1 /*
   2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2024 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // Major contributions by AHa, AS, JL, ML.
  27 
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interp_masm_s390.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/resolvedFieldEntry.hpp"
  39 #include "oops/resolvedIndyEntry.hpp"
  40 #include "oops/resolvedMethodEntry.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/basicLock.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/javaThread.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "utilities/macros.hpp"
  49 #include "utilities/powerOfTwo.hpp"
  50 
  51 // Implementation of InterpreterMacroAssembler.
  52 // This file specializes the assembler with interpreter-specific macros.
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str)
  56 #define BIND(label)        bind(label);
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  60 #endif
  61 
  62 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  63   assert(entry != nullptr, "Entry must have been generated by now");
  64   assert(Rscratch != Z_R0, "Can't use R0 for addressing");
  65   branch_optimized(Assembler::bcondAlways, entry);
  66 }
  67 
  68 void InterpreterMacroAssembler::empty_expression_stack(void) {
  69   get_monitors(Z_R1_scratch);
  70   add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
  71 }
  72 
  73 // Dispatch code executed in the prolog of a bytecode which does not do it's
  74 // own dispatch.
  75 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  76   // On z/Architecture we are short on registers, therefore we do not preload the
  77   // dispatch address of the next bytecode.
  78 }
  79 
  80 // Dispatch code executed in the epilog of a bytecode which does not do it's
  81 // own dispatch.
  82 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
  83   dispatch_next(state, step);
  84 }
  85 
  86 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
  87   z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
  88   add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
  89   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
  90 }
  91 
  92 // Common code to dispatch and dispatch_only.
  93 // Dispatch value in Lbyte_code and increment Lbcp.
  94 
  95 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) {
  96 #ifdef ASSERT
  97   address reentry = nullptr;
  98   { Label OK;
  99     // Check if the frame pointer in Z_fp is correct.
 100     z_cg(Z_fp, 0, Z_SP);
 101     z_bre(OK);
 102     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
 103     bind(OK);
 104   }
 105   { Label OK;
 106     // check if the locals pointer in Z_locals is correct
 107 
 108     // _z_ijava_state_neg(locals)) is fp relativized, so we need to
 109     // extract the pointer.
 110 
 111     z_lg(Z_R1_scratch, Address(Z_fp, _z_ijava_state_neg(locals)));
 112     z_sllg(Z_R1_scratch, Z_R1_scratch, Interpreter::logStackElementSize);
 113     z_agr(Z_R1_scratch, Z_fp);
 114 
 115     z_cgr(Z_locals, Z_R1_scratch);
 116     z_bre(OK);
 117     reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
 118     bind(OK);
 119   }
 120 #endif
 121 
 122   // TODO: Maybe implement +VerifyActivationFrameSize here.
 123   verify_oop(Z_tos, state);
 124 
 125   // Dispatch table to use.
 126   load_absolute_address(Z_tmp_1, (address)table);  // Z_tmp_1 = table;
 127 
 128   if (generate_poll) {
 129     address *sfpt_tbl = Interpreter::safept_table(state);
 130     if (table != sfpt_tbl) {
 131       Label dispatch;
 132       const Address poll_byte_addr(Z_thread, in_bytes(JavaThread::polling_word_offset()) + 7 /* Big Endian */);
 133       // Armed page has poll_bit set, if poll bit is cleared just continue.
 134       z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
 135       z_braz(dispatch);
 136       load_absolute_address(Z_tmp_1, (address)sfpt_tbl);  // Z_tmp_1 = table;
 137       bind(dispatch);
 138     }
 139   }
 140 
 141   // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
 142   // Z_bytecode must have been loaded zero-extended for this approach to be correct.
 143   z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
 144   z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
 145 
 146   z_br(Z_tmp_1);
 147 }
 148 
 149 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 150   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
 151 }
 152 
 153 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 154   dispatch_base(state, Interpreter::normal_table(state));
 155 }
 156 
 157 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
 158   // Load current bytecode.
 159   z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
 160   dispatch_base(state, table);
 161 }
 162 
 163 // The following call_VM*_base() methods overload and mask the respective
 164 // declarations/definitions in class MacroAssembler. They are meant as a "detour"
 165 // to perform additional, template interpreter specific tasks before actually
 166 // calling their MacroAssembler counterparts.
 167 
 168 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
 169   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 170   // interpreter specific
 171   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 172   // saved registers and no blocking/ GC can happen in leaf calls.
 173 
 174   // super call
 175   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 176 }
 177 
 178 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
 179   // interpreter specific
 180   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 181   // saved registers and no blocking/ GC can happen in leaf calls.
 182 
 183   // super call
 184   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 185 }
 186 
 187 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 188                                              address entry_point, bool check_exceptions) {
 189   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 190   // interpreter specific
 191 
 192   save_bcp();
 193   save_esp();
 194   // super call
 195   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 196                                entry_point, allow_relocation, check_exceptions);
 197   restore_bcp();
 198 }
 199 
 200 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 201                                              address entry_point, bool allow_relocation,
 202                                              bool check_exceptions) {
 203   // interpreter specific
 204 
 205   save_bcp();
 206   save_esp();
 207   // super call
 208   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 209                                entry_point, allow_relocation, check_exceptions);
 210   restore_bcp();
 211 }
 212 
 213 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 214   if (JvmtiExport::can_pop_frame()) {
 215     BLOCK_COMMENT("check_and_handle_popframe {");
 216     Label L;
 217     // Initiate popframe handling only if it is not already being
 218     // processed. If the flag has the popframe_processing bit set, it
 219     // means that this code is called *during* popframe handling - we
 220     // don't want to reenter.
 221     // TODO: Check if all four state combinations could be visible.
 222     // If (processing and !pending) is an invisible/impossible state,
 223     // there is optimization potential by testing both bits at once.
 224     // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
 225     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 226             exact_log2(JavaThread::popframe_pending_bit));
 227     z_bfalse(L);
 228     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 229             exact_log2(JavaThread::popframe_processing_bit));
 230     z_btrue(L);
 231 
 232     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 233     // address of the same-named entrypoint in the generated interpreter code.
 234     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 235     // The above call should (as its only effect) return the contents of the field
 236     // _remove_activation_preserving_args_entry in Z_RET.
 237     // We just jump there to have the work done.
 238     z_br(Z_RET);
 239     // There is no way for control to fall thru here.
 240 
 241     bind(L);
 242     BLOCK_COMMENT("} check_and_handle_popframe");
 243   }
 244 }
 245 
 246 
 247 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 248   Register RjvmtiState = Z_R1_scratch;
 249   int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
 250   int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
 251   int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
 252   int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
 253 
 254   z_lg(RjvmtiState, state_off, Z_thread);
 255 
 256   switch (state) {
 257     case atos: z_lg(Z_tos, oop_off, RjvmtiState);
 258       store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
 259                                                     break;
 260     case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
 261     case btos: // fall through
 262     case ztos: // fall through
 263     case ctos: // fall through
 264     case stos: // fall through
 265     case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
 266     case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
 267     case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
 268     case vtos:   /* nothing to do */                break;
 269     default  : ShouldNotReachHere();
 270   }
 271 
 272   // Clean up tos value in the jvmti thread state.
 273   store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
 274   // Set tos state field to illegal value.
 275   store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
 276 }
 277 
 278 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 279   if (JvmtiExport::can_force_early_return()) {
 280     BLOCK_COMMENT("check_and_handle_earlyret {");
 281     Label L;
 282     // arg regs are save, because we are just behind the call in call_VM_base
 283     Register jvmti_thread_state = Z_ARG2;
 284     Register tmp                = Z_ARG3;
 285     load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
 286     z_bre(L); // if (thread->jvmti_thread_state() == nullptr) exit;
 287 
 288     // Initiate earlyret handling only if it is not already being processed.
 289     // If the flag has the earlyret_processing bit set, it means that this code
 290     // is called *during* earlyret handling - we don't want to reenter.
 291 
 292     assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
 293           "must fix this check, when changing the values of the earlyret enum");
 294     assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
 295 
 296     load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
 297     z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
 298 
 299     // Call Interpreter::remove_activation_early_entry() to get the address of the
 300     // same-named entrypoint in the generated interpreter code.
 301     assert(sizeof(TosState) == 4, "unexpected size");
 302     z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
 303     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
 304     // The above call should (as its only effect) return the contents of the field
 305     // _remove_activation_preserving_args_entry in Z_RET.
 306     // We just jump there to have the work done.
 307     z_br(Z_RET);
 308     // There is no way for control to fall thru here.
 309 
 310     bind(L);
 311     BLOCK_COMMENT("} check_and_handle_earlyret");
 312   }
 313 }
 314 
 315 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 316   lgr_if_needed(Z_ARG1, arg_1);
 317   assert(arg_2 != Z_ARG1, "smashed argument");
 318   lgr_if_needed(Z_ARG2, arg_2);
 319   MacroAssembler::call_VM_leaf_base(entry_point, true);
 320 }
 321 
 322 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
 323   Address param(Z_bcp, bcp_offset);
 324 
 325   BLOCK_COMMENT("get_cache_index_at_bcp {");
 326   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 327   if (index_size == sizeof(u2)) {
 328     load_sized_value(index, param, 2, false /*signed*/);
 329   } else if (index_size == sizeof(u4)) {
 330 
 331     load_sized_value(index, param, 4, false);
 332   } else if (index_size == sizeof(u1)) {
 333     z_llgc(index, param);
 334   } else {
 335     ShouldNotReachHere();
 336   }
 337   BLOCK_COMMENT("}");
 338 }
 339 
 340 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
 341   // Get index out of bytecode pointer.
 342   get_cache_index_at_bcp(index, 1, sizeof(u4));
 343 
 344   // Get the address of the ResolvedIndyEntry array
 345   get_constant_pool_cache(cache);
 346   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
 347 
 348   // Scale the index to form a byte offset into the ResolvedIndyEntry array
 349   size_t entry_size = sizeof(ResolvedIndyEntry);
 350   if (is_power_of_2(entry_size)) {
 351     z_sllg(index, index, exact_log2(entry_size));
 352   } else {
 353     z_mghi(index, entry_size);
 354   }
 355 
 356   // Calculate the final field address.
 357   z_la(cache, Array<ResolvedIndyEntry>::base_offset_in_bytes(), index, cache);
 358 }
 359 
 360 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
 361   // Get field index out of bytecode pointer.
 362   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
 363 
 364   // Get the address of the ResolvedFieldEntry array.
 365   get_constant_pool_cache(cache);
 366   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::field_entries_offset())));
 367 
 368   // Scale the index to form a byte offset into the ResolvedFieldEntry array
 369   size_t entry_size = sizeof(ResolvedFieldEntry);
 370   if (is_power_of_2(entry_size)) {
 371     z_sllg(index, index, exact_log2(entry_size));
 372   } else {
 373     z_mghi(index, entry_size);
 374   }
 375 
 376   // Calculate the final field address.
 377   z_la(cache, Array<ResolvedFieldEntry>::base_offset_in_bytes(), index, cache);
 378 }
 379 
 380 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
 381   // Get field index out of bytecode pointer.
 382   get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
 383 
 384   // Get the address of the ResolvedMethodEntry array.
 385   get_constant_pool_cache(cache);
 386   z_lg(cache, Address(cache, in_bytes(ConstantPoolCache::method_entries_offset())));
 387 
 388   // Scale the index to form a byte offset into the ResolvedMethodEntry array
 389   size_t entry_size = sizeof(ResolvedMethodEntry);
 390   if (is_power_of_2(entry_size)) {
 391     z_sllg(index, index, exact_log2(entry_size));
 392   } else {
 393     z_mghi(index, entry_size);
 394   }
 395 
 396   // Calculate the final field address.
 397   z_la(cache, Array<ResolvedMethodEntry>::base_offset_in_bytes(), index, cache);
 398 }
 399 
 400 // Load object from cpool->resolved_references(index).
 401 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 402   assert_different_registers(result, index);
 403   get_constant_pool(result);
 404 
 405   // Convert
 406   //  - from field index to resolved_references() index and
 407   //  - from word index to byte offset.
 408   // Since this is a java object, it is potentially compressed.
 409   Register tmp = index;  // reuse
 410   z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
 411   // Load pointer for resolved_references[] objArray.
 412   z_lg(result, in_bytes(ConstantPool::cache_offset()), result);
 413   z_lg(result, in_bytes(ConstantPoolCache::resolved_references_offset()), result);
 414   resolve_oop_handle(result); // Load resolved references array itself.
 415 #ifdef ASSERT
 416   NearLabel index_ok;
 417   z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
 418   z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
 419   compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
 420   stop("resolved reference index out of bounds", 0x09256);
 421   bind(index_ok);
 422 #endif
 423   z_agr(result, index);    // Address of indexed array element.
 424   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg);
 425 }
 426 
 427 // load cpool->resolved_klass_at(index)
 428 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) {
 429   // int value = *(Rcpool->int_at_addr(which));
 430   // int resolved_klass_index = extract_low_short_from_int(value);
 431   z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian)
 432   z_sllg(offset, offset, LogBytesPerWord);                          // Convert 'index' to 'offset'
 433   z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset())); // iklass = cpool->_resolved_klasses
 434   z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes()));
 435 }
 436 
 437 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 438 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 439 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 440                                                   Register Rsuper_klass,
 441                                                   Register Rtmp1,
 442                                                   Register Rtmp2,
 443                                                   Label &ok_is_subtype) {
 444   // Profile the not-null value's klass.
 445   profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
 446 
 447   // Do the check.
 448   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 449 }
 450 
 451 // Pop topmost element from stack. It just disappears.
 452 // Useful if consumed previously by access via stackTop().
 453 void InterpreterMacroAssembler::popx(int len) {
 454   add2reg(Z_esp, len*Interpreter::stackElementSize);
 455   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 456 }
 457 
 458 // Get Address object of stack top. No checks. No pop.
 459 // Purpose: - Provide address of stack operand to exploit reg-mem operations.
 460 //          - Avoid RISC-like mem2reg - reg-reg-op sequence.
 461 Address InterpreterMacroAssembler::stackTop() {
 462   return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
 463 }
 464 
 465 void InterpreterMacroAssembler::pop_i(Register r) {
 466   z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 467   add2reg(Z_esp, Interpreter::stackElementSize);
 468   assert_different_registers(r, Z_R1_scratch);
 469   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 470 }
 471 
 472 void InterpreterMacroAssembler::pop_ptr(Register r) {
 473   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 474   add2reg(Z_esp, Interpreter::stackElementSize);
 475   assert_different_registers(r, Z_R1_scratch);
 476   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 477 }
 478 
 479 void InterpreterMacroAssembler::pop_l(Register r) {
 480   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 481   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 482   assert_different_registers(r, Z_R1_scratch);
 483   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 484 }
 485 
 486 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 487   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
 488   add2reg(Z_esp, Interpreter::stackElementSize);
 489   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 490 }
 491 
 492 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 493   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
 494   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 495   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 496 }
 497 
 498 void InterpreterMacroAssembler::push_i(Register r) {
 499   assert_different_registers(r, Z_R1_scratch);
 500   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 501   z_st(r, Address(Z_esp));
 502   add2reg(Z_esp, -Interpreter::stackElementSize);
 503 }
 504 
 505 void InterpreterMacroAssembler::push_ptr(Register r) {
 506   z_stg(r, Address(Z_esp));
 507   add2reg(Z_esp, -Interpreter::stackElementSize);
 508 }
 509 
 510 void InterpreterMacroAssembler::push_l(Register r) {
 511   assert_different_registers(r, Z_R1_scratch);
 512   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 513   int offset = -Interpreter::stackElementSize;
 514   z_stg(r, Address(Z_esp, offset));
 515   clear_mem(Address(Z_esp), Interpreter::stackElementSize);
 516   add2reg(Z_esp, 2 * offset);
 517 }
 518 
 519 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 520   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 521   freg2mem_opt(f, Address(Z_esp), false);
 522   add2reg(Z_esp, -Interpreter::stackElementSize);
 523 }
 524 
 525 void InterpreterMacroAssembler::push_d(FloatRegister d) {
 526   DEBUG_ONLY(verify_esp(Z_esp, Z_R1_scratch));
 527   int offset = -Interpreter::stackElementSize;
 528   freg2mem_opt(d, Address(Z_esp, offset));
 529   add2reg(Z_esp, 2 * offset);
 530 }
 531 
 532 void InterpreterMacroAssembler::push(TosState state) {
 533   verify_oop(Z_tos, state);
 534   switch (state) {
 535     case atos: push_ptr();           break;
 536     case btos: push_i();             break;
 537     case ztos:
 538     case ctos:
 539     case stos: push_i();             break;
 540     case itos: push_i();             break;
 541     case ltos: push_l();             break;
 542     case ftos: push_f();             break;
 543     case dtos: push_d();             break;
 544     case vtos: /* nothing to do */   break;
 545     default  : ShouldNotReachHere();
 546   }
 547 }
 548 
 549 void InterpreterMacroAssembler::pop(TosState state) {
 550   switch (state) {
 551     case atos: pop_ptr(Z_tos);       break;
 552     case btos: pop_i(Z_tos);         break;
 553     case ztos:
 554     case ctos:
 555     case stos: pop_i(Z_tos);         break;
 556     case itos: pop_i(Z_tos);         break;
 557     case ltos: pop_l(Z_tos);         break;
 558     case ftos: pop_f(Z_ftos);        break;
 559     case dtos: pop_d(Z_ftos);        break;
 560     case vtos: /* nothing to do */   break;
 561     default  : ShouldNotReachHere();
 562   }
 563   verify_oop(Z_tos, state);
 564 }
 565 
 566 // Helpers for swap and dup.
 567 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 568   z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 569 }
 570 
 571 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 572   z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 573 }
 574 
 575 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
 576   // Satisfy interpreter calling convention (see generate_normal_entry()).
 577   z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
 578 #ifdef ASSERT
 579   NearLabel ok;
 580   Register tmp = Z_R1;
 581   z_lg(tmp, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
 582   z_slag(tmp, tmp, Interpreter::logStackElementSize);
 583   z_agr(tmp, Z_fp);
 584   z_cgr(tmp, Z_SP);
 585   z_bre(ok);
 586   stop("corrupted top_frame_sp");
 587   bind(ok);
 588 #endif
 589   save_bcp();
 590   save_esp();
 591   z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
 592 }
 593 
 594 // Jump to from_interpreted entry of a call unless single stepping is possible
 595 // in this thread in which case we must call the i2i entry.
 596 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 597   assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
 598   prepare_to_jump_from_interpreted(method);
 599 
 600   if (JvmtiExport::can_post_interpreter_events()) {
 601     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 602     // compiled code in threads for which the event is enabled. Check here for
 603     // interp_only_mode if these events CAN be enabled.
 604     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 605     MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
 606     z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
 607     // Run interpreted.
 608     z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
 609     z_br(Z_R1_scratch);
 610   } else {
 611     // Run compiled code.
 612     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 613     z_br(Z_R1_scratch);
 614   }
 615 }
 616 
 617 #ifdef ASSERT
 618 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
 619   // About to read or write Resp[0].
 620   // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
 621   address reentry = nullptr;
 622 
 623   {
 624     // Check if the frame pointer in Z_fp is correct.
 625     NearLabel OK;
 626     z_cg(Z_fp, 0, Z_SP);
 627     z_bre(OK);
 628     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
 629     bind(OK);
 630   }
 631   {
 632     // Resp must not point into or below the operand stack,
 633     // i.e. IJAVA_STATE.monitors > Resp.
 634     NearLabel OK;
 635     Register Rmonitors = Rtemp;
 636     get_monitors(Rmonitors);
 637     compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
 638     reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
 639     bind(OK);
 640   }
 641   {
 642     // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
 643     // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
 644     NearLabel OK;
 645     Register Rabi_bottom = Rtemp;
 646     add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
 647     compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
 648     reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
 649     bind(OK);
 650   }
 651 }
 652 
 653 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
 654   Label magic_ok;
 655   load_const_optimized(tmp, frame::z_istate_magic_number);
 656   z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
 657   z_bre(magic_ok);
 658   stop_static("error: wrong magic number in ijava_state access");
 659   bind(magic_ok);
 660 }
 661 #endif // ASSERT
 662 
 663 void InterpreterMacroAssembler::save_bcp() {
 664   z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 665   asm_assert_ijava_state_magic(Z_bcp);
 666   NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
 667 }
 668 
 669 void InterpreterMacroAssembler::restore_bcp() {
 670   asm_assert_ijava_state_magic(Z_bcp);
 671   z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 672 }
 673 
 674 void InterpreterMacroAssembler::save_esp(Register fp) {
 675   if (fp == noreg) {
 676     fp = Z_fp;
 677   }
 678   z_sgrk(Z_R0, Z_esp, fp);
 679   z_srag(Z_R0, Z_R0, Interpreter::logStackElementSize);
 680   z_stg(Z_R0, Address(fp, _z_ijava_state_neg(esp)));
 681 }
 682 
 683 void InterpreterMacroAssembler::restore_esp() {
 684   asm_assert_ijava_state_magic(Z_esp);
 685   z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 686   z_slag(Z_esp, Z_esp, Interpreter::logStackElementSize);
 687   z_agr(Z_esp, Z_fp);
 688 }
 689 
 690 void InterpreterMacroAssembler::get_monitors(Register reg) {
 691   asm_assert_ijava_state_magic(reg);
 692 #ifdef ASSERT
 693   NearLabel ok;
 694   z_cg(Z_fp, 0, Z_SP);
 695   z_bre(ok);
 696   stop("Z_fp is corrupted");
 697   bind(ok);
 698 #endif // ASSERT
 699   mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 700   z_slag(reg, reg, Interpreter::logStackElementSize);
 701   z_agr(reg, Z_fp);
 702 }
 703 
 704 void InterpreterMacroAssembler::save_monitors(Register reg) {
 705 #ifdef ASSERT
 706   NearLabel ok;
 707   z_cg(Z_fp, 0, Z_SP);
 708   z_bre(ok);
 709   stop("Z_fp is corrupted");
 710   bind(ok);
 711 #endif // ASSERT
 712   z_sgr(reg, Z_fp);
 713   z_srag(reg, reg, Interpreter::logStackElementSize);
 714   reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 715 }
 716 
 717 void InterpreterMacroAssembler::get_mdp(Register mdp) {
 718   z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 719 }
 720 
 721 void InterpreterMacroAssembler::save_mdp(Register mdp) {
 722   z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 723 }
 724 
 725 // Values that are only read (besides initialization).
 726 void InterpreterMacroAssembler::restore_locals() {
 727   asm_assert_ijava_state_magic(Z_locals);
 728   z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
 729   z_sllg(Z_locals, Z_locals, Interpreter::logStackElementSize);
 730   z_agr(Z_locals, Z_fp);
 731 }
 732 
 733 void InterpreterMacroAssembler::get_method(Register reg) {
 734   asm_assert_ijava_state_magic(reg);
 735   z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
 736 }
 737 
 738 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 739                                                           signedOrNot is_signed) {
 740   // Rdst is an 8-byte return value!!!
 741 
 742   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 743   // is a few (2..3) ticks, even when the load crosses a cache line
 744   // boundary. In case of a cache miss, the stall could, of course, be
 745   // much longer.
 746 
 747   switch (is_signed) {
 748     case Signed:
 749       z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 750      break;
 751    case Unsigned:
 752      z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 753      break;
 754    default:
 755      ShouldNotReachHere();
 756   }
 757 }
 758 
 759 
 760 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 761                                                           setCCOrNot set_cc) {
 762   // Rdst is an 8-byte return value!!!
 763 
 764   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 765   // is a few (2..3) ticks, even when the load crosses a cache line
 766   // boundary. In case of a cache miss, the stall could, of course, be
 767   // much longer.
 768 
 769   // Both variants implement a sign-extending int2long load.
 770   if (set_cc == set_CC) {
 771     load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 772   } else {
 773     mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 774   }
 775 }
 776 
 777 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 778   get_method(Rdst);
 779   mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
 780   mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
 781 }
 782 
 783 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 784   get_constant_pool(Rdst);
 785   mem2reg_opt(Rdst, Address(Rdst, ConstantPool::cache_offset()));
 786 }
 787 
 788 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 789   get_constant_pool(Rcpool);
 790   mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset()));
 791 }
 792 
 793 // Unlock if synchronized method.
 794 //
 795 // Unlock the receiver if this is a synchronized method.
 796 // Unlock any Java monitors from synchronized blocks.
 797 //
 798 // If there are locked Java monitors
 799 //   If throw_monitor_exception
 800 //     throws IllegalMonitorStateException
 801 //   Else if install_monitor_exception
 802 //     installs IllegalMonitorStateException
 803 //   Else
 804 //     no error processing
 805 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 806                                                               bool throw_monitor_exception,
 807                                                               bool install_monitor_exception) {
 808   NearLabel unlocked, unlock, no_unlock;
 809 
 810   {
 811     Register R_method = Z_ARG2;
 812     Register R_do_not_unlock_if_synchronized = Z_ARG3;
 813 
 814     // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
 815     const Address do_not_unlock_if_synchronized(Z_thread,
 816                                                 JavaThread::do_not_unlock_if_synchronized_offset());
 817     load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
 818     z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
 819 
 820     // Check if synchronized method.
 821     get_method(R_method);
 822     verify_oop(Z_tos, state);
 823     push(state); // Save tos/result.
 824     testbit_ushort(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 825     z_bfalse(unlocked);
 826 
 827     // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 828     // is set.
 829     compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
 830   }
 831 
 832   // unlock monitor
 833 
 834   // BasicObjectLock will be first in list, since this is a
 835   // synchronized method. However, need to check that the object has
 836   // not been unlocked by an explicit monitorexit bytecode.
 837   const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
 838   // We use Z_ARG2 so that if we go slow path it will be the correct
 839   // register for unlock_object to pass to VM directly.
 840   load_address(Z_ARG2, monitor); // Address of first monitor.
 841   z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset()));
 842   compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
 843 
 844   if (throw_monitor_exception) {
 845     // Entry already unlocked need to throw an exception.
 846     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 847     should_not_reach_here();
 848   } else {
 849     // Monitor already unlocked during a stack unroll.
 850     // If requested, install an illegal_monitor_state_exception.
 851     // Continue with stack unrolling.
 852     if (install_monitor_exception) {
 853       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 854     }
 855    z_bru(unlocked);
 856   }
 857 
 858   bind(unlock);
 859 
 860   unlock_object(Z_ARG2);
 861 
 862   bind(unlocked);
 863 
 864   // I0, I1: Might contain return value
 865 
 866   // Check that all monitors are unlocked.
 867   {
 868     NearLabel loop, exception, entry, restart;
 869     const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
 870     // We use Z_ARG2 so that if we go slow path it will be the correct
 871     // register for unlock_object to pass to VM directly.
 872     Register R_current_monitor = Z_ARG2;
 873     Register R_monitor_block_bot = Z_ARG1;
 874     const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
 875 
 876     bind(restart);
 877     // Starting with top-most entry.
 878     get_monitors(R_current_monitor);
 879     // Points to word before bottom of monitor block.
 880     load_address(R_monitor_block_bot, monitor_block_bot);
 881     z_bru(entry);
 882 
 883     // Entry already locked, need to throw exception.
 884     bind(exception);
 885 
 886     if (throw_monitor_exception) {
 887       // Throw exception.
 888       MacroAssembler::call_VM(noreg,
 889                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 890                                                throw_illegal_monitor_state_exception));
 891       should_not_reach_here();
 892     } else {
 893       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 894       // Unlock does not block, so don't have to worry about the frame.
 895       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 896       unlock_object(R_current_monitor);
 897       if (install_monitor_exception) {
 898         call_VM(noreg, CAST_FROM_FN_PTR(address,
 899                                         InterpreterRuntime::
 900                                         new_illegal_monitor_state_exception));
 901       }
 902       z_bru(restart);
 903     }
 904 
 905     bind(loop);
 906     // Check if current entry is used.
 907     load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset()));
 908     z_brne(exception);
 909 
 910     add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
 911     bind(entry);
 912     compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
 913   }
 914 
 915   bind(no_unlock);
 916   pop(state);
 917   verify_oop(Z_tos, state);
 918 }
 919 
 920 void InterpreterMacroAssembler::narrow(Register result, Register ret_type) {
 921   get_method(ret_type);
 922   z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset())));
 923   z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset())));
 924 
 925   Label notBool, notByte, notChar, done;
 926 
 927   // common case first
 928   compareU32_and_branch(ret_type, T_INT, bcondEqual, done);
 929 
 930   compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool);
 931   z_nilf(result, 0x1);
 932   z_bru(done);
 933 
 934   bind(notBool);
 935   compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte);
 936   z_lbr(result, result);
 937   z_bru(done);
 938 
 939   bind(notByte);
 940   compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar);
 941   z_nilf(result, 0xffff);
 942   z_bru(done);
 943 
 944   bind(notChar);
 945   // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort);
 946   z_lhr(result, result);
 947 
 948   // Nothing to do for T_INT
 949   bind(done);
 950 }
 951 
 952 // remove activation
 953 //
 954 // Unlock the receiver if this is a synchronized method.
 955 // Unlock any Java monitors from synchronized blocks.
 956 // Remove the activation from the stack.
 957 //
 958 // If there are locked Java monitors
 959 //   If throw_monitor_exception
 960 //     throws IllegalMonitorStateException
 961 //   Else if install_monitor_exception
 962 //     installs IllegalMonitorStateException
 963 //   Else
 964 //     no error processing
 965 void InterpreterMacroAssembler::remove_activation(TosState state,
 966                                                   Register return_pc,
 967                                                   bool throw_monitor_exception,
 968                                                   bool install_monitor_exception,
 969                                                   bool notify_jvmti) {
 970   BLOCK_COMMENT("remove_activation {");
 971   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 972 
 973   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 974   notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
 975 
 976   if (StackReservedPages > 0) {
 977     BLOCK_COMMENT("reserved_stack_check:");
 978     // Test if reserved zone needs to be enabled.
 979     Label no_reserved_zone_enabling;
 980 
 981     // check if already enabled - if so no re-enabling needed
 982     assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
 983     z_ly(Z_R0, Address(Z_thread, JavaThread::stack_guard_state_offset()));
 984     compare32_and_branch(Z_R0, StackOverflow::stack_guard_enabled, bcondEqual, no_reserved_zone_enabling);
 985 
 986     // Compare frame pointers. There is no good stack pointer, as with stack
 987     // frame compression we can get different SPs when we do calls. A subsequent
 988     // call could have a smaller SP, so that this compare succeeds for an
 989     // inner call of the method annotated with ReservedStack.
 990     z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
 991     z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
 992     z_brl(no_reserved_zone_enabling);
 993 
 994     // Enable reserved zone again, throw stack overflow exception.
 995     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
 996     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 997 
 998     should_not_reach_here();
 999 
1000     bind(no_reserved_zone_enabling);
1001   }
1002 
1003   verify_oop(Z_tos, state);
1004 
1005   pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
1006   BLOCK_COMMENT("} remove_activation");
1007 }
1008 
1009 // lock object
1010 //
1011 // Registers alive
1012 //   monitor (Z_R10) - Address of the BasicObjectLock to be used for locking,
1013 //             which must be initialized with the object to lock.
1014 //   object  (Z_R11, Z_R2) - Address of the object to be locked.
1015 //  templateTable (monitorenter) is using Z_R2 for object
1016 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
1017   const Register header           = Z_ARG5;
1018   const Register tmp              = Z_R1_scratch;
1019 
1020   NearLabel done, slow_case;
1021 
1022   lightweight_lock(monitor, object, header, tmp, slow_case);
1023   z_bru(done);
1024 
1025   bind(slow_case);
1026   call_VM(noreg,
1027           CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1028           monitor);
1029   bind(done);
1030 }
1031 
1032 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1033 //
1034 // Registers alive
1035 //   monitor - address of the BasicObjectLock to be used for locking,
1036 //             which must be initialized with the object to lock.
1037 //
1038 // Throw IllegalMonitorException if object is not locked by current thread.
1039 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
1040   const Register header         = Z_ARG4;
1041   const Register current_header = Z_R1_scratch;
1042   Address obj_entry(monitor, BasicObjectLock::obj_offset());
1043   Label done, slow_case;
1044 
1045   if (object == noreg) {
1046     // In the template interpreter, we must assure that the object
1047     // entry in the monitor is cleared on all paths. Thus we move
1048     // loading up to here, and clear the entry afterwards.
1049     object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
1050     z_lg(object, obj_entry);
1051   }
1052 
1053   assert_different_registers(monitor, object, header, current_header);
1054 
1055   clear_mem(obj_entry, sizeof(oop));
1056 
1057   lightweight_unlock(object, header, current_header, slow_case);
1058   z_bru(done);
1059 
1060   // The lock has been converted into a heavy lock and hence
1061   // we need to get into the slow case.
1062   bind(slow_case);
1063   z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
1064   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
1065   bind(done);
1066 }
1067 
1068 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1069   assert(ProfileInterpreter, "must be profiling interpreter");
1070   load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
1071   z_brz(zero_continue);
1072 }
1073 
1074 // Set the method data pointer for the current bcp.
1075 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1076   assert(ProfileInterpreter, "must be profiling interpreter");
1077   Label    set_mdp;
1078   Register mdp    = Z_ARG4;
1079   Register method = Z_ARG5;
1080 
1081   get_method(method);
1082   // Test MDO to avoid the call if it is null.
1083   load_and_test_long(mdp, method2_(method, method_data));
1084   z_brz(set_mdp);
1085 
1086   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
1087   // Z_RET: mdi
1088   // Mdo is guaranteed to be non-zero here, we checked for it before the call.
1089   assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
1090   z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
1091   add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
1092 
1093   bind(set_mdp);
1094   save_mdp(mdp);
1095 }
1096 
1097 void InterpreterMacroAssembler::verify_method_data_pointer() {
1098   assert(ProfileInterpreter, "must be profiling interpreter");
1099 #ifdef ASSERT
1100   NearLabel verify_continue;
1101   Register bcp_expected = Z_ARG3;
1102   Register mdp    = Z_ARG4;
1103   Register method = Z_ARG5;
1104 
1105   test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
1106   get_method(method);
1107 
1108   // If the mdp is valid, it will point to a DataLayout header which is
1109   // consistent with the bcp. The converse is highly probable also.
1110   load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
1111   z_ag(bcp_expected, Address(method, Method::const_offset()));
1112   load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
1113   compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
1114   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
1115   bind(verify_continue);
1116 #endif // ASSERT
1117 }
1118 
1119 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1120   assert(ProfileInterpreter, "must be profiling interpreter");
1121   z_stg(value, constant, mdp_in);
1122 }
1123 
1124 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1125                                                       int constant,
1126                                                       Register tmp,
1127                                                       bool decrement) {
1128   assert_different_registers(mdp_in, tmp);
1129   // counter address
1130   Address data(mdp_in, constant);
1131   const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
1132   add2mem_64(Address(mdp_in, constant), delta, tmp);
1133 }
1134 
1135 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1136                                                 int flag_byte_constant) {
1137   assert(ProfileInterpreter, "must be profiling interpreter");
1138   // Set the flag.
1139   z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
1140 }
1141 
1142 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1143                                                  int offset,
1144                                                  Register value,
1145                                                  Register test_value_out,
1146                                                  Label& not_equal_continue) {
1147   assert(ProfileInterpreter, "must be profiling interpreter");
1148   if (test_value_out == noreg) {
1149     z_cg(value, Address(mdp_in, offset));
1150     z_brne(not_equal_continue);
1151   } else {
1152     // Put the test value into a register, so caller can use it:
1153     z_lg(test_value_out, Address(mdp_in, offset));
1154     compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
1155   }
1156 }
1157 
1158 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1159   update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
1160 }
1161 
1162 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1163                                                      Register dataidx,
1164                                                      int offset_of_disp) {
1165   assert(ProfileInterpreter, "must be profiling interpreter");
1166   Address disp_address(mdp_in, dataidx, offset_of_disp);
1167   Assembler::z_ag(mdp_in, disp_address);
1168   save_mdp(mdp_in);
1169 }
1170 
1171 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1172   assert(ProfileInterpreter, "must be profiling interpreter");
1173   add2reg(mdp_in, constant);
1174   save_mdp(mdp_in);
1175 }
1176 
1177 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1178   assert(ProfileInterpreter, "must be profiling interpreter");
1179   assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
1180   call_VM(noreg,
1181           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1182           return_bci);
1183 }
1184 
1185 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1186   if (ProfileInterpreter) {
1187     Label profile_continue;
1188 
1189     // If no method data exists, go to profile_continue.
1190     // Otherwise, assign to mdp.
1191     test_method_data_pointer(mdp, profile_continue);
1192 
1193     // We are taking a branch. Increment the taken count.
1194     // We inline increment_mdp_data_at to return bumped_count in a register
1195     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1196     Address data(mdp, JumpData::taken_offset());
1197     z_lg(bumped_count, data);
1198     // 64-bit overflow is very unlikely. Saturation to 32-bit values is
1199     // performed when reading the counts.
1200     add2reg(bumped_count, DataLayout::counter_increment);
1201     z_stg(bumped_count, data); // Store back out
1202 
1203     // The method data pointer needs to be updated to reflect the new target.
1204     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1205     bind(profile_continue);
1206   }
1207 }
1208 
1209 // Kills Z_R1_scratch.
1210 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1211   if (ProfileInterpreter) {
1212     Label profile_continue;
1213 
1214     // If no method data exists, go to profile_continue.
1215     test_method_data_pointer(mdp, profile_continue);
1216 
1217     // We are taking a branch. Increment the not taken count.
1218     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
1219 
1220     // The method data pointer needs to be updated to correspond to
1221     // the next bytecode.
1222     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1223     bind(profile_continue);
1224   }
1225 }
1226 
1227 // Kills: Z_R1_scratch.
1228 void InterpreterMacroAssembler::profile_call(Register mdp) {
1229   if (ProfileInterpreter) {
1230     Label profile_continue;
1231 
1232     // If no method data exists, go to profile_continue.
1233     test_method_data_pointer(mdp, profile_continue);
1234 
1235     // We are making a call. Increment the count.
1236     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1237 
1238     // The method data pointer needs to be updated to reflect the new target.
1239     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1240     bind(profile_continue);
1241   }
1242 }
1243 
1244 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1245   if (ProfileInterpreter) {
1246     Label profile_continue;
1247 
1248     // If no method data exists, go to profile_continue.
1249     test_method_data_pointer(mdp, profile_continue);
1250 
1251     // We are making a call. Increment the count.
1252     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1253 
1254     // The method data pointer needs to be updated to reflect the new target.
1255     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1256     bind(profile_continue);
1257   }
1258 }
1259 
1260 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1261                                                      Register mdp,
1262                                                      Register reg2,
1263                                                      bool receiver_can_be_null) {
1264   if (ProfileInterpreter) {
1265     NearLabel profile_continue;
1266 
1267     // If no method data exists, go to profile_continue.
1268     test_method_data_pointer(mdp, profile_continue);
1269 
1270     NearLabel skip_receiver_profile;
1271     if (receiver_can_be_null) {
1272       NearLabel not_null;
1273       compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
1274       // We are making a call. Increment the count for null receiver.
1275       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1276       z_bru(skip_receiver_profile);
1277       bind(not_null);
1278     }
1279 
1280     // Record the receiver type.
1281     record_klass_in_profile(receiver, mdp, reg2);
1282     bind(skip_receiver_profile);
1283 
1284     // The method data pointer needs to be updated to reflect the new target.
1285     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1286     bind(profile_continue);
1287   }
1288 }
1289 
1290 // This routine creates a state machine for updating the multi-row
1291 // type profile at a virtual call site (or other type-sensitive bytecode).
1292 // The machine visits each row (of receiver/count) until the receiver type
1293 // is found, or until it runs out of rows. At the same time, it remembers
1294 // the location of the first empty row. (An empty row records null for its
1295 // receiver, and can be allocated for a newly-observed receiver type.)
1296 // Because there are two degrees of freedom in the state, a simple linear
1297 // search will not work; it must be a decision tree. Hence this helper
1298 // function is recursive, to generate the required tree structured code.
1299 // It's the interpreter, so we are trading off code space for speed.
1300 // See below for example code.
1301 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1302                                         Register receiver, Register mdp,
1303                                         Register reg2, int start_row,
1304                                         Label& done) {
1305   if (TypeProfileWidth == 0) {
1306     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1307     return;
1308   }
1309 
1310   int last_row = VirtualCallData::row_limit() - 1;
1311   assert(start_row <= last_row, "must be work left to do");
1312   // Test this row for both the receiver and for null.
1313   // Take any of three different outcomes:
1314   //   1. found receiver => increment count and goto done
1315   //   2. found null => keep looking for case 1, maybe allocate this cell
1316   //   3. found something else => keep looking for cases 1 and 2
1317   // Case 3 is handled by a recursive call.
1318   for (int row = start_row; row <= last_row; row++) {
1319     NearLabel next_test;
1320     bool test_for_null_also = (row == start_row);
1321 
1322     // See if the receiver is receiver[n].
1323     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1324     test_mdp_data_at(mdp, recvr_offset, receiver,
1325                      (test_for_null_also ? reg2 : noreg),
1326                      next_test);
1327     // (Reg2 now contains the receiver from the CallData.)
1328 
1329     // The receiver is receiver[n]. Increment count[n].
1330     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1331     increment_mdp_data_at(mdp, count_offset);
1332     z_bru(done);
1333     bind(next_test);
1334 
1335     if (test_for_null_also) {
1336       Label found_null;
1337       // Failed the equality check on receiver[n]... Test for null.
1338       z_ltgr(reg2, reg2);
1339       if (start_row == last_row) {
1340         // The only thing left to do is handle the null case.
1341         z_brz(found_null);
1342         // Receiver did not match any saved receiver and there is no empty row for it.
1343         // Increment total counter to indicate polymorphic case.
1344         increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1345         z_bru(done);
1346         bind(found_null);
1347         break;
1348       }
1349       // Since null is rare, make it be the branch-taken case.
1350       z_brz(found_null);
1351 
1352       // Put all the "Case 3" tests here.
1353       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
1354 
1355       // Found a null. Keep searching for a matching receiver,
1356       // but remember that this is an empty (unused) slot.
1357       bind(found_null);
1358     }
1359   }
1360 
1361   // In the fall-through case, we found no matching receiver, but we
1362   // observed the receiver[start_row] is null.
1363 
1364   // Fill in the receiver field and increment the count.
1365   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1366   set_mdp_data_at(mdp, recvr_offset, receiver);
1367   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1368   load_const_optimized(reg2, DataLayout::counter_increment);
1369   set_mdp_data_at(mdp, count_offset, reg2);
1370   if (start_row > 0) {
1371     z_bru(done);
1372   }
1373 }
1374 
1375 // Example state machine code for three profile rows:
1376 //   // main copy of decision tree, rooted at row[1]
1377 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1378 //   if (row[0].rec != nullptr) {
1379 //     // inner copy of decision tree, rooted at row[1]
1380 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1381 //     if (row[1].rec != nullptr) {
1382 //       // degenerate decision tree, rooted at row[2]
1383 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1384 //       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1385 //       row[2].init(rec); goto done;
1386 //     } else {
1387 //       // remember row[1] is empty
1388 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1389 //       row[1].init(rec); goto done;
1390 //     }
1391 //   } else {
1392 //     // remember row[0] is empty
1393 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1394 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1395 //     row[0].init(rec); goto done;
1396 //   }
1397 //   done:
1398 
1399 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1400                                                         Register mdp, Register reg2) {
1401   assert(ProfileInterpreter, "must be profiling");
1402   Label done;
1403 
1404   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1405 
1406   bind (done);
1407 }
1408 
1409 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1410   if (ProfileInterpreter) {
1411     NearLabel profile_continue;
1412     uint row;
1413 
1414     // If no method data exists, go to profile_continue.
1415     test_method_data_pointer(mdp, profile_continue);
1416 
1417     // Update the total ret count.
1418     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1419 
1420     for (row = 0; row < RetData::row_limit(); row++) {
1421       NearLabel next_test;
1422 
1423       // See if return_bci is equal to bci[n]:
1424       test_mdp_data_at(mdp,
1425                        in_bytes(RetData::bci_offset(row)),
1426                        return_bci, noreg,
1427                        next_test);
1428 
1429       // Return_bci is equal to bci[n]. Increment the count.
1430       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1431 
1432       // The method data pointer needs to be updated to reflect the new target.
1433       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1434       z_bru(profile_continue);
1435       bind(next_test);
1436     }
1437 
1438     update_mdp_for_ret(return_bci);
1439 
1440     bind(profile_continue);
1441   }
1442 }
1443 
1444 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1445   if (ProfileInterpreter) {
1446     Label profile_continue;
1447 
1448     // If no method data exists, go to profile_continue.
1449     test_method_data_pointer(mdp, profile_continue);
1450 
1451     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1452 
1453     // The method data pointer needs to be updated.
1454     int mdp_delta = in_bytes(BitData::bit_data_size());
1455     if (TypeProfileCasts) {
1456       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1457     }
1458     update_mdp_by_constant(mdp, mdp_delta);
1459 
1460     bind(profile_continue);
1461   }
1462 }
1463 
1464 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1465   if (ProfileInterpreter) {
1466     Label profile_continue;
1467 
1468     // If no method data exists, go to profile_continue.
1469     test_method_data_pointer(mdp, profile_continue);
1470 
1471     // The method data pointer needs to be updated.
1472     int mdp_delta = in_bytes(BitData::bit_data_size());
1473     if (TypeProfileCasts) {
1474       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1475 
1476       // Record the object type.
1477       record_klass_in_profile(klass, mdp, reg2);
1478     }
1479     update_mdp_by_constant(mdp, mdp_delta);
1480 
1481     bind(profile_continue);
1482   }
1483 }
1484 
1485 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1486   if (ProfileInterpreter) {
1487     Label profile_continue;
1488 
1489     // If no method data exists, go to profile_continue.
1490     test_method_data_pointer(mdp, profile_continue);
1491 
1492     // Update the default case count.
1493     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1494 
1495     // The method data pointer needs to be updated.
1496     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1497 
1498     bind(profile_continue);
1499   }
1500 }
1501 
1502 // Kills: index, scratch1, scratch2.
1503 void InterpreterMacroAssembler::profile_switch_case(Register index,
1504                                                     Register mdp,
1505                                                     Register scratch1,
1506                                                     Register scratch2) {
1507   if (ProfileInterpreter) {
1508     Label profile_continue;
1509     assert_different_registers(index, mdp, scratch1, scratch2);
1510 
1511     // If no method data exists, go to profile_continue.
1512     test_method_data_pointer(mdp, profile_continue);
1513 
1514     // Build the base (index * per_case_size_in_bytes()) +
1515     // case_array_offset_in_bytes().
1516     z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1517     add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
1518 
1519     // Add the calculated base to the mdp -> address of the case' data.
1520     Address case_data_addr(mdp, index);
1521     Register case_data = scratch1;
1522     load_address(case_data, case_data_addr);
1523 
1524     // Update the case count.
1525     increment_mdp_data_at(case_data,
1526                           in_bytes(MultiBranchData::relative_count_offset()),
1527                           scratch2);
1528 
1529     // The method data pointer needs to be updated.
1530     update_mdp_by_offset(mdp,
1531                          index,
1532                          in_bytes(MultiBranchData::relative_displacement_offset()));
1533 
1534     bind(profile_continue);
1535   }
1536 }
1537 
1538 // kills: R0, R1, flags, loads klass from obj (if not null)
1539 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
1540   NearLabel null_seen, init_klass, do_nothing, do_update;
1541 
1542   // Klass = obj is allowed.
1543   const Register tmp = Z_R1;
1544   assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
1545   assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
1546 
1547   z_lg(tmp, mdo_addr);
1548   if (cmp_done) {
1549     z_brz(null_seen);
1550   } else {
1551     compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
1552   }
1553 
1554   MacroAssembler::verify_oop(obj, FILE_AND_LINE);
1555   load_klass(klass, obj);
1556 
1557   // Klass seen before, nothing to do (regardless of unknown bit).
1558   z_lgr(Z_R0, tmp);
1559   assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
1560   z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
1561   compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
1562 
1563   // Already unknown. Nothing to do anymore.
1564   z_tmll(tmp, TypeEntries::type_unknown);
1565   z_brc(Assembler::bcondAllOne, do_nothing);
1566 
1567   z_lgr(Z_R0, tmp);
1568   assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
1569   z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
1570   compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
1571 
1572   // Different than before. Cannot keep accurate profile.
1573   z_oill(tmp, TypeEntries::type_unknown);
1574   z_bru(do_update);
1575 
1576   bind(init_klass);
1577   // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1578   z_ogr(tmp, klass);
1579   z_bru(do_update);
1580 
1581   bind(null_seen);
1582   // Set null_seen if obj is 0.
1583   z_oill(tmp, TypeEntries::null_seen);
1584   // fallthru: z_bru(do_update);
1585 
1586   bind(do_update);
1587   z_stg(tmp, mdo_addr);
1588 
1589   bind(do_nothing);
1590 }
1591 
1592 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1593   if (!ProfileInterpreter) {
1594     return;
1595   }
1596 
1597   assert_different_registers(mdp, callee, tmp);
1598 
1599   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1600     Label profile_continue;
1601 
1602     test_method_data_pointer(mdp, profile_continue);
1603 
1604     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1605 
1606     z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
1607            is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1608     z_brne(profile_continue);
1609 
1610     if (MethodData::profile_arguments()) {
1611       NearLabel done;
1612       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1613       add2reg(mdp, off_to_args);
1614 
1615       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1616         if (i > 0 || MethodData::profile_return()) {
1617           // If return value type is profiled we may have no argument to profile.
1618           z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1619           add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
1620           compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
1621         }
1622         z_lg(tmp, Address(callee, Method::const_offset()));
1623         z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1624         // Stack offset o (zero based) from the start of the argument
1625         // list. For n arguments translates into offset n - o - 1 from
1626         // the end of the argument list. But there is an extra slot at
1627         // the top of the stack. So the offset is n - o from Lesp.
1628         z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1629         z_sllg(tmp, tmp, Interpreter::logStackElementSize);
1630         Address stack_slot_addr(tmp, Z_esp);
1631         z_ltg(tmp, stack_slot_addr);
1632 
1633         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1634         profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
1635 
1636         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1637         add2reg(mdp, to_add);
1638         off_to_args += to_add;
1639       }
1640 
1641       if (MethodData::profile_return()) {
1642         z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1643         add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1644       }
1645 
1646       bind(done);
1647 
1648       if (MethodData::profile_return()) {
1649         // We're right after the type profile for the last
1650         // argument. Tmp is the number of cells left in the
1651         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1652         // if there's a return to profile.
1653         assert(SingleTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1654         z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
1655         z_agr(mdp, tmp);
1656       }
1657       z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
1658     } else {
1659       assert(MethodData::profile_return(), "either profile call args or call ret");
1660       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1661     }
1662 
1663     // Mdp points right after the end of the
1664     // CallTypeData/VirtualCallTypeData, right after the cells for the
1665     // return value type if there's one.
1666     bind(profile_continue);
1667   }
1668 }
1669 
1670 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1671   assert_different_registers(mdp, ret, tmp);
1672   if (ProfileInterpreter && MethodData::profile_return()) {
1673     Label profile_continue;
1674 
1675     test_method_data_pointer(mdp, profile_continue);
1676 
1677     if (MethodData::profile_return_jsr292_only()) {
1678       // If we don't profile all invoke bytecodes we must make sure
1679       // it's a bytecode we indeed profile. We can't go back to the
1680       // beginning of the ProfileData we intend to update to check its
1681       // type because we're right after it and we don't known its
1682       // length.
1683       NearLabel do_profile;
1684       Address bc(Z_bcp);
1685       z_lb(tmp, bc);
1686       compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
1687       compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
1688       get_method(tmp);
1689       // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
1690       if (Method::intrinsic_id_size_in_bytes() == 1) {
1691         z_cli(in_bytes(Method::intrinsic_id_offset()), tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1692       } else {
1693         assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
1694         z_lh(tmp, in_bytes(Method::intrinsic_id_offset()), Z_R0, tmp);
1695         z_chi(tmp, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1696       }
1697       z_brne(profile_continue);
1698 
1699       bind(do_profile);
1700     }
1701 
1702     Address mdo_ret_addr(mdp, -in_bytes(SingleTypeEntry::size()));
1703     profile_obj_type(ret, mdo_ret_addr, tmp);
1704 
1705     bind(profile_continue);
1706   }
1707 }
1708 
1709 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1710   if (ProfileInterpreter && MethodData::profile_parameters()) {
1711     Label profile_continue, done;
1712 
1713     test_method_data_pointer(mdp, profile_continue);
1714 
1715     // Load the offset of the area within the MDO used for
1716     // parameters. If it's negative we're not profiling any parameters.
1717     Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
1718     load_and_test_int2long(tmp1, parm_di_addr);
1719     z_brl(profile_continue);
1720 
1721     // Compute a pointer to the area for parameters from the offset
1722     // and move the pointer to the slot for the last
1723     // parameters. Collect profiling from last parameter down.
1724     // mdo start + parameters offset + array length - 1
1725 
1726     // Pointer to the parameter area in the MDO.
1727     z_agr(mdp, tmp1);
1728 
1729     // Offset of the current profile entry to update.
1730     const Register entry_offset = tmp1;
1731     // entry_offset = array len in number of cells.
1732     z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
1733     // entry_offset (number of cells) = array len - size of 1 entry
1734     add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
1735     // entry_offset in bytes
1736     z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1737 
1738     Label loop;
1739     bind(loop);
1740 
1741     Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
1742     Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
1743 
1744     // Load offset on the stack from the slot for this parameter.
1745     z_lg(tmp2, arg_off);
1746     z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
1747     z_lcgr(tmp2); // Negate.
1748 
1749     // Profile the parameter.
1750     z_ltg(tmp2, Address(Z_locals, tmp2));
1751     profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
1752 
1753     // Go to next parameter.
1754     z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
1755     z_brnl(loop);
1756 
1757     bind(profile_continue);
1758   }
1759 }
1760 
1761 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1762 void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
1763                                                         int              increment,
1764                                                         Address          mask,
1765                                                         Register         scratch,
1766                                                         bool             preloaded,
1767                                                         branch_condition cond,
1768                                                         Label           *where) {
1769   assert_different_registers(counter_addr.base(), scratch);
1770   if (preloaded) {
1771     add2reg(scratch, increment);
1772     reg2mem_opt(scratch, counter_addr, false);
1773   } else {
1774     if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
1775       z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
1776       mem2reg_signed_opt(scratch, counter_addr);
1777     } else {
1778       mem2reg_signed_opt(scratch, counter_addr);
1779       add2reg(scratch, increment);
1780       reg2mem_opt(scratch, counter_addr, false);
1781     }
1782   }
1783   z_n(scratch, mask);
1784   if (where) { z_brc(cond, *where); }
1785 }
1786 
1787 // Get MethodCounters object for given method. Lazily allocated if necessary.
1788 //   method    - Ptr to Method object.
1789 //   Rcounters - Ptr to MethodCounters object associated with Method object.
1790 //   skip      - Exit point if MethodCounters object can't be created (OOM condition).
1791 void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
1792                                                     Register Rcounters,
1793                                                     Label& skip) {
1794   assert_different_registers(Rmethod, Rcounters);
1795 
1796   BLOCK_COMMENT("get MethodCounters object {");
1797 
1798   Label has_counters;
1799   load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
1800   z_brnz(has_counters);
1801 
1802   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod);
1803   z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
1804   z_brz(skip); // No MethodCounters, out of memory.
1805 
1806   bind(has_counters);
1807 
1808   BLOCK_COMMENT("} get MethodCounters object");
1809 }
1810 
1811 // Increment invocation counter in MethodCounters object.
1812 // Return (invocation_counter+backedge_counter) as "result" in RctrSum.
1813 // Counter values are all unsigned.
1814 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
1815   assert(UseCompiler, "incrementing must be useful");
1816   assert_different_registers(Rcounters, RctrSum);
1817 
1818   int increment          = InvocationCounter::count_increment;
1819   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1820   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1821 
1822   BLOCK_COMMENT("Increment invocation counter {");
1823 
1824   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1825     // Increment the invocation counter in place,
1826     // then add the incremented value to the backedge counter.
1827     z_l(RctrSum, be_counter_offset, Rcounters);
1828     z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
1829     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1830     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1831   } else {
1832     // This path is optimized for low register consumption
1833     // at the cost of somewhat higher operand delays.
1834     // It does not need an extra temp register.
1835 
1836     // Update the invocation counter.
1837     z_l(RctrSum, inv_counter_offset, Rcounters);
1838     if (RctrSum == Z_R0) {
1839       z_ahi(RctrSum, increment);
1840     } else {
1841       add2reg(RctrSum, increment);
1842     }
1843     z_st(RctrSum, inv_counter_offset, Rcounters);
1844 
1845     // Mask off the state bits.
1846     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1847 
1848     // Add the backedge counter to the updated invocation counter to
1849     // form the result.
1850     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1851   }
1852 
1853   BLOCK_COMMENT("} Increment invocation counter");
1854 
1855   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1856 }
1857 
1858 
1859 // increment backedge counter in MethodCounters object.
1860 // return (invocation_counter+backedge_counter) as "result" in RctrSum
1861 // counter values are all unsigned!
1862 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
1863   assert(UseCompiler, "incrementing must be useful");
1864   assert_different_registers(Rcounters, RctrSum);
1865 
1866   int increment          = InvocationCounter::count_increment;
1867   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1868   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1869 
1870   BLOCK_COMMENT("Increment backedge counter {");
1871 
1872   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1873     // Increment the invocation counter in place,
1874     // then add the incremented value to the backedge counter.
1875     z_l(RctrSum, inv_counter_offset, Rcounters);
1876     z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
1877     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1878     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1879   } else {
1880     // This path is optimized for low register consumption
1881     // at the cost of somewhat higher operand delays.
1882     // It does not need an extra temp register.
1883 
1884     // Update the invocation counter.
1885     z_l(RctrSum, be_counter_offset, Rcounters);
1886     if (RctrSum == Z_R0) {
1887       z_ahi(RctrSum, increment);
1888     } else {
1889       add2reg(RctrSum, increment);
1890     }
1891     z_st(RctrSum, be_counter_offset, Rcounters);
1892 
1893     // Mask off the state bits.
1894     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1895 
1896     // Add the backedge counter to the updated invocation counter to
1897     // form the result.
1898     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1899   }
1900 
1901   BLOCK_COMMENT("} Increment backedge counter");
1902 
1903   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1904 }
1905 
1906 // Add an InterpMonitorElem to stack (see frame_s390.hpp).
1907 void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
1908                                                      Register Rtemp1,
1909                                                      Register Rtemp2,
1910                                                      Register Rtemp3) {
1911 
1912   const Register Rcurr_slot = Rtemp1;
1913   const Register Rlimit     = Rtemp2;
1914   const jint delta = -frame::interpreter_frame_monitor_size_in_bytes();
1915 
1916   assert((delta & LongAlignmentMask) == 0,
1917          "sizeof BasicObjectLock must be even number of doublewords");
1918   assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
1919   assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
1920   assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
1921 
1922   get_monitors(Rlimit);
1923 
1924   // Adjust stack pointer for additional monitor entry.
1925   resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
1926 
1927   // Rtemp3 is free at this point, use it to store top_frame_sp
1928   z_sgrk(Rtemp3, Z_SP, Z_fp);
1929   z_srag(Rtemp3, Rtemp3, Interpreter::logStackElementSize);
1930   reg2mem_opt(Rtemp3, Address(Z_fp, _z_ijava_state_neg(top_frame_sp)));
1931 
1932   if (!stack_is_empty) {
1933     // Must copy stack contents down.
1934     NearLabel next, done;
1935 
1936     // Rtemp := addr(Tos), Z_esp is pointing below it!
1937     add2reg(Rcurr_slot, wordSize, Z_esp);
1938 
1939     // Nothing to do, if already at monitor area.
1940     compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
1941 
1942     bind(next);
1943 
1944     // Move one stack slot.
1945     mem2reg_opt(Rtemp3, Address(Rcurr_slot));
1946     reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
1947     add2reg(Rcurr_slot, wordSize);
1948     compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
1949 
1950     bind(done);
1951     // Done copying stack.
1952   }
1953 
1954   // Adjust expression stack and monitor pointers.
1955   add2reg(Z_esp, delta);
1956   add2reg(Rlimit, delta);
1957   save_monitors(Rlimit);
1958 }
1959 
1960 // Note: Index holds the offset in bytes afterwards.
1961 // You can use this to store a new value (with Llocals as the base).
1962 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
1963   z_sllg(index, index, LogBytesPerWord);
1964   mem2reg_opt(dst, Address(Z_locals, index), false);
1965 }
1966 
1967 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1968   if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); }
1969 }
1970 
1971 // Inline assembly for:
1972 //
1973 // if (thread is in interp_only_mode) {
1974 //   InterpreterRuntime::post_method_entry();
1975 // }
1976 
1977 void InterpreterMacroAssembler::notify_method_entry() {
1978 
1979   // JVMTI
1980   // Whenever JVMTI puts a thread in interp_only_mode, method
1981   // entry/exit events are sent for that thread to track stack
1982   // depth. If it is possible to enter interp_only_mode we add
1983   // the code to check if the event should be sent.
1984   if (JvmtiExport::can_post_interpreter_events()) {
1985     Label jvmti_post_done;
1986     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
1987     z_bre(jvmti_post_done);
1988     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1989     bind(jvmti_post_done);
1990   }
1991 }
1992 
1993 // Inline assembly for:
1994 //
1995 // if (thread is in interp_only_mode) {
1996 //   if (!native_method) save result
1997 //   InterpreterRuntime::post_method_exit();
1998 //   if (!native_method) restore result
1999 // }
2000 // if (DTraceMethodProbes) {
2001 //   SharedRuntime::dtrace_method_exit(thread, method);
2002 // }
2003 //
2004 // For native methods their result is stored in z_ijava_state.lresult
2005 // and z_ijava_state.fresult before coming here.
2006 // Java methods have their result stored in the expression stack.
2007 //
2008 // Notice the dependency to frame::interpreter_frame_result().
2009 void InterpreterMacroAssembler::notify_method_exit(bool native_method,
2010                                                    TosState state,
2011                                                    NotifyMethodExitMode mode) {
2012   // JVMTI
2013   // Whenever JVMTI puts a thread in interp_only_mode, method
2014   // entry/exit events are sent for that thread to track stack
2015   // depth. If it is possible to enter interp_only_mode we add
2016   // the code to check if the event should be sent.
2017   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2018     Label jvmti_post_done;
2019     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2020     z_bre(jvmti_post_done);
2021     if (!native_method) push(state); // see frame::interpreter_frame_result()
2022     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2023     if (!native_method) pop(state);
2024     bind(jvmti_post_done);
2025   }
2026 }
2027 
2028 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
2029   if (!JvmtiExport::can_post_interpreter_events()) {
2030     return;
2031   }
2032 
2033   load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2034   z_brnz(Lskip);
2035 
2036 }
2037 
2038 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
2039 // The return pc is loaded into the register return_pc.
2040 //
2041 // Registers updated:
2042 //     return_pc  - The return pc of the calling frame.
2043 //     tmp1, tmp2 - scratch
2044 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
2045   // F0  Z_SP -> caller_sp (F1's)
2046   //             ...
2047   //             sender_sp (F1's)
2048   //             ...
2049   // F1  Z_fp -> caller_sp (F2's)
2050   //             return_pc (Continuation after return from F0.)
2051   //             ...
2052   // F2          caller_sp
2053 
2054   // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
2055   // (a) by a c2i adapter and (b) by generate_fixed_frame().
2056   // In case (a) the new top frame F1 is an unextended compiled frame.
2057   // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
2058 
2059   // Case (b) seems to be redundant when returning to a interpreted caller,
2060   // because then the caller's top_frame_sp is installed as sp (see
2061   // TemplateInterpreterGenerator::generate_return_entry_for ()). But
2062   // pop_interpreter_frame() is also used in exception handling and there the
2063   // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
2064   // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
2065 
2066   Register R_f1_sender_sp = tmp1;
2067   Register R_f2_sp = tmp2;
2068 
2069   // First check for the interpreter frame's magic.
2070   asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
2071   z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
2072   z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
2073   if (return_pc->is_valid())
2074     z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2075   // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
2076   resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
2077 
2078 #ifdef ASSERT
2079   // The return_pc in the new top frame is dead... at least that's my
2080   // current understanding; to assert this I overwrite it.
2081   load_const_optimized(Z_ARG3, 0xb00b1);
2082   z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2083 #endif
2084 }
--- EOF ---