1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 *
7 * This code is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 only, as
9 * published by the Free Software Foundation.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 *
25 */
26
27 #include "asm/macroAssembler.inline.hpp"
28 #include "compiler/disassembler.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/interp_masm.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "interpreter/interpreterRuntime.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/method.inline.hpp"
38 #include "oops/methodData.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "oops/resolvedFieldEntry.hpp"
42 #include "oops/resolvedIndyEntry.hpp"
43 #include "oops/resolvedMethodEntry.hpp"
44 #include "prims/jvmtiExport.hpp"
45 #include "prims/methodHandles.hpp"
46 #include "runtime/frame.inline.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "runtime/stubRoutines.hpp"
49 #include "runtime/synchronizer.hpp"
50 #include "utilities/powerOfTwo.hpp"
51
52 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)->
53
54 // Address computation: local variables
55
56 static inline Address iaddress(int n) {
57 return Address(xlocals, Interpreter::local_offset_in_bytes(n));
58 }
59
60 static inline Address laddress(int n) {
61 return iaddress(n + 1);
62 }
63
64 static inline Address faddress(int n) {
65 return iaddress(n);
66 }
67
68 static inline Address daddress(int n) {
69 return laddress(n);
70 }
71
72 static inline Address aaddress(int n) {
73 return iaddress(n);
74 }
75
76 static inline Address iaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
77 _masm->shadd(temp, r, xlocals, temp, 3);
78 return Address(temp, 0);
79 }
80
81 static inline Address laddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
82 _masm->shadd(temp, r, xlocals, temp, 3);
83 return Address(temp, Interpreter::local_offset_in_bytes(1));;
84 }
85
86 static inline Address faddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
87 return iaddress(r, temp, _masm);
88 }
89
90 static inline Address daddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
91 return laddress(r, temp, _masm);
92 }
93
94 static inline Address aaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
95 return iaddress(r, temp, _masm);
96 }
97
98 static inline Address at_rsp() {
99 return Address(esp, 0);
100 }
101
102 // At top of Java expression stack which may be different than esp(). It
103 // isn't for category 1 objects.
104 static inline Address at_tos () {
105 return Address(esp, Interpreter::expr_offset_in_bytes(0));
106 }
107
108 static inline Address at_tos_p1() {
109 return Address(esp, Interpreter::expr_offset_in_bytes(1));
110 }
111
112 static inline Address at_tos_p2() {
113 return Address(esp, Interpreter::expr_offset_in_bytes(2));
114 }
115
116 static inline Address at_tos_p3() {
117 return Address(esp, Interpreter::expr_offset_in_bytes(3));
118 }
119
120 static inline Address at_tos_p4() {
121 return Address(esp, Interpreter::expr_offset_in_bytes(4));
122 }
123
124 static inline Address at_tos_p5() {
125 return Address(esp, Interpreter::expr_offset_in_bytes(5));
126 }
127
128 Address TemplateTable::at_bcp(int offset) {
129 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
130 return Address(xbcp, offset);
131 }
132
133 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
134 Register temp_reg, bool load_bc_into_bc_reg /*=true*/,
135 int byte_no) {
136 assert_different_registers(bc_reg, temp_reg);
137 if (!RewriteBytecodes) { return; }
138 Label L_patch_done;
139
140 switch (bc) {
141 case Bytecodes::_fast_aputfield: // fall through
142 case Bytecodes::_fast_bputfield: // fall through
143 case Bytecodes::_fast_zputfield: // fall through
144 case Bytecodes::_fast_cputfield: // fall through
145 case Bytecodes::_fast_dputfield: // fall through
146 case Bytecodes::_fast_fputfield: // fall through
147 case Bytecodes::_fast_iputfield: // fall through
148 case Bytecodes::_fast_lputfield: // fall through
149 case Bytecodes::_fast_sputfield: {
150 // We skip bytecode quickening for putfield instructions when
151 // the put_code written to the constant pool cache is zero.
152 // This is required so that every execution of this instruction
153 // calls out to InterpreterRuntime::resolve_get_put to do
154 // additional, required work.
155 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
156 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
157 __ load_field_entry(temp_reg, bc_reg);
158 if (byte_no == f1_byte) {
159 __ la(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::get_code_offset())));
160 } else {
161 __ la(temp_reg, Address(temp_reg, in_bytes(ResolvedFieldEntry::put_code_offset())));
162 }
163 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
164 __ lbu(temp_reg, Address(temp_reg, 0));
165 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
166 __ mv(bc_reg, bc);
167 __ beqz(temp_reg, L_patch_done);
168 break;
169 }
170 default:
171 assert(byte_no == -1, "sanity");
172 // the pair bytecodes have already done the load.
173 if (load_bc_into_bc_reg) {
174 __ mv(bc_reg, bc);
175 }
176 }
177
178 if (JvmtiExport::can_post_breakpoint()) {
179 Label L_fast_patch;
180 // if a breakpoint is present we can't rewrite the stream directly
181 __ load_unsigned_byte(temp_reg, at_bcp(0));
182 __ subi(temp_reg, temp_reg, Bytecodes::_breakpoint); // temp_reg is temporary register.
183 __ bnez(temp_reg, L_fast_patch);
184 // Let breakpoint table handling rewrite to quicker bytecode
185 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), xmethod, xbcp, bc_reg);
186 __ j(L_patch_done);
187 __ bind(L_fast_patch);
188 }
189
190 #ifdef ASSERT
191 Label L_okay;
192 __ load_unsigned_byte(temp_reg, at_bcp(0));
193 __ beq(temp_reg, bc_reg, L_okay);
194 __ subi(temp_reg, temp_reg, (int)Bytecodes::java_code(bc));
195 __ beqz(temp_reg, L_okay);
196 __ stop("patching the wrong bytecode");
197 __ bind(L_okay);
198 #endif
199
200 // Patch bytecode with release store to coordinate with ResolvedFieldEntry loads
201 // in fast bytecode codelets. load_field_entry has a memory barrier that gains
202 // the needed ordering, together with control dependency on entering the fast codelet
203 // itself.
204 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
205 __ sb(bc_reg, at_bcp(0));
206 __ bind(L_patch_done);
207 }
208
209 // Individual instructions
210
211 void TemplateTable::nop() {
212 transition(vtos, vtos);
213 // nothing to do
214 }
215
216 void TemplateTable::shouldnotreachhere() {
217 transition(vtos, vtos);
218 __ stop("should not reach here bytecode");
219 }
220
221 void TemplateTable::aconst_null() {
222 transition(vtos, atos);
223 __ mv(x10, zr);
224 }
225
226 void TemplateTable::iconst(int value) {
227 transition(vtos, itos);
228 __ mv(x10, value);
229 }
230
231 void TemplateTable::lconst(int value) {
232 transition(vtos, ltos);
233 __ mv(x10, value);
234 }
235
236 void TemplateTable::fconst(int value) {
237 transition(vtos, ftos);
238 static float fBuf[2] = {1.0, 2.0};
239 __ mv(t0, (intptr_t)fBuf);
240 switch (value) {
241 case 0:
242 __ fmv_w_x(f10, zr);
243 break;
244 case 1:
245 __ flw(f10, Address(t0, 0));
246 break;
247 case 2:
248 __ flw(f10, Address(t0, sizeof(float)));
249 break;
250 default:
251 ShouldNotReachHere();
252 }
253 }
254
255 void TemplateTable::dconst(int value) {
256 transition(vtos, dtos);
257 static double dBuf[2] = {1.0, 2.0};
258 __ mv(t0, (intptr_t)dBuf);
259 switch (value) {
260 case 0:
261 __ fmv_d_x(f10, zr);
262 break;
263 case 1:
264 __ fld(f10, Address(t0, 0));
265 break;
266 case 2:
267 __ fld(f10, Address(t0, sizeof(double)));
268 break;
269 default:
270 ShouldNotReachHere();
271 }
272 }
273
274 void TemplateTable::bipush() {
275 transition(vtos, itos);
276 __ load_signed_byte(x10, at_bcp(1));
277 }
278
279 void TemplateTable::sipush() {
280 transition(vtos, itos);
281 __ load_signed_byte(x10, at_bcp(1));
282 __ load_unsigned_byte(t1, at_bcp(2));
283 __ slli(x10, x10, 8);
284 __ add(x10, x10, t1);
285 }
286
287 void TemplateTable::ldc(LdcType type) {
288 transition(vtos, vtos);
289 Label call_ldc, notFloat, notClass, notInt, Done;
290
291 if (is_ldc_wide(type)) {
292 __ get_unsigned_2_byte_index_at_bcp(x11, 1);
293 } else {
294 __ load_unsigned_byte(x11, at_bcp(1));
295 }
296 __ get_cpool_and_tags(x12, x10);
297
298 const int base_offset = ConstantPool::header_size() * wordSize;
299 const int tags_offset = Array<u1>::base_offset_in_bytes();
300
301 // get type
302 __ addi(x13, x11, tags_offset);
303 __ add(x13, x10, x13);
304 __ lbu(x13, Address(x13, 0));
305 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
306
307 // unresolved class - get the resolved class
308 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClass);
309 __ beq(x13, t1, call_ldc);
310
311 // unresolved class in error state - call into runtime to throw the error
312 // from the first resolution attempt
313 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClassInError);
314 __ beq(x13, t1, call_ldc);
315
316 // resolved class - need to call vm to get java mirror of the class
317 __ mv(t1, (u1)JVM_CONSTANT_Class);
318 __ bne(x13, t1, notClass);
319
320 __ bind(call_ldc);
321 __ mv(c_rarg1, is_ldc_wide(type) ? 1 : 0);
322 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
323 __ push_ptr(x10);
324 __ verify_oop(x10);
325 __ j(Done);
326
327 __ bind(notClass);
328 __ mv(t1, (u1)JVM_CONSTANT_Float);
329 __ bne(x13, t1, notFloat);
330
331 // ftos
332 __ shadd(x11, x11, x12, x11, 3);
333 __ flw(f10, Address(x11, base_offset));
334 __ push_f(f10);
335 __ j(Done);
336
337 __ bind(notFloat);
338
339 __ mv(t1, (u1)JVM_CONSTANT_Integer);
340 __ bne(x13, t1, notInt);
341
342 // itos
343 __ shadd(x11, x11, x12, x11, 3);
344 __ lw(x10, Address(x11, base_offset));
345 __ push_i(x10);
346 __ j(Done);
347
348 __ bind(notInt);
349 condy_helper(Done);
350
351 __ bind(Done);
352 }
353
354 // Fast path for caching oop constants.
355 void TemplateTable::fast_aldc(LdcType type) {
356 transition(vtos, atos);
357
358 const Register result = x10;
359 const Register tmp = x11;
360 const Register rarg = x12;
361
362 const int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
363
364 Label resolved;
365
366 // We are resolved if the resolved reference cache entry contains a
367 // non-null object (String, MethodType, etc.)
368 assert_different_registers(result, tmp);
369 // register result is trashed by next load, let's use it as temporary register
370 __ get_cache_index_at_bcp(tmp, result, 1, index_size);
371 __ load_resolved_reference_at_index(result, tmp);
372 __ bnez(result, resolved);
373
374 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
375
376 // first time invocation - must resolve first
377 __ mv(rarg, (int)bytecode());
378 __ call_VM(result, entry, rarg);
379
380 __ bind(resolved);
381
382 { // Check for the null sentinel.
383 // If we just called the VM, it already did the mapping for us,
384 // but it's harmless to retry.
385 Label notNull;
386
387 // Stash null_sentinel address to get its value later
388 int32_t offset = 0;
389 __ mv(rarg, Universe::the_null_sentinel_addr(), offset);
390 __ ld(tmp, Address(rarg, offset));
391 __ resolve_oop_handle(tmp, x15, t1);
392 __ bne(result, tmp, notNull);
393 __ mv(result, zr); // null object reference
394 __ bind(notNull);
395 }
396
397 if (VerifyOops) {
398 // Safe to call with 0 result
399 __ verify_oop(result);
400 }
401 }
402
403 void TemplateTable::ldc2_w() {
404 transition(vtos, vtos);
405 Label notDouble, notLong, Done;
406 __ get_unsigned_2_byte_index_at_bcp(x10, 1);
407
408 __ get_cpool_and_tags(x11, x12);
409 const int base_offset = ConstantPool::header_size() * wordSize;
410 const int tags_offset = Array<u1>::base_offset_in_bytes();
411
412 // get type
413 __ add(x12, x12, x10);
414 __ load_unsigned_byte(x12, Address(x12, tags_offset));
415 __ mv(t1, JVM_CONSTANT_Double);
416 __ bne(x12, t1, notDouble);
417
418 // dtos
419 __ shadd(x12, x10, x11, x12, 3);
420 __ fld(f10, Address(x12, base_offset));
421 __ push_d(f10);
422 __ j(Done);
423
424 __ bind(notDouble);
425 __ mv(t1, (int)JVM_CONSTANT_Long);
426 __ bne(x12, t1, notLong);
427
428 // ltos
429 __ shadd(x10, x10, x11, x10, 3);
430 __ ld(x10, Address(x10, base_offset));
431 __ push_l(x10);
432 __ j(Done);
433
434 __ bind(notLong);
435 condy_helper(Done);
436 __ bind(Done);
437 }
438
439 void TemplateTable::condy_helper(Label& Done) {
440 const Register obj = x10;
441 const Register rarg = x11;
442 const Register flags = x12;
443 const Register off = x13;
444
445 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
446
447 __ mv(rarg, (int) bytecode());
448 __ call_VM(obj, entry, rarg);
449
450 __ get_vm_result_metadata(flags, xthread);
451
452 // VMr = obj = base address to find primitive value to push
453 // VMr2 = flags = (tos, off) using format of CPCE::_flags
454 __ mv(off, flags);
455 __ mv(t0, ConstantPoolCache::field_index_mask);
456 __ andrw(off, off, t0);
457
458 __ add(off, obj, off);
459 const Address field(off, 0); // base + R---->base + offset
460
461 __ slli(flags, flags, XLEN - (ConstantPoolCache::tos_state_shift + ConstantPoolCache::tos_state_bits));
462 __ srli(flags, flags, XLEN - ConstantPoolCache::tos_state_bits); // (1 << 5) - 4 --> 28~31==> flags:0~3
463
464 switch (bytecode()) {
465 case Bytecodes::_ldc: // fall through
466 case Bytecodes::_ldc_w: {
467 // tos in (itos, ftos, stos, btos, ctos, ztos)
468 Label notInt, notFloat, notShort, notByte, notChar, notBool;
469 __ mv(t1, itos);
470 __ bne(flags, t1, notInt);
471 // itos
472 __ lw(x10, field);
473 __ push(itos);
474 __ j(Done);
475
476 __ bind(notInt);
477 __ mv(t1, ftos);
478 __ bne(flags, t1, notFloat);
479 // ftos
480 __ load_float(field);
481 __ push(ftos);
482 __ j(Done);
483
484 __ bind(notFloat);
485 __ mv(t1, stos);
486 __ bne(flags, t1, notShort);
487 // stos
488 __ load_signed_short(x10, field);
489 __ push(stos);
490 __ j(Done);
491
492 __ bind(notShort);
493 __ mv(t1, btos);
494 __ bne(flags, t1, notByte);
495 // btos
496 __ load_signed_byte(x10, field);
497 __ push(btos);
498 __ j(Done);
499
500 __ bind(notByte);
501 __ mv(t1, ctos);
502 __ bne(flags, t1, notChar);
503 // ctos
504 __ load_unsigned_short(x10, field);
505 __ push(ctos);
506 __ j(Done);
507
508 __ bind(notChar);
509 __ mv(t1, ztos);
510 __ bne(flags, t1, notBool);
511 // ztos
512 __ load_signed_byte(x10, field);
513 __ push(ztos);
514 __ j(Done);
515
516 __ bind(notBool);
517 break;
518 }
519
520 case Bytecodes::_ldc2_w: {
521 Label notLong, notDouble;
522 __ mv(t1, ltos);
523 __ bne(flags, t1, notLong);
524 // ltos
525 __ ld(x10, field);
526 __ push(ltos);
527 __ j(Done);
528
529 __ bind(notLong);
530 __ mv(t1, dtos);
531 __ bne(flags, t1, notDouble);
532 // dtos
533 __ load_double(field);
534 __ push(dtos);
535 __ j(Done);
536
537 __ bind(notDouble);
538 break;
539 }
540
541 default:
542 ShouldNotReachHere();
543 }
544
545 __ stop("bad ldc/condy");
546 }
547
548 void TemplateTable::locals_index(Register reg, int offset) {
549 __ lbu(reg, at_bcp(offset));
550 __ neg(reg, reg);
551 }
552
553 void TemplateTable::iload() {
554 iload_internal();
555 }
556
557 void TemplateTable::nofast_iload() {
558 iload_internal(may_not_rewrite);
559 }
560
561 void TemplateTable::iload_internal(RewriteControl rc) {
562 transition(vtos, itos);
563 if (RewriteFrequentPairs && rc == may_rewrite) {
564 Label rewrite, done;
565 const Register bc = x14;
566
567 // get next bytecode
568 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
569
570 // if _iload, wait to rewrite to iload2. We only want to rewrite the
571 // last two iloads in a pair. Comparing against fast_iload means that
572 // the next bytecode is neither an iload or a caload, and therefore
573 // an iload pair.
574 __ mv(t1, Bytecodes::_iload);
575 __ beq(x11, t1, done);
576
577 // if _fast_iload rewrite to _fast_iload2
578 __ mv(t1, Bytecodes::_fast_iload);
579 __ mv(bc, Bytecodes::_fast_iload2);
580 __ beq(x11, t1, rewrite);
581
582 // if _caload rewrite to _fast_icaload
583 __ mv(t1, Bytecodes::_caload);
584 __ mv(bc, Bytecodes::_fast_icaload);
585 __ beq(x11, t1, rewrite);
586
587 // else rewrite to _fast_iload
588 __ mv(bc, Bytecodes::_fast_iload);
589
590 // rewrite
591 // bc: new bytecode
592 __ bind(rewrite);
593 patch_bytecode(Bytecodes::_iload, bc, x11, false);
594 __ bind(done);
595
596 }
597
598 // do iload, get the local value into tos
599 locals_index(x11);
600 __ lw(x10, iaddress(x11, x10, _masm));
601 }
602
603 void TemplateTable::fast_iload2() {
604 transition(vtos, itos);
605 locals_index(x11);
606 __ lw(x10, iaddress(x11, x10, _masm));
607 __ push(itos);
608 locals_index(x11, 3);
609 __ lw(x10, iaddress(x11, x10, _masm));
610 }
611
612 void TemplateTable::fast_iload() {
613 transition(vtos, itos);
614 locals_index(x11);
615 __ lw(x10, iaddress(x11, x10, _masm));
616 }
617
618 void TemplateTable::lload() {
619 transition(vtos, ltos);
620 __ lbu(x11, at_bcp(1));
621 __ slli(x11, x11, LogBytesPerWord);
622 __ sub(x11, xlocals, x11);
623 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1)));
624 }
625
626 void TemplateTable::fload() {
627 transition(vtos, ftos);
628 locals_index(x11);
629 __ flw(f10, faddress(x11, t0, _masm));
630 }
631
632 void TemplateTable::dload() {
633 transition(vtos, dtos);
634 __ lbu(x11, at_bcp(1));
635 __ slli(x11, x11, LogBytesPerWord);
636 __ sub(x11, xlocals, x11);
637 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1)));
638 }
639
640 void TemplateTable::aload() {
641 transition(vtos, atos);
642 locals_index(x11);
643 __ ld(x10, iaddress(x11, x10, _masm));
644 }
645
646 void TemplateTable::locals_index_wide(Register reg) {
647 assert_different_registers(reg, t1);
648 // Convert the 16-bit value into native byte-ordering and zero-extend
649 __ lbu(reg, at_bcp(2));
650 __ lbu(t1, at_bcp(3));
651 __ slli(reg, reg, 8);
652 __ orr(reg, reg, t1);
653 __ neg(reg, reg);
654 }
655
656 void TemplateTable::wide_iload() {
657 transition(vtos, itos);
658 locals_index_wide(x11);
659 __ lw(x10, iaddress(x11, t0, _masm));
660 }
661
662 void TemplateTable::wide_lload() {
663 transition(vtos, ltos);
664 // Convert the 16-bit value into native byte-ordering and zero-extend
665 __ lbu(x11, at_bcp(2));
666 __ lbu(t1, at_bcp(3));
667 __ slli(x11, x11, 8);
668 __ orr(x11, x11, t1);
669
670 __ slli(x11, x11, LogBytesPerWord);
671 __ sub(x11, xlocals, x11);
672 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1)));
673 }
674
675 void TemplateTable::wide_fload() {
676 transition(vtos, ftos);
677 locals_index_wide(x11);
678 __ flw(f10, faddress(x11, t0, _masm));
679 }
680
681 void TemplateTable::wide_dload() {
682 transition(vtos, dtos);
683 // Convert the 16-bit value into native byte-ordering and zero-extend
684 __ lbu(x11, at_bcp(2));
685 __ lbu(t1, at_bcp(3));
686 __ slli(x11, x11, 8);
687 __ orr(x11, x11, t1);
688
689 __ slli(x11, x11, LogBytesPerWord);
690 __ sub(x11, xlocals, x11);
691 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1)));
692 }
693
694 void TemplateTable::wide_aload() {
695 transition(vtos, atos);
696 locals_index_wide(x11);
697 __ ld(x10, aaddress(x11, t0, _masm));
698 }
699
700 void TemplateTable::index_check(Register array, Register index) {
701 // destroys x11, t0, t1
702 // sign extend index for use by indexed load
703 // check index
704 const Register length = t0;
705 __ lwu(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
706 if (index != x11) {
707 assert(x11 != array, "different registers");
708 __ mv(x11, index);
709 }
710 Label ok;
711 __ sext(index, index, 32);
712 __ bltu(index, length, ok);
713 __ mv(x13, array);
714 __ mv(t1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
715 __ jr(t1);
716 __ bind(ok);
717 }
718
719 void TemplateTable::iaload() {
720 transition(itos, itos);
721 __ mv(x11, x10);
722 __ pop_ptr(x10);
723 // x10: array
724 // x11: index
725 index_check(x10, x11); // leaves index in x11
726 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
727 __ shadd(x10, x11, x10, t0, 2);
728 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
729 __ sext(x10, x10, 32);
730 }
731
732 void TemplateTable::laload() {
733 transition(itos, ltos);
734 __ mv(x11, x10);
735 __ pop_ptr(x10);
736 // x10: array
737 // x11: index
738 index_check(x10, x11); // leaves index in x11
739 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
740 __ shadd(x10, x11, x10, t0, 3);
741 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
742 }
743
744 void TemplateTable::faload() {
745 transition(itos, ftos);
746 __ mv(x11, x10);
747 __ pop_ptr(x10);
748 // x10: array
749 // x11: index
750 index_check(x10, x11); // leaves index in x11
751 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
752 __ shadd(x10, x11, x10, t0, 2);
753 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
754 }
755
756 void TemplateTable::daload() {
757 transition(itos, dtos);
758 __ mv(x11, x10);
759 __ pop_ptr(x10);
760 // x10: array
761 // x11: index
762 index_check(x10, x11); // leaves index in x11
763 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
764 __ shadd(x10, x11, x10, t0, 3);
765 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
766 }
767
768 void TemplateTable::aaload() {
769 transition(itos, atos);
770 __ mv(x11, x10);
771 __ pop_ptr(x10);
772 // x10: array
773 // x11: index
774 index_check(x10, x11); // leaves index in x11
775 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
776 __ shadd(x10, x11, x10, t0, LogBytesPerHeapOop);
777 __ load_heap_oop(x10, Address(x10), x28, x29, IS_ARRAY);
778 }
779
780 void TemplateTable::baload() {
781 transition(itos, itos);
782 __ mv(x11, x10);
783 __ pop_ptr(x10);
784 // x10: array
785 // x11: index
786 index_check(x10, x11); // leaves index in x11
787 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
788 __ shadd(x10, x11, x10, t0, 0);
789 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
790 }
791
792 void TemplateTable::caload() {
793 transition(itos, itos);
794 __ mv(x11, x10);
795 __ pop_ptr(x10);
796 // x10: array
797 // x11: index
798 index_check(x10, x11); // leaves index in x11
799 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
800 __ shadd(x10, x11, x10, t0, 1);
801 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
802 }
803
804 // iload followed by caload frequent pair
805 void TemplateTable::fast_icaload() {
806 transition(vtos, itos);
807 // load index out of locals
808 locals_index(x12);
809 __ lw(x11, iaddress(x12, x11, _masm));
810 __ pop_ptr(x10);
811
812 // x10: array
813 // x11: index
814 index_check(x10, x11); // leaves index in x11, kills t0
815 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); // addi, max imm is 2^11
816 __ shadd(x10, x11, x10, t0, 1);
817 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
818 }
819
820 void TemplateTable::saload() {
821 transition(itos, itos);
822 __ mv(x11, x10);
823 __ pop_ptr(x10);
824 // x10: array
825 // x11: index
826 index_check(x10, x11); // leaves index in x11, kills t0
827 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
828 __ shadd(x10, x11, x10, t0, 1);
829 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
830 }
831
832 void TemplateTable::iload(int n) {
833 transition(vtos, itos);
834 __ lw(x10, iaddress(n));
835 }
836
837 void TemplateTable::lload(int n) {
838 transition(vtos, ltos);
839 __ ld(x10, laddress(n));
840 }
841
842 void TemplateTable::fload(int n) {
843 transition(vtos, ftos);
844 __ flw(f10, faddress(n));
845 }
846
847 void TemplateTable::dload(int n) {
848 transition(vtos, dtos);
849 __ fld(f10, daddress(n));
850 }
851
852 void TemplateTable::aload(int n) {
853 transition(vtos, atos);
854 __ ld(x10, iaddress(n));
855 }
856
857 void TemplateTable::aload_0() {
858 aload_0_internal();
859 }
860
861 void TemplateTable::nofast_aload_0() {
862 aload_0_internal(may_not_rewrite);
863 }
864
865 void TemplateTable::aload_0_internal(RewriteControl rc) {
866 // According to bytecode histograms, the pairs:
867 //
868 // _aload_0, _fast_igetfield
869 // _aload_0, _fast_agetfield
870 // _aload_0, _fast_fgetfield
871 //
872 // occur frequently. If RewriteFrequentPairs is set, the (slow)
873 // _aload_0 bytecode checks if the next bytecode is either
874 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
875 // rewrites the current bytecode into a pair bytecode; otherwise it
876 // rewrites the current bytecode into _fast_aload_0 that doesn't do
877 // the pair check anymore.
878 //
879 // Note: If the next bytecode is _getfield, the rewrite must be
880 // delayed, otherwise we may miss an opportunity for a pair.
881 //
882 // Also rewrite frequent pairs
883 // aload_0, aload_1
884 // aload_0, iload_1
885 // These bytecodes with a small amount of code are most profitable
886 // to rewrite
887 if (RewriteFrequentPairs && rc == may_rewrite) {
888 Label rewrite, done;
889 const Register bc = x14;
890
891 // get next bytecode
892 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
893
894 // if _getfield then wait with rewrite
895 __ mv(t1, Bytecodes::Bytecodes::_getfield);
896 __ beq(x11, t1, done);
897
898 // if _igetfield then rewrite to _fast_iaccess_0
899 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
900 __ mv(t1, Bytecodes::_fast_igetfield);
901 __ mv(bc, Bytecodes::_fast_iaccess_0);
902 __ beq(x11, t1, rewrite);
903
904 // if _agetfield then rewrite to _fast_aaccess_0
905 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
906 __ mv(t1, Bytecodes::_fast_agetfield);
907 __ mv(bc, Bytecodes::_fast_aaccess_0);
908 __ beq(x11, t1, rewrite);
909
910 // if _fgetfield then rewrite to _fast_faccess_0
911 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
912 __ mv(t1, Bytecodes::_fast_fgetfield);
913 __ mv(bc, Bytecodes::_fast_faccess_0);
914 __ beq(x11, t1, rewrite);
915
916 // else rewrite to _fast_aload0
917 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
918 __ mv(bc, Bytecodes::Bytecodes::_fast_aload_0);
919
920 // rewrite
921 // bc: new bytecode
922 __ bind(rewrite);
923 patch_bytecode(Bytecodes::_aload_0, bc, x11, false);
924
925 __ bind(done);
926 }
927
928 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
929 aload(0);
930 }
931
932 void TemplateTable::istore() {
933 transition(itos, vtos);
934 locals_index(x11);
935 __ sw(x10, iaddress(x11, t0, _masm));
936 }
937
938 void TemplateTable::lstore() {
939 transition(ltos, vtos);
940 locals_index(x11);
941 __ sd(x10, laddress(x11, t0, _masm));
942 }
943
944 void TemplateTable::fstore() {
945 transition(ftos, vtos);
946 locals_index(x11);
947 __ fsw(f10, iaddress(x11, t0, _masm));
948 }
949
950 void TemplateTable::dstore() {
951 transition(dtos, vtos);
952 locals_index(x11);
953 __ fsd(f10, daddress(x11, t0, _masm));
954 }
955
956 void TemplateTable::astore() {
957 transition(vtos, vtos);
958 __ pop_ptr(x10);
959 locals_index(x11);
960 __ sd(x10, aaddress(x11, t0, _masm));
961 }
962
963 void TemplateTable::wide_istore() {
964 transition(vtos, vtos);
965 __ pop_i();
966 locals_index_wide(x11);
967 __ sw(x10, iaddress(x11, t0, _masm));
968 }
969
970 void TemplateTable::wide_lstore() {
971 transition(vtos, vtos);
972 __ pop_l();
973 locals_index_wide(x11);
974 __ sd(x10, laddress(x11, t0, _masm));
975 }
976
977 void TemplateTable::wide_fstore() {
978 transition(vtos, vtos);
979 __ pop_f();
980 locals_index_wide(x11);
981 __ fsw(f10, faddress(x11, t0, _masm));
982 }
983
984 void TemplateTable::wide_dstore() {
985 transition(vtos, vtos);
986 __ pop_d();
987 locals_index_wide(x11);
988 __ fsd(f10, daddress(x11, t0, _masm));
989 }
990
991 void TemplateTable::wide_astore() {
992 transition(vtos, vtos);
993 __ pop_ptr(x10);
994 locals_index_wide(x11);
995 __ sd(x10, aaddress(x11, t0, _masm));
996 }
997
998 void TemplateTable::iastore() {
999 transition(itos, vtos);
1000 __ pop_i(x11);
1001 __ pop_ptr(x13);
1002 // x10: value
1003 // x11: index
1004 // x13: array
1005 index_check(x13, x11); // prefer index in x11
1006 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1007 __ shadd(t0, x11, x13, t0, 2);
1008 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg);
1009 }
1010
1011 void TemplateTable::lastore() {
1012 transition(ltos, vtos);
1013 __ pop_i(x11);
1014 __ pop_ptr(x13);
1015 // x10: value
1016 // x11: index
1017 // x13: array
1018 index_check(x13, x11); // prefer index in x11
1019 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1020 __ shadd(t0, x11, x13, t0, 3);
1021 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg);
1022 }
1023
1024 void TemplateTable::fastore() {
1025 transition(ftos, vtos);
1026 __ pop_i(x11);
1027 __ pop_ptr(x13);
1028 // f10: value
1029 // x11: index
1030 // x13: array
1031 index_check(x13, x11); // prefer index in x11
1032 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1033 __ shadd(t0, x11, x13, t0, 2);
1034 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* ftos */, noreg, noreg, noreg);
1035 }
1036
1037 void TemplateTable::dastore() {
1038 transition(dtos, vtos);
1039 __ pop_i(x11);
1040 __ pop_ptr(x13);
1041 // f10: value
1042 // x11: index
1043 // x13: array
1044 index_check(x13, x11); // prefer index in x11
1045 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1046 __ shadd(t0, x11, x13, t0, 3);
1047 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* dtos */, noreg, noreg, noreg);
1048 }
1049
1050 void TemplateTable::aastore() {
1051 Label is_null, ok_is_subtype, done;
1052 transition(vtos, vtos);
1053 // stack: ..., array, index, value
1054 __ ld(x10, at_tos()); // value
1055 __ ld(x12, at_tos_p1()); // index
1056 __ ld(x13, at_tos_p2()); // array
1057
1058 index_check(x13, x12); // kills x11
1059 __ addi(x14, x12, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1060 __ shadd(x14, x14, x13, x14, LogBytesPerHeapOop);
1061
1062 Address element_address(x14, 0);
1063
1064 // do array store check - check for null value first
1065 __ beqz(x10, is_null);
1066
1067 // Move subklass into x11
1068 __ load_klass(x11, x10);
1069 // Move superklass into x10
1070 __ load_klass(x10, x13);
1071 __ ld(x10, Address(x10,
1072 ObjArrayKlass::element_klass_offset()));
1073 // Compress array + index * oopSize + 12 into a single register. Frees x12.
1074
1075 // Generate subtype check. Blows x12, x15
1076 // Superklass in x10. Subklass in x11.
1077 __ gen_subtype_check(x11, ok_is_subtype);
1078
1079 // Come here on failure
1080 // object is at TOS
1081 __ j(RuntimeAddress(Interpreter::_throw_ArrayStoreException_entry));
1082
1083 // Come here on success
1084 __ bind(ok_is_subtype);
1085
1086 // Get the value we will store
1087 __ ld(x10, at_tos());
1088 // Now store using the appropriate barrier
1089 __ store_heap_oop(element_address, x10, x28, x29, x13, IS_ARRAY);
1090 __ j(done);
1091
1092 // Have a null in x10, x13=array, x12=index. Store null at ary[idx]
1093 __ bind(is_null);
1094 __ profile_null_seen(x12);
1095
1096 // Store a null
1097 __ store_heap_oop(element_address, noreg, x28, x29, x13, IS_ARRAY);
1098
1099 // Pop stack arguments
1100 __ bind(done);
1101 __ addi(esp, esp, 3 * Interpreter::stackElementSize);
1102 }
1103
1104 void TemplateTable::bastore() {
1105 transition(itos, vtos);
1106 __ pop_i(x11);
1107 __ pop_ptr(x13);
1108 // x10: value
1109 // x11: index
1110 // x13: array
1111 index_check(x13, x11); // prefer index in x11
1112
1113 // Need to check whether array is boolean or byte
1114 // since both types share the bastore bytecode.
1115 __ load_klass(x12, x13);
1116 __ lwu(x12, Address(x12, Klass::layout_helper_offset()));
1117 Label L_skip;
1118 __ test_bit(t0, x12, exact_log2(Klass::layout_helper_boolean_diffbit()));
1119 __ beqz(t0, L_skip);
1120 __ andi(x10, x10, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1121 __ bind(L_skip);
1122
1123 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1124
1125 __ add(x11, x13, x11);
1126 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(x11, 0), x10, noreg, noreg, noreg);
1127 }
1128
1129 void TemplateTable::castore() {
1130 transition(itos, vtos);
1131 __ pop_i(x11);
1132 __ pop_ptr(x13);
1133 // x10: value
1134 // x11: index
1135 // x13: array
1136 index_check(x13, x11); // prefer index in x11
1137 __ addi(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1138 __ shadd(t0, x11, x13, t0, 1);
1139 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg);
1140 }
1141
1142 void TemplateTable::sastore() {
1143 castore();
1144 }
1145
1146 void TemplateTable::istore(int n) {
1147 transition(itos, vtos);
1148 __ sd(x10, iaddress(n));
1149 }
1150
1151 void TemplateTable::lstore(int n) {
1152 transition(ltos, vtos);
1153 __ sd(x10, laddress(n));
1154 }
1155
1156 void TemplateTable::fstore(int n) {
1157 transition(ftos, vtos);
1158 __ fsw(f10, faddress(n));
1159 }
1160
1161 void TemplateTable::dstore(int n) {
1162 transition(dtos, vtos);
1163 __ fsd(f10, daddress(n));
1164 }
1165
1166 void TemplateTable::astore(int n) {
1167 transition(vtos, vtos);
1168 __ pop_ptr(x10);
1169 __ sd(x10, iaddress(n));
1170 }
1171
1172 void TemplateTable::pop() {
1173 transition(vtos, vtos);
1174 __ addi(esp, esp, Interpreter::stackElementSize);
1175 }
1176
1177 void TemplateTable::pop2() {
1178 transition(vtos, vtos);
1179 __ addi(esp, esp, 2 * Interpreter::stackElementSize);
1180 }
1181
1182 void TemplateTable::dup() {
1183 transition(vtos, vtos);
1184 __ ld(x10, Address(esp, 0));
1185 __ push_reg(x10);
1186 // stack: ..., a, a
1187 }
1188
1189 void TemplateTable::dup_x1() {
1190 transition(vtos, vtos);
1191 // stack: ..., a, b
1192 __ ld(x10, at_tos()); // load b
1193 __ ld(x12, at_tos_p1()); // load a
1194 __ sd(x10, at_tos_p1()); // store b
1195 __ sd(x12, at_tos()); // store a
1196 __ push_reg(x10); // push b
1197 // stack: ..., b, a, b
1198 }
1199
1200 void TemplateTable::dup_x2() {
1201 transition(vtos, vtos);
1202 // stack: ..., a, b, c
1203 __ ld(x10, at_tos()); // load c
1204 __ ld(x12, at_tos_p2()); // load a
1205 __ sd(x10, at_tos_p2()); // store c in a
1206 __ push_reg(x10); // push c
1207 // stack: ..., c, b, c, c
1208 __ ld(x10, at_tos_p2()); // load b
1209 __ sd(x12, at_tos_p2()); // store a in b
1210 // stack: ..., c, a, c, c
1211 __ sd(x10, at_tos_p1()); // store b in c
1212 // stack: ..., c, a, b, c
1213 }
1214
1215 void TemplateTable::dup2() {
1216 transition(vtos, vtos);
1217 // stack: ..., a, b
1218 __ ld(x10, at_tos_p1()); // load a
1219 __ push_reg(x10); // push a
1220 __ ld(x10, at_tos_p1()); // load b
1221 __ push_reg(x10); // push b
1222 // stack: ..., a, b, a, b
1223 }
1224
1225 void TemplateTable::dup2_x1() {
1226 transition(vtos, vtos);
1227 // stack: ..., a, b, c
1228 __ ld(x12, at_tos()); // load c
1229 __ ld(x10, at_tos_p1()); // load b
1230 __ push_reg(x10); // push b
1231 __ push_reg(x12); // push c
1232 // stack: ..., a, b, c, b, c
1233 __ sd(x12, at_tos_p3()); // store c in b
1234 // stack: ..., a, c, c, b, c
1235 __ ld(x12, at_tos_p4()); // load a
1236 __ sd(x12, at_tos_p2()); // store a in 2nd c
1237 // stack: ..., a, c, a, b, c
1238 __ sd(x10, at_tos_p4()); // store b in a
1239 // stack: ..., b, c, a, b, c
1240 }
1241
1242 void TemplateTable::dup2_x2() {
1243 transition(vtos, vtos);
1244 // stack: ..., a, b, c, d
1245 __ ld(x12, at_tos()); // load d
1246 __ ld(x10, at_tos_p1()); // load c
1247 __ push_reg(x10); // push c
1248 __ push_reg(x12); // push d
1249 // stack: ..., a, b, c, d, c, d
1250 __ ld(x10, at_tos_p4()); // load b
1251 __ sd(x10, at_tos_p2()); // store b in d
1252 __ sd(x12, at_tos_p4()); // store d in b
1253 // stack: ..., a, d, c, b, c, d
1254 __ ld(x12, at_tos_p5()); // load a
1255 __ ld(x10, at_tos_p3()); // load c
1256 __ sd(x12, at_tos_p3()); // store a in c
1257 __ sd(x10, at_tos_p5()); // store c in a
1258 // stack: ..., c, d, a, b, c, d
1259 }
1260
1261 void TemplateTable::swap() {
1262 transition(vtos, vtos);
1263 // stack: ..., a, b
1264 __ ld(x12, at_tos_p1()); // load a
1265 __ ld(x10, at_tos()); // load b
1266 __ sd(x12, at_tos()); // store a in b
1267 __ sd(x10, at_tos_p1()); // store b in a
1268 // stack: ..., b, a
1269 }
1270
1271 void TemplateTable::iop2(Operation op) {
1272 transition(itos, itos);
1273 // x10 <== x11 op x10
1274 __ pop_i(x11);
1275 switch (op) {
1276 case add : __ addw(x10, x11, x10); break;
1277 case sub : __ subw(x10, x11, x10); break;
1278 case mul : __ mulw(x10, x11, x10); break;
1279 case _and : __ andrw(x10, x11, x10); break;
1280 case _or : __ orrw(x10, x11, x10); break;
1281 case _xor : __ xorrw(x10, x11, x10); break;
1282 case shl : __ sllw(x10, x11, x10); break;
1283 case shr : __ sraw(x10, x11, x10); break;
1284 case ushr : __ srlw(x10, x11, x10); break;
1285 default : ShouldNotReachHere();
1286 }
1287 }
1288
1289 void TemplateTable::lop2(Operation op) {
1290 transition(ltos, ltos);
1291 // x10 <== x11 op x10
1292 __ pop_l(x11);
1293 switch (op) {
1294 case add : __ add(x10, x11, x10); break;
1295 case sub : __ sub(x10, x11, x10); break;
1296 case mul : __ mul(x10, x11, x10); break;
1297 case _and : __ andr(x10, x11, x10); break;
1298 case _or : __ orr(x10, x11, x10); break;
1299 case _xor : __ xorr(x10, x11, x10); break;
1300 default : ShouldNotReachHere();
1301 }
1302 }
1303
1304 void TemplateTable::idiv() {
1305 transition(itos, itos);
1306 // explicitly check for div0
1307 Label no_div0;
1308 __ bnez(x10, no_div0);
1309 __ mv(t1, Interpreter::_throw_ArithmeticException_entry);
1310 __ jr(t1);
1311 __ bind(no_div0);
1312 __ pop_i(x11);
1313 // x10 <== x11 idiv x10
1314 __ divw(x10, x11, x10);
1315 }
1316
1317 void TemplateTable::irem() {
1318 transition(itos, itos);
1319 // explicitly check for div0
1320 Label no_div0;
1321 __ bnez(x10, no_div0);
1322 __ mv(t1, Interpreter::_throw_ArithmeticException_entry);
1323 __ jr(t1);
1324 __ bind(no_div0);
1325 __ pop_i(x11);
1326 // x10 <== x11 irem x10
1327 __ remw(x10, x11, x10);
1328 }
1329
1330 void TemplateTable::lmul() {
1331 transition(ltos, ltos);
1332 __ pop_l(x11);
1333 __ mul(x10, x10, x11);
1334 }
1335
1336 void TemplateTable::ldiv() {
1337 transition(ltos, ltos);
1338 // explicitly check for div0
1339 Label no_div0;
1340 __ bnez(x10, no_div0);
1341 __ mv(t1, Interpreter::_throw_ArithmeticException_entry);
1342 __ jr(t1);
1343 __ bind(no_div0);
1344 __ pop_l(x11);
1345 // x10 <== x11 ldiv x10
1346 __ div(x10, x11, x10);
1347 }
1348
1349 void TemplateTable::lrem() {
1350 transition(ltos, ltos);
1351 // explicitly check for div0
1352 Label no_div0;
1353 __ bnez(x10, no_div0);
1354 __ mv(t1, Interpreter::_throw_ArithmeticException_entry);
1355 __ jr(t1);
1356 __ bind(no_div0);
1357 __ pop_l(x11);
1358 // x10 <== x11 lrem x10
1359 __ rem(x10, x11, x10);
1360 }
1361
1362 void TemplateTable::lshl() {
1363 transition(itos, ltos);
1364 // shift count is in x10
1365 __ pop_l(x11);
1366 __ sll(x10, x11, x10);
1367 }
1368
1369 void TemplateTable::lshr() {
1370 transition(itos, ltos);
1371 // shift count is in x10
1372 __ pop_l(x11);
1373 __ sra(x10, x11, x10);
1374 }
1375
1376 void TemplateTable::lushr() {
1377 transition(itos, ltos);
1378 // shift count is in x10
1379 __ pop_l(x11);
1380 __ srl(x10, x11, x10);
1381 }
1382
1383 void TemplateTable::fop2(Operation op) {
1384 transition(ftos, ftos);
1385 switch (op) {
1386 case add:
1387 __ pop_f(f11);
1388 __ fadd_s(f10, f11, f10);
1389 break;
1390 case sub:
1391 __ pop_f(f11);
1392 __ fsub_s(f10, f11, f10);
1393 break;
1394 case mul:
1395 __ pop_f(f11);
1396 __ fmul_s(f10, f11, f10);
1397 break;
1398 case div:
1399 __ pop_f(f11);
1400 __ fdiv_s(f10, f11, f10);
1401 break;
1402 case rem:
1403 __ fmv_s(f11, f10);
1404 __ pop_f(f10);
1405 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1406 break;
1407 default:
1408 ShouldNotReachHere();
1409 }
1410 }
1411
1412 void TemplateTable::dop2(Operation op) {
1413 transition(dtos, dtos);
1414 switch (op) {
1415 case add:
1416 __ pop_d(f11);
1417 __ fadd_d(f10, f11, f10);
1418 break;
1419 case sub:
1420 __ pop_d(f11);
1421 __ fsub_d(f10, f11, f10);
1422 break;
1423 case mul:
1424 __ pop_d(f11);
1425 __ fmul_d(f10, f11, f10);
1426 break;
1427 case div:
1428 __ pop_d(f11);
1429 __ fdiv_d(f10, f11, f10);
1430 break;
1431 case rem:
1432 __ fmv_d(f11, f10);
1433 __ pop_d(f10);
1434 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1435 break;
1436 default:
1437 ShouldNotReachHere();
1438 }
1439 }
1440
1441 void TemplateTable::ineg() {
1442 transition(itos, itos);
1443 __ negw(x10, x10);
1444 }
1445
1446 void TemplateTable::lneg() {
1447 transition(ltos, ltos);
1448 __ neg(x10, x10);
1449 }
1450
1451 void TemplateTable::fneg() {
1452 transition(ftos, ftos);
1453 __ fneg_s(f10, f10);
1454 }
1455
1456 void TemplateTable::dneg() {
1457 transition(dtos, dtos);
1458 __ fneg_d(f10, f10);
1459 }
1460
1461 void TemplateTable::iinc() {
1462 transition(vtos, vtos);
1463 __ load_signed_byte(x11, at_bcp(2)); // get constant
1464 locals_index(x12);
1465 __ ld(x10, iaddress(x12, x10, _masm));
1466 __ addw(x10, x10, x11);
1467 __ sd(x10, iaddress(x12, t0, _masm));
1468 }
1469
1470 void TemplateTable::wide_iinc() {
1471 transition(vtos, vtos);
1472 // get constant
1473 // Convert the 16-bit value into native byte-ordering and sign-extend
1474 __ lb(x11, at_bcp(4));
1475 __ lbu(t1, at_bcp(5));
1476 __ slli(x11, x11, 8);
1477 __ orr(x11, x11, t1);
1478
1479 locals_index_wide(x12);
1480 __ ld(x10, iaddress(x12, t0, _masm));
1481 __ addw(x10, x10, x11);
1482 __ sd(x10, iaddress(x12, t0, _masm));
1483 }
1484
1485 void TemplateTable::convert() {
1486 // Checking
1487 #ifdef ASSERT
1488 {
1489 TosState tos_in = ilgl;
1490 TosState tos_out = ilgl;
1491 switch (bytecode()) {
1492 case Bytecodes::_i2l: // fall through
1493 case Bytecodes::_i2f: // fall through
1494 case Bytecodes::_i2d: // fall through
1495 case Bytecodes::_i2b: // fall through
1496 case Bytecodes::_i2c: // fall through
1497 case Bytecodes::_i2s: tos_in = itos; break;
1498 case Bytecodes::_l2i: // fall through
1499 case Bytecodes::_l2f: // fall through
1500 case Bytecodes::_l2d: tos_in = ltos; break;
1501 case Bytecodes::_f2i: // fall through
1502 case Bytecodes::_f2l: // fall through
1503 case Bytecodes::_f2d: tos_in = ftos; break;
1504 case Bytecodes::_d2i: // fall through
1505 case Bytecodes::_d2l: // fall through
1506 case Bytecodes::_d2f: tos_in = dtos; break;
1507 default : ShouldNotReachHere();
1508 }
1509 switch (bytecode()) {
1510 case Bytecodes::_l2i: // fall through
1511 case Bytecodes::_f2i: // fall through
1512 case Bytecodes::_d2i: // fall through
1513 case Bytecodes::_i2b: // fall through
1514 case Bytecodes::_i2c: // fall through
1515 case Bytecodes::_i2s: tos_out = itos; break;
1516 case Bytecodes::_i2l: // fall through
1517 case Bytecodes::_f2l: // fall through
1518 case Bytecodes::_d2l: tos_out = ltos; break;
1519 case Bytecodes::_i2f: // fall through
1520 case Bytecodes::_l2f: // fall through
1521 case Bytecodes::_d2f: tos_out = ftos; break;
1522 case Bytecodes::_i2d: // fall through
1523 case Bytecodes::_l2d: // fall through
1524 case Bytecodes::_f2d: tos_out = dtos; break;
1525 default : ShouldNotReachHere();
1526 }
1527 transition(tos_in, tos_out);
1528 }
1529 #endif // ASSERT
1530
1531 // Conversion
1532 switch (bytecode()) {
1533 case Bytecodes::_i2l:
1534 __ sext(x10, x10, 32);
1535 break;
1536 case Bytecodes::_i2f:
1537 __ fcvt_s_w(f10, x10);
1538 break;
1539 case Bytecodes::_i2d:
1540 __ fcvt_d_w(f10, x10);
1541 break;
1542 case Bytecodes::_i2b:
1543 __ sext(x10, x10, 8);
1544 break;
1545 case Bytecodes::_i2c:
1546 __ zext(x10, x10, 16);
1547 break;
1548 case Bytecodes::_i2s:
1549 __ sext(x10, x10, 16);
1550 break;
1551 case Bytecodes::_l2i:
1552 __ sext(x10, x10, 32);
1553 break;
1554 case Bytecodes::_l2f:
1555 __ fcvt_s_l(f10, x10);
1556 break;
1557 case Bytecodes::_l2d:
1558 __ fcvt_d_l(f10, x10);
1559 break;
1560 case Bytecodes::_f2i:
1561 __ fcvt_w_s_safe(x10, f10);
1562 break;
1563 case Bytecodes::_f2l:
1564 __ fcvt_l_s_safe(x10, f10);
1565 break;
1566 case Bytecodes::_f2d:
1567 __ fcvt_d_s(f10, f10);
1568 break;
1569 case Bytecodes::_d2i:
1570 __ fcvt_w_d_safe(x10, f10);
1571 break;
1572 case Bytecodes::_d2l:
1573 __ fcvt_l_d_safe(x10, f10);
1574 break;
1575 case Bytecodes::_d2f:
1576 __ fcvt_s_d(f10, f10);
1577 break;
1578 default:
1579 ShouldNotReachHere();
1580 }
1581 }
1582
1583 void TemplateTable::lcmp() {
1584 transition(ltos, itos);
1585 __ pop_l(x11);
1586 __ cmp_l2i(t0, x11, x10);
1587 __ mv(x10, t0);
1588 }
1589
1590 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1591 // For instruction feq, flt and fle, the result is 0 if either operand is NaN
1592 if (is_float) {
1593 __ pop_f(f11);
1594 // if unordered_result < 0:
1595 // we want -1 for unordered or less than, 0 for equal and 1 for
1596 // greater than.
1597 // else:
1598 // we want -1 for less than, 0 for equal and 1 for unordered or
1599 // greater than.
1600 // f11 primary, f10 secondary
1601 __ float_compare(x10, f11, f10, unordered_result);
1602 } else {
1603 __ pop_d(f11);
1604 // if unordered_result < 0:
1605 // we want -1 for unordered or less than, 0 for equal and 1 for
1606 // greater than.
1607 // else:
1608 // we want -1 for less than, 0 for equal and 1 for unordered or
1609 // greater than.
1610 // f11 primary, f10 secondary
1611 __ double_compare(x10, f11, f10, unordered_result);
1612 }
1613 }
1614
1615 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1616 __ profile_taken_branch(x10);
1617 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1618 InvocationCounter::counter_offset();
1619 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1620 InvocationCounter::counter_offset();
1621
1622 // load branch displacement
1623 if (!is_wide) {
1624 // Convert the 16-bit value into native byte-ordering and sign-extend
1625 __ lb(x12, at_bcp(1));
1626 __ lbu(t1, at_bcp(2));
1627 __ slli(x12, x12, 8);
1628 __ orr(x12, x12, t1);
1629 } else {
1630 __ lwu(x12, at_bcp(1));
1631 __ revbw(x12, x12);
1632 }
1633
1634 // Handle all the JSR stuff here, then exit.
1635 // It's much shorter and cleaner than intermingling with the non-JSR
1636 // normal-branch stuff occurring below.
1637
1638 if (is_jsr) {
1639 // compute return address as bci
1640 __ ld(t1, Address(xmethod, Method::const_offset()));
1641 __ add(t1, t1,
1642 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1643 __ sub(x11, xbcp, t1);
1644 __ push_i(x11);
1645 // Adjust the bcp by the 16-bit displacement in x12
1646 __ add(xbcp, xbcp, x12);
1647 __ load_unsigned_byte(t0, Address(xbcp, 0));
1648 // load the next target bytecode into t0, it is the argument of dispatch_only
1649 __ dispatch_only(vtos, /*generate_poll*/true);
1650 return;
1651 }
1652
1653 // Normal (non-jsr) branch handling
1654
1655 // Adjust the bcp by the displacement in x12
1656 __ add(xbcp, xbcp, x12);
1657
1658 assert(UseLoopCounter || !UseOnStackReplacement,
1659 "on-stack-replacement requires loop counters");
1660 Label backedge_counter_overflow;
1661 Label dispatch;
1662 if (UseLoopCounter) {
1663 // increment backedge counter for backward branches
1664 // x10: MDO
1665 // x12: target offset
1666 __ bgtz(x12, dispatch); // count only if backward branch
1667
1668 // check if MethodCounters exists
1669 Label has_counters;
1670 __ ld(t0, Address(xmethod, Method::method_counters_offset()));
1671 __ bnez(t0, has_counters);
1672 __ push_reg(x10);
1673 __ push_reg(x12);
1674 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1675 InterpreterRuntime::build_method_counters), xmethod);
1676 __ pop_reg(x12);
1677 __ pop_reg(x10);
1678 __ ld(t0, Address(xmethod, Method::method_counters_offset()));
1679 __ beqz(t0, dispatch); // No MethodCounters allocated, OutOfMemory
1680 __ bind(has_counters);
1681
1682 Label no_mdo;
1683 int increment = InvocationCounter::count_increment;
1684 if (ProfileInterpreter) {
1685 // Are we profiling?
1686 __ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
1687 __ beqz(x11, no_mdo);
1688 // Increment the MDO backedge counter
1689 const Address mdo_backedge_counter(x11, in_bytes(MethodData::backedge_counter_offset()) +
1690 in_bytes(InvocationCounter::counter_offset()));
1691 const Address mask(x11, in_bytes(MethodData::backedge_mask_offset()));
1692 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1693 x10, t0, false,
1694 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1695 __ j(dispatch);
1696 }
1697 __ bind(no_mdo);
1698 // Increment backedge counter in MethodCounters*
1699 __ ld(t0, Address(xmethod, Method::method_counters_offset()));
1700 const Address mask(t0, in_bytes(MethodCounters::backedge_mask_offset()));
1701 __ increment_mask_and_jump(Address(t0, be_offset), increment, mask,
1702 x10, t1, false,
1703 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1704 __ bind(dispatch);
1705 }
1706
1707 // Pre-load the next target bytecode into t0
1708 __ load_unsigned_byte(t0, Address(xbcp, 0));
1709
1710 // continue with the bytecode @ target
1711 // t0: target bytecode
1712 // xbcp: target bcp
1713 __ dispatch_only(vtos, /*generate_poll*/true);
1714
1715 if (UseLoopCounter && UseOnStackReplacement) {
1716 // invocation counter overflow
1717 __ bind(backedge_counter_overflow);
1718 __ neg(x12, x12);
1719 __ add(x12, x12, xbcp); // branch xbcp
1720 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1721 __ call_VM(noreg,
1722 CAST_FROM_FN_PTR(address,
1723 InterpreterRuntime::frequency_counter_overflow),
1724 x12);
1725 __ load_unsigned_byte(x11, Address(xbcp, 0)); // restore target bytecode
1726
1727 // x10: osr nmethod (osr ok) or null (osr not possible)
1728 // w11: target bytecode
1729 // x12: temporary
1730 __ beqz(x10, dispatch); // test result -- no osr if null
1731 // nmethod may have been invalidated (VM may block upon call_VM return)
1732 __ lbu(x12, Address(x10, nmethod::state_offset()));
1733 if (nmethod::in_use != 0) {
1734 __ sub(x12, x12, nmethod::in_use);
1735 }
1736 __ bnez(x12, dispatch);
1737
1738 // We have the address of an on stack replacement routine in x10
1739 // We need to prepare to execute the OSR method. First we must
1740 // migrate the locals and monitors off of the stack.
1741
1742 __ mv(x9, x10); // save the nmethod
1743
1744 JFR_ONLY(__ enter_jfr_critical_section();)
1745
1746 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1747
1748 // x10 is OSR buffer, move it to expected parameter location
1749 __ mv(j_rarg0, x10);
1750
1751 // remove activation
1752 // get sender esp
1753 __ ld(esp,
1754 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
1755 // remove frame anchor
1756 __ leave();
1757
1758 JFR_ONLY(__ leave_jfr_critical_section();)
1759
1760 // Ensure compiled code always sees stack at proper alignment
1761 __ andi(sp, esp, -16);
1762
1763 // and begin the OSR nmethod
1764 __ ld(t1, Address(x9, nmethod::osr_entry_point_offset()));
1765 __ jr(t1);
1766 }
1767 }
1768
1769 void TemplateTable::if_0cmp(Condition cc) {
1770 transition(itos, vtos);
1771 // assume branch is more often taken than not (loops use backward branches)
1772 Label not_taken;
1773
1774 __ sext(x10, x10, 32);
1775 switch (cc) {
1776 case equal:
1777 __ bnez(x10, not_taken);
1778 break;
1779 case not_equal:
1780 __ beqz(x10, not_taken);
1781 break;
1782 case less:
1783 __ bgez(x10, not_taken);
1784 break;
1785 case less_equal:
1786 __ bgtz(x10, not_taken);
1787 break;
1788 case greater:
1789 __ blez(x10, not_taken);
1790 break;
1791 case greater_equal:
1792 __ bltz(x10, not_taken);
1793 break;
1794 default:
1795 break;
1796 }
1797
1798 branch(false, false);
1799 __ bind(not_taken);
1800 __ profile_not_taken_branch(x10);
1801 }
1802
1803 void TemplateTable::if_icmp(Condition cc) {
1804 transition(itos, vtos);
1805 // assume branch is more often taken than not (loops use backward branches)
1806 Label not_taken;
1807 __ pop_i(x11);
1808 __ sext(x10, x10, 32);
1809 switch (cc) {
1810 case equal:
1811 __ bne(x11, x10, not_taken);
1812 break;
1813 case not_equal:
1814 __ beq(x11, x10, not_taken);
1815 break;
1816 case less:
1817 __ bge(x11, x10, not_taken);
1818 break;
1819 case less_equal:
1820 __ bgt(x11, x10, not_taken);
1821 break;
1822 case greater:
1823 __ ble(x11, x10, not_taken);
1824 break;
1825 case greater_equal:
1826 __ blt(x11, x10, not_taken);
1827 break;
1828 default:
1829 break;
1830 }
1831
1832 branch(false, false);
1833 __ bind(not_taken);
1834 __ profile_not_taken_branch(x10);
1835 }
1836
1837 void TemplateTable::if_nullcmp(Condition cc) {
1838 transition(atos, vtos);
1839 // assume branch is more often taken than not (loops use backward branches)
1840 Label not_taken;
1841 if (cc == equal) {
1842 __ bnez(x10, not_taken);
1843 } else {
1844 __ beqz(x10, not_taken);
1845 }
1846 branch(false, false);
1847 __ bind(not_taken);
1848 __ profile_not_taken_branch(x10);
1849 }
1850
1851 void TemplateTable::if_acmp(Condition cc) {
1852 transition(atos, vtos);
1853 // assume branch is more often taken than not (loops use backward branches)
1854 Label not_taken;
1855 __ pop_ptr(x11);
1856
1857 if (cc == equal) {
1858 __ bne(x11, x10, not_taken);
1859 } else if (cc == not_equal) {
1860 __ beq(x11, x10, not_taken);
1861 }
1862 branch(false, false);
1863 __ bind(not_taken);
1864 __ profile_not_taken_branch(x10);
1865 }
1866
1867 void TemplateTable::ret() {
1868 transition(vtos, vtos);
1869 locals_index(x11);
1870 __ ld(x11, aaddress(x11, t1, _masm)); // get return bci, compute return bcp
1871 __ profile_ret(x11, x12);
1872 __ ld(xbcp, Address(xmethod, Method::const_offset()));
1873 __ add(xbcp, xbcp, x11);
1874 __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset()));
1875 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1876 }
1877
1878 void TemplateTable::wide_ret() {
1879 transition(vtos, vtos);
1880 locals_index_wide(x11);
1881 __ ld(x11, aaddress(x11, t0, _masm)); // get return bci, compute return bcp
1882 __ profile_ret(x11, x12);
1883 __ ld(xbcp, Address(xmethod, Method::const_offset()));
1884 __ add(xbcp, xbcp, x11);
1885 __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset()));
1886 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1887 }
1888
1889 void TemplateTable::tableswitch() {
1890 Label default_case, continue_execution;
1891 transition(itos, vtos);
1892 // align xbcp
1893 __ la(x11, at_bcp(BytesPerInt));
1894 __ andi(x11, x11, -BytesPerInt);
1895 // load lo & hi
1896 __ lwu(x12, Address(x11, BytesPerInt));
1897 __ lwu(x13, Address(x11, 2 * BytesPerInt));
1898 __ revbw(x12, x12);
1899 __ revbw(x13, x13);
1900 // check against lo & hi
1901 __ blt(x10, x12, default_case);
1902 __ bgt(x10, x13, default_case);
1903 // lookup dispatch offset
1904 __ subw(x10, x10, x12);
1905 __ shadd(x13, x10, x11, t0, 2);
1906 __ lwu(x13, Address(x13, 3 * BytesPerInt));
1907 __ profile_switch_case(x10, x11, x12);
1908 // continue execution
1909 __ bind(continue_execution);
1910 __ revbw(x13, x13);
1911 __ add(xbcp, xbcp, x13);
1912 __ load_unsigned_byte(t0, Address(xbcp));
1913 __ dispatch_only(vtos, /*generate_poll*/true);
1914 // handle default
1915 __ bind(default_case);
1916 __ profile_switch_default(x10);
1917 __ lwu(x13, Address(x11, 0));
1918 __ j(continue_execution);
1919 }
1920
1921 void TemplateTable::lookupswitch() {
1922 transition(itos, itos);
1923 __ stop("lookupswitch bytecode should have been rewritten");
1924 }
1925
1926 void TemplateTable::fast_linearswitch() {
1927 transition(itos, vtos);
1928 Label loop_entry, loop, found, continue_execution;
1929 // bswap x10 so we can avoid bswapping the table entries
1930 __ revbw(x10, x10);
1931 // align xbcp
1932 __ la(x9, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1933 // this instruction (change offsets
1934 // below)
1935 __ andi(x9, x9, -BytesPerInt);
1936 // set counter
1937 __ lwu(x11, Address(x9, BytesPerInt));
1938 // Convert the 32-bit npairs (number of pairs) into native byte-ordering
1939 // We can use sign-extension here because npairs must be greater than or
1940 // equal to 0 per JVM spec on 'lookupswitch' bytecode.
1941 __ revbw(x11, x11);
1942 __ j(loop_entry);
1943 // table search
1944 __ bind(loop);
1945 __ shadd(t0, x11, x9, t0, 3);
1946 __ lw(t0, Address(t0, 2 * BytesPerInt));
1947 __ beq(x10, t0, found);
1948 __ bind(loop_entry);
1949 __ subi(x11, x11, 1);
1950 __ bgez(x11, loop);
1951 // default case
1952 __ profile_switch_default(x10);
1953 __ lwu(x13, Address(x9, 0));
1954 __ j(continue_execution);
1955 // entry found -> get offset
1956 __ bind(found);
1957 __ shadd(t0, x11, x9, t0, 3);
1958 __ lwu(x13, Address(t0, 3 * BytesPerInt));
1959 __ profile_switch_case(x11, x10, x9);
1960 // continue execution
1961 __ bind(continue_execution);
1962 __ revbw(x13, x13);
1963 __ add(xbcp, xbcp, x13);
1964 __ lbu(t0, Address(xbcp, 0));
1965 __ dispatch_only(vtos, /*generate_poll*/true);
1966 }
1967
1968 void TemplateTable::fast_binaryswitch() {
1969 transition(itos, vtos);
1970 // Implementation using the following core algorithm:
1971 //
1972 // int binary_search(int key, LookupswitchPair* array, int n)
1973 // binary_search start:
1974 // #Binary search according to "Methodik des Programmierens" by
1975 // # Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1976 // int i = 0;
1977 // int j = n;
1978 // while (i + 1 < j) do
1979 // # invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1980 // # with Q: for all i: 0 <= i < n: key < a[i]
1981 // # where a stands for the array and assuming that the (inexisting)
1982 // # element a[n] is infinitely big.
1983 // int h = (i + j) >> 1
1984 // # i < h < j
1985 // if (key < array[h].fast_match())
1986 // then [j = h]
1987 // else [i = h]
1988 // end
1989 // # R: a[i] <= key < a[i+1] or Q
1990 // # (i.e., if key is within array, i is the correct index)
1991 // return i
1992 // binary_search end
1993
1994
1995 // Register allocation
1996 const Register key = x10; // already set (tosca)
1997 const Register array = x11;
1998 const Register i = x12;
1999 const Register j = x13;
2000 const Register h = x14;
2001 const Register temp = x15;
2002
2003 // Find array start
2004 __ la(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2005 // get rid of this
2006 // instruction (change
2007 // offsets below)
2008 __ andi(array, array, -BytesPerInt);
2009
2010 // Initialize i & j
2011 __ mv(i, zr); // i = 0
2012 __ lwu(j, Address(array, -BytesPerInt)); // j = length(array)
2013
2014 // Convert the 32-bit npairs (number of pairs) into native byte-ordering
2015 // We can use sign-extension here because npairs must be greater than or
2016 // equal to 0 per JVM spec on 'lookupswitch' bytecode.
2017 __ revbw(j, j);
2018
2019 // And start
2020 Label entry;
2021 __ j(entry);
2022
2023 // binary search loop
2024 {
2025 Label loop;
2026 __ bind(loop);
2027 __ addw(h, i, j); // h = i + j
2028 __ srliw(h, h, 1); // h = (i + j) >> 1
2029 // if [key < array[h].fast_match()]
2030 // then [j = h]
2031 // else [i = h]
2032 // Convert array[h].match to native byte-ordering before compare
2033 __ shadd(temp, h, array, temp, 3);
2034 __ lwu(temp, Address(temp, 0));
2035 __ revbw(temp, temp);
2036
2037 Label L_done, L_greater;
2038 __ bge(key, temp, L_greater);
2039 // if [key < array[h].fast_match()] then j = h
2040 __ mv(j, h);
2041 __ j(L_done);
2042 __ bind(L_greater);
2043 // if [key >= array[h].fast_match()] then i = h
2044 __ mv(i, h);
2045 __ bind(L_done);
2046
2047 // while [i + 1 < j]
2048 __ bind(entry);
2049 __ addiw(h, i, 1); // i + 1
2050 __ blt(h, j, loop); // i + 1 < j
2051 }
2052
2053 // end of binary search, result index is i (must check again!)
2054 Label default_case;
2055 // Convert array[i].match to native byte-ordering before compare
2056 __ shadd(temp, i, array, temp, 3);
2057 __ lwu(temp, Address(temp, 0));
2058 __ revbw(temp, temp);
2059 __ bne(key, temp, default_case);
2060
2061 // entry found -> j = offset
2062 __ shadd(temp, i, array, temp, 3);
2063 __ lwu(j, Address(temp, BytesPerInt));
2064 __ profile_switch_case(i, key, array);
2065 __ revbw(j, j);
2066
2067 __ add(temp, xbcp, j);
2068 __ load_unsigned_byte(t0, Address(temp, 0));
2069
2070 __ add(xbcp, xbcp, j);
2071 __ la(xbcp, Address(xbcp, 0));
2072 __ dispatch_only(vtos, /*generate_poll*/true);
2073
2074 // default case -> j = default offset
2075 __ bind(default_case);
2076 __ profile_switch_default(i);
2077 __ lwu(j, Address(array, -2 * BytesPerInt));
2078 __ revbw(j, j);
2079
2080 __ add(temp, xbcp, j);
2081 __ load_unsigned_byte(t0, Address(temp, 0));
2082
2083 __ add(xbcp, xbcp, j);
2084 __ la(xbcp, Address(xbcp, 0));
2085 __ dispatch_only(vtos, /*generate_poll*/true);
2086 }
2087
2088 void TemplateTable::_return(TosState state) {
2089 transition(state, state);
2090 assert(_desc->calls_vm(),
2091 "inconsistent calls_vm information"); // call in remove_activation
2092
2093 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2094 assert(state == vtos, "only valid state");
2095
2096 __ ld(c_rarg1, aaddress(0));
2097 __ load_klass(x13, c_rarg1);
2098 __ lbu(x13, Address(x13, Klass::misc_flags_offset()));
2099 Label skip_register_finalizer;
2100 __ test_bit(t0, x13, exact_log2(KlassFlags::_misc_has_finalizer));
2101 __ beqz(t0, skip_register_finalizer);
2102
2103 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2104
2105 __ bind(skip_register_finalizer);
2106 }
2107
2108 // Issue a StoreStore barrier after all stores but before return
2109 // from any constructor for any class with a final field. We don't
2110 // know if this is a finalizer, so we always do so.
2111 if (_desc->bytecode() == Bytecodes::_return
2112 || _desc->bytecode() == Bytecodes::_return_register_finalizer) {
2113 __ membar(MacroAssembler::StoreStore);
2114 }
2115
2116 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) {
2117 Label no_safepoint;
2118 __ ld(t0, Address(xthread, JavaThread::polling_word_offset()));
2119 __ test_bit(t0, t0, exact_log2(SafepointMechanism::poll_bit()));
2120 __ beqz(t0, no_safepoint);
2121 __ push(state);
2122 __ push_cont_fastpath(xthread);
2123 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2124 __ pop_cont_fastpath(xthread);
2125 __ pop(state);
2126 __ bind(no_safepoint);
2127 }
2128
2129 // Narrow result if state is itos but result type is smaller.
2130 // Need to narrow in the return bytecode rather than in generate_return_entry
2131 // since compiled code callers expect the result to already be narrowed.
2132 if (state == itos) {
2133 __ narrow(x10);
2134 }
2135
2136 __ remove_activation(state);
2137 __ ret();
2138 }
2139
2140
2141 // ----------------------------------------------------------------------------
2142 // Volatile variables demand their effects be made known to all CPU's
2143 // in order. Store buffers on most chips allow reads & writes to
2144 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2145 // without some kind of memory barrier (i.e., it's not sufficient that
2146 // the interpreter does not reorder volatile references, the hardware
2147 // also must not reorder them).
2148 //
2149 // According to the new Java Memory Model (JMM):
2150 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2151 // writes act as acquire & release, so:
2152 // (2) A read cannot let unrelated NON-volatile memory refs that
2153 // happen after the read float up to before the read. It's OK for
2154 // non-volatile memory refs that happen before the volatile read to
2155 // float down below it.
2156 // (3) Similar a volatile write cannot let unrelated NON-volatile
2157 // memory refs that happen BEFORE the write float down to after the
2158 // write. It's OK for non-volatile memory refs that happen after the
2159 // volatile write to float up before it.
2160 //
2161 // We only put in barriers around volatile refs (they are expensive),
2162 // not _between_ memory refs (that would require us to track the
2163 // flavor of the previous memory refs). Requirements (2) and (3)
2164 // require some barriers before volatile stores and after volatile
2165 // loads. These nearly cover requirement (1) but miss the
2166 // volatile-store-volatile-load case. This final case is placed after
2167 // volatile-stores although it could just as well go before
2168 // volatile-loads.
2169
2170 void TemplateTable::resolve_cache_and_index_for_method(int byte_no,
2171 Register Rcache,
2172 Register index) {
2173 const Register temp = x9; // s1
2174 assert_different_registers(Rcache, index, temp);
2175 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2176
2177 Label L_clinit_barrier_slow, L_done;
2178
2179 Bytecodes::Code code = bytecode();
2180 __ load_method_entry(Rcache, index);
2181 switch(byte_no) {
2182 case f1_byte:
2183 __ add(temp, Rcache, in_bytes(ResolvedMethodEntry::bytecode1_offset()));
2184 break;
2185 case f2_byte:
2186 __ add(temp, Rcache, in_bytes(ResolvedMethodEntry::bytecode2_offset()));
2187 break;
2188 }
2189 // Load-acquire the bytecode to match store-release in InterpreterRuntime
2190 __ lbu(temp, Address(temp, 0));
2191 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2192
2193 __ mv(t0, (int) code);
2194
2195 // Class initialization barrier for static methods
2196 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2197 __ bne(temp, t0, L_clinit_barrier_slow); // have we resolved this bytecode?
2198 __ ld(temp, Address(Rcache, in_bytes(ResolvedMethodEntry::method_offset())));
2199 __ load_method_holder(temp, temp);
2200 __ clinit_barrier(temp, t0, &L_done, /*L_slow_path*/ nullptr);
2201 __ bind(L_clinit_barrier_slow);
2202 } else {
2203 __ beq(temp, t0, L_done); // have we resolved this bytecode?
2204 }
2205
2206 // resolve first time through
2207 // Class initialization barrier slow path lands here as well.
2208 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2209 __ mv(temp, (int) code);
2210 __ call_VM(noreg, entry, temp);
2211
2212 // Update registers with resolved info
2213 __ load_method_entry(Rcache, index);
2214 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2215 // so all clients ofthis method must be modified accordingly
2216 __ bind(L_done);
2217 }
2218
2219 void TemplateTable::resolve_cache_and_index_for_field(int byte_no,
2220 Register Rcache,
2221 Register index) {
2222 const Register temp = x9;
2223 assert_different_registers(Rcache, index, temp);
2224
2225 Label L_clinit_barrier_slow, L_done;
2226
2227 Bytecodes::Code code = bytecode();
2228 switch (code) {
2229 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2230 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2231 default: break;
2232 }
2233
2234 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2235 __ load_field_entry(Rcache, index);
2236 if (byte_no == f1_byte) {
2237 __ la(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::get_code_offset())));
2238 } else {
2239 __ la(temp, Address(Rcache, in_bytes(ResolvedFieldEntry::put_code_offset())));
2240 }
2241 // Load-acquire the bytecode to match store-release in ResolvedFieldEntry::fill_in()
2242 __ lbu(temp, Address(temp, 0));
2243 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2244 __ mv(t0, (int) code); // have we resolved this bytecode?
2245
2246 // Class initialization barrier for static fields
2247 if (VM_Version::supports_fast_class_init_checks() &&
2248 (bytecode() == Bytecodes::_getstatic || bytecode() == Bytecodes::_putstatic)) {
2249 const Register field_holder = temp;
2250
2251 __ bne(temp, t0, L_clinit_barrier_slow);
2252 __ ld(field_holder, Address(Rcache, in_bytes(ResolvedFieldEntry::field_holder_offset())));
2253 __ clinit_barrier(field_holder, t0, &L_done, /*L_slow_path*/ nullptr);
2254 __ bind(L_clinit_barrier_slow);
2255 } else {
2256 __ beq(temp, t0, L_done);
2257 }
2258
2259 // resolve first time through
2260 // Class initialization barrier slow path lands here as well.
2261 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2262 __ mv(temp, (int) code);
2263 __ call_VM(noreg, entry, temp);
2264
2265 // Update registers with resolved info
2266 __ load_field_entry(Rcache, index);
2267 __ bind(L_done);
2268 }
2269
2270 void TemplateTable::load_resolved_field_entry(Register obj,
2271 Register cache,
2272 Register tos_state,
2273 Register offset,
2274 Register flags,
2275 bool is_static = false) {
2276 assert_different_registers(cache, tos_state, flags, offset);
2277
2278 // Field offset
2279 __ load_sized_value(offset, Address(cache, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
2280
2281 // Flags
2282 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedFieldEntry::flags_offset())));
2283
2284 // TOS state
2285 if (tos_state != noreg) {
2286 __ load_unsigned_byte(tos_state, Address(cache, in_bytes(ResolvedFieldEntry::type_offset())));
2287 }
2288
2289 // Klass overwrite register
2290 if (is_static) {
2291 __ ld(obj, Address(cache, ResolvedFieldEntry::field_holder_offset()));
2292 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2293 __ ld(obj, Address(obj, mirror_offset));
2294 __ resolve_oop_handle(obj, x15, t1);
2295 }
2296 }
2297
2298 void TemplateTable::load_resolved_method_entry_special_or_static(Register cache,
2299 Register method,
2300 Register flags) {
2301
2302 // setup registers
2303 const Register index = flags;
2304 assert_different_registers(method, cache, flags);
2305
2306 // determine constant pool cache field offsets
2307 resolve_cache_and_index_for_method(f1_byte, cache, index);
2308 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2309 __ ld(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2310 }
2311
2312 void TemplateTable::load_resolved_method_entry_handle(Register cache,
2313 Register method,
2314 Register ref_index,
2315 Register flags) {
2316 // setup registers
2317 const Register index = ref_index;
2318 assert_different_registers(method, flags);
2319 assert_different_registers(method, cache, index);
2320
2321 // determine constant pool cache field offsets
2322 resolve_cache_and_index_for_method(f1_byte, cache, index);
2323 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2324
2325 // maybe push appendix to arguments (just before return address)
2326 Label L_no_push;
2327 __ test_bit(t0, flags, ResolvedMethodEntry::has_appendix_shift);
2328 __ beqz(t0, L_no_push);
2329 // invokehandle uses an index into the resolved references array
2330 __ load_unsigned_short(ref_index, Address(cache, in_bytes(ResolvedMethodEntry::resolved_references_index_offset())));
2331 // Push the appendix as a trailing parameter.
2332 // This must be done before we get the receiver,
2333 // since the parameter_size includes it.
2334 Register appendix = method;
2335 __ load_resolved_reference_at_index(appendix, ref_index);
2336 __ push_reg(appendix); // push appendix (MethodType, CallSite, etc.)
2337 __ bind(L_no_push);
2338
2339 __ ld(method, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2340 }
2341
2342 void TemplateTable::load_resolved_method_entry_interface(Register cache,
2343 Register klass,
2344 Register method_or_table_index,
2345 Register flags) {
2346 // setup registers
2347 const Register index = method_or_table_index;
2348 assert_different_registers(method_or_table_index, cache, flags);
2349
2350 // determine constant pool cache field offsets
2351 resolve_cache_and_index_for_method(f1_byte, cache, index);
2352 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2353
2354 // Invokeinterface can behave in different ways:
2355 // If calling a method from java.lang.Object, the forced virtual flag is true so the invocation will
2356 // behave like an invokevirtual call. The state of the virtual final flag will determine whether a method or
2357 // vtable index is placed in the register.
2358 // Otherwise, the registers will be populated with the klass and method.
2359
2360 Label NotVirtual; Label NotVFinal; Label Done;
2361 __ test_bit(t0, flags, ResolvedMethodEntry::is_forced_virtual_shift);
2362 __ beqz(t0, NotVirtual);
2363 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift);
2364 __ beqz(t0, NotVFinal);
2365 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2366 __ j(Done);
2367
2368 __ bind(NotVFinal);
2369 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2370 __ j(Done);
2371
2372 __ bind(NotVirtual);
2373 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2374 __ ld(klass, Address(cache, in_bytes(ResolvedMethodEntry::klass_offset())));
2375 __ bind(Done);
2376 }
2377
2378 void TemplateTable::load_resolved_method_entry_virtual(Register cache,
2379 Register method_or_table_index,
2380 Register flags) {
2381 // setup registers
2382 const Register index = flags;
2383 assert_different_registers(method_or_table_index, cache, flags);
2384
2385 // determine constant pool cache field offsets
2386 resolve_cache_and_index_for_method(f2_byte, cache, index);
2387 __ load_unsigned_byte(flags, Address(cache, in_bytes(ResolvedMethodEntry::flags_offset())));
2388
2389 // method_or_table_index can either be an itable index or a method depending on the virtual final flag
2390 Label NotVFinal; Label Done;
2391 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift);
2392 __ beqz(t0, NotVFinal);
2393 __ ld(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::method_offset())));
2394 __ j(Done);
2395
2396 __ bind(NotVFinal);
2397 __ load_unsigned_short(method_or_table_index, Address(cache, in_bytes(ResolvedMethodEntry::table_index_offset())));
2398 __ bind(Done);
2399 }
2400
2401 // The xmethod register is input and overwritten to be the adapter method for the
2402 // indy call. Return address (ra) is set to the return address for the adapter and
2403 // an appendix may be pushed to the stack. Registers x10-x13 are clobbered.
2404 void TemplateTable::load_invokedynamic_entry(Register method) {
2405 // setup registers
2406 const Register appendix = x10;
2407 const Register cache = x12;
2408 const Register index = x13;
2409 assert_different_registers(method, appendix, cache, index, xcpool);
2410
2411 __ save_bcp();
2412
2413 Label resolved;
2414
2415 __ load_resolved_indy_entry(cache, index);
2416 __ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2417 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2418
2419 // Compare the method to zero
2420 __ bnez(method, resolved);
2421
2422 Bytecodes::Code code = bytecode();
2423
2424 // Call to the interpreter runtime to resolve invokedynamic
2425 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2426 __ mv(method, code); // this is essentially Bytecodes::_invokedynamic
2427 __ call_VM(noreg, entry, method);
2428 // Update registers with resolved info
2429 __ load_resolved_indy_entry(cache, index);
2430 __ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2431 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2432
2433 #ifdef ASSERT
2434 __ bnez(method, resolved);
2435 __ stop("Should be resolved by now");
2436 #endif // ASSERT
2437 __ bind(resolved);
2438
2439 Label L_no_push;
2440 // Check if there is an appendix
2441 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2442 __ test_bit(t0, index, ResolvedIndyEntry::has_appendix_shift);
2443 __ beqz(t0, L_no_push);
2444
2445 // Get appendix
2446 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2447 // Push the appendix as a trailing parameter
2448 // since the parameter_size includes it.
2449 __ push_reg(method);
2450 __ mv(method, index);
2451 __ load_resolved_reference_at_index(appendix, method);
2452 __ verify_oop(appendix);
2453 __ pop_reg(method);
2454 __ push_reg(appendix); // push appendix (MethodType, CallSite, etc.)
2455 __ bind(L_no_push);
2456
2457 // compute return type
2458 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2459 // load return address
2460 // Return address is loaded into ra and not pushed to the stack like x86
2461 {
2462 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2463 __ mv(t0, table_addr);
2464 __ shadd(t0, index, t0, index, 3);
2465 __ ld(ra, Address(t0, 0));
2466 }
2467 }
2468
2469 // The registers cache and index expected to be set before call.
2470 // Correct values of the cache and index registers are preserved.
2471 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2472 bool is_static, bool has_tos) {
2473 // do the JVMTI work here to avoid disturbing the register state below
2474 // We use c_rarg registers here because we want to use the register used in
2475 // the call to the VM
2476 if (JvmtiExport::can_post_field_access()) {
2477 // Check to see if a field access watch has been set before we
2478 // take the time to call into the VM.
2479 Label L1;
2480 assert_different_registers(cache, index, x10);
2481 __ lwu(x10, ExternalAddress(JvmtiExport::get_field_access_count_addr()));
2482 __ beqz(x10, L1);
2483
2484 __ load_field_entry(c_rarg2, index);
2485
2486 if (is_static) {
2487 __ mv(c_rarg1, zr); // null object reference
2488 } else {
2489 __ ld(c_rarg1, at_tos()); // get object pointer without popping it
2490 __ verify_oop(c_rarg1);
2491 }
2492 // c_rarg1: object pointer or null
2493 // c_rarg2: cache entry pointer
2494 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2495 InterpreterRuntime::post_field_access),
2496 c_rarg1, c_rarg2);
2497 __ load_field_entry(cache, index);
2498 __ bind(L1);
2499 }
2500 }
2501
2502 void TemplateTable::pop_and_check_object(Register r) {
2503 __ pop_ptr(r);
2504 __ null_check(r); // for field access must check obj.
2505 __ verify_oop(r);
2506 }
2507
2508 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2509 const Register cache = x14;
2510 const Register obj = x14;
2511 const Register index = x13;
2512 const Register tos_state = x13;
2513 const Register off = x9;
2514 const Register flags = x16;
2515 const Register bc = x14; // uses same reg as obj, so don't mix them
2516
2517 resolve_cache_and_index_for_field(byte_no, cache, index);
2518 jvmti_post_field_access(cache, index, is_static, false);
2519 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2520
2521 if (!is_static) {
2522 // obj is on the stack
2523 pop_and_check_object(obj);
2524 }
2525
2526 __ add(off, obj, off);
2527 const Address field(off);
2528
2529 Label Done, notByte, notBool, notInt, notShort, notChar,
2530 notLong, notFloat, notObj, notDouble;
2531
2532 assert(btos == 0, "change code, btos != 0");
2533 __ bnez(tos_state, notByte);
2534
2535 // Don't rewrite getstatic, only getfield
2536 if (is_static) {
2537 rc = may_not_rewrite;
2538 }
2539
2540 // btos
2541 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg);
2542 __ push(btos);
2543 // Rewrite bytecode to be faster
2544 if (rc == may_rewrite) {
2545 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11);
2546 }
2547 __ j(Done);
2548
2549 __ bind(notByte);
2550 __ subi(t0, tos_state, (u1)ztos);
2551 __ bnez(t0, notBool);
2552
2553 // ztos (same code as btos)
2554 __ access_load_at(T_BOOLEAN, IN_HEAP, x10, field, noreg, noreg);
2555 __ push(ztos);
2556 // Rewrite bytecode to be faster
2557 if (rc == may_rewrite) {
2558 // uses btos rewriting, no truncating to t/f bit is needed for getfield
2559 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11);
2560 }
2561 __ j(Done);
2562
2563 __ bind(notBool);
2564 __ subi(t0, tos_state, (u1)atos);
2565 __ bnez(t0, notObj);
2566 // atos
2567 __ load_heap_oop(x10, field, x28, x29, IN_HEAP);
2568 __ push(atos);
2569 if (rc == may_rewrite) {
2570 patch_bytecode(Bytecodes::_fast_agetfield, bc, x11);
2571 }
2572 __ j(Done);
2573
2574 __ bind(notObj);
2575 __ subi(t0, tos_state, (u1)itos);
2576 __ bnez(t0, notInt);
2577 // itos
2578 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg);
2579 __ sext(x10, x10, 32);
2580 __ push(itos);
2581 // Rewrite bytecode to be faster
2582 if (rc == may_rewrite) {
2583 patch_bytecode(Bytecodes::_fast_igetfield, bc, x11);
2584 }
2585 __ j(Done);
2586
2587 __ bind(notInt);
2588 __ subi(t0, tos_state, (u1)ctos);
2589 __ bnez(t0, notChar);
2590 // ctos
2591 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg);
2592 __ push(ctos);
2593 // Rewrite bytecode to be faster
2594 if (rc == may_rewrite) {
2595 patch_bytecode(Bytecodes::_fast_cgetfield, bc, x11);
2596 }
2597 __ j(Done);
2598
2599 __ bind(notChar);
2600 __ subi(t0, tos_state, (u1)stos);
2601 __ bnez(t0, notShort);
2602 // stos
2603 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg);
2604 __ push(stos);
2605 // Rewrite bytecode to be faster
2606 if (rc == may_rewrite) {
2607 patch_bytecode(Bytecodes::_fast_sgetfield, bc, x11);
2608 }
2609 __ j(Done);
2610
2611 __ bind(notShort);
2612 __ subi(t0, tos_state, (u1)ltos);
2613 __ bnez(t0, notLong);
2614 // ltos
2615 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg);
2616 __ push(ltos);
2617 // Rewrite bytecode to be faster
2618 if (rc == may_rewrite) {
2619 patch_bytecode(Bytecodes::_fast_lgetfield, bc, x11);
2620 }
2621 __ j(Done);
2622
2623 __ bind(notLong);
2624 __ subi(t0, tos_state, (u1)ftos);
2625 __ bnez(t0, notFloat);
2626 // ftos
2627 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2628 __ push(ftos);
2629 // Rewrite bytecode to be faster
2630 if (rc == may_rewrite) {
2631 patch_bytecode(Bytecodes::_fast_fgetfield, bc, x11);
2632 }
2633 __ j(Done);
2634
2635 __ bind(notFloat);
2636 #ifdef ASSERT
2637 __ subi(t0, tos_state, (u1)dtos);
2638 __ bnez(t0, notDouble);
2639 #endif
2640 // dtos
2641 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2642 __ push(dtos);
2643 // Rewrite bytecode to be faster
2644 if (rc == may_rewrite) {
2645 patch_bytecode(Bytecodes::_fast_dgetfield, bc, x11);
2646 }
2647 #ifdef ASSERT
2648 __ j(Done);
2649
2650 __ bind(notDouble);
2651 __ stop("Bad state");
2652 #endif
2653
2654 __ bind(Done);
2655
2656 Label notVolatile;
2657 __ test_bit(t0, flags, ResolvedFieldEntry::is_volatile_shift);
2658 __ beqz(t0, notVolatile);
2659 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2660 __ bind(notVolatile);
2661 }
2662
2663 void TemplateTable::getfield(int byte_no) {
2664 getfield_or_static(byte_no, false);
2665 }
2666
2667 void TemplateTable::nofast_getfield(int byte_no) {
2668 getfield_or_static(byte_no, false, may_not_rewrite);
2669 }
2670
2671 void TemplateTable::getstatic(int byte_no)
2672 {
2673 getfield_or_static(byte_no, true);
2674 }
2675
2676 // The registers cache and index expected to be set before call.
2677 // The function may destroy various registers, just not the cache and index registers.
2678 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2679 transition(vtos, vtos);
2680
2681 if (JvmtiExport::can_post_field_modification()) {
2682 // Check to see if a field modification watch has been set before
2683 // we take the time to call into the VM.
2684 Label L1;
2685 assert_different_registers(cache, index, x10);
2686 __ lwu(x10, ExternalAddress(JvmtiExport::get_field_modification_count_addr()));
2687 __ beqz(x10, L1);
2688
2689 __ mv(c_rarg2, cache);
2690
2691 if (is_static) {
2692 // Life is simple. Null out the object pointer.
2693 __ mv(c_rarg1, zr);
2694 } else {
2695 // Life is harder. The stack holds the value on top, followed by
2696 // the object. We don't know the size of the value, though; it
2697 // could be one or two words depending on its type. As a result,
2698 // we must find the type to determine where the object is.
2699 __ load_unsigned_byte(c_rarg3, Address(c_rarg2, in_bytes(ResolvedFieldEntry::type_offset())));
2700 Label nope2, done, ok;
2701 __ ld(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2702 __ subi(t0, c_rarg3, (u1)ltos);
2703 __ beqz(t0, ok);
2704 __ subi(t0, c_rarg3, (u1)dtos);
2705 __ bnez(t0, nope2);
2706 __ bind(ok);
2707 __ ld(c_rarg1, at_tos_p2()); // ltos (two word jvalue);
2708 __ bind(nope2);
2709 }
2710 // object (tos)
2711 __ mv(c_rarg3, esp);
2712 // c_rarg1: object pointer set up above (null if static)
2713 // c_rarg2: cache entry pointer
2714 // c_rarg3: jvalue object on the stack
2715 __ call_VM(noreg,
2716 CAST_FROM_FN_PTR(address,
2717 InterpreterRuntime::post_field_modification),
2718 c_rarg1, c_rarg2, c_rarg3);
2719 __ load_field_entry(cache, index);
2720 __ bind(L1);
2721 }
2722 }
2723
2724 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2725 transition(vtos, vtos);
2726
2727 const Register cache = x12;
2728 const Register index = x13;
2729 const Register tos_state = x13;
2730 const Register obj = x12;
2731 const Register off = x9;
2732 const Register flags = x10;
2733 const Register bc = x14;
2734
2735 resolve_cache_and_index_for_field(byte_no, cache, index);
2736 jvmti_post_field_mod(cache, index, is_static);
2737 load_resolved_field_entry(obj, cache, tos_state, off, flags, is_static);
2738
2739 Label Done;
2740 __ mv(x15, flags);
2741
2742 {
2743 Label notVolatile;
2744 __ test_bit(t0, x15, ResolvedFieldEntry::is_volatile_shift);
2745 __ beqz(t0, notVolatile);
2746 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2747 __ bind(notVolatile);
2748 }
2749
2750 Label notByte, notBool, notInt, notShort, notChar,
2751 notLong, notFloat, notObj, notDouble;
2752
2753 assert(btos == 0, "change code, btos != 0");
2754 __ bnez(tos_state, notByte);
2755
2756 // Don't rewrite putstatic, only putfield
2757 if (is_static) {
2758 rc = may_not_rewrite;
2759 }
2760
2761 // btos
2762 {
2763 __ pop(btos);
2764 // field address
2765 if (!is_static) {
2766 pop_and_check_object(obj);
2767 }
2768 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2769 const Address field(off, 0); // off register as temparator register.
2770 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg);
2771 if (rc == may_rewrite) {
2772 patch_bytecode(Bytecodes::_fast_bputfield, bc, x11, true, byte_no);
2773 }
2774 __ j(Done);
2775 }
2776
2777 __ bind(notByte);
2778 __ subi(t0, tos_state, (u1)ztos);
2779 __ bnez(t0, notBool);
2780
2781 // ztos
2782 {
2783 __ pop(ztos);
2784 // field address
2785 if (!is_static) {
2786 pop_and_check_object(obj);
2787 }
2788 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2789 const Address field(off, 0);
2790 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg);
2791 if (rc == may_rewrite) {
2792 patch_bytecode(Bytecodes::_fast_zputfield, bc, x11, true, byte_no);
2793 }
2794 __ j(Done);
2795 }
2796
2797 __ bind(notBool);
2798 __ subi(t0, tos_state, (u1)atos);
2799 __ bnez(t0, notObj);
2800
2801 // atos
2802 {
2803 __ pop(atos);
2804 // field address
2805 if (!is_static) {
2806 pop_and_check_object(obj);
2807 }
2808 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2809 const Address field(off, 0);
2810 // Store into the field
2811 __ store_heap_oop(field, x10, x28, x29, x13, IN_HEAP);
2812 if (rc == may_rewrite) {
2813 patch_bytecode(Bytecodes::_fast_aputfield, bc, x11, true, byte_no);
2814 }
2815 __ j(Done);
2816 }
2817
2818 __ bind(notObj);
2819 __ subi(t0, tos_state, (u1)itos);
2820 __ bnez(t0, notInt);
2821
2822 // itos
2823 {
2824 __ pop(itos);
2825 // field address
2826 if (!is_static) {
2827 pop_and_check_object(obj);
2828 }
2829 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2830 const Address field(off, 0);
2831 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg);
2832 if (rc == may_rewrite) {
2833 patch_bytecode(Bytecodes::_fast_iputfield, bc, x11, true, byte_no);
2834 }
2835 __ j(Done);
2836 }
2837
2838 __ bind(notInt);
2839 __ subi(t0, tos_state, (u1)ctos);
2840 __ bnez(t0, notChar);
2841
2842 // ctos
2843 {
2844 __ pop(ctos);
2845 // field address
2846 if (!is_static) {
2847 pop_and_check_object(obj);
2848 }
2849 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2850 const Address field(off, 0);
2851 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg);
2852 if (rc == may_rewrite) {
2853 patch_bytecode(Bytecodes::_fast_cputfield, bc, x11, true, byte_no);
2854 }
2855 __ j(Done);
2856 }
2857
2858 __ bind(notChar);
2859 __ subi(t0, tos_state, (u1)stos);
2860 __ bnez(t0, notShort);
2861
2862 // stos
2863 {
2864 __ pop(stos);
2865 // field address
2866 if (!is_static) {
2867 pop_and_check_object(obj);
2868 }
2869 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2870 const Address field(off, 0);
2871 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg);
2872 if (rc == may_rewrite) {
2873 patch_bytecode(Bytecodes::_fast_sputfield, bc, x11, true, byte_no);
2874 }
2875 __ j(Done);
2876 }
2877
2878 __ bind(notShort);
2879 __ subi(t0, tos_state, (u1)ltos);
2880 __ bnez(t0, notLong);
2881
2882 // ltos
2883 {
2884 __ pop(ltos);
2885 // field address
2886 if (!is_static) {
2887 pop_and_check_object(obj);
2888 }
2889 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2890 const Address field(off, 0);
2891 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg);
2892 if (rc == may_rewrite) {
2893 patch_bytecode(Bytecodes::_fast_lputfield, bc, x11, true, byte_no);
2894 }
2895 __ j(Done);
2896 }
2897
2898 __ bind(notLong);
2899 __ subi(t0, tos_state, (u1)ftos);
2900 __ bnez(t0, notFloat);
2901
2902 // ftos
2903 {
2904 __ pop(ftos);
2905 // field address
2906 if (!is_static) {
2907 pop_and_check_object(obj);
2908 }
2909 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2910 const Address field(off, 0);
2911 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
2912 if (rc == may_rewrite) {
2913 patch_bytecode(Bytecodes::_fast_fputfield, bc, x11, true, byte_no);
2914 }
2915 __ j(Done);
2916 }
2917
2918 __ bind(notFloat);
2919 #ifdef ASSERT
2920 __ subi(t0, tos_state, (u1)dtos);
2921 __ bnez(t0, notDouble);
2922 #endif
2923
2924 // dtos
2925 {
2926 __ pop(dtos);
2927 // field address
2928 if (!is_static) {
2929 pop_and_check_object(obj);
2930 }
2931 __ add(off, obj, off); // if static, obj from cache, else obj from stack.
2932 const Address field(off, 0);
2933 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2934 if (rc == may_rewrite) {
2935 patch_bytecode(Bytecodes::_fast_dputfield, bc, x11, true, byte_no);
2936 }
2937 }
2938
2939 #ifdef ASSERT
2940 __ j(Done);
2941
2942 __ bind(notDouble);
2943 __ stop("Bad state");
2944 #endif
2945
2946 __ bind(Done);
2947
2948 {
2949 Label notVolatile;
2950 __ test_bit(t0, x15, ResolvedFieldEntry::is_volatile_shift);
2951 __ beqz(t0, notVolatile);
2952 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2953 __ bind(notVolatile);
2954 }
2955 }
2956
2957 void TemplateTable::putfield(int byte_no) {
2958 putfield_or_static(byte_no, false);
2959 }
2960
2961 void TemplateTable::nofast_putfield(int byte_no) {
2962 putfield_or_static(byte_no, false, may_not_rewrite);
2963 }
2964
2965 void TemplateTable::putstatic(int byte_no) {
2966 putfield_or_static(byte_no, true);
2967 }
2968
2969 void TemplateTable::jvmti_post_fast_field_mod() {
2970 if (JvmtiExport::can_post_field_modification()) {
2971 // Check to see if a field modification watch has been set before
2972 // we take the time to call into the VM.
2973 Label L2;
2974 __ lwu(c_rarg3, ExternalAddress(JvmtiExport::get_field_modification_count_addr()));
2975 __ beqz(c_rarg3, L2);
2976
2977 __ pop_ptr(x9); // copy the object pointer from tos
2978 __ verify_oop(x9);
2979 __ push_ptr(x9); // put the object pointer back on tos
2980 // Save tos values before call_VM() clobbers them. Since we have
2981 // to do it for every data type, we use the saved values as the
2982 // jvalue object.
2983 switch (bytecode()) { // load values into the jvalue object
2984 case Bytecodes::_fast_aputfield: __ push_ptr(x10); break;
2985 case Bytecodes::_fast_bputfield: // fall through
2986 case Bytecodes::_fast_zputfield: // fall through
2987 case Bytecodes::_fast_sputfield: // fall through
2988 case Bytecodes::_fast_cputfield: // fall through
2989 case Bytecodes::_fast_iputfield: __ push_i(x10); break;
2990 case Bytecodes::_fast_dputfield: __ push_d(); break;
2991 case Bytecodes::_fast_fputfield: __ push_f(); break;
2992 case Bytecodes::_fast_lputfield: __ push_l(x10); break;
2993
2994 default:
2995 ShouldNotReachHere();
2996 }
2997 __ mv(c_rarg3, esp); // points to jvalue on the stack
2998 // access constant pool cache entry
2999 __ load_field_entry(c_rarg2, x10);
3000 __ verify_oop(x9);
3001 // x9: object pointer copied above
3002 // c_rarg2: cache entry pointer
3003 // c_rarg3: jvalue object on the stack
3004 __ call_VM(noreg,
3005 CAST_FROM_FN_PTR(address,
3006 InterpreterRuntime::post_field_modification),
3007 x9, c_rarg2, c_rarg3);
3008
3009 switch (bytecode()) { // restore tos values
3010 case Bytecodes::_fast_aputfield: __ pop_ptr(x10); break;
3011 case Bytecodes::_fast_bputfield: // fall through
3012 case Bytecodes::_fast_zputfield: // fall through
3013 case Bytecodes::_fast_sputfield: // fall through
3014 case Bytecodes::_fast_cputfield: // fall through
3015 case Bytecodes::_fast_iputfield: __ pop_i(x10); break;
3016 case Bytecodes::_fast_dputfield: __ pop_d(); break;
3017 case Bytecodes::_fast_fputfield: __ pop_f(); break;
3018 case Bytecodes::_fast_lputfield: __ pop_l(x10); break;
3019 default: break;
3020 }
3021 __ bind(L2);
3022 }
3023 }
3024
3025 void TemplateTable::fast_storefield(TosState state) {
3026 transition(state, vtos);
3027
3028 ByteSize base = ConstantPoolCache::base_offset();
3029
3030 jvmti_post_fast_field_mod();
3031
3032 // access constant pool cache
3033 __ load_field_entry(x12, x11);
3034
3035 // X11: field offset, X12: field holder, X13: flags
3036 load_resolved_field_entry(x12, x12, noreg, x11, x13);
3037 __ verify_field_offset(x11);
3038
3039 {
3040 Label notVolatile;
3041 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift);
3042 __ beqz(t0, notVolatile);
3043 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
3044 __ bind(notVolatile);
3045 }
3046
3047 // Get object from stack
3048 pop_and_check_object(x12);
3049
3050 // field address
3051 __ add(x11, x12, x11);
3052 const Address field(x11, 0);
3053
3054 // access field, must not clobber x13 - flags
3055 switch (bytecode()) {
3056 case Bytecodes::_fast_aputfield:
3057 __ store_heap_oop(field, x10, x28, x29, x15, IN_HEAP);
3058 break;
3059 case Bytecodes::_fast_lputfield:
3060 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg);
3061 break;
3062 case Bytecodes::_fast_iputfield:
3063 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg);
3064 break;
3065 case Bytecodes::_fast_zputfield:
3066 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg);
3067 break;
3068 case Bytecodes::_fast_bputfield:
3069 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg);
3070 break;
3071 case Bytecodes::_fast_sputfield:
3072 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg);
3073 break;
3074 case Bytecodes::_fast_cputfield:
3075 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg);
3076 break;
3077 case Bytecodes::_fast_fputfield:
3078 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3079 break;
3080 case Bytecodes::_fast_dputfield:
3081 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3082 break;
3083 default:
3084 ShouldNotReachHere();
3085 }
3086
3087 {
3088 Label notVolatile;
3089 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift);
3090 __ beqz(t0, notVolatile);
3091 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3092 __ bind(notVolatile);
3093 }
3094 }
3095
3096 void TemplateTable::fast_accessfield(TosState state) {
3097 transition(atos, state);
3098 // Do the JVMTI work here to avoid disturbing the register state below
3099 if (JvmtiExport::can_post_field_access()) {
3100 // Check to see if a field access watch has been set before we
3101 // take the time to call into the VM.
3102 Label L1;
3103 __ lwu(x12, ExternalAddress(JvmtiExport::get_field_access_count_addr()));
3104 __ beqz(x12, L1);
3105
3106 // access constant pool cache entry
3107 __ load_field_entry(c_rarg2, t1);
3108 __ verify_oop(x10);
3109 __ push_ptr(x10); // save object pointer before call_VM() clobbers it
3110 __ mv(c_rarg1, x10);
3111 // c_rarg1: object pointer copied above
3112 // c_rarg2: cache entry pointer
3113 __ call_VM(noreg,
3114 CAST_FROM_FN_PTR(address,
3115 InterpreterRuntime::post_field_access),
3116 c_rarg1, c_rarg2);
3117 __ pop_ptr(x10); // restore object pointer
3118 __ bind(L1);
3119 }
3120
3121 // access constant pool cache
3122 __ load_field_entry(x12, x11);
3123
3124 __ load_sized_value(x11, Address(x12, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3125 __ verify_field_offset(x11);
3126
3127 __ load_unsigned_byte(x13, Address(x12, in_bytes(ResolvedFieldEntry::flags_offset())));
3128
3129 // x10: object
3130 __ verify_oop(x10);
3131 __ null_check(x10);
3132 __ add(x11, x10, x11);
3133 const Address field(x11, 0);
3134
3135 // access field
3136 switch (bytecode()) {
3137 case Bytecodes::_fast_agetfield:
3138 __ load_heap_oop(x10, field, x28, x29, IN_HEAP);
3139 __ verify_oop(x10);
3140 break;
3141 case Bytecodes::_fast_lgetfield:
3142 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg);
3143 break;
3144 case Bytecodes::_fast_igetfield:
3145 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg);
3146 __ sext(x10, x10, 32);
3147 break;
3148 case Bytecodes::_fast_bgetfield:
3149 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg);
3150 break;
3151 case Bytecodes::_fast_sgetfield:
3152 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg);
3153 break;
3154 case Bytecodes::_fast_cgetfield:
3155 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg);
3156 break;
3157 case Bytecodes::_fast_fgetfield:
3158 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3159 break;
3160 case Bytecodes::_fast_dgetfield:
3161 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3162 break;
3163 default:
3164 ShouldNotReachHere();
3165 }
3166 {
3167 Label notVolatile;
3168 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift);
3169 __ beqz(t0, notVolatile);
3170 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3171 __ bind(notVolatile);
3172 }
3173 }
3174
3175 void TemplateTable::fast_xaccess(TosState state) {
3176 transition(vtos, state);
3177
3178 // get receiver
3179 __ ld(x10, aaddress(0));
3180 // access constant pool cache
3181 __ load_field_entry(x12, x13, 2);
3182
3183 __ load_sized_value(x11, Address(x12, in_bytes(ResolvedFieldEntry::field_offset_offset())), sizeof(int), true /*is_signed*/);
3184 __ verify_field_offset(x11);
3185
3186 // make sure exception is reported in correct bcp range (getfield is
3187 // next instruction)
3188 __ addi(xbcp, xbcp, 1);
3189 __ null_check(x10);
3190 switch (state) {
3191 case itos:
3192 __ add(x10, x10, x11);
3193 __ access_load_at(T_INT, IN_HEAP, x10, Address(x10, 0), noreg, noreg);
3194 __ sext(x10, x10, 32);
3195 break;
3196 case atos:
3197 __ add(x10, x10, x11);
3198 __ load_heap_oop(x10, Address(x10, 0), x28, x29, IN_HEAP);
3199 __ verify_oop(x10);
3200 break;
3201 case ftos:
3202 __ add(x10, x10, x11);
3203 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(x10), noreg, noreg);
3204 break;
3205 default:
3206 ShouldNotReachHere();
3207 }
3208
3209 {
3210 Label notVolatile;
3211 __ load_unsigned_byte(x13, Address(x12, in_bytes(ResolvedFieldEntry::flags_offset())));
3212 __ test_bit(t0, x13, ResolvedFieldEntry::is_volatile_shift);
3213 __ beqz(t0, notVolatile);
3214 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3215 __ bind(notVolatile);
3216 }
3217
3218 __ subi(xbcp, xbcp, 1);
3219 }
3220
3221 //-----------------------------------------------------------------------------
3222 // Calls
3223
3224 void TemplateTable::prepare_invoke(Register cache, Register recv) {
3225
3226 Bytecodes::Code code = bytecode();
3227 const bool load_receiver = (code != Bytecodes::_invokestatic) && (code != Bytecodes::_invokedynamic);
3228
3229 // save 'interpreter return address'
3230 __ save_bcp();
3231
3232 // Load TOS state for later
3233 __ load_unsigned_byte(t1, Address(cache, in_bytes(ResolvedMethodEntry::type_offset())));
3234
3235 // load receiver if needed (note: no return address pushed yet)
3236 if (load_receiver) {
3237 __ load_unsigned_short(recv, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset())));
3238 __ shadd(t0, recv, esp, t0, 3);
3239 __ ld(recv, Address(t0, -Interpreter::expr_offset_in_bytes(1)));
3240 __ verify_oop(recv);
3241 }
3242
3243 // load return address
3244 {
3245 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3246 __ mv(t0, table_addr);
3247 __ shadd(t0, t1, t0, t1, 3);
3248 __ ld(ra, Address(t0, 0));
3249 }
3250 }
3251
3252 void TemplateTable::invokevirtual_helper(Register index,
3253 Register recv,
3254 Register flags) {
3255 // Uses temporary registers x10, x13
3256 assert_different_registers(index, recv, x10, x13);
3257 // Test for an invoke of a final method
3258 Label notFinal;
3259 __ test_bit(t0, flags, ResolvedMethodEntry::is_vfinal_shift);
3260 __ beqz(t0, notFinal);
3261
3262 const Register method = index; // method must be xmethod
3263 assert(method == xmethod, "Method must be xmethod for interpreter calling convention");
3264
3265 // do the call - the index is actually the method to call
3266 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3267
3268 // It's final, need a null check here!
3269 __ null_check(recv);
3270
3271 // profile this call
3272 __ profile_final_call(x10);
3273 __ profile_arguments_type(x10, method, x14, true);
3274
3275 __ jump_from_interpreted(method);
3276
3277 __ bind(notFinal);
3278
3279 // get receiver klass
3280 __ load_klass(x10, recv);
3281
3282 // profile this call
3283 __ profile_virtual_call(x10, xlocals, x13);
3284
3285 // get target Method & entry point
3286 __ lookup_virtual_method(x10, index, method);
3287 __ profile_arguments_type(x13, method, x14, true);
3288 __ jump_from_interpreted(method);
3289 }
3290
3291 void TemplateTable::invokevirtual(int byte_no) {
3292 transition(vtos, vtos);
3293 assert(byte_no == f2_byte, "use this argument");
3294
3295 load_resolved_method_entry_virtual(x12, // ResolvedMethodEntry*
3296 xmethod, // Method* or itable index
3297 x13); // flags
3298 prepare_invoke(x12, x12); // recv
3299
3300 // xmethod: index (actually a Method*)
3301 // x12: receiver
3302 // x13: flags
3303
3304 invokevirtual_helper(xmethod, x12, x13);
3305 }
3306
3307 void TemplateTable::invokespecial(int byte_no) {
3308 transition(vtos, vtos);
3309 assert(byte_no == f1_byte, "use this argument");
3310
3311 load_resolved_method_entry_special_or_static(x12, // ResolvedMethodEntry*
3312 xmethod, // Method*
3313 x13); // flags
3314 prepare_invoke(x12, x12); // get receiver also for null check
3315
3316 __ verify_oop(x12);
3317 __ null_check(x12);
3318 // do the call
3319 __ profile_call(x10);
3320 __ profile_arguments_type(x10, xmethod, xbcp, false);
3321 __ jump_from_interpreted(xmethod);
3322 }
3323
3324 void TemplateTable::invokestatic(int byte_no) {
3325 transition(vtos, vtos);
3326 assert(byte_no == f1_byte, "use this argument");
3327
3328 load_resolved_method_entry_special_or_static(x12, // ResolvedMethodEntry*
3329 xmethod, // Method*
3330 x13); // flags
3331 prepare_invoke(x12, x12); // get receiver also for null check
3332
3333 // do the call
3334 __ profile_call(x10);
3335 __ profile_arguments_type(x10, xmethod, x14, false);
3336 __ jump_from_interpreted(xmethod);
3337 }
3338
3339 void TemplateTable::fast_invokevfinal(int byte_no) {
3340 __ call_Unimplemented();
3341 }
3342
3343 void TemplateTable::invokeinterface(int byte_no) {
3344 transition(vtos, vtos);
3345 assert(byte_no == f1_byte, "use this argument");
3346
3347 load_resolved_method_entry_interface(x12, // ResolvedMethodEntry*
3348 x10, // Klass*
3349 xmethod, // Method* or itable/vtable index
3350 x13); // flags
3351 prepare_invoke(x12, x12); // receiver
3352
3353 // x10: interface klass (from f1)
3354 // xmethod: method (from f2)
3355 // x12: receiver
3356 // x13: flags
3357
3358 // First check for Object case, then private interface method,
3359 // then regular interface method.
3360
3361 // Special case of invokeinterface called for virtual method of
3362 // java.lang.Object. See cpCache.cpp for details
3363 Label notObjectMethod;
3364 __ test_bit(t0, x13, ResolvedMethodEntry::is_forced_virtual_shift);
3365 __ beqz(t0, notObjectMethod);
3366
3367 invokevirtual_helper(xmethod, x12, x13);
3368 __ bind(notObjectMethod);
3369
3370 Label no_such_interface;
3371
3372 // Check for private method invocation - indicated by vfinal
3373 Label notVFinal;
3374 __ test_bit(t0, x13, ResolvedMethodEntry::is_vfinal_shift);
3375 __ beqz(t0, notVFinal);
3376
3377 // Check receiver klass into x13
3378 __ load_klass(x13, x12);
3379
3380 Label subtype;
3381 __ check_klass_subtype(x13, x10, x14, subtype);
3382 // If we get here the typecheck failed
3383 __ j(no_such_interface);
3384 __ bind(subtype);
3385
3386 __ profile_final_call(x10);
3387 __ profile_arguments_type(x10, xmethod, x14, true);
3388 __ jump_from_interpreted(xmethod);
3389
3390 __ bind(notVFinal);
3391
3392 // Get receiver klass into x13
3393 __ restore_locals();
3394 __ load_klass(x13, x12);
3395
3396 Label no_such_method;
3397
3398 // Preserve method for the throw_AbstractMethodErrorVerbose.
3399 __ mv(x28, xmethod);
3400 // Receiver subtype check against REFC.
3401 // Superklass in x10. Subklass in x13. Blows t1, x30
3402 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3403 x13, x10, noreg,
3404 // outputs: scan temp. reg, scan temp. reg
3405 t1, x30,
3406 no_such_interface,
3407 /*return_method=*/false);
3408
3409 // profile this call
3410 __ profile_virtual_call(x13, x30, x9);
3411
3412 // Get declaring interface class from method, and itable index
3413 __ load_method_holder(x10, xmethod);
3414 __ lwu(xmethod, Address(xmethod, Method::itable_index_offset()));
3415 __ subw(xmethod, xmethod, Method::itable_index_max);
3416 __ negw(xmethod, xmethod);
3417
3418 // Preserve recvKlass for throw_AbstractMethodErrorVerbose
3419 __ mv(xlocals, x13);
3420 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3421 xlocals, x10, xmethod,
3422 // outputs: method, scan temp. reg
3423 xmethod, x30,
3424 no_such_interface);
3425
3426 // xmethod: Method to call
3427 // x12: receiver
3428 // Check for abstract method error
3429 // Note: This should be done more efficiently via a throw_abstract_method_error
3430 // interpreter entry point and a conditional jump to it in case of a null
3431 // method.
3432 __ beqz(xmethod, no_such_method);
3433
3434 __ profile_arguments_type(x13, xmethod, x30, true);
3435
3436 // do the call
3437 // x12: receiver
3438 // xmethod: Method
3439 __ jump_from_interpreted(xmethod);
3440 __ should_not_reach_here();
3441
3442 // exception handling code follows ...
3443 // note: must restore interpreter registers to canonical
3444 // state for exception handling to work correctly!
3445
3446 __ bind(no_such_method);
3447 // throw exception
3448 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3449 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3450 // Pass arguments for generating a verbose error message.
3451 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), x13, x28);
3452 // the call_VM checks for exception, so we should never return here.
3453 __ should_not_reach_here();
3454
3455 __ bind(no_such_interface);
3456 // throw exceptiong
3457 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3458 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3459 // Pass arguments for generating a verbose error message.
3460 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3461 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), x13, x10);
3462 // the call_VM checks for exception, so we should never return here.
3463 __ should_not_reach_here();
3464 return;
3465 }
3466
3467 void TemplateTable::invokehandle(int byte_no) {
3468 transition(vtos, vtos);
3469 assert(byte_no == f1_byte, "use this argument");
3470
3471 load_resolved_method_entry_handle(x12, // ResolvedMethodEntry*
3472 xmethod, // Method*
3473 x10, // Resolved reference
3474 x13); // flags
3475 prepare_invoke(x12, x12);
3476
3477 __ verify_method_ptr(x12);
3478 __ verify_oop(x12);
3479 __ null_check(x12);
3480
3481 // FIXME: profile the LambdaForm also
3482
3483 // x30 is safe to use here as a temp reg because it is about to
3484 // be clobbered by jump_from_interpreted().
3485 __ profile_final_call(x30);
3486 __ profile_arguments_type(x30, xmethod, x14, true);
3487
3488 __ jump_from_interpreted(xmethod);
3489 }
3490
3491 void TemplateTable::invokedynamic(int byte_no) {
3492 transition(vtos, vtos);
3493 assert(byte_no == f1_byte, "use this argument");
3494
3495 load_invokedynamic_entry(xmethod);
3496
3497 // x10: CallSite object (from cpool->resolved_references[])
3498 // xmethod: MH.linkToCallSite method
3499
3500 // Note: x10_callsite is already pushed
3501
3502 // %%% should make a type profile for any invokedynamic that takes a ref argument
3503 // profile this call
3504 __ profile_call(xbcp);
3505 __ profile_arguments_type(x13, xmethod, x30, false);
3506
3507 __ verify_oop(x10);
3508
3509 __ jump_from_interpreted(xmethod);
3510 }
3511
3512 //-----------------------------------------------------------------------------
3513 // Allocation
3514
3515 void TemplateTable::_new() {
3516 transition(vtos, atos);
3517
3518 __ get_unsigned_2_byte_index_at_bcp(x13, 1);
3519 Label slow_case;
3520 Label done;
3521 Label initialize_header;
3522
3523 __ get_cpool_and_tags(x14, x10);
3524 // Make sure the class we're about to instantiate has been resolved.
3525 // This is done before loading InstanceKlass to be consistent with the order
3526 // how Constant Pool is update (see ConstantPool::klass_at_put)
3527 const int tags_offset = Array<u1>::base_offset_in_bytes();
3528 __ add(t0, x10, x13);
3529 __ la(t0, Address(t0, tags_offset));
3530 __ lbu(t0, t0);
3531 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3532 __ subi(t1, t0, (u1)JVM_CONSTANT_Class);
3533 __ bnez(t1, slow_case);
3534
3535 // get InstanceKlass
3536 __ load_resolved_klass_at_offset(x14, x13, x14, t0);
3537
3538 // make sure klass is initialized
3539 assert(VM_Version::supports_fast_class_init_checks(),
3540 "Optimization requires support for fast class initialization checks");
3541 __ clinit_barrier(x14, t0, nullptr /*L_fast_path*/, &slow_case);
3542
3543 // get instance_size in InstanceKlass (scaled to a count of bytes)
3544 __ lwu(x13, Address(x14, Klass::layout_helper_offset()));
3545 // test to see if is malformed in some way
3546 __ test_bit(t0, x13, exact_log2(Klass::_lh_instance_slow_path_bit));
3547 __ bnez(t0, slow_case);
3548
3549 // Allocate the instance:
3550 // If TLAB is enabled:
3551 // Try to allocate in the TLAB.
3552 // If fails, go to the slow path.
3553 // Initialize the allocation.
3554 // Exit.
3555 // Go to slow path.
3556
3557 if (UseTLAB) {
3558 __ tlab_allocate(x10, x13, 0, noreg, x11, slow_case);
3559
3560 if (ZeroTLAB) {
3561 // the fields have been already cleared
3562 __ j(initialize_header);
3563 }
3564
3565 // The object is initialized before the header. If the object size is
3566 // zero, go directly to the header initialization.
3567 if (UseCompactObjectHeaders) {
3568 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned");
3569 __ subi(x13, x13, oopDesc::base_offset_in_bytes());
3570 } else {
3571 __ subi(x13, x13, sizeof(oopDesc));
3572 }
3573 __ beqz(x13, initialize_header);
3574
3575 // Initialize object fields
3576 {
3577 if (UseCompactObjectHeaders) {
3578 assert(is_aligned(oopDesc::base_offset_in_bytes(), BytesPerLong), "oop base offset must be 8-byte-aligned");
3579 __ addi(x12, x10, oopDesc::base_offset_in_bytes());
3580 } else {
3581 __ addi(x12, x10, sizeof(oopDesc));
3582 }
3583 Label loop;
3584 __ bind(loop);
3585 __ sd(zr, Address(x12));
3586 __ addi(x12, x12, BytesPerLong);
3587 __ subi(x13, x13, BytesPerLong);
3588 __ bnez(x13, loop);
3589 }
3590
3591 // initialize object hader only.
3592 __ bind(initialize_header);
3593 if (UseCompactObjectHeaders) {
3594 __ ld(t0, Address(x14, Klass::prototype_header_offset()));
3595 __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes()));
3596 } else {
3597 __ mv(t0, (intptr_t)markWord::prototype().value());
3598 __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes()));
3599 __ store_klass_gap(x10, zr); // zero klass gap for compressed oops
3600 __ store_klass(x10, x14); // store klass last
3601 }
3602
3603 if (DTraceAllocProbes) {
3604 // Trigger dtrace event for fastpath
3605 __ push(atos); // save the return value
3606 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), x10);
3607 __ pop(atos); // restore the return value
3608 }
3609 __ j(done);
3610 }
3611
3612 // slow case
3613 __ bind(slow_case);
3614 __ get_constant_pool(c_rarg1);
3615 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3616 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3617 __ verify_oop(x10);
3618
3619 // continue
3620 __ bind(done);
3621 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3622 __ membar(MacroAssembler::StoreStore);
3623 }
3624
3625 void TemplateTable::newarray() {
3626 transition(itos, atos);
3627 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3628 __ mv(c_rarg2, x10);
3629 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3630 c_rarg1, c_rarg2);
3631 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3632 __ membar(MacroAssembler::StoreStore);
3633 }
3634
3635 void TemplateTable::anewarray() {
3636 transition(itos, atos);
3637 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3638 __ get_constant_pool(c_rarg1);
3639 __ mv(c_rarg3, x10);
3640 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3641 c_rarg1, c_rarg2, c_rarg3);
3642 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3643 __ membar(MacroAssembler::StoreStore);
3644 }
3645
3646 void TemplateTable::arraylength() {
3647 transition(atos, itos);
3648 __ lwu(x10, Address(x10, arrayOopDesc::length_offset_in_bytes()));
3649 }
3650
3651 void TemplateTable::checkcast() {
3652 transition(atos, atos);
3653 Label done, is_null, ok_is_subtype, quicked, resolved;
3654 __ beqz(x10, is_null);
3655
3656 // Get cpool & tags index
3657 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array
3658 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index
3659 // See if bytecode has already been quicked
3660 __ addi(t0, x13, Array<u1>::base_offset_in_bytes());
3661 __ add(x11, t0, x9);
3662 __ lbu(x11, x11);
3663 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3664 __ subi(t0, x11, (u1)JVM_CONSTANT_Class);
3665 __ beqz(t0, quicked);
3666
3667 __ push(atos); // save receiver for result, and for GC
3668 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3669 __ get_vm_result_metadata(x10, xthread);
3670 __ pop_reg(x13); // restore receiver
3671 __ j(resolved);
3672
3673 // Get superklass in x10 and subklass in x13
3674 __ bind(quicked);
3675 __ mv(x13, x10); // Save object in x13; x10 needed for subtype check
3676 __ load_resolved_klass_at_offset(x12, x9, x10, t0); // x10 = klass
3677
3678 __ bind(resolved);
3679 __ load_klass(x9, x13);
3680
3681 // Generate subtype check. Blows x12, x15. Object in x13.
3682 // Superklass in x10. Subklass in x9.
3683 __ gen_subtype_check(x9, ok_is_subtype);
3684
3685 // Come here on failure
3686 __ push_reg(x13);
3687 // object is at TOS
3688 __ j(RuntimeAddress(Interpreter::_throw_ClassCastException_entry));
3689
3690 // Come here on success
3691 __ bind(ok_is_subtype);
3692 __ mv(x10, x13); // Restore object in x13
3693
3694 // Collect counts on whether this test sees nulls a lot or not.
3695 if (ProfileInterpreter) {
3696 __ j(done);
3697 __ bind(is_null);
3698 __ profile_null_seen(x12);
3699 } else {
3700 __ bind(is_null); // same as 'done'
3701 }
3702 __ bind(done);
3703 }
3704
3705 void TemplateTable::instanceof() {
3706 transition(atos, itos);
3707 Label done, is_null, ok_is_subtype, quicked, resolved;
3708 __ beqz(x10, is_null);
3709
3710 // Get cpool & tags index
3711 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array
3712 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index
3713 // See if bytecode has already been quicked
3714 __ addi(t0, x13, Array<u1>::base_offset_in_bytes());
3715 __ add(x11, t0, x9);
3716 __ lbu(x11, x11);
3717 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3718 __ subi(t0, x11, (u1)JVM_CONSTANT_Class);
3719 __ beqz(t0, quicked);
3720
3721 __ push(atos); // save receiver for result, and for GC
3722 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3723 __ get_vm_result_metadata(x10, xthread);
3724 __ pop_reg(x13); // restore receiver
3725 __ verify_oop(x13);
3726 __ load_klass(x13, x13);
3727 __ j(resolved);
3728
3729 // Get superklass in x10 and subklass in x13
3730 __ bind(quicked);
3731 __ load_klass(x13, x10);
3732 __ load_resolved_klass_at_offset(x12, x9, x10, t0);
3733
3734 __ bind(resolved);
3735
3736 // Generate subtype check. Blows x12, x15
3737 // Superklass in x10. Subklass in x13.
3738 __ gen_subtype_check(x13, ok_is_subtype);
3739
3740 // Come here on failure
3741 __ mv(x10, zr);
3742 __ j(done);
3743 // Come here on success
3744 __ bind(ok_is_subtype);
3745 __ mv(x10, 1);
3746
3747 // Collect counts on whether this test sees nulls a lot or not.
3748 if (ProfileInterpreter) {
3749 __ j(done);
3750 __ bind(is_null);
3751 __ profile_null_seen(x12);
3752 } else {
3753 __ bind(is_null); // same as 'done'
3754 }
3755 __ bind(done);
3756 // x10 = 0: obj is null or obj is not an instanceof the specified klass
3757 // x10 = 1: obj isn't null and obj is an instanceof the specified klass
3758 }
3759
3760 //-----------------------------------------------------------------------------
3761 // Breakpoints
3762
3763 void TemplateTable::_breakpoint() {
3764 // Note: We get here even if we are single stepping..
3765 // jbug inists on setting breakpoints at every bytecode
3766 // even if we are in single step mode.
3767
3768 transition(vtos, vtos);
3769
3770 // get the unpatched byte code
3771 __ get_method(c_rarg1);
3772 __ call_VM(noreg,
3773 CAST_FROM_FN_PTR(address,
3774 InterpreterRuntime::get_original_bytecode_at),
3775 c_rarg1, xbcp);
3776 __ mv(x9, x10);
3777
3778 // post the breakpoint event
3779 __ call_VM(noreg,
3780 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3781 xmethod, xbcp);
3782
3783 // complete the execution of original bytecode
3784 __ mv(t0, x9);
3785 __ dispatch_only_normal(vtos);
3786 }
3787
3788 //-----------------------------------------------------------------------------
3789 // Exceptions
3790
3791 void TemplateTable::athrow() {
3792 transition(atos, vtos);
3793 __ null_check(x10);
3794 __ j(RuntimeAddress(Interpreter::throw_exception_entry()));
3795 }
3796
3797 //-----------------------------------------------------------------------------
3798 // Synchronization
3799 //
3800 // Note: monitorenter & exit are symmetric routines; which is reflected
3801 // in the assembly code structure as well
3802 //
3803 // Stack layout:
3804 //
3805 // [expressions ] <--- esp = expression stack top
3806 // ..
3807 // [expressions ]
3808 // [monitor entry] <--- monitor block top = expression stack bot
3809 // ..
3810 // [monitor entry]
3811 // [frame data ] <--- monitor block bot
3812 // ...
3813 // [saved fp ] <--- fp
3814
3815 void TemplateTable::monitorenter() {
3816 transition(atos, vtos);
3817
3818 // check for null object
3819 __ null_check(x10);
3820
3821 const Address monitor_block_top(
3822 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3823 const Address monitor_block_bot(
3824 fp, frame::interpreter_frame_initial_sp_offset * wordSize);
3825 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3826
3827 Label allocated;
3828
3829 // initialize entry pointer
3830 __ mv(c_rarg1, zr); // points to free slot or null
3831
3832 // find a free slot in the monitor block (result in c_rarg1)
3833 {
3834 Label entry, loop, exit, notUsed;
3835 __ ld(c_rarg3, monitor_block_top); // derelativize pointer
3836 __ shadd(c_rarg3, c_rarg3, fp, c_rarg3, LogBytesPerWord);
3837 // Now c_rarg3 points to current entry, starting with top-most entry
3838
3839 __ la(c_rarg2, monitor_block_bot); // points to word before bottom
3840
3841 __ j(entry);
3842
3843 __ bind(loop);
3844 // check if current entry is used
3845 // if not used then remember entry in c_rarg1
3846 __ ld(t0, Address(c_rarg3, BasicObjectLock::obj_offset()));
3847 __ bnez(t0, notUsed);
3848 __ mv(c_rarg1, c_rarg3);
3849 __ bind(notUsed);
3850 // check if current entry is for same object
3851 // if same object then stop searching
3852 __ beq(x10, t0, exit);
3853 // otherwise advance to next entry
3854 __ add(c_rarg3, c_rarg3, entry_size);
3855 __ bind(entry);
3856 // check if bottom reached
3857 // if not at bottom then check this entry
3858 __ bne(c_rarg3, c_rarg2, loop);
3859 __ bind(exit);
3860 }
3861
3862 __ bnez(c_rarg1, allocated); // check if a slot has been found and
3863 // if found, continue with that on
3864
3865 // allocate one if there's no free slot
3866 {
3867 Label entry, loop;
3868 // 1. compute new pointers // esp: old expression stack top
3869
3870 __ check_extended_sp();
3871 __ sub(sp, sp, entry_size); // make room for the monitor
3872 __ sub(t0, sp, fp);
3873 __ srai(t0, t0, Interpreter::logStackElementSize);
3874 __ sd(t0, Address(fp, frame::interpreter_frame_extended_sp_offset * wordSize));
3875
3876 __ ld(c_rarg1, monitor_block_bot); // derelativize pointer
3877 __ shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord);
3878 // Now c_rarg1 points to the old expression stack bottom
3879
3880 __ sub(esp, esp, entry_size); // move expression stack top
3881 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3882 __ mv(c_rarg3, esp); // set start value for copy loop
3883 __ sub(t0, c_rarg1, fp); // relativize pointer
3884 __ srai(t0, t0, Interpreter::logStackElementSize);
3885 __ sd(t0, monitor_block_bot); // set new monitor block bottom
3886
3887 __ j(entry);
3888 // 2. move expression stack contents
3889 __ bind(loop);
3890 __ ld(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3891 // word from old location
3892 __ sd(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
3893 __ addi(c_rarg3, c_rarg3, wordSize); // advance to next word
3894 __ bind(entry);
3895 __ bne(c_rarg3, c_rarg1, loop); // check if bottom reached.if not at bottom
3896 // then copy next word
3897 }
3898
3899 // call run-time routine
3900 // c_rarg1: points to monitor entry
3901 __ bind(allocated);
3902
3903 // Increment bcp to point to the next bytecode, so exception
3904 // handling for async. exceptions work correctly.
3905 // The object has already been popped from the stack, so the
3906 // expression stack looks correct.
3907 __ addi(xbcp, xbcp, 1);
3908
3909 // store object
3910 __ sd(x10, Address(c_rarg1, BasicObjectLock::obj_offset()));
3911 __ lock_object(c_rarg1);
3912
3913 // check to make sure this monitor doesn't cause stack overflow after locking
3914 __ save_bcp(); // in case of exception
3915 __ generate_stack_overflow_check(0);
3916
3917 // The bcp has already been incremented. Just need to dispatch to
3918 // next instruction.
3919 __ dispatch_next(vtos);
3920 }
3921
3922 void TemplateTable::monitorexit() {
3923 transition(atos, vtos);
3924
3925 // check for null object
3926 __ null_check(x10);
3927
3928 const Address monitor_block_top(
3929 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3930 const Address monitor_block_bot(
3931 fp, frame::interpreter_frame_initial_sp_offset * wordSize);
3932 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3933
3934 Label found;
3935
3936 // find matching slot
3937 {
3938 Label entry, loop;
3939 __ ld(c_rarg1, monitor_block_top); // derelativize pointer
3940 __ shadd(c_rarg1, c_rarg1, fp, c_rarg1, LogBytesPerWord);
3941 // Now c_rarg1 points to current entry, starting with top-most entry
3942
3943 __ la(c_rarg2, monitor_block_bot); // points to word before bottom
3944 // of monitor block
3945 __ j(entry);
3946
3947 __ bind(loop);
3948 // check if current entry is for same object
3949 __ ld(t0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3950 // if same object then stop searching
3951 __ beq(x10, t0, found);
3952 // otherwise advance to next entry
3953 __ add(c_rarg1, c_rarg1, entry_size);
3954 __ bind(entry);
3955 // check if bottom reached
3956 // if not at bottom then check this entry
3957 __ bne(c_rarg1, c_rarg2, loop);
3958 }
3959
3960 // error handling. Unlocking was not block-structured
3961 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3962 InterpreterRuntime::throw_illegal_monitor_state_exception));
3963 __ should_not_reach_here();
3964
3965 // call run-time routine
3966 __ bind(found);
3967 __ push_ptr(x10); // make sure object is on stack (contract with oopMaps)
3968 __ unlock_object(c_rarg1);
3969 __ pop_ptr(x10); // discard object
3970 }
3971
3972 // Wide instructions
3973 void TemplateTable::wide() {
3974 __ load_unsigned_byte(x9, at_bcp(1));
3975 __ mv(t0, (address)Interpreter::_wentry_point);
3976 __ shadd(t0, x9, t0, t1, 3);
3977 __ ld(t1, Address(t0));
3978 __ jr(t1);
3979 }
3980
3981 // Multi arrays
3982 void TemplateTable::multianewarray() {
3983 transition(vtos, atos);
3984 __ load_unsigned_byte(x10, at_bcp(3)); // get number of dimensions
3985 // last dim is on top of stack; we want address of first one:
3986 // first_addr = last_addr + (ndims - 1) * wordSize
3987 __ shadd(c_rarg1, x10, esp, c_rarg1, 3);
3988 __ subi(c_rarg1, c_rarg1, wordSize);
3989 call_VM(x10,
3990 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3991 c_rarg1);
3992 __ load_unsigned_byte(x11, at_bcp(3));
3993 __ shadd(esp, x11, esp, t0, 3);
3994 }