1 /* 2 * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 // Major contributions by AHa, AS, JL, ML. 27 28 #include "precompiled.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "interp_masm_s390.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedIndyEntry.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 // Implementation of InterpreterMacroAssembler. 50 // This file specializes the assembler with interpreter-specific macros. 51 52 #ifdef PRODUCT 53 #define BLOCK_COMMENT(str) 54 #define BIND(label) bind(label); 55 #else 56 #define BLOCK_COMMENT(str) block_comment(str) 57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 58 #endif 59 60 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 61 assert(entry != nullptr, "Entry must have been generated by now"); 62 assert(Rscratch != Z_R0, "Can't use R0 for addressing"); 63 branch_optimized(Assembler::bcondAlways, entry); 64 } 65 66 void InterpreterMacroAssembler::empty_expression_stack(void) { 67 get_monitors(Z_R1_scratch); 68 add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); 69 } 70 71 // Dispatch code executed in the prolog of a bytecode which does not do it's 72 // own dispatch. 73 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 74 // On z/Architecture we are short on registers, therefore we do not preload the 75 // dispatch address of the next bytecode. 76 } 77 78 // Dispatch code executed in the epilog of a bytecode which does not do it's 79 // own dispatch. 80 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 81 dispatch_next(state, step); 82 } 83 84 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 85 z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. 86 add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. 87 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 88 } 89 90 // Common code to dispatch and dispatch_only. 91 // Dispatch value in Lbyte_code and increment Lbcp. 92 93 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) { 94 verify_FPU(1, state); 95 96 #ifdef ASSERT 97 address reentry = nullptr; 98 { Label OK; 99 // Check if the frame pointer in Z_fp is correct. 100 z_cg(Z_fp, 0, Z_SP); 101 z_bre(OK); 102 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); 103 bind(OK); 104 } 105 { Label OK; 106 // check if the locals pointer in Z_locals is correct 107 z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp); 108 z_bre(OK); 109 reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); 110 bind(OK); 111 } 112 #endif 113 114 // TODO: Maybe implement +VerifyActivationFrameSize here. 115 verify_oop(Z_tos, state); 116 117 // Dispatch table to use. 118 load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table; 119 120 if (generate_poll) { 121 address *sfpt_tbl = Interpreter::safept_table(state); 122 if (table != sfpt_tbl) { 123 Label dispatch; 124 const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */); 125 // Armed page has poll_bit set, if poll bit is cleared just continue. 126 z_tm(poll_byte_addr, SafepointMechanism::poll_bit()); 127 z_braz(dispatch); 128 load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table; 129 bind(dispatch); 130 } 131 } 132 133 // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. 134 // Z_bytecode must have been loaded zero-extended for this approach to be correct. 135 z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. 136 z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. 137 138 z_br(Z_tmp_1); 139 } 140 141 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 142 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 143 } 144 145 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 146 dispatch_base(state, Interpreter::normal_table(state)); 147 } 148 149 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { 150 // Load current bytecode. 151 z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); 152 dispatch_base(state, table); 153 } 154 155 // The following call_VM*_base() methods overload and mask the respective 156 // declarations/definitions in class MacroAssembler. They are meant as a "detour" 157 // to perform additional, template interpreter specific tasks before actually 158 // calling their MacroAssembler counterparts. 159 160 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { 161 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 162 // interpreter specific 163 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 164 // saved registers and no blocking/ GC can happen in leaf calls. 165 166 // super call 167 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 168 } 169 170 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { 171 // interpreter specific 172 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 173 // saved registers and no blocking/ GC can happen in leaf calls. 174 175 // super call 176 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 177 } 178 179 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 180 address entry_point, bool check_exceptions) { 181 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 182 // interpreter specific 183 184 save_bcp(); 185 save_esp(); 186 // super call 187 MacroAssembler::call_VM_base(oop_result, last_java_sp, 188 entry_point, allow_relocation, check_exceptions); 189 restore_bcp(); 190 } 191 192 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 193 address entry_point, bool allow_relocation, 194 bool check_exceptions) { 195 // interpreter specific 196 197 save_bcp(); 198 save_esp(); 199 // super call 200 MacroAssembler::call_VM_base(oop_result, last_java_sp, 201 entry_point, allow_relocation, check_exceptions); 202 restore_bcp(); 203 } 204 205 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 206 if (JvmtiExport::can_pop_frame()) { 207 BLOCK_COMMENT("check_and_handle_popframe {"); 208 Label L; 209 // Initiate popframe handling only if it is not already being 210 // processed. If the flag has the popframe_processing bit set, it 211 // means that this code is called *during* popframe handling - we 212 // don't want to reenter. 213 // TODO: Check if all four state combinations could be visible. 214 // If (processing and !pending) is an invisible/impossible state, 215 // there is optimization potential by testing both bits at once. 216 // Then, All_Zeroes and All_Ones means skip, Mixed means doit. 217 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 218 exact_log2(JavaThread::popframe_pending_bit)); 219 z_bfalse(L); 220 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 221 exact_log2(JavaThread::popframe_processing_bit)); 222 z_btrue(L); 223 224 // Call Interpreter::remove_activation_preserving_args_entry() to get the 225 // address of the same-named entrypoint in the generated interpreter code. 226 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 227 // The above call should (as its only effect) return the contents of the field 228 // _remove_activation_preserving_args_entry in Z_RET. 229 // We just jump there to have the work done. 230 z_br(Z_RET); 231 // There is no way for control to fall thru here. 232 233 bind(L); 234 BLOCK_COMMENT("} check_and_handle_popframe"); 235 } 236 } 237 238 239 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 240 Register RjvmtiState = Z_R1_scratch; 241 int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); 242 int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); 243 int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); 244 int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); 245 246 z_lg(RjvmtiState, state_off, Z_thread); 247 248 switch (state) { 249 case atos: z_lg(Z_tos, oop_off, RjvmtiState); 250 store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); 251 break; 252 case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; 253 case btos: // fall through 254 case ztos: // fall through 255 case ctos: // fall through 256 case stos: // fall through 257 case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; 258 case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; 259 case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; 260 case vtos: /* nothing to do */ break; 261 default : ShouldNotReachHere(); 262 } 263 264 // Clean up tos value in the jvmti thread state. 265 store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); 266 // Set tos state field to illegal value. 267 store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); 268 } 269 270 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 271 if (JvmtiExport::can_force_early_return()) { 272 BLOCK_COMMENT("check_and_handle_earlyret {"); 273 Label L; 274 // arg regs are save, because we are just behind the call in call_VM_base 275 Register jvmti_thread_state = Z_ARG2; 276 Register tmp = Z_ARG3; 277 load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); 278 z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit; 279 280 // Initiate earlyret handling only if it is not already being processed. 281 // If the flag has the earlyret_processing bit set, it means that this code 282 // is called *during* earlyret handling - we don't want to reenter. 283 284 assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), 285 "must fix this check, when changing the values of the earlyret enum"); 286 assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); 287 288 load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); 289 z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; 290 291 // Call Interpreter::remove_activation_early_entry() to get the address of the 292 // same-named entrypoint in the generated interpreter code. 293 assert(sizeof(TosState) == 4, "unexpected size"); 294 z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); 295 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); 296 // The above call should (as its only effect) return the contents of the field 297 // _remove_activation_preserving_args_entry in Z_RET. 298 // We just jump there to have the work done. 299 z_br(Z_RET); 300 // There is no way for control to fall thru here. 301 302 bind(L); 303 BLOCK_COMMENT("} check_and_handle_earlyret"); 304 } 305 } 306 307 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { 308 lgr_if_needed(Z_ARG1, arg_1); 309 assert(arg_2 != Z_ARG1, "smashed argument"); 310 lgr_if_needed(Z_ARG2, arg_2); 311 MacroAssembler::call_VM_leaf_base(entry_point, true); 312 } 313 314 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { 315 Address param(Z_bcp, bcp_offset); 316 317 BLOCK_COMMENT("get_cache_index_at_bcp {"); 318 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 319 if (index_size == sizeof(u2)) { 320 load_sized_value(index, param, 2, false /*signed*/); 321 } else if (index_size == sizeof(u4)) { 322 323 load_sized_value(index, param, 4, false); 324 325 // Check if the secondary index definition is still ~x, otherwise 326 // we have to change the following assembler code to calculate the 327 // plain index. 328 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 329 not_(index); // Convert to plain index. 330 } else if (index_size == sizeof(u1)) { 331 z_llgc(index, param); 332 } else { 333 ShouldNotReachHere(); 334 } 335 BLOCK_COMMENT("}"); 336 } 337 338 339 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset, 340 int bcp_offset, size_t index_size) { 341 BLOCK_COMMENT("get_cache_and_index_at_bcp {"); 342 assert_different_registers(cache, cpe_offset); 343 get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size); 344 z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache))); 345 // Convert from field index to ConstantPoolCache offset in bytes. 346 z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); 347 BLOCK_COMMENT("}"); 348 } 349 350 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 351 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 352 get_cache_index_at_bcp(index, 1, sizeof(u4)); 353 // Get address of invokedynamic array 354 get_constant_pool_cache(cache); 355 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 356 // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo) 357 z_sllg(index, index, exact_log2(sizeof(ResolvedIndyEntry))); 358 z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache); 359 } 360 361 // Kills Z_R0_scratch. 362 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 363 Register cpe_offset, 364 Register bytecode, 365 int byte_no, 366 int bcp_offset, 367 size_t index_size) { 368 BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {"); 369 get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size); 370 371 // We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no. 372 // It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1). 373 // Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned). 374 const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()); 375 const int off_in_DW = (8-1) - (1+byte_no); 376 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); 377 assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, ""); 378 load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/); 379 380 BLOCK_COMMENT("}"); 381 } 382 383 // Load object from cpool->resolved_references(index). 384 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { 385 assert_different_registers(result, index); 386 get_constant_pool(result); 387 388 // Convert 389 // - from field index to resolved_references() index and 390 // - from word index to byte offset. 391 // Since this is a java object, it is potentially compressed. 392 Register tmp = index; // reuse 393 z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. 394 // Load pointer for resolved_references[] objArray. 395 z_lg(result, in_bytes(ConstantPool::cache_offset()), result); 396 z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result); 397 resolve_oop_handle(result); // Load resolved references array itself. 398 #ifdef ASSERT 399 NearLabel index_ok; 400 z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); 401 z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); 402 compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); 403 stop("resolved reference index out of bounds", 0x09256); 404 bind(index_ok); 405 #endif 406 z_agr(result, index); // Address of indexed array element. 407 load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg); 408 } 409 410 // load cpool->resolved_klass_at(index) 411 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) { 412 // int value = *(Rcpool->int_at_addr(which)); 413 // int resolved_klass_index = extract_low_short_from_int(value); 414 z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian) 415 z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset' 416 z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses 417 z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes())); 418 } 419 420 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 421 Register tmp, 422 int bcp_offset, 423 size_t index_size) { 424 BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {"); 425 get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size); 426 add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache); 427 BLOCK_COMMENT("}"); 428 } 429 430 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 431 Register cache, 432 Register cpe_offset, 433 Register method) { 434 const int method_offset = in_bytes( 435 ConstantPoolCache::base_offset() + 436 ((byte_no == TemplateTable::f2_byte) 437 ? ConstantPoolCacheEntry::f2_offset() 438 : ConstantPoolCacheEntry::f1_offset())); 439 440 z_lg(method, Address(cache, cpe_offset, method_offset)); // get f1 Method* 441 } 442 443 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 444 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. 445 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 446 Register Rsuper_klass, 447 Register Rtmp1, 448 Register Rtmp2, 449 Label &ok_is_subtype) { 450 // Profile the not-null value's klass. 451 profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); 452 453 // Do the check. 454 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 455 456 // Profile the failure of the check. 457 profile_typecheck_failed(Rtmp1, Rtmp2); 458 } 459 460 // Pop topmost element from stack. It just disappears. 461 // Useful if consumed previously by access via stackTop(). 462 void InterpreterMacroAssembler::popx(int len) { 463 add2reg(Z_esp, len*Interpreter::stackElementSize); 464 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 465 } 466 467 // Get Address object of stack top. No checks. No pop. 468 // Purpose: - Provide address of stack operand to exploit reg-mem operations. 469 // - Avoid RISC-like mem2reg - reg-reg-op sequence. 470 Address InterpreterMacroAssembler::stackTop() { 471 return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); 472 } 473 474 void InterpreterMacroAssembler::pop_i(Register r) { 475 z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 476 add2reg(Z_esp, Interpreter::stackElementSize); 477 assert_different_registers(r, Z_R1_scratch); 478 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 479 } 480 481 void InterpreterMacroAssembler::pop_ptr(Register r) { 482 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 483 add2reg(Z_esp, Interpreter::stackElementSize); 484 assert_different_registers(r, Z_R1_scratch); 485 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 486 } 487 488 void InterpreterMacroAssembler::pop_l(Register r) { 489 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 490 add2reg(Z_esp, 2*Interpreter::stackElementSize); 491 assert_different_registers(r, Z_R1_scratch); 492 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 493 } 494 495 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 496 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); 497 add2reg(Z_esp, Interpreter::stackElementSize); 498 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 499 } 500 501 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 502 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); 503 add2reg(Z_esp, 2*Interpreter::stackElementSize); 504 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 505 } 506 507 void InterpreterMacroAssembler::push_i(Register r) { 508 assert_different_registers(r, Z_R1_scratch); 509 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 510 z_st(r, Address(Z_esp)); 511 add2reg(Z_esp, -Interpreter::stackElementSize); 512 } 513 514 void InterpreterMacroAssembler::push_ptr(Register r) { 515 z_stg(r, Address(Z_esp)); 516 add2reg(Z_esp, -Interpreter::stackElementSize); 517 } 518 519 void InterpreterMacroAssembler::push_l(Register r) { 520 assert_different_registers(r, Z_R1_scratch); 521 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 522 int offset = -Interpreter::stackElementSize; 523 z_stg(r, Address(Z_esp, offset)); 524 clear_mem(Address(Z_esp), Interpreter::stackElementSize); 525 add2reg(Z_esp, 2 * offset); 526 } 527 528 void InterpreterMacroAssembler::push_f(FloatRegister f) { 529 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 530 freg2mem_opt(f, Address(Z_esp), false); 531 add2reg(Z_esp, -Interpreter::stackElementSize); 532 } 533 534 void InterpreterMacroAssembler::push_d(FloatRegister d) { 535 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 536 int offset = -Interpreter::stackElementSize; 537 freg2mem_opt(d, Address(Z_esp, offset)); 538 add2reg(Z_esp, 2 * offset); 539 } 540 541 void InterpreterMacroAssembler::push(TosState state) { 542 verify_oop(Z_tos, state); 543 switch (state) { 544 case atos: push_ptr(); break; 545 case btos: push_i(); break; 546 case ztos: 547 case ctos: 548 case stos: push_i(); break; 549 case itos: push_i(); break; 550 case ltos: push_l(); break; 551 case ftos: push_f(); break; 552 case dtos: push_d(); break; 553 case vtos: /* nothing to do */ break; 554 default : ShouldNotReachHere(); 555 } 556 } 557 558 void InterpreterMacroAssembler::pop(TosState state) { 559 switch (state) { 560 case atos: pop_ptr(Z_tos); break; 561 case btos: pop_i(Z_tos); break; 562 case ztos: 563 case ctos: 564 case stos: pop_i(Z_tos); break; 565 case itos: pop_i(Z_tos); break; 566 case ltos: pop_l(Z_tos); break; 567 case ftos: pop_f(Z_ftos); break; 568 case dtos: pop_d(Z_ftos); break; 569 case vtos: /* nothing to do */ break; 570 default : ShouldNotReachHere(); 571 } 572 verify_oop(Z_tos, state); 573 } 574 575 // Helpers for swap and dup. 576 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 577 z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 578 } 579 580 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 581 z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 582 } 583 584 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { 585 // Satisfy interpreter calling convention (see generate_normal_entry()). 586 z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). 587 // Record top_frame_sp, because the callee might modify it, if it's compiled. 588 z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp); 589 save_bcp(); 590 save_esp(); 591 z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). 592 } 593 594 // Jump to from_interpreted entry of a call unless single stepping is possible 595 // in this thread in which case we must call the i2i entry. 596 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 597 assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); 598 prepare_to_jump_from_interpreted(method); 599 600 if (JvmtiExport::can_post_interpreter_events()) { 601 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 602 // compiled code in threads for which the event is enabled. Check here for 603 // interp_only_mode if these events CAN be enabled. 604 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 605 MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 606 z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. 607 // Run interpreted. 608 z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); 609 z_br(Z_R1_scratch); 610 } else { 611 // Run compiled code. 612 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 613 z_br(Z_R1_scratch); 614 } 615 } 616 617 #ifdef ASSERT 618 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { 619 // About to read or write Resp[0]. 620 // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. 621 address reentry = nullptr; 622 623 { 624 // Check if the frame pointer in Z_fp is correct. 625 NearLabel OK; 626 z_cg(Z_fp, 0, Z_SP); 627 z_bre(OK); 628 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); 629 bind(OK); 630 } 631 { 632 // Resp must not point into or below the operand stack, 633 // i.e. IJAVA_STATE.monitors > Resp. 634 NearLabel OK; 635 Register Rmonitors = Rtemp; 636 z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp); 637 compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); 638 reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); 639 bind(OK); 640 } 641 { 642 // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below 643 // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). 644 NearLabel OK; 645 Register Rabi_bottom = Rtemp; 646 add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); 647 compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); 648 reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); 649 bind(OK); 650 } 651 } 652 653 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { 654 Label magic_ok; 655 load_const_optimized(tmp, frame::z_istate_magic_number); 656 z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); 657 z_bre(magic_ok); 658 stop_static("error: wrong magic number in ijava_state access"); 659 bind(magic_ok); 660 } 661 #endif // ASSERT 662 663 void InterpreterMacroAssembler::save_bcp() { 664 z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 665 asm_assert_ijava_state_magic(Z_bcp); 666 NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); 667 } 668 669 void InterpreterMacroAssembler::restore_bcp() { 670 asm_assert_ijava_state_magic(Z_bcp); 671 z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 672 } 673 674 void InterpreterMacroAssembler::save_esp() { 675 z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 676 } 677 678 void InterpreterMacroAssembler::restore_esp() { 679 asm_assert_ijava_state_magic(Z_esp); 680 z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 681 } 682 683 void InterpreterMacroAssembler::get_monitors(Register reg) { 684 asm_assert_ijava_state_magic(reg); 685 mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 686 } 687 688 void InterpreterMacroAssembler::save_monitors(Register reg) { 689 reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 690 } 691 692 void InterpreterMacroAssembler::get_mdp(Register mdp) { 693 z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); 694 } 695 696 void InterpreterMacroAssembler::save_mdp(Register mdp) { 697 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 698 } 699 700 // Values that are only read (besides initialization). 701 void InterpreterMacroAssembler::restore_locals() { 702 asm_assert_ijava_state_magic(Z_locals); 703 z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); 704 } 705 706 void InterpreterMacroAssembler::get_method(Register reg) { 707 asm_assert_ijava_state_magic(reg); 708 z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); 709 } 710 711 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, 712 signedOrNot is_signed) { 713 // Rdst is an 8-byte return value!!! 714 715 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 716 // is a few (2..3) ticks, even when the load crosses a cache line 717 // boundary. In case of a cache miss, the stall could, of course, be 718 // much longer. 719 720 switch (is_signed) { 721 case Signed: 722 z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); 723 break; 724 case Unsigned: 725 z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); 726 break; 727 default: 728 ShouldNotReachHere(); 729 } 730 } 731 732 733 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, 734 setCCOrNot set_cc) { 735 // Rdst is an 8-byte return value!!! 736 737 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 738 // is a few (2..3) ticks, even when the load crosses a cache line 739 // boundary. In case of a cache miss, the stall could, of course, be 740 // much longer. 741 742 // Both variants implement a sign-extending int2long load. 743 if (set_cc == set_CC) { 744 load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 745 } else { 746 mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 747 } 748 } 749 750 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 751 get_method(Rdst); 752 mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); 753 mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); 754 } 755 756 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 757 get_constant_pool(Rdst); 758 mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset())); 759 } 760 761 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 762 get_constant_pool(Rcpool); 763 mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset())); 764 } 765 766 // Unlock if synchronized method. 767 // 768 // Unlock the receiver if this is a synchronized method. 769 // Unlock any Java monitors from synchronized blocks. 770 // 771 // If there are locked Java monitors 772 // If throw_monitor_exception 773 // throws IllegalMonitorStateException 774 // Else if install_monitor_exception 775 // installs IllegalMonitorStateException 776 // Else 777 // no error processing 778 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 779 bool throw_monitor_exception, 780 bool install_monitor_exception) { 781 NearLabel unlocked, unlock, no_unlock; 782 783 { 784 Register R_method = Z_ARG2; 785 Register R_do_not_unlock_if_synchronized = Z_ARG3; 786 787 // Get the value of _do_not_unlock_if_synchronized into G1_scratch. 788 const Address do_not_unlock_if_synchronized(Z_thread, 789 JavaThread::do_not_unlock_if_synchronized_offset()); 790 load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); 791 z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. 792 793 // Check if synchronized method. 794 get_method(R_method); 795 verify_oop(Z_tos, state); 796 push(state); // Save tos/result. 797 testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 798 z_bfalse(unlocked); 799 800 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 801 // is set. 802 compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); 803 } 804 805 // unlock monitor 806 807 // BasicObjectLock will be first in list, since this is a 808 // synchronized method. However, need to check that the object has 809 // not been unlocked by an explicit monitorexit bytecode. 810 const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); 811 // We use Z_ARG2 so that if we go slow path it will be the correct 812 // register for unlock_object to pass to VM directly. 813 load_address(Z_ARG2, monitor); // Address of first monitor. 814 z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset())); 815 compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); 816 817 if (throw_monitor_exception) { 818 // Entry already unlocked need to throw an exception. 819 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 820 should_not_reach_here(); 821 } else { 822 // Monitor already unlocked during a stack unroll. 823 // If requested, install an illegal_monitor_state_exception. 824 // Continue with stack unrolling. 825 if (install_monitor_exception) { 826 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 827 } 828 z_bru(unlocked); 829 } 830 831 bind(unlock); 832 833 unlock_object(Z_ARG2); 834 835 bind(unlocked); 836 837 // I0, I1: Might contain return value 838 839 // Check that all monitors are unlocked. 840 { 841 NearLabel loop, exception, entry, restart; 842 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 843 // We use Z_ARG2 so that if we go slow path it will be the correct 844 // register for unlock_object to pass to VM directly. 845 Register R_current_monitor = Z_ARG2; 846 Register R_monitor_block_bot = Z_ARG1; 847 const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors)); 848 const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); 849 850 bind(restart); 851 // Starting with top-most entry. 852 z_lg(R_current_monitor, monitor_block_top); 853 // Points to word before bottom of monitor block. 854 load_address(R_monitor_block_bot, monitor_block_bot); 855 z_bru(entry); 856 857 // Entry already locked, need to throw exception. 858 bind(exception); 859 860 if (throw_monitor_exception) { 861 // Throw exception. 862 MacroAssembler::call_VM(noreg, 863 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 864 throw_illegal_monitor_state_exception)); 865 should_not_reach_here(); 866 } else { 867 // Stack unrolling. Unlock object and install illegal_monitor_exception. 868 // Unlock does not block, so don't have to worry about the frame. 869 // We don't have to preserve c_rarg1 since we are going to throw an exception. 870 unlock_object(R_current_monitor); 871 if (install_monitor_exception) { 872 call_VM(noreg, CAST_FROM_FN_PTR(address, 873 InterpreterRuntime:: 874 new_illegal_monitor_state_exception)); 875 } 876 z_bru(restart); 877 } 878 879 bind(loop); 880 // Check if current entry is used. 881 load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset())); 882 z_brne(exception); 883 884 add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. 885 bind(entry); 886 compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); 887 } 888 889 bind(no_unlock); 890 pop(state); 891 verify_oop(Z_tos, state); 892 } 893 894 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) { 895 get_method(ret_type); 896 z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset()))); 897 z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset()))); 898 899 Label notBool, notByte, notChar, done; 900 901 // common case first 902 compareU32_and_branch(ret_type, T_INT, bcondEqual, done); 903 904 compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool); 905 z_nilf(result, 0x1); 906 z_bru(done); 907 908 bind(notBool); 909 compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte); 910 z_lbr(result, result); 911 z_bru(done); 912 913 bind(notByte); 914 compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar); 915 z_nilf(result, 0xffff); 916 z_bru(done); 917 918 bind(notChar); 919 // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort); 920 z_lhr(result, result); 921 922 // Nothing to do for T_INT 923 bind(done); 924 } 925 926 // remove activation 927 // 928 // Unlock the receiver if this is a synchronized method. 929 // Unlock any Java monitors from synchronized blocks. 930 // Remove the activation from the stack. 931 // 932 // If there are locked Java monitors 933 // If throw_monitor_exception 934 // throws IllegalMonitorStateException 935 // Else if install_monitor_exception 936 // installs IllegalMonitorStateException 937 // Else 938 // no error processing 939 void InterpreterMacroAssembler::remove_activation(TosState state, 940 Register return_pc, 941 bool throw_monitor_exception, 942 bool install_monitor_exception, 943 bool notify_jvmti) { 944 BLOCK_COMMENT("remove_activation {"); 945 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 946 947 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 948 notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); 949 950 if (StackReservedPages > 0) { 951 BLOCK_COMMENT("reserved_stack_check:"); 952 // Test if reserved zone needs to be enabled. 953 Label no_reserved_zone_enabling; 954 955 // check if already enabled - if so no re-enabling needed 956 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 957 z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset())); 958 compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling); 959 960 // Compare frame pointers. There is no good stack pointer, as with stack 961 // frame compression we can get different SPs when we do calls. A subsequent 962 // call could have a smaller SP, so that this compare succeeds for an 963 // inner call of the method annotated with ReservedStack. 964 z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); 965 z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. 966 z_brl(no_reserved_zone_enabling); 967 968 // Enable reserved zone again, throw stack overflow exception. 969 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); 970 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 971 972 should_not_reach_here(); 973 974 bind(no_reserved_zone_enabling); 975 } 976 977 verify_oop(Z_tos, state); 978 979 pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); 980 BLOCK_COMMENT("} remove_activation"); 981 } 982 983 // lock object 984 // 985 // Registers alive 986 // monitor - Address of the BasicObjectLock to be used for locking, 987 // which must be initialized with the object to lock. 988 // object - Address of the object to be locked. 989 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 990 991 if (LockingMode == LM_MONITOR) { 992 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 993 return; 994 } 995 996 // template code: 997 // 998 // markWord displaced_header = obj->mark().set_unlocked(); 999 // monitor->lock()->set_displaced_header(displaced_header); 1000 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1001 // // We stored the monitor address into the object's mark word. 1002 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1003 // // Simple recursive case. 1004 // monitor->lock()->set_displaced_header(nullptr); 1005 // } else { 1006 // // Slow path. 1007 // InterpreterRuntime::monitorenter(THREAD, monitor); 1008 // } 1009 1010 const Register displaced_header = Z_ARG5; 1011 const Register object_mark_addr = Z_ARG4; 1012 const Register current_header = Z_ARG5; 1013 1014 NearLabel done; 1015 NearLabel slow_case; 1016 1017 // markWord displaced_header = obj->mark().set_unlocked(); 1018 1019 // Load markWord from object into displaced_header. 1020 z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object); 1021 1022 if (DiagnoseSyncOnValueBasedClasses != 0) { 1023 load_klass(Z_R1_scratch, object); 1024 testbit(Address(Z_R1_scratch, Klass::access_flags_offset()), exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 1025 z_btrue(slow_case); 1026 } 1027 1028 // Set displaced_header to be (markWord of object | UNLOCK_VALUE). 1029 z_oill(displaced_header, markWord::unlocked_value); 1030 1031 // monitor->lock()->set_displaced_header(displaced_header); 1032 1033 // Initialize the box (Must happen before we update the object mark!). 1034 z_stg(displaced_header, in_bytes(BasicObjectLock::lock_offset()) + 1035 BasicLock::displaced_header_offset_in_bytes(), monitor); 1036 1037 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1038 1039 // Store stack address of the BasicObjectLock (this is monitor) into object. 1040 add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object); 1041 1042 z_csg(displaced_header, monitor, 0, object_mark_addr); 1043 assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture. 1044 1045 z_bre(done); 1046 1047 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1048 // // Simple recursive case. 1049 // monitor->lock()->set_displaced_header(nullptr); 1050 1051 // We did not see an unlocked object so try the fast recursive case. 1052 1053 // Check if owner is self by comparing the value in the markWord of object 1054 // (current_header) with the stack pointer. 1055 z_sgr(current_header, Z_SP); 1056 1057 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1058 1059 // The prior sequence "LGR, NGR, LTGR" can be done better 1060 // (Z_R1 is temp and not used after here). 1061 load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markWord::lock_mask_in_place)); 1062 z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0) 1063 1064 // If condition is true we are done and hence we can store 0 in the displaced 1065 // header indicating it is a recursive lock and be done. 1066 z_brne(slow_case); 1067 z_release(); // Membar unnecessary on zarch AND because the above csg does a sync before and after. 1068 z_stg(Z_R0/*==0!*/, in_bytes(BasicObjectLock::lock_offset()) + 1069 BasicLock::displaced_header_offset_in_bytes(), monitor); 1070 z_bru(done); 1071 1072 // } else { 1073 // // Slow path. 1074 // InterpreterRuntime::monitorenter(THREAD, monitor); 1075 1076 // None of the above fast optimizations worked so we have to get into the 1077 // slow case of monitor enter. 1078 bind(slow_case); 1079 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1080 1081 // } 1082 1083 bind(done); 1084 } 1085 1086 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1087 // 1088 // Registers alive 1089 // monitor - address of the BasicObjectLock to be used for locking, 1090 // which must be initialized with the object to lock. 1091 // 1092 // Throw IllegalMonitorException if object is not locked by current thread. 1093 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { 1094 1095 if (LockingMode == LM_MONITOR) { 1096 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1097 return; 1098 } 1099 1100 // else { 1101 // template code: 1102 // 1103 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1104 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1105 // monitor->set_obj(nullptr); 1106 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1107 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1108 // monitor->set_obj(nullptr); 1109 // } else { 1110 // // Slow path. 1111 // InterpreterRuntime::monitorexit(monitor); 1112 // } 1113 1114 const Register displaced_header = Z_ARG4; 1115 const Register current_header = Z_R1; 1116 Address obj_entry(monitor, BasicObjectLock::obj_offset()); 1117 Label done; 1118 1119 if (object == noreg) { 1120 // In the template interpreter, we must assure that the object 1121 // entry in the monitor is cleared on all paths. Thus we move 1122 // loading up to here, and clear the entry afterwards. 1123 object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. 1124 z_lg(object, obj_entry); 1125 } 1126 1127 assert_different_registers(monitor, object, displaced_header, current_header); 1128 1129 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1130 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1131 // monitor->set_obj(nullptr); 1132 1133 clear_mem(obj_entry, sizeof(oop)); 1134 1135 // Test first if we are in the fast recursive case. 1136 MacroAssembler::load_and_test_long(displaced_header, 1137 Address(monitor, in_bytes(BasicObjectLock::lock_offset()) + 1138 BasicLock::displaced_header_offset_in_bytes())); 1139 z_bre(done); // displaced_header == 0 -> goto done 1140 1141 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1142 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1143 // monitor->set_obj(nullptr); 1144 1145 // If we still have a lightweight lock, unlock the object and be done. 1146 1147 // The markword is expected to be at offset 0. 1148 assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below"); 1149 1150 // We have the displaced header in displaced_header. If the lock is still 1151 // lightweight, it will contain the monitor address and we'll store the 1152 // displaced header back into the object's mark word. 1153 z_lgr(current_header, monitor); 1154 z_csg(current_header, displaced_header, 0, object); 1155 z_bre(done); 1156 1157 // } else { 1158 // // Slow path. 1159 // InterpreterRuntime::monitorexit(monitor); 1160 1161 // The lock has been converted into a heavy lock and hence 1162 // we need to get into the slow case. 1163 z_stg(object, obj_entry); // Restore object entry, has been cleared above. 1164 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1165 1166 // } 1167 1168 bind(done); 1169 } 1170 1171 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { 1172 assert(ProfileInterpreter, "must be profiling interpreter"); 1173 load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); 1174 z_brz(zero_continue); 1175 } 1176 1177 // Set the method data pointer for the current bcp. 1178 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1179 assert(ProfileInterpreter, "must be profiling interpreter"); 1180 Label set_mdp; 1181 Register mdp = Z_ARG4; 1182 Register method = Z_ARG5; 1183 1184 get_method(method); 1185 // Test MDO to avoid the call if it is null. 1186 load_and_test_long(mdp, method2_(method, method_data)); 1187 z_brz(set_mdp); 1188 1189 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); 1190 // Z_RET: mdi 1191 // Mdo is guaranteed to be non-zero here, we checked for it before the call. 1192 assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); 1193 z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. 1194 add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); 1195 1196 bind(set_mdp); 1197 save_mdp(mdp); 1198 } 1199 1200 void InterpreterMacroAssembler::verify_method_data_pointer() { 1201 assert(ProfileInterpreter, "must be profiling interpreter"); 1202 #ifdef ASSERT 1203 NearLabel verify_continue; 1204 Register bcp_expected = Z_ARG3; 1205 Register mdp = Z_ARG4; 1206 Register method = Z_ARG5; 1207 1208 test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue 1209 get_method(method); 1210 1211 // If the mdp is valid, it will point to a DataLayout header which is 1212 // consistent with the bcp. The converse is highly probable also. 1213 load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); 1214 z_ag(bcp_expected, Address(method, Method::const_offset())); 1215 load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); 1216 compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); 1217 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); 1218 bind(verify_continue); 1219 #endif // ASSERT 1220 } 1221 1222 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { 1223 assert(ProfileInterpreter, "must be profiling interpreter"); 1224 z_stg(value, constant, mdp_in); 1225 } 1226 1227 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1228 int constant, 1229 Register tmp, 1230 bool decrement) { 1231 assert_different_registers(mdp_in, tmp); 1232 // counter address 1233 Address data(mdp_in, constant); 1234 const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; 1235 add2mem_64(Address(mdp_in, constant), delta, tmp); 1236 } 1237 1238 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1239 int flag_byte_constant) { 1240 assert(ProfileInterpreter, "must be profiling interpreter"); 1241 // Set the flag. 1242 z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); 1243 } 1244 1245 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1246 int offset, 1247 Register value, 1248 Register test_value_out, 1249 Label& not_equal_continue) { 1250 assert(ProfileInterpreter, "must be profiling interpreter"); 1251 if (test_value_out == noreg) { 1252 z_cg(value, Address(mdp_in, offset)); 1253 z_brne(not_equal_continue); 1254 } else { 1255 // Put the test value into a register, so caller can use it: 1256 z_lg(test_value_out, Address(mdp_in, offset)); 1257 compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); 1258 } 1259 } 1260 1261 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { 1262 update_mdp_by_offset(mdp_in, noreg, offset_of_disp); 1263 } 1264 1265 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1266 Register dataidx, 1267 int offset_of_disp) { 1268 assert(ProfileInterpreter, "must be profiling interpreter"); 1269 Address disp_address(mdp_in, dataidx, offset_of_disp); 1270 Assembler::z_ag(mdp_in, disp_address); 1271 save_mdp(mdp_in); 1272 } 1273 1274 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { 1275 assert(ProfileInterpreter, "must be profiling interpreter"); 1276 add2reg(mdp_in, constant); 1277 save_mdp(mdp_in); 1278 } 1279 1280 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1281 assert(ProfileInterpreter, "must be profiling interpreter"); 1282 assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); 1283 call_VM(noreg, 1284 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1285 return_bci); 1286 } 1287 1288 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { 1289 if (ProfileInterpreter) { 1290 Label profile_continue; 1291 1292 // If no method data exists, go to profile_continue. 1293 // Otherwise, assign to mdp. 1294 test_method_data_pointer(mdp, profile_continue); 1295 1296 // We are taking a branch. Increment the taken count. 1297 // We inline increment_mdp_data_at to return bumped_count in a register 1298 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1299 Address data(mdp, JumpData::taken_offset()); 1300 z_lg(bumped_count, data); 1301 // 64-bit overflow is very unlikely. Saturation to 32-bit values is 1302 // performed when reading the counts. 1303 add2reg(bumped_count, DataLayout::counter_increment); 1304 z_stg(bumped_count, data); // Store back out 1305 1306 // The method data pointer needs to be updated to reflect the new target. 1307 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1308 bind(profile_continue); 1309 } 1310 } 1311 1312 // Kills Z_R1_scratch. 1313 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1314 if (ProfileInterpreter) { 1315 Label profile_continue; 1316 1317 // If no method data exists, go to profile_continue. 1318 test_method_data_pointer(mdp, profile_continue); 1319 1320 // We are taking a branch. Increment the not taken count. 1321 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); 1322 1323 // The method data pointer needs to be updated to correspond to 1324 // the next bytecode. 1325 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1326 bind(profile_continue); 1327 } 1328 } 1329 1330 // Kills: Z_R1_scratch. 1331 void InterpreterMacroAssembler::profile_call(Register mdp) { 1332 if (ProfileInterpreter) { 1333 Label profile_continue; 1334 1335 // If no method data exists, go to profile_continue. 1336 test_method_data_pointer(mdp, profile_continue); 1337 1338 // We are making a call. Increment the count. 1339 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1340 1341 // The method data pointer needs to be updated to reflect the new target. 1342 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1343 bind(profile_continue); 1344 } 1345 } 1346 1347 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1348 if (ProfileInterpreter) { 1349 Label profile_continue; 1350 1351 // If no method data exists, go to profile_continue. 1352 test_method_data_pointer(mdp, profile_continue); 1353 1354 // We are making a call. Increment the count. 1355 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1356 1357 // The method data pointer needs to be updated to reflect the new target. 1358 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1359 bind(profile_continue); 1360 } 1361 } 1362 1363 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1364 Register mdp, 1365 Register reg2, 1366 bool receiver_can_be_null) { 1367 if (ProfileInterpreter) { 1368 NearLabel profile_continue; 1369 1370 // If no method data exists, go to profile_continue. 1371 test_method_data_pointer(mdp, profile_continue); 1372 1373 NearLabel skip_receiver_profile; 1374 if (receiver_can_be_null) { 1375 NearLabel not_null; 1376 compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); 1377 // We are making a call. Increment the count for null receiver. 1378 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1379 z_bru(skip_receiver_profile); 1380 bind(not_null); 1381 } 1382 1383 // Record the receiver type. 1384 record_klass_in_profile(receiver, mdp, reg2, true); 1385 bind(skip_receiver_profile); 1386 1387 // The method data pointer needs to be updated to reflect the new target. 1388 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1389 bind(profile_continue); 1390 } 1391 } 1392 1393 // This routine creates a state machine for updating the multi-row 1394 // type profile at a virtual call site (or other type-sensitive bytecode). 1395 // The machine visits each row (of receiver/count) until the receiver type 1396 // is found, or until it runs out of rows. At the same time, it remembers 1397 // the location of the first empty row. (An empty row records null for its 1398 // receiver, and can be allocated for a newly-observed receiver type.) 1399 // Because there are two degrees of freedom in the state, a simple linear 1400 // search will not work; it must be a decision tree. Hence this helper 1401 // function is recursive, to generate the required tree structured code. 1402 // It's the interpreter, so we are trading off code space for speed. 1403 // See below for example code. 1404 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1405 Register receiver, Register mdp, 1406 Register reg2, int start_row, 1407 Label& done, bool is_virtual_call) { 1408 if (TypeProfileWidth == 0) { 1409 if (is_virtual_call) { 1410 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1411 } 1412 return; 1413 } 1414 1415 int last_row = VirtualCallData::row_limit() - 1; 1416 assert(start_row <= last_row, "must be work left to do"); 1417 // Test this row for both the receiver and for null. 1418 // Take any of three different outcomes: 1419 // 1. found receiver => increment count and goto done 1420 // 2. found null => keep looking for case 1, maybe allocate this cell 1421 // 3. found something else => keep looking for cases 1 and 2 1422 // Case 3 is handled by a recursive call. 1423 for (int row = start_row; row <= last_row; row++) { 1424 NearLabel next_test; 1425 bool test_for_null_also = (row == start_row); 1426 1427 // See if the receiver is receiver[n]. 1428 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1429 test_mdp_data_at(mdp, recvr_offset, receiver, 1430 (test_for_null_also ? reg2 : noreg), 1431 next_test); 1432 // (Reg2 now contains the receiver from the CallData.) 1433 1434 // The receiver is receiver[n]. Increment count[n]. 1435 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1436 increment_mdp_data_at(mdp, count_offset); 1437 z_bru(done); 1438 bind(next_test); 1439 1440 if (test_for_null_also) { 1441 Label found_null; 1442 // Failed the equality check on receiver[n]... Test for null. 1443 z_ltgr(reg2, reg2); 1444 if (start_row == last_row) { 1445 // The only thing left to do is handle the null case. 1446 if (is_virtual_call) { 1447 z_brz(found_null); 1448 // Receiver did not match any saved receiver and there is no empty row for it. 1449 // Increment total counter to indicate polymorphic case. 1450 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1451 z_bru(done); 1452 bind(found_null); 1453 } else { 1454 z_brnz(done); 1455 } 1456 break; 1457 } 1458 // Since null is rare, make it be the branch-taken case. 1459 z_brz(found_null); 1460 1461 // Put all the "Case 3" tests here. 1462 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call); 1463 1464 // Found a null. Keep searching for a matching receiver, 1465 // but remember that this is an empty (unused) slot. 1466 bind(found_null); 1467 } 1468 } 1469 1470 // In the fall-through case, we found no matching receiver, but we 1471 // observed the receiver[start_row] is null. 1472 1473 // Fill in the receiver field and increment the count. 1474 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1475 set_mdp_data_at(mdp, recvr_offset, receiver); 1476 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1477 load_const_optimized(reg2, DataLayout::counter_increment); 1478 set_mdp_data_at(mdp, count_offset, reg2); 1479 if (start_row > 0) { 1480 z_bru(done); 1481 } 1482 } 1483 1484 // Example state machine code for three profile rows: 1485 // // main copy of decision tree, rooted at row[1] 1486 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1487 // if (row[0].rec != nullptr) { 1488 // // inner copy of decision tree, rooted at row[1] 1489 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1490 // if (row[1].rec != nullptr) { 1491 // // degenerate decision tree, rooted at row[2] 1492 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1493 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1494 // row[2].init(rec); goto done; 1495 // } else { 1496 // // remember row[1] is empty 1497 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1498 // row[1].init(rec); goto done; 1499 // } 1500 // } else { 1501 // // remember row[0] is empty 1502 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1503 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1504 // row[0].init(rec); goto done; 1505 // } 1506 // done: 1507 1508 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1509 Register mdp, Register reg2, 1510 bool is_virtual_call) { 1511 assert(ProfileInterpreter, "must be profiling"); 1512 Label done; 1513 1514 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1515 1516 bind (done); 1517 } 1518 1519 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1520 if (ProfileInterpreter) { 1521 NearLabel profile_continue; 1522 uint row; 1523 1524 // If no method data exists, go to profile_continue. 1525 test_method_data_pointer(mdp, profile_continue); 1526 1527 // Update the total ret count. 1528 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1529 1530 for (row = 0; row < RetData::row_limit(); row++) { 1531 NearLabel next_test; 1532 1533 // See if return_bci is equal to bci[n]: 1534 test_mdp_data_at(mdp, 1535 in_bytes(RetData::bci_offset(row)), 1536 return_bci, noreg, 1537 next_test); 1538 1539 // Return_bci is equal to bci[n]. Increment the count. 1540 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1541 1542 // The method data pointer needs to be updated to reflect the new target. 1543 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); 1544 z_bru(profile_continue); 1545 bind(next_test); 1546 } 1547 1548 update_mdp_for_ret(return_bci); 1549 1550 bind(profile_continue); 1551 } 1552 } 1553 1554 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1555 if (ProfileInterpreter) { 1556 Label profile_continue; 1557 1558 // If no method data exists, go to profile_continue. 1559 test_method_data_pointer(mdp, profile_continue); 1560 1561 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1562 1563 // The method data pointer needs to be updated. 1564 int mdp_delta = in_bytes(BitData::bit_data_size()); 1565 if (TypeProfileCasts) { 1566 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1567 } 1568 update_mdp_by_constant(mdp, mdp_delta); 1569 1570 bind(profile_continue); 1571 } 1572 } 1573 1574 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) { 1575 if (ProfileInterpreter && TypeProfileCasts) { 1576 Label profile_continue; 1577 1578 // If no method data exists, go to profile_continue. 1579 test_method_data_pointer(mdp, profile_continue); 1580 1581 int count_offset = in_bytes(CounterData::count_offset()); 1582 // Back up the address, since we have already bumped the mdp. 1583 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1584 1585 // *Decrement* the counter. We expect to see zero or small negatives. 1586 increment_mdp_data_at(mdp, count_offset, tmp, true); 1587 1588 bind (profile_continue); 1589 } 1590 } 1591 1592 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1593 if (ProfileInterpreter) { 1594 Label profile_continue; 1595 1596 // If no method data exists, go to profile_continue. 1597 test_method_data_pointer(mdp, profile_continue); 1598 1599 // The method data pointer needs to be updated. 1600 int mdp_delta = in_bytes(BitData::bit_data_size()); 1601 if (TypeProfileCasts) { 1602 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1603 1604 // Record the object type. 1605 record_klass_in_profile(klass, mdp, reg2, false); 1606 } 1607 update_mdp_by_constant(mdp, mdp_delta); 1608 1609 bind(profile_continue); 1610 } 1611 } 1612 1613 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1614 if (ProfileInterpreter) { 1615 Label profile_continue; 1616 1617 // If no method data exists, go to profile_continue. 1618 test_method_data_pointer(mdp, profile_continue); 1619 1620 // Update the default case count. 1621 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); 1622 1623 // The method data pointer needs to be updated. 1624 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); 1625 1626 bind(profile_continue); 1627 } 1628 } 1629 1630 // Kills: index, scratch1, scratch2. 1631 void InterpreterMacroAssembler::profile_switch_case(Register index, 1632 Register mdp, 1633 Register scratch1, 1634 Register scratch2) { 1635 if (ProfileInterpreter) { 1636 Label profile_continue; 1637 assert_different_registers(index, mdp, scratch1, scratch2); 1638 1639 // If no method data exists, go to profile_continue. 1640 test_method_data_pointer(mdp, profile_continue); 1641 1642 // Build the base (index * per_case_size_in_bytes()) + 1643 // case_array_offset_in_bytes(). 1644 z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1645 add2reg(index, in_bytes(MultiBranchData::case_array_offset())); 1646 1647 // Add the calculated base to the mdp -> address of the case' data. 1648 Address case_data_addr(mdp, index); 1649 Register case_data = scratch1; 1650 load_address(case_data, case_data_addr); 1651 1652 // Update the case count. 1653 increment_mdp_data_at(case_data, 1654 in_bytes(MultiBranchData::relative_count_offset()), 1655 scratch2); 1656 1657 // The method data pointer needs to be updated. 1658 update_mdp_by_offset(mdp, 1659 index, 1660 in_bytes(MultiBranchData::relative_displacement_offset())); 1661 1662 bind(profile_continue); 1663 } 1664 } 1665 1666 // kills: R0, R1, flags, loads klass from obj (if not null) 1667 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { 1668 NearLabel null_seen, init_klass, do_nothing, do_update; 1669 1670 // Klass = obj is allowed. 1671 const Register tmp = Z_R1; 1672 assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); 1673 assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); 1674 1675 z_lg(tmp, mdo_addr); 1676 if (cmp_done) { 1677 z_brz(null_seen); 1678 } else { 1679 compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); 1680 } 1681 1682 MacroAssembler::verify_oop(obj, FILE_AND_LINE); 1683 load_klass(klass, obj); 1684 1685 // Klass seen before, nothing to do (regardless of unknown bit). 1686 z_lgr(Z_R0, tmp); 1687 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 1688 z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); 1689 compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); 1690 1691 // Already unknown. Nothing to do anymore. 1692 z_tmll(tmp, TypeEntries::type_unknown); 1693 z_brc(Assembler::bcondAllOne, do_nothing); 1694 1695 z_lgr(Z_R0, tmp); 1696 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 1697 z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); 1698 compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); 1699 1700 // Different than before. Cannot keep accurate profile. 1701 z_oill(tmp, TypeEntries::type_unknown); 1702 z_bru(do_update); 1703 1704 bind(init_klass); 1705 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1706 z_ogr(tmp, klass); 1707 z_bru(do_update); 1708 1709 bind(null_seen); 1710 // Set null_seen if obj is 0. 1711 z_oill(tmp, TypeEntries::null_seen); 1712 // fallthru: z_bru(do_update); 1713 1714 bind(do_update); 1715 z_stg(tmp, mdo_addr); 1716 1717 bind(do_nothing); 1718 } 1719 1720 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1721 if (!ProfileInterpreter) { 1722 return; 1723 } 1724 1725 assert_different_registers(mdp, callee, tmp); 1726 1727 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1728 Label profile_continue; 1729 1730 test_method_data_pointer(mdp, profile_continue); 1731 1732 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1733 1734 z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, 1735 is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1736 z_brne(profile_continue); 1737 1738 if (MethodData::profile_arguments()) { 1739 NearLabel done; 1740 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1741 add2reg(mdp, off_to_args); 1742 1743 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1744 if (i > 0 || MethodData::profile_return()) { 1745 // If return value type is profiled we may have no argument to profile. 1746 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1747 add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); 1748 compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); 1749 } 1750 z_lg(tmp, Address(callee, Method::const_offset())); 1751 z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1752 // Stack offset o (zero based) from the start of the argument 1753 // list. For n arguments translates into offset n - o - 1 from 1754 // the end of the argument list. But there is an extra slot at 1755 // the top of the stack. So the offset is n - o from Lesp. 1756 z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 1757 z_sllg(tmp, tmp, Interpreter::logStackElementSize); 1758 Address stack_slot_addr(tmp, Z_esp); 1759 z_ltg(tmp, stack_slot_addr); 1760 1761 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 1762 profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); 1763 1764 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1765 add2reg(mdp, to_add); 1766 off_to_args += to_add; 1767 } 1768 1769 if (MethodData::profile_return()) { 1770 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1771 add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1772 } 1773 1774 bind(done); 1775 1776 if (MethodData::profile_return()) { 1777 // We're right after the type profile for the last 1778 // argument. Tmp is the number of cells left in the 1779 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1780 // if there's a return to profile. 1781 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1782 z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); 1783 z_agr(mdp, tmp); 1784 } 1785 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 1786 } else { 1787 assert(MethodData::profile_return(), "either profile call args or call ret"); 1788 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1789 } 1790 1791 // Mdp points right after the end of the 1792 // CallTypeData/VirtualCallTypeData, right after the cells for the 1793 // return value type if there's one. 1794 bind(profile_continue); 1795 } 1796 } 1797 1798 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1799 assert_different_registers(mdp, ret, tmp); 1800 if (ProfileInterpreter && MethodData::profile_return()) { 1801 Label profile_continue; 1802 1803 test_method_data_pointer(mdp, profile_continue); 1804 1805 if (MethodData::profile_return_jsr292_only()) { 1806 // If we don't profile all invoke bytecodes we must make sure 1807 // it's a bytecode we indeed profile. We can't go back to the 1808 // beginning of the ProfileData we intend to update to check its 1809 // type because we're right after it and we don't known its 1810 // length. 1811 NearLabel do_profile; 1812 Address bc(Z_bcp); 1813 z_lb(tmp, bc); 1814 compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); 1815 compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); 1816 get_method(tmp); 1817 // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. 1818 if (Method::intrinsic_id_size_in_bytes() == 1) { 1819 z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1820 } else { 1821 assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); 1822 z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp); 1823 z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1824 } 1825 z_brne(profile_continue); 1826 1827 bind(do_profile); 1828 } 1829 1830 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1831 profile_obj_type(ret, mdo_ret_addr, tmp); 1832 1833 bind(profile_continue); 1834 } 1835 } 1836 1837 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1838 if (ProfileInterpreter && MethodData::profile_parameters()) { 1839 Label profile_continue, done; 1840 1841 test_method_data_pointer(mdp, profile_continue); 1842 1843 // Load the offset of the area within the MDO used for 1844 // parameters. If it's negative we're not profiling any parameters. 1845 Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); 1846 load_and_test_int2long(tmp1, parm_di_addr); 1847 z_brl(profile_continue); 1848 1849 // Compute a pointer to the area for parameters from the offset 1850 // and move the pointer to the slot for the last 1851 // parameters. Collect profiling from last parameter down. 1852 // mdo start + parameters offset + array length - 1 1853 1854 // Pointer to the parameter area in the MDO. 1855 z_agr(mdp, tmp1); 1856 1857 // Offset of the current profile entry to update. 1858 const Register entry_offset = tmp1; 1859 // entry_offset = array len in number of cells. 1860 z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); 1861 // entry_offset (number of cells) = array len - size of 1 entry 1862 add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); 1863 // entry_offset in bytes 1864 z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1865 1866 Label loop; 1867 bind(loop); 1868 1869 Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); 1870 Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); 1871 1872 // Load offset on the stack from the slot for this parameter. 1873 z_lg(tmp2, arg_off); 1874 z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); 1875 z_lcgr(tmp2); // Negate. 1876 1877 // Profile the parameter. 1878 z_ltg(tmp2, Address(Z_locals, tmp2)); 1879 profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); 1880 1881 // Go to next parameter. 1882 z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); 1883 z_brnl(loop); 1884 1885 bind(profile_continue); 1886 } 1887 } 1888 1889 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1890 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1891 int increment, 1892 Address mask, 1893 Register scratch, 1894 bool preloaded, 1895 branch_condition cond, 1896 Label *where) { 1897 assert_different_registers(counter_addr.base(), scratch); 1898 if (preloaded) { 1899 add2reg(scratch, increment); 1900 reg2mem_opt(scratch, counter_addr, false); 1901 } else { 1902 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { 1903 z_alsi(counter_addr.disp20(), counter_addr.base(), increment); 1904 mem2reg_signed_opt(scratch, counter_addr); 1905 } else { 1906 mem2reg_signed_opt(scratch, counter_addr); 1907 add2reg(scratch, increment); 1908 reg2mem_opt(scratch, counter_addr, false); 1909 } 1910 } 1911 z_n(scratch, mask); 1912 if (where) { z_brc(cond, *where); } 1913 } 1914 1915 // Get MethodCounters object for given method. Lazily allocated if necessary. 1916 // method - Ptr to Method object. 1917 // Rcounters - Ptr to MethodCounters object associated with Method object. 1918 // skip - Exit point if MethodCounters object can't be created (OOM condition). 1919 void InterpreterMacroAssembler::get_method_counters(Register Rmethod, 1920 Register Rcounters, 1921 Label& skip) { 1922 assert_different_registers(Rmethod, Rcounters); 1923 1924 BLOCK_COMMENT("get MethodCounters object {"); 1925 1926 Label has_counters; 1927 load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); 1928 z_brnz(has_counters); 1929 1930 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod); 1931 z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. 1932 z_brz(skip); // No MethodCounters, out of memory. 1933 1934 bind(has_counters); 1935 1936 BLOCK_COMMENT("} get MethodCounters object"); 1937 } 1938 1939 // Increment invocation counter in MethodCounters object. 1940 // Return (invocation_counter+backedge_counter) as "result" in RctrSum. 1941 // Counter values are all unsigned. 1942 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { 1943 assert(UseCompiler, "incrementing must be useful"); 1944 assert_different_registers(Rcounters, RctrSum); 1945 1946 int increment = InvocationCounter::count_increment; 1947 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1948 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1949 1950 BLOCK_COMMENT("Increment invocation counter {"); 1951 1952 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1953 // Increment the invocation counter in place, 1954 // then add the incremented value to the backedge counter. 1955 z_l(RctrSum, be_counter_offset, Rcounters); 1956 z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1957 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1958 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 1959 } else { 1960 // This path is optimized for low register consumption 1961 // at the cost of somewhat higher operand delays. 1962 // It does not need an extra temp register. 1963 1964 // Update the invocation counter. 1965 z_l(RctrSum, inv_counter_offset, Rcounters); 1966 if (RctrSum == Z_R0) { 1967 z_ahi(RctrSum, increment); 1968 } else { 1969 add2reg(RctrSum, increment); 1970 } 1971 z_st(RctrSum, inv_counter_offset, Rcounters); 1972 1973 // Mask off the state bits. 1974 z_nilf(RctrSum, InvocationCounter::count_mask_value); 1975 1976 // Add the backedge counter to the updated invocation counter to 1977 // form the result. 1978 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1979 } 1980 1981 BLOCK_COMMENT("} Increment invocation counter"); 1982 1983 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 1984 } 1985 1986 1987 // increment backedge counter in MethodCounters object. 1988 // return (invocation_counter+backedge_counter) as "result" in RctrSum 1989 // counter values are all unsigned! 1990 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { 1991 assert(UseCompiler, "incrementing must be useful"); 1992 assert_different_registers(Rcounters, RctrSum); 1993 1994 int increment = InvocationCounter::count_increment; 1995 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1996 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1997 1998 BLOCK_COMMENT("Increment backedge counter {"); 1999 2000 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 2001 // Increment the invocation counter in place, 2002 // then add the incremented value to the backedge counter. 2003 z_l(RctrSum, inv_counter_offset, Rcounters); 2004 z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 2005 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 2006 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 2007 } else { 2008 // This path is optimized for low register consumption 2009 // at the cost of somewhat higher operand delays. 2010 // It does not need an extra temp register. 2011 2012 // Update the invocation counter. 2013 z_l(RctrSum, be_counter_offset, Rcounters); 2014 if (RctrSum == Z_R0) { 2015 z_ahi(RctrSum, increment); 2016 } else { 2017 add2reg(RctrSum, increment); 2018 } 2019 z_st(RctrSum, be_counter_offset, Rcounters); 2020 2021 // Mask off the state bits. 2022 z_nilf(RctrSum, InvocationCounter::count_mask_value); 2023 2024 // Add the backedge counter to the updated invocation counter to 2025 // form the result. 2026 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 2027 } 2028 2029 BLOCK_COMMENT("} Increment backedge counter"); 2030 2031 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 2032 } 2033 2034 // Add an InterpMonitorElem to stack (see frame_s390.hpp). 2035 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, 2036 Register Rtemp1, 2037 Register Rtemp2, 2038 Register Rtemp3) { 2039 2040 const Register Rcurr_slot = Rtemp1; 2041 const Register Rlimit = Rtemp2; 2042 const jint delta = -frame::interpreter_frame_monitor_size() * wordSize; 2043 2044 assert((delta & LongAlignmentMask) == 0, 2045 "sizeof BasicObjectLock must be even number of doublewords"); 2046 assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); 2047 assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); 2048 assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); 2049 2050 get_monitors(Rlimit); 2051 2052 // Adjust stack pointer for additional monitor entry. 2053 resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); 2054 2055 if (!stack_is_empty) { 2056 // Must copy stack contents down. 2057 NearLabel next, done; 2058 2059 // Rtemp := addr(Tos), Z_esp is pointing below it! 2060 add2reg(Rcurr_slot, wordSize, Z_esp); 2061 2062 // Nothing to do, if already at monitor area. 2063 compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); 2064 2065 bind(next); 2066 2067 // Move one stack slot. 2068 mem2reg_opt(Rtemp3, Address(Rcurr_slot)); 2069 reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); 2070 add2reg(Rcurr_slot, wordSize); 2071 compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? 2072 2073 bind(done); 2074 // Done copying stack. 2075 } 2076 2077 // Adjust expression stack and monitor pointers. 2078 add2reg(Z_esp, delta); 2079 add2reg(Rlimit, delta); 2080 save_monitors(Rlimit); 2081 } 2082 2083 // Note: Index holds the offset in bytes afterwards. 2084 // You can use this to store a new value (with Llocals as the base). 2085 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { 2086 z_sllg(index, index, LogBytesPerWord); 2087 mem2reg_opt(dst, Address(Z_locals, index), false); 2088 } 2089 2090 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2091 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2092 } 2093 2094 // Inline assembly for: 2095 // 2096 // if (thread is in interp_only_mode) { 2097 // InterpreterRuntime::post_method_entry(); 2098 // } 2099 2100 void InterpreterMacroAssembler::notify_method_entry() { 2101 2102 // JVMTI 2103 // Whenever JVMTI puts a thread in interp_only_mode, method 2104 // entry/exit events are sent for that thread to track stack 2105 // depth. If it is possible to enter interp_only_mode we add 2106 // the code to check if the event should be sent. 2107 if (JvmtiExport::can_post_interpreter_events()) { 2108 Label jvmti_post_done; 2109 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2110 z_bre(jvmti_post_done); 2111 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2112 bind(jvmti_post_done); 2113 } 2114 } 2115 2116 // Inline assembly for: 2117 // 2118 // if (thread is in interp_only_mode) { 2119 // if (!native_method) save result 2120 // InterpreterRuntime::post_method_exit(); 2121 // if (!native_method) restore result 2122 // } 2123 // if (DTraceMethodProbes) { 2124 // SharedRuntime::dtrace_method_exit(thread, method); 2125 // } 2126 // 2127 // For native methods their result is stored in z_ijava_state.lresult 2128 // and z_ijava_state.fresult before coming here. 2129 // Java methods have their result stored in the expression stack. 2130 // 2131 // Notice the dependency to frame::interpreter_frame_result(). 2132 void InterpreterMacroAssembler::notify_method_exit(bool native_method, 2133 TosState state, 2134 NotifyMethodExitMode mode) { 2135 // JVMTI 2136 // Whenever JVMTI puts a thread in interp_only_mode, method 2137 // entry/exit events are sent for that thread to track stack 2138 // depth. If it is possible to enter interp_only_mode we add 2139 // the code to check if the event should be sent. 2140 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2141 Label jvmti_post_done; 2142 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2143 z_bre(jvmti_post_done); 2144 if (!native_method) push(state); // see frame::interpreter_frame_result() 2145 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2146 if (!native_method) pop(state); 2147 bind(jvmti_post_done); 2148 } 2149 2150 #if 0 2151 // Dtrace currently not supported on z/Architecture. 2152 { 2153 SkipIfEqual skip(this, &DTraceMethodProbes, false); 2154 push(state); 2155 get_method(c_rarg1); 2156 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2157 r15_thread, c_rarg1); 2158 pop(state); 2159 } 2160 #endif 2161 } 2162 2163 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { 2164 if (!JvmtiExport::can_post_interpreter_events()) { 2165 return; 2166 } 2167 2168 load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2169 z_brnz(Lskip); 2170 2171 } 2172 2173 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. 2174 // The return pc is loaded into the register return_pc. 2175 // 2176 // Registers updated: 2177 // return_pc - The return pc of the calling frame. 2178 // tmp1, tmp2 - scratch 2179 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { 2180 // F0 Z_SP -> caller_sp (F1's) 2181 // ... 2182 // sender_sp (F1's) 2183 // ... 2184 // F1 Z_fp -> caller_sp (F2's) 2185 // return_pc (Continuation after return from F0.) 2186 // ... 2187 // F2 caller_sp 2188 2189 // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications 2190 // (a) by a c2i adapter and (b) by generate_fixed_frame(). 2191 // In case (a) the new top frame F1 is an unextended compiled frame. 2192 // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. 2193 2194 // Case (b) seems to be redundant when returning to a interpreted caller, 2195 // because then the caller's top_frame_sp is installed as sp (see 2196 // TemplateInterpreterGenerator::generate_return_entry_for ()). But 2197 // pop_interpreter_frame() is also used in exception handling and there the 2198 // frame type of the caller is unknown, therefore top_frame_sp cannot be used, 2199 // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. 2200 2201 Register R_f1_sender_sp = tmp1; 2202 Register R_f2_sp = tmp2; 2203 2204 // First check for the interpreter frame's magic. 2205 asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); 2206 z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); 2207 z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); 2208 if (return_pc->is_valid()) 2209 z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2210 // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. 2211 resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); 2212 2213 #ifdef ASSERT 2214 // The return_pc in the new top frame is dead... at least that's my 2215 // current understanding; to assert this I overwrite it. 2216 load_const_optimized(Z_ARG3, 0xb00b1); 2217 z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2218 #endif 2219 } 2220 2221 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2222 if (VerifyFPU) { 2223 unimplemented("verfiyFPU"); 2224 } 2225 }