1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 #include "utilities/align.hpp"
  35 #include "utilities/macros.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 
  38 
  39 #define __ ce->masm()->
  40 
  41 float ConversionStub::float_zero = 0.0;
  42 double ConversionStub::double_zero = 0.0;
  43 
  44 void ConversionStub::emit_code(LIR_Assembler* ce) {
  45   __ bind(_entry);
  46   assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
  47 
  48 
  49   if (input()->is_single_xmm()) {
  50     __ comiss(input()->as_xmm_float_reg(),
  51               ExternalAddress((address)&float_zero));
  52   } else if (input()->is_double_xmm()) {
  53     __ comisd(input()->as_xmm_double_reg(),
  54               ExternalAddress((address)&double_zero));
  55   } else {
  56     LP64_ONLY(ShouldNotReachHere());
  57     __ push(rax);
  58     __ ftst();
  59     __ fnstsw_ax();
  60     __ sahf();
  61     __ pop(rax);
  62   }
  63 
  64   Label NaN, do_return;
  65   __ jccb(Assembler::parity, NaN);
  66   __ jccb(Assembler::below, do_return);
  67 
  68   // input is > 0 -> return maxInt
  69   // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff
  70   __ decrement(result()->as_register());
  71   __ jmpb(do_return);
  72 
  73   // input is NaN -> return 0
  74   __ bind(NaN);
  75   __ xorptr(result()->as_register(), result()->as_register());
  76 
  77   __ bind(do_return);
  78   __ jmp(_continuation);
  79 }
  80 
  81 void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
  82   __ bind(_entry);
  83   Metadata *m = _method->as_constant_ptr()->as_metadata();
  84   ce->store_parameter(m, 1);
  85   ce->store_parameter(_bci, 0);
  86   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
  87   ce->add_call_info_here(_info);
  88   ce->verify_oop_map(_info);
  89   __ jmp(_continuation);
  90 }
  91 
  92 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, LIR_Opr array)
  93   : _index(index), _array(array), _throw_index_out_of_bounds_exception(false) {
  94   assert(info != NULL, "must have info");
  95   _info = new CodeEmitInfo(info);
  96 }
  97 
  98 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index)
  99   : _index(index), _array(NULL), _throw_index_out_of_bounds_exception(true) {
 100   assert(info != NULL, "must have info");
 101   _info = new CodeEmitInfo(info);
 102 }
 103 
 104 void RangeCheckStub::emit_code(LIR_Assembler* ce) {
 105   __ bind(_entry);
 106   if (_info->deoptimize_on_exception()) {
 107     address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 108     __ call(RuntimeAddress(a));
 109     ce->add_call_info_here(_info);
 110     ce->verify_oop_map(_info);
 111     debug_only(__ should_not_reach_here());
 112     return;
 113   }
 114 
 115   // pass the array index on stack because all registers must be preserved
 116   if (_index->is_cpu_register()) {
 117     ce->store_parameter(_index->as_register(), 0);
 118   } else {
 119     ce->store_parameter(_index->as_jint(), 0);
 120   }
 121   Runtime1::StubID stub_id;
 122   if (_throw_index_out_of_bounds_exception) {
 123     stub_id = Runtime1::throw_index_exception_id;
 124   } else {
 125     stub_id = Runtime1::throw_range_check_failed_id;
 126     ce->store_parameter(_array->as_pointer_register(), 1);
 127   }
 128   __ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
 129   ce->add_call_info_here(_info);
 130   ce->verify_oop_map(_info);
 131   debug_only(__ should_not_reach_here());
 132 }
 133 
 134 PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
 135   _info = new CodeEmitInfo(info);
 136 }
 137 
 138 void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
 139   __ bind(_entry);
 140   address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 141   __ call(RuntimeAddress(a));
 142   ce->add_call_info_here(_info);
 143   ce->verify_oop_map(_info);
 144   debug_only(__ should_not_reach_here());
 145 }
 146 
 147 void DivByZeroStub::emit_code(LIR_Assembler* ce) {
 148   if (_offset != -1) {
 149     ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 150   }
 151   __ bind(_entry);
 152   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id)));
 153   ce->add_call_info_here(_info);
 154   debug_only(__ should_not_reach_here());
 155 }
 156 
 157 
 158 // Implementation of LoadFlattenedArrayStub
 159 
 160 LoadFlattenedArrayStub::LoadFlattenedArrayStub(LIR_Opr array, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 161   _array = array;
 162   _index = index;
 163   _result = result;
 164   // Tell the register allocator that the runtime call will scratch rax.
 165   _scratch_reg = FrameMap::rax_oop_opr;
 166   _info = new CodeEmitInfo(info);
 167 }
 168 
 169 void LoadFlattenedArrayStub::emit_code(LIR_Assembler* ce) {
 170   assert(__ rsp_offset() == 0, "frame size should be fixed");
 171   __ bind(_entry);
 172   ce->store_parameter(_array->as_register(), 1);
 173   ce->store_parameter(_index->as_register(), 0);
 174   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::load_flattened_array_id)));
 175   ce->add_call_info_here(_info);
 176   ce->verify_oop_map(_info);
 177   if (_result->as_register() != rax) {
 178     __ movptr(_result->as_register(), rax);
 179   }
 180   __ jmp(_continuation);
 181 }
 182 
 183 
 184 // Implementation of StoreFlattenedArrayStub
 185 
 186 StoreFlattenedArrayStub::StoreFlattenedArrayStub(LIR_Opr array, LIR_Opr index, LIR_Opr value, CodeEmitInfo* info) {
 187   _array = array;
 188   _index = index;
 189   _value = value;
 190   // Tell the register allocator that the runtime call will scratch rax.
 191   _scratch_reg = FrameMap::rax_oop_opr;
 192   _info = new CodeEmitInfo(info);
 193 }
 194 
 195 
 196 void StoreFlattenedArrayStub::emit_code(LIR_Assembler* ce) {
 197   assert(__ rsp_offset() == 0, "frame size should be fixed");
 198   __ bind(_entry);
 199   ce->store_parameter(_array->as_register(), 2);
 200   ce->store_parameter(_index->as_register(), 1);
 201   ce->store_parameter(_value->as_register(), 0);
 202   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::store_flattened_array_id)));
 203   ce->add_call_info_here(_info);
 204   ce->verify_oop_map(_info);
 205   __ jmp(_continuation);
 206 }
 207 
 208 
 209 // Implementation of SubstitutabilityCheckStub
 210 
 211 SubstitutabilityCheckStub::SubstitutabilityCheckStub(LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 212   _left = left;
 213   _right = right;
 214   // Tell the register allocator that the runtime call will scratch rax.
 215   _scratch_reg = FrameMap::rax_oop_opr;
 216   _info = new CodeEmitInfo(info);
 217 }
 218 
 219 void SubstitutabilityCheckStub::emit_code(LIR_Assembler* ce) {
 220   assert(__ rsp_offset() == 0, "frame size should be fixed");
 221   __ bind(_entry);
 222   ce->store_parameter(_left->as_register(), 1);
 223   ce->store_parameter(_right->as_register(), 0);
 224   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::substitutability_check_id)));
 225   ce->add_call_info_here(_info);
 226   ce->verify_oop_map(_info);
 227   __ jmp(_continuation);
 228 }
 229 
 230 
 231 // Implementation of NewInstanceStub
 232 
 233 NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
 234   _result = result;
 235   _klass = klass;
 236   _klass_reg = klass_reg;
 237   _info = new CodeEmitInfo(info);
 238   assert(stub_id == Runtime1::new_instance_id                 ||
 239          stub_id == Runtime1::fast_new_instance_id            ||
 240          stub_id == Runtime1::fast_new_instance_init_check_id,
 241          "need new_instance id");
 242   _stub_id   = stub_id;
 243 }
 244 
 245 
 246 void NewInstanceStub::emit_code(LIR_Assembler* ce) {
 247   assert(__ rsp_offset() == 0, "frame size should be fixed");
 248   __ bind(_entry);
 249   __ movptr(rdx, _klass_reg->as_register());
 250   __ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
 251   ce->add_call_info_here(_info);
 252   ce->verify_oop_map(_info);
 253   assert(_result->as_register() == rax, "result must in rax,");
 254   __ jmp(_continuation);
 255 }
 256 
 257 
 258 // Implementation of NewTypeArrayStub
 259 
 260 NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
 261   _klass_reg = klass_reg;
 262   _length = length;
 263   _result = result;
 264   _info = new CodeEmitInfo(info);
 265 }
 266 
 267 
 268 void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
 269   assert(__ rsp_offset() == 0, "frame size should be fixed");
 270   __ bind(_entry);
 271   assert(_length->as_register() == rbx, "length must in rbx,");
 272   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 273   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
 274   ce->add_call_info_here(_info);
 275   ce->verify_oop_map(_info);
 276   assert(_result->as_register() == rax, "result must in rax,");
 277   __ jmp(_continuation);
 278 }
 279 
 280 
 281 // Implementation of NewObjectArrayStub
 282 
 283 NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result,
 284                                        CodeEmitInfo* info, bool is_value_type) {
 285   _klass_reg = klass_reg;
 286   _result = result;
 287   _length = length;
 288   _info = new CodeEmitInfo(info);
 289   _is_value_type = is_value_type;
 290 }
 291 
 292 
 293 void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
 294   assert(__ rsp_offset() == 0, "frame size should be fixed");
 295   __ bind(_entry);
 296   assert(_length->as_register() == rbx, "length must in rbx,");
 297   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 298   if (_is_value_type) {
 299     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_value_array_id)));
 300   } else {
 301     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
 302   }
 303   ce->add_call_info_here(_info);
 304   ce->verify_oop_map(_info);
 305   assert(_result->as_register() == rax, "result must in rax,");
 306   __ jmp(_continuation);
 307 }
 308 
 309 
 310 // Implementation of MonitorAccessStubs
 311 
 312 MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info, CodeStub* throw_imse_stub, LIR_Opr scratch_reg)
 313 : MonitorAccessStub(obj_reg, lock_reg)
 314 {
 315   _info = new CodeEmitInfo(info);
 316   _throw_imse_stub = throw_imse_stub;
 317   _scratch_reg = scratch_reg;
 318   if (_throw_imse_stub != NULL) {
 319     assert(_scratch_reg != LIR_OprFact::illegalOpr, "must be");
 320   }
 321 }
 322 
 323 
 324 void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
 325   assert(__ rsp_offset() == 0, "frame size should be fixed");
 326   __ bind(_entry);
 327   if (_throw_imse_stub != NULL) {
 328     // When we come here, _obj_reg has already been checked to be non-null.
 329     const int is_value_mask = markOopDesc::always_locked_pattern;
 330     Register mark = _scratch_reg->as_register();
 331     __ movptr(mark, Address(_obj_reg->as_register(), oopDesc::mark_offset_in_bytes()));
 332     __ andptr(mark, is_value_mask);
 333     __ cmpl(mark, is_value_mask);
 334     __ jcc(Assembler::equal, *_throw_imse_stub->entry());
 335   }
 336   ce->store_parameter(_obj_reg->as_register(),  1);
 337   ce->store_parameter(_lock_reg->as_register(), 0);
 338   Runtime1::StubID enter_id;
 339   if (ce->compilation()->has_fpu_code()) {
 340     enter_id = Runtime1::monitorenter_id;
 341   } else {
 342     enter_id = Runtime1::monitorenter_nofpu_id;
 343   }
 344   __ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
 345   ce->add_call_info_here(_info);
 346   ce->verify_oop_map(_info);
 347   __ jmp(_continuation);
 348 }
 349 
 350 
 351 void MonitorExitStub::emit_code(LIR_Assembler* ce) {
 352   __ bind(_entry);
 353   if (_compute_lock) {
 354     // lock_reg was destroyed by fast unlocking attempt => recompute it
 355     ce->monitor_address(_monitor_ix, _lock_reg);
 356   }
 357   ce->store_parameter(_lock_reg->as_register(), 0);
 358   // note: non-blocking leaf routine => no call info needed
 359   Runtime1::StubID exit_id;
 360   if (ce->compilation()->has_fpu_code()) {
 361     exit_id = Runtime1::monitorexit_id;
 362   } else {
 363     exit_id = Runtime1::monitorexit_nofpu_id;
 364   }
 365   __ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
 366   __ jmp(_continuation);
 367 }
 368 
 369 
 370 // Implementation of patching:
 371 // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
 372 // - Replace original code with a call to the stub
 373 // At Runtime:
 374 // - call to stub, jump to runtime
 375 // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
 376 // - in runtime: after initializing class, restore original code, reexecute instruction
 377 
 378 int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
 379 
 380 void PatchingStub::align_patch_site(MacroAssembler* masm) {
 381   // We're patching a 5-7 byte instruction on intel and we need to
 382   // make sure that we don't see a piece of the instruction.  It
 383   // appears mostly impossible on Intel to simply invalidate other
 384   // processors caches and since they may do aggressive prefetch it's
 385   // very hard to make a guess about what code might be in the icache.
 386   // Force the instruction to be double word aligned so that it
 387   // doesn't span a cache line.
 388   masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize));
 389 }
 390 
 391 void PatchingStub::emit_code(LIR_Assembler* ce) {
 392   assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
 393 
 394   Label call_patch;
 395 
 396   // static field accesses have special semantics while the class
 397   // initializer is being run so we emit a test which can be used to
 398   // check that this code is being executed by the initializing
 399   // thread.
 400   address being_initialized_entry = __ pc();
 401   if (CommentedAssembly) {
 402     __ block_comment(" patch template");
 403   }
 404   if (_id == load_klass_id) {
 405     // produce a copy of the load klass instruction for use by the being initialized case
 406 #ifdef ASSERT
 407     address start = __ pc();
 408 #endif
 409     Metadata* o = NULL;
 410     __ mov_metadata(_obj, o);
 411 #ifdef ASSERT
 412     for (int i = 0; i < _bytes_to_copy; i++) {
 413       address ptr = (address)(_pc_start + i);
 414       int a_byte = (*ptr) & 0xFF;
 415       assert(a_byte == *start++, "should be the same code");
 416     }
 417 #endif
 418   } else if (_id == load_mirror_id) {
 419     // produce a copy of the load mirror instruction for use by the being
 420     // initialized case
 421 #ifdef ASSERT
 422     address start = __ pc();
 423 #endif
 424     jobject o = NULL;
 425     __ movoop(_obj, o);
 426 #ifdef ASSERT
 427     for (int i = 0; i < _bytes_to_copy; i++) {
 428       address ptr = (address)(_pc_start + i);
 429       int a_byte = (*ptr) & 0xFF;
 430       assert(a_byte == *start++, "should be the same code");
 431     }
 432 #endif
 433   } else {
 434     // make a copy the code which is going to be patched.
 435     for (int i = 0; i < _bytes_to_copy; i++) {
 436       address ptr = (address)(_pc_start + i);
 437       int a_byte = (*ptr) & 0xFF;
 438       __ emit_int8(a_byte);
 439       *ptr = 0x90; // make the site look like a nop
 440     }
 441   }
 442 
 443   address end_of_patch = __ pc();
 444   int bytes_to_skip = 0;
 445   if (_id == load_mirror_id) {
 446     int offset = __ offset();
 447     if (CommentedAssembly) {
 448       __ block_comment(" being_initialized check");
 449     }
 450     assert(_obj != noreg, "must be a valid register");
 451     Register tmp = rax;
 452     Register tmp2 = rbx;
 453     __ push(tmp);
 454     __ push(tmp2);
 455     // Load without verification to keep code size small. We need it because
 456     // begin_initialized_entry_offset has to fit in a byte. Also, we know it's not null.
 457     __ movptr(tmp2, Address(_obj, java_lang_Class::klass_offset_in_bytes()));
 458     __ get_thread(tmp);
 459     __ cmpptr(tmp, Address(tmp2, InstanceKlass::init_thread_offset()));
 460     __ pop(tmp2);
 461     __ pop(tmp);
 462     __ jcc(Assembler::notEqual, call_patch);
 463 
 464     // access_field patches may execute the patched code before it's
 465     // copied back into place so we need to jump back into the main
 466     // code of the nmethod to continue execution.
 467     __ jmp(_patch_site_continuation);
 468 
 469     // make sure this extra code gets skipped
 470     bytes_to_skip += __ offset() - offset;
 471   }
 472   if (CommentedAssembly) {
 473     __ block_comment("patch data encoded as movl");
 474   }
 475   // Now emit the patch record telling the runtime how to find the
 476   // pieces of the patch.  We only need 3 bytes but for readability of
 477   // the disassembly we make the data look like a movl reg, imm32,
 478   // which requires 5 bytes
 479   int sizeof_patch_record = 5;
 480   bytes_to_skip += sizeof_patch_record;
 481 
 482   // emit the offsets needed to find the code to patch
 483   int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record;
 484 
 485   __ emit_int8((unsigned char)0xB8);
 486   __ emit_int8(0);
 487   __ emit_int8(being_initialized_entry_offset);
 488   __ emit_int8(bytes_to_skip);
 489   __ emit_int8(_bytes_to_copy);
 490   address patch_info_pc = __ pc();
 491   assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
 492 
 493   address entry = __ pc();
 494   NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
 495   address target = NULL;
 496   relocInfo::relocType reloc_type = relocInfo::none;
 497   switch (_id) {
 498     case access_field_id:  target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
 499     case load_klass_id:    target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
 500     case load_mirror_id:   target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
 501     case load_appendix_id:      target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
 502     default: ShouldNotReachHere();
 503   }
 504   __ bind(call_patch);
 505 
 506   if (CommentedAssembly) {
 507     __ block_comment("patch entry point");
 508   }
 509   __ call(RuntimeAddress(target));
 510   assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
 511   ce->add_call_info_here(_info);
 512   int jmp_off = __ offset();
 513   __ jmp(_patch_site_entry);
 514   // Add enough nops so deoptimization can overwrite the jmp above with a call
 515   // and not destroy the world. We cannot use fat nops here, since the concurrent
 516   // code rewrite may transiently create the illegal instruction sequence.
 517   for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
 518     __ nop();
 519   }
 520   if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
 521     CodeSection* cs = __ code_section();
 522     RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
 523     relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none);
 524   }
 525 }
 526 
 527 
 528 void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
 529   __ bind(_entry);
 530   ce->store_parameter(_trap_request, 0);
 531   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
 532   ce->add_call_info_here(_info);
 533   DEBUG_ONLY(__ should_not_reach_here());
 534 }
 535 
 536 
 537 void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
 538   address a;
 539   if (_info->deoptimize_on_exception()) {
 540     // Deoptimize, do not throw the exception, because it is probably wrong to do it here.
 541     a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 542   } else {
 543     a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
 544   }
 545 
 546   ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 547   __ bind(_entry);
 548   __ call(RuntimeAddress(a));
 549   ce->add_call_info_here(_info);
 550   ce->verify_oop_map(_info);
 551   debug_only(__ should_not_reach_here());
 552 }
 553 
 554 
 555 void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
 556   assert(__ rsp_offset() == 0, "frame size should be fixed");
 557 
 558   __ bind(_entry);
 559   // pass the object on stack because all registers must be preserved
 560   if (_obj->is_cpu_register()) {
 561     ce->store_parameter(_obj->as_register(), 0);
 562   }
 563   __ call(RuntimeAddress(Runtime1::entry_for(_stub)));
 564   ce->add_call_info_here(_info);
 565   debug_only(__ should_not_reach_here());
 566 }
 567 
 568 
 569 void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
 570   //---------------slow case: call to native-----------------
 571   __ bind(_entry);
 572   // Figure out where the args should go
 573   // This should really convert the IntrinsicID to the Method* and signature
 574   // but I don't know how to do that.
 575   //
 576   VMRegPair args[5];
 577   BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
 578   SharedRuntime::java_calling_convention(signature, args, 5, true);
 579 
 580   // push parameters
 581   // (src, src_pos, dest, destPos, length)
 582   Register r[5];
 583   r[0] = src()->as_register();
 584   r[1] = src_pos()->as_register();
 585   r[2] = dst()->as_register();
 586   r[3] = dst_pos()->as_register();
 587   r[4] = length()->as_register();
 588 
 589   // next registers will get stored on the stack
 590   for (int i = 0; i < 5 ; i++ ) {
 591     VMReg r_1 = args[i].first();
 592     if (r_1->is_stack()) {
 593       int st_off = r_1->reg2stack() * wordSize;
 594       __ movptr (Address(rsp, st_off), r[i]);
 595     } else {
 596       assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
 597     }
 598   }
 599 
 600   ce->align_call(lir_static_call);
 601 
 602   ce->emit_static_call_stub();
 603   if (ce->compilation()->bailed_out()) {
 604     return; // CodeCache is full
 605   }
 606   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
 607                          relocInfo::static_call_type);
 608   __ call(resolve);
 609   ce->add_call_info_here(info());
 610 
 611 #ifndef PRODUCT
 612   __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
 613 #endif
 614 
 615   __ jmp(_continuation);
 616 }
 617 
 618 #undef __