1 /*
   2  * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/gc_globals.hpp"
  39 #include "nativeInst_x86.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_x86.inline.hpp"
  47 
  48 
  49 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  50 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  51 // fast versions of NegF/NegD and AbsF/AbsD.
  52 
  53 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  54 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  55   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  56   // of 128-bits operands for SSE instructions.
  57   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  58   // Store the value to a 128-bits operand.
  59   operand[0] = lo;
  60   operand[1] = hi;
  61   return operand;
  62 }
  63 
  64 // Buffer for 128-bits masks used by SSE instructions.
  65 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  66 
  67 // Static initialization during VM startup.
  68 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  69 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  70 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  71 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  72 
  73 
  74 NEEDS_CLEANUP // remove this definitions ?
  75 const Register IC_Klass    = rax;   // where the IC klass is cached
  76 const Register SYNC_header = rax;   // synchronization header
  77 const Register SHIFT_count = rcx;   // where count for shift operations must be
  78 
  79 #define __ _masm->
  80 
  81 
  82 static void select_different_registers(Register preserve,
  83                                        Register extra,
  84                                        Register &tmp1,
  85                                        Register &tmp2) {
  86   if (tmp1 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp1 = extra;
  89   } else if (tmp2 == preserve) {
  90     assert_different_registers(tmp1, tmp2, extra);
  91     tmp2 = extra;
  92   }
  93   assert_different_registers(preserve, tmp1, tmp2);
  94 }
  95 
  96 
  97 
  98 static void select_different_registers(Register preserve,
  99                                        Register extra,
 100                                        Register &tmp1,
 101                                        Register &tmp2,
 102                                        Register &tmp3) {
 103   if (tmp1 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp1 = extra;
 106   } else if (tmp2 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp2 = extra;
 109   } else if (tmp3 == preserve) {
 110     assert_different_registers(tmp1, tmp2, tmp3, extra);
 111     tmp3 = extra;
 112   }
 113   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 114 }
 115 
 116 
 117 
 118 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 119   if (opr->is_constant()) {
 120     LIR_Const* constant = opr->as_constant_ptr();
 121     switch (constant->type()) {
 122       case T_INT: {
 123         return true;
 124       }
 125 
 126       default:
 127         return false;
 128     }
 129   }
 130   return false;
 131 }
 132 
 133 
 134 LIR_Opr LIR_Assembler::receiverOpr() {
 135   return FrameMap::receiver_opr;
 136 }
 137 
 138 LIR_Opr LIR_Assembler::osrBufferPointer() {
 139   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 140 }
 141 
 142 //--------------fpu register translations-----------------------
 143 
 144 
 145 address LIR_Assembler::float_constant(float f) {
 146   address const_addr = __ float_constant(f);
 147   if (const_addr == nullptr) {
 148     bailout("const section overflow");
 149     return __ code()->consts()->start();
 150   } else {
 151     return const_addr;
 152   }
 153 }
 154 
 155 
 156 address LIR_Assembler::double_constant(double d) {
 157   address const_addr = __ double_constant(d);
 158   if (const_addr == nullptr) {
 159     bailout("const section overflow");
 160     return __ code()->consts()->start();
 161   } else {
 162     return const_addr;
 163   }
 164 }
 165 
 166 #ifndef _LP64
 167 void LIR_Assembler::fpop() {
 168   __ fpop();
 169 }
 170 
 171 void LIR_Assembler::fxch(int i) {
 172   __ fxch(i);
 173 }
 174 
 175 void LIR_Assembler::fld(int i) {
 176   __ fld_s(i);
 177 }
 178 
 179 void LIR_Assembler::ffree(int i) {
 180   __ ffree(i);
 181 }
 182 #endif // !_LP64
 183 
 184 void LIR_Assembler::breakpoint() {
 185   __ int3();
 186 }
 187 
 188 void LIR_Assembler::push(LIR_Opr opr) {
 189   if (opr->is_single_cpu()) {
 190     __ push_reg(opr->as_register());
 191   } else if (opr->is_double_cpu()) {
 192     NOT_LP64(__ push_reg(opr->as_register_hi()));
 193     __ push_reg(opr->as_register_lo());
 194   } else if (opr->is_stack()) {
 195     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 196   } else if (opr->is_constant()) {
 197     LIR_Const* const_opr = opr->as_constant_ptr();
 198     if (const_opr->type() == T_OBJECT) {
 199       __ push_oop(const_opr->as_jobject(), rscratch1);
 200     } else if (const_opr->type() == T_INT) {
 201       __ push_jint(const_opr->as_jint());
 202     } else {
 203       ShouldNotReachHere();
 204     }
 205 
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 void LIR_Assembler::pop(LIR_Opr opr) {
 212   if (opr->is_single_cpu()) {
 213     __ pop_reg(opr->as_register());
 214   } else {
 215     ShouldNotReachHere();
 216   }
 217 }
 218 
 219 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 220   return addr->base()->is_illegal() && addr->index()->is_illegal();
 221 }
 222 
 223 //-------------------------------------------
 224 
 225 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 226   return as_Address(addr, rscratch1);
 227 }
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 230   if (addr->base()->is_illegal()) {
 231     assert(addr->index()->is_illegal(), "must be illegal too");
 232     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 233     if (! __ reachable(laddr)) {
 234       __ movptr(tmp, laddr.addr());
 235       Address res(tmp, 0);
 236       return res;
 237     } else {
 238       return __ as_Address(laddr);
 239     }
 240   }
 241 
 242   Register base = addr->base()->as_pointer_register();
 243 
 244   if (addr->index()->is_illegal()) {
 245     return Address( base, addr->disp());
 246   } else if (addr->index()->is_cpu_register()) {
 247     Register index = addr->index()->as_pointer_register();
 248     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 249   } else if (addr->index()->is_constant()) {
 250     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 251     assert(Assembler::is_simm32(addr_offset), "must be");
 252 
 253     return Address(base, addr_offset);
 254   } else {
 255     Unimplemented();
 256     return Address();
 257   }
 258 }
 259 
 260 
 261 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 262   Address base = as_Address(addr);
 263   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 264 }
 265 
 266 
 267 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 268   return as_Address(addr);
 269 }
 270 
 271 
 272 void LIR_Assembler::osr_entry() {
 273   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 274   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 275   ValueStack* entry_state = osr_entry->state();
 276   int number_of_locks = entry_state->locks_size();
 277 
 278   // we jump here if osr happens with the interpreter
 279   // state set up to continue at the beginning of the
 280   // loop that triggered osr - in particular, we have
 281   // the following registers setup:
 282   //
 283   // rcx: osr buffer
 284   //
 285 
 286   // build frame
 287   ciMethod* m = compilation()->method();
 288   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 289 
 290   // OSR buffer is
 291   //
 292   // locals[nlocals-1..0]
 293   // monitors[0..number_of_locks]
 294   //
 295   // locals is a direct copy of the interpreter frame so in the osr buffer
 296   // so first slot in the local array is the last local from the interpreter
 297   // and last slot is local[0] (receiver) from the interpreter
 298   //
 299   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 300   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 301   // in the interpreter frame (the method lock if a sync method)
 302 
 303   // Initialize monitors in the compiled activation.
 304   //   rcx: pointer to osr buffer
 305   //
 306   // All other registers are dead at this point and the locals will be
 307   // copied into place by code emitted in the IR.
 308 
 309   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 310   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 311     int monitor_offset = BytesPerWord * method()->max_locals() +
 312       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 313     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 314     // the OSR buffer using 2 word entries: first the lock and then
 315     // the oop.
 316     for (int i = 0; i < number_of_locks; i++) {
 317       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 318 #ifdef ASSERT
 319       // verify the interpreter's monitor has a non-null object
 320       {
 321         Label L;
 322         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 323         __ jcc(Assembler::notZero, L);
 324         __ stop("locked object is null");
 325         __ bind(L);
 326       }
 327 #endif
 328       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 329       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 330       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 331       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 332     }
 333   }
 334 }
 335 
 336 
 337 // inline cache check; done before the frame is built.
 338 int LIR_Assembler::check_icache() {
 339   Register receiver = FrameMap::receiver_opr->as_register();
 340   Register ic_klass = IC_Klass;
 341   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 342   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 343   if (!do_post_padding) {
 344     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 345     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 346   }
 347   int offset = __ offset();
 348   __ inline_cache_check(receiver, IC_Klass);
 349   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 350   if (do_post_padding) {
 351     // force alignment after the cache check.
 352     // It's been verified to be aligned if !VerifyOops
 353     __ align(CodeEntryAlignment);
 354   }
 355   return offset;
 356 }
 357 
 358 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 359   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 360   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 361 
 362   Label L_skip_barrier;
 363   Register klass = rscratch1;
 364   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 365   assert(thread != noreg, "x86_32 not implemented");
 366 
 367   __ mov_metadata(klass, method->holder()->constant_encoding());
 368   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 369 
 370   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 371 
 372   __ bind(L_skip_barrier);
 373 }
 374 
 375 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 376   jobject o = nullptr;
 377   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 378   __ movoop(reg, o);
 379   patching_epilog(patch, lir_patch_normal, reg, info);
 380 }
 381 
 382 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 383   Metadata* o = nullptr;
 384   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 385   __ mov_metadata(reg, o);
 386   patching_epilog(patch, lir_patch_normal, reg, info);
 387 }
 388 
 389 // This specifies the rsp decrement needed to build the frame
 390 int LIR_Assembler::initial_frame_size_in_bytes() const {
 391   // if rounding, must let FrameMap know!
 392 
 393   // The frame_map records size in slots (32bit word)
 394 
 395   // subtract two words to account for return address and link
 396   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 397 }
 398 
 399 
 400 int LIR_Assembler::emit_exception_handler() {
 401   // generate code for exception handler
 402   address handler_base = __ start_a_stub(exception_handler_size());
 403   if (handler_base == nullptr) {
 404     // not enough space left for the handler
 405     bailout("exception handler overflow");
 406     return -1;
 407   }
 408 
 409   int offset = code_offset();
 410 
 411   // the exception oop and pc are in rax, and rdx
 412   // no other registers need to be preserved, so invalidate them
 413   __ invalidate_registers(false, true, true, false, true, true);
 414 
 415   // check that there is really an exception
 416   __ verify_not_null_oop(rax);
 417 
 418   // search an exception handler (rax: exception oop, rdx: throwing pc)
 419   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 420   __ should_not_reach_here();
 421   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 422   __ end_a_stub();
 423 
 424   return offset;
 425 }
 426 
 427 
 428 // Emit the code to remove the frame from the stack in the exception
 429 // unwind path.
 430 int LIR_Assembler::emit_unwind_handler() {
 431 #ifndef PRODUCT
 432   if (CommentedAssembly) {
 433     _masm->block_comment("Unwind handler");
 434   }
 435 #endif
 436 
 437   int offset = code_offset();
 438 
 439   // Fetch the exception from TLS and clear out exception related thread state
 440   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 441   NOT_LP64(__ get_thread(thread));
 442   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 443   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 444   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 445 
 446   __ bind(_unwind_handler_entry);
 447   __ verify_not_null_oop(rax);
 448   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 449     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 450   }
 451 
 452   // Perform needed unlocking
 453   MonitorExitStub* stub = nullptr;
 454   if (method()->is_synchronized()) {
 455     monitor_address(0, FrameMap::rax_opr);
 456     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 457     if (LockingMode == LM_MONITOR) {
 458       __ jmp(*stub->entry());
 459     } else {
 460       __ unlock_object(rdi, rsi, rax, *stub->entry());
 461     }
 462     __ bind(*stub->continuation());
 463   }
 464 
 465   if (compilation()->env()->dtrace_method_probes()) {
 466 #ifdef _LP64
 467     __ mov(rdi, r15_thread);
 468     __ mov_metadata(rsi, method()->constant_encoding());
 469 #else
 470     __ get_thread(rax);
 471     __ movptr(Address(rsp, 0), rax);
 472     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 473 #endif
 474     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 475   }
 476 
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rax, rbx);  // Restore the exception
 479   }
 480 
 481   // remove the activation and dispatch to the unwind handler
 482   __ remove_frame(initial_frame_size_in_bytes());
 483   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 484 
 485   // Emit the slow path assembly
 486   if (stub != nullptr) {
 487     stub->emit_code(this);
 488   }
 489 
 490   return offset;
 491 }
 492 
 493 
 494 int LIR_Assembler::emit_deopt_handler() {
 495   // generate code for exception handler
 496   address handler_base = __ start_a_stub(deopt_handler_size());
 497   if (handler_base == nullptr) {
 498     // not enough space left for the handler
 499     bailout("deopt handler overflow");
 500     return -1;
 501   }
 502 
 503   int offset = code_offset();
 504   InternalAddress here(__ pc());
 505 
 506   __ pushptr(here.addr(), rscratch1);
 507   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 508   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 509   __ end_a_stub();
 510 
 511   return offset;
 512 }
 513 
 514 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 515   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 516   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 517     assert(result->fpu() == 0, "result must already be on TOS");
 518   }
 519 
 520   // Pop the stack before the safepoint code
 521   __ remove_frame(initial_frame_size_in_bytes());
 522 
 523   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 524     __ reserved_stack_check();
 525   }
 526 
 527   // Note: we do not need to round double result; float result has the right precision
 528   // the poll sets the condition code, but no data registers
 529 
 530 #ifdef _LP64
 531   const Register thread = r15_thread;
 532 #else
 533   const Register thread = rbx;
 534   __ get_thread(thread);
 535 #endif
 536   code_stub->set_safepoint_offset(__ offset());
 537   __ relocate(relocInfo::poll_return_type);
 538   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 539   __ ret(0);
 540 }
 541 
 542 
 543 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 544   guarantee(info != nullptr, "Shouldn't be null");
 545   int offset = __ offset();
 546 #ifdef _LP64
 547   const Register poll_addr = rscratch1;
 548   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 549 #else
 550   assert(tmp->is_cpu_register(), "needed");
 551   const Register poll_addr = tmp->as_register();
 552   __ get_thread(poll_addr);
 553   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 554 #endif
 555   add_debug_info_for_branch(info);
 556   __ relocate(relocInfo::poll_type);
 557   address pre_pc = __ pc();
 558   __ testl(rax, Address(poll_addr, 0));
 559   address post_pc = __ pc();
 560   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 561   return offset;
 562 }
 563 
 564 
 565 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 566   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 567 }
 568 
 569 void LIR_Assembler::swap_reg(Register a, Register b) {
 570   __ xchgptr(a, b);
 571 }
 572 
 573 
 574 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 575   assert(src->is_constant(), "should not call otherwise");
 576   assert(dest->is_register(), "should not call otherwise");
 577   LIR_Const* c = src->as_constant_ptr();
 578 
 579   switch (c->type()) {
 580     case T_INT: {
 581       assert(patch_code == lir_patch_none, "no patching handled here");
 582       __ movl(dest->as_register(), c->as_jint());
 583       break;
 584     }
 585 
 586     case T_ADDRESS: {
 587       assert(patch_code == lir_patch_none, "no patching handled here");
 588       __ movptr(dest->as_register(), c->as_jint());
 589       break;
 590     }
 591 
 592     case T_LONG: {
 593       assert(patch_code == lir_patch_none, "no patching handled here");
 594 #ifdef _LP64
 595       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 596 #else
 597       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 598       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 599 #endif // _LP64
 600       break;
 601     }
 602 
 603     case T_OBJECT: {
 604       if (patch_code != lir_patch_none) {
 605         jobject2reg_with_patching(dest->as_register(), info);
 606       } else {
 607         __ movoop(dest->as_register(), c->as_jobject());
 608       }
 609       break;
 610     }
 611 
 612     case T_METADATA: {
 613       if (patch_code != lir_patch_none) {
 614         klass2reg_with_patching(dest->as_register(), info);
 615       } else {
 616         __ mov_metadata(dest->as_register(), c->as_metadata());
 617       }
 618       break;
 619     }
 620 
 621     case T_FLOAT: {
 622       if (dest->is_single_xmm()) {
 623         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 624           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 625         } else {
 626           __ movflt(dest->as_xmm_float_reg(),
 627                    InternalAddress(float_constant(c->as_jfloat())));
 628         }
 629       } else {
 630 #ifndef _LP64
 631         assert(dest->is_single_fpu(), "must be");
 632         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 633         if (c->is_zero_float()) {
 634           __ fldz();
 635         } else if (c->is_one_float()) {
 636           __ fld1();
 637         } else {
 638           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 639         }
 640 #else
 641         ShouldNotReachHere();
 642 #endif // !_LP64
 643       }
 644       break;
 645     }
 646 
 647     case T_DOUBLE: {
 648       if (dest->is_double_xmm()) {
 649         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 650           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 651         } else {
 652           __ movdbl(dest->as_xmm_double_reg(),
 653                     InternalAddress(double_constant(c->as_jdouble())));
 654         }
 655       } else {
 656 #ifndef _LP64
 657         assert(dest->is_double_fpu(), "must be");
 658         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 659         if (c->is_zero_double()) {
 660           __ fldz();
 661         } else if (c->is_one_double()) {
 662           __ fld1();
 663         } else {
 664           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 665         }
 666 #else
 667         ShouldNotReachHere();
 668 #endif // !_LP64
 669       }
 670       break;
 671     }
 672 
 673     default:
 674       ShouldNotReachHere();
 675   }
 676 }
 677 
 678 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 679   assert(src->is_constant(), "should not call otherwise");
 680   assert(dest->is_stack(), "should not call otherwise");
 681   LIR_Const* c = src->as_constant_ptr();
 682 
 683   switch (c->type()) {
 684     case T_INT:  // fall through
 685     case T_FLOAT:
 686       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 687       break;
 688 
 689     case T_ADDRESS:
 690       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 691       break;
 692 
 693     case T_OBJECT:
 694       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 695       break;
 696 
 697     case T_LONG:  // fall through
 698     case T_DOUBLE:
 699 #ifdef _LP64
 700       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 701                                               lo_word_offset_in_bytes),
 702                 (intptr_t)c->as_jlong_bits(),
 703                 rscratch1);
 704 #else
 705       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 706                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 707       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 708                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 709 #endif // _LP64
 710       break;
 711 
 712     default:
 713       ShouldNotReachHere();
 714   }
 715 }
 716 
 717 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 718   assert(src->is_constant(), "should not call otherwise");
 719   assert(dest->is_address(), "should not call otherwise");
 720   LIR_Const* c = src->as_constant_ptr();
 721   LIR_Address* addr = dest->as_address_ptr();
 722 
 723   int null_check_here = code_offset();
 724   switch (type) {
 725     case T_INT:    // fall through
 726     case T_FLOAT:
 727       __ movl(as_Address(addr), c->as_jint_bits());
 728       break;
 729 
 730     case T_ADDRESS:
 731       __ movptr(as_Address(addr), c->as_jint_bits());
 732       break;
 733 
 734     case T_OBJECT:  // fall through
 735     case T_ARRAY:
 736       if (c->as_jobject() == nullptr) {
 737         if (UseCompressedOops && !wide) {
 738           __ movl(as_Address(addr), NULL_WORD);
 739         } else {
 740 #ifdef _LP64
 741           __ xorptr(rscratch1, rscratch1);
 742           null_check_here = code_offset();
 743           __ movptr(as_Address(addr), rscratch1);
 744 #else
 745           __ movptr(as_Address(addr), NULL_WORD);
 746 #endif
 747         }
 748       } else {
 749         if (is_literal_address(addr)) {
 750           ShouldNotReachHere();
 751           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 752         } else {
 753 #ifdef _LP64
 754           __ movoop(rscratch1, c->as_jobject());
 755           if (UseCompressedOops && !wide) {
 756             __ encode_heap_oop(rscratch1);
 757             null_check_here = code_offset();
 758             __ movl(as_Address_lo(addr), rscratch1);
 759           } else {
 760             null_check_here = code_offset();
 761             __ movptr(as_Address_lo(addr), rscratch1);
 762           }
 763 #else
 764           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 765 #endif
 766         }
 767       }
 768       break;
 769 
 770     case T_LONG:    // fall through
 771     case T_DOUBLE:
 772 #ifdef _LP64
 773       if (is_literal_address(addr)) {
 774         ShouldNotReachHere();
 775         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 776       } else {
 777         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 778         null_check_here = code_offset();
 779         __ movptr(as_Address_lo(addr), r10);
 780       }
 781 #else
 782       // Always reachable in 32bit so this doesn't produce useless move literal
 783       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 784       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 785 #endif // _LP64
 786       break;
 787 
 788     case T_BOOLEAN: // fall through
 789     case T_BYTE:
 790       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 791       break;
 792 
 793     case T_CHAR:    // fall through
 794     case T_SHORT:
 795       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 796       break;
 797 
 798     default:
 799       ShouldNotReachHere();
 800   };
 801 
 802   if (info != nullptr) {
 803     add_debug_info_for_null_check(null_check_here, info);
 804   }
 805 }
 806 
 807 
 808 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 809   assert(src->is_register(), "should not call otherwise");
 810   assert(dest->is_register(), "should not call otherwise");
 811 
 812   // move between cpu-registers
 813   if (dest->is_single_cpu()) {
 814 #ifdef _LP64
 815     if (src->type() == T_LONG) {
 816       // Can do LONG -> OBJECT
 817       move_regs(src->as_register_lo(), dest->as_register());
 818       return;
 819     }
 820 #endif
 821     assert(src->is_single_cpu(), "must match");
 822     if (src->type() == T_OBJECT) {
 823       __ verify_oop(src->as_register());
 824     }
 825     move_regs(src->as_register(), dest->as_register());
 826 
 827   } else if (dest->is_double_cpu()) {
 828 #ifdef _LP64
 829     if (is_reference_type(src->type())) {
 830       // Surprising to me but we can see move of a long to t_object
 831       __ verify_oop(src->as_register());
 832       move_regs(src->as_register(), dest->as_register_lo());
 833       return;
 834     }
 835 #endif
 836     assert(src->is_double_cpu(), "must match");
 837     Register f_lo = src->as_register_lo();
 838     Register f_hi = src->as_register_hi();
 839     Register t_lo = dest->as_register_lo();
 840     Register t_hi = dest->as_register_hi();
 841 #ifdef _LP64
 842     assert(f_hi == f_lo, "must be same");
 843     assert(t_hi == t_lo, "must be same");
 844     move_regs(f_lo, t_lo);
 845 #else
 846     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 847 
 848 
 849     if (f_lo == t_hi && f_hi == t_lo) {
 850       swap_reg(f_lo, f_hi);
 851     } else if (f_hi == t_lo) {
 852       assert(f_lo != t_hi, "overwriting register");
 853       move_regs(f_hi, t_hi);
 854       move_regs(f_lo, t_lo);
 855     } else {
 856       assert(f_hi != t_lo, "overwriting register");
 857       move_regs(f_lo, t_lo);
 858       move_regs(f_hi, t_hi);
 859     }
 860 #endif // LP64
 861 
 862 #ifndef _LP64
 863     // special moves from fpu-register to xmm-register
 864     // necessary for method results
 865   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 866     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 867     __ fld_s(Address(rsp, 0));
 868   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 869     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 870     __ fld_d(Address(rsp, 0));
 871   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 872     __ fstp_s(Address(rsp, 0));
 873     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 874   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 875     __ fstp_d(Address(rsp, 0));
 876     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 877 #endif // !_LP64
 878 
 879     // move between xmm-registers
 880   } else if (dest->is_single_xmm()) {
 881     assert(src->is_single_xmm(), "must match");
 882     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 883   } else if (dest->is_double_xmm()) {
 884     assert(src->is_double_xmm(), "must match");
 885     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 886 
 887 #ifndef _LP64
 888     // move between fpu-registers (no instruction necessary because of fpu-stack)
 889   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 890     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 891     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 892 #endif // !_LP64
 893 
 894   } else {
 895     ShouldNotReachHere();
 896   }
 897 }
 898 
 899 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 900   assert(src->is_register(), "should not call otherwise");
 901   assert(dest->is_stack(), "should not call otherwise");
 902 
 903   if (src->is_single_cpu()) {
 904     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 905     if (is_reference_type(type)) {
 906       __ verify_oop(src->as_register());
 907       __ movptr (dst, src->as_register());
 908     } else if (type == T_METADATA || type == T_ADDRESS) {
 909       __ movptr (dst, src->as_register());
 910     } else {
 911       __ movl (dst, src->as_register());
 912     }
 913 
 914   } else if (src->is_double_cpu()) {
 915     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 916     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 917     __ movptr (dstLO, src->as_register_lo());
 918     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 919 
 920   } else if (src->is_single_xmm()) {
 921     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 922     __ movflt(dst_addr, src->as_xmm_float_reg());
 923 
 924   } else if (src->is_double_xmm()) {
 925     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 926     __ movdbl(dst_addr, src->as_xmm_double_reg());
 927 
 928 #ifndef _LP64
 929   } else if (src->is_single_fpu()) {
 930     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 931     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 932     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 933     else                   __ fst_s  (dst_addr);
 934 
 935   } else if (src->is_double_fpu()) {
 936     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 937     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 938     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 939     else                   __ fst_d  (dst_addr);
 940 #endif // !_LP64
 941 
 942   } else {
 943     ShouldNotReachHere();
 944   }
 945 }
 946 
 947 
 948 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 949   LIR_Address* to_addr = dest->as_address_ptr();
 950   PatchingStub* patch = nullptr;
 951   Register compressed_src = rscratch1;
 952 
 953   if (is_reference_type(type)) {
 954     __ verify_oop(src->as_register());
 955 #ifdef _LP64
 956     if (UseCompressedOops && !wide) {
 957       __ movptr(compressed_src, src->as_register());
 958       __ encode_heap_oop(compressed_src);
 959       if (patch_code != lir_patch_none) {
 960         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 961       }
 962     }
 963 #endif
 964   }
 965 
 966   if (patch_code != lir_patch_none) {
 967     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 968     Address toa = as_Address(to_addr);
 969     assert(toa.disp() != 0, "must have");
 970   }
 971 
 972   int null_check_here = code_offset();
 973   switch (type) {
 974     case T_FLOAT: {
 975 #ifdef _LP64
 976       assert(src->is_single_xmm(), "not a float");
 977       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 978 #else
 979       if (src->is_single_xmm()) {
 980         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 981       } else {
 982         assert(src->is_single_fpu(), "must be");
 983         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 984         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 985         else                    __ fst_s (as_Address(to_addr));
 986       }
 987 #endif // _LP64
 988       break;
 989     }
 990 
 991     case T_DOUBLE: {
 992 #ifdef _LP64
 993       assert(src->is_double_xmm(), "not a double");
 994       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 995 #else
 996       if (src->is_double_xmm()) {
 997         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 998       } else {
 999         assert(src->is_double_fpu(), "must be");
1000         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1001         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1002         else                    __ fst_d (as_Address(to_addr));
1003       }
1004 #endif // _LP64
1005       break;
1006     }
1007 
1008     case T_ARRAY:   // fall through
1009     case T_OBJECT:  // fall through
1010       if (UseCompressedOops && !wide) {
1011         __ movl(as_Address(to_addr), compressed_src);
1012       } else {
1013         __ movptr(as_Address(to_addr), src->as_register());
1014       }
1015       break;
1016     case T_METADATA:
1017       // We get here to store a method pointer to the stack to pass to
1018       // a dtrace runtime call. This can't work on 64 bit with
1019       // compressed klass ptrs: T_METADATA can be a compressed klass
1020       // ptr or a 64 bit method pointer.
1021       LP64_ONLY(ShouldNotReachHere());
1022       __ movptr(as_Address(to_addr), src->as_register());
1023       break;
1024     case T_ADDRESS:
1025       __ movptr(as_Address(to_addr), src->as_register());
1026       break;
1027     case T_INT:
1028       __ movl(as_Address(to_addr), src->as_register());
1029       break;
1030 
1031     case T_LONG: {
1032       Register from_lo = src->as_register_lo();
1033       Register from_hi = src->as_register_hi();
1034 #ifdef _LP64
1035       __ movptr(as_Address_lo(to_addr), from_lo);
1036 #else
1037       Register base = to_addr->base()->as_register();
1038       Register index = noreg;
1039       if (to_addr->index()->is_register()) {
1040         index = to_addr->index()->as_register();
1041       }
1042       if (base == from_lo || index == from_lo) {
1043         assert(base != from_hi, "can't be");
1044         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1045         __ movl(as_Address_hi(to_addr), from_hi);
1046         if (patch != nullptr) {
1047           patching_epilog(patch, lir_patch_high, base, info);
1048           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1049           patch_code = lir_patch_low;
1050         }
1051         __ movl(as_Address_lo(to_addr), from_lo);
1052       } else {
1053         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1054         __ movl(as_Address_lo(to_addr), from_lo);
1055         if (patch != nullptr) {
1056           patching_epilog(patch, lir_patch_low, base, info);
1057           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1058           patch_code = lir_patch_high;
1059         }
1060         __ movl(as_Address_hi(to_addr), from_hi);
1061       }
1062 #endif // _LP64
1063       break;
1064     }
1065 
1066     case T_BYTE:    // fall through
1067     case T_BOOLEAN: {
1068       Register src_reg = src->as_register();
1069       Address dst_addr = as_Address(to_addr);
1070       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1071       __ movb(dst_addr, src_reg);
1072       break;
1073     }
1074 
1075     case T_CHAR:    // fall through
1076     case T_SHORT:
1077       __ movw(as_Address(to_addr), src->as_register());
1078       break;
1079 
1080     default:
1081       ShouldNotReachHere();
1082   }
1083   if (info != nullptr) {
1084     add_debug_info_for_null_check(null_check_here, info);
1085   }
1086 
1087   if (patch_code != lir_patch_none) {
1088     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1089   }
1090 }
1091 
1092 
1093 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1094   assert(src->is_stack(), "should not call otherwise");
1095   assert(dest->is_register(), "should not call otherwise");
1096 
1097   if (dest->is_single_cpu()) {
1098     if (is_reference_type(type)) {
1099       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1100       __ verify_oop(dest->as_register());
1101     } else if (type == T_METADATA || type == T_ADDRESS) {
1102       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1103     } else {
1104       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1105     }
1106 
1107   } else if (dest->is_double_cpu()) {
1108     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1109     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1110     __ movptr(dest->as_register_lo(), src_addr_LO);
1111     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1112 
1113   } else if (dest->is_single_xmm()) {
1114     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1115     __ movflt(dest->as_xmm_float_reg(), src_addr);
1116 
1117   } else if (dest->is_double_xmm()) {
1118     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1119     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1120 
1121 #ifndef _LP64
1122   } else if (dest->is_single_fpu()) {
1123     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1124     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1125     __ fld_s(src_addr);
1126 
1127   } else if (dest->is_double_fpu()) {
1128     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1129     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1130     __ fld_d(src_addr);
1131 #endif // _LP64
1132 
1133   } else {
1134     ShouldNotReachHere();
1135   }
1136 }
1137 
1138 
1139 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1140   if (src->is_single_stack()) {
1141     if (is_reference_type(type)) {
1142       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1143       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1144     } else {
1145 #ifndef _LP64
1146       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1147       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1148 #else
1149       //no pushl on 64bits
1150       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1151       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1152 #endif
1153     }
1154 
1155   } else if (src->is_double_stack()) {
1156 #ifdef _LP64
1157     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1158     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1159 #else
1160     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1161     // push and pop the part at src + wordSize, adding wordSize for the previous push
1162     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1163     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1165 #endif // _LP64
1166 
1167   } else {
1168     ShouldNotReachHere();
1169   }
1170 }
1171 
1172 
1173 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1174   assert(src->is_address(), "should not call otherwise");
1175   assert(dest->is_register(), "should not call otherwise");
1176 
1177   LIR_Address* addr = src->as_address_ptr();
1178   Address from_addr = as_Address(addr);
1179 
1180   if (addr->base()->type() == T_OBJECT) {
1181     __ verify_oop(addr->base()->as_pointer_register());
1182   }
1183 
1184   switch (type) {
1185     case T_BOOLEAN: // fall through
1186     case T_BYTE:    // fall through
1187     case T_CHAR:    // fall through
1188     case T_SHORT:
1189       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1190         // on pre P6 processors we may get partial register stalls
1191         // so blow away the value of to_rinfo before loading a
1192         // partial word into it.  Do it here so that it precedes
1193         // the potential patch point below.
1194         __ xorptr(dest->as_register(), dest->as_register());
1195       }
1196       break;
1197    default:
1198      break;
1199   }
1200 
1201   PatchingStub* patch = nullptr;
1202   if (patch_code != lir_patch_none) {
1203     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1204     assert(from_addr.disp() != 0, "must have");
1205   }
1206   if (info != nullptr) {
1207     add_debug_info_for_null_check_here(info);
1208   }
1209 
1210   switch (type) {
1211     case T_FLOAT: {
1212       if (dest->is_single_xmm()) {
1213         __ movflt(dest->as_xmm_float_reg(), from_addr);
1214       } else {
1215 #ifndef _LP64
1216         assert(dest->is_single_fpu(), "must be");
1217         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1218         __ fld_s(from_addr);
1219 #else
1220         ShouldNotReachHere();
1221 #endif // !LP64
1222       }
1223       break;
1224     }
1225 
1226     case T_DOUBLE: {
1227       if (dest->is_double_xmm()) {
1228         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1229       } else {
1230 #ifndef _LP64
1231         assert(dest->is_double_fpu(), "must be");
1232         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1233         __ fld_d(from_addr);
1234 #else
1235         ShouldNotReachHere();
1236 #endif // !LP64
1237       }
1238       break;
1239     }
1240 
1241     case T_OBJECT:  // fall through
1242     case T_ARRAY:   // fall through
1243       if (UseCompressedOops && !wide) {
1244         __ movl(dest->as_register(), from_addr);
1245       } else {
1246         __ movptr(dest->as_register(), from_addr);
1247       }
1248       break;
1249 
1250     case T_ADDRESS:
1251       __ movptr(dest->as_register(), from_addr);
1252       break;
1253     case T_INT:
1254       __ movl(dest->as_register(), from_addr);
1255       break;
1256 
1257     case T_LONG: {
1258       Register to_lo = dest->as_register_lo();
1259       Register to_hi = dest->as_register_hi();
1260 #ifdef _LP64
1261       __ movptr(to_lo, as_Address_lo(addr));
1262 #else
1263       Register base = addr->base()->as_register();
1264       Register index = noreg;
1265       if (addr->index()->is_register()) {
1266         index = addr->index()->as_register();
1267       }
1268       if ((base == to_lo && index == to_hi) ||
1269           (base == to_hi && index == to_lo)) {
1270         // addresses with 2 registers are only formed as a result of
1271         // array access so this code will never have to deal with
1272         // patches or null checks.
1273         assert(info == nullptr && patch == nullptr, "must be");
1274         __ lea(to_hi, as_Address(addr));
1275         __ movl(to_lo, Address(to_hi, 0));
1276         __ movl(to_hi, Address(to_hi, BytesPerWord));
1277       } else if (base == to_lo || index == to_lo) {
1278         assert(base != to_hi, "can't be");
1279         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1280         __ movl(to_hi, as_Address_hi(addr));
1281         if (patch != nullptr) {
1282           patching_epilog(patch, lir_patch_high, base, info);
1283           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1284           patch_code = lir_patch_low;
1285         }
1286         __ movl(to_lo, as_Address_lo(addr));
1287       } else {
1288         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1289         __ movl(to_lo, as_Address_lo(addr));
1290         if (patch != nullptr) {
1291           patching_epilog(patch, lir_patch_low, base, info);
1292           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1293           patch_code = lir_patch_high;
1294         }
1295         __ movl(to_hi, as_Address_hi(addr));
1296       }
1297 #endif // _LP64
1298       break;
1299     }
1300 
1301     case T_BOOLEAN: // fall through
1302     case T_BYTE: {
1303       Register dest_reg = dest->as_register();
1304       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1305       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1306         __ movsbl(dest_reg, from_addr);
1307       } else {
1308         __ movb(dest_reg, from_addr);
1309         __ shll(dest_reg, 24);
1310         __ sarl(dest_reg, 24);
1311       }
1312       break;
1313     }
1314 
1315     case T_CHAR: {
1316       Register dest_reg = dest->as_register();
1317       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1318       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1319         __ movzwl(dest_reg, from_addr);
1320       } else {
1321         __ movw(dest_reg, from_addr);
1322       }
1323       break;
1324     }
1325 
1326     case T_SHORT: {
1327       Register dest_reg = dest->as_register();
1328       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1329         __ movswl(dest_reg, from_addr);
1330       } else {
1331         __ movw(dest_reg, from_addr);
1332         __ shll(dest_reg, 16);
1333         __ sarl(dest_reg, 16);
1334       }
1335       break;
1336     }
1337 
1338     default:
1339       ShouldNotReachHere();
1340   }
1341 
1342   if (patch != nullptr) {
1343     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1344   }
1345 
1346   if (is_reference_type(type)) {
1347 #ifdef _LP64
1348     if (UseCompressedOops && !wide) {
1349       __ decode_heap_oop(dest->as_register());
1350     }
1351 #endif
1352 
1353     if (!(UseZGC && !ZGenerational)) {
1354       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1355       __ verify_oop(dest->as_register());
1356     }
1357   }
1358 }
1359 
1360 
1361 NEEDS_CLEANUP; // This could be static?
1362 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1363   int elem_size = type2aelembytes(type);
1364   switch (elem_size) {
1365     case 1: return Address::times_1;
1366     case 2: return Address::times_2;
1367     case 4: return Address::times_4;
1368     case 8: return Address::times_8;
1369   }
1370   ShouldNotReachHere();
1371   return Address::no_scale;
1372 }
1373 
1374 
1375 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1376   switch (op->code()) {
1377     case lir_idiv:
1378     case lir_irem:
1379       arithmetic_idiv(op->code(),
1380                       op->in_opr1(),
1381                       op->in_opr2(),
1382                       op->in_opr3(),
1383                       op->result_opr(),
1384                       op->info());
1385       break;
1386     case lir_fmad:
1387       __ fmad(op->result_opr()->as_xmm_double_reg(),
1388               op->in_opr1()->as_xmm_double_reg(),
1389               op->in_opr2()->as_xmm_double_reg(),
1390               op->in_opr3()->as_xmm_double_reg());
1391       break;
1392     case lir_fmaf:
1393       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1394               op->in_opr1()->as_xmm_float_reg(),
1395               op->in_opr2()->as_xmm_float_reg(),
1396               op->in_opr3()->as_xmm_float_reg());
1397       break;
1398     default:      ShouldNotReachHere(); break;
1399   }
1400 }
1401 
1402 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1403 #ifdef ASSERT
1404   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1405   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1406   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1407 #endif
1408 
1409   if (op->cond() == lir_cond_always) {
1410     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1411     __ jmp (*(op->label()));
1412   } else {
1413     Assembler::Condition acond = Assembler::zero;
1414     if (op->code() == lir_cond_float_branch) {
1415       assert(op->ublock() != nullptr, "must have unordered successor");
1416       __ jcc(Assembler::parity, *(op->ublock()->label()));
1417       switch(op->cond()) {
1418         case lir_cond_equal:        acond = Assembler::equal;      break;
1419         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1420         case lir_cond_less:         acond = Assembler::below;      break;
1421         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1422         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1423         case lir_cond_greater:      acond = Assembler::above;      break;
1424         default:                         ShouldNotReachHere();
1425       }
1426     } else {
1427       switch (op->cond()) {
1428         case lir_cond_equal:        acond = Assembler::equal;       break;
1429         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1430         case lir_cond_less:         acond = Assembler::less;        break;
1431         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1432         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1433         case lir_cond_greater:      acond = Assembler::greater;     break;
1434         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1435         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1436         default:                         ShouldNotReachHere();
1437       }
1438     }
1439     __ jcc(acond,*(op->label()));
1440   }
1441 }
1442 
1443 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1444   LIR_Opr src  = op->in_opr();
1445   LIR_Opr dest = op->result_opr();
1446 
1447   switch (op->bytecode()) {
1448     case Bytecodes::_i2l:
1449 #ifdef _LP64
1450       __ movl2ptr(dest->as_register_lo(), src->as_register());
1451 #else
1452       move_regs(src->as_register(), dest->as_register_lo());
1453       move_regs(src->as_register(), dest->as_register_hi());
1454       __ sarl(dest->as_register_hi(), 31);
1455 #endif // LP64
1456       break;
1457 
1458     case Bytecodes::_l2i:
1459 #ifdef _LP64
1460       __ movl(dest->as_register(), src->as_register_lo());
1461 #else
1462       move_regs(src->as_register_lo(), dest->as_register());
1463 #endif
1464       break;
1465 
1466     case Bytecodes::_i2b:
1467       move_regs(src->as_register(), dest->as_register());
1468       __ sign_extend_byte(dest->as_register());
1469       break;
1470 
1471     case Bytecodes::_i2c:
1472       move_regs(src->as_register(), dest->as_register());
1473       __ andl(dest->as_register(), 0xFFFF);
1474       break;
1475 
1476     case Bytecodes::_i2s:
1477       move_regs(src->as_register(), dest->as_register());
1478       __ sign_extend_short(dest->as_register());
1479       break;
1480 
1481 
1482 #ifdef _LP64
1483     case Bytecodes::_f2d:
1484       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1485       break;
1486 
1487     case Bytecodes::_d2f:
1488       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1489       break;
1490 
1491     case Bytecodes::_i2f:
1492       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1493       break;
1494 
1495     case Bytecodes::_i2d:
1496       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1497       break;
1498 
1499     case Bytecodes::_l2f:
1500       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1501       break;
1502 
1503     case Bytecodes::_l2d:
1504       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1505       break;
1506 
1507     case Bytecodes::_f2i:
1508       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1509       break;
1510 
1511     case Bytecodes::_d2i:
1512       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1513       break;
1514 
1515     case Bytecodes::_f2l:
1516       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1517       break;
1518 
1519     case Bytecodes::_d2l:
1520       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1521       break;
1522 #else
1523     case Bytecodes::_f2d:
1524     case Bytecodes::_d2f:
1525       if (dest->is_single_xmm()) {
1526         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1527       } else if (dest->is_double_xmm()) {
1528         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1529       } else {
1530         assert(src->fpu() == dest->fpu(), "register must be equal");
1531         // do nothing (float result is rounded later through spilling)
1532       }
1533       break;
1534 
1535     case Bytecodes::_i2f:
1536     case Bytecodes::_i2d:
1537       if (dest->is_single_xmm()) {
1538         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1539       } else if (dest->is_double_xmm()) {
1540         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1541       } else {
1542         assert(dest->fpu() == 0, "result must be on TOS");
1543         __ movl(Address(rsp, 0), src->as_register());
1544         __ fild_s(Address(rsp, 0));
1545       }
1546       break;
1547 
1548     case Bytecodes::_l2f:
1549     case Bytecodes::_l2d:
1550       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1551       assert(dest->fpu() == 0, "result must be on TOS");
1552       __ movptr(Address(rsp, 0),          src->as_register_lo());
1553       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1554       __ fild_d(Address(rsp, 0));
1555       // float result is rounded later through spilling
1556       break;
1557 
1558     case Bytecodes::_f2i:
1559     case Bytecodes::_d2i:
1560       if (src->is_single_xmm()) {
1561         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1562       } else if (src->is_double_xmm()) {
1563         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1564       } else {
1565         assert(src->fpu() == 0, "input must be on TOS");
1566         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1567         __ fist_s(Address(rsp, 0));
1568         __ movl(dest->as_register(), Address(rsp, 0));
1569         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1570       }
1571       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1572       assert(op->stub() != nullptr, "stub required");
1573       __ cmpl(dest->as_register(), 0x80000000);
1574       __ jcc(Assembler::equal, *op->stub()->entry());
1575       __ bind(*op->stub()->continuation());
1576       break;
1577 
1578     case Bytecodes::_f2l:
1579     case Bytecodes::_d2l:
1580       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1581       assert(src->fpu() == 0, "input must be on TOS");
1582       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1583 
1584       // instruction sequence too long to inline it here
1585       {
1586         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1587       }
1588       break;
1589 #endif // _LP64
1590 
1591     default: ShouldNotReachHere();
1592   }
1593 }
1594 
1595 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1596   if (op->init_check()) {
1597     add_debug_info_for_null_check_here(op->stub()->info());
1598     __ cmpb(Address(op->klass()->as_register(),
1599                     InstanceKlass::init_state_offset()),
1600                     InstanceKlass::fully_initialized);
1601     __ jcc(Assembler::notEqual, *op->stub()->entry());
1602   }
1603   __ allocate_object(op->obj()->as_register(),
1604                      op->tmp1()->as_register(),
1605                      op->tmp2()->as_register(),
1606                      op->header_size(),
1607                      op->object_size(),
1608                      op->klass()->as_register(),
1609                      *op->stub()->entry());
1610   __ bind(*op->stub()->continuation());
1611 }
1612 
1613 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1614   Register len =  op->len()->as_register();
1615   LP64_ONLY( __ movslq(len, len); )
1616 
1617   if (UseSlowPath ||
1618       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1619       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1620     __ jmp(*op->stub()->entry());
1621   } else {
1622     Register tmp1 = op->tmp1()->as_register();
1623     Register tmp2 = op->tmp2()->as_register();
1624     Register tmp3 = op->tmp3()->as_register();
1625     if (len == tmp1) {
1626       tmp1 = tmp3;
1627     } else if (len == tmp2) {
1628       tmp2 = tmp3;
1629     } else if (len == tmp3) {
1630       // everything is ok
1631     } else {
1632       __ mov(tmp3, len);
1633     }
1634     __ allocate_array(op->obj()->as_register(),
1635                       len,
1636                       tmp1,
1637                       tmp2,
1638                       arrayOopDesc::header_size(op->type()),
1639                       array_element_size(op->type()),
1640                       op->klass()->as_register(),
1641                       *op->stub()->entry());
1642   }
1643   __ bind(*op->stub()->continuation());
1644 }
1645 
1646 void LIR_Assembler::type_profile_helper(Register mdo,
1647                                         ciMethodData *md, ciProfileData *data,
1648                                         Register recv, Label* update_done) {
1649   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1650     Label next_test;
1651     // See if the receiver is receiver[n].
1652     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1653     __ jccb(Assembler::notEqual, next_test);
1654     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1655     __ addptr(data_addr, DataLayout::counter_increment);
1656     __ jmp(*update_done);
1657     __ bind(next_test);
1658   }
1659 
1660   // Didn't find receiver; find next empty slot and fill it in
1661   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1662     Label next_test;
1663     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1664     __ cmpptr(recv_addr, NULL_WORD);
1665     __ jccb(Assembler::notEqual, next_test);
1666     __ movptr(recv_addr, recv);
1667     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1668     __ jmp(*update_done);
1669     __ bind(next_test);
1670   }
1671 }
1672 
1673 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1674   // we always need a stub for the failure case.
1675   CodeStub* stub = op->stub();
1676   Register obj = op->object()->as_register();
1677   Register k_RInfo = op->tmp1()->as_register();
1678   Register klass_RInfo = op->tmp2()->as_register();
1679   Register dst = op->result_opr()->as_register();
1680   ciKlass* k = op->klass();
1681   Register Rtmp1 = noreg;
1682   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1683 
1684   // check if it needs to be profiled
1685   ciMethodData* md = nullptr;
1686   ciProfileData* data = nullptr;
1687 
1688   if (op->should_profile()) {
1689     ciMethod* method = op->profiled_method();
1690     assert(method != nullptr, "Should have method");
1691     int bci = op->profiled_bci();
1692     md = method->method_data_or_null();
1693     assert(md != nullptr, "Sanity");
1694     data = md->bci_to_data(bci);
1695     assert(data != nullptr,                "need data for type check");
1696     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1697   }
1698   Label* success_target = success;
1699   Label* failure_target = failure;
1700 
1701   if (obj == k_RInfo) {
1702     k_RInfo = dst;
1703   } else if (obj == klass_RInfo) {
1704     klass_RInfo = dst;
1705   }
1706   if (k->is_loaded() && !UseCompressedClassPointers) {
1707     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1708   } else {
1709     Rtmp1 = op->tmp3()->as_register();
1710     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1711   }
1712 
1713   assert_different_registers(obj, k_RInfo, klass_RInfo);
1714 
1715   __ testptr(obj, obj);
1716   if (op->should_profile()) {
1717     Label not_null;
1718     Register mdo  = klass_RInfo;
1719     __ mov_metadata(mdo, md->constant_encoding());
1720     __ jccb(Assembler::notEqual, not_null);
1721     // Object is null; update MDO and exit
1722     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1723     int header_bits = BitData::null_seen_byte_constant();
1724     __ orb(data_addr, header_bits);
1725     __ jmp(*obj_is_null);
1726     __ bind(not_null);
1727 
1728     Label update_done;
1729     Register recv = k_RInfo;
1730     __ load_klass(recv, obj, tmp_load_klass);
1731     type_profile_helper(mdo, md, data, recv, &update_done);
1732 
1733     Address nonprofiled_receiver_count_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1734     __ addptr(nonprofiled_receiver_count_addr, DataLayout::counter_increment);
1735 
1736     __ bind(update_done);
1737   } else {
1738     __ jcc(Assembler::equal, *obj_is_null);
1739   }
1740 
1741   if (!k->is_loaded()) {
1742     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1743   } else {
1744 #ifdef _LP64
1745     __ mov_metadata(k_RInfo, k->constant_encoding());
1746 #endif // _LP64
1747   }
1748   __ verify_oop(obj);
1749 
1750   if (op->fast_check()) {
1751     // get object class
1752     // not a safepoint as obj null check happens earlier
1753 #ifdef _LP64
1754     if (UseCompressedClassPointers) {
1755       __ load_klass(Rtmp1, obj, tmp_load_klass);
1756       __ cmpptr(k_RInfo, Rtmp1);
1757     } else {
1758       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1759     }
1760 #else
1761     if (k->is_loaded()) {
1762       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1763     } else {
1764       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1765     }
1766 #endif
1767     __ jcc(Assembler::notEqual, *failure_target);
1768     // successful cast, fall through to profile or jump
1769   } else {
1770     // get object class
1771     // not a safepoint as obj null check happens earlier
1772     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1773     if (k->is_loaded()) {
1774       // See if we get an immediate positive hit
1775 #ifdef _LP64
1776       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1777 #else
1778       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1779 #endif // _LP64
1780       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1781         __ jcc(Assembler::notEqual, *failure_target);
1782         // successful cast, fall through to profile or jump
1783       } else {
1784         // See if we get an immediate positive hit
1785         __ jcc(Assembler::equal, *success_target);
1786         // check for self
1787 #ifdef _LP64
1788         __ cmpptr(klass_RInfo, k_RInfo);
1789 #else
1790         __ cmpklass(klass_RInfo, k->constant_encoding());
1791 #endif // _LP64
1792         __ jcc(Assembler::equal, *success_target);
1793 
1794         __ push(klass_RInfo);
1795 #ifdef _LP64
1796         __ push(k_RInfo);
1797 #else
1798         __ pushklass(k->constant_encoding(), noreg);
1799 #endif // _LP64
1800         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1801         __ pop(klass_RInfo);
1802         __ pop(klass_RInfo);
1803         // result is a boolean
1804         __ testl(klass_RInfo, klass_RInfo);
1805         __ jcc(Assembler::equal, *failure_target);
1806         // successful cast, fall through to profile or jump
1807       }
1808     } else {
1809       // perform the fast part of the checking logic
1810       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1811       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1812       __ push(klass_RInfo);
1813       __ push(k_RInfo);
1814       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1815       __ pop(klass_RInfo);
1816       __ pop(k_RInfo);
1817       // result is a boolean
1818       __ testl(k_RInfo, k_RInfo);
1819       __ jcc(Assembler::equal, *failure_target);
1820       // successful cast, fall through to profile or jump
1821     }
1822   }
1823   __ jmp(*success);
1824 }
1825 
1826 
1827 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1828   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1829   LIR_Code code = op->code();
1830   if (code == lir_store_check) {
1831     Register value = op->object()->as_register();
1832     Register array = op->array()->as_register();
1833     Register k_RInfo = op->tmp1()->as_register();
1834     Register klass_RInfo = op->tmp2()->as_register();
1835     Register Rtmp1 = op->tmp3()->as_register();
1836 
1837     CodeStub* stub = op->stub();
1838 
1839     // check if it needs to be profiled
1840     ciMethodData* md = nullptr;
1841     ciProfileData* data = nullptr;
1842 
1843     if (op->should_profile()) {
1844       ciMethod* method = op->profiled_method();
1845       assert(method != nullptr, "Should have method");
1846       int bci = op->profiled_bci();
1847       md = method->method_data_or_null();
1848       assert(md != nullptr, "Sanity");
1849       data = md->bci_to_data(bci);
1850       assert(data != nullptr,                "need data for type check");
1851       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1852     }
1853     Label done;
1854     Label* success_target = &done;
1855     Label* failure_target = stub->entry();
1856 
1857     __ testptr(value, value);
1858     if (op->should_profile()) {
1859       Label not_null;
1860       Register mdo  = klass_RInfo;
1861       __ mov_metadata(mdo, md->constant_encoding());
1862       __ jccb(Assembler::notEqual, not_null);
1863       // Object is null; update MDO and exit
1864       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1865       int header_bits = BitData::null_seen_byte_constant();
1866       __ orb(data_addr, header_bits);
1867       __ jmp(done);
1868       __ bind(not_null);
1869 
1870       Label update_done;
1871       Register recv = k_RInfo;
1872       __ load_klass(recv, value, tmp_load_klass);
1873       type_profile_helper(mdo, md, data, recv, &update_done);
1874 
1875       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1876       __ addptr(counter_addr, DataLayout::counter_increment);
1877       __ bind(update_done);
1878     } else {
1879       __ jcc(Assembler::equal, done);
1880     }
1881 
1882     add_debug_info_for_null_check_here(op->info_for_exception());
1883     __ load_klass(k_RInfo, array, tmp_load_klass);
1884     __ load_klass(klass_RInfo, value, tmp_load_klass);
1885 
1886     // get instance klass (it's already uncompressed)
1887     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1888     // perform the fast part of the checking logic
1889     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1890     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1891     __ push(klass_RInfo);
1892     __ push(k_RInfo);
1893     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1894     __ pop(klass_RInfo);
1895     __ pop(k_RInfo);
1896     // result is a boolean
1897     __ testl(k_RInfo, k_RInfo);
1898     __ jcc(Assembler::equal, *failure_target);
1899     // fall through to the success case
1900 
1901     __ bind(done);
1902   } else
1903     if (code == lir_checkcast) {
1904       Register obj = op->object()->as_register();
1905       Register dst = op->result_opr()->as_register();
1906       Label success;
1907       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1908       __ bind(success);
1909       if (dst != obj) {
1910         __ mov(dst, obj);
1911       }
1912     } else
1913       if (code == lir_instanceof) {
1914         Register obj = op->object()->as_register();
1915         Register dst = op->result_opr()->as_register();
1916         Label success, failure, done;
1917         emit_typecheck_helper(op, &success, &failure, &failure);
1918         __ bind(failure);
1919         __ xorptr(dst, dst);
1920         __ jmpb(done);
1921         __ bind(success);
1922         __ movptr(dst, 1);
1923         __ bind(done);
1924       } else {
1925         ShouldNotReachHere();
1926       }
1927 
1928 }
1929 
1930 
1931 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1932   if (LP64_ONLY(false &&) op->code() == lir_cas_long) {
1933     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1934     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1935     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1936     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1937     Register addr = op->addr()->as_register();
1938     __ lock();
1939     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1940 
1941   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1942     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1943     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1944     Register newval = op->new_value()->as_register();
1945     Register cmpval = op->cmp_value()->as_register();
1946     assert(cmpval == rax, "wrong register");
1947     assert(newval != noreg, "new val must be register");
1948     assert(cmpval != newval, "cmp and new values must be in different registers");
1949     assert(cmpval != addr, "cmp and addr must be in different registers");
1950     assert(newval != addr, "new value and addr must be in different registers");
1951 
1952     if ( op->code() == lir_cas_obj) {
1953 #ifdef _LP64
1954       if (UseCompressedOops) {
1955         __ encode_heap_oop(cmpval);
1956         __ mov(rscratch1, newval);
1957         __ encode_heap_oop(rscratch1);
1958         __ lock();
1959         // cmpval (rax) is implicitly used by this instruction
1960         __ cmpxchgl(rscratch1, Address(addr, 0));
1961       } else
1962 #endif
1963       {
1964         __ lock();
1965         __ cmpxchgptr(newval, Address(addr, 0));
1966       }
1967     } else {
1968       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1969       __ lock();
1970       __ cmpxchgl(newval, Address(addr, 0));
1971     }
1972 #ifdef _LP64
1973   } else if (op->code() == lir_cas_long) {
1974     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1975     Register newval = op->new_value()->as_register_lo();
1976     Register cmpval = op->cmp_value()->as_register_lo();
1977     assert(cmpval == rax, "wrong register");
1978     assert(newval != noreg, "new val must be register");
1979     assert(cmpval != newval, "cmp and new values must be in different registers");
1980     assert(cmpval != addr, "cmp and addr must be in different registers");
1981     assert(newval != addr, "new value and addr must be in different registers");
1982     __ lock();
1983     __ cmpxchgq(newval, Address(addr, 0));
1984 #endif // _LP64
1985   } else {
1986     Unimplemented();
1987   }
1988 }
1989 
1990 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1991                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1992   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
1993 
1994   Assembler::Condition acond, ncond;
1995   switch (condition) {
1996     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1997     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1998     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1999     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2000     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2001     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2002     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2003     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2004     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2005                                 ShouldNotReachHere();
2006   }
2007 
2008   if (opr1->is_cpu_register()) {
2009     reg2reg(opr1, result);
2010   } else if (opr1->is_stack()) {
2011     stack2reg(opr1, result, result->type());
2012   } else if (opr1->is_constant()) {
2013     const2reg(opr1, result, lir_patch_none, nullptr);
2014   } else {
2015     ShouldNotReachHere();
2016   }
2017 
2018   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2019     // optimized version that does not require a branch
2020     if (opr2->is_single_cpu()) {
2021       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2022       __ cmov(ncond, result->as_register(), opr2->as_register());
2023     } else if (opr2->is_double_cpu()) {
2024       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2025       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2026       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2027       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2028     } else if (opr2->is_single_stack()) {
2029       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2030     } else if (opr2->is_double_stack()) {
2031       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2032       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2033     } else {
2034       ShouldNotReachHere();
2035     }
2036 
2037   } else {
2038     Label skip;
2039     __ jccb(acond, skip);
2040     if (opr2->is_cpu_register()) {
2041       reg2reg(opr2, result);
2042     } else if (opr2->is_stack()) {
2043       stack2reg(opr2, result, result->type());
2044     } else if (opr2->is_constant()) {
2045       const2reg(opr2, result, lir_patch_none, nullptr);
2046     } else {
2047       ShouldNotReachHere();
2048     }
2049     __ bind(skip);
2050   }
2051 }
2052 
2053 
2054 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2055   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2056 
2057   if (left->is_single_cpu()) {
2058     assert(left == dest, "left and dest must be equal");
2059     Register lreg = left->as_register();
2060 
2061     if (right->is_single_cpu()) {
2062       // cpu register - cpu register
2063       Register rreg = right->as_register();
2064       switch (code) {
2065         case lir_add: __ addl (lreg, rreg); break;
2066         case lir_sub: __ subl (lreg, rreg); break;
2067         case lir_mul: __ imull(lreg, rreg); break;
2068         default:      ShouldNotReachHere();
2069       }
2070 
2071     } else if (right->is_stack()) {
2072       // cpu register - stack
2073       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2074       switch (code) {
2075         case lir_add: __ addl(lreg, raddr); break;
2076         case lir_sub: __ subl(lreg, raddr); break;
2077         default:      ShouldNotReachHere();
2078       }
2079 
2080     } else if (right->is_constant()) {
2081       // cpu register - constant
2082       jint c = right->as_constant_ptr()->as_jint();
2083       switch (code) {
2084         case lir_add: {
2085           __ incrementl(lreg, c);
2086           break;
2087         }
2088         case lir_sub: {
2089           __ decrementl(lreg, c);
2090           break;
2091         }
2092         default: ShouldNotReachHere();
2093       }
2094 
2095     } else {
2096       ShouldNotReachHere();
2097     }
2098 
2099   } else if (left->is_double_cpu()) {
2100     assert(left == dest, "left and dest must be equal");
2101     Register lreg_lo = left->as_register_lo();
2102     Register lreg_hi = left->as_register_hi();
2103 
2104     if (right->is_double_cpu()) {
2105       // cpu register - cpu register
2106       Register rreg_lo = right->as_register_lo();
2107       Register rreg_hi = right->as_register_hi();
2108       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2109       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2110       switch (code) {
2111         case lir_add:
2112           __ addptr(lreg_lo, rreg_lo);
2113           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2114           break;
2115         case lir_sub:
2116           __ subptr(lreg_lo, rreg_lo);
2117           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2118           break;
2119         case lir_mul:
2120 #ifdef _LP64
2121           __ imulq(lreg_lo, rreg_lo);
2122 #else
2123           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2124           __ imull(lreg_hi, rreg_lo);
2125           __ imull(rreg_hi, lreg_lo);
2126           __ addl (rreg_hi, lreg_hi);
2127           __ mull (rreg_lo);
2128           __ addl (lreg_hi, rreg_hi);
2129 #endif // _LP64
2130           break;
2131         default:
2132           ShouldNotReachHere();
2133       }
2134 
2135     } else if (right->is_constant()) {
2136       // cpu register - constant
2137 #ifdef _LP64
2138       jlong c = right->as_constant_ptr()->as_jlong_bits();
2139       __ movptr(r10, (intptr_t) c);
2140       switch (code) {
2141         case lir_add:
2142           __ addptr(lreg_lo, r10);
2143           break;
2144         case lir_sub:
2145           __ subptr(lreg_lo, r10);
2146           break;
2147         default:
2148           ShouldNotReachHere();
2149       }
2150 #else
2151       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2152       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2153       switch (code) {
2154         case lir_add:
2155           __ addptr(lreg_lo, c_lo);
2156           __ adcl(lreg_hi, c_hi);
2157           break;
2158         case lir_sub:
2159           __ subptr(lreg_lo, c_lo);
2160           __ sbbl(lreg_hi, c_hi);
2161           break;
2162         default:
2163           ShouldNotReachHere();
2164       }
2165 #endif // _LP64
2166 
2167     } else {
2168       ShouldNotReachHere();
2169     }
2170 
2171   } else if (left->is_single_xmm()) {
2172     assert(left == dest, "left and dest must be equal");
2173     XMMRegister lreg = left->as_xmm_float_reg();
2174 
2175     if (right->is_single_xmm()) {
2176       XMMRegister rreg = right->as_xmm_float_reg();
2177       switch (code) {
2178         case lir_add: __ addss(lreg, rreg);  break;
2179         case lir_sub: __ subss(lreg, rreg);  break;
2180         case lir_mul: __ mulss(lreg, rreg);  break;
2181         case lir_div: __ divss(lreg, rreg);  break;
2182         default: ShouldNotReachHere();
2183       }
2184     } else {
2185       Address raddr;
2186       if (right->is_single_stack()) {
2187         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2188       } else if (right->is_constant()) {
2189         // hack for now
2190         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2191       } else {
2192         ShouldNotReachHere();
2193       }
2194       switch (code) {
2195         case lir_add: __ addss(lreg, raddr);  break;
2196         case lir_sub: __ subss(lreg, raddr);  break;
2197         case lir_mul: __ mulss(lreg, raddr);  break;
2198         case lir_div: __ divss(lreg, raddr);  break;
2199         default: ShouldNotReachHere();
2200       }
2201     }
2202 
2203   } else if (left->is_double_xmm()) {
2204     assert(left == dest, "left and dest must be equal");
2205 
2206     XMMRegister lreg = left->as_xmm_double_reg();
2207     if (right->is_double_xmm()) {
2208       XMMRegister rreg = right->as_xmm_double_reg();
2209       switch (code) {
2210         case lir_add: __ addsd(lreg, rreg);  break;
2211         case lir_sub: __ subsd(lreg, rreg);  break;
2212         case lir_mul: __ mulsd(lreg, rreg);  break;
2213         case lir_div: __ divsd(lreg, rreg);  break;
2214         default: ShouldNotReachHere();
2215       }
2216     } else {
2217       Address raddr;
2218       if (right->is_double_stack()) {
2219         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2220       } else if (right->is_constant()) {
2221         // hack for now
2222         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2223       } else {
2224         ShouldNotReachHere();
2225       }
2226       switch (code) {
2227         case lir_add: __ addsd(lreg, raddr);  break;
2228         case lir_sub: __ subsd(lreg, raddr);  break;
2229         case lir_mul: __ mulsd(lreg, raddr);  break;
2230         case lir_div: __ divsd(lreg, raddr);  break;
2231         default: ShouldNotReachHere();
2232       }
2233     }
2234 
2235 #ifndef _LP64
2236   } else if (left->is_single_fpu()) {
2237     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2238 
2239     if (right->is_single_fpu()) {
2240       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2241 
2242     } else {
2243       assert(left->fpu_regnr() == 0, "left must be on TOS");
2244       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2245 
2246       Address raddr;
2247       if (right->is_single_stack()) {
2248         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2249       } else if (right->is_constant()) {
2250         address const_addr = float_constant(right->as_jfloat());
2251         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2252         // hack for now
2253         raddr = __ as_Address(InternalAddress(const_addr));
2254       } else {
2255         ShouldNotReachHere();
2256       }
2257 
2258       switch (code) {
2259         case lir_add: __ fadd_s(raddr); break;
2260         case lir_sub: __ fsub_s(raddr); break;
2261         case lir_mul: __ fmul_s(raddr); break;
2262         case lir_div: __ fdiv_s(raddr); break;
2263         default:      ShouldNotReachHere();
2264       }
2265     }
2266 
2267   } else if (left->is_double_fpu()) {
2268     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2269 
2270     if (code == lir_mul || code == lir_div) {
2271       // Double values require special handling for strictfp mul/div on x86
2272       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2273       __ fmulp(left->fpu_regnrLo() + 1);
2274     }
2275 
2276     if (right->is_double_fpu()) {
2277       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2278 
2279     } else {
2280       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2281       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2282 
2283       Address raddr;
2284       if (right->is_double_stack()) {
2285         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2286       } else if (right->is_constant()) {
2287         // hack for now
2288         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2289       } else {
2290         ShouldNotReachHere();
2291       }
2292 
2293       switch (code) {
2294         case lir_add: __ fadd_d(raddr); break;
2295         case lir_sub: __ fsub_d(raddr); break;
2296         case lir_mul: __ fmul_d(raddr); break;
2297         case lir_div: __ fdiv_d(raddr); break;
2298         default: ShouldNotReachHere();
2299       }
2300     }
2301 
2302     if (code == lir_mul || code == lir_div) {
2303       // Double values require special handling for strictfp mul/div on x86
2304       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2305       __ fmulp(dest->fpu_regnrLo() + 1);
2306     }
2307 #endif // !_LP64
2308 
2309   } else if (left->is_single_stack() || left->is_address()) {
2310     assert(left == dest, "left and dest must be equal");
2311 
2312     Address laddr;
2313     if (left->is_single_stack()) {
2314       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2315     } else if (left->is_address()) {
2316       laddr = as_Address(left->as_address_ptr());
2317     } else {
2318       ShouldNotReachHere();
2319     }
2320 
2321     if (right->is_single_cpu()) {
2322       Register rreg = right->as_register();
2323       switch (code) {
2324         case lir_add: __ addl(laddr, rreg); break;
2325         case lir_sub: __ subl(laddr, rreg); break;
2326         default:      ShouldNotReachHere();
2327       }
2328     } else if (right->is_constant()) {
2329       jint c = right->as_constant_ptr()->as_jint();
2330       switch (code) {
2331         case lir_add: {
2332           __ incrementl(laddr, c);
2333           break;
2334         }
2335         case lir_sub: {
2336           __ decrementl(laddr, c);
2337           break;
2338         }
2339         default: ShouldNotReachHere();
2340       }
2341     } else {
2342       ShouldNotReachHere();
2343     }
2344 
2345   } else {
2346     ShouldNotReachHere();
2347   }
2348 }
2349 
2350 #ifndef _LP64
2351 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2352   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2353   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2354   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2355 
2356   bool left_is_tos = (left_index == 0);
2357   bool dest_is_tos = (dest_index == 0);
2358   int non_tos_index = (left_is_tos ? right_index : left_index);
2359 
2360   switch (code) {
2361     case lir_add:
2362       if (pop_fpu_stack)       __ faddp(non_tos_index);
2363       else if (dest_is_tos)    __ fadd (non_tos_index);
2364       else                     __ fadda(non_tos_index);
2365       break;
2366 
2367     case lir_sub:
2368       if (left_is_tos) {
2369         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2370         else if (dest_is_tos)  __ fsub  (non_tos_index);
2371         else                   __ fsubra(non_tos_index);
2372       } else {
2373         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2374         else if (dest_is_tos)  __ fsubr (non_tos_index);
2375         else                   __ fsuba (non_tos_index);
2376       }
2377       break;
2378 
2379     case lir_mul:
2380       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2381       else if (dest_is_tos)    __ fmul (non_tos_index);
2382       else                     __ fmula(non_tos_index);
2383       break;
2384 
2385     case lir_div:
2386       if (left_is_tos) {
2387         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2388         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2389         else                   __ fdivra(non_tos_index);
2390       } else {
2391         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2392         else if (dest_is_tos)  __ fdivr (non_tos_index);
2393         else                   __ fdiva (non_tos_index);
2394       }
2395       break;
2396 
2397     case lir_rem:
2398       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2399       __ fremr(noreg);
2400       break;
2401 
2402     default:
2403       ShouldNotReachHere();
2404   }
2405 }
2406 #endif // _LP64
2407 
2408 
2409 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2410   if (value->is_double_xmm()) {
2411     switch(code) {
2412       case lir_abs :
2413         {
2414 #ifdef _LP64
2415           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2416             assert(tmp->is_valid(), "need temporary");
2417             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2418           } else
2419 #endif
2420           {
2421             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2422               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2423             }
2424             assert(!tmp->is_valid(), "do not need temporary");
2425             __ andpd(dest->as_xmm_double_reg(),
2426                      ExternalAddress((address)double_signmask_pool),
2427                      rscratch1);
2428           }
2429         }
2430         break;
2431 
2432       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2433       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2434       default      : ShouldNotReachHere();
2435     }
2436 
2437 #ifndef _LP64
2438   } else if (value->is_double_fpu()) {
2439     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2440     switch(code) {
2441       case lir_abs   : __ fabs() ; break;
2442       case lir_sqrt  : __ fsqrt(); break;
2443       default      : ShouldNotReachHere();
2444     }
2445 #endif // !_LP64
2446   } else if (code == lir_f2hf) {
2447     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2448   } else if (code == lir_hf2f) {
2449     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2450   } else {
2451     Unimplemented();
2452   }
2453 }
2454 
2455 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2456   // assert(left->destroys_register(), "check");
2457   if (left->is_single_cpu()) {
2458     Register reg = left->as_register();
2459     if (right->is_constant()) {
2460       int val = right->as_constant_ptr()->as_jint();
2461       switch (code) {
2462         case lir_logic_and: __ andl (reg, val); break;
2463         case lir_logic_or:  __ orl  (reg, val); break;
2464         case lir_logic_xor: __ xorl (reg, val); break;
2465         default: ShouldNotReachHere();
2466       }
2467     } else if (right->is_stack()) {
2468       // added support for stack operands
2469       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2470       switch (code) {
2471         case lir_logic_and: __ andl (reg, raddr); break;
2472         case lir_logic_or:  __ orl  (reg, raddr); break;
2473         case lir_logic_xor: __ xorl (reg, raddr); break;
2474         default: ShouldNotReachHere();
2475       }
2476     } else {
2477       Register rright = right->as_register();
2478       switch (code) {
2479         case lir_logic_and: __ andptr (reg, rright); break;
2480         case lir_logic_or : __ orptr  (reg, rright); break;
2481         case lir_logic_xor: __ xorptr (reg, rright); break;
2482         default: ShouldNotReachHere();
2483       }
2484     }
2485     move_regs(reg, dst->as_register());
2486   } else {
2487     Register l_lo = left->as_register_lo();
2488     Register l_hi = left->as_register_hi();
2489     if (right->is_constant()) {
2490 #ifdef _LP64
2491       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2492       switch (code) {
2493         case lir_logic_and:
2494           __ andq(l_lo, rscratch1);
2495           break;
2496         case lir_logic_or:
2497           __ orq(l_lo, rscratch1);
2498           break;
2499         case lir_logic_xor:
2500           __ xorq(l_lo, rscratch1);
2501           break;
2502         default: ShouldNotReachHere();
2503       }
2504 #else
2505       int r_lo = right->as_constant_ptr()->as_jint_lo();
2506       int r_hi = right->as_constant_ptr()->as_jint_hi();
2507       switch (code) {
2508         case lir_logic_and:
2509           __ andl(l_lo, r_lo);
2510           __ andl(l_hi, r_hi);
2511           break;
2512         case lir_logic_or:
2513           __ orl(l_lo, r_lo);
2514           __ orl(l_hi, r_hi);
2515           break;
2516         case lir_logic_xor:
2517           __ xorl(l_lo, r_lo);
2518           __ xorl(l_hi, r_hi);
2519           break;
2520         default: ShouldNotReachHere();
2521       }
2522 #endif // _LP64
2523     } else {
2524 #ifdef _LP64
2525       Register r_lo;
2526       if (is_reference_type(right->type())) {
2527         r_lo = right->as_register();
2528       } else {
2529         r_lo = right->as_register_lo();
2530       }
2531 #else
2532       Register r_lo = right->as_register_lo();
2533       Register r_hi = right->as_register_hi();
2534       assert(l_lo != r_hi, "overwriting registers");
2535 #endif
2536       switch (code) {
2537         case lir_logic_and:
2538           __ andptr(l_lo, r_lo);
2539           NOT_LP64(__ andptr(l_hi, r_hi);)
2540           break;
2541         case lir_logic_or:
2542           __ orptr(l_lo, r_lo);
2543           NOT_LP64(__ orptr(l_hi, r_hi);)
2544           break;
2545         case lir_logic_xor:
2546           __ xorptr(l_lo, r_lo);
2547           NOT_LP64(__ xorptr(l_hi, r_hi);)
2548           break;
2549         default: ShouldNotReachHere();
2550       }
2551     }
2552 
2553     Register dst_lo = dst->as_register_lo();
2554     Register dst_hi = dst->as_register_hi();
2555 
2556 #ifdef _LP64
2557     move_regs(l_lo, dst_lo);
2558 #else
2559     if (dst_lo == l_hi) {
2560       assert(dst_hi != l_lo, "overwriting registers");
2561       move_regs(l_hi, dst_hi);
2562       move_regs(l_lo, dst_lo);
2563     } else {
2564       assert(dst_lo != l_hi, "overwriting registers");
2565       move_regs(l_lo, dst_lo);
2566       move_regs(l_hi, dst_hi);
2567     }
2568 #endif // _LP64
2569   }
2570 }
2571 
2572 
2573 // we assume that rax, and rdx can be overwritten
2574 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2575 
2576   assert(left->is_single_cpu(),   "left must be register");
2577   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2578   assert(result->is_single_cpu(), "result must be register");
2579 
2580   //  assert(left->destroys_register(), "check");
2581   //  assert(right->destroys_register(), "check");
2582 
2583   Register lreg = left->as_register();
2584   Register dreg = result->as_register();
2585 
2586   if (right->is_constant()) {
2587     jint divisor = right->as_constant_ptr()->as_jint();
2588     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2589     if (code == lir_idiv) {
2590       assert(lreg == rax, "must be rax,");
2591       assert(temp->as_register() == rdx, "tmp register must be rdx");
2592       __ cdql(); // sign extend into rdx:rax
2593       if (divisor == 2) {
2594         __ subl(lreg, rdx);
2595       } else {
2596         __ andl(rdx, divisor - 1);
2597         __ addl(lreg, rdx);
2598       }
2599       __ sarl(lreg, log2i_exact(divisor));
2600       move_regs(lreg, dreg);
2601     } else if (code == lir_irem) {
2602       Label done;
2603       __ mov(dreg, lreg);
2604       __ andl(dreg, 0x80000000 | (divisor - 1));
2605       __ jcc(Assembler::positive, done);
2606       __ decrement(dreg);
2607       __ orl(dreg, ~(divisor - 1));
2608       __ increment(dreg);
2609       __ bind(done);
2610     } else {
2611       ShouldNotReachHere();
2612     }
2613   } else {
2614     Register rreg = right->as_register();
2615     assert(lreg == rax, "left register must be rax,");
2616     assert(rreg != rdx, "right register must not be rdx");
2617     assert(temp->as_register() == rdx, "tmp register must be rdx");
2618 
2619     move_regs(lreg, rax);
2620 
2621     int idivl_offset = __ corrected_idivl(rreg);
2622     if (ImplicitDiv0Checks) {
2623       add_debug_info_for_div0(idivl_offset, info);
2624     }
2625     if (code == lir_irem) {
2626       move_regs(rdx, dreg); // result is in rdx
2627     } else {
2628       move_regs(rax, dreg);
2629     }
2630   }
2631 }
2632 
2633 
2634 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2635   if (opr1->is_single_cpu()) {
2636     Register reg1 = opr1->as_register();
2637     if (opr2->is_single_cpu()) {
2638       // cpu register - cpu register
2639       if (is_reference_type(opr1->type())) {
2640         __ cmpoop(reg1, opr2->as_register());
2641       } else {
2642         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2643         __ cmpl(reg1, opr2->as_register());
2644       }
2645     } else if (opr2->is_stack()) {
2646       // cpu register - stack
2647       if (is_reference_type(opr1->type())) {
2648         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2649       } else {
2650         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2651       }
2652     } else if (opr2->is_constant()) {
2653       // cpu register - constant
2654       LIR_Const* c = opr2->as_constant_ptr();
2655       if (c->type() == T_INT) {
2656         jint i = c->as_jint();
2657         if (i == 0) {
2658           __ testl(reg1, reg1);
2659         } else {
2660           __ cmpl(reg1, i);
2661         }
2662       } else if (c->type() == T_METADATA) {
2663         // All we need for now is a comparison with null for equality.
2664         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2665         Metadata* m = c->as_metadata();
2666         if (m == nullptr) {
2667           __ testptr(reg1, reg1);
2668         } else {
2669           ShouldNotReachHere();
2670         }
2671       } else if (is_reference_type(c->type())) {
2672         // In 64bit oops are single register
2673         jobject o = c->as_jobject();
2674         if (o == nullptr) {
2675           __ testptr(reg1, reg1);
2676         } else {
2677           __ cmpoop(reg1, o, rscratch1);
2678         }
2679       } else {
2680         fatal("unexpected type: %s", basictype_to_str(c->type()));
2681       }
2682       // cpu register - address
2683     } else if (opr2->is_address()) {
2684       if (op->info() != nullptr) {
2685         add_debug_info_for_null_check_here(op->info());
2686       }
2687       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2688     } else {
2689       ShouldNotReachHere();
2690     }
2691 
2692   } else if(opr1->is_double_cpu()) {
2693     Register xlo = opr1->as_register_lo();
2694     Register xhi = opr1->as_register_hi();
2695     if (opr2->is_double_cpu()) {
2696 #ifdef _LP64
2697       __ cmpptr(xlo, opr2->as_register_lo());
2698 #else
2699       // cpu register - cpu register
2700       Register ylo = opr2->as_register_lo();
2701       Register yhi = opr2->as_register_hi();
2702       __ subl(xlo, ylo);
2703       __ sbbl(xhi, yhi);
2704       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2705         __ orl(xhi, xlo);
2706       }
2707 #endif // _LP64
2708     } else if (opr2->is_constant()) {
2709       // cpu register - constant 0
2710       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2711 #ifdef _LP64
2712       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2713 #else
2714       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2715       __ orl(xhi, xlo);
2716 #endif // _LP64
2717     } else {
2718       ShouldNotReachHere();
2719     }
2720 
2721   } else if (opr1->is_single_xmm()) {
2722     XMMRegister reg1 = opr1->as_xmm_float_reg();
2723     if (opr2->is_single_xmm()) {
2724       // xmm register - xmm register
2725       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2726     } else if (opr2->is_stack()) {
2727       // xmm register - stack
2728       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2729     } else if (opr2->is_constant()) {
2730       // xmm register - constant
2731       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2732     } else if (opr2->is_address()) {
2733       // xmm register - address
2734       if (op->info() != nullptr) {
2735         add_debug_info_for_null_check_here(op->info());
2736       }
2737       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2738     } else {
2739       ShouldNotReachHere();
2740     }
2741 
2742   } else if (opr1->is_double_xmm()) {
2743     XMMRegister reg1 = opr1->as_xmm_double_reg();
2744     if (opr2->is_double_xmm()) {
2745       // xmm register - xmm register
2746       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2747     } else if (opr2->is_stack()) {
2748       // xmm register - stack
2749       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2750     } else if (opr2->is_constant()) {
2751       // xmm register - constant
2752       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2753     } else if (opr2->is_address()) {
2754       // xmm register - address
2755       if (op->info() != nullptr) {
2756         add_debug_info_for_null_check_here(op->info());
2757       }
2758       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2759     } else {
2760       ShouldNotReachHere();
2761     }
2762 
2763 #ifndef _LP64
2764   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2765     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2766     assert(opr2->is_fpu_register(), "both must be registers");
2767     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2768 #endif // LP64
2769 
2770   } else if (opr1->is_address() && opr2->is_constant()) {
2771     LIR_Const* c = opr2->as_constant_ptr();
2772 #ifdef _LP64
2773     if (is_reference_type(c->type())) {
2774       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2775       __ movoop(rscratch1, c->as_jobject());
2776     }
2777 #endif // LP64
2778     if (op->info() != nullptr) {
2779       add_debug_info_for_null_check_here(op->info());
2780     }
2781     // special case: address - constant
2782     LIR_Address* addr = opr1->as_address_ptr();
2783     if (c->type() == T_INT) {
2784       __ cmpl(as_Address(addr), c->as_jint());
2785     } else if (is_reference_type(c->type())) {
2786 #ifdef _LP64
2787       // %%% Make this explode if addr isn't reachable until we figure out a
2788       // better strategy by giving noreg as the temp for as_Address
2789       __ cmpoop(rscratch1, as_Address(addr, noreg));
2790 #else
2791       __ cmpoop(as_Address(addr), c->as_jobject());
2792 #endif // _LP64
2793     } else {
2794       ShouldNotReachHere();
2795     }
2796 
2797   } else {
2798     ShouldNotReachHere();
2799   }
2800 }
2801 
2802 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2803   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2804     if (left->is_single_xmm()) {
2805       assert(right->is_single_xmm(), "must match");
2806       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2807     } else if (left->is_double_xmm()) {
2808       assert(right->is_double_xmm(), "must match");
2809       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2810 
2811     } else {
2812 #ifdef _LP64
2813       ShouldNotReachHere();
2814 #else
2815       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2816       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2817 
2818       assert(left->fpu() == 0, "left must be on TOS");
2819       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2820                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2821 #endif // LP64
2822     }
2823   } else {
2824     assert(code == lir_cmp_l2i, "check");
2825 #ifdef _LP64
2826     Label done;
2827     Register dest = dst->as_register();
2828     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2829     __ movl(dest, -1);
2830     __ jccb(Assembler::less, done);
2831     __ setb(Assembler::notZero, dest);
2832     __ movzbl(dest, dest);
2833     __ bind(done);
2834 #else
2835     __ lcmp2int(left->as_register_hi(),
2836                 left->as_register_lo(),
2837                 right->as_register_hi(),
2838                 right->as_register_lo());
2839     move_regs(left->as_register_hi(), dst->as_register());
2840 #endif // _LP64
2841   }
2842 }
2843 
2844 
2845 void LIR_Assembler::align_call(LIR_Code code) {
2846   // make sure that the displacement word of the call ends up word aligned
2847   int offset = __ offset();
2848   switch (code) {
2849   case lir_static_call:
2850   case lir_optvirtual_call:
2851   case lir_dynamic_call:
2852     offset += NativeCall::displacement_offset;
2853     break;
2854   case lir_icvirtual_call:
2855     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2856     break;
2857   default: ShouldNotReachHere();
2858   }
2859   __ align(BytesPerWord, offset);
2860 }
2861 
2862 
2863 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2864   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2865          "must be aligned");
2866   __ call(AddressLiteral(op->addr(), rtype));
2867   add_call_info(code_offset(), op->info());
2868   __ post_call_nop();
2869 }
2870 
2871 
2872 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2873   __ ic_call(op->addr());
2874   add_call_info(code_offset(), op->info());
2875   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2876          "must be aligned");
2877   __ post_call_nop();
2878 }
2879 
2880 
2881 void LIR_Assembler::emit_static_call_stub() {
2882   address call_pc = __ pc();
2883   address stub = __ start_a_stub(call_stub_size());
2884   if (stub == nullptr) {
2885     bailout("static call stub overflow");
2886     return;
2887   }
2888 
2889   int start = __ offset();
2890 
2891   // make sure that the displacement word of the call ends up word aligned
2892   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2893   __ relocate(static_stub_Relocation::spec(call_pc));
2894   __ mov_metadata(rbx, (Metadata*)nullptr);
2895   // must be set to -1 at code generation time
2896   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2897   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2898   __ jump(RuntimeAddress(__ pc()));
2899 
2900   assert(__ offset() - start <= call_stub_size(), "stub too big");
2901   __ end_a_stub();
2902 }
2903 
2904 
2905 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2906   assert(exceptionOop->as_register() == rax, "must match");
2907   assert(exceptionPC->as_register() == rdx, "must match");
2908 
2909   // exception object is not added to oop map by LinearScan
2910   // (LinearScan assumes that no oops are in fixed registers)
2911   info->add_register_oop(exceptionOop);
2912   Runtime1::StubID unwind_id;
2913 
2914   // get current pc information
2915   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2916   int pc_for_athrow_offset = __ offset();
2917   InternalAddress pc_for_athrow(__ pc());
2918   __ lea(exceptionPC->as_register(), pc_for_athrow);
2919   add_call_info(pc_for_athrow_offset, info); // for exception handler
2920 
2921   __ verify_not_null_oop(rax);
2922   // search an exception handler (rax: exception oop, rdx: throwing pc)
2923   if (compilation()->has_fpu_code()) {
2924     unwind_id = Runtime1::handle_exception_id;
2925   } else {
2926     unwind_id = Runtime1::handle_exception_nofpu_id;
2927   }
2928   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2929 
2930   // enough room for two byte trap
2931   __ nop();
2932 }
2933 
2934 
2935 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2936   assert(exceptionOop->as_register() == rax, "must match");
2937 
2938   __ jmp(_unwind_handler_entry);
2939 }
2940 
2941 
2942 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2943 
2944   // optimized version for linear scan:
2945   // * count must be already in ECX (guaranteed by LinearScan)
2946   // * left and dest must be equal
2947   // * tmp must be unused
2948   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2949   assert(left == dest, "left and dest must be equal");
2950   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2951 
2952   if (left->is_single_cpu()) {
2953     Register value = left->as_register();
2954     assert(value != SHIFT_count, "left cannot be ECX");
2955 
2956     switch (code) {
2957       case lir_shl:  __ shll(value); break;
2958       case lir_shr:  __ sarl(value); break;
2959       case lir_ushr: __ shrl(value); break;
2960       default: ShouldNotReachHere();
2961     }
2962   } else if (left->is_double_cpu()) {
2963     Register lo = left->as_register_lo();
2964     Register hi = left->as_register_hi();
2965     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2966 #ifdef _LP64
2967     switch (code) {
2968       case lir_shl:  __ shlptr(lo);        break;
2969       case lir_shr:  __ sarptr(lo);        break;
2970       case lir_ushr: __ shrptr(lo);        break;
2971       default: ShouldNotReachHere();
2972     }
2973 #else
2974 
2975     switch (code) {
2976       case lir_shl:  __ lshl(hi, lo);        break;
2977       case lir_shr:  __ lshr(hi, lo, true);  break;
2978       case lir_ushr: __ lshr(hi, lo, false); break;
2979       default: ShouldNotReachHere();
2980     }
2981 #endif // LP64
2982   } else {
2983     ShouldNotReachHere();
2984   }
2985 }
2986 
2987 
2988 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2989   if (dest->is_single_cpu()) {
2990     // first move left into dest so that left is not destroyed by the shift
2991     Register value = dest->as_register();
2992     count = count & 0x1F; // Java spec
2993 
2994     move_regs(left->as_register(), value);
2995     switch (code) {
2996       case lir_shl:  __ shll(value, count); break;
2997       case lir_shr:  __ sarl(value, count); break;
2998       case lir_ushr: __ shrl(value, count); break;
2999       default: ShouldNotReachHere();
3000     }
3001   } else if (dest->is_double_cpu()) {
3002 #ifndef _LP64
3003     Unimplemented();
3004 #else
3005     // first move left into dest so that left is not destroyed by the shift
3006     Register value = dest->as_register_lo();
3007     count = count & 0x1F; // Java spec
3008 
3009     move_regs(left->as_register_lo(), value);
3010     switch (code) {
3011       case lir_shl:  __ shlptr(value, count); break;
3012       case lir_shr:  __ sarptr(value, count); break;
3013       case lir_ushr: __ shrptr(value, count); break;
3014       default: ShouldNotReachHere();
3015     }
3016 #endif // _LP64
3017   } else {
3018     ShouldNotReachHere();
3019   }
3020 }
3021 
3022 
3023 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3024   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3025   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3026   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3027   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3028 }
3029 
3030 
3031 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3032   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3033   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3034   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3035   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3036 }
3037 
3038 
3039 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3040   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3041   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3042   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3043   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3044 }
3045 
3046 
3047 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3048   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3049   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3050   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3051   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3052 }
3053 
3054 
3055 // This code replaces a call to arraycopy; no exception may
3056 // be thrown in this code, they must be thrown in the System.arraycopy
3057 // activation frame; we could save some checks if this would not be the case
3058 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3059   ciArrayKlass* default_type = op->expected_type();
3060   Register src = op->src()->as_register();
3061   Register dst = op->dst()->as_register();
3062   Register src_pos = op->src_pos()->as_register();
3063   Register dst_pos = op->dst_pos()->as_register();
3064   Register length  = op->length()->as_register();
3065   Register tmp = op->tmp()->as_register();
3066   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3067 
3068   CodeStub* stub = op->stub();
3069   int flags = op->flags();
3070   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3071   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3072 
3073   // if we don't know anything, just go through the generic arraycopy
3074   if (default_type == nullptr) {
3075     // save outgoing arguments on stack in case call to System.arraycopy is needed
3076     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3077     // for interpreter calling conventions. Now we have to do it in new style conventions.
3078     // For the moment until C1 gets the new register allocator I just force all the
3079     // args to the right place (except the register args) and then on the back side
3080     // reload the register args properly if we go slow path. Yuck
3081 
3082     // These are proper for the calling convention
3083     store_parameter(length, 2);
3084     store_parameter(dst_pos, 1);
3085     store_parameter(dst, 0);
3086 
3087     // these are just temporary placements until we need to reload
3088     store_parameter(src_pos, 3);
3089     store_parameter(src, 4);
3090     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3091 
3092     address copyfunc_addr = StubRoutines::generic_arraycopy();
3093     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3094 
3095     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3096 #ifdef _LP64
3097     // The arguments are in java calling convention so we can trivially shift them to C
3098     // convention
3099     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3100     __ mov(c_rarg0, j_rarg0);
3101     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3102     __ mov(c_rarg1, j_rarg1);
3103     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3104     __ mov(c_rarg2, j_rarg2);
3105     assert_different_registers(c_rarg3, j_rarg4);
3106     __ mov(c_rarg3, j_rarg3);
3107 #ifdef _WIN64
3108     // Allocate abi space for args but be sure to keep stack aligned
3109     __ subptr(rsp, 6*wordSize);
3110     store_parameter(j_rarg4, 4);
3111 #ifndef PRODUCT
3112     if (PrintC1Statistics) {
3113       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3114     }
3115 #endif
3116     __ call(RuntimeAddress(copyfunc_addr));
3117     __ addptr(rsp, 6*wordSize);
3118 #else
3119     __ mov(c_rarg4, j_rarg4);
3120 #ifndef PRODUCT
3121     if (PrintC1Statistics) {
3122       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3123     }
3124 #endif
3125     __ call(RuntimeAddress(copyfunc_addr));
3126 #endif // _WIN64
3127 #else
3128     __ push(length);
3129     __ push(dst_pos);
3130     __ push(dst);
3131     __ push(src_pos);
3132     __ push(src);
3133 
3134 #ifndef PRODUCT
3135     if (PrintC1Statistics) {
3136       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3137     }
3138 #endif
3139     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3140 
3141 #endif // _LP64
3142 
3143     __ testl(rax, rax);
3144     __ jcc(Assembler::equal, *stub->continuation());
3145 
3146     __ mov(tmp, rax);
3147     __ xorl(tmp, -1);
3148 
3149     // Reload values from the stack so they are where the stub
3150     // expects them.
3151     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3152     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3153     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3154     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3155     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3156 
3157     __ subl(length, tmp);
3158     __ addl(src_pos, tmp);
3159     __ addl(dst_pos, tmp);
3160     __ jmp(*stub->entry());
3161 
3162     __ bind(*stub->continuation());
3163     return;
3164   }
3165 
3166   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3167 
3168   int elem_size = type2aelembytes(basic_type);
3169   Address::ScaleFactor scale;
3170 
3171   switch (elem_size) {
3172     case 1 :
3173       scale = Address::times_1;
3174       break;
3175     case 2 :
3176       scale = Address::times_2;
3177       break;
3178     case 4 :
3179       scale = Address::times_4;
3180       break;
3181     case 8 :
3182       scale = Address::times_8;
3183       break;
3184     default:
3185       scale = Address::no_scale;
3186       ShouldNotReachHere();
3187   }
3188 
3189   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3190   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3191   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3192   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3193 
3194   // length and pos's are all sign extended at this point on 64bit
3195 
3196   // test for null
3197   if (flags & LIR_OpArrayCopy::src_null_check) {
3198     __ testptr(src, src);
3199     __ jcc(Assembler::zero, *stub->entry());
3200   }
3201   if (flags & LIR_OpArrayCopy::dst_null_check) {
3202     __ testptr(dst, dst);
3203     __ jcc(Assembler::zero, *stub->entry());
3204   }
3205 
3206   // If the compiler was not able to prove that exact type of the source or the destination
3207   // of the arraycopy is an array type, check at runtime if the source or the destination is
3208   // an instance type.
3209   if (flags & LIR_OpArrayCopy::type_check) {
3210     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3211       __ load_klass(tmp, dst, tmp_load_klass);
3212       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3213       __ jcc(Assembler::greaterEqual, *stub->entry());
3214     }
3215 
3216     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3217       __ load_klass(tmp, src, tmp_load_klass);
3218       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3219       __ jcc(Assembler::greaterEqual, *stub->entry());
3220     }
3221   }
3222 
3223   // check if negative
3224   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3225     __ testl(src_pos, src_pos);
3226     __ jcc(Assembler::less, *stub->entry());
3227   }
3228   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3229     __ testl(dst_pos, dst_pos);
3230     __ jcc(Assembler::less, *stub->entry());
3231   }
3232 
3233   if (flags & LIR_OpArrayCopy::src_range_check) {
3234     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3235     __ cmpl(tmp, src_length_addr);
3236     __ jcc(Assembler::above, *stub->entry());
3237   }
3238   if (flags & LIR_OpArrayCopy::dst_range_check) {
3239     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3240     __ cmpl(tmp, dst_length_addr);
3241     __ jcc(Assembler::above, *stub->entry());
3242   }
3243 
3244   if (flags & LIR_OpArrayCopy::length_positive_check) {
3245     __ testl(length, length);
3246     __ jcc(Assembler::less, *stub->entry());
3247   }
3248 
3249 #ifdef _LP64
3250   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3251   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3252 #endif
3253 
3254   if (flags & LIR_OpArrayCopy::type_check) {
3255     // We don't know the array types are compatible
3256     if (basic_type != T_OBJECT) {
3257       // Simple test for basic type arrays
3258       if (UseCompressedClassPointers) {
3259         __ movl(tmp, src_klass_addr);
3260         __ cmpl(tmp, dst_klass_addr);
3261       } else {
3262         __ movptr(tmp, src_klass_addr);
3263         __ cmpptr(tmp, dst_klass_addr);
3264       }
3265       __ jcc(Assembler::notEqual, *stub->entry());
3266     } else {
3267       // For object arrays, if src is a sub class of dst then we can
3268       // safely do the copy.
3269       Label cont, slow;
3270 
3271       __ push(src);
3272       __ push(dst);
3273 
3274       __ load_klass(src, src, tmp_load_klass);
3275       __ load_klass(dst, dst, tmp_load_klass);
3276 
3277       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3278 
3279       __ push(src);
3280       __ push(dst);
3281       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3282       __ pop(dst);
3283       __ pop(src);
3284 
3285       __ testl(src, src);
3286       __ jcc(Assembler::notEqual, cont);
3287 
3288       __ bind(slow);
3289       __ pop(dst);
3290       __ pop(src);
3291 
3292       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3293       if (copyfunc_addr != nullptr) { // use stub if available
3294         // src is not a sub class of dst so we have to do a
3295         // per-element check.
3296 
3297         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3298         if ((flags & mask) != mask) {
3299           // Check that at least both of them object arrays.
3300           assert(flags & mask, "one of the two should be known to be an object array");
3301 
3302           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3303             __ load_klass(tmp, src, tmp_load_klass);
3304           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3305             __ load_klass(tmp, dst, tmp_load_klass);
3306           }
3307           int lh_offset = in_bytes(Klass::layout_helper_offset());
3308           Address klass_lh_addr(tmp, lh_offset);
3309           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3310           __ cmpl(klass_lh_addr, objArray_lh);
3311           __ jcc(Assembler::notEqual, *stub->entry());
3312         }
3313 
3314        // Spill because stubs can use any register they like and it's
3315        // easier to restore just those that we care about.
3316        store_parameter(dst, 0);
3317        store_parameter(dst_pos, 1);
3318        store_parameter(length, 2);
3319        store_parameter(src_pos, 3);
3320        store_parameter(src, 4);
3321 
3322 #ifndef _LP64
3323         __ movptr(tmp, dst_klass_addr);
3324         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3325         __ push(tmp);
3326         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3327         __ push(tmp);
3328         __ push(length);
3329         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3330         __ push(tmp);
3331         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3332         __ push(tmp);
3333 
3334         __ call_VM_leaf(copyfunc_addr, 5);
3335 #else
3336         __ movl2ptr(length, length); //higher 32bits must be null
3337 
3338         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3339         assert_different_registers(c_rarg0, dst, dst_pos, length);
3340         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3341         assert_different_registers(c_rarg1, dst, length);
3342 
3343         __ mov(c_rarg2, length);
3344         assert_different_registers(c_rarg2, dst);
3345 
3346 #ifdef _WIN64
3347         // Allocate abi space for args but be sure to keep stack aligned
3348         __ subptr(rsp, 6*wordSize);
3349         __ load_klass(c_rarg3, dst, tmp_load_klass);
3350         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3351         store_parameter(c_rarg3, 4);
3352         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3353         __ call(RuntimeAddress(copyfunc_addr));
3354         __ addptr(rsp, 6*wordSize);
3355 #else
3356         __ load_klass(c_rarg4, dst, tmp_load_klass);
3357         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3358         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3359         __ call(RuntimeAddress(copyfunc_addr));
3360 #endif
3361 
3362 #endif
3363 
3364 #ifndef PRODUCT
3365         if (PrintC1Statistics) {
3366           Label failed;
3367           __ testl(rax, rax);
3368           __ jcc(Assembler::notZero, failed);
3369           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3370           __ bind(failed);
3371         }
3372 #endif
3373 
3374         __ testl(rax, rax);
3375         __ jcc(Assembler::zero, *stub->continuation());
3376 
3377 #ifndef PRODUCT
3378         if (PrintC1Statistics) {
3379           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3380         }
3381 #endif
3382 
3383         __ mov(tmp, rax);
3384 
3385         __ xorl(tmp, -1);
3386 
3387         // Restore previously spilled arguments
3388         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3389         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3390         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3391         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3392         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3393 
3394 
3395         __ subl(length, tmp);
3396         __ addl(src_pos, tmp);
3397         __ addl(dst_pos, tmp);
3398       }
3399 
3400       __ jmp(*stub->entry());
3401 
3402       __ bind(cont);
3403       __ pop(dst);
3404       __ pop(src);
3405     }
3406   }
3407 
3408 #ifdef ASSERT
3409   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3410     // Sanity check the known type with the incoming class.  For the
3411     // primitive case the types must match exactly with src.klass and
3412     // dst.klass each exactly matching the default type.  For the
3413     // object array case, if no type check is needed then either the
3414     // dst type is exactly the expected type and the src type is a
3415     // subtype which we can't check or src is the same array as dst
3416     // but not necessarily exactly of type default_type.
3417     Label known_ok, halt;
3418     __ mov_metadata(tmp, default_type->constant_encoding());
3419 #ifdef _LP64
3420     if (UseCompressedClassPointers) {
3421       __ encode_klass_not_null(tmp, rscratch1);
3422     }
3423 #endif
3424 
3425     if (basic_type != T_OBJECT) {
3426 
3427       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3428       else                   __ cmpptr(tmp, dst_klass_addr);
3429       __ jcc(Assembler::notEqual, halt);
3430       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3431       else                   __ cmpptr(tmp, src_klass_addr);
3432       __ jcc(Assembler::equal, known_ok);
3433     } else {
3434       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3435       else                   __ cmpptr(tmp, dst_klass_addr);
3436       __ jcc(Assembler::equal, known_ok);
3437       __ cmpptr(src, dst);
3438       __ jcc(Assembler::equal, known_ok);
3439     }
3440     __ bind(halt);
3441     __ stop("incorrect type information in arraycopy");
3442     __ bind(known_ok);
3443   }
3444 #endif
3445 
3446 #ifndef PRODUCT
3447   if (PrintC1Statistics) {
3448     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3449   }
3450 #endif
3451 
3452 #ifdef _LP64
3453   assert_different_registers(c_rarg0, dst, dst_pos, length);
3454   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3455   assert_different_registers(c_rarg1, length);
3456   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3457   __ mov(c_rarg2, length);
3458 
3459 #else
3460   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3461   store_parameter(tmp, 0);
3462   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3463   store_parameter(tmp, 1);
3464   store_parameter(length, 2);
3465 #endif // _LP64
3466 
3467   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3468   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3469   const char *name;
3470   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3471   __ call_VM_leaf(entry, 0);
3472 
3473   __ bind(*stub->continuation());
3474 }
3475 
3476 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3477   assert(op->crc()->is_single_cpu(),  "crc must be register");
3478   assert(op->val()->is_single_cpu(),  "byte value must be register");
3479   assert(op->result_opr()->is_single_cpu(), "result must be register");
3480   Register crc = op->crc()->as_register();
3481   Register val = op->val()->as_register();
3482   Register res = op->result_opr()->as_register();
3483 
3484   assert_different_registers(val, crc, res);
3485 
3486   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3487   __ notl(crc); // ~crc
3488   __ update_byte_crc32(crc, val, res);
3489   __ notl(crc); // ~crc
3490   __ mov(res, crc);
3491 }
3492 
3493 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3494   Register obj = op->obj_opr()->as_register();  // may not be an oop
3495   Register hdr = op->hdr_opr()->as_register();
3496   Register lock = op->lock_opr()->as_register();
3497   if (LockingMode == LM_MONITOR) {
3498     if (op->info() != nullptr) {
3499       add_debug_info_for_null_check_here(op->info());
3500       __ null_check(obj);
3501     }
3502     __ jmp(*op->stub()->entry());
3503   } else if (op->code() == lir_lock) {
3504     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3505     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3506     // add debug info for NullPointerException only if one is possible
3507     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3508     if (op->info() != nullptr) {
3509       add_debug_info_for_null_check(null_check_offset, op->info());
3510     }
3511     // done
3512   } else if (op->code() == lir_unlock) {
3513     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3514     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3515   } else {
3516     Unimplemented();
3517   }
3518   __ bind(*op->stub()->continuation());
3519 }
3520 
3521 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3522   Register obj = op->obj()->as_pointer_register();
3523   Register result = op->result_opr()->as_pointer_register();
3524 
3525   CodeEmitInfo* info = op->info();
3526   if (info != nullptr) {
3527     add_debug_info_for_null_check_here(info);
3528   }
3529 
3530 #ifdef _LP64
3531   if (UseCompressedClassPointers) {
3532     __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3533     __ decode_klass_not_null(result, rscratch1);
3534   } else
3535 #endif
3536     __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3537 }
3538 
3539 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3540   ciMethod* method = op->profiled_method();
3541   int bci          = op->profiled_bci();
3542   ciMethod* callee = op->profiled_callee();
3543   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3544 
3545   // Update counter for all call types
3546   ciMethodData* md = method->method_data_or_null();
3547   assert(md != nullptr, "Sanity");
3548   ciProfileData* data = md->bci_to_data(bci);
3549   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3550   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3551   Register mdo  = op->mdo()->as_register();
3552   __ mov_metadata(mdo, md->constant_encoding());
3553   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3554   // Perform additional virtual call profiling for invokevirtual and
3555   // invokeinterface bytecodes
3556   if (op->should_profile_receiver_type()) {
3557     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3558     Register recv = op->recv()->as_register();
3559     assert_different_registers(mdo, recv);
3560     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3561     ciKlass* known_klass = op->known_holder();
3562     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3563       // We know the type that will be seen at this call site; we can
3564       // statically update the MethodData* rather than needing to do
3565       // dynamic tests on the receiver type
3566 
3567       // NOTE: we should probably put a lock around this search to
3568       // avoid collisions by concurrent compilations
3569       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3570       uint i;
3571       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3572         ciKlass* receiver = vc_data->receiver(i);
3573         if (known_klass->equals(receiver)) {
3574           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3575           __ addptr(data_addr, DataLayout::counter_increment);
3576           return;
3577         }
3578       }
3579 
3580       // Receiver type not found in profile data; select an empty slot
3581 
3582       // Note that this is less efficient than it should be because it
3583       // always does a write to the receiver part of the
3584       // VirtualCallData rather than just the first time
3585       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3586         ciKlass* receiver = vc_data->receiver(i);
3587         if (receiver == nullptr) {
3588           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3589           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3590           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3591           __ addptr(data_addr, DataLayout::counter_increment);
3592           return;
3593         }
3594       }
3595     } else {
3596       __ load_klass(recv, recv, tmp_load_klass);
3597       Label update_done;
3598       type_profile_helper(mdo, md, data, recv, &update_done);
3599       // Receiver did not match any saved receiver and there is no empty row for it.
3600       // Increment total counter to indicate polymorphic case.
3601       __ addptr(counter_addr, DataLayout::counter_increment);
3602 
3603       __ bind(update_done);
3604     }
3605   } else {
3606     // Static call
3607     __ addptr(counter_addr, DataLayout::counter_increment);
3608   }
3609 }
3610 
3611 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3612   Register obj = op->obj()->as_register();
3613   Register tmp = op->tmp()->as_pointer_register();
3614   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3615   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3616   ciKlass* exact_klass = op->exact_klass();
3617   intptr_t current_klass = op->current_klass();
3618   bool not_null = op->not_null();
3619   bool no_conflict = op->no_conflict();
3620 
3621   Label update, next, none;
3622 
3623   bool do_null = !not_null;
3624   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3625   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3626 
3627   assert(do_null || do_update, "why are we here?");
3628   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3629 
3630   __ verify_oop(obj);
3631 
3632 #ifdef ASSERT
3633   if (obj == tmp) {
3634 #ifdef _LP64
3635     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3636 #else
3637     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3638 #endif
3639   } else {
3640 #ifdef _LP64
3641     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3642 #else
3643     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3644 #endif
3645   }
3646 #endif
3647   if (do_null) {
3648     __ testptr(obj, obj);
3649     __ jccb(Assembler::notZero, update);
3650     if (!TypeEntries::was_null_seen(current_klass)) {
3651       __ testptr(mdo_addr, TypeEntries::null_seen);
3652 #ifndef ASSERT
3653       __ jccb(Assembler::notZero, next); // already set
3654 #else
3655       __ jcc(Assembler::notZero, next); // already set
3656 #endif
3657       // atomic update to prevent overwriting Klass* with 0
3658       __ lock();
3659       __ orptr(mdo_addr, TypeEntries::null_seen);
3660     }
3661     if (do_update) {
3662 #ifndef ASSERT
3663       __ jmpb(next);
3664     }
3665 #else
3666       __ jmp(next);
3667     }
3668   } else {
3669     __ testptr(obj, obj);
3670     __ jcc(Assembler::notZero, update);
3671     __ stop("unexpected null obj");
3672 #endif
3673   }
3674 
3675   __ bind(update);
3676 
3677   if (do_update) {
3678 #ifdef ASSERT
3679     if (exact_klass != nullptr) {
3680       Label ok;
3681       __ load_klass(tmp, obj, tmp_load_klass);
3682       __ push(tmp);
3683       __ mov_metadata(tmp, exact_klass->constant_encoding());
3684       __ cmpptr(tmp, Address(rsp, 0));
3685       __ jcc(Assembler::equal, ok);
3686       __ stop("exact klass and actual klass differ");
3687       __ bind(ok);
3688       __ pop(tmp);
3689     }
3690 #endif
3691     if (!no_conflict) {
3692       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3693         if (exact_klass != nullptr) {
3694           __ mov_metadata(tmp, exact_klass->constant_encoding());
3695         } else {
3696           __ load_klass(tmp, obj, tmp_load_klass);
3697         }
3698 #ifdef _LP64
3699         __ mov(rscratch1, tmp); // save original value before XOR
3700 #endif
3701         __ xorptr(tmp, mdo_addr);
3702         __ testptr(tmp, TypeEntries::type_klass_mask);
3703         // klass seen before, nothing to do. The unknown bit may have been
3704         // set already but no need to check.
3705         __ jccb(Assembler::zero, next);
3706 
3707         __ testptr(tmp, TypeEntries::type_unknown);
3708         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3709 
3710         if (TypeEntries::is_type_none(current_klass)) {
3711           __ testptr(mdo_addr, TypeEntries::type_mask);
3712           __ jccb(Assembler::zero, none);
3713 #ifdef _LP64
3714           // There is a chance that the checks above (re-reading profiling
3715           // data from memory) fail if another thread has just set the
3716           // profiling to this obj's klass
3717           __ mov(tmp, rscratch1); // get back original value before XOR
3718           __ xorptr(tmp, mdo_addr);
3719           __ testptr(tmp, TypeEntries::type_klass_mask);
3720           __ jccb(Assembler::zero, next);
3721 #endif
3722         }
3723       } else {
3724         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3725                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3726 
3727         __ testptr(mdo_addr, TypeEntries::type_unknown);
3728         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3729       }
3730 
3731       // different than before. Cannot keep accurate profile.
3732       __ orptr(mdo_addr, TypeEntries::type_unknown);
3733 
3734       if (TypeEntries::is_type_none(current_klass)) {
3735         __ jmpb(next);
3736 
3737         __ bind(none);
3738         // first time here. Set profile type.
3739         __ movptr(mdo_addr, tmp);
3740 #ifdef ASSERT
3741         __ andptr(tmp, TypeEntries::type_klass_mask);
3742         __ verify_klass_ptr(tmp);
3743 #endif
3744       }
3745     } else {
3746       // There's a single possible klass at this profile point
3747       assert(exact_klass != nullptr, "should be");
3748       if (TypeEntries::is_type_none(current_klass)) {
3749         __ mov_metadata(tmp, exact_klass->constant_encoding());
3750         __ xorptr(tmp, mdo_addr);
3751         __ testptr(tmp, TypeEntries::type_klass_mask);
3752 #ifdef ASSERT
3753         __ jcc(Assembler::zero, next);
3754 
3755         {
3756           Label ok;
3757           __ push(tmp);
3758           __ testptr(mdo_addr, TypeEntries::type_mask);
3759           __ jcc(Assembler::zero, ok);
3760           // may have been set by another thread
3761           __ mov_metadata(tmp, exact_klass->constant_encoding());
3762           __ xorptr(tmp, mdo_addr);
3763           __ testptr(tmp, TypeEntries::type_mask);
3764           __ jcc(Assembler::zero, ok);
3765 
3766           __ stop("unexpected profiling mismatch");
3767           __ bind(ok);
3768           __ pop(tmp);
3769         }
3770 #else
3771         __ jccb(Assembler::zero, next);
3772 #endif
3773         // first time here. Set profile type.
3774         __ movptr(mdo_addr, tmp);
3775 #ifdef ASSERT
3776         __ andptr(tmp, TypeEntries::type_klass_mask);
3777         __ verify_klass_ptr(tmp);
3778 #endif
3779       } else {
3780         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3781                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3782 
3783         __ testptr(mdo_addr, TypeEntries::type_unknown);
3784         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3785 
3786         __ orptr(mdo_addr, TypeEntries::type_unknown);
3787       }
3788     }
3789   }
3790   __ bind(next);
3791 }
3792 
3793 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3794   Unimplemented();
3795 }
3796 
3797 
3798 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3799   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3800 }
3801 
3802 
3803 void LIR_Assembler::align_backward_branch_target() {
3804   __ align(BytesPerWord);
3805 }
3806 
3807 
3808 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3809   if (left->is_single_cpu()) {
3810     __ negl(left->as_register());
3811     move_regs(left->as_register(), dest->as_register());
3812 
3813   } else if (left->is_double_cpu()) {
3814     Register lo = left->as_register_lo();
3815 #ifdef _LP64
3816     Register dst = dest->as_register_lo();
3817     __ movptr(dst, lo);
3818     __ negptr(dst);
3819 #else
3820     Register hi = left->as_register_hi();
3821     __ lneg(hi, lo);
3822     if (dest->as_register_lo() == hi) {
3823       assert(dest->as_register_hi() != lo, "destroying register");
3824       move_regs(hi, dest->as_register_hi());
3825       move_regs(lo, dest->as_register_lo());
3826     } else {
3827       move_regs(lo, dest->as_register_lo());
3828       move_regs(hi, dest->as_register_hi());
3829     }
3830 #endif // _LP64
3831 
3832   } else if (dest->is_single_xmm()) {
3833 #ifdef _LP64
3834     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3835       assert(tmp->is_valid(), "need temporary");
3836       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3837       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3838     }
3839     else
3840 #endif
3841     {
3842       assert(!tmp->is_valid(), "do not need temporary");
3843       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3844         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3845       }
3846       __ xorps(dest->as_xmm_float_reg(),
3847                ExternalAddress((address)float_signflip_pool),
3848                rscratch1);
3849     }
3850   } else if (dest->is_double_xmm()) {
3851 #ifdef _LP64
3852     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3853       assert(tmp->is_valid(), "need temporary");
3854       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3855       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3856     }
3857     else
3858 #endif
3859     {
3860       assert(!tmp->is_valid(), "do not need temporary");
3861       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3862         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3863       }
3864       __ xorpd(dest->as_xmm_double_reg(),
3865                ExternalAddress((address)double_signflip_pool),
3866                rscratch1);
3867     }
3868 #ifndef _LP64
3869   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3870     assert(left->fpu() == 0, "arg must be on TOS");
3871     assert(dest->fpu() == 0, "dest must be TOS");
3872     __ fchs();
3873 #endif // !_LP64
3874 
3875   } else {
3876     ShouldNotReachHere();
3877   }
3878 }
3879 
3880 
3881 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3882   assert(src->is_address(), "must be an address");
3883   assert(dest->is_register(), "must be a register");
3884 
3885   PatchingStub* patch = nullptr;
3886   if (patch_code != lir_patch_none) {
3887     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3888   }
3889 
3890   Register reg = dest->as_pointer_register();
3891   LIR_Address* addr = src->as_address_ptr();
3892   __ lea(reg, as_Address(addr));
3893 
3894   if (patch != nullptr) {
3895     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3896   }
3897 }
3898 
3899 
3900 
3901 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3902   assert(!tmp->is_valid(), "don't need temporary");
3903   __ call(RuntimeAddress(dest));
3904   if (info != nullptr) {
3905     add_call_info_here(info);
3906   }
3907   __ post_call_nop();
3908 }
3909 
3910 
3911 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3912   assert(type == T_LONG, "only for volatile long fields");
3913 
3914   if (info != nullptr) {
3915     add_debug_info_for_null_check_here(info);
3916   }
3917 
3918   if (src->is_double_xmm()) {
3919     if (dest->is_double_cpu()) {
3920 #ifdef _LP64
3921       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3922 #else
3923       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3924       __ psrlq(src->as_xmm_double_reg(), 32);
3925       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3926 #endif // _LP64
3927     } else if (dest->is_double_stack()) {
3928       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3929     } else if (dest->is_address()) {
3930       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3931     } else {
3932       ShouldNotReachHere();
3933     }
3934 
3935   } else if (dest->is_double_xmm()) {
3936     if (src->is_double_stack()) {
3937       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3938     } else if (src->is_address()) {
3939       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3940     } else {
3941       ShouldNotReachHere();
3942     }
3943 
3944 #ifndef _LP64
3945   } else if (src->is_double_fpu()) {
3946     assert(src->fpu_regnrLo() == 0, "must be TOS");
3947     if (dest->is_double_stack()) {
3948       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3949     } else if (dest->is_address()) {
3950       __ fistp_d(as_Address(dest->as_address_ptr()));
3951     } else {
3952       ShouldNotReachHere();
3953     }
3954 
3955   } else if (dest->is_double_fpu()) {
3956     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3957     if (src->is_double_stack()) {
3958       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3959     } else if (src->is_address()) {
3960       __ fild_d(as_Address(src->as_address_ptr()));
3961     } else {
3962       ShouldNotReachHere();
3963     }
3964 #endif // !_LP64
3965 
3966   } else {
3967     ShouldNotReachHere();
3968   }
3969 }
3970 
3971 #ifdef ASSERT
3972 // emit run-time assertion
3973 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3974   assert(op->code() == lir_assert, "must be");
3975 
3976   if (op->in_opr1()->is_valid()) {
3977     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3978     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3979   } else {
3980     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3981     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3982   }
3983 
3984   Label ok;
3985   if (op->condition() != lir_cond_always) {
3986     Assembler::Condition acond = Assembler::zero;
3987     switch (op->condition()) {
3988       case lir_cond_equal:        acond = Assembler::equal;       break;
3989       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3990       case lir_cond_less:         acond = Assembler::less;        break;
3991       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3992       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3993       case lir_cond_greater:      acond = Assembler::greater;     break;
3994       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3995       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3996       default:                    ShouldNotReachHere();
3997     }
3998     __ jcc(acond, ok);
3999   }
4000   if (op->halt()) {
4001     const char* str = __ code_string(op->msg());
4002     __ stop(str);
4003   } else {
4004     breakpoint();
4005   }
4006   __ bind(ok);
4007 }
4008 #endif
4009 
4010 void LIR_Assembler::membar() {
4011   // QQQ sparc TSO uses this,
4012   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4013 }
4014 
4015 void LIR_Assembler::membar_acquire() {
4016   // No x86 machines currently require load fences
4017 }
4018 
4019 void LIR_Assembler::membar_release() {
4020   // No x86 machines currently require store fences
4021 }
4022 
4023 void LIR_Assembler::membar_loadload() {
4024   // no-op
4025   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4026 }
4027 
4028 void LIR_Assembler::membar_storestore() {
4029   // no-op
4030   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4031 }
4032 
4033 void LIR_Assembler::membar_loadstore() {
4034   // no-op
4035   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4036 }
4037 
4038 void LIR_Assembler::membar_storeload() {
4039   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4040 }
4041 
4042 void LIR_Assembler::on_spin_wait() {
4043   __ pause ();
4044 }
4045 
4046 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4047   assert(result_reg->is_register(), "check");
4048 #ifdef _LP64
4049   // __ get_thread(result_reg->as_register_lo());
4050   __ mov(result_reg->as_register(), r15_thread);
4051 #else
4052   __ get_thread(result_reg->as_register());
4053 #endif // _LP64
4054 }
4055 
4056 
4057 void LIR_Assembler::peephole(LIR_List*) {
4058   // do nothing for now
4059 }
4060 
4061 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4062   assert(data == dest, "xchg/xadd uses only 2 operands");
4063 
4064   if (data->type() == T_INT) {
4065     if (code == lir_xadd) {
4066       __ lock();
4067       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4068     } else {
4069       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4070     }
4071   } else if (data->is_oop()) {
4072     assert (code == lir_xchg, "xadd for oops");
4073     Register obj = data->as_register();
4074 #ifdef _LP64
4075     if (UseCompressedOops) {
4076       __ encode_heap_oop(obj);
4077       __ xchgl(obj, as_Address(src->as_address_ptr()));
4078       __ decode_heap_oop(obj);
4079     } else {
4080       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4081     }
4082 #else
4083     __ xchgl(obj, as_Address(src->as_address_ptr()));
4084 #endif
4085   } else if (data->type() == T_LONG) {
4086 #ifdef _LP64
4087     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4088     if (code == lir_xadd) {
4089       __ lock();
4090       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4091     } else {
4092       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4093     }
4094 #else
4095     ShouldNotReachHere();
4096 #endif
4097   } else {
4098     ShouldNotReachHere();
4099   }
4100 }
4101 
4102 #undef __