1 /* 2 * Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_s390.hpp" 38 #include "oops/objArrayKlass.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/safepointMechanism.inline.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "utilities/macros.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_s390.inline.hpp" 46 47 #define __ _masm-> 48 49 #ifndef PRODUCT 50 #undef __ 51 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)-> 52 #endif 53 54 //------------------------------------------------------------ 55 56 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 57 // Not used on ZARCH_64 58 ShouldNotCallThis(); 59 return false; 60 } 61 62 LIR_Opr LIR_Assembler::receiverOpr() { 63 return FrameMap::Z_R2_oop_opr; 64 } 65 66 LIR_Opr LIR_Assembler::osrBufferPointer() { 67 return FrameMap::Z_R2_opr; 68 } 69 70 int LIR_Assembler::initial_frame_size_in_bytes() const { 71 return in_bytes(frame_map()->framesize_in_bytes()); 72 } 73 74 // Inline cache check: done before the frame is built. 75 // The inline cached class is in Z_inline_cache(Z_R9). 76 // We fetch the class of the receiver and compare it with the cached class. 77 // If they do not match we jump to the slow case. 78 int LIR_Assembler::check_icache() { 79 return __ ic_check(CodeEntryAlignment); 80 } 81 82 void LIR_Assembler::clinit_barrier(ciMethod* method) { 83 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 84 85 Label L_skip_barrier; 86 Register klass = Z_R1_scratch; 87 88 metadata2reg(method->holder()->constant_encoding(), klass); 89 __ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/); 90 91 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub()); 92 __ z_br(klass); 93 94 __ bind(L_skip_barrier); 95 } 96 97 void LIR_Assembler::osr_entry() { 98 // On-stack-replacement entry sequence (interpreter frame layout described in frame_s390.hpp): 99 // 100 // 1. Create a new compiled activation. 101 // 2. Initialize local variables in the compiled activation. The expression stack must be empty 102 // at the osr_bci; it is not initialized. 103 // 3. Jump to the continuation address in compiled code to resume execution. 104 105 // OSR entry point 106 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 107 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 108 ValueStack* entry_state = osr_entry->end()->state(); 109 int number_of_locks = entry_state->locks_size(); 110 111 // Create a frame for the compiled activation. 112 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 113 114 // OSR buffer is 115 // 116 // locals[nlocals-1..0] 117 // monitors[number_of_locks-1..0] 118 // 119 // Locals is a direct copy of the interpreter frame so in the osr buffer 120 // the first slot in the local array is the last local from the interpreter 121 // and the last slot is local[0] (receiver) from the interpreter 122 // 123 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 124 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 125 // in the interpreter frame (the method lock if a sync method) 126 127 // Initialize monitors in the compiled activation. 128 // I0: pointer to osr buffer 129 // 130 // All other registers are dead at this point and the locals will be 131 // copied into place by code emitted in the IR. 132 133 Register OSR_buf = osrBufferPointer()->as_register(); 134 { 135 assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 136 137 const int locals_space = BytesPerWord * method() -> max_locals(); 138 int monitor_offset = locals_space + (2 * BytesPerWord) * (number_of_locks - 1); 139 bool large_offset = !Immediate::is_simm20(monitor_offset + BytesPerWord) && number_of_locks > 0; 140 141 if (large_offset) { 142 // z_lg can only handle displacement upto 20bit signed binary integer 143 __ z_algfi(OSR_buf, locals_space); 144 monitor_offset -= locals_space; 145 } 146 147 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 148 // the OSR buffer using 2 word entries: first the lock and then 149 // the oop. 150 for (int i = 0; i < number_of_locks; i++) { 151 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 152 // Verify the interpreter's monitor has a non-null object. 153 __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is null", __LINE__); 154 // Copy the lock field into the compiled activation. 155 __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf); 156 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i)); 157 __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf); 158 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i)); 159 } 160 161 if (large_offset) { 162 __ z_slgfi(OSR_buf, locals_space); 163 } 164 } 165 } 166 167 // -------------------------------------------------------------------------------------------- 168 169 address LIR_Assembler::emit_call_c(address a) { 170 __ align_call_far_patchable(__ pc()); 171 address call_addr = __ call_c_opt(a); 172 if (call_addr == nullptr) { 173 bailout("const section overflow"); 174 } 175 return call_addr; 176 } 177 178 int LIR_Assembler::emit_exception_handler() { 179 // Generate code for exception handler. 180 address handler_base = __ start_a_stub(exception_handler_size()); 181 if (handler_base == nullptr) { 182 // Not enough space left for the handler. 183 bailout("exception handler overflow"); 184 return -1; 185 } 186 187 int offset = code_offset(); 188 189 address a = Runtime1::entry_for (C1StubId::handle_exception_from_callee_id); 190 address call_addr = emit_call_c(a); 191 CHECK_BAILOUT_(-1); 192 __ should_not_reach_here(); 193 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 194 __ end_a_stub(); 195 196 return offset; 197 } 198 199 // Emit the code to remove the frame from the stack in the exception 200 // unwind path. 201 int LIR_Assembler::emit_unwind_handler() { 202 #ifndef PRODUCT 203 if (CommentedAssembly) { 204 _masm->block_comment("Unwind handler"); 205 } 206 #endif 207 208 int offset = code_offset(); 209 Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved. 210 Register Rtmp1 = Z_R11; 211 Register Rtmp2 = Z_R12; 212 213 // Fetch the exception from TLS and clear out exception related thread state. 214 Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset()); 215 Address exc_pc_addr = Address(Z_thread, JavaThread::exception_pc_offset()); 216 __ z_lg(Z_EXC_OOP, exc_oop_addr); 217 __ clear_mem(exc_oop_addr, sizeof(oop)); 218 __ clear_mem(exc_pc_addr, sizeof(intptr_t)); 219 220 __ bind(_unwind_handler_entry); 221 __ verify_not_null_oop(Z_EXC_OOP); 222 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 223 __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception. 224 } 225 226 // Perform needed unlocking. 227 MonitorExitStub* stub = nullptr; 228 if (method()->is_synchronized()) { 229 // C1StubId::monitorexit_id expects lock address in Z_R1_scratch. 230 LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch); 231 monitor_address(0, lock); 232 stub = new MonitorExitStub(lock, true, 0); 233 if (LockingMode == LM_MONITOR) { 234 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 235 } else { 236 __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry()); 237 } 238 __ bind(*stub->continuation()); 239 } 240 241 if (compilation()->env()->dtrace_method_probes()) { 242 ShouldNotReachHere(); // Not supported. 243 #if 0 244 __ mov(rdi, r15_thread); 245 __ mov_metadata(rsi, method()->constant_encoding()); 246 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 247 #endif 248 } 249 250 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 251 __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved); // Restore the exception. 252 } 253 254 // Remove the activation and dispatch to the unwind handler. 255 __ pop_frame(); 256 __ z_lg(Z_EXC_PC, _z_common_abi(return_pc), Z_SP); 257 258 // Z_EXC_OOP: exception oop 259 // Z_EXC_PC: exception pc 260 261 // Dispatch to the unwind logic. 262 __ load_const_optimized(Z_R5, Runtime1::entry_for (C1StubId::unwind_exception_id)); 263 __ z_br(Z_R5); 264 265 // Emit the slow path assembly. 266 if (stub != nullptr) { 267 stub->emit_code(this); 268 } 269 270 return offset; 271 } 272 273 int LIR_Assembler::emit_deopt_handler() { 274 // Generate code for exception handler. 275 address handler_base = __ start_a_stub(deopt_handler_size()); 276 if (handler_base == nullptr) { 277 // Not enough space left for the handler. 278 bailout("deopt handler overflow"); 279 return -1; 280 } int offset = code_offset(); 281 // Size must be constant (see HandlerImpl::emit_deopt_handler). 282 __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack()); 283 __ call(Z_R1_scratch); 284 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 285 __ end_a_stub(); 286 287 return offset; 288 } 289 290 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 291 if (o == nullptr) { 292 __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove. 293 } else { 294 AddressLiteral a = __ allocate_oop_address(o); 295 bool success = __ load_oop_from_toc(reg, a, reg); 296 if (!success) { 297 bailout("const section overflow"); 298 } 299 } 300 } 301 302 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 303 // Allocate a new index in table to hold the object once it's been patched. 304 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr); 305 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 306 307 AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index)); 308 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); 309 // The null will be dynamically patched later so the sequence to 310 // load the address literal must not be optimized. 311 __ load_const(reg, addrlit); 312 313 patching_epilog(patch, lir_patch_normal, reg, info); 314 } 315 316 void LIR_Assembler::metadata2reg(Metadata* md, Register reg) { 317 bool success = __ set_metadata_constant(md, reg); 318 if (!success) { 319 bailout("const section overflow"); 320 return; 321 } 322 } 323 324 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 325 // Allocate a new index in table to hold the klass once it's been patched. 326 int index = __ oop_recorder()->allocate_metadata_index(nullptr); 327 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 328 AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index)); 329 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 330 // The null will be dynamically patched later so the sequence to 331 // load the address literal must not be optimized. 332 __ load_const(reg, addrlit); 333 334 patching_epilog(patch, lir_patch_normal, reg, info); 335 } 336 337 void LIR_Assembler::emit_op3(LIR_Op3* op) { 338 switch (op->code()) { 339 case lir_idiv: 340 case lir_irem: 341 arithmetic_idiv(op->code(), 342 op->in_opr1(), 343 op->in_opr2(), 344 op->in_opr3(), 345 op->result_opr(), 346 op->info()); 347 break; 348 case lir_fmad: { 349 const FloatRegister opr1 = op->in_opr1()->as_double_reg(), 350 opr2 = op->in_opr2()->as_double_reg(), 351 opr3 = op->in_opr3()->as_double_reg(), 352 res = op->result_opr()->as_double_reg(); 353 __ z_madbr(opr3, opr1, opr2); 354 if (res != opr3) { __ z_ldr(res, opr3); } 355 } break; 356 case lir_fmaf: { 357 const FloatRegister opr1 = op->in_opr1()->as_float_reg(), 358 opr2 = op->in_opr2()->as_float_reg(), 359 opr3 = op->in_opr3()->as_float_reg(), 360 res = op->result_opr()->as_float_reg(); 361 __ z_maebr(opr3, opr1, opr2); 362 if (res != opr3) { __ z_ler(res, opr3); } 363 } break; 364 default: ShouldNotReachHere(); break; 365 } 366 } 367 368 369 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 370 #ifdef ASSERT 371 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 372 if (op->block() != nullptr) { _branch_target_blocks.append(op->block()); } 373 if (op->ublock() != nullptr) { _branch_target_blocks.append(op->ublock()); } 374 #endif 375 376 if (op->cond() == lir_cond_always) { 377 if (op->info() != nullptr) { add_debug_info_for_branch(op->info()); } 378 __ branch_optimized(Assembler::bcondAlways, *(op->label())); 379 } else { 380 Assembler::branch_condition acond = Assembler::bcondZero; 381 if (op->code() == lir_cond_float_branch) { 382 assert(op->ublock() != nullptr, "must have unordered successor"); 383 __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label())); 384 } 385 switch (op->cond()) { 386 case lir_cond_equal: acond = Assembler::bcondEqual; break; 387 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; break; 388 case lir_cond_less: acond = Assembler::bcondLow; break; 389 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; break; 390 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; break; 391 case lir_cond_greater: acond = Assembler::bcondHigh; break; 392 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; break; 393 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; break; 394 default: ShouldNotReachHere(); 395 } 396 __ branch_optimized(acond,*(op->label())); 397 } 398 } 399 400 401 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 402 LIR_Opr src = op->in_opr(); 403 LIR_Opr dest = op->result_opr(); 404 405 switch (op->bytecode()) { 406 case Bytecodes::_i2l: 407 __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT); 408 break; 409 410 case Bytecodes::_l2i: 411 __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG); 412 break; 413 414 case Bytecodes::_i2b: 415 __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT); 416 break; 417 418 case Bytecodes::_i2c: 419 __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT); 420 break; 421 422 case Bytecodes::_i2s: 423 __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT); 424 break; 425 426 case Bytecodes::_f2d: 427 assert(dest->is_double_fpu(), "check"); 428 __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT); 429 break; 430 431 case Bytecodes::_d2f: 432 assert(dest->is_single_fpu(), "check"); 433 __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE); 434 break; 435 436 case Bytecodes::_i2f: 437 __ z_cefbr(dest->as_float_reg(), src->as_register()); 438 break; 439 440 case Bytecodes::_i2d: 441 __ z_cdfbr(dest->as_double_reg(), src->as_register()); 442 break; 443 444 case Bytecodes::_l2f: 445 __ z_cegbr(dest->as_float_reg(), src->as_register_lo()); 446 break; 447 case Bytecodes::_l2d: 448 __ z_cdgbr(dest->as_double_reg(), src->as_register_lo()); 449 break; 450 451 case Bytecodes::_f2i: 452 case Bytecodes::_f2l: { 453 Label done; 454 FloatRegister Rsrc = src->as_float_reg(); 455 Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo()); 456 __ clear_reg(Rdst, true, false); 457 __ z_cebr(Rsrc, Rsrc); 458 __ z_brno(done); // NaN -> 0 459 if (op->bytecode() == Bytecodes::_f2i) { 460 __ z_cfebr(Rdst, Rsrc, Assembler::to_zero); 461 } else { // op->bytecode() == Bytecodes::_f2l 462 __ z_cgebr(Rdst, Rsrc, Assembler::to_zero); 463 } 464 __ bind(done); 465 } 466 break; 467 468 case Bytecodes::_d2i: 469 case Bytecodes::_d2l: { 470 Label done; 471 FloatRegister Rsrc = src->as_double_reg(); 472 Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo()); 473 __ clear_reg(Rdst, true, false); // Don't set CC. 474 __ z_cdbr(Rsrc, Rsrc); 475 __ z_brno(done); // NaN -> 0 476 if (op->bytecode() == Bytecodes::_d2i) { 477 __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero); 478 } else { // Bytecodes::_d2l 479 __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero); 480 } 481 __ bind(done); 482 } 483 break; 484 485 default: ShouldNotReachHere(); 486 } 487 } 488 489 void LIR_Assembler::align_call(LIR_Code code) { 490 // End of call instruction must be 4 byte aligned. 491 int offset = __ offset(); 492 switch (code) { 493 case lir_icvirtual_call: 494 offset += MacroAssembler::load_const_from_toc_size(); 495 // no break 496 case lir_static_call: 497 case lir_optvirtual_call: 498 case lir_dynamic_call: 499 offset += NativeCall::call_far_pcrelative_displacement_offset; 500 break; 501 default: ShouldNotReachHere(); 502 } 503 if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) { 504 __ nop(); 505 } 506 } 507 508 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 509 assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0, 510 "must be aligned (offset=%d)", __ offset()); 511 assert(rtype == relocInfo::none || 512 rtype == relocInfo::opt_virtual_call_type || 513 rtype == relocInfo::static_call_type, "unexpected rtype"); 514 // Prepend each BRASL with a nop. 515 __ relocate(rtype); 516 __ z_nop(); 517 __ z_brasl(Z_R14, op->addr()); 518 add_call_info(code_offset(), op->info()); 519 } 520 521 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 522 address virtual_call_oop_addr = nullptr; 523 AddressLiteral empty_ic((address) Universe::non_oop_word()); 524 virtual_call_oop_addr = __ pc(); 525 bool success = __ load_const_from_toc(Z_inline_cache, empty_ic); 526 if (!success) { 527 bailout("const section overflow"); 528 return; 529 } 530 531 // CALL to fixup routine. Fixup routine uses ScopeDesc info 532 // to determine who we intended to call. 533 __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr)); 534 call(op, relocInfo::none); 535 } 536 537 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 538 if (from_reg != to_reg) __ z_lgr(to_reg, from_reg); 539 } 540 541 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 542 assert(src->is_constant(), "should not call otherwise"); 543 assert(dest->is_stack(), "should not call otherwise"); 544 LIR_Const* c = src->as_constant_ptr(); 545 546 unsigned int lmem = 0; 547 unsigned int lcon = 0; 548 int64_t cbits = 0; 549 Address dest_addr; 550 switch (c->type()) { 551 case T_INT: // fall through 552 case T_FLOAT: 553 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 554 lmem = 4; lcon = 4; cbits = c->as_jint_bits(); 555 break; 556 557 case T_ADDRESS: 558 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 559 lmem = 8; lcon = 4; cbits = c->as_jint_bits(); 560 break; 561 562 case T_OBJECT: 563 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 564 if (c->as_jobject() == nullptr) { 565 __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8); 566 } else { 567 jobject2reg(c->as_jobject(), Z_R1_scratch); 568 __ reg2mem_opt(Z_R1_scratch, dest_addr, true); 569 } 570 return; 571 572 case T_LONG: // fall through 573 case T_DOUBLE: 574 dest_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 575 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); 576 break; 577 578 default: 579 ShouldNotReachHere(); 580 } 581 582 __ store_const(dest_addr, cbits, lmem, lcon); 583 } 584 585 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 586 assert(src->is_constant(), "should not call otherwise"); 587 assert(dest->is_address(), "should not call otherwise"); 588 589 LIR_Const* c = src->as_constant_ptr(); 590 Address addr = as_Address(dest->as_address_ptr()); 591 592 int store_offset = -1; 593 594 if (dest->as_address_ptr()->index()->is_valid()) { 595 switch (type) { 596 case T_INT: // fall through 597 case T_FLOAT: 598 __ load_const_optimized(Z_R0_scratch, c->as_jint_bits()); 599 store_offset = __ offset(); 600 if (Immediate::is_uimm12(addr.disp())) { 601 __ z_st(Z_R0_scratch, addr); 602 } else { 603 __ z_sty(Z_R0_scratch, addr); 604 } 605 break; 606 607 case T_ADDRESS: 608 __ load_const_optimized(Z_R1_scratch, c->as_jint_bits()); 609 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 610 break; 611 612 case T_OBJECT: // fall through 613 case T_ARRAY: 614 if (c->as_jobject() == nullptr) { 615 if (UseCompressedOops && !wide) { 616 __ clear_reg(Z_R1_scratch, false); 617 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 618 } else { 619 __ clear_reg(Z_R1_scratch, true); 620 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 621 } 622 } else { 623 jobject2reg(c->as_jobject(), Z_R1_scratch); 624 if (UseCompressedOops && !wide) { 625 __ encode_heap_oop(Z_R1_scratch); 626 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 627 } else { 628 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 629 } 630 } 631 assert(store_offset >= 0, "check"); 632 break; 633 634 case T_LONG: // fall through 635 case T_DOUBLE: 636 __ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits())); 637 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 638 break; 639 640 case T_BOOLEAN: // fall through 641 case T_BYTE: 642 __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint())); 643 store_offset = __ offset(); 644 if (Immediate::is_uimm12(addr.disp())) { 645 __ z_stc(Z_R0_scratch, addr); 646 } else { 647 __ z_stcy(Z_R0_scratch, addr); 648 } 649 break; 650 651 case T_CHAR: // fall through 652 case T_SHORT: 653 __ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint())); 654 store_offset = __ offset(); 655 if (Immediate::is_uimm12(addr.disp())) { 656 __ z_sth(Z_R0_scratch, addr); 657 } else { 658 __ z_sthy(Z_R0_scratch, addr); 659 } 660 break; 661 662 default: 663 ShouldNotReachHere(); 664 } 665 666 } else { // no index 667 668 unsigned int lmem = 0; 669 unsigned int lcon = 0; 670 int64_t cbits = 0; 671 672 switch (type) { 673 case T_INT: // fall through 674 case T_FLOAT: 675 lmem = 4; lcon = 4; cbits = c->as_jint_bits(); 676 break; 677 678 case T_ADDRESS: 679 lmem = 8; lcon = 4; cbits = c->as_jint_bits(); 680 break; 681 682 case T_OBJECT: // fall through 683 case T_ARRAY: 684 if (c->as_jobject() == nullptr) { 685 if (UseCompressedOops && !wide) { 686 store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4); 687 } else { 688 store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8); 689 } 690 } else { 691 jobject2reg(c->as_jobject(), Z_R1_scratch); 692 if (UseCompressedOops && !wide) { 693 __ encode_heap_oop(Z_R1_scratch); 694 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 695 } else { 696 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 697 } 698 } 699 assert(store_offset >= 0, "check"); 700 break; 701 702 case T_LONG: // fall through 703 case T_DOUBLE: 704 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); 705 break; 706 707 case T_BOOLEAN: // fall through 708 case T_BYTE: 709 lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint()); 710 break; 711 712 case T_CHAR: // fall through 713 case T_SHORT: 714 lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint()); 715 break; 716 717 default: 718 ShouldNotReachHere(); 719 } 720 721 if (store_offset == -1) { 722 store_offset = __ store_const(addr, cbits, lmem, lcon); 723 assert(store_offset >= 0, "check"); 724 } 725 } 726 727 if (info != nullptr) { 728 add_debug_info_for_null_check(store_offset, info); 729 } 730 } 731 732 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 733 assert(src->is_constant(), "should not call otherwise"); 734 assert(dest->is_register(), "should not call otherwise"); 735 LIR_Const* c = src->as_constant_ptr(); 736 737 switch (c->type()) { 738 case T_INT: { 739 assert(patch_code == lir_patch_none, "no patching handled here"); 740 __ load_const_optimized(dest->as_register(), c->as_jint()); 741 break; 742 } 743 744 case T_ADDRESS: { 745 assert(patch_code == lir_patch_none, "no patching handled here"); 746 __ load_const_optimized(dest->as_register(), c->as_jint()); 747 break; 748 } 749 750 case T_LONG: { 751 assert(patch_code == lir_patch_none, "no patching handled here"); 752 __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong()); 753 break; 754 } 755 756 case T_OBJECT: { 757 if (patch_code != lir_patch_none) { 758 jobject2reg_with_patching(dest->as_register(), info); 759 } else { 760 jobject2reg(c->as_jobject(), dest->as_register()); 761 } 762 break; 763 } 764 765 case T_METADATA: { 766 if (patch_code != lir_patch_none) { 767 klass2reg_with_patching(dest->as_register(), info); 768 } else { 769 metadata2reg(c->as_metadata(), dest->as_register()); 770 } 771 break; 772 } 773 774 case T_FLOAT: { 775 Register toc_reg = Z_R1_scratch; 776 __ load_toc(toc_reg); 777 address const_addr = __ float_constant(c->as_jfloat()); 778 if (const_addr == nullptr) { 779 bailout("const section overflow"); 780 break; 781 } 782 int displ = const_addr - _masm->code()->consts()->start(); 783 if (dest->is_single_fpu()) { 784 __ z_ley(dest->as_float_reg(), displ, toc_reg); 785 } else { 786 assert(dest->is_single_cpu(), "Must be a cpu register."); 787 __ z_ly(dest->as_register(), displ, toc_reg); 788 } 789 } 790 break; 791 792 case T_DOUBLE: { 793 Register toc_reg = Z_R1_scratch; 794 __ load_toc(toc_reg); 795 address const_addr = __ double_constant(c->as_jdouble()); 796 if (const_addr == nullptr) { 797 bailout("const section overflow"); 798 break; 799 } 800 int displ = const_addr - _masm->code()->consts()->start(); 801 if (dest->is_double_fpu()) { 802 __ z_ldy(dest->as_double_reg(), displ, toc_reg); 803 } else { 804 assert(dest->is_double_cpu(), "Must be a long register."); 805 __ z_lg(dest->as_register_lo(), displ, toc_reg); 806 } 807 } 808 break; 809 810 default: 811 ShouldNotReachHere(); 812 } 813 } 814 815 Address LIR_Assembler::as_Address(LIR_Address* addr) { 816 if (addr->base()->is_illegal()) { 817 Unimplemented(); 818 } 819 820 Register base = addr->base()->as_pointer_register(); 821 822 if (addr->index()->is_illegal()) { 823 return Address(base, addr->disp()); 824 } else if (addr->index()->is_cpu_register()) { 825 Register index = addr->index()->as_pointer_register(); 826 return Address(base, index, addr->disp()); 827 } else if (addr->index()->is_constant()) { 828 intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp(); 829 return Address(base, addr_offset); 830 } else { 831 ShouldNotReachHere(); 832 return Address(); 833 } 834 } 835 836 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 837 switch (type) { 838 case T_INT: 839 case T_FLOAT: { 840 Register tmp = Z_R1_scratch; 841 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 842 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 843 __ mem2reg_opt(tmp, from, false); 844 __ reg2mem_opt(tmp, to, false); 845 break; 846 } 847 case T_ADDRESS: 848 case T_OBJECT: { 849 Register tmp = Z_R1_scratch; 850 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 851 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 852 __ mem2reg_opt(tmp, from, true); 853 __ reg2mem_opt(tmp, to, true); 854 break; 855 } 856 case T_LONG: 857 case T_DOUBLE: { 858 Register tmp = Z_R1_scratch; 859 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 860 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 861 __ mem2reg_opt(tmp, from, true); 862 __ reg2mem_opt(tmp, to, true); 863 break; 864 } 865 866 default: 867 ShouldNotReachHere(); 868 } 869 } 870 871 // 4-byte accesses only! Don't use it to access 8 bytes! 872 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 873 ShouldNotCallThis(); 874 return Address(); // unused 875 } 876 877 // 4-byte accesses only! Don't use it to access 8 bytes! 878 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 879 ShouldNotCallThis(); 880 return Address(); // unused 881 } 882 883 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, 884 CodeEmitInfo* info, bool wide) { 885 886 assert(type != T_METADATA, "load of metadata ptr not supported"); 887 LIR_Address* addr = src_opr->as_address_ptr(); 888 LIR_Opr to_reg = dest; 889 890 Register src = addr->base()->as_pointer_register(); 891 Register disp_reg = Z_R0; 892 int disp_value = addr->disp(); 893 bool needs_patching = (patch_code != lir_patch_none); 894 895 if (addr->base()->type() == T_OBJECT) { 896 __ verify_oop(src, FILE_AND_LINE); 897 } 898 899 PatchingStub* patch = nullptr; 900 if (needs_patching) { 901 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 902 assert(!to_reg->is_double_cpu() || 903 patch_code == lir_patch_none || 904 patch_code == lir_patch_normal, "patching doesn't match register"); 905 } 906 907 if (addr->index()->is_illegal()) { 908 if (!Immediate::is_simm20(disp_value)) { 909 if (needs_patching) { 910 __ load_const(Z_R1_scratch, (intptr_t)0); 911 } else { 912 __ load_const_optimized(Z_R1_scratch, disp_value); 913 } 914 disp_reg = Z_R1_scratch; 915 disp_value = 0; 916 } 917 } else { 918 if (!Immediate::is_simm20(disp_value)) { 919 __ load_const_optimized(Z_R1_scratch, disp_value); 920 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); 921 disp_reg = Z_R1_scratch; 922 disp_value = 0; 923 } 924 disp_reg = addr->index()->as_pointer_register(); 925 } 926 927 // Remember the offset of the load. The patching_epilog must be done 928 // before the call to add_debug_info, otherwise the PcDescs don't get 929 // entered in increasing order. 930 int offset = code_offset(); 931 932 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); 933 934 bool short_disp = Immediate::is_uimm12(disp_value); 935 936 switch (type) { 937 case T_BOOLEAN: // fall through 938 case T_BYTE : __ z_lb(dest->as_register(), disp_value, disp_reg, src); break; 939 case T_CHAR : __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break; 940 case T_SHORT : 941 if (short_disp) { 942 __ z_lh(dest->as_register(), disp_value, disp_reg, src); 943 } else { 944 __ z_lhy(dest->as_register(), disp_value, disp_reg, src); 945 } 946 break; 947 case T_INT : 948 if (short_disp) { 949 __ z_l(dest->as_register(), disp_value, disp_reg, src); 950 } else { 951 __ z_ly(dest->as_register(), disp_value, disp_reg, src); 952 } 953 break; 954 case T_ADDRESS: 955 __ z_lg(dest->as_register(), disp_value, disp_reg, src); 956 break; 957 case T_ARRAY : // fall through 958 case T_OBJECT: 959 { 960 if (UseCompressedOops && !wide) { 961 __ z_llgf(dest->as_register(), disp_value, disp_reg, src); 962 __ oop_decoder(dest->as_register(), dest->as_register(), true); 963 } else { 964 __ z_lg(dest->as_register(), disp_value, disp_reg, src); 965 } 966 __ verify_oop(dest->as_register(), FILE_AND_LINE); 967 break; 968 } 969 case T_FLOAT: 970 if (short_disp) { 971 __ z_le(dest->as_float_reg(), disp_value, disp_reg, src); 972 } else { 973 __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src); 974 } 975 break; 976 case T_DOUBLE: 977 if (short_disp) { 978 __ z_ld(dest->as_double_reg(), disp_value, disp_reg, src); 979 } else { 980 __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src); 981 } 982 break; 983 case T_LONG : __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break; 984 default : ShouldNotReachHere(); 985 } 986 987 if (patch != nullptr) { 988 patching_epilog(patch, patch_code, src, info); 989 } 990 if (info != nullptr) add_debug_info_for_null_check(offset, info); 991 } 992 993 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 994 assert(src->is_stack(), "should not call otherwise"); 995 assert(dest->is_register(), "should not call otherwise"); 996 997 if (dest->is_single_cpu()) { 998 if (is_reference_type(type)) { 999 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); 1000 __ verify_oop(dest->as_register(), FILE_AND_LINE); 1001 } else if (type == T_METADATA || type == T_ADDRESS) { 1002 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); 1003 } else { 1004 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false); 1005 } 1006 } else if (dest->is_double_cpu()) { 1007 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix()); 1008 __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true); 1009 } else if (dest->is_single_fpu()) { 1010 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1011 __ mem2freg_opt(dest->as_float_reg(), src_addr, false); 1012 } else if (dest->is_double_fpu()) { 1013 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1014 __ mem2freg_opt(dest->as_double_reg(), src_addr, true); 1015 } else { 1016 ShouldNotReachHere(); 1017 } 1018 } 1019 1020 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1021 assert(src->is_register(), "should not call otherwise"); 1022 assert(dest->is_stack(), "should not call otherwise"); 1023 1024 if (src->is_single_cpu()) { 1025 const Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 1026 if (is_reference_type(type)) { 1027 __ verify_oop(src->as_register(), FILE_AND_LINE); 1028 __ reg2mem_opt(src->as_register(), dst, true); 1029 } else if (type == T_METADATA || type == T_ADDRESS) { 1030 __ reg2mem_opt(src->as_register(), dst, true); 1031 } else { 1032 __ reg2mem_opt(src->as_register(), dst, false); 1033 } 1034 } else if (src->is_double_cpu()) { 1035 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix()); 1036 __ reg2mem_opt(src->as_register_lo(), dstLO, true); 1037 } else if (src->is_single_fpu()) { 1038 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1039 __ freg2mem_opt(src->as_float_reg(), dst_addr, false); 1040 } else if (src->is_double_fpu()) { 1041 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1042 __ freg2mem_opt(src->as_double_reg(), dst_addr, true); 1043 } else { 1044 ShouldNotReachHere(); 1045 } 1046 } 1047 1048 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1049 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1050 if (from_reg->is_double_fpu()) { 1051 // double to double moves 1052 assert(to_reg->is_double_fpu(), "should match"); 1053 __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg()); 1054 } else { 1055 // float to float moves 1056 assert(to_reg->is_single_fpu(), "should match"); 1057 __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg()); 1058 } 1059 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1060 if (from_reg->is_double_cpu()) { 1061 __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1062 } else if (to_reg->is_double_cpu()) { 1063 // int to int moves 1064 __ z_lgr(to_reg->as_register_lo(), from_reg->as_register()); 1065 } else { 1066 // int to int moves 1067 __ z_lgr(to_reg->as_register(), from_reg->as_register()); 1068 } 1069 } else { 1070 ShouldNotReachHere(); 1071 } 1072 if (is_reference_type(to_reg->type())) { 1073 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1074 } 1075 } 1076 1077 void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type, 1078 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1079 bool wide) { 1080 assert(type != T_METADATA, "store of metadata ptr not supported"); 1081 LIR_Address* addr = dest_opr->as_address_ptr(); 1082 1083 Register dest = addr->base()->as_pointer_register(); 1084 Register disp_reg = Z_R0; 1085 int disp_value = addr->disp(); 1086 bool needs_patching = (patch_code != lir_patch_none); 1087 1088 if (addr->base()->is_oop_register()) { 1089 __ verify_oop(dest, FILE_AND_LINE); 1090 } 1091 1092 PatchingStub* patch = nullptr; 1093 if (needs_patching) { 1094 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1095 assert(!from->is_double_cpu() || 1096 patch_code == lir_patch_none || 1097 patch_code == lir_patch_normal, "patching doesn't match register"); 1098 } 1099 1100 assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption"); 1101 if (addr->index()->is_illegal()) { 1102 if (!Immediate::is_simm20(disp_value)) { 1103 if (needs_patching) { 1104 __ load_const(Z_R1_scratch, (intptr_t)0); 1105 } else { 1106 __ load_const_optimized(Z_R1_scratch, disp_value); 1107 } 1108 disp_reg = Z_R1_scratch; 1109 disp_value = 0; 1110 } 1111 } else { 1112 if (!Immediate::is_simm20(disp_value)) { 1113 __ load_const_optimized(Z_R1_scratch, disp_value); 1114 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); 1115 disp_reg = Z_R1_scratch; 1116 disp_value = 0; 1117 } 1118 disp_reg = addr->index()->as_pointer_register(); 1119 } 1120 1121 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); 1122 1123 if (is_reference_type(type)) { 1124 __ verify_oop(from->as_register(), FILE_AND_LINE); 1125 } 1126 1127 bool short_disp = Immediate::is_uimm12(disp_value); 1128 1129 // Remember the offset of the store. The patching_epilog must be done 1130 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1131 // entered in increasing order. 1132 int offset = code_offset(); 1133 switch (type) { 1134 case T_BOOLEAN: // fall through 1135 case T_BYTE : 1136 if (short_disp) { 1137 __ z_stc(from->as_register(), disp_value, disp_reg, dest); 1138 } else { 1139 __ z_stcy(from->as_register(), disp_value, disp_reg, dest); 1140 } 1141 break; 1142 case T_CHAR : // fall through 1143 case T_SHORT : 1144 if (short_disp) { 1145 __ z_sth(from->as_register(), disp_value, disp_reg, dest); 1146 } else { 1147 __ z_sthy(from->as_register(), disp_value, disp_reg, dest); 1148 } 1149 break; 1150 case T_INT : 1151 if (short_disp) { 1152 __ z_st(from->as_register(), disp_value, disp_reg, dest); 1153 } else { 1154 __ z_sty(from->as_register(), disp_value, disp_reg, dest); 1155 } 1156 break; 1157 case T_LONG : __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break; 1158 case T_ADDRESS: __ z_stg(from->as_register(), disp_value, disp_reg, dest); break; 1159 break; 1160 case T_ARRAY : // fall through 1161 case T_OBJECT: 1162 { 1163 if (UseCompressedOops && !wide) { 1164 Register compressed_src = Z_R14; 1165 __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true); 1166 offset = code_offset(); 1167 if (short_disp) { 1168 __ z_st(compressed_src, disp_value, disp_reg, dest); 1169 } else { 1170 __ z_sty(compressed_src, disp_value, disp_reg, dest); 1171 } 1172 } else { 1173 __ z_stg(from->as_register(), disp_value, disp_reg, dest); 1174 } 1175 break; 1176 } 1177 case T_FLOAT : 1178 if (short_disp) { 1179 __ z_ste(from->as_float_reg(), disp_value, disp_reg, dest); 1180 } else { 1181 __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest); 1182 } 1183 break; 1184 case T_DOUBLE: 1185 if (short_disp) { 1186 __ z_std(from->as_double_reg(), disp_value, disp_reg, dest); 1187 } else { 1188 __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest); 1189 } 1190 break; 1191 default: ShouldNotReachHere(); 1192 } 1193 1194 if (patch != nullptr) { 1195 patching_epilog(patch, patch_code, dest, info); 1196 } 1197 1198 if (info != nullptr) add_debug_info_for_null_check(offset, info); 1199 } 1200 1201 1202 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1203 assert(result->is_illegal() || 1204 (result->is_single_cpu() && result->as_register() == Z_R2) || 1205 (result->is_double_cpu() && result->as_register_lo() == Z_R2) || 1206 (result->is_single_fpu() && result->as_float_reg() == Z_F0) || 1207 (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention"); 1208 1209 __ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::polling_page_offset())); 1210 1211 // Pop the frame before the safepoint code. 1212 __ pop_frame_restore_retPC(initial_frame_size_in_bytes()); 1213 1214 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1215 __ reserved_stack_check(Z_R14); 1216 } 1217 1218 // We need to mark the code position where the load from the safepoint 1219 // polling page was emitted as relocInfo::poll_return_type here. 1220 __ relocate(relocInfo::poll_return_type); 1221 __ load_from_polling_page(Z_R1_scratch); 1222 1223 __ z_br(Z_R14); // Return to caller. 1224 } 1225 1226 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1227 const Register poll_addr = tmp->as_register_lo(); 1228 __ z_lg(poll_addr, Address(Z_thread, JavaThread::polling_page_offset())); 1229 guarantee(info != nullptr, "Shouldn't be null"); 1230 add_debug_info_for_branch(info); 1231 int offset = __ offset(); 1232 __ relocate(relocInfo::poll_type); 1233 __ load_from_polling_page(poll_addr); 1234 return offset; 1235 } 1236 1237 void LIR_Assembler::emit_static_call_stub() { 1238 1239 // Stub is fixed up when the corresponding call is converted from calling 1240 // compiled code to calling interpreted code. 1241 1242 address call_pc = __ pc(); 1243 address stub = __ start_a_stub(call_stub_size()); 1244 if (stub == nullptr) { 1245 bailout("static call stub overflow"); 1246 return; 1247 } 1248 1249 int start = __ offset(); 1250 1251 __ relocate(static_stub_Relocation::spec(call_pc)); 1252 1253 // See also Matcher::interpreter_method_reg(). 1254 AddressLiteral meta = __ allocate_metadata_address(nullptr); 1255 bool success = __ load_const_from_toc(Z_method, meta); 1256 1257 __ set_inst_mark(); 1258 AddressLiteral a((address)-1); 1259 success = success && __ load_const_from_toc(Z_R1, a); 1260 if (!success) { 1261 bailout("const section overflow"); 1262 return; 1263 } 1264 1265 __ z_br(Z_R1); 1266 assert(__ offset() - start <= call_stub_size(), "stub too big"); 1267 __ end_a_stub(); // Update current stubs pointer and restore insts_end. 1268 } 1269 1270 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1271 bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual; 1272 if (opr1->is_single_cpu()) { 1273 Register reg1 = opr1->as_register(); 1274 if (opr2->is_single_cpu()) { 1275 // cpu register - cpu register 1276 if (is_reference_type(opr1->type())) { 1277 __ z_clgr(reg1, opr2->as_register()); 1278 } else { 1279 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1280 if (unsigned_comp) { 1281 __ z_clr(reg1, opr2->as_register()); 1282 } else { 1283 __ z_cr(reg1, opr2->as_register()); 1284 } 1285 } 1286 } else if (opr2->is_stack()) { 1287 // cpu register - stack 1288 if (is_reference_type(opr1->type())) { 1289 __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1290 } else { 1291 if (unsigned_comp) { 1292 __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1293 } else { 1294 __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1295 } 1296 } 1297 } else if (opr2->is_constant()) { 1298 // cpu register - constant 1299 LIR_Const* c = opr2->as_constant_ptr(); 1300 if (c->type() == T_INT) { 1301 if (unsigned_comp) { 1302 __ z_clfi(reg1, c->as_jint()); 1303 } else { 1304 __ z_cfi(reg1, c->as_jint()); 1305 } 1306 } else if (c->type() == T_METADATA) { 1307 // We only need, for now, comparison with null for metadata. 1308 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1309 Metadata* m = c->as_metadata(); 1310 if (m == nullptr) { 1311 __ z_cghi(reg1, 0); 1312 } else { 1313 ShouldNotReachHere(); 1314 } 1315 } else if (is_reference_type(c->type())) { 1316 // In 64bit oops are single register. 1317 jobject o = c->as_jobject(); 1318 if (o == nullptr) { 1319 __ z_ltgr(reg1, reg1); 1320 } else { 1321 jobject2reg(o, Z_R1_scratch); 1322 __ z_cgr(reg1, Z_R1_scratch); 1323 } 1324 } else { 1325 fatal("unexpected type: %s", basictype_to_str(c->type())); 1326 } 1327 // cpu register - address 1328 } else if (opr2->is_address()) { 1329 if (op->info() != nullptr) { 1330 add_debug_info_for_null_check_here(op->info()); 1331 } 1332 if (unsigned_comp) { 1333 __ z_cly(reg1, as_Address(opr2->as_address_ptr())); 1334 } else { 1335 __ z_cy(reg1, as_Address(opr2->as_address_ptr())); 1336 } 1337 } else { 1338 ShouldNotReachHere(); 1339 } 1340 1341 } else if (opr1->is_double_cpu()) { 1342 assert(!unsigned_comp, "unexpected"); 1343 Register xlo = opr1->as_register_lo(); 1344 Register xhi = opr1->as_register_hi(); 1345 if (opr2->is_double_cpu()) { 1346 __ z_cgr(xlo, opr2->as_register_lo()); 1347 } else if (opr2->is_constant()) { 1348 // cpu register - constant 0 1349 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 1350 __ z_ltgr(xlo, xlo); 1351 } else { 1352 ShouldNotReachHere(); 1353 } 1354 1355 } else if (opr1->is_single_fpu()) { 1356 if (opr2->is_single_fpu()) { 1357 __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg()); 1358 } else { 1359 // stack slot 1360 Address addr = frame_map()->address_for_slot(opr2->single_stack_ix()); 1361 if (Immediate::is_uimm12(addr.disp())) { 1362 __ z_ceb(opr1->as_float_reg(), addr); 1363 } else { 1364 __ z_ley(Z_fscratch_1, addr); 1365 __ z_cebr(opr1->as_float_reg(), Z_fscratch_1); 1366 } 1367 } 1368 } else if (opr1->is_double_fpu()) { 1369 if (opr2->is_double_fpu()) { 1370 __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg()); 1371 } else { 1372 // stack slot 1373 Address addr = frame_map()->address_for_slot(opr2->double_stack_ix()); 1374 if (Immediate::is_uimm12(addr.disp())) { 1375 __ z_cdb(opr1->as_double_reg(), addr); 1376 } else { 1377 __ z_ldy(Z_fscratch_1, addr); 1378 __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1); 1379 } 1380 } 1381 } else { 1382 ShouldNotReachHere(); 1383 } 1384 } 1385 1386 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 1387 Label done; 1388 Register dreg = dst->as_register(); 1389 1390 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1391 assert((left->is_single_fpu() && right->is_single_fpu()) || 1392 (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types"); 1393 bool is_single = left->is_single_fpu(); 1394 bool is_unordered_less = (code == lir_ucmp_fd2i); 1395 FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg(); 1396 FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg(); 1397 if (is_single) { 1398 __ z_cebr(lreg, rreg); 1399 } else { 1400 __ z_cdbr(lreg, rreg); 1401 } 1402 if (VM_Version::has_LoadStoreConditional()) { 1403 Register one = Z_R0_scratch; 1404 Register minus_one = Z_R1_scratch; 1405 __ z_lghi(minus_one, -1); 1406 __ z_lghi(one, 1); 1407 __ z_lghi(dreg, 0); 1408 __ z_locgr(dreg, one, is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered); 1409 __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow); 1410 } else { 1411 __ clear_reg(dreg, true, false); 1412 __ z_bre(done); // if (left == right) dst = 0 1413 1414 // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1 1415 __ z_lhi(dreg, 1); 1416 __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done); 1417 1418 // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1 1419 __ z_lhi(dreg, -1); 1420 } 1421 } else { 1422 assert(code == lir_cmp_l2i, "check"); 1423 if (VM_Version::has_LoadStoreConditional()) { 1424 Register one = Z_R0_scratch; 1425 Register minus_one = Z_R1_scratch; 1426 __ z_cgr(left->as_register_lo(), right->as_register_lo()); 1427 __ z_lghi(minus_one, -1); 1428 __ z_lghi(one, 1); 1429 __ z_lghi(dreg, 0); 1430 __ z_locgr(dreg, one, Assembler::bcondHigh); 1431 __ z_locgr(dreg, minus_one, Assembler::bcondLow); 1432 } else { 1433 __ z_cgr(left->as_register_lo(), right->as_register_lo()); 1434 __ z_lghi(dreg, 0); // eq value 1435 __ z_bre(done); 1436 __ z_lghi(dreg, 1); // gt value 1437 __ z_brh(done); 1438 __ z_lghi(dreg, -1); // lt value 1439 } 1440 } 1441 __ bind(done); 1442 } 1443 1444 // result = condition ? opr1 : opr2 1445 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1446 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1447 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on s390"); 1448 1449 Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual; 1450 switch (condition) { 1451 case lir_cond_equal: acond = Assembler::bcondEqual; ncond = Assembler::bcondNotEqual; break; 1452 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual; break; 1453 case lir_cond_less: acond = Assembler::bcondLow; ncond = Assembler::bcondNotLow; break; 1454 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; 1455 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; 1456 case lir_cond_greater: acond = Assembler::bcondHigh; ncond = Assembler::bcondNotHigh; break; 1457 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; 1458 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; 1459 default: ShouldNotReachHere(); 1460 } 1461 1462 if (opr1->is_cpu_register()) { 1463 reg2reg(opr1, result); 1464 } else if (opr1->is_stack()) { 1465 stack2reg(opr1, result, result->type()); 1466 } else if (opr1->is_constant()) { 1467 const2reg(opr1, result, lir_patch_none, nullptr); 1468 } else { 1469 ShouldNotReachHere(); 1470 } 1471 1472 if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) { 1473 // Optimized version that does not require a branch. 1474 if (opr2->is_single_cpu()) { 1475 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1476 __ z_locgr(result->as_register(), opr2->as_register(), ncond); 1477 } else if (opr2->is_double_cpu()) { 1478 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1479 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1480 __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond); 1481 } else if (opr2->is_single_stack()) { 1482 __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond); 1483 } else if (opr2->is_double_stack()) { 1484 __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond); 1485 } else { 1486 ShouldNotReachHere(); 1487 } 1488 } else { 1489 Label skip; 1490 __ z_brc(acond, skip); 1491 if (opr2->is_cpu_register()) { 1492 reg2reg(opr2, result); 1493 } else if (opr2->is_stack()) { 1494 stack2reg(opr2, result, result->type()); 1495 } else if (opr2->is_constant()) { 1496 const2reg(opr2, result, lir_patch_none, nullptr); 1497 } else { 1498 ShouldNotReachHere(); 1499 } 1500 __ bind(skip); 1501 } 1502 } 1503 1504 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1505 CodeEmitInfo* info, bool pop_fpu_stack) { 1506 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1507 1508 if (left->is_single_cpu()) { 1509 assert(left == dest, "left and dest must be equal"); 1510 Register lreg = left->as_register(); 1511 1512 if (right->is_single_cpu()) { 1513 // cpu register - cpu register 1514 Register rreg = right->as_register(); 1515 switch (code) { 1516 case lir_add: __ z_ar (lreg, rreg); break; 1517 case lir_sub: __ z_sr (lreg, rreg); break; 1518 case lir_mul: __ z_msr(lreg, rreg); break; 1519 default: ShouldNotReachHere(); 1520 } 1521 1522 } else if (right->is_stack()) { 1523 // cpu register - stack 1524 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1525 switch (code) { 1526 case lir_add: __ z_ay(lreg, raddr); break; 1527 case lir_sub: __ z_sy(lreg, raddr); break; 1528 default: ShouldNotReachHere(); 1529 } 1530 1531 } else if (right->is_constant()) { 1532 // cpu register - constant 1533 jint c = right->as_constant_ptr()->as_jint(); 1534 switch (code) { 1535 case lir_add: __ z_agfi(lreg, c); break; 1536 case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint 1537 case lir_mul: __ z_msfi(lreg, c); break; 1538 default: ShouldNotReachHere(); 1539 } 1540 1541 } else { 1542 ShouldNotReachHere(); 1543 } 1544 1545 } else if (left->is_double_cpu()) { 1546 assert(left == dest, "left and dest must be equal"); 1547 Register lreg_lo = left->as_register_lo(); 1548 Register lreg_hi = left->as_register_hi(); 1549 1550 if (right->is_double_cpu()) { 1551 // cpu register - cpu register 1552 Register rreg_lo = right->as_register_lo(); 1553 Register rreg_hi = right->as_register_hi(); 1554 assert_different_registers(lreg_lo, rreg_lo); 1555 switch (code) { 1556 case lir_add: 1557 __ z_agr(lreg_lo, rreg_lo); 1558 break; 1559 case lir_sub: 1560 __ z_sgr(lreg_lo, rreg_lo); 1561 break; 1562 case lir_mul: 1563 __ z_msgr(lreg_lo, rreg_lo); 1564 break; 1565 default: 1566 ShouldNotReachHere(); 1567 } 1568 1569 } else if (right->is_constant()) { 1570 // cpu register - constant 1571 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1572 switch (code) { 1573 case lir_add: __ z_agfi(lreg_lo, c); break; 1574 case lir_sub: 1575 if (c != min_jint) { 1576 __ z_agfi(lreg_lo, -c); 1577 } else { 1578 // -min_jint cannot be represented as simm32 in z_agfi 1579 // min_jint sign extended: 0xffffffff80000000 1580 // -min_jint as 64 bit integer: 0x0000000080000000 1581 // 0x80000000 can be represented as uimm32 in z_algfi 1582 // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000 1583 __ z_algfi(lreg_lo, UCONST64(0x80000000)); 1584 } 1585 break; 1586 case lir_mul: __ z_msgfi(lreg_lo, c); break; 1587 default: 1588 ShouldNotReachHere(); 1589 } 1590 1591 } else { 1592 ShouldNotReachHere(); 1593 } 1594 1595 } else if (left->is_single_fpu()) { 1596 assert(left == dest, "left and dest must be equal"); 1597 FloatRegister lreg = left->as_float_reg(); 1598 FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg; 1599 Address raddr; 1600 1601 if (rreg == fnoreg) { 1602 assert(right->is_single_stack(), "constants should be loaded into register"); 1603 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1604 if (!Immediate::is_uimm12(raddr.disp())) { 1605 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false); 1606 } 1607 } 1608 1609 if (rreg != fnoreg) { 1610 switch (code) { 1611 case lir_add: __ z_aebr(lreg, rreg); break; 1612 case lir_sub: __ z_sebr(lreg, rreg); break; 1613 case lir_mul: __ z_meebr(lreg, rreg); break; 1614 case lir_div: __ z_debr(lreg, rreg); break; 1615 default: ShouldNotReachHere(); 1616 } 1617 } else { 1618 switch (code) { 1619 case lir_add: __ z_aeb(lreg, raddr); break; 1620 case lir_sub: __ z_seb(lreg, raddr); break; 1621 case lir_mul: __ z_meeb(lreg, raddr); break; 1622 case lir_div: __ z_deb(lreg, raddr); break; 1623 default: ShouldNotReachHere(); 1624 } 1625 } 1626 } else if (left->is_double_fpu()) { 1627 assert(left == dest, "left and dest must be equal"); 1628 FloatRegister lreg = left->as_double_reg(); 1629 FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg; 1630 Address raddr; 1631 1632 if (rreg == fnoreg) { 1633 assert(right->is_double_stack(), "constants should be loaded into register"); 1634 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1635 if (!Immediate::is_uimm12(raddr.disp())) { 1636 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true); 1637 } 1638 } 1639 1640 if (rreg != fnoreg) { 1641 switch (code) { 1642 case lir_add: __ z_adbr(lreg, rreg); break; 1643 case lir_sub: __ z_sdbr(lreg, rreg); break; 1644 case lir_mul: __ z_mdbr(lreg, rreg); break; 1645 case lir_div: __ z_ddbr(lreg, rreg); break; 1646 default: ShouldNotReachHere(); 1647 } 1648 } else { 1649 switch (code) { 1650 case lir_add: __ z_adb(lreg, raddr); break; 1651 case lir_sub: __ z_sdb(lreg, raddr); break; 1652 case lir_mul: __ z_mdb(lreg, raddr); break; 1653 case lir_div: __ z_ddb(lreg, raddr); break; 1654 default: ShouldNotReachHere(); 1655 } 1656 } 1657 } else if (left->is_address()) { 1658 assert(left == dest, "left and dest must be equal"); 1659 assert(code == lir_add, "unsupported operation"); 1660 assert(right->is_constant(), "unsupported operand"); 1661 jint c = right->as_constant_ptr()->as_jint(); 1662 LIR_Address* lir_addr = left->as_address_ptr(); 1663 Address addr = as_Address(lir_addr); 1664 switch (lir_addr->type()) { 1665 case T_INT: 1666 __ add2mem_32(addr, c, Z_R1_scratch); 1667 break; 1668 case T_LONG: 1669 __ add2mem_64(addr, c, Z_R1_scratch); 1670 break; 1671 default: 1672 ShouldNotReachHere(); 1673 } 1674 } else { 1675 ShouldNotReachHere(); 1676 } 1677 } 1678 1679 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1680 switch (code) { 1681 case lir_sqrt: { 1682 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt"); 1683 FloatRegister src_reg = value->as_double_reg(); 1684 FloatRegister dst_reg = dest->as_double_reg(); 1685 __ z_sqdbr(dst_reg, src_reg); 1686 break; 1687 } 1688 case lir_abs: { 1689 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs"); 1690 FloatRegister src_reg = value->as_double_reg(); 1691 FloatRegister dst_reg = dest->as_double_reg(); 1692 __ z_lpdbr(dst_reg, src_reg); 1693 break; 1694 } 1695 default: { 1696 ShouldNotReachHere(); 1697 break; 1698 } 1699 } 1700 } 1701 1702 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1703 if (left->is_single_cpu()) { 1704 Register reg = left->as_register(); 1705 if (right->is_constant()) { 1706 int val = right->as_constant_ptr()->as_jint(); 1707 switch (code) { 1708 case lir_logic_and: __ z_nilf(reg, val); break; 1709 case lir_logic_or: __ z_oilf(reg, val); break; 1710 case lir_logic_xor: __ z_xilf(reg, val); break; 1711 default: ShouldNotReachHere(); 1712 } 1713 } else if (right->is_stack()) { 1714 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1715 switch (code) { 1716 case lir_logic_and: __ z_ny(reg, raddr); break; 1717 case lir_logic_or: __ z_oy(reg, raddr); break; 1718 case lir_logic_xor: __ z_xy(reg, raddr); break; 1719 default: ShouldNotReachHere(); 1720 } 1721 } else { 1722 Register rright = right->as_register(); 1723 switch (code) { 1724 case lir_logic_and: __ z_nr(reg, rright); break; 1725 case lir_logic_or : __ z_or(reg, rright); break; 1726 case lir_logic_xor: __ z_xr(reg, rright); break; 1727 default: ShouldNotReachHere(); 1728 } 1729 } 1730 move_regs(reg, dst->as_register()); 1731 } else { 1732 Register l_lo = left->as_register_lo(); 1733 if (right->is_constant()) { 1734 __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong()); 1735 switch (code) { 1736 case lir_logic_and: 1737 __ z_ngr(l_lo, Z_R1_scratch); 1738 break; 1739 case lir_logic_or: 1740 __ z_ogr(l_lo, Z_R1_scratch); 1741 break; 1742 case lir_logic_xor: 1743 __ z_xgr(l_lo, Z_R1_scratch); 1744 break; 1745 default: ShouldNotReachHere(); 1746 } 1747 } else { 1748 Register r_lo; 1749 if (is_reference_type(right->type())) { 1750 r_lo = right->as_register(); 1751 } else { 1752 r_lo = right->as_register_lo(); 1753 } 1754 switch (code) { 1755 case lir_logic_and: 1756 __ z_ngr(l_lo, r_lo); 1757 break; 1758 case lir_logic_or: 1759 __ z_ogr(l_lo, r_lo); 1760 break; 1761 case lir_logic_xor: 1762 __ z_xgr(l_lo, r_lo); 1763 break; 1764 default: ShouldNotReachHere(); 1765 } 1766 } 1767 1768 Register dst_lo = dst->as_register_lo(); 1769 1770 move_regs(l_lo, dst_lo); 1771 } 1772 } 1773 1774 // See operand selection in LIRGenerator::do_ArithmeticOp_Int(). 1775 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1776 if (left->is_double_cpu()) { 1777 // 64 bit integer case 1778 assert(left->is_double_cpu(), "left must be register"); 1779 assert(right->is_double_cpu() || is_power_of_2(right->as_jlong()), 1780 "right must be register or power of 2 constant"); 1781 assert(result->is_double_cpu(), "result must be register"); 1782 1783 Register lreg = left->as_register_lo(); 1784 Register dreg = result->as_register_lo(); 1785 1786 if (right->is_constant()) { 1787 // Convert division by a power of two into some shifts and logical operations. 1788 Register treg1 = Z_R0_scratch; 1789 Register treg2 = Z_R1_scratch; 1790 jlong divisor = right->as_jlong(); 1791 jlong log_divisor = log2i_exact(right->as_jlong()); 1792 1793 if (divisor == min_jlong) { 1794 // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1. 1795 if (dreg == lreg) { 1796 NearLabel done; 1797 __ load_const_optimized(treg2, min_jlong); 1798 __ z_cgr(lreg, treg2); 1799 __ z_lghi(dreg, 0); // Preserves condition code. 1800 __ z_brne(done); 1801 __ z_lghi(dreg, 1); // min_jlong / min_jlong = 1 1802 __ bind(done); 1803 } else { 1804 assert_different_registers(dreg, lreg); 1805 NearLabel done; 1806 __ z_lghi(dreg, 0); 1807 __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done); 1808 __ z_lghi(dreg, 1); 1809 __ bind(done); 1810 } 1811 return; 1812 } 1813 __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG); 1814 if (divisor == 2) { 1815 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 1816 } else { 1817 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 1818 __ and_imm(treg2, divisor - 1, treg1, true); 1819 } 1820 if (code == lir_idiv) { 1821 __ z_agr(dreg, treg2); 1822 __ z_srag(dreg, dreg, log_divisor); 1823 } else { 1824 assert(code == lir_irem, "check"); 1825 __ z_agr(treg2, dreg); 1826 __ and_imm(treg2, ~(divisor - 1), treg1, true); 1827 __ z_sgr(dreg, treg2); 1828 } 1829 return; 1830 } 1831 1832 // Divisor is not a power of 2 constant. 1833 Register rreg = right->as_register_lo(); 1834 Register treg = temp->as_register_lo(); 1835 assert(right->is_double_cpu(), "right must be register"); 1836 assert(lreg == Z_R11, "see ldivInOpr()"); 1837 assert(rreg != lreg, "right register must not be same as left register"); 1838 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) || 1839 (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()"); 1840 1841 Register R1 = lreg->predecessor(); 1842 Register R2 = rreg; 1843 assert(code != lir_idiv || lreg==dreg, "see code below"); 1844 if (code == lir_idiv) { 1845 __ z_lcgr(lreg, lreg); 1846 } else { 1847 __ clear_reg(dreg, true, false); 1848 } 1849 NearLabel done; 1850 __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done); 1851 if (code == lir_idiv) { 1852 __ z_lcgr(lreg, lreg); // Revert lcgr above. 1853 } 1854 if (ImplicitDiv0Checks) { 1855 // No debug info because the idiv won't trap. 1856 // Add_debug_info_for_div0 would instantiate another DivByZeroStub, 1857 // which is unnecessary, too. 1858 add_debug_info_for_div0(__ offset(), info); 1859 } 1860 __ z_dsgr(R1, R2); 1861 __ bind(done); 1862 return; 1863 } 1864 1865 // 32 bit integer case 1866 1867 assert(left->is_single_cpu(), "left must be register"); 1868 assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant"); 1869 assert(result->is_single_cpu(), "result must be register"); 1870 1871 Register lreg = left->as_register(); 1872 Register dreg = result->as_register(); 1873 1874 if (right->is_constant()) { 1875 // Convert division by a power of two into some shifts and logical operations. 1876 Register treg1 = Z_R0_scratch; 1877 Register treg2 = Z_R1_scratch; 1878 jlong divisor = right->as_jint(); 1879 jlong log_divisor = log2i_exact(right->as_jint()); 1880 __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend 1881 if (divisor == 2) { 1882 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 1883 } else { 1884 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 1885 __ and_imm(treg2, divisor - 1, treg1, true); 1886 } 1887 if (code == lir_idiv) { 1888 __ z_agr(dreg, treg2); 1889 __ z_srag(dreg, dreg, log_divisor); 1890 } else { 1891 assert(code == lir_irem, "check"); 1892 __ z_agr(treg2, dreg); 1893 __ and_imm(treg2, ~(divisor - 1), treg1, true); 1894 __ z_sgr(dreg, treg2); 1895 } 1896 return; 1897 } 1898 1899 // Divisor is not a power of 2 constant. 1900 Register rreg = right->as_register(); 1901 Register treg = temp->as_register(); 1902 assert(right->is_single_cpu(), "right must be register"); 1903 assert(lreg == Z_R11, "left register must be rax,"); 1904 assert(rreg != lreg, "right register must not be same as left register"); 1905 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) 1906 || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()"); 1907 1908 Register R1 = lreg->predecessor(); 1909 Register R2 = rreg; 1910 __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend 1911 if (ImplicitDiv0Checks) { 1912 // No debug info because the idiv won't trap. 1913 // Add_debug_info_for_div0 would instantiate another DivByZeroStub, 1914 // which is unnecessary, too. 1915 add_debug_info_for_div0(__ offset(), info); 1916 } 1917 __ z_dsgfr(R1, R2); 1918 } 1919 1920 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1921 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); 1922 assert(exceptionPC->as_register() == Z_EXC_PC, "should match"); 1923 1924 // Exception object is not added to oop map by LinearScan 1925 // (LinearScan assumes that no oops are in fixed registers). 1926 info->add_register_oop(exceptionOop); 1927 1928 // Reuse the debug info from the safepoint poll for the throw op itself. 1929 __ get_PC(Z_EXC_PC); 1930 add_call_info(__ offset(), info); // for exception handler 1931 address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? C1StubId::handle_exception_id 1932 : C1StubId::handle_exception_nofpu_id); 1933 emit_call_c(stub); 1934 } 1935 1936 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1937 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); 1938 1939 __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry); 1940 } 1941 1942 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1943 ciArrayKlass* default_type = op->expected_type(); 1944 Register src = op->src()->as_register(); 1945 Register dst = op->dst()->as_register(); 1946 Register src_pos = op->src_pos()->as_register(); 1947 Register dst_pos = op->dst_pos()->as_register(); 1948 Register length = op->length()->as_register(); 1949 Register tmp = op->tmp()->as_register(); 1950 1951 CodeStub* stub = op->stub(); 1952 int flags = op->flags(); 1953 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 1954 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1955 1956 // If we don't know anything, just go through the generic arraycopy. 1957 if (default_type == nullptr) { 1958 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1959 1960 if (copyfunc_addr == nullptr) { 1961 // Take a slow path for generic arraycopy. 1962 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 1963 __ bind(*stub->continuation()); 1964 return; 1965 } 1966 1967 // Save outgoing arguments in callee saved registers (C convention) in case 1968 // a call to System.arraycopy is needed. 1969 Register callee_saved_src = Z_R10; 1970 Register callee_saved_src_pos = Z_R11; 1971 Register callee_saved_dst = Z_R12; 1972 Register callee_saved_dst_pos = Z_R13; 1973 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. 1974 1975 __ lgr_if_needed(callee_saved_src, src); 1976 __ lgr_if_needed(callee_saved_src_pos, src_pos); 1977 __ lgr_if_needed(callee_saved_dst, dst); 1978 __ lgr_if_needed(callee_saved_dst_pos, dst_pos); 1979 __ lgr_if_needed(callee_saved_length, length); 1980 1981 // C function requires 64 bit values. 1982 __ z_lgfr(src_pos, src_pos); 1983 __ z_lgfr(dst_pos, dst_pos); 1984 __ z_lgfr(length, length); 1985 1986 // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint. 1987 1988 // The arguments are in the corresponding registers. 1989 assert(Z_ARG1 == src, "assumption"); 1990 assert(Z_ARG2 == src_pos, "assumption"); 1991 assert(Z_ARG3 == dst, "assumption"); 1992 assert(Z_ARG4 == dst_pos, "assumption"); 1993 assert(Z_ARG5 == length, "assumption"); 1994 #ifndef PRODUCT 1995 if (PrintC1Statistics) { 1996 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt); 1997 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 1998 } 1999 #endif 2000 emit_call_c(copyfunc_addr); 2001 CHECK_BAILOUT(); 2002 2003 __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); 2004 2005 __ z_lgr(tmp, Z_RET); 2006 __ z_xilf(tmp, -1); 2007 2008 // Restore values from callee saved registers so they are where the stub 2009 // expects them. 2010 __ lgr_if_needed(src, callee_saved_src); 2011 __ lgr_if_needed(src_pos, callee_saved_src_pos); 2012 __ lgr_if_needed(dst, callee_saved_dst); 2013 __ lgr_if_needed(dst_pos, callee_saved_dst_pos); 2014 __ lgr_if_needed(length, callee_saved_length); 2015 2016 __ z_sr(length, tmp); 2017 __ z_ar(src_pos, tmp); 2018 __ z_ar(dst_pos, tmp); 2019 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2020 2021 __ bind(*stub->continuation()); 2022 return; 2023 } 2024 2025 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2026 2027 int elem_size = type2aelembytes(basic_type); 2028 int shift_amount; 2029 2030 switch (elem_size) { 2031 case 1 : 2032 shift_amount = 0; 2033 break; 2034 case 2 : 2035 shift_amount = 1; 2036 break; 2037 case 4 : 2038 shift_amount = 2; 2039 break; 2040 case 8 : 2041 shift_amount = 3; 2042 break; 2043 default: 2044 shift_amount = -1; 2045 ShouldNotReachHere(); 2046 } 2047 2048 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2049 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2050 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2051 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2052 2053 // Length and pos's are all sign extended at this point on 64bit. 2054 2055 // test for null 2056 if (flags & LIR_OpArrayCopy::src_null_check) { 2057 __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry()); 2058 } 2059 if (flags & LIR_OpArrayCopy::dst_null_check) { 2060 __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry()); 2061 } 2062 2063 // Check if negative. 2064 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2065 __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); 2066 } 2067 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2068 __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); 2069 } 2070 2071 // If the compiler was not able to prove that exact type of the source or the destination 2072 // of the arraycopy is an array type, check at runtime if the source or the destination is 2073 // an instance type. 2074 if (flags & LIR_OpArrayCopy::type_check) { 2075 assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions"); 2076 2077 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2078 __ load_klass(tmp, dst); 2079 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2080 __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); 2081 } 2082 2083 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2084 __ load_klass(tmp, src); 2085 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2086 __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); 2087 } 2088 } 2089 2090 if (flags & LIR_OpArrayCopy::src_range_check) { 2091 __ z_la(tmp, Address(src_pos, length)); 2092 __ z_cl(tmp, src_length_addr); 2093 __ branch_optimized(Assembler::bcondHigh, *stub->entry()); 2094 } 2095 if (flags & LIR_OpArrayCopy::dst_range_check) { 2096 __ z_la(tmp, Address(dst_pos, length)); 2097 __ z_cl(tmp, dst_length_addr); 2098 __ branch_optimized(Assembler::bcondHigh, *stub->entry()); 2099 } 2100 2101 if (flags & LIR_OpArrayCopy::length_positive_check) { 2102 __ z_ltr(length, length); 2103 __ branch_optimized(Assembler::bcondNegative, *stub->entry()); 2104 } 2105 2106 // Stubs require 64 bit values. 2107 __ z_lgfr(src_pos, src_pos); // int -> long 2108 __ z_lgfr(dst_pos, dst_pos); // int -> long 2109 __ z_lgfr(length, length); // int -> long 2110 2111 if (flags & LIR_OpArrayCopy::type_check) { 2112 // We don't know the array types are compatible. 2113 if (basic_type != T_OBJECT) { 2114 // Simple test for basic type arrays. 2115 if (UseCompressedClassPointers) { 2116 __ z_l(tmp, src_klass_addr); 2117 __ z_c(tmp, dst_klass_addr); 2118 } else { 2119 __ z_lg(tmp, src_klass_addr); 2120 __ z_cg(tmp, dst_klass_addr); 2121 } 2122 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); 2123 } else { 2124 // For object arrays, if src is a sub class of dst then we can 2125 // safely do the copy. 2126 NearLabel cont, slow; 2127 Register src_klass = Z_R1_scratch; 2128 Register dst_klass = Z_R10; 2129 2130 __ load_klass(src_klass, src); 2131 __ load_klass(dst_klass, dst); 2132 2133 __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, nullptr); 2134 2135 store_parameter(src_klass, 0); // sub 2136 store_parameter(dst_klass, 1); // super 2137 emit_call_c(Runtime1::entry_for (C1StubId::slow_subtype_check_id)); 2138 CHECK_BAILOUT2(cont, slow); 2139 // Sets condition code 0 for match (2 otherwise). 2140 __ branch_optimized(Assembler::bcondEqual, cont); 2141 2142 __ bind(slow); 2143 2144 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2145 if (copyfunc_addr != nullptr) { // use stub if available 2146 // Src is not a sub class of dst so we have to do a 2147 // per-element check. 2148 2149 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2150 if ((flags & mask) != mask) { 2151 // Check that at least both of them object arrays. 2152 assert(flags & mask, "one of the two should be known to be an object array"); 2153 2154 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2155 __ load_klass(tmp, src); 2156 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2157 __ load_klass(tmp, dst); 2158 } 2159 Address klass_lh_addr(tmp, Klass::layout_helper_offset()); 2160 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2161 __ load_const_optimized(Z_R1_scratch, objArray_lh); 2162 __ z_c(Z_R1_scratch, klass_lh_addr); 2163 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); 2164 } 2165 2166 // Save outgoing arguments in callee saved registers (C convention) in case 2167 // a call to System.arraycopy is needed. 2168 Register callee_saved_src = Z_R10; 2169 Register callee_saved_src_pos = Z_R11; 2170 Register callee_saved_dst = Z_R12; 2171 Register callee_saved_dst_pos = Z_R13; 2172 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. 2173 2174 __ lgr_if_needed(callee_saved_src, src); 2175 __ lgr_if_needed(callee_saved_src_pos, src_pos); 2176 __ lgr_if_needed(callee_saved_dst, dst); 2177 __ lgr_if_needed(callee_saved_dst_pos, dst_pos); 2178 __ lgr_if_needed(callee_saved_length, length); 2179 2180 __ z_llgfr(length, length); // Higher 32bits must be null. 2181 2182 __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset 2183 __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset 2184 2185 __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type))); 2186 assert_different_registers(Z_ARG1, dst, dst_pos, length); 2187 __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type))); 2188 assert_different_registers(Z_ARG2, dst, length); 2189 2190 __ z_lgr(Z_ARG3, length); 2191 assert_different_registers(Z_ARG3, dst); 2192 2193 __ load_klass(Z_ARG5, dst); 2194 __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset())); 2195 __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset())); 2196 emit_call_c(copyfunc_addr); 2197 CHECK_BAILOUT2(cont, slow); 2198 2199 #ifndef PRODUCT 2200 if (PrintC1Statistics) { 2201 NearLabel failed; 2202 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed); 2203 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt); 2204 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2205 __ bind(failed); 2206 } 2207 #endif 2208 2209 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); 2210 2211 #ifndef PRODUCT 2212 if (PrintC1Statistics) { 2213 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt); 2214 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2215 } 2216 #endif 2217 2218 __ z_lgr(tmp, Z_RET); 2219 __ z_xilf(tmp, -1); 2220 2221 // Restore previously spilled arguments 2222 __ lgr_if_needed(src, callee_saved_src); 2223 __ lgr_if_needed(src_pos, callee_saved_src_pos); 2224 __ lgr_if_needed(dst, callee_saved_dst); 2225 __ lgr_if_needed(dst_pos, callee_saved_dst_pos); 2226 __ lgr_if_needed(length, callee_saved_length); 2227 2228 __ z_sr(length, tmp); 2229 __ z_ar(src_pos, tmp); 2230 __ z_ar(dst_pos, tmp); 2231 } 2232 2233 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2234 2235 __ bind(cont); 2236 } 2237 } 2238 2239 #ifdef ASSERT 2240 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2241 // Sanity check the known type with the incoming class. For the 2242 // primitive case the types must match exactly with src.klass and 2243 // dst.klass each exactly matching the default type. For the 2244 // object array case, if no type check is needed then either the 2245 // dst type is exactly the expected type and the src type is a 2246 // subtype which we can't check or src is the same array as dst 2247 // but not necessarily exactly of type default_type. 2248 NearLabel known_ok, halt; 2249 metadata2reg(default_type->constant_encoding(), tmp); 2250 if (UseCompressedClassPointers) { 2251 __ encode_klass_not_null(tmp); 2252 } 2253 2254 if (basic_type != T_OBJECT) { 2255 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } 2256 else { __ z_cg(tmp, dst_klass_addr); } 2257 __ branch_optimized(Assembler::bcondNotEqual, halt); 2258 if (UseCompressedClassPointers) { __ z_c (tmp, src_klass_addr); } 2259 else { __ z_cg(tmp, src_klass_addr); } 2260 __ branch_optimized(Assembler::bcondEqual, known_ok); 2261 } else { 2262 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } 2263 else { __ z_cg(tmp, dst_klass_addr); } 2264 __ branch_optimized(Assembler::bcondEqual, known_ok); 2265 __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok); 2266 } 2267 __ bind(halt); 2268 __ stop("incorrect type information in arraycopy"); 2269 __ bind(known_ok); 2270 } 2271 #endif 2272 2273 #ifndef PRODUCT 2274 if (PrintC1Statistics) { 2275 __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type)); 2276 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2277 } 2278 #endif 2279 2280 __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset 2281 __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset 2282 2283 assert_different_registers(Z_ARG1, dst, dst_pos, length); 2284 __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type))); 2285 assert_different_registers(Z_ARG2, length); 2286 __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type))); 2287 __ lgr_if_needed(Z_ARG3, length); 2288 2289 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2290 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2291 const char *name; 2292 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2293 __ call_VM_leaf(entry); 2294 2295 if (stub != nullptr) { 2296 __ bind(*stub->continuation()); 2297 } 2298 } 2299 2300 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2301 if (dest->is_single_cpu()) { 2302 if (left->type() == T_OBJECT) { 2303 switch (code) { 2304 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2305 case lir_shr: __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2306 case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2307 default: ShouldNotReachHere(); 2308 } 2309 } else { 2310 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); 2311 Register masked_count = Z_R1_scratch; 2312 __ z_lr(masked_count, count->as_register()); 2313 __ z_nill(masked_count, 31); 2314 switch (code) { 2315 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break; 2316 case lir_shr: __ z_sra (dest->as_register(), 0, masked_count); break; 2317 case lir_ushr: __ z_srl (dest->as_register(), 0, masked_count); break; 2318 default: ShouldNotReachHere(); 2319 } 2320 } 2321 } else { 2322 switch (code) { 2323 case lir_shl: __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2324 case lir_shr: __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2325 case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2326 default: ShouldNotReachHere(); 2327 } 2328 } 2329 } 2330 2331 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2332 if (left->type() == T_OBJECT) { 2333 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2334 Register l = left->as_register(); 2335 Register d = dest->as_register_lo(); 2336 switch (code) { 2337 case lir_shl: __ z_sllg (d, l, count); break; 2338 case lir_shr: __ z_srag (d, l, count); break; 2339 case lir_ushr: __ z_srlg (d, l, count); break; 2340 default: ShouldNotReachHere(); 2341 } 2342 return; 2343 } 2344 if (dest->is_single_cpu()) { 2345 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); 2346 count = count & 0x1F; // Java spec 2347 switch (code) { 2348 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), count); break; 2349 case lir_shr: __ z_sra (dest->as_register(), count); break; 2350 case lir_ushr: __ z_srl (dest->as_register(), count); break; 2351 default: ShouldNotReachHere(); 2352 } 2353 } else if (dest->is_double_cpu()) { 2354 count = count & 63; // Java spec 2355 Register l = left->as_pointer_register(); 2356 Register d = dest->as_pointer_register(); 2357 switch (code) { 2358 case lir_shl: __ z_sllg (d, l, count); break; 2359 case lir_shr: __ z_srag (d, l, count); break; 2360 case lir_ushr: __ z_srlg (d, l, count); break; 2361 default: ShouldNotReachHere(); 2362 } 2363 } else { 2364 ShouldNotReachHere(); 2365 } 2366 } 2367 2368 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2369 if (op->init_check()) { 2370 // Make sure klass is initialized & doesn't have finalizer. 2371 // init_state needs acquire, but S390 is TSO, and so we are already good. 2372 const int state_offset = in_bytes(InstanceKlass::init_state_offset()); 2373 Register iklass = op->klass()->as_register(); 2374 add_debug_info_for_null_check_here(op->stub()->info()); 2375 if (Immediate::is_uimm12(state_offset)) { 2376 __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized); 2377 } else { 2378 __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized); 2379 } 2380 __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far. 2381 } 2382 __ allocate_object(op->obj()->as_register(), 2383 op->tmp1()->as_register(), 2384 op->tmp2()->as_register(), 2385 op->header_size(), 2386 op->object_size(), 2387 op->klass()->as_register(), 2388 *op->stub()->entry()); 2389 __ bind(*op->stub()->continuation()); 2390 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2391 } 2392 2393 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2394 Register len = op->len()->as_register(); 2395 __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend 2396 2397 if (UseSlowPath || 2398 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2399 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2400 __ z_brul(*op->stub()->entry()); 2401 } else { 2402 __ allocate_array(op->obj()->as_register(), 2403 op->len()->as_register(), 2404 op->tmp1()->as_register(), 2405 op->tmp2()->as_register(), 2406 arrayOopDesc::base_offset_in_bytes(op->type()), 2407 type2aelembytes(op->type()), 2408 op->klass()->as_register(), 2409 *op->stub()->entry(), 2410 op->zero_array()); 2411 } 2412 __ bind(*op->stub()->continuation()); 2413 } 2414 2415 void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data, 2416 Register recv, Register tmp1, Label* update_done) { 2417 uint i; 2418 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2419 Label next_test; 2420 // See if the receiver is receiver[n]. 2421 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 2422 __ z_cg(recv, receiver_addr); 2423 __ z_brne(next_test); 2424 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 2425 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2426 __ branch_optimized(Assembler::bcondAlways, *update_done); 2427 __ bind(next_test); 2428 } 2429 2430 // Didn't find receiver; find next empty slot and fill it in. 2431 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2432 Label next_test; 2433 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 2434 __ z_ltg(Z_R0_scratch, recv_addr); 2435 __ z_brne(next_test); 2436 __ z_stg(recv, recv_addr); 2437 __ load_const_optimized(tmp1, DataLayout::counter_increment); 2438 __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo); 2439 __ branch_optimized(Assembler::bcondAlways, *update_done); 2440 __ bind(next_test); 2441 } 2442 } 2443 2444 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2445 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2446 Unimplemented(); 2447 } 2448 2449 void LIR_Assembler::store_parameter(Register r, int param_num) { 2450 assert(param_num >= 0, "invalid num"); 2451 int offset_in_bytes = param_num * BytesPerWord; 2452 check_reserved_argument_area(offset_in_bytes); 2453 offset_in_bytes += FrameMap::first_available_sp_in_frame; 2454 __ z_stg(r, offset_in_bytes, Z_SP); 2455 } 2456 2457 void LIR_Assembler::store_parameter(jint c, int param_num) { 2458 assert(param_num >= 0, "invalid num"); 2459 int offset_in_bytes = param_num * BytesPerWord; 2460 check_reserved_argument_area(offset_in_bytes); 2461 offset_in_bytes += FrameMap::first_available_sp_in_frame; 2462 __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true); 2463 } 2464 2465 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2466 // We always need a stub for the failure case. 2467 CodeStub* stub = op->stub(); 2468 Register obj = op->object()->as_register(); 2469 Register k_RInfo = op->tmp1()->as_register(); 2470 Register klass_RInfo = op->tmp2()->as_register(); 2471 Register dst = op->result_opr()->as_register(); 2472 Register Rtmp1 = Z_R1_scratch; 2473 ciKlass* k = op->klass(); 2474 2475 assert(!op->tmp3()->is_valid(), "tmp3's not needed"); 2476 2477 // Check if it needs to be profiled. 2478 ciMethodData* md = nullptr; 2479 ciProfileData* data = nullptr; 2480 2481 if (op->should_profile()) { 2482 ciMethod* method = op->profiled_method(); 2483 assert(method != nullptr, "Should have method"); 2484 int bci = op->profiled_bci(); 2485 md = method->method_data_or_null(); 2486 assert(md != nullptr, "Sanity"); 2487 data = md->bci_to_data(bci); 2488 assert(data != nullptr, "need data for type check"); 2489 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2490 } 2491 2492 // Temp operands do not overlap with inputs, if this is their last 2493 // use (end of range is exclusive), so a register conflict is possible. 2494 if (obj == k_RInfo) { 2495 k_RInfo = dst; 2496 } else if (obj == klass_RInfo) { 2497 klass_RInfo = dst; 2498 } 2499 assert_different_registers(obj, k_RInfo, klass_RInfo); 2500 2501 if (op->should_profile()) { 2502 Register mdo = klass_RInfo; 2503 metadata2reg(md->constant_encoding(), mdo); 2504 NearLabel not_null; 2505 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null); 2506 // Object is null; update MDO and exit. 2507 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 2508 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 2509 __ or2mem_8(data_addr, header_bits); 2510 __ branch_optimized(Assembler::bcondAlways, *obj_is_null); 2511 __ bind(not_null); 2512 2513 NearLabel update_done; 2514 Register recv = k_RInfo; 2515 __ load_klass(recv, obj); 2516 type_profile_helper(mdo, md, data, recv, Rtmp1, &update_done); 2517 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2518 __ add2mem_64(counter_addr, DataLayout::counter_increment, Rtmp1); 2519 __ bind(update_done); 2520 } else { 2521 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null); 2522 } 2523 2524 Label *failure_target = failure; 2525 Label *success_target = success; 2526 2527 // Patching may screw with our temporaries, 2528 // so let's do it before loading the class. 2529 if (k->is_loaded()) { 2530 metadata2reg(k->constant_encoding(), k_RInfo); 2531 } else { 2532 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2533 } 2534 assert(obj != k_RInfo, "must be different"); 2535 2536 __ verify_oop(obj, FILE_AND_LINE); 2537 2538 // Get object class. 2539 // Not a safepoint as obj null check happens earlier. 2540 if (op->fast_check()) { 2541 if (UseCompressedClassPointers) { 2542 __ load_klass(klass_RInfo, obj); 2543 __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target); 2544 } else { 2545 __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 2546 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2547 } 2548 // Successful cast, fall through to profile or jump. 2549 } else { 2550 bool need_slow_path = !k->is_loaded() || 2551 ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset())); 2552 intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L; 2553 __ load_klass(klass_RInfo, obj); 2554 // Perform the fast part of the checking logic. 2555 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, 2556 (need_slow_path ? success_target : nullptr), 2557 failure_target, nullptr, 2558 RegisterOrConstant(super_check_offset)); 2559 if (need_slow_path) { 2560 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2561 address a = Runtime1::entry_for (C1StubId::slow_subtype_check_id); 2562 store_parameter(klass_RInfo, 0); // sub 2563 store_parameter(k_RInfo, 1); // super 2564 emit_call_c(a); // Sets condition code 0 for match (2 otherwise). 2565 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2566 // Fall through to success case. 2567 } 2568 } 2569 2570 __ branch_optimized(Assembler::bcondAlways, *success); 2571 } 2572 2573 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2574 LIR_Code code = op->code(); 2575 if (code == lir_store_check) { 2576 Register value = op->object()->as_register(); 2577 Register array = op->array()->as_register(); 2578 Register k_RInfo = op->tmp1()->as_register(); 2579 Register klass_RInfo = op->tmp2()->as_register(); 2580 Register Rtmp1 = Z_R1_scratch; 2581 2582 CodeStub* stub = op->stub(); 2583 2584 // Check if it needs to be profiled. 2585 ciMethodData* md = nullptr; 2586 ciProfileData* data = nullptr; 2587 2588 assert_different_registers(value, k_RInfo, klass_RInfo); 2589 2590 if (op->should_profile()) { 2591 ciMethod* method = op->profiled_method(); 2592 assert(method != nullptr, "Should have method"); 2593 int bci = op->profiled_bci(); 2594 md = method->method_data_or_null(); 2595 assert(md != nullptr, "Sanity"); 2596 data = md->bci_to_data(bci); 2597 assert(data != nullptr, "need data for type check"); 2598 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2599 } 2600 NearLabel done; 2601 Label *success_target = &done; 2602 Label *failure_target = stub->entry(); 2603 2604 if (op->should_profile()) { 2605 Register mdo = klass_RInfo; 2606 metadata2reg(md->constant_encoding(), mdo); 2607 NearLabel not_null; 2608 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null); 2609 // Object is null; update MDO and exit. 2610 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 2611 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 2612 __ or2mem_8(data_addr, header_bits); 2613 __ branch_optimized(Assembler::bcondAlways, done); 2614 __ bind(not_null); 2615 2616 NearLabel update_done; 2617 Register recv = k_RInfo; 2618 __ load_klass(recv, value); 2619 type_profile_helper(mdo, md, data, recv, Rtmp1, &update_done); 2620 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2621 __ add2mem_64(counter_addr, DataLayout::counter_increment, Rtmp1); 2622 __ bind(update_done); 2623 } else { 2624 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done); 2625 } 2626 2627 add_debug_info_for_null_check_here(op->info_for_exception()); 2628 __ load_klass(k_RInfo, array); 2629 __ load_klass(klass_RInfo, value); 2630 2631 // Get instance klass (it's already uncompressed). 2632 __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 2633 // Perform the fast part of the checking logic. 2634 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 2635 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2636 address a = Runtime1::entry_for (C1StubId::slow_subtype_check_id); 2637 store_parameter(klass_RInfo, 0); // sub 2638 store_parameter(k_RInfo, 1); // super 2639 emit_call_c(a); // Sets condition code 0 for match (2 otherwise). 2640 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2641 // Fall through to success case. 2642 2643 __ bind(done); 2644 } else { 2645 if (code == lir_checkcast) { 2646 Register obj = op->object()->as_register(); 2647 Register dst = op->result_opr()->as_register(); 2648 NearLabel success; 2649 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 2650 __ bind(success); 2651 __ lgr_if_needed(dst, obj); 2652 } else { 2653 if (code == lir_instanceof) { 2654 Register obj = op->object()->as_register(); 2655 Register dst = op->result_opr()->as_register(); 2656 NearLabel success, failure, done; 2657 emit_typecheck_helper(op, &success, &failure, &failure); 2658 __ bind(failure); 2659 __ clear_reg(dst); 2660 __ branch_optimized(Assembler::bcondAlways, done); 2661 __ bind(success); 2662 __ load_const_optimized(dst, 1); 2663 __ bind(done); 2664 } else { 2665 ShouldNotReachHere(); 2666 } 2667 } 2668 } 2669 } 2670 2671 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2672 Register addr = op->addr()->as_pointer_register(); 2673 Register t1_cmp = Z_R1_scratch; 2674 if (op->code() == lir_cas_long) { 2675 Register cmp_value_lo = op->cmp_value()->as_register_lo(); 2676 Register new_value_lo = op->new_value()->as_register_lo(); 2677 __ z_lgr(t1_cmp, cmp_value_lo); 2678 // Perform the compare and swap operation. 2679 __ z_csg(t1_cmp, new_value_lo, 0, addr); 2680 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2681 Register cmp_value = op->cmp_value()->as_register(); 2682 Register new_value = op->new_value()->as_register(); 2683 if (op->code() == lir_cas_obj) { 2684 if (UseCompressedOops) { 2685 t1_cmp = op->tmp1()->as_register(); 2686 Register t2_new = op->tmp2()->as_register(); 2687 assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new); 2688 __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/); 2689 __ oop_encoder(t2_new, new_value, true /*maybe null*/); 2690 __ z_cs(t1_cmp, t2_new, 0, addr); 2691 } else { 2692 __ z_lgr(t1_cmp, cmp_value); 2693 __ z_csg(t1_cmp, new_value, 0, addr); 2694 } 2695 } else { 2696 __ z_lr(t1_cmp, cmp_value); 2697 __ z_cs(t1_cmp, new_value, 0, addr); 2698 } 2699 } else { 2700 ShouldNotReachHere(); // new lir_cas_?? 2701 } 2702 } 2703 2704 void LIR_Assembler::breakpoint() { 2705 Unimplemented(); 2706 // __ breakpoint_trap(); 2707 } 2708 2709 void LIR_Assembler::push(LIR_Opr opr) { 2710 ShouldNotCallThis(); // unused 2711 } 2712 2713 void LIR_Assembler::pop(LIR_Opr opr) { 2714 ShouldNotCallThis(); // unused 2715 } 2716 2717 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2718 Address addr = frame_map()->address_for_monitor_lock(monitor_no); 2719 __ add2reg(dst_opr->as_register(), addr.disp(), addr.base()); 2720 } 2721 2722 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2723 Register obj = op->obj_opr()->as_register(); // May not be an oop. 2724 Register hdr = op->hdr_opr()->as_register(); 2725 Register lock = op->lock_opr()->as_register(); 2726 if (LockingMode == LM_MONITOR) { 2727 if (op->info() != nullptr) { 2728 add_debug_info_for_null_check_here(op->info()); 2729 __ null_check(obj); 2730 } 2731 __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry()); 2732 } else if (op->code() == lir_lock) { 2733 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2734 // Add debug info for NullPointerException only if one is possible. 2735 if (op->info() != nullptr) { 2736 add_debug_info_for_null_check_here(op->info()); 2737 } 2738 __ lock_object(hdr, obj, lock, *op->stub()->entry()); 2739 // done 2740 } else if (op->code() == lir_unlock) { 2741 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2742 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2743 } else { 2744 ShouldNotReachHere(); 2745 } 2746 __ bind(*op->stub()->continuation()); 2747 } 2748 2749 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2750 Register obj = op->obj()->as_pointer_register(); 2751 Register result = op->result_opr()->as_pointer_register(); 2752 2753 CodeEmitInfo* info = op->info(); 2754 if (info != nullptr) { 2755 add_debug_info_for_null_check_here(info); 2756 } 2757 2758 if (UseCompressedClassPointers) { 2759 __ z_llgf(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2760 __ decode_klass_not_null(result); 2761 } else { 2762 __ z_lg(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2763 } 2764 } 2765 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2766 ciMethod* method = op->profiled_method(); 2767 int bci = op->profiled_bci(); 2768 ciMethod* callee = op->profiled_callee(); 2769 2770 // Update counter for all call types. 2771 ciMethodData* md = method->method_data_or_null(); 2772 assert(md != nullptr, "Sanity"); 2773 ciProfileData* data = md->bci_to_data(bci); 2774 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2775 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2776 Register mdo = op->mdo()->as_register(); 2777 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2778 Register tmp1 = op->tmp1()->as_register_lo(); 2779 metadata2reg(md->constant_encoding(), mdo); 2780 2781 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2782 // Perform additional virtual call profiling for invokevirtual and 2783 // invokeinterface bytecodes 2784 if (op->should_profile_receiver_type()) { 2785 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2786 Register recv = op->recv()->as_register(); 2787 assert_different_registers(mdo, tmp1, recv); 2788 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2789 ciKlass* known_klass = op->known_holder(); 2790 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2791 // We know the type that will be seen at this call site; we can 2792 // statically update the MethodData* rather than needing to do 2793 // dynamic tests on the receiver type. 2794 2795 // NOTE: we should probably put a lock around this search to 2796 // avoid collisions by concurrent compilations. 2797 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2798 uint i; 2799 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2800 ciKlass* receiver = vc_data->receiver(i); 2801 if (known_klass->equals(receiver)) { 2802 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2803 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2804 return; 2805 } 2806 } 2807 2808 // Receiver type not found in profile data. Select an empty slot. 2809 2810 // Note that this is less efficient than it should be because it 2811 // always does a write to the receiver part of the 2812 // VirtualCallData rather than just the first time. 2813 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2814 ciKlass* receiver = vc_data->receiver(i); 2815 if (receiver == nullptr) { 2816 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2817 metadata2reg(known_klass->constant_encoding(), tmp1); 2818 __ z_stg(tmp1, recv_addr); 2819 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2820 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2821 return; 2822 } 2823 } 2824 } else { 2825 __ load_klass(recv, recv); 2826 NearLabel update_done; 2827 type_profile_helper(mdo, md, data, recv, tmp1, &update_done); 2828 // Receiver did not match any saved receiver and there is no empty row for it. 2829 // Increment total counter to indicate polymorphic case. 2830 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); 2831 __ bind(update_done); 2832 } 2833 } else { 2834 // static call 2835 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); 2836 } 2837 } 2838 2839 void LIR_Assembler::align_backward_branch_target() { 2840 __ align(OptoLoopAlignment); 2841 } 2842 2843 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2844 ShouldNotCallThis(); // There are no delay slots on ZARCH_64. 2845 } 2846 2847 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2848 // tmp must be unused 2849 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2850 assert(left->is_register(), "can only handle registers"); 2851 2852 if (left->is_single_cpu()) { 2853 __ z_lcr(dest->as_register(), left->as_register()); 2854 } else if (left->is_single_fpu()) { 2855 __ z_lcebr(dest->as_float_reg(), left->as_float_reg()); 2856 } else if (left->is_double_fpu()) { 2857 __ z_lcdbr(dest->as_double_reg(), left->as_double_reg()); 2858 } else { 2859 assert(left->is_double_cpu(), "Must be a long"); 2860 __ z_lcgr(dest->as_register_lo(), left->as_register_lo()); 2861 } 2862 } 2863 2864 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2865 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2866 assert(!tmp->is_valid(), "don't need temporary"); 2867 emit_call_c(dest); 2868 CHECK_BAILOUT(); 2869 if (info != nullptr) { 2870 add_call_info_here(info); 2871 } 2872 } 2873 2874 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2875 ShouldNotCallThis(); // not needed on ZARCH_64 2876 } 2877 2878 void LIR_Assembler::membar() { 2879 __ z_fence(); 2880 } 2881 2882 void LIR_Assembler::membar_acquire() { 2883 __ z_acquire(); 2884 } 2885 2886 void LIR_Assembler::membar_release() { 2887 __ z_release(); 2888 } 2889 2890 void LIR_Assembler::membar_loadload() { 2891 __ z_acquire(); 2892 } 2893 2894 void LIR_Assembler::membar_storestore() { 2895 __ z_release(); 2896 } 2897 2898 void LIR_Assembler::membar_loadstore() { 2899 __ z_acquire(); 2900 } 2901 2902 void LIR_Assembler::membar_storeload() { 2903 __ z_fence(); 2904 } 2905 2906 void LIR_Assembler::on_spin_wait() { 2907 Unimplemented(); 2908 } 2909 2910 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2911 assert(patch_code == lir_patch_none, "Patch code not supported"); 2912 LIR_Address* addr = addr_opr->as_address_ptr(); 2913 assert(addr->scale() == LIR_Address::times_1, "scaling unsupported"); 2914 __ load_address(dest->as_pointer_register(), as_Address(addr)); 2915 } 2916 2917 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2918 ShouldNotCallThis(); // unused 2919 } 2920 2921 #ifdef ASSERT 2922 // Emit run-time assertion. 2923 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2924 Unimplemented(); 2925 } 2926 #endif 2927 2928 void LIR_Assembler::peephole(LIR_List*) { 2929 // Do nothing for now. 2930 } 2931 2932 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2933 assert(code == lir_xadd, "lir_xchg not supported"); 2934 Address src_addr = as_Address(src->as_address_ptr()); 2935 Register base = src_addr.base(); 2936 intptr_t disp = src_addr.disp(); 2937 if (src_addr.index()->is_valid()) { 2938 // LAA and LAAG do not support index register. 2939 __ load_address(Z_R1_scratch, src_addr); 2940 base = Z_R1_scratch; 2941 disp = 0; 2942 } 2943 if (data->type() == T_INT) { 2944 __ z_laa(dest->as_register(), data->as_register(), disp, base); 2945 } else if (data->type() == T_LONG) { 2946 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 2947 __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base); 2948 } else { 2949 ShouldNotReachHere(); 2950 } 2951 } 2952 2953 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2954 Register obj = op->obj()->as_register(); 2955 Register tmp1 = op->tmp()->as_pointer_register(); 2956 Register tmp2 = Z_R1_scratch; 2957 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2958 ciKlass* exact_klass = op->exact_klass(); 2959 intptr_t current_klass = op->current_klass(); 2960 bool not_null = op->not_null(); 2961 bool no_conflict = op->no_conflict(); 2962 2963 Label update, next, none, null_seen, init_klass; 2964 2965 bool do_null = !not_null; 2966 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2967 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2968 2969 assert(do_null || do_update, "why are we here?"); 2970 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2971 2972 __ verify_oop(obj, FILE_AND_LINE); 2973 2974 if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) { 2975 __ z_ltgr(tmp1, obj); 2976 } 2977 if (do_null) { 2978 __ z_brnz(update); 2979 if (!TypeEntries::was_null_seen(current_klass)) { 2980 __ z_lg(tmp1, mdo_addr); 2981 __ z_oill(tmp1, TypeEntries::null_seen); 2982 __ z_stg(tmp1, mdo_addr); 2983 } 2984 if (do_update) { 2985 __ z_bru(next); 2986 } 2987 } else { 2988 __ asm_assert(Assembler::bcondNotZero, "unexpected null obj", __LINE__); 2989 } 2990 2991 __ bind(update); 2992 2993 if (do_update) { 2994 #ifdef ASSERT 2995 if (exact_klass != nullptr) { 2996 __ load_klass(tmp1, tmp1); 2997 metadata2reg(exact_klass->constant_encoding(), tmp2); 2998 __ z_cgr(tmp1, tmp2); 2999 __ asm_assert(Assembler::bcondEqual, "exact klass and actual klass differ", __LINE__); 3000 } 3001 #endif 3002 3003 Label do_update; 3004 __ z_lg(tmp2, mdo_addr); 3005 3006 if (!no_conflict) { 3007 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3008 if (exact_klass != nullptr) { 3009 metadata2reg(exact_klass->constant_encoding(), tmp1); 3010 } else { 3011 __ load_klass(tmp1, tmp1); 3012 } 3013 3014 // Klass seen before: nothing to do (regardless of unknown bit). 3015 __ z_lgr(Z_R0_scratch, tmp2); 3016 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 3017 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); 3018 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); 3019 3020 // Already unknown: Nothing to do anymore. 3021 __ z_tmll(tmp2, TypeEntries::type_unknown); 3022 __ z_brc(Assembler::bcondAllOne, next); 3023 3024 if (TypeEntries::is_type_none(current_klass)) { 3025 __ z_lgr(Z_R0_scratch, tmp2); 3026 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 3027 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); 3028 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass); 3029 } 3030 } else { 3031 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3032 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3033 3034 // Already unknown: Nothing to do anymore. 3035 __ z_tmll(tmp2, TypeEntries::type_unknown); 3036 __ z_brc(Assembler::bcondAllOne, next); 3037 } 3038 3039 // Different than before. Cannot keep accurate profile. 3040 __ z_oill(tmp2, TypeEntries::type_unknown); 3041 __ z_bru(do_update); 3042 } else { 3043 // There's a single possible klass at this profile point. 3044 assert(exact_klass != nullptr, "should be"); 3045 if (TypeEntries::is_type_none(current_klass)) { 3046 metadata2reg(exact_klass->constant_encoding(), tmp1); 3047 __ z_lgr(Z_R0_scratch, tmp2); 3048 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 3049 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); 3050 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); 3051 #ifdef ASSERT 3052 { 3053 Label ok; 3054 __ z_lgr(Z_R0_scratch, tmp2); 3055 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 3056 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); 3057 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok); 3058 __ stop("unexpected profiling mismatch"); 3059 __ bind(ok); 3060 } 3061 #endif 3062 3063 } else { 3064 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3065 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3066 3067 // Already unknown: Nothing to do anymore. 3068 __ z_tmll(tmp2, TypeEntries::type_unknown); 3069 __ z_brc(Assembler::bcondAllOne, next); 3070 __ z_oill(tmp2, TypeEntries::type_unknown); 3071 __ z_bru(do_update); 3072 } 3073 } 3074 3075 __ bind(init_klass); 3076 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3077 __ z_ogr(tmp2, tmp1); 3078 3079 __ bind(do_update); 3080 __ z_stg(tmp2, mdo_addr); 3081 3082 __ bind(next); 3083 } 3084 } 3085 3086 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3087 assert(op->crc()->is_single_cpu(), "crc must be register"); 3088 assert(op->val()->is_single_cpu(), "byte value must be register"); 3089 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3090 Register crc = op->crc()->as_register(); 3091 Register val = op->val()->as_register(); 3092 Register res = op->result_opr()->as_register(); 3093 3094 assert_different_registers(val, crc, res); 3095 3096 __ load_const_optimized(res, StubRoutines::crc_table_addr()); 3097 __ kernel_crc32_singleByteReg(crc, val, res, true); 3098 __ z_lgfr(res, crc); 3099 } 3100 3101 #undef __