz(t0, ok); 2685 __ subi(t0, c_rarg3, (u1)dtos); 2686 __ bnez(t0, nope2); 2687 __ bind(ok); 2688 __ ld(c_rarg1, at_tos_p2()); // ltos (two word jvalue); 2689 __ bind(nope2); 2690 } 2691 // object (tos) 2692 __ mv(c_rarg3, esp); 2693 // c_rarg1: object pointer set up above (null if static) 2694 // c_rarg2: cache entry pointer 2695 // c_rarg3: jvalue object on the stack 2696 __ call_VM(noreg, 2697 CAST_FROM_FN_PTR(address, 2698 InterpreterRuntime::post_field_modification), 2699 c_rarg1, c_rarg2, c_rarg3); 2700 __ load_field_entry(cache, index); 2701 __ bind(L1); 2702 } 2703 } 2704 2705 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2706 transition(vtos, vtos); 2707 2708 const Register cache = x12; 2709 const Register index = x13; 2710 const Register tos_state = x13; 2711 const Register obj = x12; 2712 const Register off = x9; 2713 const Register flags = x10; 2714 const Register bc = x14; 2715 2716 resolve_cache_and_index_for_field(byte_no, cache, index); 2717 jvmti_post_field_mod(cache, index, is_static); 2718 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static); 2719 2720 Label Done; 2721 __ mv(x15, flags); 2722 2723 { 2724 Label notVolatile; 2725 __ test_bit(t0, x15, ResolvedFieldEntry::is_volatile_shift); 2726 __ beqz(t0, notVolatile); 2727 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2728 __ bind(notVolatile); 2729 } 2730 2731 Label notByte, notBool, notInt, notShort, notChar, 2732 notLong, notFloat, notObj, notDouble; 2733 2734 assert(btos == 0, "change code, btos != 0"); 2735 __ bnez(tos_state, notByte); 2736 2737 // Don't rewrite putstatic, only putfield 2738 if (is_static) { 2739 rc = may_not_rewrite; 2740 } 2741 2742 // btos 2743 { 2744 __ pop(btos); 2745 // field address 2746 if (!is_static) { 2747 pop_and_check_object(obj); 2748 } 2749 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2750 const Address field(off, 0); // off register as temparator register. 2751 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg); 2752 if (rc == may_rewrite) { 2753 patch_bytecode(Bytecodes::_fast_bputfield, bc, x11, true, byte_no); 2754 } 2755 __ j(Done); 2756 } 2757 2758 __ bind(notByte); 2759 __ subi(t0, tos_state, (u1)ztos); 2760 __ bnez(t0, notBool); 2761 2762 // ztos 2763 { 2764 __ pop(ztos); 2765 // field address 2766 if (!is_static) { 2767 pop_and_check_object(obj); 2768 } 2769 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2770 const Address field(off, 0); 2771 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg); 2772 if (rc == may_rewrite) { 2773 patch_bytecode(Bytecodes::_fast_zputfield, bc, x11, true, byte_no); 2774 } 2775 __ j(Done); 2776 } 2777 2778 __ bind(notBool); 2779 __ subi(t0, tos_state, (u1)atos); 2780 __ bnez(t0, notObj); 2781 2782 // atos 2783 { 2784 __ pop(atos); 2785 // field address 2786 if (!is_static) { 2787 pop_and_check_object(obj); 2788 } 2789 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2790 const Address field(off, 0); 2791 // Store into the field 2792 __ store_heap_oop(field, x10, x28, x29, x13, IN_HEAP); 2793 if (rc == may_rewrite) { 2794 patch_bytecode(Bytecodes::_fast_aputfield, bc, x11, true, byte_no); 2795 } 2796 __ j(Done); 2797 } 2798 2799 __ bind(notObj); 2800 __ subi(t0, tos_state, (u1)itos); 2801 __ bnez(t0, notInt); 2802 2803 // itos 2804 { 2805 __ pop(itos); 2806 // field address 2807 if (!is_static) { 2808 pop_and_check_object(obj); 2809 } 2810 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2811 const Address field(off, 0); 2812 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg); 2813 if (rc == may_rewrite) { 2814 patch_bytecode(Bytecodes::_fast_iputfield, bc, x11, true, byte_no); 2815 } 2816 __ j(Done); 2817 } 2818 2819 __ bind(notInt); 2820 __ subi(t0, tos_state, (u1)ctos); 2821 __ bnez(t0, notChar); 2822 2823 // ctos 2824 { 2825 __ pop(ctos); 2826 // field address 2827 if (!is_static) { 2828 pop_and_check_object(obj); 2829 } 2830 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2831 const Address field(off, 0); 2832 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg); 2833 if (rc == may_rewrite) { 2834 patch_bytecode(Bytecodes::_fast_cputfield, bc, x11, true, byte_no); 2835 } 2836 __ j(Done); 2837 } 2838 2839 __ bind(notChar); 2840 __ subi(t0, tos_state, (u1)stos); 2841 __ bnez(t0, notShort); 2842 2843 // stos 2844 { 2845 __ pop(stos); 2846 // field address 2847 if (!is_static) { 2848 pop_and_check_object(obj); 2849 } 2850 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2851 const Address field(off, 0); 2852 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg); 2853 if (rc == may_rewrite) { 2854 patch_bytecode(Bytecodes::_fast_sputfield, bc, x11, true, byte_no); 2855 } 2856 __ j(Done); 2857 } 2858 2859 __ bind(notShort); 2860 __ subi(t0, tos_state, (u1)ltos); 2861 __ bnez(t0, notLong); 2862 2863 // ltos 2864 { 2865 __ pop(ltos); 2866 // field address 2867 if (!is_static) { 2868 pop_and_check_object(obj); 2869 } 2870 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2871 const Address field(off, 0); 2872 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg); 2873 if (rc == may_rewrite) { 2874 patch_bytecode(Bytecodes::_fast_lputfield, bc, x11, true, byte_no); 2875 } 2876 __ j(Done); 2877 } 2878 2879 __ bind(notLong); 2880 __ subi(t0, tos_state, (u1)ftos); 2881 __ bnez(t0, notFloat); 2882 2883 // ftos 2884 { 2885 __ pop(ftos); 2886 // field address 2887 if (!is_static) { 2888 pop_and_check_object(obj); 2889 } 2890 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2891 const Address field(off, 0); 2892 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2893 if (rc == may_rewrite) { 2894 patch_bytecode(Bytecodes::_fast_fputfield, bc, x11, true, byte_no); 2895 } 2896 __ j(Done); 2897 } 2898 2899 __ bind(notFloat); 2900 #ifdef ASSERT 2901 __ subi(t0, tos_state, (u1)dtos); 2902 __ bnez(t0, notDouble); 2903 #endif 2904 2905 // dtos 2906 { 2907 __ pop(dtos); 2908 // field address 2909 if (!is_static) { 2910 pop_and_check_object(obj); 2911 } 2912 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2913 const Address field(off, 0); 2914 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2915 if (rc == may_rewrite) { 2916 patch_bytecode(Bytecodes::_fast_dputfield, bc, x11, true, byte_no); 2917 } 2918 } 2919 2920 #ifdef ASSERT 2921 __ j(Done); 2922 2923 __ bind(notDouble); 2924 __ stop("Bad state"); 2925 #endif 2926 2927 __ bind(Done); 2928 2929 { 2930 Label notVolatile; 2931 __ test_bit(t0, x15, ResolvedFieldEntry::is_volatile_shift); 2932 __ beqz(t0, notVolatile); 2933 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2934 __ bind(notVolatile); 2935 } 2936 } 2937 2938 void TemplateTable::putfield(int byte_no) { 2939 putfield_or_static(byte_no, false); 2940 } 2941 2942 void TemplateTable::nofast_putfield(int byte_no) { 2943 putfield_or_static(byte_no, false, may_not_rewrite); 2944 } 2945 2946 void TemplateTable::putstatic(int byte_no) { 2947 putfield_or_static(byte_no, true); 2948 } 2949 2950 void TemplateTable::jvmti_post_fast_field_mod() { 2951 if (JvmtiExport::can_post_field_modification()) { 2952 // Check to see if a field modification watch has been set before 2953 // we take the time to call into the VM. 2954 Label L2; 2955 __ lwu(c_rarg3, ExternalAddress(JvmtiExport::get_field_modification_count_addr())); 2956 __ beqz(c_rarg3, L2); 2957 2958 __ pop_ptr(x9); // copy the object pointer from tos 2959 __ verify_oop(x9); 2960 __ push_ptr(x9); // put the object pointer back on tos 2961 // Save tos values before call_VM() clobbers them. Since we have 2962 // to do it for every data type, we use the saved values as the 2963 // jvalue object. 2964 switch (bytecode()) { // load values into the jvalue object 2965 case Bytecodes::_fast_aputfield: __ push_ptr(x10); break; 2966 case Bytecodes::_fast_bputfield: // fall through 2967 case Bytecodes::_fast_zputfield: // fall through 2968 case Bytecodes::_fast_sputfield: // fall through 2969 case Bytecodes::_fast_cputfield: // fall through 2970 case Bytecodes::_fast_iputfield: __ push_i(x10); break; 2971 case Bytecodes::_fast_dputfield: __ push_d(); break; 2972 case Bytecodes::_fast_fputfield: __ push_f(); break; 2973 case Bytecodes::_fast_lputfield: __ push_l(x10); break; 2974 2975 default: 2976 ShouldNotReachHere(); 2977 } 2978 __ mv(c_rarg3, esp); // points to jvalue on the stack 2979 // access constant pool cache entry 2980 __ load_field_entry(c_rarg2, x10); 2981 __ verify_oop(x9); 2982 // x9: object pointer copied above 2983 // c_rarg2: cache entry pointer 2984 // c_rarg3: jvalue object on the stack 2985 __ call_VM(noreg, 2986 CAST_FROM_FN_PTR(address, 2987 InterpreterRuntime::post_field_modification), 2988 x9, c_rarg2, c_rarg3); 2989 2990 switch (bytecode()) { // restore tos values 2991 case Bytecodes::_fast_aputfield: __ pop_ptr(x10); break; 2992 case Bytecodes::_fast_bputfield: // fall through 2993 case Bytecodes::_fast_zputfield: // fall through 2994 case Bytecodes::_fast_sputfield: // fall through 2995 case Bytecodes::_fast_cputfield: // fall through 2996 case Bytecodes::_fast_iputfield: __ pop_i(x10); break; 2997 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2998 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2999 case Bytecodes::_fast_lputfield: __ pop_l(x10); break; 3000 default: break; 3001 } 3002 __ bind(L2); 3003 } 3004 } 3005 3006 void TemplateTable::fast_storefield(TosState state) { 3007 transition(state, vtos); 3008 3009 ByteSize base = ConstantPoolCache::base_offset(); 3010 3011 jvmti_post_fast_field_mod(); 3012 3013 // access constant pool cache 3014 __ load_field_entry(x12, x11); 3015 3016 // X11: field offset, X12: field holder, X13: flags 3017 load_resolved_field_entry(x12, x12, noreg, x11, x13); 3018 3019 { 3020 Label notVolatile; 3021 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3022 __ beqz(t0, notVolatile); 3023 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 3024 __ bind(notVolatile); 3025 } 3026 3027 // Get object from stack 3028 pop_and_check_object(x12); 3029 3030 // field address 3031 __ add(x11, x12, x11); 3032 const Address field(x11, 0); 3033 3034 // access field, must not clobber x13 - flags 3035 switch (bytecode()) { 3036 case Bytecodes::_fast_aputfield: 3037 __ store_heap_oop(field, x10, x28, x29, x15, IN_HEAP); 3038 break; 3039 case Bytecodes::_fast_lputfield: 3040 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg); 3041 break; 3042 case Bytecodes::_fast_iputfield: 3043 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg); 3044 break; 3045 case Bytecodes::_fast_zputfield: 3046 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg); 3047 break; 3048 case Bytecodes::_fast_bputfield: 3049 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg); 3050 break; 3051 case Bytecodes::_fast_sputfield: 3052 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg); 3053 break; 3054 case Bytecodes::_fast_cputfield: 3055 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg); 3056 break; 3057 case Bytecodes::_fast_fputfield: 3058 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3059 break; 3060 case Bytecodes::_fast_dputfield: 3061 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3062 break; 3063 default: 3064 ShouldNotReachHere(); 3065 } 3066 3067 { 3068 Label notVolatile; 3069 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3070 __ beqz(t0, notVolatile); 3071 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3072 __ bind(notVolatile); 3073 } 3074 } 3075 3076 void TemplateTable::fast_accessfield(TosState state) { 3077 transition(atos, state); 3078 // Do the JVMTI work here to avoid disturbing the register state below 3079 if (JvmtiExport::can_post_field_access()) { 3080 // Check to see if a field access watch has been set before we 3081 // take the time to call into the VM. 3082 Label L1; 3083 __ lwu(x12, ExternalAddress(JvmtiExport::get_field_access_count_addr())); 3084 __ beqz(x12, L1); 3085 3086 // access constant pool cache entry 3087 __ load_field_entry(c_rarg2, t1); 3088 __ verify_oop(x10); 3089 __ push_ptr(x10); // save object pointer before call_VM() clobbers it 3090 __ mv(c_rarg1, x10); 3091 // c_rarg1: object pointer copied above 3092 // c_rarg2: cache entry pointer 3093 __ call_VM(noreg, 3094 CAST_FROM_FN_PTR(address, 3095 InterpreterRuntime::post_field_access), 3096 c_rarg1, c_rarg2); 3097 __ pop_ptr(x10); // restore object pointer 3098 __ bind(L1); 3099 } 3100 3101 // access constant pool cache 3102 __ load_field_entry(x12, x11); 3103 3104 __ load_sized_value(x11, Address(x12, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3105 __ load_unsigned_byte(x13, Address(x12, in_bytes(ResolvedFieldEntry::flags_offset()))); 3106 3107 // x10: object 3108 __ verify_oop(x10); 3109 __ null_check(x10); 3110 __ add(x11, x10, x11); 3111 const Address field(x11, 0); 3112 3113 // access field 3114 switch (bytecode()) { 3115 case Bytecodes::_fast_agetfield: 3116 __ load_heap_oop(x10, field, x28, x29, IN_HEAP); 3117 __ verify_oop(x10); 3118 break; 3119 case Bytecodes::_fast_lgetfield: 3120 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg); 3121 break; 3122 case Bytecodes::_fast_igetfield: 3123 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg); 3124 __ sext(x10, x10, 32); 3125 break; 3126 case Bytecodes::_fast_bgetfield: 3127 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg); 3128 break; 3129 case Bytecodes::_fast_sgetfield: 3130 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg); 3131 break; 3132 case Bytecodes::_fast_cgetfield: 3133 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg); 3134 break; 3135 case Bytecodes::_fast_fgetfield: 3136 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3137 break; 3138 case Bytecodes::_fast_dgetfield: 3139 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3140 break; 3141 default: 3142 ShouldNotReachHere(); 3143 } 3144 { 3145 Label notVolatile; 3146 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3147 __ beqz(t0, notVolatile); 3148 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3149 __ bind(notVolatile); 3150 } 3151 } 3152 3153 void TemplateTable::fast_xaccess(TosState state) { 3154 transition(vtos, state); 3155 3156 // get receiver 3157 __ ld(x10, aaddress(0)); 3158 // access constant pool cache 3159 __ load_field_entry(x12, x13, 2); 3160 __ load_sized_value(x11, Address(x12, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/); 3161 3162 // make sure exception is reported in correct bcp range (getfield is 3163 // next instruction) 3164 __ addi(xbcp, xbcp, 1); 3165 __ null_check(x10); 3166 switch (state) { 3167 case itos: 3168 __ add(x10, x10, x11); 3169 __ access_load_at(T_INT, IN_HEAP, x10, Address(x10, 0), noreg, noreg); 3170 __ sext(x10, x10, 32); 3171 break; 3172 case atos: 3173 __ add(x10, x10, x11); 3174 __ load_heap_oop(x10, Address(x10, 0), x28, x29, IN_HEAP); 3175 __ verify_oop(x10); 3176 break; 3177 case ftos: 3178 __ add(x10, x10, x11); 3179 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(x10), noreg, noreg); 3180 break; 3181 default: 3182 ShouldNotReachHere(); 3183 } 3184 3185 { 3186 Label notVolatile; 3187 __ load_unsigned_byte(x13, Address(x12, in_bytes(ResolvedFieldEntry::flags_offset()))); 3188 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift); 3189 __ beqz(t0, notVolatile); 3190 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3191 __ bind(notVolatile); 3192 } 3193 3194 __ subi(xbcp, xbcp, 1); 3195 } 3196 3197 //----------------------------------------------------------------------------- 3198 // Calls 3199 3200 void TemplateTable::prepare_invoke(Register cache, Register recv) { 3201 3202 Bytecodes::Code code = bytecode(); 3203 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic); 3204 3205 // save 'interpreter return address' 3206 __ save_bcp(); 3207 3208 // Load TOS state for later 3209 __ load_unsigned_byte(t1, Address(cache, in_bytes(ResolvedMethodEntry::type_offset()))); 3210 3211 // load receiver if needed (note: no return address pushed yet) 3212 if (load_receiver) { 3213 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 3214 __ shadd(t0, recv, esp, t0, 3); 3215 __ ld(recv, Address(t0, -Interpreter::expr_offset_in_bytes(1))); 3216 __ verify_oop(recv); 3217 } 3218 3219 // load return address 3220 { 3221 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3222 __ mv(t0, table_addr); 3223 __ shadd(t0, t1, t0, t1, 3); 3224 __ ld(ra, Address(t0, 0)); 3225 } 3226 } 3227 3228 void TemplateTable::invokevirtual_helper(Register index, 3229 Register recv, 3230 Register flags) { 3231 // Uses temporary registers x10, x13 3232 assert_different_registers(index, recv, x10, x13); 3233 // Test for an invoke of a final method 3234 Label notFinal; 3235 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift); 3236 __ beqz(t0, notFinal); 3237 3238 const Register method = index; // method must be xmethod 3239 assert(method == xmethod, "Method must be xmethod for interpreter calling convention"); 3240 3241 // do the call - the index is actually the method to call 3242 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3243 3244 // It's final, need a null check here! 3245 __ null_check(recv); 3246 3247 // profile this call 3248 __ profile_final_call(x10); 3249 __ profile_arguments_type(x10, method, x14, true); 3250 3251 __ jump_from_interpreted(method); 3252 3253 __ bind(notFinal); 3254 3255 // get receiver klass 3256 __ load_klass(x10, recv); 3257 3258 // profile this call 3259 __ profile_virtual_call(x10, xlocals, x13); 3260 3261 // get target Method & entry point 3262 __ lookup_virtual_method(x10, index, method); 3263 __ profile_arguments_type(x13, method, x14, true); 3264 __ jump_from_interpreted(method); 3265 } 3266 3267 void TemplateTable::invokevirtual(int byte_no) { 3268 transition(vtos, vtos); 3269 assert(byte_no == f2_byte, "use this argument"); 3270 3271 load_resolved_method_entry_virtual(x12, // ResolvedMethodEntry* 3272 xmethod, // Method* or itable index 3273 x13); // flags 3274 prepare_invoke(x12, x12); // recv 3275 3276 // xmethod: index (actually a Method*) 3277 // x12: receiver 3278 // x13: flags 3279 3280 invokevirtual_helper(xmethod, x12, x13); 3281 } 3282 3283 void TemplateTable::invokespecial(int byte_no) { 3284 transition(vtos, vtos); 3285 assert(byte_no == f1_byte, "use this argument"); 3286 3287 load_resolved_method_entry_special_or_static(x12, // ResolvedMethodEntry* 3288 xmethod, // Method* 3289 x13); // flags 3290 prepare_invoke(x12, x12); // get receiver also for null check 3291 3292 __ verify_oop(x12); 3293 __ null_check(x12); 3294 // do the call 3295 __ profile_call(x10); 3296 __ profile_arguments_type(x10, xmethod, xbcp, false); 3297 __ jump_from_interpreted(xmethod); 3298 } 3299 3300 void TemplateTable::invokestatic(int byte_no) { 3301 transition(vtos, vtos); 3302 assert(byte_no == f1_byte, "use this argument"); 3303 3304 load_resolved_method_entry_special_or_static(x12, // ResolvedMethodEntry* 3305 xmethod, // Method* 3306 x13); // flags 3307 prepare_invoke(x12, x12); // get receiver also for null check 3308 3309 // do the call 3310 __ profile_call(x10); 3311 __ profile_arguments_type(x10, xmethod, x14, false); 3312 __ jump_from_interpreted(xmethod); 3313 } 3314 3315 void TemplateTable::fast_invokevfinal(int byte_no) { 3316 __ call_Unimplemented(); 3317 } 3318 3319 void TemplateTable::invokeinterface(int byte_no) { 3320 transition(vtos, vtos); 3321 assert(byte_no == f1_byte, "use this argument"); 3322 3323 load_resolved_method_entry_interface(x12, // ResolvedMethodEntry* 3324 x10, // Klass* 3325 xmethod, // Method* or itable/vtable index 3326 x13); // flags 3327 prepare_invoke(x12, x12); // receiver 3328 3329 // x10: interface klass (from f1) 3330 // xmethod: method (from f2) 3331 // x12: receiver 3332 // x13: flags 3333 3334 // First check for Object case, then private interface method, 3335 // then regular interface method. 3336 3337 // Special case of invokeinterface called for virtual method of 3338 // java.lang.Object. See cpCache.cpp for details 3339 Label notObjectMethod; 3340 __ test_bit(t0, x13, ResolvedMethodEntry::is_forced_virtual_shift); 3341 __ beqz(t0, notObjectMethod); 3342 3343 invokevirtual_helper(xmethod, x12, x13); 3344 __ bind(notObjectMethod); 3345 3346 Label no_such_interface; 3347 3348 // Check for private method invocation - indicated by vfinal 3349 Label notVFinal; 3350 __ test_bit(t0, x13, ResolvedMethodEntry::is_vfinal_shift); 3351 __ beqz(t0, notVFinal); 3352 3353 // Check receiver klass into x13 3354 __ load_klass(x13, x12); 3355 3356 Label subtype; 3357 __ check_klass_subtype(x13, x10, x14, subtype); 3358 // If we get here the typecheck failed 3359 __ j(no_such_interface); 3360 __ bind(subtype); 3361 3362 __ profile_final_call(x10); 3363 __ profile_arguments_type(x10, xmethod, x14, true); 3364 __ jump_from_interpreted(xmethod); 3365 3366 __ bind(notVFinal); 3367 3368 // Get receiver klass into x13 3369 __ restore_locals(); 3370 __ load_klass(x13, x12); 3371 3372 Label no_such_method; 3373 3374 // Preserve method for the throw_AbstractMethodErrorVerbose. 3375 __ mv(x28, xmethod); 3376 // Receiver subtype check against REFC. 3377 // Superklass in x10. Subklass in x13. Blows t1, x30 3378 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3379 x13, x10, noreg, 3380 // outputs: scan temp. reg, scan temp. reg 3381 t1, x30, 3382 no_such_interface, 3383 /*return_method=*/false); 3384 3385 // profile this call 3386 __ profile_virtual_call(x13, x30, x9); 3387 3388 // Get declaring interface class from method, and itable index 3389 __ load_method_holder(x10, xmethod); 3390 __ lwu(xmethod, Address(xmethod, Method::itable_index_offset())); 3391 __ subw(xmethod, xmethod, Method::itable_index_max); 3392 __ negw(xmethod, xmethod); 3393 3394 // Preserve recvKlass for throw_AbstractMethodErrorVerbose 3395 __ mv(xlocals, x13); 3396 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3397 xlocals, x10, xmethod, 3398 // outputs: method, scan temp. reg 3399 xmethod, x30, 3400 no_such_interface); 3401 3402 // xmethod: Method to call 3403 // x12: receiver 3404 // Check for abstract method error 3405 // Note: This should be done more efficiently via a throw_abstract_method_error 3406 // interpreter entry point and a conditional jump to it in case of a null 3407 // method. 3408 __ beqz(xmethod, no_such_method); 3409 3410 __ profile_arguments_type(x13, xmethod, x30, true); 3411 3412 // do the call 3413 // x12: receiver 3414 // xmethod: Method 3415 __ jump_from_interpreted(xmethod); 3416 __ should_not_reach_here(); 3417 3418 // exception handling code follows ... 3419 // note: must restore interpreter registers to canonical 3420 // state for exception handling to work correctly! 3421 3422 __ bind(no_such_method); 3423 // throw exception 3424 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3425 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3426 // Pass arguments for generating a verbose error message. 3427 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), x13, x28); 3428 // the call_VM checks for exception, so we should never return here. 3429 __ should_not_reach_here(); 3430 3431 __ bind(no_such_interface); 3432 // throw exceptiong 3433 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3434 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3435 // Pass arguments for generating a verbose error message. 3436 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3437 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), x13, x10); 3438 // the call_VM checks for exception, so we should never return here. 3439 __ should_not_reach_here(); 3440 return; 3441 } 3442 3443 void TemplateTable::invokehandle(int byte_no) { 3444 transition(vtos, vtos); 3445 assert(byte_no == f1_byte, "use this argument"); 3446 3447 load_resolved_method_entry_handle(x12, // ResolvedMethodEntry* 3448 xmethod, // Method* 3449 x10, // Resolved reference 3450 x13); // flags 3451 prepare_invoke(x12, x12); 3452 3453 __ verify_method_ptr(x12); 3454 __ verify_oop(x12); 3455 __ null_check(x12); 3456 3457 // FIXME: profile the LambdaForm also 3458 3459 // x30 is safe to use here as a temp reg because it is about to 3460 // be clobbered by jump_from_interpreted(). 3461 __ profile_final_call(x30); 3462 __ profile_arguments_type(x30, xmethod, x14, true); 3463 3464 __ jump_from_interpreted(xmethod); 3465 } 3466 3467 void TemplateTable::invokedynamic(int byte_no) { 3468 transition(vtos, vtos); 3469 assert(byte_no == f1_byte, "use this argument"); 3470 3471 load_invokedynamic_entry(xmethod); 3472 3473 // x10: CallSite object (from cpool->resolved_references[]) 3474 // xmethod: MH.linkToCallSite method 3475 3476 // Note: x10_callsite is already pushed 3477 3478 // %%% should make a type profile for any invokedynamic that takes a ref argument 3479 // profile this call 3480 __ profile_call(xbcp); 3481 __ profile_arguments_type(x13, xmethod, x30, false); 3482 3483 __ verify_oop(x10); 3484 3485 __ jump_from_interpreted(xmethod); 3486 } 3487 3488 //----------------------------------------------------------------------------- 3489 // Allocation 3490 3491 void TemplateTable::_new() { 3492 transition(vtos, atos); 3493 3494 __ get_unsigned_2_byte_index_at_bcp(x13, 1); 3495 Label slow_case; 3496 Label done; 3497 Label initialize_header; 3498 3499 __ get_cpool_and_tags(x14, x10); 3500 // Make sure the class we're about to instantiate has been resolved. 3501 // This is done before loading InstanceKlass to be consistent with the order 3502 // how Constant Pool is update (see ConstantPool::klass_at_put) 3503 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3504 __ add(t0, x10, x13); 3505 __ la(t0, Address(t0, tags_offset)); 3506 __ lbu(t0, t0); 3507 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3508 __ subi(t1, t0, (u1)JVM_CONSTANT_Class); 3509 __ bnez(t1, slow_case); 3510 3511 // get InstanceKlass 3512 __ load_resolved_klass_at_offset(x14, x13, x14, t0); 3513 3514 // make sure klass is initialized 3515 assert(VM_Version::supports_fast_class_init_checks(), 3516 "Optimization requires support for fast class initialization checks"); 3517 __ clinit_barrier(x14, t0, nullptr /*L_fast_path*/, &slow_case); 3518 3519 // get instance_size in InstanceKlass (scaled to a count of bytes) 3520 __ lwu(x13, Address(x14, Klass::layout_helper_offset())); 3521 // test to see if is malformed in some way 3522 __ test_bit(t0, x13, exact_log2(Klass::_lh_instance_slow_path_bit)); 3523 __ bnez(t0, slow_case); 3524 3525 // Allocate the instance: 3526 // If TLAB is enabled: 3527 // Try to allocate in the TLAB. 3528 // If fails, go to the slow path. 3529 // Initialize the allocation. 3530 // Exit. 3531 // Go to slow path. 3532 3533 if (UseTLAB) { 3534 __ tlab_allocate(x10, x13, 0, noreg, x11, slow_case); 3535 3536 if (ZeroTLAB) { 3537 // the fields have been already cleared 3538 __ j(initialize_header); 3539 } 3540 3541 // The object is initialized before the header. If the object size is 3542 // zero, go directly to the header initialization. 3543 if (UseCompactObjectHeaders) { 3544 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3545 __ subi(x13, x13, oopDesc::base_offset_in_bytes()); 3546 } else { 3547 __ subi(x13, x13, sizeof(oopDesc)); 3548 } 3549 __ beqz(x13, initialize_header); 3550 3551 // Initialize object fields 3552 { 3553 if (UseCompactObjectHeaders) { 3554 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned"); 3555 __ addi(x12, x10, oopDesc::base_offset_in_bytes()); 3556 } else { 3557 __ addi(x12, x10, sizeof(oopDesc)); 3558 } 3559 Label loop; 3560 __ bind(loop); 3561 __ sd(zr, Address(x12)); 3562 __ addi(x12, x12, BytesPerLong); 3563 __ subi(x13, x13, BytesPerLong); 3564 __ bnez(x13, loop); 3565 } 3566 3567 // initialize object hader only. 3568 __ bind(initialize_header); 3569 if (UseCompactObjectHeaders) { 3570 __ ld(t0, Address(x14, Klass::prototype_header_offset())); 3571 __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes())); 3572 } else { 3573 __ mv(t0, (intptr_t)markWord::prototype().value()); 3574 __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes())); 3575 __ store_klass_gap(x10, zr); // zero klass gap for compressed oops 3576 __ store_klass(x10, x14); // store klass last 3577 } 3578 3579 if (DTraceAllocProbes) { 3580 // Trigger dtrace event for fastpath 3581 __ push(atos); // save the return value 3582 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), x10); 3583 __ pop(atos); // restore the return value 3584 } 3585 __ j(done); 3586 } 3587 3588 // slow case 3589 __ bind(slow_case); 3590 __ get_constant_pool(c_rarg1); 3591 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3592 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3593 __ verify_oop(x10); 3594 3595 // continue 3596 __ bind(done); 3597 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3598 __ membar(MacroAssembler::StoreStore); 3599 } 3600 3601 void TemplateTable::newarray() { 3602 transition(itos, atos); 3603 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3604 __ mv(c_rarg2, x10); 3605 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3606 c_rarg1, c_rarg2); 3607 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3608 __ membar(MacroAssembler::StoreStore); 3609 } 3610 3611 void TemplateTable::anewarray() { 3612 transition(itos, atos); 3613 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3614 __ get_constant_pool(c_rarg1); 3615 __ mv(c_rarg3, x10); 3616 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3617 c_rarg1, c_rarg2, c_rarg3); 3618 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3619 __ membar(MacroAssembler::StoreStore); 3620 } 3621 3622 void TemplateTable::arraylength() { 3623 transition(atos, itos); 3624 __ lwu(x10, Address(x10, arrayOopDesc::length_offset_in_bytes())); 3625 } 3626 3627 void TemplateTable::checkcast() { 3628 transition(atos, atos); 3629 Label done, is_null, ok_is_subtype, quicked, resolved; 3630 __ beqz(x10, is_null); 3631 3632 // Get cpool & tags index 3633 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array 3634 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index 3635 // See if bytecode has already been quicked 3636 __ addi(t0, x13, Array<u1>::base_offset_in_bytes()); 3637 __ add(x11, t0, x9); 3638 __ lbu(x11, x11); 3639 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3640 __ subi(t0, x11, (u1)JVM_CONSTANT_Class); 3641 __ beqz(t0, quicked); 3642 3643 __ push(atos); // save receiver for result, and for GC 3644 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3645 __ get_vm_result_metadata(x10, xthread); 3646 __ pop_reg(x13); // restore receiver 3647 __ j(resolved); 3648 3649 // Get superklass in x10 and subklass in x13 3650 __ bind(quicked); 3651 __ mv(x13, x10); // Save object in x13; x10 needed for subtype check 3652 __ load_resolved_klass_at_offset(x12, x9, x10, t0); // x10 = klass 3653 3654 __ bind(resolved); 3655 __ load_klass(x9, x13); 3656 3657 // Generate subtype check. Blows x12, x15. Object in x13. 3658 // Superklass in x10. Subklass in x9. 3659 __ gen_subtype_check(x9, ok_is_subtype); 3660 3661 // Come here on failure 3662 __ push_reg(x13); 3663 // object is at TOS 3664 __ j(RuntimeAddress(Interpreter::_throw_ClassCastException_entry)); 3665 3666 // Come here on success 3667 __ bind(ok_is_subtype); 3668 __ mv(x10, x13); // Restore object in x13 3669 3670 // Collect counts on whether this test sees nulls a lot or not. 3671 if (ProfileInterpreter) { 3672 __ j(done); 3673 __ bind(is_null); 3674 __ profile_null_seen(x12); 3675 } else { 3676 __ bind(is_null); // same as 'done' 3677 } 3678 __ bind(done); 3679 } 3680 3681 void TemplateTable::instanceof() { 3682 transition(atos, itos); 3683 Label done, is_null, ok_is_subtype, quicked, resolved; 3684 __ beqz(x10, is_null); 3685 3686 // Get cpool & tags index 3687 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array 3688 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index 3689 // See if bytecode has already been quicked 3690 __ addi(t0, x13, Array<u1>::base_offset_in_bytes()); 3691 __ add(x11, t0, x9); 3692 __ lbu(x11, x11); 3693 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3694 __ subi(t0, x11, (u1)JVM_CONSTANT_Class); 3695 __ beqz(t0, quicked); 3696 3697 __ push(atos); // save receiver for result, and for GC 3698 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3699 __ get_vm_result_metadata(x10, xthread); 3700 __ pop_reg(x13); // restore receiver 3701 __ verify_oop(x13); 3702 __ load_klass(x13, x13); 3703 __ j(resolved); 3704 3705 // Get superklass in x10 and subklass in x13 3706 __ bind(quicked); 3707 __ load_klass(x13, x10); 3708 __ load_resolved_klass_at_offset(x12, x9, x10, t0); 3709 3710 __ bind(resolved); 3711 3712 // Generate subtype check. Blows x12, x15 3713 // Superklass in x10. Subklass in x13. 3714 __ gen_subtype_check(x13, ok_is_subtype); 3715 3716 // Come here on failure 3717 __ mv(x10, zr); 3718 __ j(done); 3719 // Come here on success 3720 __ bind(ok_is_subtype); 3721 __ mv(x10, 1); 3722 3723 // Collect counts on whether this test sees nulls a lot or not. 3724 if (ProfileInterpreter) { 3725 __ j(done); 3726 __ bind(is_null); 3727 __ profile_null_seen(x12); 3728 } else { 3729 __ bind(is_null); // same as 'done' 3730 } 3731 __ bind(done); 3732 // x10 = 0: obj is null or obj is not an instanceof the specified klass 3733 // x10 = 1: obj isn't null and obj is an instanceof the specified klass 3734 } 3735 3736 //----------------------------------------------------------------------------- 3737 // Breakpoints 3738 3739 void TemplateTable::_breakpoint() { 3740 // Note: We get here even if we are single stepping.. 3741 // jbug inists on setting breakpoints at every bytecode 3742 // even if we are in single step mode. 3743 3744 transition(vtos, vtos); 3745 3746 // get the unpatched byte code 3747 __ get_method(c_rarg1); 3748 __ call_VM(noreg, 3749 CAST_FROM_FN_PTR(address, 3750 InterpreterRuntime::get_original_bytecode_at), 3751 c_rarg1, xbcp); 3752 __ mv(x9, x10); 3753 3754 // post the breakpoint event 3755 __ call_VM(noreg, 3756 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3757 xmethod, xbcp); 3758 3759 // complete the execution of original bytecode 3760 __ mv(t0, x9); 3761 __ dispatch_only_normal(vtos); 3762 } 3763 3764 //----------------------------------------------------------------------------- 3765 // Exceptions 3766 3767 void TemplateTable::athrow() { 3768 transition(atos, vtos); 3769 __ null_check(x10); 3770 __ j(RuntimeAddress(Interpreter::throw_exception_entry())); 3771 } 3772 3773 //----------------------------------------------------------------------------- 3774 // Synchronization 3775 // 3776 // Note: monitorenter & exit are symmetric routines; which is reflected 3777 // in the assembly code structure as well 3778 // 3779 // Stack layout: 3780 // 3781 // [expressions ] <--- esp = expression stack top 3782 // .. 3783 // [expressions ] 3784 // [monitor entry] <--- monitor block top = expression stack bot 3785 // .. 3786 // [monitor entry] 3787 // [frame data ] <--- monitor block bot 3788 // ... 3789 // [saved fp ] <--- fp 3790 3791 void TemplateTable::monitorenter() { 3792 transition(atos, vtos); 3793 3794 // check for null object 3795 __ null_check(x10); 3796 3797 const Address monitor_block_top( 3798 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3799 const Address monitor_block_bot( 3800 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 3801 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3802 3803 Label allocated; 3804 3805 // initialize entry pointer 3806 __ mv(c_rarg1, zr); // points to free slot or null 3807 3808 // find a free slot in the monitor block (result in c_rarg1) 3809 { 3810 Label entry, loop, exit, notUsed; 3811 __ ld(c_rarg3, monitor_block_top); // derelativize pointer 3812 __ shadd(c_rarg3, c_rarg3, fp, c_rarg3, LogBytesPerWord); 3813 // Now c_rarg3 points to current entry, starting with top-most entry 3814 3815 __ la(c_rarg2, monitor_block_bot); // points to word before bottom 3816 3817 __ j(entry); 3818 3819 __ bind(loop); 3820 // check if current entry is used 3821 // if not used then remember entry in c_rarg1 3822 __ ld(t0, Address(c_rarg3, BasicObjectLock::obj_offset())); 3823 __ bnez(t0, notUsed); 3824 __ mv(c_rarg1, c_rarg3); 3825 __ bind(notUsed); 3826 // check if current entry is for same object 3827 // if same object then stop searching 3828 __ beq(x10, t0, exit); 3829 // otherwise advance to next entry 3830 __ add(c_rarg3, c_rarg3, entry_size); 3831 __ bind(entry); 3832 // check if bottom reached 3833 // if not at bottom then check this entry 3834 __ bne(c_rarg3, c_rarg2, loop); 3835 __ bind(exit); 3836 } 3837 3838 __ bnez(c_rarg1, allocated); // check if a slot has been found and 3839 // if found, continue with that on 3840 3841 // allocate one if there's no free slot 3842 { 3843 Label entry, loop; 3844 // 1. compute new pointers // esp: old expression stack top 3845 3846 __ check_extended_sp(); 3847 __ sub(sp, sp, entry_size); // make room for the monitor 3848 __ sub(t0, sp, fp); 3849 __ srai(t0, t0, Interpreter::logStackElementSize); 3850 __ sd(t0, Address(fp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3851 3852 __ ld(c_rarg1, monitor_block_bot); // derelativize pointer 3853 __ shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord); 3854 // Now c_rarg1 points to the old expression stack bottom 3855 3856 __ sub(esp, esp, entry_size); // move expression stack top 3857 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3858 __ mv(c_rarg3, esp); // set start value for copy loop 3859 __ sub(t0, c_rarg1, fp); // relativize pointer 3860 __ srai(t0, t0, Interpreter::logStackElementSize); 3861 __ sd(t0, monitor_block_bot); // set new monitor block bottom 3862 3863 __ j(entry); 3864 // 2. move expression stack contents 3865 __ bind(loop); 3866 __ ld(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3867 // word from old location 3868 __ sd(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3869 __ addi(c_rarg3, c_rarg3, wordSize); // advance to next word 3870 __ bind(entry); 3871 __ bne(c_rarg3, c_rarg1, loop); // check if bottom reached.if not at bottom 3872 // then copy next word 3873 } 3874 3875 // call run-time routine 3876 // c_rarg1: points to monitor entry 3877 __ bind(allocated); 3878 3879 // Increment bcp to point to the next bytecode, so exception 3880 // handling for async. exceptions work correctly. 3881 // The object has already been popped from the stack, so the 3882 // expression stack looks correct. 3883 __ addi(xbcp, xbcp, 1); 3884 3885 // store object 3886 __ sd(x10, Address(c_rarg1, BasicObjectLock::obj_offset())); 3887 __ lock_object(c_rarg1); 3888 3889 // check to make sure this monitor doesn't cause stack overflow after locking 3890 __ save_bcp(); // in case of exception 3891 __ generate_stack_overflow_check(0); 3892 3893 // The bcp has already been incremented. Just need to dispatch to 3894 // next instruction. 3895 __ dispatch_next(vtos); 3896 } 3897 3898 void TemplateTable::monitorexit() { 3899 transition(atos, vtos); 3900 3901 // check for null object 3902 __ null_check(x10); 3903 3904 const Address monitor_block_top( 3905 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3906 const Address monitor_block_bot( 3907 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 3908 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3909 3910 Label found; 3911 3912 // find matching slot 3913 { 3914 Label entry, loop; 3915 __ ld(c_rarg1, monitor_block_top); // derelativize pointer 3916 __ shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord); 3917 // Now c_rarg1 points to current entry, starting with top-most entry 3918 3919 __ la(c_rarg2, monitor_block_bot); // points to word before bottom 3920 // of monitor block 3921 __ j(entry); 3922 3923 __ bind(loop); 3924 // check if current entry is for same object 3925 __ ld(t0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3926 // if same object then stop searching 3927 __ beq(x10, t0, found); 3928 // otherwise advance to next entry 3929 __ add(c_rarg1, c_rarg1, entry_size); 3930 __ bind(entry); 3931 // check if bottom reached 3932 // if not at bottom then check this entry 3933 __ bne(c_rarg1, c_rarg2, loop); 3934 } 3935 3936 // error handling. Unlocking was not block-structured 3937 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3938 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3939 __ should_not_reach_here(); 3940 3941 // call run-time routine 3942 __ bind(found); 3943 __ push_ptr(x10); // make sure object is on stack (contract with oopMaps) 3944 __ unlock_object(c_rarg1); 3945 __ pop_ptr(x10); // discard object 3946 } 3947 3948 // Wide instructions 3949 void TemplateTable::wide() { 3950 __ load_unsigned_byte(x9, at_bcp(1)); 3951 __ mv(t0, (address)Interpreter::_wentry_point); 3952 __ shadd(t0, x9, t0, t1, 3); 3953 __ ld(t1, Address(t0)); 3954 __ jr(t1); 3955 } 3956 3957 // Multi arrays 3958 void TemplateTable::multianewarray() { 3959 transition(vtos, atos); 3960 __ load_unsigned_byte(x10, at_bcp(3)); // get number of dimensions 3961 // last dim is on top of stack; we want address of first one: 3962 // first_addr = last_addr + (ndims - 1) * wordSize 3963 __ shadd(c_rarg1, x10, esp, c_rarg1, 3); 3964 __ subi(c_rarg1, c_rarg1, wordSize); 3965 call_VM(x10, 3966 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3967 c_rarg1); 3968 __ load_unsigned_byte(x11, at_bcp(3)); 3969 __ shadd(esp, x11, esp, t0, 3); 3970 }