1 /*
   2  * Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // Major contributions by AHa, AS, JL, ML.
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "interp_masm_s390.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/methodCounters.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/resolvedFieldEntry.hpp"
  40 #include "oops/resolvedIndyEntry.hpp"
  41 #include "oops/resolvedMethodEntry.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/basicLock.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/javaThread.hpp"
  47 #include "runtime/safepointMechanism.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 
  52 // Implementation of InterpreterMacroAssembler.
  53 // This file specializes the assembler with interpreter-specific macros.
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str)
  57 #define BIND(label)        bind(label);
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  61 #endif
  62 
  63 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  64   assert(entry != nullptr, "Entry must have been generated by now");
  65   assert(Rscratch != Z_R0, "Can't use R0 for addressing");
  66   branch_optimized(Assembler::bcondAlways, entry);
  67 }
  68 
  69 void InterpreterMacroAssembler::empty_expression_stack(void) {
  70   get_monitors(Z_R1_scratch);
  71   add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
  72 }
  73 
  74 // Dispatch code executed in the prolog of a bytecode which does not do it's
  75 // own dispatch.
  76 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  77   // On z/Architecture we are short on registers, therefore we do not preload the
  78   // dispatch address of the next bytecode.
  79 }
  80 
  81 // Dispatch code executed in the epilog of a bytecode which does not do it's
  82 // own dispatch.
  83 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
  84   dispatch_next(state, step);
  85 }
  86 
  87 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
  88   z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
  89   add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
  90   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
  91 }
  92 
  93 // Common code to dispatch and dispatch_only.
  94 // Dispatch value in Lbyte_code and increment Lbcp.
  95 
  96 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) {
  97   verify_FPU(1, state);
  98 
  99 #ifdef ASSERT
 100   address reentry = nullptr;
 101   { Label OK;
 102     // Check if the frame pointer in Z_fp is correct.
 103     z_cg(Z_fp, 0, Z_SP);
 104     z_bre(OK);
 105     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
 106     bind(OK);
 107   }
 108   { Label OK;
 109     // check if the locals pointer in Z_locals is correct
 110     z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
 111     z_bre(OK);
 112     reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
 113     bind(OK);
 114   }
 115 #endif
 116 
 117   // TODO: Maybe implement +VerifyActivationFrameSize here.
 118   verify_oop(Z_tos, state);
 119 
 120   // Dispatch table to use.
 121   load_absolute_address(Z_tmp_1, (address)table);  // Z_tmp_1 = table;
 122 
 123   if (generate_poll) {
 124     address *sfpt_tbl = Interpreter::safept_table(state);
 125     if (table != sfpt_tbl) {
 126       Label dispatch;
 127       const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */);
 128       // Armed page has poll_bit set, if poll bit is cleared just continue.
 129       z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
 130       z_braz(dispatch);
 131       load_absolute_address(Z_tmp_1, (address)sfpt_tbl);  // Z_tmp_1 = table;
 132       bind(dispatch);
 133     }
 134   }
 135 
 136   // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
 137   // Z_bytecode must have been loaded zero-extended for this approach to be correct.
 138   z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
 139   z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
 140 
 141   z_br(Z_tmp_1);
 142 }
 143 
 144 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 145   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
 146 }
 147 
 148 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 149   dispatch_base(state, Interpreter::normal_table(state));
 150 }
 151 
 152 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
 153   // Load current bytecode.
 154   z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
 155   dispatch_base(state, table);
 156 }
 157 
 158 // The following call_VM*_base() methods overload and mask the respective
 159 // declarations/definitions in class MacroAssembler. They are meant as a "detour"
 160 // to perform additional, template interpreter specific tasks before actually
 161 // calling their MacroAssembler counterparts.
 162 
 163 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
 164   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 165   // interpreter specific
 166   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 167   // saved registers and no blocking/ GC can happen in leaf calls.
 168 
 169   // super call
 170   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 171 }
 172 
 173 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
 174   // interpreter specific
 175   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 176   // saved registers and no blocking/ GC can happen in leaf calls.
 177 
 178   // super call
 179   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 180 }
 181 
 182 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 183                                              address entry_point, bool check_exceptions) {
 184   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 185   // interpreter specific
 186 
 187   save_bcp();
 188   save_esp();
 189   // super call
 190   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 191                                entry_point, allow_relocation, check_exceptions);
 192   restore_bcp();
 193 }
 194 
 195 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 196                                              address entry_point, bool allow_relocation,
 197                                              bool check_exceptions) {
 198   // interpreter specific
 199 
 200   save_bcp();
 201   save_esp();
 202   // super call
 203   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 204                                entry_point, allow_relocation, check_exceptions);
 205   restore_bcp();
 206 }
 207 
 208 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 209   if (JvmtiExport::can_pop_frame()) {
 210     BLOCK_COMMENT("check_and_handle_popframe {");
 211     Label L;
 212     // Initiate popframe handling only if it is not already being
 213     // processed. If the flag has the popframe_processing bit set, it
 214     // means that this code is called *during* popframe handling - we
 215     // don't want to reenter.
 216     // TODO: Check if all four state combinations could be visible.
 217     // If (processing and !pending) is an invisible/impossible state,
 218     // there is optimization potential by testing both bits at once.
 219     // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
 220     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 221             exact_log2(JavaThread::popframe_pending_bit));
 222     z_bfalse(L);
 223     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 224             exact_log2(JavaThread::popframe_processing_bit));
 225     z_btrue(L);
 226 
 227     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 228     // address of the same-named entrypoint in the generated interpreter code.
 229     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 230     // The above call should (as its only effect) return the contents of the field
 231     // _remove_activation_preserving_args_entry in Z_RET.
 232     // We just jump there to have the work done.
 233     z_br(Z_RET);
 234     // There is no way for control to fall thru here.
 235 
 236     bind(L);
 237     BLOCK_COMMENT("} check_and_handle_popframe");
 238   }
 239 }
 240 
 241 
 242 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 243   Register RjvmtiState = Z_R1_scratch;
 244   int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
 245   int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
 246   int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
 247   int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
 248 
 249   z_lg(RjvmtiState, state_off, Z_thread);
 250 
 251   switch (state) {
 252     case atos: z_lg(Z_tos, oop_off, RjvmtiState);
 253       store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
 254                                                     break;
 255     case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
 256     case btos: // fall through
 257     case ztos: // fall through
 258     case ctos: // fall through
 259     case stos: // fall through
 260     case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
 261     case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
 262     case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
 263     case vtos:   /* nothing to do */                break;
 264     default  : ShouldNotReachHere();
 265   }
 266 
 267   // Clean up tos value in the jvmti thread state.
 268   store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
 269   // Set tos state field to illegal value.
 270   store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
 271 }
 272 
 273 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 274   if (JvmtiExport::can_force_early_return()) {
 275     BLOCK_COMMENT("check_and_handle_earlyret {");
 276     Label L;
 277     // arg regs are save, because we are just behind the call in call_VM_base
 278     Register jvmti_thread_state = Z_ARG2;
 279     Register tmp                = Z_ARG3;
 280     load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
 281     z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit;
 282 
 283     // Initiate earlyret handling only if it is not already being processed.
 284     // If the flag has the earlyret_processing bit set, it means that this code
 285     // is called *during* earlyret handling - we don't want to reenter.
 286 
 287     assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
 288           "must fix this check, when changing the values of the earlyret enum");
 289     assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
 290 
 291     load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
 292     z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
 293 
 294     // Call Interpreter::remove_activation_early_entry() to get the address of the
 295     // same-named entrypoint in the generated interpreter code.
 296     assert(sizeof(TosState) == 4, "unexpected size");
 297     z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
 298     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
 299     // The above call should (as its only effect) return the contents of the field
 300     // _remove_activation_preserving_args_entry in Z_RET.
 301     // We just jump there to have the work done.
 302     z_br(Z_RET);
 303     // There is no way for control to fall thru here.
 304 
 305     bind(L);
 306     BLOCK_COMMENT("} check_and_handle_earlyret");
 307   }
 308 }
 309 
 310 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 311   lgr_if_needed(Z_ARG1, arg_1);
 312   assert(arg_2 != Z_ARG1, "smashed argument");
 313   lgr_if_needed(Z_ARG2, arg_2);
 314   MacroAssembler::call_VM_leaf_base(entry_point, true);
 315 }
 316 
 317 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
 318   Address param(Z_bcp, bcp_offset);
 319 
 320   BLOCK_COMMENT("get_cache_index_at_bcp {");
 321   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 322   if (index_size == sizeof(u2)) {
 323     load_sized_value(index, param, 2, false /*signed*/);
 324   } else if (index_size == sizeof(u4)) {
 325 
 326     load_sized_value(index, param, 4, false);
 327   } else if (index_size == sizeof(u1)) {
 328     z_llgc(index, param);
 329   } else {
 330     ShouldNotReachHere();
 331   }
 332   BLOCK_COMMENT("}");
 333 }
 334 
 335 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
 336   // Get index out of bytecode pointer.
 337   get_cache_index_at_bcp(index, 1, sizeof(u4));
 338 
 339   // Get the address of the ResolvedIndyEntry array
 340   get_constant_pool_cache(cache);
 341   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
 342 
 343   // Scale the index to form a byte offset into the ResolvedIndyEntry array
 344   size_t entry_size = sizeof(ResolvedIndyEntry);
 345   if (is_power_of_2(entry_size)) {
 346     z_sllg(index, index, exact_log2(entry_size));
 347   } else {
 348     z_mghi(index, entry_size);
 349   }
 350 
 351   // Calculate the final field address.
 352   z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache);
 353 }
 354 
 355 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
 356   // Get field index out of bytecode pointer.
 357   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
 358 
 359   // Get the address of the ResolvedFieldEntry array.
 360   get_constant_pool_cache(cache);
 361   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset())));
 362 
 363   // Scale the index to form a byte offset into the ResolvedFieldEntry array
 364   size_t entry_size = sizeof(ResolvedFieldEntry);
 365   if (is_power_of_2(entry_size)) {
 366     z_sllg(index, index, exact_log2(entry_size));
 367   } else {
 368     z_mghi(index, entry_size);
 369   }
 370 
 371   // Calculate the final field address.
 372   z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache);
 373 }
 374 
 375 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
 376   // Get field index out of bytecode pointer.
 377   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
 378 
 379   // Get the address of the ResolvedMethodEntry array.
 380   get_constant_pool_cache(cache);
 381   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset())));
 382 
 383   // Scale the index to form a byte offset into the ResolvedMethodEntry array
 384   size_t entry_size = sizeof(ResolvedMethodEntry);
 385   if (is_power_of_2(entry_size)) {
 386     z_sllg(index, index, exact_log2(entry_size));
 387   } else {
 388     z_mghi(index, entry_size);
 389   }
 390 
 391   // Calculate the final field address.
 392   z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache);
 393 }
 394 
 395 // Load object from cpool->resolved_references(index).
 396 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 397   assert_different_registers(result, index);
 398   get_constant_pool(result);
 399 
 400   // Convert
 401   //  - from field index to resolved_references() index and
 402   //  - from word index to byte offset.
 403   // Since this is a java object, it is potentially compressed.
 404   Register tmp = index;  // reuse
 405   z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
 406   // Load pointer for resolved_references[] objArray.
 407   z_lg(result, in_bytes(ConstantPool::cache_offset()), result);
 408   z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result);
 409   resolve_oop_handle(result); // Load resolved references array itself.
 410 #ifdef ASSERT
 411   NearLabel index_ok;
 412   z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
 413   z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
 414   compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
 415   stop("resolved reference index out of bounds", 0x09256);
 416   bind(index_ok);
 417 #endif
 418   z_agr(result, index);    // Address of indexed array element.
 419   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg);
 420 }
 421 
 422 // load cpool->resolved_klass_at(index)
 423 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) {
 424   // int value = *(Rcpool->int_at_addr(which));
 425   // int resolved_klass_index = extract_low_short_from_int(value);
 426   z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian)
 427   z_sllg(offset, offset, LogBytesPerWord);                          // Convert 'index' to 'offset'
 428   z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses
 429   z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes()));
 430 }
 431 
 432 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 433 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 434 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 435                                                   Register Rsuper_klass,
 436                                                   Register Rtmp1,
 437                                                   Register Rtmp2,
 438                                                   Label &ok_is_subtype) {
 439   // Profile the not-null value's klass.
 440   profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
 441 
 442   // Do the check.
 443   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 444 }
 445 
 446 // Pop topmost element from stack. It just disappears.
 447 // Useful if consumed previously by access via stackTop().
 448 void InterpreterMacroAssembler::popx(int len) {
 449   add2reg(Z_esp, len*Interpreter::stackElementSize);
 450   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 451 }
 452 
 453 // Get Address object of stack top. No checks. No pop.
 454 // Purpose: - Provide address of stack operand to exploit reg-mem operations.
 455 //          - Avoid RISC-like mem2reg - reg-reg-op sequence.
 456 Address InterpreterMacroAssembler::stackTop() {
 457   return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
 458 }
 459 
 460 void InterpreterMacroAssembler::pop_i(Register r) {
 461   z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 462   add2reg(Z_esp, Interpreter::stackElementSize);
 463   assert_different_registers(r, Z_R1_scratch);
 464   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 465 }
 466 
 467 void InterpreterMacroAssembler::pop_ptr(Register r) {
 468   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 469   add2reg(Z_esp, Interpreter::stackElementSize);
 470   assert_different_registers(r, Z_R1_scratch);
 471   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 472 }
 473 
 474 void InterpreterMacroAssembler::pop_l(Register r) {
 475   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 476   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 477   assert_different_registers(r, Z_R1_scratch);
 478   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 479 }
 480 
 481 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 482   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
 483   add2reg(Z_esp, Interpreter::stackElementSize);
 484   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 485 }
 486 
 487 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 488   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
 489   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 490   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 491 }
 492 
 493 void InterpreterMacroAssembler::push_i(Register r) {
 494   assert_different_registers(r, Z_R1_scratch);
 495   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 496   z_st(r, Address(Z_esp));
 497   add2reg(Z_esp, -Interpreter::stackElementSize);
 498 }
 499 
 500 void InterpreterMacroAssembler::push_ptr(Register r) {
 501   z_stg(r, Address(Z_esp));
 502   add2reg(Z_esp, -Interpreter::stackElementSize);
 503 }
 504 
 505 void InterpreterMacroAssembler::push_l(Register r) {
 506   assert_different_registers(r, Z_R1_scratch);
 507   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 508   int offset = -Interpreter::stackElementSize;
 509   z_stg(r, Address(Z_esp, offset));
 510   clear_mem(Address(Z_esp), Interpreter::stackElementSize);
 511   add2reg(Z_esp, 2 * offset);
 512 }
 513 
 514 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 515   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 516   freg2mem_opt(f, Address(Z_esp), false);
 517   add2reg(Z_esp, -Interpreter::stackElementSize);
 518 }
 519 
 520 void InterpreterMacroAssembler::push_d(FloatRegister d) {
 521   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 522   int offset = -Interpreter::stackElementSize;
 523   freg2mem_opt(d, Address(Z_esp, offset));
 524   add2reg(Z_esp, 2 * offset);
 525 }
 526 
 527 void InterpreterMacroAssembler::push(TosState state) {
 528   verify_oop(Z_tos, state);
 529   switch (state) {
 530     case atos: push_ptr();           break;
 531     case btos: push_i();             break;
 532     case ztos:
 533     case ctos:
 534     case stos: push_i();             break;
 535     case itos: push_i();             break;
 536     case ltos: push_l();             break;
 537     case ftos: push_f();             break;
 538     case dtos: push_d();             break;
 539     case vtos: /* nothing to do */   break;
 540     default  : ShouldNotReachHere();
 541   }
 542 }
 543 
 544 void InterpreterMacroAssembler::pop(TosState state) {
 545   switch (state) {
 546     case atos: pop_ptr(Z_tos);       break;
 547     case btos: pop_i(Z_tos);         break;
 548     case ztos:
 549     case ctos:
 550     case stos: pop_i(Z_tos);         break;
 551     case itos: pop_i(Z_tos);         break;
 552     case ltos: pop_l(Z_tos);         break;
 553     case ftos: pop_f(Z_ftos);        break;
 554     case dtos: pop_d(Z_ftos);        break;
 555     case vtos: /* nothing to do */   break;
 556     default  : ShouldNotReachHere();
 557   }
 558   verify_oop(Z_tos, state);
 559 }
 560 
 561 // Helpers for swap and dup.
 562 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 563   z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 564 }
 565 
 566 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 567   z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 568 }
 569 
 570 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
 571   // Satisfy interpreter calling convention (see generate_normal_entry()).
 572   z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
 573   // Record top_frame_sp, because the callee might modify it, if it's compiled.
 574   z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
 575   save_bcp();
 576   save_esp();
 577   z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
 578 }
 579 
 580 // Jump to from_interpreted entry of a call unless single stepping is possible
 581 // in this thread in which case we must call the i2i entry.
 582 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 583   assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
 584   prepare_to_jump_from_interpreted(method);
 585 
 586   if (JvmtiExport::can_post_interpreter_events()) {
 587     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 588     // compiled code in threads for which the event is enabled. Check here for
 589     // interp_only_mode if these events CAN be enabled.
 590     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 591     MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
 592     z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
 593     // Run interpreted.
 594     z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
 595     z_br(Z_R1_scratch);
 596   } else {
 597     // Run compiled code.
 598     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 599     z_br(Z_R1_scratch);
 600   }
 601 }
 602 
 603 #ifdef ASSERT
 604 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
 605   // About to read or write Resp[0].
 606   // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
 607   address reentry = nullptr;
 608 
 609   {
 610     // Check if the frame pointer in Z_fp is correct.
 611     NearLabel OK;
 612     z_cg(Z_fp, 0, Z_SP);
 613     z_bre(OK);
 614     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
 615     bind(OK);
 616   }
 617   {
 618     // Resp must not point into or below the operand stack,
 619     // i.e. IJAVA_STATE.monitors > Resp.
 620     NearLabel OK;
 621     Register Rmonitors = Rtemp;
 622     z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
 623     compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
 624     reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
 625     bind(OK);
 626   }
 627   {
 628     // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
 629     // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
 630     NearLabel OK;
 631     Register Rabi_bottom = Rtemp;
 632     add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
 633     compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
 634     reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
 635     bind(OK);
 636   }
 637 }
 638 
 639 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
 640   Label magic_ok;
 641   load_const_optimized(tmp, frame::z_istate_magic_number);
 642   z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
 643   z_bre(magic_ok);
 644   stop_static("error: wrong magic number in ijava_state access");
 645   bind(magic_ok);
 646 }
 647 #endif // ASSERT
 648 
 649 void InterpreterMacroAssembler::save_bcp() {
 650   z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 651   asm_assert_ijava_state_magic(Z_bcp);
 652   NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
 653 }
 654 
 655 void InterpreterMacroAssembler::restore_bcp() {
 656   asm_assert_ijava_state_magic(Z_bcp);
 657   z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 658 }
 659 
 660 void InterpreterMacroAssembler::save_esp() {
 661   z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 662 }
 663 
 664 void InterpreterMacroAssembler::restore_esp() {
 665   asm_assert_ijava_state_magic(Z_esp);
 666   z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 667 }
 668 
 669 void InterpreterMacroAssembler::get_monitors(Register reg) {
 670   asm_assert_ijava_state_magic(reg);
 671   mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 672 }
 673 
 674 void InterpreterMacroAssembler::save_monitors(Register reg) {
 675   reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 676 }
 677 
 678 void InterpreterMacroAssembler::get_mdp(Register mdp) {
 679   z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 680 }
 681 
 682 void InterpreterMacroAssembler::save_mdp(Register mdp) {
 683   z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 684 }
 685 
 686 // Values that are only read (besides initialization).
 687 void InterpreterMacroAssembler::restore_locals() {
 688   asm_assert_ijava_state_magic(Z_locals);
 689   z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
 690 }
 691 
 692 void InterpreterMacroAssembler::get_method(Register reg) {
 693   asm_assert_ijava_state_magic(reg);
 694   z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
 695 }
 696 
 697 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 698                                                           signedOrNot is_signed) {
 699   // Rdst is an 8-byte return value!!!
 700 
 701   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 702   // is a few (2..3) ticks, even when the load crosses a cache line
 703   // boundary. In case of a cache miss, the stall could, of course, be
 704   // much longer.
 705 
 706   switch (is_signed) {
 707     case Signed:
 708       z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 709      break;
 710    case Unsigned:
 711      z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 712      break;
 713    default:
 714      ShouldNotReachHere();
 715   }
 716 }
 717 
 718 
 719 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 720                                                           setCCOrNot set_cc) {
 721   // Rdst is an 8-byte return value!!!
 722 
 723   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 724   // is a few (2..3) ticks, even when the load crosses a cache line
 725   // boundary. In case of a cache miss, the stall could, of course, be
 726   // much longer.
 727 
 728   // Both variants implement a sign-extending int2long load.
 729   if (set_cc == set_CC) {
 730     load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 731   } else {
 732     mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 733   }
 734 }
 735 
 736 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 737   get_method(Rdst);
 738   mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
 739   mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
 740 }
 741 
 742 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 743   get_constant_pool(Rdst);
 744   mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset()));
 745 }
 746 
 747 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 748   get_constant_pool(Rcpool);
 749   mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset()));
 750 }
 751 
 752 // Unlock if synchronized method.
 753 //
 754 // Unlock the receiver if this is a synchronized method.
 755 // Unlock any Java monitors from synchronized blocks.
 756 //
 757 // If there are locked Java monitors
 758 //   If throw_monitor_exception
 759 //     throws IllegalMonitorStateException
 760 //   Else if install_monitor_exception
 761 //     installs IllegalMonitorStateException
 762 //   Else
 763 //     no error processing
 764 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 765                                                               bool throw_monitor_exception,
 766                                                               bool install_monitor_exception) {
 767   NearLabel unlocked, unlock, no_unlock;
 768 
 769   {
 770     Register R_method = Z_ARG2;
 771     Register R_do_not_unlock_if_synchronized = Z_ARG3;
 772 
 773     // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
 774     const Address do_not_unlock_if_synchronized(Z_thread,
 775                                                 JavaThread::do_not_unlock_if_synchronized_offset());
 776     load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
 777     z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
 778 
 779     // Check if synchronized method.
 780     get_method(R_method);
 781     verify_oop(Z_tos, state);
 782     push(state); // Save tos/result.
 783     testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 784     z_bfalse(unlocked);
 785 
 786     // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 787     // is set.
 788     compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
 789   }
 790 
 791   // unlock monitor
 792 
 793   // BasicObjectLock will be first in list, since this is a
 794   // synchronized method. However, need to check that the object has
 795   // not been unlocked by an explicit monitorexit bytecode.
 796   const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
 797   // We use Z_ARG2 so that if we go slow path it will be the correct
 798   // register for unlock_object to pass to VM directly.
 799   load_address(Z_ARG2, monitor); // Address of first monitor.
 800   z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset()));
 801   compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
 802 
 803   if (throw_monitor_exception) {
 804     // Entry already unlocked need to throw an exception.
 805     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 806     should_not_reach_here();
 807   } else {
 808     // Monitor already unlocked during a stack unroll.
 809     // If requested, install an illegal_monitor_state_exception.
 810     // Continue with stack unrolling.
 811     if (install_monitor_exception) {
 812       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 813     }
 814    z_bru(unlocked);
 815   }
 816 
 817   bind(unlock);
 818 
 819   unlock_object(Z_ARG2);
 820 
 821   bind(unlocked);
 822 
 823   // I0, I1: Might contain return value
 824 
 825   // Check that all monitors are unlocked.
 826   {
 827     NearLabel loop, exception, entry, restart;
 828     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 829     // We use Z_ARG2 so that if we go slow path it will be the correct
 830     // register for unlock_object to pass to VM directly.
 831     Register R_current_monitor = Z_ARG2;
 832     Register R_monitor_block_bot = Z_ARG1;
 833     const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
 834     const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
 835 
 836     bind(restart);
 837     // Starting with top-most entry.
 838     z_lg(R_current_monitor, monitor_block_top);
 839     // Points to word before bottom of monitor block.
 840     load_address(R_monitor_block_bot, monitor_block_bot);
 841     z_bru(entry);
 842 
 843     // Entry already locked, need to throw exception.
 844     bind(exception);
 845 
 846     if (throw_monitor_exception) {
 847       // Throw exception.
 848       MacroAssembler::call_VM(noreg,
 849                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 850                                                throw_illegal_monitor_state_exception));
 851       should_not_reach_here();
 852     } else {
 853       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 854       // Unlock does not block, so don't have to worry about the frame.
 855       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 856       unlock_object(R_current_monitor);
 857       if (install_monitor_exception) {
 858         call_VM(noreg, CAST_FROM_FN_PTR(address,
 859                                         InterpreterRuntime::
 860                                         new_illegal_monitor_state_exception));
 861       }
 862       z_bru(restart);
 863     }
 864 
 865     bind(loop);
 866     // Check if current entry is used.
 867     load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset()));
 868     z_brne(exception);
 869 
 870     add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
 871     bind(entry);
 872     compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
 873   }
 874 
 875   bind(no_unlock);
 876   pop(state);
 877   verify_oop(Z_tos, state);
 878 }
 879 
 880 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) {
 881   get_method(ret_type);
 882   z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset())));
 883   z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset())));
 884 
 885   Label notBool, notByte, notChar, done;
 886 
 887   // common case first
 888   compareU32_and_branch(ret_type, T_INT, bcondEqual, done);
 889 
 890   compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool);
 891   z_nilf(result, 0x1);
 892   z_bru(done);
 893 
 894   bind(notBool);
 895   compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte);
 896   z_lbr(result, result);
 897   z_bru(done);
 898 
 899   bind(notByte);
 900   compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar);
 901   z_nilf(result, 0xffff);
 902   z_bru(done);
 903 
 904   bind(notChar);
 905   // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort);
 906   z_lhr(result, result);
 907 
 908   // Nothing to do for T_INT
 909   bind(done);
 910 }
 911 
 912 // remove activation
 913 //
 914 // Unlock the receiver if this is a synchronized method.
 915 // Unlock any Java monitors from synchronized blocks.
 916 // Remove the activation from the stack.
 917 //
 918 // If there are locked Java monitors
 919 //   If throw_monitor_exception
 920 //     throws IllegalMonitorStateException
 921 //   Else if install_monitor_exception
 922 //     installs IllegalMonitorStateException
 923 //   Else
 924 //     no error processing
 925 void InterpreterMacroAssembler::remove_activation(TosState state,
 926                                                   Register return_pc,
 927                                                   bool throw_monitor_exception,
 928                                                   bool install_monitor_exception,
 929                                                   bool notify_jvmti) {
 930   BLOCK_COMMENT("remove_activation {");
 931   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 932 
 933   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 934   notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
 935 
 936   if (StackReservedPages > 0) {
 937     BLOCK_COMMENT("reserved_stack_check:");
 938     // Test if reserved zone needs to be enabled.
 939     Label no_reserved_zone_enabling;
 940 
 941     // check if already enabled - if so no re-enabling needed
 942     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 943     z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset()));
 944     compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling);
 945 
 946     // Compare frame pointers. There is no good stack pointer, as with stack
 947     // frame compression we can get different SPs when we do calls. A subsequent
 948     // call could have a smaller SP, so that this compare succeeds for an
 949     // inner call of the method annotated with ReservedStack.
 950     z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
 951     z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
 952     z_brl(no_reserved_zone_enabling);
 953 
 954     // Enable reserved zone again, throw stack overflow exception.
 955     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
 956     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 957 
 958     should_not_reach_here();
 959 
 960     bind(no_reserved_zone_enabling);
 961   }
 962 
 963   verify_oop(Z_tos, state);
 964 
 965   pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
 966   BLOCK_COMMENT("} remove_activation");
 967 }
 968 
 969 // lock object
 970 //
 971 // Registers alive
 972 //   monitor (Z_R10) - Address of the BasicObjectLock to be used for locking,
 973 //             which must be initialized with the object to lock.
 974 //   object  (Z_R11, Z_R2) - Address of the object to be locked.
 975 //  templateTable (monitorenter) is using Z_R2 for object
 976 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 977 
 978   if (LockingMode == LM_MONITOR) {
 979     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
 980     return;
 981   }
 982 
 983   // template code: (for LM_LEGACY)
 984   //
 985   // markWord displaced_header = obj->mark().set_unlocked();
 986   // monitor->lock()->set_displaced_header(displaced_header);
 987   // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) {
 988   //   // We stored the monitor address into the object's mark word.
 989   // } else if (THREAD->is_lock_owned((address)displaced_header))
 990   //   // Simple recursive case.
 991   //   monitor->lock()->set_displaced_header(nullptr);
 992   // } else {
 993   //   // Slow path.
 994   //   InterpreterRuntime::monitorenter(THREAD, monitor);
 995   // }
 996 
 997   const int hdr_offset = oopDesc::mark_offset_in_bytes();
 998 
 999   const Register header           = Z_ARG5;
1000   const Register object_mark_addr = Z_ARG4;
1001   const Register current_header   = Z_ARG5;
1002   const Register tmp              = Z_R1_scratch;
1003 
1004   NearLabel done, slow_case;
1005 
1006   // markWord header = obj->mark().set_unlocked();
1007 
1008   if (DiagnoseSyncOnValueBasedClasses != 0) {
1009     load_klass(tmp, object);
1010     z_tm(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class);
1011     z_btrue(slow_case);
1012   }
1013 
1014   if (LockingMode == LM_LIGHTWEIGHT) {
1015     lightweight_lock(monitor, object, header, tmp, slow_case);
1016   } else if (LockingMode == LM_LEGACY) {
1017 
1018     // Load markWord from object into header.
1019     z_lg(header, hdr_offset, object);
1020 
1021     // Set header to be (markWord of object | UNLOCK_VALUE).
1022     // This will not change anything if it was unlocked before.
1023     z_oill(header, markWord::unlocked_value);
1024 
1025     // monitor->lock()->set_displaced_header(displaced_header);
1026     const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1027     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1028 
1029     // Initialize the box (Must happen before we update the object mark!).
1030     z_stg(header, mark_offset, monitor);
1031 
1032     // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) {
1033 
1034     // not necessary, use offset in instruction directly.
1035     // add2reg(object_mark_addr, hdr_offset, object);
1036 
1037     // Store stack address of the BasicObjectLock (this is monitor) into object.
1038     z_csg(header, monitor, hdr_offset, object);
1039     assert(current_header == header,
1040            "must be same register"); // Identified two registers from z/Architecture.
1041 
1042     z_bre(done);
1043 
1044     // } else if (THREAD->is_lock_owned((address)displaced_header))
1045     //   // Simple recursive case.
1046     //   monitor->lock()->set_displaced_header(nullptr);
1047 
1048     // We did not see an unlocked object so try the fast recursive case.
1049 
1050     // Check if owner is self by comparing the value in the markWord of object
1051     // (current_header) with the stack pointer.
1052     z_sgr(current_header, Z_SP);
1053 
1054     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1055 
1056     // The prior sequence "LGR, NGR, LTGR" can be done better
1057     // (Z_R1 is temp and not used after here).
1058     load_const_optimized(Z_R0, (~(os::vm_page_size() - 1) | markWord::lock_mask_in_place));
1059     z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
1060 
1061     // If condition is true we are done and hence we can store 0 in the displaced
1062     // header indicating it is a recursive lock and be done.
1063     z_brne(slow_case);
1064     z_release();  // Member unnecessary on zarch AND because the above csg does a sync before and after.
1065     z_stg(Z_R0/*==0!*/, mark_offset, monitor);
1066   }
1067   z_bru(done);
1068   // } else {
1069   //   // Slow path.
1070   //   InterpreterRuntime::monitorenter(THREAD, monitor);
1071 
1072   // None of the above fast optimizations worked so we have to get into the
1073   // slow case of monitor enter.
1074   bind(slow_case);
1075   call_VM(noreg,
1076           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1077           monitor);
1078   // }
1079 
1080   bind(done);
1081 }
1082 
1083 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1084 //
1085 // Registers alive
1086 //   monitor - address of the BasicObjectLock to be used for locking,
1087 //             which must be initialized with the object to lock.
1088 //
1089 // Throw IllegalMonitorException if object is not locked by current thread.
1090 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
1091 
1092   if (LockingMode == LM_MONITOR) {
1093     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1094     return;
1095   }
1096 
1097 // else {
1098   // template code: (for LM_LEGACY):
1099   //
1100   // if ((displaced_header = monitor->displaced_header()) == nullptr) {
1101   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to null.
1102   //   monitor->set_obj(nullptr);
1103   // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) {
1104   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1105   //   monitor->set_obj(nullptr);
1106   // } else {
1107   //   // Slow path.
1108   //   InterpreterRuntime::monitorexit(monitor);
1109   // }
1110 
1111   const int hdr_offset = oopDesc::mark_offset_in_bytes();
1112 
1113   const Register header         = Z_ARG4;
1114   const Register current_header = Z_R1_scratch;
1115   Address obj_entry(monitor, BasicObjectLock::obj_offset());
1116   Label done, slow_case;
1117 
1118   if (object == noreg) {
1119     // In the template interpreter, we must assure that the object
1120     // entry in the monitor is cleared on all paths. Thus we move
1121     // loading up to here, and clear the entry afterwards.
1122     object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
1123     z_lg(object, obj_entry);
1124   }
1125 
1126   assert_different_registers(monitor, object, header, current_header);
1127 
1128   // if ((displaced_header = monitor->displaced_header()) == nullptr) {
1129   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to null.
1130   //   monitor->set_obj(nullptr);
1131 
1132   // monitor->lock()->set_displaced_header(displaced_header);
1133   const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1134   const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1135 
1136   clear_mem(obj_entry, sizeof(oop));
1137   if (LockingMode != LM_LIGHTWEIGHT) {
1138     // Test first if we are in the fast recursive case.
1139     MacroAssembler::load_and_test_long(header, Address(monitor, mark_offset));
1140     z_bre(done); // header == 0 -> goto done
1141   }
1142 
1143   // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) {
1144   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1145   //   monitor->set_obj(nullptr);
1146 
1147   // If we still have a lightweight lock, unlock the object and be done.
1148   if (LockingMode == LM_LIGHTWEIGHT) {
1149 
1150     lightweight_unlock(object, header, current_header, slow_case);
1151 
1152     z_bru(done);
1153   } else {
1154     // The markword is expected to be at offset 0.
1155     // This is not required on s390, at least not here.
1156     assert(hdr_offset == 0, "unlock_object: review code below");
1157 
1158     // We have the displaced header in header. If the lock is still
1159     // lightweight, it will contain the monitor address and we'll store the
1160     // displaced header back into the object's mark word.
1161     z_lgr(current_header, monitor);
1162     z_csg(current_header, header, hdr_offset, object);
1163     z_bre(done);
1164   }
1165 
1166   // } else {
1167   //   // Slow path.
1168   //   InterpreterRuntime::monitorexit(monitor);
1169 
1170   // The lock has been converted into a heavy lock and hence
1171   // we need to get into the slow case.
1172   bind(slow_case);
1173   z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
1174   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1175 
1176   // }
1177 
1178   bind(done);
1179 }
1180 
1181 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1182   assert(ProfileInterpreter, "must be profiling interpreter");
1183   load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
1184   z_brz(zero_continue);
1185 }
1186 
1187 // Set the method data pointer for the current bcp.
1188 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1189   assert(ProfileInterpreter, "must be profiling interpreter");
1190   Label    set_mdp;
1191   Register mdp    = Z_ARG4;
1192   Register method = Z_ARG5;
1193 
1194   get_method(method);
1195   // Test MDO to avoid the call if it is null.
1196   load_and_test_long(mdp, method2_(method, method_data));
1197   z_brz(set_mdp);
1198 
1199   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
1200   // Z_RET: mdi
1201   // Mdo is guaranteed to be non-zero here, we checked for it before the call.
1202   assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
1203   z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
1204   add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
1205 
1206   bind(set_mdp);
1207   save_mdp(mdp);
1208 }
1209 
1210 void InterpreterMacroAssembler::verify_method_data_pointer() {
1211   assert(ProfileInterpreter, "must be profiling interpreter");
1212 #ifdef ASSERT
1213   NearLabel verify_continue;
1214   Register bcp_expected = Z_ARG3;
1215   Register mdp    = Z_ARG4;
1216   Register method = Z_ARG5;
1217 
1218   test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
1219   get_method(method);
1220 
1221   // If the mdp is valid, it will point to a DataLayout header which is
1222   // consistent with the bcp. The converse is highly probable also.
1223   load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
1224   z_ag(bcp_expected, Address(method, Method::const_offset()));
1225   load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
1226   compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
1227   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
1228   bind(verify_continue);
1229 #endif // ASSERT
1230 }
1231 
1232 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1233   assert(ProfileInterpreter, "must be profiling interpreter");
1234   z_stg(value, constant, mdp_in);
1235 }
1236 
1237 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1238                                                       int constant,
1239                                                       Register tmp,
1240                                                       bool decrement) {
1241   assert_different_registers(mdp_in, tmp);
1242   // counter address
1243   Address data(mdp_in, constant);
1244   const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
1245   add2mem_64(Address(mdp_in, constant), delta, tmp);
1246 }
1247 
1248 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1249                                                 int flag_byte_constant) {
1250   assert(ProfileInterpreter, "must be profiling interpreter");
1251   // Set the flag.
1252   z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
1253 }
1254 
1255 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1256                                                  int offset,
1257                                                  Register value,
1258                                                  Register test_value_out,
1259                                                  Label& not_equal_continue) {
1260   assert(ProfileInterpreter, "must be profiling interpreter");
1261   if (test_value_out == noreg) {
1262     z_cg(value, Address(mdp_in, offset));
1263     z_brne(not_equal_continue);
1264   } else {
1265     // Put the test value into a register, so caller can use it:
1266     z_lg(test_value_out, Address(mdp_in, offset));
1267     compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
1268   }
1269 }
1270 
1271 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1272   update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
1273 }
1274 
1275 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1276                                                      Register dataidx,
1277                                                      int offset_of_disp) {
1278   assert(ProfileInterpreter, "must be profiling interpreter");
1279   Address disp_address(mdp_in, dataidx, offset_of_disp);
1280   Assembler::z_ag(mdp_in, disp_address);
1281   save_mdp(mdp_in);
1282 }
1283 
1284 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1285   assert(ProfileInterpreter, "must be profiling interpreter");
1286   add2reg(mdp_in, constant);
1287   save_mdp(mdp_in);
1288 }
1289 
1290 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1291   assert(ProfileInterpreter, "must be profiling interpreter");
1292   assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
1293   call_VM(noreg,
1294           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1295           return_bci);
1296 }
1297 
1298 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1299   if (ProfileInterpreter) {
1300     Label profile_continue;
1301 
1302     // If no method data exists, go to profile_continue.
1303     // Otherwise, assign to mdp.
1304     test_method_data_pointer(mdp, profile_continue);
1305 
1306     // We are taking a branch. Increment the taken count.
1307     // We inline increment_mdp_data_at to return bumped_count in a register
1308     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1309     Address data(mdp, JumpData::taken_offset());
1310     z_lg(bumped_count, data);
1311     // 64-bit overflow is very unlikely. Saturation to 32-bit values is
1312     // performed when reading the counts.
1313     add2reg(bumped_count, DataLayout::counter_increment);
1314     z_stg(bumped_count, data); // Store back out
1315 
1316     // The method data pointer needs to be updated to reflect the new target.
1317     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1318     bind(profile_continue);
1319   }
1320 }
1321 
1322 // Kills Z_R1_scratch.
1323 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1324   if (ProfileInterpreter) {
1325     Label profile_continue;
1326 
1327     // If no method data exists, go to profile_continue.
1328     test_method_data_pointer(mdp, profile_continue);
1329 
1330     // We are taking a branch. Increment the not taken count.
1331     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
1332 
1333     // The method data pointer needs to be updated to correspond to
1334     // the next bytecode.
1335     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1336     bind(profile_continue);
1337   }
1338 }
1339 
1340 // Kills: Z_R1_scratch.
1341 void InterpreterMacroAssembler::profile_call(Register mdp) {
1342   if (ProfileInterpreter) {
1343     Label profile_continue;
1344 
1345     // If no method data exists, go to profile_continue.
1346     test_method_data_pointer(mdp, profile_continue);
1347 
1348     // We are making a call. Increment the count.
1349     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1350 
1351     // The method data pointer needs to be updated to reflect the new target.
1352     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1353     bind(profile_continue);
1354   }
1355 }
1356 
1357 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1358   if (ProfileInterpreter) {
1359     Label profile_continue;
1360 
1361     // If no method data exists, go to profile_continue.
1362     test_method_data_pointer(mdp, profile_continue);
1363 
1364     // We are making a call. Increment the count.
1365     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1366 
1367     // The method data pointer needs to be updated to reflect the new target.
1368     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1369     bind(profile_continue);
1370   }
1371 }
1372 
1373 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1374                                                      Register mdp,
1375                                                      Register reg2,
1376                                                      bool receiver_can_be_null) {
1377   if (ProfileInterpreter) {
1378     NearLabel profile_continue;
1379 
1380     // If no method data exists, go to profile_continue.
1381     test_method_data_pointer(mdp, profile_continue);
1382 
1383     NearLabel skip_receiver_profile;
1384     if (receiver_can_be_null) {
1385       NearLabel not_null;
1386       compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
1387       // We are making a call. Increment the count for null receiver.
1388       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1389       z_bru(skip_receiver_profile);
1390       bind(not_null);
1391     }
1392 
1393     // Record the receiver type.
1394     record_klass_in_profile(receiver, mdp, reg2);
1395     bind(skip_receiver_profile);
1396 
1397     // The method data pointer needs to be updated to reflect the new target.
1398     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1399     bind(profile_continue);
1400   }
1401 }
1402 
1403 // This routine creates a state machine for updating the multi-row
1404 // type profile at a virtual call site (or other type-sensitive bytecode).
1405 // The machine visits each row (of receiver/count) until the receiver type
1406 // is found, or until it runs out of rows. At the same time, it remembers
1407 // the location of the first empty row. (An empty row records null for its
1408 // receiver, and can be allocated for a newly-observed receiver type.)
1409 // Because there are two degrees of freedom in the state, a simple linear
1410 // search will not work; it must be a decision tree. Hence this helper
1411 // function is recursive, to generate the required tree structured code.
1412 // It's the interpreter, so we are trading off code space for speed.
1413 // See below for example code.
1414 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1415                                         Register receiver, Register mdp,
1416                                         Register reg2, int start_row,
1417                                         Label& done) {
1418   if (TypeProfileWidth == 0) {
1419     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1420     return;
1421   }
1422 
1423   int last_row = VirtualCallData::row_limit() - 1;
1424   assert(start_row <= last_row, "must be work left to do");
1425   // Test this row for both the receiver and for null.
1426   // Take any of three different outcomes:
1427   //   1. found receiver => increment count and goto done
1428   //   2. found null => keep looking for case 1, maybe allocate this cell
1429   //   3. found something else => keep looking for cases 1 and 2
1430   // Case 3 is handled by a recursive call.
1431   for (int row = start_row; row <= last_row; row++) {
1432     NearLabel next_test;
1433     bool test_for_null_also = (row == start_row);
1434 
1435     // See if the receiver is receiver[n].
1436     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1437     test_mdp_data_at(mdp, recvr_offset, receiver,
1438                      (test_for_null_also ? reg2 : noreg),
1439                      next_test);
1440     // (Reg2 now contains the receiver from the CallData.)
1441 
1442     // The receiver is receiver[n]. Increment count[n].
1443     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1444     increment_mdp_data_at(mdp, count_offset);
1445     z_bru(done);
1446     bind(next_test);
1447 
1448     if (test_for_null_also) {
1449       Label found_null;
1450       // Failed the equality check on receiver[n]... Test for null.
1451       z_ltgr(reg2, reg2);
1452       if (start_row == last_row) {
1453         // The only thing left to do is handle the null case.
1454         z_brz(found_null);
1455         // Receiver did not match any saved receiver and there is no empty row for it.
1456         // Increment total counter to indicate polymorphic case.
1457         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1458         z_bru(done);
1459         bind(found_null);
1460         break;
1461       }
1462       // Since null is rare, make it be the branch-taken case.
1463       z_brz(found_null);
1464 
1465       // Put all the "Case 3" tests here.
1466       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
1467 
1468       // Found a null. Keep searching for a matching receiver,
1469       // but remember that this is an empty (unused) slot.
1470       bind(found_null);
1471     }
1472   }
1473 
1474   // In the fall-through case, we found no matching receiver, but we
1475   // observed the receiver[start_row] is null.
1476 
1477   // Fill in the receiver field and increment the count.
1478   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1479   set_mdp_data_at(mdp, recvr_offset, receiver);
1480   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1481   load_const_optimized(reg2, DataLayout::counter_increment);
1482   set_mdp_data_at(mdp, count_offset, reg2);
1483   if (start_row > 0) {
1484     z_bru(done);
1485   }
1486 }
1487 
1488 // Example state machine code for three profile rows:
1489 //   // main copy of decision tree, rooted at row[1]
1490 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1491 //   if (row[0].rec != nullptr) {
1492 //     // inner copy of decision tree, rooted at row[1]
1493 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1494 //     if (row[1].rec != nullptr) {
1495 //       // degenerate decision tree, rooted at row[2]
1496 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1497 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1498 //       row[2].init(rec); goto done;
1499 //     } else {
1500 //       // remember row[1] is empty
1501 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1502 //       row[1].init(rec); goto done;
1503 //     }
1504 //   } else {
1505 //     // remember row[0] is empty
1506 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1507 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1508 //     row[0].init(rec); goto done;
1509 //   }
1510 //   done:
1511 
1512 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1513                                                         Register mdp, Register reg2) {
1514   assert(ProfileInterpreter, "must be profiling");
1515   Label done;
1516 
1517   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1518 
1519   bind (done);
1520 }
1521 
1522 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1523   if (ProfileInterpreter) {
1524     NearLabel profile_continue;
1525     uint row;
1526 
1527     // If no method data exists, go to profile_continue.
1528     test_method_data_pointer(mdp, profile_continue);
1529 
1530     // Update the total ret count.
1531     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1532 
1533     for (row = 0; row < RetData::row_limit(); row++) {
1534       NearLabel next_test;
1535 
1536       // See if return_bci is equal to bci[n]:
1537       test_mdp_data_at(mdp,
1538                        in_bytes(RetData::bci_offset(row)),
1539                        return_bci, noreg,
1540                        next_test);
1541 
1542       // Return_bci is equal to bci[n]. Increment the count.
1543       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1544 
1545       // The method data pointer needs to be updated to reflect the new target.
1546       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1547       z_bru(profile_continue);
1548       bind(next_test);
1549     }
1550 
1551     update_mdp_for_ret(return_bci);
1552 
1553     bind(profile_continue);
1554   }
1555 }
1556 
1557 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1558   if (ProfileInterpreter) {
1559     Label profile_continue;
1560 
1561     // If no method data exists, go to profile_continue.
1562     test_method_data_pointer(mdp, profile_continue);
1563 
1564     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1565 
1566     // The method data pointer needs to be updated.
1567     int mdp_delta = in_bytes(BitData::bit_data_size());
1568     if (TypeProfileCasts) {
1569       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1570     }
1571     update_mdp_by_constant(mdp, mdp_delta);
1572 
1573     bind(profile_continue);
1574   }
1575 }
1576 
1577 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1578   if (ProfileInterpreter) {
1579     Label profile_continue;
1580 
1581     // If no method data exists, go to profile_continue.
1582     test_method_data_pointer(mdp, profile_continue);
1583 
1584     // The method data pointer needs to be updated.
1585     int mdp_delta = in_bytes(BitData::bit_data_size());
1586     if (TypeProfileCasts) {
1587       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1588 
1589       // Record the object type.
1590       record_klass_in_profile(klass, mdp, reg2);
1591     }
1592     update_mdp_by_constant(mdp, mdp_delta);
1593 
1594     bind(profile_continue);
1595   }
1596 }
1597 
1598 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1599   if (ProfileInterpreter) {
1600     Label profile_continue;
1601 
1602     // If no method data exists, go to profile_continue.
1603     test_method_data_pointer(mdp, profile_continue);
1604 
1605     // Update the default case count.
1606     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1607 
1608     // The method data pointer needs to be updated.
1609     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1610 
1611     bind(profile_continue);
1612   }
1613 }
1614 
1615 // Kills: index, scratch1, scratch2.
1616 void InterpreterMacroAssembler::profile_switch_case(Register index,
1617                                                     Register mdp,
1618                                                     Register scratch1,
1619                                                     Register scratch2) {
1620   if (ProfileInterpreter) {
1621     Label profile_continue;
1622     assert_different_registers(index, mdp, scratch1, scratch2);
1623 
1624     // If no method data exists, go to profile_continue.
1625     test_method_data_pointer(mdp, profile_continue);
1626 
1627     // Build the base (index * per_case_size_in_bytes()) +
1628     // case_array_offset_in_bytes().
1629     z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1630     add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
1631 
1632     // Add the calculated base to the mdp -> address of the case' data.
1633     Address case_data_addr(mdp, index);
1634     Register case_data = scratch1;
1635     load_address(case_data, case_data_addr);
1636 
1637     // Update the case count.
1638     increment_mdp_data_at(case_data,
1639                           in_bytes(MultiBranchData::relative_count_offset()),
1640                           scratch2);
1641 
1642     // The method data pointer needs to be updated.
1643     update_mdp_by_offset(mdp,
1644                          index,
1645                          in_bytes(MultiBranchData::relative_displacement_offset()));
1646 
1647     bind(profile_continue);
1648   }
1649 }
1650 
1651 // kills: R0, R1, flags, loads klass from obj (if not null)
1652 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
1653   NearLabel null_seen, init_klass, do_nothing, do_update;
1654 
1655   // Klass = obj is allowed.
1656   const Register tmp = Z_R1;
1657   assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
1658   assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
1659 
1660   z_lg(tmp, mdo_addr);
1661   if (cmp_done) {
1662     z_brz(null_seen);
1663   } else {
1664     compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
1665   }
1666 
1667   MacroAssembler::verify_oop(obj, FILE_AND_LINE);
1668   load_klass(klass, obj);
1669 
1670   // Klass seen before, nothing to do (regardless of unknown bit).
1671   z_lgr(Z_R0, tmp);
1672   assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
1673   z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
1674   compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
1675 
1676   // Already unknown. Nothing to do anymore.
1677   z_tmll(tmp, TypeEntries::type_unknown);
1678   z_brc(Assembler::bcondAllOne, do_nothing);
1679 
1680   z_lgr(Z_R0, tmp);
1681   assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
1682   z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
1683   compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
1684 
1685   // Different than before. Cannot keep accurate profile.
1686   z_oill(tmp, TypeEntries::type_unknown);
1687   z_bru(do_update);
1688 
1689   bind(init_klass);
1690   // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1691   z_ogr(tmp, klass);
1692   z_bru(do_update);
1693 
1694   bind(null_seen);
1695   // Set null_seen if obj is 0.
1696   z_oill(tmp, TypeEntries::null_seen);
1697   // fallthru: z_bru(do_update);
1698 
1699   bind(do_update);
1700   z_stg(tmp, mdo_addr);
1701 
1702   bind(do_nothing);
1703 }
1704 
1705 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1706   if (!ProfileInterpreter) {
1707     return;
1708   }
1709 
1710   assert_different_registers(mdp, callee, tmp);
1711 
1712   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1713     Label profile_continue;
1714 
1715     test_method_data_pointer(mdp, profile_continue);
1716 
1717     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1718 
1719     z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
1720            is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1721     z_brne(profile_continue);
1722 
1723     if (MethodData::profile_arguments()) {
1724       NearLabel done;
1725       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1726       add2reg(mdp, off_to_args);
1727 
1728       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1729         if (i > 0 || MethodData::profile_return()) {
1730           // If return value type is profiled we may have no argument to profile.
1731           z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1732           add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
1733           compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
1734         }
1735         z_lg(tmp, Address(callee, Method::const_offset()));
1736         z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1737         // Stack offset o (zero based) from the start of the argument
1738         // list. For n arguments translates into offset n - o - 1 from
1739         // the end of the argument list. But there is an extra slot at
1740         // the top of the stack. So the offset is n - o from Lesp.
1741         z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1742         z_sllg(tmp, tmp, Interpreter::logStackElementSize);
1743         Address stack_slot_addr(tmp, Z_esp);
1744         z_ltg(tmp, stack_slot_addr);
1745 
1746         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1747         profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
1748 
1749         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1750         add2reg(mdp, to_add);
1751         off_to_args += to_add;
1752       }
1753 
1754       if (MethodData::profile_return()) {
1755         z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1756         add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1757       }
1758 
1759       bind(done);
1760 
1761       if (MethodData::profile_return()) {
1762         // We're right after the type profile for the last
1763         // argument. Tmp is the number of cells left in the
1764         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1765         // if there's a return to profile.
1766         assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1767         z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
1768         z_agr(mdp, tmp);
1769       }
1770       z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
1771     } else {
1772       assert(MethodData::profile_return(), "either profile call args or call ret");
1773       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1774     }
1775 
1776     // Mdp points right after the end of the
1777     // CallTypeData/VirtualCallTypeData, right after the cells for the
1778     // return value type if there's one.
1779     bind(profile_continue);
1780   }
1781 }
1782 
1783 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1784   assert_different_registers(mdp, ret, tmp);
1785   if (ProfileInterpreter && MethodData::profile_return()) {
1786     Label profile_continue;
1787 
1788     test_method_data_pointer(mdp, profile_continue);
1789 
1790     if (MethodData::profile_return_jsr292_only()) {
1791       // If we don't profile all invoke bytecodes we must make sure
1792       // it's a bytecode we indeed profile. We can't go back to the
1793       // beginning of the ProfileData we intend to update to check its
1794       // type because we're right after it and we don't known its
1795       // length.
1796       NearLabel do_profile;
1797       Address bc(Z_bcp);
1798       z_lb(tmp, bc);
1799       compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
1800       compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
1801       get_method(tmp);
1802       // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
1803       if (Method::intrinsic_id_size_in_bytes() == 1) {
1804         z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1805       } else {
1806         assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
1807         z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp);
1808         z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1809       }
1810       z_brne(profile_continue);
1811 
1812       bind(do_profile);
1813     }
1814 
1815     Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
1816     profile_obj_type(ret, mdo_ret_addr, tmp);
1817 
1818     bind(profile_continue);
1819   }
1820 }
1821 
1822 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1823   if (ProfileInterpreter && MethodData::profile_parameters()) {
1824     Label profile_continue, done;
1825 
1826     test_method_data_pointer(mdp, profile_continue);
1827 
1828     // Load the offset of the area within the MDO used for
1829     // parameters. If it's negative we're not profiling any parameters.
1830     Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
1831     load_and_test_int2long(tmp1, parm_di_addr);
1832     z_brl(profile_continue);
1833 
1834     // Compute a pointer to the area for parameters from the offset
1835     // and move the pointer to the slot for the last
1836     // parameters. Collect profiling from last parameter down.
1837     // mdo start + parameters offset + array length - 1
1838 
1839     // Pointer to the parameter area in the MDO.
1840     z_agr(mdp, tmp1);
1841 
1842     // Offset of the current profile entry to update.
1843     const Register entry_offset = tmp1;
1844     // entry_offset = array len in number of cells.
1845     z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
1846     // entry_offset (number of cells) = array len - size of 1 entry
1847     add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
1848     // entry_offset in bytes
1849     z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1850 
1851     Label loop;
1852     bind(loop);
1853 
1854     Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
1855     Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
1856 
1857     // Load offset on the stack from the slot for this parameter.
1858     z_lg(tmp2, arg_off);
1859     z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
1860     z_lcgr(tmp2); // Negate.
1861 
1862     // Profile the parameter.
1863     z_ltg(tmp2, Address(Z_locals, tmp2));
1864     profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
1865 
1866     // Go to next parameter.
1867     z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
1868     z_brnl(loop);
1869 
1870     bind(profile_continue);
1871   }
1872 }
1873 
1874 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1875 void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
1876                                                         int              increment,
1877                                                         Address          mask,
1878                                                         Register         scratch,
1879                                                         bool             preloaded,
1880                                                         branch_condition cond,
1881                                                         Label           *where) {
1882   assert_different_registers(counter_addr.base(), scratch);
1883   if (preloaded) {
1884     add2reg(scratch, increment);
1885     reg2mem_opt(scratch, counter_addr, false);
1886   } else {
1887     if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
1888       z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
1889       mem2reg_signed_opt(scratch, counter_addr);
1890     } else {
1891       mem2reg_signed_opt(scratch, counter_addr);
1892       add2reg(scratch, increment);
1893       reg2mem_opt(scratch, counter_addr, false);
1894     }
1895   }
1896   z_n(scratch, mask);
1897   if (where) { z_brc(cond, *where); }
1898 }
1899 
1900 // Get MethodCounters object for given method. Lazily allocated if necessary.
1901 //   method    - Ptr to Method object.
1902 //   Rcounters - Ptr to MethodCounters object associated with Method object.
1903 //   skip      - Exit point if MethodCounters object can't be created (OOM condition).
1904 void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
1905                                                     Register Rcounters,
1906                                                     Label& skip) {
1907   assert_different_registers(Rmethod, Rcounters);
1908 
1909   BLOCK_COMMENT("get MethodCounters object {");
1910 
1911   Label has_counters;
1912   load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
1913   z_brnz(has_counters);
1914 
1915   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod);
1916   z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
1917   z_brz(skip); // No MethodCounters, out of memory.
1918 
1919   bind(has_counters);
1920 
1921   BLOCK_COMMENT("} get MethodCounters object");
1922 }
1923 
1924 // Increment invocation counter in MethodCounters object.
1925 // Return (invocation_counter+backedge_counter) as "result" in RctrSum.
1926 // Counter values are all unsigned.
1927 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
1928   assert(UseCompiler, "incrementing must be useful");
1929   assert_different_registers(Rcounters, RctrSum);
1930 
1931   int increment          = InvocationCounter::count_increment;
1932   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1933   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1934 
1935   BLOCK_COMMENT("Increment invocation counter {");
1936 
1937   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1938     // Increment the invocation counter in place,
1939     // then add the incremented value to the backedge counter.
1940     z_l(RctrSum, be_counter_offset, Rcounters);
1941     z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
1942     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1943     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1944   } else {
1945     // This path is optimized for low register consumption
1946     // at the cost of somewhat higher operand delays.
1947     // It does not need an extra temp register.
1948 
1949     // Update the invocation counter.
1950     z_l(RctrSum, inv_counter_offset, Rcounters);
1951     if (RctrSum == Z_R0) {
1952       z_ahi(RctrSum, increment);
1953     } else {
1954       add2reg(RctrSum, increment);
1955     }
1956     z_st(RctrSum, inv_counter_offset, Rcounters);
1957 
1958     // Mask off the state bits.
1959     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1960 
1961     // Add the backedge counter to the updated invocation counter to
1962     // form the result.
1963     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1964   }
1965 
1966   BLOCK_COMMENT("} Increment invocation counter");
1967 
1968   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1969 }
1970 
1971 
1972 // increment backedge counter in MethodCounters object.
1973 // return (invocation_counter+backedge_counter) as "result" in RctrSum
1974 // counter values are all unsigned!
1975 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
1976   assert(UseCompiler, "incrementing must be useful");
1977   assert_different_registers(Rcounters, RctrSum);
1978 
1979   int increment          = InvocationCounter::count_increment;
1980   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1981   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1982 
1983   BLOCK_COMMENT("Increment backedge counter {");
1984 
1985   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1986     // Increment the invocation counter in place,
1987     // then add the incremented value to the backedge counter.
1988     z_l(RctrSum, inv_counter_offset, Rcounters);
1989     z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
1990     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1991     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1992   } else {
1993     // This path is optimized for low register consumption
1994     // at the cost of somewhat higher operand delays.
1995     // It does not need an extra temp register.
1996 
1997     // Update the invocation counter.
1998     z_l(RctrSum, be_counter_offset, Rcounters);
1999     if (RctrSum == Z_R0) {
2000       z_ahi(RctrSum, increment);
2001     } else {
2002       add2reg(RctrSum, increment);
2003     }
2004     z_st(RctrSum, be_counter_offset, Rcounters);
2005 
2006     // Mask off the state bits.
2007     z_nilf(RctrSum, InvocationCounter::count_mask_value);
2008 
2009     // Add the backedge counter to the updated invocation counter to
2010     // form the result.
2011     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
2012   }
2013 
2014   BLOCK_COMMENT("} Increment backedge counter");
2015 
2016   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2017 }
2018 
2019 // Add an InterpMonitorElem to stack (see frame_s390.hpp).
2020 void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
2021                                                      Register Rtemp1,
2022                                                      Register Rtemp2,
2023                                                      Register Rtemp3) {
2024 
2025   const Register Rcurr_slot = Rtemp1;
2026   const Register Rlimit     = Rtemp2;
2027   const jint delta = -frame::interpreter_frame_monitor_size_in_bytes();
2028 
2029   assert((delta & LongAlignmentMask) == 0,
2030          "sizeof BasicObjectLock must be even number of doublewords");
2031   assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
2032   assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
2033   assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
2034 
2035   get_monitors(Rlimit);
2036 
2037   // Adjust stack pointer for additional monitor entry.
2038   resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
2039 
2040   if (!stack_is_empty) {
2041     // Must copy stack contents down.
2042     NearLabel next, done;
2043 
2044     // Rtemp := addr(Tos), Z_esp is pointing below it!
2045     add2reg(Rcurr_slot, wordSize, Z_esp);
2046 
2047     // Nothing to do, if already at monitor area.
2048     compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
2049 
2050     bind(next);
2051 
2052     // Move one stack slot.
2053     mem2reg_opt(Rtemp3, Address(Rcurr_slot));
2054     reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
2055     add2reg(Rcurr_slot, wordSize);
2056     compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
2057 
2058     bind(done);
2059     // Done copying stack.
2060   }
2061 
2062   // Adjust expression stack and monitor pointers.
2063   add2reg(Z_esp, delta);
2064   add2reg(Rlimit, delta);
2065   save_monitors(Rlimit);
2066 }
2067 
2068 // Note: Index holds the offset in bytes afterwards.
2069 // You can use this to store a new value (with Llocals as the base).
2070 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
2071   z_sllg(index, index, LogBytesPerWord);
2072   mem2reg_opt(dst, Address(Z_locals, index), false);
2073 }
2074 
2075 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2076   if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); }
2077 }
2078 
2079 // Inline assembly for:
2080 //
2081 // if (thread is in interp_only_mode) {
2082 //   InterpreterRuntime::post_method_entry();
2083 // }
2084 
2085 void InterpreterMacroAssembler::notify_method_entry() {
2086 
2087   // JVMTI
2088   // Whenever JVMTI puts a thread in interp_only_mode, method
2089   // entry/exit events are sent for that thread to track stack
2090   // depth. If it is possible to enter interp_only_mode we add
2091   // the code to check if the event should be sent.
2092   if (JvmtiExport::can_post_interpreter_events()) {
2093     Label jvmti_post_done;
2094     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2095     z_bre(jvmti_post_done);
2096     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2097     bind(jvmti_post_done);
2098   }
2099 }
2100 
2101 // Inline assembly for:
2102 //
2103 // if (thread is in interp_only_mode) {
2104 //   if (!native_method) save result
2105 //   InterpreterRuntime::post_method_exit();
2106 //   if (!native_method) restore result
2107 // }
2108 // if (DTraceMethodProbes) {
2109 //   SharedRuntime::dtrace_method_exit(thread, method);
2110 // }
2111 //
2112 // For native methods their result is stored in z_ijava_state.lresult
2113 // and z_ijava_state.fresult before coming here.
2114 // Java methods have their result stored in the expression stack.
2115 //
2116 // Notice the dependency to frame::interpreter_frame_result().
2117 void InterpreterMacroAssembler::notify_method_exit(bool native_method,
2118                                                    TosState state,
2119                                                    NotifyMethodExitMode mode) {
2120   // JVMTI
2121   // Whenever JVMTI puts a thread in interp_only_mode, method
2122   // entry/exit events are sent for that thread to track stack
2123   // depth. If it is possible to enter interp_only_mode we add
2124   // the code to check if the event should be sent.
2125   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2126     Label jvmti_post_done;
2127     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2128     z_bre(jvmti_post_done);
2129     if (!native_method) push(state); // see frame::interpreter_frame_result()
2130     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2131     if (!native_method) pop(state);
2132     bind(jvmti_post_done);
2133   }
2134 }
2135 
2136 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
2137   if (!JvmtiExport::can_post_interpreter_events()) {
2138     return;
2139   }
2140 
2141   load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2142   z_brnz(Lskip);
2143 
2144 }
2145 
2146 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
2147 // The return pc is loaded into the register return_pc.
2148 //
2149 // Registers updated:
2150 //     return_pc  - The return pc of the calling frame.
2151 //     tmp1, tmp2 - scratch
2152 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
2153   // F0  Z_SP -> caller_sp (F1's)
2154   //             ...
2155   //             sender_sp (F1's)
2156   //             ...
2157   // F1  Z_fp -> caller_sp (F2's)
2158   //             return_pc (Continuation after return from F0.)
2159   //             ...
2160   // F2          caller_sp
2161 
2162   // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
2163   // (a) by a c2i adapter and (b) by generate_fixed_frame().
2164   // In case (a) the new top frame F1 is an unextended compiled frame.
2165   // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
2166 
2167   // Case (b) seems to be redundant when returning to a interpreted caller,
2168   // because then the caller's top_frame_sp is installed as sp (see
2169   // TemplateInterpreterGenerator::generate_return_entry_for ()). But
2170   // pop_interpreter_frame() is also used in exception handling and there the
2171   // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
2172   // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
2173 
2174   Register R_f1_sender_sp = tmp1;
2175   Register R_f2_sp = tmp2;
2176 
2177   // First check for the interpreter frame's magic.
2178   asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
2179   z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
2180   z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
2181   if (return_pc->is_valid())
2182     z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2183   // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
2184   resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
2185 
2186 #ifdef ASSERT
2187   // The return_pc in the new top frame is dead... at least that's my
2188   // current understanding; to assert this I overwrite it.
2189   load_const_optimized(Z_ARG3, 0xb00b1);
2190   z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2191 #endif
2192 }
2193 
2194 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2195   if (VerifyFPU) {
2196     unimplemented("verifyFPU");
2197   }
2198 }