1 /* 2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 // Major contributions by AHa, AS, JL, ML. 27 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_s390.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/methodCounters.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 // Implementation of InterpreterMacroAssembler. 52 // This file specializes the assembler with interpreter-specific macros. 53 54 #ifdef PRODUCT 55 #define BLOCK_COMMENT(str) 56 #define BIND(label) bind(label); 57 #else 58 #define BLOCK_COMMENT(str) block_comment(str) 59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 60 #endif 61 62 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 63 assert(entry != nullptr, "Entry must have been generated by now"); 64 assert(Rscratch != Z_R0, "Can't use R0 for addressing"); 65 branch_optimized(Assembler::bcondAlways, entry); 66 } 67 68 void InterpreterMacroAssembler::empty_expression_stack(void) { 69 get_monitors(Z_R1_scratch); 70 add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); 71 } 72 73 // Dispatch code executed in the prolog of a bytecode which does not do it's 74 // own dispatch. 75 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 76 // On z/Architecture we are short on registers, therefore we do not preload the 77 // dispatch address of the next bytecode. 78 } 79 80 // Dispatch code executed in the epilog of a bytecode which does not do it's 81 // own dispatch. 82 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 83 dispatch_next(state, step); 84 } 85 86 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 87 z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. 88 add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. 89 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 90 } 91 92 // Common code to dispatch and dispatch_only. 93 // Dispatch value in Lbyte_code and increment Lbcp. 94 95 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) { 96 #ifdef ASSERT 97 address reentry = nullptr; 98 { Label OK; 99 // Check if the frame pointer in Z_fp is correct. 100 z_cg(Z_fp, 0, Z_SP); 101 z_bre(OK); 102 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); 103 bind(OK); 104 } 105 { Label OK; 106 // check if the locals pointer in Z_locals is correct 107 108 // _z_ijava_state_neg(locals)) is fp relativized, so we need to 109 // extract the pointer. 110 111 z_lg(Z_R1_scratch, Address(Z_fp, _z_ijava_state_neg(locals))); 112 z_sllg(Z_R1_scratch, Z_R1_scratch, Interpreter::logStackElementSize); 113 z_agr(Z_R1_scratch, Z_fp); 114 115 z_cgr(Z_locals, Z_R1_scratch); 116 z_bre(OK); 117 reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); 118 bind(OK); 119 } 120 #endif 121 122 // TODO: Maybe implement +VerifyActivationFrameSize here. 123 verify_oop(Z_tos, state); 124 125 // Dispatch table to use. 126 load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table; 127 128 if (generate_poll) { 129 address *sfpt_tbl = Interpreter::safept_table(state); 130 if (table != sfpt_tbl) { 131 Label dispatch; 132 const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */); 133 // Armed page has poll_bit set, if poll bit is cleared just continue. 134 z_tm(poll_byte_addr, SafepointMechanism::poll_bit()); 135 z_braz(dispatch); 136 load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table; 137 bind(dispatch); 138 } 139 } 140 141 // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. 142 // Z_bytecode must have been loaded zero-extended for this approach to be correct. 143 z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. 144 z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. 145 146 z_br(Z_tmp_1); 147 } 148 149 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 150 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 151 } 152 153 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 154 dispatch_base(state, Interpreter::normal_table(state)); 155 } 156 157 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { 158 // Load current bytecode. 159 z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); 160 dispatch_base(state, table); 161 } 162 163 // The following call_VM*_base() methods overload and mask the respective 164 // declarations/definitions in class MacroAssembler. They are meant as a "detour" 165 // to perform additional, template interpreter specific tasks before actually 166 // calling their MacroAssembler counterparts. 167 168 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { 169 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 170 // interpreter specific 171 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 172 // saved registers and no blocking/ GC can happen in leaf calls. 173 174 // super call 175 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 176 } 177 178 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { 179 // interpreter specific 180 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 181 // saved registers and no blocking/ GC can happen in leaf calls. 182 183 // super call 184 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 185 } 186 187 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 188 address entry_point, bool check_exceptions) { 189 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 190 // interpreter specific 191 192 save_bcp(); 193 save_esp(); 194 // super call 195 MacroAssembler::call_VM_base(oop_result, last_java_sp, 196 entry_point, allow_relocation, check_exceptions); 197 restore_bcp(); 198 } 199 200 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 201 address entry_point, bool allow_relocation, 202 bool check_exceptions) { 203 // interpreter specific 204 205 save_bcp(); 206 save_esp(); 207 // super call 208 MacroAssembler::call_VM_base(oop_result, last_java_sp, 209 entry_point, allow_relocation, check_exceptions); 210 restore_bcp(); 211 } 212 213 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 214 if (JvmtiExport::can_pop_frame()) { 215 BLOCK_COMMENT("check_and_handle_popframe {"); 216 Label L; 217 // Initiate popframe handling only if it is not already being 218 // processed. If the flag has the popframe_processing bit set, it 219 // means that this code is called *during* popframe handling - we 220 // don't want to reenter. 221 // TODO: Check if all four state combinations could be visible. 222 // If (processing and !pending) is an invisible/impossible state, 223 // there is optimization potential by testing both bits at once. 224 // Then, All_Zeroes and All_Ones means skip, Mixed means doit. 225 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 226 exact_log2(JavaThread::popframe_pending_bit)); 227 z_bfalse(L); 228 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 229 exact_log2(JavaThread::popframe_processing_bit)); 230 z_btrue(L); 231 232 // Call Interpreter::remove_activation_preserving_args_entry() to get the 233 // address of the same-named entrypoint in the generated interpreter code. 234 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 235 // The above call should (as its only effect) return the contents of the field 236 // _remove_activation_preserving_args_entry in Z_RET. 237 // We just jump there to have the work done. 238 z_br(Z_RET); 239 // There is no way for control to fall thru here. 240 241 bind(L); 242 BLOCK_COMMENT("} check_and_handle_popframe"); 243 } 244 } 245 246 247 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 248 Register RjvmtiState = Z_R1_scratch; 249 int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); 250 int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); 251 int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); 252 int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); 253 254 z_lg(RjvmtiState, state_off, Z_thread); 255 256 switch (state) { 257 case atos: z_lg(Z_tos, oop_off, RjvmtiState); 258 store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); 259 break; 260 case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; 261 case btos: // fall through 262 case ztos: // fall through 263 case ctos: // fall through 264 case stos: // fall through 265 case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; 266 case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; 267 case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; 268 case vtos: /* nothing to do */ break; 269 default : ShouldNotReachHere(); 270 } 271 272 // Clean up tos value in the jvmti thread state. 273 store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); 274 // Set tos state field to illegal value. 275 store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); 276 } 277 278 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 279 if (JvmtiExport::can_force_early_return()) { 280 BLOCK_COMMENT("check_and_handle_earlyret {"); 281 Label L; 282 // arg regs are save, because we are just behind the call in call_VM_base 283 Register jvmti_thread_state = Z_ARG2; 284 Register tmp = Z_ARG3; 285 load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); 286 z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit; 287 288 // Initiate earlyret handling only if it is not already being processed. 289 // If the flag has the earlyret_processing bit set, it means that this code 290 // is called *during* earlyret handling - we don't want to reenter. 291 292 assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), 293 "must fix this check, when changing the values of the earlyret enum"); 294 assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); 295 296 load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); 297 z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; 298 299 // Call Interpreter::remove_activation_early_entry() to get the address of the 300 // same-named entrypoint in the generated interpreter code. 301 assert(sizeof(TosState) == 4, "unexpected size"); 302 z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); 303 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); 304 // The above call should (as its only effect) return the contents of the field 305 // _remove_activation_preserving_args_entry in Z_RET. 306 // We just jump there to have the work done. 307 z_br(Z_RET); 308 // There is no way for control to fall thru here. 309 310 bind(L); 311 BLOCK_COMMENT("} check_and_handle_earlyret"); 312 } 313 } 314 315 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { 316 lgr_if_needed(Z_ARG1, arg_1); 317 assert(arg_2 != Z_ARG1, "smashed argument"); 318 lgr_if_needed(Z_ARG2, arg_2); 319 MacroAssembler::call_VM_leaf_base(entry_point, true); 320 } 321 322 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { 323 Address param(Z_bcp, bcp_offset); 324 325 BLOCK_COMMENT("get_cache_index_at_bcp {"); 326 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 327 if (index_size == sizeof(u2)) { 328 load_sized_value(index, param, 2, false /*signed*/); 329 } else if (index_size == sizeof(u4)) { 330 331 load_sized_value(index, param, 4, false); 332 } else if (index_size == sizeof(u1)) { 333 z_llgc(index, param); 334 } else { 335 ShouldNotReachHere(); 336 } 337 BLOCK_COMMENT("}"); 338 } 339 340 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 341 // Get index out of bytecode pointer. 342 get_cache_index_at_bcp(index, 1, sizeof(u4)); 343 344 // Get the address of the ResolvedIndyEntry array 345 get_constant_pool_cache(cache); 346 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 347 348 // Scale the index to form a byte offset into the ResolvedIndyEntry array 349 size_t entry_size = sizeof(ResolvedIndyEntry); 350 if (is_power_of_2(entry_size)) { 351 z_sllg(index, index, exact_log2(entry_size)); 352 } else { 353 z_mghi(index, entry_size); 354 } 355 356 // Calculate the final field address. 357 z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache); 358 } 359 360 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 361 // Get field index out of bytecode pointer. 362 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 363 364 // Get the address of the ResolvedFieldEntry array. 365 get_constant_pool_cache(cache); 366 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset()))); 367 368 // Scale the index to form a byte offset into the ResolvedFieldEntry array 369 size_t entry_size = sizeof(ResolvedFieldEntry); 370 if (is_power_of_2(entry_size)) { 371 z_sllg(index, index, exact_log2(entry_size)); 372 } else { 373 z_mghi(index, entry_size); 374 } 375 376 // Calculate the final field address. 377 z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache); 378 } 379 380 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 381 // Get field index out of bytecode pointer. 382 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 383 384 // Get the address of the ResolvedMethodEntry array. 385 get_constant_pool_cache(cache); 386 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset()))); 387 388 // Scale the index to form a byte offset into the ResolvedMethodEntry array 389 size_t entry_size = sizeof(ResolvedMethodEntry); 390 if (is_power_of_2(entry_size)) { 391 z_sllg(index, index, exact_log2(entry_size)); 392 } else { 393 z_mghi(index, entry_size); 394 } 395 396 // Calculate the final field address. 397 z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache); 398 } 399 400 // Load object from cpool->resolved_references(index). 401 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { 402 assert_different_registers(result, index); 403 get_constant_pool(result); 404 405 // Convert 406 // - from field index to resolved_references() index and 407 // - from word index to byte offset. 408 // Since this is a java object, it is potentially compressed. 409 Register tmp = index; // reuse 410 z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. 411 // Load pointer for resolved_references[] objArray. 412 z_lg(result, in_bytes(ConstantPool::cache_offset()), result); 413 z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result); 414 resolve_oop_handle(result); // Load resolved references array itself. 415 #ifdef ASSERT 416 NearLabel index_ok; 417 z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); 418 z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); 419 compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); 420 stop("resolved reference index out of bounds", 0x09256); 421 bind(index_ok); 422 #endif 423 z_agr(result, index); // Address of indexed array element. 424 load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg); 425 } 426 427 // load cpool->resolved_klass_at(index) 428 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) { 429 // int value = *(Rcpool->int_at_addr(which)); 430 // int resolved_klass_index = extract_low_short_from_int(value); 431 z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian) 432 z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset' 433 z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses 434 z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes())); 435 } 436 437 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 438 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. 439 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 440 Register Rsuper_klass, 441 Register Rtmp1, 442 Register Rtmp2, 443 Label &ok_is_subtype) { 444 // Profile the not-null value's klass. 445 profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); 446 447 // Do the check. 448 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 449 } 450 451 // Pop topmost element from stack. It just disappears. 452 // Useful if consumed previously by access via stackTop(). 453 void InterpreterMacroAssembler::popx(int len) { 454 add2reg(Z_esp, len*Interpreter::stackElementSize); 455 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 456 } 457 458 // Get Address object of stack top. No checks. No pop. 459 // Purpose: - Provide address of stack operand to exploit reg-mem operations. 460 // - Avoid RISC-like mem2reg - reg-reg-op sequence. 461 Address InterpreterMacroAssembler::stackTop() { 462 return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); 463 } 464 465 void InterpreterMacroAssembler::pop_i(Register r) { 466 z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 467 add2reg(Z_esp, Interpreter::stackElementSize); 468 assert_different_registers(r, Z_R1_scratch); 469 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 470 } 471 472 void InterpreterMacroAssembler::pop_ptr(Register r) { 473 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 474 add2reg(Z_esp, Interpreter::stackElementSize); 475 assert_different_registers(r, Z_R1_scratch); 476 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 477 } 478 479 void InterpreterMacroAssembler::pop_l(Register r) { 480 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 481 add2reg(Z_esp, 2*Interpreter::stackElementSize); 482 assert_different_registers(r, Z_R1_scratch); 483 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 484 } 485 486 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 487 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); 488 add2reg(Z_esp, Interpreter::stackElementSize); 489 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 490 } 491 492 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 493 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); 494 add2reg(Z_esp, 2*Interpreter::stackElementSize); 495 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 496 } 497 498 void InterpreterMacroAssembler::push_i(Register r) { 499 assert_different_registers(r, Z_R1_scratch); 500 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 501 z_st(r, Address(Z_esp)); 502 add2reg(Z_esp, -Interpreter::stackElementSize); 503 } 504 505 void InterpreterMacroAssembler::push_ptr(Register r) { 506 z_stg(r, Address(Z_esp)); 507 add2reg(Z_esp, -Interpreter::stackElementSize); 508 } 509 510 void InterpreterMacroAssembler::push_l(Register r) { 511 assert_different_registers(r, Z_R1_scratch); 512 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 513 int offset = -Interpreter::stackElementSize; 514 z_stg(r, Address(Z_esp, offset)); 515 clear_mem(Address(Z_esp), Interpreter::stackElementSize); 516 add2reg(Z_esp, 2 * offset); 517 } 518 519 void InterpreterMacroAssembler::push_f(FloatRegister f) { 520 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 521 freg2mem_opt(f, Address(Z_esp), false); 522 add2reg(Z_esp, -Interpreter::stackElementSize); 523 } 524 525 void InterpreterMacroAssembler::push_d(FloatRegister d) { 526 DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch)); 527 int offset = -Interpreter::stackElementSize; 528 freg2mem_opt(d, Address(Z_esp, offset)); 529 add2reg(Z_esp, 2 * offset); 530 } 531 532 void InterpreterMacroAssembler::push(TosState state) { 533 verify_oop(Z_tos, state); 534 switch (state) { 535 case atos: push_ptr(); break; 536 case btos: push_i(); break; 537 case ztos: 538 case ctos: 539 case stos: push_i(); break; 540 case itos: push_i(); break; 541 case ltos: push_l(); break; 542 case ftos: push_f(); break; 543 case dtos: push_d(); break; 544 case vtos: /* nothing to do */ break; 545 default : ShouldNotReachHere(); 546 } 547 } 548 549 void InterpreterMacroAssembler::pop(TosState state) { 550 switch (state) { 551 case atos: pop_ptr(Z_tos); break; 552 case btos: pop_i(Z_tos); break; 553 case ztos: 554 case ctos: 555 case stos: pop_i(Z_tos); break; 556 case itos: pop_i(Z_tos); break; 557 case ltos: pop_l(Z_tos); break; 558 case ftos: pop_f(Z_ftos); break; 559 case dtos: pop_d(Z_ftos); break; 560 case vtos: /* nothing to do */ break; 561 default : ShouldNotReachHere(); 562 } 563 verify_oop(Z_tos, state); 564 } 565 566 // Helpers for swap and dup. 567 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 568 z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 569 } 570 571 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 572 z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 573 } 574 575 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { 576 // Satisfy interpreter calling convention (see generate_normal_entry()). 577 z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). 578 // Record top_frame_sp, because the callee might modify it, if it's compiled. 579 assert_different_registers(Z_R1, method); 580 z_sgrk(Z_R1, Z_SP, Z_fp); 581 z_srag(Z_R1, Z_R1, Interpreter::logStackElementSize); 582 z_stg(Z_R1, _z_ijava_state_neg(top_frame_sp), Z_fp); 583 save_bcp(); 584 save_esp(); 585 z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). 586 } 587 588 // Jump to from_interpreted entry of a call unless single stepping is possible 589 // in this thread in which case we must call the i2i entry. 590 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 591 assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); 592 prepare_to_jump_from_interpreted(method); 593 594 if (JvmtiExport::can_post_interpreter_events()) { 595 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 596 // compiled code in threads for which the event is enabled. Check here for 597 // interp_only_mode if these events CAN be enabled. 598 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 599 MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 600 z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. 601 // Run interpreted. 602 z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); 603 z_br(Z_R1_scratch); 604 } else { 605 // Run compiled code. 606 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 607 z_br(Z_R1_scratch); 608 } 609 } 610 611 #ifdef ASSERT 612 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { 613 // About to read or write Resp[0]. 614 // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. 615 address reentry = nullptr; 616 617 { 618 // Check if the frame pointer in Z_fp is correct. 619 NearLabel OK; 620 z_cg(Z_fp, 0, Z_SP); 621 z_bre(OK); 622 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); 623 bind(OK); 624 } 625 { 626 // Resp must not point into or below the operand stack, 627 // i.e. IJAVA_STATE.monitors > Resp. 628 NearLabel OK; 629 Register Rmonitors = Rtemp; 630 get_monitors(Rmonitors); 631 compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); 632 reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); 633 bind(OK); 634 } 635 { 636 // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below 637 // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). 638 NearLabel OK; 639 Register Rabi_bottom = Rtemp; 640 add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); 641 compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); 642 reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); 643 bind(OK); 644 } 645 } 646 647 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { 648 Label magic_ok; 649 load_const_optimized(tmp, frame::z_istate_magic_number); 650 z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); 651 z_bre(magic_ok); 652 stop_static("error: wrong magic number in ijava_state access"); 653 bind(magic_ok); 654 } 655 #endif // ASSERT 656 657 void InterpreterMacroAssembler::save_bcp() { 658 z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 659 asm_assert_ijava_state_magic(Z_bcp); 660 NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); 661 } 662 663 void InterpreterMacroAssembler::restore_bcp() { 664 asm_assert_ijava_state_magic(Z_bcp); 665 z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 666 } 667 668 void InterpreterMacroAssembler::save_esp(Register fp) { 669 if (fp == noreg) { 670 fp = Z_fp; 671 } 672 z_sgrk(Z_R0, Z_esp, fp); 673 z_srag(Z_R0, Z_R0, Interpreter::logStackElementSize); 674 z_stg(Z_R0, Address(fp, _z_ijava_state_neg(esp))); 675 } 676 677 void InterpreterMacroAssembler::restore_esp() { 678 asm_assert_ijava_state_magic(Z_esp); 679 z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 680 z_slag(Z_esp, Z_esp, Interpreter::logStackElementSize); 681 z_agr(Z_esp, Z_fp); 682 } 683 684 void InterpreterMacroAssembler::get_monitors(Register reg) { 685 asm_assert_ijava_state_magic(reg); 686 #ifdef ASSERT 687 NearLabel ok; 688 z_cg(Z_fp, 0, Z_SP); 689 z_bre(ok); 690 stop("Z_fp is corrupted"); 691 bind(ok); 692 #endif // ASSERT 693 mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 694 z_slag(reg, reg, Interpreter::logStackElementSize); 695 z_agr(reg, Z_fp); 696 } 697 698 void InterpreterMacroAssembler::save_monitors(Register reg) { 699 #ifdef ASSERT 700 NearLabel ok; 701 z_cg(Z_fp, 0, Z_SP); 702 z_bre(ok); 703 stop("Z_fp is corrupted"); 704 bind(ok); 705 #endif // ASSERT 706 z_sgr(reg, Z_fp); 707 z_srag(reg, reg, Interpreter::logStackElementSize); 708 reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 709 } 710 711 void InterpreterMacroAssembler::get_mdp(Register mdp) { 712 z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); 713 } 714 715 void InterpreterMacroAssembler::save_mdp(Register mdp) { 716 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 717 } 718 719 // Values that are only read (besides initialization). 720 void InterpreterMacroAssembler::restore_locals() { 721 asm_assert_ijava_state_magic(Z_locals); 722 z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); 723 z_sllg(Z_locals, Z_locals, Interpreter::logStackElementSize); 724 z_agr(Z_locals, Z_fp); 725 } 726 727 void InterpreterMacroAssembler::get_method(Register reg) { 728 asm_assert_ijava_state_magic(reg); 729 z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); 730 } 731 732 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, 733 signedOrNot is_signed) { 734 // Rdst is an 8-byte return value!!! 735 736 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 737 // is a few (2..3) ticks, even when the load crosses a cache line 738 // boundary. In case of a cache miss, the stall could, of course, be 739 // much longer. 740 741 switch (is_signed) { 742 case Signed: 743 z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); 744 break; 745 case Unsigned: 746 z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); 747 break; 748 default: 749 ShouldNotReachHere(); 750 } 751 } 752 753 754 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, 755 setCCOrNot set_cc) { 756 // Rdst is an 8-byte return value!!! 757 758 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 759 // is a few (2..3) ticks, even when the load crosses a cache line 760 // boundary. In case of a cache miss, the stall could, of course, be 761 // much longer. 762 763 // Both variants implement a sign-extending int2long load. 764 if (set_cc == set_CC) { 765 load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 766 } else { 767 mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 768 } 769 } 770 771 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 772 get_method(Rdst); 773 mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); 774 mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); 775 } 776 777 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 778 get_constant_pool(Rdst); 779 mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset())); 780 } 781 782 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 783 get_constant_pool(Rcpool); 784 mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset())); 785 } 786 787 // Unlock if synchronized method. 788 // 789 // Unlock the receiver if this is a synchronized method. 790 // Unlock any Java monitors from synchronized blocks. 791 // 792 // If there are locked Java monitors 793 // If throw_monitor_exception 794 // throws IllegalMonitorStateException 795 // Else if install_monitor_exception 796 // installs IllegalMonitorStateException 797 // Else 798 // no error processing 799 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 800 bool throw_monitor_exception, 801 bool install_monitor_exception) { 802 NearLabel unlocked, unlock, no_unlock; 803 804 { 805 Register R_method = Z_ARG2; 806 Register R_do_not_unlock_if_synchronized = Z_ARG3; 807 808 // Get the value of _do_not_unlock_if_synchronized into G1_scratch. 809 const Address do_not_unlock_if_synchronized(Z_thread, 810 JavaThread::do_not_unlock_if_synchronized_offset()); 811 load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); 812 z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. 813 814 // Check if synchronized method. 815 get_method(R_method); 816 verify_oop(Z_tos, state); 817 push(state); // Save tos/result. 818 testbit_ushort(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 819 z_bfalse(unlocked); 820 821 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 822 // is set. 823 compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); 824 } 825 826 // unlock monitor 827 828 // BasicObjectLock will be first in list, since this is a 829 // synchronized method. However, need to check that the object has 830 // not been unlocked by an explicit monitorexit bytecode. 831 const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); 832 // We use Z_ARG2 so that if we go slow path it will be the correct 833 // register for unlock_object to pass to VM directly. 834 load_address(Z_ARG2, monitor); // Address of first monitor. 835 z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset())); 836 compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); 837 838 if (throw_monitor_exception) { 839 // Entry already unlocked need to throw an exception. 840 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 841 should_not_reach_here(); 842 } else { 843 // Monitor already unlocked during a stack unroll. 844 // If requested, install an illegal_monitor_state_exception. 845 // Continue with stack unrolling. 846 if (install_monitor_exception) { 847 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 848 } 849 z_bru(unlocked); 850 } 851 852 bind(unlock); 853 854 unlock_object(Z_ARG2); 855 856 bind(unlocked); 857 858 // I0, I1: Might contain return value 859 860 // Check that all monitors are unlocked. 861 { 862 NearLabel loop, exception, entry, restart; 863 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 864 // We use Z_ARG2 so that if we go slow path it will be the correct 865 // register for unlock_object to pass to VM directly. 866 Register R_current_monitor = Z_ARG2; 867 Register R_monitor_block_bot = Z_ARG1; 868 const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); 869 870 bind(restart); 871 // Starting with top-most entry. 872 get_monitors(R_current_monitor); 873 // Points to word before bottom of monitor block. 874 load_address(R_monitor_block_bot, monitor_block_bot); 875 z_bru(entry); 876 877 // Entry already locked, need to throw exception. 878 bind(exception); 879 880 if (throw_monitor_exception) { 881 // Throw exception. 882 MacroAssembler::call_VM(noreg, 883 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 884 throw_illegal_monitor_state_exception)); 885 should_not_reach_here(); 886 } else { 887 // Stack unrolling. Unlock object and install illegal_monitor_exception. 888 // Unlock does not block, so don't have to worry about the frame. 889 // We don't have to preserve c_rarg1 since we are going to throw an exception. 890 unlock_object(R_current_monitor); 891 if (install_monitor_exception) { 892 call_VM(noreg, CAST_FROM_FN_PTR(address, 893 InterpreterRuntime:: 894 new_illegal_monitor_state_exception)); 895 } 896 z_bru(restart); 897 } 898 899 bind(loop); 900 // Check if current entry is used. 901 load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset())); 902 z_brne(exception); 903 904 add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. 905 bind(entry); 906 compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); 907 } 908 909 bind(no_unlock); 910 pop(state); 911 verify_oop(Z_tos, state); 912 } 913 914 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) { 915 get_method(ret_type); 916 z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset()))); 917 z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset()))); 918 919 Label notBool, notByte, notChar, done; 920 921 // common case first 922 compareU32_and_branch(ret_type, T_INT, bcondEqual, done); 923 924 compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool); 925 z_nilf(result, 0x1); 926 z_bru(done); 927 928 bind(notBool); 929 compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte); 930 z_lbr(result, result); 931 z_bru(done); 932 933 bind(notByte); 934 compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar); 935 z_nilf(result, 0xffff); 936 z_bru(done); 937 938 bind(notChar); 939 // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort); 940 z_lhr(result, result); 941 942 // Nothing to do for T_INT 943 bind(done); 944 } 945 946 // remove activation 947 // 948 // Unlock the receiver if this is a synchronized method. 949 // Unlock any Java monitors from synchronized blocks. 950 // Remove the activation from the stack. 951 // 952 // If there are locked Java monitors 953 // If throw_monitor_exception 954 // throws IllegalMonitorStateException 955 // Else if install_monitor_exception 956 // installs IllegalMonitorStateException 957 // Else 958 // no error processing 959 void InterpreterMacroAssembler::remove_activation(TosState state, 960 Register return_pc, 961 bool throw_monitor_exception, 962 bool install_monitor_exception, 963 bool notify_jvmti) { 964 BLOCK_COMMENT("remove_activation {"); 965 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 966 967 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 968 notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); 969 970 if (StackReservedPages > 0) { 971 BLOCK_COMMENT("reserved_stack_check:"); 972 // Test if reserved zone needs to be enabled. 973 Label no_reserved_zone_enabling; 974 975 // check if already enabled - if so no re-enabling needed 976 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 977 z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset())); 978 compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling); 979 980 // Compare frame pointers. There is no good stack pointer, as with stack 981 // frame compression we can get different SPs when we do calls. A subsequent 982 // call could have a smaller SP, so that this compare succeeds for an 983 // inner call of the method annotated with ReservedStack. 984 z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); 985 z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. 986 z_brl(no_reserved_zone_enabling); 987 988 // Enable reserved zone again, throw stack overflow exception. 989 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); 990 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 991 992 should_not_reach_here(); 993 994 bind(no_reserved_zone_enabling); 995 } 996 997 verify_oop(Z_tos, state); 998 999 pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); 1000 BLOCK_COMMENT("} remove_activation"); 1001 } 1002 1003 // lock object 1004 // 1005 // Registers alive 1006 // monitor (Z_R10) - Address of the BasicObjectLock to be used for locking, 1007 // which must be initialized with the object to lock. 1008 // object (Z_R11, Z_R2) - Address of the object to be locked. 1009 // templateTable (monitorenter) is using Z_R2 for object 1010 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 1011 1012 if (LockingMode == LM_MONITOR) { 1013 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1014 return; 1015 } 1016 1017 // template code: (for LM_LEGACY) 1018 // 1019 // markWord displaced_header = obj->mark().set_unlocked(); 1020 // monitor->lock()->set_displaced_header(displaced_header); 1021 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1022 // // We stored the monitor address into the object's mark word. 1023 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1024 // // Simple recursive case. 1025 // monitor->lock()->set_displaced_header(nullptr); 1026 // } else { 1027 // // Slow path. 1028 // InterpreterRuntime::monitorenter(THREAD, monitor); 1029 // } 1030 1031 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 1032 1033 const Register header = Z_ARG5; 1034 const Register object_mark_addr = Z_ARG4; 1035 const Register current_header = Z_ARG5; 1036 const Register tmp = Z_R1_scratch; 1037 1038 NearLabel done, slow_case; 1039 1040 // markWord header = obj->mark().set_unlocked(); 1041 1042 if (LockingMode == LM_LIGHTWEIGHT) { 1043 lightweight_lock(monitor, object, header, tmp, slow_case); 1044 } else if (LockingMode == LM_LEGACY) { 1045 1046 if (DiagnoseSyncOnValueBasedClasses != 0) { 1047 load_klass(tmp, object); 1048 z_tm(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1049 z_btrue(slow_case); 1050 } 1051 1052 // Load markWord from object into header. 1053 z_lg(header, hdr_offset, object); 1054 1055 // Set header to be (markWord of object | UNLOCK_VALUE). 1056 // This will not change anything if it was unlocked before. 1057 z_oill(header, markWord::unlocked_value); 1058 1059 // monitor->lock()->set_displaced_header(displaced_header); 1060 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1061 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); 1062 1063 // Initialize the box (Must happen before we update the object mark!). 1064 z_stg(header, mark_offset, monitor); 1065 1066 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1067 1068 // not necessary, use offset in instruction directly. 1069 // add2reg(object_mark_addr, hdr_offset, object); 1070 1071 // Store stack address of the BasicObjectLock (this is monitor) into object. 1072 z_csg(header, monitor, hdr_offset, object); 1073 assert(current_header == header, 1074 "must be same register"); // Identified two registers from z/Architecture. 1075 1076 z_bre(done); 1077 1078 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1079 // // Simple recursive case. 1080 // monitor->lock()->set_displaced_header(nullptr); 1081 1082 // We did not see an unlocked object so try the fast recursive case. 1083 1084 // Check if owner is self by comparing the value in the markWord of object 1085 // (current_header) with the stack pointer. 1086 z_sgr(current_header, Z_SP); 1087 1088 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1089 1090 // The prior sequence "LGR, NGR, LTGR" can be done better 1091 // (Z_R1 is temp and not used after here). 1092 load_const_optimized(Z_R0, (~(os::vm_page_size() - 1) | markWord::lock_mask_in_place)); 1093 z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0) 1094 1095 // If condition is true we are done and hence we can store 0 in the displaced 1096 // header indicating it is a recursive lock and be done. 1097 z_brne(slow_case); 1098 z_release(); // Member unnecessary on zarch AND because the above csg does a sync before and after. 1099 z_stg(Z_R0/*==0!*/, mark_offset, monitor); 1100 } 1101 z_bru(done); 1102 // } else { 1103 // // Slow path. 1104 // InterpreterRuntime::monitorenter(THREAD, monitor); 1105 1106 // None of the above fast optimizations worked so we have to get into the 1107 // slow case of monitor enter. 1108 bind(slow_case); 1109 call_VM(noreg, 1110 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1111 monitor); 1112 // } 1113 1114 bind(done); 1115 } 1116 1117 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1118 // 1119 // Registers alive 1120 // monitor - address of the BasicObjectLock to be used for locking, 1121 // which must be initialized with the object to lock. 1122 // 1123 // Throw IllegalMonitorException if object is not locked by current thread. 1124 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { 1125 1126 if (LockingMode == LM_MONITOR) { 1127 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1128 return; 1129 } 1130 1131 // else { 1132 // template code: (for LM_LEGACY): 1133 // 1134 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1135 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1136 // monitor->set_obj(nullptr); 1137 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1138 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1139 // monitor->set_obj(nullptr); 1140 // } else { 1141 // // Slow path. 1142 // InterpreterRuntime::monitorexit(monitor); 1143 // } 1144 1145 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 1146 1147 const Register header = Z_ARG4; 1148 const Register current_header = Z_R1_scratch; 1149 Address obj_entry(monitor, BasicObjectLock::obj_offset()); 1150 Label done, slow_case; 1151 1152 if (object == noreg) { 1153 // In the template interpreter, we must assure that the object 1154 // entry in the monitor is cleared on all paths. Thus we move 1155 // loading up to here, and clear the entry afterwards. 1156 object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. 1157 z_lg(object, obj_entry); 1158 } 1159 1160 assert_different_registers(monitor, object, header, current_header); 1161 1162 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1163 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1164 // monitor->set_obj(nullptr); 1165 1166 // monitor->lock()->set_displaced_header(displaced_header); 1167 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1168 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); 1169 1170 clear_mem(obj_entry, sizeof(oop)); 1171 if (LockingMode != LM_LIGHTWEIGHT) { 1172 // Test first if we are in the fast recursive case. 1173 MacroAssembler::load_and_test_long(header, Address(monitor, mark_offset)); 1174 z_bre(done); // header == 0 -> goto done 1175 } 1176 1177 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1178 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1179 // monitor->set_obj(nullptr); 1180 1181 // If we still have a lightweight lock, unlock the object and be done. 1182 if (LockingMode == LM_LIGHTWEIGHT) { 1183 1184 lightweight_unlock(object, header, current_header, slow_case); 1185 1186 z_bru(done); 1187 } else { 1188 // The markword is expected to be at offset 0. 1189 // This is not required on s390, at least not here. 1190 assert(hdr_offset == 0, "unlock_object: review code below"); 1191 1192 // We have the displaced header in header. If the lock is still 1193 // lightweight, it will contain the monitor address and we'll store the 1194 // displaced header back into the object's mark word. 1195 z_lgr(current_header, monitor); 1196 z_csg(current_header, header, hdr_offset, object); 1197 z_bre(done); 1198 } 1199 1200 // } else { 1201 // // Slow path. 1202 // InterpreterRuntime::monitorexit(monitor); 1203 1204 // The lock has been converted into a heavy lock and hence 1205 // we need to get into the slow case. 1206 bind(slow_case); 1207 z_stg(object, obj_entry); // Restore object entry, has been cleared above. 1208 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1209 1210 // } 1211 1212 bind(done); 1213 } 1214 1215 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { 1216 assert(ProfileInterpreter, "must be profiling interpreter"); 1217 load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); 1218 z_brz(zero_continue); 1219 } 1220 1221 // Set the method data pointer for the current bcp. 1222 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1223 assert(ProfileInterpreter, "must be profiling interpreter"); 1224 Label set_mdp; 1225 Register mdp = Z_ARG4; 1226 Register method = Z_ARG5; 1227 1228 get_method(method); 1229 // Test MDO to avoid the call if it is null. 1230 load_and_test_long(mdp, method2_(method, method_data)); 1231 z_brz(set_mdp); 1232 1233 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); 1234 // Z_RET: mdi 1235 // Mdo is guaranteed to be non-zero here, we checked for it before the call. 1236 assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); 1237 z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. 1238 add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); 1239 1240 bind(set_mdp); 1241 save_mdp(mdp); 1242 } 1243 1244 void InterpreterMacroAssembler::verify_method_data_pointer() { 1245 assert(ProfileInterpreter, "must be profiling interpreter"); 1246 #ifdef ASSERT 1247 NearLabel verify_continue; 1248 Register bcp_expected = Z_ARG3; 1249 Register mdp = Z_ARG4; 1250 Register method = Z_ARG5; 1251 1252 test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue 1253 get_method(method); 1254 1255 // If the mdp is valid, it will point to a DataLayout header which is 1256 // consistent with the bcp. The converse is highly probable also. 1257 load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); 1258 z_ag(bcp_expected, Address(method, Method::const_offset())); 1259 load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); 1260 compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); 1261 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); 1262 bind(verify_continue); 1263 #endif // ASSERT 1264 } 1265 1266 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { 1267 assert(ProfileInterpreter, "must be profiling interpreter"); 1268 z_stg(value, constant, mdp_in); 1269 } 1270 1271 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1272 int constant, 1273 Register tmp, 1274 bool decrement) { 1275 assert_different_registers(mdp_in, tmp); 1276 // counter address 1277 Address data(mdp_in, constant); 1278 const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; 1279 add2mem_64(Address(mdp_in, constant), delta, tmp); 1280 } 1281 1282 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1283 int flag_byte_constant) { 1284 assert(ProfileInterpreter, "must be profiling interpreter"); 1285 // Set the flag. 1286 z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); 1287 } 1288 1289 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1290 int offset, 1291 Register value, 1292 Register test_value_out, 1293 Label& not_equal_continue) { 1294 assert(ProfileInterpreter, "must be profiling interpreter"); 1295 if (test_value_out == noreg) { 1296 z_cg(value, Address(mdp_in, offset)); 1297 z_brne(not_equal_continue); 1298 } else { 1299 // Put the test value into a register, so caller can use it: 1300 z_lg(test_value_out, Address(mdp_in, offset)); 1301 compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); 1302 } 1303 } 1304 1305 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { 1306 update_mdp_by_offset(mdp_in, noreg, offset_of_disp); 1307 } 1308 1309 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1310 Register dataidx, 1311 int offset_of_disp) { 1312 assert(ProfileInterpreter, "must be profiling interpreter"); 1313 Address disp_address(mdp_in, dataidx, offset_of_disp); 1314 Assembler::z_ag(mdp_in, disp_address); 1315 save_mdp(mdp_in); 1316 } 1317 1318 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { 1319 assert(ProfileInterpreter, "must be profiling interpreter"); 1320 add2reg(mdp_in, constant); 1321 save_mdp(mdp_in); 1322 } 1323 1324 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1325 assert(ProfileInterpreter, "must be profiling interpreter"); 1326 assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); 1327 call_VM(noreg, 1328 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1329 return_bci); 1330 } 1331 1332 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { 1333 if (ProfileInterpreter) { 1334 Label profile_continue; 1335 1336 // If no method data exists, go to profile_continue. 1337 // Otherwise, assign to mdp. 1338 test_method_data_pointer(mdp, profile_continue); 1339 1340 // We are taking a branch. Increment the taken count. 1341 // We inline increment_mdp_data_at to return bumped_count in a register 1342 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1343 Address data(mdp, JumpData::taken_offset()); 1344 z_lg(bumped_count, data); 1345 // 64-bit overflow is very unlikely. Saturation to 32-bit values is 1346 // performed when reading the counts. 1347 add2reg(bumped_count, DataLayout::counter_increment); 1348 z_stg(bumped_count, data); // Store back out 1349 1350 // The method data pointer needs to be updated to reflect the new target. 1351 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1352 bind(profile_continue); 1353 } 1354 } 1355 1356 // Kills Z_R1_scratch. 1357 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1358 if (ProfileInterpreter) { 1359 Label profile_continue; 1360 1361 // If no method data exists, go to profile_continue. 1362 test_method_data_pointer(mdp, profile_continue); 1363 1364 // We are taking a branch. Increment the not taken count. 1365 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); 1366 1367 // The method data pointer needs to be updated to correspond to 1368 // the next bytecode. 1369 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1370 bind(profile_continue); 1371 } 1372 } 1373 1374 // Kills: Z_R1_scratch. 1375 void InterpreterMacroAssembler::profile_call(Register mdp) { 1376 if (ProfileInterpreter) { 1377 Label profile_continue; 1378 1379 // If no method data exists, go to profile_continue. 1380 test_method_data_pointer(mdp, profile_continue); 1381 1382 // We are making a call. Increment the count. 1383 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1384 1385 // The method data pointer needs to be updated to reflect the new target. 1386 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1387 bind(profile_continue); 1388 } 1389 } 1390 1391 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1392 if (ProfileInterpreter) { 1393 Label profile_continue; 1394 1395 // If no method data exists, go to profile_continue. 1396 test_method_data_pointer(mdp, profile_continue); 1397 1398 // We are making a call. Increment the count. 1399 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1400 1401 // The method data pointer needs to be updated to reflect the new target. 1402 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1403 bind(profile_continue); 1404 } 1405 } 1406 1407 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1408 Register mdp, 1409 Register reg2, 1410 bool receiver_can_be_null) { 1411 if (ProfileInterpreter) { 1412 NearLabel profile_continue; 1413 1414 // If no method data exists, go to profile_continue. 1415 test_method_data_pointer(mdp, profile_continue); 1416 1417 NearLabel skip_receiver_profile; 1418 if (receiver_can_be_null) { 1419 NearLabel not_null; 1420 compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); 1421 // We are making a call. Increment the count for null receiver. 1422 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1423 z_bru(skip_receiver_profile); 1424 bind(not_null); 1425 } 1426 1427 // Record the receiver type. 1428 record_klass_in_profile(receiver, mdp, reg2); 1429 bind(skip_receiver_profile); 1430 1431 // The method data pointer needs to be updated to reflect the new target. 1432 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1433 bind(profile_continue); 1434 } 1435 } 1436 1437 // This routine creates a state machine for updating the multi-row 1438 // type profile at a virtual call site (or other type-sensitive bytecode). 1439 // The machine visits each row (of receiver/count) until the receiver type 1440 // is found, or until it runs out of rows. At the same time, it remembers 1441 // the location of the first empty row. (An empty row records null for its 1442 // receiver, and can be allocated for a newly-observed receiver type.) 1443 // Because there are two degrees of freedom in the state, a simple linear 1444 // search will not work; it must be a decision tree. Hence this helper 1445 // function is recursive, to generate the required tree structured code. 1446 // It's the interpreter, so we are trading off code space for speed. 1447 // See below for example code. 1448 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1449 Register receiver, Register mdp, 1450 Register reg2, int start_row, 1451 Label& done) { 1452 if (TypeProfileWidth == 0) { 1453 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1454 return; 1455 } 1456 1457 int last_row = VirtualCallData::row_limit() - 1; 1458 assert(start_row <= last_row, "must be work left to do"); 1459 // Test this row for both the receiver and for null. 1460 // Take any of three different outcomes: 1461 // 1. found receiver => increment count and goto done 1462 // 2. found null => keep looking for case 1, maybe allocate this cell 1463 // 3. found something else => keep looking for cases 1 and 2 1464 // Case 3 is handled by a recursive call. 1465 for (int row = start_row; row <= last_row; row++) { 1466 NearLabel next_test; 1467 bool test_for_null_also = (row == start_row); 1468 1469 // See if the receiver is receiver[n]. 1470 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1471 test_mdp_data_at(mdp, recvr_offset, receiver, 1472 (test_for_null_also ? reg2 : noreg), 1473 next_test); 1474 // (Reg2 now contains the receiver from the CallData.) 1475 1476 // The receiver is receiver[n]. Increment count[n]. 1477 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1478 increment_mdp_data_at(mdp, count_offset); 1479 z_bru(done); 1480 bind(next_test); 1481 1482 if (test_for_null_also) { 1483 Label found_null; 1484 // Failed the equality check on receiver[n]... Test for null. 1485 z_ltgr(reg2, reg2); 1486 if (start_row == last_row) { 1487 // The only thing left to do is handle the null case. 1488 z_brz(found_null); 1489 // Receiver did not match any saved receiver and there is no empty row for it. 1490 // Increment total counter to indicate polymorphic case. 1491 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1492 z_bru(done); 1493 bind(found_null); 1494 break; 1495 } 1496 // Since null is rare, make it be the branch-taken case. 1497 z_brz(found_null); 1498 1499 // Put all the "Case 3" tests here. 1500 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done); 1501 1502 // Found a null. Keep searching for a matching receiver, 1503 // but remember that this is an empty (unused) slot. 1504 bind(found_null); 1505 } 1506 } 1507 1508 // In the fall-through case, we found no matching receiver, but we 1509 // observed the receiver[start_row] is null. 1510 1511 // Fill in the receiver field and increment the count. 1512 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1513 set_mdp_data_at(mdp, recvr_offset, receiver); 1514 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1515 load_const_optimized(reg2, DataLayout::counter_increment); 1516 set_mdp_data_at(mdp, count_offset, reg2); 1517 if (start_row > 0) { 1518 z_bru(done); 1519 } 1520 } 1521 1522 // Example state machine code for three profile rows: 1523 // // main copy of decision tree, rooted at row[1] 1524 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1525 // if (row[0].rec != nullptr) { 1526 // // inner copy of decision tree, rooted at row[1] 1527 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1528 // if (row[1].rec != nullptr) { 1529 // // degenerate decision tree, rooted at row[2] 1530 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1531 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1532 // row[2].init(rec); goto done; 1533 // } else { 1534 // // remember row[1] is empty 1535 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1536 // row[1].init(rec); goto done; 1537 // } 1538 // } else { 1539 // // remember row[0] is empty 1540 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1541 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1542 // row[0].init(rec); goto done; 1543 // } 1544 // done: 1545 1546 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1547 Register mdp, Register reg2) { 1548 assert(ProfileInterpreter, "must be profiling"); 1549 Label done; 1550 1551 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1552 1553 bind (done); 1554 } 1555 1556 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1557 if (ProfileInterpreter) { 1558 NearLabel profile_continue; 1559 uint row; 1560 1561 // If no method data exists, go to profile_continue. 1562 test_method_data_pointer(mdp, profile_continue); 1563 1564 // Update the total ret count. 1565 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1566 1567 for (row = 0; row < RetData::row_limit(); row++) { 1568 NearLabel next_test; 1569 1570 // See if return_bci is equal to bci[n]: 1571 test_mdp_data_at(mdp, 1572 in_bytes(RetData::bci_offset(row)), 1573 return_bci, noreg, 1574 next_test); 1575 1576 // Return_bci is equal to bci[n]. Increment the count. 1577 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1578 1579 // The method data pointer needs to be updated to reflect the new target. 1580 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); 1581 z_bru(profile_continue); 1582 bind(next_test); 1583 } 1584 1585 update_mdp_for_ret(return_bci); 1586 1587 bind(profile_continue); 1588 } 1589 } 1590 1591 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1592 if (ProfileInterpreter) { 1593 Label profile_continue; 1594 1595 // If no method data exists, go to profile_continue. 1596 test_method_data_pointer(mdp, profile_continue); 1597 1598 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1599 1600 // The method data pointer needs to be updated. 1601 int mdp_delta = in_bytes(BitData::bit_data_size()); 1602 if (TypeProfileCasts) { 1603 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1604 } 1605 update_mdp_by_constant(mdp, mdp_delta); 1606 1607 bind(profile_continue); 1608 } 1609 } 1610 1611 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1612 if (ProfileInterpreter) { 1613 Label profile_continue; 1614 1615 // If no method data exists, go to profile_continue. 1616 test_method_data_pointer(mdp, profile_continue); 1617 1618 // The method data pointer needs to be updated. 1619 int mdp_delta = in_bytes(BitData::bit_data_size()); 1620 if (TypeProfileCasts) { 1621 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1622 1623 // Record the object type. 1624 record_klass_in_profile(klass, mdp, reg2); 1625 } 1626 update_mdp_by_constant(mdp, mdp_delta); 1627 1628 bind(profile_continue); 1629 } 1630 } 1631 1632 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1633 if (ProfileInterpreter) { 1634 Label profile_continue; 1635 1636 // If no method data exists, go to profile_continue. 1637 test_method_data_pointer(mdp, profile_continue); 1638 1639 // Update the default case count. 1640 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); 1641 1642 // The method data pointer needs to be updated. 1643 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); 1644 1645 bind(profile_continue); 1646 } 1647 } 1648 1649 // Kills: index, scratch1, scratch2. 1650 void InterpreterMacroAssembler::profile_switch_case(Register index, 1651 Register mdp, 1652 Register scratch1, 1653 Register scratch2) { 1654 if (ProfileInterpreter) { 1655 Label profile_continue; 1656 assert_different_registers(index, mdp, scratch1, scratch2); 1657 1658 // If no method data exists, go to profile_continue. 1659 test_method_data_pointer(mdp, profile_continue); 1660 1661 // Build the base (index * per_case_size_in_bytes()) + 1662 // case_array_offset_in_bytes(). 1663 z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1664 add2reg(index, in_bytes(MultiBranchData::case_array_offset())); 1665 1666 // Add the calculated base to the mdp -> address of the case' data. 1667 Address case_data_addr(mdp, index); 1668 Register case_data = scratch1; 1669 load_address(case_data, case_data_addr); 1670 1671 // Update the case count. 1672 increment_mdp_data_at(case_data, 1673 in_bytes(MultiBranchData::relative_count_offset()), 1674 scratch2); 1675 1676 // The method data pointer needs to be updated. 1677 update_mdp_by_offset(mdp, 1678 index, 1679 in_bytes(MultiBranchData::relative_displacement_offset())); 1680 1681 bind(profile_continue); 1682 } 1683 } 1684 1685 // kills: R0, R1, flags, loads klass from obj (if not null) 1686 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { 1687 NearLabel null_seen, init_klass, do_nothing, do_update; 1688 1689 // Klass = obj is allowed. 1690 const Register tmp = Z_R1; 1691 assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); 1692 assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); 1693 1694 z_lg(tmp, mdo_addr); 1695 if (cmp_done) { 1696 z_brz(null_seen); 1697 } else { 1698 compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); 1699 } 1700 1701 MacroAssembler::verify_oop(obj, FILE_AND_LINE); 1702 load_klass(klass, obj); 1703 1704 // Klass seen before, nothing to do (regardless of unknown bit). 1705 z_lgr(Z_R0, tmp); 1706 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 1707 z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); 1708 compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); 1709 1710 // Already unknown. Nothing to do anymore. 1711 z_tmll(tmp, TypeEntries::type_unknown); 1712 z_brc(Assembler::bcondAllOne, do_nothing); 1713 1714 z_lgr(Z_R0, tmp); 1715 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 1716 z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); 1717 compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); 1718 1719 // Different than before. Cannot keep accurate profile. 1720 z_oill(tmp, TypeEntries::type_unknown); 1721 z_bru(do_update); 1722 1723 bind(init_klass); 1724 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1725 z_ogr(tmp, klass); 1726 z_bru(do_update); 1727 1728 bind(null_seen); 1729 // Set null_seen if obj is 0. 1730 z_oill(tmp, TypeEntries::null_seen); 1731 // fallthru: z_bru(do_update); 1732 1733 bind(do_update); 1734 z_stg(tmp, mdo_addr); 1735 1736 bind(do_nothing); 1737 } 1738 1739 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1740 if (!ProfileInterpreter) { 1741 return; 1742 } 1743 1744 assert_different_registers(mdp, callee, tmp); 1745 1746 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1747 Label profile_continue; 1748 1749 test_method_data_pointer(mdp, profile_continue); 1750 1751 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1752 1753 z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, 1754 is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1755 z_brne(profile_continue); 1756 1757 if (MethodData::profile_arguments()) { 1758 NearLabel done; 1759 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1760 add2reg(mdp, off_to_args); 1761 1762 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1763 if (i > 0 || MethodData::profile_return()) { 1764 // If return value type is profiled we may have no argument to profile. 1765 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1766 add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); 1767 compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); 1768 } 1769 z_lg(tmp, Address(callee, Method::const_offset())); 1770 z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1771 // Stack offset o (zero based) from the start of the argument 1772 // list. For n arguments translates into offset n - o - 1 from 1773 // the end of the argument list. But there is an extra slot at 1774 // the top of the stack. So the offset is n - o from Lesp. 1775 z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 1776 z_sllg(tmp, tmp, Interpreter::logStackElementSize); 1777 Address stack_slot_addr(tmp, Z_esp); 1778 z_ltg(tmp, stack_slot_addr); 1779 1780 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 1781 profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); 1782 1783 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1784 add2reg(mdp, to_add); 1785 off_to_args += to_add; 1786 } 1787 1788 if (MethodData::profile_return()) { 1789 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1790 add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1791 } 1792 1793 bind(done); 1794 1795 if (MethodData::profile_return()) { 1796 // We're right after the type profile for the last 1797 // argument. Tmp is the number of cells left in the 1798 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1799 // if there's a return to profile. 1800 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1801 z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); 1802 z_agr(mdp, tmp); 1803 } 1804 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 1805 } else { 1806 assert(MethodData::profile_return(), "either profile call args or call ret"); 1807 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1808 } 1809 1810 // Mdp points right after the end of the 1811 // CallTypeData/VirtualCallTypeData, right after the cells for the 1812 // return value type if there's one. 1813 bind(profile_continue); 1814 } 1815 } 1816 1817 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1818 assert_different_registers(mdp, ret, tmp); 1819 if (ProfileInterpreter && MethodData::profile_return()) { 1820 Label profile_continue; 1821 1822 test_method_data_pointer(mdp, profile_continue); 1823 1824 if (MethodData::profile_return_jsr292_only()) { 1825 // If we don't profile all invoke bytecodes we must make sure 1826 // it's a bytecode we indeed profile. We can't go back to the 1827 // beginning of the ProfileData we intend to update to check its 1828 // type because we're right after it and we don't known its 1829 // length. 1830 NearLabel do_profile; 1831 Address bc(Z_bcp); 1832 z_lb(tmp, bc); 1833 compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); 1834 compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); 1835 get_method(tmp); 1836 // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. 1837 if (Method::intrinsic_id_size_in_bytes() == 1) { 1838 z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1839 } else { 1840 assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); 1841 z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp); 1842 z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1843 } 1844 z_brne(profile_continue); 1845 1846 bind(do_profile); 1847 } 1848 1849 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1850 profile_obj_type(ret, mdo_ret_addr, tmp); 1851 1852 bind(profile_continue); 1853 } 1854 } 1855 1856 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1857 if (ProfileInterpreter && MethodData::profile_parameters()) { 1858 Label profile_continue, done; 1859 1860 test_method_data_pointer(mdp, profile_continue); 1861 1862 // Load the offset of the area within the MDO used for 1863 // parameters. If it's negative we're not profiling any parameters. 1864 Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); 1865 load_and_test_int2long(tmp1, parm_di_addr); 1866 z_brl(profile_continue); 1867 1868 // Compute a pointer to the area for parameters from the offset 1869 // and move the pointer to the slot for the last 1870 // parameters. Collect profiling from last parameter down. 1871 // mdo start + parameters offset + array length - 1 1872 1873 // Pointer to the parameter area in the MDO. 1874 z_agr(mdp, tmp1); 1875 1876 // Offset of the current profile entry to update. 1877 const Register entry_offset = tmp1; 1878 // entry_offset = array len in number of cells. 1879 z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); 1880 // entry_offset (number of cells) = array len - size of 1 entry 1881 add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); 1882 // entry_offset in bytes 1883 z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1884 1885 Label loop; 1886 bind(loop); 1887 1888 Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); 1889 Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); 1890 1891 // Load offset on the stack from the slot for this parameter. 1892 z_lg(tmp2, arg_off); 1893 z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); 1894 z_lcgr(tmp2); // Negate. 1895 1896 // Profile the parameter. 1897 z_ltg(tmp2, Address(Z_locals, tmp2)); 1898 profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); 1899 1900 // Go to next parameter. 1901 z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); 1902 z_brnl(loop); 1903 1904 bind(profile_continue); 1905 } 1906 } 1907 1908 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1909 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1910 int increment, 1911 Address mask, 1912 Register scratch, 1913 bool preloaded, 1914 branch_condition cond, 1915 Label *where) { 1916 assert_different_registers(counter_addr.base(), scratch); 1917 if (preloaded) { 1918 add2reg(scratch, increment); 1919 reg2mem_opt(scratch, counter_addr, false); 1920 } else { 1921 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { 1922 z_alsi(counter_addr.disp20(), counter_addr.base(), increment); 1923 mem2reg_signed_opt(scratch, counter_addr); 1924 } else { 1925 mem2reg_signed_opt(scratch, counter_addr); 1926 add2reg(scratch, increment); 1927 reg2mem_opt(scratch, counter_addr, false); 1928 } 1929 } 1930 z_n(scratch, mask); 1931 if (where) { z_brc(cond, *where); } 1932 } 1933 1934 // Get MethodCounters object for given method. Lazily allocated if necessary. 1935 // method - Ptr to Method object. 1936 // Rcounters - Ptr to MethodCounters object associated with Method object. 1937 // skip - Exit point if MethodCounters object can't be created (OOM condition). 1938 void InterpreterMacroAssembler::get_method_counters(Register Rmethod, 1939 Register Rcounters, 1940 Label& skip) { 1941 assert_different_registers(Rmethod, Rcounters); 1942 1943 BLOCK_COMMENT("get MethodCounters object {"); 1944 1945 Label has_counters; 1946 load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); 1947 z_brnz(has_counters); 1948 1949 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod); 1950 z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. 1951 z_brz(skip); // No MethodCounters, out of memory. 1952 1953 bind(has_counters); 1954 1955 BLOCK_COMMENT("} get MethodCounters object"); 1956 } 1957 1958 // Increment invocation counter in MethodCounters object. 1959 // Return (invocation_counter+backedge_counter) as "result" in RctrSum. 1960 // Counter values are all unsigned. 1961 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { 1962 assert(UseCompiler, "incrementing must be useful"); 1963 assert_different_registers(Rcounters, RctrSum); 1964 1965 int increment = InvocationCounter::count_increment; 1966 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1967 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1968 1969 BLOCK_COMMENT("Increment invocation counter {"); 1970 1971 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1972 // Increment the invocation counter in place, 1973 // then add the incremented value to the backedge counter. 1974 z_l(RctrSum, be_counter_offset, Rcounters); 1975 z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1976 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1977 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 1978 } else { 1979 // This path is optimized for low register consumption 1980 // at the cost of somewhat higher operand delays. 1981 // It does not need an extra temp register. 1982 1983 // Update the invocation counter. 1984 z_l(RctrSum, inv_counter_offset, Rcounters); 1985 if (RctrSum == Z_R0) { 1986 z_ahi(RctrSum, increment); 1987 } else { 1988 add2reg(RctrSum, increment); 1989 } 1990 z_st(RctrSum, inv_counter_offset, Rcounters); 1991 1992 // Mask off the state bits. 1993 z_nilf(RctrSum, InvocationCounter::count_mask_value); 1994 1995 // Add the backedge counter to the updated invocation counter to 1996 // form the result. 1997 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1998 } 1999 2000 BLOCK_COMMENT("} Increment invocation counter"); 2001 2002 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 2003 } 2004 2005 2006 // increment backedge counter in MethodCounters object. 2007 // return (invocation_counter+backedge_counter) as "result" in RctrSum 2008 // counter values are all unsigned! 2009 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { 2010 assert(UseCompiler, "incrementing must be useful"); 2011 assert_different_registers(Rcounters, RctrSum); 2012 2013 int increment = InvocationCounter::count_increment; 2014 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 2015 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 2016 2017 BLOCK_COMMENT("Increment backedge counter {"); 2018 2019 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 2020 // Increment the invocation counter in place, 2021 // then add the incremented value to the backedge counter. 2022 z_l(RctrSum, inv_counter_offset, Rcounters); 2023 z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 2024 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 2025 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 2026 } else { 2027 // This path is optimized for low register consumption 2028 // at the cost of somewhat higher operand delays. 2029 // It does not need an extra temp register. 2030 2031 // Update the invocation counter. 2032 z_l(RctrSum, be_counter_offset, Rcounters); 2033 if (RctrSum == Z_R0) { 2034 z_ahi(RctrSum, increment); 2035 } else { 2036 add2reg(RctrSum, increment); 2037 } 2038 z_st(RctrSum, be_counter_offset, Rcounters); 2039 2040 // Mask off the state bits. 2041 z_nilf(RctrSum, InvocationCounter::count_mask_value); 2042 2043 // Add the backedge counter to the updated invocation counter to 2044 // form the result. 2045 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 2046 } 2047 2048 BLOCK_COMMENT("} Increment backedge counter"); 2049 2050 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 2051 } 2052 2053 // Add an InterpMonitorElem to stack (see frame_s390.hpp). 2054 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, 2055 Register Rtemp1, 2056 Register Rtemp2, 2057 Register Rtemp3) { 2058 2059 const Register Rcurr_slot = Rtemp1; 2060 const Register Rlimit = Rtemp2; 2061 const jint delta = -frame::interpreter_frame_monitor_size_in_bytes(); 2062 2063 assert((delta & LongAlignmentMask) == 0, 2064 "sizeof BasicObjectLock must be even number of doublewords"); 2065 assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); 2066 assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); 2067 assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); 2068 2069 get_monitors(Rlimit); 2070 2071 // Adjust stack pointer for additional monitor entry. 2072 resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); 2073 2074 if (!stack_is_empty) { 2075 // Must copy stack contents down. 2076 NearLabel next, done; 2077 2078 // Rtemp := addr(Tos), Z_esp is pointing below it! 2079 add2reg(Rcurr_slot, wordSize, Z_esp); 2080 2081 // Nothing to do, if already at monitor area. 2082 compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); 2083 2084 bind(next); 2085 2086 // Move one stack slot. 2087 mem2reg_opt(Rtemp3, Address(Rcurr_slot)); 2088 reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); 2089 add2reg(Rcurr_slot, wordSize); 2090 compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? 2091 2092 bind(done); 2093 // Done copying stack. 2094 } 2095 2096 // Adjust expression stack and monitor pointers. 2097 add2reg(Z_esp, delta); 2098 add2reg(Rlimit, delta); 2099 save_monitors(Rlimit); 2100 } 2101 2102 // Note: Index holds the offset in bytes afterwards. 2103 // You can use this to store a new value (with Llocals as the base). 2104 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { 2105 z_sllg(index, index, LogBytesPerWord); 2106 mem2reg_opt(dst, Address(Z_locals, index), false); 2107 } 2108 2109 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2110 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2111 } 2112 2113 // Inline assembly for: 2114 // 2115 // if (thread is in interp_only_mode) { 2116 // InterpreterRuntime::post_method_entry(); 2117 // } 2118 2119 void InterpreterMacroAssembler::notify_method_entry() { 2120 2121 // JVMTI 2122 // Whenever JVMTI puts a thread in interp_only_mode, method 2123 // entry/exit events are sent for that thread to track stack 2124 // depth. If it is possible to enter interp_only_mode we add 2125 // the code to check if the event should be sent. 2126 if (JvmtiExport::can_post_interpreter_events()) { 2127 Label jvmti_post_done; 2128 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2129 z_bre(jvmti_post_done); 2130 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2131 bind(jvmti_post_done); 2132 } 2133 } 2134 2135 // Inline assembly for: 2136 // 2137 // if (thread is in interp_only_mode) { 2138 // if (!native_method) save result 2139 // InterpreterRuntime::post_method_exit(); 2140 // if (!native_method) restore result 2141 // } 2142 // if (DTraceMethodProbes) { 2143 // SharedRuntime::dtrace_method_exit(thread, method); 2144 // } 2145 // 2146 // For native methods their result is stored in z_ijava_state.lresult 2147 // and z_ijava_state.fresult before coming here. 2148 // Java methods have their result stored in the expression stack. 2149 // 2150 // Notice the dependency to frame::interpreter_frame_result(). 2151 void InterpreterMacroAssembler::notify_method_exit(bool native_method, 2152 TosState state, 2153 NotifyMethodExitMode mode) { 2154 // JVMTI 2155 // Whenever JVMTI puts a thread in interp_only_mode, method 2156 // entry/exit events are sent for that thread to track stack 2157 // depth. If it is possible to enter interp_only_mode we add 2158 // the code to check if the event should be sent. 2159 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2160 Label jvmti_post_done; 2161 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2162 z_bre(jvmti_post_done); 2163 if (!native_method) push(state); // see frame::interpreter_frame_result() 2164 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2165 if (!native_method) pop(state); 2166 bind(jvmti_post_done); 2167 } 2168 } 2169 2170 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { 2171 if (!JvmtiExport::can_post_interpreter_events()) { 2172 return; 2173 } 2174 2175 load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2176 z_brnz(Lskip); 2177 2178 } 2179 2180 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. 2181 // The return pc is loaded into the register return_pc. 2182 // 2183 // Registers updated: 2184 // return_pc - The return pc of the calling frame. 2185 // tmp1, tmp2 - scratch 2186 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { 2187 // F0 Z_SP -> caller_sp (F1's) 2188 // ... 2189 // sender_sp (F1's) 2190 // ... 2191 // F1 Z_fp -> caller_sp (F2's) 2192 // return_pc (Continuation after return from F0.) 2193 // ... 2194 // F2 caller_sp 2195 2196 // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications 2197 // (a) by a c2i adapter and (b) by generate_fixed_frame(). 2198 // In case (a) the new top frame F1 is an unextended compiled frame. 2199 // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. 2200 2201 // Case (b) seems to be redundant when returning to a interpreted caller, 2202 // because then the caller's top_frame_sp is installed as sp (see 2203 // TemplateInterpreterGenerator::generate_return_entry_for ()). But 2204 // pop_interpreter_frame() is also used in exception handling and there the 2205 // frame type of the caller is unknown, therefore top_frame_sp cannot be used, 2206 // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. 2207 2208 Register R_f1_sender_sp = tmp1; 2209 Register R_f2_sp = tmp2; 2210 2211 // First check for the interpreter frame's magic. 2212 asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); 2213 z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); 2214 z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); 2215 if (return_pc->is_valid()) 2216 z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2217 // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. 2218 resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); 2219 2220 #ifdef ASSERT 2221 // The return_pc in the new top frame is dead... at least that's my 2222 // current understanding; to assert this I overwrite it. 2223 load_const_optimized(Z_ARG3, 0xb00b1); 2224 z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2225 #endif 2226 }