1 /* 2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 // Major contributions by AHa, AS, JL, ML. 27 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_s390.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/methodCounters.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 // Implementation of InterpreterMacroAssembler. 52 // This file specializes the assembler with interpreter-specific macros. 53 54 #ifdef PRODUCT 55 #define BLOCK_COMMENT(str) 56 #define BIND(label) bind(label); 57 #else 58 #define BLOCK_COMMENT(str) block_comment(str) 59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 60 #endif 61 62 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 63 assert(entry != nullptr, "Entry must have been generated by now"); 64 assert(Rscratch != Z_R0, "Can't use R0 for addressing"); 65 branch_optimized(Assembler::bcondAlways, entry); 66 } 67 68 void InterpreterMacroAssembler::empty_expression_stack(void) { 69 get_monitors(Z_R1_scratch); 70 add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); 71 } 72 73 // Dispatch code executed in the prolog of a bytecode which does not do it's 74 // own dispatch. 75 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 76 // On z/Architecture we are short on registers, therefore we do not preload the 77 // dispatch address of the next bytecode. 78 } 79 80 // Dispatch code executed in the epilog of a bytecode which does not do it's 81 // own dispatch. 82 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 83 dispatch_next(state, step); 84 } 85 86 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 87 z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. 88 add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. 89 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 90 } 91 92 // Common code to dispatch and dispatch_only. 93 // Dispatch value in Lbyte_code and increment Lbcp. 94 95 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) { 96 #ifdef ASSERT 97 address reentry = nullptr; 98 { Label OK; 99 // Check if the frame pointer in Z_fp is correct. 100 z_cg(Z_fp, 0, Z_SP); 101 z_bre(OK); 102 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); 103 bind(OK); 104 } 105 { Label OK; 106 // check if the locals pointer in Z_locals is correct 107 z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp); 108 z_bre(OK); 109 reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); 110 bind(OK); 111 } 112 #endif 113 114 // TODO: Maybe implement +VerifyActivationFrameSize here. 115 verify_oop(Z_tos, state); 116 117 // Dispatch table to use. 118 load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table; 119 120 if (generate_poll) { 121 address *sfpt_tbl = Interpreter::safept_table(state); 122 if (table != sfpt_tbl) { 123 Label dispatch; 124 const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */); 125 // Armed page has poll_bit set, if poll bit is cleared just continue. 126 z_tm(poll_byte_addr, SafepointMechanism::poll_bit()); 127 z_braz(dispatch); 128 load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table; 129 bind(dispatch); 130 } 131 } 132 133 // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. 134 // Z_bytecode must have been loaded zero-extended for this approach to be correct. 135 z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. 136 z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. 137 138 z_br(Z_tmp_1); 139 } 140 141 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 142 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 143 } 144 145 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 146 dispatch_base(state, Interpreter::normal_table(state)); 147 } 148 149 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { 150 // Load current bytecode. 151 z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); 152 dispatch_base(state, table); 153 } 154 155 // The following call_VM*_base() methods overload and mask the respective 156 // declarations/definitions in class MacroAssembler. They are meant as a "detour" 157 // to perform additional, template interpreter specific tasks before actually 158 // calling their MacroAssembler counterparts. 159 160 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { 161 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 162 // interpreter specific 163 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 164 // saved registers and no blocking/ GC can happen in leaf calls. 165 166 // super call 167 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 168 } 169 170 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { 171 // interpreter specific 172 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 173 // saved registers and no blocking/ GC can happen in leaf calls. 174 175 // super call 176 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 177 } 178 179 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 180 address entry_point, bool check_exceptions) { 181 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 182 // interpreter specific 183 184 save_bcp(); 185 save_esp(); 186 // super call 187 MacroAssembler::call_VM_base(oop_result, last_java_sp, 188 entry_point, allow_relocation, check_exceptions); 189 restore_bcp(); 190 } 191 192 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 193 address entry_point, bool allow_relocation, 194 bool check_exceptions) { 195 // interpreter specific 196 197 save_bcp(); 198 save_esp(); 199 // super call 200 MacroAssembler::call_VM_base(oop_result, last_java_sp, 201 entry_point, allow_relocation, check_exceptions); 202 restore_bcp(); 203 } 204 205 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 206 if (JvmtiExport::can_pop_frame()) { 207 BLOCK_COMMENT("check_and_handle_popframe {"); 208 Label L; 209 // Initiate popframe handling only if it is not already being 210 // processed. If the flag has the popframe_processing bit set, it 211 // means that this code is called *during* popframe handling - we 212 // don't want to reenter. 213 // TODO: Check if all four state combinations could be visible. 214 // If (processing and !pending) is an invisible/impossible state, 215 // there is optimization potential by testing both bits at once. 216 // Then, All_Zeroes and All_Ones means skip, Mixed means doit. 217 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 218 exact_log2(JavaThread::popframe_pending_bit)); 219 z_bfalse(L); 220 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 221 exact_log2(JavaThread::popframe_processing_bit)); 222 z_btrue(L); 223 224 // Call Interpreter::remove_activation_preserving_args_entry() to get the 225 // address of the same-named entrypoint in the generated interpreter code. 226 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 227 // The above call should (as its only effect) return the contents of the field 228 // _remove_activation_preserving_args_entry in Z_RET. 229 // We just jump there to have the work done. 230 z_br(Z_RET); 231 // There is no way for control to fall thru here. 232 233 bind(L); 234 BLOCK_COMMENT("} check_and_handle_popframe"); 235 } 236 } 237 238 239 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 240 Register RjvmtiState = Z_R1_scratch; 241 int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); 242 int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); 243 int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); 244 int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); 245 246 z_lg(RjvmtiState, state_off, Z_thread); 247 248 switch (state) { 249 case atos: z_lg(Z_tos, oop_off, RjvmtiState); 250 store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); 251 break; 252 case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; 253 case btos: // fall through 254 case ztos: // fall through 255 case ctos: // fall through 256 case stos: // fall through 257 case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; 258 case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; 259 case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; 260 case vtos: /* nothing to do */ break; 261 default : ShouldNotReachHere(); 262 } 263 264 // Clean up tos value in the jvmti thread state. 265 store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); 266 // Set tos state field to illegal value. 267 store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); 268 } 269 270 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 271 if (JvmtiExport::can_force_early_return()) { 272 BLOCK_COMMENT("check_and_handle_earlyret {"); 273 Label L; 274 // arg regs are save, because we are just behind the call in call_VM_base 275 Register jvmti_thread_state = Z_ARG2; 276 Register tmp = Z_ARG3; 277 load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); 278 z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit; 279 280 // Initiate earlyret handling only if it is not already being processed. 281 // If the flag has the earlyret_processing bit set, it means that this code 282 // is called *during* earlyret handling - we don't want to reenter. 283 284 assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), 285 "must fix this check, when changing the values of the earlyret enum"); 286 assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); 287 288 load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); 289 z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; 290 291 // Call Interpreter::remove_activation_early_entry() to get the address of the 292 // same-named entrypoint in the generated interpreter code. 293 assert(sizeof(TosState) == 4, "unexpected size"); 294 z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); 295 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); 296 // The above call should (as its only effect) return the contents of the field 297 // _remove_activation_preserving_args_entry in Z_RET. 298 // We just jump there to have the work done. 299 z_br(Z_RET); 300 // There is no way for control to fall thru here. 301 302 bind(L); 303 BLOCK_COMMENT("} check_and_handle_earlyret"); 304 } 305 } 306 307 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { 308 lgr_if_needed(Z_ARG1, arg_1); 309 assert(arg_2 != Z_ARG1, "smashed argument"); 310 lgr_if_needed(Z_ARG2, arg_2); 311 MacroAssembler::call_VM_leaf_base(entry_point, true); 312 } 313 314 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { 315 Address param(Z_bcp, bcp_offset); 316 317 BLOCK_COMMENT("get_cache_index_at_bcp {"); 318 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 319 if (index_size == sizeof(u2)) { 320 load_sized_value(index, param, 2, false /*signed*/); 321 } else if (index_size == sizeof(u4)) { 322 323 load_sized_value(index, param, 4, false); 324 } else if (index_size == sizeof(u1)) { 325 z_llgc(index, param); 326 } else { 327 ShouldNotReachHere(); 328 } 329 BLOCK_COMMENT("}"); 330 } 331 332 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 333 // Get index out of bytecode pointer. 334 get_cache_index_at_bcp(index, 1, sizeof(u4)); 335 336 // Get the address of the ResolvedIndyEntry array 337 get_constant_pool_cache(cache); 338 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 339 340 // Scale the index to form a byte offset into the ResolvedIndyEntry array 341 size_t entry_size = sizeof(ResolvedIndyEntry); 342 if (is_power_of_2(entry_size)) { 343 z_sllg(index, index, exact_log2(entry_size)); 344 } else { 345 z_mghi(index, entry_size); 346 } 347 348 // Calculate the final field address. 349 z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache); 350 } 351 352 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 353 // Get field index out of bytecode pointer. 354 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 355 356 // Get the address of the ResolvedFieldEntry array. 357 get_constant_pool_cache(cache); 358 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset()))); 359 360 // Scale the index to form a byte offset into the ResolvedFieldEntry array 361 size_t entry_size = sizeof(ResolvedFieldEntry); 362 if (is_power_of_2(entry_size)) { 363 z_sllg(index, index, exact_log2(entry_size)); 364 } else { 365 z_mghi(index, entry_size); 366 } 367 368 // Calculate the final field address. 369 z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache); 370 } 371 372 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 373 // Get field index out of bytecode pointer. 374 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 375 376 // Get the address of the ResolvedMethodEntry array. 377 get_constant_pool_cache(cache); 378 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset()))); 379 380 // Scale the index to form a byte offset into the ResolvedMethodEntry array 381 size_t entry_size = sizeof(ResolvedMethodEntry); 382 if (is_power_of_2(entry_size)) { 383 z_sllg(index, index, exact_log2(entry_size)); 384 } else { 385 z_mghi(index, entry_size); 386 } 387 388 // Calculate the final field address. 389 z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache); 390 } 391 392 // Load object from cpool->resolved_references(index). 393 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { 394 assert_different_registers(result, index); 395 get_constant_pool(result); 396 397 // Convert 398 // - from field index to resolved_references() index and 399 // - from word index to byte offset. 400 // Since this is a java object, it is potentially compressed. 401 Register tmp = index; // reuse 402 z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. 403 // Load pointer for resolved_references[] objArray. 404 z_lg(result, in_bytes(ConstantPool::cache_offset()), result); 405 z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result); 406 resolve_oop_handle(result); // Load resolved references array itself. 407 #ifdef ASSERT 408 NearLabel index_ok; 409 z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); 410 z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); 411 compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); 412 stop("resolved reference index out of bounds", 0x09256); 413 bind(index_ok); 414 #endif 415 z_agr(result, index); // Address of indexed array element. 416 load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg); 417 } 418 419 // load cpool->resolved_klass_at(index) 420 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) { 421 // int value = *(Rcpool->int_at_addr(which)); 422 // int resolved_klass_index = extract_low_short_from_int(value); 423 z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian) 424 z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset' 425 z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses 426 z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes())); 427 } 428 429 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 430 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. 431 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 432 Register Rsuper_klass, 433 Register Rtmp1, 434 Register Rtmp2, 435 Label &ok_is_subtype) { 436 // Profile the not-null value's klass. 437 profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); 438 439 // Do the check. 440 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 441 } 442 443 // Pop topmost element from stack. It just disappears. 444 // Useful if consumed previously by access via stackTop(). 445 void InterpreterMacroAssembler::popx(int len) { 446 add2reg(Z_esp, len*Interpreter::stackElementSize); 447 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 448 } 449 450 // Get Address object of stack top. No checks. No pop. 451 // Purpose: - Provide address of stack operand to exploit reg-mem operations. 452 // - Avoid RISC-like mem2reg - reg-reg-op sequence. 453 Address InterpreterMacroAssembler::stackTop() { 454 return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); 455 } 456 457 void InterpreterMacroAssembler::pop_i(Register r) { 458 z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 459 add2reg(Z_esp, Interpreter::stackElementSize); 460 assert_different_registers(r, Z_R1_scratch); 461 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 462 } 463 464 void InterpreterMacroAssembler::pop_ptr(Register r) { 465 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 466 add2reg(Z_esp, Interpreter::stackElementSize); 467 assert_different_registers(r, Z_R1_scratch); 468 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 469 } 470 471 void InterpreterMacroAssembler::pop_l(Register r) { 472 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 473 add2reg(Z_esp, 2*Interpreter::stackElementSize); 474 assert_different_registers(r, Z_R1_scratch); 475 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 476 } 477 478 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 479 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); 480 add2reg(Z_esp, Interpreter::stackElementSize); 481 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 482 } 483 484 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 485 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); 486 add2reg(Z_esp, 2*Interpreter::stackElementSize); 487 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 488 } 489 490 void InterpreterMacroAssembler::push_i(Register r) { 491 assert_different_registers(r, Z_R1_scratch); 492 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 493 z_st(r, Address(Z_esp)); 494 add2reg(Z_esp, -Interpreter::stackElementSize); 495 } 496 497 void InterpreterMacroAssembler::push_ptr(Register r) { 498 z_stg(r, Address(Z_esp)); 499 add2reg(Z_esp, -Interpreter::stackElementSize); 500 } 501 502 void InterpreterMacroAssembler::push_l(Register r) { 503 assert_different_registers(r, Z_R1_scratch); 504 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 505 int offset = -Interpreter::stackElementSize; 506 z_stg(r, Address(Z_esp, offset)); 507 clear_mem(Address(Z_esp), Interpreter::stackElementSize); 508 add2reg(Z_esp, 2 * offset); 509 } 510 511 void InterpreterMacroAssembler::push_f(FloatRegister f) { 512 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 513 freg2mem_opt(f, Address(Z_esp), false); 514 add2reg(Z_esp, -Interpreter::stackElementSize); 515 } 516 517 void InterpreterMacroAssembler::push_d(FloatRegister d) { 518 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 519 int offset = -Interpreter::stackElementSize; 520 freg2mem_opt(d, Address(Z_esp, offset)); 521 add2reg(Z_esp, 2 * offset); 522 } 523 524 void InterpreterMacroAssembler::push(TosState state) { 525 verify_oop(Z_tos, state); 526 switch (state) { 527 case atos: push_ptr(); break; 528 case btos: push_i(); break; 529 case ztos: 530 case ctos: 531 case stos: push_i(); break; 532 case itos: push_i(); break; 533 case ltos: push_l(); break; 534 case ftos: push_f(); break; 535 case dtos: push_d(); break; 536 case vtos: /* nothing to do */ break; 537 default : ShouldNotReachHere(); 538 } 539 } 540 541 void InterpreterMacroAssembler::pop(TosState state) { 542 switch (state) { 543 case atos: pop_ptr(Z_tos); break; 544 case btos: pop_i(Z_tos); break; 545 case ztos: 546 case ctos: 547 case stos: pop_i(Z_tos); break; 548 case itos: pop_i(Z_tos); break; 549 case ltos: pop_l(Z_tos); break; 550 case ftos: pop_f(Z_ftos); break; 551 case dtos: pop_d(Z_ftos); break; 552 case vtos: /* nothing to do */ break; 553 default : ShouldNotReachHere(); 554 } 555 verify_oop(Z_tos, state); 556 } 557 558 // Helpers for swap and dup. 559 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 560 z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 561 } 562 563 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 564 z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 565 } 566 567 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { 568 // Satisfy interpreter calling convention (see generate_normal_entry()). 569 z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). 570 // Record top_frame_sp, because the callee might modify it, if it's compiled. 571 z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp); 572 save_bcp(); 573 save_esp(); 574 z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). 575 } 576 577 // Jump to from_interpreted entry of a call unless single stepping is possible 578 // in this thread in which case we must call the i2i entry. 579 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 580 assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); 581 prepare_to_jump_from_interpreted(method); 582 583 if (JvmtiExport::can_post_interpreter_events()) { 584 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 585 // compiled code in threads for which the event is enabled. Check here for 586 // interp_only_mode if these events CAN be enabled. 587 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 588 MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 589 z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. 590 // Run interpreted. 591 z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); 592 z_br(Z_R1_scratch); 593 } else { 594 // Run compiled code. 595 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 596 z_br(Z_R1_scratch); 597 } 598 } 599 600 #ifdef ASSERT 601 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { 602 // About to read or write Resp[0]. 603 // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. 604 address reentry = nullptr; 605 606 { 607 // Check if the frame pointer in Z_fp is correct. 608 NearLabel OK; 609 z_cg(Z_fp, 0, Z_SP); 610 z_bre(OK); 611 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); 612 bind(OK); 613 } 614 { 615 // Resp must not point into or below the operand stack, 616 // i.e. IJAVA_STATE.monitors > Resp. 617 NearLabel OK; 618 Register Rmonitors = Rtemp; 619 z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp); 620 compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); 621 reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); 622 bind(OK); 623 } 624 { 625 // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below 626 // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). 627 NearLabel OK; 628 Register Rabi_bottom = Rtemp; 629 add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); 630 compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); 631 reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); 632 bind(OK); 633 } 634 } 635 636 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { 637 Label magic_ok; 638 load_const_optimized(tmp, frame::z_istate_magic_number); 639 z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); 640 z_bre(magic_ok); 641 stop_static("error: wrong magic number in ijava_state access"); 642 bind(magic_ok); 643 } 644 #endif // ASSERT 645 646 void InterpreterMacroAssembler::save_bcp() { 647 z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 648 asm_assert_ijava_state_magic(Z_bcp); 649 NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); 650 } 651 652 void InterpreterMacroAssembler::restore_bcp() { 653 asm_assert_ijava_state_magic(Z_bcp); 654 z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 655 } 656 657 void InterpreterMacroAssembler::save_esp() { 658 z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 659 } 660 661 void InterpreterMacroAssembler::restore_esp() { 662 asm_assert_ijava_state_magic(Z_esp); 663 z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 664 } 665 666 void InterpreterMacroAssembler::get_monitors(Register reg) { 667 asm_assert_ijava_state_magic(reg); 668 mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 669 } 670 671 void InterpreterMacroAssembler::save_monitors(Register reg) { 672 reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 673 } 674 675 void InterpreterMacroAssembler::get_mdp(Register mdp) { 676 z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); 677 } 678 679 void InterpreterMacroAssembler::save_mdp(Register mdp) { 680 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 681 } 682 683 // Values that are only read (besides initialization). 684 void InterpreterMacroAssembler::restore_locals() { 685 asm_assert_ijava_state_magic(Z_locals); 686 z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); 687 } 688 689 void InterpreterMacroAssembler::get_method(Register reg) { 690 asm_assert_ijava_state_magic(reg); 691 z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); 692 } 693 694 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, 695 signedOrNot is_signed) { 696 // Rdst is an 8-byte return value!!! 697 698 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 699 // is a few (2..3) ticks, even when the load crosses a cache line 700 // boundary. In case of a cache miss, the stall could, of course, be 701 // much longer. 702 703 switch (is_signed) { 704 case Signed: 705 z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); 706 break; 707 case Unsigned: 708 z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); 709 break; 710 default: 711 ShouldNotReachHere(); 712 } 713 } 714 715 716 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, 717 setCCOrNot set_cc) { 718 // Rdst is an 8-byte return value!!! 719 720 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 721 // is a few (2..3) ticks, even when the load crosses a cache line 722 // boundary. In case of a cache miss, the stall could, of course, be 723 // much longer. 724 725 // Both variants implement a sign-extending int2long load. 726 if (set_cc == set_CC) { 727 load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 728 } else { 729 mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 730 } 731 } 732 733 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 734 get_method(Rdst); 735 mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); 736 mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); 737 } 738 739 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 740 get_constant_pool(Rdst); 741 mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset())); 742 } 743 744 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 745 get_constant_pool(Rcpool); 746 mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset())); 747 } 748 749 // Unlock if synchronized method. 750 // 751 // Unlock the receiver if this is a synchronized method. 752 // Unlock any Java monitors from synchronized blocks. 753 // 754 // If there are locked Java monitors 755 // If throw_monitor_exception 756 // throws IllegalMonitorStateException 757 // Else if install_monitor_exception 758 // installs IllegalMonitorStateException 759 // Else 760 // no error processing 761 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 762 bool throw_monitor_exception, 763 bool install_monitor_exception) { 764 NearLabel unlocked, unlock, no_unlock; 765 766 { 767 Register R_method = Z_ARG2; 768 Register R_do_not_unlock_if_synchronized = Z_ARG3; 769 770 // Get the value of _do_not_unlock_if_synchronized into G1_scratch. 771 const Address do_not_unlock_if_synchronized(Z_thread, 772 JavaThread::do_not_unlock_if_synchronized_offset()); 773 load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); 774 z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. 775 776 // Check if synchronized method. 777 get_method(R_method); 778 verify_oop(Z_tos, state); 779 push(state); // Save tos/result. 780 testbit_ushort(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 781 z_bfalse(unlocked); 782 783 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 784 // is set. 785 compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); 786 } 787 788 // unlock monitor 789 790 // BasicObjectLock will be first in list, since this is a 791 // synchronized method. However, need to check that the object has 792 // not been unlocked by an explicit monitorexit bytecode. 793 const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); 794 // We use Z_ARG2 so that if we go slow path it will be the correct 795 // register for unlock_object to pass to VM directly. 796 load_address(Z_ARG2, monitor); // Address of first monitor. 797 z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset())); 798 compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); 799 800 if (throw_monitor_exception) { 801 // Entry already unlocked need to throw an exception. 802 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 803 should_not_reach_here(); 804 } else { 805 // Monitor already unlocked during a stack unroll. 806 // If requested, install an illegal_monitor_state_exception. 807 // Continue with stack unrolling. 808 if (install_monitor_exception) { 809 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 810 } 811 z_bru(unlocked); 812 } 813 814 bind(unlock); 815 816 unlock_object(Z_ARG2); 817 818 bind(unlocked); 819 820 // I0, I1: Might contain return value 821 822 // Check that all monitors are unlocked. 823 { 824 NearLabel loop, exception, entry, restart; 825 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 826 // We use Z_ARG2 so that if we go slow path it will be the correct 827 // register for unlock_object to pass to VM directly. 828 Register R_current_monitor = Z_ARG2; 829 Register R_monitor_block_bot = Z_ARG1; 830 const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors)); 831 const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); 832 833 bind(restart); 834 // Starting with top-most entry. 835 z_lg(R_current_monitor, monitor_block_top); 836 // Points to word before bottom of monitor block. 837 load_address(R_monitor_block_bot, monitor_block_bot); 838 z_bru(entry); 839 840 // Entry already locked, need to throw exception. 841 bind(exception); 842 843 if (throw_monitor_exception) { 844 // Throw exception. 845 MacroAssembler::call_VM(noreg, 846 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 847 throw_illegal_monitor_state_exception)); 848 should_not_reach_here(); 849 } else { 850 // Stack unrolling. Unlock object and install illegal_monitor_exception. 851 // Unlock does not block, so don't have to worry about the frame. 852 // We don't have to preserve c_rarg1 since we are going to throw an exception. 853 unlock_object(R_current_monitor); 854 if (install_monitor_exception) { 855 call_VM(noreg, CAST_FROM_FN_PTR(address, 856 InterpreterRuntime:: 857 new_illegal_monitor_state_exception)); 858 } 859 z_bru(restart); 860 } 861 862 bind(loop); 863 // Check if current entry is used. 864 load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset())); 865 z_brne(exception); 866 867 add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. 868 bind(entry); 869 compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); 870 } 871 872 bind(no_unlock); 873 pop(state); 874 verify_oop(Z_tos, state); 875 } 876 877 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) { 878 get_method(ret_type); 879 z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset()))); 880 z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset()))); 881 882 Label notBool, notByte, notChar, done; 883 884 // common case first 885 compareU32_and_branch(ret_type, T_INT, bcondEqual, done); 886 887 compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool); 888 z_nilf(result, 0x1); 889 z_bru(done); 890 891 bind(notBool); 892 compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte); 893 z_lbr(result, result); 894 z_bru(done); 895 896 bind(notByte); 897 compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar); 898 z_nilf(result, 0xffff); 899 z_bru(done); 900 901 bind(notChar); 902 // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort); 903 z_lhr(result, result); 904 905 // Nothing to do for T_INT 906 bind(done); 907 } 908 909 // remove activation 910 // 911 // Unlock the receiver if this is a synchronized method. 912 // Unlock any Java monitors from synchronized blocks. 913 // Remove the activation from the stack. 914 // 915 // If there are locked Java monitors 916 // If throw_monitor_exception 917 // throws IllegalMonitorStateException 918 // Else if install_monitor_exception 919 // installs IllegalMonitorStateException 920 // Else 921 // no error processing 922 void InterpreterMacroAssembler::remove_activation(TosState state, 923 Register return_pc, 924 bool throw_monitor_exception, 925 bool install_monitor_exception, 926 bool notify_jvmti) { 927 BLOCK_COMMENT("remove_activation {"); 928 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 929 930 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 931 notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); 932 933 if (StackReservedPages > 0) { 934 BLOCK_COMMENT("reserved_stack_check:"); 935 // Test if reserved zone needs to be enabled. 936 Label no_reserved_zone_enabling; 937 938 // check if already enabled - if so no re-enabling needed 939 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 940 z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset())); 941 compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling); 942 943 // Compare frame pointers. There is no good stack pointer, as with stack 944 // frame compression we can get different SPs when we do calls. A subsequent 945 // call could have a smaller SP, so that this compare succeeds for an 946 // inner call of the method annotated with ReservedStack. 947 z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); 948 z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. 949 z_brl(no_reserved_zone_enabling); 950 951 // Enable reserved zone again, throw stack overflow exception. 952 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); 953 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 954 955 should_not_reach_here(); 956 957 bind(no_reserved_zone_enabling); 958 } 959 960 verify_oop(Z_tos, state); 961 962 pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); 963 BLOCK_COMMENT("} remove_activation"); 964 } 965 966 // lock object 967 // 968 // Registers alive 969 // monitor (Z_R10) - Address of the BasicObjectLock to be used for locking, 970 // which must be initialized with the object to lock. 971 // object (Z_R11, Z_R2) - Address of the object to be locked. 972 // templateTable (monitorenter) is using Z_R2 for object 973 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 974 975 if (LockingMode == LM_MONITOR) { 976 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 977 return; 978 } 979 980 // template code: (for LM_LEGACY) 981 // 982 // markWord displaced_header = obj->mark().set_unlocked(); 983 // monitor->lock()->set_displaced_header(displaced_header); 984 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 985 // // We stored the monitor address into the object's mark word. 986 // } else if (THREAD->is_lock_owned((address)displaced_header)) 987 // // Simple recursive case. 988 // monitor->lock()->set_displaced_header(nullptr); 989 // } else { 990 // // Slow path. 991 // InterpreterRuntime::monitorenter(THREAD, monitor); 992 // } 993 994 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 995 996 const Register header = Z_ARG5; 997 const Register object_mark_addr = Z_ARG4; 998 const Register current_header = Z_ARG5; 999 const Register tmp = Z_R1_scratch; 1000 1001 NearLabel done, slow_case; 1002 1003 // markWord header = obj->mark().set_unlocked(); 1004 1005 if (DiagnoseSyncOnValueBasedClasses != 0) { 1006 load_klass(tmp, object); 1007 z_tm(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1008 z_btrue(slow_case); 1009 } 1010 1011 if (LockingMode == LM_LIGHTWEIGHT) { 1012 lightweight_lock(monitor, object, header, tmp, slow_case); 1013 } else if (LockingMode == LM_LEGACY) { 1014 1015 // Load markWord from object into header. 1016 z_lg(header, hdr_offset, object); 1017 1018 // Set header to be (markWord of object | UNLOCK_VALUE). 1019 // This will not change anything if it was unlocked before. 1020 z_oill(header, markWord::unlocked_value); 1021 1022 // monitor->lock()->set_displaced_header(displaced_header); 1023 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1024 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); 1025 1026 // Initialize the box (Must happen before we update the object mark!). 1027 z_stg(header, mark_offset, monitor); 1028 1029 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1030 1031 // not necessary, use offset in instruction directly. 1032 // add2reg(object_mark_addr, hdr_offset, object); 1033 1034 // Store stack address of the BasicObjectLock (this is monitor) into object. 1035 z_csg(header, monitor, hdr_offset, object); 1036 assert(current_header == header, 1037 "must be same register"); // Identified two registers from z/Architecture. 1038 1039 z_bre(done); 1040 1041 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1042 // // Simple recursive case. 1043 // monitor->lock()->set_displaced_header(nullptr); 1044 1045 // We did not see an unlocked object so try the fast recursive case. 1046 1047 // Check if owner is self by comparing the value in the markWord of object 1048 // (current_header) with the stack pointer. 1049 z_sgr(current_header, Z_SP); 1050 1051 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1052 1053 // The prior sequence "LGR, NGR, LTGR" can be done better 1054 // (Z_R1 is temp and not used after here). 1055 load_const_optimized(Z_R0, (~(os::vm_page_size() - 1) | markWord::lock_mask_in_place)); 1056 z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0) 1057 1058 // If condition is true we are done and hence we can store 0 in the displaced 1059 // header indicating it is a recursive lock and be done. 1060 z_brne(slow_case); 1061 z_release(); // Member unnecessary on zarch AND because the above csg does a sync before and after. 1062 z_stg(Z_R0/*==0!*/, mark_offset, monitor); 1063 } 1064 z_bru(done); 1065 // } else { 1066 // // Slow path. 1067 // InterpreterRuntime::monitorenter(THREAD, monitor); 1068 1069 // None of the above fast optimizations worked so we have to get into the 1070 // slow case of monitor enter. 1071 bind(slow_case); 1072 call_VM(noreg, 1073 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1074 monitor); 1075 // } 1076 1077 bind(done); 1078 } 1079 1080 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1081 // 1082 // Registers alive 1083 // monitor - address of the BasicObjectLock to be used for locking, 1084 // which must be initialized with the object to lock. 1085 // 1086 // Throw IllegalMonitorException if object is not locked by current thread. 1087 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { 1088 1089 if (LockingMode == LM_MONITOR) { 1090 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1091 return; 1092 } 1093 1094 // else { 1095 // template code: (for LM_LEGACY): 1096 // 1097 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1098 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1099 // monitor->set_obj(nullptr); 1100 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1101 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1102 // monitor->set_obj(nullptr); 1103 // } else { 1104 // // Slow path. 1105 // InterpreterRuntime::monitorexit(monitor); 1106 // } 1107 1108 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 1109 1110 const Register header = Z_ARG4; 1111 const Register current_header = Z_R1_scratch; 1112 Address obj_entry(monitor, BasicObjectLock::obj_offset()); 1113 Label done, slow_case; 1114 1115 if (object == noreg) { 1116 // In the template interpreter, we must assure that the object 1117 // entry in the monitor is cleared on all paths. Thus we move 1118 // loading up to here, and clear the entry afterwards. 1119 object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. 1120 z_lg(object, obj_entry); 1121 } 1122 1123 assert_different_registers(monitor, object, header, current_header); 1124 1125 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1126 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1127 // monitor->set_obj(nullptr); 1128 1129 // monitor->lock()->set_displaced_header(displaced_header); 1130 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1131 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); 1132 1133 clear_mem(obj_entry, sizeof(oop)); 1134 if (LockingMode != LM_LIGHTWEIGHT) { 1135 // Test first if we are in the fast recursive case. 1136 MacroAssembler::load_and_test_long(header, Address(monitor, mark_offset)); 1137 z_bre(done); // header == 0 -> goto done 1138 } 1139 1140 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1141 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1142 // monitor->set_obj(nullptr); 1143 1144 // If we still have a lightweight lock, unlock the object and be done. 1145 if (LockingMode == LM_LIGHTWEIGHT) { 1146 1147 lightweight_unlock(object, header, current_header, slow_case); 1148 1149 z_bru(done); 1150 } else { 1151 // The markword is expected to be at offset 0. 1152 // This is not required on s390, at least not here. 1153 assert(hdr_offset == 0, "unlock_object: review code below"); 1154 1155 // We have the displaced header in header. If the lock is still 1156 // lightweight, it will contain the monitor address and we'll store the 1157 // displaced header back into the object's mark word. 1158 z_lgr(current_header, monitor); 1159 z_csg(current_header, header, hdr_offset, object); 1160 z_bre(done); 1161 } 1162 1163 // } else { 1164 // // Slow path. 1165 // InterpreterRuntime::monitorexit(monitor); 1166 1167 // The lock has been converted into a heavy lock and hence 1168 // we need to get into the slow case. 1169 bind(slow_case); 1170 z_stg(object, obj_entry); // Restore object entry, has been cleared above. 1171 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1172 1173 // } 1174 1175 bind(done); 1176 } 1177 1178 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { 1179 assert(ProfileInterpreter, "must be profiling interpreter"); 1180 load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); 1181 z_brz(zero_continue); 1182 } 1183 1184 // Set the method data pointer for the current bcp. 1185 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1186 assert(ProfileInterpreter, "must be profiling interpreter"); 1187 Label set_mdp; 1188 Register mdp = Z_ARG4; 1189 Register method = Z_ARG5; 1190 1191 get_method(method); 1192 // Test MDO to avoid the call if it is null. 1193 load_and_test_long(mdp, method2_(method, method_data)); 1194 z_brz(set_mdp); 1195 1196 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); 1197 // Z_RET: mdi 1198 // Mdo is guaranteed to be non-zero here, we checked for it before the call. 1199 assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); 1200 z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. 1201 add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); 1202 1203 bind(set_mdp); 1204 save_mdp(mdp); 1205 } 1206 1207 void InterpreterMacroAssembler::verify_method_data_pointer() { 1208 assert(ProfileInterpreter, "must be profiling interpreter"); 1209 #ifdef ASSERT 1210 NearLabel verify_continue; 1211 Register bcp_expected = Z_ARG3; 1212 Register mdp = Z_ARG4; 1213 Register method = Z_ARG5; 1214 1215 test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue 1216 get_method(method); 1217 1218 // If the mdp is valid, it will point to a DataLayout header which is 1219 // consistent with the bcp. The converse is highly probable also. 1220 load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); 1221 z_ag(bcp_expected, Address(method, Method::const_offset())); 1222 load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); 1223 compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); 1224 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); 1225 bind(verify_continue); 1226 #endif // ASSERT 1227 } 1228 1229 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { 1230 assert(ProfileInterpreter, "must be profiling interpreter"); 1231 z_stg(value, constant, mdp_in); 1232 } 1233 1234 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1235 int constant, 1236 Register tmp, 1237 bool decrement) { 1238 assert_different_registers(mdp_in, tmp); 1239 // counter address 1240 Address data(mdp_in, constant); 1241 const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; 1242 add2mem_64(Address(mdp_in, constant), delta, tmp); 1243 } 1244 1245 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1246 int flag_byte_constant) { 1247 assert(ProfileInterpreter, "must be profiling interpreter"); 1248 // Set the flag. 1249 z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); 1250 } 1251 1252 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1253 int offset, 1254 Register value, 1255 Register test_value_out, 1256 Label& not_equal_continue) { 1257 assert(ProfileInterpreter, "must be profiling interpreter"); 1258 if (test_value_out == noreg) { 1259 z_cg(value, Address(mdp_in, offset)); 1260 z_brne(not_equal_continue); 1261 } else { 1262 // Put the test value into a register, so caller can use it: 1263 z_lg(test_value_out, Address(mdp_in, offset)); 1264 compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); 1265 } 1266 } 1267 1268 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { 1269 update_mdp_by_offset(mdp_in, noreg, offset_of_disp); 1270 } 1271 1272 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1273 Register dataidx, 1274 int offset_of_disp) { 1275 assert(ProfileInterpreter, "must be profiling interpreter"); 1276 Address disp_address(mdp_in, dataidx, offset_of_disp); 1277 Assembler::z_ag(mdp_in, disp_address); 1278 save_mdp(mdp_in); 1279 } 1280 1281 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { 1282 assert(ProfileInterpreter, "must be profiling interpreter"); 1283 add2reg(mdp_in, constant); 1284 save_mdp(mdp_in); 1285 } 1286 1287 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1288 assert(ProfileInterpreter, "must be profiling interpreter"); 1289 assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); 1290 call_VM(noreg, 1291 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1292 return_bci); 1293 } 1294 1295 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { 1296 if (ProfileInterpreter) { 1297 Label profile_continue; 1298 1299 // If no method data exists, go to profile_continue. 1300 // Otherwise, assign to mdp. 1301 test_method_data_pointer(mdp, profile_continue); 1302 1303 // We are taking a branch. Increment the taken count. 1304 // We inline increment_mdp_data_at to return bumped_count in a register 1305 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1306 Address data(mdp, JumpData::taken_offset()); 1307 z_lg(bumped_count, data); 1308 // 64-bit overflow is very unlikely. Saturation to 32-bit values is 1309 // performed when reading the counts. 1310 add2reg(bumped_count, DataLayout::counter_increment); 1311 z_stg(bumped_count, data); // Store back out 1312 1313 // The method data pointer needs to be updated to reflect the new target. 1314 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1315 bind(profile_continue); 1316 } 1317 } 1318 1319 // Kills Z_R1_scratch. 1320 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1321 if (ProfileInterpreter) { 1322 Label profile_continue; 1323 1324 // If no method data exists, go to profile_continue. 1325 test_method_data_pointer(mdp, profile_continue); 1326 1327 // We are taking a branch. Increment the not taken count. 1328 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); 1329 1330 // The method data pointer needs to be updated to correspond to 1331 // the next bytecode. 1332 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1333 bind(profile_continue); 1334 } 1335 } 1336 1337 // Kills: Z_R1_scratch. 1338 void InterpreterMacroAssembler::profile_call(Register mdp) { 1339 if (ProfileInterpreter) { 1340 Label profile_continue; 1341 1342 // If no method data exists, go to profile_continue. 1343 test_method_data_pointer(mdp, profile_continue); 1344 1345 // We are making a call. Increment the count. 1346 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1347 1348 // The method data pointer needs to be updated to reflect the new target. 1349 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1350 bind(profile_continue); 1351 } 1352 } 1353 1354 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1355 if (ProfileInterpreter) { 1356 Label profile_continue; 1357 1358 // If no method data exists, go to profile_continue. 1359 test_method_data_pointer(mdp, profile_continue); 1360 1361 // We are making a call. Increment the count. 1362 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1363 1364 // The method data pointer needs to be updated to reflect the new target. 1365 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1366 bind(profile_continue); 1367 } 1368 } 1369 1370 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1371 Register mdp, 1372 Register reg2, 1373 bool receiver_can_be_null) { 1374 if (ProfileInterpreter) { 1375 NearLabel profile_continue; 1376 1377 // If no method data exists, go to profile_continue. 1378 test_method_data_pointer(mdp, profile_continue); 1379 1380 NearLabel skip_receiver_profile; 1381 if (receiver_can_be_null) { 1382 NearLabel not_null; 1383 compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); 1384 // We are making a call. Increment the count for null receiver. 1385 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1386 z_bru(skip_receiver_profile); 1387 bind(not_null); 1388 } 1389 1390 // Record the receiver type. 1391 record_klass_in_profile(receiver, mdp, reg2); 1392 bind(skip_receiver_profile); 1393 1394 // The method data pointer needs to be updated to reflect the new target. 1395 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1396 bind(profile_continue); 1397 } 1398 } 1399 1400 // This routine creates a state machine for updating the multi-row 1401 // type profile at a virtual call site (or other type-sensitive bytecode). 1402 // The machine visits each row (of receiver/count) until the receiver type 1403 // is found, or until it runs out of rows. At the same time, it remembers 1404 // the location of the first empty row. (An empty row records null for its 1405 // receiver, and can be allocated for a newly-observed receiver type.) 1406 // Because there are two degrees of freedom in the state, a simple linear 1407 // search will not work; it must be a decision tree. Hence this helper 1408 // function is recursive, to generate the required tree structured code. 1409 // It's the interpreter, so we are trading off code space for speed. 1410 // See below for example code. 1411 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1412 Register receiver, Register mdp, 1413 Register reg2, int start_row, 1414 Label& done) { 1415 if (TypeProfileWidth == 0) { 1416 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1417 return; 1418 } 1419 1420 int last_row = VirtualCallData::row_limit() - 1; 1421 assert(start_row <= last_row, "must be work left to do"); 1422 // Test this row for both the receiver and for null. 1423 // Take any of three different outcomes: 1424 // 1. found receiver => increment count and goto done 1425 // 2. found null => keep looking for case 1, maybe allocate this cell 1426 // 3. found something else => keep looking for cases 1 and 2 1427 // Case 3 is handled by a recursive call. 1428 for (int row = start_row; row <= last_row; row++) { 1429 NearLabel next_test; 1430 bool test_for_null_also = (row == start_row); 1431 1432 // See if the receiver is receiver[n]. 1433 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1434 test_mdp_data_at(mdp, recvr_offset, receiver, 1435 (test_for_null_also ? reg2 : noreg), 1436 next_test); 1437 // (Reg2 now contains the receiver from the CallData.) 1438 1439 // The receiver is receiver[n]. Increment count[n]. 1440 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1441 increment_mdp_data_at(mdp, count_offset); 1442 z_bru(done); 1443 bind(next_test); 1444 1445 if (test_for_null_also) { 1446 Label found_null; 1447 // Failed the equality check on receiver[n]... Test for null. 1448 z_ltgr(reg2, reg2); 1449 if (start_row == last_row) { 1450 // The only thing left to do is handle the null case. 1451 z_brz(found_null); 1452 // Receiver did not match any saved receiver and there is no empty row for it. 1453 // Increment total counter to indicate polymorphic case. 1454 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1455 z_bru(done); 1456 bind(found_null); 1457 break; 1458 } 1459 // Since null is rare, make it be the branch-taken case. 1460 z_brz(found_null); 1461 1462 // Put all the "Case 3" tests here. 1463 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done); 1464 1465 // Found a null. Keep searching for a matching receiver, 1466 // but remember that this is an empty (unused) slot. 1467 bind(found_null); 1468 } 1469 } 1470 1471 // In the fall-through case, we found no matching receiver, but we 1472 // observed the receiver[start_row] is null. 1473 1474 // Fill in the receiver field and increment the count. 1475 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1476 set_mdp_data_at(mdp, recvr_offset, receiver); 1477 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1478 load_const_optimized(reg2, DataLayout::counter_increment); 1479 set_mdp_data_at(mdp, count_offset, reg2); 1480 if (start_row > 0) { 1481 z_bru(done); 1482 } 1483 } 1484 1485 // Example state machine code for three profile rows: 1486 // // main copy of decision tree, rooted at row[1] 1487 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1488 // if (row[0].rec != nullptr) { 1489 // // inner copy of decision tree, rooted at row[1] 1490 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1491 // if (row[1].rec != nullptr) { 1492 // // degenerate decision tree, rooted at row[2] 1493 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1494 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1495 // row[2].init(rec); goto done; 1496 // } else { 1497 // // remember row[1] is empty 1498 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1499 // row[1].init(rec); goto done; 1500 // } 1501 // } else { 1502 // // remember row[0] is empty 1503 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1504 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1505 // row[0].init(rec); goto done; 1506 // } 1507 // done: 1508 1509 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1510 Register mdp, Register reg2) { 1511 assert(ProfileInterpreter, "must be profiling"); 1512 Label done; 1513 1514 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1515 1516 bind (done); 1517 } 1518 1519 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1520 if (ProfileInterpreter) { 1521 NearLabel profile_continue; 1522 uint row; 1523 1524 // If no method data exists, go to profile_continue. 1525 test_method_data_pointer(mdp, profile_continue); 1526 1527 // Update the total ret count. 1528 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1529 1530 for (row = 0; row < RetData::row_limit(); row++) { 1531 NearLabel next_test; 1532 1533 // See if return_bci is equal to bci[n]: 1534 test_mdp_data_at(mdp, 1535 in_bytes(RetData::bci_offset(row)), 1536 return_bci, noreg, 1537 next_test); 1538 1539 // Return_bci is equal to bci[n]. Increment the count. 1540 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1541 1542 // The method data pointer needs to be updated to reflect the new target. 1543 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); 1544 z_bru(profile_continue); 1545 bind(next_test); 1546 } 1547 1548 update_mdp_for_ret(return_bci); 1549 1550 bind(profile_continue); 1551 } 1552 } 1553 1554 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1555 if (ProfileInterpreter) { 1556 Label profile_continue; 1557 1558 // If no method data exists, go to profile_continue. 1559 test_method_data_pointer(mdp, profile_continue); 1560 1561 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1562 1563 // The method data pointer needs to be updated. 1564 int mdp_delta = in_bytes(BitData::bit_data_size()); 1565 if (TypeProfileCasts) { 1566 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1567 } 1568 update_mdp_by_constant(mdp, mdp_delta); 1569 1570 bind(profile_continue); 1571 } 1572 } 1573 1574 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1575 if (ProfileInterpreter) { 1576 Label profile_continue; 1577 1578 // If no method data exists, go to profile_continue. 1579 test_method_data_pointer(mdp, profile_continue); 1580 1581 // The method data pointer needs to be updated. 1582 int mdp_delta = in_bytes(BitData::bit_data_size()); 1583 if (TypeProfileCasts) { 1584 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1585 1586 // Record the object type. 1587 record_klass_in_profile(klass, mdp, reg2); 1588 } 1589 update_mdp_by_constant(mdp, mdp_delta); 1590 1591 bind(profile_continue); 1592 } 1593 } 1594 1595 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1596 if (ProfileInterpreter) { 1597 Label profile_continue; 1598 1599 // If no method data exists, go to profile_continue. 1600 test_method_data_pointer(mdp, profile_continue); 1601 1602 // Update the default case count. 1603 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); 1604 1605 // The method data pointer needs to be updated. 1606 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); 1607 1608 bind(profile_continue); 1609 } 1610 } 1611 1612 // Kills: index, scratch1, scratch2. 1613 void InterpreterMacroAssembler::profile_switch_case(Register index, 1614 Register mdp, 1615 Register scratch1, 1616 Register scratch2) { 1617 if (ProfileInterpreter) { 1618 Label profile_continue; 1619 assert_different_registers(index, mdp, scratch1, scratch2); 1620 1621 // If no method data exists, go to profile_continue. 1622 test_method_data_pointer(mdp, profile_continue); 1623 1624 // Build the base (index * per_case_size_in_bytes()) + 1625 // case_array_offset_in_bytes(). 1626 z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1627 add2reg(index, in_bytes(MultiBranchData::case_array_offset())); 1628 1629 // Add the calculated base to the mdp -> address of the case' data. 1630 Address case_data_addr(mdp, index); 1631 Register case_data = scratch1; 1632 load_address(case_data, case_data_addr); 1633 1634 // Update the case count. 1635 increment_mdp_data_at(case_data, 1636 in_bytes(MultiBranchData::relative_count_offset()), 1637 scratch2); 1638 1639 // The method data pointer needs to be updated. 1640 update_mdp_by_offset(mdp, 1641 index, 1642 in_bytes(MultiBranchData::relative_displacement_offset())); 1643 1644 bind(profile_continue); 1645 } 1646 } 1647 1648 // kills: R0, R1, flags, loads klass from obj (if not null) 1649 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { 1650 NearLabel null_seen, init_klass, do_nothing, do_update; 1651 1652 // Klass = obj is allowed. 1653 const Register tmp = Z_R1; 1654 assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); 1655 assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); 1656 1657 z_lg(tmp, mdo_addr); 1658 if (cmp_done) { 1659 z_brz(null_seen); 1660 } else { 1661 compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); 1662 } 1663 1664 MacroAssembler::verify_oop(obj, FILE_AND_LINE); 1665 load_klass(klass, obj); 1666 1667 // Klass seen before, nothing to do (regardless of unknown bit). 1668 z_lgr(Z_R0, tmp); 1669 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 1670 z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); 1671 compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); 1672 1673 // Already unknown. Nothing to do anymore. 1674 z_tmll(tmp, TypeEntries::type_unknown); 1675 z_brc(Assembler::bcondAllOne, do_nothing); 1676 1677 z_lgr(Z_R0, tmp); 1678 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 1679 z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); 1680 compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); 1681 1682 // Different than before. Cannot keep accurate profile. 1683 z_oill(tmp, TypeEntries::type_unknown); 1684 z_bru(do_update); 1685 1686 bind(init_klass); 1687 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1688 z_ogr(tmp, klass); 1689 z_bru(do_update); 1690 1691 bind(null_seen); 1692 // Set null_seen if obj is 0. 1693 z_oill(tmp, TypeEntries::null_seen); 1694 // fallthru: z_bru(do_update); 1695 1696 bind(do_update); 1697 z_stg(tmp, mdo_addr); 1698 1699 bind(do_nothing); 1700 } 1701 1702 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1703 if (!ProfileInterpreter) { 1704 return; 1705 } 1706 1707 assert_different_registers(mdp, callee, tmp); 1708 1709 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1710 Label profile_continue; 1711 1712 test_method_data_pointer(mdp, profile_continue); 1713 1714 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1715 1716 z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, 1717 is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1718 z_brne(profile_continue); 1719 1720 if (MethodData::profile_arguments()) { 1721 NearLabel done; 1722 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1723 add2reg(mdp, off_to_args); 1724 1725 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1726 if (i > 0 || MethodData::profile_return()) { 1727 // If return value type is profiled we may have no argument to profile. 1728 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1729 add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); 1730 compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); 1731 } 1732 z_lg(tmp, Address(callee, Method::const_offset())); 1733 z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1734 // Stack offset o (zero based) from the start of the argument 1735 // list. For n arguments translates into offset n - o - 1 from 1736 // the end of the argument list. But there is an extra slot at 1737 // the top of the stack. So the offset is n - o from Lesp. 1738 z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 1739 z_sllg(tmp, tmp, Interpreter::logStackElementSize); 1740 Address stack_slot_addr(tmp, Z_esp); 1741 z_ltg(tmp, stack_slot_addr); 1742 1743 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 1744 profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); 1745 1746 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1747 add2reg(mdp, to_add); 1748 off_to_args += to_add; 1749 } 1750 1751 if (MethodData::profile_return()) { 1752 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1753 add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1754 } 1755 1756 bind(done); 1757 1758 if (MethodData::profile_return()) { 1759 // We're right after the type profile for the last 1760 // argument. Tmp is the number of cells left in the 1761 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1762 // if there's a return to profile. 1763 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1764 z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); 1765 z_agr(mdp, tmp); 1766 } 1767 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 1768 } else { 1769 assert(MethodData::profile_return(), "either profile call args or call ret"); 1770 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1771 } 1772 1773 // Mdp points right after the end of the 1774 // CallTypeData/VirtualCallTypeData, right after the cells for the 1775 // return value type if there's one. 1776 bind(profile_continue); 1777 } 1778 } 1779 1780 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1781 assert_different_registers(mdp, ret, tmp); 1782 if (ProfileInterpreter && MethodData::profile_return()) { 1783 Label profile_continue; 1784 1785 test_method_data_pointer(mdp, profile_continue); 1786 1787 if (MethodData::profile_return_jsr292_only()) { 1788 // If we don't profile all invoke bytecodes we must make sure 1789 // it's a bytecode we indeed profile. We can't go back to the 1790 // beginning of the ProfileData we intend to update to check its 1791 // type because we're right after it and we don't known its 1792 // length. 1793 NearLabel do_profile; 1794 Address bc(Z_bcp); 1795 z_lb(tmp, bc); 1796 compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); 1797 compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); 1798 get_method(tmp); 1799 // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. 1800 if (Method::intrinsic_id_size_in_bytes() == 1) { 1801 z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1802 } else { 1803 assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); 1804 z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp); 1805 z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1806 } 1807 z_brne(profile_continue); 1808 1809 bind(do_profile); 1810 } 1811 1812 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1813 profile_obj_type(ret, mdo_ret_addr, tmp); 1814 1815 bind(profile_continue); 1816 } 1817 } 1818 1819 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1820 if (ProfileInterpreter && MethodData::profile_parameters()) { 1821 Label profile_continue, done; 1822 1823 test_method_data_pointer(mdp, profile_continue); 1824 1825 // Load the offset of the area within the MDO used for 1826 // parameters. If it's negative we're not profiling any parameters. 1827 Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); 1828 load_and_test_int2long(tmp1, parm_di_addr); 1829 z_brl(profile_continue); 1830 1831 // Compute a pointer to the area for parameters from the offset 1832 // and move the pointer to the slot for the last 1833 // parameters. Collect profiling from last parameter down. 1834 // mdo start + parameters offset + array length - 1 1835 1836 // Pointer to the parameter area in the MDO. 1837 z_agr(mdp, tmp1); 1838 1839 // Offset of the current profile entry to update. 1840 const Register entry_offset = tmp1; 1841 // entry_offset = array len in number of cells. 1842 z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); 1843 // entry_offset (number of cells) = array len - size of 1 entry 1844 add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); 1845 // entry_offset in bytes 1846 z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1847 1848 Label loop; 1849 bind(loop); 1850 1851 Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); 1852 Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); 1853 1854 // Load offset on the stack from the slot for this parameter. 1855 z_lg(tmp2, arg_off); 1856 z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); 1857 z_lcgr(tmp2); // Negate. 1858 1859 // Profile the parameter. 1860 z_ltg(tmp2, Address(Z_locals, tmp2)); 1861 profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); 1862 1863 // Go to next parameter. 1864 z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); 1865 z_brnl(loop); 1866 1867 bind(profile_continue); 1868 } 1869 } 1870 1871 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1872 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1873 int increment, 1874 Address mask, 1875 Register scratch, 1876 bool preloaded, 1877 branch_condition cond, 1878 Label *where) { 1879 assert_different_registers(counter_addr.base(), scratch); 1880 if (preloaded) { 1881 add2reg(scratch, increment); 1882 reg2mem_opt(scratch, counter_addr, false); 1883 } else { 1884 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { 1885 z_alsi(counter_addr.disp20(), counter_addr.base(), increment); 1886 mem2reg_signed_opt(scratch, counter_addr); 1887 } else { 1888 mem2reg_signed_opt(scratch, counter_addr); 1889 add2reg(scratch, increment); 1890 reg2mem_opt(scratch, counter_addr, false); 1891 } 1892 } 1893 z_n(scratch, mask); 1894 if (where) { z_brc(cond, *where); } 1895 } 1896 1897 // Get MethodCounters object for given method. Lazily allocated if necessary. 1898 // method - Ptr to Method object. 1899 // Rcounters - Ptr to MethodCounters object associated with Method object. 1900 // skip - Exit point if MethodCounters object can't be created (OOM condition). 1901 void InterpreterMacroAssembler::get_method_counters(Register Rmethod, 1902 Register Rcounters, 1903 Label& skip) { 1904 assert_different_registers(Rmethod, Rcounters); 1905 1906 BLOCK_COMMENT("get MethodCounters object {"); 1907 1908 Label has_counters; 1909 load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); 1910 z_brnz(has_counters); 1911 1912 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod); 1913 z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. 1914 z_brz(skip); // No MethodCounters, out of memory. 1915 1916 bind(has_counters); 1917 1918 BLOCK_COMMENT("} get MethodCounters object"); 1919 } 1920 1921 // Increment invocation counter in MethodCounters object. 1922 // Return (invocation_counter+backedge_counter) as "result" in RctrSum. 1923 // Counter values are all unsigned. 1924 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { 1925 assert(UseCompiler, "incrementing must be useful"); 1926 assert_different_registers(Rcounters, RctrSum); 1927 1928 int increment = InvocationCounter::count_increment; 1929 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1930 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1931 1932 BLOCK_COMMENT("Increment invocation counter {"); 1933 1934 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1935 // Increment the invocation counter in place, 1936 // then add the incremented value to the backedge counter. 1937 z_l(RctrSum, be_counter_offset, Rcounters); 1938 z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1939 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1940 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 1941 } else { 1942 // This path is optimized for low register consumption 1943 // at the cost of somewhat higher operand delays. 1944 // It does not need an extra temp register. 1945 1946 // Update the invocation counter. 1947 z_l(RctrSum, inv_counter_offset, Rcounters); 1948 if (RctrSum == Z_R0) { 1949 z_ahi(RctrSum, increment); 1950 } else { 1951 add2reg(RctrSum, increment); 1952 } 1953 z_st(RctrSum, inv_counter_offset, Rcounters); 1954 1955 // Mask off the state bits. 1956 z_nilf(RctrSum, InvocationCounter::count_mask_value); 1957 1958 // Add the backedge counter to the updated invocation counter to 1959 // form the result. 1960 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1961 } 1962 1963 BLOCK_COMMENT("} Increment invocation counter"); 1964 1965 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 1966 } 1967 1968 1969 // increment backedge counter in MethodCounters object. 1970 // return (invocation_counter+backedge_counter) as "result" in RctrSum 1971 // counter values are all unsigned! 1972 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { 1973 assert(UseCompiler, "incrementing must be useful"); 1974 assert_different_registers(Rcounters, RctrSum); 1975 1976 int increment = InvocationCounter::count_increment; 1977 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1978 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1979 1980 BLOCK_COMMENT("Increment backedge counter {"); 1981 1982 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1983 // Increment the invocation counter in place, 1984 // then add the incremented value to the backedge counter. 1985 z_l(RctrSum, inv_counter_offset, Rcounters); 1986 z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1987 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1988 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1989 } else { 1990 // This path is optimized for low register consumption 1991 // at the cost of somewhat higher operand delays. 1992 // It does not need an extra temp register. 1993 1994 // Update the invocation counter. 1995 z_l(RctrSum, be_counter_offset, Rcounters); 1996 if (RctrSum == Z_R0) { 1997 z_ahi(RctrSum, increment); 1998 } else { 1999 add2reg(RctrSum, increment); 2000 } 2001 z_st(RctrSum, be_counter_offset, Rcounters); 2002 2003 // Mask off the state bits. 2004 z_nilf(RctrSum, InvocationCounter::count_mask_value); 2005 2006 // Add the backedge counter to the updated invocation counter to 2007 // form the result. 2008 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 2009 } 2010 2011 BLOCK_COMMENT("} Increment backedge counter"); 2012 2013 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 2014 } 2015 2016 // Add an InterpMonitorElem to stack (see frame_s390.hpp). 2017 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, 2018 Register Rtemp1, 2019 Register Rtemp2, 2020 Register Rtemp3) { 2021 2022 const Register Rcurr_slot = Rtemp1; 2023 const Register Rlimit = Rtemp2; 2024 const jint delta = -frame::interpreter_frame_monitor_size_in_bytes(); 2025 2026 assert((delta & LongAlignmentMask) == 0, 2027 "sizeof BasicObjectLock must be even number of doublewords"); 2028 assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); 2029 assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); 2030 assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); 2031 2032 get_monitors(Rlimit); 2033 2034 // Adjust stack pointer for additional monitor entry. 2035 resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); 2036 2037 if (!stack_is_empty) { 2038 // Must copy stack contents down. 2039 NearLabel next, done; 2040 2041 // Rtemp := addr(Tos), Z_esp is pointing below it! 2042 add2reg(Rcurr_slot, wordSize, Z_esp); 2043 2044 // Nothing to do, if already at monitor area. 2045 compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); 2046 2047 bind(next); 2048 2049 // Move one stack slot. 2050 mem2reg_opt(Rtemp3, Address(Rcurr_slot)); 2051 reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); 2052 add2reg(Rcurr_slot, wordSize); 2053 compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? 2054 2055 bind(done); 2056 // Done copying stack. 2057 } 2058 2059 // Adjust expression stack and monitor pointers. 2060 add2reg(Z_esp, delta); 2061 add2reg(Rlimit, delta); 2062 save_monitors(Rlimit); 2063 } 2064 2065 // Note: Index holds the offset in bytes afterwards. 2066 // You can use this to store a new value (with Llocals as the base). 2067 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { 2068 z_sllg(index, index, LogBytesPerWord); 2069 mem2reg_opt(dst, Address(Z_locals, index), false); 2070 } 2071 2072 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2073 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2074 } 2075 2076 // Inline assembly for: 2077 // 2078 // if (thread is in interp_only_mode) { 2079 // InterpreterRuntime::post_method_entry(); 2080 // } 2081 2082 void InterpreterMacroAssembler::notify_method_entry() { 2083 2084 // JVMTI 2085 // Whenever JVMTI puts a thread in interp_only_mode, method 2086 // entry/exit events are sent for that thread to track stack 2087 // depth. If it is possible to enter interp_only_mode we add 2088 // the code to check if the event should be sent. 2089 if (JvmtiExport::can_post_interpreter_events()) { 2090 Label jvmti_post_done; 2091 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2092 z_bre(jvmti_post_done); 2093 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2094 bind(jvmti_post_done); 2095 } 2096 } 2097 2098 // Inline assembly for: 2099 // 2100 // if (thread is in interp_only_mode) { 2101 // if (!native_method) save result 2102 // InterpreterRuntime::post_method_exit(); 2103 // if (!native_method) restore result 2104 // } 2105 // if (DTraceMethodProbes) { 2106 // SharedRuntime::dtrace_method_exit(thread, method); 2107 // } 2108 // 2109 // For native methods their result is stored in z_ijava_state.lresult 2110 // and z_ijava_state.fresult before coming here. 2111 // Java methods have their result stored in the expression stack. 2112 // 2113 // Notice the dependency to frame::interpreter_frame_result(). 2114 void InterpreterMacroAssembler::notify_method_exit(bool native_method, 2115 TosState state, 2116 NotifyMethodExitMode mode) { 2117 // JVMTI 2118 // Whenever JVMTI puts a thread in interp_only_mode, method 2119 // entry/exit events are sent for that thread to track stack 2120 // depth. If it is possible to enter interp_only_mode we add 2121 // the code to check if the event should be sent. 2122 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2123 Label jvmti_post_done; 2124 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2125 z_bre(jvmti_post_done); 2126 if (!native_method) push(state); // see frame::interpreter_frame_result() 2127 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2128 if (!native_method) pop(state); 2129 bind(jvmti_post_done); 2130 } 2131 } 2132 2133 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { 2134 if (!JvmtiExport::can_post_interpreter_events()) { 2135 return; 2136 } 2137 2138 load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2139 z_brnz(Lskip); 2140 2141 } 2142 2143 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. 2144 // The return pc is loaded into the register return_pc. 2145 // 2146 // Registers updated: 2147 // return_pc - The return pc of the calling frame. 2148 // tmp1, tmp2 - scratch 2149 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { 2150 // F0 Z_SP -> caller_sp (F1's) 2151 // ... 2152 // sender_sp (F1's) 2153 // ... 2154 // F1 Z_fp -> caller_sp (F2's) 2155 // return_pc (Continuation after return from F0.) 2156 // ... 2157 // F2 caller_sp 2158 2159 // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications 2160 // (a) by a c2i adapter and (b) by generate_fixed_frame(). 2161 // In case (a) the new top frame F1 is an unextended compiled frame. 2162 // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. 2163 2164 // Case (b) seems to be redundant when returning to a interpreted caller, 2165 // because then the caller's top_frame_sp is installed as sp (see 2166 // TemplateInterpreterGenerator::generate_return_entry_for ()). But 2167 // pop_interpreter_frame() is also used in exception handling and there the 2168 // frame type of the caller is unknown, therefore top_frame_sp cannot be used, 2169 // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. 2170 2171 Register R_f1_sender_sp = tmp1; 2172 Register R_f2_sp = tmp2; 2173 2174 // First check for the interpreter frame's magic. 2175 asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); 2176 z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); 2177 z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); 2178 if (return_pc->is_valid()) 2179 z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2180 // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. 2181 resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); 2182 2183 #ifdef ASSERT 2184 // The return_pc in the new top frame is dead... at least that's my 2185 // current understanding; to assert this I overwrite it. 2186 load_const_optimized(Z_ARG3, 0xb00b1); 2187 z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2188 #endif 2189 }