1 /* 2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 // Major contributions by AHa, AS, JL, ML. 27 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_s390.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/methodCounters.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 // Implementation of InterpreterMacroAssembler. 52 // This file specializes the assembler with interpreter-specific macros. 53 54 #ifdef PRODUCT 55 #define BLOCK_COMMENT(str) 56 #define BIND(label) bind(label); 57 #else 58 #define BLOCK_COMMENT(str) block_comment(str) 59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 60 #endif 61 62 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 63 assert(entry != nullptr, "Entry must have been generated by now"); 64 assert(Rscratch != Z_R0, "Can't use R0 for addressing"); 65 branch_optimized(Assembler::bcondAlways, entry); 66 } 67 68 void InterpreterMacroAssembler::empty_expression_stack(void) { 69 get_monitors(Z_R1_scratch); 70 add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); 71 } 72 73 // Dispatch code executed in the prolog of a bytecode which does not do it's 74 // own dispatch. 75 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 76 // On z/Architecture we are short on registers, therefore we do not preload the 77 // dispatch address of the next bytecode. 78 } 79 80 // Dispatch code executed in the epilog of a bytecode which does not do it's 81 // own dispatch. 82 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 83 dispatch_next(state, step); 84 } 85 86 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 87 z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. 88 add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. 89 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 90 } 91 92 // Common code to dispatch and dispatch_only. 93 // Dispatch value in Lbyte_code and increment Lbcp. 94 95 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) { 96 #ifdef ASSERT 97 address reentry = nullptr; 98 { Label OK; 99 // Check if the frame pointer in Z_fp is correct. 100 z_cg(Z_fp, 0, Z_SP); 101 z_bre(OK); 102 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); 103 bind(OK); 104 } 105 { Label OK; 106 // check if the locals pointer in Z_locals is correct 107 108 // _z_ijava_state_neg(locals)) is fp relativized, so we need to 109 // extract the pointer. 110 111 z_lg(Z_R1_scratch, Address(Z_fp, _z_ijava_state_neg(locals))); 112 z_sllg(Z_R1_scratch, Z_R1_scratch, Interpreter::logStackElementSize); 113 z_agr(Z_R1_scratch, Z_fp); 114 115 z_cgr(Z_locals, Z_R1_scratch); 116 z_bre(OK); 117 reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); 118 bind(OK); 119 } 120 #endif 121 122 // TODO: Maybe implement +VerifyActivationFrameSize here. 123 verify_oop(Z_tos, state); 124 125 // Dispatch table to use. 126 load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table; 127 128 if (generate_poll) { 129 address *sfpt_tbl = Interpreter::safept_table(state); 130 if (table != sfpt_tbl) { 131 Label dispatch; 132 const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */); 133 // Armed page has poll_bit set, if poll bit is cleared just continue. 134 z_tm(poll_byte_addr, SafepointMechanism::poll_bit()); 135 z_braz(dispatch); 136 load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table; 137 bind(dispatch); 138 } 139 } 140 141 // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. 142 // Z_bytecode must have been loaded zero-extended for this approach to be correct. 143 z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. 144 z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. 145 146 z_br(Z_tmp_1); 147 } 148 149 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 150 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 151 } 152 153 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 154 dispatch_base(state, Interpreter::normal_table(state)); 155 } 156 157 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { 158 // Load current bytecode. 159 z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); 160 dispatch_base(state, table); 161 } 162 163 // The following call_VM*_base() methods overload and mask the respective 164 // declarations/definitions in class MacroAssembler. They are meant as a "detour" 165 // to perform additional, template interpreter specific tasks before actually 166 // calling their MacroAssembler counterparts. 167 168 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { 169 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 170 // interpreter specific 171 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 172 // saved registers and no blocking/ GC can happen in leaf calls. 173 174 // super call 175 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 176 } 177 178 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { 179 // interpreter specific 180 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 181 // saved registers and no blocking/ GC can happen in leaf calls. 182 183 // super call 184 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 185 } 186 187 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 188 address entry_point, bool check_exceptions) { 189 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 190 // interpreter specific 191 192 save_bcp(); 193 save_esp(); 194 // super call 195 MacroAssembler::call_VM_base(oop_result, last_java_sp, 196 entry_point, allow_relocation, check_exceptions); 197 restore_bcp(); 198 } 199 200 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 201 address entry_point, bool allow_relocation, 202 bool check_exceptions) { 203 // interpreter specific 204 205 save_bcp(); 206 save_esp(); 207 // super call 208 MacroAssembler::call_VM_base(oop_result, last_java_sp, 209 entry_point, allow_relocation, check_exceptions); 210 restore_bcp(); 211 } 212 213 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 214 if (JvmtiExport::can_pop_frame()) { 215 BLOCK_COMMENT("check_and_handle_popframe {"); 216 Label L; 217 // Initiate popframe handling only if it is not already being 218 // processed. If the flag has the popframe_processing bit set, it 219 // means that this code is called *during* popframe handling - we 220 // don't want to reenter. 221 // TODO: Check if all four state combinations could be visible. 222 // If (processing and !pending) is an invisible/impossible state, 223 // there is optimization potential by testing both bits at once. 224 // Then, All_Zeroes and All_Ones means skip, Mixed means doit. 225 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 226 exact_log2(JavaThread::popframe_pending_bit)); 227 z_bfalse(L); 228 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 229 exact_log2(JavaThread::popframe_processing_bit)); 230 z_btrue(L); 231 232 // Call Interpreter::remove_activation_preserving_args_entry() to get the 233 // address of the same-named entrypoint in the generated interpreter code. 234 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 235 // The above call should (as its only effect) return the contents of the field 236 // _remove_activation_preserving_args_entry in Z_RET. 237 // We just jump there to have the work done. 238 z_br(Z_RET); 239 // There is no way for control to fall thru here. 240 241 bind(L); 242 BLOCK_COMMENT("} check_and_handle_popframe"); 243 } 244 } 245 246 247 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 248 Register RjvmtiState = Z_R1_scratch; 249 int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); 250 int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); 251 int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); 252 int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); 253 254 z_lg(RjvmtiState, state_off, Z_thread); 255 256 switch (state) { 257 case atos: z_lg(Z_tos, oop_off, RjvmtiState); 258 store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); 259 break; 260 case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; 261 case btos: // fall through 262 case ztos: // fall through 263 case ctos: // fall through 264 case stos: // fall through 265 case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; 266 case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; 267 case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; 268 case vtos: /* nothing to do */ break; 269 default : ShouldNotReachHere(); 270 } 271 272 // Clean up tos value in the jvmti thread state. 273 store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); 274 // Set tos state field to illegal value. 275 store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); 276 } 277 278 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 279 if (JvmtiExport::can_force_early_return()) { 280 BLOCK_COMMENT("check_and_handle_earlyret {"); 281 Label L; 282 // arg regs are save, because we are just behind the call in call_VM_base 283 Register jvmti_thread_state = Z_ARG2; 284 Register tmp = Z_ARG3; 285 load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); 286 z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit; 287 288 // Initiate earlyret handling only if it is not already being processed. 289 // If the flag has the earlyret_processing bit set, it means that this code 290 // is called *during* earlyret handling - we don't want to reenter. 291 292 assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), 293 "must fix this check, when changing the values of the earlyret enum"); 294 assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); 295 296 load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); 297 z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; 298 299 // Call Interpreter::remove_activation_early_entry() to get the address of the 300 // same-named entrypoint in the generated interpreter code. 301 assert(sizeof(TosState) == 4, "unexpected size"); 302 z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); 303 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); 304 // The above call should (as its only effect) return the contents of the field 305 // _remove_activation_preserving_args_entry in Z_RET. 306 // We just jump there to have the work done. 307 z_br(Z_RET); 308 // There is no way for control to fall thru here. 309 310 bind(L); 311 BLOCK_COMMENT("} check_and_handle_earlyret"); 312 } 313 } 314 315 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { 316 lgr_if_needed(Z_ARG1, arg_1); 317 assert(arg_2 != Z_ARG1, "smashed argument"); 318 lgr_if_needed(Z_ARG2, arg_2); 319 MacroAssembler::call_VM_leaf_base(entry_point, true); 320 } 321 322 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { 323 Address param(Z_bcp, bcp_offset); 324 325 BLOCK_COMMENT("get_cache_index_at_bcp {"); 326 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 327 if (index_size == sizeof(u2)) { 328 load_sized_value(index, param, 2, false /*signed*/); 329 } else if (index_size == sizeof(u4)) { 330 331 load_sized_value(index, param, 4, false); 332 } else if (index_size == sizeof(u1)) { 333 z_llgc(index, param); 334 } else { 335 ShouldNotReachHere(); 336 } 337 BLOCK_COMMENT("}"); 338 } 339 340 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 341 // Get index out of bytecode pointer. 342 get_cache_index_at_bcp(index, 1, sizeof(u4)); 343 344 // Get the address of the ResolvedIndyEntry array 345 get_constant_pool_cache(cache); 346 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 347 348 // Scale the index to form a byte offset into the ResolvedIndyEntry array 349 size_t entry_size = sizeof(ResolvedIndyEntry); 350 if (is_power_of_2(entry_size)) { 351 z_sllg(index, index, exact_log2(entry_size)); 352 } else { 353 z_mghi(index, entry_size); 354 } 355 356 // Calculate the final field address. 357 z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache); 358 } 359 360 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 361 // Get field index out of bytecode pointer. 362 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 363 364 // Get the address of the ResolvedFieldEntry array. 365 get_constant_pool_cache(cache); 366 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset()))); 367 368 // Scale the index to form a byte offset into the ResolvedFieldEntry array 369 size_t entry_size = sizeof(ResolvedFieldEntry); 370 if (is_power_of_2(entry_size)) { 371 z_sllg(index, index, exact_log2(entry_size)); 372 } else { 373 z_mghi(index, entry_size); 374 } 375 376 // Calculate the final field address. 377 z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache); 378 } 379 380 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 381 // Get field index out of bytecode pointer. 382 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 383 384 // Get the address of the ResolvedMethodEntry array. 385 get_constant_pool_cache(cache); 386 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset()))); 387 388 // Scale the index to form a byte offset into the ResolvedMethodEntry array 389 size_t entry_size = sizeof(ResolvedMethodEntry); 390 if (is_power_of_2(entry_size)) { 391 z_sllg(index, index, exact_log2(entry_size)); 392 } else { 393 z_mghi(index, entry_size); 394 } 395 396 // Calculate the final field address. 397 z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache); 398 } 399 400 // Load object from cpool->resolved_references(index). 401 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { 402 assert_different_registers(result, index); 403 get_constant_pool(result); 404 405 // Convert 406 // - from field index to resolved_references() index and 407 // - from word index to byte offset. 408 // Since this is a java object, it is potentially compressed. 409 Register tmp = index; // reuse 410 z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. 411 // Load pointer for resolved_references[] objArray. 412 z_lg(result, in_bytes(ConstantPool::cache_offset()), result); 413 z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result); 414 resolve_oop_handle(result); // Load resolved references array itself. 415 #ifdef ASSERT 416 NearLabel index_ok; 417 z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); 418 z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); 419 compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); 420 stop("resolved reference index out of bounds", 0x09256); 421 bind(index_ok); 422 #endif 423 z_agr(result, index); // Address of indexed array element. 424 load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg); 425 } 426 427 // load cpool->resolved_klass_at(index) 428 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) { 429 // int value = *(Rcpool->int_at_addr(which)); 430 // int resolved_klass_index = extract_low_short_from_int(value); 431 z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian) 432 z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset' 433 z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses 434 z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes())); 435 } 436 437 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 438 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. 439 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 440 Register Rsuper_klass, 441 Register Rtmp1, 442 Register Rtmp2, 443 Label &ok_is_subtype) { 444 // Profile the not-null value's klass. 445 profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); 446 447 // Do the check. 448 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 449 } 450 451 // Pop topmost element from stack. It just disappears. 452 // Useful if consumed previously by access via stackTop(). 453 void InterpreterMacroAssembler::popx(int len) { 454 add2reg(Z_esp, len*Interpreter::stackElementSize); 455 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 456 } 457 458 // Get Address object of stack top. No checks. No pop. 459 // Purpose: - Provide address of stack operand to exploit reg-mem operations. 460 // - Avoid RISC-like mem2reg - reg-reg-op sequence. 461 Address InterpreterMacroAssembler::stackTop() { 462 return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); 463 } 464 465 void InterpreterMacroAssembler::pop_i(Register r) { 466 z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 467 add2reg(Z_esp, Interpreter::stackElementSize); 468 assert_different_registers(r, Z_R1_scratch); 469 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 470 } 471 472 void InterpreterMacroAssembler::pop_ptr(Register r) { 473 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 474 add2reg(Z_esp, Interpreter::stackElementSize); 475 assert_different_registers(r, Z_R1_scratch); 476 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 477 } 478 479 void InterpreterMacroAssembler::pop_l(Register r) { 480 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 481 add2reg(Z_esp, 2*Interpreter::stackElementSize); 482 assert_different_registers(r, Z_R1_scratch); 483 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 484 } 485 486 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 487 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); 488 add2reg(Z_esp, Interpreter::stackElementSize); 489 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 490 } 491 492 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 493 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); 494 add2reg(Z_esp, 2*Interpreter::stackElementSize); 495 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 496 } 497 498 void InterpreterMacroAssembler::push_i(Register r) { 499 assert_different_registers(r, Z_R1_scratch); 500 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 501 z_st(r, Address(Z_esp)); 502 add2reg(Z_esp, -Interpreter::stackElementSize); 503 } 504 505 void InterpreterMacroAssembler::push_ptr(Register r) { 506 z_stg(r, Address(Z_esp)); 507 add2reg(Z_esp, -Interpreter::stackElementSize); 508 } 509 510 void InterpreterMacroAssembler::push_l(Register r) { 511 assert_different_registers(r, Z_R1_scratch); 512 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 513 int offset = -Interpreter::stackElementSize; 514 z_stg(r, Address(Z_esp, offset)); 515 clear_mem(Address(Z_esp), Interpreter::stackElementSize); 516 add2reg(Z_esp, 2 * offset); 517 } 518 519 void InterpreterMacroAssembler::push_f(FloatRegister f) { 520 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 521 freg2mem_opt(f, Address(Z_esp), false); 522 add2reg(Z_esp, -Interpreter::stackElementSize); 523 } 524 525 void InterpreterMacroAssembler::push_d(FloatRegister d) { 526 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 527 int offset = -Interpreter::stackElementSize; 528 freg2mem_opt(d, Address(Z_esp, offset)); 529 add2reg(Z_esp, 2 * offset); 530 } 531 532 void InterpreterMacroAssembler::push(TosState state) { 533 verify_oop(Z_tos, state); 534 switch (state) { 535 case atos: push_ptr(); break; 536 case btos: push_i(); break; 537 case ztos: 538 case ctos: 539 case stos: push_i(); break; 540 case itos: push_i(); break; 541 case ltos: push_l(); break; 542 case ftos: push_f(); break; 543 case dtos: push_d(); break; 544 case vtos: /* nothing to do */ break; 545 default : ShouldNotReachHere(); 546 } 547 } 548 549 void InterpreterMacroAssembler::pop(TosState state) { 550 switch (state) { 551 case atos: pop_ptr(Z_tos); break; 552 case btos: pop_i(Z_tos); break; 553 case ztos: 554 case ctos: 555 case stos: pop_i(Z_tos); break; 556 case itos: pop_i(Z_tos); break; 557 case ltos: pop_l(Z_tos); break; 558 case ftos: pop_f(Z_ftos); break; 559 case dtos: pop_d(Z_ftos); break; 560 case vtos: /* nothing to do */ break; 561 default : ShouldNotReachHere(); 562 } 563 verify_oop(Z_tos, state); 564 } 565 566 // Helpers for swap and dup. 567 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 568 z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 569 } 570 571 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 572 z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 573 } 574 575 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { 576 // Satisfy interpreter calling convention (see generate_normal_entry()). 577 z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). 578 // Record top_frame_sp, because the callee might modify it, if it's compiled. 579 assert_different_registers(Z_R1, method); 580 z_sgrk(Z_R1, Z_SP, Z_fp); 581 z_srag(Z_R1, Z_R1, Interpreter::logStackElementSize); 582 z_stg(Z_R1, _z_ijava_state_neg(top_frame_sp), Z_fp); 583 save_bcp(); 584 save_esp(); 585 z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). 586 } 587 588 // Jump to from_interpreted entry of a call unless single stepping is possible 589 // in this thread in which case we must call the i2i entry. 590 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 591 assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); 592 prepare_to_jump_from_interpreted(method); 593 594 if (JvmtiExport::can_post_interpreter_events()) { 595 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 596 // compiled code in threads for which the event is enabled. Check here for 597 // interp_only_mode if these events CAN be enabled. 598 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 599 MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 600 z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. 601 // Run interpreted. 602 z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); 603 z_br(Z_R1_scratch); 604 } else { 605 // Run compiled code. 606 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 607 z_br(Z_R1_scratch); 608 } 609 } 610 611 #ifdef ASSERT 612 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { 613 // About to read or write Resp[0]. 614 // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. 615 address reentry = nullptr; 616 617 { 618 // Check if the frame pointer in Z_fp is correct. 619 NearLabel OK; 620 z_cg(Z_fp, 0, Z_SP); 621 z_bre(OK); 622 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); 623 bind(OK); 624 } 625 { 626 // Resp must not point into or below the operand stack, 627 // i.e. IJAVA_STATE.monitors > Resp. 628 NearLabel OK; 629 Register Rmonitors = Rtemp; 630 get_monitors(Rmonitors); 631 compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); 632 reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); 633 bind(OK); 634 } 635 { 636 // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below 637 // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). 638 NearLabel OK; 639 Register Rabi_bottom = Rtemp; 640 add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); 641 compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); 642 reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); 643 bind(OK); 644 } 645 } 646 647 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { 648 Label magic_ok; 649 load_const_optimized(tmp, frame::z_istate_magic_number); 650 z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); 651 z_bre(magic_ok); 652 stop_static("error: wrong magic number in ijava_state access"); 653 bind(magic_ok); 654 } 655 #endif // ASSERT 656 657 void InterpreterMacroAssembler::save_bcp() { 658 z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 659 asm_assert_ijava_state_magic(Z_bcp); 660 NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); 661 } 662 663 void InterpreterMacroAssembler::restore_bcp() { 664 asm_assert_ijava_state_magic(Z_bcp); 665 z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 666 } 667 668 void InterpreterMacroAssembler::save_esp(Register fp) { 669 if (fp == noreg) { 670 fp = Z_fp; 671 } 672 z_sgrk(Z_R0, Z_esp, fp); 673 z_srag(Z_R0, Z_R0, Interpreter::logStackElementSize); 674 z_stg(Z_R0, Address(fp, _z_ijava_state_neg(esp))); 675 } 676 677 void InterpreterMacroAssembler::restore_esp() { 678 asm_assert_ijava_state_magic(Z_esp); 679 z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 680 z_slag(Z_esp, Z_esp, Interpreter::logStackElementSize); 681 z_agr(Z_esp, Z_fp); 682 } 683 684 void InterpreterMacroAssembler::get_monitors(Register reg) { 685 asm_assert_ijava_state_magic(reg); 686 #ifdef ASSERT 687 NearLabel ok; 688 z_cg(Z_fp, 0, Z_SP); 689 z_bre(ok); 690 stop("Z_fp is corrupted"); 691 bind(ok); 692 #endif // ASSERT 693 mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 694 z_slag(reg, reg, Interpreter::logStackElementSize); 695 z_agr(reg, Z_fp); 696 } 697 698 void InterpreterMacroAssembler::save_monitors(Register reg) { 699 #ifdef ASSERT 700 NearLabel ok; 701 z_cg(Z_fp, 0, Z_SP); 702 z_bre(ok); 703 stop("Z_fp is corrupted"); 704 bind(ok); 705 #endif // ASSERT 706 z_sgr(reg, Z_fp); 707 z_srag(reg, reg, Interpreter::logStackElementSize); 708 reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 709 } 710 711 void InterpreterMacroAssembler::get_mdp(Register mdp) { 712 z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); 713 } 714 715 void InterpreterMacroAssembler::save_mdp(Register mdp) { 716 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 717 } 718 719 // Values that are only read (besides initialization). 720 void InterpreterMacroAssembler::restore_locals() { 721 asm_assert_ijava_state_magic(Z_locals); 722 z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); 723 z_sllg(Z_locals, Z_locals, Interpreter::logStackElementSize); 724 z_agr(Z_locals, Z_fp); 725 } 726 727 void InterpreterMacroAssembler::get_method(Register reg) { 728 asm_assert_ijava_state_magic(reg); 729 z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); 730 } 731 732 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, 733 signedOrNot is_signed) { 734 // Rdst is an 8-byte return value!!! 735 736 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 737 // is a few (2..3) ticks, even when the load crosses a cache line 738 // boundary. In case of a cache miss, the stall could, of course, be 739 // much longer. 740 741 switch (is_signed) { 742 case Signed: 743 z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); 744 break; 745 case Unsigned: 746 z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); 747 break; 748 default: 749 ShouldNotReachHere(); 750 } 751 } 752 753 754 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, 755 setCCOrNot set_cc) { 756 // Rdst is an 8-byte return value!!! 757 758 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 759 // is a few (2..3) ticks, even when the load crosses a cache line 760 // boundary. In case of a cache miss, the stall could, of course, be 761 // much longer. 762 763 // Both variants implement a sign-extending int2long load. 764 if (set_cc == set_CC) { 765 load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 766 } else { 767 mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 768 } 769 } 770 771 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 772 get_method(Rdst); 773 mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); 774 mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); 775 } 776 777 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 778 get_constant_pool(Rdst); 779 mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset())); 780 } 781 782 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 783 get_constant_pool(Rcpool); 784 mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset())); 785 } 786 787 // Unlock if synchronized method. 788 // 789 // Unlock the receiver if this is a synchronized method. 790 // Unlock any Java monitors from synchronized blocks. 791 // 792 // If there are locked Java monitors 793 // If throw_monitor_exception 794 // throws IllegalMonitorStateException 795 // Else if install_monitor_exception 796 // installs IllegalMonitorStateException 797 // Else 798 // no error processing 799 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 800 bool throw_monitor_exception, 801 bool install_monitor_exception) { 802 NearLabel unlocked, unlock, no_unlock; 803 804 { 805 Register R_method = Z_ARG2; 806 Register R_do_not_unlock_if_synchronized = Z_ARG3; 807 808 // Get the value of _do_not_unlock_if_synchronized into G1_scratch. 809 const Address do_not_unlock_if_synchronized(Z_thread, 810 JavaThread::do_not_unlock_if_synchronized_offset()); 811 load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); 812 z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. 813 814 // Check if synchronized method. 815 get_method(R_method); 816 verify_oop(Z_tos, state); 817 push(state); // Save tos/result. 818 testbit_ushort(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 819 z_bfalse(unlocked); 820 821 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 822 // is set. 823 compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); 824 } 825 826 // unlock monitor 827 828 // BasicObjectLock will be first in list, since this is a 829 // synchronized method. However, need to check that the object has 830 // not been unlocked by an explicit monitorexit bytecode. 831 const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); 832 // We use Z_ARG2 so that if we go slow path it will be the correct 833 // register for unlock_object to pass to VM directly. 834 load_address(Z_ARG2, monitor); // Address of first monitor. 835 z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset())); 836 compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); 837 838 if (throw_monitor_exception) { 839 // Entry already unlocked need to throw an exception. 840 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 841 should_not_reach_here(); 842 } else { 843 // Monitor already unlocked during a stack unroll. 844 // If requested, install an illegal_monitor_state_exception. 845 // Continue with stack unrolling. 846 if (install_monitor_exception) { 847 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 848 } 849 z_bru(unlocked); 850 } 851 852 bind(unlock); 853 854 unlock_object(Z_ARG2); 855 856 bind(unlocked); 857 858 // I0, I1: Might contain return value 859 860 // Check that all monitors are unlocked. 861 { 862 NearLabel loop, exception, entry, restart; 863 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 864 // We use Z_ARG2 so that if we go slow path it will be the correct 865 // register for unlock_object to pass to VM directly. 866 Register R_current_monitor = Z_ARG2; 867 Register R_monitor_block_bot = Z_ARG1; 868 const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); 869 870 bind(restart); 871 // Starting with top-most entry. 872 get_monitors(R_current_monitor); 873 // Points to word before bottom of monitor block. 874 load_address(R_monitor_block_bot, monitor_block_bot); 875 z_bru(entry); 876 877 // Entry already locked, need to throw exception. 878 bind(exception); 879 880 if (throw_monitor_exception) { 881 // Throw exception. 882 MacroAssembler::call_VM(noreg, 883 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 884 throw_illegal_monitor_state_exception)); 885 should_not_reach_here(); 886 } else { 887 // Stack unrolling. Unlock object and install illegal_monitor_exception. 888 // Unlock does not block, so don't have to worry about the frame. 889 // We don't have to preserve c_rarg1 since we are going to throw an exception. 890 unlock_object(R_current_monitor); 891 if (install_monitor_exception) { 892 call_VM(noreg, CAST_FROM_FN_PTR(address, 893 InterpreterRuntime:: 894 new_illegal_monitor_state_exception)); 895 } 896 z_bru(restart); 897 } 898 899 bind(loop); 900 // Check if current entry is used. 901 load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset())); 902 z_brne(exception); 903 904 add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. 905 bind(entry); 906 compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); 907 } 908 909 bind(no_unlock); 910 pop(state); 911 verify_oop(Z_tos, state); 912 } 913 914 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) { 915 get_method(ret_type); 916 z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset()))); 917 z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset()))); 918 919 Label notBool, notByte, notChar, done; 920 921 // common case first 922 compareU32_and_branch(ret_type, T_INT, bcondEqual, done); 923 924 compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool); 925 z_nilf(result, 0x1); 926 z_bru(done); 927 928 bind(notBool); 929 compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte); 930 z_lbr(result, result); 931 z_bru(done); 932 933 bind(notByte); 934 compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar); 935 z_nilf(result, 0xffff); 936 z_bru(done); 937 938 bind(notChar); 939 // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort); 940 z_lhr(result, result); 941 942 // Nothing to do for T_INT 943 bind(done); 944 } 945 946 // remove activation 947 // 948 // Unlock the receiver if this is a synchronized method. 949 // Unlock any Java monitors from synchronized blocks. 950 // Remove the activation from the stack. 951 // 952 // If there are locked Java monitors 953 // If throw_monitor_exception 954 // throws IllegalMonitorStateException 955 // Else if install_monitor_exception 956 // installs IllegalMonitorStateException 957 // Else 958 // no error processing 959 void InterpreterMacroAssembler::remove_activation(TosState state, 960 Register return_pc, 961 bool throw_monitor_exception, 962 bool install_monitor_exception, 963 bool notify_jvmti) { 964 BLOCK_COMMENT("remove_activation {"); 965 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 966 967 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 968 notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); 969 970 if (StackReservedPages > 0) { 971 BLOCK_COMMENT("reserved_stack_check:"); 972 // Test if reserved zone needs to be enabled. 973 Label no_reserved_zone_enabling; 974 975 // check if already enabled - if so no re-enabling needed 976 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 977 z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset())); 978 compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling); 979 980 // Compare frame pointers. There is no good stack pointer, as with stack 981 // frame compression we can get different SPs when we do calls. A subsequent 982 // call could have a smaller SP, so that this compare succeeds for an 983 // inner call of the method annotated with ReservedStack. 984 z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); 985 z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. 986 z_brl(no_reserved_zone_enabling); 987 988 // Enable reserved zone again, throw stack overflow exception. 989 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); 990 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 991 992 should_not_reach_here(); 993 994 bind(no_reserved_zone_enabling); 995 } 996 997 verify_oop(Z_tos, state); 998 999 pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); 1000 BLOCK_COMMENT("} remove_activation"); 1001 } 1002 1003 // lock object 1004 // 1005 // Registers alive 1006 // monitor (Z_R10) - Address of the BasicObjectLock to be used for locking, 1007 // which must be initialized with the object to lock. 1008 // object (Z_R11, Z_R2) - Address of the object to be locked. 1009 // templateTable (monitorenter) is using Z_R2 for object 1010 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 1011 const Register header = Z_ARG5; 1012 const Register tmp = Z_R1_scratch; 1013 1014 NearLabel done, slow_case; 1015 1016 lightweight_lock(monitor, object, header, tmp, slow_case); 1017 z_bru(done); 1018 1019 bind(slow_case); 1020 call_VM(noreg, 1021 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1022 monitor); 1023 bind(done); 1024 } 1025 1026 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1027 // 1028 // Registers alive 1029 // monitor - address of the BasicObjectLock to be used for locking, 1030 // which must be initialized with the object to lock. 1031 // 1032 // Throw IllegalMonitorException if object is not locked by current thread. 1033 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { 1034 const Register header = Z_ARG4; 1035 const Register current_header = Z_R1_scratch; 1036 Address obj_entry(monitor, BasicObjectLock::obj_offset()); 1037 Label done, slow_case; 1038 1039 if (object == noreg) { 1040 // In the template interpreter, we must assure that the object 1041 // entry in the monitor is cleared on all paths. Thus we move 1042 // loading up to here, and clear the entry afterwards. 1043 object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. 1044 z_lg(object, obj_entry); 1045 } 1046 1047 assert_different_registers(monitor, object, header, current_header); 1048 1049 clear_mem(obj_entry, sizeof(oop)); 1050 1051 lightweight_unlock(object, header, current_header, slow_case); 1052 z_bru(done); 1053 1054 // The lock has been converted into a heavy lock and hence 1055 // we need to get into the slow case. 1056 bind(slow_case); 1057 z_stg(object, obj_entry); // Restore object entry, has been cleared above. 1058 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1059 bind(done); 1060 } 1061 1062 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { 1063 assert(ProfileInterpreter, "must be profiling interpreter"); 1064 load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); 1065 z_brz(zero_continue); 1066 } 1067 1068 // Set the method data pointer for the current bcp. 1069 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1070 assert(ProfileInterpreter, "must be profiling interpreter"); 1071 Label set_mdp; 1072 Register mdp = Z_ARG4; 1073 Register method = Z_ARG5; 1074 1075 get_method(method); 1076 // Test MDO to avoid the call if it is null. 1077 load_and_test_long(mdp, method2_(method, method_data)); 1078 z_brz(set_mdp); 1079 1080 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); 1081 // Z_RET: mdi 1082 // Mdo is guaranteed to be non-zero here, we checked for it before the call. 1083 assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); 1084 z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. 1085 add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); 1086 1087 bind(set_mdp); 1088 save_mdp(mdp); 1089 } 1090 1091 void InterpreterMacroAssembler::verify_method_data_pointer() { 1092 assert(ProfileInterpreter, "must be profiling interpreter"); 1093 #ifdef ASSERT 1094 NearLabel verify_continue; 1095 Register bcp_expected = Z_ARG3; 1096 Register mdp = Z_ARG4; 1097 Register method = Z_ARG5; 1098 1099 test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue 1100 get_method(method); 1101 1102 // If the mdp is valid, it will point to a DataLayout header which is 1103 // consistent with the bcp. The converse is highly probable also. 1104 load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); 1105 z_ag(bcp_expected, Address(method, Method::const_offset())); 1106 load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); 1107 compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); 1108 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); 1109 bind(verify_continue); 1110 #endif // ASSERT 1111 } 1112 1113 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { 1114 assert(ProfileInterpreter, "must be profiling interpreter"); 1115 z_stg(value, constant, mdp_in); 1116 } 1117 1118 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1119 int constant, 1120 Register tmp, 1121 bool decrement) { 1122 assert_different_registers(mdp_in, tmp); 1123 // counter address 1124 Address data(mdp_in, constant); 1125 const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; 1126 add2mem_64(Address(mdp_in, constant), delta, tmp); 1127 } 1128 1129 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1130 int flag_byte_constant) { 1131 assert(ProfileInterpreter, "must be profiling interpreter"); 1132 // Set the flag. 1133 z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); 1134 } 1135 1136 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1137 int offset, 1138 Register value, 1139 Register test_value_out, 1140 Label& not_equal_continue) { 1141 assert(ProfileInterpreter, "must be profiling interpreter"); 1142 if (test_value_out == noreg) { 1143 z_cg(value, Address(mdp_in, offset)); 1144 z_brne(not_equal_continue); 1145 } else { 1146 // Put the test value into a register, so caller can use it: 1147 z_lg(test_value_out, Address(mdp_in, offset)); 1148 compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); 1149 } 1150 } 1151 1152 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { 1153 update_mdp_by_offset(mdp_in, noreg, offset_of_disp); 1154 } 1155 1156 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1157 Register dataidx, 1158 int offset_of_disp) { 1159 assert(ProfileInterpreter, "must be profiling interpreter"); 1160 Address disp_address(mdp_in, dataidx, offset_of_disp); 1161 Assembler::z_ag(mdp_in, disp_address); 1162 save_mdp(mdp_in); 1163 } 1164 1165 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { 1166 assert(ProfileInterpreter, "must be profiling interpreter"); 1167 add2reg(mdp_in, constant); 1168 save_mdp(mdp_in); 1169 } 1170 1171 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1172 assert(ProfileInterpreter, "must be profiling interpreter"); 1173 assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); 1174 call_VM(noreg, 1175 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1176 return_bci); 1177 } 1178 1179 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { 1180 if (ProfileInterpreter) { 1181 Label profile_continue; 1182 1183 // If no method data exists, go to profile_continue. 1184 // Otherwise, assign to mdp. 1185 test_method_data_pointer(mdp, profile_continue); 1186 1187 // We are taking a branch. Increment the taken count. 1188 // We inline increment_mdp_data_at to return bumped_count in a register 1189 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1190 Address data(mdp, JumpData::taken_offset()); 1191 z_lg(bumped_count, data); 1192 // 64-bit overflow is very unlikely. Saturation to 32-bit values is 1193 // performed when reading the counts. 1194 add2reg(bumped_count, DataLayout::counter_increment); 1195 z_stg(bumped_count, data); // Store back out 1196 1197 // The method data pointer needs to be updated to reflect the new target. 1198 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1199 bind(profile_continue); 1200 } 1201 } 1202 1203 // Kills Z_R1_scratch. 1204 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1205 if (ProfileInterpreter) { 1206 Label profile_continue; 1207 1208 // If no method data exists, go to profile_continue. 1209 test_method_data_pointer(mdp, profile_continue); 1210 1211 // We are taking a branch. Increment the not taken count. 1212 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); 1213 1214 // The method data pointer needs to be updated to correspond to 1215 // the next bytecode. 1216 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1217 bind(profile_continue); 1218 } 1219 } 1220 1221 // Kills: Z_R1_scratch. 1222 void InterpreterMacroAssembler::profile_call(Register mdp) { 1223 if (ProfileInterpreter) { 1224 Label profile_continue; 1225 1226 // If no method data exists, go to profile_continue. 1227 test_method_data_pointer(mdp, profile_continue); 1228 1229 // We are making a call. Increment the count. 1230 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1231 1232 // The method data pointer needs to be updated to reflect the new target. 1233 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1234 bind(profile_continue); 1235 } 1236 } 1237 1238 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1239 if (ProfileInterpreter) { 1240 Label profile_continue; 1241 1242 // If no method data exists, go to profile_continue. 1243 test_method_data_pointer(mdp, profile_continue); 1244 1245 // We are making a call. Increment the count. 1246 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1247 1248 // The method data pointer needs to be updated to reflect the new target. 1249 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1250 bind(profile_continue); 1251 } 1252 } 1253 1254 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1255 Register mdp, 1256 Register reg2, 1257 bool receiver_can_be_null) { 1258 if (ProfileInterpreter) { 1259 NearLabel profile_continue; 1260 1261 // If no method data exists, go to profile_continue. 1262 test_method_data_pointer(mdp, profile_continue); 1263 1264 NearLabel skip_receiver_profile; 1265 if (receiver_can_be_null) { 1266 NearLabel not_null; 1267 compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); 1268 // We are making a call. Increment the count for null receiver. 1269 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1270 z_bru(skip_receiver_profile); 1271 bind(not_null); 1272 } 1273 1274 // Record the receiver type. 1275 record_klass_in_profile(receiver, mdp, reg2); 1276 bind(skip_receiver_profile); 1277 1278 // The method data pointer needs to be updated to reflect the new target. 1279 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1280 bind(profile_continue); 1281 } 1282 } 1283 1284 // This routine creates a state machine for updating the multi-row 1285 // type profile at a virtual call site (or other type-sensitive bytecode). 1286 // The machine visits each row (of receiver/count) until the receiver type 1287 // is found, or until it runs out of rows. At the same time, it remembers 1288 // the location of the first empty row. (An empty row records null for its 1289 // receiver, and can be allocated for a newly-observed receiver type.) 1290 // Because there are two degrees of freedom in the state, a simple linear 1291 // search will not work; it must be a decision tree. Hence this helper 1292 // function is recursive, to generate the required tree structured code. 1293 // It's the interpreter, so we are trading off code space for speed. 1294 // See below for example code. 1295 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1296 Register receiver, Register mdp, 1297 Register reg2, int start_row, 1298 Label& done) { 1299 if (TypeProfileWidth == 0) { 1300 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1301 return; 1302 } 1303 1304 int last_row = VirtualCallData::row_limit() - 1; 1305 assert(start_row <= last_row, "must be work left to do"); 1306 // Test this row for both the receiver and for null. 1307 // Take any of three different outcomes: 1308 // 1. found receiver => increment count and goto done 1309 // 2. found null => keep looking for case 1, maybe allocate this cell 1310 // 3. found something else => keep looking for cases 1 and 2 1311 // Case 3 is handled by a recursive call. 1312 for (int row = start_row; row <= last_row; row++) { 1313 NearLabel next_test; 1314 bool test_for_null_also = (row == start_row); 1315 1316 // See if the receiver is receiver[n]. 1317 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1318 test_mdp_data_at(mdp, recvr_offset, receiver, 1319 (test_for_null_also ? reg2 : noreg), 1320 next_test); 1321 // (Reg2 now contains the receiver from the CallData.) 1322 1323 // The receiver is receiver[n]. Increment count[n]. 1324 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1325 increment_mdp_data_at(mdp, count_offset); 1326 z_bru(done); 1327 bind(next_test); 1328 1329 if (test_for_null_also) { 1330 Label found_null; 1331 // Failed the equality check on receiver[n]... Test for null. 1332 z_ltgr(reg2, reg2); 1333 if (start_row == last_row) { 1334 // The only thing left to do is handle the null case. 1335 z_brz(found_null); 1336 // Receiver did not match any saved receiver and there is no empty row for it. 1337 // Increment total counter to indicate polymorphic case. 1338 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1339 z_bru(done); 1340 bind(found_null); 1341 break; 1342 } 1343 // Since null is rare, make it be the branch-taken case. 1344 z_brz(found_null); 1345 1346 // Put all the "Case 3" tests here. 1347 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done); 1348 1349 // Found a null. Keep searching for a matching receiver, 1350 // but remember that this is an empty (unused) slot. 1351 bind(found_null); 1352 } 1353 } 1354 1355 // In the fall-through case, we found no matching receiver, but we 1356 // observed the receiver[start_row] is null. 1357 1358 // Fill in the receiver field and increment the count. 1359 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1360 set_mdp_data_at(mdp, recvr_offset, receiver); 1361 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1362 load_const_optimized(reg2, DataLayout::counter_increment); 1363 set_mdp_data_at(mdp, count_offset, reg2); 1364 if (start_row > 0) { 1365 z_bru(done); 1366 } 1367 } 1368 1369 // Example state machine code for three profile rows: 1370 // // main copy of decision tree, rooted at row[1] 1371 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1372 // if (row[0].rec != nullptr) { 1373 // // inner copy of decision tree, rooted at row[1] 1374 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1375 // if (row[1].rec != nullptr) { 1376 // // degenerate decision tree, rooted at row[2] 1377 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1378 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1379 // row[2].init(rec); goto done; 1380 // } else { 1381 // // remember row[1] is empty 1382 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1383 // row[1].init(rec); goto done; 1384 // } 1385 // } else { 1386 // // remember row[0] is empty 1387 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1388 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1389 // row[0].init(rec); goto done; 1390 // } 1391 // done: 1392 1393 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1394 Register mdp, Register reg2) { 1395 assert(ProfileInterpreter, "must be profiling"); 1396 Label done; 1397 1398 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1399 1400 bind (done); 1401 } 1402 1403 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1404 if (ProfileInterpreter) { 1405 NearLabel profile_continue; 1406 uint row; 1407 1408 // If no method data exists, go to profile_continue. 1409 test_method_data_pointer(mdp, profile_continue); 1410 1411 // Update the total ret count. 1412 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1413 1414 for (row = 0; row < RetData::row_limit(); row++) { 1415 NearLabel next_test; 1416 1417 // See if return_bci is equal to bci[n]: 1418 test_mdp_data_at(mdp, 1419 in_bytes(RetData::bci_offset(row)), 1420 return_bci, noreg, 1421 next_test); 1422 1423 // Return_bci is equal to bci[n]. Increment the count. 1424 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1425 1426 // The method data pointer needs to be updated to reflect the new target. 1427 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); 1428 z_bru(profile_continue); 1429 bind(next_test); 1430 } 1431 1432 update_mdp_for_ret(return_bci); 1433 1434 bind(profile_continue); 1435 } 1436 } 1437 1438 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1439 if (ProfileInterpreter) { 1440 Label profile_continue; 1441 1442 // If no method data exists, go to profile_continue. 1443 test_method_data_pointer(mdp, profile_continue); 1444 1445 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1446 1447 // The method data pointer needs to be updated. 1448 int mdp_delta = in_bytes(BitData::bit_data_size()); 1449 if (TypeProfileCasts) { 1450 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1451 } 1452 update_mdp_by_constant(mdp, mdp_delta); 1453 1454 bind(profile_continue); 1455 } 1456 } 1457 1458 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1459 if (ProfileInterpreter) { 1460 Label profile_continue; 1461 1462 // If no method data exists, go to profile_continue. 1463 test_method_data_pointer(mdp, profile_continue); 1464 1465 // The method data pointer needs to be updated. 1466 int mdp_delta = in_bytes(BitData::bit_data_size()); 1467 if (TypeProfileCasts) { 1468 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1469 1470 // Record the object type. 1471 record_klass_in_profile(klass, mdp, reg2); 1472 } 1473 update_mdp_by_constant(mdp, mdp_delta); 1474 1475 bind(profile_continue); 1476 } 1477 } 1478 1479 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1480 if (ProfileInterpreter) { 1481 Label profile_continue; 1482 1483 // If no method data exists, go to profile_continue. 1484 test_method_data_pointer(mdp, profile_continue); 1485 1486 // Update the default case count. 1487 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); 1488 1489 // The method data pointer needs to be updated. 1490 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); 1491 1492 bind(profile_continue); 1493 } 1494 } 1495 1496 // Kills: index, scratch1, scratch2. 1497 void InterpreterMacroAssembler::profile_switch_case(Register index, 1498 Register mdp, 1499 Register scratch1, 1500 Register scratch2) { 1501 if (ProfileInterpreter) { 1502 Label profile_continue; 1503 assert_different_registers(index, mdp, scratch1, scratch2); 1504 1505 // If no method data exists, go to profile_continue. 1506 test_method_data_pointer(mdp, profile_continue); 1507 1508 // Build the base (index * per_case_size_in_bytes()) + 1509 // case_array_offset_in_bytes(). 1510 z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1511 add2reg(index, in_bytes(MultiBranchData::case_array_offset())); 1512 1513 // Add the calculated base to the mdp -> address of the case' data. 1514 Address case_data_addr(mdp, index); 1515 Register case_data = scratch1; 1516 load_address(case_data, case_data_addr); 1517 1518 // Update the case count. 1519 increment_mdp_data_at(case_data, 1520 in_bytes(MultiBranchData::relative_count_offset()), 1521 scratch2); 1522 1523 // The method data pointer needs to be updated. 1524 update_mdp_by_offset(mdp, 1525 index, 1526 in_bytes(MultiBranchData::relative_displacement_offset())); 1527 1528 bind(profile_continue); 1529 } 1530 } 1531 1532 // kills: R0, R1, flags, loads klass from obj (if not null) 1533 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { 1534 NearLabel null_seen, init_klass, do_nothing, do_update; 1535 1536 // Klass = obj is allowed. 1537 const Register tmp = Z_R1; 1538 assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); 1539 assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); 1540 1541 z_lg(tmp, mdo_addr); 1542 if (cmp_done) { 1543 z_brz(null_seen); 1544 } else { 1545 compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); 1546 } 1547 1548 MacroAssembler::verify_oop(obj, FILE_AND_LINE); 1549 load_klass(klass, obj); 1550 1551 // Klass seen before, nothing to do (regardless of unknown bit). 1552 z_lgr(Z_R0, tmp); 1553 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 1554 z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); 1555 compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); 1556 1557 // Already unknown. Nothing to do anymore. 1558 z_tmll(tmp, TypeEntries::type_unknown); 1559 z_brc(Assembler::bcondAllOne, do_nothing); 1560 1561 z_lgr(Z_R0, tmp); 1562 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 1563 z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); 1564 compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); 1565 1566 // Different than before. Cannot keep accurate profile. 1567 z_oill(tmp, TypeEntries::type_unknown); 1568 z_bru(do_update); 1569 1570 bind(init_klass); 1571 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1572 z_ogr(tmp, klass); 1573 z_bru(do_update); 1574 1575 bind(null_seen); 1576 // Set null_seen if obj is 0. 1577 z_oill(tmp, TypeEntries::null_seen); 1578 // fallthru: z_bru(do_update); 1579 1580 bind(do_update); 1581 z_stg(tmp, mdo_addr); 1582 1583 bind(do_nothing); 1584 } 1585 1586 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1587 if (!ProfileInterpreter) { 1588 return; 1589 } 1590 1591 assert_different_registers(mdp, callee, tmp); 1592 1593 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1594 Label profile_continue; 1595 1596 test_method_data_pointer(mdp, profile_continue); 1597 1598 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1599 1600 z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, 1601 is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1602 z_brne(profile_continue); 1603 1604 if (MethodData::profile_arguments()) { 1605 NearLabel done; 1606 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1607 add2reg(mdp, off_to_args); 1608 1609 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1610 if (i > 0 || MethodData::profile_return()) { 1611 // If return value type is profiled we may have no argument to profile. 1612 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1613 add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); 1614 compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); 1615 } 1616 z_lg(tmp, Address(callee, Method::const_offset())); 1617 z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1618 // Stack offset o (zero based) from the start of the argument 1619 // list. For n arguments translates into offset n - o - 1 from 1620 // the end of the argument list. But there is an extra slot at 1621 // the top of the stack. So the offset is n - o from Lesp. 1622 z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 1623 z_sllg(tmp, tmp, Interpreter::logStackElementSize); 1624 Address stack_slot_addr(tmp, Z_esp); 1625 z_ltg(tmp, stack_slot_addr); 1626 1627 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 1628 profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); 1629 1630 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1631 add2reg(mdp, to_add); 1632 off_to_args += to_add; 1633 } 1634 1635 if (MethodData::profile_return()) { 1636 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1637 add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1638 } 1639 1640 bind(done); 1641 1642 if (MethodData::profile_return()) { 1643 // We're right after the type profile for the last 1644 // argument. Tmp is the number of cells left in the 1645 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1646 // if there's a return to profile. 1647 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1648 z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); 1649 z_agr(mdp, tmp); 1650 } 1651 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 1652 } else { 1653 assert(MethodData::profile_return(), "either profile call args or call ret"); 1654 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1655 } 1656 1657 // Mdp points right after the end of the 1658 // CallTypeData/VirtualCallTypeData, right after the cells for the 1659 // return value type if there's one. 1660 bind(profile_continue); 1661 } 1662 } 1663 1664 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1665 assert_different_registers(mdp, ret, tmp); 1666 if (ProfileInterpreter && MethodData::profile_return()) { 1667 Label profile_continue; 1668 1669 test_method_data_pointer(mdp, profile_continue); 1670 1671 if (MethodData::profile_return_jsr292_only()) { 1672 // If we don't profile all invoke bytecodes we must make sure 1673 // it's a bytecode we indeed profile. We can't go back to the 1674 // beginning of the ProfileData we intend to update to check its 1675 // type because we're right after it and we don't known its 1676 // length. 1677 NearLabel do_profile; 1678 Address bc(Z_bcp); 1679 z_lb(tmp, bc); 1680 compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); 1681 compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); 1682 get_method(tmp); 1683 // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. 1684 if (Method::intrinsic_id_size_in_bytes() == 1) { 1685 z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1686 } else { 1687 assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); 1688 z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp); 1689 z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1690 } 1691 z_brne(profile_continue); 1692 1693 bind(do_profile); 1694 } 1695 1696 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1697 profile_obj_type(ret, mdo_ret_addr, tmp); 1698 1699 bind(profile_continue); 1700 } 1701 } 1702 1703 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1704 if (ProfileInterpreter && MethodData::profile_parameters()) { 1705 Label profile_continue, done; 1706 1707 test_method_data_pointer(mdp, profile_continue); 1708 1709 // Load the offset of the area within the MDO used for 1710 // parameters. If it's negative we're not profiling any parameters. 1711 Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); 1712 load_and_test_int2long(tmp1, parm_di_addr); 1713 z_brl(profile_continue); 1714 1715 // Compute a pointer to the area for parameters from the offset 1716 // and move the pointer to the slot for the last 1717 // parameters. Collect profiling from last parameter down. 1718 // mdo start + parameters offset + array length - 1 1719 1720 // Pointer to the parameter area in the MDO. 1721 z_agr(mdp, tmp1); 1722 1723 // Offset of the current profile entry to update. 1724 const Register entry_offset = tmp1; 1725 // entry_offset = array len in number of cells. 1726 z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); 1727 // entry_offset (number of cells) = array len - size of 1 entry 1728 add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); 1729 // entry_offset in bytes 1730 z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1731 1732 Label loop; 1733 bind(loop); 1734 1735 Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); 1736 Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); 1737 1738 // Load offset on the stack from the slot for this parameter. 1739 z_lg(tmp2, arg_off); 1740 z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); 1741 z_lcgr(tmp2); // Negate. 1742 1743 // Profile the parameter. 1744 z_ltg(tmp2, Address(Z_locals, tmp2)); 1745 profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); 1746 1747 // Go to next parameter. 1748 z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); 1749 z_brnl(loop); 1750 1751 bind(profile_continue); 1752 } 1753 } 1754 1755 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1756 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1757 int increment, 1758 Address mask, 1759 Register scratch, 1760 bool preloaded, 1761 branch_condition cond, 1762 Label *where) { 1763 assert_different_registers(counter_addr.base(), scratch); 1764 if (preloaded) { 1765 add2reg(scratch, increment); 1766 reg2mem_opt(scratch, counter_addr, false); 1767 } else { 1768 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { 1769 z_alsi(counter_addr.disp20(), counter_addr.base(), increment); 1770 mem2reg_signed_opt(scratch, counter_addr); 1771 } else { 1772 mem2reg_signed_opt(scratch, counter_addr); 1773 add2reg(scratch, increment); 1774 reg2mem_opt(scratch, counter_addr, false); 1775 } 1776 } 1777 z_n(scratch, mask); 1778 if (where) { z_brc(cond, *where); } 1779 } 1780 1781 // Get MethodCounters object for given method. Lazily allocated if necessary. 1782 // method - Ptr to Method object. 1783 // Rcounters - Ptr to MethodCounters object associated with Method object. 1784 // skip - Exit point if MethodCounters object can't be created (OOM condition). 1785 void InterpreterMacroAssembler::get_method_counters(Register Rmethod, 1786 Register Rcounters, 1787 Label& skip) { 1788 assert_different_registers(Rmethod, Rcounters); 1789 1790 BLOCK_COMMENT("get MethodCounters object {"); 1791 1792 Label has_counters; 1793 load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); 1794 z_brnz(has_counters); 1795 1796 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod); 1797 z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. 1798 z_brz(skip); // No MethodCounters, out of memory. 1799 1800 bind(has_counters); 1801 1802 BLOCK_COMMENT("} get MethodCounters object"); 1803 } 1804 1805 // Increment invocation counter in MethodCounters object. 1806 // Return (invocation_counter+backedge_counter) as "result" in RctrSum. 1807 // Counter values are all unsigned. 1808 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { 1809 assert(UseCompiler, "incrementing must be useful"); 1810 assert_different_registers(Rcounters, RctrSum); 1811 1812 int increment = InvocationCounter::count_increment; 1813 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1814 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1815 1816 BLOCK_COMMENT("Increment invocation counter {"); 1817 1818 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1819 // Increment the invocation counter in place, 1820 // then add the incremented value to the backedge counter. 1821 z_l(RctrSum, be_counter_offset, Rcounters); 1822 z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1823 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1824 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 1825 } else { 1826 // This path is optimized for low register consumption 1827 // at the cost of somewhat higher operand delays. 1828 // It does not need an extra temp register. 1829 1830 // Update the invocation counter. 1831 z_l(RctrSum, inv_counter_offset, Rcounters); 1832 if (RctrSum == Z_R0) { 1833 z_ahi(RctrSum, increment); 1834 } else { 1835 add2reg(RctrSum, increment); 1836 } 1837 z_st(RctrSum, inv_counter_offset, Rcounters); 1838 1839 // Mask off the state bits. 1840 z_nilf(RctrSum, InvocationCounter::count_mask_value); 1841 1842 // Add the backedge counter to the updated invocation counter to 1843 // form the result. 1844 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1845 } 1846 1847 BLOCK_COMMENT("} Increment invocation counter"); 1848 1849 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 1850 } 1851 1852 1853 // increment backedge counter in MethodCounters object. 1854 // return (invocation_counter+backedge_counter) as "result" in RctrSum 1855 // counter values are all unsigned! 1856 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { 1857 assert(UseCompiler, "incrementing must be useful"); 1858 assert_different_registers(Rcounters, RctrSum); 1859 1860 int increment = InvocationCounter::count_increment; 1861 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1862 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1863 1864 BLOCK_COMMENT("Increment backedge counter {"); 1865 1866 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1867 // Increment the invocation counter in place, 1868 // then add the incremented value to the backedge counter. 1869 z_l(RctrSum, inv_counter_offset, Rcounters); 1870 z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1871 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1872 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1873 } else { 1874 // This path is optimized for low register consumption 1875 // at the cost of somewhat higher operand delays. 1876 // It does not need an extra temp register. 1877 1878 // Update the invocation counter. 1879 z_l(RctrSum, be_counter_offset, Rcounters); 1880 if (RctrSum == Z_R0) { 1881 z_ahi(RctrSum, increment); 1882 } else { 1883 add2reg(RctrSum, increment); 1884 } 1885 z_st(RctrSum, be_counter_offset, Rcounters); 1886 1887 // Mask off the state bits. 1888 z_nilf(RctrSum, InvocationCounter::count_mask_value); 1889 1890 // Add the backedge counter to the updated invocation counter to 1891 // form the result. 1892 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 1893 } 1894 1895 BLOCK_COMMENT("} Increment backedge counter"); 1896 1897 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 1898 } 1899 1900 // Add an InterpMonitorElem to stack (see frame_s390.hpp). 1901 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, 1902 Register Rtemp1, 1903 Register Rtemp2, 1904 Register Rtemp3) { 1905 1906 const Register Rcurr_slot = Rtemp1; 1907 const Register Rlimit = Rtemp2; 1908 const jint delta = -frame::interpreter_frame_monitor_size_in_bytes(); 1909 1910 assert((delta & LongAlignmentMask) == 0, 1911 "sizeof BasicObjectLock must be even number of doublewords"); 1912 assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); 1913 assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); 1914 assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); 1915 1916 get_monitors(Rlimit); 1917 1918 // Adjust stack pointer for additional monitor entry. 1919 resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); 1920 1921 if (!stack_is_empty) { 1922 // Must copy stack contents down. 1923 NearLabel next, done; 1924 1925 // Rtemp := addr(Tos), Z_esp is pointing below it! 1926 add2reg(Rcurr_slot, wordSize, Z_esp); 1927 1928 // Nothing to do, if already at monitor area. 1929 compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); 1930 1931 bind(next); 1932 1933 // Move one stack slot. 1934 mem2reg_opt(Rtemp3, Address(Rcurr_slot)); 1935 reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); 1936 add2reg(Rcurr_slot, wordSize); 1937 compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? 1938 1939 bind(done); 1940 // Done copying stack. 1941 } 1942 1943 // Adjust expression stack and monitor pointers. 1944 add2reg(Z_esp, delta); 1945 add2reg(Rlimit, delta); 1946 save_monitors(Rlimit); 1947 } 1948 1949 // Note: Index holds the offset in bytes afterwards. 1950 // You can use this to store a new value (with Llocals as the base). 1951 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { 1952 z_sllg(index, index, LogBytesPerWord); 1953 mem2reg_opt(dst, Address(Z_locals, index), false); 1954 } 1955 1956 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 1957 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 1958 } 1959 1960 // Inline assembly for: 1961 // 1962 // if (thread is in interp_only_mode) { 1963 // InterpreterRuntime::post_method_entry(); 1964 // } 1965 1966 void InterpreterMacroAssembler::notify_method_entry() { 1967 1968 // JVMTI 1969 // Whenever JVMTI puts a thread in interp_only_mode, method 1970 // entry/exit events are sent for that thread to track stack 1971 // depth. If it is possible to enter interp_only_mode we add 1972 // the code to check if the event should be sent. 1973 if (JvmtiExport::can_post_interpreter_events()) { 1974 Label jvmti_post_done; 1975 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 1976 z_bre(jvmti_post_done); 1977 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 1978 bind(jvmti_post_done); 1979 } 1980 } 1981 1982 // Inline assembly for: 1983 // 1984 // if (thread is in interp_only_mode) { 1985 // if (!native_method) save result 1986 // InterpreterRuntime::post_method_exit(); 1987 // if (!native_method) restore result 1988 // } 1989 // if (DTraceMethodProbes) { 1990 // SharedRuntime::dtrace_method_exit(thread, method); 1991 // } 1992 // 1993 // For native methods their result is stored in z_ijava_state.lresult 1994 // and z_ijava_state.fresult before coming here. 1995 // Java methods have their result stored in the expression stack. 1996 // 1997 // Notice the dependency to frame::interpreter_frame_result(). 1998 void InterpreterMacroAssembler::notify_method_exit(bool native_method, 1999 TosState state, 2000 NotifyMethodExitMode mode) { 2001 // JVMTI 2002 // Whenever JVMTI puts a thread in interp_only_mode, method 2003 // entry/exit events are sent for that thread to track stack 2004 // depth. If it is possible to enter interp_only_mode we add 2005 // the code to check if the event should be sent. 2006 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2007 Label jvmti_post_done; 2008 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2009 z_bre(jvmti_post_done); 2010 if (!native_method) push(state); // see frame::interpreter_frame_result() 2011 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2012 if (!native_method) pop(state); 2013 bind(jvmti_post_done); 2014 } 2015 } 2016 2017 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { 2018 if (!JvmtiExport::can_post_interpreter_events()) { 2019 return; 2020 } 2021 2022 load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2023 z_brnz(Lskip); 2024 2025 } 2026 2027 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. 2028 // The return pc is loaded into the register return_pc. 2029 // 2030 // Registers updated: 2031 // return_pc - The return pc of the calling frame. 2032 // tmp1, tmp2 - scratch 2033 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { 2034 // F0 Z_SP -> caller_sp (F1's) 2035 // ... 2036 // sender_sp (F1's) 2037 // ... 2038 // F1 Z_fp -> caller_sp (F2's) 2039 // return_pc (Continuation after return from F0.) 2040 // ... 2041 // F2 caller_sp 2042 2043 // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications 2044 // (a) by a c2i adapter and (b) by generate_fixed_frame(). 2045 // In case (a) the new top frame F1 is an unextended compiled frame. 2046 // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. 2047 2048 // Case (b) seems to be redundant when returning to a interpreted caller, 2049 // because then the caller's top_frame_sp is installed as sp (see 2050 // TemplateInterpreterGenerator::generate_return_entry_for ()). But 2051 // pop_interpreter_frame() is also used in exception handling and there the 2052 // frame type of the caller is unknown, therefore top_frame_sp cannot be used, 2053 // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. 2054 2055 Register R_f1_sender_sp = tmp1; 2056 Register R_f2_sp = tmp2; 2057 2058 // First check for the interpreter frame's magic. 2059 asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); 2060 z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); 2061 z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); 2062 if (return_pc->is_valid()) 2063 z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2064 // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. 2065 resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); 2066 2067 #ifdef ASSERT 2068 // The return_pc in the new top frame is dead... at least that's my 2069 // current understanding; to assert this I overwrite it. 2070 load_const_optimized(Z_ARG3, 0xb00b1); 2071 z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2072 #endif 2073 }