1 /* 2 * Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_s390.hpp" 38 #include "oops/objArrayKlass.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/safepointMechanism.inline.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "utilities/macros.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_s390.inline.hpp" 46 47 #define __ _masm-> 48 49 #ifndef PRODUCT 50 #undef __ 51 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)-> 52 #endif 53 54 //------------------------------------------------------------ 55 56 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 57 // Not used on ZARCH_64 58 ShouldNotCallThis(); 59 return false; 60 } 61 62 LIR_Opr LIR_Assembler::receiverOpr() { 63 return FrameMap::Z_R2_oop_opr; 64 } 65 66 LIR_Opr LIR_Assembler::osrBufferPointer() { 67 return FrameMap::Z_R2_opr; 68 } 69 70 int LIR_Assembler::initial_frame_size_in_bytes() const { 71 return in_bytes(frame_map()->framesize_in_bytes()); 72 } 73 74 // Inline cache check: done before the frame is built. 75 // The inline cached class is in Z_inline_cache(Z_R9). 76 // We fetch the class of the receiver and compare it with the cached class. 77 // If they do not match we jump to the slow case. 78 int LIR_Assembler::check_icache() { 79 return __ ic_check(CodeEntryAlignment); 80 } 81 82 void LIR_Assembler::clinit_barrier(ciMethod* method) { 83 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 84 85 Label L_skip_barrier; 86 Register klass = Z_R1_scratch; 87 88 metadata2reg(method->holder()->constant_encoding(), klass); 89 __ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/); 90 91 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub()); 92 __ z_br(klass); 93 94 __ bind(L_skip_barrier); 95 } 96 97 void LIR_Assembler::osr_entry() { 98 // On-stack-replacement entry sequence (interpreter frame layout described in frame_s390.hpp): 99 // 100 // 1. Create a new compiled activation. 101 // 2. Initialize local variables in the compiled activation. The expression stack must be empty 102 // at the osr_bci; it is not initialized. 103 // 3. Jump to the continuation address in compiled code to resume execution. 104 105 // OSR entry point 106 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 107 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 108 ValueStack* entry_state = osr_entry->end()->state(); 109 int number_of_locks = entry_state->locks_size(); 110 111 // Create a frame for the compiled activation. 112 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 113 114 // OSR buffer is 115 // 116 // locals[nlocals-1..0] 117 // monitors[number_of_locks-1..0] 118 // 119 // Locals is a direct copy of the interpreter frame so in the osr buffer 120 // the first slot in the local array is the last local from the interpreter 121 // and the last slot is local[0] (receiver) from the interpreter 122 // 123 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 124 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 125 // in the interpreter frame (the method lock if a sync method) 126 127 // Initialize monitors in the compiled activation. 128 // I0: pointer to osr buffer 129 // 130 // All other registers are dead at this point and the locals will be 131 // copied into place by code emitted in the IR. 132 133 Register OSR_buf = osrBufferPointer()->as_register(); 134 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 135 int monitor_offset = BytesPerWord * method()->max_locals() + 136 (2 * BytesPerWord) * (number_of_locks - 1); 137 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 138 // the OSR buffer using 2 word entries: first the lock and then 139 // the oop. 140 for (int i = 0; i < number_of_locks; i++) { 141 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 142 // Verify the interpreter's monitor has a non-null object. 143 __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is null", __LINE__); 144 // Copy the lock field into the compiled activation. 145 __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf); 146 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i)); 147 __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf); 148 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i)); 149 } 150 } 151 } 152 153 // -------------------------------------------------------------------------------------------- 154 155 address LIR_Assembler::emit_call_c(address a) { 156 __ align_call_far_patchable(__ pc()); 157 address call_addr = __ call_c_opt(a); 158 if (call_addr == nullptr) { 159 bailout("const section overflow"); 160 } 161 return call_addr; 162 } 163 164 int LIR_Assembler::emit_exception_handler() { 165 // Generate code for exception handler. 166 address handler_base = __ start_a_stub(exception_handler_size()); 167 if (handler_base == nullptr) { 168 // Not enough space left for the handler. 169 bailout("exception handler overflow"); 170 return -1; 171 } 172 173 int offset = code_offset(); 174 175 address a = Runtime1::entry_for (C1StubId::handle_exception_from_callee_id); 176 address call_addr = emit_call_c(a); 177 CHECK_BAILOUT_(-1); 178 __ should_not_reach_here(); 179 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 180 __ end_a_stub(); 181 182 return offset; 183 } 184 185 // Emit the code to remove the frame from the stack in the exception 186 // unwind path. 187 int LIR_Assembler::emit_unwind_handler() { 188 #ifndef PRODUCT 189 if (CommentedAssembly) { 190 _masm->block_comment("Unwind handler"); 191 } 192 #endif 193 194 int offset = code_offset(); 195 Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved. 196 Register Rtmp1 = Z_R11; 197 Register Rtmp2 = Z_R12; 198 199 // Fetch the exception from TLS and clear out exception related thread state. 200 Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset()); 201 Address exc_pc_addr = Address(Z_thread, JavaThread::exception_pc_offset()); 202 __ z_lg(Z_EXC_OOP, exc_oop_addr); 203 __ clear_mem(exc_oop_addr, sizeof(oop)); 204 __ clear_mem(exc_pc_addr, sizeof(intptr_t)); 205 206 __ bind(_unwind_handler_entry); 207 __ verify_not_null_oop(Z_EXC_OOP); 208 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 209 __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception. 210 } 211 212 // Perform needed unlocking. 213 MonitorExitStub* stub = nullptr; 214 if (method()->is_synchronized()) { 215 // C1StubId::monitorexit_id expects lock address in Z_R1_scratch. 216 LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch); 217 monitor_address(0, lock); 218 stub = new MonitorExitStub(lock, true, 0); 219 __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry()); 220 __ bind(*stub->continuation()); 221 } 222 223 if (compilation()->env()->dtrace_method_probes()) { 224 ShouldNotReachHere(); // Not supported. 225 #if 0 226 __ mov(rdi, r15_thread); 227 __ mov_metadata(rsi, method()->constant_encoding()); 228 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 229 #endif 230 } 231 232 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 233 __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved); // Restore the exception. 234 } 235 236 // Remove the activation and dispatch to the unwind handler. 237 __ pop_frame(); 238 __ z_lg(Z_EXC_PC, _z_common_abi(return_pc), Z_SP); 239 240 // Z_EXC_OOP: exception oop 241 // Z_EXC_PC: exception pc 242 243 // Dispatch to the unwind logic. 244 __ load_const_optimized(Z_R5, Runtime1::entry_for (C1StubId::unwind_exception_id)); 245 __ z_br(Z_R5); 246 247 // Emit the slow path assembly. 248 if (stub != nullptr) { 249 stub->emit_code(this); 250 } 251 252 return offset; 253 } 254 255 int LIR_Assembler::emit_deopt_handler() { 256 // Generate code for exception handler. 257 address handler_base = __ start_a_stub(deopt_handler_size()); 258 if (handler_base == nullptr) { 259 // Not enough space left for the handler. 260 bailout("deopt handler overflow"); 261 return -1; 262 } int offset = code_offset(); 263 // Size must be constant (see HandlerImpl::emit_deopt_handler). 264 __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack()); 265 __ call(Z_R1_scratch); 266 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 267 __ end_a_stub(); 268 269 return offset; 270 } 271 272 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 273 if (o == nullptr) { 274 __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove. 275 } else { 276 AddressLiteral a = __ allocate_oop_address(o); 277 bool success = __ load_oop_from_toc(reg, a, reg); 278 if (!success) { 279 bailout("const section overflow"); 280 } 281 } 282 } 283 284 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 285 // Allocate a new index in table to hold the object once it's been patched. 286 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr); 287 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 288 289 AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index)); 290 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); 291 // The null will be dynamically patched later so the sequence to 292 // load the address literal must not be optimized. 293 __ load_const(reg, addrlit); 294 295 patching_epilog(patch, lir_patch_normal, reg, info); 296 } 297 298 void LIR_Assembler::metadata2reg(Metadata* md, Register reg) { 299 bool success = __ set_metadata_constant(md, reg); 300 if (!success) { 301 bailout("const section overflow"); 302 return; 303 } 304 } 305 306 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 307 // Allocate a new index in table to hold the klass once it's been patched. 308 int index = __ oop_recorder()->allocate_metadata_index(nullptr); 309 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 310 AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index)); 311 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 312 // The null will be dynamically patched later so the sequence to 313 // load the address literal must not be optimized. 314 __ load_const(reg, addrlit); 315 316 patching_epilog(patch, lir_patch_normal, reg, info); 317 } 318 319 void LIR_Assembler::emit_op3(LIR_Op3* op) { 320 switch (op->code()) { 321 case lir_idiv: 322 case lir_irem: 323 arithmetic_idiv(op->code(), 324 op->in_opr1(), 325 op->in_opr2(), 326 op->in_opr3(), 327 op->result_opr(), 328 op->info()); 329 break; 330 case lir_fmad: { 331 const FloatRegister opr1 = op->in_opr1()->as_double_reg(), 332 opr2 = op->in_opr2()->as_double_reg(), 333 opr3 = op->in_opr3()->as_double_reg(), 334 res = op->result_opr()->as_double_reg(); 335 __ z_madbr(opr3, opr1, opr2); 336 if (res != opr3) { __ z_ldr(res, opr3); } 337 } break; 338 case lir_fmaf: { 339 const FloatRegister opr1 = op->in_opr1()->as_float_reg(), 340 opr2 = op->in_opr2()->as_float_reg(), 341 opr3 = op->in_opr3()->as_float_reg(), 342 res = op->result_opr()->as_float_reg(); 343 __ z_maebr(opr3, opr1, opr2); 344 if (res != opr3) { __ z_ler(res, opr3); } 345 } break; 346 default: ShouldNotReachHere(); break; 347 } 348 } 349 350 351 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 352 #ifdef ASSERT 353 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 354 if (op->block() != nullptr) { _branch_target_blocks.append(op->block()); } 355 if (op->ublock() != nullptr) { _branch_target_blocks.append(op->ublock()); } 356 #endif 357 358 if (op->cond() == lir_cond_always) { 359 if (op->info() != nullptr) { add_debug_info_for_branch(op->info()); } 360 __ branch_optimized(Assembler::bcondAlways, *(op->label())); 361 } else { 362 Assembler::branch_condition acond = Assembler::bcondZero; 363 if (op->code() == lir_cond_float_branch) { 364 assert(op->ublock() != nullptr, "must have unordered successor"); 365 __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label())); 366 } 367 switch (op->cond()) { 368 case lir_cond_equal: acond = Assembler::bcondEqual; break; 369 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; break; 370 case lir_cond_less: acond = Assembler::bcondLow; break; 371 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; break; 372 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; break; 373 case lir_cond_greater: acond = Assembler::bcondHigh; break; 374 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; break; 375 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; break; 376 default: ShouldNotReachHere(); 377 } 378 __ branch_optimized(acond,*(op->label())); 379 } 380 } 381 382 383 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 384 LIR_Opr src = op->in_opr(); 385 LIR_Opr dest = op->result_opr(); 386 387 switch (op->bytecode()) { 388 case Bytecodes::_i2l: 389 __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT); 390 break; 391 392 case Bytecodes::_l2i: 393 __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG); 394 break; 395 396 case Bytecodes::_i2b: 397 __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT); 398 break; 399 400 case Bytecodes::_i2c: 401 __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT); 402 break; 403 404 case Bytecodes::_i2s: 405 __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT); 406 break; 407 408 case Bytecodes::_f2d: 409 assert(dest->is_double_fpu(), "check"); 410 __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT); 411 break; 412 413 case Bytecodes::_d2f: 414 assert(dest->is_single_fpu(), "check"); 415 __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE); 416 break; 417 418 case Bytecodes::_i2f: 419 __ z_cefbr(dest->as_float_reg(), src->as_register()); 420 break; 421 422 case Bytecodes::_i2d: 423 __ z_cdfbr(dest->as_double_reg(), src->as_register()); 424 break; 425 426 case Bytecodes::_l2f: 427 __ z_cegbr(dest->as_float_reg(), src->as_register_lo()); 428 break; 429 case Bytecodes::_l2d: 430 __ z_cdgbr(dest->as_double_reg(), src->as_register_lo()); 431 break; 432 433 case Bytecodes::_f2i: 434 case Bytecodes::_f2l: { 435 Label done; 436 FloatRegister Rsrc = src->as_float_reg(); 437 Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo()); 438 __ clear_reg(Rdst, true, false); 439 __ z_cebr(Rsrc, Rsrc); 440 __ z_brno(done); // NaN -> 0 441 if (op->bytecode() == Bytecodes::_f2i) { 442 __ z_cfebr(Rdst, Rsrc, Assembler::to_zero); 443 } else { // op->bytecode() == Bytecodes::_f2l 444 __ z_cgebr(Rdst, Rsrc, Assembler::to_zero); 445 } 446 __ bind(done); 447 } 448 break; 449 450 case Bytecodes::_d2i: 451 case Bytecodes::_d2l: { 452 Label done; 453 FloatRegister Rsrc = src->as_double_reg(); 454 Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo()); 455 __ clear_reg(Rdst, true, false); // Don't set CC. 456 __ z_cdbr(Rsrc, Rsrc); 457 __ z_brno(done); // NaN -> 0 458 if (op->bytecode() == Bytecodes::_d2i) { 459 __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero); 460 } else { // Bytecodes::_d2l 461 __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero); 462 } 463 __ bind(done); 464 } 465 break; 466 467 default: ShouldNotReachHere(); 468 } 469 } 470 471 void LIR_Assembler::align_call(LIR_Code code) { 472 // End of call instruction must be 4 byte aligned. 473 int offset = __ offset(); 474 switch (code) { 475 case lir_icvirtual_call: 476 offset += MacroAssembler::load_const_from_toc_size(); 477 // no break 478 case lir_static_call: 479 case lir_optvirtual_call: 480 case lir_dynamic_call: 481 offset += NativeCall::call_far_pcrelative_displacement_offset; 482 break; 483 default: ShouldNotReachHere(); 484 } 485 if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) { 486 __ nop(); 487 } 488 } 489 490 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 491 assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0, 492 "must be aligned (offset=%d)", __ offset()); 493 assert(rtype == relocInfo::none || 494 rtype == relocInfo::opt_virtual_call_type || 495 rtype == relocInfo::static_call_type, "unexpected rtype"); 496 // Prepend each BRASL with a nop. 497 __ relocate(rtype); 498 __ z_nop(); 499 __ z_brasl(Z_R14, op->addr()); 500 add_call_info(code_offset(), op->info()); 501 } 502 503 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 504 address virtual_call_oop_addr = nullptr; 505 AddressLiteral empty_ic((address) Universe::non_oop_word()); 506 virtual_call_oop_addr = __ pc(); 507 bool success = __ load_const_from_toc(Z_inline_cache, empty_ic); 508 if (!success) { 509 bailout("const section overflow"); 510 return; 511 } 512 513 // CALL to fixup routine. Fixup routine uses ScopeDesc info 514 // to determine who we intended to call. 515 __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr)); 516 call(op, relocInfo::none); 517 } 518 519 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 520 if (from_reg != to_reg) __ z_lgr(to_reg, from_reg); 521 } 522 523 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 524 assert(src->is_constant(), "should not call otherwise"); 525 assert(dest->is_stack(), "should not call otherwise"); 526 LIR_Const* c = src->as_constant_ptr(); 527 528 unsigned int lmem = 0; 529 unsigned int lcon = 0; 530 int64_t cbits = 0; 531 Address dest_addr; 532 switch (c->type()) { 533 case T_INT: // fall through 534 case T_FLOAT: 535 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 536 lmem = 4; lcon = 4; cbits = c->as_jint_bits(); 537 break; 538 539 case T_ADDRESS: 540 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 541 lmem = 8; lcon = 4; cbits = c->as_jint_bits(); 542 break; 543 544 case T_OBJECT: 545 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 546 if (c->as_jobject() == nullptr) { 547 __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8); 548 } else { 549 jobject2reg(c->as_jobject(), Z_R1_scratch); 550 __ reg2mem_opt(Z_R1_scratch, dest_addr, true); 551 } 552 return; 553 554 case T_LONG: // fall through 555 case T_DOUBLE: 556 dest_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 557 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); 558 break; 559 560 default: 561 ShouldNotReachHere(); 562 } 563 564 __ store_const(dest_addr, cbits, lmem, lcon); 565 } 566 567 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 568 assert(src->is_constant(), "should not call otherwise"); 569 assert(dest->is_address(), "should not call otherwise"); 570 571 LIR_Const* c = src->as_constant_ptr(); 572 Address addr = as_Address(dest->as_address_ptr()); 573 574 int store_offset = -1; 575 576 if (dest->as_address_ptr()->index()->is_valid()) { 577 switch (type) { 578 case T_INT: // fall through 579 case T_FLOAT: 580 __ load_const_optimized(Z_R0_scratch, c->as_jint_bits()); 581 store_offset = __ offset(); 582 if (Immediate::is_uimm12(addr.disp())) { 583 __ z_st(Z_R0_scratch, addr); 584 } else { 585 __ z_sty(Z_R0_scratch, addr); 586 } 587 break; 588 589 case T_ADDRESS: 590 __ load_const_optimized(Z_R1_scratch, c->as_jint_bits()); 591 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 592 break; 593 594 case T_OBJECT: // fall through 595 case T_ARRAY: 596 if (c->as_jobject() == nullptr) { 597 if (UseCompressedOops && !wide) { 598 __ clear_reg(Z_R1_scratch, false); 599 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 600 } else { 601 __ clear_reg(Z_R1_scratch, true); 602 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 603 } 604 } else { 605 jobject2reg(c->as_jobject(), Z_R1_scratch); 606 if (UseCompressedOops && !wide) { 607 __ encode_heap_oop(Z_R1_scratch); 608 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 609 } else { 610 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 611 } 612 } 613 assert(store_offset >= 0, "check"); 614 break; 615 616 case T_LONG: // fall through 617 case T_DOUBLE: 618 __ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits())); 619 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 620 break; 621 622 case T_BOOLEAN: // fall through 623 case T_BYTE: 624 __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint())); 625 store_offset = __ offset(); 626 if (Immediate::is_uimm12(addr.disp())) { 627 __ z_stc(Z_R0_scratch, addr); 628 } else { 629 __ z_stcy(Z_R0_scratch, addr); 630 } 631 break; 632 633 case T_CHAR: // fall through 634 case T_SHORT: 635 __ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint())); 636 store_offset = __ offset(); 637 if (Immediate::is_uimm12(addr.disp())) { 638 __ z_sth(Z_R0_scratch, addr); 639 } else { 640 __ z_sthy(Z_R0_scratch, addr); 641 } 642 break; 643 644 default: 645 ShouldNotReachHere(); 646 } 647 648 } else { // no index 649 650 unsigned int lmem = 0; 651 unsigned int lcon = 0; 652 int64_t cbits = 0; 653 654 switch (type) { 655 case T_INT: // fall through 656 case T_FLOAT: 657 lmem = 4; lcon = 4; cbits = c->as_jint_bits(); 658 break; 659 660 case T_ADDRESS: 661 lmem = 8; lcon = 4; cbits = c->as_jint_bits(); 662 break; 663 664 case T_OBJECT: // fall through 665 case T_ARRAY: 666 if (c->as_jobject() == nullptr) { 667 if (UseCompressedOops && !wide) { 668 store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4); 669 } else { 670 store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8); 671 } 672 } else { 673 jobject2reg(c->as_jobject(), Z_R1_scratch); 674 if (UseCompressedOops && !wide) { 675 __ encode_heap_oop(Z_R1_scratch); 676 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 677 } else { 678 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 679 } 680 } 681 assert(store_offset >= 0, "check"); 682 break; 683 684 case T_LONG: // fall through 685 case T_DOUBLE: 686 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); 687 break; 688 689 case T_BOOLEAN: // fall through 690 case T_BYTE: 691 lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint()); 692 break; 693 694 case T_CHAR: // fall through 695 case T_SHORT: 696 lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint()); 697 break; 698 699 default: 700 ShouldNotReachHere(); 701 } 702 703 if (store_offset == -1) { 704 store_offset = __ store_const(addr, cbits, lmem, lcon); 705 assert(store_offset >= 0, "check"); 706 } 707 } 708 709 if (info != nullptr) { 710 add_debug_info_for_null_check(store_offset, info); 711 } 712 } 713 714 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 715 assert(src->is_constant(), "should not call otherwise"); 716 assert(dest->is_register(), "should not call otherwise"); 717 LIR_Const* c = src->as_constant_ptr(); 718 719 switch (c->type()) { 720 case T_INT: { 721 assert(patch_code == lir_patch_none, "no patching handled here"); 722 __ load_const_optimized(dest->as_register(), c->as_jint()); 723 break; 724 } 725 726 case T_ADDRESS: { 727 assert(patch_code == lir_patch_none, "no patching handled here"); 728 __ load_const_optimized(dest->as_register(), c->as_jint()); 729 break; 730 } 731 732 case T_LONG: { 733 assert(patch_code == lir_patch_none, "no patching handled here"); 734 __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong()); 735 break; 736 } 737 738 case T_OBJECT: { 739 if (patch_code != lir_patch_none) { 740 jobject2reg_with_patching(dest->as_register(), info); 741 } else { 742 jobject2reg(c->as_jobject(), dest->as_register()); 743 } 744 break; 745 } 746 747 case T_METADATA: { 748 if (patch_code != lir_patch_none) { 749 klass2reg_with_patching(dest->as_register(), info); 750 } else { 751 metadata2reg(c->as_metadata(), dest->as_register()); 752 } 753 break; 754 } 755 756 case T_FLOAT: { 757 Register toc_reg = Z_R1_scratch; 758 __ load_toc(toc_reg); 759 address const_addr = __ float_constant(c->as_jfloat()); 760 if (const_addr == nullptr) { 761 bailout("const section overflow"); 762 break; 763 } 764 int displ = const_addr - _masm->code()->consts()->start(); 765 if (dest->is_single_fpu()) { 766 __ z_ley(dest->as_float_reg(), displ, toc_reg); 767 } else { 768 assert(dest->is_single_cpu(), "Must be a cpu register."); 769 __ z_ly(dest->as_register(), displ, toc_reg); 770 } 771 } 772 break; 773 774 case T_DOUBLE: { 775 Register toc_reg = Z_R1_scratch; 776 __ load_toc(toc_reg); 777 address const_addr = __ double_constant(c->as_jdouble()); 778 if (const_addr == nullptr) { 779 bailout("const section overflow"); 780 break; 781 } 782 int displ = const_addr - _masm->code()->consts()->start(); 783 if (dest->is_double_fpu()) { 784 __ z_ldy(dest->as_double_reg(), displ, toc_reg); 785 } else { 786 assert(dest->is_double_cpu(), "Must be a long register."); 787 __ z_lg(dest->as_register_lo(), displ, toc_reg); 788 } 789 } 790 break; 791 792 default: 793 ShouldNotReachHere(); 794 } 795 } 796 797 Address LIR_Assembler::as_Address(LIR_Address* addr) { 798 if (addr->base()->is_illegal()) { 799 Unimplemented(); 800 } 801 802 Register base = addr->base()->as_pointer_register(); 803 804 if (addr->index()->is_illegal()) { 805 return Address(base, addr->disp()); 806 } else if (addr->index()->is_cpu_register()) { 807 Register index = addr->index()->as_pointer_register(); 808 return Address(base, index, addr->disp()); 809 } else if (addr->index()->is_constant()) { 810 intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp(); 811 return Address(base, addr_offset); 812 } else { 813 ShouldNotReachHere(); 814 return Address(); 815 } 816 } 817 818 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 819 switch (type) { 820 case T_INT: 821 case T_FLOAT: { 822 Register tmp = Z_R1_scratch; 823 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 824 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 825 __ mem2reg_opt(tmp, from, false); 826 __ reg2mem_opt(tmp, to, false); 827 break; 828 } 829 case T_ADDRESS: 830 case T_OBJECT: { 831 Register tmp = Z_R1_scratch; 832 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 833 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 834 __ mem2reg_opt(tmp, from, true); 835 __ reg2mem_opt(tmp, to, true); 836 break; 837 } 838 case T_LONG: 839 case T_DOUBLE: { 840 Register tmp = Z_R1_scratch; 841 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 842 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 843 __ mem2reg_opt(tmp, from, true); 844 __ reg2mem_opt(tmp, to, true); 845 break; 846 } 847 848 default: 849 ShouldNotReachHere(); 850 } 851 } 852 853 // 4-byte accesses only! Don't use it to access 8 bytes! 854 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 855 ShouldNotCallThis(); 856 return Address(); // unused 857 } 858 859 // 4-byte accesses only! Don't use it to access 8 bytes! 860 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 861 ShouldNotCallThis(); 862 return Address(); // unused 863 } 864 865 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, 866 CodeEmitInfo* info, bool wide) { 867 868 assert(type != T_METADATA, "load of metadata ptr not supported"); 869 LIR_Address* addr = src_opr->as_address_ptr(); 870 LIR_Opr to_reg = dest; 871 872 Register src = addr->base()->as_pointer_register(); 873 Register disp_reg = Z_R0; 874 int disp_value = addr->disp(); 875 bool needs_patching = (patch_code != lir_patch_none); 876 877 if (addr->base()->type() == T_OBJECT) { 878 __ verify_oop(src, FILE_AND_LINE); 879 } 880 881 PatchingStub* patch = nullptr; 882 if (needs_patching) { 883 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 884 assert(!to_reg->is_double_cpu() || 885 patch_code == lir_patch_none || 886 patch_code == lir_patch_normal, "patching doesn't match register"); 887 } 888 889 if (addr->index()->is_illegal()) { 890 if (!Immediate::is_simm20(disp_value)) { 891 if (needs_patching) { 892 __ load_const(Z_R1_scratch, (intptr_t)0); 893 } else { 894 __ load_const_optimized(Z_R1_scratch, disp_value); 895 } 896 disp_reg = Z_R1_scratch; 897 disp_value = 0; 898 } 899 } else { 900 if (!Immediate::is_simm20(disp_value)) { 901 __ load_const_optimized(Z_R1_scratch, disp_value); 902 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); 903 disp_reg = Z_R1_scratch; 904 disp_value = 0; 905 } 906 disp_reg = addr->index()->as_pointer_register(); 907 } 908 909 // Remember the offset of the load. The patching_epilog must be done 910 // before the call to add_debug_info, otherwise the PcDescs don't get 911 // entered in increasing order. 912 int offset = code_offset(); 913 914 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); 915 916 bool short_disp = Immediate::is_uimm12(disp_value); 917 918 switch (type) { 919 case T_BOOLEAN: // fall through 920 case T_BYTE : __ z_lb(dest->as_register(), disp_value, disp_reg, src); break; 921 case T_CHAR : __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break; 922 case T_SHORT : 923 if (short_disp) { 924 __ z_lh(dest->as_register(), disp_value, disp_reg, src); 925 } else { 926 __ z_lhy(dest->as_register(), disp_value, disp_reg, src); 927 } 928 break; 929 case T_INT : 930 if (short_disp) { 931 __ z_l(dest->as_register(), disp_value, disp_reg, src); 932 } else { 933 __ z_ly(dest->as_register(), disp_value, disp_reg, src); 934 } 935 break; 936 case T_ADDRESS: 937 __ z_lg(dest->as_register(), disp_value, disp_reg, src); 938 break; 939 case T_ARRAY : // fall through 940 case T_OBJECT: 941 { 942 if (UseCompressedOops && !wide) { 943 __ z_llgf(dest->as_register(), disp_value, disp_reg, src); 944 __ oop_decoder(dest->as_register(), dest->as_register(), true); 945 } else { 946 __ z_lg(dest->as_register(), disp_value, disp_reg, src); 947 } 948 __ verify_oop(dest->as_register(), FILE_AND_LINE); 949 break; 950 } 951 case T_FLOAT: 952 if (short_disp) { 953 __ z_le(dest->as_float_reg(), disp_value, disp_reg, src); 954 } else { 955 __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src); 956 } 957 break; 958 case T_DOUBLE: 959 if (short_disp) { 960 __ z_ld(dest->as_double_reg(), disp_value, disp_reg, src); 961 } else { 962 __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src); 963 } 964 break; 965 case T_LONG : __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break; 966 default : ShouldNotReachHere(); 967 } 968 969 if (patch != nullptr) { 970 patching_epilog(patch, patch_code, src, info); 971 } 972 if (info != nullptr) add_debug_info_for_null_check(offset, info); 973 } 974 975 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 976 assert(src->is_stack(), "should not call otherwise"); 977 assert(dest->is_register(), "should not call otherwise"); 978 979 if (dest->is_single_cpu()) { 980 if (is_reference_type(type)) { 981 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); 982 __ verify_oop(dest->as_register(), FILE_AND_LINE); 983 } else if (type == T_METADATA || type == T_ADDRESS) { 984 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); 985 } else { 986 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false); 987 } 988 } else if (dest->is_double_cpu()) { 989 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix()); 990 __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true); 991 } else if (dest->is_single_fpu()) { 992 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 993 __ mem2freg_opt(dest->as_float_reg(), src_addr, false); 994 } else if (dest->is_double_fpu()) { 995 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 996 __ mem2freg_opt(dest->as_double_reg(), src_addr, true); 997 } else { 998 ShouldNotReachHere(); 999 } 1000 } 1001 1002 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1003 assert(src->is_register(), "should not call otherwise"); 1004 assert(dest->is_stack(), "should not call otherwise"); 1005 1006 if (src->is_single_cpu()) { 1007 const Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 1008 if (is_reference_type(type)) { 1009 __ verify_oop(src->as_register(), FILE_AND_LINE); 1010 __ reg2mem_opt(src->as_register(), dst, true); 1011 } else if (type == T_METADATA || type == T_ADDRESS) { 1012 __ reg2mem_opt(src->as_register(), dst, true); 1013 } else { 1014 __ reg2mem_opt(src->as_register(), dst, false); 1015 } 1016 } else if (src->is_double_cpu()) { 1017 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix()); 1018 __ reg2mem_opt(src->as_register_lo(), dstLO, true); 1019 } else if (src->is_single_fpu()) { 1020 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1021 __ freg2mem_opt(src->as_float_reg(), dst_addr, false); 1022 } else if (src->is_double_fpu()) { 1023 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1024 __ freg2mem_opt(src->as_double_reg(), dst_addr, true); 1025 } else { 1026 ShouldNotReachHere(); 1027 } 1028 } 1029 1030 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1031 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1032 if (from_reg->is_double_fpu()) { 1033 // double to double moves 1034 assert(to_reg->is_double_fpu(), "should match"); 1035 __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg()); 1036 } else { 1037 // float to float moves 1038 assert(to_reg->is_single_fpu(), "should match"); 1039 __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg()); 1040 } 1041 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1042 if (from_reg->is_double_cpu()) { 1043 __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1044 } else if (to_reg->is_double_cpu()) { 1045 // int to int moves 1046 __ z_lgr(to_reg->as_register_lo(), from_reg->as_register()); 1047 } else { 1048 // int to int moves 1049 __ z_lgr(to_reg->as_register(), from_reg->as_register()); 1050 } 1051 } else { 1052 ShouldNotReachHere(); 1053 } 1054 if (is_reference_type(to_reg->type())) { 1055 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1056 } 1057 } 1058 1059 void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type, 1060 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1061 bool wide) { 1062 assert(type != T_METADATA, "store of metadata ptr not supported"); 1063 LIR_Address* addr = dest_opr->as_address_ptr(); 1064 1065 Register dest = addr->base()->as_pointer_register(); 1066 Register disp_reg = Z_R0; 1067 int disp_value = addr->disp(); 1068 bool needs_patching = (patch_code != lir_patch_none); 1069 1070 if (addr->base()->is_oop_register()) { 1071 __ verify_oop(dest, FILE_AND_LINE); 1072 } 1073 1074 PatchingStub* patch = nullptr; 1075 if (needs_patching) { 1076 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1077 assert(!from->is_double_cpu() || 1078 patch_code == lir_patch_none || 1079 patch_code == lir_patch_normal, "patching doesn't match register"); 1080 } 1081 1082 assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption"); 1083 if (addr->index()->is_illegal()) { 1084 if (!Immediate::is_simm20(disp_value)) { 1085 if (needs_patching) { 1086 __ load_const(Z_R1_scratch, (intptr_t)0); 1087 } else { 1088 __ load_const_optimized(Z_R1_scratch, disp_value); 1089 } 1090 disp_reg = Z_R1_scratch; 1091 disp_value = 0; 1092 } 1093 } else { 1094 if (!Immediate::is_simm20(disp_value)) { 1095 __ load_const_optimized(Z_R1_scratch, disp_value); 1096 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); 1097 disp_reg = Z_R1_scratch; 1098 disp_value = 0; 1099 } 1100 disp_reg = addr->index()->as_pointer_register(); 1101 } 1102 1103 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); 1104 1105 if (is_reference_type(type)) { 1106 __ verify_oop(from->as_register(), FILE_AND_LINE); 1107 } 1108 1109 bool short_disp = Immediate::is_uimm12(disp_value); 1110 1111 // Remember the offset of the store. The patching_epilog must be done 1112 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1113 // entered in increasing order. 1114 int offset = code_offset(); 1115 switch (type) { 1116 case T_BOOLEAN: // fall through 1117 case T_BYTE : 1118 if (short_disp) { 1119 __ z_stc(from->as_register(), disp_value, disp_reg, dest); 1120 } else { 1121 __ z_stcy(from->as_register(), disp_value, disp_reg, dest); 1122 } 1123 break; 1124 case T_CHAR : // fall through 1125 case T_SHORT : 1126 if (short_disp) { 1127 __ z_sth(from->as_register(), disp_value, disp_reg, dest); 1128 } else { 1129 __ z_sthy(from->as_register(), disp_value, disp_reg, dest); 1130 } 1131 break; 1132 case T_INT : 1133 if (short_disp) { 1134 __ z_st(from->as_register(), disp_value, disp_reg, dest); 1135 } else { 1136 __ z_sty(from->as_register(), disp_value, disp_reg, dest); 1137 } 1138 break; 1139 case T_LONG : __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break; 1140 case T_ADDRESS: __ z_stg(from->as_register(), disp_value, disp_reg, dest); break; 1141 break; 1142 case T_ARRAY : // fall through 1143 case T_OBJECT: 1144 { 1145 if (UseCompressedOops && !wide) { 1146 Register compressed_src = Z_R14; 1147 __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true); 1148 offset = code_offset(); 1149 if (short_disp) { 1150 __ z_st(compressed_src, disp_value, disp_reg, dest); 1151 } else { 1152 __ z_sty(compressed_src, disp_value, disp_reg, dest); 1153 } 1154 } else { 1155 __ z_stg(from->as_register(), disp_value, disp_reg, dest); 1156 } 1157 break; 1158 } 1159 case T_FLOAT : 1160 if (short_disp) { 1161 __ z_ste(from->as_float_reg(), disp_value, disp_reg, dest); 1162 } else { 1163 __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest); 1164 } 1165 break; 1166 case T_DOUBLE: 1167 if (short_disp) { 1168 __ z_std(from->as_double_reg(), disp_value, disp_reg, dest); 1169 } else { 1170 __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest); 1171 } 1172 break; 1173 default: ShouldNotReachHere(); 1174 } 1175 1176 if (patch != nullptr) { 1177 patching_epilog(patch, patch_code, dest, info); 1178 } 1179 1180 if (info != nullptr) add_debug_info_for_null_check(offset, info); 1181 } 1182 1183 1184 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1185 assert(result->is_illegal() || 1186 (result->is_single_cpu() && result->as_register() == Z_R2) || 1187 (result->is_double_cpu() && result->as_register_lo() == Z_R2) || 1188 (result->is_single_fpu() && result->as_float_reg() == Z_F0) || 1189 (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention"); 1190 1191 __ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::polling_page_offset())); 1192 1193 // Pop the frame before the safepoint code. 1194 __ pop_frame_restore_retPC(initial_frame_size_in_bytes()); 1195 1196 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1197 __ reserved_stack_check(Z_R14); 1198 } 1199 1200 // We need to mark the code position where the load from the safepoint 1201 // polling page was emitted as relocInfo::poll_return_type here. 1202 __ relocate(relocInfo::poll_return_type); 1203 __ load_from_polling_page(Z_R1_scratch); 1204 1205 __ z_br(Z_R14); // Return to caller. 1206 } 1207 1208 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1209 const Register poll_addr = tmp->as_register_lo(); 1210 __ z_lg(poll_addr, Address(Z_thread, JavaThread::polling_page_offset())); 1211 guarantee(info != nullptr, "Shouldn't be null"); 1212 add_debug_info_for_branch(info); 1213 int offset = __ offset(); 1214 __ relocate(relocInfo::poll_type); 1215 __ load_from_polling_page(poll_addr); 1216 return offset; 1217 } 1218 1219 void LIR_Assembler::emit_static_call_stub() { 1220 1221 // Stub is fixed up when the corresponding call is converted from calling 1222 // compiled code to calling interpreted code. 1223 1224 address call_pc = __ pc(); 1225 address stub = __ start_a_stub(call_stub_size()); 1226 if (stub == nullptr) { 1227 bailout("static call stub overflow"); 1228 return; 1229 } 1230 1231 int start = __ offset(); 1232 1233 __ relocate(static_stub_Relocation::spec(call_pc)); 1234 1235 // See also Matcher::interpreter_method_reg(). 1236 AddressLiteral meta = __ allocate_metadata_address(nullptr); 1237 bool success = __ load_const_from_toc(Z_method, meta); 1238 1239 __ set_inst_mark(); 1240 AddressLiteral a((address)-1); 1241 success = success && __ load_const_from_toc(Z_R1, a); 1242 if (!success) { 1243 bailout("const section overflow"); 1244 return; 1245 } 1246 1247 __ z_br(Z_R1); 1248 assert(__ offset() - start <= call_stub_size(), "stub too big"); 1249 __ end_a_stub(); // Update current stubs pointer and restore insts_end. 1250 } 1251 1252 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1253 bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual; 1254 if (opr1->is_single_cpu()) { 1255 Register reg1 = opr1->as_register(); 1256 if (opr2->is_single_cpu()) { 1257 // cpu register - cpu register 1258 if (is_reference_type(opr1->type())) { 1259 __ z_clgr(reg1, opr2->as_register()); 1260 } else { 1261 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1262 if (unsigned_comp) { 1263 __ z_clr(reg1, opr2->as_register()); 1264 } else { 1265 __ z_cr(reg1, opr2->as_register()); 1266 } 1267 } 1268 } else if (opr2->is_stack()) { 1269 // cpu register - stack 1270 if (is_reference_type(opr1->type())) { 1271 __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1272 } else { 1273 if (unsigned_comp) { 1274 __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1275 } else { 1276 __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1277 } 1278 } 1279 } else if (opr2->is_constant()) { 1280 // cpu register - constant 1281 LIR_Const* c = opr2->as_constant_ptr(); 1282 if (c->type() == T_INT) { 1283 if (unsigned_comp) { 1284 __ z_clfi(reg1, c->as_jint()); 1285 } else { 1286 __ z_cfi(reg1, c->as_jint()); 1287 } 1288 } else if (c->type() == T_METADATA) { 1289 // We only need, for now, comparison with null for metadata. 1290 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1291 Metadata* m = c->as_metadata(); 1292 if (m == nullptr) { 1293 __ z_cghi(reg1, 0); 1294 } else { 1295 ShouldNotReachHere(); 1296 } 1297 } else if (is_reference_type(c->type())) { 1298 // In 64bit oops are single register. 1299 jobject o = c->as_jobject(); 1300 if (o == nullptr) { 1301 __ z_ltgr(reg1, reg1); 1302 } else { 1303 jobject2reg(o, Z_R1_scratch); 1304 __ z_cgr(reg1, Z_R1_scratch); 1305 } 1306 } else { 1307 fatal("unexpected type: %s", basictype_to_str(c->type())); 1308 } 1309 // cpu register - address 1310 } else if (opr2->is_address()) { 1311 if (op->info() != nullptr) { 1312 add_debug_info_for_null_check_here(op->info()); 1313 } 1314 if (unsigned_comp) { 1315 __ z_cly(reg1, as_Address(opr2->as_address_ptr())); 1316 } else { 1317 __ z_cy(reg1, as_Address(opr2->as_address_ptr())); 1318 } 1319 } else { 1320 ShouldNotReachHere(); 1321 } 1322 1323 } else if (opr1->is_double_cpu()) { 1324 assert(!unsigned_comp, "unexpected"); 1325 Register xlo = opr1->as_register_lo(); 1326 Register xhi = opr1->as_register_hi(); 1327 if (opr2->is_double_cpu()) { 1328 __ z_cgr(xlo, opr2->as_register_lo()); 1329 } else if (opr2->is_constant()) { 1330 // cpu register - constant 0 1331 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 1332 __ z_ltgr(xlo, xlo); 1333 } else { 1334 ShouldNotReachHere(); 1335 } 1336 1337 } else if (opr1->is_single_fpu()) { 1338 if (opr2->is_single_fpu()) { 1339 __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg()); 1340 } else { 1341 // stack slot 1342 Address addr = frame_map()->address_for_slot(opr2->single_stack_ix()); 1343 if (Immediate::is_uimm12(addr.disp())) { 1344 __ z_ceb(opr1->as_float_reg(), addr); 1345 } else { 1346 __ z_ley(Z_fscratch_1, addr); 1347 __ z_cebr(opr1->as_float_reg(), Z_fscratch_1); 1348 } 1349 } 1350 } else if (opr1->is_double_fpu()) { 1351 if (opr2->is_double_fpu()) { 1352 __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg()); 1353 } else { 1354 // stack slot 1355 Address addr = frame_map()->address_for_slot(opr2->double_stack_ix()); 1356 if (Immediate::is_uimm12(addr.disp())) { 1357 __ z_cdb(opr1->as_double_reg(), addr); 1358 } else { 1359 __ z_ldy(Z_fscratch_1, addr); 1360 __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1); 1361 } 1362 } 1363 } else { 1364 ShouldNotReachHere(); 1365 } 1366 } 1367 1368 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 1369 Label done; 1370 Register dreg = dst->as_register(); 1371 1372 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1373 assert((left->is_single_fpu() && right->is_single_fpu()) || 1374 (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types"); 1375 bool is_single = left->is_single_fpu(); 1376 bool is_unordered_less = (code == lir_ucmp_fd2i); 1377 FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg(); 1378 FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg(); 1379 if (is_single) { 1380 __ z_cebr(lreg, rreg); 1381 } else { 1382 __ z_cdbr(lreg, rreg); 1383 } 1384 if (VM_Version::has_LoadStoreConditional()) { 1385 Register one = Z_R0_scratch; 1386 Register minus_one = Z_R1_scratch; 1387 __ z_lghi(minus_one, -1); 1388 __ z_lghi(one, 1); 1389 __ z_lghi(dreg, 0); 1390 __ z_locgr(dreg, one, is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered); 1391 __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow); 1392 } else { 1393 __ clear_reg(dreg, true, false); 1394 __ z_bre(done); // if (left == right) dst = 0 1395 1396 // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1 1397 __ z_lhi(dreg, 1); 1398 __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done); 1399 1400 // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1 1401 __ z_lhi(dreg, -1); 1402 } 1403 } else { 1404 assert(code == lir_cmp_l2i, "check"); 1405 if (VM_Version::has_LoadStoreConditional()) { 1406 Register one = Z_R0_scratch; 1407 Register minus_one = Z_R1_scratch; 1408 __ z_cgr(left->as_register_lo(), right->as_register_lo()); 1409 __ z_lghi(minus_one, -1); 1410 __ z_lghi(one, 1); 1411 __ z_lghi(dreg, 0); 1412 __ z_locgr(dreg, one, Assembler::bcondHigh); 1413 __ z_locgr(dreg, minus_one, Assembler::bcondLow); 1414 } else { 1415 __ z_cgr(left->as_register_lo(), right->as_register_lo()); 1416 __ z_lghi(dreg, 0); // eq value 1417 __ z_bre(done); 1418 __ z_lghi(dreg, 1); // gt value 1419 __ z_brh(done); 1420 __ z_lghi(dreg, -1); // lt value 1421 } 1422 } 1423 __ bind(done); 1424 } 1425 1426 // result = condition ? opr1 : opr2 1427 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1428 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1429 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on s390"); 1430 1431 Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual; 1432 switch (condition) { 1433 case lir_cond_equal: acond = Assembler::bcondEqual; ncond = Assembler::bcondNotEqual; break; 1434 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual; break; 1435 case lir_cond_less: acond = Assembler::bcondLow; ncond = Assembler::bcondNotLow; break; 1436 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; 1437 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; 1438 case lir_cond_greater: acond = Assembler::bcondHigh; ncond = Assembler::bcondNotHigh; break; 1439 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; 1440 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; 1441 default: ShouldNotReachHere(); 1442 } 1443 1444 if (opr1->is_cpu_register()) { 1445 reg2reg(opr1, result); 1446 } else if (opr1->is_stack()) { 1447 stack2reg(opr1, result, result->type()); 1448 } else if (opr1->is_constant()) { 1449 const2reg(opr1, result, lir_patch_none, nullptr); 1450 } else { 1451 ShouldNotReachHere(); 1452 } 1453 1454 if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) { 1455 // Optimized version that does not require a branch. 1456 if (opr2->is_single_cpu()) { 1457 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1458 __ z_locgr(result->as_register(), opr2->as_register(), ncond); 1459 } else if (opr2->is_double_cpu()) { 1460 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1461 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1462 __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond); 1463 } else if (opr2->is_single_stack()) { 1464 __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond); 1465 } else if (opr2->is_double_stack()) { 1466 __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond); 1467 } else { 1468 ShouldNotReachHere(); 1469 } 1470 } else { 1471 Label skip; 1472 __ z_brc(acond, skip); 1473 if (opr2->is_cpu_register()) { 1474 reg2reg(opr2, result); 1475 } else if (opr2->is_stack()) { 1476 stack2reg(opr2, result, result->type()); 1477 } else if (opr2->is_constant()) { 1478 const2reg(opr2, result, lir_patch_none, nullptr); 1479 } else { 1480 ShouldNotReachHere(); 1481 } 1482 __ bind(skip); 1483 } 1484 } 1485 1486 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1487 CodeEmitInfo* info, bool pop_fpu_stack) { 1488 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1489 1490 if (left->is_single_cpu()) { 1491 assert(left == dest, "left and dest must be equal"); 1492 Register lreg = left->as_register(); 1493 1494 if (right->is_single_cpu()) { 1495 // cpu register - cpu register 1496 Register rreg = right->as_register(); 1497 switch (code) { 1498 case lir_add: __ z_ar (lreg, rreg); break; 1499 case lir_sub: __ z_sr (lreg, rreg); break; 1500 case lir_mul: __ z_msr(lreg, rreg); break; 1501 default: ShouldNotReachHere(); 1502 } 1503 1504 } else if (right->is_stack()) { 1505 // cpu register - stack 1506 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1507 switch (code) { 1508 case lir_add: __ z_ay(lreg, raddr); break; 1509 case lir_sub: __ z_sy(lreg, raddr); break; 1510 default: ShouldNotReachHere(); 1511 } 1512 1513 } else if (right->is_constant()) { 1514 // cpu register - constant 1515 jint c = right->as_constant_ptr()->as_jint(); 1516 switch (code) { 1517 case lir_add: __ z_agfi(lreg, c); break; 1518 case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint 1519 case lir_mul: __ z_msfi(lreg, c); break; 1520 default: ShouldNotReachHere(); 1521 } 1522 1523 } else { 1524 ShouldNotReachHere(); 1525 } 1526 1527 } else if (left->is_double_cpu()) { 1528 assert(left == dest, "left and dest must be equal"); 1529 Register lreg_lo = left->as_register_lo(); 1530 Register lreg_hi = left->as_register_hi(); 1531 1532 if (right->is_double_cpu()) { 1533 // cpu register - cpu register 1534 Register rreg_lo = right->as_register_lo(); 1535 Register rreg_hi = right->as_register_hi(); 1536 assert_different_registers(lreg_lo, rreg_lo); 1537 switch (code) { 1538 case lir_add: 1539 __ z_agr(lreg_lo, rreg_lo); 1540 break; 1541 case lir_sub: 1542 __ z_sgr(lreg_lo, rreg_lo); 1543 break; 1544 case lir_mul: 1545 __ z_msgr(lreg_lo, rreg_lo); 1546 break; 1547 default: 1548 ShouldNotReachHere(); 1549 } 1550 1551 } else if (right->is_constant()) { 1552 // cpu register - constant 1553 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1554 switch (code) { 1555 case lir_add: __ z_agfi(lreg_lo, c); break; 1556 case lir_sub: 1557 if (c != min_jint) { 1558 __ z_agfi(lreg_lo, -c); 1559 } else { 1560 // -min_jint cannot be represented as simm32 in z_agfi 1561 // min_jint sign extended: 0xffffffff80000000 1562 // -min_jint as 64 bit integer: 0x0000000080000000 1563 // 0x80000000 can be represented as uimm32 in z_algfi 1564 // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000 1565 __ z_algfi(lreg_lo, UCONST64(0x80000000)); 1566 } 1567 break; 1568 case lir_mul: __ z_msgfi(lreg_lo, c); break; 1569 default: 1570 ShouldNotReachHere(); 1571 } 1572 1573 } else { 1574 ShouldNotReachHere(); 1575 } 1576 1577 } else if (left->is_single_fpu()) { 1578 assert(left == dest, "left and dest must be equal"); 1579 FloatRegister lreg = left->as_float_reg(); 1580 FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg; 1581 Address raddr; 1582 1583 if (rreg == fnoreg) { 1584 assert(right->is_single_stack(), "constants should be loaded into register"); 1585 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1586 if (!Immediate::is_uimm12(raddr.disp())) { 1587 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false); 1588 } 1589 } 1590 1591 if (rreg != fnoreg) { 1592 switch (code) { 1593 case lir_add: __ z_aebr(lreg, rreg); break; 1594 case lir_sub: __ z_sebr(lreg, rreg); break; 1595 case lir_mul: __ z_meebr(lreg, rreg); break; 1596 case lir_div: __ z_debr(lreg, rreg); break; 1597 default: ShouldNotReachHere(); 1598 } 1599 } else { 1600 switch (code) { 1601 case lir_add: __ z_aeb(lreg, raddr); break; 1602 case lir_sub: __ z_seb(lreg, raddr); break; 1603 case lir_mul: __ z_meeb(lreg, raddr); break; 1604 case lir_div: __ z_deb(lreg, raddr); break; 1605 default: ShouldNotReachHere(); 1606 } 1607 } 1608 } else if (left->is_double_fpu()) { 1609 assert(left == dest, "left and dest must be equal"); 1610 FloatRegister lreg = left->as_double_reg(); 1611 FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg; 1612 Address raddr; 1613 1614 if (rreg == fnoreg) { 1615 assert(right->is_double_stack(), "constants should be loaded into register"); 1616 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1617 if (!Immediate::is_uimm12(raddr.disp())) { 1618 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true); 1619 } 1620 } 1621 1622 if (rreg != fnoreg) { 1623 switch (code) { 1624 case lir_add: __ z_adbr(lreg, rreg); break; 1625 case lir_sub: __ z_sdbr(lreg, rreg); break; 1626 case lir_mul: __ z_mdbr(lreg, rreg); break; 1627 case lir_div: __ z_ddbr(lreg, rreg); break; 1628 default: ShouldNotReachHere(); 1629 } 1630 } else { 1631 switch (code) { 1632 case lir_add: __ z_adb(lreg, raddr); break; 1633 case lir_sub: __ z_sdb(lreg, raddr); break; 1634 case lir_mul: __ z_mdb(lreg, raddr); break; 1635 case lir_div: __ z_ddb(lreg, raddr); break; 1636 default: ShouldNotReachHere(); 1637 } 1638 } 1639 } else if (left->is_address()) { 1640 assert(left == dest, "left and dest must be equal"); 1641 assert(code == lir_add, "unsupported operation"); 1642 assert(right->is_constant(), "unsupported operand"); 1643 jint c = right->as_constant_ptr()->as_jint(); 1644 LIR_Address* lir_addr = left->as_address_ptr(); 1645 Address addr = as_Address(lir_addr); 1646 switch (lir_addr->type()) { 1647 case T_INT: 1648 __ add2mem_32(addr, c, Z_R1_scratch); 1649 break; 1650 case T_LONG: 1651 __ add2mem_64(addr, c, Z_R1_scratch); 1652 break; 1653 default: 1654 ShouldNotReachHere(); 1655 } 1656 } else { 1657 ShouldNotReachHere(); 1658 } 1659 } 1660 1661 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1662 switch (code) { 1663 case lir_sqrt: { 1664 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt"); 1665 FloatRegister src_reg = value->as_double_reg(); 1666 FloatRegister dst_reg = dest->as_double_reg(); 1667 __ z_sqdbr(dst_reg, src_reg); 1668 break; 1669 } 1670 case lir_abs: { 1671 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs"); 1672 FloatRegister src_reg = value->as_double_reg(); 1673 FloatRegister dst_reg = dest->as_double_reg(); 1674 __ z_lpdbr(dst_reg, src_reg); 1675 break; 1676 } 1677 default: { 1678 ShouldNotReachHere(); 1679 break; 1680 } 1681 } 1682 } 1683 1684 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1685 if (left->is_single_cpu()) { 1686 Register reg = left->as_register(); 1687 if (right->is_constant()) { 1688 int val = right->as_constant_ptr()->as_jint(); 1689 switch (code) { 1690 case lir_logic_and: __ z_nilf(reg, val); break; 1691 case lir_logic_or: __ z_oilf(reg, val); break; 1692 case lir_logic_xor: __ z_xilf(reg, val); break; 1693 default: ShouldNotReachHere(); 1694 } 1695 } else if (right->is_stack()) { 1696 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1697 switch (code) { 1698 case lir_logic_and: __ z_ny(reg, raddr); break; 1699 case lir_logic_or: __ z_oy(reg, raddr); break; 1700 case lir_logic_xor: __ z_xy(reg, raddr); break; 1701 default: ShouldNotReachHere(); 1702 } 1703 } else { 1704 Register rright = right->as_register(); 1705 switch (code) { 1706 case lir_logic_and: __ z_nr(reg, rright); break; 1707 case lir_logic_or : __ z_or(reg, rright); break; 1708 case lir_logic_xor: __ z_xr(reg, rright); break; 1709 default: ShouldNotReachHere(); 1710 } 1711 } 1712 move_regs(reg, dst->as_register()); 1713 } else { 1714 Register l_lo = left->as_register_lo(); 1715 if (right->is_constant()) { 1716 __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong()); 1717 switch (code) { 1718 case lir_logic_and: 1719 __ z_ngr(l_lo, Z_R1_scratch); 1720 break; 1721 case lir_logic_or: 1722 __ z_ogr(l_lo, Z_R1_scratch); 1723 break; 1724 case lir_logic_xor: 1725 __ z_xgr(l_lo, Z_R1_scratch); 1726 break; 1727 default: ShouldNotReachHere(); 1728 } 1729 } else { 1730 Register r_lo; 1731 if (is_reference_type(right->type())) { 1732 r_lo = right->as_register(); 1733 } else { 1734 r_lo = right->as_register_lo(); 1735 } 1736 switch (code) { 1737 case lir_logic_and: 1738 __ z_ngr(l_lo, r_lo); 1739 break; 1740 case lir_logic_or: 1741 __ z_ogr(l_lo, r_lo); 1742 break; 1743 case lir_logic_xor: 1744 __ z_xgr(l_lo, r_lo); 1745 break; 1746 default: ShouldNotReachHere(); 1747 } 1748 } 1749 1750 Register dst_lo = dst->as_register_lo(); 1751 1752 move_regs(l_lo, dst_lo); 1753 } 1754 } 1755 1756 // See operand selection in LIRGenerator::do_ArithmeticOp_Int(). 1757 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1758 if (left->is_double_cpu()) { 1759 // 64 bit integer case 1760 assert(left->is_double_cpu(), "left must be register"); 1761 assert(right->is_double_cpu() || is_power_of_2(right->as_jlong()), 1762 "right must be register or power of 2 constant"); 1763 assert(result->is_double_cpu(), "result must be register"); 1764 1765 Register lreg = left->as_register_lo(); 1766 Register dreg = result->as_register_lo(); 1767 1768 if (right->is_constant()) { 1769 // Convert division by a power of two into some shifts and logical operations. 1770 Register treg1 = Z_R0_scratch; 1771 Register treg2 = Z_R1_scratch; 1772 jlong divisor = right->as_jlong(); 1773 jlong log_divisor = log2i_exact(right->as_jlong()); 1774 1775 if (divisor == min_jlong) { 1776 // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1. 1777 if (dreg == lreg) { 1778 NearLabel done; 1779 __ load_const_optimized(treg2, min_jlong); 1780 __ z_cgr(lreg, treg2); 1781 __ z_lghi(dreg, 0); // Preserves condition code. 1782 __ z_brne(done); 1783 __ z_lghi(dreg, 1); // min_jlong / min_jlong = 1 1784 __ bind(done); 1785 } else { 1786 assert_different_registers(dreg, lreg); 1787 NearLabel done; 1788 __ z_lghi(dreg, 0); 1789 __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done); 1790 __ z_lghi(dreg, 1); 1791 __ bind(done); 1792 } 1793 return; 1794 } 1795 __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG); 1796 if (divisor == 2) { 1797 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 1798 } else { 1799 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 1800 __ and_imm(treg2, divisor - 1, treg1, true); 1801 } 1802 if (code == lir_idiv) { 1803 __ z_agr(dreg, treg2); 1804 __ z_srag(dreg, dreg, log_divisor); 1805 } else { 1806 assert(code == lir_irem, "check"); 1807 __ z_agr(treg2, dreg); 1808 __ and_imm(treg2, ~(divisor - 1), treg1, true); 1809 __ z_sgr(dreg, treg2); 1810 } 1811 return; 1812 } 1813 1814 // Divisor is not a power of 2 constant. 1815 Register rreg = right->as_register_lo(); 1816 Register treg = temp->as_register_lo(); 1817 assert(right->is_double_cpu(), "right must be register"); 1818 assert(lreg == Z_R11, "see ldivInOpr()"); 1819 assert(rreg != lreg, "right register must not be same as left register"); 1820 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) || 1821 (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()"); 1822 1823 Register R1 = lreg->predecessor(); 1824 Register R2 = rreg; 1825 assert(code != lir_idiv || lreg==dreg, "see code below"); 1826 if (code == lir_idiv) { 1827 __ z_lcgr(lreg, lreg); 1828 } else { 1829 __ clear_reg(dreg, true, false); 1830 } 1831 NearLabel done; 1832 __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done); 1833 if (code == lir_idiv) { 1834 __ z_lcgr(lreg, lreg); // Revert lcgr above. 1835 } 1836 if (ImplicitDiv0Checks) { 1837 // No debug info because the idiv won't trap. 1838 // Add_debug_info_for_div0 would instantiate another DivByZeroStub, 1839 // which is unnecessary, too. 1840 add_debug_info_for_div0(__ offset(), info); 1841 } 1842 __ z_dsgr(R1, R2); 1843 __ bind(done); 1844 return; 1845 } 1846 1847 // 32 bit integer case 1848 1849 assert(left->is_single_cpu(), "left must be register"); 1850 assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant"); 1851 assert(result->is_single_cpu(), "result must be register"); 1852 1853 Register lreg = left->as_register(); 1854 Register dreg = result->as_register(); 1855 1856 if (right->is_constant()) { 1857 // Convert division by a power of two into some shifts and logical operations. 1858 Register treg1 = Z_R0_scratch; 1859 Register treg2 = Z_R1_scratch; 1860 jlong divisor = right->as_jint(); 1861 jlong log_divisor = log2i_exact(right->as_jint()); 1862 __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend 1863 if (divisor == 2) { 1864 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 1865 } else { 1866 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 1867 __ and_imm(treg2, divisor - 1, treg1, true); 1868 } 1869 if (code == lir_idiv) { 1870 __ z_agr(dreg, treg2); 1871 __ z_srag(dreg, dreg, log_divisor); 1872 } else { 1873 assert(code == lir_irem, "check"); 1874 __ z_agr(treg2, dreg); 1875 __ and_imm(treg2, ~(divisor - 1), treg1, true); 1876 __ z_sgr(dreg, treg2); 1877 } 1878 return; 1879 } 1880 1881 // Divisor is not a power of 2 constant. 1882 Register rreg = right->as_register(); 1883 Register treg = temp->as_register(); 1884 assert(right->is_single_cpu(), "right must be register"); 1885 assert(lreg == Z_R11, "left register must be rax,"); 1886 assert(rreg != lreg, "right register must not be same as left register"); 1887 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) 1888 || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()"); 1889 1890 Register R1 = lreg->predecessor(); 1891 Register R2 = rreg; 1892 __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend 1893 if (ImplicitDiv0Checks) { 1894 // No debug info because the idiv won't trap. 1895 // Add_debug_info_for_div0 would instantiate another DivByZeroStub, 1896 // which is unnecessary, too. 1897 add_debug_info_for_div0(__ offset(), info); 1898 } 1899 __ z_dsgfr(R1, R2); 1900 } 1901 1902 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1903 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); 1904 assert(exceptionPC->as_register() == Z_EXC_PC, "should match"); 1905 1906 // Exception object is not added to oop map by LinearScan 1907 // (LinearScan assumes that no oops are in fixed registers). 1908 info->add_register_oop(exceptionOop); 1909 1910 // Reuse the debug info from the safepoint poll for the throw op itself. 1911 __ get_PC(Z_EXC_PC); 1912 add_call_info(__ offset(), info); // for exception handler 1913 address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? C1StubId::handle_exception_id 1914 : C1StubId::handle_exception_nofpu_id); 1915 emit_call_c(stub); 1916 } 1917 1918 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1919 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); 1920 1921 __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry); 1922 } 1923 1924 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1925 ciArrayKlass* default_type = op->expected_type(); 1926 Register src = op->src()->as_register(); 1927 Register dst = op->dst()->as_register(); 1928 Register src_pos = op->src_pos()->as_register(); 1929 Register dst_pos = op->dst_pos()->as_register(); 1930 Register length = op->length()->as_register(); 1931 Register tmp = op->tmp()->as_register(); 1932 1933 CodeStub* stub = op->stub(); 1934 int flags = op->flags(); 1935 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 1936 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1937 1938 // If we don't know anything, just go through the generic arraycopy. 1939 if (default_type == nullptr) { 1940 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1941 1942 if (copyfunc_addr == nullptr) { 1943 // Take a slow path for generic arraycopy. 1944 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 1945 __ bind(*stub->continuation()); 1946 return; 1947 } 1948 1949 // Save outgoing arguments in callee saved registers (C convention) in case 1950 // a call to System.arraycopy is needed. 1951 Register callee_saved_src = Z_R10; 1952 Register callee_saved_src_pos = Z_R11; 1953 Register callee_saved_dst = Z_R12; 1954 Register callee_saved_dst_pos = Z_R13; 1955 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. 1956 1957 __ lgr_if_needed(callee_saved_src, src); 1958 __ lgr_if_needed(callee_saved_src_pos, src_pos); 1959 __ lgr_if_needed(callee_saved_dst, dst); 1960 __ lgr_if_needed(callee_saved_dst_pos, dst_pos); 1961 __ lgr_if_needed(callee_saved_length, length); 1962 1963 // C function requires 64 bit values. 1964 __ z_lgfr(src_pos, src_pos); 1965 __ z_lgfr(dst_pos, dst_pos); 1966 __ z_lgfr(length, length); 1967 1968 // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint. 1969 1970 // The arguments are in the corresponding registers. 1971 assert(Z_ARG1 == src, "assumption"); 1972 assert(Z_ARG2 == src_pos, "assumption"); 1973 assert(Z_ARG3 == dst, "assumption"); 1974 assert(Z_ARG4 == dst_pos, "assumption"); 1975 assert(Z_ARG5 == length, "assumption"); 1976 #ifndef PRODUCT 1977 if (PrintC1Statistics) { 1978 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt); 1979 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 1980 } 1981 #endif 1982 emit_call_c(copyfunc_addr); 1983 CHECK_BAILOUT(); 1984 1985 __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); 1986 1987 __ z_lgr(tmp, Z_RET); 1988 __ z_xilf(tmp, -1); 1989 1990 // Restore values from callee saved registers so they are where the stub 1991 // expects them. 1992 __ lgr_if_needed(src, callee_saved_src); 1993 __ lgr_if_needed(src_pos, callee_saved_src_pos); 1994 __ lgr_if_needed(dst, callee_saved_dst); 1995 __ lgr_if_needed(dst_pos, callee_saved_dst_pos); 1996 __ lgr_if_needed(length, callee_saved_length); 1997 1998 __ z_sr(length, tmp); 1999 __ z_ar(src_pos, tmp); 2000 __ z_ar(dst_pos, tmp); 2001 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2002 2003 __ bind(*stub->continuation()); 2004 return; 2005 } 2006 2007 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2008 2009 int elem_size = type2aelembytes(basic_type); 2010 int shift_amount; 2011 2012 switch (elem_size) { 2013 case 1 : 2014 shift_amount = 0; 2015 break; 2016 case 2 : 2017 shift_amount = 1; 2018 break; 2019 case 4 : 2020 shift_amount = 2; 2021 break; 2022 case 8 : 2023 shift_amount = 3; 2024 break; 2025 default: 2026 shift_amount = -1; 2027 ShouldNotReachHere(); 2028 } 2029 2030 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2031 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2032 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2033 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2034 2035 // Length and pos's are all sign extended at this point on 64bit. 2036 2037 // test for null 2038 if (flags & LIR_OpArrayCopy::src_null_check) { 2039 __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry()); 2040 } 2041 if (flags & LIR_OpArrayCopy::dst_null_check) { 2042 __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry()); 2043 } 2044 2045 // Check if negative. 2046 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2047 __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); 2048 } 2049 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2050 __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); 2051 } 2052 2053 // If the compiler was not able to prove that exact type of the source or the destination 2054 // of the arraycopy is an array type, check at runtime if the source or the destination is 2055 // an instance type. 2056 if (flags & LIR_OpArrayCopy::type_check) { 2057 assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions"); 2058 2059 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2060 __ load_klass(tmp, dst); 2061 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2062 __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); 2063 } 2064 2065 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2066 __ load_klass(tmp, src); 2067 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2068 __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); 2069 } 2070 } 2071 2072 if (flags & LIR_OpArrayCopy::src_range_check) { 2073 __ z_la(tmp, Address(src_pos, length)); 2074 __ z_cl(tmp, src_length_addr); 2075 __ branch_optimized(Assembler::bcondHigh, *stub->entry()); 2076 } 2077 if (flags & LIR_OpArrayCopy::dst_range_check) { 2078 __ z_la(tmp, Address(dst_pos, length)); 2079 __ z_cl(tmp, dst_length_addr); 2080 __ branch_optimized(Assembler::bcondHigh, *stub->entry()); 2081 } 2082 2083 if (flags & LIR_OpArrayCopy::length_positive_check) { 2084 __ z_ltr(length, length); 2085 __ branch_optimized(Assembler::bcondNegative, *stub->entry()); 2086 } 2087 2088 // Stubs require 64 bit values. 2089 __ z_lgfr(src_pos, src_pos); // int -> long 2090 __ z_lgfr(dst_pos, dst_pos); // int -> long 2091 __ z_lgfr(length, length); // int -> long 2092 2093 if (flags & LIR_OpArrayCopy::type_check) { 2094 // We don't know the array types are compatible. 2095 if (basic_type != T_OBJECT) { 2096 // Simple test for basic type arrays. 2097 if (UseCompressedClassPointers) { 2098 __ z_l(tmp, src_klass_addr); 2099 __ z_c(tmp, dst_klass_addr); 2100 } else { 2101 __ z_lg(tmp, src_klass_addr); 2102 __ z_cg(tmp, dst_klass_addr); 2103 } 2104 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); 2105 } else { 2106 // For object arrays, if src is a sub class of dst then we can 2107 // safely do the copy. 2108 NearLabel cont, slow; 2109 Register src_klass = Z_R1_scratch; 2110 Register dst_klass = Z_R10; 2111 2112 __ load_klass(src_klass, src); 2113 __ load_klass(dst_klass, dst); 2114 2115 __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, nullptr); 2116 2117 store_parameter(src_klass, 0); // sub 2118 store_parameter(dst_klass, 1); // super 2119 emit_call_c(Runtime1::entry_for (C1StubId::slow_subtype_check_id)); 2120 CHECK_BAILOUT2(cont, slow); 2121 // Sets condition code 0 for match (2 otherwise). 2122 __ branch_optimized(Assembler::bcondEqual, cont); 2123 2124 __ bind(slow); 2125 2126 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2127 if (copyfunc_addr != nullptr) { // use stub if available 2128 // Src is not a sub class of dst so we have to do a 2129 // per-element check. 2130 2131 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2132 if ((flags & mask) != mask) { 2133 // Check that at least both of them object arrays. 2134 assert(flags & mask, "one of the two should be known to be an object array"); 2135 2136 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2137 __ load_klass(tmp, src); 2138 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2139 __ load_klass(tmp, dst); 2140 } 2141 Address klass_lh_addr(tmp, Klass::layout_helper_offset()); 2142 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2143 __ load_const_optimized(Z_R1_scratch, objArray_lh); 2144 __ z_c(Z_R1_scratch, klass_lh_addr); 2145 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); 2146 } 2147 2148 // Save outgoing arguments in callee saved registers (C convention) in case 2149 // a call to System.arraycopy is needed. 2150 Register callee_saved_src = Z_R10; 2151 Register callee_saved_src_pos = Z_R11; 2152 Register callee_saved_dst = Z_R12; 2153 Register callee_saved_dst_pos = Z_R13; 2154 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. 2155 2156 __ lgr_if_needed(callee_saved_src, src); 2157 __ lgr_if_needed(callee_saved_src_pos, src_pos); 2158 __ lgr_if_needed(callee_saved_dst, dst); 2159 __ lgr_if_needed(callee_saved_dst_pos, dst_pos); 2160 __ lgr_if_needed(callee_saved_length, length); 2161 2162 __ z_llgfr(length, length); // Higher 32bits must be null. 2163 2164 __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset 2165 __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset 2166 2167 __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type))); 2168 assert_different_registers(Z_ARG1, dst, dst_pos, length); 2169 __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type))); 2170 assert_different_registers(Z_ARG2, dst, length); 2171 2172 __ z_lgr(Z_ARG3, length); 2173 assert_different_registers(Z_ARG3, dst); 2174 2175 __ load_klass(Z_ARG5, dst); 2176 __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset())); 2177 __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset())); 2178 emit_call_c(copyfunc_addr); 2179 CHECK_BAILOUT2(cont, slow); 2180 2181 #ifndef PRODUCT 2182 if (PrintC1Statistics) { 2183 NearLabel failed; 2184 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed); 2185 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt); 2186 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2187 __ bind(failed); 2188 } 2189 #endif 2190 2191 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); 2192 2193 #ifndef PRODUCT 2194 if (PrintC1Statistics) { 2195 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt); 2196 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2197 } 2198 #endif 2199 2200 __ z_lgr(tmp, Z_RET); 2201 __ z_xilf(tmp, -1); 2202 2203 // Restore previously spilled arguments 2204 __ lgr_if_needed(src, callee_saved_src); 2205 __ lgr_if_needed(src_pos, callee_saved_src_pos); 2206 __ lgr_if_needed(dst, callee_saved_dst); 2207 __ lgr_if_needed(dst_pos, callee_saved_dst_pos); 2208 __ lgr_if_needed(length, callee_saved_length); 2209 2210 __ z_sr(length, tmp); 2211 __ z_ar(src_pos, tmp); 2212 __ z_ar(dst_pos, tmp); 2213 } 2214 2215 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2216 2217 __ bind(cont); 2218 } 2219 } 2220 2221 #ifdef ASSERT 2222 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2223 // Sanity check the known type with the incoming class. For the 2224 // primitive case the types must match exactly with src.klass and 2225 // dst.klass each exactly matching the default type. For the 2226 // object array case, if no type check is needed then either the 2227 // dst type is exactly the expected type and the src type is a 2228 // subtype which we can't check or src is the same array as dst 2229 // but not necessarily exactly of type default_type. 2230 NearLabel known_ok, halt; 2231 metadata2reg(default_type->constant_encoding(), tmp); 2232 if (UseCompressedClassPointers) { 2233 __ encode_klass_not_null(tmp); 2234 } 2235 2236 if (basic_type != T_OBJECT) { 2237 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } 2238 else { __ z_cg(tmp, dst_klass_addr); } 2239 __ branch_optimized(Assembler::bcondNotEqual, halt); 2240 if (UseCompressedClassPointers) { __ z_c (tmp, src_klass_addr); } 2241 else { __ z_cg(tmp, src_klass_addr); } 2242 __ branch_optimized(Assembler::bcondEqual, known_ok); 2243 } else { 2244 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } 2245 else { __ z_cg(tmp, dst_klass_addr); } 2246 __ branch_optimized(Assembler::bcondEqual, known_ok); 2247 __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok); 2248 } 2249 __ bind(halt); 2250 __ stop("incorrect type information in arraycopy"); 2251 __ bind(known_ok); 2252 } 2253 #endif 2254 2255 #ifndef PRODUCT 2256 if (PrintC1Statistics) { 2257 __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type)); 2258 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2259 } 2260 #endif 2261 2262 __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset 2263 __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset 2264 2265 assert_different_registers(Z_ARG1, dst, dst_pos, length); 2266 __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type))); 2267 assert_different_registers(Z_ARG2, length); 2268 __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type))); 2269 __ lgr_if_needed(Z_ARG3, length); 2270 2271 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2272 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2273 const char *name; 2274 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2275 __ call_VM_leaf(entry); 2276 2277 if (stub != nullptr) { 2278 __ bind(*stub->continuation()); 2279 } 2280 } 2281 2282 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2283 if (dest->is_single_cpu()) { 2284 if (left->type() == T_OBJECT) { 2285 switch (code) { 2286 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2287 case lir_shr: __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2288 case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2289 default: ShouldNotReachHere(); 2290 } 2291 } else { 2292 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); 2293 Register masked_count = Z_R1_scratch; 2294 __ z_lr(masked_count, count->as_register()); 2295 __ z_nill(masked_count, 31); 2296 switch (code) { 2297 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break; 2298 case lir_shr: __ z_sra (dest->as_register(), 0, masked_count); break; 2299 case lir_ushr: __ z_srl (dest->as_register(), 0, masked_count); break; 2300 default: ShouldNotReachHere(); 2301 } 2302 } 2303 } else { 2304 switch (code) { 2305 case lir_shl: __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2306 case lir_shr: __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2307 case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2308 default: ShouldNotReachHere(); 2309 } 2310 } 2311 } 2312 2313 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2314 if (left->type() == T_OBJECT) { 2315 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2316 Register l = left->as_register(); 2317 Register d = dest->as_register_lo(); 2318 switch (code) { 2319 case lir_shl: __ z_sllg (d, l, count); break; 2320 case lir_shr: __ z_srag (d, l, count); break; 2321 case lir_ushr: __ z_srlg (d, l, count); break; 2322 default: ShouldNotReachHere(); 2323 } 2324 return; 2325 } 2326 if (dest->is_single_cpu()) { 2327 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); 2328 count = count & 0x1F; // Java spec 2329 switch (code) { 2330 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), count); break; 2331 case lir_shr: __ z_sra (dest->as_register(), count); break; 2332 case lir_ushr: __ z_srl (dest->as_register(), count); break; 2333 default: ShouldNotReachHere(); 2334 } 2335 } else if (dest->is_double_cpu()) { 2336 count = count & 63; // Java spec 2337 Register l = left->as_pointer_register(); 2338 Register d = dest->as_pointer_register(); 2339 switch (code) { 2340 case lir_shl: __ z_sllg (d, l, count); break; 2341 case lir_shr: __ z_srag (d, l, count); break; 2342 case lir_ushr: __ z_srlg (d, l, count); break; 2343 default: ShouldNotReachHere(); 2344 } 2345 } else { 2346 ShouldNotReachHere(); 2347 } 2348 } 2349 2350 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2351 if (op->init_check()) { 2352 // Make sure klass is initialized & doesn't have finalizer. 2353 // init_state needs acquire, but S390 is TSO, and so we are already good. 2354 const int state_offset = in_bytes(InstanceKlass::init_state_offset()); 2355 Register iklass = op->klass()->as_register(); 2356 add_debug_info_for_null_check_here(op->stub()->info()); 2357 if (Immediate::is_uimm12(state_offset)) { 2358 __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized); 2359 } else { 2360 __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized); 2361 } 2362 __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far. 2363 } 2364 __ allocate_object(op->obj()->as_register(), 2365 op->tmp1()->as_register(), 2366 op->tmp2()->as_register(), 2367 op->header_size(), 2368 op->object_size(), 2369 op->klass()->as_register(), 2370 *op->stub()->entry()); 2371 __ bind(*op->stub()->continuation()); 2372 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2373 } 2374 2375 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2376 Register len = op->len()->as_register(); 2377 __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend 2378 2379 if (UseSlowPath || 2380 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2381 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2382 __ z_brul(*op->stub()->entry()); 2383 } else { 2384 __ allocate_array(op->obj()->as_register(), 2385 op->len()->as_register(), 2386 op->tmp1()->as_register(), 2387 op->tmp2()->as_register(), 2388 arrayOopDesc::base_offset_in_bytes(op->type()), 2389 type2aelembytes(op->type()), 2390 op->klass()->as_register(), 2391 *op->stub()->entry(), 2392 op->zero_array()); 2393 } 2394 __ bind(*op->stub()->continuation()); 2395 } 2396 2397 void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data, 2398 Register recv, Register tmp1, Label* update_done) { 2399 uint i; 2400 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2401 Label next_test; 2402 // See if the receiver is receiver[n]. 2403 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 2404 __ z_cg(recv, receiver_addr); 2405 __ z_brne(next_test); 2406 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 2407 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2408 __ branch_optimized(Assembler::bcondAlways, *update_done); 2409 __ bind(next_test); 2410 } 2411 2412 // Didn't find receiver; find next empty slot and fill it in. 2413 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2414 Label next_test; 2415 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 2416 __ z_ltg(Z_R0_scratch, recv_addr); 2417 __ z_brne(next_test); 2418 __ z_stg(recv, recv_addr); 2419 __ load_const_optimized(tmp1, DataLayout::counter_increment); 2420 __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo); 2421 __ branch_optimized(Assembler::bcondAlways, *update_done); 2422 __ bind(next_test); 2423 } 2424 } 2425 2426 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2427 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2428 Unimplemented(); 2429 } 2430 2431 void LIR_Assembler::store_parameter(Register r, int param_num) { 2432 assert(param_num >= 0, "invalid num"); 2433 int offset_in_bytes = param_num * BytesPerWord; 2434 check_reserved_argument_area(offset_in_bytes); 2435 offset_in_bytes += FrameMap::first_available_sp_in_frame; 2436 __ z_stg(r, offset_in_bytes, Z_SP); 2437 } 2438 2439 void LIR_Assembler::store_parameter(jint c, int param_num) { 2440 assert(param_num >= 0, "invalid num"); 2441 int offset_in_bytes = param_num * BytesPerWord; 2442 check_reserved_argument_area(offset_in_bytes); 2443 offset_in_bytes += FrameMap::first_available_sp_in_frame; 2444 __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true); 2445 } 2446 2447 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2448 // We always need a stub for the failure case. 2449 CodeStub* stub = op->stub(); 2450 Register obj = op->object()->as_register(); 2451 Register k_RInfo = op->tmp1()->as_register(); 2452 Register klass_RInfo = op->tmp2()->as_register(); 2453 Register dst = op->result_opr()->as_register(); 2454 Register Rtmp1 = Z_R1_scratch; 2455 ciKlass* k = op->klass(); 2456 2457 assert(!op->tmp3()->is_valid(), "tmp3's not needed"); 2458 2459 // Check if it needs to be profiled. 2460 ciMethodData* md = nullptr; 2461 ciProfileData* data = nullptr; 2462 2463 if (op->should_profile()) { 2464 ciMethod* method = op->profiled_method(); 2465 assert(method != nullptr, "Should have method"); 2466 int bci = op->profiled_bci(); 2467 md = method->method_data_or_null(); 2468 assert(md != nullptr, "Sanity"); 2469 data = md->bci_to_data(bci); 2470 assert(data != nullptr, "need data for type check"); 2471 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2472 } 2473 2474 // Temp operands do not overlap with inputs, if this is their last 2475 // use (end of range is exclusive), so a register conflict is possible. 2476 if (obj == k_RInfo) { 2477 k_RInfo = dst; 2478 } else if (obj == klass_RInfo) { 2479 klass_RInfo = dst; 2480 } 2481 assert_different_registers(obj, k_RInfo, klass_RInfo); 2482 2483 if (op->should_profile()) { 2484 Register mdo = klass_RInfo; 2485 metadata2reg(md->constant_encoding(), mdo); 2486 NearLabel not_null; 2487 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null); 2488 // Object is null; update MDO and exit. 2489 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 2490 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 2491 __ or2mem_8(data_addr, header_bits); 2492 __ branch_optimized(Assembler::bcondAlways, *obj_is_null); 2493 __ bind(not_null); 2494 2495 NearLabel update_done; 2496 Register recv = k_RInfo; 2497 __ load_klass(recv, obj); 2498 type_profile_helper(mdo, md, data, recv, Rtmp1, &update_done); 2499 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2500 __ add2mem_64(counter_addr, DataLayout::counter_increment, Rtmp1); 2501 __ bind(update_done); 2502 } else { 2503 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null); 2504 } 2505 2506 Label *failure_target = failure; 2507 Label *success_target = success; 2508 2509 // Patching may screw with our temporaries, 2510 // so let's do it before loading the class. 2511 if (k->is_loaded()) { 2512 metadata2reg(k->constant_encoding(), k_RInfo); 2513 } else { 2514 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2515 } 2516 assert(obj != k_RInfo, "must be different"); 2517 2518 __ verify_oop(obj, FILE_AND_LINE); 2519 2520 // Get object class. 2521 // Not a safepoint as obj null check happens earlier. 2522 if (op->fast_check()) { 2523 if (UseCompressedClassPointers) { 2524 __ load_klass(klass_RInfo, obj); 2525 __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target); 2526 } else { 2527 __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 2528 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2529 } 2530 // Successful cast, fall through to profile or jump. 2531 } else { 2532 bool need_slow_path = !k->is_loaded() || 2533 ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset())); 2534 intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L; 2535 __ load_klass(klass_RInfo, obj); 2536 // Perform the fast part of the checking logic. 2537 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, 2538 (need_slow_path ? success_target : nullptr), 2539 failure_target, nullptr, 2540 RegisterOrConstant(super_check_offset)); 2541 if (need_slow_path) { 2542 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2543 address a = Runtime1::entry_for (C1StubId::slow_subtype_check_id); 2544 store_parameter(klass_RInfo, 0); // sub 2545 store_parameter(k_RInfo, 1); // super 2546 emit_call_c(a); // Sets condition code 0 for match (2 otherwise). 2547 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2548 // Fall through to success case. 2549 } 2550 } 2551 2552 __ branch_optimized(Assembler::bcondAlways, *success); 2553 } 2554 2555 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2556 LIR_Code code = op->code(); 2557 if (code == lir_store_check) { 2558 Register value = op->object()->as_register(); 2559 Register array = op->array()->as_register(); 2560 Register k_RInfo = op->tmp1()->as_register(); 2561 Register klass_RInfo = op->tmp2()->as_register(); 2562 Register Rtmp1 = Z_R1_scratch; 2563 2564 CodeStub* stub = op->stub(); 2565 2566 // Check if it needs to be profiled. 2567 ciMethodData* md = nullptr; 2568 ciProfileData* data = nullptr; 2569 2570 assert_different_registers(value, k_RInfo, klass_RInfo); 2571 2572 if (op->should_profile()) { 2573 ciMethod* method = op->profiled_method(); 2574 assert(method != nullptr, "Should have method"); 2575 int bci = op->profiled_bci(); 2576 md = method->method_data_or_null(); 2577 assert(md != nullptr, "Sanity"); 2578 data = md->bci_to_data(bci); 2579 assert(data != nullptr, "need data for type check"); 2580 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2581 } 2582 NearLabel done; 2583 Label *success_target = &done; 2584 Label *failure_target = stub->entry(); 2585 2586 if (op->should_profile()) { 2587 Register mdo = klass_RInfo; 2588 metadata2reg(md->constant_encoding(), mdo); 2589 NearLabel not_null; 2590 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null); 2591 // Object is null; update MDO and exit. 2592 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 2593 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 2594 __ or2mem_8(data_addr, header_bits); 2595 __ branch_optimized(Assembler::bcondAlways, done); 2596 __ bind(not_null); 2597 2598 NearLabel update_done; 2599 Register recv = k_RInfo; 2600 __ load_klass(recv, value); 2601 type_profile_helper(mdo, md, data, recv, Rtmp1, &update_done); 2602 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2603 __ add2mem_64(counter_addr, DataLayout::counter_increment, Rtmp1); 2604 __ bind(update_done); 2605 } else { 2606 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done); 2607 } 2608 2609 add_debug_info_for_null_check_here(op->info_for_exception()); 2610 __ load_klass(k_RInfo, array); 2611 __ load_klass(klass_RInfo, value); 2612 2613 // Get instance klass (it's already uncompressed). 2614 __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 2615 // Perform the fast part of the checking logic. 2616 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 2617 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2618 address a = Runtime1::entry_for (C1StubId::slow_subtype_check_id); 2619 store_parameter(klass_RInfo, 0); // sub 2620 store_parameter(k_RInfo, 1); // super 2621 emit_call_c(a); // Sets condition code 0 for match (2 otherwise). 2622 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2623 // Fall through to success case. 2624 2625 __ bind(done); 2626 } else { 2627 if (code == lir_checkcast) { 2628 Register obj = op->object()->as_register(); 2629 Register dst = op->result_opr()->as_register(); 2630 NearLabel success; 2631 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 2632 __ bind(success); 2633 __ lgr_if_needed(dst, obj); 2634 } else { 2635 if (code == lir_instanceof) { 2636 Register obj = op->object()->as_register(); 2637 Register dst = op->result_opr()->as_register(); 2638 NearLabel success, failure, done; 2639 emit_typecheck_helper(op, &success, &failure, &failure); 2640 __ bind(failure); 2641 __ clear_reg(dst); 2642 __ branch_optimized(Assembler::bcondAlways, done); 2643 __ bind(success); 2644 __ load_const_optimized(dst, 1); 2645 __ bind(done); 2646 } else { 2647 ShouldNotReachHere(); 2648 } 2649 } 2650 } 2651 } 2652 2653 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2654 Register addr = op->addr()->as_pointer_register(); 2655 Register t1_cmp = Z_R1_scratch; 2656 if (op->code() == lir_cas_long) { 2657 Register cmp_value_lo = op->cmp_value()->as_register_lo(); 2658 Register new_value_lo = op->new_value()->as_register_lo(); 2659 __ z_lgr(t1_cmp, cmp_value_lo); 2660 // Perform the compare and swap operation. 2661 __ z_csg(t1_cmp, new_value_lo, 0, addr); 2662 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2663 Register cmp_value = op->cmp_value()->as_register(); 2664 Register new_value = op->new_value()->as_register(); 2665 if (op->code() == lir_cas_obj) { 2666 if (UseCompressedOops) { 2667 t1_cmp = op->tmp1()->as_register(); 2668 Register t2_new = op->tmp2()->as_register(); 2669 assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new); 2670 __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/); 2671 __ oop_encoder(t2_new, new_value, true /*maybe null*/); 2672 __ z_cs(t1_cmp, t2_new, 0, addr); 2673 } else { 2674 __ z_lgr(t1_cmp, cmp_value); 2675 __ z_csg(t1_cmp, new_value, 0, addr); 2676 } 2677 } else { 2678 __ z_lr(t1_cmp, cmp_value); 2679 __ z_cs(t1_cmp, new_value, 0, addr); 2680 } 2681 } else { 2682 ShouldNotReachHere(); // new lir_cas_?? 2683 } 2684 } 2685 2686 void LIR_Assembler::breakpoint() { 2687 Unimplemented(); 2688 // __ breakpoint_trap(); 2689 } 2690 2691 void LIR_Assembler::push(LIR_Opr opr) { 2692 ShouldNotCallThis(); // unused 2693 } 2694 2695 void LIR_Assembler::pop(LIR_Opr opr) { 2696 ShouldNotCallThis(); // unused 2697 } 2698 2699 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2700 Address addr = frame_map()->address_for_monitor_lock(monitor_no); 2701 __ add2reg(dst_opr->as_register(), addr.disp(), addr.base()); 2702 } 2703 2704 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2705 Register obj = op->obj_opr()->as_register(); // May not be an oop. 2706 Register hdr = op->hdr_opr()->as_register(); 2707 Register lock = op->lock_opr()->as_register(); 2708 if (LockingMode == LM_MONITOR) { 2709 if (op->info() != nullptr) { 2710 add_debug_info_for_null_check_here(op->info()); 2711 __ null_check(obj); 2712 } 2713 __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry()); 2714 } else if (op->code() == lir_lock) { 2715 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2716 // Add debug info for NullPointerException only if one is possible. 2717 if (op->info() != nullptr) { 2718 add_debug_info_for_null_check_here(op->info()); 2719 } 2720 __ lock_object(hdr, obj, lock, *op->stub()->entry()); 2721 // done 2722 } else if (op->code() == lir_unlock) { 2723 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2724 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2725 } else { 2726 ShouldNotReachHere(); 2727 } 2728 __ bind(*op->stub()->continuation()); 2729 } 2730 2731 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2732 Register obj = op->obj()->as_pointer_register(); 2733 Register result = op->result_opr()->as_pointer_register(); 2734 2735 CodeEmitInfo* info = op->info(); 2736 if (info != nullptr) { 2737 add_debug_info_for_null_check_here(info); 2738 } 2739 2740 if (UseCompressedClassPointers) { 2741 __ z_llgf(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2742 __ decode_klass_not_null(result); 2743 } else { 2744 __ z_lg(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2745 } 2746 } 2747 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2748 ciMethod* method = op->profiled_method(); 2749 int bci = op->profiled_bci(); 2750 ciMethod* callee = op->profiled_callee(); 2751 2752 // Update counter for all call types. 2753 ciMethodData* md = method->method_data_or_null(); 2754 assert(md != nullptr, "Sanity"); 2755 ciProfileData* data = md->bci_to_data(bci); 2756 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2757 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2758 Register mdo = op->mdo()->as_register(); 2759 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2760 Register tmp1 = op->tmp1()->as_register_lo(); 2761 metadata2reg(md->constant_encoding(), mdo); 2762 2763 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2764 // Perform additional virtual call profiling for invokevirtual and 2765 // invokeinterface bytecodes 2766 if (op->should_profile_receiver_type()) { 2767 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2768 Register recv = op->recv()->as_register(); 2769 assert_different_registers(mdo, tmp1, recv); 2770 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2771 ciKlass* known_klass = op->known_holder(); 2772 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2773 // We know the type that will be seen at this call site; we can 2774 // statically update the MethodData* rather than needing to do 2775 // dynamic tests on the receiver type. 2776 2777 // NOTE: we should probably put a lock around this search to 2778 // avoid collisions by concurrent compilations. 2779 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2780 uint i; 2781 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2782 ciKlass* receiver = vc_data->receiver(i); 2783 if (known_klass->equals(receiver)) { 2784 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2785 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2786 return; 2787 } 2788 } 2789 2790 // Receiver type not found in profile data. Select an empty slot. 2791 2792 // Note that this is less efficient than it should be because it 2793 // always does a write to the receiver part of the 2794 // VirtualCallData rather than just the first time. 2795 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2796 ciKlass* receiver = vc_data->receiver(i); 2797 if (receiver == nullptr) { 2798 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2799 metadata2reg(known_klass->constant_encoding(), tmp1); 2800 __ z_stg(tmp1, recv_addr); 2801 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2802 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2803 return; 2804 } 2805 } 2806 } else { 2807 __ load_klass(recv, recv); 2808 NearLabel update_done; 2809 type_profile_helper(mdo, md, data, recv, tmp1, &update_done); 2810 // Receiver did not match any saved receiver and there is no empty row for it. 2811 // Increment total counter to indicate polymorphic case. 2812 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); 2813 __ bind(update_done); 2814 } 2815 } else { 2816 // static call 2817 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); 2818 } 2819 } 2820 2821 void LIR_Assembler::align_backward_branch_target() { 2822 __ align(OptoLoopAlignment); 2823 } 2824 2825 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2826 ShouldNotCallThis(); // There are no delay slots on ZARCH_64. 2827 } 2828 2829 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2830 // tmp must be unused 2831 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2832 assert(left->is_register(), "can only handle registers"); 2833 2834 if (left->is_single_cpu()) { 2835 __ z_lcr(dest->as_register(), left->as_register()); 2836 } else if (left->is_single_fpu()) { 2837 __ z_lcebr(dest->as_float_reg(), left->as_float_reg()); 2838 } else if (left->is_double_fpu()) { 2839 __ z_lcdbr(dest->as_double_reg(), left->as_double_reg()); 2840 } else { 2841 assert(left->is_double_cpu(), "Must be a long"); 2842 __ z_lcgr(dest->as_register_lo(), left->as_register_lo()); 2843 } 2844 } 2845 2846 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2847 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2848 assert(!tmp->is_valid(), "don't need temporary"); 2849 emit_call_c(dest); 2850 CHECK_BAILOUT(); 2851 if (info != nullptr) { 2852 add_call_info_here(info); 2853 } 2854 } 2855 2856 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2857 ShouldNotCallThis(); // not needed on ZARCH_64 2858 } 2859 2860 void LIR_Assembler::membar() { 2861 __ z_fence(); 2862 } 2863 2864 void LIR_Assembler::membar_acquire() { 2865 __ z_acquire(); 2866 } 2867 2868 void LIR_Assembler::membar_release() { 2869 __ z_release(); 2870 } 2871 2872 void LIR_Assembler::membar_loadload() { 2873 __ z_acquire(); 2874 } 2875 2876 void LIR_Assembler::membar_storestore() { 2877 __ z_release(); 2878 } 2879 2880 void LIR_Assembler::membar_loadstore() { 2881 __ z_acquire(); 2882 } 2883 2884 void LIR_Assembler::membar_storeload() { 2885 __ z_fence(); 2886 } 2887 2888 void LIR_Assembler::on_spin_wait() { 2889 Unimplemented(); 2890 } 2891 2892 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2893 assert(patch_code == lir_patch_none, "Patch code not supported"); 2894 LIR_Address* addr = addr_opr->as_address_ptr(); 2895 assert(addr->scale() == LIR_Address::times_1, "scaling unsupported"); 2896 __ load_address(dest->as_pointer_register(), as_Address(addr)); 2897 } 2898 2899 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2900 ShouldNotCallThis(); // unused 2901 } 2902 2903 #ifdef ASSERT 2904 // Emit run-time assertion. 2905 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2906 Unimplemented(); 2907 } 2908 #endif 2909 2910 void LIR_Assembler::peephole(LIR_List*) { 2911 // Do nothing for now. 2912 } 2913 2914 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2915 assert(code == lir_xadd, "lir_xchg not supported"); 2916 Address src_addr = as_Address(src->as_address_ptr()); 2917 Register base = src_addr.base(); 2918 intptr_t disp = src_addr.disp(); 2919 if (src_addr.index()->is_valid()) { 2920 // LAA and LAAG do not support index register. 2921 __ load_address(Z_R1_scratch, src_addr); 2922 base = Z_R1_scratch; 2923 disp = 0; 2924 } 2925 if (data->type() == T_INT) { 2926 __ z_laa(dest->as_register(), data->as_register(), disp, base); 2927 } else if (data->type() == T_LONG) { 2928 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 2929 __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base); 2930 } else { 2931 ShouldNotReachHere(); 2932 } 2933 } 2934 2935 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2936 Register obj = op->obj()->as_register(); 2937 Register tmp1 = op->tmp()->as_pointer_register(); 2938 Register tmp2 = Z_R1_scratch; 2939 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2940 ciKlass* exact_klass = op->exact_klass(); 2941 intptr_t current_klass = op->current_klass(); 2942 bool not_null = op->not_null(); 2943 bool no_conflict = op->no_conflict(); 2944 2945 Label update, next, none, null_seen, init_klass; 2946 2947 bool do_null = !not_null; 2948 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2949 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2950 2951 assert(do_null || do_update, "why are we here?"); 2952 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2953 2954 __ verify_oop(obj, FILE_AND_LINE); 2955 2956 if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) { 2957 __ z_ltgr(tmp1, obj); 2958 } 2959 if (do_null) { 2960 __ z_brnz(update); 2961 if (!TypeEntries::was_null_seen(current_klass)) { 2962 __ z_lg(tmp1, mdo_addr); 2963 __ z_oill(tmp1, TypeEntries::null_seen); 2964 __ z_stg(tmp1, mdo_addr); 2965 } 2966 if (do_update) { 2967 __ z_bru(next); 2968 } 2969 } else { 2970 __ asm_assert(Assembler::bcondNotZero, "unexpected null obj", __LINE__); 2971 } 2972 2973 __ bind(update); 2974 2975 if (do_update) { 2976 #ifdef ASSERT 2977 if (exact_klass != nullptr) { 2978 __ load_klass(tmp1, tmp1); 2979 metadata2reg(exact_klass->constant_encoding(), tmp2); 2980 __ z_cgr(tmp1, tmp2); 2981 __ asm_assert(Assembler::bcondEqual, "exact klass and actual klass differ", __LINE__); 2982 } 2983 #endif 2984 2985 Label do_update; 2986 __ z_lg(tmp2, mdo_addr); 2987 2988 if (!no_conflict) { 2989 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 2990 if (exact_klass != nullptr) { 2991 metadata2reg(exact_klass->constant_encoding(), tmp1); 2992 } else { 2993 __ load_klass(tmp1, tmp1); 2994 } 2995 2996 // Klass seen before: nothing to do (regardless of unknown bit). 2997 __ z_lgr(Z_R0_scratch, tmp2); 2998 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 2999 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); 3000 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); 3001 3002 // Already unknown: Nothing to do anymore. 3003 __ z_tmll(tmp2, TypeEntries::type_unknown); 3004 __ z_brc(Assembler::bcondAllOne, next); 3005 3006 if (TypeEntries::is_type_none(current_klass)) { 3007 __ z_lgr(Z_R0_scratch, tmp2); 3008 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 3009 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); 3010 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass); 3011 } 3012 } else { 3013 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3014 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3015 3016 // Already unknown: Nothing to do anymore. 3017 __ z_tmll(tmp2, TypeEntries::type_unknown); 3018 __ z_brc(Assembler::bcondAllOne, next); 3019 } 3020 3021 // Different than before. Cannot keep accurate profile. 3022 __ z_oill(tmp2, TypeEntries::type_unknown); 3023 __ z_bru(do_update); 3024 } else { 3025 // There's a single possible klass at this profile point. 3026 assert(exact_klass != nullptr, "should be"); 3027 if (TypeEntries::is_type_none(current_klass)) { 3028 metadata2reg(exact_klass->constant_encoding(), tmp1); 3029 __ z_lgr(Z_R0_scratch, tmp2); 3030 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 3031 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); 3032 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); 3033 #ifdef ASSERT 3034 { 3035 Label ok; 3036 __ z_lgr(Z_R0_scratch, tmp2); 3037 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 3038 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); 3039 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok); 3040 __ stop("unexpected profiling mismatch"); 3041 __ bind(ok); 3042 } 3043 #endif 3044 3045 } else { 3046 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3047 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3048 3049 // Already unknown: Nothing to do anymore. 3050 __ z_tmll(tmp2, TypeEntries::type_unknown); 3051 __ z_brc(Assembler::bcondAllOne, next); 3052 __ z_oill(tmp2, TypeEntries::type_unknown); 3053 __ z_bru(do_update); 3054 } 3055 } 3056 3057 __ bind(init_klass); 3058 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3059 __ z_ogr(tmp2, tmp1); 3060 3061 __ bind(do_update); 3062 __ z_stg(tmp2, mdo_addr); 3063 3064 __ bind(next); 3065 } 3066 } 3067 3068 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3069 assert(op->crc()->is_single_cpu(), "crc must be register"); 3070 assert(op->val()->is_single_cpu(), "byte value must be register"); 3071 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3072 Register crc = op->crc()->as_register(); 3073 Register val = op->val()->as_register(); 3074 Register res = op->result_opr()->as_register(); 3075 3076 assert_different_registers(val, crc, res); 3077 3078 __ load_const_optimized(res, StubRoutines::crc_table_addr()); 3079 __ kernel_crc32_singleByteReg(crc, val, res, true); 3080 __ z_lgfr(res, crc); 3081 } 3082 3083 #undef __