1 /* 2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/gc_globals.hpp" 39 #include "nativeInst_x86.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 #include "vmreg_x86.inline.hpp" 47 48 49 // These masks are used to provide 128-bit aligned bitmasks to the XMM 50 // instructions, to allow sign-masking or sign-bit flipping. They allow 51 // fast versions of NegF/NegD and AbsF/AbsD. 52 53 // Note: 'double' and 'long long' have 32-bits alignment on x86. 54 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 55 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 56 // of 128-bits operands for SSE instructions. 57 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 58 // Store the value to a 128-bits operand. 59 operand[0] = lo; 60 operand[1] = hi; 61 return operand; 62 } 63 64 // Buffer for 128-bits masks used by SSE instructions. 65 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 66 67 // Static initialization during VM startup. 68 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 69 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 70 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 71 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 72 73 74 NEEDS_CLEANUP // remove this definitions ? 75 const Register SYNC_header = rax; // synchronization header 76 const Register SHIFT_count = rcx; // where count for shift operations must be 77 78 #define __ _masm-> 79 80 81 static void select_different_registers(Register preserve, 82 Register extra, 83 Register &tmp1, 84 Register &tmp2) { 85 if (tmp1 == preserve) { 86 assert_different_registers(tmp1, tmp2, extra); 87 tmp1 = extra; 88 } else if (tmp2 == preserve) { 89 assert_different_registers(tmp1, tmp2, extra); 90 tmp2 = extra; 91 } 92 assert_different_registers(preserve, tmp1, tmp2); 93 } 94 95 96 97 static void select_different_registers(Register preserve, 98 Register extra, 99 Register &tmp1, 100 Register &tmp2, 101 Register &tmp3) { 102 if (tmp1 == preserve) { 103 assert_different_registers(tmp1, tmp2, tmp3, extra); 104 tmp1 = extra; 105 } else if (tmp2 == preserve) { 106 assert_different_registers(tmp1, tmp2, tmp3, extra); 107 tmp2 = extra; 108 } else if (tmp3 == preserve) { 109 assert_different_registers(tmp1, tmp2, tmp3, extra); 110 tmp3 = extra; 111 } 112 assert_different_registers(preserve, tmp1, tmp2, tmp3); 113 } 114 115 116 117 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 118 if (opr->is_constant()) { 119 LIR_Const* constant = opr->as_constant_ptr(); 120 switch (constant->type()) { 121 case T_INT: { 122 return true; 123 } 124 125 default: 126 return false; 127 } 128 } 129 return false; 130 } 131 132 133 LIR_Opr LIR_Assembler::receiverOpr() { 134 return FrameMap::receiver_opr; 135 } 136 137 LIR_Opr LIR_Assembler::osrBufferPointer() { 138 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 139 } 140 141 //--------------fpu register translations----------------------- 142 143 144 address LIR_Assembler::float_constant(float f) { 145 address const_addr = __ float_constant(f); 146 if (const_addr == nullptr) { 147 bailout("const section overflow"); 148 return __ code()->consts()->start(); 149 } else { 150 return const_addr; 151 } 152 } 153 154 155 address LIR_Assembler::double_constant(double d) { 156 address const_addr = __ double_constant(d); 157 if (const_addr == nullptr) { 158 bailout("const section overflow"); 159 return __ code()->consts()->start(); 160 } else { 161 return const_addr; 162 } 163 } 164 165 #ifndef _LP64 166 void LIR_Assembler::fpop() { 167 __ fpop(); 168 } 169 170 void LIR_Assembler::fxch(int i) { 171 __ fxch(i); 172 } 173 174 void LIR_Assembler::fld(int i) { 175 __ fld_s(i); 176 } 177 178 void LIR_Assembler::ffree(int i) { 179 __ ffree(i); 180 } 181 #endif // !_LP64 182 183 void LIR_Assembler::breakpoint() { 184 __ int3(); 185 } 186 187 void LIR_Assembler::push(LIR_Opr opr) { 188 if (opr->is_single_cpu()) { 189 __ push_reg(opr->as_register()); 190 } else if (opr->is_double_cpu()) { 191 NOT_LP64(__ push_reg(opr->as_register_hi())); 192 __ push_reg(opr->as_register_lo()); 193 } else if (opr->is_stack()) { 194 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 195 } else if (opr->is_constant()) { 196 LIR_Const* const_opr = opr->as_constant_ptr(); 197 if (const_opr->type() == T_OBJECT) { 198 __ push_oop(const_opr->as_jobject(), rscratch1); 199 } else if (const_opr->type() == T_INT) { 200 __ push_jint(const_opr->as_jint()); 201 } else { 202 ShouldNotReachHere(); 203 } 204 205 } else { 206 ShouldNotReachHere(); 207 } 208 } 209 210 void LIR_Assembler::pop(LIR_Opr opr) { 211 if (opr->is_single_cpu()) { 212 __ pop_reg(opr->as_register()); 213 } else { 214 ShouldNotReachHere(); 215 } 216 } 217 218 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 219 return addr->base()->is_illegal() && addr->index()->is_illegal(); 220 } 221 222 //------------------------------------------- 223 224 Address LIR_Assembler::as_Address(LIR_Address* addr) { 225 return as_Address(addr, rscratch1); 226 } 227 228 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 229 if (addr->base()->is_illegal()) { 230 assert(addr->index()->is_illegal(), "must be illegal too"); 231 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 232 if (! __ reachable(laddr)) { 233 __ movptr(tmp, laddr.addr()); 234 Address res(tmp, 0); 235 return res; 236 } else { 237 return __ as_Address(laddr); 238 } 239 } 240 241 Register base = addr->base()->as_pointer_register(); 242 243 if (addr->index()->is_illegal()) { 244 return Address( base, addr->disp()); 245 } else if (addr->index()->is_cpu_register()) { 246 Register index = addr->index()->as_pointer_register(); 247 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 248 } else if (addr->index()->is_constant()) { 249 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 250 assert(Assembler::is_simm32(addr_offset), "must be"); 251 252 return Address(base, addr_offset); 253 } else { 254 Unimplemented(); 255 return Address(); 256 } 257 } 258 259 260 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 261 Address base = as_Address(addr); 262 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 263 } 264 265 266 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 267 return as_Address(addr); 268 } 269 270 271 void LIR_Assembler::osr_entry() { 272 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 273 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 274 ValueStack* entry_state = osr_entry->state(); 275 int number_of_locks = entry_state->locks_size(); 276 277 // we jump here if osr happens with the interpreter 278 // state set up to continue at the beginning of the 279 // loop that triggered osr - in particular, we have 280 // the following registers setup: 281 // 282 // rcx: osr buffer 283 // 284 285 // build frame 286 ciMethod* m = compilation()->method(); 287 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 288 289 // OSR buffer is 290 // 291 // locals[nlocals-1..0] 292 // monitors[0..number_of_locks] 293 // 294 // locals is a direct copy of the interpreter frame so in the osr buffer 295 // so first slot in the local array is the last local from the interpreter 296 // and last slot is local[0] (receiver) from the interpreter 297 // 298 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 299 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 300 // in the interpreter frame (the method lock if a sync method) 301 302 // Initialize monitors in the compiled activation. 303 // rcx: pointer to osr buffer 304 // 305 // All other registers are dead at this point and the locals will be 306 // copied into place by code emitted in the IR. 307 308 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 309 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 310 int monitor_offset = BytesPerWord * method()->max_locals() + 311 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 312 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 313 // the OSR buffer using 2 word entries: first the lock and then 314 // the oop. 315 for (int i = 0; i < number_of_locks; i++) { 316 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 317 #ifdef ASSERT 318 // verify the interpreter's monitor has a non-null object 319 { 320 Label L; 321 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD); 322 __ jcc(Assembler::notZero, L); 323 __ stop("locked object is null"); 324 __ bind(L); 325 } 326 #endif 327 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 328 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 329 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 330 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 331 } 332 } 333 } 334 335 336 // inline cache check; done before the frame is built. 337 int LIR_Assembler::check_icache() { 338 return __ ic_check(CodeEntryAlignment); 339 } 340 341 void LIR_Assembler::clinit_barrier(ciMethod* method) { 342 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 343 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 344 345 Label L_skip_barrier; 346 Register klass = rscratch1; 347 Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg ); 348 assert(thread != noreg, "x86_32 not implemented"); 349 350 __ mov_metadata(klass, method->holder()->constant_encoding()); 351 __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/); 352 353 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 354 355 __ bind(L_skip_barrier); 356 } 357 358 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 359 jobject o = nullptr; 360 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 361 __ movoop(reg, o); 362 patching_epilog(patch, lir_patch_normal, reg, info); 363 } 364 365 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 366 Metadata* o = nullptr; 367 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 368 __ mov_metadata(reg, o); 369 patching_epilog(patch, lir_patch_normal, reg, info); 370 } 371 372 // This specifies the rsp decrement needed to build the frame 373 int LIR_Assembler::initial_frame_size_in_bytes() const { 374 // if rounding, must let FrameMap know! 375 376 // The frame_map records size in slots (32bit word) 377 378 // subtract two words to account for return address and link 379 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 380 } 381 382 383 int LIR_Assembler::emit_exception_handler() { 384 // generate code for exception handler 385 address handler_base = __ start_a_stub(exception_handler_size()); 386 if (handler_base == nullptr) { 387 // not enough space left for the handler 388 bailout("exception handler overflow"); 389 return -1; 390 } 391 392 int offset = code_offset(); 393 394 // the exception oop and pc are in rax, and rdx 395 // no other registers need to be preserved, so invalidate them 396 __ invalidate_registers(false, true, true, false, true, true); 397 398 // check that there is really an exception 399 __ verify_not_null_oop(rax); 400 401 // search an exception handler (rax: exception oop, rdx: throwing pc) 402 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::handle_exception_from_callee_id))); 403 __ should_not_reach_here(); 404 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 405 __ end_a_stub(); 406 407 return offset; 408 } 409 410 411 // Emit the code to remove the frame from the stack in the exception 412 // unwind path. 413 int LIR_Assembler::emit_unwind_handler() { 414 #ifndef PRODUCT 415 if (CommentedAssembly) { 416 _masm->block_comment("Unwind handler"); 417 } 418 #endif 419 420 int offset = code_offset(); 421 422 // Fetch the exception from TLS and clear out exception related thread state 423 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 424 NOT_LP64(__ get_thread(thread)); 425 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset())); 426 __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD); 427 __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD); 428 429 __ bind(_unwind_handler_entry); 430 __ verify_not_null_oop(rax); 431 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 432 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 433 } 434 435 // Perform needed unlocking 436 MonitorExitStub* stub = nullptr; 437 if (method()->is_synchronized()) { 438 monitor_address(0, FrameMap::rax_opr); 439 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 440 if (LockingMode == LM_MONITOR) { 441 __ jmp(*stub->entry()); 442 } else { 443 __ unlock_object(rdi, rsi, rax, *stub->entry()); 444 } 445 __ bind(*stub->continuation()); 446 } 447 448 if (compilation()->env()->dtrace_method_probes()) { 449 #ifdef _LP64 450 __ mov(rdi, r15_thread); 451 __ mov_metadata(rsi, method()->constant_encoding()); 452 #else 453 __ get_thread(rax); 454 __ movptr(Address(rsp, 0), rax); 455 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg); 456 #endif 457 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 458 } 459 460 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 461 __ mov(rax, rbx); // Restore the exception 462 } 463 464 // remove the activation and dispatch to the unwind handler 465 __ remove_frame(initial_frame_size_in_bytes()); 466 __ jump(RuntimeAddress(Runtime1::entry_for(C1StubId::unwind_exception_id))); 467 468 // Emit the slow path assembly 469 if (stub != nullptr) { 470 stub->emit_code(this); 471 } 472 473 return offset; 474 } 475 476 477 int LIR_Assembler::emit_deopt_handler() { 478 // generate code for exception handler 479 address handler_base = __ start_a_stub(deopt_handler_size()); 480 if (handler_base == nullptr) { 481 // not enough space left for the handler 482 bailout("deopt handler overflow"); 483 return -1; 484 } 485 486 int offset = code_offset(); 487 InternalAddress here(__ pc()); 488 489 __ pushptr(here.addr(), rscratch1); 490 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 491 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 492 __ end_a_stub(); 493 494 return offset; 495 } 496 497 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 498 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 499 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 500 assert(result->fpu() == 0, "result must already be on TOS"); 501 } 502 503 // Pop the stack before the safepoint code 504 __ remove_frame(initial_frame_size_in_bytes()); 505 506 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 507 __ reserved_stack_check(); 508 } 509 510 // Note: we do not need to round double result; float result has the right precision 511 // the poll sets the condition code, but no data registers 512 513 #ifdef _LP64 514 const Register thread = r15_thread; 515 #else 516 const Register thread = rbx; 517 __ get_thread(thread); 518 #endif 519 code_stub->set_safepoint_offset(__ offset()); 520 __ relocate(relocInfo::poll_return_type); 521 __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */); 522 __ ret(0); 523 } 524 525 526 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 527 guarantee(info != nullptr, "Shouldn't be null"); 528 int offset = __ offset(); 529 #ifdef _LP64 530 const Register poll_addr = rscratch1; 531 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 532 #else 533 assert(tmp->is_cpu_register(), "needed"); 534 const Register poll_addr = tmp->as_register(); 535 __ get_thread(poll_addr); 536 __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset()))); 537 #endif 538 add_debug_info_for_branch(info); 539 __ relocate(relocInfo::poll_type); 540 address pre_pc = __ pc(); 541 __ testl(rax, Address(poll_addr, 0)); 542 address post_pc = __ pc(); 543 guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length"); 544 return offset; 545 } 546 547 548 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 549 if (from_reg != to_reg) __ mov(to_reg, from_reg); 550 } 551 552 void LIR_Assembler::swap_reg(Register a, Register b) { 553 __ xchgptr(a, b); 554 } 555 556 557 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 558 assert(src->is_constant(), "should not call otherwise"); 559 assert(dest->is_register(), "should not call otherwise"); 560 LIR_Const* c = src->as_constant_ptr(); 561 562 switch (c->type()) { 563 case T_INT: { 564 assert(patch_code == lir_patch_none, "no patching handled here"); 565 __ movl(dest->as_register(), c->as_jint()); 566 break; 567 } 568 569 case T_ADDRESS: { 570 assert(patch_code == lir_patch_none, "no patching handled here"); 571 __ movptr(dest->as_register(), c->as_jint()); 572 break; 573 } 574 575 case T_LONG: { 576 assert(patch_code == lir_patch_none, "no patching handled here"); 577 #ifdef _LP64 578 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 579 #else 580 __ movptr(dest->as_register_lo(), c->as_jint_lo()); 581 __ movptr(dest->as_register_hi(), c->as_jint_hi()); 582 #endif // _LP64 583 break; 584 } 585 586 case T_OBJECT: { 587 if (patch_code != lir_patch_none) { 588 jobject2reg_with_patching(dest->as_register(), info); 589 } else { 590 __ movoop(dest->as_register(), c->as_jobject()); 591 } 592 break; 593 } 594 595 case T_METADATA: { 596 if (patch_code != lir_patch_none) { 597 klass2reg_with_patching(dest->as_register(), info); 598 } else { 599 __ mov_metadata(dest->as_register(), c->as_metadata()); 600 } 601 break; 602 } 603 604 case T_FLOAT: { 605 if (dest->is_single_xmm()) { 606 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) { 607 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 608 } else { 609 __ movflt(dest->as_xmm_float_reg(), 610 InternalAddress(float_constant(c->as_jfloat()))); 611 } 612 } else { 613 #ifndef _LP64 614 assert(dest->is_single_fpu(), "must be"); 615 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 616 if (c->is_zero_float()) { 617 __ fldz(); 618 } else if (c->is_one_float()) { 619 __ fld1(); 620 } else { 621 __ fld_s (InternalAddress(float_constant(c->as_jfloat()))); 622 } 623 #else 624 ShouldNotReachHere(); 625 #endif // !_LP64 626 } 627 break; 628 } 629 630 case T_DOUBLE: { 631 if (dest->is_double_xmm()) { 632 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) { 633 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 634 } else { 635 __ movdbl(dest->as_xmm_double_reg(), 636 InternalAddress(double_constant(c->as_jdouble()))); 637 } 638 } else { 639 #ifndef _LP64 640 assert(dest->is_double_fpu(), "must be"); 641 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 642 if (c->is_zero_double()) { 643 __ fldz(); 644 } else if (c->is_one_double()) { 645 __ fld1(); 646 } else { 647 __ fld_d (InternalAddress(double_constant(c->as_jdouble()))); 648 } 649 #else 650 ShouldNotReachHere(); 651 #endif // !_LP64 652 } 653 break; 654 } 655 656 default: 657 ShouldNotReachHere(); 658 } 659 } 660 661 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 662 assert(src->is_constant(), "should not call otherwise"); 663 assert(dest->is_stack(), "should not call otherwise"); 664 LIR_Const* c = src->as_constant_ptr(); 665 666 switch (c->type()) { 667 case T_INT: // fall through 668 case T_FLOAT: 669 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 670 break; 671 672 case T_ADDRESS: 673 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 674 break; 675 676 case T_OBJECT: 677 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1); 678 break; 679 680 case T_LONG: // fall through 681 case T_DOUBLE: 682 #ifdef _LP64 683 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 684 lo_word_offset_in_bytes), 685 (intptr_t)c->as_jlong_bits(), 686 rscratch1); 687 #else 688 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 689 lo_word_offset_in_bytes), c->as_jint_lo_bits()); 690 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 691 hi_word_offset_in_bytes), c->as_jint_hi_bits()); 692 #endif // _LP64 693 break; 694 695 default: 696 ShouldNotReachHere(); 697 } 698 } 699 700 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 701 assert(src->is_constant(), "should not call otherwise"); 702 assert(dest->is_address(), "should not call otherwise"); 703 LIR_Const* c = src->as_constant_ptr(); 704 LIR_Address* addr = dest->as_address_ptr(); 705 706 int null_check_here = code_offset(); 707 switch (type) { 708 case T_INT: // fall through 709 case T_FLOAT: 710 __ movl(as_Address(addr), c->as_jint_bits()); 711 break; 712 713 case T_ADDRESS: 714 __ movptr(as_Address(addr), c->as_jint_bits()); 715 break; 716 717 case T_OBJECT: // fall through 718 case T_ARRAY: 719 if (c->as_jobject() == nullptr) { 720 if (UseCompressedOops && !wide) { 721 __ movl(as_Address(addr), NULL_WORD); 722 } else { 723 #ifdef _LP64 724 __ xorptr(rscratch1, rscratch1); 725 null_check_here = code_offset(); 726 __ movptr(as_Address(addr), rscratch1); 727 #else 728 __ movptr(as_Address(addr), NULL_WORD); 729 #endif 730 } 731 } else { 732 if (is_literal_address(addr)) { 733 ShouldNotReachHere(); 734 __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1); 735 } else { 736 #ifdef _LP64 737 __ movoop(rscratch1, c->as_jobject()); 738 if (UseCompressedOops && !wide) { 739 __ encode_heap_oop(rscratch1); 740 null_check_here = code_offset(); 741 __ movl(as_Address_lo(addr), rscratch1); 742 } else { 743 null_check_here = code_offset(); 744 __ movptr(as_Address_lo(addr), rscratch1); 745 } 746 #else 747 __ movoop(as_Address(addr), c->as_jobject(), noreg); 748 #endif 749 } 750 } 751 break; 752 753 case T_LONG: // fall through 754 case T_DOUBLE: 755 #ifdef _LP64 756 if (is_literal_address(addr)) { 757 ShouldNotReachHere(); 758 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 759 } else { 760 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 761 null_check_here = code_offset(); 762 __ movptr(as_Address_lo(addr), r10); 763 } 764 #else 765 // Always reachable in 32bit so this doesn't produce useless move literal 766 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits()); 767 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits()); 768 #endif // _LP64 769 break; 770 771 case T_BOOLEAN: // fall through 772 case T_BYTE: 773 __ movb(as_Address(addr), c->as_jint() & 0xFF); 774 break; 775 776 case T_CHAR: // fall through 777 case T_SHORT: 778 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 779 break; 780 781 default: 782 ShouldNotReachHere(); 783 }; 784 785 if (info != nullptr) { 786 add_debug_info_for_null_check(null_check_here, info); 787 } 788 } 789 790 791 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 792 assert(src->is_register(), "should not call otherwise"); 793 assert(dest->is_register(), "should not call otherwise"); 794 795 // move between cpu-registers 796 if (dest->is_single_cpu()) { 797 #ifdef _LP64 798 if (src->type() == T_LONG) { 799 // Can do LONG -> OBJECT 800 move_regs(src->as_register_lo(), dest->as_register()); 801 return; 802 } 803 #endif 804 assert(src->is_single_cpu(), "must match"); 805 if (src->type() == T_OBJECT) { 806 __ verify_oop(src->as_register()); 807 } 808 move_regs(src->as_register(), dest->as_register()); 809 810 } else if (dest->is_double_cpu()) { 811 #ifdef _LP64 812 if (is_reference_type(src->type())) { 813 // Surprising to me but we can see move of a long to t_object 814 __ verify_oop(src->as_register()); 815 move_regs(src->as_register(), dest->as_register_lo()); 816 return; 817 } 818 #endif 819 assert(src->is_double_cpu(), "must match"); 820 Register f_lo = src->as_register_lo(); 821 Register f_hi = src->as_register_hi(); 822 Register t_lo = dest->as_register_lo(); 823 Register t_hi = dest->as_register_hi(); 824 #ifdef _LP64 825 assert(f_hi == f_lo, "must be same"); 826 assert(t_hi == t_lo, "must be same"); 827 move_regs(f_lo, t_lo); 828 #else 829 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation"); 830 831 832 if (f_lo == t_hi && f_hi == t_lo) { 833 swap_reg(f_lo, f_hi); 834 } else if (f_hi == t_lo) { 835 assert(f_lo != t_hi, "overwriting register"); 836 move_regs(f_hi, t_hi); 837 move_regs(f_lo, t_lo); 838 } else { 839 assert(f_hi != t_lo, "overwriting register"); 840 move_regs(f_lo, t_lo); 841 move_regs(f_hi, t_hi); 842 } 843 #endif // LP64 844 845 #ifndef _LP64 846 // special moves from fpu-register to xmm-register 847 // necessary for method results 848 } else if (src->is_single_xmm() && !dest->is_single_xmm()) { 849 __ movflt(Address(rsp, 0), src->as_xmm_float_reg()); 850 __ fld_s(Address(rsp, 0)); 851 } else if (src->is_double_xmm() && !dest->is_double_xmm()) { 852 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg()); 853 __ fld_d(Address(rsp, 0)); 854 } else if (dest->is_single_xmm() && !src->is_single_xmm()) { 855 __ fstp_s(Address(rsp, 0)); 856 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0)); 857 } else if (dest->is_double_xmm() && !src->is_double_xmm()) { 858 __ fstp_d(Address(rsp, 0)); 859 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0)); 860 #endif // !_LP64 861 862 // move between xmm-registers 863 } else if (dest->is_single_xmm()) { 864 assert(src->is_single_xmm(), "must match"); 865 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 866 } else if (dest->is_double_xmm()) { 867 assert(src->is_double_xmm(), "must match"); 868 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 869 870 #ifndef _LP64 871 // move between fpu-registers (no instruction necessary because of fpu-stack) 872 } else if (dest->is_single_fpu() || dest->is_double_fpu()) { 873 assert(src->is_single_fpu() || src->is_double_fpu(), "must match"); 874 assert(src->fpu() == dest->fpu(), "currently should be nothing to do"); 875 #endif // !_LP64 876 877 } else { 878 ShouldNotReachHere(); 879 } 880 } 881 882 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 883 assert(src->is_register(), "should not call otherwise"); 884 assert(dest->is_stack(), "should not call otherwise"); 885 886 if (src->is_single_cpu()) { 887 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 888 if (is_reference_type(type)) { 889 __ verify_oop(src->as_register()); 890 __ movptr (dst, src->as_register()); 891 } else if (type == T_METADATA || type == T_ADDRESS) { 892 __ movptr (dst, src->as_register()); 893 } else { 894 __ movl (dst, src->as_register()); 895 } 896 897 } else if (src->is_double_cpu()) { 898 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 899 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 900 __ movptr (dstLO, src->as_register_lo()); 901 NOT_LP64(__ movptr (dstHI, src->as_register_hi())); 902 903 } else if (src->is_single_xmm()) { 904 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 905 __ movflt(dst_addr, src->as_xmm_float_reg()); 906 907 } else if (src->is_double_xmm()) { 908 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 909 __ movdbl(dst_addr, src->as_xmm_double_reg()); 910 911 #ifndef _LP64 912 } else if (src->is_single_fpu()) { 913 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 914 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 915 if (pop_fpu_stack) __ fstp_s (dst_addr); 916 else __ fst_s (dst_addr); 917 918 } else if (src->is_double_fpu()) { 919 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 920 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 921 if (pop_fpu_stack) __ fstp_d (dst_addr); 922 else __ fst_d (dst_addr); 923 #endif // !_LP64 924 925 } else { 926 ShouldNotReachHere(); 927 } 928 } 929 930 931 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) { 932 LIR_Address* to_addr = dest->as_address_ptr(); 933 PatchingStub* patch = nullptr; 934 Register compressed_src = rscratch1; 935 936 if (is_reference_type(type)) { 937 __ verify_oop(src->as_register()); 938 #ifdef _LP64 939 if (UseCompressedOops && !wide) { 940 __ movptr(compressed_src, src->as_register()); 941 __ encode_heap_oop(compressed_src); 942 if (patch_code != lir_patch_none) { 943 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 944 } 945 } 946 #endif 947 } 948 949 if (patch_code != lir_patch_none) { 950 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 951 Address toa = as_Address(to_addr); 952 assert(toa.disp() != 0, "must have"); 953 } 954 955 int null_check_here = code_offset(); 956 switch (type) { 957 case T_FLOAT: { 958 #ifdef _LP64 959 assert(src->is_single_xmm(), "not a float"); 960 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 961 #else 962 if (src->is_single_xmm()) { 963 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 964 } else { 965 assert(src->is_single_fpu(), "must be"); 966 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 967 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr)); 968 else __ fst_s (as_Address(to_addr)); 969 } 970 #endif // _LP64 971 break; 972 } 973 974 case T_DOUBLE: { 975 #ifdef _LP64 976 assert(src->is_double_xmm(), "not a double"); 977 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 978 #else 979 if (src->is_double_xmm()) { 980 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 981 } else { 982 assert(src->is_double_fpu(), "must be"); 983 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 984 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr)); 985 else __ fst_d (as_Address(to_addr)); 986 } 987 #endif // _LP64 988 break; 989 } 990 991 case T_ARRAY: // fall through 992 case T_OBJECT: // fall through 993 if (UseCompressedOops && !wide) { 994 __ movl(as_Address(to_addr), compressed_src); 995 } else { 996 __ movptr(as_Address(to_addr), src->as_register()); 997 } 998 break; 999 case T_METADATA: 1000 // We get here to store a method pointer to the stack to pass to 1001 // a dtrace runtime call. This can't work on 64 bit with 1002 // compressed klass ptrs: T_METADATA can be a compressed klass 1003 // ptr or a 64 bit method pointer. 1004 LP64_ONLY(ShouldNotReachHere()); 1005 __ movptr(as_Address(to_addr), src->as_register()); 1006 break; 1007 case T_ADDRESS: 1008 __ movptr(as_Address(to_addr), src->as_register()); 1009 break; 1010 case T_INT: 1011 __ movl(as_Address(to_addr), src->as_register()); 1012 break; 1013 1014 case T_LONG: { 1015 Register from_lo = src->as_register_lo(); 1016 Register from_hi = src->as_register_hi(); 1017 #ifdef _LP64 1018 __ movptr(as_Address_lo(to_addr), from_lo); 1019 #else 1020 Register base = to_addr->base()->as_register(); 1021 Register index = noreg; 1022 if (to_addr->index()->is_register()) { 1023 index = to_addr->index()->as_register(); 1024 } 1025 if (base == from_lo || index == from_lo) { 1026 assert(base != from_hi, "can't be"); 1027 assert(index == noreg || (index != base && index != from_hi), "can't handle this"); 1028 __ movl(as_Address_hi(to_addr), from_hi); 1029 if (patch != nullptr) { 1030 patching_epilog(patch, lir_patch_high, base, info); 1031 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1032 patch_code = lir_patch_low; 1033 } 1034 __ movl(as_Address_lo(to_addr), from_lo); 1035 } else { 1036 assert(index == noreg || (index != base && index != from_lo), "can't handle this"); 1037 __ movl(as_Address_lo(to_addr), from_lo); 1038 if (patch != nullptr) { 1039 patching_epilog(patch, lir_patch_low, base, info); 1040 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1041 patch_code = lir_patch_high; 1042 } 1043 __ movl(as_Address_hi(to_addr), from_hi); 1044 } 1045 #endif // _LP64 1046 break; 1047 } 1048 1049 case T_BYTE: // fall through 1050 case T_BOOLEAN: { 1051 Register src_reg = src->as_register(); 1052 Address dst_addr = as_Address(to_addr); 1053 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 1054 __ movb(dst_addr, src_reg); 1055 break; 1056 } 1057 1058 case T_CHAR: // fall through 1059 case T_SHORT: 1060 __ movw(as_Address(to_addr), src->as_register()); 1061 break; 1062 1063 default: 1064 ShouldNotReachHere(); 1065 } 1066 if (info != nullptr) { 1067 add_debug_info_for_null_check(null_check_here, info); 1068 } 1069 1070 if (patch_code != lir_patch_none) { 1071 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 1072 } 1073 } 1074 1075 1076 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1077 assert(src->is_stack(), "should not call otherwise"); 1078 assert(dest->is_register(), "should not call otherwise"); 1079 1080 if (dest->is_single_cpu()) { 1081 if (is_reference_type(type)) { 1082 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1083 __ verify_oop(dest->as_register()); 1084 } else if (type == T_METADATA || type == T_ADDRESS) { 1085 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1086 } else { 1087 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1088 } 1089 1090 } else if (dest->is_double_cpu()) { 1091 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 1092 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 1093 __ movptr(dest->as_register_lo(), src_addr_LO); 1094 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI)); 1095 1096 } else if (dest->is_single_xmm()) { 1097 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1098 __ movflt(dest->as_xmm_float_reg(), src_addr); 1099 1100 } else if (dest->is_double_xmm()) { 1101 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1102 __ movdbl(dest->as_xmm_double_reg(), src_addr); 1103 1104 #ifndef _LP64 1105 } else if (dest->is_single_fpu()) { 1106 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1107 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1108 __ fld_s(src_addr); 1109 1110 } else if (dest->is_double_fpu()) { 1111 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1112 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1113 __ fld_d(src_addr); 1114 #endif // _LP64 1115 1116 } else { 1117 ShouldNotReachHere(); 1118 } 1119 } 1120 1121 1122 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1123 if (src->is_single_stack()) { 1124 if (is_reference_type(type)) { 1125 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 1126 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 1127 } else { 1128 #ifndef _LP64 1129 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix())); 1130 __ popl (frame_map()->address_for_slot(dest->single_stack_ix())); 1131 #else 1132 //no pushl on 64bits 1133 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 1134 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 1135 #endif 1136 } 1137 1138 } else if (src->is_double_stack()) { 1139 #ifdef _LP64 1140 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 1141 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 1142 #else 1143 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0)); 1144 // push and pop the part at src + wordSize, adding wordSize for the previous push 1145 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize)); 1146 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize)); 1147 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0)); 1148 #endif // _LP64 1149 1150 } else { 1151 ShouldNotReachHere(); 1152 } 1153 } 1154 1155 1156 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1157 assert(src->is_address(), "should not call otherwise"); 1158 assert(dest->is_register(), "should not call otherwise"); 1159 1160 LIR_Address* addr = src->as_address_ptr(); 1161 Address from_addr = as_Address(addr); 1162 1163 if (addr->base()->type() == T_OBJECT) { 1164 __ verify_oop(addr->base()->as_pointer_register()); 1165 } 1166 1167 switch (type) { 1168 case T_BOOLEAN: // fall through 1169 case T_BYTE: // fall through 1170 case T_CHAR: // fall through 1171 case T_SHORT: 1172 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 1173 // on pre P6 processors we may get partial register stalls 1174 // so blow away the value of to_rinfo before loading a 1175 // partial word into it. Do it here so that it precedes 1176 // the potential patch point below. 1177 __ xorptr(dest->as_register(), dest->as_register()); 1178 } 1179 break; 1180 default: 1181 break; 1182 } 1183 1184 PatchingStub* patch = nullptr; 1185 if (patch_code != lir_patch_none) { 1186 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1187 assert(from_addr.disp() != 0, "must have"); 1188 } 1189 if (info != nullptr) { 1190 add_debug_info_for_null_check_here(info); 1191 } 1192 1193 switch (type) { 1194 case T_FLOAT: { 1195 if (dest->is_single_xmm()) { 1196 __ movflt(dest->as_xmm_float_reg(), from_addr); 1197 } else { 1198 #ifndef _LP64 1199 assert(dest->is_single_fpu(), "must be"); 1200 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1201 __ fld_s(from_addr); 1202 #else 1203 ShouldNotReachHere(); 1204 #endif // !LP64 1205 } 1206 break; 1207 } 1208 1209 case T_DOUBLE: { 1210 if (dest->is_double_xmm()) { 1211 __ movdbl(dest->as_xmm_double_reg(), from_addr); 1212 } else { 1213 #ifndef _LP64 1214 assert(dest->is_double_fpu(), "must be"); 1215 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1216 __ fld_d(from_addr); 1217 #else 1218 ShouldNotReachHere(); 1219 #endif // !LP64 1220 } 1221 break; 1222 } 1223 1224 case T_OBJECT: // fall through 1225 case T_ARRAY: // fall through 1226 if (UseCompressedOops && !wide) { 1227 __ movl(dest->as_register(), from_addr); 1228 } else { 1229 __ movptr(dest->as_register(), from_addr); 1230 } 1231 break; 1232 1233 case T_ADDRESS: 1234 __ movptr(dest->as_register(), from_addr); 1235 break; 1236 case T_INT: 1237 __ movl(dest->as_register(), from_addr); 1238 break; 1239 1240 case T_LONG: { 1241 Register to_lo = dest->as_register_lo(); 1242 Register to_hi = dest->as_register_hi(); 1243 #ifdef _LP64 1244 __ movptr(to_lo, as_Address_lo(addr)); 1245 #else 1246 Register base = addr->base()->as_register(); 1247 Register index = noreg; 1248 if (addr->index()->is_register()) { 1249 index = addr->index()->as_register(); 1250 } 1251 if ((base == to_lo && index == to_hi) || 1252 (base == to_hi && index == to_lo)) { 1253 // addresses with 2 registers are only formed as a result of 1254 // array access so this code will never have to deal with 1255 // patches or null checks. 1256 assert(info == nullptr && patch == nullptr, "must be"); 1257 __ lea(to_hi, as_Address(addr)); 1258 __ movl(to_lo, Address(to_hi, 0)); 1259 __ movl(to_hi, Address(to_hi, BytesPerWord)); 1260 } else if (base == to_lo || index == to_lo) { 1261 assert(base != to_hi, "can't be"); 1262 assert(index == noreg || (index != base && index != to_hi), "can't handle this"); 1263 __ movl(to_hi, as_Address_hi(addr)); 1264 if (patch != nullptr) { 1265 patching_epilog(patch, lir_patch_high, base, info); 1266 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1267 patch_code = lir_patch_low; 1268 } 1269 __ movl(to_lo, as_Address_lo(addr)); 1270 } else { 1271 assert(index == noreg || (index != base && index != to_lo), "can't handle this"); 1272 __ movl(to_lo, as_Address_lo(addr)); 1273 if (patch != nullptr) { 1274 patching_epilog(patch, lir_patch_low, base, info); 1275 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1276 patch_code = lir_patch_high; 1277 } 1278 __ movl(to_hi, as_Address_hi(addr)); 1279 } 1280 #endif // _LP64 1281 break; 1282 } 1283 1284 case T_BOOLEAN: // fall through 1285 case T_BYTE: { 1286 Register dest_reg = dest->as_register(); 1287 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1288 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1289 __ movsbl(dest_reg, from_addr); 1290 } else { 1291 __ movb(dest_reg, from_addr); 1292 __ shll(dest_reg, 24); 1293 __ sarl(dest_reg, 24); 1294 } 1295 break; 1296 } 1297 1298 case T_CHAR: { 1299 Register dest_reg = dest->as_register(); 1300 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1301 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1302 __ movzwl(dest_reg, from_addr); 1303 } else { 1304 __ movw(dest_reg, from_addr); 1305 } 1306 break; 1307 } 1308 1309 case T_SHORT: { 1310 Register dest_reg = dest->as_register(); 1311 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1312 __ movswl(dest_reg, from_addr); 1313 } else { 1314 __ movw(dest_reg, from_addr); 1315 __ shll(dest_reg, 16); 1316 __ sarl(dest_reg, 16); 1317 } 1318 break; 1319 } 1320 1321 default: 1322 ShouldNotReachHere(); 1323 } 1324 1325 if (patch != nullptr) { 1326 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1327 } 1328 1329 if (is_reference_type(type)) { 1330 #ifdef _LP64 1331 if (UseCompressedOops && !wide) { 1332 __ decode_heap_oop(dest->as_register()); 1333 } 1334 #endif 1335 1336 if (!(UseZGC && !ZGenerational)) { 1337 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1338 __ verify_oop(dest->as_register()); 1339 } 1340 } 1341 } 1342 1343 1344 NEEDS_CLEANUP; // This could be static? 1345 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1346 int elem_size = type2aelembytes(type); 1347 switch (elem_size) { 1348 case 1: return Address::times_1; 1349 case 2: return Address::times_2; 1350 case 4: return Address::times_4; 1351 case 8: return Address::times_8; 1352 } 1353 ShouldNotReachHere(); 1354 return Address::no_scale; 1355 } 1356 1357 1358 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1359 switch (op->code()) { 1360 case lir_idiv: 1361 case lir_irem: 1362 arithmetic_idiv(op->code(), 1363 op->in_opr1(), 1364 op->in_opr2(), 1365 op->in_opr3(), 1366 op->result_opr(), 1367 op->info()); 1368 break; 1369 case lir_fmad: 1370 __ fmad(op->result_opr()->as_xmm_double_reg(), 1371 op->in_opr1()->as_xmm_double_reg(), 1372 op->in_opr2()->as_xmm_double_reg(), 1373 op->in_opr3()->as_xmm_double_reg()); 1374 break; 1375 case lir_fmaf: 1376 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1377 op->in_opr1()->as_xmm_float_reg(), 1378 op->in_opr2()->as_xmm_float_reg(), 1379 op->in_opr3()->as_xmm_float_reg()); 1380 break; 1381 default: ShouldNotReachHere(); break; 1382 } 1383 } 1384 1385 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1386 #ifdef ASSERT 1387 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 1388 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 1389 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 1390 #endif 1391 1392 if (op->cond() == lir_cond_always) { 1393 if (op->info() != nullptr) add_debug_info_for_branch(op->info()); 1394 __ jmp (*(op->label())); 1395 } else { 1396 Assembler::Condition acond = Assembler::zero; 1397 if (op->code() == lir_cond_float_branch) { 1398 assert(op->ublock() != nullptr, "must have unordered successor"); 1399 __ jcc(Assembler::parity, *(op->ublock()->label())); 1400 switch(op->cond()) { 1401 case lir_cond_equal: acond = Assembler::equal; break; 1402 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1403 case lir_cond_less: acond = Assembler::below; break; 1404 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1405 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1406 case lir_cond_greater: acond = Assembler::above; break; 1407 default: ShouldNotReachHere(); 1408 } 1409 } else { 1410 switch (op->cond()) { 1411 case lir_cond_equal: acond = Assembler::equal; break; 1412 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1413 case lir_cond_less: acond = Assembler::less; break; 1414 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1415 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1416 case lir_cond_greater: acond = Assembler::greater; break; 1417 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1418 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1419 default: ShouldNotReachHere(); 1420 } 1421 } 1422 __ jcc(acond,*(op->label())); 1423 } 1424 } 1425 1426 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1427 LIR_Opr src = op->in_opr(); 1428 LIR_Opr dest = op->result_opr(); 1429 1430 switch (op->bytecode()) { 1431 case Bytecodes::_i2l: 1432 #ifdef _LP64 1433 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1434 #else 1435 move_regs(src->as_register(), dest->as_register_lo()); 1436 move_regs(src->as_register(), dest->as_register_hi()); 1437 __ sarl(dest->as_register_hi(), 31); 1438 #endif // LP64 1439 break; 1440 1441 case Bytecodes::_l2i: 1442 #ifdef _LP64 1443 __ movl(dest->as_register(), src->as_register_lo()); 1444 #else 1445 move_regs(src->as_register_lo(), dest->as_register()); 1446 #endif 1447 break; 1448 1449 case Bytecodes::_i2b: 1450 move_regs(src->as_register(), dest->as_register()); 1451 __ sign_extend_byte(dest->as_register()); 1452 break; 1453 1454 case Bytecodes::_i2c: 1455 move_regs(src->as_register(), dest->as_register()); 1456 __ andl(dest->as_register(), 0xFFFF); 1457 break; 1458 1459 case Bytecodes::_i2s: 1460 move_regs(src->as_register(), dest->as_register()); 1461 __ sign_extend_short(dest->as_register()); 1462 break; 1463 1464 1465 #ifdef _LP64 1466 case Bytecodes::_f2d: 1467 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1468 break; 1469 1470 case Bytecodes::_d2f: 1471 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1472 break; 1473 1474 case Bytecodes::_i2f: 1475 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1476 break; 1477 1478 case Bytecodes::_i2d: 1479 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1480 break; 1481 1482 case Bytecodes::_l2f: 1483 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1484 break; 1485 1486 case Bytecodes::_l2d: 1487 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1488 break; 1489 1490 case Bytecodes::_f2i: 1491 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1492 break; 1493 1494 case Bytecodes::_d2i: 1495 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1496 break; 1497 1498 case Bytecodes::_f2l: 1499 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1500 break; 1501 1502 case Bytecodes::_d2l: 1503 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1504 break; 1505 #else 1506 case Bytecodes::_f2d: 1507 case Bytecodes::_d2f: 1508 if (dest->is_single_xmm()) { 1509 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1510 } else if (dest->is_double_xmm()) { 1511 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1512 } else { 1513 assert(src->fpu() == dest->fpu(), "register must be equal"); 1514 // do nothing (float result is rounded later through spilling) 1515 } 1516 break; 1517 1518 case Bytecodes::_i2f: 1519 case Bytecodes::_i2d: 1520 if (dest->is_single_xmm()) { 1521 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1522 } else if (dest->is_double_xmm()) { 1523 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1524 } else { 1525 assert(dest->fpu() == 0, "result must be on TOS"); 1526 __ movl(Address(rsp, 0), src->as_register()); 1527 __ fild_s(Address(rsp, 0)); 1528 } 1529 break; 1530 1531 case Bytecodes::_l2f: 1532 case Bytecodes::_l2d: 1533 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)"); 1534 assert(dest->fpu() == 0, "result must be on TOS"); 1535 __ movptr(Address(rsp, 0), src->as_register_lo()); 1536 __ movl(Address(rsp, BytesPerWord), src->as_register_hi()); 1537 __ fild_d(Address(rsp, 0)); 1538 // float result is rounded later through spilling 1539 break; 1540 1541 case Bytecodes::_f2i: 1542 case Bytecodes::_d2i: 1543 if (src->is_single_xmm()) { 1544 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg()); 1545 } else if (src->is_double_xmm()) { 1546 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg()); 1547 } else { 1548 assert(src->fpu() == 0, "input must be on TOS"); 1549 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc())); 1550 __ fist_s(Address(rsp, 0)); 1551 __ movl(dest->as_register(), Address(rsp, 0)); 1552 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1553 } 1554 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 1555 assert(op->stub() != nullptr, "stub required"); 1556 __ cmpl(dest->as_register(), 0x80000000); 1557 __ jcc(Assembler::equal, *op->stub()->entry()); 1558 __ bind(*op->stub()->continuation()); 1559 break; 1560 1561 case Bytecodes::_f2l: 1562 case Bytecodes::_d2l: 1563 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)"); 1564 assert(src->fpu() == 0, "input must be on TOS"); 1565 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers"); 1566 1567 // instruction sequence too long to inline it here 1568 { 1569 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::fpu2long_stub_id))); 1570 } 1571 break; 1572 #endif // _LP64 1573 1574 default: ShouldNotReachHere(); 1575 } 1576 } 1577 1578 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1579 if (op->init_check()) { 1580 add_debug_info_for_null_check_here(op->stub()->info()); 1581 // init_state needs acquire, but x86 is TSO, and so we are already good. 1582 __ cmpb(Address(op->klass()->as_register(), 1583 InstanceKlass::init_state_offset()), 1584 InstanceKlass::fully_initialized); 1585 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1586 } 1587 __ allocate_object(op->obj()->as_register(), 1588 op->tmp1()->as_register(), 1589 op->tmp2()->as_register(), 1590 op->header_size(), 1591 op->object_size(), 1592 op->klass()->as_register(), 1593 *op->stub()->entry()); 1594 __ bind(*op->stub()->continuation()); 1595 } 1596 1597 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1598 Register len = op->len()->as_register(); 1599 LP64_ONLY( __ movslq(len, len); ) 1600 1601 if (UseSlowPath || 1602 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1603 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1604 __ jmp(*op->stub()->entry()); 1605 } else { 1606 Register tmp1 = op->tmp1()->as_register(); 1607 Register tmp2 = op->tmp2()->as_register(); 1608 Register tmp3 = op->tmp3()->as_register(); 1609 if (len == tmp1) { 1610 tmp1 = tmp3; 1611 } else if (len == tmp2) { 1612 tmp2 = tmp3; 1613 } else if (len == tmp3) { 1614 // everything is ok 1615 } else { 1616 __ mov(tmp3, len); 1617 } 1618 __ allocate_array(op->obj()->as_register(), 1619 len, 1620 tmp1, 1621 tmp2, 1622 arrayOopDesc::base_offset_in_bytes(op->type()), 1623 array_element_size(op->type()), 1624 op->klass()->as_register(), 1625 *op->stub()->entry(), 1626 op->zero_array()); 1627 } 1628 __ bind(*op->stub()->continuation()); 1629 } 1630 1631 void LIR_Assembler::type_profile_helper(Register mdo, 1632 ciMethodData *md, ciProfileData *data, 1633 Register recv, Label* update_done) { 1634 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1635 Label next_test; 1636 // See if the receiver is receiver[n]. 1637 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1638 __ jccb(Assembler::notEqual, next_test); 1639 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1640 __ addptr(data_addr, DataLayout::counter_increment); 1641 __ jmp(*update_done); 1642 __ bind(next_test); 1643 } 1644 1645 // Didn't find receiver; find next empty slot and fill it in 1646 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1647 Label next_test; 1648 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1649 __ cmpptr(recv_addr, NULL_WORD); 1650 __ jccb(Assembler::notEqual, next_test); 1651 __ movptr(recv_addr, recv); 1652 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1653 __ jmp(*update_done); 1654 __ bind(next_test); 1655 } 1656 } 1657 1658 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1659 // we always need a stub for the failure case. 1660 CodeStub* stub = op->stub(); 1661 Register obj = op->object()->as_register(); 1662 Register k_RInfo = op->tmp1()->as_register(); 1663 Register klass_RInfo = op->tmp2()->as_register(); 1664 Register dst = op->result_opr()->as_register(); 1665 ciKlass* k = op->klass(); 1666 Register Rtmp1 = noreg; 1667 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1668 1669 // check if it needs to be profiled 1670 ciMethodData* md = nullptr; 1671 ciProfileData* data = nullptr; 1672 1673 if (op->should_profile()) { 1674 ciMethod* method = op->profiled_method(); 1675 assert(method != nullptr, "Should have method"); 1676 int bci = op->profiled_bci(); 1677 md = method->method_data_or_null(); 1678 assert(md != nullptr, "Sanity"); 1679 data = md->bci_to_data(bci); 1680 assert(data != nullptr, "need data for type check"); 1681 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1682 } 1683 Label* success_target = success; 1684 Label* failure_target = failure; 1685 1686 if (obj == k_RInfo) { 1687 k_RInfo = dst; 1688 } else if (obj == klass_RInfo) { 1689 klass_RInfo = dst; 1690 } 1691 if (k->is_loaded() && !UseCompressedClassPointers) { 1692 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1693 } else { 1694 Rtmp1 = op->tmp3()->as_register(); 1695 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1696 } 1697 1698 assert_different_registers(obj, k_RInfo, klass_RInfo); 1699 1700 __ testptr(obj, obj); 1701 if (op->should_profile()) { 1702 Label not_null; 1703 Register mdo = klass_RInfo; 1704 __ mov_metadata(mdo, md->constant_encoding()); 1705 __ jccb(Assembler::notEqual, not_null); 1706 // Object is null; update MDO and exit 1707 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1708 int header_bits = BitData::null_seen_byte_constant(); 1709 __ orb(data_addr, header_bits); 1710 __ jmp(*obj_is_null); 1711 __ bind(not_null); 1712 1713 Label update_done; 1714 Register recv = k_RInfo; 1715 __ load_klass(recv, obj, tmp_load_klass); 1716 type_profile_helper(mdo, md, data, recv, &update_done); 1717 1718 Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1719 __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment); 1720 1721 __ bind(update_done); 1722 } else { 1723 __ jcc(Assembler::equal, *obj_is_null); 1724 } 1725 1726 if (!k->is_loaded()) { 1727 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1728 } else { 1729 #ifdef _LP64 1730 __ mov_metadata(k_RInfo, k->constant_encoding()); 1731 #endif // _LP64 1732 } 1733 __ verify_oop(obj); 1734 1735 if (op->fast_check()) { 1736 // get object class 1737 // not a safepoint as obj null check happens earlier 1738 #ifdef _LP64 1739 if (UseCompressedClassPointers) { 1740 __ load_klass(Rtmp1, obj, tmp_load_klass); 1741 __ cmpptr(k_RInfo, Rtmp1); 1742 } else { 1743 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1744 } 1745 #else 1746 if (k->is_loaded()) { 1747 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()); 1748 } else { 1749 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1750 } 1751 #endif 1752 __ jcc(Assembler::notEqual, *failure_target); 1753 // successful cast, fall through to profile or jump 1754 } else { 1755 // get object class 1756 // not a safepoint as obj null check happens earlier 1757 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1758 if (k->is_loaded()) { 1759 // See if we get an immediate positive hit 1760 #ifdef _LP64 1761 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1762 #else 1763 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding()); 1764 #endif // _LP64 1765 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1766 __ jcc(Assembler::notEqual, *failure_target); 1767 // successful cast, fall through to profile or jump 1768 } else { 1769 // See if we get an immediate positive hit 1770 __ jcc(Assembler::equal, *success_target); 1771 // check for self 1772 #ifdef _LP64 1773 __ cmpptr(klass_RInfo, k_RInfo); 1774 #else 1775 __ cmpklass(klass_RInfo, k->constant_encoding()); 1776 #endif // _LP64 1777 __ jcc(Assembler::equal, *success_target); 1778 1779 __ push(klass_RInfo); 1780 #ifdef _LP64 1781 __ push(k_RInfo); 1782 #else 1783 __ pushklass(k->constant_encoding(), noreg); 1784 #endif // _LP64 1785 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1786 __ pop(klass_RInfo); 1787 __ pop(klass_RInfo); 1788 // result is a boolean 1789 __ testl(klass_RInfo, klass_RInfo); 1790 __ jcc(Assembler::equal, *failure_target); 1791 // successful cast, fall through to profile or jump 1792 } 1793 } else { 1794 // perform the fast part of the checking logic 1795 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1796 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1797 __ push(klass_RInfo); 1798 __ push(k_RInfo); 1799 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1800 __ pop(klass_RInfo); 1801 __ pop(k_RInfo); 1802 // result is a boolean 1803 __ testl(k_RInfo, k_RInfo); 1804 __ jcc(Assembler::equal, *failure_target); 1805 // successful cast, fall through to profile or jump 1806 } 1807 } 1808 __ jmp(*success); 1809 } 1810 1811 1812 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1813 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1814 LIR_Code code = op->code(); 1815 if (code == lir_store_check) { 1816 Register value = op->object()->as_register(); 1817 Register array = op->array()->as_register(); 1818 Register k_RInfo = op->tmp1()->as_register(); 1819 Register klass_RInfo = op->tmp2()->as_register(); 1820 Register Rtmp1 = op->tmp3()->as_register(); 1821 1822 CodeStub* stub = op->stub(); 1823 1824 // check if it needs to be profiled 1825 ciMethodData* md = nullptr; 1826 ciProfileData* data = nullptr; 1827 1828 if (op->should_profile()) { 1829 ciMethod* method = op->profiled_method(); 1830 assert(method != nullptr, "Should have method"); 1831 int bci = op->profiled_bci(); 1832 md = method->method_data_or_null(); 1833 assert(md != nullptr, "Sanity"); 1834 data = md->bci_to_data(bci); 1835 assert(data != nullptr, "need data for type check"); 1836 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1837 } 1838 Label done; 1839 Label* success_target = &done; 1840 Label* failure_target = stub->entry(); 1841 1842 __ testptr(value, value); 1843 if (op->should_profile()) { 1844 Label not_null; 1845 Register mdo = klass_RInfo; 1846 __ mov_metadata(mdo, md->constant_encoding()); 1847 __ jccb(Assembler::notEqual, not_null); 1848 // Object is null; update MDO and exit 1849 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1850 int header_bits = BitData::null_seen_byte_constant(); 1851 __ orb(data_addr, header_bits); 1852 __ jmp(done); 1853 __ bind(not_null); 1854 1855 Label update_done; 1856 Register recv = k_RInfo; 1857 __ load_klass(recv, value, tmp_load_klass); 1858 type_profile_helper(mdo, md, data, recv, &update_done); 1859 1860 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1861 __ addptr(counter_addr, DataLayout::counter_increment); 1862 __ bind(update_done); 1863 } else { 1864 __ jcc(Assembler::equal, done); 1865 } 1866 1867 add_debug_info_for_null_check_here(op->info_for_exception()); 1868 __ load_klass(k_RInfo, array, tmp_load_klass); 1869 __ load_klass(klass_RInfo, value, tmp_load_klass); 1870 1871 // get instance klass (it's already uncompressed) 1872 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1873 // perform the fast part of the checking logic 1874 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 1875 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1876 __ push(klass_RInfo); 1877 __ push(k_RInfo); 1878 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 1879 __ pop(klass_RInfo); 1880 __ pop(k_RInfo); 1881 // result is a boolean 1882 __ testl(k_RInfo, k_RInfo); 1883 __ jcc(Assembler::equal, *failure_target); 1884 // fall through to the success case 1885 1886 __ bind(done); 1887 } else 1888 if (code == lir_checkcast) { 1889 Register obj = op->object()->as_register(); 1890 Register dst = op->result_opr()->as_register(); 1891 Label success; 1892 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1893 __ bind(success); 1894 if (dst != obj) { 1895 __ mov(dst, obj); 1896 } 1897 } else 1898 if (code == lir_instanceof) { 1899 Register obj = op->object()->as_register(); 1900 Register dst = op->result_opr()->as_register(); 1901 Label success, failure, done; 1902 emit_typecheck_helper(op, &success, &failure, &failure); 1903 __ bind(failure); 1904 __ xorptr(dst, dst); 1905 __ jmpb(done); 1906 __ bind(success); 1907 __ movptr(dst, 1); 1908 __ bind(done); 1909 } else { 1910 ShouldNotReachHere(); 1911 } 1912 1913 } 1914 1915 1916 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1917 if (LP64_ONLY(false &&) op->code() == lir_cas_long) { 1918 assert(op->cmp_value()->as_register_lo() == rax, "wrong register"); 1919 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register"); 1920 assert(op->new_value()->as_register_lo() == rbx, "wrong register"); 1921 assert(op->new_value()->as_register_hi() == rcx, "wrong register"); 1922 Register addr = op->addr()->as_register(); 1923 __ lock(); 1924 NOT_LP64(__ cmpxchg8(Address(addr, 0))); 1925 1926 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) { 1927 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");) 1928 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1929 Register newval = op->new_value()->as_register(); 1930 Register cmpval = op->cmp_value()->as_register(); 1931 assert(cmpval == rax, "wrong register"); 1932 assert(newval != noreg, "new val must be register"); 1933 assert(cmpval != newval, "cmp and new values must be in different registers"); 1934 assert(cmpval != addr, "cmp and addr must be in different registers"); 1935 assert(newval != addr, "new value and addr must be in different registers"); 1936 1937 if ( op->code() == lir_cas_obj) { 1938 #ifdef _LP64 1939 if (UseCompressedOops) { 1940 __ encode_heap_oop(cmpval); 1941 __ mov(rscratch1, newval); 1942 __ encode_heap_oop(rscratch1); 1943 __ lock(); 1944 // cmpval (rax) is implicitly used by this instruction 1945 __ cmpxchgl(rscratch1, Address(addr, 0)); 1946 } else 1947 #endif 1948 { 1949 __ lock(); 1950 __ cmpxchgptr(newval, Address(addr, 0)); 1951 } 1952 } else { 1953 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1954 __ lock(); 1955 __ cmpxchgl(newval, Address(addr, 0)); 1956 } 1957 #ifdef _LP64 1958 } else if (op->code() == lir_cas_long) { 1959 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1960 Register newval = op->new_value()->as_register_lo(); 1961 Register cmpval = op->cmp_value()->as_register_lo(); 1962 assert(cmpval == rax, "wrong register"); 1963 assert(newval != noreg, "new val must be register"); 1964 assert(cmpval != newval, "cmp and new values must be in different registers"); 1965 assert(cmpval != addr, "cmp and addr must be in different registers"); 1966 assert(newval != addr, "new value and addr must be in different registers"); 1967 __ lock(); 1968 __ cmpxchgq(newval, Address(addr, 0)); 1969 #endif // _LP64 1970 } else { 1971 Unimplemented(); 1972 } 1973 } 1974 1975 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1976 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1977 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86"); 1978 1979 Assembler::Condition acond, ncond; 1980 switch (condition) { 1981 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 1982 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 1983 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 1984 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 1985 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 1986 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 1987 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 1988 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 1989 default: acond = Assembler::equal; ncond = Assembler::notEqual; 1990 ShouldNotReachHere(); 1991 } 1992 1993 if (opr1->is_cpu_register()) { 1994 reg2reg(opr1, result); 1995 } else if (opr1->is_stack()) { 1996 stack2reg(opr1, result, result->type()); 1997 } else if (opr1->is_constant()) { 1998 const2reg(opr1, result, lir_patch_none, nullptr); 1999 } else { 2000 ShouldNotReachHere(); 2001 } 2002 2003 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 2004 // optimized version that does not require a branch 2005 if (opr2->is_single_cpu()) { 2006 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 2007 __ cmov(ncond, result->as_register(), opr2->as_register()); 2008 } else if (opr2->is_double_cpu()) { 2009 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2010 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2011 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 2012 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());) 2013 } else if (opr2->is_single_stack()) { 2014 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 2015 } else if (opr2->is_double_stack()) { 2016 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 2017 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));) 2018 } else { 2019 ShouldNotReachHere(); 2020 } 2021 2022 } else { 2023 Label skip; 2024 __ jccb(acond, skip); 2025 if (opr2->is_cpu_register()) { 2026 reg2reg(opr2, result); 2027 } else if (opr2->is_stack()) { 2028 stack2reg(opr2, result, result->type()); 2029 } else if (opr2->is_constant()) { 2030 const2reg(opr2, result, lir_patch_none, nullptr); 2031 } else { 2032 ShouldNotReachHere(); 2033 } 2034 __ bind(skip); 2035 } 2036 } 2037 2038 2039 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 2040 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 2041 2042 if (left->is_single_cpu()) { 2043 assert(left == dest, "left and dest must be equal"); 2044 Register lreg = left->as_register(); 2045 2046 if (right->is_single_cpu()) { 2047 // cpu register - cpu register 2048 Register rreg = right->as_register(); 2049 switch (code) { 2050 case lir_add: __ addl (lreg, rreg); break; 2051 case lir_sub: __ subl (lreg, rreg); break; 2052 case lir_mul: __ imull(lreg, rreg); break; 2053 default: ShouldNotReachHere(); 2054 } 2055 2056 } else if (right->is_stack()) { 2057 // cpu register - stack 2058 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2059 switch (code) { 2060 case lir_add: __ addl(lreg, raddr); break; 2061 case lir_sub: __ subl(lreg, raddr); break; 2062 default: ShouldNotReachHere(); 2063 } 2064 2065 } else if (right->is_constant()) { 2066 // cpu register - constant 2067 jint c = right->as_constant_ptr()->as_jint(); 2068 switch (code) { 2069 case lir_add: { 2070 __ incrementl(lreg, c); 2071 break; 2072 } 2073 case lir_sub: { 2074 __ decrementl(lreg, c); 2075 break; 2076 } 2077 default: ShouldNotReachHere(); 2078 } 2079 2080 } else { 2081 ShouldNotReachHere(); 2082 } 2083 2084 } else if (left->is_double_cpu()) { 2085 assert(left == dest, "left and dest must be equal"); 2086 Register lreg_lo = left->as_register_lo(); 2087 Register lreg_hi = left->as_register_hi(); 2088 2089 if (right->is_double_cpu()) { 2090 // cpu register - cpu register 2091 Register rreg_lo = right->as_register_lo(); 2092 Register rreg_hi = right->as_register_hi(); 2093 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi)); 2094 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo)); 2095 switch (code) { 2096 case lir_add: 2097 __ addptr(lreg_lo, rreg_lo); 2098 NOT_LP64(__ adcl(lreg_hi, rreg_hi)); 2099 break; 2100 case lir_sub: 2101 __ subptr(lreg_lo, rreg_lo); 2102 NOT_LP64(__ sbbl(lreg_hi, rreg_hi)); 2103 break; 2104 case lir_mul: 2105 #ifdef _LP64 2106 __ imulq(lreg_lo, rreg_lo); 2107 #else 2108 assert(lreg_lo == rax && lreg_hi == rdx, "must be"); 2109 __ imull(lreg_hi, rreg_lo); 2110 __ imull(rreg_hi, lreg_lo); 2111 __ addl (rreg_hi, lreg_hi); 2112 __ mull (rreg_lo); 2113 __ addl (lreg_hi, rreg_hi); 2114 #endif // _LP64 2115 break; 2116 default: 2117 ShouldNotReachHere(); 2118 } 2119 2120 } else if (right->is_constant()) { 2121 // cpu register - constant 2122 #ifdef _LP64 2123 jlong c = right->as_constant_ptr()->as_jlong_bits(); 2124 __ movptr(r10, (intptr_t) c); 2125 switch (code) { 2126 case lir_add: 2127 __ addptr(lreg_lo, r10); 2128 break; 2129 case lir_sub: 2130 __ subptr(lreg_lo, r10); 2131 break; 2132 default: 2133 ShouldNotReachHere(); 2134 } 2135 #else 2136 jint c_lo = right->as_constant_ptr()->as_jint_lo(); 2137 jint c_hi = right->as_constant_ptr()->as_jint_hi(); 2138 switch (code) { 2139 case lir_add: 2140 __ addptr(lreg_lo, c_lo); 2141 __ adcl(lreg_hi, c_hi); 2142 break; 2143 case lir_sub: 2144 __ subptr(lreg_lo, c_lo); 2145 __ sbbl(lreg_hi, c_hi); 2146 break; 2147 default: 2148 ShouldNotReachHere(); 2149 } 2150 #endif // _LP64 2151 2152 } else { 2153 ShouldNotReachHere(); 2154 } 2155 2156 } else if (left->is_single_xmm()) { 2157 assert(left == dest, "left and dest must be equal"); 2158 XMMRegister lreg = left->as_xmm_float_reg(); 2159 2160 if (right->is_single_xmm()) { 2161 XMMRegister rreg = right->as_xmm_float_reg(); 2162 switch (code) { 2163 case lir_add: __ addss(lreg, rreg); break; 2164 case lir_sub: __ subss(lreg, rreg); break; 2165 case lir_mul: __ mulss(lreg, rreg); break; 2166 case lir_div: __ divss(lreg, rreg); break; 2167 default: ShouldNotReachHere(); 2168 } 2169 } else { 2170 Address raddr; 2171 if (right->is_single_stack()) { 2172 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2173 } else if (right->is_constant()) { 2174 // hack for now 2175 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 2176 } else { 2177 ShouldNotReachHere(); 2178 } 2179 switch (code) { 2180 case lir_add: __ addss(lreg, raddr); break; 2181 case lir_sub: __ subss(lreg, raddr); break; 2182 case lir_mul: __ mulss(lreg, raddr); break; 2183 case lir_div: __ divss(lreg, raddr); break; 2184 default: ShouldNotReachHere(); 2185 } 2186 } 2187 2188 } else if (left->is_double_xmm()) { 2189 assert(left == dest, "left and dest must be equal"); 2190 2191 XMMRegister lreg = left->as_xmm_double_reg(); 2192 if (right->is_double_xmm()) { 2193 XMMRegister rreg = right->as_xmm_double_reg(); 2194 switch (code) { 2195 case lir_add: __ addsd(lreg, rreg); break; 2196 case lir_sub: __ subsd(lreg, rreg); break; 2197 case lir_mul: __ mulsd(lreg, rreg); break; 2198 case lir_div: __ divsd(lreg, rreg); break; 2199 default: ShouldNotReachHere(); 2200 } 2201 } else { 2202 Address raddr; 2203 if (right->is_double_stack()) { 2204 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2205 } else if (right->is_constant()) { 2206 // hack for now 2207 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2208 } else { 2209 ShouldNotReachHere(); 2210 } 2211 switch (code) { 2212 case lir_add: __ addsd(lreg, raddr); break; 2213 case lir_sub: __ subsd(lreg, raddr); break; 2214 case lir_mul: __ mulsd(lreg, raddr); break; 2215 case lir_div: __ divsd(lreg, raddr); break; 2216 default: ShouldNotReachHere(); 2217 } 2218 } 2219 2220 #ifndef _LP64 2221 } else if (left->is_single_fpu()) { 2222 assert(dest->is_single_fpu(), "fpu stack allocation required"); 2223 2224 if (right->is_single_fpu()) { 2225 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack); 2226 2227 } else { 2228 assert(left->fpu_regnr() == 0, "left must be on TOS"); 2229 assert(dest->fpu_regnr() == 0, "dest must be on TOS"); 2230 2231 Address raddr; 2232 if (right->is_single_stack()) { 2233 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2234 } else if (right->is_constant()) { 2235 address const_addr = float_constant(right->as_jfloat()); 2236 assert(const_addr != nullptr, "incorrect float/double constant maintenance"); 2237 // hack for now 2238 raddr = __ as_Address(InternalAddress(const_addr)); 2239 } else { 2240 ShouldNotReachHere(); 2241 } 2242 2243 switch (code) { 2244 case lir_add: __ fadd_s(raddr); break; 2245 case lir_sub: __ fsub_s(raddr); break; 2246 case lir_mul: __ fmul_s(raddr); break; 2247 case lir_div: __ fdiv_s(raddr); break; 2248 default: ShouldNotReachHere(); 2249 } 2250 } 2251 2252 } else if (left->is_double_fpu()) { 2253 assert(dest->is_double_fpu(), "fpu stack allocation required"); 2254 2255 if (code == lir_mul || code == lir_div) { 2256 // Double values require special handling for strictfp mul/div on x86 2257 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 2258 __ fmulp(left->fpu_regnrLo() + 1); 2259 } 2260 2261 if (right->is_double_fpu()) { 2262 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack); 2263 2264 } else { 2265 assert(left->fpu_regnrLo() == 0, "left must be on TOS"); 2266 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS"); 2267 2268 Address raddr; 2269 if (right->is_double_stack()) { 2270 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2271 } else if (right->is_constant()) { 2272 // hack for now 2273 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2274 } else { 2275 ShouldNotReachHere(); 2276 } 2277 2278 switch (code) { 2279 case lir_add: __ fadd_d(raddr); break; 2280 case lir_sub: __ fsub_d(raddr); break; 2281 case lir_mul: __ fmul_d(raddr); break; 2282 case lir_div: __ fdiv_d(raddr); break; 2283 default: ShouldNotReachHere(); 2284 } 2285 } 2286 2287 if (code == lir_mul || code == lir_div) { 2288 // Double values require special handling for strictfp mul/div on x86 2289 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 2290 __ fmulp(dest->fpu_regnrLo() + 1); 2291 } 2292 #endif // !_LP64 2293 2294 } else if (left->is_single_stack() || left->is_address()) { 2295 assert(left == dest, "left and dest must be equal"); 2296 2297 Address laddr; 2298 if (left->is_single_stack()) { 2299 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 2300 } else if (left->is_address()) { 2301 laddr = as_Address(left->as_address_ptr()); 2302 } else { 2303 ShouldNotReachHere(); 2304 } 2305 2306 if (right->is_single_cpu()) { 2307 Register rreg = right->as_register(); 2308 switch (code) { 2309 case lir_add: __ addl(laddr, rreg); break; 2310 case lir_sub: __ subl(laddr, rreg); break; 2311 default: ShouldNotReachHere(); 2312 } 2313 } else if (right->is_constant()) { 2314 jint c = right->as_constant_ptr()->as_jint(); 2315 switch (code) { 2316 case lir_add: { 2317 __ incrementl(laddr, c); 2318 break; 2319 } 2320 case lir_sub: { 2321 __ decrementl(laddr, c); 2322 break; 2323 } 2324 default: ShouldNotReachHere(); 2325 } 2326 } else { 2327 ShouldNotReachHere(); 2328 } 2329 2330 } else { 2331 ShouldNotReachHere(); 2332 } 2333 } 2334 2335 #ifndef _LP64 2336 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { 2337 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR"); 2338 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR"); 2339 assert(left_index == 0 || right_index == 0, "either must be on top of stack"); 2340 2341 bool left_is_tos = (left_index == 0); 2342 bool dest_is_tos = (dest_index == 0); 2343 int non_tos_index = (left_is_tos ? right_index : left_index); 2344 2345 switch (code) { 2346 case lir_add: 2347 if (pop_fpu_stack) __ faddp(non_tos_index); 2348 else if (dest_is_tos) __ fadd (non_tos_index); 2349 else __ fadda(non_tos_index); 2350 break; 2351 2352 case lir_sub: 2353 if (left_is_tos) { 2354 if (pop_fpu_stack) __ fsubrp(non_tos_index); 2355 else if (dest_is_tos) __ fsub (non_tos_index); 2356 else __ fsubra(non_tos_index); 2357 } else { 2358 if (pop_fpu_stack) __ fsubp (non_tos_index); 2359 else if (dest_is_tos) __ fsubr (non_tos_index); 2360 else __ fsuba (non_tos_index); 2361 } 2362 break; 2363 2364 case lir_mul: 2365 if (pop_fpu_stack) __ fmulp(non_tos_index); 2366 else if (dest_is_tos) __ fmul (non_tos_index); 2367 else __ fmula(non_tos_index); 2368 break; 2369 2370 case lir_div: 2371 if (left_is_tos) { 2372 if (pop_fpu_stack) __ fdivrp(non_tos_index); 2373 else if (dest_is_tos) __ fdiv (non_tos_index); 2374 else __ fdivra(non_tos_index); 2375 } else { 2376 if (pop_fpu_stack) __ fdivp (non_tos_index); 2377 else if (dest_is_tos) __ fdivr (non_tos_index); 2378 else __ fdiva (non_tos_index); 2379 } 2380 break; 2381 2382 case lir_rem: 2383 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation"); 2384 __ fremr(noreg); 2385 break; 2386 2387 default: 2388 ShouldNotReachHere(); 2389 } 2390 } 2391 #endif // _LP64 2392 2393 2394 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 2395 if (value->is_double_xmm()) { 2396 switch(code) { 2397 case lir_abs : 2398 { 2399 #ifdef _LP64 2400 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 2401 assert(tmp->is_valid(), "need temporary"); 2402 __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2); 2403 } else 2404 #endif 2405 { 2406 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 2407 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 2408 } 2409 assert(!tmp->is_valid(), "do not need temporary"); 2410 __ andpd(dest->as_xmm_double_reg(), 2411 ExternalAddress((address)double_signmask_pool), 2412 rscratch1); 2413 } 2414 } 2415 break; 2416 2417 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 2418 // all other intrinsics are not available in the SSE instruction set, so FPU is used 2419 default : ShouldNotReachHere(); 2420 } 2421 2422 #ifndef _LP64 2423 } else if (value->is_double_fpu()) { 2424 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS"); 2425 switch(code) { 2426 case lir_abs : __ fabs() ; break; 2427 case lir_sqrt : __ fsqrt(); break; 2428 default : ShouldNotReachHere(); 2429 } 2430 #endif // !_LP64 2431 } else if (code == lir_f2hf) { 2432 __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 2433 } else if (code == lir_hf2f) { 2434 __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register()); 2435 } else { 2436 Unimplemented(); 2437 } 2438 } 2439 2440 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 2441 // assert(left->destroys_register(), "check"); 2442 if (left->is_single_cpu()) { 2443 Register reg = left->as_register(); 2444 if (right->is_constant()) { 2445 int val = right->as_constant_ptr()->as_jint(); 2446 switch (code) { 2447 case lir_logic_and: __ andl (reg, val); break; 2448 case lir_logic_or: __ orl (reg, val); break; 2449 case lir_logic_xor: __ xorl (reg, val); break; 2450 default: ShouldNotReachHere(); 2451 } 2452 } else if (right->is_stack()) { 2453 // added support for stack operands 2454 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2455 switch (code) { 2456 case lir_logic_and: __ andl (reg, raddr); break; 2457 case lir_logic_or: __ orl (reg, raddr); break; 2458 case lir_logic_xor: __ xorl (reg, raddr); break; 2459 default: ShouldNotReachHere(); 2460 } 2461 } else { 2462 Register rright = right->as_register(); 2463 switch (code) { 2464 case lir_logic_and: __ andptr (reg, rright); break; 2465 case lir_logic_or : __ orptr (reg, rright); break; 2466 case lir_logic_xor: __ xorptr (reg, rright); break; 2467 default: ShouldNotReachHere(); 2468 } 2469 } 2470 move_regs(reg, dst->as_register()); 2471 } else { 2472 Register l_lo = left->as_register_lo(); 2473 Register l_hi = left->as_register_hi(); 2474 if (right->is_constant()) { 2475 #ifdef _LP64 2476 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 2477 switch (code) { 2478 case lir_logic_and: 2479 __ andq(l_lo, rscratch1); 2480 break; 2481 case lir_logic_or: 2482 __ orq(l_lo, rscratch1); 2483 break; 2484 case lir_logic_xor: 2485 __ xorq(l_lo, rscratch1); 2486 break; 2487 default: ShouldNotReachHere(); 2488 } 2489 #else 2490 int r_lo = right->as_constant_ptr()->as_jint_lo(); 2491 int r_hi = right->as_constant_ptr()->as_jint_hi(); 2492 switch (code) { 2493 case lir_logic_and: 2494 __ andl(l_lo, r_lo); 2495 __ andl(l_hi, r_hi); 2496 break; 2497 case lir_logic_or: 2498 __ orl(l_lo, r_lo); 2499 __ orl(l_hi, r_hi); 2500 break; 2501 case lir_logic_xor: 2502 __ xorl(l_lo, r_lo); 2503 __ xorl(l_hi, r_hi); 2504 break; 2505 default: ShouldNotReachHere(); 2506 } 2507 #endif // _LP64 2508 } else { 2509 #ifdef _LP64 2510 Register r_lo; 2511 if (is_reference_type(right->type())) { 2512 r_lo = right->as_register(); 2513 } else { 2514 r_lo = right->as_register_lo(); 2515 } 2516 #else 2517 Register r_lo = right->as_register_lo(); 2518 Register r_hi = right->as_register_hi(); 2519 assert(l_lo != r_hi, "overwriting registers"); 2520 #endif 2521 switch (code) { 2522 case lir_logic_and: 2523 __ andptr(l_lo, r_lo); 2524 NOT_LP64(__ andptr(l_hi, r_hi);) 2525 break; 2526 case lir_logic_or: 2527 __ orptr(l_lo, r_lo); 2528 NOT_LP64(__ orptr(l_hi, r_hi);) 2529 break; 2530 case lir_logic_xor: 2531 __ xorptr(l_lo, r_lo); 2532 NOT_LP64(__ xorptr(l_hi, r_hi);) 2533 break; 2534 default: ShouldNotReachHere(); 2535 } 2536 } 2537 2538 Register dst_lo = dst->as_register_lo(); 2539 Register dst_hi = dst->as_register_hi(); 2540 2541 #ifdef _LP64 2542 move_regs(l_lo, dst_lo); 2543 #else 2544 if (dst_lo == l_hi) { 2545 assert(dst_hi != l_lo, "overwriting registers"); 2546 move_regs(l_hi, dst_hi); 2547 move_regs(l_lo, dst_lo); 2548 } else { 2549 assert(dst_lo != l_hi, "overwriting registers"); 2550 move_regs(l_lo, dst_lo); 2551 move_regs(l_hi, dst_hi); 2552 } 2553 #endif // _LP64 2554 } 2555 } 2556 2557 2558 // we assume that rax, and rdx can be overwritten 2559 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 2560 2561 assert(left->is_single_cpu(), "left must be register"); 2562 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2563 assert(result->is_single_cpu(), "result must be register"); 2564 2565 // assert(left->destroys_register(), "check"); 2566 // assert(right->destroys_register(), "check"); 2567 2568 Register lreg = left->as_register(); 2569 Register dreg = result->as_register(); 2570 2571 if (right->is_constant()) { 2572 jint divisor = right->as_constant_ptr()->as_jint(); 2573 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 2574 if (code == lir_idiv) { 2575 assert(lreg == rax, "must be rax,"); 2576 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2577 __ cdql(); // sign extend into rdx:rax 2578 if (divisor == 2) { 2579 __ subl(lreg, rdx); 2580 } else { 2581 __ andl(rdx, divisor - 1); 2582 __ addl(lreg, rdx); 2583 } 2584 __ sarl(lreg, log2i_exact(divisor)); 2585 move_regs(lreg, dreg); 2586 } else if (code == lir_irem) { 2587 Label done; 2588 __ mov(dreg, lreg); 2589 __ andl(dreg, 0x80000000 | (divisor - 1)); 2590 __ jcc(Assembler::positive, done); 2591 __ decrement(dreg); 2592 __ orl(dreg, ~(divisor - 1)); 2593 __ increment(dreg); 2594 __ bind(done); 2595 } else { 2596 ShouldNotReachHere(); 2597 } 2598 } else { 2599 Register rreg = right->as_register(); 2600 assert(lreg == rax, "left register must be rax,"); 2601 assert(rreg != rdx, "right register must not be rdx"); 2602 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2603 2604 move_regs(lreg, rax); 2605 2606 int idivl_offset = __ corrected_idivl(rreg); 2607 if (ImplicitDiv0Checks) { 2608 add_debug_info_for_div0(idivl_offset, info); 2609 } 2610 if (code == lir_irem) { 2611 move_regs(rdx, dreg); // result is in rdx 2612 } else { 2613 move_regs(rax, dreg); 2614 } 2615 } 2616 } 2617 2618 2619 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2620 if (opr1->is_single_cpu()) { 2621 Register reg1 = opr1->as_register(); 2622 if (opr2->is_single_cpu()) { 2623 // cpu register - cpu register 2624 if (is_reference_type(opr1->type())) { 2625 __ cmpoop(reg1, opr2->as_register()); 2626 } else { 2627 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2628 __ cmpl(reg1, opr2->as_register()); 2629 } 2630 } else if (opr2->is_stack()) { 2631 // cpu register - stack 2632 if (is_reference_type(opr1->type())) { 2633 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2634 } else { 2635 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2636 } 2637 } else if (opr2->is_constant()) { 2638 // cpu register - constant 2639 LIR_Const* c = opr2->as_constant_ptr(); 2640 if (c->type() == T_INT) { 2641 jint i = c->as_jint(); 2642 if (i == 0) { 2643 __ testl(reg1, reg1); 2644 } else { 2645 __ cmpl(reg1, i); 2646 } 2647 } else if (c->type() == T_METADATA) { 2648 // All we need for now is a comparison with null for equality. 2649 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2650 Metadata* m = c->as_metadata(); 2651 if (m == nullptr) { 2652 __ testptr(reg1, reg1); 2653 } else { 2654 ShouldNotReachHere(); 2655 } 2656 } else if (is_reference_type(c->type())) { 2657 // In 64bit oops are single register 2658 jobject o = c->as_jobject(); 2659 if (o == nullptr) { 2660 __ testptr(reg1, reg1); 2661 } else { 2662 __ cmpoop(reg1, o, rscratch1); 2663 } 2664 } else { 2665 fatal("unexpected type: %s", basictype_to_str(c->type())); 2666 } 2667 // cpu register - address 2668 } else if (opr2->is_address()) { 2669 if (op->info() != nullptr) { 2670 add_debug_info_for_null_check_here(op->info()); 2671 } 2672 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2673 } else { 2674 ShouldNotReachHere(); 2675 } 2676 2677 } else if(opr1->is_double_cpu()) { 2678 Register xlo = opr1->as_register_lo(); 2679 Register xhi = opr1->as_register_hi(); 2680 if (opr2->is_double_cpu()) { 2681 #ifdef _LP64 2682 __ cmpptr(xlo, opr2->as_register_lo()); 2683 #else 2684 // cpu register - cpu register 2685 Register ylo = opr2->as_register_lo(); 2686 Register yhi = opr2->as_register_hi(); 2687 __ subl(xlo, ylo); 2688 __ sbbl(xhi, yhi); 2689 if (condition == lir_cond_equal || condition == lir_cond_notEqual) { 2690 __ orl(xhi, xlo); 2691 } 2692 #endif // _LP64 2693 } else if (opr2->is_constant()) { 2694 // cpu register - constant 0 2695 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2696 #ifdef _LP64 2697 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2698 #else 2699 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case"); 2700 __ orl(xhi, xlo); 2701 #endif // _LP64 2702 } else { 2703 ShouldNotReachHere(); 2704 } 2705 2706 } else if (opr1->is_single_xmm()) { 2707 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2708 if (opr2->is_single_xmm()) { 2709 // xmm register - xmm register 2710 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2711 } else if (opr2->is_stack()) { 2712 // xmm register - stack 2713 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2714 } else if (opr2->is_constant()) { 2715 // xmm register - constant 2716 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2717 } else if (opr2->is_address()) { 2718 // xmm register - address 2719 if (op->info() != nullptr) { 2720 add_debug_info_for_null_check_here(op->info()); 2721 } 2722 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2723 } else { 2724 ShouldNotReachHere(); 2725 } 2726 2727 } else if (opr1->is_double_xmm()) { 2728 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2729 if (opr2->is_double_xmm()) { 2730 // xmm register - xmm register 2731 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2732 } else if (opr2->is_stack()) { 2733 // xmm register - stack 2734 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2735 } else if (opr2->is_constant()) { 2736 // xmm register - constant 2737 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2738 } else if (opr2->is_address()) { 2739 // xmm register - address 2740 if (op->info() != nullptr) { 2741 add_debug_info_for_null_check_here(op->info()); 2742 } 2743 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2744 } else { 2745 ShouldNotReachHere(); 2746 } 2747 2748 #ifndef _LP64 2749 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) { 2750 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)"); 2751 assert(opr2->is_fpu_register(), "both must be registers"); 2752 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2753 #endif // LP64 2754 2755 } else if (opr1->is_address() && opr2->is_constant()) { 2756 LIR_Const* c = opr2->as_constant_ptr(); 2757 #ifdef _LP64 2758 if (is_reference_type(c->type())) { 2759 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2760 __ movoop(rscratch1, c->as_jobject()); 2761 } 2762 #endif // LP64 2763 if (op->info() != nullptr) { 2764 add_debug_info_for_null_check_here(op->info()); 2765 } 2766 // special case: address - constant 2767 LIR_Address* addr = opr1->as_address_ptr(); 2768 if (c->type() == T_INT) { 2769 __ cmpl(as_Address(addr), c->as_jint()); 2770 } else if (is_reference_type(c->type())) { 2771 #ifdef _LP64 2772 // %%% Make this explode if addr isn't reachable until we figure out a 2773 // better strategy by giving noreg as the temp for as_Address 2774 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2775 #else 2776 __ cmpoop(as_Address(addr), c->as_jobject()); 2777 #endif // _LP64 2778 } else { 2779 ShouldNotReachHere(); 2780 } 2781 2782 } else { 2783 ShouldNotReachHere(); 2784 } 2785 } 2786 2787 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2788 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2789 if (left->is_single_xmm()) { 2790 assert(right->is_single_xmm(), "must match"); 2791 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2792 } else if (left->is_double_xmm()) { 2793 assert(right->is_double_xmm(), "must match"); 2794 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2795 2796 } else { 2797 #ifdef _LP64 2798 ShouldNotReachHere(); 2799 #else 2800 assert(left->is_single_fpu() || left->is_double_fpu(), "must be"); 2801 assert(right->is_single_fpu() || right->is_double_fpu(), "must match"); 2802 2803 assert(left->fpu() == 0, "left must be on TOS"); 2804 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(), 2805 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2806 #endif // LP64 2807 } 2808 } else { 2809 assert(code == lir_cmp_l2i, "check"); 2810 #ifdef _LP64 2811 Label done; 2812 Register dest = dst->as_register(); 2813 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2814 __ movl(dest, -1); 2815 __ jccb(Assembler::less, done); 2816 __ setb(Assembler::notZero, dest); 2817 __ movzbl(dest, dest); 2818 __ bind(done); 2819 #else 2820 __ lcmp2int(left->as_register_hi(), 2821 left->as_register_lo(), 2822 right->as_register_hi(), 2823 right->as_register_lo()); 2824 move_regs(left->as_register_hi(), dst->as_register()); 2825 #endif // _LP64 2826 } 2827 } 2828 2829 2830 void LIR_Assembler::align_call(LIR_Code code) { 2831 // make sure that the displacement word of the call ends up word aligned 2832 int offset = __ offset(); 2833 switch (code) { 2834 case lir_static_call: 2835 case lir_optvirtual_call: 2836 case lir_dynamic_call: 2837 offset += NativeCall::displacement_offset; 2838 break; 2839 case lir_icvirtual_call: 2840 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size_rex; 2841 break; 2842 default: ShouldNotReachHere(); 2843 } 2844 __ align(BytesPerWord, offset); 2845 } 2846 2847 2848 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2849 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2850 "must be aligned"); 2851 __ call(AddressLiteral(op->addr(), rtype)); 2852 add_call_info(code_offset(), op->info()); 2853 __ post_call_nop(); 2854 } 2855 2856 2857 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2858 __ ic_call(op->addr()); 2859 add_call_info(code_offset(), op->info()); 2860 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2861 "must be aligned"); 2862 __ post_call_nop(); 2863 } 2864 2865 2866 void LIR_Assembler::emit_static_call_stub() { 2867 address call_pc = __ pc(); 2868 address stub = __ start_a_stub(call_stub_size()); 2869 if (stub == nullptr) { 2870 bailout("static call stub overflow"); 2871 return; 2872 } 2873 2874 int start = __ offset(); 2875 2876 // make sure that the displacement word of the call ends up word aligned 2877 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size_rex + NativeCall::displacement_offset); 2878 __ relocate(static_stub_Relocation::spec(call_pc)); 2879 __ mov_metadata(rbx, (Metadata*)nullptr); 2880 // must be set to -1 at code generation time 2881 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2882 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2883 __ jump(RuntimeAddress(__ pc())); 2884 2885 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2886 __ end_a_stub(); 2887 } 2888 2889 2890 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2891 assert(exceptionOop->as_register() == rax, "must match"); 2892 assert(exceptionPC->as_register() == rdx, "must match"); 2893 2894 // exception object is not added to oop map by LinearScan 2895 // (LinearScan assumes that no oops are in fixed registers) 2896 info->add_register_oop(exceptionOop); 2897 C1StubId unwind_id; 2898 2899 // get current pc information 2900 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2901 int pc_for_athrow_offset = __ offset(); 2902 InternalAddress pc_for_athrow(__ pc()); 2903 __ lea(exceptionPC->as_register(), pc_for_athrow); 2904 add_call_info(pc_for_athrow_offset, info); // for exception handler 2905 2906 __ verify_not_null_oop(rax); 2907 // search an exception handler (rax: exception oop, rdx: throwing pc) 2908 if (compilation()->has_fpu_code()) { 2909 unwind_id = C1StubId::handle_exception_id; 2910 } else { 2911 unwind_id = C1StubId::handle_exception_nofpu_id; 2912 } 2913 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2914 2915 // enough room for two byte trap 2916 __ nop(); 2917 } 2918 2919 2920 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2921 assert(exceptionOop->as_register() == rax, "must match"); 2922 2923 __ jmp(_unwind_handler_entry); 2924 } 2925 2926 2927 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2928 2929 // optimized version for linear scan: 2930 // * count must be already in ECX (guaranteed by LinearScan) 2931 // * left and dest must be equal 2932 // * tmp must be unused 2933 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2934 assert(left == dest, "left and dest must be equal"); 2935 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2936 2937 if (left->is_single_cpu()) { 2938 Register value = left->as_register(); 2939 assert(value != SHIFT_count, "left cannot be ECX"); 2940 2941 switch (code) { 2942 case lir_shl: __ shll(value); break; 2943 case lir_shr: __ sarl(value); break; 2944 case lir_ushr: __ shrl(value); break; 2945 default: ShouldNotReachHere(); 2946 } 2947 } else if (left->is_double_cpu()) { 2948 Register lo = left->as_register_lo(); 2949 Register hi = left->as_register_hi(); 2950 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2951 #ifdef _LP64 2952 switch (code) { 2953 case lir_shl: __ shlptr(lo); break; 2954 case lir_shr: __ sarptr(lo); break; 2955 case lir_ushr: __ shrptr(lo); break; 2956 default: ShouldNotReachHere(); 2957 } 2958 #else 2959 2960 switch (code) { 2961 case lir_shl: __ lshl(hi, lo); break; 2962 case lir_shr: __ lshr(hi, lo, true); break; 2963 case lir_ushr: __ lshr(hi, lo, false); break; 2964 default: ShouldNotReachHere(); 2965 } 2966 #endif // LP64 2967 } else { 2968 ShouldNotReachHere(); 2969 } 2970 } 2971 2972 2973 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2974 if (dest->is_single_cpu()) { 2975 // first move left into dest so that left is not destroyed by the shift 2976 Register value = dest->as_register(); 2977 count = count & 0x1F; // Java spec 2978 2979 move_regs(left->as_register(), value); 2980 switch (code) { 2981 case lir_shl: __ shll(value, count); break; 2982 case lir_shr: __ sarl(value, count); break; 2983 case lir_ushr: __ shrl(value, count); break; 2984 default: ShouldNotReachHere(); 2985 } 2986 } else if (dest->is_double_cpu()) { 2987 #ifndef _LP64 2988 Unimplemented(); 2989 #else 2990 // first move left into dest so that left is not destroyed by the shift 2991 Register value = dest->as_register_lo(); 2992 count = count & 0x1F; // Java spec 2993 2994 move_regs(left->as_register_lo(), value); 2995 switch (code) { 2996 case lir_shl: __ shlptr(value, count); break; 2997 case lir_shr: __ sarptr(value, count); break; 2998 case lir_ushr: __ shrptr(value, count); break; 2999 default: ShouldNotReachHere(); 3000 } 3001 #endif // _LP64 3002 } else { 3003 ShouldNotReachHere(); 3004 } 3005 } 3006 3007 3008 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 3009 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3010 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3011 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3012 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 3013 } 3014 3015 3016 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 3017 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3018 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3019 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3020 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 3021 } 3022 3023 3024 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 3025 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3026 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3027 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3028 __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1); 3029 } 3030 3031 3032 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 3033 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3034 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3035 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3036 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1); 3037 } 3038 3039 3040 // This code replaces a call to arraycopy; no exception may 3041 // be thrown in this code, they must be thrown in the System.arraycopy 3042 // activation frame; we could save some checks if this would not be the case 3043 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 3044 ciArrayKlass* default_type = op->expected_type(); 3045 Register src = op->src()->as_register(); 3046 Register dst = op->dst()->as_register(); 3047 Register src_pos = op->src_pos()->as_register(); 3048 Register dst_pos = op->dst_pos()->as_register(); 3049 Register length = op->length()->as_register(); 3050 Register tmp = op->tmp()->as_register(); 3051 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3052 3053 CodeStub* stub = op->stub(); 3054 int flags = op->flags(); 3055 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 3056 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 3057 3058 // if we don't know anything, just go through the generic arraycopy 3059 if (default_type == nullptr) { 3060 // save outgoing arguments on stack in case call to System.arraycopy is needed 3061 // HACK ALERT. This code used to push the parameters in a hardwired fashion 3062 // for interpreter calling conventions. Now we have to do it in new style conventions. 3063 // For the moment until C1 gets the new register allocator I just force all the 3064 // args to the right place (except the register args) and then on the back side 3065 // reload the register args properly if we go slow path. Yuck 3066 3067 // These are proper for the calling convention 3068 store_parameter(length, 2); 3069 store_parameter(dst_pos, 1); 3070 store_parameter(dst, 0); 3071 3072 // these are just temporary placements until we need to reload 3073 store_parameter(src_pos, 3); 3074 store_parameter(src, 4); 3075 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");) 3076 3077 address copyfunc_addr = StubRoutines::generic_arraycopy(); 3078 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 3079 3080 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 3081 #ifdef _LP64 3082 // The arguments are in java calling convention so we can trivially shift them to C 3083 // convention 3084 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 3085 __ mov(c_rarg0, j_rarg0); 3086 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 3087 __ mov(c_rarg1, j_rarg1); 3088 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 3089 __ mov(c_rarg2, j_rarg2); 3090 assert_different_registers(c_rarg3, j_rarg4); 3091 __ mov(c_rarg3, j_rarg3); 3092 #ifdef _WIN64 3093 // Allocate abi space for args but be sure to keep stack aligned 3094 __ subptr(rsp, 6*wordSize); 3095 store_parameter(j_rarg4, 4); 3096 #ifndef PRODUCT 3097 if (PrintC1Statistics) { 3098 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3099 } 3100 #endif 3101 __ call(RuntimeAddress(copyfunc_addr)); 3102 __ addptr(rsp, 6*wordSize); 3103 #else 3104 __ mov(c_rarg4, j_rarg4); 3105 #ifndef PRODUCT 3106 if (PrintC1Statistics) { 3107 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3108 } 3109 #endif 3110 __ call(RuntimeAddress(copyfunc_addr)); 3111 #endif // _WIN64 3112 #else 3113 __ push(length); 3114 __ push(dst_pos); 3115 __ push(dst); 3116 __ push(src_pos); 3117 __ push(src); 3118 3119 #ifndef PRODUCT 3120 if (PrintC1Statistics) { 3121 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1); 3122 } 3123 #endif 3124 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack 3125 3126 #endif // _LP64 3127 3128 __ testl(rax, rax); 3129 __ jcc(Assembler::equal, *stub->continuation()); 3130 3131 __ mov(tmp, rax); 3132 __ xorl(tmp, -1); 3133 3134 // Reload values from the stack so they are where the stub 3135 // expects them. 3136 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3137 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3138 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3139 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3140 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3141 3142 __ subl(length, tmp); 3143 __ addl(src_pos, tmp); 3144 __ addl(dst_pos, tmp); 3145 __ jmp(*stub->entry()); 3146 3147 __ bind(*stub->continuation()); 3148 return; 3149 } 3150 3151 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 3152 3153 int elem_size = type2aelembytes(basic_type); 3154 Address::ScaleFactor scale; 3155 3156 switch (elem_size) { 3157 case 1 : 3158 scale = Address::times_1; 3159 break; 3160 case 2 : 3161 scale = Address::times_2; 3162 break; 3163 case 4 : 3164 scale = Address::times_4; 3165 break; 3166 case 8 : 3167 scale = Address::times_8; 3168 break; 3169 default: 3170 scale = Address::no_scale; 3171 ShouldNotReachHere(); 3172 } 3173 3174 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 3175 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 3176 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 3177 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 3178 3179 // length and pos's are all sign extended at this point on 64bit 3180 3181 // test for null 3182 if (flags & LIR_OpArrayCopy::src_null_check) { 3183 __ testptr(src, src); 3184 __ jcc(Assembler::zero, *stub->entry()); 3185 } 3186 if (flags & LIR_OpArrayCopy::dst_null_check) { 3187 __ testptr(dst, dst); 3188 __ jcc(Assembler::zero, *stub->entry()); 3189 } 3190 3191 // If the compiler was not able to prove that exact type of the source or the destination 3192 // of the arraycopy is an array type, check at runtime if the source or the destination is 3193 // an instance type. 3194 if (flags & LIR_OpArrayCopy::type_check) { 3195 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3196 __ load_klass(tmp, dst, tmp_load_klass); 3197 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3198 __ jcc(Assembler::greaterEqual, *stub->entry()); 3199 } 3200 3201 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3202 __ load_klass(tmp, src, tmp_load_klass); 3203 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3204 __ jcc(Assembler::greaterEqual, *stub->entry()); 3205 } 3206 } 3207 3208 // check if negative 3209 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 3210 __ testl(src_pos, src_pos); 3211 __ jcc(Assembler::less, *stub->entry()); 3212 } 3213 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 3214 __ testl(dst_pos, dst_pos); 3215 __ jcc(Assembler::less, *stub->entry()); 3216 } 3217 3218 if (flags & LIR_OpArrayCopy::src_range_check) { 3219 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 3220 __ cmpl(tmp, src_length_addr); 3221 __ jcc(Assembler::above, *stub->entry()); 3222 } 3223 if (flags & LIR_OpArrayCopy::dst_range_check) { 3224 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 3225 __ cmpl(tmp, dst_length_addr); 3226 __ jcc(Assembler::above, *stub->entry()); 3227 } 3228 3229 if (flags & LIR_OpArrayCopy::length_positive_check) { 3230 __ testl(length, length); 3231 __ jcc(Assembler::less, *stub->entry()); 3232 } 3233 3234 #ifdef _LP64 3235 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 3236 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 3237 #endif 3238 3239 if (flags & LIR_OpArrayCopy::type_check) { 3240 // We don't know the array types are compatible 3241 if (basic_type != T_OBJECT) { 3242 // Simple test for basic type arrays 3243 if (UseCompressedClassPointers) { 3244 __ movl(tmp, src_klass_addr); 3245 __ cmpl(tmp, dst_klass_addr); 3246 } else { 3247 __ movptr(tmp, src_klass_addr); 3248 __ cmpptr(tmp, dst_klass_addr); 3249 } 3250 __ jcc(Assembler::notEqual, *stub->entry()); 3251 } else { 3252 // For object arrays, if src is a sub class of dst then we can 3253 // safely do the copy. 3254 Label cont, slow; 3255 3256 __ push(src); 3257 __ push(dst); 3258 3259 __ load_klass(src, src, tmp_load_klass); 3260 __ load_klass(dst, dst, tmp_load_klass); 3261 3262 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr); 3263 3264 __ push(src); 3265 __ push(dst); 3266 __ call(RuntimeAddress(Runtime1::entry_for(C1StubId::slow_subtype_check_id))); 3267 __ pop(dst); 3268 __ pop(src); 3269 3270 __ testl(src, src); 3271 __ jcc(Assembler::notEqual, cont); 3272 3273 __ bind(slow); 3274 __ pop(dst); 3275 __ pop(src); 3276 3277 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 3278 if (copyfunc_addr != nullptr) { // use stub if available 3279 // src is not a sub class of dst so we have to do a 3280 // per-element check. 3281 3282 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 3283 if ((flags & mask) != mask) { 3284 // Check that at least both of them object arrays. 3285 assert(flags & mask, "one of the two should be known to be an object array"); 3286 3287 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3288 __ load_klass(tmp, src, tmp_load_klass); 3289 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3290 __ load_klass(tmp, dst, tmp_load_klass); 3291 } 3292 int lh_offset = in_bytes(Klass::layout_helper_offset()); 3293 Address klass_lh_addr(tmp, lh_offset); 3294 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 3295 __ cmpl(klass_lh_addr, objArray_lh); 3296 __ jcc(Assembler::notEqual, *stub->entry()); 3297 } 3298 3299 // Spill because stubs can use any register they like and it's 3300 // easier to restore just those that we care about. 3301 store_parameter(dst, 0); 3302 store_parameter(dst_pos, 1); 3303 store_parameter(length, 2); 3304 store_parameter(src_pos, 3); 3305 store_parameter(src, 4); 3306 3307 #ifndef _LP64 3308 __ movptr(tmp, dst_klass_addr); 3309 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset())); 3310 __ push(tmp); 3311 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset())); 3312 __ push(tmp); 3313 __ push(length); 3314 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3315 __ push(tmp); 3316 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3317 __ push(tmp); 3318 3319 __ call_VM_leaf(copyfunc_addr, 5); 3320 #else 3321 __ movl2ptr(length, length); //higher 32bits must be null 3322 3323 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3324 assert_different_registers(c_rarg0, dst, dst_pos, length); 3325 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3326 assert_different_registers(c_rarg1, dst, length); 3327 3328 __ mov(c_rarg2, length); 3329 assert_different_registers(c_rarg2, dst); 3330 3331 #ifdef _WIN64 3332 // Allocate abi space for args but be sure to keep stack aligned 3333 __ subptr(rsp, 6*wordSize); 3334 __ load_klass(c_rarg3, dst, tmp_load_klass); 3335 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 3336 store_parameter(c_rarg3, 4); 3337 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 3338 __ call(RuntimeAddress(copyfunc_addr)); 3339 __ addptr(rsp, 6*wordSize); 3340 #else 3341 __ load_klass(c_rarg4, dst, tmp_load_klass); 3342 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 3343 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 3344 __ call(RuntimeAddress(copyfunc_addr)); 3345 #endif 3346 3347 #endif 3348 3349 #ifndef PRODUCT 3350 if (PrintC1Statistics) { 3351 Label failed; 3352 __ testl(rax, rax); 3353 __ jcc(Assembler::notZero, failed); 3354 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1); 3355 __ bind(failed); 3356 } 3357 #endif 3358 3359 __ testl(rax, rax); 3360 __ jcc(Assembler::zero, *stub->continuation()); 3361 3362 #ifndef PRODUCT 3363 if (PrintC1Statistics) { 3364 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1); 3365 } 3366 #endif 3367 3368 __ mov(tmp, rax); 3369 3370 __ xorl(tmp, -1); 3371 3372 // Restore previously spilled arguments 3373 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3374 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3375 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3376 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3377 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3378 3379 3380 __ subl(length, tmp); 3381 __ addl(src_pos, tmp); 3382 __ addl(dst_pos, tmp); 3383 } 3384 3385 __ jmp(*stub->entry()); 3386 3387 __ bind(cont); 3388 __ pop(dst); 3389 __ pop(src); 3390 } 3391 } 3392 3393 #ifdef ASSERT 3394 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 3395 // Sanity check the known type with the incoming class. For the 3396 // primitive case the types must match exactly with src.klass and 3397 // dst.klass each exactly matching the default type. For the 3398 // object array case, if no type check is needed then either the 3399 // dst type is exactly the expected type and the src type is a 3400 // subtype which we can't check or src is the same array as dst 3401 // but not necessarily exactly of type default_type. 3402 Label known_ok, halt; 3403 __ mov_metadata(tmp, default_type->constant_encoding()); 3404 #ifdef _LP64 3405 if (UseCompressedClassPointers) { 3406 __ encode_klass_not_null(tmp, rscratch1); 3407 } 3408 #endif 3409 3410 if (basic_type != T_OBJECT) { 3411 3412 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3413 else __ cmpptr(tmp, dst_klass_addr); 3414 __ jcc(Assembler::notEqual, halt); 3415 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr); 3416 else __ cmpptr(tmp, src_klass_addr); 3417 __ jcc(Assembler::equal, known_ok); 3418 } else { 3419 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3420 else __ cmpptr(tmp, dst_klass_addr); 3421 __ jcc(Assembler::equal, known_ok); 3422 __ cmpptr(src, dst); 3423 __ jcc(Assembler::equal, known_ok); 3424 } 3425 __ bind(halt); 3426 __ stop("incorrect type information in arraycopy"); 3427 __ bind(known_ok); 3428 } 3429 #endif 3430 3431 #ifndef PRODUCT 3432 if (PrintC1Statistics) { 3433 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1); 3434 } 3435 #endif 3436 3437 #ifdef _LP64 3438 assert_different_registers(c_rarg0, dst, dst_pos, length); 3439 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3440 assert_different_registers(c_rarg1, length); 3441 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3442 __ mov(c_rarg2, length); 3443 3444 #else 3445 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3446 store_parameter(tmp, 0); 3447 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3448 store_parameter(tmp, 1); 3449 store_parameter(length, 2); 3450 #endif // _LP64 3451 3452 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 3453 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 3454 const char *name; 3455 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 3456 __ call_VM_leaf(entry, 0); 3457 3458 if (stub != nullptr) { 3459 __ bind(*stub->continuation()); 3460 } 3461 } 3462 3463 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3464 assert(op->crc()->is_single_cpu(), "crc must be register"); 3465 assert(op->val()->is_single_cpu(), "byte value must be register"); 3466 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3467 Register crc = op->crc()->as_register(); 3468 Register val = op->val()->as_register(); 3469 Register res = op->result_opr()->as_register(); 3470 3471 assert_different_registers(val, crc, res); 3472 3473 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 3474 __ notl(crc); // ~crc 3475 __ update_byte_crc32(crc, val, res); 3476 __ notl(crc); // ~crc 3477 __ mov(res, crc); 3478 } 3479 3480 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 3481 Register obj = op->obj_opr()->as_register(); // may not be an oop 3482 Register hdr = op->hdr_opr()->as_register(); 3483 Register lock = op->lock_opr()->as_register(); 3484 if (LockingMode == LM_MONITOR) { 3485 if (op->info() != nullptr) { 3486 add_debug_info_for_null_check_here(op->info()); 3487 __ null_check(obj); 3488 } 3489 __ jmp(*op->stub()->entry()); 3490 } else if (op->code() == lir_lock) { 3491 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3492 Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg; 3493 // add debug info for NullPointerException only if one is possible 3494 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 3495 if (op->info() != nullptr) { 3496 add_debug_info_for_null_check(null_check_offset, op->info()); 3497 } 3498 // done 3499 } else if (op->code() == lir_unlock) { 3500 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3501 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 3502 } else { 3503 Unimplemented(); 3504 } 3505 __ bind(*op->stub()->continuation()); 3506 } 3507 3508 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 3509 Register obj = op->obj()->as_pointer_register(); 3510 Register result = op->result_opr()->as_pointer_register(); 3511 3512 CodeEmitInfo* info = op->info(); 3513 if (info != nullptr) { 3514 add_debug_info_for_null_check_here(info); 3515 } 3516 3517 #ifdef _LP64 3518 if (UseCompressedClassPointers) { 3519 __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes())); 3520 __ decode_klass_not_null(result, rscratch1); 3521 } else 3522 #endif 3523 __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes())); 3524 } 3525 3526 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 3527 ciMethod* method = op->profiled_method(); 3528 int bci = op->profiled_bci(); 3529 ciMethod* callee = op->profiled_callee(); 3530 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3531 3532 // Update counter for all call types 3533 ciMethodData* md = method->method_data_or_null(); 3534 assert(md != nullptr, "Sanity"); 3535 ciProfileData* data = md->bci_to_data(bci); 3536 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 3537 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 3538 Register mdo = op->mdo()->as_register(); 3539 __ mov_metadata(mdo, md->constant_encoding()); 3540 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 3541 // Perform additional virtual call profiling for invokevirtual and 3542 // invokeinterface bytecodes 3543 if (op->should_profile_receiver_type()) { 3544 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 3545 Register recv = op->recv()->as_register(); 3546 assert_different_registers(mdo, recv); 3547 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 3548 ciKlass* known_klass = op->known_holder(); 3549 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 3550 // We know the type that will be seen at this call site; we can 3551 // statically update the MethodData* rather than needing to do 3552 // dynamic tests on the receiver type 3553 3554 // NOTE: we should probably put a lock around this search to 3555 // avoid collisions by concurrent compilations 3556 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 3557 uint i; 3558 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3559 ciKlass* receiver = vc_data->receiver(i); 3560 if (known_klass->equals(receiver)) { 3561 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3562 __ addptr(data_addr, DataLayout::counter_increment); 3563 return; 3564 } 3565 } 3566 3567 // Receiver type not found in profile data; select an empty slot 3568 3569 // Note that this is less efficient than it should be because it 3570 // always does a write to the receiver part of the 3571 // VirtualCallData rather than just the first time 3572 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3573 ciKlass* receiver = vc_data->receiver(i); 3574 if (receiver == nullptr) { 3575 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 3576 __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1); 3577 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3578 __ addptr(data_addr, DataLayout::counter_increment); 3579 return; 3580 } 3581 } 3582 } else { 3583 __ load_klass(recv, recv, tmp_load_klass); 3584 Label update_done; 3585 type_profile_helper(mdo, md, data, recv, &update_done); 3586 // Receiver did not match any saved receiver and there is no empty row for it. 3587 // Increment total counter to indicate polymorphic case. 3588 __ addptr(counter_addr, DataLayout::counter_increment); 3589 3590 __ bind(update_done); 3591 } 3592 } else { 3593 // Static call 3594 __ addptr(counter_addr, DataLayout::counter_increment); 3595 } 3596 } 3597 3598 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3599 Register obj = op->obj()->as_register(); 3600 Register tmp = op->tmp()->as_pointer_register(); 3601 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3602 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 3603 ciKlass* exact_klass = op->exact_klass(); 3604 intptr_t current_klass = op->current_klass(); 3605 bool not_null = op->not_null(); 3606 bool no_conflict = op->no_conflict(); 3607 3608 Label update, next, none; 3609 3610 bool do_null = !not_null; 3611 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3612 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3613 3614 assert(do_null || do_update, "why are we here?"); 3615 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3616 3617 __ verify_oop(obj); 3618 3619 #ifdef ASSERT 3620 if (obj == tmp) { 3621 #ifdef _LP64 3622 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 3623 #else 3624 assert_different_registers(obj, mdo_addr.base(), mdo_addr.index()); 3625 #endif 3626 } else { 3627 #ifdef _LP64 3628 assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index()); 3629 #else 3630 assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index()); 3631 #endif 3632 } 3633 #endif 3634 if (do_null) { 3635 __ testptr(obj, obj); 3636 __ jccb(Assembler::notZero, update); 3637 if (!TypeEntries::was_null_seen(current_klass)) { 3638 __ testptr(mdo_addr, TypeEntries::null_seen); 3639 #ifndef ASSERT 3640 __ jccb(Assembler::notZero, next); // already set 3641 #else 3642 __ jcc(Assembler::notZero, next); // already set 3643 #endif 3644 // atomic update to prevent overwriting Klass* with 0 3645 __ lock(); 3646 __ orptr(mdo_addr, TypeEntries::null_seen); 3647 } 3648 if (do_update) { 3649 #ifndef ASSERT 3650 __ jmpb(next); 3651 } 3652 #else 3653 __ jmp(next); 3654 } 3655 } else { 3656 __ testptr(obj, obj); 3657 __ jcc(Assembler::notZero, update); 3658 __ stop("unexpected null obj"); 3659 #endif 3660 } 3661 3662 __ bind(update); 3663 3664 if (do_update) { 3665 #ifdef ASSERT 3666 if (exact_klass != nullptr) { 3667 Label ok; 3668 __ load_klass(tmp, obj, tmp_load_klass); 3669 __ push(tmp); 3670 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3671 __ cmpptr(tmp, Address(rsp, 0)); 3672 __ jcc(Assembler::equal, ok); 3673 __ stop("exact klass and actual klass differ"); 3674 __ bind(ok); 3675 __ pop(tmp); 3676 } 3677 #endif 3678 if (!no_conflict) { 3679 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3680 if (exact_klass != nullptr) { 3681 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3682 } else { 3683 __ load_klass(tmp, obj, tmp_load_klass); 3684 } 3685 #ifdef _LP64 3686 __ mov(rscratch1, tmp); // save original value before XOR 3687 #endif 3688 __ xorptr(tmp, mdo_addr); 3689 __ testptr(tmp, TypeEntries::type_klass_mask); 3690 // klass seen before, nothing to do. The unknown bit may have been 3691 // set already but no need to check. 3692 __ jccb(Assembler::zero, next); 3693 3694 __ testptr(tmp, TypeEntries::type_unknown); 3695 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3696 3697 if (TypeEntries::is_type_none(current_klass)) { 3698 __ testptr(mdo_addr, TypeEntries::type_mask); 3699 __ jccb(Assembler::zero, none); 3700 #ifdef _LP64 3701 // There is a chance that the checks above (re-reading profiling 3702 // data from memory) fail if another thread has just set the 3703 // profiling to this obj's klass 3704 __ mov(tmp, rscratch1); // get back original value before XOR 3705 __ xorptr(tmp, mdo_addr); 3706 __ testptr(tmp, TypeEntries::type_klass_mask); 3707 __ jccb(Assembler::zero, next); 3708 #endif 3709 } 3710 } else { 3711 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3712 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3713 3714 __ testptr(mdo_addr, TypeEntries::type_unknown); 3715 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3716 } 3717 3718 // different than before. Cannot keep accurate profile. 3719 __ orptr(mdo_addr, TypeEntries::type_unknown); 3720 3721 if (TypeEntries::is_type_none(current_klass)) { 3722 __ jmpb(next); 3723 3724 __ bind(none); 3725 // first time here. Set profile type. 3726 __ movptr(mdo_addr, tmp); 3727 #ifdef ASSERT 3728 __ andptr(tmp, TypeEntries::type_klass_mask); 3729 __ verify_klass_ptr(tmp); 3730 #endif 3731 } 3732 } else { 3733 // There's a single possible klass at this profile point 3734 assert(exact_klass != nullptr, "should be"); 3735 if (TypeEntries::is_type_none(current_klass)) { 3736 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3737 __ xorptr(tmp, mdo_addr); 3738 __ testptr(tmp, TypeEntries::type_klass_mask); 3739 #ifdef ASSERT 3740 __ jcc(Assembler::zero, next); 3741 3742 { 3743 Label ok; 3744 __ push(tmp); 3745 __ testptr(mdo_addr, TypeEntries::type_mask); 3746 __ jcc(Assembler::zero, ok); 3747 // may have been set by another thread 3748 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3749 __ xorptr(tmp, mdo_addr); 3750 __ testptr(tmp, TypeEntries::type_mask); 3751 __ jcc(Assembler::zero, ok); 3752 3753 __ stop("unexpected profiling mismatch"); 3754 __ bind(ok); 3755 __ pop(tmp); 3756 } 3757 #else 3758 __ jccb(Assembler::zero, next); 3759 #endif 3760 // first time here. Set profile type. 3761 __ movptr(mdo_addr, tmp); 3762 #ifdef ASSERT 3763 __ andptr(tmp, TypeEntries::type_klass_mask); 3764 __ verify_klass_ptr(tmp); 3765 #endif 3766 } else { 3767 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3768 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3769 3770 __ testptr(mdo_addr, TypeEntries::type_unknown); 3771 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3772 3773 __ orptr(mdo_addr, TypeEntries::type_unknown); 3774 } 3775 } 3776 } 3777 __ bind(next); 3778 } 3779 3780 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3781 Unimplemented(); 3782 } 3783 3784 3785 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3786 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3787 } 3788 3789 3790 void LIR_Assembler::align_backward_branch_target() { 3791 __ align(BytesPerWord); 3792 } 3793 3794 3795 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3796 if (left->is_single_cpu()) { 3797 __ negl(left->as_register()); 3798 move_regs(left->as_register(), dest->as_register()); 3799 3800 } else if (left->is_double_cpu()) { 3801 Register lo = left->as_register_lo(); 3802 #ifdef _LP64 3803 Register dst = dest->as_register_lo(); 3804 __ movptr(dst, lo); 3805 __ negptr(dst); 3806 #else 3807 Register hi = left->as_register_hi(); 3808 __ lneg(hi, lo); 3809 if (dest->as_register_lo() == hi) { 3810 assert(dest->as_register_hi() != lo, "destroying register"); 3811 move_regs(hi, dest->as_register_hi()); 3812 move_regs(lo, dest->as_register_lo()); 3813 } else { 3814 move_regs(lo, dest->as_register_lo()); 3815 move_regs(hi, dest->as_register_hi()); 3816 } 3817 #endif // _LP64 3818 3819 } else if (dest->is_single_xmm()) { 3820 #ifdef _LP64 3821 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 3822 assert(tmp->is_valid(), "need temporary"); 3823 assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 3824 __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2); 3825 } 3826 else 3827 #endif 3828 { 3829 assert(!tmp->is_valid(), "do not need temporary"); 3830 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3831 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3832 } 3833 __ xorps(dest->as_xmm_float_reg(), 3834 ExternalAddress((address)float_signflip_pool), 3835 rscratch1); 3836 } 3837 } else if (dest->is_double_xmm()) { 3838 #ifdef _LP64 3839 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 3840 assert(tmp->is_valid(), "need temporary"); 3841 assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg()); 3842 __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2); 3843 } 3844 else 3845 #endif 3846 { 3847 assert(!tmp->is_valid(), "do not need temporary"); 3848 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3849 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3850 } 3851 __ xorpd(dest->as_xmm_double_reg(), 3852 ExternalAddress((address)double_signflip_pool), 3853 rscratch1); 3854 } 3855 #ifndef _LP64 3856 } else if (left->is_single_fpu() || left->is_double_fpu()) { 3857 assert(left->fpu() == 0, "arg must be on TOS"); 3858 assert(dest->fpu() == 0, "dest must be TOS"); 3859 __ fchs(); 3860 #endif // !_LP64 3861 3862 } else { 3863 ShouldNotReachHere(); 3864 } 3865 } 3866 3867 3868 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3869 assert(src->is_address(), "must be an address"); 3870 assert(dest->is_register(), "must be a register"); 3871 3872 PatchingStub* patch = nullptr; 3873 if (patch_code != lir_patch_none) { 3874 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3875 } 3876 3877 Register reg = dest->as_pointer_register(); 3878 LIR_Address* addr = src->as_address_ptr(); 3879 __ lea(reg, as_Address(addr)); 3880 3881 if (patch != nullptr) { 3882 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3883 } 3884 } 3885 3886 3887 3888 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3889 assert(!tmp->is_valid(), "don't need temporary"); 3890 __ call(RuntimeAddress(dest)); 3891 if (info != nullptr) { 3892 add_call_info_here(info); 3893 } 3894 __ post_call_nop(); 3895 } 3896 3897 3898 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3899 assert(type == T_LONG, "only for volatile long fields"); 3900 3901 if (info != nullptr) { 3902 add_debug_info_for_null_check_here(info); 3903 } 3904 3905 if (src->is_double_xmm()) { 3906 if (dest->is_double_cpu()) { 3907 #ifdef _LP64 3908 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3909 #else 3910 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg()); 3911 __ psrlq(src->as_xmm_double_reg(), 32); 3912 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg()); 3913 #endif // _LP64 3914 } else if (dest->is_double_stack()) { 3915 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3916 } else if (dest->is_address()) { 3917 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3918 } else { 3919 ShouldNotReachHere(); 3920 } 3921 3922 } else if (dest->is_double_xmm()) { 3923 if (src->is_double_stack()) { 3924 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3925 } else if (src->is_address()) { 3926 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3927 } else { 3928 ShouldNotReachHere(); 3929 } 3930 3931 #ifndef _LP64 3932 } else if (src->is_double_fpu()) { 3933 assert(src->fpu_regnrLo() == 0, "must be TOS"); 3934 if (dest->is_double_stack()) { 3935 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix())); 3936 } else if (dest->is_address()) { 3937 __ fistp_d(as_Address(dest->as_address_ptr())); 3938 } else { 3939 ShouldNotReachHere(); 3940 } 3941 3942 } else if (dest->is_double_fpu()) { 3943 assert(dest->fpu_regnrLo() == 0, "must be TOS"); 3944 if (src->is_double_stack()) { 3945 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix())); 3946 } else if (src->is_address()) { 3947 __ fild_d(as_Address(src->as_address_ptr())); 3948 } else { 3949 ShouldNotReachHere(); 3950 } 3951 #endif // !_LP64 3952 3953 } else { 3954 ShouldNotReachHere(); 3955 } 3956 } 3957 3958 #ifdef ASSERT 3959 // emit run-time assertion 3960 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3961 assert(op->code() == lir_assert, "must be"); 3962 3963 if (op->in_opr1()->is_valid()) { 3964 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3965 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3966 } else { 3967 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3968 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3969 } 3970 3971 Label ok; 3972 if (op->condition() != lir_cond_always) { 3973 Assembler::Condition acond = Assembler::zero; 3974 switch (op->condition()) { 3975 case lir_cond_equal: acond = Assembler::equal; break; 3976 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3977 case lir_cond_less: acond = Assembler::less; break; 3978 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3979 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3980 case lir_cond_greater: acond = Assembler::greater; break; 3981 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3982 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3983 default: ShouldNotReachHere(); 3984 } 3985 __ jcc(acond, ok); 3986 } 3987 if (op->halt()) { 3988 const char* str = __ code_string(op->msg()); 3989 __ stop(str); 3990 } else { 3991 breakpoint(); 3992 } 3993 __ bind(ok); 3994 } 3995 #endif 3996 3997 void LIR_Assembler::membar() { 3998 // QQQ sparc TSO uses this, 3999 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4000 } 4001 4002 void LIR_Assembler::membar_acquire() { 4003 // No x86 machines currently require load fences 4004 } 4005 4006 void LIR_Assembler::membar_release() { 4007 // No x86 machines currently require store fences 4008 } 4009 4010 void LIR_Assembler::membar_loadload() { 4011 // no-op 4012 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 4013 } 4014 4015 void LIR_Assembler::membar_storestore() { 4016 // no-op 4017 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 4018 } 4019 4020 void LIR_Assembler::membar_loadstore() { 4021 // no-op 4022 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 4023 } 4024 4025 void LIR_Assembler::membar_storeload() { 4026 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4027 } 4028 4029 void LIR_Assembler::on_spin_wait() { 4030 __ pause (); 4031 } 4032 4033 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 4034 assert(result_reg->is_register(), "check"); 4035 #ifdef _LP64 4036 // __ get_thread(result_reg->as_register_lo()); 4037 __ mov(result_reg->as_register(), r15_thread); 4038 #else 4039 __ get_thread(result_reg->as_register()); 4040 #endif // _LP64 4041 } 4042 4043 4044 void LIR_Assembler::peephole(LIR_List*) { 4045 // do nothing for now 4046 } 4047 4048 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 4049 assert(data == dest, "xchg/xadd uses only 2 operands"); 4050 4051 if (data->type() == T_INT) { 4052 if (code == lir_xadd) { 4053 __ lock(); 4054 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 4055 } else { 4056 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 4057 } 4058 } else if (data->is_oop()) { 4059 assert (code == lir_xchg, "xadd for oops"); 4060 Register obj = data->as_register(); 4061 #ifdef _LP64 4062 if (UseCompressedOops) { 4063 __ encode_heap_oop(obj); 4064 __ xchgl(obj, as_Address(src->as_address_ptr())); 4065 __ decode_heap_oop(obj); 4066 } else { 4067 __ xchgptr(obj, as_Address(src->as_address_ptr())); 4068 } 4069 #else 4070 __ xchgl(obj, as_Address(src->as_address_ptr())); 4071 #endif 4072 } else if (data->type() == T_LONG) { 4073 #ifdef _LP64 4074 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 4075 if (code == lir_xadd) { 4076 __ lock(); 4077 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 4078 } else { 4079 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 4080 } 4081 #else 4082 ShouldNotReachHere(); 4083 #endif 4084 } else { 4085 ShouldNotReachHere(); 4086 } 4087 } 4088 4089 #undef __