1 /* 2 * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2024 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 // Major contributions by AHa, AS, JL, ML. 27 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_s390.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "oops/arrayOop.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/methodCounters.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/resolvedFieldEntry.hpp" 39 #include "oops/resolvedIndyEntry.hpp" 40 #include "oops/resolvedMethodEntry.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiThreadState.hpp" 43 #include "runtime/basicLock.hpp" 44 #include "runtime/frame.inline.hpp" 45 #include "runtime/javaThread.hpp" 46 #include "runtime/safepointMechanism.hpp" 47 #include "runtime/sharedRuntime.hpp" 48 #include "utilities/macros.hpp" 49 #include "utilities/powerOfTwo.hpp" 50 51 // Implementation of InterpreterMacroAssembler. 52 // This file specializes the assembler with interpreter-specific macros. 53 54 #ifdef PRODUCT 55 #define BLOCK_COMMENT(str) 56 #define BIND(label) bind(label); 57 #else 58 #define BLOCK_COMMENT(str) block_comment(str) 59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 60 #endif 61 62 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 63 assert(entry != nullptr, "Entry must have been generated by now"); 64 assert(Rscratch != Z_R0, "Can't use R0 for addressing"); 65 branch_optimized(Assembler::bcondAlways, entry); 66 } 67 68 void InterpreterMacroAssembler::empty_expression_stack(void) { 69 get_monitors(Z_R1_scratch); 70 add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); 71 } 72 73 // Dispatch code executed in the prolog of a bytecode which does not do it's 74 // own dispatch. 75 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 76 // On z/Architecture we are short on registers, therefore we do not preload the 77 // dispatch address of the next bytecode. 78 } 79 80 // Dispatch code executed in the epilog of a bytecode which does not do it's 81 // own dispatch. 82 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 83 dispatch_next(state, step); 84 } 85 86 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 87 z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. 88 add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. 89 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 90 } 91 92 // Common code to dispatch and dispatch_only. 93 // Dispatch value in Lbyte_code and increment Lbcp. 94 95 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) { 96 verify_FPU(1, state); 97 98 #ifdef ASSERT 99 address reentry = nullptr; 100 { Label OK; 101 // Check if the frame pointer in Z_fp is correct. 102 z_cg(Z_fp, 0, Z_SP); 103 z_bre(OK); 104 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); 105 bind(OK); 106 } 107 { Label OK; 108 // check if the locals pointer in Z_locals is correct 109 z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp); 110 z_bre(OK); 111 reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); 112 bind(OK); 113 } 114 #endif 115 116 // TODO: Maybe implement +VerifyActivationFrameSize here. 117 verify_oop(Z_tos, state); 118 119 // Dispatch table to use. 120 load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table; 121 122 if (generate_poll) { 123 address *sfpt_tbl = Interpreter::safept_table(state); 124 if (table != sfpt_tbl) { 125 Label dispatch; 126 const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */); 127 // Armed page has poll_bit set, if poll bit is cleared just continue. 128 z_tm(poll_byte_addr, SafepointMechanism::poll_bit()); 129 z_braz(dispatch); 130 load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table; 131 bind(dispatch); 132 } 133 } 134 135 // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. 136 // Z_bytecode must have been loaded zero-extended for this approach to be correct. 137 z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. 138 z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. 139 140 z_br(Z_tmp_1); 141 } 142 143 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 144 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 145 } 146 147 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 148 dispatch_base(state, Interpreter::normal_table(state)); 149 } 150 151 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { 152 // Load current bytecode. 153 z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); 154 dispatch_base(state, table); 155 } 156 157 // The following call_VM*_base() methods overload and mask the respective 158 // declarations/definitions in class MacroAssembler. They are meant as a "detour" 159 // to perform additional, template interpreter specific tasks before actually 160 // calling their MacroAssembler counterparts. 161 162 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { 163 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 164 // interpreter specific 165 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 166 // saved registers and no blocking/ GC can happen in leaf calls. 167 168 // super call 169 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 170 } 171 172 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { 173 // interpreter specific 174 // Note: No need to save/restore bcp (Z_R13) pointer since these are callee 175 // saved registers and no blocking/ GC can happen in leaf calls. 176 177 // super call 178 MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); 179 } 180 181 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 182 address entry_point, bool check_exceptions) { 183 bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. 184 // interpreter specific 185 186 save_bcp(); 187 save_esp(); 188 // super call 189 MacroAssembler::call_VM_base(oop_result, last_java_sp, 190 entry_point, allow_relocation, check_exceptions); 191 restore_bcp(); 192 } 193 194 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, 195 address entry_point, bool allow_relocation, 196 bool check_exceptions) { 197 // interpreter specific 198 199 save_bcp(); 200 save_esp(); 201 // super call 202 MacroAssembler::call_VM_base(oop_result, last_java_sp, 203 entry_point, allow_relocation, check_exceptions); 204 restore_bcp(); 205 } 206 207 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 208 if (JvmtiExport::can_pop_frame()) { 209 BLOCK_COMMENT("check_and_handle_popframe {"); 210 Label L; 211 // Initiate popframe handling only if it is not already being 212 // processed. If the flag has the popframe_processing bit set, it 213 // means that this code is called *during* popframe handling - we 214 // don't want to reenter. 215 // TODO: Check if all four state combinations could be visible. 216 // If (processing and !pending) is an invisible/impossible state, 217 // there is optimization potential by testing both bits at once. 218 // Then, All_Zeroes and All_Ones means skip, Mixed means doit. 219 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 220 exact_log2(JavaThread::popframe_pending_bit)); 221 z_bfalse(L); 222 testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), 223 exact_log2(JavaThread::popframe_processing_bit)); 224 z_btrue(L); 225 226 // Call Interpreter::remove_activation_preserving_args_entry() to get the 227 // address of the same-named entrypoint in the generated interpreter code. 228 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 229 // The above call should (as its only effect) return the contents of the field 230 // _remove_activation_preserving_args_entry in Z_RET. 231 // We just jump there to have the work done. 232 z_br(Z_RET); 233 // There is no way for control to fall thru here. 234 235 bind(L); 236 BLOCK_COMMENT("} check_and_handle_popframe"); 237 } 238 } 239 240 241 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 242 Register RjvmtiState = Z_R1_scratch; 243 int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); 244 int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); 245 int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); 246 int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); 247 248 z_lg(RjvmtiState, state_off, Z_thread); 249 250 switch (state) { 251 case atos: z_lg(Z_tos, oop_off, RjvmtiState); 252 store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); 253 break; 254 case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; 255 case btos: // fall through 256 case ztos: // fall through 257 case ctos: // fall through 258 case stos: // fall through 259 case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; 260 case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; 261 case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; 262 case vtos: /* nothing to do */ break; 263 default : ShouldNotReachHere(); 264 } 265 266 // Clean up tos value in the jvmti thread state. 267 store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); 268 // Set tos state field to illegal value. 269 store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); 270 } 271 272 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 273 if (JvmtiExport::can_force_early_return()) { 274 BLOCK_COMMENT("check_and_handle_earlyret {"); 275 Label L; 276 // arg regs are save, because we are just behind the call in call_VM_base 277 Register jvmti_thread_state = Z_ARG2; 278 Register tmp = Z_ARG3; 279 load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); 280 z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit; 281 282 // Initiate earlyret handling only if it is not already being processed. 283 // If the flag has the earlyret_processing bit set, it means that this code 284 // is called *during* earlyret handling - we don't want to reenter. 285 286 assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), 287 "must fix this check, when changing the values of the earlyret enum"); 288 assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); 289 290 load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); 291 z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; 292 293 // Call Interpreter::remove_activation_early_entry() to get the address of the 294 // same-named entrypoint in the generated interpreter code. 295 assert(sizeof(TosState) == 4, "unexpected size"); 296 z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); 297 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); 298 // The above call should (as its only effect) return the contents of the field 299 // _remove_activation_preserving_args_entry in Z_RET. 300 // We just jump there to have the work done. 301 z_br(Z_RET); 302 // There is no way for control to fall thru here. 303 304 bind(L); 305 BLOCK_COMMENT("} check_and_handle_earlyret"); 306 } 307 } 308 309 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { 310 lgr_if_needed(Z_ARG1, arg_1); 311 assert(arg_2 != Z_ARG1, "smashed argument"); 312 lgr_if_needed(Z_ARG2, arg_2); 313 MacroAssembler::call_VM_leaf_base(entry_point, true); 314 } 315 316 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { 317 Address param(Z_bcp, bcp_offset); 318 319 BLOCK_COMMENT("get_cache_index_at_bcp {"); 320 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 321 if (index_size == sizeof(u2)) { 322 load_sized_value(index, param, 2, false /*signed*/); 323 } else if (index_size == sizeof(u4)) { 324 325 load_sized_value(index, param, 4, false); 326 } else if (index_size == sizeof(u1)) { 327 z_llgc(index, param); 328 } else { 329 ShouldNotReachHere(); 330 } 331 BLOCK_COMMENT("}"); 332 } 333 334 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 335 // Get index out of bytecode pointer. 336 get_cache_index_at_bcp(index, 1, sizeof(u4)); 337 338 // Get the address of the ResolvedIndyEntry array 339 get_constant_pool_cache(cache); 340 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 341 342 // Scale the index to form a byte offset into the ResolvedIndyEntry array 343 size_t entry_size = sizeof(ResolvedIndyEntry); 344 if (is_power_of_2(entry_size)) { 345 z_sllg(index, index, exact_log2(entry_size)); 346 } else { 347 z_mghi(index, entry_size); 348 } 349 350 // Calculate the final field address. 351 z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache); 352 } 353 354 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) { 355 // Get field index out of bytecode pointer. 356 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 357 358 // Get the address of the ResolvedFieldEntry array. 359 get_constant_pool_cache(cache); 360 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset()))); 361 362 // Scale the index to form a byte offset into the ResolvedFieldEntry array 363 size_t entry_size = sizeof(ResolvedFieldEntry); 364 if (is_power_of_2(entry_size)) { 365 z_sllg(index, index, exact_log2(entry_size)); 366 } else { 367 z_mghi(index, entry_size); 368 } 369 370 // Calculate the final field address. 371 z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache); 372 } 373 374 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) { 375 // Get field index out of bytecode pointer. 376 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2)); 377 378 // Get the address of the ResolvedMethodEntry array. 379 get_constant_pool_cache(cache); 380 z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset()))); 381 382 // Scale the index to form a byte offset into the ResolvedMethodEntry array 383 size_t entry_size = sizeof(ResolvedMethodEntry); 384 if (is_power_of_2(entry_size)) { 385 z_sllg(index, index, exact_log2(entry_size)); 386 } else { 387 z_mghi(index, entry_size); 388 } 389 390 // Calculate the final field address. 391 z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache); 392 } 393 394 // Load object from cpool->resolved_references(index). 395 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { 396 assert_different_registers(result, index); 397 get_constant_pool(result); 398 399 // Convert 400 // - from field index to resolved_references() index and 401 // - from word index to byte offset. 402 // Since this is a java object, it is potentially compressed. 403 Register tmp = index; // reuse 404 z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. 405 // Load pointer for resolved_references[] objArray. 406 z_lg(result, in_bytes(ConstantPool::cache_offset()), result); 407 z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result); 408 resolve_oop_handle(result); // Load resolved references array itself. 409 #ifdef ASSERT 410 NearLabel index_ok; 411 z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); 412 z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); 413 compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); 414 stop("resolved reference index out of bounds", 0x09256); 415 bind(index_ok); 416 #endif 417 z_agr(result, index); // Address of indexed array element. 418 load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg); 419 } 420 421 // load cpool->resolved_klass_at(index) 422 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) { 423 // int value = *(Rcpool->int_at_addr(which)); 424 // int resolved_klass_index = extract_low_short_from_int(value); 425 z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian) 426 z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset' 427 z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses 428 z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes())); 429 } 430 431 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 432 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. 433 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 434 Register Rsuper_klass, 435 Register Rtmp1, 436 Register Rtmp2, 437 Label &ok_is_subtype) { 438 // Profile the not-null value's klass. 439 profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); 440 441 // Do the check. 442 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 443 } 444 445 // Pop topmost element from stack. It just disappears. 446 // Useful if consumed previously by access via stackTop(). 447 void InterpreterMacroAssembler::popx(int len) { 448 add2reg(Z_esp, len*Interpreter::stackElementSize); 449 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 450 } 451 452 // Get Address object of stack top. No checks. No pop. 453 // Purpose: - Provide address of stack operand to exploit reg-mem operations. 454 // - Avoid RISC-like mem2reg - reg-reg-op sequence. 455 Address InterpreterMacroAssembler::stackTop() { 456 return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); 457 } 458 459 void InterpreterMacroAssembler::pop_i(Register r) { 460 z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 461 add2reg(Z_esp, Interpreter::stackElementSize); 462 assert_different_registers(r, Z_R1_scratch); 463 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 464 } 465 466 void InterpreterMacroAssembler::pop_ptr(Register r) { 467 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 468 add2reg(Z_esp, Interpreter::stackElementSize); 469 assert_different_registers(r, Z_R1_scratch); 470 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 471 } 472 473 void InterpreterMacroAssembler::pop_l(Register r) { 474 z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); 475 add2reg(Z_esp, 2*Interpreter::stackElementSize); 476 assert_different_registers(r, Z_R1_scratch); 477 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 478 } 479 480 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 481 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); 482 add2reg(Z_esp, Interpreter::stackElementSize); 483 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 484 } 485 486 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 487 mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); 488 add2reg(Z_esp, 2*Interpreter::stackElementSize); 489 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 490 } 491 492 void InterpreterMacroAssembler::push_i(Register r) { 493 assert_different_registers(r, Z_R1_scratch); 494 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 495 z_st(r, Address(Z_esp)); 496 add2reg(Z_esp, -Interpreter::stackElementSize); 497 } 498 499 void InterpreterMacroAssembler::push_ptr(Register r) { 500 z_stg(r, Address(Z_esp)); 501 add2reg(Z_esp, -Interpreter::stackElementSize); 502 } 503 504 void InterpreterMacroAssembler::push_l(Register r) { 505 assert_different_registers(r, Z_R1_scratch); 506 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 507 int offset = -Interpreter::stackElementSize; 508 z_stg(r, Address(Z_esp, offset)); 509 clear_mem(Address(Z_esp), Interpreter::stackElementSize); 510 add2reg(Z_esp, 2 * offset); 511 } 512 513 void InterpreterMacroAssembler::push_f(FloatRegister f) { 514 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 515 freg2mem_opt(f, Address(Z_esp), false); 516 add2reg(Z_esp, -Interpreter::stackElementSize); 517 } 518 519 void InterpreterMacroAssembler::push_d(FloatRegister d) { 520 debug_only(verify_esp(Z_esp, Z_R1_scratch)); 521 int offset = -Interpreter::stackElementSize; 522 freg2mem_opt(d, Address(Z_esp, offset)); 523 add2reg(Z_esp, 2 * offset); 524 } 525 526 void InterpreterMacroAssembler::push(TosState state) { 527 verify_oop(Z_tos, state); 528 switch (state) { 529 case atos: push_ptr(); break; 530 case btos: push_i(); break; 531 case ztos: 532 case ctos: 533 case stos: push_i(); break; 534 case itos: push_i(); break; 535 case ltos: push_l(); break; 536 case ftos: push_f(); break; 537 case dtos: push_d(); break; 538 case vtos: /* nothing to do */ break; 539 default : ShouldNotReachHere(); 540 } 541 } 542 543 void InterpreterMacroAssembler::pop(TosState state) { 544 switch (state) { 545 case atos: pop_ptr(Z_tos); break; 546 case btos: pop_i(Z_tos); break; 547 case ztos: 548 case ctos: 549 case stos: pop_i(Z_tos); break; 550 case itos: pop_i(Z_tos); break; 551 case ltos: pop_l(Z_tos); break; 552 case ftos: pop_f(Z_ftos); break; 553 case dtos: pop_d(Z_ftos); break; 554 case vtos: /* nothing to do */ break; 555 default : ShouldNotReachHere(); 556 } 557 verify_oop(Z_tos, state); 558 } 559 560 // Helpers for swap and dup. 561 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 562 z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 563 } 564 565 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 566 z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); 567 } 568 569 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { 570 // Satisfy interpreter calling convention (see generate_normal_entry()). 571 z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). 572 // Record top_frame_sp, because the callee might modify it, if it's compiled. 573 z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp); 574 save_bcp(); 575 save_esp(); 576 z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). 577 } 578 579 // Jump to from_interpreted entry of a call unless single stepping is possible 580 // in this thread in which case we must call the i2i entry. 581 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 582 assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); 583 prepare_to_jump_from_interpreted(method); 584 585 if (JvmtiExport::can_post_interpreter_events()) { 586 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 587 // compiled code in threads for which the event is enabled. Check here for 588 // interp_only_mode if these events CAN be enabled. 589 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 590 MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 591 z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. 592 // Run interpreted. 593 z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); 594 z_br(Z_R1_scratch); 595 } else { 596 // Run compiled code. 597 z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); 598 z_br(Z_R1_scratch); 599 } 600 } 601 602 #ifdef ASSERT 603 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { 604 // About to read or write Resp[0]. 605 // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. 606 address reentry = nullptr; 607 608 { 609 // Check if the frame pointer in Z_fp is correct. 610 NearLabel OK; 611 z_cg(Z_fp, 0, Z_SP); 612 z_bre(OK); 613 reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); 614 bind(OK); 615 } 616 { 617 // Resp must not point into or below the operand stack, 618 // i.e. IJAVA_STATE.monitors > Resp. 619 NearLabel OK; 620 Register Rmonitors = Rtemp; 621 z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp); 622 compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); 623 reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); 624 bind(OK); 625 } 626 { 627 // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below 628 // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). 629 NearLabel OK; 630 Register Rabi_bottom = Rtemp; 631 add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); 632 compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); 633 reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); 634 bind(OK); 635 } 636 } 637 638 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { 639 Label magic_ok; 640 load_const_optimized(tmp, frame::z_istate_magic_number); 641 z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); 642 z_bre(magic_ok); 643 stop_static("error: wrong magic number in ijava_state access"); 644 bind(magic_ok); 645 } 646 #endif // ASSERT 647 648 void InterpreterMacroAssembler::save_bcp() { 649 z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 650 asm_assert_ijava_state_magic(Z_bcp); 651 NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); 652 } 653 654 void InterpreterMacroAssembler::restore_bcp() { 655 asm_assert_ijava_state_magic(Z_bcp); 656 z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); 657 } 658 659 void InterpreterMacroAssembler::save_esp() { 660 z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 661 } 662 663 void InterpreterMacroAssembler::restore_esp() { 664 asm_assert_ijava_state_magic(Z_esp); 665 z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); 666 } 667 668 void InterpreterMacroAssembler::get_monitors(Register reg) { 669 asm_assert_ijava_state_magic(reg); 670 mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 671 } 672 673 void InterpreterMacroAssembler::save_monitors(Register reg) { 674 reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); 675 } 676 677 void InterpreterMacroAssembler::get_mdp(Register mdp) { 678 z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); 679 } 680 681 void InterpreterMacroAssembler::save_mdp(Register mdp) { 682 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 683 } 684 685 // Values that are only read (besides initialization). 686 void InterpreterMacroAssembler::restore_locals() { 687 asm_assert_ijava_state_magic(Z_locals); 688 z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); 689 } 690 691 void InterpreterMacroAssembler::get_method(Register reg) { 692 asm_assert_ijava_state_magic(reg); 693 z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); 694 } 695 696 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, 697 signedOrNot is_signed) { 698 // Rdst is an 8-byte return value!!! 699 700 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 701 // is a few (2..3) ticks, even when the load crosses a cache line 702 // boundary. In case of a cache miss, the stall could, of course, be 703 // much longer. 704 705 switch (is_signed) { 706 case Signed: 707 z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); 708 break; 709 case Unsigned: 710 z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); 711 break; 712 default: 713 ShouldNotReachHere(); 714 } 715 } 716 717 718 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, 719 setCCOrNot set_cc) { 720 // Rdst is an 8-byte return value!!! 721 722 // Unaligned loads incur only a small penalty on z/Architecture. The penalty 723 // is a few (2..3) ticks, even when the load crosses a cache line 724 // boundary. In case of a cache miss, the stall could, of course, be 725 // much longer. 726 727 // Both variants implement a sign-extending int2long load. 728 if (set_cc == set_CC) { 729 load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 730 } else { 731 mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); 732 } 733 } 734 735 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 736 get_method(Rdst); 737 mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); 738 mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); 739 } 740 741 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 742 get_constant_pool(Rdst); 743 mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset())); 744 } 745 746 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 747 get_constant_pool(Rcpool); 748 mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset())); 749 } 750 751 // Unlock if synchronized method. 752 // 753 // Unlock the receiver if this is a synchronized method. 754 // Unlock any Java monitors from synchronized blocks. 755 // 756 // If there are locked Java monitors 757 // If throw_monitor_exception 758 // throws IllegalMonitorStateException 759 // Else if install_monitor_exception 760 // installs IllegalMonitorStateException 761 // Else 762 // no error processing 763 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 764 bool throw_monitor_exception, 765 bool install_monitor_exception) { 766 NearLabel unlocked, unlock, no_unlock; 767 768 { 769 Register R_method = Z_ARG2; 770 Register R_do_not_unlock_if_synchronized = Z_ARG3; 771 772 // Get the value of _do_not_unlock_if_synchronized into G1_scratch. 773 const Address do_not_unlock_if_synchronized(Z_thread, 774 JavaThread::do_not_unlock_if_synchronized_offset()); 775 load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); 776 z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. 777 778 // Check if synchronized method. 779 get_method(R_method); 780 verify_oop(Z_tos, state); 781 push(state); // Save tos/result. 782 testbit_ushort(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); 783 z_bfalse(unlocked); 784 785 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 786 // is set. 787 compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); 788 } 789 790 // unlock monitor 791 792 // BasicObjectLock will be first in list, since this is a 793 // synchronized method. However, need to check that the object has 794 // not been unlocked by an explicit monitorexit bytecode. 795 const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); 796 // We use Z_ARG2 so that if we go slow path it will be the correct 797 // register for unlock_object to pass to VM directly. 798 load_address(Z_ARG2, monitor); // Address of first monitor. 799 z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset())); 800 compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); 801 802 if (throw_monitor_exception) { 803 // Entry already unlocked need to throw an exception. 804 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 805 should_not_reach_here(); 806 } else { 807 // Monitor already unlocked during a stack unroll. 808 // If requested, install an illegal_monitor_state_exception. 809 // Continue with stack unrolling. 810 if (install_monitor_exception) { 811 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 812 } 813 z_bru(unlocked); 814 } 815 816 bind(unlock); 817 818 unlock_object(Z_ARG2); 819 820 bind(unlocked); 821 822 // I0, I1: Might contain return value 823 824 // Check that all monitors are unlocked. 825 { 826 NearLabel loop, exception, entry, restart; 827 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 828 // We use Z_ARG2 so that if we go slow path it will be the correct 829 // register for unlock_object to pass to VM directly. 830 Register R_current_monitor = Z_ARG2; 831 Register R_monitor_block_bot = Z_ARG1; 832 const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors)); 833 const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); 834 835 bind(restart); 836 // Starting with top-most entry. 837 z_lg(R_current_monitor, monitor_block_top); 838 // Points to word before bottom of monitor block. 839 load_address(R_monitor_block_bot, monitor_block_bot); 840 z_bru(entry); 841 842 // Entry already locked, need to throw exception. 843 bind(exception); 844 845 if (throw_monitor_exception) { 846 // Throw exception. 847 MacroAssembler::call_VM(noreg, 848 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 849 throw_illegal_monitor_state_exception)); 850 should_not_reach_here(); 851 } else { 852 // Stack unrolling. Unlock object and install illegal_monitor_exception. 853 // Unlock does not block, so don't have to worry about the frame. 854 // We don't have to preserve c_rarg1 since we are going to throw an exception. 855 unlock_object(R_current_monitor); 856 if (install_monitor_exception) { 857 call_VM(noreg, CAST_FROM_FN_PTR(address, 858 InterpreterRuntime:: 859 new_illegal_monitor_state_exception)); 860 } 861 z_bru(restart); 862 } 863 864 bind(loop); 865 // Check if current entry is used. 866 load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset())); 867 z_brne(exception); 868 869 add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. 870 bind(entry); 871 compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); 872 } 873 874 bind(no_unlock); 875 pop(state); 876 verify_oop(Z_tos, state); 877 } 878 879 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) { 880 get_method(ret_type); 881 z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset()))); 882 z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset()))); 883 884 Label notBool, notByte, notChar, done; 885 886 // common case first 887 compareU32_and_branch(ret_type, T_INT, bcondEqual, done); 888 889 compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool); 890 z_nilf(result, 0x1); 891 z_bru(done); 892 893 bind(notBool); 894 compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte); 895 z_lbr(result, result); 896 z_bru(done); 897 898 bind(notByte); 899 compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar); 900 z_nilf(result, 0xffff); 901 z_bru(done); 902 903 bind(notChar); 904 // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort); 905 z_lhr(result, result); 906 907 // Nothing to do for T_INT 908 bind(done); 909 } 910 911 // remove activation 912 // 913 // Unlock the receiver if this is a synchronized method. 914 // Unlock any Java monitors from synchronized blocks. 915 // Remove the activation from the stack. 916 // 917 // If there are locked Java monitors 918 // If throw_monitor_exception 919 // throws IllegalMonitorStateException 920 // Else if install_monitor_exception 921 // installs IllegalMonitorStateException 922 // Else 923 // no error processing 924 void InterpreterMacroAssembler::remove_activation(TosState state, 925 Register return_pc, 926 bool throw_monitor_exception, 927 bool install_monitor_exception, 928 bool notify_jvmti) { 929 BLOCK_COMMENT("remove_activation {"); 930 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 931 932 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 933 notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); 934 935 if (StackReservedPages > 0) { 936 BLOCK_COMMENT("reserved_stack_check:"); 937 // Test if reserved zone needs to be enabled. 938 Label no_reserved_zone_enabling; 939 940 // check if already enabled - if so no re-enabling needed 941 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 942 z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset())); 943 compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling); 944 945 // Compare frame pointers. There is no good stack pointer, as with stack 946 // frame compression we can get different SPs when we do calls. A subsequent 947 // call could have a smaller SP, so that this compare succeeds for an 948 // inner call of the method annotated with ReservedStack. 949 z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); 950 z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. 951 z_brl(no_reserved_zone_enabling); 952 953 // Enable reserved zone again, throw stack overflow exception. 954 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); 955 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 956 957 should_not_reach_here(); 958 959 bind(no_reserved_zone_enabling); 960 } 961 962 verify_oop(Z_tos, state); 963 964 pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); 965 BLOCK_COMMENT("} remove_activation"); 966 } 967 968 // lock object 969 // 970 // Registers alive 971 // monitor (Z_R10) - Address of the BasicObjectLock to be used for locking, 972 // which must be initialized with the object to lock. 973 // object (Z_R11, Z_R2) - Address of the object to be locked. 974 // templateTable (monitorenter) is using Z_R2 for object 975 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 976 977 if (LockingMode == LM_MONITOR) { 978 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 979 return; 980 } 981 982 // template code: (for LM_LEGACY) 983 // 984 // markWord displaced_header = obj->mark().set_unlocked(); 985 // monitor->lock()->set_displaced_header(displaced_header); 986 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 987 // // We stored the monitor address into the object's mark word. 988 // } else if (THREAD->is_lock_owned((address)displaced_header)) 989 // // Simple recursive case. 990 // monitor->lock()->set_displaced_header(nullptr); 991 // } else { 992 // // Slow path. 993 // InterpreterRuntime::monitorenter(THREAD, monitor); 994 // } 995 996 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 997 998 const Register header = Z_ARG5; 999 const Register object_mark_addr = Z_ARG4; 1000 const Register current_header = Z_ARG5; 1001 const Register tmp = Z_R1_scratch; 1002 1003 NearLabel done, slow_case; 1004 1005 // markWord header = obj->mark().set_unlocked(); 1006 1007 if (DiagnoseSyncOnValueBasedClasses != 0) { 1008 load_klass(tmp, object); 1009 z_tm(Address(tmp, Klass::misc_flags_offset()), KlassFlags::_misc_is_value_based_class); 1010 z_btrue(slow_case); 1011 } 1012 1013 if (LockingMode == LM_LIGHTWEIGHT) { 1014 lightweight_lock(monitor, object, header, tmp, slow_case); 1015 } else if (LockingMode == LM_LEGACY) { 1016 1017 // Load markWord from object into header. 1018 z_lg(header, hdr_offset, object); 1019 1020 // Set header to be (markWord of object | UNLOCK_VALUE). 1021 // This will not change anything if it was unlocked before. 1022 z_oill(header, markWord::unlocked_value); 1023 1024 // monitor->lock()->set_displaced_header(displaced_header); 1025 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1026 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); 1027 1028 // Initialize the box (Must happen before we update the object mark!). 1029 z_stg(header, mark_offset, monitor); 1030 1031 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 1032 1033 // not necessary, use offset in instruction directly. 1034 // add2reg(object_mark_addr, hdr_offset, object); 1035 1036 // Store stack address of the BasicObjectLock (this is monitor) into object. 1037 z_csg(header, monitor, hdr_offset, object); 1038 assert(current_header == header, 1039 "must be same register"); // Identified two registers from z/Architecture. 1040 1041 z_bre(done); 1042 1043 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1044 // // Simple recursive case. 1045 // monitor->lock()->set_displaced_header(nullptr); 1046 1047 // We did not see an unlocked object so try the fast recursive case. 1048 1049 // Check if owner is self by comparing the value in the markWord of object 1050 // (current_header) with the stack pointer. 1051 z_sgr(current_header, Z_SP); 1052 1053 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1054 1055 // The prior sequence "LGR, NGR, LTGR" can be done better 1056 // (Z_R1 is temp and not used after here). 1057 load_const_optimized(Z_R0, (~(os::vm_page_size() - 1) | markWord::lock_mask_in_place)); 1058 z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0) 1059 1060 // If condition is true we are done and hence we can store 0 in the displaced 1061 // header indicating it is a recursive lock and be done. 1062 z_brne(slow_case); 1063 z_release(); // Member unnecessary on zarch AND because the above csg does a sync before and after. 1064 z_stg(Z_R0/*==0!*/, mark_offset, monitor); 1065 } 1066 z_bru(done); 1067 // } else { 1068 // // Slow path. 1069 // InterpreterRuntime::monitorenter(THREAD, monitor); 1070 1071 // None of the above fast optimizations worked so we have to get into the 1072 // slow case of monitor enter. 1073 bind(slow_case); 1074 call_VM(noreg, 1075 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1076 monitor); 1077 // } 1078 1079 bind(done); 1080 } 1081 1082 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1083 // 1084 // Registers alive 1085 // monitor - address of the BasicObjectLock to be used for locking, 1086 // which must be initialized with the object to lock. 1087 // 1088 // Throw IllegalMonitorException if object is not locked by current thread. 1089 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { 1090 1091 if (LockingMode == LM_MONITOR) { 1092 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1093 return; 1094 } 1095 1096 // else { 1097 // template code: (for LM_LEGACY): 1098 // 1099 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1100 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1101 // monitor->set_obj(nullptr); 1102 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1103 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1104 // monitor->set_obj(nullptr); 1105 // } else { 1106 // // Slow path. 1107 // InterpreterRuntime::monitorexit(monitor); 1108 // } 1109 1110 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 1111 1112 const Register header = Z_ARG4; 1113 const Register current_header = Z_R1_scratch; 1114 Address obj_entry(monitor, BasicObjectLock::obj_offset()); 1115 Label done, slow_case; 1116 1117 if (object == noreg) { 1118 // In the template interpreter, we must assure that the object 1119 // entry in the monitor is cleared on all paths. Thus we move 1120 // loading up to here, and clear the entry afterwards. 1121 object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. 1122 z_lg(object, obj_entry); 1123 } 1124 1125 assert_different_registers(monitor, object, header, current_header); 1126 1127 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1128 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1129 // monitor->set_obj(nullptr); 1130 1131 // monitor->lock()->set_displaced_header(displaced_header); 1132 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1133 const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); 1134 1135 clear_mem(obj_entry, sizeof(oop)); 1136 if (LockingMode != LM_LIGHTWEIGHT) { 1137 // Test first if we are in the fast recursive case. 1138 MacroAssembler::load_and_test_long(header, Address(monitor, mark_offset)); 1139 z_bre(done); // header == 0 -> goto done 1140 } 1141 1142 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1143 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1144 // monitor->set_obj(nullptr); 1145 1146 // If we still have a lightweight lock, unlock the object and be done. 1147 if (LockingMode == LM_LIGHTWEIGHT) { 1148 1149 lightweight_unlock(object, header, current_header, slow_case); 1150 1151 z_bru(done); 1152 } else { 1153 // The markword is expected to be at offset 0. 1154 // This is not required on s390, at least not here. 1155 assert(hdr_offset == 0, "unlock_object: review code below"); 1156 1157 // We have the displaced header in header. If the lock is still 1158 // lightweight, it will contain the monitor address and we'll store the 1159 // displaced header back into the object's mark word. 1160 z_lgr(current_header, monitor); 1161 z_csg(current_header, header, hdr_offset, object); 1162 z_bre(done); 1163 } 1164 1165 // } else { 1166 // // Slow path. 1167 // InterpreterRuntime::monitorexit(monitor); 1168 1169 // The lock has been converted into a heavy lock and hence 1170 // we need to get into the slow case. 1171 bind(slow_case); 1172 z_stg(object, obj_entry); // Restore object entry, has been cleared above. 1173 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1174 1175 // } 1176 1177 bind(done); 1178 } 1179 1180 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { 1181 assert(ProfileInterpreter, "must be profiling interpreter"); 1182 load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); 1183 z_brz(zero_continue); 1184 } 1185 1186 // Set the method data pointer for the current bcp. 1187 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1188 assert(ProfileInterpreter, "must be profiling interpreter"); 1189 Label set_mdp; 1190 Register mdp = Z_ARG4; 1191 Register method = Z_ARG5; 1192 1193 get_method(method); 1194 // Test MDO to avoid the call if it is null. 1195 load_and_test_long(mdp, method2_(method, method_data)); 1196 z_brz(set_mdp); 1197 1198 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); 1199 // Z_RET: mdi 1200 // Mdo is guaranteed to be non-zero here, we checked for it before the call. 1201 assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); 1202 z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. 1203 add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); 1204 1205 bind(set_mdp); 1206 save_mdp(mdp); 1207 } 1208 1209 void InterpreterMacroAssembler::verify_method_data_pointer() { 1210 assert(ProfileInterpreter, "must be profiling interpreter"); 1211 #ifdef ASSERT 1212 NearLabel verify_continue; 1213 Register bcp_expected = Z_ARG3; 1214 Register mdp = Z_ARG4; 1215 Register method = Z_ARG5; 1216 1217 test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue 1218 get_method(method); 1219 1220 // If the mdp is valid, it will point to a DataLayout header which is 1221 // consistent with the bcp. The converse is highly probable also. 1222 load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); 1223 z_ag(bcp_expected, Address(method, Method::const_offset())); 1224 load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); 1225 compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); 1226 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); 1227 bind(verify_continue); 1228 #endif // ASSERT 1229 } 1230 1231 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { 1232 assert(ProfileInterpreter, "must be profiling interpreter"); 1233 z_stg(value, constant, mdp_in); 1234 } 1235 1236 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1237 int constant, 1238 Register tmp, 1239 bool decrement) { 1240 assert_different_registers(mdp_in, tmp); 1241 // counter address 1242 Address data(mdp_in, constant); 1243 const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; 1244 add2mem_64(Address(mdp_in, constant), delta, tmp); 1245 } 1246 1247 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1248 int flag_byte_constant) { 1249 assert(ProfileInterpreter, "must be profiling interpreter"); 1250 // Set the flag. 1251 z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); 1252 } 1253 1254 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1255 int offset, 1256 Register value, 1257 Register test_value_out, 1258 Label& not_equal_continue) { 1259 assert(ProfileInterpreter, "must be profiling interpreter"); 1260 if (test_value_out == noreg) { 1261 z_cg(value, Address(mdp_in, offset)); 1262 z_brne(not_equal_continue); 1263 } else { 1264 // Put the test value into a register, so caller can use it: 1265 z_lg(test_value_out, Address(mdp_in, offset)); 1266 compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); 1267 } 1268 } 1269 1270 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { 1271 update_mdp_by_offset(mdp_in, noreg, offset_of_disp); 1272 } 1273 1274 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1275 Register dataidx, 1276 int offset_of_disp) { 1277 assert(ProfileInterpreter, "must be profiling interpreter"); 1278 Address disp_address(mdp_in, dataidx, offset_of_disp); 1279 Assembler::z_ag(mdp_in, disp_address); 1280 save_mdp(mdp_in); 1281 } 1282 1283 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { 1284 assert(ProfileInterpreter, "must be profiling interpreter"); 1285 add2reg(mdp_in, constant); 1286 save_mdp(mdp_in); 1287 } 1288 1289 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1290 assert(ProfileInterpreter, "must be profiling interpreter"); 1291 assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); 1292 call_VM(noreg, 1293 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1294 return_bci); 1295 } 1296 1297 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { 1298 if (ProfileInterpreter) { 1299 Label profile_continue; 1300 1301 // If no method data exists, go to profile_continue. 1302 // Otherwise, assign to mdp. 1303 test_method_data_pointer(mdp, profile_continue); 1304 1305 // We are taking a branch. Increment the taken count. 1306 // We inline increment_mdp_data_at to return bumped_count in a register 1307 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1308 Address data(mdp, JumpData::taken_offset()); 1309 z_lg(bumped_count, data); 1310 // 64-bit overflow is very unlikely. Saturation to 32-bit values is 1311 // performed when reading the counts. 1312 add2reg(bumped_count, DataLayout::counter_increment); 1313 z_stg(bumped_count, data); // Store back out 1314 1315 // The method data pointer needs to be updated to reflect the new target. 1316 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1317 bind(profile_continue); 1318 } 1319 } 1320 1321 // Kills Z_R1_scratch. 1322 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1323 if (ProfileInterpreter) { 1324 Label profile_continue; 1325 1326 // If no method data exists, go to profile_continue. 1327 test_method_data_pointer(mdp, profile_continue); 1328 1329 // We are taking a branch. Increment the not taken count. 1330 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); 1331 1332 // The method data pointer needs to be updated to correspond to 1333 // the next bytecode. 1334 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1335 bind(profile_continue); 1336 } 1337 } 1338 1339 // Kills: Z_R1_scratch. 1340 void InterpreterMacroAssembler::profile_call(Register mdp) { 1341 if (ProfileInterpreter) { 1342 Label profile_continue; 1343 1344 // If no method data exists, go to profile_continue. 1345 test_method_data_pointer(mdp, profile_continue); 1346 1347 // We are making a call. Increment the count. 1348 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1349 1350 // The method data pointer needs to be updated to reflect the new target. 1351 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1352 bind(profile_continue); 1353 } 1354 } 1355 1356 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1357 if (ProfileInterpreter) { 1358 Label profile_continue; 1359 1360 // If no method data exists, go to profile_continue. 1361 test_method_data_pointer(mdp, profile_continue); 1362 1363 // We are making a call. Increment the count. 1364 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1365 1366 // The method data pointer needs to be updated to reflect the new target. 1367 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1368 bind(profile_continue); 1369 } 1370 } 1371 1372 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1373 Register mdp, 1374 Register reg2, 1375 bool receiver_can_be_null) { 1376 if (ProfileInterpreter) { 1377 NearLabel profile_continue; 1378 1379 // If no method data exists, go to profile_continue. 1380 test_method_data_pointer(mdp, profile_continue); 1381 1382 NearLabel skip_receiver_profile; 1383 if (receiver_can_be_null) { 1384 NearLabel not_null; 1385 compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); 1386 // We are making a call. Increment the count for null receiver. 1387 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1388 z_bru(skip_receiver_profile); 1389 bind(not_null); 1390 } 1391 1392 // Record the receiver type. 1393 record_klass_in_profile(receiver, mdp, reg2); 1394 bind(skip_receiver_profile); 1395 1396 // The method data pointer needs to be updated to reflect the new target. 1397 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1398 bind(profile_continue); 1399 } 1400 } 1401 1402 // This routine creates a state machine for updating the multi-row 1403 // type profile at a virtual call site (or other type-sensitive bytecode). 1404 // The machine visits each row (of receiver/count) until the receiver type 1405 // is found, or until it runs out of rows. At the same time, it remembers 1406 // the location of the first empty row. (An empty row records null for its 1407 // receiver, and can be allocated for a newly-observed receiver type.) 1408 // Because there are two degrees of freedom in the state, a simple linear 1409 // search will not work; it must be a decision tree. Hence this helper 1410 // function is recursive, to generate the required tree structured code. 1411 // It's the interpreter, so we are trading off code space for speed. 1412 // See below for example code. 1413 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1414 Register receiver, Register mdp, 1415 Register reg2, int start_row, 1416 Label& done) { 1417 if (TypeProfileWidth == 0) { 1418 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1419 return; 1420 } 1421 1422 int last_row = VirtualCallData::row_limit() - 1; 1423 assert(start_row <= last_row, "must be work left to do"); 1424 // Test this row for both the receiver and for null. 1425 // Take any of three different outcomes: 1426 // 1. found receiver => increment count and goto done 1427 // 2. found null => keep looking for case 1, maybe allocate this cell 1428 // 3. found something else => keep looking for cases 1 and 2 1429 // Case 3 is handled by a recursive call. 1430 for (int row = start_row; row <= last_row; row++) { 1431 NearLabel next_test; 1432 bool test_for_null_also = (row == start_row); 1433 1434 // See if the receiver is receiver[n]. 1435 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1436 test_mdp_data_at(mdp, recvr_offset, receiver, 1437 (test_for_null_also ? reg2 : noreg), 1438 next_test); 1439 // (Reg2 now contains the receiver from the CallData.) 1440 1441 // The receiver is receiver[n]. Increment count[n]. 1442 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1443 increment_mdp_data_at(mdp, count_offset); 1444 z_bru(done); 1445 bind(next_test); 1446 1447 if (test_for_null_also) { 1448 Label found_null; 1449 // Failed the equality check on receiver[n]... Test for null. 1450 z_ltgr(reg2, reg2); 1451 if (start_row == last_row) { 1452 // The only thing left to do is handle the null case. 1453 z_brz(found_null); 1454 // Receiver did not match any saved receiver and there is no empty row for it. 1455 // Increment total counter to indicate polymorphic case. 1456 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1457 z_bru(done); 1458 bind(found_null); 1459 break; 1460 } 1461 // Since null is rare, make it be the branch-taken case. 1462 z_brz(found_null); 1463 1464 // Put all the "Case 3" tests here. 1465 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done); 1466 1467 // Found a null. Keep searching for a matching receiver, 1468 // but remember that this is an empty (unused) slot. 1469 bind(found_null); 1470 } 1471 } 1472 1473 // In the fall-through case, we found no matching receiver, but we 1474 // observed the receiver[start_row] is null. 1475 1476 // Fill in the receiver field and increment the count. 1477 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1478 set_mdp_data_at(mdp, recvr_offset, receiver); 1479 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1480 load_const_optimized(reg2, DataLayout::counter_increment); 1481 set_mdp_data_at(mdp, count_offset, reg2); 1482 if (start_row > 0) { 1483 z_bru(done); 1484 } 1485 } 1486 1487 // Example state machine code for three profile rows: 1488 // // main copy of decision tree, rooted at row[1] 1489 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1490 // if (row[0].rec != nullptr) { 1491 // // inner copy of decision tree, rooted at row[1] 1492 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1493 // if (row[1].rec != nullptr) { 1494 // // degenerate decision tree, rooted at row[2] 1495 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1496 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1497 // row[2].init(rec); goto done; 1498 // } else { 1499 // // remember row[1] is empty 1500 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1501 // row[1].init(rec); goto done; 1502 // } 1503 // } else { 1504 // // remember row[0] is empty 1505 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1506 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1507 // row[0].init(rec); goto done; 1508 // } 1509 // done: 1510 1511 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1512 Register mdp, Register reg2) { 1513 assert(ProfileInterpreter, "must be profiling"); 1514 Label done; 1515 1516 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); 1517 1518 bind (done); 1519 } 1520 1521 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1522 if (ProfileInterpreter) { 1523 NearLabel profile_continue; 1524 uint row; 1525 1526 // If no method data exists, go to profile_continue. 1527 test_method_data_pointer(mdp, profile_continue); 1528 1529 // Update the total ret count. 1530 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1531 1532 for (row = 0; row < RetData::row_limit(); row++) { 1533 NearLabel next_test; 1534 1535 // See if return_bci is equal to bci[n]: 1536 test_mdp_data_at(mdp, 1537 in_bytes(RetData::bci_offset(row)), 1538 return_bci, noreg, 1539 next_test); 1540 1541 // Return_bci is equal to bci[n]. Increment the count. 1542 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1543 1544 // The method data pointer needs to be updated to reflect the new target. 1545 update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); 1546 z_bru(profile_continue); 1547 bind(next_test); 1548 } 1549 1550 update_mdp_for_ret(return_bci); 1551 1552 bind(profile_continue); 1553 } 1554 } 1555 1556 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1557 if (ProfileInterpreter) { 1558 Label profile_continue; 1559 1560 // If no method data exists, go to profile_continue. 1561 test_method_data_pointer(mdp, profile_continue); 1562 1563 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1564 1565 // The method data pointer needs to be updated. 1566 int mdp_delta = in_bytes(BitData::bit_data_size()); 1567 if (TypeProfileCasts) { 1568 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1569 } 1570 update_mdp_by_constant(mdp, mdp_delta); 1571 1572 bind(profile_continue); 1573 } 1574 } 1575 1576 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1577 if (ProfileInterpreter) { 1578 Label profile_continue; 1579 1580 // If no method data exists, go to profile_continue. 1581 test_method_data_pointer(mdp, profile_continue); 1582 1583 // The method data pointer needs to be updated. 1584 int mdp_delta = in_bytes(BitData::bit_data_size()); 1585 if (TypeProfileCasts) { 1586 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1587 1588 // Record the object type. 1589 record_klass_in_profile(klass, mdp, reg2); 1590 } 1591 update_mdp_by_constant(mdp, mdp_delta); 1592 1593 bind(profile_continue); 1594 } 1595 } 1596 1597 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1598 if (ProfileInterpreter) { 1599 Label profile_continue; 1600 1601 // If no method data exists, go to profile_continue. 1602 test_method_data_pointer(mdp, profile_continue); 1603 1604 // Update the default case count. 1605 increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); 1606 1607 // The method data pointer needs to be updated. 1608 update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); 1609 1610 bind(profile_continue); 1611 } 1612 } 1613 1614 // Kills: index, scratch1, scratch2. 1615 void InterpreterMacroAssembler::profile_switch_case(Register index, 1616 Register mdp, 1617 Register scratch1, 1618 Register scratch2) { 1619 if (ProfileInterpreter) { 1620 Label profile_continue; 1621 assert_different_registers(index, mdp, scratch1, scratch2); 1622 1623 // If no method data exists, go to profile_continue. 1624 test_method_data_pointer(mdp, profile_continue); 1625 1626 // Build the base (index * per_case_size_in_bytes()) + 1627 // case_array_offset_in_bytes(). 1628 z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1629 add2reg(index, in_bytes(MultiBranchData::case_array_offset())); 1630 1631 // Add the calculated base to the mdp -> address of the case' data. 1632 Address case_data_addr(mdp, index); 1633 Register case_data = scratch1; 1634 load_address(case_data, case_data_addr); 1635 1636 // Update the case count. 1637 increment_mdp_data_at(case_data, 1638 in_bytes(MultiBranchData::relative_count_offset()), 1639 scratch2); 1640 1641 // The method data pointer needs to be updated. 1642 update_mdp_by_offset(mdp, 1643 index, 1644 in_bytes(MultiBranchData::relative_displacement_offset())); 1645 1646 bind(profile_continue); 1647 } 1648 } 1649 1650 // kills: R0, R1, flags, loads klass from obj (if not null) 1651 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { 1652 NearLabel null_seen, init_klass, do_nothing, do_update; 1653 1654 // Klass = obj is allowed. 1655 const Register tmp = Z_R1; 1656 assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); 1657 assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); 1658 1659 z_lg(tmp, mdo_addr); 1660 if (cmp_done) { 1661 z_brz(null_seen); 1662 } else { 1663 compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); 1664 } 1665 1666 MacroAssembler::verify_oop(obj, FILE_AND_LINE); 1667 load_klass(klass, obj); 1668 1669 // Klass seen before, nothing to do (regardless of unknown bit). 1670 z_lgr(Z_R0, tmp); 1671 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 1672 z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); 1673 compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); 1674 1675 // Already unknown. Nothing to do anymore. 1676 z_tmll(tmp, TypeEntries::type_unknown); 1677 z_brc(Assembler::bcondAllOne, do_nothing); 1678 1679 z_lgr(Z_R0, tmp); 1680 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 1681 z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); 1682 compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); 1683 1684 // Different than before. Cannot keep accurate profile. 1685 z_oill(tmp, TypeEntries::type_unknown); 1686 z_bru(do_update); 1687 1688 bind(init_klass); 1689 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1690 z_ogr(tmp, klass); 1691 z_bru(do_update); 1692 1693 bind(null_seen); 1694 // Set null_seen if obj is 0. 1695 z_oill(tmp, TypeEntries::null_seen); 1696 // fallthru: z_bru(do_update); 1697 1698 bind(do_update); 1699 z_stg(tmp, mdo_addr); 1700 1701 bind(do_nothing); 1702 } 1703 1704 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1705 if (!ProfileInterpreter) { 1706 return; 1707 } 1708 1709 assert_different_registers(mdp, callee, tmp); 1710 1711 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1712 Label profile_continue; 1713 1714 test_method_data_pointer(mdp, profile_continue); 1715 1716 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1717 1718 z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, 1719 is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1720 z_brne(profile_continue); 1721 1722 if (MethodData::profile_arguments()) { 1723 NearLabel done; 1724 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1725 add2reg(mdp, off_to_args); 1726 1727 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1728 if (i > 0 || MethodData::profile_return()) { 1729 // If return value type is profiled we may have no argument to profile. 1730 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1731 add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); 1732 compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); 1733 } 1734 z_lg(tmp, Address(callee, Method::const_offset())); 1735 z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1736 // Stack offset o (zero based) from the start of the argument 1737 // list. For n arguments translates into offset n - o - 1 from 1738 // the end of the argument list. But there is an extra slot at 1739 // the top of the stack. So the offset is n - o from Lesp. 1740 z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 1741 z_sllg(tmp, tmp, Interpreter::logStackElementSize); 1742 Address stack_slot_addr(tmp, Z_esp); 1743 z_ltg(tmp, stack_slot_addr); 1744 1745 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 1746 profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); 1747 1748 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1749 add2reg(mdp, to_add); 1750 off_to_args += to_add; 1751 } 1752 1753 if (MethodData::profile_return()) { 1754 z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); 1755 add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1756 } 1757 1758 bind(done); 1759 1760 if (MethodData::profile_return()) { 1761 // We're right after the type profile for the last 1762 // argument. Tmp is the number of cells left in the 1763 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1764 // if there's a return to profile. 1765 assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1766 z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); 1767 z_agr(mdp, tmp); 1768 } 1769 z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); 1770 } else { 1771 assert(MethodData::profile_return(), "either profile call args or call ret"); 1772 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1773 } 1774 1775 // Mdp points right after the end of the 1776 // CallTypeData/VirtualCallTypeData, right after the cells for the 1777 // return value type if there's one. 1778 bind(profile_continue); 1779 } 1780 } 1781 1782 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1783 assert_different_registers(mdp, ret, tmp); 1784 if (ProfileInterpreter && MethodData::profile_return()) { 1785 Label profile_continue; 1786 1787 test_method_data_pointer(mdp, profile_continue); 1788 1789 if (MethodData::profile_return_jsr292_only()) { 1790 // If we don't profile all invoke bytecodes we must make sure 1791 // it's a bytecode we indeed profile. We can't go back to the 1792 // beginning of the ProfileData we intend to update to check its 1793 // type because we're right after it and we don't known its 1794 // length. 1795 NearLabel do_profile; 1796 Address bc(Z_bcp); 1797 z_lb(tmp, bc); 1798 compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); 1799 compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); 1800 get_method(tmp); 1801 // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. 1802 if (Method::intrinsic_id_size_in_bytes() == 1) { 1803 z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1804 } else { 1805 assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); 1806 z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp); 1807 z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1808 } 1809 z_brne(profile_continue); 1810 1811 bind(do_profile); 1812 } 1813 1814 Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size())); 1815 profile_obj_type(ret, mdo_ret_addr, tmp); 1816 1817 bind(profile_continue); 1818 } 1819 } 1820 1821 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1822 if (ProfileInterpreter && MethodData::profile_parameters()) { 1823 Label profile_continue, done; 1824 1825 test_method_data_pointer(mdp, profile_continue); 1826 1827 // Load the offset of the area within the MDO used for 1828 // parameters. If it's negative we're not profiling any parameters. 1829 Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); 1830 load_and_test_int2long(tmp1, parm_di_addr); 1831 z_brl(profile_continue); 1832 1833 // Compute a pointer to the area for parameters from the offset 1834 // and move the pointer to the slot for the last 1835 // parameters. Collect profiling from last parameter down. 1836 // mdo start + parameters offset + array length - 1 1837 1838 // Pointer to the parameter area in the MDO. 1839 z_agr(mdp, tmp1); 1840 1841 // Offset of the current profile entry to update. 1842 const Register entry_offset = tmp1; 1843 // entry_offset = array len in number of cells. 1844 z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); 1845 // entry_offset (number of cells) = array len - size of 1 entry 1846 add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); 1847 // entry_offset in bytes 1848 z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1849 1850 Label loop; 1851 bind(loop); 1852 1853 Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); 1854 Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); 1855 1856 // Load offset on the stack from the slot for this parameter. 1857 z_lg(tmp2, arg_off); 1858 z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); 1859 z_lcgr(tmp2); // Negate. 1860 1861 // Profile the parameter. 1862 z_ltg(tmp2, Address(Z_locals, tmp2)); 1863 profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); 1864 1865 // Go to next parameter. 1866 z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); 1867 z_brnl(loop); 1868 1869 bind(profile_continue); 1870 } 1871 } 1872 1873 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1874 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1875 int increment, 1876 Address mask, 1877 Register scratch, 1878 bool preloaded, 1879 branch_condition cond, 1880 Label *where) { 1881 assert_different_registers(counter_addr.base(), scratch); 1882 if (preloaded) { 1883 add2reg(scratch, increment); 1884 reg2mem_opt(scratch, counter_addr, false); 1885 } else { 1886 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { 1887 z_alsi(counter_addr.disp20(), counter_addr.base(), increment); 1888 mem2reg_signed_opt(scratch, counter_addr); 1889 } else { 1890 mem2reg_signed_opt(scratch, counter_addr); 1891 add2reg(scratch, increment); 1892 reg2mem_opt(scratch, counter_addr, false); 1893 } 1894 } 1895 z_n(scratch, mask); 1896 if (where) { z_brc(cond, *where); } 1897 } 1898 1899 // Get MethodCounters object for given method. Lazily allocated if necessary. 1900 // method - Ptr to Method object. 1901 // Rcounters - Ptr to MethodCounters object associated with Method object. 1902 // skip - Exit point if MethodCounters object can't be created (OOM condition). 1903 void InterpreterMacroAssembler::get_method_counters(Register Rmethod, 1904 Register Rcounters, 1905 Label& skip) { 1906 assert_different_registers(Rmethod, Rcounters); 1907 1908 BLOCK_COMMENT("get MethodCounters object {"); 1909 1910 Label has_counters; 1911 load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); 1912 z_brnz(has_counters); 1913 1914 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod); 1915 z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. 1916 z_brz(skip); // No MethodCounters, out of memory. 1917 1918 bind(has_counters); 1919 1920 BLOCK_COMMENT("} get MethodCounters object"); 1921 } 1922 1923 // Increment invocation counter in MethodCounters object. 1924 // Return (invocation_counter+backedge_counter) as "result" in RctrSum. 1925 // Counter values are all unsigned. 1926 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { 1927 assert(UseCompiler, "incrementing must be useful"); 1928 assert_different_registers(Rcounters, RctrSum); 1929 1930 int increment = InvocationCounter::count_increment; 1931 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1932 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1933 1934 BLOCK_COMMENT("Increment invocation counter {"); 1935 1936 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1937 // Increment the invocation counter in place, 1938 // then add the incremented value to the backedge counter. 1939 z_l(RctrSum, be_counter_offset, Rcounters); 1940 z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1941 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1942 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 1943 } else { 1944 // This path is optimized for low register consumption 1945 // at the cost of somewhat higher operand delays. 1946 // It does not need an extra temp register. 1947 1948 // Update the invocation counter. 1949 z_l(RctrSum, inv_counter_offset, Rcounters); 1950 if (RctrSum == Z_R0) { 1951 z_ahi(RctrSum, increment); 1952 } else { 1953 add2reg(RctrSum, increment); 1954 } 1955 z_st(RctrSum, inv_counter_offset, Rcounters); 1956 1957 // Mask off the state bits. 1958 z_nilf(RctrSum, InvocationCounter::count_mask_value); 1959 1960 // Add the backedge counter to the updated invocation counter to 1961 // form the result. 1962 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1963 } 1964 1965 BLOCK_COMMENT("} Increment invocation counter"); 1966 1967 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 1968 } 1969 1970 1971 // increment backedge counter in MethodCounters object. 1972 // return (invocation_counter+backedge_counter) as "result" in RctrSum 1973 // counter values are all unsigned! 1974 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { 1975 assert(UseCompiler, "incrementing must be useful"); 1976 assert_different_registers(Rcounters, RctrSum); 1977 1978 int increment = InvocationCounter::count_increment; 1979 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); 1980 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); 1981 1982 BLOCK_COMMENT("Increment backedge counter {"); 1983 1984 if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { 1985 // Increment the invocation counter in place, 1986 // then add the incremented value to the backedge counter. 1987 z_l(RctrSum, inv_counter_offset, Rcounters); 1988 z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! 1989 z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. 1990 z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); 1991 } else { 1992 // This path is optimized for low register consumption 1993 // at the cost of somewhat higher operand delays. 1994 // It does not need an extra temp register. 1995 1996 // Update the invocation counter. 1997 z_l(RctrSum, be_counter_offset, Rcounters); 1998 if (RctrSum == Z_R0) { 1999 z_ahi(RctrSum, increment); 2000 } else { 2001 add2reg(RctrSum, increment); 2002 } 2003 z_st(RctrSum, be_counter_offset, Rcounters); 2004 2005 // Mask off the state bits. 2006 z_nilf(RctrSum, InvocationCounter::count_mask_value); 2007 2008 // Add the backedge counter to the updated invocation counter to 2009 // form the result. 2010 z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); 2011 } 2012 2013 BLOCK_COMMENT("} Increment backedge counter"); 2014 2015 // Note that this macro must leave the backedge_count + invocation_count in Rtmp! 2016 } 2017 2018 // Add an InterpMonitorElem to stack (see frame_s390.hpp). 2019 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, 2020 Register Rtemp1, 2021 Register Rtemp2, 2022 Register Rtemp3) { 2023 2024 const Register Rcurr_slot = Rtemp1; 2025 const Register Rlimit = Rtemp2; 2026 const jint delta = -frame::interpreter_frame_monitor_size_in_bytes(); 2027 2028 assert((delta & LongAlignmentMask) == 0, 2029 "sizeof BasicObjectLock must be even number of doublewords"); 2030 assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); 2031 assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); 2032 assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); 2033 2034 get_monitors(Rlimit); 2035 2036 // Adjust stack pointer for additional monitor entry. 2037 resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); 2038 2039 if (!stack_is_empty) { 2040 // Must copy stack contents down. 2041 NearLabel next, done; 2042 2043 // Rtemp := addr(Tos), Z_esp is pointing below it! 2044 add2reg(Rcurr_slot, wordSize, Z_esp); 2045 2046 // Nothing to do, if already at monitor area. 2047 compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); 2048 2049 bind(next); 2050 2051 // Move one stack slot. 2052 mem2reg_opt(Rtemp3, Address(Rcurr_slot)); 2053 reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); 2054 add2reg(Rcurr_slot, wordSize); 2055 compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? 2056 2057 bind(done); 2058 // Done copying stack. 2059 } 2060 2061 // Adjust expression stack and monitor pointers. 2062 add2reg(Z_esp, delta); 2063 add2reg(Rlimit, delta); 2064 save_monitors(Rlimit); 2065 } 2066 2067 // Note: Index holds the offset in bytes afterwards. 2068 // You can use this to store a new value (with Llocals as the base). 2069 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { 2070 z_sllg(index, index, LogBytesPerWord); 2071 mem2reg_opt(dst, Address(Z_locals, index), false); 2072 } 2073 2074 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2075 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2076 } 2077 2078 // Inline assembly for: 2079 // 2080 // if (thread is in interp_only_mode) { 2081 // InterpreterRuntime::post_method_entry(); 2082 // } 2083 2084 void InterpreterMacroAssembler::notify_method_entry() { 2085 2086 // JVMTI 2087 // Whenever JVMTI puts a thread in interp_only_mode, method 2088 // entry/exit events are sent for that thread to track stack 2089 // depth. If it is possible to enter interp_only_mode we add 2090 // the code to check if the event should be sent. 2091 if (JvmtiExport::can_post_interpreter_events()) { 2092 Label jvmti_post_done; 2093 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2094 z_bre(jvmti_post_done); 2095 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2096 bind(jvmti_post_done); 2097 } 2098 } 2099 2100 // Inline assembly for: 2101 // 2102 // if (thread is in interp_only_mode) { 2103 // if (!native_method) save result 2104 // InterpreterRuntime::post_method_exit(); 2105 // if (!native_method) restore result 2106 // } 2107 // if (DTraceMethodProbes) { 2108 // SharedRuntime::dtrace_method_exit(thread, method); 2109 // } 2110 // 2111 // For native methods their result is stored in z_ijava_state.lresult 2112 // and z_ijava_state.fresult before coming here. 2113 // Java methods have their result stored in the expression stack. 2114 // 2115 // Notice the dependency to frame::interpreter_frame_result(). 2116 void InterpreterMacroAssembler::notify_method_exit(bool native_method, 2117 TosState state, 2118 NotifyMethodExitMode mode) { 2119 // JVMTI 2120 // Whenever JVMTI puts a thread in interp_only_mode, method 2121 // entry/exit events are sent for that thread to track stack 2122 // depth. If it is possible to enter interp_only_mode we add 2123 // the code to check if the event should be sent. 2124 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2125 Label jvmti_post_done; 2126 MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2127 z_bre(jvmti_post_done); 2128 if (!native_method) push(state); // see frame::interpreter_frame_result() 2129 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2130 if (!native_method) pop(state); 2131 bind(jvmti_post_done); 2132 } 2133 } 2134 2135 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { 2136 if (!JvmtiExport::can_post_interpreter_events()) { 2137 return; 2138 } 2139 2140 load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); 2141 z_brnz(Lskip); 2142 2143 } 2144 2145 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. 2146 // The return pc is loaded into the register return_pc. 2147 // 2148 // Registers updated: 2149 // return_pc - The return pc of the calling frame. 2150 // tmp1, tmp2 - scratch 2151 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { 2152 // F0 Z_SP -> caller_sp (F1's) 2153 // ... 2154 // sender_sp (F1's) 2155 // ... 2156 // F1 Z_fp -> caller_sp (F2's) 2157 // return_pc (Continuation after return from F0.) 2158 // ... 2159 // F2 caller_sp 2160 2161 // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications 2162 // (a) by a c2i adapter and (b) by generate_fixed_frame(). 2163 // In case (a) the new top frame F1 is an unextended compiled frame. 2164 // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. 2165 2166 // Case (b) seems to be redundant when returning to a interpreted caller, 2167 // because then the caller's top_frame_sp is installed as sp (see 2168 // TemplateInterpreterGenerator::generate_return_entry_for ()). But 2169 // pop_interpreter_frame() is also used in exception handling and there the 2170 // frame type of the caller is unknown, therefore top_frame_sp cannot be used, 2171 // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. 2172 2173 Register R_f1_sender_sp = tmp1; 2174 Register R_f2_sp = tmp2; 2175 2176 // First check for the interpreter frame's magic. 2177 asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); 2178 z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); 2179 z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); 2180 if (return_pc->is_valid()) 2181 z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); 2182 // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. 2183 resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); 2184 2185 #ifdef ASSERT 2186 // The return_pc in the new top frame is dead... at least that's my 2187 // current understanding; to assert this I overwrite it. 2188 load_const_optimized(Z_ARG3, 0xb00b1); 2189 z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); 2190 #endif 2191 } 2192 2193 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2194 if (VerifyFPU) { 2195 unimplemented("verifyFPU"); 2196 } 2197 } --- EOF ---